Science.gov

Sample records for abiotic degradation processes

  1. Diagnosing Abiotic Degradation

    EPA Science Inventory

    The abiotic degradation of chlorinated solvents in ground water can be difficult to diagnose. Under current practice, most of the “evidence” is negative; specifically the apparent disappearance of chlorinated solvents with an accumulation of vinyl chloride, ethane, ethylene, or ...

  2. Formation of pristane from α-tocopherol under simulated anoxic sedimentary conditions: A combination of biotic and abiotic degradative processes

    NASA Astrophysics Data System (ADS)

    Rontani, Jean-François; Nassiry, Mina; Michotey, Valérie; Guasco, Sophie; Bonin, Patricia

    2010-01-01

    Incubation of intact and oxidized α-tocopherol (vitamin E) in anaerobic sediment slurries allowed us to demonstrate that, as previously suggested by Goossens et al. (1984), the degradation of α-tocopherol in anoxic sediments results in the formation of pristane. The conversion of α-tocopherol to this isoprenoid alkane involves a combination of biotic and abiotic degradative processes, i.e. the anaerobic biodegradation (which seems to be mainly induced by denitrifying bacteria) of trimeric structures resulting from the abiotic oxidation of α-tocopherol. On the basis of the results obtained, it is proposed that in the marine environment most of the α-tocopherol present in phytoplanktonic cells should be quickly degraded within the water column and the oxic zone of sediments by way of aerobic biodegradation, photo- and autoxidation processes. Abiotic transformation of this compound mainly results in the production of trimeric oxidation products, sufficiently stable to be incorporated into anoxic sediments and whose subsequent anaerobic bacterial degradation affords pristane. These results confirm that the ratio pristane to phytane cannot be used as an indicator of the oxicity of the environment of deposition; in contrast, they support the use of PFI (Pristane Formation Index) as a proxy for the state of diagenesis of sedimentary organic matter.

  3. Biotic and abiotic processes contribute to successful anaerobic degradation of cyanide by UASB reactor biomass treating brewery waste water.

    PubMed

    Novak, Domen; Franke-Whittle, Ingrid H; Pirc, Elizabeta Tratar; Jerman, Vesna; Insam, Heribert; Logar, Romana Marinšek; Stres, Blaž

    2013-07-01

    In contrast to the general aerobic detoxification of industrial effluents containing cyanide, anaerobic cyanide degradation is not well understood, including the microbial communities involved. To address this knowledge gap, this study measured anaerobic cyanide degradation and the rearrangements in bacterial and archaeal microbial communities in an upflow anaerobic sludge blanket (UASB) reactor biomass treating brewery waste water using bio-methane potential assays, molecular profiling, sequencing and microarray approaches. Successful biogas formation and cyanide removal without inhibition were observed at cyanide concentrations up to 5 mg l(-1). At 8.5 mg l(-1) cyanide, there was a 22 day lag phase in microbial activity, but subsequent methane production rates were equivalent to when 5 mg l(-1) was used. The higher cumulative methane production in cyanide-amended samples indicated that part of the biogas was derived from cyanide degradation. Anaerobic degradation of cyanide using autoclaved UASB biomass proceeded at a rate more than two times lower than when UASB biomass was not autoclaved, indicating that anaerobic cyanide degradation was in fact a combination of simultaneous abiotic and biotic processes. Phylogenetic analyses of bacterial and archaeal 16S rRNA genes for the first time identified and linked the bacterial phylum Firmicutes and the archaeal genus Methanosarcina sp. as important microbial groups involved in cyanide degradation. Methanogenic activity of unadapted granulated biomass was detected at higher cyanide concentrations than reported previously for the unadapted suspended biomass, making the aggregated structure and predominantly hydrogenotrophic nature of methanogenic community important features in cyanide degradation. The combination of brewery waste water and cyanide substrate was thus shown to be of high interest for industrial level anaerobic cyanide degradation. PMID:23726700

  4. Coupled Abiotic-Biotic Degradation of Bisphenol A

    NASA Astrophysics Data System (ADS)

    Im, J.; Prevatte, C.; Campagna, S. R.; Loeffler, F.

    2014-12-01

    Bisphenol A (BPA) is a ubiquitous environmental contaminant with weak estrogenic activity. BPA is readily biodegradable with oxygen available, but is recalcitrant to microbial degradation under anoxic conditions. However, BPA is susceptible to abiotic transformation under anoxic conditions. To better understand the fate of BPA in anoxic environments, the kinetics of BPA transformation by manganese oxide (d-MnO2) were investigated. BPA was rapidly transformed by MnO2 with a pseudo-first-order rate constant of 0.413 min-1. NMR and LC-MS analyses identified 4-hydroxycumyl alcohol (HCA) as a major intermediate. Up to 64% of the initial amount of BPA was recovered as HCA within 5 min, but the conversion efficiency decreased with time, suggesting that HCA was further degraded by MnO2. Further experiments confirmed that HCA was also susceptible to transformation by MnO2, albeit at 5-fold lower rates than BPA transformation. Mass balance approaches suggested that HCA was the major BPA transformation intermediate, but other compounds may also be formed. The abiotic transformation of BPA by MnO2 was affected by pH, and 10-fold higher transformation rates were observed at pH 4.5 than at pH 10. Compared to BPA, HCA has a lower octanol-water partitioning coefficient (Log Kow) of 0.76 vs 2.76 for BPA and a higher aqueous solubility of 2.65 g L-1 vs 0.31 g L-1 for BPA, suggesting higher mobility of HCA in the environment. Microcosms established with freshwater sediment materials collected from four geographically distinct locations and amended with HCA demonstrated rapid HCA biodegradation under oxic, but not under anoxic conditions. These findings suggest that BPA is not inert under anoxic conditions and abiotic reactions with MnO2 generate HCA, which has increased mobility and is susceptible to aerobic degradation. Therefore, coupled abiotic-biotic processes can affect the fate and longevity of BPA in terrestrial environments.

  5. ABIOTIC DEGRADATION OF TRICHLOROETHYLENE UNDER THERMAL REMEDIATION CONDITIONS

    EPA Science Inventory

    The degradation of TCE (C2HCl3) to carbon dioxide (CO2) and chloride (Cl-) has been reported to occur during thermal remediation of subsurface environments. The overall goal of this study was to evaluate abiotic degradation of TCE at el...

  6. Iron enhanced abiotic degradation of chlorinated hydrocarbons

    SciTech Connect

    Chen, C.T.

    1995-10-01

    Since the 1970s, several researchers have investigated the ability of certain zero-valent metals or alloys to enhance the degradation of halogenated organic compounds in contaminated water. Iron, zinc, aluminum, brass, copper, and stainless steel have been studied at various times with varying degrees of success. Gillham and O`Hannesin have recently made a literature review and conducted tests on 14 halogenated aliphatic compounds using zero-valent iron as an enhancing agent. The results showed that rapid dehalogenation occurred on all of the compounds tested except dichloromethane. Based on these test results, EnviroMetal Technologies, Inc. proposed to remediate groundwater contaminated with chlorinated organic compounds using this technology. The EPA Superfund Innovative Technology Evaluation (SITE) program has accepted this technology for demonstration. This demonstration project will include two processes, above ground reactor and in situ permeable wall. The demonstration on the above ground reactor is being conducted at a site in Wayne, New Jersey. The main contaminants at this site are tetrachloroethene (PCE) and trichloroethene (TCE). The in situ permeable wall process will be conducted at a site in upstate New York. This site is a shallow sand aquifer containing TCE, dichloroethenes, and 1,1,1-trichloroethane.

