Science.gov

Sample records for abiotic control experiments

  1. Interactive biotic and abiotic regulators of soil carbon cycling: evidence from controlled climate experiments on peatland and boreal soils.

    PubMed

    Briones, María Jesús I; McNamara, Niall P; Poskitt, Jan; Crow, Susan E; Ostle, Nicholas J

    2014-09-01

    Partially decomposed plant and animal remains have been accumulating in organic soils (i.e. >40% C content) for millennia, making them the largest terrestrial carbon store. There is growing concern that, in a warming world, soil biotic processing will accelerate and release greenhouse gases that further exacerbate climate change. However, the magnitude of this response remains uncertain as the constraints are abiotic, biotic and interactive. Here, we examined the influence of resource quality and biological activity on the temperature sensitivity of soil respiration under different soil moisture regimes. Organic soils were sampled from 13 boreal and peatland ecosystems located in the United Kingdom, Ireland, Spain, Finland and Sweden, representing a natural resource quality range of C, N and P. They were incubated at four temperatures (4, 10, 15 and 20 °C) at either 60% or 100% water holding capacity (WHC). Our results showed that chemical and biological properties play an important role in determining soil respiration responses to temperature and moisture changes. High soil C : P and C : N ratios were symptomatic of slow C turnover and long-term C accumulation. In boreal soils, low bacterial to fungal ratios were related to greater temperature sensitivity of respiration, which was amplified in drier conditions. This contrasted with peatland soils which were dominated by bacterial communities and enchytraeid grazing, resulting in a more rapid C turnover under warmer and wetter conditions. The unexpected acceleration of C mineralization under high moisture contents was possibly linked to the primarily role of fermented organic matter, instead of oxygen, in mediating microbial decomposition. We conclude that to improve C model simulations of soil respiration, a better resolution of the interactions occurring between climate, resource quality and the decomposer community will be required.

  2. Abiotic stress QTL in lettuce crop–wild hybrids: comparing greenhouse and field experiments

    PubMed Central

    Hartman, Yorike; Hooftman, Danny A P; Uwimana, Brigitte; Schranz, M Eric; van de Wiel, Clemens C M; Smulders, Marinus J M; Visser, Richard G F; Michelmore, Richard W; van Tienderen, Peter H

    2014-01-01

    The development of stress-tolerant crops is an increasingly important goal of current crop breeding. A higher abiotic stress tolerance could increase the probability of introgression of genes from crops to wild relatives. This is particularly relevant to the discussion on the risks of new GM crops that may be engineered to increase abiotic stress resistance. We investigated abiotic stress QTL in greenhouse and field experiments in which we subjected recombinant inbred lines from a cross between cultivated Lactuca sativa cv. Salinas and its wild relative L. serriola to drought, low nutrients, salt stress, and aboveground competition. Aboveground biomass at the end of the rosette stage was used as a proxy for the performance of plants under a particular stress. We detected a mosaic of abiotic stress QTL over the entire genome with little overlap between QTL from different stresses. The two QTL clusters that were identified reflected general growth rather than specific stress responses and colocated with clusters found in earlier studies for leaf shape and flowering time. Genetic correlations across treatments were often higher among different stress treatments within the same experiment (greenhouse or field), than among the same type of stress applied in different experiments. Moreover, the effects of the field stress treatments were more correlated with those of the greenhouse competition treatments than to those of the other greenhouse stress experiments, suggesting that competition rather than abiotic stress is a major factor in the field. In conclusion, the introgression risk of stress tolerance (trans-)genes under field conditions cannot easily be predicted based on genomic background selection patterns from controlled QTL experiments in greenhouses, especially field data will be needed to assess potential (negative) ecological effects of introgression of these transgenes into wild relatives. PMID:25360276

  3. Abiotic Reduction of Selenite and Antimonate Under Controlled Oxygen Conditions

    NASA Astrophysics Data System (ADS)

    Belzile, N.; Truong, H. T.; Polack, R.; Chen, Y.

    2008-12-01

    Laboratory and field studies have reported the oxidation of elemental Se to selenite or selenate or that of antimonite to antimonate but the reduction studies of the two elements, especially in absence of bacteria are more scarce. We have performed experiments on the abiotic reduction of Se(IV) and Sb(V) under controlled oxygen conditions in presence of naturally-encountered reducing agents such as Fe(II) and dissolved sulfide. In the case of selenite, the reduction by ferrous iron is barely detectable at very low concentrations of oxygen. However, at concentrations of 200 ± 50 ppmv in the controlled atmosphere glove box, more iron oxide particles were formed at a higher initial Fe(II) concentration in the system and with time. In the pellets collected after filtration, a significant amount of Se(0) was found. Our field geochemical studies on Se also showed the same phenomenon, i.e. a higher level of Se(0) in lake sediments was accompanied by a higher presence of iron oxides. In the case of antimony, the reduction of Sb(V) by dissolved sulfide was extensive and far more rapid at more acidic pH values. Half lives for Sb(V) in the presence of excess dissolved sulfide at pH values of 5 to 7 were calculated and the reaction was found to be first order with respect to all three of [Sb(V)], [dissolved sulfide] and [H+]. Metastibnite precipitated after reduction of Sb(V) in working experimental samples at buffered pH of 5 and 6. The oxidation product of dissolved sulfide was identified as elemental sulfur. This study has demonstrated the ability of dissolved sulfide to reduce Sb(V) under a variety of environmentally relevant concentrations and conditions.

  4. Abiotic and biotic controls of soil moisture spatiotemporal variability and the occurrence of hysteresis

    NASA Astrophysics Data System (ADS)

    Fatichi, Simone; Katul, Gabriel G.; Ivanov, Valeriy Y.; Pappas, Christoforos; Paschalis, Athanasios; Consolo, Ada; Kim, Jongho; Burlando, Paolo

    2015-05-01

    An expression that separates biotic and abiotic controls on the temporal dynamics of the soil moisture spatial coefficient of variation Cv(θ) was explored via numerical simulations using a mechanistic ecohydrological model, Tethys-Chloris. Continuous soil moisture spatiotemporal dynamics at an exemplary hillslope domain were computed for six case studies characterized by different climate and vegetation cover and for three configurations of soil properties. It was shown that abiotic controls largely exceed their biotic counterparts in wet climates. Biotic controls on Cv(θ) were found to be more pronounced in Mediterranean climates. The relation between Cv(θ) and spatial mean soil moisture θ¯ was found to be unique in wet locations, regardless of the soil properties. For the case of homogeneous soil texture, hysteretic cycles between Cv(θ) and θ¯ were observed in all Mediterranean climate locations considered here and to a lesser extent in a deciduous temperate forest. Heterogeneity in soil properties increased Cv(θ) to values commensurate with field observations and weakened signatures of hysteresis at all of the studied locations. This finding highlights the role of site-specific heterogeneities in hiding or even eliminating the signature of climatic and biotic controls on Cv(θ), thereby offering a new perspective on causes of confounding results reported across field experiments.

  5. Abiotic factors control invasion by Argentine ants at the community scale.

    PubMed

    Menke, Sean B; Holway, David A

    2006-03-01

    1. A prominent and unresolved question in ecology concerns why communities differ in their susceptibility to invasion. While studies often emphasize biotic resistance, it is less widely appreciated how the physical environment affects community vulnerability to invasion. 2. In this study we performed field experiments to test how abiotic variation directly and indirectly influences the extent to which Linepithema humile Mayr (Argentine ants) invade seasonally dry environments in southern California. 3. In controlled and replicated experiments involving drip irrigation, we demonstrate (i) that elevated levels of soil moisture increased both the abundance of Argentine ants and their ability to invade native ant communities and (ii) that cessation of irrigation caused declines in the abundance of Argentine ants and led to their withdrawal from previously occupied areas. 4. Because drip irrigation stimulated plant growth, in an additional experiment we manipulated both soil moisture and plant cover to assess the direct vs. indirect effects of added water on the abundance of L. humile. 5. Local abundance of Argentine ants increased in irrigated plots but was 38% higher in irrigated plots with plants compared to irrigated plots where plant growth was suppressed. The results of this experiment thus argue for a direct role of soil moisture in influencing Argentine ant abundance but suggest that that the indirect effects of added water may also be important. 6. Our study illustrates more generally that fine-scale variation in the physical environment can control whether communities become invaded by non-native species and suggests that an understanding of community susceptibility to invasion will be improved by a better appreciation of interactions between the biotic and abiotic environment.

  6. Exploring biotic vs. abiotic controls on syngenetic carbonate and clay mineral precipitation

    NASA Astrophysics Data System (ADS)

    Nascimento, Gabriela S.; McKenzie, Judith A.; Martinez Ruiz, Francisca; Bontognali, Tomaso R. R.; Vasconcelos, Crisogono

    2016-04-01

    A possible syngenetic relationship between carbonate and clay mineral precipitation has been reported for sedimentary rocks deposited in both lacustrine and marine sedimentary environments throughout the geological record. In particular, the mineral dolomite is often found associated with Mg-rich clays, such as stevensite. It is notable that this carbonate/clay association has been recorded in numerous samples taken from modern dolomite precipitating environments; for example, the Coorong lakes, South Australia, coastal sabkhas, Abu Dhabi, UAE and coastal hypersaline lagoons (Lagoa Vermelha and Brejo do Espinho) east of Rio de Janeiro, Brazil. An HRTEM study of samples from these three locations indicates a possible physical/chemical association between the Ca-dolomite and Mg-rich clays, demonstrating a probable co-precipitation. To test this hypothesis, we have conducted a series of biotic and abiotic laboratory experiments. If this syngenesis actually occurs in nature, what, if any, are the biogeochemical processes controlling these precipitation reactions? Our experiments were designed to determine the extent of the biotic versus abiotic component influencing the mineral precipitation and, in the case of a biotic influence, to understand the mechanism through which microorganisms might mediate the formation of clay minerals. The experiments were carried out in the Geomicrobiology Laboratory of ETH Zürich using cultures of living microbes and artificial organic compounds that simulate functional groups present in natural biofilms formed under both aerobic and anaerobic conditions. In addition, pure inorganic experiments were designed to understand possible physico-chemical conditions for diagenetic processes that could induce dissolution of Mg-carbonates and precipitation of Mg-rich clays. Our results show a remarkable biotic influence during the formation of clay minerals. Specifically, extracellular polymeric substances (EPS), released by microbes in their

  7. Abiotic stress and control of grain number in cereals.

    PubMed

    Dolferus, Rudy; Ji, Xuemei; Richards, Richard A

    2011-10-01

    Grain number is the only yield component that is directly associated with increased grain yield in important cereal crops like wheat. Historical yield studies show that increases in grain yield are always accompanied by an increase in grain number. Adverse weather conditions can cause severe fluctuations in grain yield and substantial yield losses in cereal crops. The problem is global and despite its impact on world food production breeding and selection approaches have only met with limited success. A specific period during early reproductive development, the young microspore stage of pollen development, is extremely vulnerable to abiotic stress in self-fertilising cereals (wheat, rice, barley, sorghum). A better understanding of the physiological and molecular processes that lead to stress-induced pollen abortion may provide us with the key to finding solutions for maintaining grain number under abiotic stress conditions. Due to the complexity of the problem, stress-proofing our main cereal crops will be a challenging task and will require joint input from different research disciplines.

  8. Stable Carbon Isotopic Signatures of Abiotic Organics from Hydrothermal Synthesis Experiments

    NASA Technical Reports Server (NTRS)

    Stern, Jennifer C.; Summers, David P.; Kubo, Mike; Yassar, Saima

    2006-01-01

    Stable carbon isotopes can be powerful biogeochemical markers in the study of life's origins. Biogenic carbon fixation produces organics that are depleted in C-13 by about -20 to -30%0. Less attention has been paid to the isotopic signatures of abiotic processes. The possibility of abiotic processes producing organics with morphologies and isotopic signatures in the biogenic range has been at the center of recent debate over the Earth's earliest microfossils. The abiotic synthesis of organic compounds in hydrothermal environments is one possible source of endogenous organic matter to the prebiotic earth. Simulated hydrothermal settings have been shown to synthesize, among other things, single chain amphiphiles and simple lipids from a mix of CO, CO2, and H2. A key characteristic of these amphiphilic molecules is the ability to self-assemble in aqueous phases into more organized structures called vesicles, which form a selectively permeable boundary and serve the function of containing and concentrating other organic molecules. The ability to form cell like structures also makes these compounds more likely to be mistaken for biogenic. Hydrothermal simulation experiments were conducted from oxalic or formic acid in water at 175 C for 72 hr. The molecular and isotopic composition of the products of these reactions were determined and compared to biogenic fractionations . Preliminary results indicate isotopic fractionation during abiotic hydrocarbon synthesis in hydrothermal environments is on par with biological carbon fixation.

  9. Abiotic and microbiotic factors controlling biofilm formation by thermophilic sporeformers.

    PubMed

    Zhao, Yu; Caspers, Martien P M; Metselaar, Karin I; de Boer, Paulo; Roeselers, Guus; Moezelaar, Roy; Nierop Groot, Masja; Montijn, Roy C; Abee, Tjakko; Kort, Remco

    2013-09-01

    One of the major concerns in the production of dairy concentrates is the risk of contamination by heat-resistant spores from thermophilic bacteria. In order to acquire more insight in the composition of microbial communities occurring in the dairy concentrate industry, a bar-coded 16S amplicon sequencing analysis was carried out on milk, final products, and fouling samples taken from dairy concentrate production lines. The analysis of these samples revealed the presence of DNA from a broad range of bacterial taxa, including a majority of mesophiles and a minority of (thermophilic) spore-forming bacteria. Enrichments of fouling samples at 55°C showed the accumulation of predominantly Brevibacillus and Bacillus, whereas enrichments at 65°C led to the accumulation of Anoxybacillus and Geobacillus species. Bacterial population analysis of biofilms grown using fouling samples as an inoculum indicated that both Anoxybacillus and Geobacillus preferentially form biofilms on surfaces at air-liquid interfaces rather than on submerged surfaces. Three of the most potent biofilm-forming strains isolated from the dairy factory industrial samples, including Geobacillus thermoglucosidans, Geobacillus stearothermophilus, and Anoxybacillus flavithermus, have been characterized in detail with respect to their growth conditions and spore resistance. Strikingly, Geobacillus thermoglucosidans, which forms the most thermostable spores of these three species, is not able to grow in dairy intermediates as a pure culture but appears to be dependent for growth on other spoilage organisms present, probably as a result of their proteolytic activity. These results underscore the importance of abiotic and microbiotic factors in niche colonization in dairy factories, where the presence of thermophilic sporeformers can affect the quality of end products.

  10. Abiotic and Microbiotic Factors Controlling Biofilm Formation by Thermophilic Sporeformers

    PubMed Central

    Zhao, Yu; Caspers, Martien P. M.; Metselaar, Karin I.; de Boer, Paulo; Roeselers, Guus; Moezelaar, Roy; Nierop Groot, Masja; Montijn, Roy C.; Abee, Tjakko

    2013-01-01

    One of the major concerns in the production of dairy concentrates is the risk of contamination by heat-resistant spores from thermophilic bacteria. In order to acquire more insight in the composition of microbial communities occurring in the dairy concentrate industry, a bar-coded 16S amplicon sequencing analysis was carried out on milk, final products, and fouling samples taken from dairy concentrate production lines. The analysis of these samples revealed the presence of DNA from a broad range of bacterial taxa, including a majority of mesophiles and a minority of (thermophilic) spore-forming bacteria. Enrichments of fouling samples at 55°C showed the accumulation of predominantly Brevibacillus and Bacillus, whereas enrichments at 65°C led to the accumulation of Anoxybacillus and Geobacillus species. Bacterial population analysis of biofilms grown using fouling samples as an inoculum indicated that both Anoxybacillus and Geobacillus preferentially form biofilms on surfaces at air-liquid interfaces rather than on submerged surfaces. Three of the most potent biofilm-forming strains isolated from the dairy factory industrial samples, including Geobacillus thermoglucosidans, Geobacillus stearothermophilus, and Anoxybacillus flavithermus, have been characterized in detail with respect to their growth conditions and spore resistance. Strikingly, Geobacillus thermoglucosidans, which forms the most thermostable spores of these three species, is not able to grow in dairy intermediates as a pure culture but appears to be dependent for growth on other spoilage organisms present, probably as a result of their proteolytic activity. These results underscore the importance of abiotic and microbiotic factors in niche colonization in dairy factories, where the presence of thermophilic sporeformers can affect the quality of end products. PMID:23851093

  11. Biotic and abiotic controls of argentine ant invasion success at local and landscape scales

    USGS Publications Warehouse

    Menke, S.B.; Fisher, R.N.; Jetz, W.; Holway, D.A.

    2007-01-01

    Although the ecological success of introduced species hinges on biotic interactions and physical conditions, few experimental studies - especially on animals - have simultaneously investigated the relative importance of both types of factors. The lack of such research may stem from the common assumption that native and introduced species exhibit similar environmental tolerances. Here we combine experimental and spatial modeling approaches (1) to determine the relative importance of biotic and abiotic controls of Argentine ant (Linepithema humile) invasion success, (2) to examine how the importance of these factors changes with spatial scale in southern California (USA), and (3) to assess how Argentine ants differ from native ants in their environmental tolerances. A factorial field experiment that combined native ant removal with irrigation revealed that Argentine ants failed to invade any dry plots (even those lacking native ants) but readily invaded all moist plots. Native ants slowed the spread of Argentine ants into irrigated plots but did not prevent invasion. In areas without Argentine ants, native ant species showed variable responses to irrigation. At the landscape scale, Argentine ant occurrence was positively correlated with minimum winter temperature (but not precipitation), whereas native ant diversity increased with precipitation and was negatively correlated with minimum winter temperature. These results are of interest for several reasons. First, they demonstrate that fine-scale differences in the physical environment can eclipse biotic resistance from native competitors in determining community susceptibility to invasion. Second, our results illustrate surprising complexities with respect to how the abiotic factors limiting invasion can change with spatial scale, and third, how native and invasive species can differ in their responses to the physical environment. Idiosyncratic and scale-dependent processes complicate attempts to forecast where

  12. Unveiling the Redox Control of Plant Reproductive Development during Abiotic Stress

    PubMed Central

    Zinta, Gaurav; Khan, Asif; AbdElgawad, Hamada; Verma, Vipasha; Srivastava, Ashish Kumar

    2016-01-01

    Plants being sessile in nature are often challenged to various abiotic stresses including temperature fluctuations, water supply, salinity, and nutrient availability. Exposure of plants to such environmental perturbations result in the formation of reactive oxygen species (ROS) in cells. To scavenge ROS, enzymatic and molecular antioxidants are produced at a cellular level. ROS act as a signaling entity at lower concentrations maintaining normal growth and development, but if their levels increase beyond certain threshold, they produce toxic effects in plants. Some developmental stages, such as development of reproductive organs are more sensitive to abiotic stress than other stages of growth. As success of plant reproductive development is directly correlated with grain yield, stresses coinciding with reproductive phase results in the higher yield losses. In this article, we summarize the redox control of plant reproductive development, and elaborate how redox homeostasis is compromised during abiotic stress exposure. We highlight why more emphasis should be given to understand redox control of plant reproductive organ development during abiotic stress exposure96to engineer crops with better crop yield. We specifically discuss the role of ROS as a signaling molecule and its cross-talk with other signaling molecules such as hormones and sugars. PMID:27379102

  13. Unveiling the Redox Control of Plant Reproductive Development during Abiotic Stress.

    PubMed

    Zinta, Gaurav; Khan, Asif; AbdElgawad, Hamada; Verma, Vipasha; Srivastava, Ashish Kumar

    2016-01-01

    Plants being sessile in nature are often challenged to various abiotic stresses including temperature fluctuations, water supply, salinity, and nutrient availability. Exposure of plants to such environmental perturbations result in the formation of reactive oxygen species (ROS) in cells. To scavenge ROS, enzymatic and molecular antioxidants are produced at a cellular level. ROS act as a signaling entity at lower concentrations maintaining normal growth and development, but if their levels increase beyond certain threshold, they produce toxic effects in plants. Some developmental stages, such as development of reproductive organs are more sensitive to abiotic stress than other stages of growth. As success of plant reproductive development is directly correlated with grain yield, stresses coinciding with reproductive phase results in the higher yield losses. In this article, we summarize the redox control of plant reproductive development, and elaborate how redox homeostasis is compromised during abiotic stress exposure. We highlight why more emphasis should be given to understand redox control of plant reproductive organ development during abiotic stress exposure96to engineer crops with better crop yield. We specifically discuss the role of ROS as a signaling molecule and its cross-talk with other signaling molecules such as hormones and sugars. PMID:27379102

  14. SERDP ER-1421 Abiotic and Biotic Mechanisms Controlling In Situ Remediation of NDMA: Final Report

    SciTech Connect

    Szecsody, James E.; McKinley, James P.; Crocker, Fiona H.; Breshears, Andrew T.; Devary, Brooks J.; Fredrickson, Herbert L.; Thompson, Karen T.

    2009-09-30

    This laboratory-scale project was initiated to investigate in situ abiotic/biotic mineralization of NDMA. Under iron-reducing conditions, aquifer sediments showed rapid abiotic NDMA degradation to dimethylamine (DMA), nitrate, formate, and finally, CO2. These are the first reported experiments of abiotic NDMA mineralization. The NDMA reactivity of these different iron phases showed that adsorbed ferrous iron was the dominant reactive phase that promoted NDMA reduction, and other ferrous phases present (siderite, iron sulfide, magnetite, structural ferrous iron in 2:1 clays) did not promote NDMA degradation. In contrast, oxic sediments that were biostimulated with propane promoted biomineralization of NDMA by a cometabolic monooxygenase enzyme process. Other monooxygenase enzyme processes were not stimulated with methane or toluene additions, and acetylene addition did not block mineralization. Although NDMA mineralization extent was the highest in oxic, biostimulated sediments (30 to 82%, compared to 10 to 26% for abiotic mineralization in reduced sediments), large 1-D column studies (high sediment/water ratio of aquifers) showed 5.6 times higher NDMA mineralization rates in reduced sediment (half-life 410 ± 147 h) than oxic biomineralization (half life 2293 ± 1866 h). Sequential reduced/oxic biostimulated sediment mineralization (half-life 3180 ± 1094 h) was also inefficient compared to reduced sediment. These promising laboratory-scale results for NDMA mineralization should be investigated at field scale. Future studies of NDMA remediation should focus on the comparison of this in situ abiotic NDMA mineralization (iron-reducing environments) to ex situ biomineralization, which has been shown successful in other studies.

  15. Subsoil Soil Organic Matter Complexation and Stabilization: Assessment of Abiotic and Biotic Controls

    NASA Astrophysics Data System (ADS)

    Rosier, C. L.; Kan, J.; Aufdenkampe, A. K.; Yoo, K.

    2011-12-01

    Approximately 1200-2000 petagrams (Pg-1015 g) of carbon are stored in the Earth's soil as soil organic matter (SOM), representing two times the amount of carbon stored in the Earth's vegetation and atmosphere combined. SOM significantly influences several essential ecosystem services including nutrient cycling, mitigation of soil erosion, and storage of atmospheric CO2. The majority of studies investigating SOM complexation and stabilization potential mainly occur within the A soil horizon completely ignoring deeper soil horizons. Studies aimed at investigating specific abiotic and biotic interactions that facilitate the complexation and stabilization potential of SOM to C-limited subsoil horizons are needed in order to develop an accurate soil carbon budget. The purpose of this study was to determine the degree to which the presence or absence of iron oxide in combination with increasing degrees of biological processing (micro-macrofauna) would complex and stabilize SOM. We conducted a series of laboratory soil incubation experiments using carbon amended B horizon soils with low and high iron oxide concentrations with increasing levels of biological processing. The experimental design of our study allowed us to track the possible fate of soil carbon: (i) CO2 mineralization (modified Li-COR), (ii) particulate organic matter (density fractionization), mineral surface complexed carbon (N2 adsorption BET method) and (iii) organism biomass. Results from our study clearly demonstrate that the greater the degree of macro-scale biological processing (i.e. mixing) in conjunction with the presence of iron oxide significantly increased the complexation and stabilization potential of SOM. Our results further suggest that organic matter interaction with mineral surfaces and entombment within stable soil aggregates were the primary mechanisms controlling SOM storage. This study reveals the importance of biological SOM burial and mixing with C-limited subsoil horizons as a

  16. Factors controlling the abiotic photo-degradation of monomethylmercury in surface waters

    NASA Astrophysics Data System (ADS)

    Black, Frank J.; Poulin, Brett A.; Flegal, A. Russell

    2012-05-01

    Photo-decomposition is among the most important mechanisms responsible for degrading monomethylmercury (MMHg) in aquatic systems, but this process is not fully understood. We investigated the relative importance of different factors in controlling the rate of MMHg photo-decomposition in surface waters in experiments using DOM isolated from natural waters. We found no evidence of net abiotic production of MMHg in any dark or light exposed treatments. The average (mean ± s.d.) MMHg photo-decomposition rate constant for all light exposed samples using DOM concentrated from three coastal wetlands was 0.0099 ± 0.0020 E-1m2 (range of 0.006-0.015 E-1m2) when expressed in photon flux from 330-700 nm. This was roughly 3-fold higher than the average MMHg photo-decomposition rate constant in coastal seawater of 0.0032 ± 0.0010 E-1m2. MMHg photo-degradation was highly wavelength dependent. The ratio of MMHg photo-decomposition rate constants, with respect to photon flux, was 400:37:1 for UVB:UVA:PAR. However, when integrated across the entire water column over which MMHg photo-demethylation occurs, PAR was responsible for photo-degrading more MMHg than UVB and UVA combined in the three wetland sites because of the more rapid attenuation of UV light with depth. MMHg half-lives in the wetlands were calculated for the upper 250 cm where photo-degradation occurred, and ranged from 7.6 to 20 days under typical summer sunlight conditions at 37°N. Rates of MMHg photo-decomposition decreased with increasing salinity, and were 27% higher at a salinity of 5 than those at a salinity of 25. This difference could not be accounted for by changes in the complexation of MMHg by DOM and chloride. Differences in MMHg photo-degradation rate constants of up to 18% were measured between treatments using DOM concentrated from three different wetlands. Surprisingly, increasing DOM concentration from 1.5 to 11.3 mg OC L-1 had only a small (6%) effect on MMHg photo-decomposition, which was much

  17. Abiotic, biotic, and evolutionary control of the distribution of C and N isotopes in food webs.

    PubMed

    Laiolo, Paola; Illera, Juan Carlos; Meléndez, Leandro; Segura, Amalia; Obeso, José Ramón

    2015-02-01

    Ecosystem functioning depends on nutrient cycles and their responses to abiotic and biotic determinants, with the influence of evolutionary legacies being generally overlooked in ecosystem ecology. Along a broad elevation gradient characterized by shifting climatic and grazing environments, we addressed clines of plant N and C∶N content and of δ(13)C and δ(15)N in producers (herbs) and in primary (grasshoppers) and secondary (birds) consumers, both within and between species in phylogenetically controlled scenarios. We found parallel and significant intra- and interspecific trends of isotopic variation with elevation in the three groups. In primary producers, nutrient and isotope distributions had a detectable phylogenetic signal that constrained their variation along the environmental gradient. The influence of the environment could not be ascribed to any single factor, and both grazing and climate had an effect on leaf stoichiometry and, thus, on the resources available to consumers. Trends in consumers matched those in plants but often became nonsignificant after controlling for isotopic values of their direct resources, revealing direct bottom-up control and little phylogenetic dependence. By integrating ecosystem and mechanistic perspectives, we found that nutrient dynamics in food webs are governed at the base by the complex interaction between local determinants and evolutionary factors.

  18. Polyamines control of cation transport across plant membranes: implications for ion homeostasis and abiotic stress signaling

    PubMed Central

    Pottosin, Igor; Shabala, Sergey

    2014-01-01

    Polyamines are unique polycationic metabolites, controlling a variety of vital functions in plants, including growth and stress responses. Over the last two decades a bulk of data was accumulated providing explicit evidence that polyamines play an essential role in regulating plant membrane transport. The most straightforward example is a blockage of the two major vacuolar cation channels, namely slow (SV) and fast (FV) activating ones, by the micromolar concentrations of polyamines. This effect is direct and fully reversible, with a potency descending in a sequence Spm4+ > Spd3+ > Put2+. On the contrary, effects of polyamines on the plasma membrane (PM) cation and K+-selective channels are hardly dependent on polyamine species, display a relatively low affinity, and are likely to be indirect. Polyamines also affect vacuolar and PM H+ pumps and Ca2+ pump of the PM. On the other hand, catabolization of polyamines generates H2O2 and other reactive oxygen species (ROS), including hydroxyl radicals. Export of polyamines to the apoplast and their oxidation there by available amine oxidases results in the induction of a novel ion conductance and confers Ca2+ influx across the PM. This mechanism, initially established for plant responses to pathogen attack (including a hypersensitive response), has been recently shown to mediate plant responses to a variety of abiotic stresses. In this review we summarize the effects of polyamines and their catabolites on cation transport in plants and discuss the implications of these effects for ion homeostasis, signaling, and plant adaptive responses to environment. PMID:24795739

  19. Chemical controls on abiotic and biotic release of geogenic arsenic from Pleistocene aquifer sediments to groundwater.

    PubMed

    Gillispie, Elizabeth C; Andujar, Erika; Polizzotto, Matthew L

    2016-08-10

    Over 150 million people in South and Southeast Asia consume unsafe drinking water from arsenic-rich Holocene aquifers. Although use of As-free water from Pleistocene aquifers is a potential mitigation strategy, such aquifers are vulnerable to geogenic As pollution, placing millions more people at potential risk. The goal of this research was to define chemical controls on abiotic and biotic release of geogenic As to groundwater. Batch incubations of sediments with natural chemical variability from a Pleistocene aquifer in Cambodia were conducted to evaluate how interactions among arsenic, manganese and iron oxides, and dissolved and sedimentary organic carbon influenced As mobilization from sediments. The addition of labile dissolved organic carbon produced the highest concentrations of dissolved As after >7 months, as compared to sediment samples incubated with sodium azide or without added carbon, and the extent of As release was positively correlated with the percent of initial extractable Mn released from the sediments. The mode of As release was impacted by the source of DOC supplied to the sediments, with biological processes responsible for 81% to 85% of the total As release following incubations with lactate and acetate but only up to 43% to 61% of the total As release following incubations with humic and fulvic acids. Overall, cycling of key redox-active elements and organic-carbon reactivity govern the potential for geogenic As release to groundwater, and results here may be used to formulate better predictions of the arsenic pollution potential of aquifers in South and Southeast Asia. PMID:27463026

  20. Advanced Process Control Experiments.

    ERIC Educational Resources Information Center

    Deshpande, Pradeep B.; And Others

    1980-01-01

    Describes laboratory experiments of a chemistry course on advanced process control. The equipment for the process around which these experiments were developed by the University of Louisville was constructed from data provided by Exxon Oil Company. (HM)

  1. Biotic, abiotic and management controls on methanol exchange above a temperate mountain grassland.

    PubMed

    Hörtnagl, Lukas; Bamberger, Ines; Graus, Martin; Ruuskanen, Taina M; Schnitzhofer, Ralf; Müller, Markus; Hansel, Armin; Wohlfahrt, Georg

    2011-09-01

    Methanol (CH3OH) fluxes were quantified above a managed temperate mountain grassland in the Stubai Valley (Tyrol, Austria) during the growing seasons 2008 and 2009. Half-hourly methanol fluxes were calculated by means of the virtual disjunct eddy covariance (vDEC) method using 3-dimensional wind data from a sonic anemometer and methanol volume mixing ratios measured with a proton-transfer-reaction mass spectrometer (PTR-MS). During (undisturbed) mature and growing phases methanol fluxes exhibited a clear diurnal cycle with close-to-zero fluxes during nighttime and emissions, up to 10 nmol m(-2) s(-1), which followed the diurnal course of radiation and air temperature. Management events were found to represent the largest perturbations of methanol exchange at the studied grassland ecosystem: Peak emissions of 144.5 nmol m(-2) s(-1) were found during/after cutting of the meadow reflecting the wounding of the plant material and subsequent depletion of the leaf internal aqueous methanol pools. After the application of organic fertilizer, elevated methanol emissions of up to 26.7 nmol m(-2) s(-1) were observed, likely reflecting enhanced microbial activity associated with the applied manure. Simple and multiple linear regression analyses revealed air temperature and radiation as the dominant abiotic controls, jointly explaining 47 % and 70 % of the variability in half-hourly and daily methanol fluxes. In contrast to published leaf-level laboratory studies, the surface conductance and the daily change in the amount of green plant area, used as ecosystem-scale proxies for stomatal conductance and growth, respectively, were found to exert only minor biotic controls on methanol exchange.

  2. Biotic, abiotic and management controls on methanol exchange above a temperate mountain grassland

    PubMed Central

    Hörtnagl, Lukas; Bamberger, Ines; Graus, Martin; Ruuskanen, Taina M.; Schnitzhofer, Ralf; Müller, Markus; Hansel, Armin; Wohlfahrt, Georg

    2013-01-01

    Methanol (CH3OH) fluxes were quantified above a managed temperate mountain grassland in the Stubai Valley (Tyrol, Austria) during the growing seasons 2008 and 2009. Half-hourly methanol fluxes were calculated by means of the virtual disjunct eddy covariance (vDEC) method using 3-dimensional wind data from a sonic anemometer and methanol volume mixing ratios measured with a proton-transfer-reaction mass spectrometer (PTR-MS). During (undisturbed) mature and growing phases methanol fluxes exhibited a clear diurnal cycle with close-to-zero fluxes during nighttime and emissions, up to 10 nmol m−2 s−1, which followed the diurnal course of radiation and air temperature. Management events were found to represent the largest perturbations of methanol exchange at the studied grassland ecosystem: Peak emissions of 144.5 nmol m−2 s−1 were found during/after cutting of the meadow reflecting the wounding of the plant material and subsequent depletion of the leaf internal aqueous methanol pools. After the application of organic fertilizer, elevated methanol emissions of up to 26.7 nmol m−2 s−1 were observed, likely reflecting enhanced microbial activity associated with the applied manure. Simple and multiple linear regression analyses revealed air temperature and radiation as the dominant abiotic controls, jointly explaining 47 % and 70 % of the variability in half-hourly and daily methanol fluxes. In contrast to published leaf-level laboratory studies, the surface conductance and the daily change in the amount of green plant area, used as ecosystem-scale proxies for stomatal conductance and growth, respectively, were found to exert only minor biotic controls on methanol exchange. PMID:24349901

  3. Biotic, abiotic, and management controls on methanol exchange above a temperate mountain grassland

    NASA Astrophysics Data System (ADS)

    HöRtnagl, Lukas; Bamberger, Ines; Graus, Martin; Ruuskanen, Taina M.; Schnitzhofer, Ralf; Müller, Markus; Hansel, Armin; Wohlfahrt, Georg

    2011-09-01

    Methanol (CH3OH) fluxes were quantified above a managed temperate mountain grassland in the Stubai Valley (Tyrol, Austria) during the growing seasons 2008 and 2009. Half-hourly methanol fluxes were calculated by means of the virtual disjunct eddy covariance (vDEC) method using three-dimensional wind data from a sonic anemometer and methanol volume mixing ratios measured with a proton transfer reaction mass spectrometer (PTR-MS). During (undisturbed) mature and growing phases, methanol fluxes exhibited a clear diurnal cycle with close-to-zero fluxes during nighttime and emissions, up to 10 nmol m-2 s-1, which followed the diurnal course of radiation and air temperature. Management events were found to represent the largest perturbations of methanol exchange at the studied grassland ecosystem: Peak emissions of 144.5 nmol m-2 s-1 were found during/after cutting of the meadow, reflecting the wounding of the plant material and subsequent depletion of the leaf internal aqueous methanol pools. After the application of organic fertilizer, elevated methanol emissions of up to 26.7 nmol m-2 s-1 were observed, likely reflecting enhanced microbial activity associated with the applied manure. Simple and multiple linear regression analyses revealed air temperature and radiation as the dominant abiotic controls, jointly explaining 47% and 70% of the variability in half-hourly and daily methanol fluxes. In contrast to published leaf-level laboratory studies, the surface conductance and the daily change in the amount of green plant area, used as ecosystem-scale proxies for stomatal conductance and growth, respectively, were found to exert only minor biotic controls on methanol exchange.

  4. Form and function of grass ring patterns in arid grasslands: the role of abiotic controls.

    PubMed

    Ravi, Sujith; D'Odorico, Paolo; Wang, Lixin; Collins, Scott

    2008-12-01

    Ring-shaped growth patterns commonly occur in resource-limited arid and semi-arid environments. The spatial distribution, geometry, and scale of vegetation growth patterns result from interactions between biotic and abiotic processes, and, in turn, affect the spatial patterns of soil moisture, sediment transport, and nutrient dynamics in aridland ecosystems. Even though grass ring patterns are observed worldwide, a comprehensive understanding of the biotic and abiotic processes that lead to the formation, growth and breakup of these rings is still lacking. Our studies on patterns of infiltration and soil properties of blue grama (Bouteloua gracilis) grass rings in the northern Chihuahuan desert indicate that ring patterns result from the interaction between clonal growth mechanisms and abiotic factors such as hydrological and aeolian processes. These processes result in a negative feedback between sediment deposition and vegetation growth inside the bunch grass, which leads to grass die back at the center of the grass clump. We summarize these interactions in a simple theoretical and conceptual model that integrates key biotic and abiotic processes in ring formation, growth and decline.

  5. Authentic Research Experience and "Big Data" Analysis in the Classroom: Maize Response to Abiotic Stress.

    PubMed

    Makarevitch, Irina; Frechette, Cameo; Wiatros, Natalia

    2015-01-01

    Integration of inquiry-based approaches into curriculum is transforming the way science is taught and studied in undergraduate classrooms. Incorporating quantitative reasoning and mathematical skills into authentic biology undergraduate research projects has been shown to benefit students in developing various skills necessary for future scientists and to attract students to science, technology, engineering, and mathematics disciplines. While large-scale data analysis became an essential part of modern biological research, students have few opportunities to engage in analysis of large biological data sets. RNA-seq analysis, a tool that allows precise measurement of the level of gene expression for all genes in a genome, revolutionized molecular biology and provides ample opportunities for engaging students in authentic research. We developed, implemented, and assessed a series of authentic research laboratory exercises incorporating a large data RNA-seq analysis into an introductory undergraduate classroom. Our laboratory series is focused on analyzing gene expression changes in response to abiotic stress in maize seedlings; however, it could be easily adapted to the analysis of any other biological system with available RNA-seq data. Objective and subjective assessment of student learning demonstrated gains in understanding important biological concepts and in skills related to the process of science.

  6. Authentic Research Experience and "Big Data" Analysis in the Classroom: Maize Response to Abiotic Stress.

    PubMed

    Makarevitch, Irina; Frechette, Cameo; Wiatros, Natalia

    2015-01-01

    Integration of inquiry-based approaches into curriculum is transforming the way science is taught and studied in undergraduate classrooms. Incorporating quantitative reasoning and mathematical skills into authentic biology undergraduate research projects has been shown to benefit students in developing various skills necessary for future scientists and to attract students to science, technology, engineering, and mathematics disciplines. While large-scale data analysis became an essential part of modern biological research, students have few opportunities to engage in analysis of large biological data sets. RNA-seq analysis, a tool that allows precise measurement of the level of gene expression for all genes in a genome, revolutionized molecular biology and provides ample opportunities for engaging students in authentic research. We developed, implemented, and assessed a series of authentic research laboratory exercises incorporating a large data RNA-seq analysis into an introductory undergraduate classroom. Our laboratory series is focused on analyzing gene expression changes in response to abiotic stress in maize seedlings; however, it could be easily adapted to the analysis of any other biological system with available RNA-seq data. Objective and subjective assessment of student learning demonstrated gains in understanding important biological concepts and in skills related to the process of science. PMID:26163561

  7. Silicon isotope fractionation during abiotic silica precipitation at low temperatures: Inferences from flow-through experiments

    NASA Astrophysics Data System (ADS)

    Geilert, Sonja; Vroon, Pieter Z.; Roerdink, Desiree L.; Van Cappellen, Philippe; van Bergen, Manfred J.

    2014-10-01

    Silicon isotopes have considerable potential as proxy for (near-) surface processes and environmental conditions. However, unambiguous interpretations of isotope signatures in natural silica deposits are often hampered by a lack of independent quantitative information on isotopic fractionations operating under the environmental conditions of interest. We performed seeded silica precipitation experiments using flow-through reactors in the 10-60 °C temperature range to alleviate this problem. The principal objective was to quantify the silicon isotope fractionations during controlled precipitation of amorphous silica from a flowing aqueous solution. The experiments were designed to simulate silica deposition induced by a temperature drop, with particular relevance for (near-) surface hydrothermal systems associated with steep temperature gradients. Monitored differences in silicon isotope ratios (30Si/28Si and 29Si/28Si) between input and output solutions demonstrated a systematic sequence in behavior. During an initial time interval, that is, before the reaction system reached steady state, the observed isotope shifts were influenced by dissolution of the seed material, the saturation state of the solution and the specific surface area of the seeds. After reaching steady state, the selective incorporation of silicon isotopes by the solid phase exhibited an explicit temperature dependency: the lighter isotopes were preferentially incorporated, and apparent fractionation magnitudes increased with decreasing temperature. Calculated magnitudes of silicon isotope fractionations between precipitated and dissolved silica (Δ30Si = δ30Siprecipitate (calculated) - δ30Siinput solution) were -2.1‰ at 10 °C, -1.2‰ at 20 °C, -1.0‰ at 30 °C, -0.5‰ at 40 °C, 0.1‰ at 50 °C, and 0.2‰ at 60 °C (s.d. ⩽ 0.6‰, based on replicate experiments). Hence, fractionation was nearly insignificant at temperatures ⩾50 °C. Apart from this relationship with temperature

  8. Microcomputer Controlled Experiments.

    ERIC Educational Resources Information Center

    Kirkman, John; Knaggs, David

    1982-01-01

    Describes a microcomputer-controlled system which determines the current/voltage characteristics of a resistor, lamp, and diode, detailing system elements, construction, and providing printout of the program developed to provide control and arithmetic functions necessary to complete the experiment. (SK)

  9. Redox-dependent regulation, redox control and oxidative damage in plant cells subjected to abiotic stress.

    PubMed

    Dietz, Karl-Josef

    2010-01-01

    Stress development intricately involves uncontrolled redox reactions and oxidative damage to functional macromolecules. Three phases characterize progressing abiotic stress and the stress strength; in the first phase redox-dependent deregulation in metabolism, in the second phase detectable development of oxidative damage and in the third phase cell death. Each phase is characterized by traceable biochemical features and specific molecular responses that reflect on the one hand cell damage but on the other hand indicate specific regulation and redox signalling aiming at compensation of stress impact. PMID:20387040

  10. Abiotic and biotic controls on local spatial distribution and performance of Boechera stricta.

    PubMed

    Naithani, Kusum J; Ewers, Brent E; Adelman, Jonathan D; Siemens, David H

    2014-01-01

    This study investigates the relative influence of biotic and abiotic factors on community dynamics using an integrated approach and highlights the influence of space on genotypic and phenotypic traits in plant community structure. We examined the relative influence of topography, environment, spatial distance, and intra- and interspecific interactions on spatial distribution and performance of Boechera stricta (rockcress), a close perennial relative of model plant Arabidopsis. First, using Bayesian kriging, we mapped the topography and environmental gradients and explored the spatial distribution of naturally occurring rockcress plants and two neighbors, Taraxacum officinale (dandelion) and Solidago missouriensis (goldenrod) found in close proximity within a typical diverse meadow community across topographic and environmental gradients. We then evaluated direct and indirect relationships among variables using Mantel path analysis and developed a network displaying abiotic and biotic interactions in this community. We found significant spatial autocorrelation among rockcress individuals, either because of common microhabitats as displayed by high density of individuals at lower elevation and high soil moisture area, or limited dispersal as shown by significant spatial autocorrelation of naturally occurring inbred lines, or a combination of both. Goldenrod and dandelion density around rockcress does not show any direct relationship with rockcress fecundity, possibly due to spatial segregation of resources. However, dandelion density around rockcress shows an indirect negative influence on rockcress fecundity via herbivory, indicating interspecific competition. Overall, we suggest that common microhabitat preference and limited dispersal are the main drivers for spatial distribution. However, intra-specific interactions and insect herbivory are the main drivers of rockcress performance in the meadow community. PMID:25101102

  11. Abiotic and biotic controls of organic matter cycling in a managed stream

    NASA Astrophysics Data System (ADS)

    Edmonds, Jennifer W.; Grimm, Nancy B.

    2011-06-01

    Urbanization often alters the physical, chemical, and biological structure of aquatic ecosystems embedded within them, creating managed ecosystems with different structure and functioning as compared to their unmanaged counterparts. Our work focused on patterns in dissolved organic carbon (DOC) along a managed stream in Phoenix, Arizona. We documented longitudinal changes in DOC concentrations and quality (defined as chemical complexity and measured as specific ultraviolet absorbance at 254 nm, SUVA) along a 66 km stream dominated by treated wastewater effluent. DOC concentrations along the stream declined by an average of 64%, and chemical complexity increased substantially. We posed four hypotheses to explain changes in downstream water chemistry; including hydrologic dilution, microbial mineralization, abiotic sorption to suspended sediments, and photodegradation by ultraviolet (UV) radiation. Only the second and fourth hypotheses represent permanent removal mechanisms. Our data most strongly supported predictions from the dilution hypothesis and microbial mineralization as an explanation for the changes in DOC chemistry. Surface-subsurface water linkages were important but altered from unmanaged streams, as deep groundwater was used to augment surface flows. Variation in the use of groundwater was linked to human decision making and engineering related to water management. Reduction in geomorphic complexity increased the importance of dilution in explaining patterns but also increased the importance of UV oxidation as a mechanism influencing DOC chemistry. Our findings suggest urban stream management has shifted dependence on microbially mediated C removal mechanisms to hydrologic dilution to reduce output concentrations. This shift lowers contaminant removal potential and increases dependence on limited groundwater resources.

  12. Gamma irradiation: a method to produce an abiotic control for biological activated carbon.

    PubMed

    Stoquart, C; Vázquez-Rodríguez, G A; Servais, P; Barbeau, B

    2013-01-01

    The aim of this paper was to investigate the feasibility of using gamma irradiation to inhibit the microbial activity of biological powder activated carbon (PAC) without impacting its adsorptive properties. First of all, the range of dose of gamma rays required to produce abiotic PAC was selected on the basis of heterotrophic plate counts (HPC) inactivation and methylene blue (MB) adsorption kinetics. Doses inferior to 10 kGy were not sufficient to inhibit the culture of heterotrophic bacteria. On the other hand, doses superior to 15 kGy were demonstrated to affect the adsorption rate of MB. Consequently, a dose comprised between 10 and 15 kGy was selected for further investigation. In order to validate the adequacy of the range of dose (i.e. 10-15 kGy), adsorption characteristics were tested by monitoring the removal kinetics of refractory dissolved organic carbon (RDOC). No significant differences were observed between irradiated and non-irradiated biological PAC for the adsorption of RDOC. Irradiated, non-irradiated and virgin PAC were also evaluated in terms of abundance of viable (using the LIVE/DEAD BacLight method) bacteria and in terms of heterotrophic biomass activity. The results of the BacLight method demonstrated that attachment of the biofilm on the PAC was not impacted by the irradiation and heterotrophic activity measurements demonstrated that the latter could be radically reduced in the range of dose selected. In conclusion, when using a proper dose, the gamma irradiation of colonized activated carbon drastically reduced the heterotrophic activity on activated carbon without significantly impacting its adsorptive behaviour. PMID:24617066

  13. Abiotic and biotic controls of cryptobenthic fish assemblages across a Caribbean seascape

    NASA Astrophysics Data System (ADS)

    Harborne, A. R.; Jelks, H. L.; Smith-Vaniz, W. F.; Rocha, L. A.

    2012-12-01

    The majority of fish studies on coral reefs consider only non-cryptic species and, despite their functional importance, data on cryptic species are scarce. This study investigates inter-habitat variation in Caribbean cryptobenthic fishes by re-analysing a comprehensive data set from 58 rotenone stations around Buck Island, U.S. Virgin Islands. Boosted regression trees were used to associate the density and diversity of non-piscivorous cryptobenthic fishes, both in the entire data set and on reef habitats alone, with 14 abiotic and biotic variables. The study also models the habitat requirements of the three commonest species. Dead coral cover was the first or second most important variable in six of the eight models constructed. For example, within the entire data set, the number of species and total fish density increased approximately linearly with increasing dead coral cover. Dead coral was also important in multivariate analyses that discriminated 10 assemblages within the entire data set. On reef habitats, the number of species and total fish density increased dramatically when dead coral exceeded ~55 %. Live coral cover was typically less important for explaining variance in fish assemblages than dead coral, but live corals were important for maintaining high fish diversity. Coral species favoured by cryptobenthic species may be particularly susceptible to mortality, but dead coral may also provide abundant food and shelter for many fishes. Piscivore density was a key variable in the final models, but typically increased with increasing cryptobenthic fish diversity and abundance, suggesting both groups of fishes are responding to the same habitat variables. The density of territorial damselfishes reduced the number of cryptobenthic fish species on reef habitats. Finally, habitats delineated by standard remote sensing techniques supported distinct cryptobenthic fish assemblages, suggesting that such maps can be used as surrogates of general patterns of cryptic

  14. Abiotic and biotic controls of cryptobenthic fish assemblages across a Caribbean seascape

    USGS Publications Warehouse

    Harborne, A.R.; Jelks, H.L.; Smith-Vaniz, W.F.; Rocha, L.A.

    2012-01-01

    The majority of fish studies on coral reefs consider only non-cryptic species and, despite their functional importance, data on cryptic species are scarce. This study investigates inter-habitat variation in Caribbean cryptobenthic fishes by re-analysing a comprehensive data set from 58 rotenone stations around Buck Island, U.S. Virgin Islands. Boosted regression trees were used to associate the density and diversity of non-piscivorous cryptobenthic fishes, both in the entire data set and on reef habitats alone, with 14 abiotic and biotic variables. The study also models the habitat requirements of the three commonest species. Dead coral cover was the first or second most important variable in six of the eight models constructed. For example, within the entire data set, the number of species and total fish density increased approximately linearly with increasing dead coral cover. Dead coral was also important in multivariate analyses that discriminated 10 assemblages within the entire data set. On reef habitats, the number of species and total fish density increased dramatically when dead coral exceeded ~55 %. Live coral cover was typically less important for explaining variance in fish assemblages than dead coral, but live corals were important for maintaining high fish diversity. Coral species favoured by cryptobenthic species may be particularly susceptible to mortality, but dead coral may also provide abundant food and shelter for many fishes. Piscivore density was a key variable in the final models, but typically increased with increasing cryptobenthic fish diversity and abundance, suggesting both groups of fishes are responding to the same habitat variables. The density of territorial damselfishes reduced the number of cryptobenthic fish species on reef habitats. Finally, habitats delineated by standard remote sensing techniques supported distinct cryptobenthic fish assemblages, suggesting that such maps can be used as surrogates of general patterns of cryptic

  15. Biotic and abiotic controls on diurnal fluctuations in labile soil phosphorus of a wet tropical forest.

    PubMed

    Vandecar, Karen L; Lawrence, Deborah; Wood, Tana; Oberbauer, Steven F; Das, Rishiraj; Tully, Katherine; Schwendenmann, Luitgard

    2009-09-01

    The productivity of many tropical wet forests is generally limited by bioavailable phosphorus (P). Microbial activity is a key regulator of P availability in that it determines both the supply of P through organic matter decomposition and the depletion of bioavailable P through microbial uptake. Both microbial uptake and mineralization occur rapidly, and their net effect on P availability varies with soil moisture, temperature, and soil organic matter quantity and quality. Exploring the mechanisms driving P availability at fine temporal scales can provide insight into the coupling of carbon, water, and nutrient cycles, and ultimately, the response of tropical forests to climate change. Despite the recognized importance of P cycling to the dynamics of wet tropical forests and their potential sensitivity to short-term fluctuations in bioavailable P, the diurnal pattern of P remains poorly understood. This study quantifies diurnal fluctuations in labile soil P and evaluates the importance of biotic and abiotic factors in driving these patterns. To this end, measurements of labile P were made every other hour in a Costa Rican wet tropical forest oxisol. Spatial and temporal variation in Bray-extractable P were investigated in relation to ecosystem carbon flux, soil CO2 efflux, soil moisture, soil temperature, solar radiation, and sap-flow velocity. Spatially averaged bi-hourly (every two hours) labile P ranged from 0.88 to 2.48 microg/g across days. The amplitude in labile P throughout the day was 0.61-0.82 microg/g (41-54% of mean P concentrations) and was characterized by a bimodal pattern with a decrease at midday. Labile P increased with soil CO2 efflux and soil temperature and declined with increasing sap flow and solar radiation. Together, soil CO2 efflux, soil temperature, and sap flow explained 86% of variation in labile P.

  16. Gamma irradiation: a method to produce an abiotic control for biological activated carbon.

    PubMed

    Stoquart, C; Vázquez-Rodríguez, G A; Servais, P; Barbeau, B

    2013-01-01

    The aim of this paper was to investigate the feasibility of using gamma irradiation to inhibit the microbial activity of biological powder activated carbon (PAC) without impacting its adsorptive properties. First of all, the range of dose of gamma rays required to produce abiotic PAC was selected on the basis of heterotrophic plate counts (HPC) inactivation and methylene blue (MB) adsorption kinetics. Doses inferior to 10 kGy were not sufficient to inhibit the culture of heterotrophic bacteria. On the other hand, doses superior to 15 kGy were demonstrated to affect the adsorption rate of MB. Consequently, a dose comprised between 10 and 15 kGy was selected for further investigation. In order to validate the adequacy of the range of dose (i.e. 10-15 kGy), adsorption characteristics were tested by monitoring the removal kinetics of refractory dissolved organic carbon (RDOC). No significant differences were observed between irradiated and non-irradiated biological PAC for the adsorption of RDOC. Irradiated, non-irradiated and virgin PAC were also evaluated in terms of abundance of viable (using the LIVE/DEAD BacLight method) bacteria and in terms of heterotrophic biomass activity. The results of the BacLight method demonstrated that attachment of the biofilm on the PAC was not impacted by the irradiation and heterotrophic activity measurements demonstrated that the latter could be radically reduced in the range of dose selected. In conclusion, when using a proper dose, the gamma irradiation of colonized activated carbon drastically reduced the heterotrophic activity on activated carbon without significantly impacting its adsorptive behaviour.

  17. Abiotic formation of bioorganic compounds in space--preliminary experiments on ground and future exobiology experiments in space.

    PubMed

    Kobayashi, K; Kaneko, T; Hashimoto, H; Kouchi, A; Saito, T; Yamashita, M

    1998-06-01

    Simulation experiments on ground have shown that "amino acid precursors", which give amino acids after acid-hydrolysis, can be formed when an ice mixture simulating ice mantles of interstellar dust particles (lSDs) is irradiated with high energy particles or UV light. It is strongly suggested that such bioorganic compounds were delivered by comets for the first biosphere on the Earth. It is of great interest to confirm this hypothesis in actual space conditions, such as in an exposed facility of JEM. Fundamental designs for such exobiology experiments in earth orbit (EEEO) will be discussed.

  18. Biotic and abiotic controls on nitrogen leaching losses into waterways during successive bovine urine application to soil.

    PubMed

    Neilen, Amanda D; Chen, Chengrong R; Faggotter, Stephen J; Ellison, Tanya L; Burford, Michele A

    2016-07-01

    Cattle waste products high in nitrogen (N) that enter waterways via rainfall runoff can contribute to aquatic ecosystem health deterioration. It is well established that N leaching from this source can be reduced by plant assimilation, e.g. pasture grass. Additionally, N leaching can be reduced when there is sufficient carbon (C) in the soil such as plant litterfall to stimulate microbial processes, i.e. denitrification, which off-gas N from the soil profile. However, the relative importance of these two processes is not well understood. A soil microcosm experiment was conducted to determine the role of biotic processes, pasture grass and microbial activity, and abiotic processes such as soil sorption, in reducing N leaching loss, during successive additions of bovine urine. Pasture grass was the most effective soil cover in reducing N leaching losses, which leached 70% less N compared to exposed soil. Successive application of urine to the soil resulted in N accumulation, after which there was a breaking point indicated by high N leaching losses. This is likely to be due to the low C:N ratio within the soil profiles treated with urine (molar ratio 8:1) compared to water treated soils (30:1). In this experiment we examined the role of C addition in reducing N losses and showed that the addition of glucose can temporarily reduce N leaching. Overall, our results demonstrated that plant uptake of N was a more important process in preventing N leaching than microbial processes.

  19. COP1 Controls Abiotic Stress Responses by Modulating AtSIZ1 Function through Its E3 Ubiquitin Ligase Activity

    PubMed Central

    Kim, Joo Y.; Jang, In-Cheol; Seo, Hak S.

    2016-01-01

    Ubiquitination and sumoylation are essential post-translational modifications that regulate growth and development processes in plants, including control of hormone signaling mechanisms and responses to stress. This study showed that COP1 (Constitutive photomorphogenic 1) regulated the activity of Arabidopsis E3 SUMO (Small ubiquitin-related modifier) ligase AtSIZ1 through its E3 ubiquitin ligase activity. Yeast two hybrid analysis demonstrated that COP1 and AtSIZ1 directly interacted with one another, and subcellular localization assays indicated that COP1 and AtSIZ1 co-localized in nuclear bodies. Analysis of ubiquitination showed that AtSIZ1 was polyubiquitinated by COP1. The AtSIZ1 level was higher in cop1-4 mutants than in wild-type seedlings under light or dark conditions, and overexpression of a dominant-negative (DN)-COP1 mutant led to a substantial increase in AtSIZ1 accumulation. In addition, under drought, cold, and high salt conditions, SUMO-conjugate levels were elevated in DN-COP1-overexpressing plants and cop1-4 mutant plants compared to wild-type plants. Taken together, our results indicate that COP1 controls responses to abiotic stress by modulation of AtSIZ1 levels and activity. PMID:27536318

  20. COP1 Controls Abiotic Stress Responses by Modulating AtSIZ1 Function through Its E3 Ubiquitin Ligase Activity.

    PubMed

    Kim, Joo Y; Jang, In-Cheol; Seo, Hak S

    2016-01-01

    Ubiquitination and sumoylation are essential post-translational modifications that regulate growth and development processes in plants, including control of hormone signaling mechanisms and responses to stress. This study showed that COP1 (Constitutive photomorphogenic 1) regulated the activity of Arabidopsis E3 SUMO (Small ubiquitin-related modifier) ligase AtSIZ1 through its E3 ubiquitin ligase activity. Yeast two hybrid analysis demonstrated that COP1 and AtSIZ1 directly interacted with one another, and subcellular localization assays indicated that COP1 and AtSIZ1 co-localized in nuclear bodies. Analysis of ubiquitination showed that AtSIZ1 was polyubiquitinated by COP1. The AtSIZ1 level was higher in cop1-4 mutants than in wild-type seedlings under light or dark conditions, and overexpression of a dominant-negative (DN)-COP1 mutant led to a substantial increase in AtSIZ1 accumulation. In addition, under drought, cold, and high salt conditions, SUMO-conjugate levels were elevated in DN-COP1-overexpressing plants and cop1-4 mutant plants compared to wild-type plants. Taken together, our results indicate that COP1 controls responses to abiotic stress by modulation of AtSIZ1 levels and activity. PMID:27536318

  1. The effect of abiotic factors on the toxicity of cypermethrin against the snail Lymnaea acuminata in the control of fascioliasis.

    PubMed

    Singh, V; Singh, D K

    2009-03-01

    Every month during the year 2006-2007, the 24, 48, 72 and 96 h LC50 values of a molluscicide, cypermethrin, were determined for a snail Lymnaea acuminata, with concomitant estimation of levels of temperature, pH, dissolved oxygen and carbon dioxide and electrical conductivity, both in control and test water. On the basis of a 24 h toxicity assay, it was noted that LC50 values of 10.39, 10.90 and 11.19 mg l- 1 during the months of May, June and July, respectively, were most effective in killing the snails, while the molluscicide was least effective in the month of January, when its 24 h LC50 was 65.84 mg l- 1.There was a significant positive correlation between LC50 of cypermethrin and levels of dissolved O2/pH of water in corresponding months. On the contrary, a negative correlation was observed between LC50 and dissolved CO2/temperature of test water in the same months. In order to ascertain that such a relationship between toxicity and abiotic factors is not coincidental, the nervous tissue of the snail was assayed for the activity of acetylcholinesterase (AChE), acid phosphatase (ACP) and alkaline phosphatase (ALP) to sublethal concentrations (40% and 80%) of 24 h LC50 during each of the 12 months of the same year. The findings confirmed that abiotic factors indeed influence toxicity of cypermethrin in the snail. A significant positive rank correlation between AChE, ACP and ALP activity did exist following exposure to the corresponding sublethal concentrations. Moreover, there was a maximum inhibition of 61.29 and 76.16% of AChE and ACP, respectively, in snails exposed to 80% of the 24 h LC50 in the month of May. A similar treatment caused a maximum inhibition of 70.53% of ALP activity in the month of June. This work shows conclusively that the best time to control the snail population with cypermethrin is during the months of May and June.

  2. Unraveling ecological and abiotic controls on seasonal runoff dynamics at lower mesoscale catchments

    NASA Astrophysics Data System (ADS)

    Seibert, Simon P.; Zehe, Erwin

    2016-04-01

    To better understand how storage, catchment structure and vegetation controls stream flow release we explored the seasonal water balance of 22 mesoscale catchments (16-160 km²) along a distinct geological and physiographic gradient in southern Germany. Specifically we compared normalized annual double mass curves of accumulated normalized rainfall and runoff fluxes and normalized triple mass curves of accumulated normalized rainfall, evaporation and runoff depths. The double mass curves consistently revealed two different regimes of storage and release: steep slopes and thus large seasonal runoff coefficients during winter (CRw) and rather flat slopes and thus small seasonal runoff coefficients during summer (CRs). In fact summer runoff coefficients were rather constant and the double mass curves were simply parallel shifted during the vegetation period, depending on the length of the period when vegetation is dormant. Surprisingly we found that temperature data alone was able to accurately predict both, the onset and the strength of the regime shift (r²=0.72). To explore the controls on winter runoff coefficients and we compared it to a total number of 24 different topographic, pedological, ecological and physiographic predictors. The key finding was here, that the topographic gradient multiplied with the average saturated hydraulic conductivity significantly explained 22 % variance of the CRw, while the two variables alone were not significant. This corroborates, that gradients and resistances jointly control runoff behavior and thus, that they must be interpreted as parameter teams. It is particular interesting that their joint impact is even detectable at lower mesoscale catchments.

  3. The TOYSAT structural control experiment

    NASA Technical Reports Server (NTRS)

    Breakwell, J. A.; Chambers, G. J.

    1983-01-01

    The Lockheed TOYSAT experiment is described. The experiment was designed to test hypothesis concerning the application of optimal control theory to flexible spacecraft. The theory is presented, and results described.

  4. Controls of Evapotranspiration and CO2 Fluxes from Scots Pine by Surface Conductance and Abiotic Factors

    PubMed Central

    Zha, Tianshan; Li, Chunyi; Kellomäki, Seppo; Peltola, Heli; Wang, Kai-Yun; Zhang, Yuqing

    2013-01-01

    Evapotranspiration (E) and CO2 flux (Fc) in the growing season of an unusual dry year were measured continuously over a Scots pine forest in eastern Finland, by eddy covariance techniques. The aims were to gain an understanding of their biological and environmental control processes. As a result, there were obvious diurnal and seasonal changes in E, Fc, surface conductance (gc), and decoupling coefficient (Ω), showing similar trends to those in radiation (PAR) and vapour pressure deficit (δ). The maximum mean daily values (24-h average) for E, Fc, gc, and Ω were 1.78 mmol m−2 s−1, −11.18 µmol m−2 s−1, 6.27 mm s−1, and 0.31, respectively, with seasonal averages of 0.71 mmol m−2 s−1, −4.61 µmol m−2 s−1, 3.3 mm s−1, and 0.16. E and Fc were controlled by combined biological and environmental variables. There was curvilinear dependence of E on gc and Fc on gc. Among the environmental variables, PAR was the most important factor having a positive linear relationship to E and curvilinear relationship to Fc, while vapour pressure deficit was the most important environmental factor affecting gc. Water use efficiency was slightly higher in the dry season, with mean monthly values ranging from 6.67 to 7.48 μmol CO2 (mmol H2O)−1 and a seasonal average of 7.06 μmol CO2 (μmol H2O)−1. Low Ω and its close positive relationship with gc indicate that evapotranspiration was sensitive to surface conductance. Mid summer drought reduced surface conductance and decoupling coefficient, suggesting a more biotic control of evapotranspiration and a physiological acclimation to dry air. Surface conductance remained low and constant under dry condition, supporting that a constant value of surface constant can be used for modelling transpiration under drought condition. PMID:23894401

  5. Thermal Control Surfaces Experiment

    NASA Technical Reports Server (NTRS)

    Wilkes, D. R.

    1999-01-01

    This report is the final experiment report for the TCSE and summarizes many years of hardware development and analyses. Also included are analyses presented in a number of TCSE papers that were prepared and given at scientific conferences including three LDEF Post-Retrieval Symposiums.

  6. Biotic, abiotic and management controls on methanol fluxes above a temperate mountain grassland

    NASA Astrophysics Data System (ADS)

    Hörtnagl, Lukas; Bamberger, Ines; Graus, Martin; Ruuskanen, Taina; Schnitzhofer, Ralf; Müller, Markus; Hansel, Armin; Wohlfahrt, Georg

    2010-05-01

    -hourly averages. As methanol is produced in expanding cell walls, the change in the measured green area index (?GAI) was used as a proxy for plant growth. However ?GAI was poorly correlated with methanol fluxes, possible explanations will be discussed. References: Davison, B., Brunner, A., Amman, C., Spirig, C., Jocher, M., Neftel, A. Cut-induced VOC emissions from agricultural grasslands. Plant Biol. 10, 76-85, 2008. Harley, P., Greenberg, J., Niinemets, Ü., and Guenther, A..: Environmental controls over methanol emission from leaves. Biogeosciences, 4, 1083-1099, 2007. Hüve, K., Christ, M., Kleist, E., Uerlings, R., Niinemets, Ü., Walter, A. and Wildt, J.: Simultaneous growth and emission measurements demonstrate an interactive control of methanol release by leaf expansion and stomata. doi:10.1093/jxb/erm038, Journal of Experimental Botany, 2007. Niinemets, Ü. and Reichstein, M.: Controls on the emission of plant volatiles through stomata: A sensitivity analysis. J. Geophys. Res., 108, 4211, doi:10.1029/2002JD002626, 2003. Niinemets, Ü., Loreto, F. and Reichstein, M.: Physiological and physicochemical controls on foliar volatile organic compound emissions. Trends in Plant Science,9, 2004. Wohlfahrt G., Haslwanter A., Hörtnagl L., Jasoni R.L., Fenstermaker L.F., Arnone J.A. III, Hammerle A. (2009) On the consequences of the energy imbalance for calculating surface conductance to water vapour. Agricultural and Forest Meteorology 149, 15561559.

  7. Abiotic & biotic responses of the Colorado River to controlled floods at Glen Canyon Dam, Arizona, USA

    USGS Publications Warehouse

    Korman, Josh; Melis, Ted; Kennedy, Theodore A.

    2012-01-01

    Closure of Glen Canyon Dam reduced sand supply to the Colorado River in Grand Canyon National Park by about 94% while its operation has also eroded the park's sandbar habitats. Three controlled floods released from the dam since 1995 suggest that sandbars might be rebuilt and maintained, but only if repeated floods are timed to follow tributary sand deliveries below the dam. Monitoring data show that sandbars are dynamic and that their erosion after bar building is positively related with mean daily discharge and negatively related with tributary sand production after controlled floods. The March 2008 flood affected non-native rainbow trout abundance in the Lees Ferry tailwater, which supports a blue ribbon fishery. Downstream trout dispersal from the tailwater results in negative competitive interactions and predation on endangered humpback chub. Early survival rates of age-0 trout increased more than fourfold following the 2008 flood, and twofold in 2009, relative to prior years (2006-2007). Hatch-date analysis indicated that early survival rates were much higher for cohorts that emerged about 2 months after the 2008 flood relative to cohorts that emerged earlier that year. The 2009 survival data suggest that tailwater habitat improvements persisted for at least a year, but apparently decreased in 2010. Increased early survival rates for trout coincided with the increased availability of higher quality drifting food items after the 2008 flood owing to an increase in midges and black flies, preferred food items of rainbow trout. Repeated floods from the dam might sustainably rebuild and maintain sandbars if released when new tributary sand is available below the tailwater. Spring flooding might also sustain increased trout abundance and benefit the tailwater fishery, but also be a potential risk to humpback chub in Grand Canyon.

  8. Biotic and abiotic controls on the distribution of tropical forest aboveground biomass

    NASA Astrophysics Data System (ADS)

    Saatchi, S. S.; Schimel, D.; Keller, M. M.; Chambers, J. Q.; Dubayah, R.; Duffy, P.; Yu, Y.; Robinson, C. M.; Chowdhury, D.; Yang, Y.