  7. Carbon isotopic fractionation of CFCs during abiotic and biotic degradation.

    PubMed

    Archbold, Marie E; Elliot, Trevor; Kalin, Robert M

    2012-02-01

    Carbon stable isotope ((13)C) fractionation in chlorofluorocarbon (CFC) compounds arising from abiotic (chemical) degradation using zero-valent iron (ZVI) and biotic (landfill gas attenuation) processes is investigated. Batch tests (at 25 °C) for CFC-113 and CFC-11 using ZVI show quantitative degradation of CFC-113 to HCFC-123a and CFC-1113 following pseudo-first-order kinetics corresponding to a half-life (τ(1/2)) of 20.5 h, and a ZVI surface-area normalized rate constant (k(SA)) of -(9.8 ± 0.5) × 10(-5) L m(-2) h(-1). CFC-11 degraded to trace HCFC-21 and HCFC-31 following pseudo-first-order kinetics corresponding to τ(1/2) = 17.3 h and k(SA) = -(1.2 ± 0.5) × 10(-4) L m(-2) h(-1). Significant kinetic isotope effects of ε(‰) = -5.0 ± 0.3 (CFC-113) and -17.8 ± 4.8 (CFC-11) were observed. Compound-specific carbon isotope analyses also have been used here to characterize source signatures of CFC gases (HCFC-22, CFC-12, HFC-134a, HCFC-142b, CFC-114, CFC-11, CFC-113) for urban (UAA), rural/remote (RAA), and landfill (LAA) ambient air samples, as well as in situ surface flux chamber (FLUX; NO FLUX) and landfill gas (LFG) samples at the Dargan Road site, Northern Ireland. The latter values reflect biotic degradation and isotopic fractionation in LFG production, and local atmospheric impact of landfill emissions through the cover. Isotopic fractionations of Δ(13)C ∼ -13‰ (HCFC-22), Δ(13)C ∼ -35‰ (CFC-12) and Δ(13)C ∼ -15‰ (CFC-11) were observed for LFG in comparison to characteristic solvent source signatures, with the magnitude of the isotopic effect for CFC-11 apparently similar to the kinetic isotope effect for (abiotic) ZVI degradation. PMID:22191586

  8. The abiotic degradation of soil organic matter to oxalic acid

    NASA Astrophysics Data System (ADS)

    Studenroth, Sabine; Huber, Stefan; Schöler, H. F.

    2010-05-01

    The abiotic degradation of soil organic matter to volatile organic compounds was studied intensely over the last years (Keppler et al., 2000; Huber et al., 2009). It was shown that soil organic matter is oxidised due to the presence of iron (III), hydrogen peroxide and chloride and thereby produces diverse alkyl halides, which are emitted into the atmosphere. The formation of polar halogenated compounds like chlorinated acetic acids which are relevant toxic environmental substances was also found in soils and sediments (Kilian et al., 2002). The investigation of the formation of other polar halogenated and non-halogenated compounds like diverse mono- and dicarboxylic acids is going to attain more and more importance. Due to its high acidity oxalic acid might have impacts on the environment e.g., nutrient leaching, plant diseases and negative influence on microbial growth. In this study, the abiotic formation of oxalic acid in soil is examined. For a better understanding of natural degradation processes mechanistic studies were conducted using the model compound catechol as representative for structural elements of the humic substances and its reaction with iron (III) and hydrogen peroxide. Iron is one of the most abundant elements on earth and hydrogen peroxide is produced by bacteria or through incomplete reduction of oxygen. To find suitable parameters for an optimal reaction and a qualitative and quantitative analysis method the following reaction parameters are varied: concentration of iron (III) and hydrogen peroxide, time dependence, pH-value and influence of chloride. Analysis of oxalic acid was performed employing an ion chromatograph equipped with a conductivity detector. The time dependent reaction shows a relatively fast formation of oxalic acid, the optimum yield is achieved after 60 minutes. Compared to the concentration of catechol an excess of hydrogen peroxide as well as a low concentration of iron (III) are required. In absence of chloride the

  9. Biotic and Abiotic Degradation of CL-20 and RDX in Soils

    SciTech Connect

    Crocker, Fiona H.; Thompson, Karen T.; Szecsody, Jim E.; Fredrickson, Herbert L.

    2005-11-01

    The caged cyclic nitramine 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) is a new explosive that has the potential to replace existing military explosives, but little is known about its environmental toxicity, transport, and fate. We quantified and compared the aerobic environmental fate of CL-20 to the widely used cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in surface and subsurface soil microcosms. Soil-free controls and biologically mediated processes. Both abiotic and biological processes significantly degraded CL-20 in all soils examined. Apparent abiotic, first-order degradation rates (k) for CL-20 were not significantly different between soil-free controls (0.018 < k < 0.030 d-1) and biologically attenuated soil controls (0.003 degradation rates (0.068 < k <1.22 d-1). Extents of mineralization of 14C–CL-20 to 14CO2 in biologically active soil microcosms were 41.1 to 55.7%, indicating that the CL-20 cage was broken, since all carbons are part of the heterocyclic cage. Under aerobic conditions, abiotic degradation rates of RDX were generally slower (0 < k < 0.032 d-1) than abiotic CL-20 degradation rates. In biologically active soil microcosms amended with glucose aerobic RDX degradation rates varied between 0.010 and 0.474 d-1. Biodegradation was a key factor in determining the environmental fate of RDX, while a combination of biotic and abiotic processes was important with CL-20. Our data suggest that CL-20 should be less recalcitrant than RDX in aerobic soils.

  10. Environmental hazard assessment of chemicals and products. Part VI. Abiotic degradation in the troposphere.

    PubMed

    Klöpffer, W

    1996-09-01

    The atmosphere constitutes an important sink for many volatile and semivolatile organic compounds (Part II). Even non-volatile compounds may enter the troposphere due to incomplete burning of fuel and industrial, agricultural and traffic-related processes. Depending on vapour pressure, temperature and content of aerosol particles, chemicals prefer the free gas phase, the surface of the particles, or both compartments. Polar compounds (low Henry-coefficient) may dissolve in cloud- and fog droplets. Clearly, the prefered compartment influences the dominant abiotic degradation path. In this paper, a survey is given about the distribution and degradation pathways of chemicals in the troposphere. In the free gas phase of the troposphere, the reaction with OH-radicals is the dominant degradation path. In addition, the reactions with ozone and nitrate-radicals, and direct photochemical reactions also play a role in abiotic degradation. PMID:8784998

  11. Stable carbon isotope analysis to distinguish biotic and abiotic degradation of 1,1,1-trichloroethane in groundwater sediments.