    2013-12-01

    AUTHOR: Sassan Saatchi1,2, Yan Yang2, Diya Chowdhury2, Yifan Yu2, Chelsea Robinson2, David Schimel1, Paul Duffy3, Michael Keller4, Ralph Dubayah5, Jeffery Chambers6 1. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA 2. Institute of Environment and Sustainability, University of California, Los Angeles, CA, USA 3. Neptune and Company, Inc. Denver, CO, USA 4. International Institute of Tropical Forestry & International Programs, USDA Forest Service, Campinas, Brazil 5. Department of Geography, University of Maryland, College Park, MD, USA 6. Department of Geography, University of California, Berkeley, CA, USA ABSTRACT BODY: In recent years, climate change policies and scientific research created a widespread interest in quantify the carbon stock and changes of global tropical forests extending from forest patches to national and regional scales. Using a combination of inventory data from field plots and forest structure from spaceborne Lidar data, we examine the main controls on the distribution of tropical forest biomass. Here, we concentrate on environmental and landscape variables (precipitation, temperature, topography, and soil), and biotic variables such as functional traits (density of large trees, and wood specific gravity). The analysis is performed using global bioclimatic variables for precipitation and temperature, SRTM data for topographical variables (elevation and ruggedness), and global harmonized soil data for soil type and texture. For biotic variables, we use the GLAS Lidar data to quantify the distribution of large trees, a combined field and remote sensing data for distribution of tree wood specific gravity. The results show that climate variables such as precipitation of dry season can explain the heterogeneity of forest biomass over the landscape but cannot predict the biomass variability significantly and particularly for high biomass forests. Topography such as elevation and ruggedness along with temperature can

  9. Abiotic controls of potentially harmful algal blooms in Santa Monica Bay, California

    NASA Astrophysics Data System (ADS)

    Shipe, R. F.; Leinweber, A.; Gruber, N.

    2008-10-01

    Despite the increasing occurrence of harmful phytoplankton blooms along the North American west coast, records of phytoplankton populations and related environmental conditions are uncommon. In this study, twice monthly measurements in the upper 50 m are used to assess physico-chemical conditions contributing to the growth of potentially harmful bloom taxa over two annual cycles (2004-2005) in the Santa Monica Bay, California. Results were compared to the predictions of the Intaglio model [Smayda, T.J., Reynolds, C.S., 2001. Community assembly in marine phytoplankton: application of recent models to harmful dinoflagellate blooms. Journal of Plankton Research 23, 447-461.] of phytoplankton community assembly. Potentially harmful taxa were present in every surface sample and were numerically dominant during the largest observed blooms, contributing up to 92% of the total phytoplankton abundance >5 μm. Large interannual variation was observed in the dominant taxa and bloom seasonality; Pseudo-nitzschia sp. dominated blooms in early 2004 (February and April), whereas Prorocentrum micans and Lingulodinium polyedrum blooms occurred in May and September of 2005, respectively. The Pseudo-nitzschia sp. blooms were associated with elevated nitrate, dissolved silicon and phosphate concentrations throughout the euphotic zone; the first bloom followed a strong upwelling and the second occurred during the onset of seasonal stratification. In contrast, the blooms of P. micans were associated with highly stratified, low nutrient waters. Multivariate analysis supports the roles of temperature, mixed-layer depth and nutrient concentrations as primary controls of bloom growth, following the conceptual Intaglio model. The strong presence of potentially harmful bloom species in the Santa Monica Bay during this study appears unusual in comparison to limited studies over the last several decades.

  10. Tank Pressure Control Experiment (TPCE)

    NASA Technical Reports Server (NTRS)

    Bentz, Mike

    1992-01-01

    The Tank Pressure Control Experiment (TPCE) is a small self-contained STS payload designed to test a jet mixer for cryogenic fluid pressure control. Viewgraphs are presented that describe project organization, experiment objectives and approach, risk management, payload concept and mission plan, and initial test data.

  11. Authentic Research Experience and “Big Data” Analysis in the Classroom: Maize Response to Abiotic Stress

    PubMed Central

    Makarevitch, Irina; Frechette, Cameo; Wiatros, Natalia

    2015-01-01

    Integration of inquiry-based approaches into curriculum is transforming the way science is taught and studied in undergraduate classrooms. Incorporating quantitative reasoning and mathematical skills into authentic biology undergraduate research projects has been shown to benefit students in developing various skills necessary for future scientists and to attract students to science, technology, engineering, and mathematics disciplines. While large-scale data analysis became an essential part of modern biological research, students have few opportunities to engage in analysis of large biological data sets. RNA-seq analysis, a tool that allows precise measurement of the level of gene expression for all genes in a genome, revolutionized molecular biology and provides ample opportunities for engaging students in authentic research. We developed, implemented, and assessed a series of authentic research laboratory exercises incorporating a large data RNA-seq analysis into an introductory undergraduate classroom. Our laboratory series is focused on analyzing gene expression changes in response to abiotic stress in maize seedlings; however, it could be easily adapted to the analysis of any other biological system with available RNA-seq data. Objective and subjective assessment of student learning demonstrated gains in understanding important biological concepts and in skills related to the process of science. PMID:26163561

  12. Effects of biotic and abiotic indices on long term soil moisture data in a grassland biodiversity experiment

    NASA Astrophysics Data System (ADS)

    Fischer, Christine; Hohenbrink, Tobias; Leimer, Sophia; Roscher, Christiane; Ravenek, Janneke; de Kroon, Hans; Kreutziger, Yvonne; Wirth, Christian; Eisenhauer, Nico; Gleixner, Gerd; Weigelt, Alexandra; Mommer, Liesje; Beßler, Holger; Schröder, Boris; Hildebrandt, Anke

    2015-04-01

    small herbs led to higher than average soil moisture in some years (2008, 2012, 2013). Interestingly, plant species richness led to moister than average subsoil at the beginning of the experiment (2003 and 2004), which changed to lower than average up to the year 2010 in all depths. There was no effect of species diversity in the years since 2010, although species diversity generally increases leaf area index and aboveground biomass. The first component from the PCA analysis described the mean behavior in time of all soil moisture time series. The second component reflected the impact of soil depth. The first two components explained 76% of the data set total variance. The third component is linked to plant species richness and explained about 4 % of the total variance of soil moisture data. The fourth component, which explained 2.4 %, showed a high correlation to soil texture. Within this study we investigate the dominant factors controlling spatio-temporal patterns of soil moisture at several soil depths. Although climate and soil depths were the most important drivers, other factors like plant species richness and soil texture affected the temporal variation while certain plant functional groups were important for the spatial variability.

  13. Advanced Thermal Control Flight Experiment.

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, J. P.; Brennan, P. J.

    1973-01-01

    The advanced Thermal Control Flight Experiment on the Applications Technology Satellite (ATS-F) will evaluate, for the first time in a space environment, the performance of a feedback-controlled variable conductance heat pipe and a heat pipe thermal diode. In addition, the temperature control aspects of a phase-change material (PCM) will be demonstrated. The methanol/stainless steel feedback-controlled heat pipe uses helium control gas that is stored in a wicked reservoir. This reservoir is electrically heated through a solid state controller that senses the temperature of the heat source directly. The ammonia/stainless steel diode heat pipe uses excess liquid to block heat transfer in the reverse direction. The PCM is octadecane. Design tradeoffs, fabrication problems, and performance during qualification and flight acceptance tests are discussed.

  14. Reusable experiment controllers, case studies

    NASA Astrophysics Data System (ADS)

    Buckley, Brian A.; Gaasbeck, Jim Van

    1996-03-01

    Congress has given NASA and the science community a reality check. The tight and ever shrinking budgets are trimming the fat from many space science programs. No longer can a Principal Investigator (PI) afford to waste development dollars on re-inventing spacecraft controllers, experiment/payload controllers, ground control systems, or test sets. Inheritance of the Ground Support Equipment (GSE) from one program to another is not a significant re-use of technology to develop a science mission in these times. Reduction of operational staff and highly autonomous experiments are needed to reduce the sustaining cost of a mission. The re-use of an infrastructure from one program to another is needed to truly attain the cost and time savings required. Interface and Control Systems, Inc. (ICS) has a long history of re-usable software. Navy, Air Force, and NASA programs have benefited from the re-use of a common control system from program to program. Several standardization efforts in the AIAA have adopted the Spacecraft Command Language (SCL) architecture as a point solution to satisfy requirements for re-use and autonomy. The Environmental Research Institute of Michigan (ERIM) has been a long-standing customer of ICS and are working on their 4th generation system using SCL. Much of the hardware and software infrastructure has been re-used from mission to mission with little cost for re-hosting a new experiment. The same software infrastructure has successfully been used on Clementine, and an end-to-end system is being deployed for the Far Ultraviolet Spectroscopic Explorer (FUSE) for Johns Hopkins University. A case study of the ERIM programs, Clementine and FUSE will be detailed in this paper.

  15. Interactive effects of xenobiotic, abiotic and biotic stressors on Daphnia pulex--results from a multiple stressor experiment with a fractional multifactorial design.

    PubMed

    Scherer, Christian; Seeland, Anne; Oehlmann, Jörg; Müller, Ruth

    2013-08-15

    Pollutant effects on aquatic key species are confounded by multiple abiotic and biotic stressors. To better discriminate and understand the intrinsic and environmental correlates of changing aquatic ecosystems, we untangle in present study how the effects of a low-dosed fungicide on daphnids (via different exposure routes) becomes modified by increasing temperature and the presence of a predator. Using a fractional multifactorial test design, the individual growth, reproduction and population growth rate of Daphnia pulex were investigated under exposure to the fungicide pyrimethanil at an environmental relevant concentration--either directly (via the water phase), indirectly (via food), dually (via water and food) or for multiple generations (fungicide treated source population)--at three temperatures and in presence/absence of the predator kairomones of Chaoborus flavicans. Our results clearly illustrate that multiple stress factors can modify the response of an aquatic key species to pollutants. The environmentally relevant exposure of the contaminant via food or the medium is of same importance. Nevertheless, temperature and the presence of a predator are the dominant factors controlling the reproduction of D. pulex. We conclude that sublethal pyrimethanil pollution can disturb the zooplankton community at suboptimal temperature conditions, but the effects will become masked by low temperatures or if chaoborid larvae are present. PMID:23727598

  16. The abiotic litter decomposition in the drylands

    NASA Astrophysics Data System (ADS)

    Lee, H.; Throop, H.; Rahn, T. A.

    2009-12-01

    The decomposition of litter is an important ecosystem function that controls carbon and nutrient cycling, which is well understood from the relationship between temperature and moisture. However, the decomposition in the arid and semiarid environments (hereafter drylands) is relatively poorly predicted due to several abiotic factors such as the effect of ultraviolet radiation and physical mixing of fallen litter with soil. The relative magnitude of these abiotic factors to ecosystem scale litter decomposition is still in debate. Here, we examine the effect of two major abiotic factors in the drylands litter decomposition by conducting a controlled laboratory study using plant litter and soil collected from Sonoran and Chihuahuan desert areas. The first part of the experiment focused on the effect of soil-litter mixing. We established a complete block design of three levels of soil and litter mixing (no mixing, light soil-litter mixing, and complete soil-litter mixing) in combination with three levels of soil moisture (1%, 2%, and 6% volumetric water content) using 2g of two most dominant species litter, grass and mesquite, and 50g of air-dried soils in 500ml mason jar and incubated them under 25C. We measured CO2 fluxes from these soil-litter incubations and harvested the soil and litter at 0, 1, 2, 4, 8, and 16 weeks and analyzed them of carbon and nitrogen content as well as the actual mass loss in the litter. The second part of the experiment focused on the effect of ultraviolet radiation. We established short-term litter incubation on a quartz chamber and used different temperature, moisture, and minerals to find the mechanism of photodegradation of litter. We measured CO2 fluxes from the litter incubation under ultraviolet radiation and also measured 13CO2 from these emissions. We were able to detect changes in the rate of carbon mineralization as a result of our treatments in the first week of soil-litter mixing experiment. The carbon mineralization rate was

  17. Higher order Arabidopsis 14-3-3 mutants show 14-3-3 involvement in primary root growth both under control and abiotic stress conditions

    PubMed Central

    van Kleeff, P. J. M.; Jaspert, N.; Li, K. W.; Rauch, S.; Oecking, C.; de Boer, A. H.

    2014-01-01

    Arabidopsis 14-3-3 proteins are a family of conserved proteins that interact with numerous partner proteins in a phospho-specific manner, and can affect the target proteins in a number of ways; e.g. modification of enzymatic activity. We isolated T-DNA insertion lines in six 14-3-3 genes within the non-epsilon group that phylogenetically group in three closely related gene pairs. In total, 6 single, 3 double, 12 triple, and 3 quadruple mutants were generated. The mutants were phenotyped for primary root growth on control plates: single and double mutants were indistinguishable from WT, whereas six triples and all quadruples showed a shorter primary root. In addition, length of the first epidermal cell with a visible root hair bulge (LEH) was used to determine primary root elongation on medium containing mannitol and 1-aminocyclopropane-1-carboxylic acid (ACC). This analysis showed clear differences depending on the stress and 14-3-3 gene combinations. Next to the phenotypic growth analyses, a 14-3-3 pull-down assay on roots treated with and without mannitol showed that mannitol stress strongly affects the 14-3-3 interactome. In conclusion, we show gene specificity and functional redundancy among 14-3-3 proteins in primary root elongation under control and under abiotic stress conditions and changes in the 14-3-3 interactome during the onset of stress adaptation. PMID:25189593

  18. Abiotic Versus Biotic Weathering Of Olivine As Possible Biosignatures

    NASA Technical Reports Server (NTRS)

    Longazo, Teresa G.; Wentworth, Susan J.; Clemett, Simon J.; Southam, Gordon; McKay, David S.

    2001-01-01

    We are investigating the weathering of silicate minerals by both purely inorganic, and biologically mediated processes using field-emission scanning electron microscopy (FESEM) and energy dispersive x-ray spectroscopy (EDS). By resolving surface textures and chemical compositions of weathered surfaces at the sub-micron scale we hope to be able to distinguish abiotic from biotic weathering processes and so establish a new biosignature applicable to the study of astromaterials including but not limited to the Martian meteorites. Sterilized olivine grains (San Carlos, Arizona) no more than 1-2 mm in their longest dimension were optically assayed to be uniform in color and free of inclusions were selected as weathering subjects. Prior to all experiments surface morphologies and Fe/Mg ratios were determined for each grain using FE-SEM and EDS. Experiments were divided into two categories abiotic and biotic and were compared with "naturally" weathered samples. For the preliminary experiments, two trials (open and closed to the ambient laboratory environment) were performed under abiotic conditions, and three trials under biotic conditions (control, day 1 and day 2). The open system abiotic trials used sterile grains heated at 98 C and 200 C for both 24 and 48 hours in 1L double distilled de-ionized water. The closed system abiotic trials were conducted under the same conditions but in a sealed two layer steel/Teflon "bomb" apparatus. The biotic trials used sterile grains mounted in a flow-through device attached to a wellhead on the Columbia River aquifer. Several discolored, altered, grains were selected to document "natural" weathering surface textures for comparison with the experimental samples. Preliminary results indicate there are qualitative differences in weathered surface textures among all the designed experiments. The olivine grains in abiotic trials displayed etching, pitting, denticulate margins, dissolution and clay formation. The scale of the features

  19. The Middeck Active Control Experiment (MACE)

    NASA Technical Reports Server (NTRS)

    Miller, David W.

    1992-01-01

    Viewgraphs on the Middeck Active Control Experiment (MACE) are presented. Topics covered include: program objectives; program features; flight experiment features; current activities; MACE development model lab testing; MACE test article deployed on STS middeck; and development model testing.

  20. Oxygen and sulfur isotope systematics of sulfate produced by bacterial and abiotic oxidation of pyrite

    USGS Publications Warehouse

    Balci, N.; Shanks, Wayne C.; Mayer, B.; Mandernack, K.W.

    2007-01-01

    To better understand reaction pathways of pyrite oxidation and biogeochemical controls on ??18O and ??34S values of the generated sulfate in acid mine drainage (AMD) and other natural environments, we conducted a series of pyrite oxidation experiments in the laboratory. Our biological and abiotic experiments were conducted under aerobic conditions by using O2 as an oxidizing agent and under anaerobic conditions by using dissolved Fe(III)aq as an oxidant with varying ??18OH2O values in the presence and absence of Acidithiobacillus ferrooxidans. In addition, aerobic biological experiments were designed as short- and long-term experiments where the final pH was controlled at ???2.7 and 2.2, respectively. Due to the slower kinetics of abiotic sulfide oxidation, the aerobic abiotic experiments were only conducted as long term with a final pH of ???2.7. The ??34SSO4 values from both the biological and abiotic anaerobic experiments indicated a small but significant sulfur isotope fractionation (???-0.7???) in contrast to no significant fractionation observed from any of the aerobic experiments. Relative percentages of the incorporation of water-derived oxygen and dissolved oxygen (O2) to sulfate were estimated, in addition to the oxygen isotope fractionation between sulfate and water, and dissolved oxygen. As expected, during the biological and abiotic anaerobic experiments all of the sulfate oxygen was derived from water. The percentage incorporation of water-derived oxygen into sulfate during the oxidation experiments by O2 varied with longer incubation and lower pH, but not due to the presence or absence of bacteria. These percentages were estimated as 85%, 92% and 87% from the short-term biological, long-term biological and abiotic control experiments, respectively. An oxygen isotope fractionation effect between sulfate and water (??18 OSO4 s(-) H2 O) of ???3.5??? was determined for the anaerobic (biological and abiotic) experiments. This measured ??18 OSO42 - s(-) H2

  1. Field Experiments in Litter Control

    ERIC Educational Resources Information Center

    Finnie, William C.

    1973-01-01

    A series of urban and highway litter experiments in Richmond (Virginia), St. Louis, and Philadelphia indicated well-designed litter cans reduced littering about 15 percent along city streets and nearly 30 percent along highways. Also, the propensity to litter is critically affected by the characteristics of the individual and environmental…

  2. Abiotic origin of biopolymers

    NASA Technical Reports Server (NTRS)

    Oro, J.; Stephen-Sherwood, E.

    1976-01-01

    A variety of methods have been investigated in different laboratories for the polymerization of amino acids and nucleotides under abiotic conditions. They include (1) thermal polymerization; (2) direct polymerization of certain amino acid nitriles, amides, or esters; (3) polymerization using polyphosphate esters; (4) polymerization under aqueous or drying conditions at moderate temperatures using a variety of simple catalysts or condensing agents like cyanamide, dicyandiamide, or imidazole; and (5) polymerization under similar mild conditions but employing activated monomers or abiotically synthesized high-energy compounds such as adenosine 5'-triphosphate (ATP). The role and significance of these methods for the synthesis of oligopeptides and oligonucleotides under possible primitive-earth conditions is evaluated. It is concluded that the more recent approach involving chemical processes similar to those used by contemporary living organisms appears to offer a reasonable solution to the prebiotic synthesis of these biopolymers.

  3. Biotic vs. abiotic control of decomposition: a comparison of the effects of simulated extinctions and changes in temperature.

    PubMed

    Boyero, Luz; Cardinale, Bradley J; Bastian, Mikis; Pearson, Richard G

    2014-01-01

    The loss of species is known to have significant effects on ecosystem functioning, but only recently has it been recognized that species loss might rival the effects of other forms of environmental change on ecosystem processes. There is a need for experimental studies that explicitly manipulate species richness and environmental factors concurrently to determine their relative impacts on key ecosystem processes such as plant litter decomposition. It is crucial to understand what factors affect the rate of plant litter decomposition and the relative magnitude of such effects because the rate at which plant litter is lost and transformed to other forms of organic and inorganic carbon determines the capacity for carbon storage in ecosystems and the rate at which greenhouse gasses such as carbon dioxide are outgassed. Here we compared how an increase in water temperature of 5°C and loss of detritivorous invertebrate and plant litter species affect decomposition rates in a laboratory experiment simulating stream conditions. Like some prior studies, we found that species identity, rather than species richness per se, is a key driver of decomposition, but additionally we showed that the loss of particular species can equal or exceed temperature change in its impact on decomposition. Our results indicate that the loss of particular species can be as important a driver of decomposition as substantial temperature change, but also that predicting the relative consequences of species loss and other forms of environmental change on decomposition requires knowledge of assemblages and their constituent species' ecology and ecophysiology.

  4. Abiotic control of underwater light in a drinking water reservoir: Photon budget analysis and implications for water quality monitoring

    NASA Astrophysics Data System (ADS)

    Watanabe, Shohei; Laurion, Isabelle; Markager, Stiig; Vincent, Warwick F.

    2015-08-01

    In optically complex inland waters, the underwater attenuation of photosynthetically active radiation (PAR) is controlled by a variable combination of absorption and scattering components of the lake or river water. Here we applied a photon budget approach to identify the main optical components affecting PAR attenuation in Lake St. Charles, a drinking water reservoir for Québec City, Canada. This analysis showed the dominant role of colored dissolved organic matter (CDOM) absorption (average of 44% of total absorption during the sampling period), but with large changes over depth in the absolute and relative contribution of the individual absorption components (water, nonalgal particulates, phytoplankton and CDOM) to PAR attenuation. This pronounced vertical variation occurred because of the large spectral changes in the light field with depth, and it strongly affected the average in situ diffuse absorption coefficients in the water column. For example, the diffuse absorption coefficient for pure-water in the ambient light field was 10-fold higher than the value previously measured in the blue open ocean and erroneously applied to lakes and coastal waters. Photon absorption budget calculations for a range of limnological conditions confirmed that phytoplankton had little direct influence on underwater light, even at chlorophyll a values above those observed during harmful algal blooms in the lake. These results imply that traditional measures of water quality such as Secchi depth and radiometric transparency do not provide a meaningful estimate of the biological state of the water column in CDOM-colored lakes and reservoirs.

  5. Climate Change: A Controlled Experiment

    SciTech Connect

    Wullschleger, Stan D; Strahl, Maya

    2010-01-01

    Researchers are altering temperature, carbon dioxide and precipitation levels across plots of forests, grasses and crops to see how plant life responds. Warmer temperatures and higher CO{sub 2} concentrations generally result in more leaf growth or crop yield, but these factors can also raise insect infestation and weaken plants ability to ward off pests and disease. Future field experiments that can manipulate all three conditions at once will lead to better models of how long-term climate changes will affect ecosystems worldwide.

  6. Soil abiotic factors influence interactions between belowground herbivores and plant roots.

    PubMed

    Erb, Matthias; Lu, Jing

    2013-03-01

    Root herbivores are important ecosystem drivers and agricultural pests, and, possibly as a consequence, plants protect their roots using a variety of defensive strategies. One aspect that distinguishes belowground from aboveground plant-insect interactions is that roots are constantly exposed to a set of soil-specific abiotic factors. These factors can profoundly influence root resistance, and, consequently, the outcome of the interaction with belowground feeders. In this review, we synthesize the current literature on the impact of soil moisture, nutrients, and texture on root-herbivore interactions. We show that soil abiotic factors influence the interaction by modulating herbivore abundance and behaviour, root growth and resistance, beneficial microorganisms, as well as natural enemies of the herbivores. We suggest that abiotic heterogeneity may explain the high variability that is often encountered in root-herbivore systems. We also propose that under abiotic stress, the relative fitness value of the roots and the potential negative impact of herbivory increases, which may lead to a higher defensive investment and an increased recruitment of beneficial microorganisms by the plant. At the same time, both root-feeding herbivores and natural enemies are likely to decrease in abundance under extreme environmental conditions, leading to a context- and species-specific impact on plant fitness. Only by using tightly controlled experiments that include soil abiotic heterogeneity will it be possible to understand the impact of root feeders on an ecosystem scale and to develop predictive models for pest occurrence and impact.

  7. Direct Digital Control Liquid Level Experiment.

    ERIC Educational Resources Information Center

    Adb-El-Bary, M. F.

    1983-01-01

    Describes an experiment to give students exposure to digital control widely used in industry but not given much attention in most undergraduate process control curricula. Students write their own control programs and experimentally determine the transfer functions for all system components. Also describes experimental apparatus used in the…

  8. The Middeck Active Control Experiment (MACE)

    NASA Technical Reports Server (NTRS)

    Miller, David W.

    1991-01-01

    Viewgraphs on the Middeck Active Control Experiment (MACE) are presented. Topics covered include: science program objectives and rationale; science requirements; capturing the essential physics; science development approach; development model hardware; development model test plan; and flight hardware and operations.

  9. Thermal control surfaces experiment flight system performance

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Hummer, Leigh L.; Zwiener, James M.

    1991-01-01

    The Thermal Control Surfaces Experiment (TCSE) is the most complex system, other than the LDEF, retrieved after long term space exposure. The TCSE is a microcosm of complex electro-optical payloads being developed and flow by NASA and the DoD including SDI. The objective of TCSE was to determine the effects of the near-Earth orbital environment and the LDEF induced environment on spacecraft thermal control surfaces. The TCSE was a comprehensive experiment that combined in-space measurements with extensive post flight analyses of thermal control surfaces to determine the effects of exposure to the low earth orbit space environment. The TCSE was the first space experiment to measure the optical properties of thermal control surfaces the way they are routinely measured in a lab. The performance of the TCSE confirms that low cost, complex experiment packages can be developed that perform well in space.

  10. The Middeck Active Control Experiment (MACE): Identification for robust control

    NASA Technical Reports Server (NTRS)

    Karlov, Valery I.

    1992-01-01

    Viewgraphs on identification for robust control for the Middeck Active Control Experiment (MACE) are presented. Topics covered include: identification for robust control; three levels of identification; basic elements of the approach; advantages of 'post-ID' model of uncertainty; advantages of optimization; and practical realization.

  11. Experiments with the KITE attitude control simulator

    NASA Technical Reports Server (NTRS)

    Powell, J. David; Kline-Schoder, Robert

    1989-01-01

    Simulation experiments are conducted to test an attitude control technique for tethered satellites using the tether tension force to generate control torques by moving the tether attach point relative to the satellite center of mass. A scaled, one-dimensional, air-bearing supported laboratory simulation of the Kinetic Isolation Tether Experiment shows that the attitude of the simulator can be regulated to within 0.75 arcsec with a bandwidth of about 0.1 Hz. The control design includes a state estimator to calculate the vehicle mass center and to calculate the effect of the stepper motor dynamics on the state estimate. Results are presented from closed-loop attitude control experiments to verify the attitude control technique.

  12. Temperature controls on sediment production in the Oregon Coast Range - abiotic frost-cracking processes vs. biotic-dominated processes over the last 40 ka

    NASA Astrophysics Data System (ADS)

    Marshall, J. A.; Roering, J. J.; Praskievicz, S. J.; Hales, T. C.; Gavin, D. G.; Bartlein, P. J.

    2012-12-01

    The Oregon Coast Range (OCR) is a mid-latitude soil-mantled landscape wherein measured uplift rates are broadly consistent with long-term measured erosion rates. The OCR was unglaciated during the last glacial period (~ 26 to 13 ka) and therefore is considered an ideal steady-state landscape to study and model geomorphic processes. However, previously published paleoclimate data inferred from a 42 ka paleolake fossil archive in the OCR Little Lake watershed (3 km2) strongly suggest that temperatures in the OCR during the last glacial were well within the frost cracking temperature window of -3 to -8 °C. Therefore, we suggest that while present-day OCR sediment production is dominated by biota, specifically trees, frost-driven abiotic processes may have played a significant role in modulating erosion rates and landscape evolution during the last glacial interval. A new sediment core from the Little Lake basin at the lake's edge, centered proximal to hillslopes, spans ~ 50 ka to 20 ka. We observe a fourfold increase in sediment accumulation rates from the non-glacial interval (~50 ka to ~ 26 ka) to the last glacial interval (~ 26 ka to ~ 20 ka), including > 12 m of sediment from the last glacial maximum, dated at 23,062 - 23,581 cal yr B.P. The decreased inferred temperatures and increased sedimentation rates suggest increased sediment production and transport via frost processes during the last glacial interval, in contrast to sediment production and erosion rates controlled by biotic processes in the non-glacial intervals. We present a climate-time series scenario of likely frost-cracking intensity across the entire Oregon Coast Range from the non-glacial interval (at least 3 °C cooler than present-day temperatures) through the glacial interval (7 to 14 °C cooler) and into the Holocene (January temperatures ~ 5 °C). We use the PRISM dataset, which consists of monthly temperature and precipitation for the contiguous United States, to calculate local monthly

  13. A slewing control experiment for flexible structures

    NASA Technical Reports Server (NTRS)

    Juang, J.-N.; Horta, L. G.; Robertshaw, H. H.

    1985-01-01

    A hardware set-up has been developed to study slewing control for flexible structures including a steel beam and a solar panel. The linear optimal terminal control law is used to design active controllers which are implemented in an analog computer. The objective of this experiment is to demonstrate and verify the dynamics and optimal terminal control laws as applied to flexible structures for large angle maneuver. Actuation is provided by an electric motor while sensing is given by strain gages and angle potentiometer. Experimental measurements are compared with analytical predictions in terms of modal parameters of the system stability matrix and sufficient agreement is achieved to validate the theory.

  14. Experimental study of abiotic and microbial Fe-mineral transformations to understand magnetic enhancement during pedogenesis

    NASA Astrophysics Data System (ADS)

    Till, Jessica; Guyodo, Yohan; Lagroix, France; Bonville, Pierre; Ona-Nguema, Georges; Menguy, Nicolas; Morin, Guillaume

    2013-04-01

    The phenomenon of magnetic enhancement in many soil types has been recognized for several years, but the question of whether the enhancement process is primarily driven by microbial activity or abiotic processes is still unresolved. We present results from an on-going interdisciplinary experimental study of possible pathways of magnetic enhancement during pedogenesis of loess-derived soils. Synthetic nanoparticle preparations of the oxyhydroxides goethite and lepidocrocite were chosen as Fe-rich precursor phases. Abiotic alteration was achieved by heating in a controlled atmosphere, under either oxidizing or reducing conditions. Heating-induced dehydration reactions in lepidocrocite produce superparamagnetic magnetite or maghemite with a characteristic nanoporous structure, while dehydration of nanogoethite produced pseudo-morphed hematite, which converts to magnetite during heating in a reducing atmosphere. The abiotic alteration experiments are compared with preliminary results from bioreduction experiments using the dissimilatory Fe-reducing bacteria Shewanella putrefaciens in both the synthetic minerals and in natural loess, soil and paleosol materials. The magnetic properties, microstructure, and morphology of the reaction products were characterized with a combination of low-temperature magnetic properties, Mössbauer spectroscopy, high-resolution TEM microscopy, and x-ray diffraction. The goal is to identify characteristic properties of the magnetic alteration products that may help elucidate the relative contributions of microbial and abiotic alteration mechanisms to the development of an "enhanced" magnetic signature during pedogenesis.

  15. Wavefront Control Testbed (WCT) Experiment Results

    NASA Technical Reports Server (NTRS)

    Burns, Laura A.; Basinger, Scott A.; Campion, Scott D.; Faust, Jessica A.; Feinberg, Lee D.; Hayden, William L.; Lowman, Andrew E.; Ohara, Catherine M.; Petrone, Peter P., III

    2004-01-01

    The Wavefront Control Testbed (WCT) was created to develop and test wavefront sensing and control algorithms and software for the segmented James Webb Space Telescope (JWST). Last year, we changed the system configuration from three sparse aperture segments to a filled aperture with three pie shaped segments. With this upgrade we have performed experiments on fine phasing with line-of-sight and segment-to-segment jitter, dispersed fringe visibility and grism angle;. high dynamic range tilt sensing; coarse phasing with large aberrations, and sampled sub-aperture testing. This paper reviews the results of these experiments.

  16. Diffraction experiments with infrared remote controls

    NASA Astrophysics Data System (ADS)

    Kuhn, Jochen; Vogt, Patrik

    2012-02-01

    In this paper we describe an experiment in which radiation emitted by an infrared remote control is passed through a diffraction grating. An image of the diffraction pattern is captured using a cell phone camera and then used to determine the wavelength of the radiation.

  17. Distributed control network for optogenetic experiments

    NASA Astrophysics Data System (ADS)

    Kasprowicz, G.; Juszczyk, B.; Mankiewicz, L.

    2014-11-01

    Nowadays optogenetic experiments are constructed to examine social behavioural relations in groups of animals. A novel concept of implantable device with distributed control network and advanced positioning capabilities is proposed. It is based on wireless energy transfer technology, micro-power radio interface and advanced signal processing.

  18. Middeck Active Control Experiment (MACE), phase A

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.; Deluis, Javier; Miller, David W.

    1989-01-01

    A rationale to determine which structural experiments are sufficient to verify the design of structures employing Controlled Structures Technology was derived. A survey of proposed NASA missions was undertaken to identify candidate test articles for use in the Middeck Active Control Experiment (MACE). The survey revealed that potential test articles could be classified into one of three roles: development, demonstration, and qualification, depending on the maturity of the technology and the mission the structure must fulfill. A set of criteria was derived that allowed determination of which role a potential test article must fulfill. A review of the capabilities and limitations of the STS middeck was conducted. A reference design for the MACE test article was presented. Computing requirements for running typical closed-loop controllers was determined, and various computer configurations were studied. The various components required to manufacture the structure were identified. A management plan was established for the remainder of the program experiment development, flight and ground systems development, and integration to the carrier. Procedures for configuration control, fiscal control, and safety, reliabilty, and quality assurance were developed.

  19. The Middeck Active Control Experiment (MACE)

    NASA Technical Reports Server (NTRS)

    Miller, David W.; Sepe, Raymond B.; Rey, Daniel; Saarmaa, Erik; Crawley, Edward F.

    1993-01-01

    The Middeck Active Control Experiment (MACE) is a NASA In-Step and Control Structure Interaction (CSI) Office funded Shuttle middeck experiment. The objective is to investigate the extent to which closed-loop behavior of flexible spacecraft in zero-gravity (0-g) can be predicted. This prediction becomes particularly difficult when dynamic behavior during ground testing exhibits extensive suspension and direct gravity coupling. On-orbit system identification and control reconfiguration is investigated to improve performance which would otherwise be limited due to errors in prediction. The program is presently in its preliminary design phase with launch expected in the summer of 1994. The MACE test article consists of three attitude control torque wheels, a two axis gimballing payload, inertial sensors and a flexible support structure. With the acquisition of a second payload, this will represent a multiple payload platform with significant structural flexibility. This paper presents on-going work in the areas of modelling and control of the MACE test article in the zero and one-gravity environments. Finite element models, which include suspension and gravity effects, and measurement models, derived from experimental data, are used as the basis for Linear Quadratic Gaussian controller designs. Finite element based controllers are analytically used to study the differences in closed-loop performance as the test article transitions between the 0-g and 1-g environments. Measurement based controllers are experimentally applied to the MACE test article in the 1-g environment and achieve over an order of magnitude improvement in payload pointing accuracy when disturbed by a broadband torque disturbance. The various aspects of the flight portion of the experiment are also discussed.

  20. Remote control of a DC discharge experiment

    NASA Astrophysics Data System (ADS)

    Dominguez, Arturo; Zwicker, A.; Wissel, S. A.; Ross, J.

    2013-10-01

    Glow discharges are an excellent tool to introduce plasmas to the general public, in part, because of their visual nature. In this poster, we present recent developments of the Remote DC Discharge Experiment. This experiment consists of a 36'' long × 3.5'' radius glass tube containing air held at pressures of approximately 30-200mTorr with a variable voltage between the ends which can be set between 0-2000V to create a glow discharge. Surrounding the tube, a set of Helmholtz coils can be controlled to demonstrate the effects of axial magnetic fields on the plasma. While the experiment is located at PPPL, a webcam displays the experiment online. The parameters (voltage, magnetic field and pressure) can be controlled remotely in real-time by opening a URL which shows the streaming video, as well as a set of Labview controls. The interface has been designed to attract users with a wide range of academic backgrounds by presenting different levels of interactivity, including the most advanced level which gives the user the possibility of empirically finding the breakdown voltage as a function of pressure and electrode separation.

  1. Abiotic emissions of methane and reduced organic compounds from organic matter

    NASA Astrophysics Data System (ADS)

    Roeckmann, T.; Keppler, F.; Vigano, I.; Derendorp, L.; Holzinger, R.

    2012-12-01

    Recent laboratory studies show that the important greenhouse gas methane, but also other reduced atmospheric trace gases, can be emitted by abiotic processes from organic matter, such as plants, pure organic compounds and soils. It is very difficult to distinguish abiotic from biotic emissions in field studies, but in laboratory experiments this is easier because it is possible to carefully prepare/sterilize samples, or to control external parameters. For example, the abiotic emissions always show a strong increase with temperature when temperatures are increased to 70C or higher, well above the temperature optimum for bacterial activity. UV radiation has also been clearly shown to lead to emission of methane and other reduced gases from organic matter. Interesting information on the production mechanism has been obtained from isotope studies, both at natural abundance and with isotope labeling. For example, the methoxyl groups of pectin were clearly identified to produce methane. However, analysis of the isotopic composition of methane from natural samples clearly indicates that there must be other molecular mechanisms that lead to methane production. Abiotic methane generation could be a ubiquitous process that occurs naturally at low rates from many different sources.

  2. Abiotic immobilization/detoxification of recalcitrant organics

    SciTech Connect

    Whelan, G. ); Sims, R.C. )

    1990-11-01

    In contrast to many remedial techniques that simply transfer hazardous wastes from one part of the environment to another (e.g., off-site landfilling), in situ restoration may offer a safe and cost-effective solution through transformation (to less hazardous products) or destruction of recalcitrant organics. Currently, the US Environmental Protection Agency and US Department of Energy are encouraging research that addresses the development of innovative alternatives for hazardous-waste control. One such alternative is biotic and abiotic immobilization and detoxification of polynuclear aromatic hydrocarbons (PNAs) as associated with the soil humification process. This paper discusses (1) the possibility of using abiotic catalysis (with manganese dioxide) to polymerize organic substances; (2) aspects associated with the thermodynamics and kinetics of the process, and (3) a simple model upon which analyses may be based. 36 refs., 7 figs., 3 tabs.

  3. APECS - The Atacama Pathfinder Experiment Control System

    NASA Astrophysics Data System (ADS)

    Muders, D.; Hafok, H.; Wyrowski, F.; Polehampton, E.; Belloche, A.; König, C.; Schaaf, R.

    2006-07-01

    APECS is the CORBA based, distributed control system for the new Atacama Pathfinder EXperiment (APEX) Telescope located at the Llano de Chajnantor at an altitude of 5100m in the Atacama desert in northern Chile. The telescope has been operational since August 2005 and APECS is now being used for regular science observations. APECS employs a modern, object-oriented design. Generic interfaces facilitate adding new instruments. The IPython based observer command language allows using macros and creating more complex observing modes.

  4. Abiotic self-replication.

    PubMed

    Meyer, Adam J; Ellefson, Jared W; Ellington, Andrew D

    2012-12-18

    functions (including the replication of nucleic acids) to more competent protein enzymes would complete the journey from an abiotic world to the molecular biology we see today. PMID:22891822

  5. Abiotic self-replication.

    PubMed

    Meyer, Adam J; Ellefson, Jared W; Ellington, Andrew D

    2012-12-18

    functions (including the replication of nucleic acids) to more competent protein enzymes would complete the journey from an abiotic world to the molecular biology we see today.

  6. Remote Monitoring and Control of Irradiation Experiments

    SciTech Connect

    Toader, O.; Rotberg, V.H.; Was, G.S.

    2003-08-26

    As computer technology plays an increasing important role in particle accelerator facilities, instrumentation systems can be expected to include web connections and other remote capability features. The Michigan Ion Beam Laboratory at the University of Michigan in Ann Arbor has developed remote monitor and control capability by using a combination of commercial software packages and in-house software development. Irradiation parameters such as ion current on the samples and apertures, sample temperature read from an optical pyrometer, and chamber pressure can all be accessed and monitored remotely through a web site, as can ion source parameters such as power supply currents and voltages or feed gas pressure. With administrator permission, the control parameters of the ion source or the readouts from the irradiation stage can be modified in real time during an experiment. A description will be given of the various ways in which this type of remote monitoring and control has been accomplished at the Michigan Ion Beam Laboratory.

  7. Circadian regulation of abiotic stress tolerance in plants.

    PubMed

    Grundy, Jack; Stoker, Claire; Carré, Isabelle A

    2015-01-01

    Extremes of temperatures, drought and salinity cause widespread crop losses throughout the world and impose severe limitations on the amount of land that can be used for agricultural purposes. Hence, there is an urgent need to develop crops that perform better under such abiotic stress conditions. Here, we discuss intriguing, recent evidence that circadian clock contributes to plants' ability to tolerate different types of environmental stress, and to acclimate to them. The clock controls expression of a large fraction of abiotic stress-responsive genes, as well as biosynthesis and signaling downstream of stress response hormones. Conversely, abiotic stress results in altered expression and differential splicing of the clock genes, leading to altered oscillations of downstream stress-response pathways. We propose a range of mechanisms by which this intimate coupling between the circadian clock and environmental stress-response pathways may contribute to plant growth and survival under abiotic stress.

  8. Circadian regulation of abiotic stress tolerance in plants

    PubMed Central

    Grundy, Jack; Stoker, Claire; Carré, Isabelle A.

    2015-01-01

    Extremes of temperatures, drought and salinity cause widespread crop losses throughout the world and impose severe limitations on the amount of land that can be used for agricultural purposes. Hence, there is an urgent need to develop crops that perform better under such abiotic stress conditions. Here, we discuss intriguing, recent evidence that circadian clock contributes to plants’ ability to tolerate different types of environmental stress, and to acclimate to them. The clock controls expression of a large fraction of abiotic stress-responsive genes, as well as biosynthesis and signaling downstream of stress response hormones. Conversely, abiotic stress results in altered expression and differential splicing of the clock genes, leading to altered oscillations of downstream stress-response pathways. We propose a range of mechanisms by which this intimate coupling between the circadian clock and environmental stress-response pathways may contribute to plant growth and survival under abiotic stress. PMID:26379680

  9. Basic radiological studies contamination control experiments

    SciTech Connect

    Duce, S.W.; Winberg, M.R.; Freeman, A.L.

    1989-09-01

    This report describes the results of experiments relating to contamination control performed in support of the Environmental Restoration Programs Retrieval Project. During the years 1950 to 1970 waste contaminated with plutonium and other transuranic radionuclides was disposed of in shallow land-filled pits and trenches at the Idaho National Engineering Laboratory. Due to potential for migration of radionuclides to an existing aquifer the feasibility of retrieving and repackaging the waste for placement in a final repository is being examined as part of a retrieval project. Contamination control experiments were conducted to determine expected respirable and nonrespirable plutonium contaminated dust fractions and the effectiveness of various dust suppression techniques. Three soil types were tested to determine respirable fractions: Rocky Flats Plant generic soil, Radioactive Waste Management Complex generic soil, and a 1:1 blend of the two soil types. Overall, the average respirable fraction of airborne dust was 5.4% by weight. Three contamination control techniques were studied: soil fixative sprays, misting agents, and dust suppression agents. All of the tested agents proved to be effective in reducing dust in the air. Details of product performance and recommended usage are discussed.

  10. Control of Spacecraft Control Laboratory Experiment (SCOLE) slew maneuvers

    NASA Technical Reports Server (NTRS)

    Kakad, Y. P.

    1987-01-01

    This is the second report of a set of two reports on the dynamics and control of slewing maneuvers of NASA Spacecraft Control Laboratory Experiment (SCOLE). The control problem of slewing maneuvers of SCOLE is developed in terms of an arbitrary maneuver about any given axis. The control system is developed for the combined problem of rigid-body slew maneuver and vibration suppression of flexible appendage. The control problem is formulated by incorporating the nonlinear equations derived in the previous report and is expressed in terms of a two-point boundary value problem utilizing a quadratic type of performance index. The two-point boundary value problem is solved as a hierarchical control problem with the overall system being split in terms of two subsystems, namely the slewing of the entire assembly and the vibration suppression of the flexible antenna. The coupling variables between the two dynamical subsystems are identified and these two subsystems for control purposes are treated independently in parallel at the first level. Then the state-space trajectory of the combined problem is optimized at the second level.

  11. Practicing Quality Control in a Bioanalytical Experiment

    NASA Astrophysics Data System (ADS)

    Marcos, Juliana; Ríos, Angel; Valcárcel, Miguel

    1995-10-01

    The quality of analytical results frequently requires assessment, which has fostered treatment of this subject in a host of chemical books for students. Accordingly, new experiments need to be devised in order to help students adapt to it. This paper presents a straightforward exercise to demonstrate how quality control and the analysis of variance technique are implemented in practice. The exercise also is attractive because the analyte (chlorophyl) is determined in real samples (plants) that students can collect by themselves. In this way, they can realize the significance of sampling and learn how to do it properly.

  12. APECS - the Atacama pathfinder experiment control system

    NASA Astrophysics Data System (ADS)

    Muders, D.; Hafok, H.; Wyrowski, F.; Polehampton, E.; Belloche, A.; König, C.; Schaaf, R.; Schuller, F.; Hatchell, J.; van der Tak, F.

    2006-08-01

    APECS is the distributed control system of the new Atacama Pathfinder EXperiment (APEX) telescope located on the Llano de Chajnantor at an altitude of 5107 m in the Atacama desert in northern Chile. APECS is based on Atacama Large Millimeter Array (ALMA) software and employs a modern, object-oriented design using the Common Object Request Broker Architecture (CORBA) as the middleware. New generic device interfaces simplify adding instruments to the control system. The Python based observer command scripting language allows using many existing software libraries and facilitates creating more complex observing modes. A new self-descriptive raw data format (Multi-Beam FITS or MBFITS) has been defined to store the multi-beam, multi-frequency data. APECS provides an online pipeline for initial calibration, observer feedback and a quick-look display. APECS is being used for regular science observations in local and remote mode since August 2005.

  13. Chromium Stable Isotope Fractionation During Abiotic Reduction of Hexavalent Chromium

    NASA Astrophysics Data System (ADS)

    Kitchen, J. W.; Johnson, T. M.; Bullen, T. D.

    2004-12-01

    Chromium, a common surface water and ground water contaminant, occurs as Cr(VI), which is soluble and toxic, and Cr(III), which is insoluble and less toxic. Reduction of Cr(VI) to Cr(III) is often the most important reaction controlling attenuation of Cr plumes, and Cr stable isotope (53Cr/52Cr) measurements show great promise as indicators of this reaction. Cr(VI) reduction involves a kinetic isotope effect; lighter isotopes react at greater rates and heavier isotopes become increasingly enriched in the remaining Cr(VI) with increasing extent of reduction. If the size of this effect can be constrained well, then precise estimates of reduction are possible. Cr(VI) reduction can be mediated by microbes, or may occur abiotically in the presence of Fe(II) and a variety of organic compounds. A recent study of bacterial reduction of Cr(VI) under low electron donor conditions yielded a Cr isotope fractionation factor of 1000lnα = 4.1 ± 0.2. A previous study of abiotic reduction indicated a fractionation factor of 1000lnα = 3.4 ± 0.2, but this work was limited to 3 experiments. The present study provides a more detailed look at Cr isotope fractionation induced by abiotic Cr(VI) reduction by: Fe(II); mandelic acid with alumina and goethite catalysts; and humic substances. Reduction occurred slowly, over days or weeks. The fractionation factor for the organic reductants (all at pH=4), including two surface-catalyzed mandelic acid reactions, two fulvic reactions, and one humic reaction,- was 1000lnα = 3.0 ± 0.4, with no statistically significant differences between experiments. The fractionation factors for the Fe(II) experiments were 4.7 ± 0.3, 3.7 ± 0.2, and 2.9 ± 0.2 for pH = 4, 5, and 6, respectively. Further work is necessary to better constrain this pH dependence and to determine if it occurs with the organic reductants. The overall variability in the size of the Cr isotope fractionation during Cr(VI) reduction translates into a moderate level of uncertainty

  14. Experiment-Based Teaching in Advanced Control Engineering

    ERIC Educational Resources Information Center

    Precup, R.-E.; Preitl, S.; Radac, M.-B.; Petriu, E. M.; Dragos, C.-A.; Tar, J. K.

    2011-01-01

    This paper discusses an experiment-based approach to teaching an advanced control engineering syllabus involving controlled plant analysis and modeling, control structures and algorithms, real-time laboratory experiments, and their assessment. These experiments are structured around the representative case of the longitudinal slip control of an…

  15. The Comparative Experiences of Women in Control

    PubMed Central

    Mako, Morgan; Sadikova, Ekaterina; Barnes, Linda; Stone, Abriella; Rosal, Milagros C.; Wiecha, John

    2014-01-01

    The purpose was to characterize participants’ experiences of a diabetes self-management (DSM) education program delivered via a virtual world (VW) versus a face-to-face (F2F) format. Participants included a randomly selected sample of participants who completed the Women in Control study. Four focus groups were conducted with 32 participants. Four researchers coded the data and conducted a qualitative thematic analysis. Four overarching themes were identified. Three domains apply to both VW and F2F formats, including (1) the value of DSM knowledge gained, (2) cultivating DSM attitudes and skills, and (3) the value of peer-derived social support. The fourth domain is labeled positive technological development for DSM (VW condition only). VW and F2F groups both reported mastery of DSM knowledge, attitudes, and skills, and there were no differences in peer-derived social support between groups. The technological aspects of VW participation afforded VW participants a unique sense of personal agency and diabetes self-efficacy not reported by F2F participants. DSM education in a VW is feasible and educational outcomes are similar to a F2F classroom experience. Furthermore, learning DSM skills in a VW offers unique advantages in supporting personal agency for health behavior change. Further research is warranted. PMID:25212580

  16. Enhanced Attitude Control Experiment for SSTI Lewis Spacecraft

    NASA Technical Reports Server (NTRS)

    Maghami, Peoman G.

    1997-01-01

    The enhanced attitude control system experiment is a technology demonstration experiment on the NASA's small spacecraft technology initiative program's Lewis spacecraft to evaluate advanced attitude control strategies. The purpose of the enhanced attitude control system experiment is to evaluate the feasibility of designing and implementing robust multi-input/multi-output attitude control strategies for enhanced pointing performance of spacecraft to improve the quality of the measurements of the science instruments. Different control design strategies based on modern and robust control theories are being considered for the enhanced attitude control system experiment. This paper describes the experiment as well as the design and synthesis of a mixed H(sub 2)/H(sub infinity) controller for attitude control. The control synthesis uses a nonlinear programming technique to tune the controller parameters and impose robustness and performance constraints. Simulations are carried out to demonstrate the feasibility of the proposed attitude control design strategy. Introduction

  17. Identification and prediction of abiotic stress responsive transcription factors involved in abiotic stress signaling in soybean.

    PubMed

    Tran, Lam-Son Phan; Mochida, Keiichi

    2010-03-01

    Abiotic stresses such as extreme temperature, drought, high salinity, cold and waterlogging often result in significant losses to the yields of economically important crops such as soybean (Glycine max L.). Transcription factors (TFs) which bind to DNA through specific cis-regulatory sequences either activate or repress gene transcription have been reported to act as control switches in stress signaling. Recent completion of the soybean genomic sequence has open wide opportunities for large-scale identification and annotations of regulatory TFs in soybean for functional studies. Within the soybean genome, we identified 5,035 TF models which grouped into 61 families. Detailed annotations of soybean TF genes can be accessed at SoybeanTFDB (soybeantfdb.psc.riken.jp). Moreover, we have reported a new idea of high throughput prediction and selection of abiotic stress responsive TFs based on the existence of known stress responsive cis-element(s) located in the promoter regions of respective TFs and GO annotations. We, therefore, have provided a basic platform for the genome-wide analysis of regulatory mechanisms underlying abiotic stress responses and a reliable tool for prediction and selection of stress responsive TFs for further functional studies and genetic engineering.

  18. An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller

    ERIC Educational Resources Information Center

    Mamdani, E. H.; Assilian, S.

    1975-01-01

    This paper describes an experiment on the "linguistic" synthesis of a controller for a model industrial plant (a steam engine). Fuzzy logic is used to convert heuristic control rules stated by a human operator into an automatic control strategy. (Author)

  19. Biological controls on dissolution of diatom frustules during their descent to the deep ocean: Lessons learned from controlled laboratory experiments

    NASA Astrophysics Data System (ADS)

    Passow, Uta; French, Megan A.; Robert, Maya

    2011-12-01

    The majority of opal produced by diatoms dissolves during their sedimentation to the seafloor, but spatial and temporal variability of dissolution rates are large. Controlled laboratory experiments using live phytoplankton or phyto-detritus may help identify the different processes, including those that are biologically mediated or physico-chemically driven, that impact the dissolution of frustules and the aforementioned variability. Results of eight bSiO 2 dissolution experiments, seven of which were conducted at low temperatures (<6 °C) are presented within the context of earlier similar studies, and different phases of dissolution dynamics characterized. TEP concentration, aggregation and the physiological status of the diatoms determined the period during which diatoms may maintain the protective membrane that surrounds their frustule and effectively reduces or completely inhibits (lag period) dissolution for some time. Once diatoms loose the capability to maintain their protective membrane, bacterial activity compromises it. Physico-chemical dissolution, which depends on frustule structure and abiotic environmental conditions, begins once the protective membrane is damaged. The ability of diatoms to maintain their membrane, the bacterial composition and activity governing its degradation, and the physico-chemical dissolution dynamics of exposed frustules are all impacted by temperature. In our experiments instantaneous dissolution rates were not dependant on bSiO 2 concentration at low temperatures, although such a relationship was observed under otherwise identical conditions at 15 °C, implying that biotic factors rather than physico-chemical processes initially dominated dissolution at polar temperatures. Since inhibition of bSiO 2 dissolution at low temperatures was inhibited to a greater extent than organic matter degradation, we postulate that it was not reduced bacterial activity but the enhanced ability of diatoms to maintain their membrane and thus

  20. ROS Regulation During Abiotic Stress Responses in Crop Plants

    PubMed Central

    You, Jun; Chan, Zhulong

    2015-01-01

    Abiotic stresses such as drought, cold, salt and heat cause reduction of plant growth and loss of crop yield worldwide. Reactive oxygen species (ROS) including hydrogen peroxide (H2O2), superoxide anions (O2•-), hydroxyl radical (OH•) and singlet oxygen (1O2) are by-products of physiological metabolisms, and are precisely controlled by enzymatic and non-enzymatic antioxidant defense systems. ROS are significantly accumulated under abiotic stress conditions, which cause oxidative damage and eventually resulting in cell death. Recently, ROS have been also recognized as key players in the complex signaling network of plants stress responses. The involvement of ROS in signal transduction implies that there must be coordinated function of regulation networks to maintain ROS at non-toxic levels in a delicate balancing act between ROS production, involving ROS generating enzymes and the unavoidable production of ROS during basic cellular metabolism, and ROS-scavenging pathways. Increasing evidence showed that ROS play crucial roles in abiotic stress responses of crop plants for the activation of stress-response and defense pathways. More importantly, manipulating ROS levels provides an opportunity to enhance stress tolerances of crop plants under a variety of unfavorable environmental conditions. This review presents an overview of current knowledge about homeostasis regulation of ROS in crop plants. In particular, we summarize the essential proteins that are involved in abiotic stress tolerance of crop plants through ROS regulation. Finally, the challenges toward the improvement of abiotic stress tolerance through ROS regulation in crops are discussed. PMID:26697045

  1. Breeding for abiotic stresses for sustainable agriculture.

    PubMed

    Witcombe, J R; Hollington, P A; Howarth, C J; Reader, S; Steele, K A

    2008-02-27

    Using cereal crops as examples, we review the breeding for tolerance to the abiotic stresses of low nitrogen, drought, salinity and aluminium toxicity. All are already important abiotic stress factors that cause large and widespread yield reductions. Drought will increase in importance with climate change, the area of irrigated land that is salinized continues to increase, and the cost of inorganic N is set to rise. There is good potential for directly breeding for adaptation to low N while retaining an ability to respond to high N conditions. Breeding for drought and salinity tolerance have proven to be difficult, and the complex mechanisms of tolerance are reviewed. Marker-assisted selection for component traits of drought in rice and pearl millet and salinity tolerance in wheat has produced some positive results and the pyramiding of stable quantitative trait locuses controlling component traits may provide a solution. New genomic technologies promise to make progress for breeding tolerance to these two stresses through a more fundamental understanding of underlying processes and identification of the genes responsible. In wheat, there is a great potential of breeding genetic resistance for salinity and aluminium tolerance through the contributions of wild relatives.

  2. Abiotic Methane Synthesis: Caveats and New Results

    NASA Astrophysics Data System (ADS)

    Zou, R.; Sharma, A.

    2005-12-01

    The role of mineral interaction with geochemical fluids under hydrothermal conditions has invoked models of geochemical synthesis of organic molecules at deep crustal conditions. Since Thomas Gold's (1992) hypothesis of the possibility of an abiotic organic synthesis, there have been several reports of hydrocarbon formation under high pressure and temperature conditions. Several previous experimental studies have recognized that small amounts of methane (and other light HC compounds) can be synthesized via catalysis by transition metals: Fe, Ni (Horita and Berndt, 1999 Science) and Cr (Foustavous and Seyfried, 2004 Science). In light of these pioneering experiments, an investigation of the feasibility of abiotic methane synthesis at higher pressure conditions in deep geological setting and the possible role of catalysis warrants a closer look. We conducted three sets of experiments in hydrothermal diamond anvil cell using FeO nanopowder, CaCO 3 and water at 300° - 600° C and 0.5 - 5 GPa : (a) with stainless steel gasket, (b) gold-lined gasket, and (c) gold-lined gasket with added Fe and Ni nanopowder. The reactions were monitored in-situ using micro-Raman spectroscopy with 532nm and 632nm lasers. The solids phases were characterized in-situ using synchrotron X-ray diffraction at CHESS-Cornell and quenched products with an electron microprobe. Interestingly, a variable amount of hydrocarbon was observed only in runs with stainless steel gasket and with Fe, Ni nanoparticles. Experiments with gold-lined reactors did not show any hydrocarbon formation. Added high resolution microscopy of the products and their textural relationship within the diamond cell with Raman spectroscopy data show that the hydrocarbon (methane and other light fractions) synthesis is a direct result of transition metal catalysis, rather than wustite - calcium carbonate reaction as recently reported by Scott et al (2004, PNAS). The author will further present new results highlighting abiotic

  3. Physics experiments with Nintendo Wii controllers

    NASA Astrophysics Data System (ADS)

    Wheeler, Martyn D.

    2011-01-01

    This article provides a detailed description of the use of Nintendo Wii game controllers in physics demonstrations. The main features of the controller relevant to physics are outlined and the procedure for communicating with a PC is described. A piece of software written by the author is applied to gathering data from a controller suspended from a spring undergoing simple harmonic motion, a pair of controllers mounted on colliding gliders on a linear air track, and a person jumping from a balance board.

  4. Physics Experiments with Nintendo Wii Controllers

    ERIC Educational Resources Information Center

    Wheeler, Martyn D.

    2011-01-01

    This article provides a detailed description of the use of Nintendo Wii game controllers in physics demonstrations. The main features of the controller relevant to physics are outlined and the procedure for communicating with a PC is described. A piece of software written by the author is applied to gathering data from a controller suspended from…

  5. Flexible manipulator control experiments and analysis

    NASA Technical Reports Server (NTRS)

    Yurkovich, S.; Ozguner, U.; Tzes, A.; Kotnik, P. T.

    1987-01-01

    Modeling and control design for flexible manipulators, both from an experimental and analytical viewpoint, are described. From the application perspective, an ongoing effort within the laboratory environment at the Ohio State University, where experimentation on a single link flexible arm is underway is described. Several unique features of this study are described here. First, the manipulator arm is slewed by a direct drive dc motor and has a rigid counterbalance appendage. Current experimentation is from two viewpoints: (1) rigid body slewing and vibration control via actuation with the hub motor, and (2) vibration suppression through the use of structure-mounted proof-mass actuation at the tip. Such an application to manipulator control is of interest particularly in design of space-based telerobotic control systems, but has received little attention to date. From an analytical viewpoint, parameter estimation techniques within the closed-loop for self-tuning adaptive control approaches are discussed. Also introduced is a control approach based on output feedback and frequency weighting to counteract effects of spillover in reduced-order model design. A model of the flexible manipulator based on experimental measurements is evaluated for such estimation and control approaches.

  6. Slewing control experiment for a flexible panel

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan

    1987-01-01

    Technology areas are identified in which better analytical and/or experimental methods are needed to adequately and accurately control the dynamic responses of multibody space platforms such as the space station. A generic space station solar panel is used to experimentally evaluate current control technologies. Active suppression of solar panel vibrations induced by large angle maneuvers is studied with a torque actuator at the root of the solar panel. These active suppression tests will identify the hardware requirements and adequacy of various controller designs.

  7. NAC transcription factors in plant abiotic stress responses.

    PubMed

    Nakashima, Kazuo; Takasaki, Hironori; Mizoi, Junya; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2012-02-01

    Abiotic stresses such as drought and high salinity adversely affect the growth and productivity of plants, including crops. The development of stress-tolerant crops will be greatly advantageous for modern agriculture in areas that are prone to such stresses. In recent years, several advances have been made towards identifying potential stress related genes which are capable of increasing the tolerance of plants to abiotic stress. NAC proteins are plant-specific transcription factors and more than 100 NAC genes have been identified in Arabidopsis and rice to date. Phylogenetic analyses indicate that the six major groups were already established at least in an ancient moss lineage. NAC transcription factors have a variety of important functions not only in plant development but also in abiotic stress responses. Stress-inducible NAC genes have been shown to be involved in abiotic stress tolerance. Transgenic Arabidopsis and rice plants overexpressing stress-responsive NAC (SNAC) genes have exhibited improved drought tolerance. These studies indicate that SNAC factors have important roles for the control of abiotic stress tolerance and that their overexpression can improve stress tolerance via biotechnological approaches. Although these transcription factors can bind to the same core NAC recognition sequence, recent studies have demonstrated that the effects of NAC factors for growth are different. Moreover, the NAC proteins are capable of functioning as homo- or hetero-dimer forms. Thus, SNAC factors can be useful for improving stress tolerance in transgenic plants, although the mechanism for mediating the stress tolerance of these homologous factors is complex in plants. Recent studies also suggest that crosstalk may exist between stress responses and plant growth. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.

  8. Executive Control and the Experience of Regret

    ERIC Educational Resources Information Center

    Burns, Patrick; Riggs, Kevin J.; Beck, Sarah R.

    2012-01-01

    The experience of regret rests on a counterfactual analysis of events. Previous research indicates that regret emerges at around 6 years of age, marginally later than the age at which children begin to answer counterfactual questions correctly. We hypothesized that the late emergence of regret relative to early counterfactual thinking is a result…

  9. Power and control choice in aquatic experiments with solvents.

    PubMed

    Green, John W

    2014-04-01

    Aquatic toxicology experiments to determine the effects of chemicals sometimes require the use of a carrier solvent. Such experiments typically include both a negative (water) control group and a solvent control group. False positive rates and power to detect treatment effects in such experiments are compared for six possible strategies for deciding the appropriate control or controls for comparison. The main purpose of the present study is to determine the best use of the two controls in statistical analysis. A secondary purpose is to determine purely on statistical grounds whether both controls are actually needed. The evidence supports using either the solvent control only in all cases or a sequential strategy of combining the water and solvent controls unless the two controls are found to be statistically significantly different, in which case only the solvent control should be used. These results extend, and in some ways contradict, a recently published simulation study.

  10. Millikan's oil-drop experiment as a remotely controlled laboratory

    NASA Astrophysics Data System (ADS)

    Eckert, Bodo; Gröber, Sebastian; Vetter, Martin; Jodl, Hans-Jörg

    2012-09-01

    The Millikan oil-drop experiment, to determine the elementary electrical charge e and the quantization of charge Q = n · e, is an essential experiment in physics teaching but it is hardly performed in class for several reasons. Therefore, we offer this experiment as a remotely controlled laboratory (RCL). We describe the interactivity of the experiment and the quality of measurements. The added value to offer the Millikan experiment as an RCL is pointed out.

  11. Description of the Spacecraft Control Laboratory Experiment (SCOLE) facility

    NASA Technical Reports Server (NTRS)

    Williams, Jeffrey P.; Rallo, Rosemary A.

    1987-01-01

    A laboratory facility for the study of control laws for large flexible spacecraft is described. The facility fulfills the requirements of the Spacecraft Control Laboratory Experiment (SCOLE) design challenge for laboratory experiments, which will allow slew maneuvers and pointing operations. The structural apparatus is described in detail sufficient for modelling purposes. The sensor and actuator types and characteristics are described so that identification and control algorithms may be designed. The control implementation computer and real-time subroutines are also described.

  12. Description of the Spacecraft Control Laboratory Experiment (SCOLE) facility

    NASA Technical Reports Server (NTRS)

    Williams, Jeffrey P.; Rallo, Rosemary A.

    1987-01-01

    A laboratory facility for the study of control laws for large flexible spacecraft is described. The facility fulfills the requirements of the Spacecraft Control Laboratory Experiment (SCOLE) design challenge for a laboratory experiment, which will allow slew maneuvers and pointing operations. The structural apparatus is described in detail sufficient for modelling purposes. The sensor and actuator types and characteristics are described so that identification and control algorithms may be designed. The control implementation computer and real-time subroutines are also described.

  13. Dynamic nonprehensile manipulation: Controllability, planning, and experiments

    SciTech Connect

    Lynch, K.M.; Mason, M.T.

    1999-01-01

    The authors are interested in using low-degree-of-freedom robots to perform complex tasks by nonprehensile manipulation (manipulation without a form- or force-closure grasp). By not grasping, the robot can use gravitational, centrifugal, and Coriolis forces as virtual motors to control more degrees of freedom of the part. The part`s extra motion freedoms are exhibited as rolling, slipping, and free flight. This paper describes controllability, motion planning, and implementation of planar dynamic nonprehensile manipulation. The authors show that almost any planar object is controllable by point contact, and the controlling robot requires only two degrees of freedom (a point translating in the plane). They then focus on a one-joint manipulator (with a two-dimensional state space), and show that even this simplest of robots, by using slipping and rolling, can control a planar object to a full-dimensional subset of its six-0dimensional state space. The authors have developed a one-joint robot to perform a variety of dynamic tasks, including snatching an object from a table, rolling an object on the surface of the arm, and throwing and catching. Nonlinear optimization is used to plan robot trajectories that achieve the desired object motion via coupling forces through the nonprehensile contact.

  14. Dawn Spacecraft Reaction Control System Flight Experience

    NASA Technical Reports Server (NTRS)

    Mizukami, Masashi; Nakazono, Barry

    2014-01-01

    The NASA Dawn spacecraft mission is studying conditions and processes of the solar system's earliest epoch by investigating two protoplanets remaining intact since their formations, Ceres and Vesta. Launch was in 2007. Ion propulsion is used to fly to and enter orbit around Vesta, depart Vesta and fly to Ceres, and enter orbit around Ceres. A conventional blowdown hydrazine reaction control system (RCS) is used to provide external torques for attitude control. Reaction wheel assemblies were intended to provide attitude control in most cases. However, the spacecraft experienced one, then two apparent failures of reaction wheels. Also, similar thrusters experienced degradation in a long life application on another spacecraft. Those factors led to RCS being operated in ways completely different than anticipated prior to launch. Numerous mitigations and developments needed to be implemented. The Vesta mission was fully successful. Even with the compromises necessary due to those anomalies, the Ceres mission is also projected to be feasible.

  15. Circulation control lift generation experiment: Hardware development

    NASA Technical Reports Server (NTRS)

    Panontin, T. L.

    1985-01-01

    A circulation control airfoil and its accompanying hardware were developed to allow the investigation of lift generation that is independent of airfoil angle of attack and relative flow velocity. The test equipment, designed for use in a water tunnel, includes the blown airfoil, the support systems for both flow visualization and airfoil load measurement, and the fluid control system, which utilizes hydraulic technology. The primary design tasks, the selected solutions, and the unforseen problems involved in the development of these individual components of hardware are described.

  16. Robust controllers for the Middeck Active Control Experiment using Popov controller synthesis

    NASA Technical Reports Server (NTRS)

    How, Jonathan P.; Hall, Steven R.

    1993-01-01

    Recent work in robust control with real parameter uncertainties has focused on absolute stability and its connections to real mu theory. In particular, the research has investigated the Popov stability criterion and its associated Lur'e-Postnikov Liapunov functions. State space representations of this Popov stability analysis tests are included in an H2 design formulation to provide a powerful technique for robust controller synthesis. This synthesis approach uses a state space optimization procedure to design controllers that minimize an overbound of an H2 cost functional and satisfy stability analysis tests based on the Popov multiplier. The controller and stability multiplier coefficients are optimized simultaneously, which avoids the iteration and curve-fitting procedures required by the D-K algorithm of mu synthesis. While previous work has demonstrated this synthesis approach on benchmark control problems, the purpose of this paper is to use Popov controller synthesis to design robust compensators for the Middeck Active Control Experiment (MACE).

  17. Reproducibility, Controllability, and Optimization of Lenr Experiments

    NASA Astrophysics Data System (ADS)

    Nagel, David J.

    2006-02-01

    Low-energy nuclear reaction (LENR) measurements are significantly and increasingly reproducible. Practical control of the production of energy or materials by LENR has yet to be demonstrated. Minimization of costly inputs and maximization of desired outputs of LENR remain for future developments.

  18. Experiments with a Magnetically Controlled Pendulum

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2007-01-01

    A magnetically controlled pendulum is used for observing free and forced oscillations, including nonlinear oscillations and chaotic motion. A data-acquisition system stores the data and displays time series of the oscillations and related phase plane plots, Poincare maps, Fourier spectra and histograms. The decay constant of the pendulum can be…

  19. Aeroassist flight experiment guidance, navigation and control

    NASA Technical Reports Server (NTRS)

    Brand, Timothy J.; Engel, Albert G.

    1986-01-01

    The Aeroassist Flight Experiment scheduled for the early 1990's will demonstrate the use of a low L/D lifting brake using aerodynamic drag to return a spacecraft from a high energy to a low earth orbit. The experimental vehicle will be deployed and retrieved by the Shuttle Orbiter. This paper reviews some of the challenges, problems, and solutions encountered to date during guidance system development, with emphasis on technology advances which will benefit an operational Orbit Transfer Vehicle (OTV). Key factors to be discussed include guidance alternatives, aerodynamic modeling, navigation requirements, the impact of atmospheric uncertainties, and flight profile alternatives considered during initial planning.