    PubMed

    Broholm, Mette M; Hunkeler, Daniel; Tuxen, Nina; Jeannottat, Simon; Scheutz, Charlotte

    2014-08-01

    The fate and treatability of 1,1,1-TCA by natural and enhanced reductive dechlorination was studied in laboratory microcosms. The study shows that compound-specific isotope analysis (CSIA) identified an alternative 1,1,1-TCA degradation pathway that cannot be explained by assuming biotic reductive dechlorination. In all biotic microcosms 1,1,1-TCA was degraded with no apparent increase in the biotic degradation product 1,1-DCA. 1,1,1-TCA degradation was documented by a clear enrichment in (13)C in all biotic microcosms, but not in the abiotic control, which suggests biotic or biotically mediated degradation. Biotic degradation by reductive dechlorination of 1,1-DCA to CA only occurred in bioaugmented microcosms and in donor stimulated microcosms with low initial 1,1,1-TCA or after significant decrease in 1,1,1-TCA concentration (after∼day 200). Hence, the primary degradation pathway for 1,1,1-TCA does not appear to be reductive dechlorination via 1,1-DCA. In the biotic microcosms, the degradation of 1,1,1-TCA occurred under iron and sulfate reducing conditions. Biotic reduction of iron and sulfate likely resulted in formation of FeS, which can abiotically degrade 1,1,1-TCA. Hence, abiotic degradation of 1,1,1-TCA mediated by biotic FeS formation constitute an explanation for the observed 1,1,1-TCA degradation. This is supported by a high 1,1,1-TCA (13)C enrichment factor consistent with abiotic degradation in biotic microcosms. 1,1-DCA carbon isotope field data suggest that this abiotic degradation of 1,1,1-TCA is a relevant process also at the field site. PMID:24559936

  12. Abiotic degradation of methyl parathion by manganese dioxide: Kinetics and transformation pathway.

    PubMed

    Liao, Xiaoping; Zhang, Caixiang; Liu, Yuan; Luo, Yinwen; Wu, Sisi; Yuan, Songhu; Zhu, Zhenli

    2016-05-01

    Methyl parathion, a widely used insecticide around the world, has aroused gradually extensive concern of researchers due to its degradation product such as methyl paraoxon, with higher toxicity for mammals and more recalcitrant. Given the ubiquity of manganese dioxide (MnO2) in soils and aquatic sediments, the abiotic degradation of methyl parathion by α-MnO2 was investigated in batch experiments. It was found that methyl parathion was decomposed up to 90% by α-MnO2 in 30 h and the removal efficiency of methyl parathion depended strongly on the loading of α-MnO2 and pH value in the solution where the reactions followed pseudo-first-order model well. The coexisting metal ions (such as Ca(2+), Mg(2+) and Mn(2+)) weakened markedly the degradation of methyl parathion by α-MnO2. However, the effect of dissolved organic matter (HA-Na) on reaction rates presented two sides: to improve hydrolysis rate but deteriorate oxidation rate of methyl parathion. Based on the degradation products identified by gas chromatography-mass spectrometer (GC/MS) and liquid chromatography high-resolution mass spectrometer (LC/HRMS), both hydrolysis and oxidation processes were proposed to be two predominant reaction mechanisms contributing to methyl parathion degradation by α-MnO2. This study provided meaningful information to elucidate the abiotic dissipation of methyl parathion by manganese oxide minerals in the environment. PMID:26891361

  13. Reductive transformation of carbamazepine by abiotic and biotic processes.

    PubMed

    König, Anne; Weidauer, Cindy; Seiwert, Bettina; Reemtsma, Thorsten; Unger, Tina; Jekel, Martin

    2016-09-15

    The antiepileptic drug carbamazepine (CBZ) is ubiquitously present in the anthropogenic water cycle and is therefore of concern regarding the potable water supply. Despite of its persistent behavior in the aquatic environment, a redox dependent removal at bank filtration sites with anaerobic aquifer passage was reported repeatedly but not elucidated in detail yet. The reductive transformation of CBZ was studied, using abiotic systems (catalytic hydrogenation, electrochemistry) as well as biologically active systems (column systems, batch degradation tests). In catalytic hydrogenation CBZ is gradually hydrogenated and nine transformation products (TPs) were detected by liquid chromatography high-resolution mass spectrometry. 10,11-Dihydro-CBZ ((2H)-CBZ) was the major stable product in these abiotic, surface catalyzed reduction processes and turned out to be not a precursor of the more hydrogenated TPs. In the biotic reduction processes the formation of (2H)-CBZ alone could not explain the observed CBZ decline. There, also traces of (6H)-CBZ and (8H)-CBZ were formed by microbes under anaerobic conditions and four phase-II metabolites of reduced CBZ could be detected and tentatively identified. Thus, the spectrum of reduction products of CBZ is more diverse than previously thought. In environmental samples CBZ removal along an anaerobic soil passage was confirmed and (2H)-CBZ was determined at one of the sites. PMID:27267475

  14. Olivine Weathering: Abiotic Versus Biotic Processes as Possible Biosignatures

    NASA Technical Reports Server (NTRS)

    Longazo, T. G.; Wentworth, S. J.; McKay, D. S.; Southam, G.; Clemett, S. J.

    2001-01-01

    A preliminary study to determine how abiotic versus biotic processes affect the weathering of olivine crystals. Perhaps the differences between these weathering processes could be used as biosignatures. Additional information is contained in the original extended abstract.

  15. Autophagy, a Conserved Mechanism for Protein Degradation, Responds to Heat, and Other Abiotic Stresses in Capsicum annuum L.

    PubMed Central

    Zhai, Yufei; Guo, Meng; Wang, Hu; Lu, Jinping; Liu, Jinhong; Zhang, Chong; Gong, Zhenhui; Lu, Minghui

    2016-01-01

    Abiotic stresses negatively affect plants growth and development by inducing protein denaturation, and autophagy degrades the damaged proteins to alleviate their toxicity, however, little is known about the involvement of autophagy in pepper (Capsicum annuum L.) tolerances to abiotic stresses. In this study, we identified autophagy-related gene (ATG) members in the whole genome of pepper by HMM method and analyzed their expression profiles in response to heat and other abiotic stresses by quantitative real-time PCR. The results showed that the CaATG contained 15 core ATG members including 29 ATG proteins with their respective conserved functional domains, involving the whole process of autophagy. Under normal environmental condition, the expression of CaATG genes showed tissue- and developmental stage-specific patterns, while under abiotic stresses of salt, drought, heat, cold and carbohydrate starvation, the accumulation of autophagosome punctate increased and the expression level of CaATG genes changed with stress type-dependent pattern, which indicates the linkage of autophagy in pepper response to abiotic stresses. After treated with heat stress, both the number of up-regulated CaATG genes and the increment of autophagosome punctate were higher in pepper thermotolerant line R9 than those in thermosensitive line B6, implying an association of autophagy with heat tolerance. In addition, CaATG6 was predicted to interact with CaHSP90 family members. Our study suggests that autophagy is connected to pepper tolerances to heat and other abiotic stresses. PMID:26904087

  16. Reductive degradation of chloramphenicol using bioelectrochemical system (BES): a comparative study of abiotic cathode and biocathode.

    PubMed

    Sun, Fei; Liu, Hao; Liang, Bin; Song, Rentao; Yan, Qun; Wang, Aijie

    2013-09-01

    Reductive degradation of choramphenicol (CAP) using Bioelectrochemical system (BES) with both abiotic cathode and biocathode was investigated. It was found that the CAP reduction efficiency during the first 24 h reached 86.3% of the biocathode group, while which was only 62.9% in the case of abiotic cathode. Except for the cathode potential, other indicators of the cathode performance as the cathode current, the current response of the cyclic voltammetry, the ohm resistance, and the polarization resistance of the biocathode group were all better than those of the abiotic group. Moreover, specific CAP reductive rate of the biocathode with sludge fermentation liquid (0.199 h(-1)) as carbon source was close to that of the glucose (0.215 h(-1)), but was about 3.2 times of the abiotic cathode group (0.062 h(-1)). It suggested that the introduction of biocathode would better the cathode performance, and then further increase the CAP reduction. PMID:23849757

  17. Review of Abiotic Degradation of Chlorinated Solvents by Reactive Iron Minerals

    EPA Science Inventory

    Abiotic degradation of chlorinated solvents by reactive iron minerals such as iron sulfides, magnetite, green rust, and other Fe(II)-containing minerals has been observed in both laboratory and field conditions. These reactive iron minerals typically form under iron and sulfate ...

  18. DEMONSTRATION BULLETIN: METAL-ENHANCED ABIOTIC DEGRADATION TECHNOLOGY - ENVIROMETAL TECHNOLOGIES, INC.

    EPA Science Inventory

    EnviroMetal Technologies, Inc. (ETI), of Guelph, ON, Canada, has developed the metal-enhanced abiotic degradation technology to treat halogenated volatile organic compounds (VOC) in water. A reactive, zero-valent, granular iron medium causes reductive dehalogenation of VOCs yield...

  19. Recalcitrance and degradation of petroleum biomarkers upon abiotic and biotic natural weathering of Deepwater Horizon oil.

    PubMed

    Aeppli, Christoph; Nelson, Robert K; Radović, Jagoš R; Carmichael, Catherine A; Valentine, David L; Reddy, Christopher M

    2014-06-17

    Petroleum biomarkers such as hopanoids, steranes, and triaromatic steroids (TAS) are commonly used to investigate the source and fate of petroleum hydrocarbons in the environment based on the premise that these compounds are resistant to biotic and abiotic degradation. To test the validity of this premise in the context of the Deepwater Horizon disaster, we investigated changes to these biomarkers as induced by natural weathering of crude oil discharged from the Macondo Well (MW). For surface slicks collected from May to June in 2010, and other oiled samples collected on beaches in the northern Gulf of Mexico from July 2010 until August 2012, hopanoids with up to 31 carbons as well as steranes and diasteranes were not systematically affected by weathering processes. In contrast, TAS and C32- to C35-homohopanes were depleted in all samples relative to 17α(H),21β(H)-hopane (C30-hopane). Compared to MW oil, C35-homohopanes and TAS were depleted by 18 ± 10% and 36 ± 20%, respectively, in surface slicks collected from May to June 2010, and by 37 ± 9% and 67 ± 10%, respectively, in samples collected along beaches from April 2011 through August 2012. Based on patterns of relative losses of individual compounds, we hypothesize biodegradation and photooxidation as main degradation processes for homohopanes and TAS, respectively. This study highlights that (i) TAS and homohopanes can be degraded within several years following an oil spill, (ii) the use of homohopanes and TAS for oil spill forensics must account for degradation, and (iii) these compounds provide a window to parse biodegradation and photooxidation during advanced stages of oil weathering. PMID:24831878

  20. Abiotic/Biotic Degradation and Mineralization of N-Nitrosodimethylamine in Aquifer Sediments

    SciTech Connect

    Szecsody, James E.; McKinley, James P.; Breshears, Andrew T.; Crocker, Fiona H.

    2008-10-14

    The N-nitrosodimethylamine (NDMA) degradation rate and mineralization rate were measured in two aquifer sediments that received treatments to create oxic, reducing, and sequential reducing/oxic environments. Chemically reduced sediments rapidly abiotically degraded NDMA to nontoxic dimethylamine (DMA) to parts per trillion levels, then degraded to further products. NDMA was partially mineralized in reduced sediments (6 to 28 percent) at a slow rate (half-life 3,460 h) by an unknown abiotic/biotic pathway. In contrast, NDMA was mineralized more rapidly (half-life 342 h) and to a greater extent (30 to 81 percent) in oxic sediments with propane addition, likely by a propane monooxygenase pathway. NDMA mineralization in sequential reduced sediment followed by oxic sediment treatment did result in slightly more rapid mineralization and a greater mineralization extent relative to reduced systems. These increases were minor, so aerobic NDMA mineralization with oxygen and propane addition was the most viable in situ NDMA mineralization strategy.

  1. Abiotic and enzymatic degradation of wheat straw cell wall: a biochemical and ultrastructural investigation.

    PubMed

    Lequart, C; Ruel, K; Lapierre, C; Pollet, B; Kurek, B

    2000-07-14

    The action of an abiotic lignin oxidant and a diffusible xylanase on wheat straw was studied and characterized at the levels of the molecular structures by chemical analysis and of the cell wall ultrastructure by transmission electron microscopy. While distinct chemical changes in the target polymers were observed when each system was used separately, a combination of the two types of catalysts did not significantly increase either lignin oxidation or hemicellulose hydrolysis. Microscopic observations however revealed that the supramolecular organization of the cell wall polymers was significantly altered. This suggests that the abiotic Mn-oxalate complex and the xylanase cooperate in modifying the cell wall architecture, without noticeably enhancing the degradation of the constitutive polymers. PMID:10949315

  2. Process for degrading hypochlorite

    SciTech Connect

    Huxtable, W.P.; Griffith, W.L.; Compere, A.L.

    1989-05-12

    It is an object of the present invention to provide an improved means and method for the degradation of hypochlorite in alkali waste solutions. It is a further object of the present invention to provide a more effective and less costly method for the degradation of hypochlorite. The foregoing objects and others are accomplished in accordance with the present invention, generally speaking, by providing a process to degrade hypochlorite into chloride and oxygen which includes contacting an aqueous hypochlorite basic solution with a catalyst comprising about 1--10 w/w % cobalt oxide and about 1--15 w/w % molybdenum oxide on a suitable substrate. In another embodiment a similar process for degrading lithium hypochlorite is provided in which waste solution concentration is lowered in order to minimize carbonate precipitation. 6 tabs.

  3. Oxidation of Black Carbon by Biotic and Abiotic Processes

    SciTech Connect

    Cheng, Chih-hsin; Lehmann, Johannes C.; Thies, Janice E.; Burton, Sarah D.; Engelhard, Mark H.