  20. 2. VIEW OF THE EXPERIMENT CONTROL PANEL IN 1970. THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF THE EXPERIMENT CONTROL PANEL IN 1970. THE NUCLEAR SAFETY GROUP CONDUCTED ABOUT 1,700 CRITICAL MASS EXPERIMENTS USING URANIUM AND PLUTONIUM IN SOLUTIONS (900 TESTS), COMPACTED POWDER (300), AND METALLIC FORMS (500). ALL 1,700 CRITICALITY ASSEMBLIES WERE CONTROLLED FROM THIS PANEL. - Rocky Flats Plant, Critical Mass Laboratory, Intersection of Central Avenue & 86 Drive, Golden, Jefferson County, CO

  1. Biotic and Abiotic Factors Controlling Respiration Rates of Above- and Belowground Woody Debris of Fagus crenata and Quercus crispula in Japan.

    PubMed

    Jomura, Mayuko; Akashi, Yuhei; Itoh, Hiromu; Yuki, Risa; Sakai, Yoshimi; Maruyama, Yutaka

    2015-01-01

    As a large, long-term pool and source of carbon and nutrients, woody litter is an important component of forest ecosystems. The objective of this study was to estimate the effect of the factors that regulate the rate of decomposition of coarse and fine woody debris (CFWD) of dominant tree species in a cool-temperate forest in Japan. Respiration rates of dead stems, branches, and coarse and fine roots of Fagus crenata and Quercus crispula felled 4 years prior obtained in situ ranged from 20.9 to 500.1 mg CO2 [kg dry wood](-1) h(-1) in a one-time measurement in summer. Respiration rate had a significant negative relationship with diameter; in particular, that of a sample of Q. crispula with a diameter of >15 cm and substantial heartwood was low. It also had a significant positive relationship with moisture content. The explanatory variables diameter, [N], wood density, and moisture content were interrelated. The most parsimonious path model showed 14 significant correlations among 8 factors and respiration. Diameter and [C] had large negative direct effects on CFWD respiration rate, and moisture content and species had medium positive direct effects. [N] and temperature did not have direct or indirect effects, and position and wood density had indirect effects. The model revealed some interrelationships between controlling factors. We discussed the influence of the direct effects of explanatory variables and the influence especially of species and position. We speculate that the small R2 value of the most parsimonious model was probably due to the omission of microbial biomass and activity. These direct and indirect effects and interrelationships between explanatory variables could be used to develop a process-based CFWD decomposition model. PMID:26658727

  2. Biotic and Abiotic Factors Controlling Respiration Rates of Above- and Belowground Woody Debris of Fagus crenata and Quercus crispula in Japan

    PubMed Central

    Jomura, Mayuko; Akashi, Yuhei; Itoh, Hiromu; Yuki, Risa; Sakai, Yoshimi; Maruyama, Yutaka

    2015-01-01

    As a large, long-term pool and source of carbon and nutrients, woody litter is an important component of forest ecosystems. The objective of this study was to estimate the effect of the factors that regulate the rate of decomposition of coarse and fine woody debris (CFWD) of dominant tree species in a cool-temperate forest in Japan. Respiration rates of dead stems, branches, and coarse and fine roots of Fagus crenata and Quercus crispula felled 4 years prior obtained in situ ranged from 20.9 to 500.1 mg CO2 [kg dry wood]–1 h–1 in a one-time measurement in summer. Respiration rate had a significant negative relationship with diameter; in particular, that of a sample of Q. crispula with a diameter of >15 cm and substantial heartwood was low. It also had a significant positive relationship with moisture content. The explanatory variables diameter, [N], wood density, and moisture content were interrelated. The most parsimonious path model showed 14 significant correlations among 8 factors and respiration. Diameter and [C] had large negative direct effects on CFWD respiration rate, and moisture content and species had medium positive direct effects. [N] and temperature did not have direct or indirect effects, and position and wood density had indirect effects. The model revealed some interrelationships between controlling factors. We discussed the influence of the direct effects of explanatory variables and the influence especially of species and position. We speculate that the small R2 value of the most parsimonious model was probably due to the omission of microbial biomass and activity. These direct and indirect effects and interrelationships between explanatory variables could be used to develop a process-based CFWD decomposition model. PMID:26658727

  3. Millikan's Oil-Drop Experiment as a Remotely Controlled Laboratory

    ERIC Educational Resources Information Center

    Eckert, Bodo; Grober, Sebastian; Vetter, Martin; Jodl, Hans-Jorg

    2012-01-01

    The Millikan oil-drop experiment, to determine the elementary electrical charge e and the quantization of charge Q = n [middle dot] e, is an essential experiment in physics teaching but it is hardly performed in class for several reasons. Therefore, we offer this experiment as a remotely controlled laboratory (RCL). We describe the interactivity…

  4. The run control and monitoring system of the CMS experiment

    SciTech Connect

    Bauer, Gerry; Boyer, Vincent; Branson, James; Brett, Angela; Cano, Eric; Carboni, Andrea; Ciganek, Marek; Cittolin, Sergio; O'Dell, Vivian; Erhan, Samim; Gigi, Dominique; /CERN /Kyungpook Natl. U. /MIT /UCLA /CERN /INFN, Legnaro

    2007-10-01

    The CMS experiment at the LHC at CERN will start taking data in 2008. To configure, control and monitor the experiment during data-taking the Run Control and Monitoring System (RCMS) was developed. This paper describes the architecture and the technology used to implement the RCMS, as well as the deployment and commissioning strategy of this important component of the online software for the CMS experiment.

  5. Atmosphere control for plant growth flight experiments

    NASA Technical Reports Server (NTRS)

    Powell, Ferolyn T.; Sudar, Martin; Timm, Marc; Yost, Bruce

    1989-01-01

    An atmosphere exchange system (AES) has been designed to provide a conditioned atmosphere supply to plant specimens in flight without incurring the large weight and volume associated with bottled gases. The paper examines the atmosphere filter cartridge (AFC) designed to remove trace organic atmosphere contaminants from the Space Shuttle cabin and to condition the cabin atmosphere prior to exposure to plant specimens. The AES and AFC are described and illustrated. The AFC design requirements are discussed and results are presented from tests on the performance of the AFC. Also, consideration is given to the potential applications of the AFC and future design concepts for atmosphere control.

  6. [Our experience with outside laboratory quality control].

    PubMed

    Dochev, D; Arakasheva, V; Nashkov, A; Tsachev, K

    1979-01-01

    The results from the national outside laboratory qualitative control of the clinical diagnostic laboratory investigations for the period September 1975 -- May 1977 were described. The following interlaboratory discrepancy was found on base of a systematic analysis of the data from the last two ring-like check-ups, November 1976 and May 1977, exressed by the variation coefficient (V.C. %); total protein, sodium, potassium and chlorides -- under 10%; cholesterol, urea and total fats -- between 10 and 20%; calcium, phosphorus, iron and creatinine -- over 20%. The highest per cent of admissible results are found with total protein -- to 85%; cholesterol -- to 70.38%; glucosa -- to 73.17%, urea -- to 69.23%, potassium -- to 59.46%, chlorides -- to 57.9%. With sodium, phosphorus, calcium, iron creatinine and uric acid the "admissibility" fluctuates about or under 50 per cent. The values of the qualitative-control indices discussed are comparable with the values obtained from them in the interlaboratory comparisons of other countries. PMID:494628

  7. Pain control: mastery through group experience.

    PubMed

    Herman, E; Baptiste, S

    1981-02-01

    This paper describes a group program which is part of the therapeutic management of out-patients with chronic pain at the multidisciplinary Pain Clinic in Hamilton, Ontario (McMaster Division, Chedoke-McMaster Hospital). The programme seeks to assist chronic pain sufferers in developing more adaptive coping styles. Groups of 12--14 patients meet for 9 weeks, 3 h/week, under the co-leadership of a physiotherapist and an occupational therapist with backgrounds in psychology and psychiatry. Seventy-five patients with diverse aetiologies of chronic pain have completed these "pain control classes". Outcome was assessed on the basis of several parameters. Results indicate a considerable reduction in depression, pain perception and analgesic intake. Conversely, employment figures increased from 20 to 48% after completion of the program. 21% were considered failures. Significant variables differentiating successes from failures were sex, marital status, work incentive, employment and absence of litigation or Workmen's Compensation claims.

  8. Evaluating reaction pathways of hydrothermal abiotic organic synthesis at elevated temperatures and pressures using carbon isotopes

    NASA Astrophysics Data System (ADS)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.

    2015-04-01

    Experiments were performed to better understand the role of environmental factors on reaction pathways and corresponding carbon isotope fractionations during abiotic hydrothermal synthesis of organic compounds using piston cylinder apparatus at 750 °C and 5.5 kbars. Chemical compositions of experimental products and corresponding carbon isotopic values were obtained by a Pyrolysis-GC-MS-IRMS system. Alkanes (methane and ethane), straight-chain saturated alcohols (ethanol and n-butanol) and monocarboxylic acids (formic and acetic acids) were generated with ethanol being the only organic compound with higher δ13C than CO2. CO was not detected in experimental products owing to the favorable water-gas shift reaction under high water pressure conditions. The pattern of δ13C values of CO2, carboxylic acids and alkanes are consistent with their equilibrium isotope relationships: CO2 > carboxylic acids > alkanes, but the magnitude of the fractionation among them is higher than predicted isotope equilibrium values. In particular, the isotopic fractionation between CO2 and CH4 remained constant at ∼31‰, indicating a kinetic effect during CO2 reduction processes. No "isotope reversal" of δ13C values for alkanes or carboxylic acids was observed, which indicates a different reaction pathway than what is typically observed during Fischer-Tropsch synthesis under gas phase conditions. Under constraints imposed in experiments, the anomalous 13C isotope enrichment in ethanol suggests that hydroxymethylene is the organic intermediate, and that the generation of other organic compounds enriched in 12C were facilitated by subsequent Rayleigh fractionation of hydroxymethylene reacting with H2 and/or H2O. Carbon isotope fractionation data obtained in this study are instrumental in assessing the controlling factors on abiotic formation of organic compounds in hydrothermal systems. Knowledge on how environmental conditions affect reaction pathways of abiotic synthesis of organic

  9. Reproducible and controllable induction voltage adder for scaled beam experiments

    NASA Astrophysics Data System (ADS)

    Sakai, Yasuo; Nakajima, Mitsuo; Horioka, Kazuhiko

    2016-08-01

    A reproducible and controllable induction adder was developed using solid-state switching devices and Finemet cores for scaled beam compression experiments. A gate controlled MOSFET circuit was developed for the controllable voltage driver. The MOSFET circuit drove the induction adder at low magnetization levels of the cores which enabled us to form reproducible modulation voltages with jitter less than 0.3 ns. Preliminary beam compression experiments indicated that the induction adder can improve the reproducibility of modulation voltages and advance the beam physics experiments.

  10. Adaptive control experiment with a large flexible structure

    NASA Technical Reports Server (NTRS)

    Ih, Che-Hang Charles; Bayard, David S.; Wang, Shyh Jong; Eldred, Daniel B.

    1988-01-01

    A large space antenna-like ground experiment structure has been developed for conducting research and validation of advanced control technology. A set of proof-of-concept adaptive control experiments for transient and initial deflection regulation with a small set of sensors and actuators were conducted. Very limited knowledge of the plant dynamics and its environment was used in the design of the adaptive controller so that performance could be demonstrated under conditions of gross underlying uncertainties. High performance has been observed under such stringent conditions. These experiments have established a baseline for future studies involving more complex hardware and environmental conditions, and utilizing additional sets of sensors and actuators.

  11. Reproducible and controllable induction voltage adder for scaled beam experiments.

    PubMed

    Sakai, Yasuo; Nakajima, Mitsuo; Horioka, Kazuhiko

    2016-08-01

    A reproducible and controllable induction adder was developed using solid-state switching devices and Finemet cores for scaled beam compression experiments. A gate controlled MOSFET circuit was developed for the controllable voltage driver. The MOSFET circuit drove the induction adder at low magnetization levels of the cores which enabled us to form reproducible modulation voltages with jitter less than 0.3 ns. Preliminary beam compression experiments indicated that the induction adder can improve the reproducibility of modulation voltages and advance the beam physics experiments. PMID:27587112

  12. Map-Based Cloning of Sbbmc, a Major Locus Controlling the Profuse Wax Trait of Sorghum: a Case Study in Unlocking the Abiotic Stress Tolerance of Sorghum bicolor via Integrated Physiological and Genomic Approaches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sorghum bicolor is one of the most valuable “fail safe” cereal crop species and is a rich repository of genes for abiotic stress tolerance that await discovery. As an example, Sorghum exhibits cuticle which produces profuse amount of epicuticular wax (bloom) on sheaths and leaves that serves as key...

  13. In silico pooling of ChIP-seq control experiments.

    PubMed

    Sun, Guannan; Srinivasan, Rajini; Lopez-Anido, Camila; Hung, Holly A; Svaren, John; Keleş, Sündüz

    2014-01-01

    As next generation sequencing technologies are becoming more economical, large-scale ChIP-seq studies are enabling the investigation of the roles of transcription factor binding and epigenome on phenotypic variation. Studying such variation requires individual level ChIP-seq experiments. Standard designs for ChIP-seq experiments employ a paired control per ChIP-seq sample. Genomic coverage for control experiments is often sacrificed to increase the resources for ChIP samples. However, the quality of ChIP-enriched regions identifiable from a ChIP-seq experiment depends on the quality and the coverage of the control experiments. Insufficient coverage leads to loss of power in detecting enrichment. We investigate the effect of in silico pooling of control samples within multiple biological replicates, multiple treatment conditions, and multiple cell lines and tissues across multiple datasets with varying levels of genomic coverage. Our computational studies suggest guidelines for performing in silico pooling of control experiments. Using vast amounts of ENCODE data, we show that pairwise correlations between control samples originating from multiple biological replicates, treatments, and cell lines/tissues can be grouped into two classes representing whether or not in silico pooling leads to power gain in detecting enrichment between the ChIP and the control samples. Our findings have important implications for multiplexing samples.

  14. A feasibility study of orbiter flight control experiments

    NASA Technical Reports Server (NTRS)

    Geissler, W. H.

    1978-01-01

    The results of a feasibility study of orbiter flight control experiments performed are summarized. Feasibility studies were performed on a group of 14 experiments selected from a candidate list of 35 submitted to the study contractor by the flight control community. Concepts and requirements were developed for the 14 selected experiments and they were ranked on a basis of technical value, feasibility, and cost. It was concluded that all the selected experiments can be considered as potential candidates for the Orbiter Experiment program, which is being formulated for the Orbiter Flight Tests and subsequent operational flights, regardless of the relative ranking established during the study. None of the selected experiments has significant safety implications and the cost of most was estimated to be less than $200K.

  15. Controlling chaotic convection using neural nets-theory and experiments.

    PubMed

    Bau, Haim H.; Yuen, Po Ki

    1998-04-01

    An exploratory study is conducted to assess the feasibility of using neural networks to control flow patterns and to evaluate the performance of these controllers. Neural networks were used to control (suppress) chaotic convection both in experiments and in a theoretical model of a thermal convection loop. It is demonstrated that the neural network controller can successfully cause the flow to behave in a desired way. The performance of the neural network controllers was compared with that of previously used conventional linear proportional controllers.

  16. Tracing Abiotic Redox Reaction Pathways From Changes in Loess Magnetism

    NASA Astrophysics Data System (ADS)

    Lagroix, F.; Guyodo, Y. J.

    2009-12-01

    Loess magnetism has thrived over the last thirty years and has produced valuable paleoclimate records and provided many insights into past climate on continental surfaces. One major hurdle remaining is the quantification of loess magnetism to climate or environment connection(s). Previous studies by others have revealed a relationship in top soils developing over loess in China, the Russian Steppe and the Midwest US between the enhanced magnetism, with respect to the underlying parent loess, and present day rainfall. However from one area to another the relationship differs and therefore whether the relationship observed in for the topsoil at a given site holds for the underlying paleosols is uncertain and difficult to verify. Our efforts are focused here on tracing the abiotic redox reaction pathways of natural samples of parent loess and of its overlying topsoil and underlying paleosol from changes in their magnetic behavior at low-temperature. By forcing the natural samples to their limits, i.e., most oxidized and most reduced states, under controlled laboratory conditions, our goal is to determine the range of alteration and its impact on the bulk magnetic properties. Moreover, by cycling from one end-member state to the other, the pathway of alteration is traced and whether this pathway is reversible or hysteretic is revealed. Our approach is voluntarily simplistic, involving a limited number of variables. Experiments are all conducted at 250°C and in air for oxidizing experiments or a mixture of carbon monoxide (20 %) and carbon dioxide (80 %) for reduction experiments. Starting sample type is the only variable that changes introducing increasing complexity as we go from the parent loess to the paleosol to the topsoil samples with, for example, increasing amounts of organic matter and clays.

  17. Carbon Isotope Fractionation In Biotic Vs. Abiotic Anaerobic Conditions

    NASA Astrophysics Data System (ADS)

    Gebrehiwet, T. A.

    2005-12-01

    Dissimilatory metal reducing bacteria (DMRB) are thought to play an important role in the biogeochemical cycling of Fe, and nutrient elements such as C and P, in the anaerobic subsurface. The consumption of organic carbon sources (including contaminants) by these bacteria can significantly fractionate substrate C isotopes, however the effects of solution composition, electron acceptor, or electron donor on C isotopic fractionation by DMRB is at present poorly quantified. We have conducted experiments to compare the effects of bicarbonate (δ13C = -3‰) and phosphate buffers on carbon isotope fractionation by Shewanella putrefaciens strain 200R. The effects of dissolved carbonate and phosphate on δ13C values of dissolved inorganic C evolved during microbial reduction of ferric citrate (δ 13Cinitial = -25‰) were examined using sodium lactate (δ13Cinitial = -25‰) as electron donor under strict anaerobic conditions at neutral pH and 30°C, under dark and (fluorescent) light conditions. Our results suggest that bicarbonate may enhance the rate of Fe(III) reduction by S. putrefaciens, in comparison with media containing phosphate buffer but no added bicarbonate. Compared with phosphate buffered experiments, the presence of dissolved bicarbonate also resulted in a greater degree of C isotopic fractionation (ɛ=2-3‰ and ɛ=5-7‰, respectively). The effect of light on microbial Fe(III) reduction was negligible, however sterile controls showed a minor but significant quantity of carbon dioxide production in liquid media, most likely from photochemical decomposition of citrate. The abiotic experiments also showed measurable carbon isotope fractionation between the carbon dioxide produced and the organic carbon substrate which will be discussed.

  18. Open Source Software for Experiment Design and Control. (tutorial)

    ERIC Educational Resources Information Center

    Hillenbrand, James M.; Gayvert, Robert T.

    2005-01-01

    The purpose of this paper is to describe a software package that can be used for performing such routine tasks as controlling listening experiments (e.g., simple labeling, discrimination, sentence intelligibility, and magnitude estimation), recording responses and response latencies, analyzing and plotting the results of those experiments,…

  19. Experience of Control and Student Satisfaction with Higher Education Services

    ERIC Educational Resources Information Center

    Lee, Jungki; Anantharaman, Sekhar

    2013-01-01

    Although the delivery of satisfactory services is an important strategic goal in many colleges, students are known to face challenges and experience a significant amount of stress during their school life. This study proposes and tests students' experience of control over their college life as a promising factor that would enhance their…

  20. The role of transcriptional coactivator ADA2b in Arabidopsis abiotic stress responses

    PubMed Central

    Kaldis, Athanasios; Nikoloudi, Adriana; Tsementzi, Despoina

    2011-01-01

    Plant growth and crop production can be greatly affected by common environmental stresses such as drought, high salinity and low temperatures. Gene expression is affected by several abiotic stresses. Stress-inducible genes are regulated by transcription factors and epigenetic mechanisms such as histone modifications. In this mini-review, we have explored the role of transcriptional adaptor ADA2b in Arabidopsis responses to abiotic stress. ADA2b is required for the expression of genes involved in abiotic stress either by controlling H3 and H4 acetylation in the case of salt stress or affecting nucleosome occupancy in low temperatures response. PMID:21897124

  1. The role of transcriptional coactivator ADA2b in Arabidopsis abiotic stress responses.

    PubMed

    Vlachonasios, Konstantinos E; Kaldis, Athanasios; Nikoloudi, Adriana; Tsementzi, Despoina

    2011-10-01

    Plant growth and crop production can be greatly affected by common environmental stresses such as drought, high salinity and low temperatures. Gene expression is affected by several abiotic stresses. Stress-inducible genes are regulated by transcription factors and epigenetic mechanisms such as histone modifications. In this Mini-Review, we have explored the role of transcriptional adaptor ADA2b in Arabidopsis responses to abiotic stress. ADA2b is required for the expression of genes involved in abiotic stress either by controlling H3 and H4 acetylation in the case of salt stress or affecting nucleosome occupancy in low temperatures response.

  2. Mismatch in microbial food webs: predators but not prey perform better in their local biotic and abiotic conditions.

    PubMed

    Parain, Elodie C; Gravel, Dominique; Rohr, Rudolf P; Bersier, Louis-Félix; Gray, Sarah M

    2016-07-01

    Understanding how trophic levels respond to changes in abiotic and biotic conditions is key for predicting how food webs will react to environmental perturbations. Different trophic levels may respond disproportionately to change, with lower levels more likely to react faster, as they typically consist of smaller-bodied species with higher reproductive rates. This response could cause a mismatch between trophic levels, in which predators and prey will respond differently to changing abiotic or biotic conditions. This mismatch between trophic levels could result in altered top-down and bottom-up control and changes in interaction strength. To determine the possibility of a mismatch, we conducted a reciprocal-transplant experiment involving Sarracenia purpurea food webs consisting of bacterial communities as prey and a subset of six morphologically similar protozoans as predators. We used a factorial design with four temperatures, four bacteria and protozoan biogeographic origins, replicated four times. This design allowed us to determine how predator and prey dynamics were altered by abiotic (temperature) conditions and biotic (predators paired with prey from either their local or non-local biogeographic origin) conditions. We found that prey reached higher densities in warmer temperature regardless of their temperature of origin. Conversely, predators achieved higher densities in the temperature condition and with the prey from their origin. These results confirm that predators perform better in abiotic and biotic conditions of their origin while their prey do not. This mismatch between trophic levels may be especially significant under climate change, potentially disrupting ecosystem functioning by disproportionately affecting top-down and bottom-up control.

  3. Mismatch in microbial food webs: predators but not prey perform better in their local biotic and abiotic conditions.

    PubMed

    Parain, Elodie C; Gravel, Dominique; Rohr, Rudolf P; Bersier, Louis-Félix; Gray, Sarah M

    2016-07-01

    Understanding how trophic levels respond to changes in abiotic and biotic conditions is key for predicting how food webs will react to environmental perturbations. Different trophic levels may respond disproportionately to change, with lower levels more likely to react faster, as they typically consist of smaller-bodied species with higher reproductive rates. This response could cause a mismatch between trophic levels, in which predators and prey will respond differently to changing abiotic or biotic conditions. This mismatch between trophic levels could result in altered top-down and bottom-up control and changes in interaction strength. To determine the possibility of a mismatch, we conducted a reciprocal-transplant experiment involving Sarracenia purpurea food webs consisting of bacterial communities as prey and a subset of six morphologically similar protozoans as predators. We used a factorial design with four temperatures, four bacteria and protozoan biogeographic origins, replicated four times. This design allowed us to determine how predator and prey dynamics were altered by abiotic (temperature) conditions and biotic (predators paired with prey from either their local or non-local biogeographic origin) conditions. We found that prey reached higher densities in warmer temperature regardless of their temperature of origin. Conversely, predators achieved higher densities in the temperature condition and with the prey from their origin. These results confirm that predators perform better in abiotic and biotic conditions of their origin while their prey do not. This mismatch between trophic levels may be especially significant under climate change, potentially disrupting ecosystem functioning by disproportionately affecting top-down and bottom-up control. PMID:27547320

  4. Data acquisition and experiment control system of the project Maus (materials science experiments under weightlessness)

    NASA Astrophysics Data System (ADS)

    Lensch, D.

    In the context of Spacelab and Shuttle utilization, it is possible to conduct experiments in 'Small Self Contained Packages' (SSCP). This possibility exists primarily for experiments related to materials research/industrial processing engineering. The program involved is called 'get away special' (GAS). The project Maus was established in West Germany with the aim to participate in the program GAS. The autonomous design of the considered experiments made it necessary to develop an electronic unit for the control and the automatic conduction of the experiment. In addition, the process of the acquisition and the recording of the experimental data is also controlled.

  5. Abiotic racemization kinetics of amino acids in marine sediments.

    PubMed

    Steen, Andrew D; Jørgensen, Bo Barker; Lomstein, Bente Aa

    2013-01-01

    The ratios of d- versus l-amino acids can be used to infer the sources and composition of sedimentary organic matter. Such inferences, however, rely on knowing the rates at which amino acids in sedimentary organic matter racemize abiotically between the d- and the l-forms. Based on a heating experiment, we report kinetic parameters for racemization of aspartic acid, glutamic acid, serine, and alanine in bulk sediment from Aarhus Bay, Denmark, taken from the surface, 30 cm, and 340 cm depth below seafloor. Extrapolation to a typical cold deep sea sediment temperature of 3°C suggests racemization rate constants of 0.50×10(-5)-11×10(-5) yr(-1). These results can be used in conjunction with measurements of sediment age to predict the ratio of d:l amino acids due solely to abiotic racemization of the source material, deviations from which can indicate the abundance and turnover of active microbial populations.

  6. A Process Dynamics and Control Experiment for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Spencer, Jordan L.

    2009-01-01

    This paper describes a process control experiment. The apparatus includes a three-vessel glass flow system with a variable flow configuration, means for feeding dye solution controlled by a stepper-motor driven valve, and a flow spectrophotometer. Students use impulse response data and nonlinear regression to estimate three parameters of a model…

  7. Expectations and Experience: Dissociable Bases for Cognitive Control?

    ERIC Educational Resources Information Center

    Bugg, Julie M.; Diede, Nathaniel T.; Cohen-Shikora, Emily R.; Selmeczy, Diana

    2015-01-01

    Classic theories emphasized the role of expectations in the intentional control of attention and action. However, recent theorizing has implicated experience-dependent, online adjustments as the primary basis for cognitive control--adjustments that appear to be implicit (Blais, Harris, Guerrero, & Bunge, 2012). The purpose of the current study…

  8. Thermal control surfaces experiment: Initial flight data analysis

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Hummer, Leigh L.

    1991-01-01

    The behavior of materials in the space environment continues to be a limiting technology for spacecraft and experiments. The thermal control surfaces experiment (TCSE) aboard the Long Duration Exposure Facility (LDEF) is the most comprehensive experiment flown to study the effects of the space environment on thermal control surfaces. Selected thermal control surfaces were exposed to the LDEF orbital environment and the effects of this exposure were measured. The TCSE combined in-space orbital measurements with pre and post-flight analyses of flight materials to determine the effects of long term space exposure. The TCSE experiment objective, method, and measurements are described along with the results of the initial materials analysis. The TCSE flight system and its excellent performance on the LDEF mission is described. A few operational anomalies were encountered and are discussed.

  9. Attribution of control, essays, and early medical school experience.

    PubMed

    Gardner, R

    1982-03-01

    The research examines the workings of two mediating variables, attribution of control and social support, in a nonlinear model of stress research. Measuring in stressfully stimulating experience of being a first-year medical student, we found that a short instrument assessing locus of control in recent experience displayed stability and sensitivity to change in measuring two independent dimensions: internal and external loci of control. An independent variable, writing weekly essays for a faculty member who read them, commented on them supportively, and quickly returned them, interacted with time in producing changes in the student's attribution of control. The supported (essay) group became less internal and more external while demonstrating a lesser correlation with reported stress; and the nonwriting students augmented their perceptions of internal control but reported more correlated stress and less correlated reward. Miller's minimax theory of controllability derived from the experimental literature provided an explanation of these findings.

  10. Controlled powder morphology experiments in megabar 304 stainless steel compaction

    SciTech Connect

    Staudhammer, K.P.; Johnson, K.A.

    1985-01-01

    Experiments with controlled morphology including shape, size, and size distribution were made on 304L stainless steel powders. These experiments involved not only the powder variables but pressure variables of 0.08 to 1.0 Mbar. Also included are measured container strain on the material ranging from 1.5% to 26%. Using a new strain controllable design it was possible to seperate and control, independently, strain and pressure. Results indicate that powder morphology, size distribution, packing density are among the pertinent parameters in predicting compaction of these powders.

  11. Limits of control: the effects of uncontrollability experiences on the efficiency of attentional control.

    PubMed

    Bukowski, Marcin; Asanowicz, Dariusz; Marzecová, Anna; Lupiáñez, Juan

    2015-01-01

    Two experiments were conducted to explore the effects of experiencing uncontrollability on the efficiency of attentional control. The experience of uncontrollability was induced either by unsolvable tasks (Experiment 1) or by tasks in which non-contingent feedback was provided (Experiment 2). A version of the Attentional Network Test-Interactions with an additional measure of vigilance (ANTI-V) was used to evaluate the efficiency of the attentional networks (i.e., alerting, orienting, and executive). Results of both experiments revealed a decreased efficiency of executive attention in participants who experienced stable control deprivation but no negative effects in participants who were able to restore their sense of previously deprived control. Additionally, when participants were asked to perform unsolvable tasks and did not receive feedback (Experiment 1), detrimental effects on the orienting network and vigilance were observed. The motivational and cognitive mechanisms underlying the effects of various uncontrollability experiences on conflict resolution and attentional control are discussed.

  12. In-space technology flight experiments: Middeck 0-gravity Dynamics Experiment (MODE) and Middeck Active Control Experiment (MACE)

    NASA Technical Reports Server (NTRS)

    Venneri, Samuel L.

    1991-01-01

    The topics addressed are covered in viewgraph form. The objective of the Middeck 0-gravity Dynamics Experiment (MODE) programs is to study gravity dependent nonlinearities associated with fluid slosh and truss structure dynamics. MODE provides a reusable facility for on-orbit dynamics testing of small scale test articles in the shirt sleeve environment on the Shuttle middeck. Flight program objective of Middeck Active Control Experiment (MACE) is to study gravity effects on the performance and stability of controlled structures.

  13. Microbial Hub Taxa Link Host and Abiotic Factors to Plant Microbiome Variation

    PubMed Central

    Agler, Matthew T.; Ruhe, Jonas; Kroll, Samuel; Morhenn, Constanze; Kim, Sang-Tae; Weigel, Detlef; Kemen, Eric M.

    2016-01-01

    Plant-associated microorganisms have been shown to critically affect host physiology and performance, suggesting that evolution and ecology of plants and animals can only be understood in a holobiont (host and its associated organisms) context. Host-associated microbial community structures are affected by abiotic and host factors, and increased attention is given to the role of the microbiome in interactions such as pathogen inhibition. However, little is known about how these factors act on the microbial community, and especially what role microbe–microbe interaction dynamics play. We have begun to address this knowledge gap for phyllosphere microbiomes of plants by simultaneously studying three major groups of Arabidopsis thaliana symbionts (bacteria, fungi and oomycetes) using a systems biology approach. We evaluated multiple potential factors of microbial community control: we sampled various wild A. thaliana populations at different times, performed field plantings with different host genotypes, and implemented successive host colonization experiments under lab conditions where abiotic factors, host genotype, and pathogen colonization was manipulated. Our results indicate that both abiotic factors and host genotype interact to affect plant colonization by all three groups of microbes. Considering microbe–microbe interactions, however, uncovered a network of interkingdom interactions with significant contributions to community structure. As in other scale-free networks, a small number of taxa, which we call microbial “hubs,” are strongly interconnected and have a severe effect on communities. By documenting these microbe–microbe interactions, we uncover an important mechanism explaining how abiotic factors and host genotypic signatures control microbial communities. In short, they act directly on “hub” microbes, which, via microbe–microbe interactions, transmit the effects to the microbial community. We analyzed two “hub” microbes (the

  14. Microbial Hub Taxa Link Host and Abiotic Factors to Plant Microbiome Variation.

    PubMed

    Agler, Matthew T; Ruhe, Jonas; Kroll, Samuel; Morhenn, Constanze; Kim, Sang-Tae; Weigel, Detlef; Kemen, Eric M

    2016-01-01

    Plant-associated microorganisms have been shown to critically affect host physiology and performance, suggesting that evolution and ecology of plants and animals can only be understood in a holobiont (host and its associated organisms) context. Host-associated microbial community structures are affected by abiotic and host factors, and increased attention is given to the role of the microbiome in interactions such as pathogen inhibition. However, little is known about how these factors act on the microbial community, and especially what role microbe-microbe interaction dynamics play. We have begun to address this knowledge gap for phyllosphere microbiomes of plants by simultaneously studying three major groups of Arabidopsis thaliana symbionts (bacteria, fungi and oomycetes) using a systems biology approach. We evaluated multiple potential factors of microbial community control: we sampled various wild A. thaliana populations at different times, performed field plantings with different host genotypes, and implemented successive host colonization experiments under lab conditions where abiotic factors, host genotype, and pathogen colonization was manipulated. Our results indicate that both abiotic factors and host genotype interact to affect plant colonization by all three groups of microbes. Considering microbe-microbe interactions, however, uncovered a network of interkingdom interactions with significant contributions to community structure. As in other scale-free networks, a small number of taxa, which we call microbial "hubs," are strongly interconnected and have a severe effect on communities. By documenting these microbe-microbe interactions, we uncover an important mechanism explaining how abiotic factors and host genotypic signatures control microbial communities. In short, they act directly on "hub" microbes, which, via microbe-microbe interactions, transmit the effects to the microbial community. We analyzed two "hub" microbes (the obligate biotrophic

  15. An abiotic analogue of the nuclear pore complex hydrogel.

    PubMed

    Bird, Sean P; Baker, Lane A

    2011-09-12

    We describe an abiotic hydrogel that mimics selectivity of the nuclear pore complex. Copolymerization of peptide tetramers (phenylalanine-serine-phenylalanine-glycine, FSFG) with acrylamide results in hydrophobic interactions significant enough to allow the formation of freestanding hydrogel structures. Incorporation of FSFG motifs also renders the hydrogels selective. Selective binding of importins and nuclear transport receptor-cargo complexes is qualitatively demonstrated and compared with polyacrylamide, hydrogels prepared from a control peptide, and hydrogels prepared from the nuclear pore complex protein Nsp1. These abiotic hydrogels will enable further studies of the unique transport mechanisms of the nuclear pore complex and provide an interesting paradigm for the future development of synthetic platforms for separations and selective interfaces.

  16. The impact of quality control in RNA-seq experiments

    NASA Astrophysics Data System (ADS)

    Merino, Gabriela A.; Fresno, Cristóbal; Netto, Frederico; Dias Netto, Emmanuel; Pratto, Laura; Fernández, Elmer A.

    2016-04-01

    High throughput mRNA sample sequencing, known as RNA-seq, is as a powerful approach to detect differentially expressed genes starting from millions of short sequence reads. Although several workflows have been proposed to analyze RNA-seq data, the experiment quality control as a whole is not usually considered, thus potentially biasing the results and/or causing information lost. Experiment quality control refers to the analysis of the experiment as a whole, prior to any analysis. It not only inspects the presence of technical effects, but also if general biological assumptions are fulfilled. In this sense, multivariate approaches are crucial for this task. Here, a multivariate approach for quality control in RNA-seq experiments is proposed. This approach uses simple and yet effective well-known statistical methodologies. In particular, Principal Component Analysis was successfully applied over real data to detect and remove outlier samples. In addition, traditional multivariate exploration tools were applied in order to asses several controls that can help to ensure the results quality. Based on differential expression and functional enrichment analysis, here is demonstrated that the information retrieval is significantly enhanced through experiment quality control. Results show that the proposed multivariate approach increases the information obtained from RNA-seq data after outlier samples removal.

  17. Polyamines in response to abiotic stress tolerance through transgenic approaches

    PubMed Central

    Pathak, Malabika Roy; Teixeira da Silva, Jaime A; Wani, Shabir H

    2014-01-01

    The distribution, growth, development and productivity of crop plants are greatly affected by various abiotic stresses. Worldwide, sustainable crop productivity is facing major challenges caused by abiotic stresses by reducing the potential yield in crop plants by as much as 70%. Plants can generally adapt to one or more environmental stresses to some extent. Physiological and molecular studies at transcriptional, translational, and transgenic plant levels have shown the pronounced involvement of naturally occurring plant polyamines (PAs), in controlling, conferring, and modulating abiotic stress tolerance in plants. PAs are small, low molecular weight, non-protein polycations at physiological pH, that are present in all living organisms, and that have strong binding capacity to negatively charged DNA, RNA, and different protein molecules. They play an important role in plant growth and development by controlling the cell cycle, acting as cell signaling molecules in modulating plant tolerance to a variety of abiotic stresses. The commonly known PAs, putrescine, spermidine, and spermine tend to accumulate together accompanied by an increase in the activities of their biosynthetic enzymes under a range of environmental stresses. PAs help plants to combat stresses either directly or by mediating a signal transduction pathway, as shown by molecular cloning and expression studies of PA biosynthesis-related genes, knowledge of the functions of PAs, as demonstrated by developmental studies, and through the analysis of transgenic plants carrying PA genes. This review highlights how PAs in higher plants act during environmental stress and how transgenic strategies have improved our understanding of the molecular mechanisms at play. PMID:24710064

  18. Low-Cost Undergraduate Control Systems Experiments Using Microcontroller-Based Control of a DC Motor

    ERIC Educational Resources Information Center

    Gunasekaran, M.; Potluri, R.

    2012-01-01

    This paper presents low-cost experiments for a control systems laboratory module that is worth one and a third credits. The experiments are organized around the microcontroller-based control of a permanent magnet dc motor. The experimental setups were built in-house. Except for the operating system, the software used is primarily freeware or free…

  19. Biotic and abiotic mercury methylation and demethylation in sediments

    SciTech Connect

    Zhang, L.; Planas, D. )

    1994-05-01

    Inorganic mercury (Hg(II)) methylation and methylmercury (MeHg) demethylation may occur in the water column, sediment-water interface and subsurficial sediment of aquatic ecosystems. These transformations involve mainly microbial mechanisms, although abiotic methylation may play a more important role in the water compartment. The relative importance of biotic versus abiotic mechanisms of methylation has not been determined however, and abiotic demethylation remains unknown. Little quantitative information is available on the role of bacterial activity in mercury transformations. It has been reported that at least 16 genera of aerobic and anaerobic microorganisms are able to methylate HG(II), and that a greater number are able to demethylate MeHg. Nevertheless, not all populations of these species are capable of methyl- and demethyl-transformations. The actual concentration of MeHg in the aquatic environment is regulated by the relative production and decomposition rates. This, in turn, depends on the availability of Hg(II), MeHg, and bacteria as well as on the physico-chemical properties of the sample. The objective of this study was to compare mercury methylation and demethylation rates in sediment samples with and without active bacterial populations. We therefore performed experiments to follow bacterial evolution during the course of Hg(II) methylation and MeHg demethylation in sediment slurries containing both sterile and non-sterile sediments.

  20. AFTI/F-16 digital flight control system experience

    NASA Technical Reports Server (NTRS)

    Mackall, D. A.

    1984-01-01

    The Advanced Flighter Technology Integration (AFTI) F-16 program is investigating the integration of emerging technologies into an advanced fighter aircraft. The three major technologies involved are the triplex digital flight control system; decoupled aircraft flight control; and integration of avionics, pilot displays, and flight control. In addition to investigating improvements in fighter performance, the AFTI/F-16 program provides a look at generic problems facing highly integrated, flight-crucial digital controls. An overview of the AFTI/F-16 systems is followed by a summary of flight test experience and recommendations.

  1. Tank Pressure Control Experiment/thermal Phenomena (TPCE/TP)

    NASA Technical Reports Server (NTRS)

    Hasan, M. M.; Knoll, R. H.

    1992-01-01

    The 'Tank Pressure Control Experiment/Thermal Phenomena (TPCE/TP)' is a reflight of the tank pressure control experiment (TPCE), flown on STS-43 in a standard Get-Away Special (GAS) container in August 1991. The TPCE obtained extensive video and digital data of the jet induced mixing process in a partially filled tank in low gravity environments. It also provided limited data on the thermal processes involved. The primary objective of the reflight of TPCE is to investigate experimentally the phenomena of liquid superheating and pool nucleate boiling at very low heat fluxes in a long duration low gravity environment. The findings of this experiment will be of direct relevance to space based subcritical cryogenic fluid system design and operation. Experiment hardware and results from the first TPCE are described in outline and graphic form.

  2. JAUS Operator Control Unit (OCU) interoperability experiment: preparation and results

    NASA Astrophysics Data System (ADS)

    Gray, Sarah A.; Harrison, Joseph F.; Smith, Brian G.

    2004-09-01

    The Joint Architecture for Unmanned Systems (JAUS) Operator Control Units and Payloads Committee (OPC) will be conducting a series of experiments to expedite the production of cost-effective interoperable unmanned systems, user control interfaces, payloads, et cetera. The objective of the initial experiment will be to demonstrate teleoperation of heterogeneous unmanned systems. The experiment will test Level 1 compliance between multiple JAUS subsystems and will include unmanned air, ground, and surface vehicles developed by vendors in the government and commercial sectors. Insight gained from participants initial planning, development, and integration phases will help identify areas of the JAUS standard which can be improved to better facilitate interoperability between Operator Control Units (OCU) and unmanned systems. The process of preparing Mobius, an OCU developed by Autonomous Solutions, Inc., for JAUS Level 1 compliance is discussed.

  3. Surface chemistry allows for abiotic precipitation of dolomite at low temperature.

    PubMed

    Roberts, Jennifer A; Kenward, Paul A; Fowle, David A; Goldstein, Robert H; González, Luis A; Moore, David S

    2013-09-01

    Although the mineral dolomite is abundant in ancient low-temperature sedimentary systems, it is scarce in modern systems below 50 °C. Chemical mechanism(s) enhancing its formation remain an enigma because abiotic dolomite has been challenging to synthesize at low temperature in laboratory settings. Microbial enhancement of dolomite precipitation at low temperature has been reported; however, it is still unclear exactly how microorganisms influence reaction kinetics. Here we document the abiotic synthesis of low-temperature dolomite in laboratory experiments and constrain possible mechanisms for dolomite formation. Ancient and modern seawater solution compositions, with identical pH and pCO2, were used to precipitate an ordered, stoichiometric dolomite phase at 30 °C in as few as 20 d. Mg-rich phases nucleate exclusively on carboxylated polystyrene spheres along with calcite, whereas aragonite forms in solution via homogeneous nucleation. We infer that Mg ions are complexed and dewatered by surface-bound carboxyl groups, thus decreasing the energy required for carbonation. These results indicate that natural surfaces, including organic matter and microbial biomass, possessing a high density of carboxyl groups may be a mechanism by which ordered dolomite nuclei form. Although environments rich in organic matter may be of interest, our data suggest that sharp biogeochemical interfaces that promote microbial death, as well as those with high salinity may, in part, control carboxyl-group density on organic carbon surfaces, consistent with origin of dolomites from microbial biofilms, as well as hypersaline and mixing zone environments.

  4. Surface chemistry allows for abiotic precipitation of dolomite at low temperature

    NASA Astrophysics Data System (ADS)

    Roberts, Jennifer A.; Kenward, Paul A.; Fowle, David A.; Goldstein, Robert H.; González, Luis A.; Moore, David S.

    2013-09-01

    Although the mineral dolomite is abundant in ancient low-temperature sedimentary systems, it is scarce in modern systems below 50 °C. Chemical mechanism(s) enhancing its formation remain an enigma because abiotic dolomite has been challenging to synthesize at low temperature in laboratory settings. Microbial enhancement of dolomite precipitation at low temperature has been reported; however, it is still unclear exactly how microorganisms influence reaction kinetics. Here we document the abiotic synthesis of low-temperature dolomite in laboratory experiments and constrain possible mechanisms for dolomite formation. Ancient and modern seawater solution compositions, with identical pH and pCO2, were used to precipitate an ordered, stoichiometric dolomite phase at 30 °C in as few as 20 d. Mg-rich phases nucleate exclusively on carboxylated polystyrene spheres along with calcite, whereas aragonite forms in solution via homogeneous nucleation. We infer that Mg ions are complexed and dewatered by surface-bound carboxyl groups, thus decreasing the energy required for carbonation. These results indicate that natural surfaces, including organic matter and microbial biomass, possessing a high density of carboxyl groups may be a mechanism by which ordered dolomite nuclei form. Although environments rich in organic matter may be of interest, our data suggest that sharp biogeochemical interfaces that promote microbial death, as well as those with high salinity may, in part, control carboxyl-group density on organic carbon surfaces, consistent with origin of dolomites from microbial biofilms, as well as hypersaline and mixing zone environments.

  5. Enhanced bacoside production in shoot cultures of Bacopa monnieri under the influence of abiotic elicitors.

    PubMed

    Sharma, Munish; Ahuja, Ashok; Gupta, Rajinder; Mallubhotla, Sharada

    2015-01-01

    The effect of different abiotic elicitors [jasmonic acid, copper sulphate (CuSO4) and salicyclic acid] at varying concentrations on the stimulation of biomass and bacoside production in in vitro Bacopa monnieri shoot culture was studied. A systematic study conducted over a period of 35 days indicated that the maximum bacoside production (6.74 mg g(-1) dry weight (DW)) was obtained after a lag of 7 days and thereafter, the content decreased gradually to again increase at 28 days (5.91 mg g(-1) DW). Therefore, elicitation experiments were carried out over a period of 3, 6 and 9 days. The shoot cultures treated with 45 mg L(-1) of CuSO4 exhibited the highest bacoside content of 8.73 mg g(-1) DW (∼1.42-fold higher) than in control cultures (6.14 mg g(-1) DW). This study indicates the effectiveness of abiotic elicitation on bacoside production in in vitro shoot cultures of this medicinally important herb known for its memory-enhancing properties.

  6. Low-cost Active Structural Control Space Experiment (LASC)

    NASA Technical Reports Server (NTRS)

    Robinett, Rush; Bukley, Angelia P.

    1992-01-01

    The DOE Lab Director's Conference identified the need for the DOE National Laboratories to actively and aggressively pursue ways to apply DOE technology to problems of national need. Space structures are key elements of DOD and NASA space systems and a space technology area in which DOE can have a significant impact. LASC is a joint agency space technology experiment (DOD Phillips, NASA Marshall, and DOE Sandia). The topics are presented in viewgraph form and include the following: phase 4 investigator testbed; control of large flexible structures in orbit; INFLEX; Controls, Astrophysics; and structures experiments in space; SARSAT; and LASC mission objectives.

  7. Control system design for spacecraft formation flying: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Robertson, Andrew Dunbar

    Spacecraft formation flying is an enabling technology for many future space science missions, such as separated spacecraft interferometers (SSI). However the sensing, control and coordination of such instruments pose many new design challenges. SSI missions will require precise relative sensing and control, fuel-efficient, fuel-balanced operation to maximize mission life and group-level autonomy to reduce operations costs. Enabling these new formation flying capabilities requires precise relative sensing and estimation, enhanced control capabilities such as cooperative control (multiple independent spacecraft acting together), group-level formation management and informed design of a system architecture to manage distributed sensing and control-system resources. This research defines an end-to-end control system, including the key elements unique to the formation flying problem: cooperative control, relative sensing, coordination, and the control-system architecture. A new control-system design optimizes performance under typical spacecraft constraints (e.g., on-off actuators, finite fuel, limited computation power, limited contact with ground control, etc.). Standard control techniques have been extended, and new ones synthesized to meet these goals. In designing this control system, several contributions have been made to the field of spacecraft formation flying control including: an analytic two-vehicle fuel-time-optimal cooperative control algorithm, a fast numeric multi-vehicle, optimal cooperative control algorithm that can be used as a feedforward or a feedback controller, a fleet-level coordinator for autonomous fuel balancing, validation of GPS-based relative sensing for formation flying, and trade studies of the relative control and relative-estimation-architecture design problems. These research contributions are mapped to possible applications for three spacecraft formation flying missions currently in development. The lessons learned from this research

  8. Experiment Study on Fuzzy Vibration Control of Solar Panel

    NASA Astrophysics Data System (ADS)

    Li, Dongxu X.; Xu, Rui; Jiang, Jiangjian P.

    Some flexible appendages of spacecraft are cantilever plate structures, such as solar panels. These structures usually have very low damping ratios, high dimensional order, low modal frequencies and parameter uncertainties in dynamics. Their unwanted vibrations will be caused unavoidably, and harmful to the spacecraft. To solve this problem, the dynamic equations of the solar panel with piezoelectric patches are derived, and an accelerometer based fuzzy controller is designed. In order to verify the effectiveness of the vibration control algorithms, experiment research was conducted on a piezoelectric adaptive composite honeycomb cantilever panel. The experiment results demonstrate that the accelerometer-based fuzzy vibration control method can suppress the vibration of the solar panel effectively, the first bending mode damping ratio of the controlled system increase to 1.64%, and that is 3.56 times of the uncontrolled system.

  9. Experiments in teleoperator and autonomous control of space robotic vehicles

    NASA Technical Reports Server (NTRS)

    Alexander, Harold L.

    1990-01-01

    A research program and strategy are described which include fundamental teleoperation issues and autonomous-control issues of sensing and navigation for satellite robots. The program consists of developing interfaces for visual operation and studying the consequences of interface designs as well as developing navigation and control technologies based on visual interaction. A space-robot-vehicle simulator is under development for use in virtual-environment teleoperation experiments and neutral-buoyancy investigations. These technologies can be utilized in a study of visual interfaces to address tradeoffs between head-tracking and manual remote cameras, panel-mounted and helmet-mounted displays, and stereoscopic and monoscopic display systems. The present program can provide significant data for the development of control experiments for autonomously controlled satellite robots.

  10. Aeroassist Flight Experiment Reaction Control System preliminary design

    NASA Technical Reports Server (NTRS)

    Langford, G. K.; Price, D. E.; Gallaher, M. W.

    1990-01-01

    The Aeroassist Flight Experiment (AFE) has several different flight modes associated with its mission. The effect the spacecraft attitude control system (ACS) has on the Reaction Control System (RCS) requirements for all the flight modes is discussed. The ACS requirements and their consequences on the design of the RCS is then discussed in detail. Special problems in the RCS design unique to the AFE mission and the design solutions to these problems are presented.

  11. Slow control systems of the Reactor Experiment for Neutrino Oscillation

    NASA Astrophysics Data System (ADS)

    Choi, J. H.; Jang, H. I.; Choi, W. Q.; Choi, Y.; Jang, J. S.; Jeon, E. J.; Joo, K. K.; Kim, B. R.; Kim, H. S.; Kim, J. Y.; Kim, S. B.; Kim, S. Y.; Kim, W.; Kim, Y. D.; Ko, Y. J.; Lee, J. K.; Lim, I. T.; Pac, M. Y.; Park, I. G.; Park, J. S.; Park, R. G.; Seo, H. K.; Seo, S. H.; Shin, C. D.; Siyeon, K.; Yeo, I. S.; Yu, I.

    2016-02-01

    The RENO experiment has been in operation since August 2011 to measure reactor antineutrino disappearance using identical near and far detectors. For accurate measurements of neutrino mixing parameters and efficient data taking, it is crucial to monitor and control the detector in real time. Environmental conditions also need to be monitored for stable operation of detectors as well as for safety reasons. In this paper, we report the design, hardware, operation, and performance of the slow control system.

  12. Possibilities of implanted control in stimulated light scattering experiments

    NASA Astrophysics Data System (ADS)

    Lazarenko, Anatoliy G.; Andreev, Alexandr N.; Kanaev, Andrey V.

    2004-09-01

    Some possibilities of simple and thus reliable schemes of experiment "self-control" exploiting intrinsic features of studied non-linear phenomena like wave front reversal under stimulated Brillouin scattering (SBS), stimulated Raman scattering (SRS) and coherent anti-Stokes Raman scattering (CARS) rather than outer sensors and controls are described. The schemes discussed provide input signal dynamic region broadening in stimulated scattering converters and angle of synchronism self-tuning while two frequency pumping.

  13. Abiotic U(VI) Reduction by Sorbed Fe(II) on Natural Sediments

    SciTech Connect

    Fox, Patricia M.; Davis, James A.; Kukkadapu, Ravi K.; Singer, David M.; Bargar, John R.; Williams, Kenneth H.

    2013-09-15

    Laboratory experiments were performed as a function of aqueous Fe(II) concentration to determine the uptake and oxidation of Fe(II), and Fe(II)-mediated abiotic reduction of U(VI) by aquifer sediments from the Rifle IFRC field site in Colorado, USA. Mössbauer analysis of the sediments spiked with aqueous 57Fe(II) showed that 57Fe(II) was oxidized on the mineral surfaces to 57Fe(III) and most likely formed a nano-particulate Fe(III)-oxide or ferrihydrite-like phase. The extent of 57Fe oxidation decreased with increasing 57Fe(II) uptake, such that 100 % was oxidized at 7.3 μmol/g Fe and 52 % at 39.6 μmol/g Fe, indicating that the sediments had a finite capacity for oxidation of Fe(II). Abiotic U(VI) reduction was observed by XANES spectroscopy only when the Fe(II) uptake was greater than approximately 20 μmol/g and surface-bound Fe(II) was present. The level of U(VI) reduction increased with increasing Fe(II)- loading above this level to a maximum of 18 and 36 % U(IV) at pH 7.2 (40.7 μmol/g Fe) and 8.3 (56.1 μmol/g Fe), respectively in the presence of 400 ppm CO2. Greater U(VI) reduction was observed in CO2 free systems [up to 44 and 54 % at pH 7.2 (17.3 μmol/g Fe) and 8.3 (54.8 μmol/g Fe), respectively] compared to 400 ppm CO2 systems, presumably due to differences in aqueous U(VI) speciation. While pH affects the amount of Fe(II) uptake onto the solid phase, with greater Fe(II) uptake at higher pH, similar amounts of U(VI) reduction were observed at pH 7.2 and 8.3 for a similar Fe(II) uptake. Thus, it appears that abiotic U(VI) reduction is controlled primarily by Fe(II) concentration and aqueous U(VI) speciation. The range of Fe(II) loadings tested in this study are within the range observed in bioreduced sediments, suggesting that Fe(II)-mediated abiotic U(VI) reduction may indeed play a role in field settings.

  14. Strike Point Control for the National Spherical Torus Experiment (NSTX)

    SciTech Connect

    Kolemen, E.; Gates, D. A.; Rowley, C. W.; Kasdin, N. J.; Kallman, J.; Gerhardt, S.; Soukhanovskii, V.; Mueller, D.

    2010-07-09

    This paper presents the first control algorithm for the inner and outer strike point position for a Spherical Torus (ST) fusion experiment and the performance analysis of the controller. A liquid lithium divertor (LLD) will be installed on NSTX which is believed to provide better pumping than lithium coatings on carbon PFCs. The shape of the plasma dictates the pumping rate of the lithium by channeling the plasma to LLD, where strike point location is the most important shape parameter. Simulations show that the density reduction depends on the proximity of strike point to LLD. Experiments were performed to study the dynamics of the strike point, design a new controller to change the location of the strike point to desired location and stabilize it. The most effective PF coils in changing inner and outer strike points were identified using equilibrium code. The PF coil inputs were changed in a step fashion between various set points and the step response of the strike point position was obtained. From the analysis of the step responses, PID controllers for the strike points were obtained and the controller was tuned experimentally for better performance. The strike controller was extended to include the outer-strike point on the inner plate to accommodate the desired low outer-strike points for the experiment with the aim of achieving "snowflake" divertor configuration in NSTX.

  15. Unconscious Modulation of the Conscious Experience of Voluntary Control

    ERIC Educational Resources Information Center

    Linser, Katrin; Goschke, Thomas

    2007-01-01

    How does the brain generate our experience of being in control over our actions and their effects? Here, we argue that the perception of events as self-caused emerges from a comparison between anticipated and actual action-effects: if the representation of an event that follows an action is activated before the action, the event is experienced as…

  16. Healthcare professionals' experiences with EHR-system access control mechanisms.

    PubMed

    Faxvaag, Arild; Johansen, Trond S; Heimly, Vigdis; Melby, Line; Grimsmo, Anders

    2011-01-01

    Access control mechanisms might influence on the information seeking and documentation behavior of clinicians. In this study, we have surveyed healthcare professionals in nursing homes and hospitals on their attitudes to, and experiences with using access control mechanisms. In some situations, the access control mechanisms of the EHR system made clinicians postpone documentation work. Their practice of reading what others have documented was also influenced. Not all clinicians logged out of the system when they left a workstation, and some clinicians reported to do some of their documentation work in the name of others. The reported practices might have implications for the safety of the patient.

  17. Phytoplankton responses to temperature increases are constrained by abiotic conditions and community composition.

    PubMed

    Striebel, Maren; Schabhüttl, Stefanie; Hodapp, Dorothee; Hingsamer, Peter; Hillebrand, Helmut

    2016-11-01

    Effects of temperature changes on phytoplankton communities seem to be highly context-specific, but few studies have analyzed whether this context specificity depends on differences in the abiotic conditions or in species composition between studies. We present an experiment that allows disentangling the contribution of abiotic and biotic differences in shaping the response to two aspects of temperature change: permanent increase of mean temperature versus pulse disturbance in form of a heat wave. We used natural communities from six different sites of a floodplain system as well as artificially mixed communities from laboratory cultures and grew both, artificial and natural communities, in water from the six different floodplain lakes (sites). All 12 contexts (2 communities × 6 sites) were first exposed to three different temperature levels (12, 18, 24 °C, respectively) and afterward to temperature pulses (4 °C increase for 7 h day(-1)). Temperature-dependent changes in biomass and community composition depended on the initial composition of phytoplankton communities. Abiotic conditions had a major effect on biomass of phytoplankton communities exposed to different temperature conditions, however, the effect of biotic and abiotic conditions together was even more pronounced. Additionally, phytoplankton community responses to pulse temperature effects depended on the warming history. By disentangling abiotic and biotic effects, our study shows that temperature-dependent effects on phytoplankton communities depend on both, biotic and abiotic constraints. PMID:27488200

  18. Phytoplankton responses to temperature increases are constrained by abiotic conditions and community composition.

    PubMed

    Striebel, Maren; Schabhüttl, Stefanie; Hodapp, Dorothee; Hingsamer, Peter; Hillebrand, Helmut

    2016-11-01

    Effects of temperature changes on phytoplankton communities seem to be highly context-specific, but few studies have analyzed whether this context specificity depends on differences in the abiotic conditions or in species composition between studies. We present an experiment that allows disentangling the contribution of abiotic and biotic differences in shaping the response to two aspects of temperature change: permanent increase of mean temperature versus pulse disturbance in form of a heat wave. We used natural communities from six different sites of a floodplain system as well as artificially mixed communities from laboratory cultures and grew both, artificial and natural communities, in water from the six different floodplain lakes (sites). All 12 contexts (2 communities × 6 sites) were first exposed to three different temperature levels (12, 18, 24 °C, respectively) and afterward to temperature pulses (4 °C increase for 7 h day(-1)). Temperature-dependent changes in biomass and community composition depended on the initial composition of phytoplankton communities. Abiotic conditions had a major effect on biomass of phytoplankton communities exposed to different temperature conditions, however, the effect of biotic and abiotic conditions together was even more pronounced. Additionally, phytoplankton community responses to pulse temperature effects depended on the warming history. By disentangling abiotic and biotic effects, our study shows that temperature-dependent effects on phytoplankton communities depend on both, biotic and abiotic constraints.

  19. [Tobacco control: an intersectorial experience in Tunja (Colombia)].

    PubMed

    Panader-Torres, Adriana; Agudelo-Cely, Nancy Aurora; Bolívar-Suárez, Yolima; Cárdenas-Cárdenas, Luz Mery

    2014-01-01

    Tobacco control in Colombia is regulated by Law 1335 of 2009. The implementation and monitoring of the provisions of this law require strengthening of intersectorial work at the local level. This field note presents an intersectorial work experience that was carried out in the municipality of Tunja (Colombia) to improve tobacco control. The Respirarte Group was established. This group consists of an intersectorial team composed of 15 institutions. The Respirarte Group achieved the following political and community actions: signing of an agreement on tobacco control by government actors, expedition of a local decree to comply with Law 1335 in the municipality, provision of information and communication, and social mobilization and monitoring. This experience serves as a national and international reference and its lessons could be used in the approach to other public health problems. PMID:25087863

  20. [Tobacco control: an intersectorial experience in Tunja (Colombia)].

    PubMed

    Panader-Torres, Adriana; Agudelo-Cely, Nancy Aurora; Bolívar-Suárez, Yolima; Cárdenas-Cárdenas, Luz Mery

    2014-01-01

    Tobacco control in Colombia is regulated by Law 1335 of 2009. The implementation and monitoring of the provisions of this law require strengthening of intersectorial work at the local level. This field note presents an intersectorial work experience that was carried out in the municipality of Tunja (Colombia) to improve tobacco control. The Respirarte Group was established. This group consists of an intersectorial team composed of 15 institutions. The Respirarte Group achieved the following political and community actions: signing of an agreement on tobacco control by government actors, expedition of a local decree to comply with Law 1335 in the municipality, provision of information and communication, and social mobilization and monitoring. This experience serves as a national and international reference and its lessons could be used in the approach to other public health problems.

  1. Apollo experience report: Lunar module environmental control subsystem

    NASA Technical Reports Server (NTRS)

    Gillen, R. J.; Brady, J. C.; Collier, F.

    1972-01-01

    A functional description of the environmental control subsystem is presented. Development, tests, checkout, and flight experiences of the subsystem are discussed; and the design fabrication, and operational difficulties associated with the various components and subassemblies are recorded. Detailed information is related concerning design changes made to, and problems encountered with, the various elements of the subsystem, such as the thermal control water sublimator, the carbon dioxide sensing and control units, and the water section. The problems associated with water sterilization, water/glycol formulation, and materials compatibility are discussed. The corrective actions taken are described with the expection that this information may be of value for future subsystems. Although the main experiences described are problem oriented, the subsystem has generally performed satisfactorily in flight.

  2. Slew maneuvers of Spacecraft Control Laboratory Experiment (SCOLE)

    NASA Technical Reports Server (NTRS)

    Kakad, Yogendra P.

    1992-01-01

    This is the final report on the dynamics and control of slew maneuvers of the Spacecraft Control Laboratory Experiment (SCOLE) test facility. The report documents the basic dynamical equation derivations for an arbitrary large angle slew maneuver as well as the basic decentralized slew maneuver control algorithm. The set of dynamical equations incorporate rigid body slew maneuver and three dimensional vibrations of the complete assembly comprising the rigid shuttle, the flexible beam, and the reflector with an offset mass. The analysis also includes kinematic nonlinearities of the entire assembly during the maneuver and the dynamics of the interactions between the rigid shuttle and the flexible appendage. The equations are simplified and evaluated numerically to include the first ten flexible modes to yield a model for designing control systems to perform slew maneuvers. The control problem incorporates the nonlinear dynamical equations and is expressed in terms of a two point boundary value problem.

  3. Glycinebetaine and abiotic stress tolerance in plants

    PubMed Central

    Giri, Jitender

    2011-01-01

    The accumulation of osmolytes like glycinebetaine (GB) in cell is known to protect organisms against abiotic stresses via osmoregulation or osmoprotection. Transgenic plants engineered to produce GB accumulate very low concentration of GB, which might not be sufficient for osmoregulation. Therefore, other roles of GB like cellular macromolecule protection and ROS detoxification have been suggested as mechanisms responsible for abiotic stress tolerance in transgenic plants. In addition, GB influences expression of several endogenous genes in transgenic plants. The new insights gained about the mechanism of stress tolerance in GB accumulating transgenic plants are discussed. PMID:22057338

  4. Abiotic production of iodine molecules in irradiated ice

    NASA Astrophysics Data System (ADS)

    Choi, Wonyong; Kim, Kitae; Yabushita, Akihiro

    2015-04-01

    Reactive halogen species play an important role in Earth's environmental systems. Iodine compounds are related to ozone depletion event (ODE) during Antarctic spring, formation of CCN (cloud condensation nuclei), and controlling the atmospheric oxidizing capacity. However, the processes and mechanisms for abiotic formation of iodine compounds in polar region are still unclear. Although the chemical reactions taking place in ice are greatly different from those in aquatic environment, reaction processes of halogens in frozen condition have rarely studied compared to those in water. In this study, we investigated iodide oxidation to form triiodide (I3-) in ice phase under UV irradiation ( λ > 300 nm) and dark condition. The production of I3- through iodide oxidation, which is negligible in aqueous solution, was significantly accelerated in ice phase even in the absence of UV irradiation. The following release of gaseous iodine molecule (I2) to the atmosphere was also monitored by cavity ring-down spectroscopy (CRDS). We speculate that the markedly enhanced iodide oxidation in polycrystalline ice is due to the freeze concentration of iodides, protons, and dissolved oxygen in the ice crystal grain boundaries. The experiments conducted under ambient solar radiation of the Antarctic region (King George Island, 62°13'S 58°47'W, sea level) also confirmed that the generation of I3- via iodide oxidation process is enhanced when iodide is trapped in ice. The observed intrinsic oxidative transformation of iodide to generate I3-(aq) and I2(g) in frozen environment suggests a previously unknown pathway for the substantial release of reactive iodine species to the atmosphere.

  5. Experience with synchronous and asynchronous digital control systems

    NASA Technical Reports Server (NTRS)

    Regenie, V. A.; Chacon, C. V.; Lock, W. P.

    1986-01-01

    Flight control systems have undergone a revolution since the days of simple mechanical linkages; presently the most advanced systems are full-authority, full-time digital systems controlling unstable aircraft. With the use of advanced control systems, the aerodynamic design can incorporate features that allow greater performance and fuel savings, as can be seen on the new Airbus design and advanced tactical fighter concepts. These advanced aircraft will be and are relying on the flight control system to provide the stability and handling qualities required for safe flight and to allow the pilot to control the aircraft. Various design philosophies have been proposed and followed to investigate system architectures for these advanced flight control systems. One major area of discussion is whether a multichannel digital control system should be synchronous or asynchronous. This paper addressed the flight experience at the Dryden Flight Research Facility of NASA's Ames Research Center with both synchronous and asynchronous digital flight control systems. Four different flight control systems are evaluated against criteria such as software reliability, cost increases, and schedule delays.

  6. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants

    PubMed Central

    Khan, M. Iqbal R.; Fatma, Mehar; Per, Tasir S.; Anjum, Naser A.; Khan, Nafees A.

    2015-01-01

    Abiotic stresses (such as metals/metalloids, salinity, ozone, UV-B radiation, extreme temperatures, and drought) are among the most challenging threats to agricultural system and economic yield of crop plants. These stresses (in isolation and/or combination) induce numerous adverse effects in plants, impair biochemical/physiological and molecular processes, and eventually cause severe reductions in plant growth, development and overall productivity. Phytohormones have been recognized as a strong tool for sustainably alleviating adverse effects of abiotic stresses in crop plants. In particular, the significance of salicylic acid (SA) has been increasingly recognized in improved plant abiotic stress-tolerance via SA-mediated control of major plant-metabolic processes. However, the basic biochemical/physiological and molecular mechanisms that potentially underpin SA-induced plant-tolerance to major abiotic stresses remain least discussed. Based on recent reports, this paper: (a) overviews historical background and biosynthesis of SA under both optimal and stressful environments in plants; (b) critically appraises the role of SA in plants exposed to major abiotic stresses; (c) cross-talks potential mechanisms potentially governing SA-induced plant abiotic stress-tolerance; and finally (d) briefly highlights major aspects so far unexplored in the current context. PMID:26175738

  7. Field experiments using SPEAR: a speech control system for UGVs

    NASA Astrophysics Data System (ADS)

    Chhatpar, Siddharth R.; Blanco, Chris; Czerniak, Jeffrey; Hoffman, Orin; Juneja, Amit; Pruthi, Tarun; Liu, Dongqing; Karlsen, Robert; Brown, Jonathan

    2009-05-01

    This paper reports on a Field Experiment carried out by the Human Research and Engineering Directorate at Ft. Benning to evaluate the efficacy of using speech to control an Unmanned Ground Vehicle (UGV) concurrently with a handcontroller. The SPEAR system, developed by Think-A-Move, provides speech-control of UGVs. The system picks up user-speech in the ear canal with an in-ear microphone. This property allows it to work efficiently in high-noise environments, where traditional speech systems, employing external microphones, fail. It has been integrated with an iRobot PackBot 510 with EOD kit. The integrated system allows the hand-controller to be supplemented with speech for concurrent control. At Ft. Benning, the integrated system was tested by soldiers from the Officer Candidate School. The Experiment had dual focus: 1) Quantitative measurement of the time taken to complete each station and the cognitive load on users; 2) Qualitative evaluation of ease-of-use and ergonomics through soldier-feedback. Also of significant benefit to Think-A-Move was soldier-feedback on the speech-command vocabulary employed: What spoken commands are intuitive, and how the commands should be executed, e.g., limited-motion vs. unlimited-motion commands. Overall results from the Experiment are reported in the paper.

  8. Instrument Control and Data Acquisition for NMR Experiments

    1999-03-29

    This is a software program which is intended to do some instrument control and data acquisition for NMR experiments. The basic purpose of the program is to allow a user of the NMR system to create a list of instructions which tells the program what steps should be done, the stat the data taking program and let the system run by itself (depending on the type of sample and the type of experiment being run,more » it can take from several minutes to many hours to do a data collection run).« less

  9. An active thermal control surfaces experiment. [spacecraft temperature determination

    NASA Technical Reports Server (NTRS)

    Wilkes, D. R.; Brown, M. J.

    1979-01-01

    An active flight experiment is described that has the objectives to determine the effects of the low earth natural environment and the Shuttle induced environment on selected thermal control and optical surfaces. The optical and thermal properties of test samples will be measured in-situ using an integrating sphere reflectrometer and using calorimetric methods. This experiment has been selected for the Long Duration Exposure Facility (LDEF) flight which will be carried to orbit by the NASA Space Shuttle. The LDEF will remain in orbit to be picked up by a later Shuttle mission and returned for postflight evaluation.