    2006-11-01

    The objectives of this study were to quantify the relative importance of either biotic or abiotic oxidation of biomass-derived black carbon (BC) and to characterize the surface properties and charge characteristics of oxidized particulate BC. We incubated BC and BC-soil mixtures at two different temperatures (30 C and 70 C) with and without microbial inoculation, nutrient additions, or manure amendments for four months. Abiotic processes were more important for oxidation of BC than biotic processes during this short-term incubation, as inoculation with microorganisms did not change any of the measured parameters. Black C incubated at both 30 C and 70 C without microbial activity showed dramatic decreases in pH (in water) from 5.4 to 5.2 and 3.4, as well as increases in cation exchange capacity (CEC at pH 7) by 53% and 538% and in oxygen (O) contents by 4% and 38%, respectively. Boehm titration and Fourier transform infrared (FTIR) spectroscopy suggested that the formation of carboxylic functional groups was the reason for the enhanced CEC during oxidation. The analyses of BC surface properties by X-ray photoelectron spectroscopy (XPS) indicated that the oxidation of BC particles initiated on the surface. Incubation at 30 C only enhanced oxidation on particle surfaces, while oxidation during incubation at 70 C penetrated into the interior of particles. Such short-term oxidation of BC has great significance for the stability of BC in soils as well as for its effects on soil fertility and biogeochemistry.

  4. FATE OF FENTHION IN SALT-MARSH ENVIRONMENTS: 1. FACTORS AFFECTING BIOTIC AND ABIOTIC DEGRADATION RATES IN WATER AND SEDIMENT

    EPA Science Inventory

    Fenthion (Baytex), an organophosphate insecticide, is frequently applied to salt-marsh environments to control mosquitoes. hake-flask tests were used to study rates of abiotic and biotic degradation of fenthion and the environmental parameters that affect these rates. Water or wa...

  5. Modeling abiotic processes of aniline in water-saturated soils

    SciTech Connect

    Fabrega-Duque, J.R.; Jafvert, C.T.; Li, H.; Lee, L.S.

    2000-05-01

    The long-term interactions of aromatic amines with soils are important in defining the fate and transport of these compounds in the environment. Abiotic loss of aniline from the aqueous phase to the soil phase occurs with an initial rapid loss due to reversible mass transfer processes, followed by a slow loss due to irreversible reactions. A kinetic model describing these processes in water-saturated soils was developed and evaluated. The model assumes that instantaneous equilibrium occurs for the following reversible processes: (1) acid dissociation of the protonated organic base (BH+) in the aqueous phase; (2) ion exchange between inorganic divalent cations (D{sup 2+} = Ca{sup 2+} + Mg{sup 2+}) on the soil and the protonated organic base; and (3) partitioning of the nonionic species of aniline (B{sub aq}) to soil organic carbon. The model assumes that irreversible loss of aniline occurs through reaction of B{sub aq} with irreversible sites (C{sub ir}) on the soil. A kinetic rate constant, k{sub ir}, and the total concentration of irreversible sites, C{sub T}, were employed as adjustable model parameters. The model was evaluated as adjustable model parameters. The model was evaluated with measured mass distributions of aniline between water and five soils ranging in pH (4.4--7.3), at contact times ranging from 2 to 1,600 h. Some experiments were performed at different soil mass to water volume ratios. A good fit was obtained with a single value of k{sub ir} for all soils, pH values, and soil-water ratios. To accurately predict soil-water distributions at contact times <24 h, mass transfer of the neutral species to the soil was modeled as a kinetic process, again, assuming that ion exchange processes are instantaneous.

  6. Environmentally relevant impacts of nano-TiO2 on abiotic degradation of bisphenol A under sunlight irradiation.

    PubMed

    Wu, Wei; Shan, Guoqiang; Wang, Shanfeng; Zhu, Lingyan; Yue, Longfei; Xiang, Qian; Zhang, Yinqing; Li, Zhuo

    2016-09-01

    Understanding the effects of nano-TiO2 particles on the environmental behaviors of organic pollutants in natural aquatic environments is of paramount importance considering that large amount of nano-TiO2 is being released in the environment. In this study, the effect of nano-TiO2 on the degradation of bisphenol A (BPA) in water was investigated under simulated solar light irradiation. The results indicated that nano-TiO2 at environmentally relevant concentration (1 mg/L) could significantly facilitate the abiotic degradation of BPA (also at low concentration) under mild solar light irradiation, with the pseudo first-order rate constant (kobs) for BPA degradation raised by 1-2 orders of magnitude. As reflected by the inhibition experiments, hydroxyl radicals (OHs) and superoxide radical species were the predominant active species responsible for BPA degradation. The reaction was affected by water pH, and the degradation rate was higher at acidic or alkaline conditions than that at neutral condition. Humic acid (HA) also affected the reaction rate, depending on its concentration. At lower concentration (the mass ratio of HA/nano-TiO2 was 0.1:1), HA improved the dispersion and stability of nano-TiO2 in aquatic environment. As a result, the yield of OHs by nano-TiO2 under sunlight irradiation increased and BPA degradation was facilitated. When the HA concentration increased, a coating of HA formed on the surface of nano-TiO2. Although nano-TiO2 became more stable, the light absorption by nano-TiO2 was significantly reduced due to the strong light absorption of the HA coated on the surface. As a consequence, the yield of OH decreased and BPA degradation was depressed. The results imply that nano-TiO2 at low concentration may distinctly mediate BPA degradation, and can contribute to the natural attenuation of some organic pollutants in aquatic environment with low level of HA. However, this process would be significantly reduced in the presence of high level of HA. PMID

  7. Abiotic Degradation Rates for Carbon Tetrachloride and Chloroform: Progress in FY 2010

    SciTech Connect

    Amonette, James E.; Jeffers, Peter M.; Qafoku, Odeta; Russell, Colleen K.; Humphrys, Daniel R.; Wietsma, Thomas W.; Truex, Michael J.

    2010-12-08

    This report documents the progress made through FY 2010 on a project initiated in FY 2006 to help address uncertainties related to the rates of hydrolysis in groundwater at the Hanford Site for carbon tetrachloride (CT) and chloroform (CF). The study also explores the possible effects of contact with minerals and sediment (i.e., heterogeneous hydrolysis) on these rates. The research was initiated to decrease the uncertainties in abiotic degradation rates of CT and chloroform CF associated with temperature and possible heterogeneous effects. After 2 years of data collection, the first evidence for heterogeneous effects was identified for hydrolysis of CT, and preliminary evidence for the effects of different mineral types on CF hydrolysis rates also was reported. The CT data showed no difference among mineral types, whereas significant differences were seen in the CF results, perhaps due to the fact that CF hydrolyzes by both neutral and base-catalyzed mechanisms whereas CT follows only the neutral hydrolysis path. In this report, we review the project objectives, organization, and technical approaches taken, update the status and results of the hydrolysis-rate experiments after 4 years of experimentation (i.e., through FY 2010), and provide a brief discussion of how these results add to scientific understanding of the behavior of the CT/CF plume at the Hanford Site.