  10. EURECA mission control experience and messages for the future

    NASA Technical Reports Server (NTRS)

    Huebner, H.; Ferri, P.; Wimmer, W.

    1994-01-01

    EURECA is a retrievable space platform which can perform multi-disciplinary scientific and technological experiments in a Low Earth Orbit for a typical mission duration of six to twelve months. It is deployed and retrieved by the NASA Space Shuttle and is designed to support up to five flights. The first mission started at the end of July 1992 and was successfully completed with the retrieval in June 1993. The operations concept and the ground segment for the first EURECA mission are briefly introduced. The experiences in the preparation and the conduction of the mission from the flight control team point of view are described.

  11. Hydrothermal organic synthesis experiments

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.

    1992-01-01

    Ways in which heat is useful in organic synthesis experiments are described, and experiments on the hydrothermal destruction and synthesis of organic compounds are discussed. It is pointed out that, if heat can overcome kinetic barriers to the formation of metastable states from reduced or oxidized starting materials, abiotic synthesis under hydrothermal conditions is a distinct possibility. However, carefully controlled experiments which replicate the descriptive variables of natural hydrothermal systems have not yet been conducted with the aim of testing the hypothesis of hydrothermal organic systems.

  12. Abiotic Bromination of Soil Organic Matter.

    PubMed

    Leri, Alessandra C; Ravel, Bruce

    2015-11-17

    Biogeochemical transformations of plant-derived soil organic matter (SOM) involve complex abiotic and microbially mediated reactions. One such reaction is halogenation, which occurs naturally in the soil environment and has been associated with enzymatic activity of decomposer organisms. Building on a recent finding that naturally produced organobromine is ubiquitous in SOM, we hypothesized that inorganic bromide could be subject to abiotic oxidations resulting in bromination of SOM. Through lab-based degradation treatments of plant material and soil humus, we have shown that abiotic bromination of particulate organic matter occurs in the presence of a range of inorganic oxidants, including hydrogen peroxide and assorted forms of ferric iron, producing both aliphatic and aromatic forms of organobromine. Bromination of oak and pine litter is limited primarily by bromide concentration. Fresh plant material is more susceptible to bromination than decayed litter and soil humus, due to a labile pool of mainly aliphatic compounds that break down during early stages of SOM formation. As the first evidence of abiotic bromination of particulate SOM, this study identifies a mechanistic source of the natural organobromine in humic substances and the soil organic horizon. Formation of organobromine through oxidative treatments of plant material also provides insights into the relative stability of aromatic and aliphatic components of SOM.

  13. Experiments with a small behaviour controlled planetary rover

    NASA Technical Reports Server (NTRS)

    Miller, David P.; Desai, Rajiv S.; Gat, Erann; Ivlev, Robert; Loch, John

    1993-01-01

    A series of experiments that were performed on the Rocky 3 robot is described. Rocky 3 is a small autonomous rover capable of navigating through rough outdoor terrain to a predesignated area, searching that area for soft soil, acquiring a soil sample, and depositing the sample in a container at its home base. The robot is programmed according to a reactive behavior control paradigm using the ALFA programming language. This style of programming produces robust autonomous performance while requiring significantly less computational resources than more traditional mobile robot control systems. The code for Rocky 3 runs on an eight bit processor and uses about ten k of memory.

  14. Implementation of BN Control in the National Spherical Torus Experiment

    SciTech Connect

    Gerhardt, S; Bell, M G; Cropper, M; Gates, D A; Koleman, E; Lawson, J; Marsala, B; Menard, J E; Mueller, D

    2012-09-15

    We have designed and constructed a system for control of the normalized B in the National Spherical Torus Experiment [M. Ono, et al., Nuclear Fusion 40, 557 (2000)]. A PID operator is applied to the difference between the present value of B N (from realtime equilibrium reconstruction) and a time-dependent request, in order to calculate the required injected power. This injected power request is then turned into modulations of the neutral beams. The details of this algorithm are described, including the techniques used to develop the appropriate control gains. Example uses of the system are shown

  15. Apollo experience report: Command and service module environmental control system

    NASA Technical Reports Server (NTRS)

    Samonski, F. H., Jr.; Tucker, E. M.

    1972-01-01

    A comprehensive review is presented of the design philosophy of the Apollo environmental control system together with the development history of the total system and of selected components within the system. In particular, discussions are presented relative to the development history and to the problems associated with the equipment cooling coldplates, the evaporator and its electronic control system, and the space radiator system used for rejection of the spacecraft thermal loads. Apollo flight experience and operational difficulties associated with the spacecraft water system and the waste management system are discussed in detail to provide definition of the problem and the corrective action taken when applicable.

  16. The rotavirus experience in Mexico: discovery to control.

    PubMed

    Patel, Manish M; Parashar, Umesh D; Santosham, Mathuram; Richardson, Vesta

    2013-02-01

    The recent introduction of a rotavirus vaccine program in Mexico to control rotavirus disease, a common killer of children worldwide, has dramatically reduced the number of Mexican children dying and being hospitalized because of diarrhea. The successful introduction of a rotavirus vaccine program was preceded by several decades of focused research efforts to document the burden of disease and to generate the knowledge base to develop and deploy a vaccine. The postlicensure experience from Mexico demonstrates that evaluating the impact and safety of the vaccination program is vitally necessary for sustaining it. All in all, the immensely successful Mexico experience with control of rotavirus disease, if copied, could yield tremendously favorable results for children and parents worldwide.

  17. Controls on coarse wood decay in temperate tree species: birth of the LOGLIFE experiment.

    PubMed

    Cornelissen, Johannes H C; Sass-Klaassen, Ute; Poorter, Lourens; van Geffen, Koert; van Logtestijn, Richard S P; van Hal, Jurgen; Goudzwaard, Leo; Sterck, Frank J; Klaassen, René K W M; Freschet, Grégoire T; van der Wal, Annemieke; Eshuis, Henk; Zuo, Juan; de Boer, Wietse; Lamers, Teun; Weemstra, Monique; Cretin, Vincent; Martin, Rozan; Ouden, Jan den; Berg, Matty P; Aerts, Rien; Mohren, Godefridus M J; Hefting, Mariet M

    2012-01-01

    Dead wood provides a huge terrestrial carbon stock and a habitat to wide-ranging organisms during its decay. Our brief review highlights that, in order to understand environmental change impacts on these functions, we need to quantify the contributions of different interacting biotic and abiotic drivers to wood decomposition. LOGLIFE is a new long-term 'common-garden' experiment to disentangle the effects of species' wood traits and site-related environmental drivers on wood decomposition dynamics and its associated diversity of microbial and invertebrate communities. This experiment is firmly rooted in pioneering experiments under the directorship of Terry Callaghan at Abisko Research Station, Sweden. LOGLIFE features two contrasting forest sites in the Netherlands, each hosting a similar set of coarse logs and branches of 10 tree species. LOGLIFE welcomes other researchers to test further questions concerning coarse wood decay that will also help to optimise forest management in view of carbon sequestration and biodiversity conservation.

  18. Rotor experiments in controlled conditions continued: New Mexico

    NASA Astrophysics Data System (ADS)

    Boorsma, K.; Schepers, J. G.

    2016-09-01

    To validate and reduce the large uncertainty associated with rotor aerodynamic and acoustic models, there is a need for detailed force, noise and surrounding flow velocity measurements on wind turbines under controlled conditions. However, high quality wind tunnel campaigns on horizontal axis wind turbine models are scarce due to the large wind tunnel size needed and consequently high associated costs. To serve this purpose an experiment using the Mexico turbine was set-up in the large low speed facility of the DNW wind tunnel. An overview of the experiments is given including a selection of results. A comparison of calculations to measurements for design conditions shows a satisfactory agreement. In summary, after years of preparation, ECN and partners have performed very successful aerodynamic experiments in the largest wind tunnel in Europe. The comprehensive high quality database that has been obtained will be used in the international Mexnext consortium to further develop wind energy aerodynamic and acoustic modeling.

  19. Dynamics and control simulation of the Spacelab Experiment Pointing Mount

    NASA Technical Reports Server (NTRS)

    Marsh, E. L.; Ward, R. S.

    1977-01-01

    Computer simulations were developed to evaluate the performance of four Experiment Pointing Mounts (EPM) being considered for Spacelab experiments in the 1980-1990 time frame. The system modeled compromises a multibody system consisting of the shuttle, a mechanical isolation device, the EPM, celestial and inertial sensors, bearings, gimbal torque motors and associated nonlinearities, the experiment payload, and control and estimator algorithms. Each mount was subjected to a common disturbance (shuttle vernier thruster firing and man push off) and command (stellar pointing or solar raster scan) input. The fundamental limitation common to all mounts was found to be sensor noise. System dynamics and hardware nonlinearities have secondary effects on pointing performance for sufficiently high bandwidth.

  20. IRIS Controlled Source Seismic Experiments: Continental Structure, Instrumentation, and Education

    NASA Astrophysics Data System (ADS)

    Mooney, W. D.; Keller, G. R.

    2004-12-01

    The controlled-source seismology program of IRIS/PASSCAL has made major contributions to the study of continental structure and evolution. It has also undergone major developments in seismic instrumentation. The first PASSCAL experiments (1984/85) targeted the Basin and Range Province and the Ouachita orogenic belt. The Basin and Range study provided remarkably clear images of this thin, highly-extended crust, while the Ouachita experiment tested competing hypotheses for the deep structure of this Paleozoic orogen. However, both of these projects were limited by a lack of seismic instruments. The situation improved in the late 1980's with the benefit of a mixed array of 600 seismic recorders from the USGS, Stanford, and the Geological Survey of Canada. The resolution achieved with these instruments was revolutionary. Results include the imaging of such remarkable features as crustal-scale duplexes in the Brooks Range compressional orogen of northern Alaska, and of crustal "core complexes" in the extended crust of southwest Arizona. The 3-channel PASSCAL Jr. instrument was developed, leading to experiments in which ˜1000 instruments were deployed, including three-component recording. This complex mix of instruments served the community well for several years, but required large, complex instrument centers and lots of technical support. With input from PASSCAL and the international community, a newly designed, compact instrument (the Texan) was finalized in the spring of 1998, and the first 200 instruments was delivered to the Univ. of Texas-El Paso in late 1998. The present instrument pool of Texans exceeds 1,400 and these have been used on such projects as the high-resolution imaging of the Los Angeles and San Fernando basins (LARSE I and II experiments), where active thrust faults have been imaged. Controlled-source seismic experiments are now very numerous. During calendar year 2004 alone, portable Texan instruments have traveled from Venezuela to Denmark

  1. Controlled ecological life support system higher plant flight experiments

    NASA Technical Reports Server (NTRS)

    Tibbitts, T. W.; Wheeler, R. M.

    1984-01-01

    Requirements for spaceflight experments which involve higher plants were determined. The plants are studied for use in controlled ecological life support systems (CELSS). Two categories of research requirements are discussed: (1) the physical needs which include nutrient, water and gas exchange requirements; (2) the biological and physiological functions which affect plants in zero gravity environments. Physical problems studies are given the priority since they affect all biological experiments.

  2. The middeck active control experiment: Gravity and suspension effects

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.; Alexander, H.; Rey, Daniel

    1992-01-01

    Viewgraphs on the Middeck Active Control Experiment (MACE): Gravity and Suspension Effects are presented. Topics covered include: gravity and suspension influences; gravity and suspension effects on structure; gravity effects on sensors and actuators; modeling of gravity and suspension effects on structure; geometric stiffness theory and initial static deformation calculation; modeling gravity's effect on accelerometers and PMA's; application to MACE; MACE EM configuration study; and MACE DM configuration study.

  3. Control System Development Plan for the National Spherical Torus Experiment

    SciTech Connect

    C. Neumeyer; D. Mueller; D.A. Gates; J.R. Ferron

    1999-06-01

    The National Spherical Torus Experiment (NSTX) has as one of its primary goals the demonstration of the attractiveness of the spherical torus concept as a fusion power plant. Central to this goal is the achievement of high plasma {beta} ( = 2{micro}{sub 0}

    /B{sup 2} a measure of the efficiency of a magnetic plasma confinement system). It has been demonstrated both theoretically and experimentally that the maximum achievable {beta} is a strong function of both local and global plasma parameters. It is therefore important to optimize control of the plasma. To this end a phased development plan for digital plasma control on NSTX is presented. The relative level of sophistication of the control system software and hardware will be increased according to the demands of the experimental program in a three phase plan. During Day 0 (first plasma), a simple coil current control algorithm will initiate plasma operations. During the second phase (Day 1) of plasma operations the control system will continue to use the preprogrammed algorithm to initiate plasma breakdown but will then change over to a rudimentary plasma control scheme based on linear combinations of measured plasma fields and fluxes. The third phase of NSTX plasma control system development will utilize the rtEFIT code, first used on DIII-D, to determine, in real-time, the full plasma equilibrium by inverting the Grad-Shafranov equation. The details of the development plan, including a description of the proposed hardware will be presented.

  4. Development of electrical feedback controlled heat pipes and the advanced thermal control flight experiment

    NASA Technical Reports Server (NTRS)

    Bienert, W. B.

    1974-01-01

    The development and characteristics of electrical feedback controlled heat pipes (FCHP) are discussed. An analytical model was produced to describe the performance of the FCHP under steady state and transient conditions. An advanced thermal control flight experiment was designed to demonstrate the performance of the thermal control component in a space environment. The thermal control equipment was evaluated on the ATS-F satellite to provide performance data for the components and to act as a thermal control system which can be used to provide temperature stability of spacecraft components in future applications.

  5. MHD stability control in alternate confinement concept experiments

    NASA Astrophysics Data System (ADS)

    Hooper, E. B.

    2006-10-01

    High-quality plasma operation and good energy confinement in the alternate confinement experiments require control of ideal and resistive MHD instabilities. New experiments in the revitalized ICC program, supported by modern MHD computational capabilities, are demonstrating progress in this control which significantly extends previous work. Results from the classical tokamak are thereby extended into new parameter regimes, generating insight into the physics. We consider both toroidal and open concepts and, where appropriate, highlight comparisons with the tokamak, ST, and stellarator. The driving forces for ideal MHD modes are characterized using the Frieman-Rotenberg condition, which generalizes the stability analysis by including plasma flow. Stabilizing mechanisms include conducting walls (RFP, spheromak, FRC); plasma shaping as characterized by the magnetic dipole moment (spheromak, FRC); current-profile control (RFP, spheromak); sheared, super-Alfvénic flows (Z-pinch, centrifugal mirror); quadrupole magnetic wells (FRC, mirror); and high kinetic-energy density flow in good curvature regions (gas-dynamic trap). Resistive tearing is stabilized or limited by current profile control, primarily in the RFP and spheromak. Non-MHD mechanisms such as FLR can also be stabilizing and will be most effective if the MHD growth rate is minimized. Most of the experimental work to date has focused on global or large-scale modes; the possible consequences of short-wavelength or local modes will be explored. E. Frieman and M. Rotenberg, Rev. Mod. Phys. 32, 898 (1960).

  6. Tank Pressure Control Experiment - A low-g mixing investigation

    NASA Technical Reports Server (NTRS)

    Bentz, M. D.; Meserole, J. S.; Knoll, R. L.

    1990-01-01

    The Tank Pressure Control Experiment (TPCE) was conceived to meet the need for an aspect of cryogenic fluid management technology that is critical to several future national space missions: control of cryogenic storage tank pressures by active mixing. In-space testing is the only means of obtaining the fluid dynamic data necessary to develop and test predictive models of mixing. These models, when validated, will allow future cryogenic systems to be designed with more efficient and reliable pressure control systems. The objectives of the TPCE project are to characterize the fluid dynamics of jet-induced mixing in low gravity, evaluate the validity of empirical models and correlations, and provide data for use in developing and validating computational fluid dynamic models. This paper discusses prior studies of low-g mixing, the objectives and benefits of TPCE, the design and status of the payload, and preliminary results obtained from low-g aircraft testing.

  7. Tank pressure control experiment on the space shuttle

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The tank pressure control experiment is a demonstration of NASA intent to develop new technology for low-gravity management of the cryogenic fluids that will be required for future space systems. The experiment will use freon as the test fluid to measure the effects of jet-induced fluid mixing on storage tank pressure and will produce data on low-gravity mixing processes critical to the design of on-orbit cryogenic storage and resupply systems. Basic data on fluid motion and thermodynamics in low gravity is limited, but such data is critical to the development of space transfer vehicles and spacecraft resupply facilities. An in-space experiment is needed to obtain reliable data on fluid mixing and pressure control because none of the available microgravity test facilities provide a low enough gravity level for a sufficient duration to duplicate in-space flow patterns and thermal processes. Normal gravity tests do not represent the fluid behavior properly; drop-tower tests are limited in length of time available; aircraft low-gravity tests cannot provide the steady near-zero gravity level and long duration needed to study the subtle processes expected in space.

  8. Tank Pressure Control Experiment: Thermal Phenomena in Microgravity

    NASA Technical Reports Server (NTRS)

    Hasan, Mohammad M.; Lin, Chin S.; Knoll, Richard H.; Bentz, Michael D.

    1996-01-01

    The report presents the results of the flight experiment Tank Pressure Control Experiment/Thermal Phenomena (TPCE/TP) performed in the microgravity environment of the space shuttle. TPCE/TP, flown on the Space Transportation System STS-52, was a second flight of the Tank Pressure Control Experiment (TPCE). The experiment used Freon 113 at near saturation conditions. The test tank was filled with liquid to about 83% by volume. The experiment consisted of 21 tests. Each test generally started with a heating phase to increase the tank pressure and to develop temperature stratification in the fluid, followed by a fluid mixing phase for the tank pressure reduction and fluid temperature equilibration. The heating phase provided pool boiling data from large (relative to bubble sizes) heating surfaces (0.1046 m by 0.0742 m) at low heat fluxes (0.23 to 1.16 kW/sq m). The system pressure and the bulk liquid subcooling varied from 39 to 78 kPa and 1 to 3 C, respectively. The boiling process during the entire heating period, as well as the jet-induced mixing process for the first 2 min of the mixing period, was also recorded on video. The unique features of the experimental results are the sustainability of high liquid superheats for long periods and the occurrence of explosive boiling at low heat fluxes (0.86 to 1.1 kW/sq m). For a heat flux of 0.97 kW/sq m, a wall superheat of 17.9 C was attained in 10 min of heating. This superheat was followed by an explosive boiling accompanied by a pressure spike of about 38% of the tank pressure at the inception of boiling. However, at this heat flux the vapor blanketing the heating surface could not be sustained. Steady nucleate boiling continued after the explosive boiling. The jet-induced fluid mixing results were obtained for jet Reynolds numbers of 1900 to 8000 and Weber numbers of 0.2 to 6.5. Analyses of data from the two flight experiments (TPCE and TPCE/TP) and their comparison with the results obtained in drop tower experiments

  9. C-SIDE: The control-structure interaction demonstration experiment

    NASA Technical Reports Server (NTRS)

    Mohl, James B.; Davis, Hugh W.

    1993-01-01

    The Control-Structure Interaction Demonstration Experiment (C-SIDE) is sponsored by the Electro-Optics and Cryogenics Division of Ball Aerospace Systems Group. Our objective is to demonstrate methods of solution to structure control problems utilizing currently available hardware in a system that is an extension of our corporate experience. The larger space structures with which Ball has been associated are the SEASAT radar antenna, Shuttle Imaging Radar (SIR) -A, -B and -C antennas and the Radarsat spacecraft. The motivation for the C-SIDE configuration is to show that integration of active figure control in the radar's system-level design can relieve antenna mechanical design constraints. This presentation is primarily an introduction to the C-SIDE testbed. Its physical and functional layouts, and major components are described. The sensor is of special interest as it enables direct surface figure measurements from a remote location. The Remote Attitude Measurement System (RAMS) makes high-rate, unobtrusive measurements of many locations, several of which may be collocated easily with actuators. The control processor is a 386/25 executing a reduced order model-based algorithm with provision for residual mode filters to compensate for structure interaction. The actuators for the ground demonstration are non-contacting, linear force devices. Results presented illustrate some basic characteristics of control-structure interaction with this hardware. The testbed will be used for evaluation of current technologies and for research in several areas. A brief indication of the evolution of the C-SIDE is given at the conclusion.

  10. The MODE family of on-orbit experiments: The Middeck Active Control Experiment (MACE)

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.; Miller, David W.; Deluis, Javier; Waldman, Mel; Bicos, Andy

    1990-01-01

    A flight experiment entitled the Middeck Active Control Experiment (MACE), proposed by the Space Engineering Research Center (SERC) at the Massachusetts Institute of Technology, is described. This is the second in a family of flight experiments being developed at MIT. The first is the Middeck 0-Gravity Dynamics Experiment (MODE) which investigates the nonlinear behavior of contained fluids and truss structures in zero gravity. The objective of the MACE program is to investigate and validate the modeling of the dynamics of an actively controlled flexible, articulating, multibody platform free floating in zero gravity. A rationale and experimental approach for the program are presented. The rationale shows that on-orbit testing, coupled with ground testing and a strong analytical program, is necessary in order to fully understand both how flexibility of the platform affects the pointing problem, as well as how gravity perturbs this structural flexibility causing deviations between 1- and 0-gravity behavior. The experimental approach captures the essential physics of multibody platforms, by identifying the appropriate attributes, tests, and performance metrics of the test article and defines the tests required to successfully validate the analytical framework.

  11. Stable Isotope Systematics of Abiotic Nitrite Reduction Coupled with Anaerobic Iron Oxidation: The Role of Reduced Clays and Fe-bearing Minerals

    NASA Astrophysics Data System (ADS)

    Grabb, K. C.; Buchwald, C.; Hansel, C. M.; Wankel, S. D.

    2014-12-01

    Under anaerobic conditions, it is widely assumed that nitrate (NO3-) and nitrite (NO2-) reduction is primarily the result of microbial respiration. However, it has also been shown that abiotic reduction of nitrate and nitrite by reduced iron (Fe(II)), whether mineral-bound or surface-associated, may also occur under certain environmentally relevant conditions. With a range of experimental conditions, we investigated the nitrogen and oxygen stable isotope systematics of abiotic nitrite reduction by Fe(II) in an effort to characterize biotic and abiotic processes in the environment. While homogenous reactions between NO2- and Fe(II) in artificial seawater showed little reduction, heterogeneous reactions involving Fe-containing minerals showed considerable nitrite loss. Specifically, rapid nitrite reduction was observed in experiments that included reduced clays (illite, Na-montmorillonite, and nontronite) and those that exhibited iron oxide formation (ferrihydrite, magnetite and/or green rust). While these iron oxides and clay minerals offer both a source of reduced iron in the mineral matrix as well as a surface for Fe(II) activation, control experiments with corundum as a non-Fe containing mineral surface showed little NO2- loss, implicating a more dominant role of structural Fe in the clays during nitrite reduction. The isotope effects for 15N and 18O (15ɛ and 18ɛ) ranged from 5 to 14‰ for 15ɛ and 5 to 17‰ for 18ɛ and were typically coupled such that 15ɛ ~ 18ɛ. Reactions below pH 7 were slower and the 18ɛ was affected by oxygen atom exchange with water. Although little data exist for comparison with the dual isotopes of microbial NO2- reduction, these data serve as a benchmark for evaluating the role of abiotic processes in N reduction, particularly in sediment systems low in organic carbon and high in iron.

  12. Real-time Experiment Interface for Biological Control Applications

    PubMed Central

    Lin, Risa J.; Bettencourt, Jonathan; White, John A.; Christini, David J.; Butera, Robert J.

    2013-01-01

    The Real-time Experiment Interface (RTXI) is a fast and versatile real-time biological experimentation system based on Real-Time Linux. RTXI is open source and free, can be used with an extensive range of experimentation hardware, and can be run on Linux or Windows computers (when using the Live CD). RTXI is currently used extensively for two experiment types: dynamic patch clamp and closed-loop stimulation pattern control in neural and cardiac single cell electrophysiology. RTXI includes standard plug-ins for implementing commonly used electrophysiology protocols with synchronized stimulation, event detection, and online analysis. These and other user-contributed plug-ins can be found on the website (http://www.rtxi.org). PMID:21096883

  13. MISSE Thermal Control Materials with Comparison to Previous Flight Experiments

    NASA Technical Reports Server (NTRS)

    Finckenor, Miria; Pippin, H. Gary; Frey, George

    2008-01-01

    Many different passive thermal control materials were flown as part of the Materials on International Space Station Experiment (MISSE), including inorganic coatings, anodized aluminum, and multi-layer insulation materials. These and other material samples were exposed to the low Earth orbital environment of atomic oxygen, ultraviolet radiation, thermal cycling, and hard vacuum, though atomic oxygen exposure was limited for some samples. Materials flown on MISSE-1 and MISSE-2 were exposed to the space environment for nearly four years. Materials flown on MISSE-3, MISSE-4, and MISSE-5 were exposed to the space environment for one year. Solar absorptance, infrared emittance, and mass measurements indicate the durability of these materials to withstand the space environment. Effects of short duration versus long duration exposure on ISS are explored, as well as comparable data from previous flight experiments, such as the Passive Optical Sample Assembly (POSA), Optical Properties Monitor (OPM), and Long Duration Exposure Facility (LDEF).

  14. Real-time experiment interface for biological control applications.

    PubMed

    Lin, Risa J; Bettencourt, Jonathan; Wha Ite, John; Christini, David J; Butera, Robert J

    2010-01-01

    The Real-time Experiment Interface (RTXI) is a fast and versatile real-time biological experimentation system based on Real-Time Linux. RTXI is open source and free, can be used with an extensive range of experimentation hardware, and can be run on Linux or Windows computers (when using the Live CD). RTXI is currently used extensively for two experiment types: dynamic patch clamp and closed-loop stimulation pattern control in neural and cardiac single cell electrophysiology. RTXI includes standard plug-ins for implementing commonly used electrophysiology protocols with synchronized stimulation, event detection, and online analysis. These and other user-contributed plug-ins can be found on the website (http://www.rtxi.org).

  15. Abiotic CO2 reduction during geologic carbon sequestration facilitated by Fe(II)-bearing minerals

    NASA Astrophysics Data System (ADS)

    Nielsen, L. C.; Maher, K.; Bird, D. K.; Brown, G. E.; Thomas, B.; Johnson, N. C.; Rosenbauer, R. J.

    2012-12-01

    Redox reactions involving subsurface minerals and fluids and can lead to the abiotic generation of hydrocarbons from CO2 under certain conditions. Depleted oil reservoirs and saline aquifers targeted for geologic carbon sequestration (GCS) can contain significant quantities of minerals such as ferrous chlorite, which could facilitate the abiotic reduction of carbon dioxide to n-carboxylic acids, hydrocarbons, and amorphous carbon (C0). If such reactions occur, the injection of supercritical CO2 (scCO2) could significantly alter the oxidation state of the reservoir and cause extensive reorganization of the stable mineral assemblage via dissolution and reprecipitation reactions. Naturally occurring iron oxide minerals such as magnetite are known to catalyze CO2 reduction, resulting in the synthesis of organic compounds. Magnetite is thermodynamically stable in Fe(II) chlorite-bearing mineral assemblages typical of some reservoir formations. Thermodynamic calculations demonstrate that GCS reservoirs buffered by the chlorite-kaolinite-carbonate(siderite/magnesite)-quartz assemblage favor the reduction of CO2 to n-carboxylic acids, hydrocarbons, and C0, although the extent of abiotic CO2 reduction may be kinetically limited. To investigate the rates of abiotic CO2 reduction in the presence of magnetite, we performed batch abiotic CO2 reduction experiments using a Dickson-type rocking hydrothermal apparatus at temperatures (373 K) and pressures (100 bar) within the range of conditions relevant to GCS. Blank experiments containing CO2 and H2 were used to rule out the possibility of catalytic activity of the experimental apparatus. Reaction of brine-suspended magnetite nanoparticles with scCO2 at H2 partial pressures typical of reservoir rocks - up to 100 and 0.1 bars respectively - was used to investigate the kinetics of magnetite-catalyzed abiotic CO2 reduction. Later experiments introducing ferrous chlorite (ripidolite) were carried out to determine the potential for

  16. Adaptive environmental control for optimal results during plant microgravity experiments.

    PubMed

    Kostov, P; Ivanova, T; Dandolov, I; Sapunova, S; Ilieva, I

    2002-01-01

    The SVET Space Greenhouse (SG)--the first and the only automated plant growth facility onboard the MIR Space Station in the period 1990-2000 was developed on a Russian-Bulgarian Project in the 80s. The aim was to study plant growth under microgravity in order to include plants as a link of future Biological Life Support Systems for the long-term manned space missions. An American developed Gas Exchange Measurement System (GEMS) was added to the existing SVET SG equipment in 1995 to monitor more environmental and physiological parameters. A lot of long-duration plant flight experiments were carried out in the SVET+GEMS. They led to significant results in the Fundamental Gravitational Biology field--second-generation wheat seeds were produced in the conditions of microgravity. The new International Space Station (ISS) will provide a perfect opportunity for conducting full life cycle plant experiments in microgravity, including measurement of more vital plant parameters, during the next 15-20 years. Nowadays plant growth facilities for scientific research based on the SVET SG functional principles are developed for the ISS by different countries (Russia, USA, Italy, Japan, etc.). A new Concept for an advanced SVET-3 Space Greenhouse for the ISS, based on the Bulgarian experience and "know-how" is described. The absolute and differential plant chamber air parameters and some plant physiological parameters are measured and processed in real time. Using the transpiration and photosynthesis measurement data the Control Unit evaluates the plant status and performs adaptive environmental control in order to provide the most favorable conditions for plant growth at every stage of plant development in experiments. A conceptual block-diagram of the SVET-3 SG is presented.

  17. Using thermodynamics to assess biotic and abiotic impediments to root water uptake

    NASA Astrophysics Data System (ADS)

    Bechmann, Marcel; Hildebrandt, Anke; Kleidon, Axel

    2016-04-01

    Root water uptake has been the subject of extensive research, dealing with understanding the processes limiting transpiration and understanding strategies of plants to avoid water stress. Many of those studies use models of water flow from the soil through the plant into the atmosphere to learn about biotic and abiotic factors affecting plant water relations. One important question in this context is to identify those processes that are most limiting to water transport, and specifically whether these processes lie within the plant or the soil? Here, we propose to use a thermodynamic formulation of root water uptake to answer this question. The method allows us to separate the energy exported at the root collar into a sum of energy fluxes related to all processes along the flow path, notably including the effect of increasing water retention in drier soils. Evaluation of the several contributions allows us to identify and rank the processes by how much these impede water flow from the soil to the atmosphere. The application of this approach to a complex 3-dimensional root water uptake model reveals insights on the role of root versus soil resistances to limit water flow. We investigate the efficiency of root water uptake in an ensemble of root systems with varying root hydraulic properties. While root morphology is kept the same, root radial and axial resistances are artificially varied. Starting with entirely young systems (uptake roots, high radial, low axial conductance) we increasingly add older roots (transport roots, high axial, low radial conductance) to improve transport within root systems. This yields a range of root hydraulic architectures, where the extremes are limited either by radial uptake capacity or low capacity to transport water along the root system. We model root water uptake in this range of root systems with a 3-dimensional root water uptake model in two different soils, applying constant flux boundary conditions in a dry down experiment and

  18. Decompression experiments identify kinetic controls on explosive silicic eruptions

    USGS Publications Warehouse

    Mangan, M.T.; Sisson, T.W.; Hankins, W.B.

    2004-01-01

    Eruption intensity is largely controlled by decompression-induced release of water-rich gas dissolved in magma. It is not simply the amount of gas that dictates how forcefully magma is propelled upwards during an eruption, but also the rate of degassing, which is partly a function of the supersaturation pressure (??Pcritical) triggering gas bubble nucleation. High temperature and pressure decompression experiments using rhyolite and dacite melt reveal compositionally-dependent differences in the ??Pcritical of degassing that may explain why rhyolites have fueled some of the most explosive eruptions on record.

  19. DASHBOARDS & CONTROL CHARTS EXPERIENCES IN IMPROVING SAFETY AT HANFORD WASHINGTON

    SciTech Connect

    PREVETTE, S.S.

    2006-02-27

    The aim of this paper is to demonstrate the integration of safety methodology, quality tools, leadership, and teamwork at Hanford and their significant positive impact on safe performance of work. Dashboards, Leading Indicators, Control charts, Pareto Charts, Dr. W. Edward Deming's Red Bead Experiment, and Dr. Deming's System of Profound Knowledge have been the principal tools and theory of an integrated management system. Coupled with involved leadership and teamwork, they have led to significant improvements in worker safety and protection, and environmental restoration at one of the nation's largest nuclear cleanup sites.

  20. How Life Experience Shapes Cognitive Control Strategies: The Case of Air Traffic Control Training.

    PubMed

    Arbula, Sandra; Capizzi, Mariagrazia; Lombardo, Nicoletta; Vallesi, Antonino

    2016-01-01

    Although human flexible behavior relies on cognitive control, it would be implausible to assume that there is only one, general mode of cognitive control strategy adopted by all individuals. For instance, different reliance on proactive versus reactive control strategies could explain inter-individual variability. In particular, specific life experiences, like a highly demanding training for future Air Traffic Controllers (ATCs), could modulate cognitive control functions. A group of ATC trainees and a matched group of university students were tested longitudinally on task-switching and Stroop paradigms that allowed us to measure indices of cognitive control. The results showed that the ATCs, with respect to the control group, had substantially smaller mixing costs during long cue-target intervals (CTI) and a reduced Stroop interference effect. However, this advantage was present also prior to the training phase. Being more capable in managing multiple task sets and less distracted by interfering events suggests a more efficient selection and maintenance of task relevant information as an inherent characteristic of the ATC group, associated with proactive control. Critically, the training that the ATCs underwent improved their accuracy in general and reduced response time switching costs during short CTIs only. These results indicate a training-induced change in reactive control, which is described as a transient process in charge of stimulus-driven task detection and resolution. This experience-based enhancement of reactive control strategy denotes how cognitive control and executive functions in general can be shaped by real-life training and underlines the importance of experience in explaining inter-individual variability in cognitive functioning. PMID:27311017

  1. How Life Experience Shapes Cognitive Control Strategies: The Case of Air Traffic Control Training

    PubMed Central

    Arbula, Sandra; Capizzi, Mariagrazia; Lombardo, Nicoletta; Vallesi, Antonino

    2016-01-01

    Although human flexible behavior relies on cognitive control, it would be implausible to assume that there is only one, general mode of cognitive control strategy adopted by all individuals. For instance, different reliance on proactive versus reactive control strategies could explain inter-individual variability. In particular, specific life experiences, like a highly demanding training for future Air Traffic Controllers (ATCs), could modulate cognitive control functions. A group of ATC trainees and a matched group of university students were tested longitudinally on task-switching and Stroop paradigms that allowed us to measure indices of cognitive control. The results showed that the ATCs, with respect to the control group, had substantially smaller mixing costs during long cue-target intervals (CTI) and a reduced Stroop interference effect. However, this advantage was present also prior to the training phase. Being more capable in managing multiple task sets and less distracted by interfering events suggests a more efficient selection and maintenance of task relevant information as an inherent characteristic of the ATC group, associated with proactive control. Critically, the training that the ATCs underwent improved their accuracy in general and reduced response time switching costs during short CTIs only. These results indicate a training-induced change in reactive control, which is described as a transient process in charge of stimulus-driven task detection and resolution. This experience-based enhancement of reactive control strategy denotes how cognitive control and executive functions in general can be shaped by real-life training and underlines the importance of experience in explaining inter-individual variability in cognitive functioning. PMID:27311017

  2. Thermal control surfaces experiment (SOO69) flight systems performance

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Hummer, Leigh L.

    1991-01-01

    The thermal control surfaces experiment (TCSE) was the most complex hardware system aboard the Long Duration Exposure Facility (LDEF). The TCSE system consists of a scanning spectroreflectometer that measured test samples mounted on a rotatable carousel assembly. A microprocessor based data system controlled all aspects of TCSE system operation. Power was provided by four primary batteries. Flight measurement and housekeeping data were stored on a tape recorder for postflight analysis. The TCSE is a microcosm of complex electro-optical payloads being developed by NASA, DoD, and the aerospace community. The TCSE provides valuable data on the performance of these systems in space. The TCSE flight system and its excellent performance on the LDEF mission are described. A few operational anomalies were encountered and are discussed. Initial post-flight tests show that the TCSE system remains functional although some degradation in the optical measurements were observed. The results of these tests are also presented.

  3. Shuttle Orbiter Environmental Control and Life Support System - Flight experience

    NASA Technical Reports Server (NTRS)

    Winkler, H. E.

    1992-01-01

    This paper describes the overall design of the Shuttle Orbiter Environmental Control and Life Support System (ECLSS). The Orbiter ECLSS consists of six major subsystems which accomplish the functions of providing a habitable pressurized cabin atmosphere and removing gaseous contaminants, controlling the temperature of the cabin and vehicle components within acceptable ranges, providing fire detection and suppression capability, maintaining a supply of potable water, collecting and removing metabolic waste materials, and providing utilities and access for extravehicular activity. The operational experience is summarized for the 45 space flights accomplished to date during which the Orbiter ECLSS has been demonstrated to perform reliably, and has proved to have the flexibility to meet a variety of mission needs. Significant flight problems are described, along with the design or procedure changes which were implemented to resolve the problems.

  4. Apollo experience report: Guidance and control systems. Engineering simulation program

    NASA Technical Reports Server (NTRS)

    Gilbert, D. W.

    1973-01-01

    The Apollo Program experience from early 1962 to July 1969 with respect to the engineering-simulation support and the problems encountered is summarized in this report. Engineering simulation in support of the Apollo guidance and control system is discussed in terms of design analysis and verification, certification of hardware in closed-loop operation, verification of hardware/software compatibility, and verification of both software and procedures for each mission. The magnitude, time, and cost of the engineering simulations are described with respect to hardware availability, NASA and contractor facilities (for verification of the command module, the lunar module, and the primary guidance, navigation, and control system), and scheduling and planning considerations. Recommendations are made regarding implementation of similar, large-scale simulations for future programs.

  5. Experiments in teleoperator and autonomous control of space robotic vehicles

    NASA Technical Reports Server (NTRS)

    Alexander, Harold L.

    1991-01-01

    A program of research embracing teleoperator and automatic navigational control of freely flying satellite robots is presented. Current research goals include: (1) developing visual operator interfaces for improved vehicle teleoperation; (2) determining the effects of different visual interface system designs on operator performance; and (3) achieving autonomous vision-based vehicle navigation and control. This research program combines virtual-environment teleoperation studies and neutral-buoyancy experiments using a space-robot simulator vehicle currently under development. Visual-interface design options under investigation include monoscopic versus stereoscopic displays and cameras, helmet-mounted versus panel-mounted display monitors, head-tracking versus fixed or manually steerable remote cameras, and the provision of vehicle-fixed visual cues, or markers, in the remote scene for improved sensing of vehicle position, orientation, and motion.

  6. Coupled Abiotic-Biotic Degradation of Bisphenol A

    NASA Astrophysics Data System (ADS)

    Im, J.; Prevatte, C.; Campagna, S. R.; Loeffler, F.

    2014-12-01

    Bisphenol A (BPA) is a ubiquitous environmental contaminant with weak estrogenic activity. BPA is readily biodegradable with oxygen available, but is recalcitrant to microbial degradation under anoxic conditions. However, BPA is susceptible to abiotic transformation under anoxic conditions. To better understand the fate of BPA in anoxic environments, the kinetics of BPA transformation by manganese oxide (d-MnO2) were investigated. BPA was rapidly transformed by MnO2 with a pseudo-first-order rate constant of 0.413 min-1. NMR and LC-MS analyses identified 4-hydroxycumyl alcohol (HCA) as a major intermediate. Up to 64% of the initial amount of BPA was recovered as HCA within 5 min, but the conversion efficiency decreased with time, suggesting that HCA was further degraded by MnO2. Further experiments confirmed that HCA was also susceptible to transformation by MnO2, albeit at 5-fold lower rates than BPA transformation. Mass balance approaches suggested that HCA was the major BPA transformation intermediate, but other compounds may also be formed. The abiotic transformation of BPA by MnO2 was affected by pH, and 10-fold higher transformation rates were observed at pH 4.5 than at pH 10. Compared to BPA, HCA has a lower octanol-water partitioning coefficient (Log Kow) of 0.76 vs 2.76 for BPA and a higher aqueous solubility of 2.65 g L-1 vs 0.31 g L-1 for BPA, suggesting higher mobility of HCA in the environment. Microcosms established with freshwater sediment materials collected from four geographically distinct locations and amended with HCA demonstrated rapid HCA biodegradation under oxic, but not under anoxic conditions. These findings suggest that BPA is not inert under anoxic conditions and abiotic reactions with MnO2 generate HCA, which has increased mobility and is susceptible to aerobic degradation. Therefore, coupled abiotic-biotic processes can affect the fate and longevity of BPA in terrestrial environments.

  7. Biotic and abiotic degradation of CL-20 and RDX in soils.

    PubMed

    Crocker, Fiona H; Thompson, Karen T; Szecsody, James E; Fredrickson, Herbert L

    2005-01-01

    The caged cyclic nitramine 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) is a new explosive that has the potential to replace existing military explosives, but little is known about its environmental toxicity, transport, and fate. We quantified and compared the aerobic environmental fate of CL-20 to the widely used cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in surface and subsurface soil microcosms. Soil-free controls and biologically attenuated soil controls were used to separate abiotic processes from biologically mediated processes. Both abiotic and biological processes significantly degraded CL-20 in all soils examined. Apparent abiotic, first-order degradation rates (k) for CL-20 were not significantly different between soil-free controls (0.018 < k < 0.030 d(-1)) and biologically attenuated soil controls (0.003 < k < 0.277 d(-1)). The addition of glucose to biologically active soil microcosms significantly increased CL-20 degradation rates (0.068 < k < 1.22 d(-1)). Extents of mineralization of (14)C-CL-20 to (14)CO(2) in biologically active soil microcosms were 41.1 to 55.7%, indicating that the CL-20 cage was broken, since all carbons are part of the heterocyclic cage. Under aerobic conditions, abiotic degradation rates of RDX were generally slower (0 < k < 0.032 d(-1)) than abiotic CL-20 degradation rates. In biologically active soil microcosms amended with glucose aerobic RDX degradation rates varied between 0.010 and 0.474 d(-1). Biodegradation was a key factor in determining the environmental fate of RDX, while a combination of biotic and abiotic processes was important with CL-20. Our data suggest that CL-20 should be less recalcitrant than RDX in aerobic soils. PMID:16275722

  8. Abiotic ammonification and gross ammonium photoproduction in the upwelling system off central Chile (36° S)

    NASA Astrophysics Data System (ADS)

    Rain-Franco, A.; Muñoz, C.; Fernandez, C.

    2012-12-01

    We investigated the production of ammonium via photodegradation of dissolved organic matter (DOM) in the coastal upwelling system off central Chile (36° S). Photoammonification experiments were carried out using exudates obtained from representative diatom species (Chaetoceros muelleri and Thalassiosira minuscule) and natural marine DOM under simulated solar radiation conditions. Additionally, we evaluated the use of photoproduced ammonium by natural microbial communities and separated ammonium oxidizing archaea and bacteria by using GC-7 as an inhibitor of the archaeal community. We found photoammonification operating at two levels: via the transformation of DOM by UV radiation (abiotic ammonification) and via the simultaneous occurrence of abiotic phototransformation and biological remineralization of DOM into NH4+ (referred as gross photoproduction of NH4+). The maximum rates of abiotic ammonification reached 0.057 μmol L-1 h-1, whereas maximum rates of gross photoproduction reached 0.746 μmol L-1 h-1. Our results also suggest that ammonium oxidizing archaea could dominate the biotic remineralization induced by photodegradation of organic matter and consequently play an important role in the local N cycle. Abiotic ammonium photoproduction in coastal upwelling systems could support between 7 and 50% of the spring-summer phytoplankton NH4+ demand. Surprisingly, gross ammonium photoproduction (remineralization induced by abiotic ammonification) might support 50 to 180% of spring-summer phytoplankton NH4+ assimilation.

  9. Abiotic Transformation Of Estrogens In Synthetic Municipal Wastewater: An Alternative For Treatment?

    EPA Science Inventory

    The abiotic transformation of estrogens, including estrone (E1), estradiol (E2), estriol (E3) and ethinylestradiol (EE2), in the presence of model vegetable matter was confirmed in this study. Batch experiments were performed to model the catalytic conversion of E1, E2, E3, and ...

  10. Biotic-Abiotic Interactions: Factors that Influence Peptide-Graphene Interactions.

    PubMed

    Kim, Steve S; Kuang, Zhifeng; Ngo, Yen H; Farmer, Barry L; Naik, Rajesh R

    2015-09-16

    Understanding the factors that influence the interaction between biomolecules and abiotic surfaces is of utmost interest in biosensing and biomedical research. Through phage display technology, several peptides have been identified as specific binders to abiotic material surfaces, such as gold, graphene, silver, and so forth. Using graphene-peptide as our model abiotic-biotic pair, we investigate the effect of graphene quality, number of layers, and the underlying support substrate effect on graphene-peptide interactions using both experiments and computation. Our results indicate that graphene quality plays a significant role in graphene-peptide interactions. The graphene-biomolecule interaction appears to show no significant dependency on the number of graphene layers or the underlying support substrate. PMID:26305504

  11. Biotic-Abiotic Interactions: Factors that Influence Peptide-Graphene Interactions.

    PubMed

    Kim, Steve S; Kuang, Zhifeng; Ngo, Yen H; Farmer, Barry L; Naik, Rajesh R

    2015-09-16

    Understanding the factors that influence the interaction between biomolecules and abiotic surfaces is of utmost interest in biosensing and biomedical research. Through phage display technology, several peptides have been identified as specific binders to abiotic material surfaces, such as gold, graphene, silver, and so forth. Using graphene-peptide as our model abiotic-biotic pair, we investigate the effect of graphene quality, number of layers, and the underlying support substrate effect on graphene-peptide interactions using both experiments and computation. Our results indicate that graphene quality plays a significant role in graphene-peptide interactions. The graphene-biomolecule interaction appears to show no significant dependency on the number of graphene layers or the underlying support substrate.

  12. A practical approach for minimum time control of the Spacecraft Control Laboratory Experiment (SCOLE), appendix A

    NASA Technical Reports Server (NTRS)

    Kaufman, H.; Kyriakopoulos, K. J.

    1989-01-01

    The Space COntrol Laboratory Experiment (SCOLE) is a challenge for control engineering applications. This is a result of the system dynamics, the available measurement information, the actuator capabilities and finally the specified performance requirements set. Results on the use of Model Reference Adaptive Control were reported. In view of the necessity for rapid response, this work deals with an optimal control formulation, with a minimum time requirement and constrained input. A mathematical statement of the problem is presented. The time optimal control formulation is presented and the reasons that make such an approach not promising are discussed. As a result, a pseudo time-optimal control algorithm is discussed. The proposed approach is tested to see if it satisfies the design specifications, and finally a discussion and suggestions for further research are provided.

  13. ALMA test interferometer control system: past experiences and future developments

    NASA Astrophysics Data System (ADS)

    Marson, Ralph G.; Pokorny, Martin; Kern, Jeff; Stauffer, Fritz; Perrigouard, Alain; Gustafsson, Birger; Ramey, Ken

    2004-09-01

    The Atacama Large Millimeter Array (ALMA) will, when it is completed in 2012, be the world's largest millimeter & sub-millimeter radio telescope. It will consist of 64 antennas, each one 12 meters in diameter, connected as an interferometer. The ALMA Test Interferometer Control System (TICS) was developed as a prototype for the ALMA control system. Its initial task was to provide sufficient functionality for the evaluation of the prototype antennas. The main antenna evaluation tasks include surface measurements via holography and pointing accuracy, measured at both optical and millimeter wavelengths. In this paper we will present the design of TICS, which is a distributed computing environment. In the test facility there are four computers: three real-time computers running VxWorks (one on each antenna and a central one) and a master computer running Linux. These computers communicate via Ethernet, and each of the real-time computers is connected to the hardware devices via an extension of the CAN bus. We will also discuss our experience with this system and outline changes we are making in light of our experiences.

  14. Statistical physics of human beings in games: Controlled experiments

    NASA Astrophysics Data System (ADS)

    Liang, Yuan; Huang, Ji-Ping

    2014-07-01

    It is important to know whether the laws or phenomena in statistical physics for natural systems with non-adaptive agents still hold for social human systems with adaptive agents, because this implies whether it is possible to study or understand social human systems by using statistical physics originating from natural systems. For this purpose, we review the role of human adaptability in four kinds of specific human behaviors, namely, normal behavior, herd behavior, contrarian behavior, and hedge behavior. The approach is based on controlled experiments in the framework of market-directed resource-allocation games. The role of the controlled experiments could be at least two-fold: adopting the real human decision-making process so that the system under consideration could reflect the performance of genuine human beings; making it possible to obtain macroscopic physical properties of a human system by tuning a particular factor of the system, thus directly revealing cause and effect. As a result, both computer simulations and theoretical analyses help to show a few counterparts of some laws or phenomena in statistical physics for social human systems: two-phase phenomena or phase transitions, entropy-related phenomena, and a non-equilibrium steady state. This review highlights the role of human adaptability in these counterparts, and makes it possible to study or understand some particular social human systems by means of statistical physics coming from natural systems.

  15. Experience in control of avian influenza in Asia.

    PubMed

    Sims, L D

    2007-01-01

    Highly pathogenic H5N1 avian influenza viruses have been circulating in Asia for over ten years, providing considerable experience on which to base appropriate long-term strategies for their control. Experience in Hong Kong SAR demonstrates that existing production and marketing practices should be changed and a range of parallel measures used. It also shows the extent of surveillance required to ensure continuing freedom from infection. Certain high-risk practices should be changed or otherwise overcome in order to control and prevent disease, including intensive rearing of large numbers of poultry in premises without biosecurity commensurate with the level of risk for exposure; complex market chains involving many smallholders selling poultry through large numbers of transporters and middlemen in poorly regulated live poultry markets; and rearing of large numbers of ducks outdoors. These high-risk practices are compounded by weak veterinary services and poor reporting systems. In many parts of Asia, these methods of rearing and marketing are an integral way of life, support the poorest members of the community or cannot be changed quickly without severe socioeconomic consequences. The gains made so far will be ephemeral unless there is a shift from an emergency focus to one of consolidation in which these high-risk practices are identified and sustainable measures implemented to minimize the risks they pose, taking account of the socioeconomic effects of interventions. Vaccination will play a key role, as it currently does in China and Viet Nam.

  16. Doing C2 (Command Control) experiments using war games

    NASA Astrophysics Data System (ADS)

    Lawson, J. S., Jr.

    1983-12-01

    In the last few years considerable progress has been made in the development of an analytic theory of military Command Control (C2), both as a process and as a large-scale system. There are now models of C2 organizations which permit the examination of the effects of various changes in a C2 system and which can predict some of the behavior of such a system in a gross sense. And, due to the increased attention being given the field, with the attendant increase in papers, workshops, etcetera, there is slowly developing a common vocabulary for use in the emerging C2 Theory. What is still lacking, however, is a body of experimental data which can be used as a touchstone to guide further theoretical developments, and against which theoretical predictions can be tested. This paper reports the results of a very rudimentary experiment which was conducted at the Naval Postgraduate School at Monterey, California, during the 1983 Winter Quarter to test two specific hypotheses. As is often the case, it was found necessary to modify or restate the hypotheses during the conduct of the experiment in order to accommodate certain real world constraints. The results, however, are both interesting in their own right and reassuring for the prospect of being able to do further experiments in the C2 arena.

  17. Experiences of baby-led weaning: trust, control and renegotiation.

    PubMed

    Arden, Madelynne A; Abbott, Rachel L

    2015-10-01

    Baby-led weaning (BLW) is an approach to introducing solid foods that relies on the presence of self-feeding skills and is increasing in popularity in the UK and New Zealand. This study aimed to investigate the reported experiences and feelings of mothers using a BLW approach in order to better understand the experiences of the mother and infant, the benefits and challenges of the approach, and the beliefs that underpin these experiences. Fifteen UK mothers were interviewed over the course of a series of five emails using a semi-structured approach. The email transcripts were anonymised and analysed using thematic analysis. There were four main themes identified from the analysis: (1) trusting the child; (2) parental control and responsibility; (3) precious milk; and (4) renegotiating BLW. The themes identified reflect a range of ideals and pressures that this group of mothers tried to negotiate in order to provide their infants with a positive and healthy introduction to solid foods. One of the key issues of potential concern is the timing at which some of the children ingested complementary foods. Although complementary foods were made available to the infants at 6 months of age, in many cases they were not ingested until much later. These findings have potentially important implications for mother's decision-making, health professional policy and practice, and future research.

  18. Propulsion control experience used in the Highly Integrated Digital Electronic Control (HIDEC) program

    NASA Technical Reports Server (NTRS)

    Myers, L. P.; Burcham, F. W., Jr.

    1984-01-01

    The highly integrated digital electronic control (HIDEC) program will integrate the propulsion and flight control systems on an F-15 airplane at NASA Ames Research Center's Dryden Flight Research Facility. Ames-Dryden has conducted several propulsion control programs that have contributed to the HIDEC program. The digital electronic engine control (DEEC) flight evaluation investigated the performance and operability of the F100 engine equipped with a full-authority digital electronic control system. Investigations of nozzle instability, fault detection and accommodation, and augmentor transient capability provided important information for the HIDEC program. The F100 engine model derivative (EMD) was also flown in the F-15 airplane, and airplane performance was significantly improved. A throttle response problem was found and solved with a software fix to the control logic. For the HIDEC program, the F100 EMD engines equipped with DEEC controls will be integrated with the digital flight control system. The control modes to be implemented are an integrated flightpath management mode and an integrated adaptive engine control system mode. The engine control experience that will be used in the HIDEC program is discussed.

  19. Ultraviolet Radiation Accelerates Litter Decomposition Mainly By Increasing Its Biodegradability but Not Abiotic Photomineralization

    NASA Astrophysics Data System (ADS)

    Liu, L.; Wang, J.; Wang, X.; Chen, Y.

    2014-12-01

    Elevated ultraviolet (UV) radiation has been shown to stimulate litter decomposition. Despite years of research, it is still not fully understood that whether the fast litter degradation is mostly attributed to abiotic photo-mineralization or the combined abiotic and biotic degradation. Here we used meta-analysis to synthesize photodegradation studies and compared the effects of UV radiation on litter mass decomposition and chemistry with and without inhibiting microbial activities. We also conducted a microcosm experiment to separate UV's impacts on abiotic and biotic process during decomposition. Overall, our meta-analysis found that, under abiotic condition, UV radiation reduced litter carbon (C) content by 1% and increased dissolved organic carbon (DOC) concentration by 16%, but had no significant impacts on litter mass remaining. Under the combined abiotic and biotic biodegradation, UV radiation reduced litter lignin content by 14% and mass remaining by 3%. In addition, high UV radiation reduced N immobilization by 19%. Results of our microcosm experiment further found that the amount of respired C induced by UV treated litter increased with UV exposure length, which suggested that longer UV exposure duration leads to greater biodegradability. The microcosm study also found that elevated UV did not alter microbial biomass carbon (MBC) or microbe's ability to degrade organic matter. Overall, our meta-analysis and microcosm study suggested that although UV radiation significantly increase C loss by photo-mineralization, abiotic photo-mineralization was not great enough to induce significantly change in litter mass balance. However, with the presence of microbial activities, UV greatly facilitated litter decomposition. Such facilitating effect could be due to that elevated UV radiation increases lignin's accessibility to microbes, and also increases labile carbon supply to microbes. Our results also highlighted that UV radiation could have significant impacts on

  20. Designing a Hybrid Laminar-Flow Control Experiment: The CFD-Experiment Connection

    NASA Technical Reports Server (NTRS)

    Streett, C. L.

    2003-01-01

    The NASA/Boeing hybrid laminar flow control (HLFC) experiment, designed during 1993-1994 and conducted in the NASA LaRC 8-foot Transonic Pressure Tunnel in 1995, utilized computational fluid dynamics and numerical simulation of complex fluid mechanics to an unprecedented extent for the design of the test article and measurement equipment. CFD was used in: the design of the test wing, which was carried from definition of desired disturbance growth characteristics, through to the final airfoil shape that would produce those growth characteristics; the design of the suction-surface perforation pattern that produced enhanced crossflow-disturbance growth: and in the design of the hot-wire traverse system that produced minimal influence on measured disturbance growth. These and other aspects of the design of the test are discussed, after the historical and technical context of the experiment is described.

  1. Dynamics of spacecraft control laboratory experiment (SCOLE) slew maneuvers

    NASA Technical Reports Server (NTRS)

    Kakad, Y. P.

    1987-01-01

    This is the first of two reports on the dynamics and control of slewing maneuvers of the NASA Spacecraft Control Laboratory Experiment (SCOLE). In this report, the dynamics of slewing maneuvers of SCOLE are developed in terms of an arbitrary maneuver about any given axis. The set of dynamical equations incorporate rigid-body slew maneuver and three-dimensional vibrations of the complete assembly comprising the rigid shuttle, the flexible beam, and the reflector with an offset mass. The analysis also includes kinematic nonlinearities of the entire assembly during the maneuver and the dynamics of the interaction between the rigid shuttle and the flexible appendage. The final set of dynamical equations obtained for slewing maneuvers is highly nonlinear and coupled in terms of the flexible modes and the rigid-body modes. The equations are further simplified and evaluated numerically to include the first ten flexible modes and the SCOLE data to yield a model for designing control systems to perform slew maneuvers.

  2. Surface chemistry allows for abiotic precipitation of dolomite at low temperature

    PubMed Central

    Roberts, Jennifer A.; Kenward, Paul A.; Fowle, David A.; Goldstein, Robert H.; González, Luis A.; Moore, David S.

    2013-01-01

    Although the mineral dolomite is abundant in ancient low-temperature sedimentary systems, it is scarce in modern systems below 50 °C. Chemical mechanism(s) enhancing its formation remain an enigma because abiotic dolomite has been challenging to synthesize at low temperature in laboratory settings. Microbial enhancement of dolomite precipitation at low temperature has been reported; however, it is still unclear exactly how microorganisms influence reaction kinetics. Here we document the abiotic synthesis of low-temperature dolomite in laboratory experiments and constrain possible mechanisms for dolomite formation. Ancient and modern seawater solution compositions, with identical pH and pCO2, were used to precipitate an ordered, stoichiometric dolomite phase at 30 °C in as few as 20 d. Mg-rich phases nucleate exclusively on carboxylated polystyrene spheres along with calcite, whereas aragonite forms in solution via homogeneous nucleation. We infer that Mg ions are complexed and dewatered by surface-bound carboxyl groups, thus decreasing the energy required for carbonation. These results indicate that natural surfaces, including organic matter and microbial biomass, possessing a high density of carboxyl groups may be a mechanism by which ordered dolomite nuclei form. Although environments rich in organic matter may be of interest, our data suggest that sharp biogeochemical interfaces that promote microbial death, as well as those with high salinity may, in part, control carboxyl-group density on organic carbon surfaces, consistent with origin of dolomites from microbial biofilms, as well as hypersaline and mixing zone environments. PMID:23964124

  3. Formation of Intermediate Carbon Phases in Hydrothermal Abiotic Organic Synthesis

    NASA Astrophysics Data System (ADS)

    Fu, Q.; Foustoukos, D. I.; Seyfried, W. E.

    2005-12-01

    With high dissolved concentrations of methane and other hydrocarbon species revealed at the Rainbow and Logatchev vent systems on the Mid-Atlantic Ridge, it is essential to better understand reaction pathways of abiotic organic synthesis in hydrothermal systems. Thus, we performed a hydrothermal carbon reduction experiment with 13C labeled carbon source at temperature and pressure conditions that approximate those inferred for ultramafic-hosted hydrothermal systems. Pentlandite, a common alteration mineral phase in subseafloor reaction zones, acted as a potential catalyst. Surface analysis techniques (XPS and ToF-SIMS) were used to characterize intermediate carbon species within this process. Time series dissolved H2 and H2S concentrations indicated thermodynamic equilibrium. Dissolved H2 and H2S concentrations of 13 and 2 mmol/kg, respectively, are approximately equivalent to measured values in Rainbow and Logatchev hydrothermal systems. Isotopically pure 13C methane and other alkane species (C2H6 and C3H8) were observed throughout the experiment, and attained steady state conditions. XPS analysis on mineral product surface indicated carbon enrichment on mineral surface following reaction. The majority of surface carbon involves species containing C-C or C-H bonds, such as alkyl or methylene groups. Alcohol and carboxyl groups in fewer amounts were also observed. ToF-SIMS analysis, which can offer isotope identification with high mass resolution, showed that most of these carbon species were 13C-labeled. Unlike gas phase Fischer-Tropsch synthesis, no carbide was observed on mineral product surface during the experiment. Therefore, a reaction pathway is proposed for formation of dissolved linear alkane species in hydrothermal abiotic organic synthesis, where oxygen-bearing organic compounds are expected to form in aqueous products by way of alcohol and carboxyl groups on mineral catalyst surface.

  4. Genes and experience shape brain networks of conscious control.

    PubMed

    Posner, Michael I

    2005-01-01

    One aspect of consciousness involves voluntary control over thoughts and feelings, often called will. Progress in neuroimaging and in sequencing the human genome makes it possible to think about voluntary control in terms of a specific neural network that includes midline and lateral frontal areas. A number of cognitive tasks involving conflict as well as the control of emotions have been shown to activate these brain areas. Studies have traced the development of this network in the ability to regulate cognition and emotion from about 2.5 to 7 years of age. Individual differences in this network have been related to parental reports of the ability of children to regulate their behavior, to delay reward and to develop a conscience. In adolescents these individual differences predict the propensity for antisocial behavior. Differences in specific genes are related to individual efficiency in performance of the network, and by neuroimaging, to the strength of its activation of this network. Future animal studies may make it possible to learn in detail how genes influence the common pattern of development of self-regulation made possible by this network. Moreover, a number of neurological and psychiatric pathologies involving difficulties in awareness and volition show deficits in parts of this network. We are now studying whether specific training experiences can influence the development of this network in 4-year-old children and if so, for whom it is most effective. Voluntary control is also important for the regulation of conscious input from the sensory environment. It seems likely that the same network involved in self-regulation is also crucial for focal attention to the sensory world.

  5. Temporal dynamics of biotic and abiotic drivers of litter decomposition.

    PubMed

    García-Palacios, Pablo; Shaw, E Ashley; Wall, Diana H; Hättenschwiler, Stephan

    2016-05-01

    Climate, litter quality and decomposers drive litter decomposition. However, little is known about whether their relative contribution changes at different decomposition stages. To fill this gap, we evaluated the relative importance of leaf litter polyphenols, decomposer communities and soil moisture for litter C and N loss at different stages throughout the decomposition process. Although both microbial and nematode communities regulated litter C and N loss in the early decomposition stages, soil moisture and legacy effects of initial differences in litter quality played a major role in the late stages of the process. Our results provide strong evidence for substantial shifts in how biotic and abiotic factors control litter C and N dynamics during decomposition. Taking into account such temporal dynamics will increase the predictive power of decomposition models that are currently limited by a single-pool approach applying control variables uniformly to the entire decay process.

  6. Challenges in measuring medication adherence: experiences from a controlled trial.

    PubMed

    Stewart, Kay; Mc Namara, Kevin P; George, Johnson

    2014-02-01

    Measurement of adherence is complex and many methods, both direct and indirect are used; there is no universal gold standard. In this article, we share our experiences in a randomised controlled study, the Hypertension Adherence Program in Pharmacy trial, evaluating a community pharmacy-based intervention for improving adherence to antihypertensive medication. Several objective and subjective measures of adherence (Morisky score, TABS score, MedsIndex, Medicines Possession Ratio) were used, but produced varying results, limiting confidence in the conclusions that could be drawn. Despite using a specifically designed data mining software program to identify potentially nonadherent patients from dispensing records, many participants were found to be adherent by the self reported Morisky scale. A lesson to be learned when targeting people for interventions to improve adherence is that information from dispensing records should be supplemented by other methods in order to identify patients most in need of assistance.

  7. Experiments in robotic sensori-motor control during grasp

    SciTech Connect

    Stansfield, S.A.

    1991-09-06

    This paper presents a series of experiments in robotic sensori-motor control during grasping. The work utilizes a multifingered, dextrous robot hand equipped with a fingertip force sensor to explore dynamic grasp force adjustment during manipulation. The work is primarily concerned with the relationship between the weight of an object and the grasp force required to lift it. Too weak a grasp is unstable and the object will slip from the hand. Too strong a grasp may damage the object and/or the manipulator. An algorithm is presented which uses tactile information from the sensor to dynamically adjust the grasp force during lift. It is assumed that there is no a priori knowledge about the object to be manipulated. The effects of different arm/hand postures and object surfaces is explored. Finally, the use of sensory data to detect unexpected object motion and to signal transitions between manipulation phases - with the coincident triggering of new motor programs - is investigated.

  8. The controllability of the aeroassist flight experiment atmospheric skip trajectory

    NASA Technical Reports Server (NTRS)

    Wood, R.

    1989-01-01

    The Aeroassist Flight Experiment (AFE) will be the first vehicle to simulate a return from geosynchronous orbit, deplete energy during an aerobraking maneuver, and navigate back out of the atmosphere to a low earth orbit It will gather scientific data necessary for future Aeroasisted Orbitl Transfer Vehicles (AOTV's). Critical to mission success is the ability of the atmospheric guidance to accurately attain a targeted post-aeropass orbital apogee while nulling inclination errors and compensating for dispersions in state, aerodynamic, and atmospheric parameters. In typing to satisfy mission constraints, atmospheric entry-interface (EI) conditions, guidance gains, and trajectory. The results of the investigation are presented; emphasizing the adverse effects of dispersed atmospheres on trajectory controllability.

  9. Material Control and Accountability Experience at the Fuel Conditioning Facility

    SciTech Connect

    Vaden, D.; Fredrickson, G.L.

    2007-07-01

    placed on a balance, others methods (e.g., level measurements, volume calibration equations, calculated density via additive volumes) are utilized to measure the inventory mass. This paper will discuss the material control and accountability experience at the FCF after ten-plus years of processing spent nuclear fuel. A particular area of discussion is the calculated electrolyte density via additive volumes and its importance in determining the mass and composition in the FCF electro-refiners for material control and accountability of special nuclear material. (authors)

  10. A General Purpose Experiment Controller for low cost Space Application

    NASA Astrophysics Data System (ADS)

    Guzman-Garcia, D.; Rowland, D. E.; Uribe, P.; Nieves-Chinchilla, T.

    2012-12-01

    Space activities are very expensive and include a high degree of risk. Nowadays, CubeSat missions represent a fast and inexpensive way to conduct scientific space research. These platforms are less expensive to develop and build than conventional satellites. There are ample demonstration that these platforms are well suited for a wide range of science missions in different fields, such as astrobiology, astronomy, atmospheric science, space weather and biology. This paper presents a hybrid "processor in an Field Programmable Gate Array (FPGA)" experiment/spacecraft controller for Cubesat missions. The system has two objectives, first is to obtain a multipurpose and easily customizable system aimed at processing the data from the widest kind of instruments and second, to provide the system with the highest processing capabilities in order to be able to perform complex onboard algorithms. Due to the versatility of the system and its reduced dimensions, it can be employed in different space platforms. The system is envisioned to be employed for the first time as the smart radio receiver for the upcoming NASA FireStation instrument. It is one of four experiments manifested to fly on an experiment pallet the U.S Department of Defense plans to deploy on the International Space Station in 2013. FireStation will continue analyzing the link between the Lightning and the Terrestrial Gamma Rays initiated by the FireFly Cubesat. The system is responsible for the management of a set of small Heliophysics instrumentats, including a photometer, magnetometer, and electric and magnetic field antennas. A description of the system architecture and its main features are presented. The main functional and performance tests during the integration and calibration phase of the instruments are also discussed.

  11. Oxylipins and plant abiotic stress resistance.

    PubMed

    Savchenko, T V; Zastrijnaja, O M; Klimov, V V

    2014-04-01

    Oxylipins are signaling molecules formed enzymatically or spontaneously from unsaturated fatty acids in all aerobic organisms. Oxylipins regulate growth, development, and responses to environmental stimuli of organisms. The oxylipin biosynthesis pathway in plants includes a few parallel branches named after first enzyme of the corresponding branch as allene oxide synthase, hydroperoxide lyase, divinyl ether synthase, peroxygenase, epoxy alcohol synthase, and others in which various biologically active metabolites are produced. Oxylipins can be formed non-enzymatically as a result of oxygenation of fatty acids by free radicals and reactive oxygen species. Spontaneously formed oxylipins are called phytoprostanes. The role of oxylipins in biotic stress responses has been described in many published works. The role of oxylipins in plant adaptation to abiotic stress conditions is less studied; there is also obvious lack of available data compilation and analysis in this area of research. In this work we analyze data on oxylipins functions in plant adaptation to abiotic stress conditions, such as wounding, suboptimal light and temperature, dehydration and osmotic stress, and effects of ozone and heavy metals. Modern research articles elucidating the molecular mechanisms of oxylipins action by the methods of biochemistry, molecular biology, and genetics are reviewed here. Data on the role of oxylipins in stress signal transduction, stress-inducible gene expression regulation, and interaction of these metabolites with other signal transduction pathways in cells are described. In this review the general oxylipin-mediated mechanisms that help plants to adjust to a broad spectrum of stress factors are considered, followed by analysis of more specific responses regulated by oxylipins only under certain stress conditions. New approaches to improvement of plant resistance to abiotic stresses based on the induction of oxylipin-mediated processes are discussed.

  12. AMO EXPRESS: A Command and Control Experiment for Crew Autonomy

    NASA Technical Reports Server (NTRS)

    Stetson, Howard K.; Frank, Jeremy; Cornelius, Randy; Haddock, Angie; Wang, Lui; Garner, Larry

    2015-01-01

    NASA is investigating a range of future human spaceflight missions, including both Mars-distance and Near Earth Object (NEO) targets. Of significant importance for these missions is the balance between crew autonomy and vehicle automation. As distance from Earth results in increasing communication delays, future crews need both the capability and authority to independently make decisions. However, small crews cannot take on all functions performed by ground today, and so vehicles must be more automated to reduce the crew workload for such missions. NASA's Advanced Exploration Systems Program funded Autonomous Mission Operations (AMO) project conducted an autonomous command and control demonstration of intelligent procedures to automatically initialize a rack onboard the International Space Station (ISS) with power and thermal interfaces, and involving core and payload command and telemetry processing, without support from ground controllers. This autonomous operations capability is enabling in scenarios such as a crew medical emergency, and representative of other spacecraft autonomy challenges. The experiment was conducted using the Expedite the Processing of Experiments for Space Station (EXPRESS) rack 7, which was located in the Port 2 location within the U.S Laboratory onboard the International Space Station (ISS). Activation and deactivation of this facility is time consuming and operationally intensive, requiring coordination of three flight control positions, 47 nominal steps, 57 commands, 276 telemetry checks, and coordination of multiple ISS systems (both core and payload). The autonomous operations concept includes a reduction of the amount of data a crew operator is required to verify during activation or de-activation, as well as integration of procedure execution status and relevant data in a single integrated display. During execution, the auto-procedures provide a step-by-step messaging paradigm and a high level status upon termination. This

  13. Experience based methodology for nuclear station instrumentation and control modernization

    SciTech Connect

    Sudduth, A.L.; Blanco, M.A.

    1995-03-01

    As nuclear station operators face the obsolescence of their control and instrumentation systems, the industry struggles to formulate an engineering methodology for these replacements. The obstacles facing an operator who decides to upgrade and modernize nuclear station controls are formidable. Not only must the system be designed to operate the station in a safe and efficient manner and have reasonable acquisition and installation costs, but regulatory authorities must approve the changes. The perceptions that new I&C systems are too costly, that regulatory approval will be difficult or impossible to obtain, and that new technology cannot be applied successfully in nuclear station are hindering implementation of changes which have a high level of promise for improved station operation. The purpose of this paper is to facilitate the transfer of experience from our successful effort in modernizing the I&C systems of fossil fueled power stations so that these perceptions may be overcome. Within the last five years, a large number of fossil stations constructed between 1940 and 1980 have received extensive control system upgrades. The scope of these upgrades includes complete replacement of all station instruments (changing from pneumatic to electronic), extensive changes in operating strategies, addition or modernization of data acquisition and analysis computers, replacement of the benchboard style operator interface with a {open_quotes}soft{close_quotes} interface based on computer graphics terminals, and a philosophical change in the role of the power station operator. We contend that the effectiveness of these changes in improving station operation and reducing cost of producing power is not unique to fossil fueled stations, and that many of the issues we have faced and overcome are relevant to a successful application of the same technology in nuclear stations.

  14. The 5th Annual NASA Spacecraft Control Laboratory Experiment (SCOLE) Workshop, part 2

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence W., Jr. (Compiler)

    1990-01-01

    A collection of papers from the workshop are presented. The topics addressed include: the modeling, systems identification, and control synthesis for the Spacecraft Control Laboratory Experiment (SCOLE) configuration.

  15. Dynamics and control of multipayload platforms - The Middeck Active Control Experiment (MACE)

    NASA Technical Reports Server (NTRS)

    Miller, David W.; Crawley, Edward F.; De Luis, Javier

    1990-01-01

    A flight experiment entitled the Middeck Active Control Experiment (MACE) proposed by the Space Engineering Research Center (SERC) at the Massachusetts Institute of Technology is described. The objective of this program is to investigate and validate the modeling of the dynamics of an actively controlled flexible, articulating, multibody platform free floating in zero gravity. A rationale and experimental approach for the program are presented. The rationale shows that on-orbit testing, coupled with ground testing and a strong analytical program, is necessary in order to fully understand both how flexibility of the platform affects the pointing problem, as well as how gravity perturbs this structural flexibility causing deviations between 1-and 0-gravity behavior. The experimental approach captures the essential physics of multibody platforms, by identifying the appropriate attributes, tests, and performance metrics of the test article, and defines the tests required to successfully validate the analytical framework.

  16. Mathematical inference and control of molecular networks from perturbation experiments

    NASA Astrophysics Data System (ADS)

    Mohammed-Rasheed, Mohammed

    in order to affect the time evolution of molecular activity in a desirable manner. In this proposal, we address both the inference and control problems of GRNs. In the first part of the thesis, we consider the control problem. We assume that we are given a general topology network structure, whose dynamics follow a discrete-time Markov chain model. We subsequently develop a comprehensive framework for optimal perturbation control of the network. The aim of the perturbation is to drive the network away from undesirable steady-states and to force it to converge to a unique desirable steady-state. The proposed framework does not make any assumptions about the topology of the initial network (e.g., ergodicity, weak and strong connectivity), and is thus applicable to general topology networks. We define the optimal perturbation as the minimum-energy perturbation measured in terms of the Frobenius norm between the initial and perturbed networks. We subsequently demonstrate that there exists at most one optimal perturbation that forces the network into the desirable steady-state. In the event where the optimal perturbation does not exist, we construct a family of sub-optimal perturbations that approximate the optimal solution arbitrarily closely. In the second part of the thesis, we address the inference problem of GRNs from time series data. We model the dynamics of the molecules using a system of ordinary differential equations corrupted by additive white noise. For large-scale networks, we formulate the inference problem as a constrained maximum likelihood estimation problem. We derive the molecular interactions that maximize the likelihood function while constraining the network to be sparse. We further propose a procedure to recover weak interactions based on the Bayesian information criterion. For small-size networks, we investigated the inference of a globally stable 7-gene melanoma genetic regulatory network from genetic perturbation experiments. We considered five

  17. Multiple abiotic stress responsive rice cyclophilin

    PubMed Central

    Trivedi, Dipesh Kumar; Ansari, Mohammad Wahid; Tuteja, Narendra

    2013-01-01

    Cyclophilins (CYP), a member of immunophillin group of proteins, are more often conserved in all genera including plants. Here, we report on the identification of a new cyclophilin gene OsCYP-25 (LOC_Os09 g39780) from rice which found to be upregulated in response to various abiotic stresses viz., salinity, cold, heat and drought. It has an ORF of 540 bp, encoding a protein of 179 amino acids, consisting of PPIase domain, which is highly conserved. The OsCYP-25 promoter analysis revealed that different cis-regulatory elements (e.g., MYBCORE, MYC, CBFHV, GT1GMSCAM4, DRECRTCOREAT, CCAATBOX1, WRKY71OS and WBOXATNPR1) are involved to mediate OsCYP-25 response under stress. We have also predicted interacting partners by STRING software. In interactome, protein partners includes WD domain containing protein, the 60S ribosome subunit biogenesis protein, the ribosomal protein L10, the DEAD-box helicase, the EIF-2α, YT521-B protein, the 60S ribosomal protein and the PPR repeat domain containing protein. The in silico analysis showed that OsCYP-25 interacts with different proteins involved in cell growth, differentiation, ribosome biogenesis, RNA metabolism, RNA editing, gene expression, signal transduction or stress response. These findings suggest that OsCYP-25 might perform an important function in mediating wide range of cellular response under multiple abiotic stresses. PMID:24265852

  18. Abiotic dechlorination in rock matrices impacted by long-term exposure to TCE.

    PubMed

    Schaefer, Charles E; Towne, Rachael M; Lippincott, David R; Lacombe, Pierre J; Bishop, Michael E; Dong, Hailiang

    2015-01-01

    Field and laboratory tests were performed to evaluate the abiotic reaction of trichloroethene (TCE) in sedimentary rock matrices. Hydraulically conductive fractures, and the rock directly adjacent to the hydraulically conductive fractures, within a historically contaminated TCE bedrock aquifer were used as the basis for this study. These results were compared to previous work using rock that had not been exposed to TCE (Schaefer et al., 2013) to assess the impact of long-term TCE exposure on the abiotic dechlorination reaction, as the longevity of these reactions after long-term exposure to TCE was hitherto unknown. Results showed that potential abiotic TCE degradation products, including ethane, ethene, and acetylene, were present in the conductive fractures. Using minimally disturbed slices of rock core at and near the fracture faces, laboratory testing on the rocks confirmed that abiotic dechlorination reactions between the rock matrix and TCE were occurring. Abiotic daughter products measured in the laboratory under controlled conditions were consistent with those measured in the conductive fractures, except that propane also was observed as a daughter product. TCE degradation measured in the laboratory was well described by a first order rate constant through the 118-d study. Observed bulk first-order TCE degradation rate constants within the rock matrix were 1.3×10(-8) s(-1). These results clearly show that abiotic dechlorination of TCE is occurring within the rock matrix, despite decades of exposure to TCE. Furthermore, these observed rates of TCE dechlorination are expected to have a substantial impact on TCE migration and uptake/release from rock matrices.

  19. Abiotic dechlorination in rock matrices impacted by long-term exposure to TCE.

    PubMed

    Schaefer, Charles E; Towne, Rachael M; Lippincott, David R; Lacombe, Pierre J; Bishop, Michael E; Dong, Hailiang

    2015-01-01

    Field and laboratory tests were performed to evaluate the abiotic reaction of trichloroethene (TCE) in sedimentary rock matrices. Hydraulically conductive fractures, and the rock directly adjacent to the hydraulically conductive fractures, within a historically contaminated TCE bedrock aquifer were used as the basis for this study. These results were compared to previous work using rock that had not been exposed to TCE (Schaefer et al., 2013) to assess the impact of long-term TCE exposure on the abiotic dechlorination reaction, as the longevity of these reactions after long-term exposure to TCE was hitherto unknown. Results showed that potential abiotic TCE degradation products, including ethane, ethene, and acetylene, were present in the conductive fractures. Using minimally disturbed slices of rock core at and near the fracture faces, laboratory testing on the rocks confirmed that abiotic dechlorination reactions between the rock matrix and TCE were occurring. Abiotic daughter products measured in the laboratory under controlled conditions were consistent with those measured in the conductive fractures, except that propane also was observed as a daughter product. TCE degradation measured in the laboratory was well described by a first order rate constant through the 118-d study. Observed bulk first-order TCE degradation rate constants within the rock matrix were 1.3×10(-8) s(-1). These results clearly show that abiotic dechlorination of TCE is occurring within the rock matrix, despite decades of exposure to TCE. Furthermore, these observed rates of TCE dechlorination are expected to have a substantial impact on TCE migration and uptake/release from rock matrices. PMID:25192648

  20. Volcanic monitoring techniques applied to controlled fragmentation experiments

    NASA Astrophysics Data System (ADS)

    Kueppers, Ulrich; Alatorre-Ibarguengoitia, Miguel; Hort, Matthias; Kremers, Simon; Meier, Kristina; Scharff, Lea; Scheu, Bettina; Taddeucci, Jacopo; Dingwell, Donald B.

    2010-05-01

    A rapidly growing number of people is threatened by natural hazards such as volcanic eruptions, earthquakes, floods, or storms. Volcanic eruptions not only have an impact on their direct neighbourhood but may also affect aviation, infrastructure and climate, regionally as well as globally. In respect to several other natural threats, volcanoes exhibit the advantage of a usually known location of the pending threat, allowing the deployment of sophisticated monitoring networks. Such networks deliver information about volcanic systems and the correct interpretation of monitoring data is a viable key to a successful hazard mitigation strategy. Today a large number of volcanoes is equipped with a variety of scientific instruments that help elucidate the secrets of volcanic phenomena. However, our mechanistic understanding of the processes behind recorded signals or a solid interpretation of the state of a volcano is poor. Experimental volcanology is a chief source of mechanistic understanding of volcanic systems. Here, we bring volcanic monitoring and experimental volcanology together in a campaign of well-monitored, field-based, experimental volcanology. We present results from a multi-parametric combination of well-controlled experiments and several tools commonly used for monitoring active volcanoes. We performed rapid decompression experiments with natural rock samples from Colima volcano (Mexico) to simulate explosive volcanic eruptions. We used 2 sample varieties of approx. 25 and 35 vol.% open porosity. Sample size was 60 mm height and 25 mm and 60 mm diameter, respectively. Applied pressure ranges from 4 to 18 MPa. The pressurised volume above the samples ranges from 60 - 170 cm³. The experiments have been thoroughly monitored with 1) Doppler-Radar, 2) High-speed and video camera, 3) acoustic and infrasonic sensors, 4) pressure transducers, and 5) electrically conducting wires to shed light on fragmentation, ejection, and ejection speed of volcanic pyroclasts

  1. Wood smoke in a controlled exposure experiment with human volunteers.

    PubMed

    Riddervold, I S; Bønløkke, J H; Mølhave, L; Massling, A; Jensen, B; Grønborg, T K; Bossi, R; Forchhammer, L; Kjærgaard, S K; Sigsgaard, T

    2011-04-01

    Exposure to wood smoke in the general population is increasing and concurrently, also our awareness. This article describes a wood-smoke generating system for studying human exposure to wood smoke and symptoms related to this exposure. Twenty nonsmoking atopic human participants with normal lung function and normal bronchial reactivity were randomly exposed for 3 h at three different exposure conditions; clean filtered air (control exposure) and wood smoke with a characteristic particulate matter (PM) concentration of 200 µg/m³ (low) and 400 µg/m³ (high) under controlled environmental conditions. The range for PM₂.₅ load observed for single experiments was 165-303 µg/m³ for the low exposure and 205-662 µg/m³ for the high exposure, whereas particle loads during clean air exposure most often were below the detection limit (< 20 µg/m³). Health effects were evaluated in relation to rated changes in symptoms and environmental perception using a computerized questionnaire and a potentiometer. Subjective symptoms were generally weak, but when combining the effect of each of the symptoms into categorical symptom indices, significant effects were found for "environmental perception" (p = 0.0007), "irritative body perceptions" (p = 0.0127), "psychological/neurological effects" (p = 0.0075) and "weak inflammatory responses" (p = 0.0003). Furthermore, significant effects (p = 0.0192) on self-reported general mucosa irritation were found. In conclusion, exposure to wood smoke affected symptom rating and caused irritated mucosas in humans. The knowledge gained in this study on subjective-rated symptoms may be important for understanding human response to wood-smoke exposure.

  2. Diagnosing and Controlling Mix in NIF Implosion Experiments

    NASA Astrophysics Data System (ADS)

    Hammel, B. A.

    2010-11-01

    Controlling the hydrodynamic growth of capsule perturbations is essential in the optimization of NIF ignition target designs. In simulations, mode numbers up to ˜300 can have significant growth on the outer surface of CH capsules.ootnotetextB.A. Hammel, et al., High Energy Density Physics, 6 (2010) p.171--178 As a result, ``isolated defects'' on the capsule (e.g. bumps in the CH coating, the fill tube) have the potential to grow enough to penetrate the imploding shell, and produce a jet of ablator material (mass ˜ 10's ng) that enters the hot-spot. Although this amount of mix is tolerable, degradation in ignition capsule performance becomes significant at several times this amount. Our predictions of hydrodynamic growth and resulting mix have a level of uncertainty that results from uncertainties in experimental conditions, physical data (e.g. EOS), and the simulation method itself. We are developing an experimental strategy where the final requirements for ignition targets (e.g. surface finish) can be adjusted through direct measurements of mix and experimental tuning. Since the growth can be reduced by controlled reduction of the peak x-ray drive, we can use the relative simulated Growth Factors to help set ignition requirements. One method for inferring mix into the hot-spot is through observations of x-ray emission from the ablator material. Internal regions of the CH ablator are doped with Ge in nominal ignition designs, resulting in K-shell emission when it mixes into the hot-spot. We have observed evidence of jets entering the hot-spot in early NIF implosion experiments through the measured x-ray spectra and images, consistent with simulation predictions. Doping other regions of the ablator could provide a corresponding unique indication of mix. In addition, radiographic measurements of high-Z doped layers provide a means of measuring ρR variation in the imploding and compressed capsule.

  3. The Space Technology-7 Disturbance Reduction System Precision Control Flight Validation Experiment Control System Design

    NASA Technical Reports Server (NTRS)

    O'Donnell, James R.; Hsu, Oscar C.; Maghami, Peirman G.; Markley, F. Landis

    2006-01-01

    As originally proposed, the Space Technology-7 Disturbance Reduction System (DRS) project, managed out of the Jet Propulsion Laboratory, was designed to validate technologies required for future missions such as the Laser Interferometer Space Antenna (LISA). The two technologies to be demonstrated by DRS were Gravitational Reference Sensors (GRSs) and Colloidal MicroNewton Thrusters (CMNTs). Control algorithms being designed by the Dynamic Control System (DCS) team at the Goddard Space Flight Center would control the spacecraft so that it flew about a freely-floating GRS test mass, keeping it centered within its housing. For programmatic reasons, the GRSs were descoped from DRS. The primary goals of the new mission are to validate the performance of the CMNTs and to demonstrate precise spacecraft position control. DRS will fly as a part of the European Space Agency (ESA) LISA Pathfinder (LPF) spacecraft along with a similar ESA experiment, the LISA Technology Package (LTP). With no GRS, the DCS attitude and drag-free control systems make use of the sensor being developed by ESA as a part of the LTP. The control system is designed to maintain the spacecraft s position with respect to the test mass, to within 10 nm/the square root of Hz over the DRS science frequency band of 1 to 30 mHz.

  4. Experiments in robotic sensori-motor control during grasp

    SciTech Connect

    Stansfield, S.A.

    1991-08-30

    This paper presents a series of experiments in robotic sensori-motor control during grasping. The work utilizes a multifingered, dextrous robot hand equipped with a fingertip force sensor to explore dynamic grasp force adjustment during manipulation. The work is primarily concerned with the relationship between the weight of an object and the grasp force required to lift it. Too weak a grasp is unstable and the object will slip from the hand. Too strong a grasp may damage the object and/or the manipulator. An algorithm is presented which uses tactile information from the sensor to dynamically adjust the grasp force during lift. It is assumed that there is no a priori knowledge about the object to be manipulated. The effects of different arm/hand postures and object surfaces is explored. Finally, the use of sensory data to detect unexpected object motion and to signal transitions between manipulation phases -- with the coincident triggering of new motor programs -- is investigated. 15 refs., 12 figs.

  5. Particle Control in the Sustained Spheromak Physics Experiment

    SciTech Connect

    Wood, R.D.; Hill, D.N.; Hooper, E.B.; Buchenauer, D.; McLean, H.; Wang, Z.; Woodruff, S.; Wurden, G.

    2000-05-01

    In this paper we report on density and impurity measurements in the Sustained Spheromak Physics Experiment (SSPX) which has recently started operation. The SSPX spheromak plasma is sustained by coaxial helicity injection for a duration of 2msec with peak toroidal currents of up to 0.5MA. The plasma-facing components consist of tungsten-coated copper to minimize sputtering. The surfaces are conditioned by a combination of baking at 150 C, glow discharge cleaning, Titanium gettering, and pulse-discharge cleaning with helium plasmas. In this way we can achieve density control so that the plasma density ({approx} 1-4 x 10{sup 20}m{sup -3}) matches the gas input. Low-density operation is presently limited by breakdown requirements, but we hope that new gas valves with supersonic nozzles will allow for a further reduction in density. We find that the conditioning reduces the impurity radiation to the point where it is no longer important to the energy balance, and long-lived spheromak plasmas are obtained (decay times of 1.5msec).

  6. Oxygen fugacity control in piston-cylinder experiments

    NASA Astrophysics Data System (ADS)

    Jakobsson, Sigurdur

    2012-09-01

    The main goal of this study was to develop and test a capsule assembly for use in piston-cylinder experiments where oxygen fugacity could be controlled in the vicinity of the QFM buffer without H2O loss or carbon contamination of the sample material. The assembly consists of an outer Pt-capsule containing a solid buffer (Ni-NiO or Co-CoO) plus H2O and an inner AuPd-capsule, containing the sample, H2O and a Pt-wire. No H2O loss is observed from the sample, even after 48 h, but a slight increase in H2O content is found in longer runs due to oxygen and hydrogen diffusion into the AuPd-capsule. Oxygen fugacity of runs in equilibrium with the Ni-NiO (NNO) and Co-CoO (CoCO) buffers was measured by analyzing Fe dissolved in the Pt-wire and in the AuPd-capsule. The second method gives values that are in good agreement with established buffer values, whereas results from the first method are one half to one log units higher than the established values.

  7. Current profile control experiments in EXTRAP T2R

    NASA Astrophysics Data System (ADS)

    Brunsell, P.; Cecconello, M.; Drake, J.; Franz, P.; Malmberg, J. A.; Marrelli, L.; Martin, P.; Spizzo, G.

    2002-11-01

    EXTRAP T2R is a high aspect ratio (R=1.24 m, a = 0.183 m) reversed-field pinch device, characterised by a double, thin shell system. The simultaneous presence of many m=1, |n| > 11 tearing modes is responsible for a magnetic field turbulence, which is believed to produce the rather high energy and particle transport that is observed in this type of magnetic configuration. In this paper first results from current profile control experiments (PPCD) in a thin shell device are shown. When an edge poloidal electric field is transiently applied, an increase of the electron temperature and of the electron density is seen, which is consistent with an increase of the thermal content of the plasma. At the same time, the soft x-ray emission, measured with a newly installed miniaturised camera, shows a peaking of the profile in the core. Furthermore, the amplitudes of the m=1 tearing modes are reduced and and the rotation velocities increase during PPCD, which is also consistent with a reduction of magnetic turbulence and a heating of the plasma

  8. Volcanic Monitoring Techniques Applied to Controlled Fragmentation Experiments

    NASA Astrophysics Data System (ADS)

    Kueppers, U.; Alatorre-Ibarguengoitia, M. A.; Hort, M. K.; Kremers, S.; Meier, K.; Scharff, L.; Scheu, B.; Taddeucci, J.; Dingwell, D. B.

    2010-12-01

    Volcanic eruptions are an inevitable natural threat. The range of eruptive styles is large and short term fluctuations of explosivity or vent position pose a large risk that is not necessarily confined to the immediate vicinity of a volcano. Explosive eruptions rather may also affect aviation, infrastructure and climate, regionally as well as globally. Multiparameter monitoring networks are deployed on many active volcanoes to record signs of magmatic processes and help elucidate the secrets of volcanic phenomena. However, our mechanistic understanding of many processes hiding in recorded signals is still poor. As a direct consequence, a solid interpretation of the state of a volcano is still a challenge. In an attempt to bridge this gap, we combined volcanic monitoring and experimental volcanology. We performed 15 well-monitored, field-based, experiments and fragmented natural rock samples from Colima volcano (Mexico) by rapid decompression. We used cylindrical samples of 60 mm height and 25 mm and 60 mm diameter, respectively, and 25 and 35 vol.% open porosity. The applied pressure range was from 4 to 18 MPa. Using different experimental set-ups, the pressurised volume above the samples ranged from 60 - 170 cm3. The experiments were performed at ambient conditions and at controlled sample porosity and size, confinement geometry, and applied pressure. The experiments have been thoroughly monitored with 1) Doppler Radar (DR), 2) high-speed and high-definition cameras, 3) acoustic and infrasound sensors, 4) pressure transducers, and 5) electrically conducting wires. Our aim was to check for common results achieved by the different approaches and, if so, calibrate state-of-the-art monitoring tools. We present how the velocity of the ejected pyroclasts was measured by and evaluated for the different approaches and how it was affected by the experimental conditions and sample characteristics. We show that all deployed instruments successfully measured the pyroclast

  9. Generation of RNA in abiotic conditions.

    NASA Astrophysics Data System (ADS)

    di Mauro, Ernesto

    Generation of RNA in abiotic conditions. Ernesto Di Mauro Dipartimento di Genetica Bi-ologia Molecolare, Universit` "Sapienza" Roma, Italy. a At least four conditions must be satisfied for the spontaneous generation of (pre)-genetic poly-mers: 1) availability of precursors that are activated enough to spontaneously polymerize. Preliminary studies showed that (a) nucleic bases and acyclonucleosides can be synthesized from formamide H2NCOH by simply heating with prebiotically available mineral catalysts [last reviewed in (1)], and that b) nucleic bases can be phosphorylated in every possible posi-tion [2'; 3'; 5'; cyclic 2',3'; cyclic 3',5' (2)]. The higher stability of the cyclic forms allows their accumulation. 2) A polymerization mechanism. A reaction showing the formation of RNA polymers starting from prebiotically plausible precursors (3',5' cyclic GMP and 3', 5'cyclic AMP) was recently reported (3). Polymerization in these conditions is thermodynamically up-hill and an equilibrium is attained that limits the maximum length of the polymer produced to about 40 nucleotides for polyG and 100 nucleotides for polyA. 3) Ligation of the synthesized oligomers. If this type of reaction could occur according to a terminal-joining mechanism and could generate canonical 3',5' phosphodiester bonds, exponential growth would be obtained of the generated oligomers. This type of reaction has been reported (4) , limited to homogeneous polyA sequences and leading to the production of polyA dimers and tetramers. What is still missing are: 4) mechanisms that provide the proof of principle for the generation of sequence complexity. We will show evidence for two mechanisms providing this proof of principle for simple complementary sequences. Namely: abiotic sequence complementary-driven terminal ligation and sequence-complementary terminal growth. In conclusion: all the steps leading to the generation of RNA in abiotic conditions are satisfied. (1) R Saladino, C Crestini, F

  10. Invasive earthworms interact with abiotic conditions to influence the invasion of common buckthorn (Rhamnus cathartica).

    PubMed

    Roth, Alexander M; Whitfeld, Timothy J S; Lodge, Alexandra G; Eisenhauer, Nico; Frelich, Lee E; Reich, Peter B

    2015-05-01

    Common buckthorn (Rhamnus cathartica L.) is one of the most abundant and ecologically harmful non-native plants in forests of the Upper Midwest United States. At the same time, European earthworms are invading previously glaciated areas in this region, with largely anecdotal evidence suggesting they compound the negative effects of buckthorn and influence the invasibility of these forests. Germination and seedling establishment are important control points for colonization by any species, and manipulation of the conditions influencing these life history stages may provide insight into why invasive species are successful in some environments and not others. Using a greenhouse microcosm experiment, we examined the effects of important biotic and abiotic factors on the germination and seedling establishment of common buckthorn. We manipulated light levels, leaf litter depth and earthworm presence to investigate the independent and interactive effects of these treatments on buckthorn establishment. We found that light and leaf litter depth were significant predictors of buckthorn germination but that the presence of earthworms was the most important factor; earthworms interacted with light and leaf litter to increase the number and biomass of buckthorn across all treatments. Path analysis suggested both direct and moisture-mediated indirect mechanisms controlled these processes. The results suggest that the action of earthworms may provide a pathway through which buckthorn invades forests of the Upper Midwest United States. Hence, researchers and managers should consider co-invasion of plants and earthworms when investigating invasibility and creating preemptive or post-invasion management plans.

  11. Abiotic Formation of Methyl Halides in the Terrestrial Environment

    NASA Astrophysics Data System (ADS)

    Keppler, F.

    2011-12-01

    Methyl chloride and methyl bromide are the most abundant chlorine and bromine containing organic compounds in the atmosphere. Since both compounds have relatively long tropospheric lifetimes they can effectively transport halogen atoms from the Earth's surface, where they are released, to the stratosphere and following photolytic oxidation form reactive halogen gases that lead to the chemical destruction of ozone. Methyl chloride and methyl bromide account for more than 20% of the ozone-depleting halogens delivered to the stratosphere and are predicted to grow in importance as the chlorine contribution to the stratosphere from anthropogenic CFCs decline. Today methyl chloride and methyl bromide originate mainly from natural sources with only a minor fraction considered to be of anthropogenic origin. However, until as recently as 2000 most of the methyl chloride and methyl bromide input to the atmosphere was considered to originate from the oceans, but investigations in recent years have clearly demonstrated that terrestrial sources such as biomass burning, wood-rotting fungi, coastal salt marshes, tropical vegetation and organic matter degradation must dominate the atmospheric budgets of these trace gases. However, many uncertainties still exist regarding strengths of both sources and sinks, as well as the mechanisms of formation of these naturally occurring halogenated gases. A better understanding of the atmospheric budget of both methyl chloride and methyl bromide is therefore required for reliable prediction of future ozone depletion. Biotic and abiotic methylation processes of chloride and bromide ion are considered to be the dominant pathways of formation of these methyl halides in nature. In this presentation I will focus on abiotic formation processes in the terrestrial environment and the potential parameters that control their emissions. Recent advances in our understanding of the abiotic formation pathway of methyl halides will be discussed. This will

  12. Biotic and Abiotic Degradation of CL-20 and RDX in Soils

    SciTech Connect

    Crocker, Fiona H.; Thompson, Karen T.; Szecsody, Jim E.; Fredrickson, Herbert L.

    2005-11-01

    The caged cyclic nitramine 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) is a new explosive that has the potential to replace existing military explosives, but little is known about its environmental toxicity, transport, and fate. We quantified and compared the aerobic environmental fate of CL-20 to the widely used cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in surface and subsurface soil microcosms. Soil-free controls and biologically mediated processes. Both abiotic and biological processes significantly degraded CL-20 in all soils examined. Apparent abiotic, first-order degradation rates (k) for CL-20 were not significantly different between soil-free controls (0.018 < k < 0.030 d-1) and biologically attenuated soil controls (0.003 abiotic degradation rates of RDX were generally slower (0 < k < 0.032 d-1) than abiotic CL-20 degradation rates. In biologically active soil microcosms amended with glucose aerobic RDX degradation rates varied between 0.010 and 0.474 d-1. Biodegradation was a key factor in determining the environmental fate of RDX, while a combination of biotic and abiotic processes was important with CL-20. Our data suggest that CL-20 should be less recalcitrant than RDX in aerobic soils.

  13. Cell wall remodeling under abiotic stress

    PubMed Central

    Tenhaken, Raimund

    2015-01-01

    Plants exposed to abiotic stress respond to unfavorable conditions on multiple levels. One challenge under drought stress is to reduce shoot growth while maintaining root growth, a process requiring differential cell wall synthesis and remodeling. Key players in this process are the formation of reactive oxygen species (ROS) and peroxidases, which initially cross-link phenolic compounds and glycoproteins of the cell walls causing stiffening. The function of ROS shifts after having converted all the peroxidase substrates in the cell wall. If ROS-levels remain high during prolonged stress, OH°-radicals are formed which lead to polymer cleavage. In concert with xyloglucan modifying enzymes and expansins, the resulting cell wall loosening allows further growth of stressed organs. PMID:25709610

  14. The White Pine Mine explosively induced, controlled collapse experiment

    SciTech Connect

    Pearson, D.C.; Stump, B.W.; Phillips, W.S.

    1996-09-01

    On September 3, 1995, the White Pine Mine, which is owned by Copper Range Company, conducted the first of a planned series of explosive removal of existing pillars in their underground mining operations. The purpose of this operation is to evaluate the effectiveness of pillar rubbilization and roof collapse for planned in-situ leaching of the copper ore from the rock mass. This type of seismic source is unique in that a large, delay fired, explosive source was expected to be followed by collapse of the rock immediately above the explosion into the void created. Characterization of this type of mining source is of interest to the Comprehensive Test Ban Treaty (CTBT) R&D Seismic Program due to its unique properties. These include the controlled nature of the source in time, location, and magnitude, the fact that the source is located in an active region of underground mining, and that natural collapse of large portions of this mine have occurred in the recent past. The Mine operator is concerned with the characterization of the vibration induced by both the explosive and implosive components of the procedure and determination of the depth to which chimneying of the roof proceeded. This report will document: The reasons for conducting both the explosively induced collapse and the Los Alamos National Laboratory CTBT R&D Experimental Field Program experiment; The local and regional seismic, acoustic, and videographic data acquired; Analysis of the explosion/collapse seismic signal generated; Analysis and location of the aftershocks associated with the collapse; and Conclusions made concerning this type of mining explosion in relation to verification of a Comprehensive Test Ban Treaty.

  15. ABIOTIC IN SITU TECHNOLOGIES FOR GROUNDWATER REMEDIATION CONFERENCE: PROCEEDINGS

    EPA Science Inventory

    The USEPA conference on Abiotic In Situ Technologies for Groundwater Remediation was held in Dallas, TX, 8/31-9/2/99. The goal of the meeting was to disseminate current information on abiotic in situ groundwater treatment echnologies. Although much information is being provided a...

  16. Preliminary structural control results from the Middeck Active Control Experiment (MACE)

    NASA Technical Reports Server (NTRS)

    Miller, David W.; Saarmaa, Erik; Jacques, Robert N.

    1992-01-01

    Results are presented of on-going closed-loop ground experiments on the MACE test article, the objective of which is to investigate the extent to which closed-loop behavior of flexible spacecraft in zero gravity can be predicted, as well as to examine orbit system identification and control reconfiguration. The MACE hardware consists of three torque wheels, a two-axis gimballing payload, inertial sensors, and a flexible support structure. With the acquisition of a second payload, this is to represent a multiple payload platform with significant structural flexibility. When linear quadratic Gaussian control is used, payload pointing accuracy is improved by an order of magnitude when disturbed by a broadband torque disturbance. The successes and failures of the design and implementation process are discussed.

  17. Improved abiotic stress tolerance of bermudagrass by exogenous small molecules.

    PubMed

    Chan, Zhulong; Shi, Haitao

    2015-01-01

    As a widely used warm-season turfgrass in landscapes and golf courses, bermudagrass encounters multiple abiotic stresses during the growth and development. Physiology analysis indicated that abiotic stresses induced the accumulation of ROS and decline of photosynthesis, resulting in increased cell damage and inhibited growth. Proteomic and metabolomic approaches showed that antioxidant enzymes and osmoprotectant contents (sugar, sucrose, dehydrin, proline) were extensively changed under abiotic stress conditions. Exogenous application of small molecules, such as ABA, NO, CaCl2, H2S, polyamine and melatonin, could effectively alleviate damages caused by multiple abiotic stresses, including drought, salt, heat and cold. Based on high through-put RNA seq analysis, genes involved in ROS, transcription factors, hormones, and carbohydrate metabolisms were largely enriched. The data indicated that small molecules induced the accumulation of osmoprotectants and antioxidants, kept cell membrane integrity, increased photosynthesis and kept ion homeostasis, which protected bermudagrass from damages caused by abiotic stresses. PMID:25757363

  18. Abiotic stresses induce different localizations of anthocyanins in Arabidopsis

    PubMed Central

    Kovinich, Nik; Kayanja, Gilbert; Chanoca, Alexandra; Otegui, Marisa S; Grotewold, Erich

    2015-01-01

    Anthocyanins are induced in plants in response to abiotic stresses such as drought, high salinity, excess light, and cold, where they often correlate with enhanced stress tolerance. Numerous roles have been proposed for anthocyanins induced during abiotic stresses including functioning as ROS scavengers, photoprotectants, and stress signals. We have recently found different profiles of anthocyanins in Arabidopsis (Arabidopsis thaliana) plants exposed to different abiotic stresses, suggesting that not all anthocyanins have the same function. Here, we discuss these findings in the context of other studies and show that anthocyanins induced in Arabidopsis in response to various abiotic stresses have different localizations at the organ and tissue levels. These studies provide a basis to clarify the role of particular anthocyanin species during abiotic stress. PMID:26179363

  19. The abiotic disproportionation of sulfur dioxide (SO2) produces sulfate with an oxygen isotope signature close to the isotope composition of seawater sulfate

    NASA Astrophysics Data System (ADS)

    Müller, Inigo A.; Brunner, Benjamin; Max, Thomas; Breuer, Christian; Reeves, Eoghan P.; Thal, Janis; Bernasconi, Stefano M.; Bach, Wolfgang

    2013-04-01

    Whereas the sulfur isotope effects during the abiotic disproportionation of SO2 were thoroughly investigated in the last years, data on the oxygen isotope signature of produced sulfate is scarce. To fill in this gap in knowledge, we performed laboratory experiments which simulated the abiotic SO2 disproportionation at temperatures ranging from 150°C to 320°C. In our experiments SO2 disproportionated rapidly into sulfate and elemental sulfur. The oxygen isotope fractionation between produced sulfate and water is in the range of the observed oxygen isotope offset between seawater sulfate and seawater. The isotope fractionations observed for the experiments is likely composed of an initial kinetic oxygen isotope fractionation, which is rapidly overprinted by equilibrium oxygen isotope between sulfate and water (reaching completion probably within a time frame of ½ to 1 hour. Our observations raise the questions if disproportionation of magmatic SO2 in submarine hydrothermal vent systems is an important control for today's seawater sulfate isotope composition, and if so, if marine hydrothermal SO2 disproportiantion shaped the oxygen isotope signature of marine sulfate over geological times.

  20. Control and Stabilization: Making Millikan's Oil Drop Experiment Work

    ERIC Educational Resources Information Center

    Muller-Hill, Christoph; Heering, Peter

    2011-01-01

    Educational versions of Millikan's oil-drop experiment have frequently been criticized; suggestions for improvement either focus on technical innovations of the setup or on replacing the experiment by other approaches of familiarization, such as computer simulations. In our approach, we have analysed experimental procedures. In doing so, we were…

  1. Optical pathlength control experiment on JPL phase B testbed

    NASA Technical Reports Server (NTRS)

    Rahman, Zahidul H.; Spanos, John T.; O'Brien, John; Chu, Chengchin

    1993-01-01

    An experimental implementation of a nanometer level optical pathlength control for large baseline space interferometry is presented. The pathlength compensation system is installed on a large flexible experimental truss, thus structural motions play a dominant role in the control system design. The associated control structure interaction problem is addressed to maintain the optical pathlength within the prescribed variation of 10-15 nanometer rms. By a successful blend of a structural control for damping augmentation and a direct pathlength control for the pathlength compensation, the optical pathlength variation has been maintained with 6 nanometer rms under the laboratory ambient disturbance and within 9 nanometer rms under a severe forced resonant disturbance.

  2. Adaptive-Control Experiments On A Large Flexible Structure

    NASA Technical Reports Server (NTRS)

    Ih, Che-Hang C.; Bayard, David S.; Wang, Shyh J.; Eldred, Daniel B.

    1990-01-01

    Antennalike flexible structure built for research in advanced technology including suppression of vibrations and control of initial deflections. Structure instrumented with sensors and actuators connected to digital electronic control system, programmed with control algorithms to be tested. Particular attention in this research focused on direct model-reference adaptive-control algorithm based on command generator tracker theory. Built to exhibit multiple vibrational modes, low modal frequencies, and low structural damping. Made three-dimensional so complicated interactions among components of structure and control system investigated.

  3. International Co-Operation in Control Engineering Education Using Online Experiments

    ERIC Educational Resources Information Center

    Henry, Jim; Schaedel, Herbert M.

    2005-01-01

    This paper describes the international co-operation experience in teaching control engineering with laboratories being conducted remotely by students via the Internet. This paper describes how the students ran the experiments and their personal experiences with the laboratory. A tool for process identification and controller tuning based on…

  4. Adaptive independent joint control of manipulators - Theory and experiment

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1988-01-01

    The author presents a simple decentralized adaptive control scheme for multijoint robot manipulators based on the independent joint control concept. The proposed control scheme for each joint consists of a PID (proportional integral and differential) feedback controller and a position-velocity-acceleration feedforward controller, both with adjustable gains. The static and dynamic couplings that exist between the joint motions are compensated by the adaptive independent joint controllers while ensuring trajectory tracking. The proposed scheme is implemented on a MicroVAX II computer for motion control of the first three joints of a PUMA 560 arm. Experimental results are presented to demonstrate that trajectory tracking is achieved despite strongly coupled, highly nonlinear joint dynamics. The results confirm that the proposed decentralized adaptive control of manipulators is feasible, in spite of strong interactions between joint motions. The control scheme presented is computationally very fast and is amenable to parallel processing implementation within a distributed computing architecture, where each joint is controlled independently by a simple algorithm on a dedicated microprocessor.

  5. Expert system to control a fusion energy experiment

    SciTech Connect

    Johnson, R.R.; Canales, T.; Lager, D.

    1986-01-01

    This paper describes a system that automates neutral beam source conditioning. The system achieves this with artificial intelligence techniques by encoding the behavior of several experts as a set of if-then rules in an expert system. One of the functions of the expert system is to control an adaptive controller that, in turn, controls the neutral beam source. The architecture of the system is presented followed by a description of its performance.

  6. Flight experience with manually controlled unconventional aircraft motions

    NASA Technical Reports Server (NTRS)

    Barfield, A. F.

    1978-01-01

    A modified YF-16 aircraft was used to flight demonstrate decoupled modes under the USAF Fighter Control Configured Vehicle (CCV) Program. The direct force capabilities were used to implement seven manually controlled unconventional modes on the aircraft, allowing flat turns, decoupled normal acceleration control, independent longitudinal and lateral translations, uncoupled elevation and azimuth aiming, and blended direct lift. This paper describes the design, development, and flight testing of these control modes. The need for task-tailored mode authorities, gain-scheduling and selected closed-loop design is discussed.

  7. Some experiences with active control of aeroelastic response

    NASA Technical Reports Server (NTRS)

    Newsom, J. R.; Abel, I.

    1981-01-01

    Flight and wind tunnel tests were conducted and multidiscipline computer programs were developed as part of investigations of active control technology conducted at the NASA Langley Research Center. Unsteady aerodynamics approximation, optimal control theory, optimal controller design, and the Delta wing and DC-10 models are described. The drones for aerodynamics and structural testing (DAST program) for evaluating procedures for aerodynamic loads prediction and the design of active control systems on wings with significant aeroelastic effects is described as well as the DAST model used in the wind tunnel tests.

  8. Out-reach in-space technology experiments program: Control of flexible robot manipulators in zero gravity, experiment definition phase

    NASA Technical Reports Server (NTRS)

    Phillips, Warren F.

    1989-01-01

    The results obtained show that it is possible to control light-weight robots with flexible links in a manner that produces good response time and does not induce unacceptable link vibrations. However, deflections induced by gravity cause large static position errors with such a control system. For this reason, it is not possible to use this control system for controlling motion in the direction of gravity. The control system does, on the other hand, have potential for use in space. However, in-space experiments will be needed to verify its applicability to robots moving in three dimensions.

  9. Photo Bleaching of Dissolved Organic Matter Enhances Abiotic Greenhouse Gas Emissions but Inhibits Biotic Emissions

    NASA Astrophysics Data System (ADS)

    Wang, J.; Chow, A. T.; Ng, T.; Wong, P.

    2013-12-01

    Greenhouse gas (GHG) emission from aquatic sources is one of the essential processes in the global carbon cycling. The natural Fenton reaction is commonly occurring in sunlited environment, affecting the degradation of dissolved organic matters (DOMs) and many other biogeochemical processes. In order to evaluate the effect of natural Fenton reaction on the CH4 and CO2 emissions from DOMs, different sources (wetland surface water, wetland soil pore water, and plant litter leachates) of organic matters were incubated under controlled laboratory condition with different dosages of Fenton reagents and environmental conditions. The GHG emissions depended on the dose of Fenton-reagents, reaction time, temperature, and light intensity. Abiotically, the DOMs were photo-degraded into GHGs by both the direct and indirect photolysis. Yet biotically, the reactive oxidative species (ROSs) generated from sunlited waters inactivated the microbes and thus inhibited the biotic GHG emissions. Results of our experiments demonstrate that the dual roles of photo-bleaching of DOM on GHG emission from sunlited surface waters.

  10. Real-Time Manganese Phase Dynamics during Biological and Abiotic Manganese Oxide Reduction.

    PubMed

    Johnson, Jena E; Savalia, Pratixa; Davis, Ryan; Kocar, Benjamin D; Webb, Samuel M; Nealson, Kenneth H; Fischer, Woodward W

    2016-04-19

    Manganese oxides are often highly reactive and easily reduced, both abiotically, by a variety of inorganic chemical species, and biologically during anaerobic respiration by microbes. To evaluate the reaction mechanisms of these different reduction routes and their potential lasting products, we measured the sequence progression of microbial manganese(IV) oxide reduction mediated by chemical species (sulfide and ferrous iron) and the common metal-reducing microbe Shewanella oneidensis MR-1 under several endmember conditions, using synchrotron X-ray spectroscopic measurements complemented by X-ray diffraction and Raman spectroscopy on precipitates collected throughout the reaction. Crystalline or potentially long-lived phases produced in these experiments included manganese(II)-phosphate, manganese(II)-carbonate, and manganese(III)-oxyhydroxides. Major controls on the formation of these discrete phases were alkalinity production and solution conditions such as inorganic carbon and phosphate availability. The formation of a long-lived Mn(III) oxide appears to depend on aqueous Mn(2+) production and the relative proportion of electron donors and electron acceptors in the system. These real-time measurements identify mineralogical products during Mn(IV) oxide reduction, contribute to understanding the mechanism of various Mn(IV) oxide reduction pathways, and assist in interpreting the processes occurring actively in manganese-rich environments and recorded in the geologic record of manganese-rich strata. PMID:27018915

  11. Regulation of Photosynthesis during Abiotic Stress-Induced Photoinhibition.

    PubMed

    Gururani, Mayank Anand; Venkatesh, Jelli; Tran, Lam Son Phan

    2015-09-01

    Plants as sessile organisms are continuously exposed to abiotic stress conditions that impose numerous detrimental effects and cause tremendous loss of yield. Abiotic stresses, including high sunlight, confer serious damage on the photosynthetic machinery of plants. Photosystem II (PSII) is one of the most susceptible components of the photosynthetic machinery that bears the brunt of abiotic stress. In addition to the generation of reactive oxygen species (ROS) by abiotic stress, ROS can also result from the absorption of excessive sunlight by the light-harvesting complex. ROS can damage the photosynthetic apparatus, particularly PSII, resulting in photoinhibition due to an imbalance in the photosynthetic redox signaling pathways and the inhibition of PSII repair. Designing plants with improved abiotic stress tolerance will require a comprehensive understanding of ROS signaling and the regulatory functions of various components, including protein kinases, transcription factors, and phytohormones, in the responses of photosynthetic machinery to abiotic stress. Bioenergetics approaches, such as chlorophyll a transient kinetics analysis, have facilitated our understanding of plant vitality and the assessment of PSII efficiency under adverse environmental conditions. This review discusses the current understanding and indicates potential areas of further studies on the regulation of the photosynthetic machinery under abiotic stress.

  12. Beyond Control and Rationality: Dewey, Aesthetics, Motivation, and Educative Experiences

    ERIC Educational Resources Information Center

    Wong, David

    2007-01-01

    Contemporary perspectives in psychology and education characterize ideal students as rational and in control of their thinking and actions. The good student is often described as intentional, cognitive, metacognitive, critical, and reflective. I begin with a brief history of control and rationality to establish how "The Tradition" is deeply rooted…

  13. AFECS. Multi-Agent Framework for Experiment Control Systems

    SciTech Connect

    Vardan Gyurjyan; David Abbott; William Heyes; Edward Jastrzembski; Carl Timmer; Elliott Wolin

    2008-01-23

    AFECS is a pure Java based software framework for designing and implementing distributed control systems. AFECS creates a control system environment as a collection of software agents behaving as finite state machines. These agents can represent real entities, such as hardware devices, software tasks, or control subsystems. A special control oriented ontology language (COOL), based on RDFS (Resource Definition Framework Schema) is provided for control system description as well as for agent communication. AFECS agents can be distributed over a variety of platforms. Agents communicate with their associated physical components using range of communication protocols, including tcl-DP, cMsg (publish-subscribe communication system developed at Jefferson Lab), SNMP (simple network management protocol), EPICS channel access protocol and JDBC.

  14. Designing abiotic single nanotube membranes for bioanalytical and biomedical applications

    NASA Astrophysics Data System (ADS)

    Harrell, Christopher Chad

    The goal of this research is to develop abiotic nanostructured sensor platforms for bioanalytical and biomedical applications. The first part of this work is the fabrication of synthetic single nanopore membranes within a polymeric support. We describe here an alternative approach that we believe is easier and more accessible than previously described methods. Fluorescence microscopy is used to identify and isolate single nanopores within these membranes. Furthermore, an electroless plating method can be used to deposit a gold nanotube within the single nanopore, and this provides a route for further decreasing the inside diameter of the pore. The second part relies on a method which allows one to prepare single asymmetric nanopores with a tailored cone opening angle, therefore controlling the effective length of the pores. This nanopore system is based on one sided chemical etching of heavy ion irradiated dielectric films. This process offers the advantage of controlling not only the pore diameter but the pore geometry as well. By controlling the pore dimensions it offers one the ability to fine tune the nanopore system for the analysis of individual molecules. The third part of this work describes a device which consisted of a single conically shaped gold nanotube embedded within a polymeric membrane. This device mimics one of the key functions of biological voltage-gated ion channels---the ability to strongly rectify the ionic current flowing through it. We report here artificial ion channels that rectify the ion current flowing through them via an "electromechanical" mechanism. The electromechanical response is provided by single-stranded DNA molecules attached to the nanotube walls. The final part of this work describes a nanodevice, which consisted of a single abiotic nanopore system. This system is used to analyze single DNA molecules based on the electrophoretic transport of the molecule through the single nanopore system. Finally, this system was used to

  15. Polyamines and abiotic stress tolerance in plants.

    PubMed

    Gill, Sarvajeet Singh; Tuteja, Narendra

    2010-01-01

    Environmental stresses including climate change, especially global warming, are severely affecting plant growth and productivity worldwide. It has been estimated that two-thirds of the yield potential of major crops are routinely lost due to the unfavorable environmental factors. On the other hand, the world population is estimated to reach about 10 billion by 2050, which will witness serious food shortages. Therefore, crops with enhanced vigour and high tolerance to various environmental factors should be developed to feed the increasing world population. Maintaining crop yields under adverse environmental stresses is probably the major challenge facing modern agriculture where polyamines can play important role. Polyamines (PAs)(putrescine, spermidine and spermine) are group of phytohormone-like aliphatic amine natural compounds with aliphatic nitrogen structure and present in almost all living organisms including plants. Evidences showed that polyamines are involved in many physiological processes, such as cell growth and development and respond to stress tolerance to various environmental factors. In many cases the relationship of plant stress tolerance was noted with the production of conjugated and bound polyamines as well as stimulation of polyamine oxidation. Therefore, genetic manipulation of crop plants with genes encoding enzymes of polyamine biosynthetic pathways may provide better stress tolerance to crop plants. Furthermore, the exogenous application of PAs is also another option for increasing the stress tolerance potential in plants. Here, we have described the synthesis and role of various polyamines in abiotic stress tolerance in plants.

  16. Polyamines and abiotic stress tolerance in plants

    PubMed Central

    Gill, Sarvajeet Singh

    2010-01-01

    Environmental stresses including climate change, especially global warming, are severely affecting plant growth and productivity worldwide. It has been estimated that two-thirds of the yield potential of major crops are routinely lost due to the unfavorable environmental factors. On the other hand, the world population is estimated to reach about 10 billion by 2050, which will witness serious food shortages. Therefore, crops with enhanced vigour and high tolerance to various environmental factors should be developed to feed the increasing world population. Maintaining crop yields under adverse environmental stresses is probably the major challenge facing modern agriculture where polyamines can play important role. Polyamines (PAs)(putrescine, spermidine and spermine) are group of phytohormone-like aliphatic amine natural compounds with aliphatic nitrogen structure and present in almost all living organisms including plants. Evidences showed that polyamines are involved in many physiological processes, such as cell growth and development and respond to stress tolerance to various environmental factors. In many cases the relationship of plant stress tolerance was noted with the production of conjugated and bound polyamines as well as stimulation of polyamine oxidation. Therefore, genetic manipulation of crop plants with genes encoding enzymes of polyamine biosynthetic pathways may provide better stress tolerance to crop plants. Furthermore, the exogenous application of PAs is also another option for increasing the stress tolerance potential in plants. Here, we have described the synthesis and role of various polyamines in abiotic stress tolerance in plants. PMID:20592804

  17. Phenotyping for abiotic stress tolerance in maize.

    PubMed

    Masuka, Benhilda; Araus, Jose Luis; Das, Biswanath; Sonder, Kai; Cairns, Jill E

    2012-04-01

    The ability to quickly develop germplasm having tolerance to several complex polygenic inherited abiotic and biotic stresses combined is critical to the resilience of cropping systems in the face of climate change. Molecular breeding offers the tools to accelerate cereal breeding; however, suitable phenotyping protocols are essential to ensure that the much-anticipated benefits of molecular breeding can be realized. To facilitate the full potential of molecular tools, greater emphasis needs to be given to reducing the within-experimental site variability, application of stress and characterization of the environment and appropriate phenotyping tools. Yield is a function of many processes throughout the plant cycle, and thus integrative traits that encompass crop performance over time or organization level (i.e. canopy level) will provide a better alternative to instantaneous measurements which provide only a snapshot of a given plant process. Many new phenotyping tools based on remote sensing are now available including non-destructive measurements of growth-related parameters based on spectral reflectance and infrared thermometry to estimate plant water status. Here we describe key field phenotyping protocols for maize with emphasis on tolerance to drought and low nitrogen.

  18. Abiotic uptake of gases by organic soils

    NASA Astrophysics Data System (ADS)

    Smagin, A. V.

    2007-12-01

    Methodological and experimental studies of the abiotic uptake of gaseous substances by organic soils were performed. The static adsorption method of closed vessels for assessing the interaction of gases with the solid and liquid soil phases and the dynamic method of determining the sorption isotherms of gases by soils were analyzed. The theoretical substantiation of the methods and their practical implementations on the basis of a PGA-7 portable gas analyzer (Russia) were considered. Good agreement between the equilibrium sorption isotherms of the gases and the Langmuir model was revealed; for the real ranges of natural gas concentrations, this model can be reduced to the linear Henry equation. The limit values of the gas sorption (Langmuir monolayer capacity) are typical for dry samples; they vary from 670 4000 g/m3 for methane and oxygen to 20 000 25 000 g/m3 for carbon dioxide. The linear distribution coefficients of gases between the solid and gas phases of organic soils (Henry constants) are 8 18 units for poorly sorbed gases (O2, CH4) and 40 60 units for CO2. The kinetics of the chemicophysical uptake of gases by the soil studied is linear in character and obeys the relaxation kinetic model of the first order with the corresponding relaxation constants, which vary from 1 h -1 in wet samples to 10 h -1 in dry samples.

  19. Chemical Priming of Plants Against Multiple Abiotic Stresses: Mission Possible?

    PubMed

    Savvides, Andreas; Ali, Shawkat; Tester, Mark; Fotopoulos, Vasileios

    2016-04-01

    Crop plants are subjected to multiple abiotic stresses during their lifespan that greatly reduce productivity and threaten global food security. Recent research suggests that plants can be primed by chemical compounds to better tolerate different abiotic stresses. Chemical priming is a promising field in plant stress physiology and crop stress management. We review here promising chemical agents such as sodium nitroprusside, hydrogen peroxide, sodium hydrosulfide, melatonin, and polyamines that can potentially confer enhanced tolerance when plants are exposed to multiple abiotic stresses. The challenges and opportunities of chemical priming are addressed, with the aim to boost future research towards effective application in crop stress management.

  20. Recent Molecular Advances on Downstream Plant Responses to Abiotic Stress

    PubMed Central

    dos Reis, Sávio Pinho; Lima, Aline Medeiros; de Souza, Cláudia Regina Batista

    2012-01-01

    Abiotic stresses such as extremes of temperature and pH, high salinity and drought, comprise some of the major factors causing extensive losses to crop production worldwide. Understanding how plants respond and adapt at cellular and molecular levels to continuous environmental changes is a pre-requisite for the generation of resistant or tolerant plants to abiotic stresses. In this review we aimed to present the recent advances on mechanisms of downstream plant responses to abiotic stresses and the use of stress-related genes in the development of genetically engineered crops. PMID:22942725

  1. Current Laminar Flow Control Experiments at NASA Dryden

    NASA Technical Reports Server (NTRS)

    Bowers, Al

    2010-01-01

    An experiment to demonstrate laminar flow over the swept wing of a subsonic transport is being developed. Discrete Roughness Elements are being used to maintain laminar flow over a substantial portion of a wing glove. This passive laminar flow technology has only come to be recognized as a significant player in airliner drag reduction in the last few years. NASA is implementing this experiment and is planning to demonstrate this technology at full-scale Bight cruise conditions of a small-to-medium airliner.

  2. Active Noise Control Experiments using Sound Energy Flu

    NASA Astrophysics Data System (ADS)

    Krause, Uli

    2015-03-01

    This paper reports on the latest results concerning the active noise control approach using net flow of acoustic energy. The test set-up consists of two loudspeakers simulating the engine noise and two smaller loudspeakers which belong to the active noise system. The system is completed by two acceleration sensors and one microphone per loudspeaker. The microphones are located in the near sound field of the loudspeakers. The control algorithm including the update equation of the feed-forward controller is introduced. Numerical simulations are performed with a comparison to a state of the art method minimising the radiated sound power. The proposed approach is experimentally validated.

  3. Experiments on the active control of transitional boundary layers

    NASA Astrophysics Data System (ADS)

    Nelson, P. A.; Rioual, J.-L.; Fisher, M. J.

    Experimental results are presented which demonstrate that the streamwise position of the transition region of a flat plate boundary layer can be actively controlled. The means of control is through the application of suction through the surface of the plate, a progressive increase in suction rate being capable of producing transition at progressively larger distances downstream from the plate leading edge. A simple digital feedback regulator based on an integral control law is shown to be most effective in regulating the position of transition, an error signal being derived from measurements of pressure fluctuations on the surface of the plate.

  4. Four Applesoft BASIC Programs to Control Experiments in Human Learning and Memory.

    ERIC Educational Resources Information Center

    Cameron, Kathleen; And Others

    1985-01-01

    The four BASIC programs described can be used to control experiments and facilitate classroom demonstrations and laboratory exercises in human memory, operant behavior, and visual discrimination. (RM)

  5. Inventory Control. Easily Made Electronic Device for Conductivity Experiments.

    ERIC Educational Resources Information Center

    Gadek, Frank J.

    1987-01-01

    Describes how to construct an electronic device to be used in conductivity experiments using a 35 millimeter film canister, nine volt battery replacement snaps, a 200-300 ohm resistor, and a light-emitting diode. Provides a diagram and photographs of the device. (TW)

  6. A Nonlinear, Multiinput, Multioutput Process Control Laboratory Experiment

    ERIC Educational Resources Information Center

    Young, Brent R.; van der Lee, James H.; Svrcek, William Y.

    2006-01-01

    Experience in using a user-friendly software, Mathcad, in the undergraduate chemical reaction engineering course is discussed. Example problems considered for illustration deal with simultaneous solution of linear algebraic equations (kinetic parameter estimation), nonlinear algebraic equations (equilibrium calculations for multiple reactions and…

  7. A Controlled Drug-Delivery Experiment Using Alginate Beads

    ERIC Educational Resources Information Center

    Farrell, Stephanie; Vernengo, Jennifer

    2012-01-01

    This paper describes a simple, cost-effective experiment which introduces students to drug delivery and modeling using alginate beads. Students produce calcium alginate beads loaded with drug and measure the rate of release from the beads for systems having different stir rates, geometries, extents of cross-linking, and drug molecular weight.…

  8. Study of thermal control systems for orbiting power systems. Materials experiment carrier thermal control system study

    NASA Technical Reports Server (NTRS)

    Fleming, M. L.

    1980-01-01

    Four possible arrangements of the materials experiment carrier (MEC) and power system (PS) thermal control loops were defined which would provide one kW of heat rejection for each kW of power to the MEC payload. These arrangements were compared to the baseline reference concept which provides only 16 kW heat rejection to show the cost of obtaining symmetry in terms of dollars, weight, complexity, growth potential, ease of integration, technology and total launch weight. The results of these comparisons was that the concept which splits the PS thermal control loop into two systems, one to reject PS waste heat and one payload waste heat, appeared favorable. The fluid selection study resulted in recommendation of FC72 as the MEC heat transport fluid based on the thermal and physical characteristics. The coatings reviewed indicated anodized and alodine treated aluminum surfaces or silver teflon are the best choices for the MEC vehicle where durability is an important factor. For high temperature radiators silver teflon or zinc orthotitanate are recommended choices.

  9. The interaction between abiotic photodegradation and microbial decomposition under ultraviolet radiation.

    PubMed

    Wang, Jing; Liu, Lingli; Wang, Xin; Chen, Yiwei

    2015-05-01

    Elevated ultraviolet (UV) radiation has been demonstrated to stimulate litter decomposition. Despite years of research, it is still not fully understood whether the acceleration in litter degradation is primarily attributed to abiotic photodegradation or the combined effects of abiotic photodegradation and microbial decomposition. In this study, we used meta-analysis to synthesize photodegradation studies and compared the effects of UV radiation on litter decomposition between abiotic and biotic conditions. We also conducted a microcosm experiment to assess the effects of UV radiation on litter biodegradability and microbial activity. Overall, our meta-analysis found that under abiotic photodegradation, UV radiation reduced the remaining litter mass by 1.44% (95% CI: 0.85% to 2.08%), did not affect the remaining lignin and increased the dissolved organic carbon (DOC) concentration by 14.01% (1.49-23.67%). Under combined abiotic photodegradation and microbial decomposition, UV radiation reduced the remaining litter mass and lignin by 1.60% (0.04-3.58%) and 16.07% (9.27-24.23%), respectively, but did not alter DOC concentration. UV radiation had no significant impact on soil microbial biomass carbon (MBC), but it reduced microbial respiration by 44.91% (2.26-78.62%) and altered the composition of the microbial community. In addition, UV radiation reduced nitrogen (N) immobilization by 19.44% (4.77-37.92%). Our microcosm experiment further indicated that DOC concentration and the amount of respired C in UV-treated litter increased with UV exposure time, suggesting that longer UV exposure resulted in greater biodegradability. Overall, our study suggested that UV exposure could increase litter biodegradability by increasing the microbial accessibility of lignin, as well as the labile carbon supply to microbes. However, the remaining litter mass was not different between the abiotic and biotic conditions, most likely because the positive effect of UV radiation on litter

  10. Oxygen and sulfur isotope systematics of sulfate produced during abiotic and bacterial oxidation of sphalerite and elemental sulfur

    USGS Publications Warehouse

    Balci, N.; Mayer, B.; Shanks, Wayne C.; Mandernack, K.W.

    2012-01-01

    Studies of metal sulfide oxidation in acid mine drainage (AMD) systems have primarily focused on pyrite oxidation, although acid soluble sulfides (e.g., ZnS) are predominantly responsible for the release of toxic metals. We conducted a series of biological and abiotic laboratory oxidation experiments with pure and Fe-bearing sphalerite (ZnS & Zn 0.88Fe 0.12S), respectively, in order to better understand the effects of sulfide mineralogy and associated biogeochemical controls of oxidation on the resultant ?? 34S and ?? 18O values of the sulfate produced. The minerals were incubated in the presence and absence of Acidithiobacillus ferrooxidans at an initial solution pH of 3 and with water of varying ?? 18O values to determine the relative contributions of H 2O-derived and O 2-derived oxygen in the newly formed sulfate. Experiments were conducted under aerobic and anaerobic conditions using O 2 and Fe(III) aq as the oxidants, respectively. Aerobic incubations with A. ferrooxidans, and S o as the sole energy source were also conducted. The ??34SSO4 values from both the biological and abiotic oxidation of ZnS and ZnS Fe by Fe(III) aq produced sulfur isotope fractionations (??34SSO4-ZnS) of up to -2.6???, suggesting the accumulation of sulfur intermediates during incomplete oxidation of the sulfide. No significant sulfur isotope fractionation was observed from any of the aerobic experiments. Negative sulfur isotope enrichment factors (??34SSO4-ZnS) in AMD systems could reflect anaerobic, rather than aerobic pathways of oxidation. During the biological and abiotic oxidation of ZnS and ZnS Fe by Fe(III) aq all of the sulfate oxygen was derived from water, with measured ?? 18OSO 4-H 2O values of 8.2??0.2??? and 7.5??0.1???, respectively. Also, during the aerobic oxidation of ZnS Fe and S o by A. ferrooxidans, all of the sulfate oxygen was derived from water with similar measured ?? 18OSO 4-H 2O values of 8.1??0.1??? and 8.3??0.3???, respectively. During biological oxidation

  11. Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk.

    PubMed

    Kissoudis, Christos; van de Wiel, Clemens; Visser, Richard G F; van der Linden, Gerard

    2014-01-01

    Plants growing in their natural habitats are often challenged simultaneously by multiple stress factors, both abiotic and biotic. Research has so far been limited to responses to individual stresses, and understanding of adaptation to combinatorial stress is limited, but indicative of non-additive interactions. Omics data analysis and functional characterization of individual genes has revealed a convergence of signaling pathways for abiotic and biotic stress adaptation. Taking into account that most data originate from imposition of individual stress factors, this review summarizes these findings in a physiological context, following the pathogenesis timeline and highlighting potential differential interactions occurring between abiotic and biotic stress signaling across the different cellular compartments and at the whole plant level. Potential effects of abiotic stress on resistance components such as extracellular receptor proteins, R-genes and systemic acquired resistance will be elaborated, as well as crosstalk at the levels of hormone, reactive oxygen species, and redox signaling. Breeding targets and strategies are proposed focusing on either manipulation and deployment of individual common regulators such as transcription factors or pyramiding of non- (negatively) interacting components such as R-genes with abiotic stress resistance genes. We propose that dissection of broad spectrum stress tolerance conferred by priming chemicals may provide an insight on stress cross regulation and additional candidate genes for improving crop performance under combined stress. Validation of the proposed strategies in lab and field experiments is a first step toward the goal of achieving tolerance to combinatorial stress in crops. PMID:24904607

  12. Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk.

    PubMed

    Kissoudis, Christos; van de Wiel, Clemens; Visser, Richard G F; van der Linden, Gerard

    2014-01-01

    Plants growing in their natural habitats are often challenged simultaneously by multiple stress factors, both abiotic and biotic. Research has so far been limited to responses to individual stresses, and understanding of adaptation to combinatorial stress is limited, but indicative of non-additive interactions. Omics data analysis and functional characterization of individual genes has revealed a convergence of signaling pathways for abiotic and biotic stress adaptation. Taking into account that most data originate from imposition of individual stress factors, this review summarizes these findings in a physiological context, following the pathogenesis timeline and highlighting potential differential interactions occurring between abiotic and biotic stress signaling across the different cellular compartments and at the whole plant level. Potential effects of abiotic stress on resistance components such as extracellular receptor proteins, R-genes and systemic acquired resistance will be elaborated, as well as crosstalk at the levels of hormone, reactive oxygen species, and redox signaling. Breeding targets and strategies are proposed focusing on either manipulation and deployment of individual common regulators such as transcription factors or pyramiding of non- (negatively) interacting components such as R-genes with abiotic stress resistance genes. We propose that dissection of broad spectrum stress tolerance conferred by priming chemicals may provide an insight on stress cross regulation and additional candidate genes for improving crop performance under combined stress. Validation of the proposed strategies in lab and field experiments is a first step toward the goal of achieving tolerance to combinatorial stress in crops.

  13. Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk

    PubMed Central

    Kissoudis, Christos; van de Wiel, Clemens; Visser, Richard G. F.; van der Linden, Gerard

    2014-01-01

    Plants growing in their natural habitats are often challenged simultaneously by multiple stress factors, both abiotic and biotic. Research has so far been limited to responses to individual stresses, and understanding of adaptation to combinatorial stress is limited, but indicative of non-additive interactions. Omics data analysis and functional characterization of individual genes has revealed a convergence of signaling pathways for abiotic and biotic stress adaptation. Taking into account that most data originate from imposition of individual stress factors, this review summarizes these findings in a physiological context, following the pathogenesis timeline and highlighting potential differential interactions occurring between abiotic and biotic stress signaling across the different cellular compartments and at the whole plant level. Potential effects of abiotic stress on resistance components such as extracellular receptor proteins, R-genes and systemic acquired resistance will be elaborated, as well as crosstalk at the levels of hormone, reactive oxygen species, and redox signaling. Breeding targets and strategies are proposed focusing on either manipulation and deployment of individual common regulators such as transcription factors or pyramiding of non- (negatively) interacting components such as R-genes with abiotic stress resistance genes. We propose that dissection of broad spectrum stress tolerance conferred by priming chemicals may provide an insight on stress cross regulation and additional candidate genes for improving crop performance under combined stress. Validation of the proposed strategies in lab and field experiments is a first step toward the goal of achieving tolerance to combinatorial stress in crops. PMID:24904607

  14. Comparative study of biogenic and abiotic iron-containing materials

    NASA Astrophysics Data System (ADS)

    Cherkezova-Zheleva, Z.; Shopska, M.; Paneva, D.; Kovacheva, D.; Kadinov, G.; Mitov, I.

    2016-12-01

    Series of iron-based biogenic materials prepared by cultivation of Leptothrix group of bacteria in different feeding media ( Sphaerotilus-Leptothrix group of bacteria isolation medium, Adler, Lieske and silicon-iron-glucose-peptone) were studied. Control samples were obtained in the same conditions and procedures but the nutrition media were not infected with bacteria, i.e. they were sterile. Room and low temperature Mössbauer spectroscopy, powder X-ray diffraction (XRD), and infrared spectroscopy (IRS) were used to reveal the composition and physicochemical properties of biomass and respective control samples. Comparative analysis showed differences in their composition and dispersity of present phases. Sample composition included different ratio of nanodimensional iron oxyhydroxide and oxide phases. Relaxation phenomena such as superparamagnetism or collective magnetic excitation behaviour were registered for some of them. The experimental data showed that the biogenic materials were enriched in oxyhydroxides of high dispersion. Catalytic behaviour of a selected biomass and abiotic material were studied in the reaction of CO oxidation. In situ diffuse-reflectance (DR) IRS was used to monitor the phase transformations in the biomass and CO conversion.