  8. Abiotic and biotic degradation of oxo-biodegradable plastic bags by Pleurotus ostreatus.

    PubMed

    da Luz, José Maria Rodrigues; Paes, Sirlaine Albino; Bazzolli, Denise Mara Soares; Tótola, Marcos Rogério; Demuner, Antônio Jacinto; Kasuya, Maria Catarina Megumi

    2014-01-01

    In this study, we evaluated the growth of Pleurotus ostreatus PLO6 using oxo-biodegradable plastics as a carbon and energy source. Oxo-biodegradable polymers contain pro-oxidants that accelerate their physical and biological degradation. These polymers were developed to decrease the accumulation of plastic waste in landfills. To study the degradation of the plastic polymers, oxo-biodegradable plastic bags were exposed to sunlight for up to 120 days, and fragments of these bags were used as substrates for P. ostreatus. We observed that physical treatment alone was not sufficient to initiate degradation. Instead, mechanical modifications and reduced titanium oxide (TiO2) concentrations caused by sunlight exposure triggered microbial degradation. The low specificity of lignocellulolytic enzymes and presence of endomycotic nitrogen-fixing microorganisms were also contributing factors in this process. PMID:25419675

  9. Abiotic and Biotic Degradation of Oxo-Biodegradable Plastic Bags by Pleurotus ostreatus

    PubMed Central

    da Luz, José Maria Rodrigues; Paes, Sirlaine Albino; Bazzolli, Denise Mara Soares; Tótola, Marcos Rogério; Demuner, Antônio Jacinto; Kasuya, Maria Catarina Megumi

    2014-01-01

    In this study, we evaluated the growth of Pleurotus ostreatus PLO6 using oxo-biodegradable plastics as a carbon and energy source. Oxo-biodegradable polymers contain pro-oxidants that accelerate their physical and biological degradation. These polymers were developed to decrease the accumulation of plastic waste in landfills. To study the degradation of the plastic polymers, oxo-biodegradable plastic bags were exposed to sunlight for up to 120 days, and fragments of these bags were used as substrates for P. ostreatus. We observed that physical treatment alone was not sufficient to initiate degradation. Instead, mechanical modifications and reduced titanium oxide (TiO2) concentrations caused by sunlight exposure triggered microbial degradation. The low specificity of lignocellulolytic enzymes and presence of endomycotic nitrogen-fixing microorganisms were also contributing factors in this process. PMID:25419675

  10. A convenient model and program for the assessment of abiotic degradation of chemicals in natural waters

    SciTech Connect

    Frank, R.; Kloepffer, W.

    1989-06-01

    A convenient model for the estimation and comparison of rates of various degradation processes of chemicals in natural waters is described. The estimates are determined by combining physicochemical properties of the chemicals with properties of natural waters and solar photon irradiancies.

  11. Carbon isotope effects associated with Fenton-like degradation of toluene: potential for differentiation of abiotic and biotic degradation.

    PubMed

    Ahad, Jason M E; Slater, Greg F

    2008-08-15

    Hydrogen peroxide (H(2)O(2))-mediated oxygenation to enhance subsurface aerobic biodegradation is a frequently employed remediation technique. However, it may be unclear whether observed organic contaminant mass loss is caused by biodegradation or chemical oxidation via hydroxyl radicals generated during catalyzed Fenton-like reactions. Compound-specific carbon isotope analysis has the potential to discriminate between these processes. Here we report laboratory experiments demonstrating no significant carbon isotope fractionation during Fenton-like hydroxyl radical oxidation of toluene. This implies that observation of significant isotopic fractionation of toluene at a site undergoing H(2)O(2)-mediated remediation would provide direct evidence of biodegradation. We applied this approach at a field site that had undergone 27 months of H(2)O(2)-mediated subsurface oxygenation. Despite substantial decreases (>68%) in groundwater toluene concentrations carbon isotope signatures of toluene (delta(13)C(tol)) showed no significant variation (mean=-27.5+/-0.3 per thousand, n=13) over a range of concentrations from 11.1 to 669.0 mg L(-1). Given that aerobic degradation by ring attack has also been shown to result in no significant isotopic fractionation during degradation, at this site we were unable to discern the mechanism of degradation. However, such differentiation is possible at sites where aerobic degradation by methyl group attack results in significant isotopic fractionation. PMID:18466958

  12. Biotic and abiotic degradation of 1,1,2,2-tetrachloroethane in wetland sediments: Geochemical and microbial community analyses

    USGS Publications Warehouse

    Lorah, M.M.; Voytek, M.A.; Kirshtein, J.

    2000-01-01

    Additional microcosm experiments with the wetland sediment and groundwater at the Aberdeen Proving Ground, MD, site was presented to assist in elucidating the conditions under which these potentially competing biotic and abiotic degradation reactions for 1,1,2,2-tetrachloroethane (PCA) occur in the environment and to evaluate potential seasonal changes in degradation reactions. PCA concentration decreased to below detection within 21 days in the March 1999 experiment, while PCA was still present at day 35 in the July 1999 experiment. Compared to March 1999 experiment, peak concentrations of all daughter products except trichloroethylene (TCE) were delayed in the July 1999 experiment. The relative intensity of the peaks was directly related to the biomass present for each fragment length (bp, base pair). The relative intensities were lower in sediment collected in August 1999 than in March 1999, especially in the bp size range of ??? 160??-240??. These microbial community analyses, along with the geochemical analyses of the microcosms, provide evidence that abiotic production of TCE from PCA degradation is more significant under conditions of low bacterial biomass in the wetland sediments.

  13. The effect of soil mineral phases on the abiotic degradation of selected organic compounds. Progress report, June 31, 1990--May 31, 1993

    SciTech Connect

    Sandhu, S.S.

    1993-05-31

    Tetraphenylborate (TPB) is used to precipitate radioactive 137Cs from high-level nuclear waste water at the Defense Waste Processing Facility (DWPF) operated by the US DOE at the Savannah River Plant (SRP). The process is part of the procedure for the glassification of high-level nuclear waste in preparation for its long-term geological disposal. The decontaminated waste water contains millimolar quantities of TPB that will be processed into salt concretions. The transporation and use of large amounts of TPB can potentially result in the release of TPB into soil or aquatic environments. Previous study has shown that TPB degrades in soils to initially form diphenylborinic acid (DPBA) and biphenyl. DPBA appears to degrade further into other unidentified compounds which subsequently degrade into inorganic boron. The factors which promote the abiotic degradation of TPB need to be investigated since this chemical is used in the processing of radioactive wastes. TPB and its intermediate product, DPBA, have been reported to be toxic to microorganisms and plants, dependent on soil or water environments for their survival and growth.

  14. Effect of abiotic factors on the mercury reduction process by humic acids in aqueous systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mercury (Hg) in the environment can have serious toxic effects on a variety of living organisms, and is a pollutant of concern worldwide. The reduction of mercury from the toxic Hg2+ form to Hg0 is especially important. One pathway for this reduction to occur is through an abiotic process with humic...