  15. Control and stabilization: making Millikan's oil drop experiment work

    NASA Astrophysics Data System (ADS)

    Müller-Hill, Christoph; Heering, Peter

    2011-09-01

    Educational versions of Millikan's oil-drop experiment have frequently been criticized; suggestions for improvement either focus on technical innovations of the setup or on replacing the experiment by other approaches of familiarization, such as computer simulations. In our approach, we have analysed experimental procedures. In doing so, we were able to identify several sources of error and took measures to minimize their influence. At the same time, we attempted to minimize the standard deviation of each individual series of measurements. Our paper describes how we developed criteria which helped to stabilize the data produced in the following series of measurements. The final series of measurements results in data which demonstrate the atomic structure of electricity and enable a demonstration of the elementary charge.

  16. Radiopurity control in the NEXT-100 double beta decay experiment

    SciTech Connect

    Álvarez, V.; Cárcel, S.; Cervera, A.; Díaz, J.; Ferrario, P.; Gil, A.; Gómez-Cadenas, J. J.; Laing, A.; Liubarsky, I.; Lorca, D.; Martín-Albo, J.; Martínez, A.; Monrabal, F.; Muñoz Vidal, J.; Nebot-Guinot, M.; Rodríguez, J.; Serra, L.; Simón, A.; Sofka, C.; Sorel, M.; and others

    2013-08-08

    An extensive material screening and selection process is underway in the construction of the 'Neutrino Experiment with a Xenon TPC' (NEXT), intended to investigate neutrinoless double beta decay using a high-pressure xenon gas TPC filled with 100 kg of Xe enriched in {sup 136}Xe. Determination of the radiopurity levels of the materials is based on gamma-ray spectroscopy using ultra-low background germanium detectors at the Laboratorio Subterráneo de Canfranc (Spain) and also on Glow Discharge Mass Spectrometry. Materials to be used in the shielding, pressure vessel, electroluminescence and high voltage components and energy and tracking readout planes have been already taken into consideration. The measurements carried out are presented, describing the techniques and equipment used, and the results obtained are shown, discussing their implications for the NEXT experiment.

  17. Experiments in identification and control of flexible-link manipulators

    NASA Technical Reports Server (NTRS)

    Yurkovich, Stephen; Tzes, Anthony P.; Pacheco, Fernando E.

    1989-01-01

    Interest in the study of flexible-link manipulators for space-based applications has risen strongly in recent years. Moreover, numerous experimental results have appeared for the various problems in the modeling, identification and control of such systems. Nevertheless, relatively little literature has appeared involving laboratory verification of tuning controllers for certain types of realistic flexible-link manipulators. Specifically flexible-link manipulators which are required to maintain endpoint accuracy while manipulating loads that are possibly unknown and varying as they undergo disturbance effects from the environment and workspace. Endpoint position control of flexible-link manipulators in these areas are discussed, with laboratory setups consisting of one and two-link manipulators.

  18. Screening for Abiotic Stress Tolerance in Rice: Salt, Cold, and Drought.

    PubMed

    Almeida, Diego M; Almadanim, M Cecília; Lourenço, Tiago; Abreu, Isabel A; Saibo, Nelson J M; Oliveira, M Margarida

    2016-01-01

    Rice (Oryza sativa) is the primary source of food for more than half of the world population. Most rice varieties are severely injured by abiotic stresses, with strong social and economic impact. Understanding rice responses to stress may help breeding for more tolerant varieties. However, papers dealing with stress experiments often describe very different experimental designs, thus making comparisons difficult. The use of identical setups is the only way to generate comparable data. This chapter is organized into three sections, describing the experimental conditions established at the Genomics of Plant Stress (GPlantS) unit of ITQB to assess the response of rice plants to three different abiotic stresses--high salinity, cold stress, and drought. All sections include a detailed description of the materials and methodology, as well as useful notes gathered from the GPlantS team's experience. We use rice seedlings as plants at this stage show high sensitivity to abiotic stresses. For the salt and cold stress assays we use hydroponic cultures, while for the drought assay plants are grown in soil and subjected to water withholding. All setups enable visual score determination and are suitable for sample collection along the imposition of stress. The proposed methodologies are simple and affordable to implement in most labs, allowing the discrimination of several rice genotypes at the molecular and phenotypic level. PMID:26867623

  19. Vancomycin-eluting niosomes: a new approach to the inhibition of staphylococcal biofilm on abiotic surfaces.

    PubMed

    Barakat, Heba S; Kassem, Mervat A; El-Khordagui, Labiba K; Khalafallah, Nawal M

    2014-10-01

    A new vancomycin (VCM)-eluting mixed bilayer niosome formulation was evaluated for the control of staphylococcal colonization and biofilm formation on abiotic surfaces, a niosome application not explored to date. Cosurfactant niosomes were prepared using a Span 60/Tween 40/cholesterol blend (1: 1: 2). Tween 40, a polyethoxylated amphiphile, was included to enhance VCM entrapment and confer niosomal surface properties precluding bacterial adhesion. VCM-eluting niosomes showed good quality attributes including relatively high entrapment efficiency (∼50%), association of Tween 40 with vesicles in a constant proportion (∼87%), biphasic release profile suitable for inhibiting early bacterial colonization, and long-term stability at 4°C for a 12-month study period. Niosomes significantly enhanced VCM activity against planktonic bacteria of nine staphylococcal strains. Using microtiter plates as abiotic surface, VCM-eluting niosomes proved superior to VCM in inhibiting biofilm formation, eradicating surface-borne biofilms, inhibiting biofilm growth, and interfering with biofilm induction by VCM subminimal inhibitory concentrations. Data suggest dual functionality of cosurfactant VCM-eluting niosomes as passive colonization inhibiting barrier and active antimicrobial-controlled delivery system, two functions recognized in infection control of abiotic surfaces and medical devices.

  20. Primordial soup was edible: abiotically produced Miller-Urey mixture supports bacterial growth

    PubMed Central

    Xie, Xueshu; Backman, Daniel; Lebedev, Albert T.; Artaev, Viatcheslav B.; Jiang, Liying; Ilag, Leopold L.; Zubarev, Roman A.

    2015-01-01

    Sixty years after the seminal Miller-Urey experiment that abiotically produced a mixture of racemized amino acids, we provide a definite proof that this primordial soup, when properly cooked, was edible for primitive organisms. Direct admixture of even small amounts of Miller-Urey mixture strongly inhibits E. coli bacteria growth due to the toxicity of abundant components, such as cyanides. However, these toxic compounds are both volatile and extremely reactive, while bacteria are highly capable of adaptation. Consequently, after bacterial adaptation to a mixture of the two most abundant abiotic amino acids, glycine and racemized alanine, dried and reconstituted MU soup was found to support bacterial growth and even accelerate it compared to a simple mixture of the two amino acids. Therefore, primordial Miller-Urey soup was perfectly suitable as a growth media for early life forms. PMID:26412575

  1. Aerodynamics of ski jumping flight and its control: I. Experiments

    NASA Astrophysics Data System (ADS)

    Jung, Daehan; Bang, Kyeongtae; Kim, Heesu; Ahn, Eunhye; Choi, Haecheon

    2015-11-01

    In a ski jumping competition, it is essential to analyze the effect of various posture parameters of a ski jumper to achieve a longer flight distance. For this purpose, we construct a model of a ski jumper by using three-dimensional surface data obtained by scanning a ski jumper's body (Mr. Chil-Ku Kang, member of the Korean national team). An experiment on this model is conducted in a wind tunnel. We consider four posture parameters (forward leaning angle, ski opening angle, ski rolling angle, and ski spacing) and measure the drag and lift forces for various flight postures at various angles of attack (α = 0° - 40°) and Reynolds numbers (Re = 5.4 × 105 - 1.6 × 106) based on the length of the jump ski. Then, we derive optimum values of posture parameters for maximum lift-to-drag ratio using a response surface method. We also conduct a full-scale wind tunnel experiment with members of the Korean national team and confirm the results obtained from the experiment on the model. Supported by the NRF program (2014M3C1B1033848).

  2. Spread of arbitrary conventions among chimpanzees: a controlled experiment

    PubMed Central

    Bonnie, Kristin E; Horner, Victoria; Whiten, Andrew; de Waal, Frans B.M

    2006-01-01

    Wild chimpanzees (Pan troglodytes) have a rich cultural repertoire—traditions common in some communities are not present in others. The majority of reports describe functional, material traditions, such as tool use. Arbitrary conventions have received far less attention. In the same way that observations of material culture in wild apes led to experiments to confirm social transmission and identify underlying learning mechanisms, experiments investigating how arbitrary habits or conventions arise and spread within a group are also required. The few relevant experimental studies reported thus far have relied on cross-species (i.e. human–ape) interaction offering limited ecological validity, and no study has successfully generated a tradition not involving tool use in an established group. We seeded one of two rewarded alternative endpoints to a complex sequence of behaviour in each of two chimpanzee groups. Each sequence spread in the group in which it was seeded, with many individuals unambiguously adopting the sequence demonstrated by a group member. In one group, the alternative sequence was discovered by a low ranking female, but was not learned by others. Since the action-sequences lacked meaning before the experiment and had no logical connection with reward, chimpanzees must have extracted both the form and benefits of these sequences through observation of others. PMID:17164200

  3. Optically controlled spherical liquid-crystal lens: theory and experiment

    SciTech Connect

    Gural'nik, I R; Samagin, S A

    2003-05-31

    A liquid-crystal lens with the focal distance depending on the transmitted light intensity is proposed and studied. A theoretical model is developed which adequately describes the wave-front formation by the lens. The results of visualisation of the wave-front control in a setup with crossed Polaroids and the intensity distributions, which characterise the focusing properties of the lens, are presented. To illustrate the application of the lens, an adaptive-optics system is built for stabilisation of radiation power on a 1-mm diaphragm, which reduces the power fluctuations by a factor of 30. (control of laser radiation parameters)

  4. Experience with ISO quality control in assisted reproductive technology.

    PubMed

    Alper, Michael M

    2013-12-01

    Assisted reproductive technology (ART) programs are complex organizations requiring the integration of multiple disciplines. ISO 9001:2008 is a quality management system that is readily adaptable to an ART program. The value that ISO brings to the entire organization includes control of documents, clear delineation of responsibilities of staff members, documentation of the numerous processes and procedures, improvement in tracking and reducing errors, and overall better control of systems. A quality ART program sets quality objectives and monitors their progress. ISO provides a sense of transparency within the organization and clearer understanding of how service is provided to patients. Most importantly, ISO provides the framework to allow for continual improvement.

  5. Experience with pumpoff control in the Permian Basin

    SciTech Connect

    Neely, A.B.; Tolbert, H.O.

    1988-05-01

    Shell Western EandP Inc. has installed pumpoff control on more than 2,500 sucker-rod pumping wells in the Permian Basin during the last 12 years. These systems fall into three basic categories: stand-alone analog devices, stand-alone microprocessor units with optional communication capabilities to a central computer, and a centralized system where well data are communicated to a central computer for pumpoff decisions. Evaluation has shown that production can be maintained or slightly increased while energy consumption and maintenance expense are substantially reduced. The pumpoff controllers also provide well data that are beneficial in maintaining good surveillance.

  6. Olivine Weathering: Abiotic Versus Biotic Processes as Possible Biosignatures

    NASA Technical Reports Server (NTRS)

    Longazo, T. G.; Wentworth, S. J.; McKay, D. S.; Southam, G.; Clemett, S. J.

    2001-01-01

    A preliminary study to determine how abiotic versus biotic processes affect the weathering of olivine crystals. Perhaps the differences between these weathering processes could be used as biosignatures. Additional information is contained in the original extended abstract.

  7. Roles of melatonin in abiotic stress resistance in plants.

    PubMed

    Zhang, Na; Sun, Qianqian; Zhang, Haijun; Cao, Yunyun; Weeda, Sarah; Ren, Shuxin; Guo, Yang-Dong

    2015-02-01

    In recent years melatonin has emerged as a research highlight in plant studies. Melatonin has different functions in many aspects of plant growth and development. The most frequently mentioned functions of melatonin are related to abiotic stresses such as drought, radiation, extreme temperature, and chemical stresses. This review mainly focuses on the regulatory effects of melatonin when plants face harsh environmental conditions. Evidence indicates that environmental stress can increase the level of endogenous melatonin in plants. Overexpression of the melatonin biosynthetic genes elevates melatonin levels in transgenic plants. The transgenic plants show enhanced tolerance to abiotic stresses. Exogenously applied melatonin can also improve the ability of plants to tolerate abiotic stresses. The mechanisms by which melatonin alleviates abiotic stresses are discussed.

  8. Dimensions of Locus of Control: Impact of Early Educational Experiences.

    ERIC Educational Resources Information Center

    Stephens, Mark W.

    A study was conducted to: (1) assess the equivalence of the Nowicki Strickland Locus of Control Scale for Children, the Stephens-Delys Reinforcement Contingency Interview, and the Gruen-Korte-Stephens test and the construct validity of each; and (2) investigate the impact on IE of the open classroom Follow Through program sponsored by the…

  9. Experiments in structural dynamics and control using a grid

    NASA Technical Reports Server (NTRS)

    Montgomery, R. C.

    1985-01-01

    Future spacecraft are being conceived that are highly flexible and of extreme size. The two features of flexibility and size pose new problems in control system design. Since large scale structures are not testable in ground based facilities, the decision on component placement must be made prior to full-scale tests on the spacecraft. Control law research is directed at solving problems of inadequate modelling knowledge prior to operation required to achieve peak performance. Another crucial problem addressed is accommodating failures in systems with smart components that are physically distributed on highly flexible structures. Parameter adaptive control is a method of promise that provides on-orbit tuning of the control system to improve performance by upgrading the mathematical model of the spacecraft during operation. Two specific questions are answered in this work. They are: What limits does on-line parameter identification with realistic sensors and actuators place on the ultimate achievable performance of a system in the highly flexible environment? Also, how well must the mathematical model used in on-board analytic redundancy be known and what are the reasonable expectations for advanced redundancy management schemes in the highly flexible and distributed component environment?

  10. Second Careers: The Air Traffic Controller Experience and Beyond.

    ERIC Educational Resources Information Center

    Batten, Michael D.

    1978-01-01

    Second careers are examined from an organizational viewpoint, and new directions for education-work policy, suggested by a unique second career program of the Federal Aviation Administration for air traffic controllers, are explored. Focus is on age, organizational and training factors, and community involvement. (Author/JMD)

  11. PID Controller Settings Based on a Transient Response Experiment

    ERIC Educational Resources Information Center

    Silva, Carlos M.; Lito, Patricia F.; Neves, Patricia S.; Da Silva, Francisco A.

    2008-01-01

    An experimental work on controller tuning for chemical engineering undergraduate students is proposed using a small heat exchange unit. Based upon process reaction curves in open-loop configuration, system gain and time constant are determined for first order model with time delay with excellent accuracy. Afterwards students calculate PID…

  12. Experiments on rotamak plasma equilibrium and shape control

    SciTech Connect

    Petrov, Yuri; Yang Xiaokang; Wang Yonghui; Huang, T.-S.

    2010-01-15

    A set of magnetic shaping coils and copper rings is installed in cylindrical chamber rotamak to allow for an active equilibrium control in 40 ms plasma discharges. The coils, which are powered by programmable current source, are used to control both the plasma shape and the boundary poloidal magnetic flux. Without the active equilibrium control, the boundary flux drops from its vacuum value of 0.3 mWb to zero after the plasma current is generated. If the coils are activated, the boundary magnetic flux can be sustained within the 0.2-0.3 mWb range, thus keeping the separatrix away from chamber wall during whole period of the shot. The passive copper rings help in eliminating the fast variations of the boundary magnetic flux. The response of rotamak plasma to the active equilibrium control is drastically different in regimes with or without external toroidal field. A model is presented that describes the change in plasma shape, plasma current, and pressure under the effect of active equilibrium coils.

  13. Apollo experience report: Lunar module display and control subsystem

    NASA Technical Reports Server (NTRS)

    Farkas, A. J.

    1972-01-01

    The lunar module display and control subsystem equipment is described with emphasis on major problems and their solutions. Included in the discussion of each item is a description of what the item does and how the item is constructed. The development, hardware history, and testing for each item are also presented.

  14. Beaconless stochastic parallel gradient descent laser beam control: numerical experiments.

    PubMed

    Piatrou, Piotr; Roggemann, Michael

    2007-09-20

    We apply a target-in-the-loop strategy to the case of adaptive optics beam control in the presence of strong atmospheric turbulence for air-to-ground directed energy laser applications. Using numerical simulations we show that in the absence of a cooperative beacon to probe the atmosphere it is possible to extract information suitable for effective beam control from images of the speckled and strongly turbulence degraded intensity distribution of the laser energy at the target. We use a closed-loop, single-deformable-mirror adaptive optics system driven by a target-in-the-loop stochastic parallel gradient descent optimization algorithm minimizing a mean-radius performance metric defined on the image of the laser beam intensity distribution formed at the receiver. We show that a relatively low order 25-channel zonal adaptive optical beam control system controlled in this way is capable of achieving a high degree of turbulence compensation with respect to energy concentration if the tilt can be corrected separately.

  15. [A field study of tundra plant litter decomposition rate via mass loss and carbon dioxide emission: the role of biotic and abiotic controls, biotope, season of year, and spatial-temporal scale].

    PubMed

    Pochikalov, A V; Karelin, D V

    2014-01-01

    Although many recently published original papers and reviews deal with plant matter decomposition rates and their controls, we are still very short in understanding of these processes in boreal and high latiude plant communities, especially in permafrost areas of our planet. First and foremost, this is holds true for winter period. Here, we present the results of 2-year field observations in south taiga and south shrub tundra ecosystems in European Russia. We pioneered in simultaneous application of two independent methods: classic mass loss estimation by litter-bag technique, and direct measurement of CO2 emission (respiration) of the same litter bags with different types of dead plant matter. Such an approach let us to reconstruct intra-seasonal dynamics of decomposition rates of the main tundra litter fractions with high temporal resolution, to estimate the partial role of different seasons and defragmentation in the process of plant matter decomposition, and to determine its factors under different temporal scale.

  16. [A field study of tundra plant litter decomposition rate via mass loss and carbon dioxide emission: the role of biotic and abiotic controls, biotope, season of year, and spatial-temporal scale].

    PubMed

    Pochikalov, A V; Karelin, D V

    2014-01-01

    Although many recently published original papers and reviews deal with plant matter decomposition rates and their controls, we are still very short in understanding of these processes in boreal and high latiude plant communities, especially in permafrost areas of our planet. First and foremost, this is holds true for winter period. Here, we present the results of 2-year field observations in south taiga and south shrub tundra ecosystems in European Russia. We pioneered in simultaneous application of two independent methods: classic mass loss estimation by litter-bag technique, and direct measurement of CO2 emission (respiration) of the same litter bags with different types of dead plant matter. Such an approach let us to reconstruct intra-seasonal dynamics of decomposition rates of the main tundra litter fractions with high temporal resolution, to estimate the partial role of different seasons and defragmentation in the process of plant matter decomposition, and to determine its factors under different temporal scale. PMID:25771676

  17. Tissue specific and abiotic stress regulated transcription of histidine kinases in plants is also influenced by diurnal rhythm

    PubMed Central

    Singh, Anupama; Kushwaha, Hemant R.; Soni, Praveen; Gupta, Himanshu; Singla-Pareek, Sneh L.; Pareek, Ashwani

    2015-01-01

    Two-component system (TCS) is one of the key signal sensing machinery which enables species to sense environmental stimuli. It essentially comprises of three major components, sensory histidine kinase proteins (HKs), histidine phosphotransfer proteins (Hpts), and response regulator proteins (RRs). The members of the TCS family have already been identified in Arabidopsis and rice but the knowledge about their functional indulgence during various abiotic stress conditions remains meager. Current study is an attempt to carry out comprehensive analysis of the expression of TCS members in response to various abiotic stress conditions and in various plant tissues in Arabidopsis and rice using MPSS and publicly available microarray data. The analysis suggests that despite having almost similar number of genes, rice expresses higher number of TCS members during various abiotic stress conditions than Arabidopsis. We found that the TCS machinery is regulated by not only various abiotic stresses, but also by the tissue specificity. Analysis of expression of some representative members of TCS gene family showed their regulation by the diurnal cycle in rice seedlings, thus bringing-in another level of their transcriptional control. Thus, we report a highly complex and tight regulatory network of TCS members, as influenced by the tissue, abiotic stress signal, and diurnal rhythm. The insights on the comparative expression analysis presented in this study may provide crucial leads toward dissection of diverse role(s) of the various TCS family members in Arabidopsis and rice. PMID:26442025

  18. Controlled Experiment Replication in Evaluation of E-Learning System's Educational Influence

    ERIC Educational Resources Information Center

    Grubisic, Ani; Stankov, Slavomir; Rosic, Marko; Zitko, Branko

    2009-01-01

    We believe that every effectiveness evaluation should be replicated at least in order to verify the original results and to indicate evaluated e-learning system's advantages or disadvantages. This paper presents the methodology for conducting controlled experiment replication, as well as, results of a controlled experiment and an internal…

  19. Active spacecraft potential control: An ion emitter experiment. [Cluster mission

    NASA Technical Reports Server (NTRS)

    Riedler, W.; Goldstein, R.; Hamelin, M.; Maehlum, B. N.; Troim, J.; Olsen, R. C.; Pedersen, A.; Grard, R. J. L.; Schmidt, R.; Rudenauer, F.

    1988-01-01

    The cluster spacecraft are instrumented with ion emitters for charge neutralization. The emitters produce indium ions at 6 keV. The ion current is adjusted in a feedback loop with instruments measuring the spacecraft potential. The system is based on the evaporation of indium in the apex field of a needle. The design of the active spacecraft potential control instruments, and the ion emitters is presented.

  20. Digital Fly-By-Wire Flight Control Validation Experience

    NASA Technical Reports Server (NTRS)

    Szalai, K. J.; Jarvis, C. R.; Krier, G. E.; Megna, V. A.; Brock, L. D.; Odonnell, R. N.

    1978-01-01

    The experience gained in digital fly-by-wire technology through a flight test program being conducted by the NASA Dryden Flight Research Center in an F-8C aircraft is described. The system requirements are outlined, along with the requirements for flight qualification. The system is described, including the hardware components, the aircraft installation, and the system operation. The flight qualification experience is emphasized. The qualification process included the theoretical validation of the basic design, laboratory testing of the hardware and software elements, systems level testing, and flight testing. The most productive testing was performed on an iron bird aircraft, which used the actual electronic and hydraulic hardware and a simulation of the F-8 characteristics to provide the flight environment. The iron bird was used for sensor and system redundancy management testing, failure modes and effects testing, and stress testing in many cases with the pilot in the loop. The flight test program confirmed the quality of the validation process by achieving 50 flights without a known undetected failure and with no false alarms.

  1. Technology innovations and experience curves for nitrogen oxides control technologies.

    PubMed

    Yeh, Sonia; Rubin, Edward S; Taylor, Margaret R; Hounshell, David A

    2005-12-01

    This paper reviews the regulatory history for nitrogen oxides (NOx) pollutant emissions from stationary sources, primarily in coal-fired power plants. Nitrogen dioxide (NO2) is one of the six criteria pollutants regulated by the 1970 Clean Air Act where National Ambient Air Quality Standards were established to protect public health and welfare. We use patent data to show that in the cases of Japan, Germany, and the United States, innovations in NOx control technologies did not occur until stringent government regulations were in place, thus "forcing" innovation. We also demonstrate that reductions in the capital and operation and maintenance (O&M) costs of new generations of high-efficiency NOx control technologies, selective catalytic reduction (SCR), are consistently associated with the increasing adoption of the control technology: the so-called learning-by-doing phenomena. The results show that as cumulative world coal-fired SCR capacity doubles, capital costs decline to approximately 86% and O&M costs to 58% of their original values. The observed changes in SCR technology reflect the impact of technological advance as well as other factors, such as market competition and economies of scale.

  2. Citrus Quality Control: An NMR/MRI Problem-Based Experiment

    ERIC Educational Resources Information Center

    Erhart, Sarah E.; McCarrick, Robert M.; Lorigan, Gary A.; Yezierski, Ellen J.

    2016-01-01

    An experiment seated in an industrial context can provide an engaging framework and unique learning opportunity for an upper-division physical chemistry laboratory. An experiment that teaches NMR/MRI through a problem-based quality control of citrus products was developed. In this experiment, using a problem-based learning (PBL) approach, students…

  3. Recent Controlled Meteorological Balloon experiments in Queen Maud Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Hole, L. R.; Voss, P. B.; Vihma, T. P.

    2013-12-01

    Controlled Meteorological (CMET) balloons are unique in that their altitude can be changed at any time during flight. They are remotely controlled via the Iridium network and use GPS for positioning. Over the past seven years, they have been operated at altitudes from sea-level to six kilometers and have flown for periods as long as five days. Campaigns have been carried out from the Amazon via Mexico City to polar regions. CMET balloons can perform repeated soundings in order to probe evolving thermal and chemical structure, measure wind shear, and track atmospheric layers. Typical ascent/descent rate is 1 m/s and the data sampling rate is 10 sec. The standard CMET balloon consists of zero-pressure balloon (~300-500 liters at sea level) which itself contains a much smaller (~100 liter) super-pressure balloon. Transferring helium between the super-pressure balloon and the zero-pressure balloon regulates the volume (and density) of the system, leading to controlled ascent and descent. Due to the rarity of meteorological observations from the Antarctic, especially from inland and over the sea, CMET balloons have potential to provide strongly needed data for evaluation of numerical weather prediction and climate models. Here, we present data from a CMET campaign carried out at the Finnish Aboa station in Antarctica (73° 03' S, 13° 25' W) in January 2013. The campaign was unique in that three CMET balloons were shipped to the station and launched by the local team. After the launch, they were controlled by scientists located in MA, USA and Norway. One balloon, Bravo, cruised for more than 100 hours over the coastal slopes of Queen Maud Land and nearby sea ice with a total trajectory length of over 3000 km (Fig. 1). It also passed nearby the UK Halley station. The altitude was generally kept at about 3000-3500 masl, but 8 controlled soundings down to 400-500 masl were carried out. The balloon data were compared with the Weather Research and Forecasting model (WRF

  4. Fugitive dust control experiments using soil fixatives on vehicle traffic surfaces

    SciTech Connect

    Winberg, M.R.; Wixom, V.E.

    1992-08-01

    This report presents the results of engineering scale dust control experiments using soil fixative for contamination control during handling of transuranic waste. These experiments focused on controlling dust during retrieval operations of buried waste where waste and soil are intimately mixed. Sources of dust generation during retrieval operations include digging, dumping, and vehicle traffic. Because contaminants are expected to attach to soil particles and move with the generated dust, control of the dust spread may be the key to contamination control. Dust control techniques examined in these experiments include the use of soil fixatives to control generation of fugitive dusts during vehicle traffic operations. Previous experiments conducted in FY 1990 included testing of the soil fixative, ENTAC. These experiments showed that ENTAC was effective in controlling dust generation but had several undesirable properties such as slow cure times and clogged the pumps and application nozzles. Therefore, other products would have to be evaluated to find a suitable candidate. As a result, two soil fixatives were tested in these present experiments, COHEREX-PM, an asphalt emulsion product manufactured by Witco Corporation and FLAMBINDER, a calcium lignosulfonate product manufactured by Flambeau Corporation. The results of the experiments include product performance and recommended application methods for application in a field deployable contamination control unit to be built in FY 1993.

  5. Remote Manipulator System (RMS)-based Controls-Structures Interaction (CSI) flight experiment feasibility study

    NASA Technical Reports Server (NTRS)

    Demeo, Martha E.

    1990-01-01

    The feasibility of an experiment which will provide an on-orbit validation of Controls-Structures Interaction (CSI) technology, was investigated. The experiment will demonstrate the on-orbit characterization and flexible-body control of large flexible structure dynamics using the shuttle Remote Manipulator System (RMS) with an attached payload as a test article. By utilizing existing hardware as well as establishing integration, operation and safety algorithms, techniques and procedures, the experiment will minimize the costs and risks of implementing a flight experiment. The experiment will also offer spin-off enhancement to both the Shuttle RMS (SRMS) and the Space Station RMS (SSRMS).

  6. Coupled biotic-abiotic oxidation of organic matter by biogenic MnO_{2}

    NASA Astrophysics Data System (ADS)

    Gonzalez, Julia; Peña, Jasquelin

    2016-04-01

    Some reactive soil minerals are strongly implicated in stabilising organic matter. However, others can play an active role in the oxidation of organic molecules. In natural systems, layer-type manganese oxide minerals (MnO2) typically occur as biomineral assemblages consisting of mineral particles and microbial biomass. Both the mineral and biological fractions of the assemblage can be powerful oxidants of organic C. The biological compartment relies on a set of enzymes to drive oxidative transformations of reduced C-substrates, whereas MnO2 minerals are strong, less specific abiotic oxidants that are assumed to rely on interfacial interactions between C-substrates and the mineral surface. This project aims to understand the coupling between microbial C mineralization and abiotic C oxidation mediated by MnO2 in bacterial-MnO2 assemblages. Specifically, under conditions of high C turnover, microbial respiration can significantly alter local pH, dissolved oxygen and pool of available reductants, which may modify rates and mechanism of C oxidation by biotic and abiotic components. We first investigated changes in the solution chemistry of Pseudomonas putida suspensions exposed to varying concentrations of glucose, chosen to represent readily bioavailable substrates in soils. Glucose concentrations tested ranged between 0 and 5.5mM and changes in pH, dissolved oxygen and dissolved organic and inorganic carbon were tracked over 48h. We then combined literature review and wet-chemical experiments to compile the pH dependence of rates of organic substrate oxidation by MnO2, including glucose. Our results demonstrate a strong pH dependence for these abiotic reactions. In assemblages of P. putida - MnO2, kinetic limitations for abiotic C oxidation by MnO2 are overcome by changes in biogeochemical conditions that result from bacterial C metabolism. When extrapolated to a soil solution confronted to an input of fresh dissolved organic matter, bacterial C metabolism of the

  7. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress.

    PubMed

    Nicot, Nathalie; Hausman, Jean-François; Hoffmann, Lucien; Evers, Danièle

    2005-11-01

    Plant stress studies are more and more based on gene expression. The analysis of gene expression requires sensitive, precise, and reproducible measurements for specific mRNA sequences. Real-time RT-PCR is at present the most sensitive method for the detection of low abundance mRNA. To avoid bias, real-time RT-PCR is referred to one or several internal control genes, which should not fluctuate during treatments. Here, the non-regulation of seven housekeeping genes (beta-tubulin, cyclophilin, actin, elongation factor 1-alpha (ef1alpha), 18S rRNA, adenine phosphoribosyl transferase (aprt), and cytoplasmic ribosomal protein L2) during biotic (late blight) and abiotic stresses (cold and salt stress) was tested on potato plants using geNorm software. Results from the three experimental conditions indicated that ef1alpha was the most stable among the seven tested. The expression of the other housekeeping genes tested varied upon stress. In parallel, a study of the variability of expression of hsp20.2, shown to be implicated in late blight stress, was realized. The relative quantification of the hsp20.2 gene varied according to the internal control and the number of internal controls used, thus highlighting the importance of the choice of internal controls in such experiments.

  8. Evolution and Adaptation of Wild Emmer Wheat Populations to Biotic and Abiotic Stresses.

    PubMed

    Huang, Lin; Raats, Dina; Sela, Hanan; Klymiuk, Valentina; Lidzbarsky, Gabriel; Feng, Lihua; Krugman, Tamar; Fahima, Tzion

    2016-08-01

    The genetic bottlenecks associated with plant domestication and subsequent selection in man-made agroecosystems have limited the genetic diversity of modern crops and increased their vulnerability to environmental stresses. Wild emmer wheat, the tetraploid progenitor of domesticated wheat, distributed along a wide range of ecogeographical conditions in the Fertile Crescent, has valuable "left behind" adaptive diversity to multiple diseases and environmental stresses. The biotic and abiotic stress responses are conferred by series of genes and quantitative trait loci (QTLs) that control complex resistance pathways. The study of genetic diversity, genomic organization, expression profiles, protein structure and function of biotic and abiotic stress-resistance genes, and QTLs could shed light on the evolutionary history and adaptation mechanisms of wild emmer populations for their natural habitats. The continuous evolution and adaptation of wild emmer to the changing environment provide novel solutions that can contribute to safeguarding food for the rapidly growing human population.

  9. 14-3-3 proteins: Macro-regulators with great potential for improving abiotic stress tolerance in plants.

    PubMed

    Liu, Qing; Zhang, Shaohong; Liu, Bin

    2016-08-12

    14-3-3 proteins (14-3-3s) are highly conserved regulatory proteins that are uniquely eukaryotic, and deeply involved in protein-protein interactions that mediate diverse signaling pathways. In plants, 14-3-3s have been validated to regulate many biological processes, such as metabolism, light and hormone signaling, cell-cycle control and protein trafficking. Recent years we have also witnessed an increasing number of reports describing the functions of 14-3-3s in plant stress responses through interactions with key proteins in both biotic and abiotic stresses. In this review, we highlight the advances that have been made in investigating the roles of 14-3-3s in plant abiotic stress tolerance. These advances provide a framework for our understanding of how signals are integrated to perceive and respond to the abiotic stresses in plants. PMID:27233603

  10. Monitoring hyporheic exchanges during a dam controlled experiment

    NASA Astrophysics Data System (ADS)

    Houzé, Clémence; Varnède, Lucie; Durand, Véronique; Pessel, Marc

    2016-04-01

    Precise understanding of the hyporheic exchanges response to stream flow fluctuations remains a great challenge for many environmental and hydrological problems. Multiplication of natural stream restoration programs and anthropic structures removal highlight that a better understanding of the hydrodynamic and ecological functioning of hyporheic exchanges is critical . The objective of this field experiment was to monitor the dynamic exchanges within the hyporheic zone due to an artificial stream head variation. Various types of measurements were performed, using natural tracers and electrical resistivity tomography (ERT). The dam downstream the studied river reach was successively lowered during two days, and raised during three days, implying river heads variations of about 15cm. The studied area was equipped with CTD probes (measuring the head and the conductivity) within the river, 2 multi-depths water sampling tubes inserted up to one meter depth within the riverbed deposits and 3 ERT profiles with various electrode spacing (20 cm, 25 cm, 50 cm). During the 5 days experiment, water sampling and ERT profiles were done regularly. Estimations of the sediments hydraulic conductivity were obtained by several slug tests in plastic tubes at different depths within the streambed. First results showed that stream fluctuation leads to a rapid hyporheic response according to chloride variations between stream and riverbed sediments. Similar results between geochemical and geophysical tools were found. A decrease in stream head leads to reduce the depth of the mixing zone, as the river gaining conditions intensify. On the contrary, we observed that an increased river head tends to deepen the hyporheic exchange zone.

  11. MICROSCALE METABOLIC, REDOX AND ABIOTIC REACTIONS IN HANFORD 300 AREA SUBSURFACE SEDIMENTS

    SciTech Connect

    Beyenal, Haluk; McLEan, Jeff; Majors, Paul; Fredrickson, Jim

    2013-11-14

    The Hanford 300 Area is a unique site due to periodic hydrologic influence of river water resulting in changes in groundwater elevation and flow direction. This area is also highly subject to uranium remobilization, the source of which is currently believed to be the region at the base of the vadose zone that is subject to period saturation due to the changes in the water levels in the Columbia River. We found that microbial processes and redox and abiotic reactions which operate at the microscale were critical to understanding factors controlling the macroscopic fate and transport of contaminants in the subsurface. The combined laboratory and field research showed how microscale conditions control uranium mobility and how biotic, abiotic and redox reactions relate to each other. Our findings extended the current knowledge to examine U(VI) reduction and immobilization using natural 300 Area communities as well as selected model organisms on redox-sensitive and redox-insensitive minerals. Using innovative techniques developed specifically to probe biogeochemical processes at the microscale, our research expanded our current understanding of the roles played by mineral surfaces, bacterial competition, and local biotic, abiotic and redox reaction rates on the reduction and immobilization of uranium.

  12. Semiochemicals from ex situ abiotically stressed cactus tissue: a contributing role of fungal spores?

    PubMed

    Beck, John J; Baig, Nausheena; Cook, Daniel; Mahoney, Noreen E; Marsico, Travis D

    2014-12-24

    Semiochemicals play a central role in communication between plants and insects, such as signaling the location of a suitable host. Fungi on host plants can also play an influential role in communicating certain plant vulnerabilities to an insect. The spiroketal conophthorin is an important semiochemical produced by developing fungal spores. Spiroketals are also used as signals for scolytid communication. Plants and fungi are known to emit varying volatile profiles under biotic and abiotic stress. This paper reports distinctive temporal-volatile profiles from three abiotic treatments, room temperature (control), -15 °C (cold), and -15 °C to room temperature (shock), of cactus tissue plugs. Volatiles from the three treatments included monoterpenes from control plugs, compounds of varying classes and origin at later stages for cold plugs, and known semiochemicals, including spiroketals, at later stages for shock plugs. The results highlight several important findings: a unique tissue source of the spiroketals; abiotic cold-shock stress is indicated as the cause of spiroketal production; and, given previous findings of spirogenesis, fungal spore involvement is a probable biosynthetic origin of the spiroketals. These findings suggest an important role of fungal volatiles as signaling plant vulnerability to insects.

  13. ROS-mediated abiotic stress-induced programmed cell death in plants

    PubMed Central

    Petrov, Veselin; Hille, Jacques; Mueller-Roeber, Bernd; Gechev, Tsanko S.

    2015-01-01

    During the course of their ontogenesis plants are continuously exposed to a large variety of abiotic stress factors which can damage tissues and jeopardize the survival of the organism unless properly countered. While animals can simply escape and thus evade stressors, plants as sessile organisms have developed complex strategies to withstand them. When the intensity of a detrimental factor is high, one of the defense programs employed by plants is the induction of programmed cell death (PCD). This is an active, genetically controlled process which is initiated to isolate and remove damaged tissues thereby ensuring the survival of the organism. The mechanism of PCD induction usually includes an increase in the levels of reactive oxygen species (ROS) which are utilized as mediators of the stress signal. Abiotic stress-induced PCD is not only a process of fundamental biological importance, but also of considerable interest to agricultural practice as it has the potential to significantly influence crop yield. Therefore, numerous scientific enterprises have focused on elucidating the mechanisms leading to and controlling PCD in response to adverse conditions in plants. This knowledge may help develop novel strategies to obtain more resilient crop varieties with improved tolerance and enhanced productivity. The aim of the present review is to summarize the recent advances in research on ROS-induced PCD related to abiotic stress and the role of the organelles in the process. PMID:25741354

  14. Methaqualone misuse: foreign experience and United States drug control policy.

    PubMed

    Falco, M

    1976-01-01

    In 1972 methaqualone emerged as a major drug of nonmedical use in the United States--a subject of widespread publicity and public concern. In late 1973, government officials responded by taking the unprecedented measure of imposing the strictest controls available under United States law on a drug which had previously been subject only to a simple prescription requirement. Methaqualone had a similar history in other countries, particularly in Germany, Japan, and Great Britain. However, this history was ignored by United States officials until nonmedical methaqualone use had become a substantial problem in the United States.

  15. Shuttle Orbiter Active Thermal Control Subsystem design and flight experience

    NASA Technical Reports Server (NTRS)

    Bond, Timothy A.; Metcalf, Jordan L.; Asuncion, Carmelo

    1991-01-01

    The paper examines the design of the Space Shuttle Orbiter Active Thermal Control Subsystem (ATCS) constructed for providing the vehicle and payload cooling during all phases of a mission and during ground turnaround operations. The operation of the Shuttle ATCS and some of the problems encountered during the first 39 flights of the Shuttle program are described, with special attention given to the major problems encountered with the degradation of the Freon flow rate on the Orbiter Columbia, the Flash Evaporator Subsystem mission anomalies which occurred on STS-26 and STS-34, and problems encountered with the Ammonia Boiler Subsystem. The causes and the resolutions of these problems are discussed.

  16. Simultaneous controlled vitamin release from multiparticulates: theory and experiment.

    PubMed

    Seidenberger, T; Siepmann, J; Bley, H; Maeder, K; Siepmann, F

    2011-06-30

    The aim of this study was to simultaneously control the release of multiple vitamins exhibiting very different water-solubility and molecular weights from multiparticulates. Several types of sucrose esters and triglycerides were studied as matrix formers in granules prepared by wet granulation, melt granulation or compression and grinding. The vitamin release kinetics were measured in 0.1N HCl, phosphate buffer pH 6.8 and water in a USP paddle apparatus. An appropriate analytical solution of Fick's second law of diffusion was used to better understand the underlying mass transport phenomena. Importantly, the release rates of nicotinamide, pyridoxine hydrochloride, riboflavin 5'-phosphate, riboflavin, thiamine chloride hydrochloride and thiamine nitrate can simultaneously be controlled from the investigated multiparticulates. Varying the total vitamin content, granule size, type of preparation technique and type of matrix former (Sucrose Stearate S370, Sucrose Stearate S1170, glycerol dibehenate, glycerol dipalmitostearate), desired vitamin release rates can be adjusted. Interestingly, diffusion seems to be the dominant mass transport mechanism in most cases. Thus, appropriate solutions of Fick's law can be used to quantitatively predict the effects of the systems' composition and dimensions on the resulting vitamin release patterns. This knowledge can significantly help facilitating device optimization.

  17. Identification of Cassava MicroRNAs under Abiotic Stress.

    PubMed

    Ballén-Taborda, Carolina; Plata, Germán; Ayling, Sarah; Rodríguez-Zapata, Fausto; Becerra Lopez-Lavalle, Luis Augusto; Duitama, Jorge; Tohme, Joe

    2013-01-01

    The study of microRNAs (miRNAs) in plants has gained significant attention in recent years due to their regulatory role during development and in response to biotic and abiotic stresses. Although cassava (Manihot esculenta Crantz) is tolerant to drought and other adverse conditions, most cassava miRNAs have been predicted using bioinformatics alone or through sequencing of plants challenged by biotic stress. Here, we use high-throughput sequencing and different bioinformatics methods to identify potential cassava miRNAs expressed in different tissues subject to heat and drought conditions. We identified 60 miRNAs conserved in other plant species and 821 potential cassava-specific miRNAs. We also predicted 134 and 1002 potential target genes for these two sets of sequences. Using real time PCR, we verified the condition-specific expression of 5 cassava small RNAs relative to a non-stress control. We also found, using publicly available expression data, a significantly lower expression of the predicted target genes of conserved and nonconserved miRNAs under drought stress compared to other cassava genes. Gene Ontology enrichment analysis along with condition specific expression of predicted miRNA targets, allowed us to identify several interesting miRNAs which may play a role in stress-induced posttranscriptional regulation in cassava and other plants. PMID:24328029

  18. Identification of Cassava MicroRNAs under Abiotic Stress

    PubMed Central

    Ballén-Taborda, Carolina; Plata, Germán; Ayling, Sarah; Rodríguez-Zapata, Fausto; Tohme, Joe

    2013-01-01

    The study of microRNAs (miRNAs) in plants has gained significant attention in recent years due to their regulatory role during development and in response to biotic and abiotic stresses. Although cassava (Manihot esculenta Crantz) is tolerant to drought and other adverse conditions, most cassava miRNAs have been predicted using bioinformatics alone or through sequencing of plants challenged by biotic stress. Here, we use high-throughput sequencing and different bioinformatics methods to identify potential cassava miRNAs expressed in different tissues subject to heat and drought conditions. We identified 60 miRNAs conserved in other plant species and 821 potential cassava-specific miRNAs. We also predicted 134 and 1002 potential target genes for these two sets of sequences. Using real time PCR, we verified the condition-specific expression of 5 cassava small RNAs relative to a non-stress control. We also found, using publicly available expression data, a significantly lower expression of the predicted target genes of conserved and nonconserved miRNAs under drought stress compared to other cassava genes. Gene Ontology enrichment analysis along with condition specific expression of predicted miRNA targets, allowed us to identify several interesting miRNAs which may play a role in stress-induced posttranscriptional regulation in cassava and other plants. PMID:24328029

  19. Identification of Cassava MicroRNAs under Abiotic Stress.

    PubMed

    Ballén-Taborda, Carolina; Plata, Germán; Ayling, Sarah; Rodríguez-Zapata, Fausto; Becerra Lopez-Lavalle, Luis Augusto; Duitama, Jorge; Tohme, Joe

    2013-01-01

    The study of microRNAs (miRNAs) in plants has gained significant attention in recent years due to their regulatory role during development and in response to biotic and abiotic stresses. Although cassava (Manihot esculenta Crantz) is tolerant to drought and other adverse conditions, most cassava miRNAs have been predicted using bioinformatics alone or through sequencing of plants challenged by biotic stress. Here, we use high-throughput sequencing and different bioinformatics methods to identify potential cassava miRNAs expressed in different tissues subject to heat and drought conditions. We identified 60 miRNAs conserved in other plant species and 821 potential cassava-specific miRNAs. We also predicted 134 and 1002 potential target genes for these two sets of sequences. Using real time PCR, we verified the condition-specific expression of 5 cassava small RNAs relative to a non-stress control. We also found, using publicly available expression data, a significantly lower expression of the predicted target genes of conserved and nonconserved miRNAs under drought stress compared to other cassava genes. Gene Ontology enrichment analysis along with condition specific expression of predicted miRNA targets, allowed us to identify several interesting miRNAs which may play a role in stress-induced posttranscriptional regulation in cassava and other plants.

  20. Circadian Redox Signaling in Plant Immunity and Abiotic Stress

    PubMed Central

    Spoel, Steven H.

    2014-01-01

    Abstract Significance: Plant crops are critically important to provide quality food and bio-energy to sustain a growing human population. Circadian clocks have been shown to deliver an adaptive advantage to plants, vastly increasing biomass production by efficient anticipation to the solar cycle. Plant stress, on the other hand, whether biotic or abiotic, prevents crops from reaching maximum productivity. Recent Advances: Stress is associated with fluctuations in cellular redox and increased phytohormone signaling. Recently, direct links between circadian timekeeping, redox fluctuations, and hormone signaling have been identified. A direct implication is that circadian control of cellular redox homeostasis influences how plants negate stress to ensure growth and reproduction. Critical Issues: Complex cellular biochemistry leads from perception of stress via hormone signals and formation of reactive oxygen intermediates to a physiological response. Circadian clocks and metabolic pathways intertwine to form a confusing biochemical labyrinth. Here, we aim to find order in this complex matter by reviewing current advances in our understanding of the interface between these networks. Future Directions: Although the link is now clearly defined, at present a key question remains as to what extent the circadian clock modulates redox, and vice versa. Furthermore, the mechanistic basis by which the circadian clock gates redox- and hormone-mediated stress responses remains largely elusive. Antioxid. Redox Signal. 20, 3024–3039. PMID:23941583

  1. Automated Testing Experience of the Linear Aerospike SR-71 Experiment (LASRE) Controller

    NASA Technical Reports Server (NTRS)

    Larson, Richard R.

    1999-01-01

    System controllers must be fail-safe, low cost, flexible to software changes, able to output health and status words, and permit rapid retest qualification. The system controller designed and tested for the aerospike engine program was an attempt to meet these requirements. This paper describes (1) the aerospike controller design, (2) the automated simulation testing techniques, and (3) the real time monitoring data visualization structure. Controller cost was minimized by design of a single-string system that used an off-the-shelf 486 central processing unit (CPU). A linked-list architecture, with states (nodes) defined in a user-friendly state table, accomplished software changes to the controller. Proven to be fail-safe, this system reported the abort cause and automatically reverted to a safe condition for any first failure. A real time simulation and test system automated the software checkout and retest requirements. A program requirement to decode all abort causes in real time during all ground and flight tests assured the safety of flight decisions and the proper execution of mission rules. The design also included health and status words, and provided a real time analysis interpretation for all health and status data.

  2. In-step Two-phase Flow (TPF) Thermal Control Experiment

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Two-Phase Flow Thermal Control Experiment is part of the NASA/OAST In-Space Technology Experiments (In-STEP) Program. The experiment is configured for the Hitchhiker Shuttle payload system and consists of a capillary pumped loop, heatpipe radiator, and two-phase flow heat exchanger. The flight experiment design approach, test plan, payload design, and test components are described in outline and graphic form.

  3. Remote Control and Monitoring of VLBI Experiments by Smartphones

    NASA Astrophysics Data System (ADS)

    Ruztort, C. H.; Hase, H.; Zapata, O.; Pedreros, F.

    2012-12-01

    For the remote control and monitoring of VLBI operations, we developed a software optimized for smartphones. This is a new tool based on a client-server architecture with a Web interface optimized for smartphone screens and cellphone networks. The server uses variables of the Field System and its station specific parameters stored in the shared memory. The client running on the smartphone by a Web interface analyzes and visualizes the current status of the radio telescope, receiver, schedule, and recorder. In addition, it allows commands to be sent remotely to the Field System computer and displays the log entries. The user has full access to the entire operation process, which is important in emergency cases. The software also integrates a webcam interface.

  4. First Experiences Using XACML for Access Control in Distributed Systems

    NASA Technical Reports Server (NTRS)

    Lorch, Marcus; Proctor, Seth; Lepro, Rebekah; Kafura, Dennis; Shah, Sumit

    2003-01-01

    Authorization systems today are increasingly complex. They span domains of administration, rely on many different authentication sources, and manage permissions that can be as complex as the system itself. Worse still, while there are many standards that define authentication mechanisms, the standards that address authorization are less well defined and tend to work only within homogeneous systems. This paper presents XACML, a standard access control language, as one component of a distributed and inter-operable authorization framework. Several emerging systems which incorporate XACML are discussed. These discussions illustrate how authorization can be deployed in distributed, decentralized systems. Finally, some new and future topics are presented to show where this work is heading and how it will help connect the general components of an authorization system.

  5. Space simulation experiments on reaction control system thruster plumes.

    NASA Technical Reports Server (NTRS)

    Cassidy, J. F.

    1972-01-01

    A space simulation procedure was developed for studying rocket plume contamination effects using a 5-lb bipropellant reaction control system thrustor. Vacuum chamber pressures of 0.00003 torr (70 miles altitude) were achieved with the thrustor firing in pulse trains consisting of eight pulses - 50 msec on, 100 msec off, and seven minutes between pulse trains. The final vacuum was achieved by cooling all vacuum chamber surfaces to liquid-helium temperature and by introducing a continuous argon leak of 48 std. cc/sec into the test chamber. Fast time response liquid flow rate measurements showed that large variations occurred in the ratio of oxidizer to fuel flow for pulse-on times up to 120 msec. These variations could lead to poor combustion efficiency and the production of contamination.

  6. Space simulation experiments on reaction control system thruster plumes

    NASA Technical Reports Server (NTRS)

    Cassidy, J. F.

    1972-01-01

    A space simulation procedure was developed for studying rocket plume contamination effects using a 5-pound bipropellant reaction control system thruster. Vacuum chamber pressures of 3 x 10 to the minus 5 torr (70 miles altitude) were achieved with the thruster firing in pulse trains consisting of eight pulses (50 msec on, 100 msec off, and seven minutes between pulse trains). The final vacuum was achieved by cooling all vacuum chamber surfaces to liquid helium temperature and by introducing a continuous argon leak of 48 std. cc/sec into the test chamber. An effort was made to simulate propellant system flow dynamics corresponding to actual spacecraft mission use. Fast time response liquid flow rate measurements showed that large variations occurred in the ratio of oxidizer to fuel flow for pulse-on times up to 120 msec. These variations could lead to poor combustion efficiency and the production of contamination.

  7. Radiative Transfer Theory Verified by Controlled Laboratory Experiments

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Goldstein, Dennis H.; Chowdhary, Jacek; Lompado, Arthur

    2013-01-01

    We report the results of high-accuracy controlled laboratory measurements of the Stokes reflection matrix for suspensions of submicrometer-sized latex particles in water and compare them with the results of a numerically exact computer solution of the vector radiative transfer equation (VRTE). The quantitative performance of the VRTE is monitored by increasing the volume packing density of the latex particles from 2 to 10. Our results indicate that the VRTE can be applied safely to random particulate media with packing densities up to 2. VRTE results for packing densities of the order of 5 should be taken with caution, whereas the polarized bidirectional reflectivity of suspensions with larger packing densities cannot be accurately predicted. We demonstrate that a simple modification of the phase matrix entering the VRTE based on the so-called static structure factor can be a promising remedy that deserves further examination.

  8. Control of malaria: a successful experience from Viet Nam.

    PubMed Central

    Hung, Le Q.; Vries, Peter J. de; Giao, Phan T.; Nam, Nguyen V.; Binh, Tran Q.; Chong, M. T.; Quoc, N. T. T. A.; Thanh, T. N.; Hung, L. N.; Kager, P. A.

    2002-01-01

    OBJECTIVE: To follow malaria prospectively in an ethnic minority commune in the south of Viet Nam with high malaria transmission and seasonal fluctuation, during malaria control interventions using insecticide-treated bednets (ITBNs) and early diagnosis and treatment (EDT) of symptomatic patients. METHODS: From 1994 onwards the following interventions were used: distribution of ITBNs to all households with biannual reimpregnation; construction of a health post and appointment of staff trained in microscopic diagnosis and treatment of malaria; regular supply of materials and drugs; annual cross-sectional malaria surveys with treatment of all parasitaemic subjects, and a programme of community involvement and health education. Surveys were held yearly at the end of the rainy season. During the surveys, demographic data were updated. Diagnosis and treatment of malaria were free of charge. Plasmodium falciparum infection was treated with artesunate and P. vivax infection with chloroquine plus primaquine. FINDINGS: The baseline survey in 1994 recorded 716 inhabitants. Of the children under 2 years of age, 37% were parasitaemic; 56% of children aged 2-10 years, and 35% of the remaining population were parasitaemic. P. falciparum accounted for 73-79% of these infections. The respective splenomegaly rates for the above-mentioned age groups were 20%, 56%, and 32%. In 1999, the proportion of parasitaemic subjects was 4%, 7% and 1%, respectively, of which P.falciparum contributed 56%. The splenomegaly rate was 0%, 5% and 2%, respectively. CONCLUSIONS: A combination of ITBNs and EDT, provided free of charge, complemented by annual diagnosis and treatment during malaria surveys and community involvement with health education successfully brought malaria under control. This approach could be applied to other regions in the south of Viet Nam and provides a sound basis for further studies in other areas with different epidemiological patterns of malaria. PMID:12219158

  9. Spliced synthetic genes as internal controls in RNA sequencing experiments.

    PubMed

    Hardwick, Simon A; Chen, Wendy Y; Wong, Ted; Deveson, Ira W; Blackburn, James; Andersen, Stacey B; Nielsen, Lars K; Mattick, John S; Mercer, Tim R

    2016-09-01

    RNA sequencing (RNA-seq) can be used to assemble spliced isoforms, quantify expressed genes and provide a global profile of the transcriptome. However, the size and diversity of the transcriptome, the wide dynamic range in gene expression and inherent technical biases confound RNA-seq analysis. We have developed a set of spike-in RNA standards, termed 'sequins' (sequencing spike-ins), that represent full-length spliced mRNA isoforms. Sequins have an entirely artificial sequence with no homology to natural reference genomes, but they align to gene loci encoded on an artificial in silico chromosome. The combination of multiple sequins across a range of concentrations emulates alternative splicing and differential gene expression, and it provides scaling factors for normalization between samples. We demonstrate the use of sequins in RNA-seq experiments to measure sample-specific biases and determine the limits of reliable transcript assembly and quantification in accompanying human RNA samples. In addition, we have designed a complementary set of sequins that represent fusion genes arising from rearrangements of the in silico chromosome to aid in cancer diagnosis. RNA sequins provide a qualitative and quantitative reference with which to navigate the complexity of the human transcriptome. PMID:27502218

  10. Interactions between abiotic constraint, propagule pressure, and biotic resistance regulate plant invasion.

    PubMed

    Byun, Chaeho; de Blois, Sylvie; Brisson, Jacques

    2015-05-01

    With multiple species introductions and rapid global changes, there is a need for comprehensive invasion models that can predict community responses. Evidence suggests that abiotic constraint, propagule pressure, and biotic resistance of resident species each determine plant invasion success, yet their interactions are rarely tested. To understand these interactions, we conducted community assembly experiments simulating situations in which seeds of the invasive grass species Phragmites australis (Poaceae) land on bare soil along with seeds of resident wetland plant species. We used structural equation models to measure both direct abiotic constraint (here moist vs. flooded conditions) on invasion success and indirect constraint on the abundance and, therefore, biotic resistance of resident plant species. We also evaluated how propagule supply of P. australis interacts with the biotic resistance of resident species during invasion. We observed that flooding always directly reduced invasion success but had a synergistic or antagonistic effect on biotic resistance depending on the resident species involved. Biotic resistance of the most diverse resident species mixture remained strong even when abiotic conditions changed. Biotic resistance was also extremely effective under low propagule pressure of the invader. Moreover, the presence of a dense resident plant cover appeared to lower the threshold at which invasion success became stable even when propagule supply increased. Our study not only provides an analytical framework to quantify the effect of multiple interactions relevant to community assembly and species invasion, but it also proposes guidelines for innovative invasion management strategies based on a sound understanding of ecological processes.

  11. Polyamines and abiotic stress in plants: a complex relationship1

    PubMed Central

    Minocha, Rakesh; Majumdar, Rajtilak; Minocha, Subhash C.

    2014-01-01

    The physiological relationship between abiotic stress in plants and polyamines was reported more than 40 years ago. Ever since there has been a debate as to whether increased polyamines protect plants against abiotic stress (e.g., due to their ability to deal with oxidative radicals) or cause damage to them (perhaps due to hydrogen peroxide produced by their catabolism). The observation that cellular polyamines are typically elevated in plants under both short-term as well as long-term abiotic stress conditions is consistent with the possibility of their dual effects, i.e., being protectors from as well as perpetrators of stress damage to the cells. The observed increase in tolerance of plants to abiotic stress when their cellular contents are elevated by either exogenous treatment with polyamines or through genetic engineering with genes encoding polyamine biosynthetic enzymes is indicative of a protective role for them. However, through their catabolic production of hydrogen peroxide and acrolein, both strong oxidizers, they can potentially be the cause of cellular harm during stress. In fact, somewhat enigmatic but strong positive relationship between abiotic stress and foliar polyamines has been proposed as a potential biochemical marker of persistent environmental stress in forest trees in which phenotypic symptoms of stress are not yet visible. Such markers may help forewarn forest managers to undertake amelioration strategies before the appearance of visual symptoms of stress and damage at which stage it is often too late for implementing strategies for stress remediation and reversal of damage. This review provides a comprehensive and critical evaluation of the published literature on interactions between abiotic stress and polyamines in plants, and examines the experimental strategies used to understand the functional significance of this relationship with the aim of improving plant productivity, especially under conditions of abiotic stress. PMID:24847338

  12. [Management control of cardiology: the experience of a departmental unit].

    PubMed

    Boccanelli, A; Spandonaro, F

    2000-01-01

    In most Italian hospitals, sanitary reform is being applied, while at the same time a new organization of the National Health System is being planned. The director of the medical hospital (head doctor) is becoming more and more involved in management and this aspect has modified his professional attributes. Cardiology is a branch of medicine that, through its scientific preparatory work consisting in debates, management courses, ethics, and production of managerial software, is closer to applying the reform without risking improper administrative aspects. This, obviously, comes about after thoroughly reviewing past work methods and the need to have an administrative organization, which allocates efficient use of manpower and materials, helping to eliminate any sources of inefficiency. The logical procedure foresees an actual analysis in terms of sanitary needs and availability of resources, and so attempting to better balance and harmonize both aspects of the problem. Certainly, the acquisition of theoretical norms and practices, which today are present because of the upsurge in training courses for doctors, is not enough to guarantee the achievement of optimal results. Furthermore, we find that theoretical models need to be validated and adapted to real work situations in the public hospital sector. This paper proposes, therefore, to explain the managerial experiences achieved in actual work situations at the Cardiology Department Unit of the San Giovanni Addolorata Hospital in Rome. In particular, it shows that in order to reach its clinical and economical objectives, it is essential to make available correct informative support for strategic and operational decisions. We can observe that there is a continuing lack of computer support systems being integrated into the present organization of most cardiology units. The use of software distributed to cardiology units from the Associazione Nazionale Medici Cardiologi Ospedalieri (ANMCO) has enabled us to partially

  13. Guidelines to use tomato in experiments with a controlled environment

    PubMed Central

    Schwarz, Dietmar; Thompson, Andrew J.; Kläring, Hans-Peter

    2014-01-01

    Domesticated tomato (Solanum lycopersicum) is the most important horticultural crop worldwide. Low polymorphism at the DNA level conflicts with the wealth of morphological variation. Fruits vary widely in size, shape, and color. In contrast, genetic variation between the 16 wild relatives is tremendous. Several large seed banks provide tomato germplasm for both domesticated and wild accessions of tomato. Recently, the genomes of the inbred cultivar “Heinz 1706” (≈900 Mb), and S. pimpinellifolium (739 Mb) were sequenced. Genomic markers and genome re-sequencing data are available for >150 cultivars and accessions. Transformation of tomato is relatively easy and T-DNA insertion line collections are available. Tomato is widely used as a model crop for fruit development but also for diverse physiological, cellular, biochemical, molecular, and genetic studies. It can be easily grown in greenhouses or growth chambers. Plants grow, flower, and develop fruits well at daily light lengths between 8 and 16 h. The required daily light integral of an experiment depends on growth stage and temperature investigated. Temperature must be 10–35°C, relative humidity 30–90%, and, CO2 concentration 200–1500 μmol mol−1. Temperature determines the speed of the phenological development while daily light integral and CO2 concentration affect photosynthesis and biomass production. Seed to seed cultivation takes 100 days at 20°C and can be shortened or delayed by temperature. Tomato may be cultivated in soil, substrates, or aeroponically without any substrate. Root volume, and water uptake requirements are primarily determined by transpiration demands of the plants. Many nutrient supply recipes and strategies are available to ensure sufficient supply as well as specific nutrient deficits/surplus. Using appropriate cultivation techniques makes tomato a convenient model plant for researchers, even for beginners. PMID:25477888

  14. Guidelines to use tomato in experiments with a controlled environment.

    PubMed

    Schwarz, Dietmar; Thompson, Andrew J; Kläring, Hans-Peter

    2014-01-01

    Domesticated tomato (Solanum lycopersicum) is the most important horticultural crop worldwide. Low polymorphism at the DNA level conflicts with the wealth of morphological variation. Fruits vary widely in size, shape, and color. In contrast, genetic variation between the 16 wild relatives is tremendous. Several large seed banks provide tomato germplasm for both domesticated and wild accessions of tomato. Recently, the genomes of the inbred cultivar "Heinz 1706" (≈900 Mb), and S. pimpinellifolium (739 Mb) were sequenced. Genomic markers and genome re-sequencing data are available for >150 cultivars and accessions. Transformation of tomato is relatively easy and T-DNA insertion line collections are available. Tomato is widely used as a model crop for fruit development but also for diverse physiological, cellular, biochemical, molecular, and genetic studies. It can be easily grown in greenhouses or growth chambers. Plants grow, flower, and develop fruits well at daily light lengths between 8 and 16 h. The required daily light integral of an experiment depends on growth stage and temperature investigated. Temperature must be 10-35°C, relative humidity 30-90%, and, CO2 concentration 200-1500 μmol mol(-1). Temperature determines the speed of the phenological development while daily light integral and CO2 concentration affect photosynthesis and biomass production. Seed to seed cultivation takes 100 days at 20°C and can be shortened or delayed by temperature. Tomato may be cultivated in soil, substrates, or aeroponically without any substrate. Root volume, and water uptake requirements are primarily determined by transpiration demands of the plants. Many nutrient supply recipes and strategies are available to ensure sufficient supply as well as specific nutrient deficits/surplus. Using appropriate cultivation techniques makes tomato a convenient model plant for researchers, even for beginners. PMID:25477888

  15. The Navstar GPS master control station's Kalman filter experience

    NASA Technical Reports Server (NTRS)

    Scardera, Michael P.

    1990-01-01

    The Navstar Global Positioning System (GPS) is a highly accurate space based navigation system providing all weather, 24 hour a day service to both military and civilian users. The system provides a Gaussian position solution with four satellites, each providing its ephemeris and clock offset with respect to GPS time. The GPS Master Clock Station (MCS) is charged with tracking each Navstar spacecraft and precisely defining the ephemeris and clock parameters for upload into the vehicle's navigation message. Briefly described here are the Navstar system and the Kalman filter estimation process used by MCS to determine, predict, and ensure quality control for each of the satellite's ephemeris and clock states. Routine performance is shown. Kalman filter reaction and response is discussed for anomalous clock behavior and trajectory perturbations. Particular attention is given to MCS efforts to improve orbital adjust modeling. The satellite out of service time due to orbital maneuvering has been reduced in the past year from four days to under twelve hours. The planning, reference trajectory model, and Kalman filter management improvements are explained.

  16. Infection control in El Salvador: the Hospital Rosales experience.

    PubMed

    Marinero Cáceres, J A; de Sotello, Y

    1987-12-01

    We describe circumstances at the Hospital Rosales, located in San Salvador, El Salvador, and some salient observations from an infection control program begun in 1978. Findings include overuse of antibiotics, especially of penicillin and chloramphenicol; a predominance of gram-negative rod infections, especially Pseudomonas aeruginosa; a relative infrequency of Staphylococcus aureus infections; an apparent doubling of the mean duration of hospitalization for patients with nosocomial infections compared with other patients (22.1 days versus 11.0 days); documentation and partial correction of deficiencies in aseptic and antiseptic practices; an outbreak of Pseudomonas aeruginosa endophthalmitis traced to the hospital's factory for the manufacturing of intravenous fluids; and attitudinal problems such as the care of patients with rabies on open wards. Prevalence surveys conducted during 1981 and 1986 suggest a dramatic increase in the recent incidence of surgical wound infection (44% upsilon 28%, P less than 0.001). This latter observation suggests a direct relationship between infection rates and the hardships imposed by poverty and civil war.

  17. A novel F-box protein CaF-box is involved in responses to plant hormones and abiotic stress in pepper (Capsicum annuum L.).

    PubMed

    Chen, Rugang; Guo, Weili; Yin, Yanxu; Gong, Zhen-Hui

    2014-02-10

    The F-box protein family is characterized by an F-box motif that has been shown to play an important role in regulating various developmental processes and stress responses. In this study, a novel F-box-containing gene was isolated from leaves of pepper cultivar P70 (Capsicum annuum L.) and designated CaF-box. The full-length cDNA is 2088 bp and contains an open reading frame of 1914 bp encoding a putative polypeptide of 638 amino acids with a mass of 67.8 kDa. CaF-box was expressed predominantly in stems and seeds, and the transcript was markedly upregulated in response to cold stress, abscisic acid (ABA) and salicylic acid (SA) treatment, and downregulated under osmotic and heavy metal stress. CaF-box expression was dramatically affected by salt stress, and was rapidly increased for the first hour, then sharply decreased thereafter. In order to further assess the role of CaF-box in the defense response to abiotic stress, a loss-of-function experiment in pepper plants was performed using a virus-induced gene silencing (VIGS) technique. Measurement of thiobarbituric acid reactive substances (TBARS) and electrolyte leakage revealed stronger lipid peroxidation and cell death in the CaF-box-silenced plants than in control plants, suggesting CaF-box plays an important role in regulating the defense response to abiotic stress resistance in pepper plants.

  18. Numerical controlled polishing, continued force wear and part correction experiments

    SciTech Connect

    Hannah, P.R.; Day, R.D.; Hatch, D.J.; McClure, E.R.

    1994-09-01

    This abstract reports the near completion of the first phase of this program. It is the aim of this program to provide the operator of a N/C diamond turning machine or N/C grinding machine (jig grinder) with the wear characteristics necessary to achieve uniform material removal. The second phase of this program addresses a different problem, although solving this problem is highly dependent on the results of the first phase. Diamond turned, or any lathe turned surface, exhibits regular tool marks due to the tool passing over the surface being cut. Changes in depth of cut, feed rate and work rpm will change the character of these groves, but will not eliminate them. Optical surfaces produced by this process exhibit increased scattering as the light wavelength decreases limiting their use; at least for optical purposes, to IR and some visible applications. Utilizing wear information gathered in the first part of this program we will attempt to reduce these residual tool marks by polishing. The polishing of diamond turned surfaces is not new. Diamond turned metal surfaces, especially in electroless nickel and high phosphorus nickel electroplate have been polished to improve their scatter characteristics. What we believe is unique is the use of a spherical wheel, rotating on axis and being moved over the part in a prescribed manner by numerical control. Over the past year we have made some major changes in our polishing methods and procedures. We have listed below these changes, as a refresher for the reader as to our previous procedures. These changes will be addressed in the body of the text.

  19. A controlled experiment to evaluate the impact of summer research experiences on attitudes towards science in high school aged students

    NASA Astrophysics Data System (ADS)

    White, M. A.; Tcherednichenko, I.; Hamar, M.; Taylor, M. J.; Litizzette, L.

    2006-12-01

    United States funding agencies increasingly are supporting activities designed to increase the enrollment of United States high school students in science, math, or engineering careers. However, in many cases, the likely outcomes of educational activities are unknown. A common approach within the physical and natural sciences is to provide high school aged students with a summer research experience, with the expectation that such experiences will increase student interest in science, possibly as a career choice. With funding support from the National Aeronautics and Space Administration New Investigator Grant program, we conducted a controlled experiment to test this assumption. In collaboration with Mountain Crest High School in Logan, UT, we recruited 40 students currently enrolled in science courses, assessed attitudes towards science (with informed consent), and randomly assigned 20 students to a control group and 20 students to an experimental group. Students in the experimental group were paired with faculty and graduate students in a wide range of field and laboratory research groups in natural resources and biology. Students were employed in at least two different research groups for an average of 30-40 hours per week for eight weeks in the summer of 2006. Following the completion of the summer work experience, we again assessed attitudes towards science in both groups and gathered additional information from the experimental group on satisfaction with the work experience and reasons for participating. Results are presented and discussed.

  20. A robot in space as a large space structures control experiment

    NASA Technical Reports Server (NTRS)

    Gran, R.

    1983-01-01

    The control systems design issues for large space structures can be addressed by a robotics experiment which defines a teleoperator or a robot or uses the RMS. The robotics control demonstration brings the large space structures control technology to an effective state of readiness and provides a useful robot when the experiment is finished. Three major options in such an experiment are the RMS, a flexible arm that is going to be put on the Shuttle for other reasons, or a dexetrous manipulator or teleoperator.

  1. The Aqua-Planet Experiment (APE): CONTROL SST Simulation

    NASA Technical Reports Server (NTRS)

    Blackburn, Michael; Williamson, David L.; Nakajima, Kensuke; Ohfuchi, Wataru; Takahashi, Yoshiyuki O.; Hayashi, Yoshi-Yuki; Nakamura, Hisashi; Ishiwatari, Masaki; Mcgregor, John L.; Borth, Hartmut; Wirth, Volkmar; Frank, Helmut; Bechtold, Peter; Wedi, Nils P.; Tomita, Hirofumi; Satoh, Masaki; Zhao, Ming; Held, Isaac M.; Suarez, Max J.; Lee, Myong-In; Watanabe, Masahiro; Kimoto, Masahide; Liu, Yimin; Wang, Zaizhi; Molod, Andrea M.; Rajendran, Kavirajan; Kotoh, Akio; Stratton, Rachel

    2013-01-01

    experimental hierarchy used to evaluate AGCMs. This comparison does suggest that the range of model behaviour could be better understood and reduced in conjunction with Earth climate simulations. Controlled experimentation is required to explore individual model behavior and investigate convergence of the aqua-planet climate with increasing resolution.

  2. Abiotic and biotic controls of spatial pattern at alpine treeline

    USGS Publications Warehouse

    Malanson, George P.; Xiao, Ningchuan; Alftine, K.J.; Bekker, Mathew; Butler, David R.; Brown, Daniel G.; Cairns, David M.; Fagre, Daniel; Walsh, Stephen J.

    2000-01-01

    At alpine treeline, trees and krummholz forms affect the environment in ways that increase their growth and reproduction. We assess the way in which these positive feedbacks combine in spatial patterns to alter the environment in the neighborhood of existing plants. The research is significant because areas of alpine tundra are susceptible to encroachment by woody species as climate changes. Moreover, understanding the general processes of plant invasion is important. The importance of spatial pattern has been recognized, but the spatial pattern of positive feedbacks per se has not been explored in depth. We present a linked set of models of vegetation change at an alpine forest-tundra ecotone. Our aim is to create models that are as simple as possible in order to test specific hypotheses. We present results from a model of the resource averaging hypothesis and the positive feedback switch hypothesis of treelines. We compare the patterns generated by the models to patterns observed in fine scale remotely sensed data.

  3. Recent Advances in Utilizing Transcription Factors to Improve Plant Abiotic Stress Tolerance by Transgenic Technology

    PubMed Central

    Wang, Hongyan; Wang, Honglei; Shao, Hongbo; Tang, Xiaoli

    2016-01-01

    Agricultural production and quality are adversely affected by various abiotic stresses worldwide and this will be exacerbated by the deterioration of global climate. To feed a growing world population, it is very urgent to breed stress-tolerant crops with higher yields and improved qualities against multiple environmental stresses. Since conventional breeding approaches had marginal success due to the complexity of stress tolerance traits, the transgenic approach is now being popularly used to breed stress-tolerant crops. So identifying and characterizing the critical genes involved in plant stress responses is an essential prerequisite for engineering stress-tolerant crops. Far beyond the manipulation of single functional gene, engineering certain regulatory genes has emerged as an effective strategy now for controlling the expression of many stress-responsive genes. Transcription factors (TFs) are good candidates for genetic engineering to breed stress-tolerant crop because of their role as master regulators of many stress-responsive genes. Many TFs belonging to families AP2/EREBP, MYB, WRKY, NAC, bZIP have been found to be involved in various abiotic stresses and some TF genes have also been engineered to improve stress tolerance in model and crop plants. In this review, we take five large families of TFs as examples and review the recent progress of TFs involved in plant abiotic stress responses and their potential utilization to improve multiple stress tolerance of crops in the field conditions. PMID:26904044

  4. Natural variation in abiotic stress responsive gene expression and local adaptation to climate in Arabidopsis thaliana.

    PubMed

    Lasky, Jesse R; Des Marais, David L; Lowry, David B; Povolotskaya, Inna; McKay, John K; Richards, James H; Keitt, Timothy H; Juenger, Thomas E

    2014-09-01

    Gene expression varies widely in natural populations, yet the proximate and ultimate causes of this variation are poorly known. Understanding how variation in gene expression affects abiotic stress tolerance, fitness, and adaptation is central to the field of evolutionary genetics. We tested the hypothesis that genes with natural genetic variation in their expression responses to abiotic stress are likely to be involved in local adaptation to climate in Arabidopsis thaliana. Specifically, we compared genes with consistent expression responses to environmental stress (expression stress responsive, "eSR") to genes with genetically variable responses to abiotic stress (expression genotype-by-environment interaction, "eGEI"). We found that on average genes that exhibited eGEI in response to drought or cold had greater polymorphism in promoter regions and stronger associations with climate than those of eSR genes or genomic controls. We also found that transcription factor binding sites known to respond to environmental stressors, especially abscisic acid responsive elements, showed significantly higher polymorphism in drought eGEI genes in comparison to eSR genes. By contrast, eSR genes tended to exhibit relatively greater pairwise haplotype sharing, lower promoter diversity, and fewer nonsynonymous polymorphisms, suggesting purifying selection or selective sweeps. Our results indicate that cis-regulatory evolution and genetic variation in stress responsive gene expression may be important mechanisms of local adaptation to climatic selective gradients.

  5. Natural Variation in Abiotic Stress Responsive Gene Expression and Local Adaptation to Climate in Arabidopsis thaliana

    PubMed Central

    Lasky, Jesse R.; Des Marais, David L.; Lowry, David B.; Povolotskaya, Inna; McKay, John K.; Richards, James H.; Keitt, Timothy H.; Juenger, Thomas E.

    2014-01-01

    Gene expression varies widely in natural populations, yet the proximate and ultimate causes of this variation are poorly known. Understanding how variation in gene expression affects abiotic stress tolerance, fitness, and adaptation is central to the field of evolutionary genetics. We tested the hypothesis that genes with natural genetic variation in their expression responses to abiotic stress are likely to be involved in local adaptation to climate in Arabidopsis thaliana. Specifically, we compared genes with consistent expression responses to environmental stress (expression stress responsive, “eSR”) to genes with genetically variable responses to abiotic stress (expression genotype-by-environment interaction, “eGEI”). We found that on average genes that exhibited eGEI in response to drought or cold had greater polymorphism in promoter regions and stronger associations with climate than those of eSR genes or genomic controls. We also found that transcription factor binding sites known to respond to environmental stressors, especially abscisic acid responsive elements, showed significantly higher polymorphism in drought eGEI genes in comparison to eSR genes. By contrast, eSR genes tended to exhibit relatively greater pairwise haplotype sharing, lower promoter diversity, and fewer nonsynonymous polymorphisms, suggesting purifying selection or selective sweeps. Our results indicate that cis-regulatory evolution and genetic variation in stress responsive gene expression may be important mechanisms of local adaptation to climatic selective gradients. PMID:24850899

  6. Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept.

    PubMed

    Keunen, Els; Peshev, Darin; Vangronsveld, Jaco; Van Den Ende, Wim; Cuypers, Ann

    2013-07-01

    Plants suffering from abiotic stress are commonly facing an enhanced accumulation of reactive oxygen species (ROS) with damaging as well as signalling effects at organellar and cellular levels. The outcome of an environmental challenge highly depends on the delicate balance between ROS production and scavenging by both enzymatic and metabolic antioxidants. However, this traditional classification is in need of renewal and reform, as it is becoming increasingly clear that soluble sugars such as disaccharides, raffinose family oligosaccharides and fructans--next to their associated metabolic enzymes--are strongly related to stress-induced ROS accumulation in plants. Therefore, this review aims at extending the current concept of antioxidants functioning during abiotic stress, with special focus on the emanate role of sugars as true ROS scavengers. Examples are given based on their cellular location, as different organelles seem to exploit distinct mechanisms. Moreover, the vacuole comes into the picture as important player in the ROS signalling network of plants. Elucidating the interplay between the mechanisms controlling ROS signalling during abiotic stress will facilitate the development of strategies to enhance crop tolerance to stressful environmental conditions.

  7. Biological and abiotic dechlorination of highly chlorinated dioxins in biphasic microcosms

    SciTech Connect

    Barkovskii, A.; Adriaens, P.

    1995-12-31

    A novel experimental approach to help increase the rates and extent of reductive dechlorination of polychlorinated dibenzo-p-dioxins (PCDD) is presented. Biphasic microcosms emulsions containing eluted microorganisms derived from historically contaminated Passaic River (New Jersey) sediments, and 4% (v/v) of decane, were spiked with mg/L of octaCDD. The microcosms were amended separately with three polyphenolic compounds--catechol, resorcinol, and 3,4-dihydroxybenzoate--to help improve electron transfer during reductive dechlorination. Abiotic controls containing phenolic compounds only, and pasteurized cells were monitored along with the active microcosms. Lesser-chlorinated congeners were observed in all treatments, including killed cells, indicating the potential not only for biological and abiotic, but also biogenic dechlorination mechanisms. After 3 months of incubation, tetraCDD isomers were produced in biological incubations only, and up to 30% of the spiked octaCDD was removed. Polyphenolic compounds first appear to transiently complex with the dioxins prior to further dechlorination, and did not increase the dechlorination rates over unamended cells. Whereas the 2,3,7,8-/1,4,6,9-substitution ratio of heptachlorinated congeners increased in all treatments, 2,3,7,8-substituted hexaCDDs congeners were identified mainly in active cell incubations. Further isomer-specific analysis may thus enable distinction between abiotic and biotic dechlorination processes in anaerobic sediments.

  8. Impacts of biotic and abiotic stress on major quality attributing metabolites of coffee beans.

    PubMed

    Vaddadi, Sridevi; Parvatam, Giridhar

    2015-03-01

    Biotic stress factors such as Rhizopus oligosporus and Aspergillus niger mycelial extracts and abiotic elements methyljasmonate (MJ) and salicylic acid (SA), when administered through floral spray to Coffea canephora, showed significant influence on major bioactive metabolites of beans. Up to 42% caffeine, 39% theobromine and 46% trigonelline, along with 32% cafestol and kahweol content elevation was evident under respective elicitor treatments. Over all, the surge in respective metabolites depends on elicitor stress type and concentration. Abiotic factors MJ and SA were found to be efficient at 1 to 5 microM concentration in augmenting all the metabolites, compared to R. oligosporus and A. niger spray at 0.5-2.0% wherein the response was moderate as compared to abiotic stress, however significant compared to control. Though this elevation in caffeine, theobromine, cafestol and kahweol is not warranted from quality point of view, increase in trigonelline improves coffee quality. Besides increase in metabolites, stress mediated augmentation of bioactive compounds in coffee has a wide scope for studying gene expression pattern. PMID:25895259

  9. Recent Advances in Utilizing Transcription Factors to Improve Plant Abiotic Stress Tolerance by Transgenic Technology.

    PubMed

    Wang, Hongyan; Wang, Honglei; Shao, Hongbo; Tang, Xiaoli

    2016-01-01

    Agricultural production and quality are adversely affected by various abiotic stresses worldwide and this will be exacerbated by the deterioration of global climate. To feed a growing world population, it is very urgent to breed stress-tolerant crops with higher yields and improved qualities against multiple environmental stresses. Since conventional breeding approaches had marginal success due to the complexity of stress tolerance traits, the transgenic approach is now being popularly used to breed stress-tolerant crops. So identifying and characterizing the critical genes involved in plant stress responses is an essential prerequisite for engineering stress-tolerant crops. Far beyond the manipulation of single functional gene, engineering certain regulatory genes has emerged as an effective strategy now for controlling the expression of many stress-responsive genes. Transcription factors (TFs) are good candidates for genetic engineering to breed stress-tolerant crop because of their role as master regulators of many stress-responsive genes. Many TFs belonging to families AP2/EREBP, MYB, WRKY, NAC, bZIP have been found to be involved in various abiotic stresses and some TF genes have also been engineered to improve stress tolerance in model and crop plants. In this review, we take five large families of TFs as examples and review the recent progress of TFs involved in plant abiotic stress responses and their potential utilization to improve multiple stress tolerance of crops in the field conditions.

  10. Plant cell organelle proteomics in response to abiotic stress.

    PubMed

    Hossain, Zahed; Nouri, Mohammad-Zaman; Komatsu, Setsuko

    2012-01-01

    Proteomics is one of the finest molecular techniques extensively being used for the study of protein profiling of a given plant species experiencing stressed conditions. Plants respond to a stress by alteration in the pattern of protein expression, either by up-regulating of the existing protein pool or by the synthesizing novel proteins primarily associated with plants antioxidative defense mechanism. Improved protein extraction protocols and advance techniques for identification of novel proteins have been standardized in different plant species at both cellular and whole plant level for better understanding of abiotic stress sensing and intracellular stress signal transduction mechanisms. In contrast, an in-depth proteome study of subcellular organelles could generate much detail information about the intrinsic mechanism of stress response as it correlates the possible relationship between the protein abundance and plant stress tolerance. Although a wealth of reviews devoted to plant proteomics are available, review articles dedicated to plant cell organelle proteins response under abiotic stress are very scanty. In the present review, an attempt has been made to summarize all significant contributions related to abiotic stresses and their impacts on organelle proteomes for better understanding of plants abiotic stress tolerance mechanism at protein level. This review will not only provide new insights into the plants stress response mechanisms, which are necessary for future development of genetically engineered stress tolerant crop plants for the benefit of humankind, but will also highlight the importance of studying changes in protein abundance within the cell organelles in response to abiotic stress.

  11. A controlled field experiment on groundwater contamination by a multicomponent DNAPL: creation of the emplaced-source and overview of dissolved plume development.

    PubMed

    Rivett, M O; Feenstra, S; Cherry, J A

    2001-05-01

    A unique field experiment has been undertaken at the CFB Borden research site to investigate the development of dissolved chlorinated solvent plumes from a residual dense non-aqueous phase liquid (DNAPL) source. The "emplaced-source" tracer test methodology involved a controlled emplacement of a block-shaped source of sand containing chlorinated solvents below the water table. The gradual dissolution of this residual DNAPL solvent source under natural aquifer conditions caused dissolved solvent plumes of trichloromethane (TCM), trichloroethene (TCE) and perchloroethene (PCE) to continuously develop down gradient. Source dissolution and 3-D plume development were successfully monitored via 173 multilevel samplers over a 475-day tracer test period prior to site remediation research being initiated. Detailed groundwater level and hydraulic conductivity data were collected. Development of plumes with concentrations spanning 1-700,000 micrograms/1 is described and key processes controlling their migration identified. Plumes were observed to be narrow due to the weakness of transverse dispersion processes and long due to advection and significant longitudinal dispersion, very limited sorptive retardation and negligible, if any, attenuation due to biodegradation or abiotic reaction. TCM was shown to be essentially conservative, TCE very nearly conservative and PCE, consistent with its greater hydrophobicity, more retarded yet having a greater mobility than observed in previous Borden field tests. The absence of biodegradation was ascribed to the prevailing aerobic conditions and lack of any additional biodegradable carbon substrates. The transient groundwater flow regime caused significant transverse lateral plume movement, plume asymmetry and was likely responsible for most of the, albeit limited, transverse horizontal plume spreading. In agreement with the widespread incidence of extensive TCE and PCE plumes throughout the industrialized world, the experiment indicates

  12. Canopy Level Solar Induced Fluorescence for Vegetation in Controlled Experiments

    NASA Technical Reports Server (NTRS)

    Middleton, E. M.; Corp, L. A.; Campbell, P. K. Entcheva

    2007-01-01

    Solar induced chlorophyll fluorescence (SIF) was retrieved from high resolution reflectance spectra acquired one meter above saplings of three deciduous tree species during springtime (three weeks after leaf flush) and in late summer when foliage was mature. SIF was determined by application of the Fraunhofer Line Depth (FLD) Principal to above-canopy spectra acquired with an Analytical Spectral Devices (ASD) Fieldspec spectroradiometer (3.2 nm resolution with 1.2 nm sampling interval). SIF retrievals were made at the two atmospheric oxygen (O2) absorption features that occur in the chlorophyll fluorescence (ChlF) region (660 -780 nm). These telluric features are 02V, the broader and deeper feature centered at 760 nm, but located on the shoulder of the far-red ChlF peak at 740 nm; and 023, a narrow feature centered at 688 nm that is positioned near the red ChlF peak at 685 nm. Supporting, coincident leaf level fluorescence, reflectance, photochemical and other measurements were also made. At the leaf level, these measurements included in situ photosynthetic capacity (Pmax) and light adapted total chlorophyll fluorescence (Fs') collected at steady state under high light and controlled chamber conditions (e.g., temperature, PAR, humidity, and COz); optical properties (reflectance, transmittance, absorptance); chlorophyll and carotenoid content; specific leaf mass; carbon (C) and nitrogen (N) content; fluorescence emission spectra at multiple excitation wavelengths; the ChlF contribution to red (R) and far-red (FR) reflectance; fluorescence imagery; and fluorescence excitation-emission matrices (EEMs). The tree species examined were tulip poplar (Liriodendron tulipifera L.), red maple (Acer rubrum L.), and sweetgum (Liquidambar styraczflua L.), and each had been provided four levels of N augmentation (0, 19, 37, and 75 kg Nhectare seasonally) to simulate atmospheric deposition from air pollution. Whole-plant SIF measurements of these species were compared with SIF

  13. Positive role of a wheat HvABI5 ortholog in abiotic stress response of seedlings.

    PubMed

    Kobayashi, Fuminori; Maeta, Eri; Terashima, Akihiro; Takumi, Shigeo

    2008-09-01

    ABA-responsive element binding protein (AREB) and ABA-responsive element binding factor (ABF), members of the basic region/leucine zipper (bZIP)-type protein family, act as major transcription factors in ABA-responsive gene expression under abiotic stress conditions in Arabidopsis. Barley HvABI5 and rice transcription factor responsible for ABA regulation 1 (TRAB1) are homologues of AREB/ABF and are expressed in drought- and ABA-treated seedlings. However, no direct evidence has shown an association of an AREB/ABF-type transcription factor with stress tolerance in cereals. To understand the molecular basis of abiotic stress tolerance through a cereal AREB/ABF-type transcription factor, a wheat HvABI5 ortholog, Wabi5, was isolated and characterized. Wabi5 expression was activated by low temperature, drought and exogenous ABA treatment, and its expression pattern differed between two wheat accessions with distinct levels of stress tolerance and ABA sensitivity. Wabi5-expressing transgenic tobacco plants showed a significant increase in tolerance to abiotic stresses such as freezing, osmotic and salt stresses and a hypersensitivity to exogenous ABA in the seedling stage compared with wild-type plants. Expression of a GUS reporter gene under the control of promoters of three wheat cold-responsive/late embryogenesis abundant (Cor/Lea) genes, Wdhn13, Wrab18 and Wrab19, was enhanced by ectopic Wabi5 expression in wheat callus and tobacco plants. These results clearly indicated that WABI5 functions as a transcriptional regulator of the Cor/Lea genes in multiple abiotic stress responses in common wheat.

  14. Potential Abiotic Functions of Root Exudates in Rhizosphere Cycling of Soil Organic Matter

    NASA Astrophysics Data System (ADS)

    Pett-Ridge, J.; Keiluweit, M.; Bougoure, J.; Kleber, M.; Nico, P. S.

    2012-12-01

    Carbon cycling in the rhizosphere is a nexus of biophysical interactions between plant roots, microorganisms and the soil organo-mineral matrix. Plant roots are the primary source of C in mineral horizons and can significantly accelerate the rate of soil organic matter mineralization in rhizosphere soils. While a portion of this acceleration results from stimulation of microbial enzymatic capacities (the 'priming effect') - abiotic responses also play a significant role in rhizosphere cycling of soil organic matter (SOM). For example, exudate-stimulated mobilization and dissolution of metal species may release previously complexed SOM, or could affect Fe mobility via redox changes associated with microbially-driven O2 depletion. We have investigated the abiotic response of rhizosphere microenvironments, using additions of several 13C-enriched low molecular weight (LMW) root exudates and 13C-plant detritus to controlled microcosms. We hypothesized that certain abiotic effects are triggered by specific exudate compounds and that the magnitude of the effect depends on the soil physiochemical properties. Using a combination of microsensor measurements, solid-phase extractions, X-ray and IR spectroscopy, we measured how root exudates differ in their potential to create reducing microenvironments, alter metal chemisty and mineralogy, and influence the availability of SOM in the rhizosphere. High resolution X-ray microscopy (STXM) and secondary ion mass spectrometry (NanoSIMS) analyses illustrate the physical fate of the added isotope tracers in both pore water and on mineral surfaces. Our results suggest that certain root exudates facilitate abiotic reactions that increase the pool of bioavailable SOM and stimulate its microbial decomposition in the rhizosphere. In particular, the contrasting ecological functions of LMW organic acids and simple sugars in facilitating SOM breakdown in the rhizosphere will be discussed.

  15. Overview of CFD Validation Experiments for Circulation Control Applications at NASA

    NASA Technical Reports Server (NTRS)

    Jones, G. S.; Lin, J. C.; Allan, B. G.; Milholen, W. E.; Rumsey, C. L.; Swanson, R. C.

    2008-01-01

    Circulation control is a viable active flow control approach that can be used to meet the NASA Subsonic Fixed Wing project s Cruise Efficient Short Take Off and Landing goals. Currently, circulation control systems are primarily designed using empirical methods. However, large uncertainty in our ability to predict circulation control performance has led to the development of advanced CFD methods. This paper provides an overview of a systematic approach to developing CFD tools for basic and advanced circulation control applications. This four-step approach includes "Unit", "Benchmar", "Subsystem", and "Complete System" experiments. The paper emphasizes the ongoing and planned 2-D and 3-D physics orientated experiments with corresponding CFD efforts. Sample data are used to highlight the challenges involved in conducting circulation control computations and experiments.

  16. Autotrophic denitrification performance and bacterial community at biocathodes of bioelectrochemical systems with either abiotic or biotic anodes.

    PubMed

    Nguyen, Van Khanh; Hong, Sungsug; Park, Younghyun; Jo, Kyungmin; Lee, Taeho

    2015-02-01

    Two-chamber bioelectrochemical systems (BESs) have recently been developed for nitrate removal from nitrate-contaminated water. In this study, we compared the nitrate removal performance of biocathodes of BESs when using abiotic and biotic anodes. Acetate was used as electron donor in BESs with biotic anode, whereas a direct current power supply was used as energy source in BESs with abiotic anode. The nitrogen removal efficiency increased from 18.1% to 43.0% when the voltage supplied to the BES with abiotic anode increased from 0.7 V to 0.9 V, whereas no higher removal efficiency was obtained at a higher supplied voltage (1.1 V). The highest efficiency (78.0%) of autotrophic nitrogen removal was achieved when electron transfer from the biotic anode chamber of BESs was used. Unexpectedly, control of the cathode potential did not enhance nitrate removal in BESs with biotic anode. Special attention was paid to elucidate the differences of bacterial communities catalysing autotrophic denitrification in the biocathodes of BESs with abiotic and biotic anodes. Data from denaturing gradient gel electrophoresis and phylogenetic analysis suggested that denitrification in BESs with abiotic anode could be attributed to Nitratireductor sp., Shinella sp., and Dyella sp., whereas the dominant bacterial denitrifiers in BESs with biotic anode were found to be Pseudomonas sp., Curtobacterium sp., and Aeromonas sp. These results implied that biocathodes of BESs with biotic anode are more efficient than those of BESs with abiotic anode for nitrate removal from nitrate-contaminated water in practical applications.

  17. ATS-6 - Flight performance of the Advanced Thermal Control Flight Experiment

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, J. P.; Brennan, P. J.

    1975-01-01

    The Advanced Thermal Control Flight Experiment on ATS-6 was designed to demonstrate the thermal control capability of a thermal diode (one-way) heat pipe, a phase-change material for thermal storage, and a feedback-controlled heat pipe. Flight data for the different operational modes are compared to ground test data, and the performance of the components is evaluated on an individual basis and as an integrated temperature-control system.

  18. Resist Profile Control Obtained Through A Desirability Function And Statistically Designed Experiments

    NASA Astrophysics Data System (ADS)

    Bell, Kenneth L.; Christensen, Lorna D.

    1989-07-01

    This paper describes a technique used to determine an optimized microlithographic process using statistical methods which included a statistically designed experiment (SDE); a desirability function, d(θ*) and a rigorous daily statistical process control program, (SPC).

  19. Current perspectives in proteomic analysis of abiotic stress in Grapevines

    PubMed Central

    George, Iniga S.; Haynes, Paul A.

    2014-01-01

    Grapes are an important crop plant which forms the basis of a globally important industry. Grape and wine production is particularly vulnerable to environmental and climatic fluctuations, which makes it essential for us to develop a greater understanding of the molecular level responses of grape plants to various abiotic stresses. The completion of the initial grape genome sequence in 2007 has led to a significant increase in research on grapes using proteomics approaches. In this article, we discuss some of the current research on abiotic stress in grapevines, in the context of abiotic stress research in other plant species. We also highlight some of the current limitations in grapevine proteomics and identify areas with promising scope for potential future research. PMID:25538720

  20. Integrated metabolomics for abiotic stress responses in plants.

    PubMed

    Nakabayashi, Ryo; Saito, Kazuki

    2015-04-01

    Plants are considered to biosynthesize specialized (traditionally called secondary) metabolites to adapt to environmental stresses such as biotic and abiotic stresses. The majority of specialized metabolites induced by abiotic stress characteristically exhibit antioxidative activity in vitro, but their function in vivo is largely yet to be experimentally confirmed. In this review, we highlight recent advances in the identification of the role of abiotic stress-responsive specialized metabolites with an emphasis on flavonoids. Integrated 'omics' analysis, centered on metabolomics with a series of plant resources differing in their flavonoid accumulation, showed experimentally that flavonoids play a major role in antioxidation in vivo. In addition, the results also suggest the role of flavonoids in the vacuole. To obtain more in-depth insights, chemical and biological challenges need to be addressed for the identification of unknown specialized metabolites and their in vivo functions.

  1. How much control is enough? Influence of unreliable input on user experience.

    PubMed

    van de Laar, Bram; Plass-Oude Bos, Danny; Reuderink, Boris; Poel, Mannes; Nijholt, Anton

    2013-12-01

    Brain–computer interfaces (BCI) provide a valuable new input modality within human–computer interaction systems. However, like other body-based inputs such as gesture or gaze based systems, the system recognition of input commands is still far from perfect. This raises important questions, such as what level of control should such an interface be able to provide. What is the relationship between actual and perceived control? And in the case of applications for entertainment in which fun is an important part of user experience, should we even aim for the highest level of control, or is the optimum elsewhere? In this paper, we evaluate whether we can modulate the amount of control and if a game can be fun with less than perfect control. In the experiment users (n = 158) played a simple game in which a hamster has to be guided to the exit of a maze. The amount of control the user has over the hamster is varied. The variation of control through confusion matrices makes it possible to simulate the experience of using a BCI, while using the traditional keyboard for input. After each session the user completed a short questionnaire on user experience and perceived control. Analysis of the data showed that the perceived control of the user could largely be explained by the amount of control in the respective session. As expected, user frustration decreases with increasing control. Moreover, the results indicate that the relation between fun and control is not linear. Although at lower levels of control fun does increase with improved control, the level of fun drops just before perfect control is reached (with an optimum around 96%). This poses new insights for developers of games who want to incorporate some form of BCI or other modality with unreliable input in their game: for creating a fun game, unreliable input can be used to create a challenge for the user.

  2. An application of the IMC software to controller design for the JPL LSCL Experiment Facility

    NASA Technical Reports Server (NTRS)

    Zhu, Guoming; Skelton, Robert E.

    1993-01-01

    A software package which Integrates Model reduction and Controller design (The IMC software) is applied to design controllers for the JPL Large Spacecraft Control Laboratory Experiment Facility. Modal Cost Analysis is used for the model reduction, and various Output Covariance Constraints are guaranteed by the controller design. The main motivation is to find the controller with the 'best' performance with respect to output variances. Indeed it is shown that by iterating on the reduced order design model, the controller designed does have better performance than that obtained with the first model reduction.

  3. The human operator in manual preview tracking /an experiment and its modeling via optimal control/

    NASA Technical Reports Server (NTRS)

    Tomizuka, M.; Whitney, D. E.

    1976-01-01

    A manual preview tracking experiment and its results are presented. The preview drastically improves the tracking performance compared to zero-preview tracking. Optimal discrete finite preview control is applied to determine the structure of a mathematical model of the manual preview tracking experiment. Variable parameters in the model are adjusted to values which are consistent to the published data in manual control. The model with the adjusted parameters is found to be well correlated to the experimental results.

  4. Development and Evaluation of Sequential Control Educational Materials with Module Structure for Engineering Experiments

    NASA Astrophysics Data System (ADS)

    Inamori, Sakae; Chida, Kazunori; Noguchi, Takafumi; Arai, Makoto; Koshimizu, Makoto

    We have developed educational materials to learn about sequential control technology for engineering students. The educational materials have use-friendly characteristics and high-visibility. The characteristics are based on Keller's ARCS model of motivation. At the end of experiments, a questionnaire about these educational materials was administered to the students. The analysis of the questionnaire showed that most students achieved a good understanding and were very interested in experiments of sequential control.

  5. F-16XL-2 Supersonic Laminar Flow Control Flight Test Experiment

    NASA Technical Reports Server (NTRS)

    Anders, Scott G.; Fischer, Michael C.

    1999-01-01

    The F-16XL-2 Supersonic Laminar Flow Control Flight Test Experiment was part of the NASA High-Speed Research Program. The goal of the experiment was to demonstrate extensive laminar flow, to validate computational fluid dynamics (CFD) codes and design methodology, and to establish laminar flow control design criteria. Topics include the flight test hardware and design, airplane modification, the pressure and suction distributions achieved, the laminar flow achieved, and the data analysis and code correlation.

  6. Mechanization of and experience with a triplex fly-by-wire backup control system

    NASA Technical Reports Server (NTRS)

    Lock, W. P.; Petersen, W. R.; Whitman, G. B.

    1975-01-01

    A redundant three-axis analog control system was designed and developed to back up a digital fly-by-wire control system for an F-8C airplane. Forty-two flights, involving 58 hours of flight time, were flown by six pilots. The mechanization and operational experience with the backup control system, the problems involved in synchronizing it with the primary system, and the reliability of the system are discussed. The backup control system was dissimilar to the primary system, and it provided satisfactory handling through the flight envelope evaluated. Limited flight tests of a variety of control tasks showed that control was also satisfactory when the backup control system was controlled by a minimum-displacement (force) side stick. The operational reliability of the F-8 digital fly-by-wire control system was satisfactory, with no unintentional downmodes to the backup control system in flight. The ground and flight reliability of the system's components is discussed.

  7. Mechanization of and experience with a triplex fly-by-wire backup control system

    NASA Technical Reports Server (NTRS)

    Lock, W. P.; Petersen, W. R.; Whitman, G. B.

    1976-01-01

    A redundant three axis analog control system was designed and developed to back up a digital fly by wire control system for an F-8C airplane. The mechanization and operational experience with the backup control system, the problems involved in synchronizing it with the primary system, and the reliability of the system are discussed. The backup control system was dissimilar to the primary system, and it provided satisfactory handling through the flight envelope evaluated. Limited flight tests of a variety of control tasks showed that control was also satisfactory when the backup control system was controlled by a minimum displacement (force) side stick. The operational reliability of the F-8 digital fly by wire control system was satisfactory, with no unintentional downmodes to the backup control system in flight. The ground and flight reliability of the system's components is discussed.

  8. WebLab of a DC Motor Speed Control Didactical Experiment

    ERIC Educational Resources Information Center

    Bauer, Karine; Mendes, Luciano

    2012-01-01

    Purpose: Weblabs are an additional resource in the execution of experiments in control engineering education, making learning process more flexible both in time, by allowing extra class laboratory activities, and space, bringing the learning experience to remote locations where experimentation facilities would not be available. The purpose of this…

  9. Object-Based Control of Attention Is Sensitive to Recent Experience

    ERIC Educational Resources Information Center

    Lee, Hyunkyu; Mozer, Michael C.; Kramer, Arthur F.; Vecera, Shaun P.

    2012-01-01

    How is attention guided by past experience? In visual search, numerous studies have shown that recent trials influence responses to the current trial. Repeating features such as color, shape, or location of a target facilitates performance. Here we examine whether recent experience also modulates a more abstract dimension of attentional control,…

  10. Development of Skylab experiment T020 employing a foot controlled maneuvering unit

    NASA Technical Reports Server (NTRS)

    Hewes, D. E.; Glover, K. E.

    1972-01-01

    A review of the plans and preparations is presented for Skylab experiment T020, entitled Foot-Controlled Maneuvering Unit (FCMU). The FCMU is an experimental system intended to explore the use of simple astronaut maneuvering devices in the zero-gravity environment of space. This review also includes discussions of the FCMU concept and experiment hardware systems, as well as supporting experiment definition and development research studies conducted with the aid of zero-gravity simulators.

  11. Rapid adaptive divergence of life-history traits in response to abiotic stress within a natural population of a parthenogenetic nematode

    PubMed Central

    Doroszuk, Agnieszka; Wojewodzic, Marcin W; Kammenga, Jan E

    2006-01-01

    Sexual reproduction is acknowledged to facilitate adaptation to novel environments while asexual eukaryotes are often regarded as having low adaptive potential. This view has been challenged in a number of studies, but the adaptive potential of asexual populations in the field is poorly documented. We investigated the response of natural populations of the parthenogenetic nematode Acrobeloides nanus to imposed divergent selective pressures. For this purpose, we employed a replicated evolution experiment in the field. After 20 years of evolution under abiotic stress and control conditions, life-history traits were assessed in reaction norm- and reciprocal transplant experiments. Both these experiments indicated adaptive divergence within the population of A. nanus. Namely, the transplant experiment demonstrated that in the stressed soil environment, body growth rate was more reduced in the nematodes originating from the control treatment. In the reaction norm experiment, survival and reproduction were higher under test conditions corresponding to the native environment of the nematodes. The differences in the analysed traits are discussed in the context of life-history theory. Overall, our results strongly support high adaptive potential of A. nanus and suggest that population structure and distribution of asexual species is shaped by local adaptation events. PMID:17002946

  12. A proposed abiotic reaction scheme for hydroxylamine and monochloramine under chloramination relevant drinking water conditions.

    PubMed

    Wahman, David G; Speitel, Gerald E; Machavaram, Madhav V

    2014-09-01

    Drinking water monochloramine (NH2Cl) use may promote ammonia-oxidizing bacteria (AOB). AOB use (i) ammonia monooxygenase for biological ammonia (NH3) oxidation to hydroxylamine (NH2OH) and (ii) hydroxylamine oxidoreductase for NH2OH oxidation to nitrite. NH2Cl and NH2OH may react, providing AOB potential benefits and detriments. The NH2Cl/NH2OH reaction would benefit AOB by removing the disinfectant (NH2Cl) and releasing their growth substrate (NH3), but the NH2Cl/NH2OH reaction would also provide a possible additional inactivation mechanism besides direct NH2Cl reaction with cells. Because biological NH2OH oxidation supplies the electrons required for biological NH3 oxidation, the NH2Cl/NH2OH reaction provides a direct mechanism for NH2Cl to inhibit NH3 oxidation, starving the cell of reductant by preventing biological NH2OH oxidation. To investigate possible NH2Cl/NH2OH reaction implications on AOB, an understanding of the underlying abiotic reaction is first required. The present study conducted a detailed literature review and proposed an abiotic NH2Cl/NH2OH reaction scheme (RS) for chloramination relevant drinking water conditions (μM concentrations, air saturation, and pH 7-9). Next, RS literature based kinetics and end-products were evaluated experimentally between pHs 7.7 and 8.3, representing (i) the pH range for future experiments with AOB and (ii) mid-range pHs typically found in chloraminated drinking water. In addition, a (15)N stable isotope experiment was conducted to verify nitrous oxide and nitrogen gas production and their nitrogen source. Finally, the RS was slightly refined using the experimental data and an AQUASIM implemented kinetic model. A chloraminated drinking water relevant RS is proposed and provides the abiotic reaction foundation for future AOB biotic experiments.

  13. Abiotic Dissolved Organic Matter-Mineral Interaction in the Karstic Floridan Aquifer

    NASA Astrophysics Data System (ADS)

    Jin, J.; Zimmerman, A.

    2007-12-01

    Dissolved organic matter (DOM)-mineral interaction (e.g. adsorption, desorption, mineral dissolution) in groundwater is a significant factor controlling geochemical, environmental and microbial processes and may be helpful in efforts to track groundwater sources or contaminant fate. Despite its importance, the dynamics and consequences of these abiotic interactions remain poorly understood, largely due to the inaccessibility and heterogeneity of the subsurface, as well as the chemical complexity of DOM. This study models the OM-mineral interactions that takes place in the Floridan aquifer through laboratory adsorption-desorption experiments using DOM (groundwater, river water, soil extracts) and carbonate minerals (calcite, dolomite) collected in north Florida. High performance liquid chromatography-size exclusion chromatography (HPLC-SEC) and UV-fluorescence excitation-emission matrix (EEM) spectrophotometry was used to examine the organic compound types exhibiting preferential affinity for carbonate minerals. Our results show that the DOM-carbonate adsorption/desorption isotherms are well described by the Freundlich model. Freundlich exponents (average value: 0.6488) less than one indicated a filling of adsorption sites. Minerals from Ocala tend to have higher adsorption affinity as well as adsorption capacity than those from Suwannee River Basin; however, both were found to have mineral dissolution. Two fluorescent signals, indicative of a fulvic-like (at excitation wavelength 295-310 nm, emission 400-420 nm) and a protein-like (275/345nm) moiety, were detected in DOM. A reduction in the fulvic-like peak intensity occurred following carbonate adsorption while the protein-like peaks remain almost unchanged indicating the preferential adsorption of fulvic acids. HPLC-SEC results (DOM properties as a function of molecular weight) will be discussed. The chemical properties of DOM in environmental groundwater samples will also be presented and evaluated in light of

  14. Abiotic constraints eclipse biotic resistance in determining invasibility along experimental vernal pool gradients.

    PubMed

    Gerhardt, Fritz; Collinge, Sharon K

    2007-04-01

    Effective management of invasive species requires that we understand the mechanisms determining community invasibility. Successful invaders must tolerate abiotic conditions and overcome resistance from native species in invaded habitats. Biotic resistance to invasions may reflect the diversity, abundance, or identity of species in a community. Few studies, however, have examined the relative importance of abiotic and biotic factors determining community invasibility. In a greenhouse experiment, we simulated the abiotic and biotic gradients typically found in vernal pools to better understand their impacts on invasibility. Specifically, we invaded plant communities differing in richness, identity, and abundance of native plants (the "plant neighborhood") and depth of inundation to measure their effects on growth, reproduction, and survival of five exotic plant species. Inundation reduced growth, reproduction, and survival of the five exotic species more than did plant neighborhood. Inundation reduced survival of three species and growth and reproduction of all five species. Neighboring plants reduced growth and reproduction of three species but generally did not affect survival. Brassica rapa, Centaurea solstitialis, and Vicia villosa all suffered high mortality due to inundation but were generally unaffected by neighboring plants. In contrast, Hordeum marinum and Lolium multiflorum, whose survival was unaffected by inundation, were more impacted by neighboring plants. However, the four measures describing plant neighborhood differed in their effects. Neighbor abundance impacted growth and reproduction more than did neighbor richness or identity, with growth and reproduction generally decreasing with increasing density and mass of neighbors. Collectively, these results suggest that abiotic constraints play the dominant role in determining invasibility along vernal pool and similar gradients. By reducing survival, abiotic constraints allow only species with the

  15. Combined Effects of Soil Biotic and Abiotic Factors, Influenced by Sewage Sludge Incorporation, on the Incidence of Corn Stalk Rot

    PubMed Central

    Fortes, Nara Lúcia Perondi; Navas-Cortés, Juan A; Silva, Carlos Alberto; Bettiol, Wagner

    2016-01-01

    The objectives of this study were to evaluate the combined effects of soil biotic and abiotic factors on the incidence of Fusarium corn stalk rot, during four annual incorporations of two types of sewage sludge into soil in a 5-years field assay under tropical conditions and to predict the effects of these variables on the disease. For each type of sewage sludge, the following treatments were included: control with mineral fertilization recommended for corn; control without fertilization; sewage sludge based on the nitrogen concentration that provided the same amount of nitrogen as in the mineral fertilizer treatment; and sewage sludge that provided two, four and eight times the nitrogen concentration recommended for corn. Increasing dosages of both types of sewage sludge incorporated into soil resulted in increased corn stalk rot incidence, being negatively correlated with corn yield. A global analysis highlighted the effect of the year of the experiment, followed by the sewage sludge dosages. The type of sewage sludge did not affect the disease incidence. A multiple logistic model using a stepwise procedure was fitted based on the selection of a model that included the three explanatory parameters for disease incidence: electrical conductivity, magnesium and Fusarium population. In the selected model, the probability of higher disease incidence increased with an increase of these three explanatory parameters. When the explanatory parameters were compared, electrical conductivity presented a dominant effect and was the main variable to predict the probability distribution curves of Fusarium corn stalk rot, after sewage sludge application into the soil. PMID:27176597

  16. Inter-annual variability of carbon fluxes in temperate forest ecosystems: effects of biotic and abiotic factors

    NASA Astrophysics Data System (ADS)

    Chen, M.; Keenan, T. F.; Hufkens, K.; Munger, J. W.; Bohrer, G.; Brzostek, E. R.; Richardson, A. D.

    2014-12-01

    Carbon dynamics in terrestrial ecosystems are influenced by both abiotic and biotic factors. Abiotic factors, such as variation in meteorological conditions, directly drive biophysical and biogeochemical processes; biotic factors, referring to the inherent properties of the ecosystem components, reflect the internal regulating effects including temporal dynamics and memory. The magnitude of the effect of abiotic and biotic factors on forest ecosystem carbon exchange has been suggested to vary at different time scales. In this study, we design and conduct a model-data fusion experiment to investigate the role and relative importance of the biotic and abiotic factors for inter-annual variability of the net ecosystem CO2 exchange (NEE) of temperate deciduous forest ecosystems in the Northeastern US. A process-based model (FöBAAR) is parameterized at four eddy-covariance sites using all available flux and biometric measurements. We conducted a "transplant" modeling experiment, that is, cross- site and parameter simulations with different combinations of site meteorology and parameters. Using wavelet analysis and variance partitioning techniques, analysis of model predictions identifies both spatial variant and spatially invariant parameters. Variability of NEE was primarily modulated by gross primary productivity (GPP), with relative contributions varying from hourly to yearly time scales. The inter-annual variability of GPP and NEE is more regulated by meteorological forcing, but spatial variability in certain model parameters (biotic response) has more substantial effects on the inter-annual variability of ecosystem respiration (Reco) through the effects on carbon pools. Both the biotic and abiotic factors play significant roles in modulating the spatial and temporal variability in terrestrial carbon cycling in the region. Together, our study quantifies the relative importance of both, and calls for better understanding of them to better predict regional CO2

  17. Flexible structure control experiments using a real-time workstation for computer-aided control engineering

    NASA Technical Reports Server (NTRS)

    Stieber, Michael E.

    1989-01-01

    A Real-Time Workstation for Computer-Aided Control Engineering has been developed jointly by the Communications Research Centre (CRC) and Ruhr-Universitaet Bochum (RUB), West Germany. The system is presently used for the development and experimental verification of control techniques for large space systems with significant structural flexibility. The Real-Time Workstation essentially is an implementation of RUB's extensive Computer-Aided Control Engineering package KEDDC on an INTEL micro-computer running under the RMS real-time operating system. The portable system supports system identification, analysis, control design and simulation, as well as the immediate implementation and test of control systems. The Real-Time Workstation is currently being used by CRC to study control/structure interaction on a ground-based structure called DAISY, whose design was inspired by a reflector antenna. DAISY emulates the dynamics of a large flexible spacecraft with the following characteristics: rigid body modes, many clustered vibration modes with low frequencies and extremely low damping. The Real-Time Workstation was found to be a very powerful tool for experimental studies, supporting control design and simulation, and conducting and evaluating tests withn one integrated environment.

  18. Guidance and control law for automatic landing flight experiment of reentry space vehicle

    NASA Astrophysics Data System (ADS)

    Miyazawa, Yoshikazu; Ishikawa, Kazutoshi; Fujii, Kenji

    An automatic landing flight experiment with a sub-scale model is being prepared for a planned future reentry space vehicle by the National Aerospace Laboratory and the National Space Development Agency of Japan. The subscale model is dropped from a helicopter at a 1500-m altitude, and, controlled by an on-board navigation, guidance, and control system, it automatically lands on a 1000-m runway. This paper discusses preliminary study results obtained from numerical simulation. The guidance and control law was designed using a multiple delay model and multiple design point approach. Control system robustness against uncertain and time varying dynamics is especially considered in this approach. The control performances are evaluated with appropriately defined quadratic indices of tracking error. Simple control structures are assumed and parameters are obtained with numerical optimization. The approach was successfully applied to the design, and feasibility of the experiment has been verified with numerical simulations.

  19. CSM digital autopilot testing in support of ASTP experiments control requirements

    NASA Technical Reports Server (NTRS)

    Rue, D. L.

    1975-01-01

    Results are presented of CSM digital autopilot (DAP) testing. The testing was performed to demonstrate and evaluate control modes which are currently planned or could be considered for use in support of experiments on the ASTP mission. The testing was performed on the Lockheed Guidance, Navigation, and Control System Functional Simulator (GNCFS). This simulator, which was designed to test the Apollo and Skylab DAP control system, has been used extensively and is a proven tool for CSM DAP analysis.

  20. Real-sky adaptive optics experiments on optimal control of tip-tilt modes

    NASA Astrophysics Data System (ADS)

    Doelman, Niek; Fraanje, Rufus; den Breeje, Remco

    2011-09-01

    In recent years various researchers have concentrated on control performance improvement for adaptive optics systems by using more sophisticated design methods. These approaches account for the inherent spatial and temporal correlations in the wavefront sensor data. Several control schemes have been proposed, of which the common essence is the minimization of a criterion function, yielding so-called 'optimal' or LQG control solutions. These are in some cases also referred to as 'predictive control'. Following the H2-optimal control design approach proposed by Hinnen [JOSA A Vol. 24, 2007], a real-sky experiment has been carried out on the McMath-Pierce solar telescope on Kitt Peak, Arizona. The purpose of the experiment was to validate the favourable results of optimal control, as obtained in simulations and laboratory experiments, on a real-time AO system on a telescope with real-sky turbulence. During the experimental week, it appeared that the deformable mirror did not have sufficient stroke to cope with the strong wavefront aberrations as measured by the AO wavefront sensor. Therefore, it was decided to focus on optimal control of the lower aberration modes tip and tilt only (using the separate TT-mirror). The control experiments demonstrate that for the particular AO system and seeing conditions (Nov 14, 2010) real-time optimal control can reduce the tip and tilt amplitudes by an additional factor of about 2 (RMS), compared to the common integrator control of the tip and tilt modes. For the low frequency band the improvement ranges from 10 to 20 dB. This performance agrees reasonably well with the predicted performance which is based on off-line analysis of the WFS data. The paper will discuss the experimental results in detail and also address important aspects like the non-stationarity of the wavefront aberrations, coupled versus decoupled tip-tilt control and measures to increase the robustness of the controller.

  1. Construction of AC Motor Controllers for NOvA Experiment Upgrades

    SciTech Connect

    Cooley, Patrick; /Fermilab

    2011-08-04

    I have been constructing Alternating Current (AC) motor controllers for manipulation of particle beam detectors. The capability and reliability of these motor controllers are essential to the Laboratory's mission of accurate analysis of the particle beam's position. The device is moved in and out of the beam's path by the motor controller followed by the Neutrinos at the Main Injector Off-Axis {nu}{sub e} Appearance (NOvA) Experiment further down the beam pipe. In total, I built and tested ten ac motor controllers for new beam operations in the NOvA experiment. These units will prove to be durable and provide extremely accurate beam placement for NOvA Experiment far into the future.

  2. Recent Advances in Polyamine Metabolism and Abiotic Stress Tolerance

    PubMed Central

    Rangan, Parimalan; Subramani, Rajkumar; Singh, Amit Kumar

    2014-01-01

    Global warming is an alarming problem in agriculture and its effect on yield loss has been estimated to be five per cent for every degree centigrade rise in temperature. Plants exhibit multiple mechanisms like optimizing signaling pathway, involvement of secondary messengers, production of biomolecules specifically in response to stress, modulation of various metabolic networks in accordance with stress, and so forth, in order to overcome abiotic stress factors. Many structural genes and networks of pathway were identified and reported in plant systems for abiotic stress tolerance. One such crucial metabolic pathway that is involved in normal physiological function and also gets modulated during stress to impart tolerance is polyamine metabolic pathway. Besides the role of structural genes, it is also important to know the mechanism by which these structural genes are regulated during stress. Present review highlights polyamine biosynthesis, catabolism, and its role in abiotic stress tolerance with special reference to plant systems. Additionally, a system based approach is discussed as a potential strategy to dissect the existing variation in crop species in unraveling the interacting regulatory components/genetic determinants related to PAs mediated abiotic stress tolerance. PMID:25136565

  3. Recent advances in polyamine metabolism and abiotic stress tolerance.

    PubMed

    Rangan, Parimalan; Subramani, Rajkumar; Kumar, Rajesh; Singh, Amit Kumar; Singh, Rakesh

    2014-01-01

    Global warming is an alarming problem in agriculture and its effect on yield loss has been estimated to be five per cent for every degree centigrade rise in temperature. Plants exhibit multiple mechanisms like optimizing signaling pathway, involvement of secondary messengers, production of biomolecules specifically in response to stress, modulation of various metabolic networks in accordance with stress, and so forth, in order to overcome abiotic stress factors. Many structural genes and networks of pathway were identified and reported in plant systems for abiotic stress tolerance. One such crucial metabolic pathway that is involved in normal physiological function and also gets modulated during stress to impart tolerance is polyamine metabolic pathway. Besides the role of structural genes, it is also important to know the mechanism by which these structural genes are regulated during stress. Present review highlights polyamine biosynthesis, catabolism, and its role in abiotic stress tolerance with special reference to plant systems. Additionally, a system based approach is discussed as a potential strategy to dissect the existing variation in crop species in unraveling the interacting regulatory components/genetic determinants related to PAs mediated abiotic stress tolerance.

  4. ABIOTIC DEGRADATION OF TRICHLOROETHYLENE UNDER THERMAL REMEDIATION CONDITIONS

    EPA Science Inventory

    The degradation of TCE (C2HCl3) to carbon dioxide (CO2) and chloride (Cl-) has been reported to occur during thermal remediation of subsurface environments. The overall goal of this study was to evaluate abiotic degradation of TCE at el...

  5. Recent advances in polyamine metabolism and abiotic stress tolerance.

    PubMed

    Rangan, Parimalan; Subramani, Rajkumar; Kumar, Rajesh; Singh, Amit Kumar; Singh, Rakesh

    2014-01-01

    Global warming is an alarming problem in agriculture and its effect on yield loss has been estimated to be five per cent for every degree centigrade rise in temperature. Plants exhibit multiple mechanisms like optimizing signaling pathway, involvement of secondary messengers, production of biomolecules specifically in response to stress, modulation of various metabolic networks in accordance with stress, and so forth, in order to overcome abiotic stress factors. Many structural genes and networks of pathway were identified and reported in plant systems for abiotic stress tolerance. One such crucial metabolic pathway that is involved in normal physiological function and also gets modulated during stress to impart tolerance is polyamine metabolic pathway. Besides the role of structural genes, it is also important to know the mechanism by which these structural genes are regulated during stress. Present review highlights polyamine biosynthesis, catabolism, and its role in abiotic stress tolerance with special reference to plant systems. Additionally, a system based approach is discussed as a potential strategy to dissect the existing variation in crop species in unraveling the interacting regulatory components/genetic determinants related to PAs mediated abiotic stress tolerance. PMID:25136565

  6. Soil respiration in the cold desert environment of the Colorado Plateau (USA): Abiotic regulators and thresholds

    USGS Publications Warehouse

    Fernandez, D.P.; Neff, J.C.; Belnap, J.; Reynolds, R.L.

    2006-01-01

    Decomposition is central to understanding ecosystem carbon exchange and nutrient-release processes. Unlike mesic ecosystems, which have been extensively studied, xeric landscapes have received little attention; as a result, abiotic soil-respiration regulatory processes are poorly understood in xeric environments. To provide a more complete and quantitative understanding about how abiotic factors influence soil respiration in xeric ecosystems, we conducted soil- respiration and decomposition-cloth measurements in the cold desert of southeast Utah. Our study evaluated when and to what extent soil texture, moisture, temperature, organic carbon, and nitrogen influence soil respiration and examined whether the inverse-texture hypothesis applies to decomposition. Within our study site, the effect of texture on moisture, as described by the inverse texture hypothesis, was evident, but its effect on decomposition was not. Our results show temperature and moisture to be the dominant abiotic controls of soil respiration. Specifically, temporal offsets in temperature and moisture conditions appear to have a strong control on soil respiration, with the highest fluxes occurring in spring when temperature and moisture were favorable. These temporal offsets resulted in decomposition rates that were controlled by soil moisture and temperature thresholds. The highest fluxes of CO2 occurred when soil temperature was between 10 and 16??C and volumetric soil moisture was greater than 10%. Decomposition-cloth results, which integrate decomposition processes across several months, support the soil-respiration results and further illustrate the seasonal patterns of high respiration rates during spring and low rates during summer and fall. Results from this study suggest that the parameters used to predict soil respiration in mesic ecosystems likely do not apply in cold-desert environments. ?? Springer 2006.

  7. The abiotic and biotic factors limiting establishment of predatory fishes at their expanding northern range boundaries in Ontario, Canada.

    PubMed

    Alofs, Karen M; Jackson, Donald A

    2015-06-01

    There is a poor understanding of the importance of biotic interactions in determining species distributions with climate change. Theory from invasion biology suggests that the success of species introductions outside of their historical ranges may be either positively (biotic acceptance) or negatively (biotic resistance) related to native biodiversity. Using data on fish community composition from two survey periods separated by approximately 28 years during which climate was warming, we examined the factors influencing the establishment of three predatory centrarchids: Smallmouth Bass (Micropterus dolomieu), Largemouth Bass (M. salmoides), and Rock Bass (Ambloplites rupestris) in lakes at their expanding northern range boundaries in Ontario. Variance partitioning demonstrated that, at a regional scale, abiotic factors play a stronger role in determining the establishment of these species than biotic factors. Pairing lakes within watersheds where each species had established with lakes sharing similar abiotic conditions where the species had not established revealed both positive and negative relationships between the establishment of centrarchids and the historical presence of other predatory species. The establishment of these species near their northern range boundaries is primarily determined by abiotic factors at a regional scale; however, biotic factors become important at the lake-to-lake scale. Studies of exotic species invasions have previously highlighted how spatial scale mediates the importance of abiotic vs. biotic factors on species establishment. Our study demonstrates how concepts from invasion biology can inform our understanding of the factors controlling species distributions with changing climate. PMID:25556555

  8. HvPap-1 C1A protease actively participates in barley proteolysis mediated by abiotic stresses.

    PubMed

    Velasco-Arroyo, Blanca; Diaz-Mendoza, Mercedes; Gandullo, Jacinto; Gonzalez-Melendi, Pablo; Santamaria, M Estrella; Dominguez-Figueroa, Jose D; Hensel, Goetz; Martinez, Manuel; Kumlehn, Jochen; Diaz, Isabel

    2016-07-01

    Protein breakdown and mobilization from old or stressed tissues to growing and sink organs are some of the metabolic features associated with abiotic/biotic stresses, essential for nutrient recycling. The massive degradation of proteins implies numerous proteolytic events in which cysteine-proteases are the most abundant key players. Analysing the role of barley C1A proteases in response to abiotic stresses is crucial due to their impact on plant growth and grain yield and quality. In this study, dark and nitrogen starvation treatments were selected to induce stress in barley. Results show that C1A proteases participate in the proteolytic processes triggered in leaves by both abiotic treatments, which strongly induce the expression of the HvPap-1 gene encoding a cathepsin F-like protease. Differences in biochemical parameters and C1A gene expression were found when comparing transgenic barley plants overexpressing or silencing the HvPap-1 gene and wild-type dark-treated leaves. These findings associated with morphological changes evidence a lifespan-delayed phenotype of HvPap-1 silenced lines. All these data elucidate on the role of this protease family in response to abiotic stresses and the potential of their biotechnological manipulation to control the timing of plant growth. PMID:27217548

  9. The abiotic and biotic factors limiting establishment of predatory fishes at their expanding northern range boundaries in Ontario, Canada.

    PubMed

    Alofs, Karen M; Jackson, Donald A

    2015-06-01

    There is a poor understanding of the importance of biotic interactions in determining species distributions with climate change. Theory from invasion biology suggests that the success of species introductions outside of their historical ranges may be either positively (biotic acceptance) or negatively (biotic resistance) related to native biodiversity. Using data on fish community composition from two survey periods separated by approximately 28 years during which climate was warming, we examined the factors influencing the establishment of three predatory centrarchids: Smallmouth Bass (Micropterus dolomieu), Largemouth Bass (M. salmoides), and Rock Bass (Ambloplites rupestris) in lakes at their expanding northern range boundaries in Ontario. Variance partitioning demonstrated that, at a regional scale, abiotic factors play a stronger role in determining the establishment of these species than biotic factors. Pairing lakes within watersheds where each species had established with lakes sharing similar abiotic conditions where the species had not established revealed both positive and negative relationships between the establishment of centrarchids and the historical presence of other predatory species. The establishment of these species near their northern range boundaries is primarily determined by abiotic factors at a regional scale; however, biotic factors become important at the lake-to-lake scale. Studies of exotic species invasions have previously highlighted how spatial scale mediates the importance of abiotic vs. biotic factors on species establishment. Our study demonstrates how concepts from invasion biology can inform our understanding of the factors controlling species distributions with changing climate.

  10. Apollo experience report guidance and control systems: Primary guidance, navigation, and control system development

    NASA Technical Reports Server (NTRS)

    Holley, M. D.; Swingle, W. L.; Bachman, S. L.; Leblanc, C. J.; Howard, H. T.; Biggs, H. M.

    1976-01-01

    The primary guidance, navigation, and control systems for both the lunar module and the command module are described. Development of the Apollo primary guidance systems is traced from adaptation of the Polaris Mark II system through evolution from Block I to Block II configurations; the discussion includes design concepts used, test and qualification programs performed, and major problems encountered. The major subsystems (inertial, computer, and optical) are covered. Separate sections on the inertial components (gyroscopes and accelerometers) are presented because these components represent a major contribution to the success of the primary guidance, navigation, and control system.

  11. Abiotic ozone and oxygen in atmospheres similar to prebiotic Earth

    SciTech Connect

    Domagal-Goldman, Shawn D.; Segura, Antígona; Claire, Mark W.; Robinson, Tyler D.; Meadows, Victoria S.

    2014-09-10

    The search for life on planets outside our solar system will use spectroscopic identification of atmospheric biosignatures. The most robust remotely detectable potential biosignature is considered to be the detection of oxygen (O{sub 2}) or ozone (O{sub 3}) simultaneous to methane (CH{sub 4}) at levels indicating fluxes from the planetary surface in excess of those that could be produced abiotically. Here we use an altitude-dependent photochemical model with the enhanced lower boundary conditions necessary to carefully explore abiotic O{sub 2} and O{sub 3} production on lifeless planets with a wide variety of volcanic gas fluxes and stellar energy distributions. On some of these worlds, we predict limited O{sub 2} and O{sub 3} buildup, caused by fast chemical production of these gases. This results in detectable abiotic O{sub 3} and CH{sub 4} features in the UV-visible, but no detectable abiotic O{sub 2} features. Thus, simultaneous detection of O{sub 3} and CH{sub 4} by a UV-visible mission is not a strong biosignature without proper contextual information. Discrimination between biological and abiotic sources of O{sub 2} and O{sub 3} is possible through analysis of the stellar and atmospheric context—particularly redox state and O atom inventory—of the planet in question. Specifically, understanding the spectral characteristics of the star and obtaining a broad wavelength range for planetary spectra should allow more robust identification of false positives for life. This highlights the importance of wide spectral coverage for future exoplanet characterization missions. Specifically, discrimination between true and false positives may require spectral observations that extend into infrared wavelengths and provide contextual information on the planet's atmospheric chemistry.

  12. Integrating omic approaches for abiotic stress tolerance in soybean

    PubMed Central

    Deshmukh, Rupesh; Sonah, Humira; Patil, Gunvant; Chen, Wei; Prince, Silvas; Mutava, Raymond; Vuong, Tri; Valliyodan, Babu; Nguyen, Henry T.

    2014-01-01

    Soybean production is greatly influenced by abiotic stresses imposed by environmental factors such as drought, water submergence, salt, and heavy metals. A thorough understanding of plant response to abiotic stress at the molecular level is a prerequisite for its effective management. The molecular mechanism of stress tolerance is complex and requires information at the omic level to understand it effectively. In this regard, enormous progress has been made in the omics field in the areas of genomics, transcriptomics, and proteomics. The emerging field of ionomics is also being employed for investigating abiotic stress tolerance in soybean. Omic approaches generate a huge amount of data, and adequate advancements in computational tools have been achieved for effective analysis. However, the integration of omic-scale information to address complex genetics and physiological questions is still a challenge. In this review, we have described advances in omic tools in the view of conventional and modern approaches being used to dissect abiotic stress tolerance in soybean. Emphasis was given to approaches such as quantitative trait loci (QTL) mapping, genome-wide association studies (GWAS), and genomic selection (GS). Comparative genomics and candidate gene approaches are also discussed considering identification of potential genomic loci, genes, and biochemical pathways involved in stress tolerance mechanism in soybean. This review also provides a comprehensive catalog of available online omic resources for soybean and its effective utilization. We have also addressed the significance of phenomics in the integrated approaches and recognized high-throughput multi-dimensional phenotyping as a major limiting factor for the improvement of abiotic stress tolerance in soybean. PMID:24917870

  13. Reactive oxygen species signaling in plants under abiotic stress.

    PubMed

    Choudhury, Shuvasish; Panda, Piyalee; Sahoo, Lingaraj; Panda, Sanjib Kumar

    2013-04-01

    Abiotic stresses like heavy metals, drought, salt, low temperature, etc. are the major factors that limit crop productivity and yield. These stresses are associated with production of certain deleterious chemical entities called reactive oxygen species (ROS), which include hydrogen peroxide (H₂O₂), superoxide radical (O₂(-)), hydroxyl radical (OH(-)), etc. ROS are capable of inducing cellular damage by degradation of proteins, inactivation of enzymes, alterations in the gene and interfere in various pathways of metabolic importance. Our understanding on ROS in response to abiotic stress is revolutionized with the advancements in plant molecular biology, where the basic understanding on chemical behavior of ROS is better understood. Understanding the molecular mechanisms involved in ROS generation and its potential role during abiotic stress is important to identify means by which plant growth and metabolism can be regulated under acute stress conditions. ROS mediated oxidative stress, which is the key to understand stress related toxicity have been widely studied in many plants and the results in those studies clearly revealed that oxidative stress is the main symptom of toxicity. Plants have their own antioxidant defense mechanisms to encounter ROS that is of enzymic and non-enzymic nature . Coordinated activities of these antioxidants regulate ROS detoxification and reduces oxidative load in plants. Though ROS are always regarded to impart negative impact on plants, some reports consider them to be important in regulating key cellular functions; however, such reports in plant are limited. Molecular approaches to understand ROS metabolism and signaling have opened new avenues to comprehend its critical role in abiotic stress. ROS also acts as secondary messenger that signals key cellular functions like cell proliferation, apoptosis and necrosis. In higher eukaryotes, ROS signaling is not fully understood. In this review we summarize our understanding on ROS

  14. Application of the object-oriented paradigm for scientific experiment monitoring & control

    NASA Astrophysics Data System (ADS)

    Racaud, Thierry; Assis-Arantes, Patrick

    1994-12-01

    This paper presents a new approach to the monitoring and control of scientific experiments. This new approach is based on an object-oriented environment composed of three elements: (a) A graphical environment that allows the creation of an object-oriented model of the experiment based on objects, attributes and methods. (b) A language for writing procedures to access the model by sending messages in order to operate the experiment. (c) A man-machine interface based on an interactive graphical layer above the object-oriented representation for controlling and monitoring the experiment. This new approach has been prototyped in a project called "Man-Machine Interface Software for Ground User Terminal", or User Terminal in short. The project is carried out by SPACEBEL Informatique on behalf of the European Space Research and Technology Centre (ESTEC). Although this project has been undertaken for the operation of scientific experiments in space, User Terminal can naturally be used for the monitoring and control of ground based experiments. This article presents the User Terminal system as well as one of the first practical exercises performed in the context of the teleoperation of a liquid science experiment to be shipped into space.

  15. Abiotic Formation of Hydrocarbons Under Hydrothermal Conditions: Constraints from Chemical and Isotope Data

    SciTech Connect

    Fu, Q.; Lollar, Barbara Sherwood; Horita, Juske; Lacrampe-Couloume, Georges; Seyfried, W. E.

    2007-01-01

    To understand reaction pathways and isotope systematics during mineral-catalyzed abiotic synthesis of hydrocarbons under hydrothermal conditions, experiments involving magnetite and CO{sub 2} and H{sub 2}-bearing aqueous fluids were conducted at 400 C and 500 bars. A robust technique for sample storage and transfer from experimental apparatus to stable isotope mass spectrometer provides a methodology for integration of both carbon and hydrogen isotope characterization of reactants and products generated during abiogenic synthesis experiments. Experiments were performed with and without pretreatment of magnetite to remove background carbon associated with the mineral catalyst. Prior to experiments, the abundance and carbon isotope composition of all carbon-bearing components were determined. Time-series samples of the fluid from all experiments indicated significant concentrations of dissolved CO and C{sub 1}-C{sub 3} hydrocarbons and relatively large changes in dissolved CO{sub 2} and H{sub 2} concentrations, consistent with formation of additional hydrocarbon components beyond C{sub 3}. The existence of relatively high dissolved alkanes in the experiment involving non-pretreated magnetite in particular, suggests a complex catalytic process, likely involving reinforcing effects of mineral-derived carbon with newly synthesized hydrocarbons at the magnetite surface. Similar reactions may be important mechanisms for carbon reduction in chemically complex natural hydrothermal systems. In spite of evidence supporting abiotic hydrocarbon formation in all experiments, an 'isotopic reversal' trend was not observed for {sup 13}C values of dissolved alkanes with increasing carbon number. This may relate to the specific mechanism of carbon reduction and hydrocarbon chain growth under hydrothermal conditions at elevated temperatures and pressures. Over time, significant {sup 13}C depletion in CH{sub 4} suggests either depolymerization reactions occurring in addition to

  16. Beam transport experiment with a new kicker control system on the HIRFL

    NASA Astrophysics Data System (ADS)

    Wang, Yan-Yu; Zhou, De-Tai; Luo, Jin-Fu; Zhang, Jian-Chuan; Zhou, Wen-Xiong; Ni, Fa-Fu; Yin, Jun; Yin, Jia; Yuan, You-Jin; Shang-Guan, Jing-Bin

    2016-04-01

    A kicker control system is used for beam extraction and injection between two cooling storage rings (CSRs) at the Heavy Ion Research Facility in Lanzhou (HIRFL). To meet the requirements of special physics experiments, the kicker controller has been upgraded, with a new controller designed based on ARM+DSP+FPGA technology and monolithic circuit architecture, which can achieve a precision time delay of 2.5 ns. In September 2014, the new kicker control system was installed in the kicker field, and the test experiment using the system was completed. In addition, a pre-trigger signal was provided by the controller, which was designed to synchronize the beam diagnostic system and physics experiments. Experimental results indicate that the phenomena of “missed kick” and “inefficient kick” were not observed, and the multichannel trigger signal delay could be adjusted individually for kick power supplies in digitization; thus, the beam transport efficiency was improved compared with that of the original system. The fast extraction and injection experiment was successfully completed based on the new kicker control systems for HIRFL. Supported by National Natural Science Foundation of China (U1232123)

  17. Simulation and design of feedback control on resistive wall modes in Keda Torus eXperiment

    SciTech Connect

    Li, Chenguang; Liu, Wandong; Li, Hong

    2014-12-15

    The feedback control of resistive wall modes (RWMs) in Keda Torus eXperiment (KTX) (Liu et al., Plasma Phys. Controlled Fusion 56, 094009 (2014)) is investigated by simulation. A linear model is built to describe the growth of the unstable modes in the absence of feedback and the resulting mode suppression due to feedback, given the typical reversed field pinch plasma equilibrium. The layout of KTX with two shell structures (the vacuum vessel and the stabilizing shell) is taken into account. The feedback performance is explored both in the scheme of “clean mode control” (Zanca et al., Nucl. Fusion 47, 1425 (2007)) and “raw mode control.” The discrete time control model with specific characteristic times will mimic the real feedback control action and lead to the favored control cycle. Moreover, the conceptual design of feedback control system is also presented, targeting on both RWMs and tearing modes.

  18. Experience in the installation of a microprocessor system for controlling converter units of the Vyborg substation

    SciTech Connect

    Gusakovskii, K. B.; Zmaznov, E. Yu.; Katantsev, S. V.; Mazurenko, A. K.; Mestergazi, V. A.; Prochan, G. G.; Funtikova, S. F.

    2006-01-15

    The experience in the installation of modern digital systems for controlling converter units at the Vyborg converter substation on the basis of advanced microprocessor devices is considered. It is shown that debugging of a control and protection system on mathematical and physical models does not guarantee optimum control of actual converter devices. Examples of advancing the control and protection system are described, the necessity for which has become obvious in tests of actual equipment. Comparison of oscillograms of processes before optimization of the control system and after its optimization and adjustment shows that the digital control system makes it possible to improve substantially the algorithms of control and protection in the short term and without changing the hardware component.