  15. SERDP ER-1376 Enhancement of In Situ Bioremediation of Energetic Compounds by Coupled Abiotic/Biotic Processes:Final Report for 2004 - 2006

    SciTech Connect

    Szecsody, James E.; Comfort, Steve; Fredrickson, Herbert L.; Boparai, Hardiljeet K.; Devary, Brooks J.; Thompson, Karen T.; Phillips, Jerry L.; Crocker, Fiona H.; Girvin, Donald C.; Resch, Charles T.; Shea, Patrick; Fischer, Ashley E.; Durkin, Lisa M.

    2007-08-07

    This project was initiated by SERDP to quantify processes and determine the effectiveness of abiotic/biotic mineralization of energetics (RDX, HMX, TNT) in aquifer sediments by combinations of biostimulation (carbon, trace nutrient additions) and chemical reduction of sediment to create a reducing environment. Initially it was hypothesized that a balance of chemical reduction of sediment and biostimulation would increase the RDX, HMX, and TNT mineralization rate significantly (by a combination of abiotic and biotic processes) so that this abiotic/biotic treatment may be a more efficient for remediation than biotic treatment alone in some cases. Because both abiotic and biotic processes are involved in energetic mineralization in sediments, it was further hypothesized that consideration for both abiotic reduction and microbial growth was need to optimize the sediment system for the most rapid mineralization rate. Results show that there are separate optimal abiotic/biostimulation aquifer sediment treatments for RDX/HMX and for TNT. Optimal sediment treatment for RDX and HMX (which have chemical similarities and similar degradation pathways) is mainly chemical reduction of sediment, which increased the RDX/HMX mineralization rate 100 to150 times (relative to untreated sediment), with additional carbon or trace nutrient addition, which increased the RDX/HMX mineralization rate an additional 3 to 4 times. In contrast, the optimal aquifer sediment treatment for TNT involves mainly biostimulation (glucose addition), which stimulates a TNT/glucose cometabolic degradation pathway (6.8 times more rapid than untreated sediment), degrading TNT to amino-intermediates that irreversibly sorb (i.e., end product is not CO2). The TNT mass migration risk is minimized by these transformation reactions, as the triaminotoluene and 2,4- and 2,6-diaminonitrotoluene products that irreversibly sorb are no longer mobile in the subsurface environment. These transformation rates are increased

  16. The effect of soil mineral phases on the abiotic degradation of selected organic compounds. Final report, June 31, 1990--December 31, 1994

    SciTech Connect

    Sandhu, S.S.

    1994-12-31

    Funds were received from the United States Department of Energy to study the effects of soil mineral phases on the rates of abiotic degradation of tetraphenylborate (TPB) and diphenylboronic acid (DPBA). In addition to kaolinite and montmorillonite clay minerals, the role of goethite, corundum, manganite, and rutile in the degradation of organoborates was also evaluated. The effects of DPBA, argon, molecular dioxygen (O{sub 2}), temperature, and organic matter on the degradation of organoborates were also measured. The results indicated that TPB and DPBA degraded rapidly on the mineral surfaces. The initial products generated from the degradation of TPB were DPBA and biphenyl; however, further degradation resulted in the formation of phenylboric acid and phenol which persisted even after TPB disappeared. The data also showed that the rate of TPB degradation was faster in kaolinite, a 1:1 clay mineral, than in montmorillonite, a double layer mineral. The initial degradation of TPB by corundum was much higher than goethite, manganite and rutile. However, no further degradation by this mineral was observed where as the degradation of TPB continued by goethite and rutile minerals. Over all, the degradation rate of TPB was the highest for goethite as compared to the other metal oxide minerals. The degradation of TPB and DPBA was a redox reaction where metals (Fe, Al, Ti, Mn) acted as Lewis acids. DPBA and argon retarded the TPB degradation where as molecular oxygen organic matter and temperature increased the rate of TPB disappearance.

  17. Contributions of Abiotic and Biotic Processes to the Aerobic Removal of Phenolic Endocrine-Disrupting Chemicals in a Simulated Estuarine Aquatic Environment.

    PubMed

    Yang, Lihua; Cheng, Qiao; Tam, Nora Fy; Lin, Li; Su, Weiqi; Luan, Tiangang

    2016-04-19

    The contributions of abiotic and biotic processes in an estuarine aquatic environment to the removal of four phenolic endocrine-disrupting chemicals (EDCs) were evaluated through simulated batch reactors containing water-only or water-sediment collected from an estuary in South China. More than 90% of the free forms of all four spiked EDCs were removed from these reactors at the end of 28 days under aerobic conditions, with the half-life of 17α-ethynylestradiol (EE2) longer than those of propylparaben (PP), nonylphenol (NP) and 17β-estradiol (E2). The interaction with dissolved oxygen contributed to NP removal and was enhanced by aeration. The PP and E2 removal was positively influenced by adsorption on suspended particles initially, whereas abiotic transformation by estuarine-dissolved matter contributed to their complete removal. Biotic processes, including degradation by active aquatic microorganisms, had significant effects on the removal of EE2. Sedimentary inorganic and organic matter posed a positive effect only when EE2 biodegradation was inhibited. Estrone (E1), the oxidizing product of E2, was detected, proving that E2 was removed by the naturally occurring oxidizers in the estuarine water matrixes. These results revealed that the estuarine aquatic environment was effective in removing free EDCs, and the contributions of abiotic and biotic processes to their removal were compound specific. PMID:26984110

  18. Connecting RNA Processing to Abiotic Environmental Response in Arabidopsis: the role of a polyadenylation factor

    NASA Astrophysics Data System (ADS)

    Li, Q. Q.; Xu, R.; Hunt, A. G.; Falcone, D. L.

    Plants are constantly challenged by numerous environmental stresses both biotic and abiotic It is clear that plants have evolved to counter these stresses using all but limited means We recently discovered the potential role of a messenger RNA processing factor namely the Arabidopsis cleavage and polyadenylation specificity factor 30 kDa subunit AtCPSF30 when a mutant deficient in this factor displayed altered responses to an array of abiotic stresses This AtCPSF30 mutant named oxt6 exhibited an elevated tolerance to oxidative stress Microarray experiments of oxt6 and its complemented lines revealed an altered gene expression profile among which were antioxidative defense genes Interestingly the same gene encoding AtCPSF30 can also be transcribed into a large transcript that codes for a potential splicing factor Both protein products have a domain for RNA binding and a calmodulin binding domain activities of which have been confirmed by biochemical assays Surprisingly binding of AtCPSF30 to calmodulin inhibits the RNA-binding activity of the protein Mutational analysis shows that a small part of the protein is responsible for calmodulin binding and point mutations in this region abolished both RNA binding activity and the inhibition of this activity by calmodulin Analyses of the potential splicing factor are on going and the results will be presented The interesting possibilities for both the interplay between splicing and polyadenylation and the regulation of these processes by stimuli that act through