  19. Neural network setpoint control of an advanced test reactor experiment loop simulation

    SciTech Connect

    Cordes, G.A.; Bryan, S.R.; Powell, R.H.; Chick, D.R.

    1990-09-01

    This report describes the design, implementation, and application of artificial neural networks to achieve temperature and flow rate control for a simulation of a typical experiment loop in the Advanced Test Reactor (ATR) located at the Idaho National Engineering Laboratory (INEL). The goal of the project was to research multivariate, nonlinear control using neural networks. A loop simulation code was adapted for the project and used to create a training set and test the neural network controller for comparison with the existing loop controllers. The results for three neural network designs are documented and compared with existing loop controller action. The neural network was shown to be as accurate at loop control as the classical controllers in the operating region represented by the training set. 9 refs., 28 figs., 2 tabs.

  20. Preliminary experiments on active control of fan noise from a turbofan engine

    NASA Technical Reports Server (NTRS)

    Thomas, R. H.; Burdisso, R. A.; Fuller, C. R.; O'Brien, W. F.

    1993-01-01

    In the preliminary experiments reported here, active acoustic sources positioned around the circumference of a turbofan engine were used to control the fan noise radiated forward through the inlet. The main objective was to demonstrate the potential of active techniques to alleviate the noise pollution that will be produced by the next generation of larger engines. A reduction of up to 19 dB in the radiation directivity was demonstrated in a zone that encompasses a 30-deg angle, near the error sensor, while spillover effects were observed toward the lateral direction. The simultaneous control of two tones was also demonstrated using two identical controllers in a parallel control configuration.

  1. Vibration control experiment design for the 15-m hoop/column antenna

    NASA Technical Reports Server (NTRS)

    Ham, F. M.; Hyland, D. C.

    1985-01-01

    A test program is designed for a ground-based vibration control experiment utilizing as the test article the 15-M Hoop/Column Antenna. Overall objectives of the designed ground-based test program include: (1) the validation of large space structure (LSS) control systemm techniques; (2) the validation of LSS parameter identification techniques: (3) the evaluation of actuator of actuator and sensor placement methodology; and (3) the validation of LSS computer models. Critical concerns in LSS Controls and Dynamics are: low frequency vibrational modes, close modal spacing, parameter uncertainties, controller software limitations, nonlinearities and coupling of modes through damping. Analytical results are presented which include compensator designs for varying compensator order.

  2. In vivo experiments of a surgical robot with vision field control for Single Port Endoscopic Surgery.

    PubMed

    Sekiguchi, Yuta; Kobayashi, Yo; Watanabe, Hiroki; Tomono, Yu; Noguchi, Takehiko; Takahashi, Yu; Toyoda, Kazutaka; Uemura, Munenori; Ieiri, Satoshi; Ohdaira, Takeshi; Tomikawa, Morimasa; Hashizume, Makoto; Fujie, Masakatsu G

    2011-01-01

    Recently, robotics systems are focused to assist in Single Port Endoscopic Surgery (SPS). However, the existing system required a manual operation of vision and viewpoint, hindering the surgical task. We proposed a surgical endoscopic robot for SPS with dynamic vision control, the endoscopic view being manipulated by a master controller. The prototype robot consists of a manipulator for vision control, and dual tool tissue manipulators (gripping: 5DOFs, cautery: 3DOFs) can be attached at the tip of sheath manipulator. In particular, this paper focuses on an in vivo experiment. We showed that vision control in the stomach and a cautery task by a cautery tool could be effectively achieved.

  3. A system for conducting igneous petrology experiments under controlled redox conditions in reduced gravity

    NASA Technical Reports Server (NTRS)

    Williams, R. J.

    1986-01-01

    The Space Shuttle and the planned Space Station will permit experimentation under conditions of reduced gravitational acceleration offering experimental petrologists the opportunity to study crystal growth, element distribution, and phase chemistry. In particular the confounding effects of macro and micro scale buoyancy-induced convection and crystal settling or floatation can be greatly reduced over those observed in experiments in the terrestrial laboratory. Also, for experiments in which detailed replication of the environment is important, the access to reduced gravity will permit a more complete simulation of processes that may have occurred on asteroids or in free space. A technique that was developed to control, measure, and manipulate oxygen fugacites with small quantities of gas which are recirculated over the sample is described. This system should be adaptable to reduced gravity space experiments requiring redox control. Experiments done conventionally and those done using this technique yield identical results done in a 1-g field.

  4. Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings.

    PubMed

    Mastouri, Fatemeh; Björkman, Thomas; Harman, Gary E

    2010-11-01

    Trichoderma spp. are endophytic plant symbionts that are widely used as seed treatments to control diseases and to enhance plant growth and yield. Although some recent work has been published on their abilities to alleviate abiotic stresses, specific knowledge of mechanisms, abilities to control multiple plant stress factors, their effects on seed and seedlings is lacking. We examined the effects of seed treatment with T. harzianum strain T22 on germination of seed exposed to biotic stress (seed and seedling disease caused by Pythium ultimum) and abiotic stresses (osmotic, salinity, chilling, or heat stress). We also evaluated the ability of the beneficial fungus to overcome physiological stress (poor seed quality induced by seed aging). If seed were not under any of the stresses noted above, T22 generally had little effect upon seedling performance. However, under stress, treated seed germinated consistently faster and more uniformly than untreated seeds whether the stress was osmotic, salt, or suboptimal temperatures. The consistent response to varying stresses suggests a common mechanism through which the plant-fungus association enhances tolerance to a wide range of abiotic stresses as well as biotic stress. A common factor that negatively affects plants under these stress conditions is accumulation of toxic reactive oxygen species (ROS), and we tested the hypothesis that T22 reduced damages resulting from accumulation of ROS in stressed plants. Treatment of seeds reduced accumulation of lipid peroxides in seedlings under osmotic stress or in aged seeds. In addition, we showed that the effect of exogenous application of an antioxidant, glutathione, or application of T22, resulted in a similar positive effect on seed germination under osmotic stress or in aged seed. This evidence supports the model that T. harzianum strain T22 increases seedling vigor and ameliorates stress by inducing physiological protection in plants against oxidative damage.

  5. The central trigger control system of the CMS experiment at CERN

    NASA Astrophysics Data System (ADS)

    Jeitler, M.; Taurok, A.; Bergauer, H.; Kastner, K.; Mikulec, I.; Neuherz, B.; Padrta, M.; Sakulin, H.; Strauss, J.; Wulz, C.-E.

    2010-05-01

    The Level-1 (L1) Trigger of the CMS experiment uses custom-made, fast electronics, while the experiment's high-level trigger is implemented in computer farms. The Central Trigger Control System described in this poster receives physics triggers from the Global Trigger Logic unit, collects information from the various subdetector systems to check if they are ready to accept triggers, reduces excessive trigger rates according to preset rules and finally distributes the trigger ("Level-1 Accept") together with timing signals to the subdetectors over the so-called "Trigger, and Timing and Control" (TTC) network of the experiment. The complete functionality of the Central Trigger Control System is implemented in one 9U-VME module and several ancillary boards for input and output functions. The system has been used successfully during CMS test runs with cosmics and beam.

  6. The service telemetry and control device for space experiment “GRIS”

    NASA Astrophysics Data System (ADS)

    Glyanenko, A. S.

    2016-02-01

    Problems of scientific devices control (for example, fine control of measuring paths), collecting auxiliary (service information about working capacity, conditions of experiment carrying out, etc.) and preliminary data processing are actual for any space device. Modern devices for space research it is impossible to imagine without devices that didn't use digital data processing methods and specialized or standard interfaces and computing facilities. For realization of these functions in “GRIS” experiment onboard ISS for purposes minimization of dimensions, power consumption, the concept “system-on-chip” was chosen and realized. In the programmable logical integrated scheme by Microsemi from ProASIC3 family with maximum capacity up to 3M system gates, the computing kernel and all necessary peripherals are created. In this paper we discuss structure, possibilities and resources the service telemetry and control device for “GRIS” space experiment.

  7. Stratospheric controlled perturbation experiment: a small-scale experiment to improve understanding of the risks of solar geoengineering.

    PubMed

    Dykema, John A; Keith, David W; Anderson, James G; Weisenstein, Debra

    2014-12-28

    Although solar radiation management (SRM) through stratospheric aerosol methods has the potential to mitigate impacts of climate change, our current knowledge of stratospheric processes suggests that these methods may entail significant risks. In addition to the risks associated with current knowledge, the possibility of 'unknown unknowns' exists that could significantly alter the risk assessment relative to our current understanding. While laboratory experimentation can improve the current state of knowledge and atmospheric models can assess large-scale climate response, they cannot capture possible unknown chemistry or represent the full range of interactive atmospheric chemical physics. Small-scale, in situ experimentation under well-regulated circumstances can begin to remove some of these uncertainties. This experiment-provisionally titled the stratospheric controlled perturbation experiment-is under development and will only proceed with transparent and predominantly governmental funding and independent risk assessment. We describe the scientific and technical foundation for performing, under external oversight, small-scale experiments to quantify the risks posed by SRM to activation of halogen species and subsequent erosion of stratospheric ozone. The paper's scope includes selection of the measurement platform, relevant aspects of stratospheric meteorology, operational considerations and instrument design and engineering.

  8. Stratospheric controlled perturbation experiment: a small-scale experiment to improve understanding of the risks of solar geoengineering.

    PubMed

    Dykema, John A; Keith, David W; Anderson, James G; Weisenstein, Debra

    2014-12-28

    Although solar radiation management (SRM) through stratospheric aerosol methods has the potential to mitigate impacts of climate change, our current knowledge of stratospheric processes suggests that these methods may entail significant risks. In addition to the risks associated with current knowledge, the possibility of 'unknown unknowns' exists that could significantly alter the risk assessment relative to our current understanding. While laboratory experimentation can improve the current state of knowledge and atmospheric models can assess large-scale climate response, they cannot capture possible unknown chemistry or represent the full range of interactive atmospheric chemical physics. Small-scale, in situ experimentation under well-regulated circumstances can begin to remove some of these uncertainties. This experiment-provisionally titled the stratospheric controlled perturbation experiment-is under development and will only proceed with transparent and predominantly governmental funding and independent risk assessment. We describe the scientific and technical foundation for performing, under external oversight, small-scale experiments to quantify the risks posed by SRM to activation of halogen species and subsequent erosion of stratospheric ozone. The paper's scope includes selection of the measurement platform, relevant aspects of stratospheric meteorology, operational considerations and instrument design and engineering. PMID:25404681

  9. Unusual materials effects observed on the thermal control surfaces experiment (S0069)

    NASA Technical Reports Server (NTRS)

    Zwiener, James M.; Wilkes, Donald R.; Hummer, Leigh L.

    1991-01-01

    A number of unusual effects were observed on the Thermal Control Surface Experiment (TCSE) test samples, front cover, and structural components. These include induced UV fluorescence, the migration and degradation of KRS-5 materials, atomic oxygen effects, contamination, texturing, discoloration, and meteoroid/debris impact. LDEF (Long Duration Exposure Facility) mission induced fluorescence was observed on several TCSE samples. Similar fluorescence was observed on LDEF leading edge materials from Experiment A0114.

  10. Abiotic reductive dechlorination of cis-DCE by ferrous monosulfide mackinawite.

    PubMed

    Hyun, Sung Pil; Hayes, Kim F

    2015-11-01

    Cis-1,2,-dichloroethylene (cis-DCE) is a toxic, persistent contaminant occurring mainly as a daughter product of incomplete degradation of perchloroethylene (PCE) and trichloroethylene (TCE). This paper reports on abiotic reductive dechlorination of cis-DCE by mackinawite (FeS1-x), a ferrous monosulfide, under variable geochemical conditions. To assess in situ abiotic cis-DCE dechlorination by mackinawite in the field, mackinawite suspensions prepared in a field groundwater sample collected from a cis-DCE contaminated field site were used for dechlorination experiments. The effects of geochemical variables on the dechlorination rates were monitored. A set of dechlorination experiments were also carried out in the presence of aquifer sediment from the site over a range of pH conditions to better simulate the actual field situations. The results showed that the suspensions of freshly prepared mackinawite reductively transformed cis-DCE to acetylene, whereas the conventionally prepared powder form of mackinawite had practically no reactivity with cis-DCE under the same experimental conditions. Significant cis-DCE degradation by mackinawite has not been reported prior to this study, although mackinawite has been shown to reductively transform PCE and TCE. This study suggests feasibility of using mackinawite for in situ remediation of cis-DCE-contaminated sites with high S levels such as estuaries under naturally achieved or stimulated sulfate-reducing conditions.

  11. Simulation and experiment research on the proportional pressure control of water-assisted injection molding

    NASA Astrophysics Data System (ADS)

    Zhou, Hua; Chen, Yinglong; Zhang, Zengmeng; Yang, Huayong

    2012-05-01

    Water-assisted injection molding (WAIM), a newly developed fluid-assisted injection molding technology has drawn more and more attentions for the energy saving, short cooling circle time and high quality of products. Existing research for the process of WAIM has shown that the pressure control of the injecting water is mostly important for the WAIM. However, the proportional pressure control for the WAIM system is quite complex due to the existence of nonlinearities in the water hydraulic system. In order to achieve better pressure control performance of the injecting water to meet the requirements of the WAIM, the proportional pressure control of the WAIM system is investigated both numerically and experimentally. A newly designed water hydraulic system for WAIM is first modeled in AMEsim environment, the load characteristics and the nonlinearities of water hydraulic system are both considered, then the main factors affecting the injecting pressure and load flow rate are extensively studied. Meanwhile, an open-loop model-based compensation control strategy is employed to regulate the water injection pressure and a feedback proportional integrator controller is further adopted to achieve better control performance. In order to verify the AMEsim simulation results WAIM experiment for particular Acrylonitrile Butadiene Styrene (ABS) parts is implemented and the measured experimental data including injecting pressure and flow rate results are compared with the simulation. The good coincidence between experiment and simulation shows that the AMEsim model is accurate, and the tracking performance of the load pressure indicates that the proposed control strategy is effective for the proportional pressure control of the nonlinear WAIM system. The proposed proportional pressure control strategy and the conclusions drawn from simulation and experiment contribute to the application of water hydraulic proportional control and WAIM technology.

  12. Design and test of a mechanically pumped two-phase thermal control flight experiment

    NASA Technical Reports Server (NTRS)

    Grote, M. G.; Stark, J. A.; Butler, C. D.; Mcintosh, R.

    1987-01-01

    A flight experiment of a mechanically pumped two-phase ammonia thermal control system, incorporating a number of new component designs, has been assembled and tested in a 1-g environment. Additional microgravity tests are planned on the Space Shuttle when Shuttle flights are resumed. The primary purpose of this experiment is to evaluate the operation of a mechanically pumped two-phase ammonia system, with emphasis on determining the performance of an evaporative Two-Phase Mounting Plate. The experiment also evaluates the performance of other specially designed components, such as the two-phase reservoir for temperature control, condensing radiator/heat sink, spiral tube boiler, and pressure drop experiment. The 1-g tests have shown that start-up of the two-phase experiment is easily accomplished with only a partial fill of ammonia. The experiment maintained a constant mounting plate temperature without flow rate controls over a very wide range of heat loads, flow rates, inlet flow conditions and exit qualities. The tests also showed the successful operation of the mounting plate in the heat sharing condensing mode.

  13. Epigenetic control of mobile DNA as an interface between experience and genome change

    PubMed Central

    Shapiro, James A.

    2014-01-01

    Mobile DNA in the genome is subject to RNA-targeted epigenetic control. This control regulates the activity of transposons, retrotransposons and genomic proviruses. Many different life history experiences alter the activities of mobile DNA and the expression of genetic loci regulated by nearby insertions. The same experiences induce alterations in epigenetic formatting and lead to trans-generational modifications of genome expression and stability. These observations lead to the hypothesis that epigenetic formatting directed by non-coding RNA provides a molecular interface between life history events and genome alteration. PMID:24795749

  14. Stable carbon isotope analysis to distinguish biotic and abiotic degradation of 1,1,1-trichloroethane in groundwater sediments.

    PubMed

    Broholm, Mette M; Hunkeler, Daniel; Tuxen, Nina; Jeannottat, Simon; Scheutz, Charlotte

    2014-08-01

    The fate and treatability of 1,1,1-TCA by natural and enhanced reductive dechlorination was studied in laboratory microcosms. The study shows that compound-specific isotope analysis (CSIA) identified an alternative 1,1,1-TCA degradation pathway that cannot be explained by assuming biotic reductive dechlorination. In all biotic microcosms 1,1,1-TCA was degraded with no apparent increase in the biotic degradation product 1,1-DCA. 1,1,1-TCA degradation was documented by a clear enrichment in (13)C in all biotic microcosms, but not in the abiotic control, which suggests biotic or biotically mediated degradation. Biotic degradation by reductive dechlorination of 1,1-DCA to CA only occurred in bioaugmented microcosms and in donor stimulated microcosms with low initial 1,1,1-TCA or after significant decrease in 1,1,1-TCA concentration (after∼day 200). Hence, the primary degradation pathway for 1,1,1-TCA does not appear to be reductive dechlorination via 1,1-DCA. In the biotic microcosms, the degradation of 1,1,1-TCA occurred under iron and sulfate reducing conditions. Biotic reduction of iron and sulfate likely resulted in formation of FeS, which can abiotically degrade 1,1,1-TCA. Hence, abiotic degradation of 1,1,1-TCA mediated by biotic FeS formation constitute an explanation for the observed 1,1,1-TCA degradation. This is supported by a high 1,1,1-TCA (13)C enrichment factor consistent with abiotic degradation in biotic microcosms. 1,1-DCA carbon isotope field data suggest that this abiotic degradation of 1,1,1-TCA is a relevant process also at the field site. PMID:24559936

  15. Stable carbon isotope analysis to distinguish biotic and abiotic degradation of 1,1,1-trichloroethane in groundwater sediments.

    PubMed

    Broholm, Mette M; Hunkeler, Daniel; Tuxen, Nina; Jeannottat, Simon; Scheutz, Charlotte

    2014-08-01

    The fate and treatability of 1,1,1-TCA by natural and enhanced reductive dechlorination was studied in laboratory microcosms. The study shows that compound-specific isotope analysis (CSIA) identified an alternative 1,1,1-TCA degradation pathway that cannot be explained by assuming biotic reductive dechlorination. In all biotic microcosms 1,1,1-TCA was degraded with no apparent increase in the biotic degradation product 1,1-DCA. 1,1,1-TCA degradation was documented by a clear enrichment in (13)C in all biotic microcosms, but not in the abiotic control, which suggests biotic or biotically mediated degradation. Biotic degradation by reductive dechlorination of 1,1-DCA to CA only occurred in bioaugmented microcosms and in donor stimulated microcosms with low initial 1,1,1-TCA or after significant decrease in 1,1,1-TCA concentration (after∼day 200). Hence, the primary degradation pathway for 1,1,1-TCA does not appear to be reductive dechlorination via 1,1-DCA. In the biotic microcosms, the degradation of 1,1,1-TCA occurred under iron and sulfate reducing conditions. Biotic reduction of iron and sulfate likely resulted in formation of FeS, which can abiotically degrade 1,1,1-TCA. Hence, abiotic degradation of 1,1,1-TCA mediated by biotic FeS formation constitute an explanation for the observed 1,1,1-TCA degradation. This is supported by a high 1,1,1-TCA (13)C enrichment factor consistent with abiotic degradation in biotic microcosms. 1,1-DCA carbon isotope field data suggest that this abiotic degradation of 1,1,1-TCA is a relevant process also at the field site.

  16. Abiotic Nitrous Oxide Production in Natural and Artificial Seawater

    NASA Astrophysics Data System (ADS)

    Ochoa, H.; Stanton, C. L.; Cavazos, A. R.; Ostrom, N. E.; Glass, J. B.

    2014-12-01

    The ocean contributes approximately one third of global sources of nitrous oxide (N2O) to the atmosphere. While nitrification is thought to be the dominant pathway for marine N2O production, mechanisms remain unresolved. Previous studies have carried the implicit assumption that marine N2O originates directly from enzymatic sources. However, abiotic production of N2O is possible via chemical reactions between nitrogenous intermediates and redox active trace metals in seawater. In this study, we investigated N2O production and isotopic composition in treatments with and without added hydroxylamine (NH2OH) and nitric oxide (NO), intermediates in microbial oxidation of ammonia to nitrite, and Fe(III). Addition of substrates to sterile artificial seawater was compared with filtered and unfiltered seawater from Sapelo Island, coastal Georgia, USA. N2O production was observed immediately after addition of Fe(III) in the presence of NH2OH at pH 8 in sterile artificial seawater. Highest N2O production was observed in the presence of Fe(III), NO, and NH2OH. The isotopomer site preference of abiotically produced N2O was consistent with previous studies (31 ± 2 ‰). Higher abiotic N2O production was observed in sterile artificial seawater (salinity: 35 ppt) than filtered Sapelo Island seawater (salinity: 25 ppt) whereas diluted sterile artificial seawater (18 ppt) showed lowest N2O production, suggesting that higher salinity promotes enhanced abiotic N2O production. Addition of Fe(III) to unfiltered Sapelo Island seawater stimulated N2O production. The presence of ammonia-oxidizing archaea (AOA), which lack known N2O producing enzymes, in Sapelo Island seawater was confirmed by successful amplification of the archaeal amoA gene, whereas ammonia-oxidizing bacteria (AOB), which contain N2O-producing enzymes were undetected. Given the few Fe-containing proteins present in AOA, it is likely that Fe(III) addition promoted N2O production via an abiotic vs. enzymatic N2O mechanism

  17. Anaerobic abiotic transformations of cis-1,2-dichloroethene in fractured sandstone.

    PubMed

    Darlington, Ramona; Lehmicke, Leo G; Andrachek, Richard G; Freedman, David L

    2013-02-01

    A fractured sandstone aquifer at an industrial site is contaminated with trichloroethene to depths greater than 244 m. Field data indicate that trichloroethene is undergoing reduction to cis-1,2-dichloroethene (cDCE); vinyl chloride and ethene are present at much lower concentrations. Transformation of cDCE by pathways other than reductive dechlorination (abiotic and/or biotic) is of interest. Pyrite, which has been linked to abiotic transformation of chlorinated ethenes, is present at varying levels in the sandstone. To evaluate the possible role of pyrite in transforming cDCE, microcosms were prepared with groundwater, ~40 mg L(-1) cDCE+[(14)C]cDCE, and crushed solids (pure pyrite, pyrite-rich sandstone, or typical sandstone). During 120 d of incubation, the highest level of cDCE transformation occurred with typical sandstone (11-14% (14)CO(2), 1-3% (14)C-soluble products), followed by pyrite-rich sandstone (2-4% (14)CO(2), 1% (14)C-soluble products) and even lesser amounts with pure pyrite. These results indicate pyrite is not likely the mineral involved in transforming cDCE. A separate experiment using only typical sandstone compared the rate of cDCE transformation in non-sterilized, autoclaved, and propylene-oxide sterilized treatments, with pseudo-first order rate constants of 8.7, 5.4, and 1.0 yr(-1), respectively; however, transformation stopped after several months of incubation. Autoclaving increased the volume of pores, adsorption pore diameter, and surface area in comparison to non-sterilized typical sandstone. Nevertheless, autoclaving was less disruptive than chemical sterilization. The results provide definitive experimental evidence that cDCE undergoes anaerobic abiotic and biotic transformation in typical sandstone, with formation of CO(2) and soluble products.

  18. Controlling factors of Ca isotope fractionation in scleractinian corals evaluated by temperature, pH and light controlled culture experiments

    NASA Astrophysics Data System (ADS)

    Inoue, Mayuri; Gussone, Nikolaus; Koga, Yasuko; Iwase, Akihiro; Suzuki, Atsushi; Sakai, Kazuhiko; Kawahata, Hodaka

    2015-10-01

    In this study, the 44Ca/40Ca ratios of Porites australiensis grown under three different culture experiments composed of temperature, pH and light controlled culture experiments are measured. The temperature dependent isotope fractionation of 0.02‰/°C deduced from this study is similar to inorganic aragonite, but the degree of isotope fractionation is about +0.4‰ offset in corals. These observations agree with earlier results on different coral species, suggesting Ca isotope fractionation during Ca transmembrane transport in corals. While in cultured corals a significant temperature dependence of δ44Ca is observed, the relationships between calcium isotope fractionation and pH as well as light intensity are negligible. Therefore variation of δ44Ca in Porites corals is mainly controlled by temperature. A combination of δ44Ca and Sr/Ca of corals in temperature controlled experiments cannot be explained by Rayleigh type fractionation directly from a fluid, which is seawater-like in terms of δ44Ca and Sr/Ca. Through coral-specific biomineralization processes, overall mean δ44Ca of scleractinian corals including previous studies are different from biogenic aragonites secreted by sclerosponges and pteropods, but are comparable with those of bivalves as well as calcitic coccolithophores and foraminifers. These findings are important for better understanding biomineralization in corals and in order to constrain the Ca isotopic composition of oceanic Ca sinks in response to climate changes and associated with shifts of calcite and aragonite seas.

  19. Modular system for data acquisition and control of experiments with digital output.

    PubMed

    Calabria, Mauro F; Deza, Roberto R

    2010-11-01

    In the present work, the design of an efficient, modular, and scalable data acquisition and control system is described. It consists of an array of microcontrollers and memories, which feed a single concentrating unit whose information can be accessed by means of a universal series bus (USB) interface to be processed later on. Signal levels can be controlled through a set of digital potentiometers. This system is ideal for experiments with a large number of digital outputs.

  20. Real-time Equilibrium Reconstruction and Isoflux Control of Plasma Shape and Position in the National Spherical Torus Experiment (NSTX)

    SciTech Connect

    D. Mueller; D.A. Gates; J.E. Menard; J.R. Ferron; S.A. Sabbagh

    2004-08-11

    The implementation of the rtEFIT-isoflux algorithm in the digital control system for NSTX has led to improved ability to control the plasma shape. In particular, it has been essential for good gap control for radio-frequency experiments, for control of drsep in H-mode studies, and for X-point height control and {kappa} control in a variety of experiments.

  1. A low cost PCI-VME controller for control and data acquisition systems on fusion experiments

    NASA Astrophysics Data System (ADS)

    Carvalho, B. B.; Sousa, J.; Varandas, C. A. F.

    1999-01-01

    A universal hardware interface system that allows the transparent use of digital instrumentation of different buses has been developed using the VMEbus as the host platform. In this article a new controller for the VME system, based on a desktop-type PCI Pentium motherboard and a locally developed PCI-VME interconnector is described. This interconnector is composed of two boards, which are connected by an ac-terminated flexible cable and inserted into slots of the PCI motherboard and VME crate. This system decreases the cost of the global system and permits low priced and modular upgradeability. The software drivers have been developed for a UNIX environment using the LINUX-LAB project in a user-friendly approach.

  2. Self-regulation and the hypothesis of experience-based selection: investigating indirect conscious control.

    PubMed

    Dorris, Derek C

    2009-09-01

    The assumption that the contents of our conscious visual experience directly control our fine-tuned, real-time motor activity has been challenged by neurological and psychophysical evidence that suggest the two processes work semi-independently of each other. Clark [Clark, A. (2001). Visual experience and motor action: Are the bonds too tight? The Philosophical Review, 110, 495-519; Clark, A. (2002). Is seeing all it seems? Action, reason and the grand illusion. Journal of Consciousness Studies, 9, 181-202; Clark, A. (2006). Vision as dance? Three challenges for sensori-motor contingency theory. PSYCHE, 12 (1). Available from http://www.psyche.cs.monash.edu.au] argues that such evidence implies a more indirect relationship between conscious visual experience and motor-control where the function of visual consciousness is not to control action but to select what actions are to be controlled. In this paper, I argue that this type of dynamic also exists at the wider level of self-regulation where conscious intent appears to indirectly control the enactment of the intended behaviour. I argue that by drawing parallels between Clark's proposed dynamic and self-regulation, the former is not only bolstered by a previously unrecognised source of support but our understanding of the latter can help to further elucidate Clark's proposed mechanism of indirect conscious control.

  3. Hormone balance and abiotic stress tolerance in crop plants.

    PubMed

    Peleg, Zvi; Blumwald, Eduardo

    2011-06-01

    Plant hormones play central roles in the ability of plants to adapt to changing environments, by mediating growth, development, nutrient allocation, and source/sink transitions. Although ABA is the most studied stress-responsive hormone, the role of cytokinins, brassinosteroids, and auxins during environmental stress is emerging. Recent evidence indicated that plant hormones are involved in multiple processes. Cross-talk between the different plant hormones results in synergetic or antagonic interactions that play crucial roles in response of plants to abiotic stress. The characterization of the molecular mechanisms regulating hormone synthesis, signaling, and action are facilitating the modification of hormone biosynthetic pathways for the generation of transgenic crop plants with enhanced abiotic stress tolerance.

  4. Arbuscular mycorrhizal fungal responses to abiotic stresses: A review.

    PubMed

    Lenoir, Ingrid; Fontaine, Joël; Lounès-Hadj Sahraoui, Anissa

    2016-03-01

    The majority of plants live in close collaboration with a diversity of soil organisms among which arbuscular mycorrhizal fungi (AMF) play an essential role. Mycorrhizal symbioses contribute to plant growth and plant protection against various environmental stresses. Whereas the resistance mechanisms induced in mycorrhizal plants after exposure to abiotic stresses, such as drought, salinity and pollution, are well documented, the knowledge about the stress tolerance mechanisms implemented by the AMF themselves is limited. This review provides an overview of the impacts of various abiotic stresses (pollution, salinity, drought, extreme temperatures, CO2, calcareous, acidity) on biodiversity, abundance and development of AMF and examines the morphological, biochemical and molecular mechanisms implemented by AMF to survive in the presence of these stresses. PMID:26803396

  5. Molecular approaches to improve rice abiotic stress tolerance.

    PubMed

    Mizoi, Junya; Yamaguchi-Shinozaki, Kazuko

    2013-01-01

    Abiotic stress is a major factor limiting productivity of rice crops in large areas of the world. Because plants cannot avoid abiotic stress by moving, they have acquired various mechanisms for stress tolerance in the course of their evolution. Enhancing or introducing such mechanisms in rice is one effective way to develop stress-tolerant cultivars. Based on physiological studies on stress responses, recent progress in plant molecular biology has enabled discovery of many genes involved in stress tolerance. These genes include regulatory genes, which regulate stress response (e.g., transcription factors and protein kinases), and functional genes, which protect the cell (e.g., enzymes for generating protective metabolites and proteins). Both kinds of genes are used to increase stress tolerance in rice. In addition, several quantitative trait loci (QTLs) associated with higher stress tolerance have been cloned, contributing to the discovery of significantly important genes for stress tolerance.

  6. Demonstration of significant abiotic iron isotope fractionation in nature

    USGS Publications Warehouse

    Bullen, T.D.; White, A.F.; Childs, C.W.; Vivit, D.V.; Schultz, M.S.

    2001-01-01

    Field and laboratory studies reveal that the mineral ferrihydrite, formed as a result of abiotic oxidation of aqueous ferrous to ferric Fe, contains Fe that is isotopically heavy relative to coexisting aqueous Fe. Because the electron transfer step of the oxidation process at pH >5 is essentially irreversible and should favor the lighter Fe isotopes in the ferric iron product, this result suggests that relatively heavy Fe isotopes are preferentially partitioned into the readily oxidized Fe(II)(OH)x(aq) species or their transition complexes prior to oxidation. The apparent Fe isotope fractionation factor, ??ferrihydrite-water, depends primarily on the relative abundances of the Fe(II)(aq) species. This study demonstrates that abiotic processes can fractionate the Fe isotopes to the same extent as biotic processes, and thus Fe isotopes on their own do not provide an effective biosignature.

  7. Genomics Approaches for Crop Improvement against Abiotic Stress

    PubMed Central

    Akpınar, Bala Anı; Lucas, Stuart J.; Budak, Hikmet

    2013-01-01

    As sessile organisms, plants are inevitably exposed to one or a combination of stress factors every now and then throughout their growth and development. Stress responses vary considerably even in the same plant species; stress-susceptible genotypes are at one extreme, and stress-tolerant ones are at the other. Elucidation of the stress responses of crop plants is of extreme relevance, considering the central role of crops in food and biofuel production. Crop improvement has been a traditional issue to increase yields and enhance stress tolerance; however, crop improvement against abiotic stresses has been particularly compelling, given the complex nature of these stresses. As traditional strategies for crop improvement approach their limits, the era of genomics research has arisen with new and promising perspectives in breeding improved varieties against abiotic stresses. PMID:23844392

  8. Progress and challenges for abiotic stress proteomics of crop plants.

    PubMed

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar

    2013-06-01

    Plants are continually challenged to recognize and respond to adverse changes in their environment to avoid detrimental effects on growth and development. Understanding the mechanisms that crop plants employ to resist and tolerate abiotic stress is of considerable interest for designing agriculture breeding strategies to ensure sustainable productivity. The application of proteomics technologies to advance our knowledge in crop plant abiotic stress tolerance has increased dramatically in the past few years as evidenced by the large amount of publications in this area. This is attributed to advances in various technology platforms associated with MS-based techniques as well as the accessibility of proteomics units to a wider plant research community. This review summarizes the work which has been reported for major crop plants and evaluates the findings in context of the approaches that are widely employed with the aim to encourage broadening the strategies used to increase coverage of the proteome. PMID:23512887

  9. Abiotic mediation of a mutualism drives herbivore abundance.

    PubMed

    Mooney, Emily H; Phillips, Joseph S; Tillberg, Chadwick V; Sandrow, Cheryl; Nelson, Annika S; Mooney, Kailen A

    2016-01-01

    Species abundance is typically determined by the abiotic environment, but the extent to which such effects occur through the mediation of biotic interactions, including mutualisms, is unknown. We explored how light environment (open meadow vs. shaded understory) mediates the abundance and ant tending of the aphid Aphis helianthi feeding on the herb Ligusticum porteri. Yearly surveys consistently found aphids to be more than 17-fold more abundant on open meadow plants than on shaded understory plants. Manipulations demonstrated that this abundance pattern was not due to the direct effects of light environment on aphid performance, or indirectly through host plant quality or the effects of predators. Instead, open meadows had higher ant abundance and per capita rates of aphid tending and, accordingly, ants increased aphid population growth in meadow but not understory environments. The abiotic environment thus drives the abundance of this herbivore exclusively through the mediation of a protection mutualism.

  10. Progress and challenges for abiotic stress proteomics of crop plants.

    PubMed

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar

    2013-06-01

    Plants are continually challenged to recognize and respond to adverse changes in their environment to avoid detrimental effects on growth and development. Understanding the mechanisms that crop plants employ to resist and tolerate abiotic stress is of considerable interest for designing agriculture breeding strategies to ensure sustainable productivity. The application of proteomics technologies to advance our knowledge in crop plant abiotic stress tolerance has increased dramatically in the past few years as evidenced by the large amount of publications in this area. This is attributed to advances in various technology platforms associated with MS-based techniques as well as the accessibility of proteomics units to a wider plant research community. This review summarizes the work which has been reported for major crop plants and evaluates the findings in context of the approaches that are widely employed with the aim to encourage broadening the strategies used to increase coverage of the proteome.

  11. Fast Abiotic Production of Methane at Temperatures Below 100°C

    NASA Astrophysics Data System (ADS)

    Etiope, G.; Ionescu, A.

    2015-12-01

    Fischer-Tropsch Type (FTT) reactions, e.g., the Sabatier synthesis between H2 and CO2, are considered a main source of abiotic methane on Earth and likely on other planets. Several laboratory FTT experiments demonstrated abiotic CH4 production at temperatures above 200°C, by using Fe, Ni or Cr catalysts, simulating hydrothermal conditions in peridotite-hosted systems in mid-ocean ridges. Nevertheless, at least on laboratory experiment time-scale, Fe-Ni-Cr catalysts do not support CH4 generation at T<100°C, such as those of land-based serpentinization systems. We have recently reported rapid production of considerable amounts of CH4 (>800 ppmv in 155 mL bottles after 1 day) via Sabatier reaction at 90, 50 and 25°C, using small concentrations of non-pretreated ruthenium (Ru) equivalent to those occurring in chromitites in continental ultramafic rocks (Etiope & Ionescu, 2014; Geofluids, doi:10.1111/gfl.12106). We have repeated the experiments by using 13C-enriched CO2 and we confirm fast production of CH4at percentage levels. The experiments performed so far show that: 1. considerable amounts of CH4can be produced in dry conditions below 100°C with small quantities of Ru; 2. under the same experimental conditions (<100°C), Fe, Ni and Cr oxides do not produce CH4; 3. low T Sabatier reaction can produce CH4 with a large C isotope fractionation between CO2 and CH4, leading to relatively " light" (13C-depleted) CH4, resembling microbial gas; 4. the CO2-CH4isotope separation decreases over time and by increasing the temperature; 5. minor amounts of C2-C6hydrocarbons are also generated. Our laboratory data are compatible with the isotopic patterns of CH4 naturally occurring in land-based seeps and springs. Our experiments suggest that Ru-enriched chromitites could potentially generate CH4 at low T. Since Ru is reported in Martian meteorites, low T abiotic CH4 production on Mars via Sabatier reaction cannot be excluded (Etiope et al. 2013, Icarus, 224, 276-285).

  12. The central trigger control system of the CMS experiment at CERN

    NASA Astrophysics Data System (ADS)

    Taurok, A.; Arnold, B.; Bergauer, H.; Eichberger, M.; Erö, J.; Hartl, Ch; Jeitler, M.; Kastner, K.; Mikulec, I.; Neuherz, B.; Padrta, M.; Sakulin, H.; Strauss, J.; Wulz, C.-E.; Varela, J.; Smith, W. H.

    2011-03-01

    The Large Hadron Collider will deliver up to 32 million physics collisions per second. This rate is far too high to be processed by present-day computer farms, let alone stored on disk by the experiments for offline analysis. A fast selection of interesting events must therefore be made. In the CMS experiment, this is implemented in two stages: the Level-1 Trigger of the CMS experiment uses custom-made, fast electronics, while the experiment's high-level trigger is implemented in computer farms. The Level-1 Global Trigger electronics has to receive signals from the subdetector systems that enter the trigger (mostly from muon detectors and calorimeters), synchronize them, determine if a pre-set trigger condition is fulfilled, check if the various subsystems are ready to accept triggers based on information from the Trigger Throttling System and on calculations of possible dead-times, and finally distribute the trigger decision (``Level-1 Accept'') together with timing signals to the subdetectors over the so-called ``Trigger, Timing and Control'' distribution tree of the experiment. These functions are fulfilled by several specialized, custom-made VME modules, most of which are housed in one crate. The overall control is exerted by the central ``Trigger Control System'', which is described in this paper. It consists of one main module and several ancillary boards for input and output functions.

  13. Trained Eyes: Experience Promotes Adaptive Gaze Control in Dynamic and Uncertain Visual Environments

    PubMed Central

    Taya, Shuichiro; Windridge, David; Osman, Magda

    2013-01-01

    Current eye-tracking research suggests that our eyes make anticipatory movements to a location that is relevant for a forthcoming task. Moreover, there is evidence to suggest that with more practice anticipatory gaze control can improve. However, these findings are largely limited to situations where participants are actively engaged in a task. We ask: does experience modulate anticipative gaze control while passively observing a visual scene? To tackle this we tested people with varying degrees of experience of tennis, in order to uncover potential associations between experience and eye movement behaviour while they watched tennis videos. The number, size, and accuracy of saccades (rapid eye-movements) made around ‘events,’ which is critical for the scene context (i.e. hit and bounce) were analysed. Overall, we found that experience improved anticipatory eye-movements while watching tennis clips. In general, those with extensive experience showed greater accuracy of saccades to upcoming event locations; this was particularly prevalent for events in the scene that carried high uncertainty (i.e. ball bounces). The results indicate that, even when passively observing, our gaze control system utilizes prior relevant knowledge in order to anticipate upcoming uncertain event locations. PMID:23951147

  14. Methylglyoxal: An Emerging Signaling Molecule in Plant Abiotic Stress Responses and Tolerance

    PubMed Central

    Hoque, Tahsina S.; Hossain, Mohammad A.; Mostofa, Mohammad G.; Burritt, David J.; Fujita, Masayuki; Tran, Lam-Son P.

    2016-01-01

    The oxygenated short aldehyde methylglyoxal (MG) is produced in plants as a by-product of a number of metabolic reactions, including elimination of phosphate groups from glycolysis intermediates dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. MG is mostly detoxified by the combined actions of the enzymes glyoxalase I and glyoxalase II that together with glutathione make up the glyoxalase system. Under normal growth conditions, basal levels of MG remain low in plants; however, when plants are exposed to abiotic stress, MG can accumulate to much higher levels. Stress-induced MG functions as a toxic molecule, inhibiting different developmental processes, including seed germination, photosynthesis and root growth, whereas MG, at low levels, acts as an important signaling molecule, involved in regulating diverse events, such as cell proliferation and survival, control of the redox status of cells, and many other aspects of general metabolism and cellular homeostases. MG can modulate plant stress responses by regulating stomatal opening and closure, the production of reactive oxygen species, cytosolic calcium ion concentrations, the activation of inward rectifying potassium channels and the expression of many stress-responsive genes. MG appears to play important roles in signal transduction by transmitting and amplifying cellular signals and functions that promote adaptation of plants growing under adverse environmental conditions. Thus, MG is now considered as a potential biochemical marker for plant abiotic stress tolerance, and is receiving considerable attention by the scientific community. In this review, we will summarize recent findings regarding MG metabolism in plants under abiotic stress, and evaluate the concept of MG signaling. In addition, we will demonstrate the importance of giving consideration to MG metabolism and the glyoxalase system, when investigating plant adaptation and responses to various environmental stresses. PMID:27679640

  15. Methylglyoxal: An Emerging Signaling Molecule in Plant Abiotic Stress Responses and Tolerance

    PubMed Central

    Hoque, Tahsina S.; Hossain, Mohammad A.; Mostofa, Mohammad G.; Burritt, David J.; Fujita, Masayuki; Tran, Lam-Son P.

    2016-01-01

    The oxygenated short aldehyde methylglyoxal (MG) is produced in plants as a by-product of a number of metabolic reactions, including elimination of phosphate groups from glycolysis intermediates dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. MG is mostly detoxified by the combined actions of the enzymes glyoxalase I and glyoxalase II that together with glutathione make up the glyoxalase system. Under normal growth conditions, basal levels of MG remain low in plants; however, when plants are exposed to abiotic stress, MG can accumulate to much higher levels. Stress-induced MG functions as a toxic molecule, inhibiting different developmental processes, including seed germination, photosynthesis and root growth, whereas MG, at low levels, acts as an important signaling molecule, involved in regulating diverse events, such as cell proliferation and survival, control of the redox status of cells, and many other aspects of general metabolism and cellular homeostases. MG can modulate plant stress responses by regulating stomatal opening and closure, the production of reactive oxygen species, cytosolic calcium ion concentrations, the activation of inward rectifying potassium channels and the expression of many stress-responsive genes. MG appears to play important roles in signal transduction by transmitting and amplifying cellular signals and functions that promote adaptation of plants growing under adverse environmental conditions. Thus, MG is now considered as a potential biochemical marker for plant abiotic stress tolerance, and is receiving considerable attention by the scientific community. In this review, we will summarize recent findings regarding MG metabolism in plants under abiotic stress, and evaluate the concept of MG signaling. In addition, we will demonstrate the importance of giving consideration to MG metabolism and the glyoxalase system, when investigating plant adaptation and responses to various environmental stresses.

  16. Methylglyoxal: An Emerging Signaling Molecule in Plant Abiotic Stress Responses and Tolerance.

    PubMed

    Hoque, Tahsina S; Hossain, Mohammad A; Mostofa, Mohammad G; Burritt, David J; Fujita, Masayuki; Tran, Lam-Son P

    2016-01-01

    The oxygenated short aldehyde methylglyoxal (MG) is produced in plants as a by-product of a number of metabolic reactions, including elimination of phosphate groups from glycolysis intermediates dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. MG is mostly detoxified by the combined actions of the enzymes glyoxalase I and glyoxalase II that together with glutathione make up the glyoxalase system. Under normal growth conditions, basal levels of MG remain low in plants; however, when plants are exposed to abiotic stress, MG can accumulate to much higher levels. Stress-induced MG functions as a toxic molecule, inhibiting different developmental processes, including seed germination, photosynthesis and root growth, whereas MG, at low levels, acts as an important signaling molecule, involved in regulating diverse events, such as cell proliferation and survival, control of the redox status of cells, and many other aspects of general metabolism and cellular homeostases. MG can modulate plant stress responses by regulating stomatal opening and closure, the production of reactive oxygen species, cytosolic calcium ion concentrations, the activation of inward rectifying potassium channels and the expression of many stress-responsive genes. MG appears to play important roles in signal transduction by transmitting and amplifying cellular signals and functions that promote adaptation of plants growing under adverse environmental conditions. Thus, MG is now considered as a potential biochemical marker for plant abiotic stress tolerance, and is receiving considerable attention by the scientific community. In this review, we will summarize recent findings regarding MG metabolism in plants under abiotic stress, and evaluate the concept of MG signaling. In addition, we will demonstrate the importance of giving consideration to MG metabolism and the glyoxalase system, when investigating plant adaptation and responses to various environmental stresses. PMID:27679640

  17. Methylglyoxal: An Emerging Signaling Molecule in Plant Abiotic Stress Responses and Tolerance.

    PubMed

    Hoque, Tahsina S; Hossain, Mohammad A; Mostofa, Mohammad G; Burritt, David J; Fujita, Masayuki; Tran, Lam-Son P

    2016-01-01

    The oxygenated short aldehyde methylglyoxal (MG) is produced in plants as a by-product of a number of metabolic reactions, including elimination of phosphate groups from glycolysis intermediates dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. MG is mostly detoxified by the combined actions of the enzymes glyoxalase I and glyoxalase II that together with glutathione make up the glyoxalase system. Under normal growth conditions, basal levels of MG remain low in plants; however, when plants are exposed to abiotic stress, MG can accumulate to much higher levels. Stress-induced MG functions as a toxic molecule, inhibiting different developmental processes, including seed germination, photosynthesis and root growth, whereas MG, at low levels, acts as an important signaling molecule, involved in regulating diverse events, such as cell proliferation and survival, control of the redox status of cells, and many other aspects of general metabolism and cellular homeostases. MG can modulate plant stress responses by regulating stomatal opening and closure, the production of reactive oxygen species, cytosolic calcium ion concentrations, the activation of inward rectifying potassium channels and the expression of many stress-responsive genes. MG appears to play important roles in signal transduction by transmitting and amplifying cellular signals and functions that promote adaptation of plants growing under adverse environmental conditions. Thus, MG is now considered as a potential biochemical marker for plant abiotic stress tolerance, and is receiving considerable attention by the scientific community. In this review, we will summarize recent findings regarding MG metabolism in plants under abiotic stress, and evaluate the concept of MG signaling. In addition, we will demonstrate the importance of giving consideration to MG metabolism and the glyoxalase system, when investigating plant adaptation and responses to various environmental stresses.

  18. Nicotiana tabacum Tsip1-Interacting Ferredoxin 1 Affects Biotic and Abiotic Stress Resistance

    PubMed Central

    Huh, Sung Un; Lee, In-Ju; Ham, Byung-Kook; Paek, Kyung-Hee

    2012-01-01

    Tsip1, a Zn finger protein that was isolated as a direct interactor with tobacco stress-induced 1 (Tsi1), plays an important role in both biotic and abiotic stress signaling. To further understand Tsip1 function, we searched for more Tsip1-interacting proteins by yeast two-hybrid screening using a tobacco cDNA library. Screening identified a new Tsip1-interacting protein, Nicotiana tabacum Tsip1-interacting ferredoxin 1 (NtTfd1), and binding specificity was confirmed both in vitro and in vivo. The four repeats of a cysteine-rich motif (CXXCXGXG) of Tsip1 proved important for binding to NtTfd1. Virus-induced gene silencing of NtTfd1, Tsip1, and NtTfd1/Tsip1 rendered plants more susceptible to salinity stress compared with TRV2 control plants. NtTfd1- and Tsip1-silenced tobacco plants were more susceptible to infection by Cucumber mosaic virus compared with control plants. These results suggest that NtTfd1 might be involved in the regulation of biotic and abiotic stresses in chloroplasts by interaction with Tsip1. PMID:22699755

  19. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants

    PubMed Central

    Nuruzzaman, Mohammed; Sharoni, Akhter M.; Kikuchi, Shoshi

    2013-01-01

    NAC transcription factors are one of the largest families of transcriptional regulators in plants, and members of the NAC gene family have been suggested to play important roles in the regulation of the transcriptional reprogramming associated with plant stress responses. A phylogenetic analysis of NAC genes, with a focus on rice and Arabidopsis, was performed. Herein, we present an overview of the regulation of the stress responsive NAC SNAC/(IX) group of genes that are implicated in the resistance to different stresses. SNAC factors have important roles for the control of biotic and abiotic stresses tolerance and that their overexpression can improve stress tolerance via biotechnological approaches. We also review the recent progress in elucidating the roles of NAC transcription factors in plant biotic and abiotic stresses. Modification of the expression pattern of transcription factor genes and/or changes in their activity contribute to the elaboration of various signaling pathways and regulatory networks. However, a single NAC gene often responds to several stress factors, and their protein products may participate in the regulation of several seemingly disparate processes as negative or positive regulators. Additionally, the NAC proteins function via auto-regulation or cross-regulation is extensively found among NAC genes. These observations assist in the understanding of the complex mechanisms of signaling and transcriptional reprogramming controlled by NAC proteins. PMID:24058359

  20. Displaying Special Characters and Symbols in Computer-Controlled Reaction Time Experiments.

    ERIC Educational Resources Information Center

    Friel, Brian M.; Kennison, Shelia M.

    A procedure for using MEL2 (Version 2.0 of Microcomputer Experimental Laboratory) and FontWINDOW to present special characters and symbols in computer-controlled reaction time experiments is described. The procedure permits more convenience and flexibility than in tachistocopic and projection techniques. FontWINDOW allows researchers to design…

  1. Space shuttle descent flight control design requirements and experiments Learned, Pt. 1 p 617-628

    NASA Technical Reports Server (NTRS)

    Kafer, G.; Wilson, D.

    1983-01-01

    Some of the lessons learned during the development of the Space Shuttle descent flight control system (FCS) are reviewed. Examples confirm the importance for requirements definition, systems level analyses, and testing. In sounding these experiences may have implication for future designs or suggest the discipline required in this engineering art.

  2. The continuing materials analysis of the thermal control surfaces experiment (S0069)

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Miller, Edgar R.; Zwiener, James M.; Mell, Richard J.

    1993-01-01

    The long term effects of the natural and induced space environment on spacecraft surfaces are critically important to future spacecraft - including Space Station Freedom. The damaging constituents of this environment include thermal vacuum, solar ultraviolet radiation, atomic oxygen, particulate radiation, and the spacecraft induced environment. The behavior of materials and coatings in the space environment continues to be a limiting technology for spacecraft and experiments. The Thermal Control Surfaces Experiment (TCSE) was flown on the National Aeronautics and Space Administration (NASA) Long Duration Exposure Facility (LDEF) to study these environmental effects on surfaces-particularly on thermal control surfaces. The TCSE was a comprehensive experiment that combined in-space measurements with extensive pre- and post-flight analyses of thermal control surfaces to determine the effects of exposure to the low Earth orbit space environment. The TCSE is the first space experiment to directly measure the total hemispherical reflectance of thermal control surfaces in the same way they are routinely measured in the laboratory. The trend analyses of selected coatings performed as part of the continuing post-flight analysis of the TCSE are described. A brief description of the TCSE and its mission on LDEF are presented. There are several publications available that describe the TCSE, it's mission on LDEF, and initial results in greater detail. These are listed in the TCSE Bibliography.

  3. College Student Learning from Televised Versus Conventional Classroom Lectures: A Controlled Experiment.

    ERIC Educational Resources Information Center

    Ellis, Lee; Mathis, Dan

    1985-01-01

    In a controlled experiment, students in two sections of introductory sociology were exposed either to conventional classroom lectures or to identical lectures broadcast live in an adjacent room on a television monitor. Class attendance and learning under the two modes were statistically equivalent. The findings confirm those of past studies.…

  4. Ear Playing and Aural Development in the Instrumental Lesson: Results from a "Case-Control" Experiment

    ERIC Educational Resources Information Center

    Baker, David; Green, Lucy

    2013-01-01

    This article reports on a case-control experiment that was conducted in 2012 as part of the Ear Playing Project (EPP) at the Institute of Education, University of London. The EPP developed from the "informal learning" strand of Musical Futures and engaged instrumental students in the UK in learning from specially-created audio recordings…

  5. Review of drive symmetry measurement and control experiments on the Nova laser system

    SciTech Connect

    Mack, J.M.; Hauer, A.A.; Delamater, N.D.

    1994-07-01

    Symmetric radiation drive is required for achieving ignition in laboratory experiments. Over the last two years, concerted series of drive symmetry experiments have been performed on the Nova laser system. The goals of this work were to develop measurements techniques and to apply them to symmetry variation and control experiments. The emphasis in this initial work has been on time integrated measurements (integrated over the laser drive pulse). The authors have also begun work on methods for time resolved measurements. Most of their work used the symmetry signature impressed on the compressed core of a capsule imploded in a hohlraum (cylindrical canister) environment. X-ray imaging of this core provides a mapping that can be compared with theoretical modeling and related to a specific amount of drive asymmetry. This method is indirect and they have taken great care in understanding the formation of the symmetry signature and in its comparison with simulations. A review of drive symmetry measurement and control experiments is presented, including data from time integrated and time resolved measurements; these measurements are also compared to modeling. Under carefully controlled conditions results from symmetry measurements (and from other auxiliary measurements) are reproducible, and indicate that aspects of implosions symmetry can be controlled.

  6. Randomized Controlled Trial of Teaching Methods: Do Classroom Experiments Improve Economic Education in High Schools?

    ERIC Educational Resources Information Center

    Eisenkopf, Gerald; Sulser, Pascal A.

    2016-01-01

    The authors present results from a comprehensive field experiment at Swiss high schools in which they compare the effectiveness of teaching methods in economics. They randomly assigned classes into an experimental and a conventional teaching group, or a control group that received no specific instruction. Both teaching treatments improve economic…

  7. Virtual Experiments or Worked Examples? How to Learn the Control of Variable Strategy

    ERIC Educational Resources Information Center

    Liu, Shiyu

    2015-01-01

    This research investigates the role of virtual experiments and worked examples in the learning of the control of variable strategy (CVS). Sixty-nine seventh-grade students participated in this study over a span of 6 weeks and were engaged in worked example learning and/or virtual experimentation to study the knowledge and procedures associated…

  8. Energy harvesting by implantable abiotically catalyzed glucose fuel cells

    NASA Astrophysics Data System (ADS)

    Kerzenmacher, S.; Ducrée, J.; Zengerle, R.; von Stetten, F.

    Implantable glucose fuel cells are a promising approach to realize an autonomous energy supply for medical implants that solely relies on the electrochemical reaction of oxygen and glucose. Key advantage over conventional batteries is the abundant availability of both reactants in body fluids, rendering the need for regular replacement or external recharging mechanisms obsolete. Implantable glucose fuel cells, based on abiotic catalysts such as noble metals and activated carbon, have already been developed as power supply for cardiac pacemakers in the late-1960s. Whereas, in vitro and preliminary in vivo studies demonstrated their long-term stability, the performance of these fuel cells is limited to the μW-range. Consequently, no further developments have been reported since high-capacity lithium iodine batteries for cardiac pacemakers became available in the mid-1970s. In recent years research has been focused on enzymatically catalyzed glucose fuel cells. They offer higher power densities than their abiotically catalyzed counterparts, but the limited enzyme stability impedes long-term application. In this context, the trend towards increasingly energy-efficient low power MEMS (micro-electro-mechanical systems) implants has revived the interest in abiotic catalysts as a long-term stable alternative. This review covers the state-of-the-art in implantable abiotically catalyzed glucose fuel cells and their development since the 1960s. Different embodiment concepts are presented and the historical achievements of academic and industrial research groups are critically reviewed. Special regard is given to the applicability of the concept as sustainable micro-power generator for implantable devices.

  9. Changes in biotic and abiotic processes following mangrove clearing

    NASA Astrophysics Data System (ADS)

    Granek, Elise; Ruttenberg, Benjamin I.

    2008-12-01

    Mangrove forests, important tropical coastal habitats, are in decline worldwide primarily due to removal by humans. Changes to mangrove systems can alter ecosystem properties through direct effects on abiotic factors such as temperature, light and nutrient supply or through changes in biotic factors such as primary productivity or species composition. Despite the importance of mangroves as transitional habitats between land and sea, little research has examined changes that occur when they are cleared. We examined changes in a number of biotic and abiotic factors following the anthropogenic removal of red mangroves ( Rhizophora mangle) in the Panamanian Caribbean, including algal biomass, algal diversity, algal grazing rates, light penetration, temperature, sedimentation rates and sediment organic content. In this first study examining multiple ecosystem-level effects of mangrove disturbance, we found that areas cleared of mangroves had higher algal biomass and richness than intact mangrove areas. This increase in algal biomass and richness was likely due to changes in abiotic factors (e.g. light intensity, temperature), but not biotic factors (fish herbivory). Additionally the algal and cyanobacterial genera dominating mangrove-cleared areas were rare in intact mangroves and included a number of genera that compete with coral for space on reefs. Interestingly, sedimentation rates did not differ between intact and cleared areas, but the sediments that accumulated in intact mangroves had higher organic content. These findings are the first to demonstrate that anthropogenic clearing of mangroves changes multiple biotic and abiotic processes in mangrove forests and that some of these changes may influence adjacent habitats such as coral reefs and seagrass beds. Additional research is needed to further explore the community and ecosystem-level effects of mangrove clearing and their influence on adjacent habitats, but it is clear that mangrove conservation is an

  10. Wheat EST resources for functional genomics of abiotic stress

    PubMed Central

    Houde, Mario; Belcaid, Mahdi; Ouellet, François; Danyluk, Jean; Monroy, Antonio F; Dryanova, Ani; Gulick, Patrick; Bergeron, Anne; Laroche, André; Links, Matthew G; MacCarthy, Luke; Crosby, William L; Sarhan, Fathey

    2006-01-01

    Background Wheat is an excellent species to study freezing tolerance and other abiotic stresses. However, the sequence of the wheat genome has not been completely characterized due to its complexity and large size. To circumvent this obstacle and identify genes involved in cold acclimation and associated stresses, a large scale EST sequencing approach was undertaken by the Functional Genomics of Abiotic Stress (FGAS) project. Results We generated 73,521 quality-filtered ESTs from eleven cDNA libraries constructed from wheat plants exposed to various abiotic stresses and at different developmental stages. In addition, 196,041 ESTs for which tracefiles were available from the National Science Foundation wheat EST sequencing program and DuPont were also quality-filtered and used in the analysis. Clustering of the combined ESTs with d2_cluster and TGICL yielded a few large clusters containing several thousand ESTs that were refractory to routine clustering techniques. To resolve this problem, the sequence proximity and "bridges" were identified by an e-value distance graph to manually break clusters into smaller groups. Assembly of the resolved ESTs generated a 75,488 unique sequence set (31,580 contigs and 43,908 singletons/singlets). Digital expression analyses indicated that the FGAS dataset is enriched in stress-regulated genes compared to the other public datasets. Over 43% of the unique sequence set was annotated and classified into functional categories according to Gene Ontology. Conclusion We have annotated 29,556 different sequences, an almost 5-fold increase in annotated sequences compared to the available wheat public databases. Digital expression analysis combined with gene annotation helped in the identification of several pathways associated with abiotic stress. The genomic resources and knowledge developed by this project will contribute to a better understanding of the different mechanisms that govern stress tolerance in wheat and other cereals. PMID

  11. A disturbance isolation controller for the solar electric propulsion system flight experiment

    NASA Astrophysics Data System (ADS)

    Waites, H. B.

    1982-03-01

    A disturbance isolation controller (DIC) is developed for a simplified model of the solar electric propulsion system (SEPS) flight experiment which consists of a rigid Sperry gimbal torquer (AGS) mounted to a rigid orbiter and the SEPS solar array (rigid) end mounted to the AGS. The main purpose of the DIC is to reduce the effects of orbiter disturbances which are transmitted to the flight experiment. The DIC uses an observer, which does not require the direct measurement of the plant inputs, to obtain estimates of the plant states and the rate of the plant states. The state and rate of state information is used to design a controller which isolates disturbances from specified segments of the plant, and for the flight experiment, the isolated segment is the SEPS solar array.

  12. Wind tunnel experiments to prove a hydraulic passive torque control concept for variable speed wind turbines

    NASA Astrophysics Data System (ADS)

    Diepeveen, N. F. B.; Jarquin-Laguna, A.

    2014-12-01

    In this paper the results are presented of experiments to prove an innovative concept for passive torque control of variable speed wind turbines using fluid power technology. It is demonstrated that by correctly configuring the hydraulic drive train, the wind turbine rotor operates at or near maximum aerodynamic efficiency for below rated wind speeds. The experiments with a small horizontal-axis wind turbine rotor, coupled to a hydraulic circuit, were conducted at the Open Jet Facility of the Delft University of Technology. In theory, the placement of a nozzle at the end of the hydraulic circuit causes the pressure and hence the rotor torque to increase quadratically with flow speed and hence rotation speed. The rotor torque is limited by a pressure relief valve. Results from the experiments proved the functionality of this passive speed control concept. By selecting the correct nozzle outlet area the rotor operates at or near the optimum tip speed ratio.

  13. A system for conducting igneous petrology experiments under controlled redox conditions in reduced gravity

    NASA Technical Reports Server (NTRS)

    Williams, Richard J.

    1987-01-01

    The Space Shuttle and the planned Space Station will permit experimentation under conditions of reduced gravitational acceleration offering experimental petrologists the opportunity to study crystal growth, element distribution, and phase chemistry. In particular the confounding effects of macro and micro scale buoyancy-induced convection and crystal settling or flotation can be greatly reduced over those observed in experiments in the terrestrial laboratory. Also, for experiments in which detailed replication of the environment is important, the access to reduced gravity will permit a more complete simulation of processes that may have occurred on asteroids or in free space. A technique that was developed to control, measure, and manipulate oxygen fugacities with small quantities of gas which are recirculated over the sample. This system could be adaptable to reduced gravity space experiments requiring redox control.

  14. Design of control software for the closed ecology experiment facilities (CEEF)

    NASA Astrophysics Data System (ADS)

    Miyajima, H.; Abe, K.; Hirosaki, T.; Ishikawa, Y.

    A habitation experiment using a closed ecology experiment facilities CEEF was started in fiscal 2005 three experiments in which two humans stayed for one week were conducted Their stays will be extended gradually until fiscal 2009 when an experiment will be launched with two humans staying for four months The CEEF has an ambitious target of acquiring the technology of an advanced life support system and the system is being developed based on the technology of conventional plant systems Especially in respect to supervision and control of the system the system still has little automation This system has many manual operation parts whose starts and stops are determined by human judgment There are even several parts requiring off-line measurements that include analyses performed by hand At present a CEEF behavioral prediction system CPS is being developed as the first stage for controlling such a system In this CPS an operator creates an operational schedule after due consideration However creation of the operational schedule of the complex CEEF is not easy and it is above the operator s capability to fully cope with alterations of the operational schedule that occur during a long-term habitation experiment Therefore we are going to develop an automatic creation function of the operational schedule that will be incorporated into the CPS by the beginning of the habitation experiment in fiscal 2009 This function will enable automation of most of the operational schedule that human operators currently set up In this paper we examine

  15. A placebo-controlled investigation of synaesthesia-like experiences under LSD.

    PubMed

    Terhune, Devin B; Luke, David P; Kaelen, Mendel; Bolstridge, Mark; Feilding, Amanda; Nutt, David; Carhart-Harris, Robin; Ward, Jamie

    2016-07-29

    The induction of synaesthesia in non-synaesthetes has the potential to illuminate the mechanisms that contribute to the development of this condition and the shaping of its phenomenology. Previous research suggests that lysergic acid diethylamide (LSD) reliably induces synaesthesia-like experiences in non-synaesthetes. However, these studies suffer from a number of methodological limitations including lack of a placebo control and the absence of rigorous measures used to test established criteria for genuine synaesthesia. Here we report a pilot study that aimed to circumvent these limitations. We conducted a within-groups placebo-controlled investigation of the impact of LSD on colour experiences in response to standardized graphemes and sounds and the consistency and specificity of grapheme- and sound-colour associations. Participants reported more spontaneous synaesthesia-like experiences under LSD, relative to placebo, but did not differ across conditions in colour experiences in response to inducers, consistency of stimulus-colour associations, or in inducer specificity. Further analyses suggest that individual differences in a number of these effects were associated with the propensity to experience states of absorption in one's daily life. Although preliminary, the present study suggests that LSD-induced synaesthesia-like experiences do not exhibit consistency or inducer-specificity and thus do not meet two widely established criteria for genuine synaesthesia. PMID:27059209

  16. A placebo-controlled investigation of synaesthesia-like experiences under LSD.

    PubMed

    Terhune, Devin B; Luke, David P; Kaelen, Mendel; Bolstridge, Mark; Feilding, Amanda; Nutt, David; Carhart-Harris, Robin; Ward, Jamie

    2016-07-29

    The induction of synaesthesia in non-synaesthetes has the potential to illuminate the mechanisms that contribute to the development of this condition and the shaping of its phenomenology. Previous research suggests that lysergic acid diethylamide (LSD) reliably induces synaesthesia-like experiences in non-synaesthetes. However, these studies suffer from a number of methodological limitations including lack of a placebo control and the absence of rigorous measures used to test established criteria for genuine synaesthesia. Here we report a pilot study that aimed to circumvent these limitations. We conducted a within-groups placebo-controlled investigation of the impact of LSD on colour experiences in response to standardized graphemes and sounds and the consistency and specificity of grapheme- and sound-colour associations. Participants reported more spontaneous synaesthesia-like experiences under LSD, relative to placebo, but did not differ across conditions in colour experiences in response to inducers, consistency of stimulus-colour associations, or in inducer specificity. Further analyses suggest that individual differences in a number of these effects were associated with the propensity to experience states of absorption in one's daily life. Although preliminary, the present study suggests that LSD-induced synaesthesia-like experiences do not exhibit consistency or inducer-specificity and thus do not meet two widely established criteria for genuine synaesthesia.

  17. Abiotic Deposition of Fe Complexes onto Leptothrix Sheaths

    PubMed Central

    Kunoh, Tatsuki; Hashimoto, Hideki; McFarlane, Ian R.; Hayashi, Naoaki; Suzuki, Tomoko; Taketa, Eisuke; Tamura, Katsunori; Takano, Mikio; El-Naggar, Mohamed Y.; Kunoh, Hitoshi; Takada, Jun

    2016-01-01

    Bacteria classified in species of the genus Leptothrix produce extracellular, microtubular, Fe-encrusted sheaths. The encrustation has been previously linked to bacterial Fe oxidases, which oxidize Fe(II) to Fe(III) and/or active groups of bacterial exopolymers within sheaths to attract and bind aqueous-phase inorganics. When L. cholodnii SP-6 cells were cultured in media amended with high Fe(II) concentrations, Fe(III) precipitates visibly formed immediately after addition of Fe(II) to the medium, suggesting prompt abiotic oxidation of Fe(II) to Fe(III). Intriguingly, these precipitates were deposited onto the sheath surface of bacterial cells as the population was actively growing. When Fe(III) was added to the medium, similar precipitates formed in the medium first and were abiotically deposited onto the sheath surfaces. The precipitates in the Fe(II) medium were composed of assemblies of globular, amorphous particles (ca. 50 nm diameter), while those in the Fe(III) medium were composed of large, aggregated particles (≥3 µm diameter) with a similar amorphous structure. These precipitates also adhered to cell-free sheaths. We thus concluded that direct abiotic deposition of Fe complexes onto the sheath surface occurs independently of cellular activity in liquid media containing Fe salts, although it remains unclear how this deposition is associated with the previously proposed mechanisms (oxidation enzyme- and/or active group of organic components-involved) of Fe encrustation of the Leptothrix sheaths. PMID:27271677

  18. Cell Wall Metabolism in Response to Abiotic Stress.

    PubMed

    Le Gall, Hyacinthe; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-01-01

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions. PMID:27135320

  19. Titania may produce abiotic oxygen atmospheres on habitable exoplanets

    PubMed Central

    Narita, Norio; Enomoto, Takafumi; Masaoka, Shigeyuki; Kusakabe, Nobuhiko

    2015-01-01

    The search for habitable exoplanets in the Universe is actively ongoing in the field of astronomy. The biggest future milestone is to determine whether life exists on such habitable exoplanets. In that context, oxygen in the atmosphere has been considered strong evidence for the presence of photosynthetic organisms. In this paper, we show that a previously unconsidered photochemical mechanism by titanium (IV) oxide (titania) can produce abiotic oxygen from liquid water under near ultraviolet (NUV) lights on the surface of exoplanets. Titania works as a photocatalyst to dissociate liquid water in this process. This mechanism offers a different source of a possibility of abiotic oxygen in atmospheres of exoplanets from previously considered photodissociation of water vapor in upper atmospheres by extreme ultraviolet (XUV) light. Our order-of-magnitude estimation shows that possible amounts of oxygen produced by this abiotic mechanism can be comparable with or even more than that in the atmosphere of the current Earth, depending on the amount of active surface area for this mechanism. We conclude that titania may act as a potential source of false signs of life on habitable exoplanets. PMID:26354078

  20. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants

    PubMed Central

    Sah, Saroj K.; Reddy, Kambham R.; Li, Jiaxu

    2016-01-01

    Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression. PMID:27200044