  19. Microbiological and abiotic processes in modelling longer-term marine corrosion of steel.

    PubMed

    Melchers, Robert E

    2014-06-01

    Longer term exposure of mild steel in natural (biotic) waters progresses as a bimodal function of time, both for corrosion mass loss and for pit depth. Recent test results, however, found this also for immersion in clean fresh, almost pure and triply distilled waters. This shows chlorides or microbiological activity is not essential for the electrochemical processes producing bimodal behaviour. It is proposed that the first mode is aerobic corrosion that eventually produces a non-homogeneous corroded surface and rust coverage sufficient to allow formation of anoxic niches. Within these, aggressive autocatalytic reduction then occurs under anoxic abiotic conditions, caused by sulfide species originating from the MnS inclusions typical in steels. This is consistent with Wranglen's model for abiotic anoxic crevice and pitting corrosion without external aggressive ions. In biotic conditions, metabolites from anaerobic bacterial activity within and near the anoxic niches provides additional (sulfide) species to contribute to the severity of corrosion. Limited observational evidence that supports this hypothesis is given but further investigation is required to determine all contributor(s) to the cathodic current for the electrochemical reaction. The results are important for estimating the contribution of microbiological corrosion in infrastructure applications. PMID:24067447

  20. Coupling microbial catabolic actions with abiotic redox processes: a new recipe for persistent organic pollutant (POP) removal.

    PubMed

    Jeon, Jong-Rok; Murugesan, Kumarasamy; Nam, In-Hyun; Chang, Yoon-Seok

    2013-01-01

    The continuous release of toxic persistent organic pollutants (POPs) into the environment has raised a need for effective cleanup methods. The tremendous natural diversity of microbial catabolic mechanisms suggests that catabolic routes may be applied to the remediation of POP-contaminated fields. A large number of the recalcitrant xenobiotics have been shown to be removable via the natural catabolic mechanisms of microbes, and detailed biochemical studies of the catabolic methods, together with the development of sophisticated genetic engineering, have led to the use of synthetic microbes for the bioremediation of POPs. However, the steric effects of substituted halogen moieties, microbe toxicity, and the low bioavailability of POPs still deteriorate the efficiency of removal strategies based on natural and synthetic catabolic mechanisms. Recently, abiotic redox processes that induce rapid reductive dehalogenation, hydroxyl radical-based oxidation, or electron shuttling have been reasonably coupled with microbial catabolic actions, thereby compensating for the drawbacks of biotic processes in POP removal. In this review, we first compare the pros and cons of individual methodologies (i.e., the natural and synthetic catabolism of microbes and the abiotic processes involving zero-valent irons, advanced oxidation processes, and small organic stimulants) for POP removal. We then highlight recent trends in coupling the biotic-abiotic methodologies and discuss how the processes are both feasible and superior to individual methodologies for POP cleanup. Cost-effective and environmentally sustainable abiotic redox actions could enhance the microbial bioremediation potential for POPs. PMID:23153459

  1. The interactive biotic and abiotic processes of DDT transformation under dissimilatory iron-reducing conditions.

    PubMed

    Jin, Xin; Wang, Fang; Gu, Chenggang; Yang, Xinglun; Kengara, Fredrick O; Bian, Yongrong; Song, Yang; Jiang, Xin

    2015-11-01

    The objective of the study was to elucidate the biotic and abiotic processes under dissimilatory iron reducing conditions involved in reductive dechlorination and iron reduction. DDT transformation was investigated in cultures of Shewanella putrefaciens 200 with/without α-FeOOH. A modified first-order kinetics model was developed and described DDT transformation well. Both the α-FeOOH reduction rate and the dechlorination rate of DDT were positively correlated to the biomass. Addition of α-FeOOH enhanced reductive dechlorination of DDT by favoring the cell survival and generating Fe(II) which was absorbed on the surface of bacteria and iron oxide. 92% of the absorbed Fe(II) was Na-acetate (1M) extractable. However, α-FeOOH also played a negative role of competing for electrons as reflected by the dechlorination rate of DDT was inhibited when increasing the α-FeOOH from 1 g L(-1) to 5 g L(-1). DDT was measured to be toxic to S. putrefaciens 200. The metabolites DDD, DDE and DDMU were recalcitrant to S. putrefaciens 200. The results suggested that iron oxide was not the key factor to promote the dissipation of DDX (DDT and the metabolites), whereas the one-electron reduction potential (E1) of certain organochlorines is the main factor and that the E1 higher than the threshold of the reductive driving forces of DIRB probably ensures the occur of reductive dechlorination. PMID:26025430

  2. Process for degrading hypochlorite and sodium hypochlorite

    DOEpatents

    Huxtable, William P.; Griffith, William L.; Compere, Alicia L.

    1990-01-01

    A process for degrading hypochlorite waste and lithium hypochlorite solutions uses a cobalt oxide/molybdenum oxide catalyst formed from about 1-10 w/w % cobalt oxide and 1-15 w/w % molybdenum oxide disposed on a suitable substrate. The major advantage of the catalyst lies in its high degree of effectiveness and its very low cost.

  3. Process for degrading hypochlorite and sodium hypochlorite

    SciTech Connect

    Huxtable, W.P.; Griffith, W.L.; Compere, A.L.

    1990-10-16

    A process for degrading hypochlorite waste and lithium hypochlorite solutions is described. It uses a cobalt oxide/molybdenum oxide catalyst formed from about 1-10 w/w cobalt oxide and 1-15 w/w % molybdenum oxide disposed on a suitable substrate. The major advantage of the catalyst lies in its high degree of effectiveness and its very low cost.

  4. Patterns of maximum body size evolution in Cenozoic land mammals: eco-evolutionary processes and abiotic forcing

    PubMed Central

    Saarinen, Juha J.; Boyer, Alison G.; Brown, James H.; Costa, Daniel P.; Ernest, S. K. Morgan; Evans, Alistair R.; Fortelius, Mikael; Gittleman, John L.; Hamilton, Marcus J.; Harding, Larisa E.; Lintulaakso, Kari; Lyons, S. Kathleen; Okie, Jordan G.; Sibly, Richard M.; Stephens, Patrick R.; Theodor, Jessica; Uhen, Mark D.; Smith, Felisa A.

    2014-01-01

    There is accumulating evidence that macroevolutionary patterns of mammal evolution during the Cenozoic follow similar trajectories on different continents. This would suggest that such patterns are strongly determined by global abiotic factors, such as climate, or by basic eco-evolutionary processes such as filling of niches by specialization. The similarity of pattern would be expected to extend to the history of individual clades. Here, we investigate the temporal distribution of maximum size observed within individual orders globally and on separate continents. While the maximum size of individual orders of large land mammals show differences and comprise several families, the times at which orders reach their maximum size over time show strong congruence, peaking in the Middle Eocene, the Oligocene and the Plio-Pleistocene. The Eocene peak occurs when global temperature and land mammal diversity are high and is best explained as a result of niche expansion rather than abiotic forcing. Since the Eocene, there is a significant correlation between maximum size frequency and global temperature proxy. The Oligocene peak is not statistically significant and may in part be due to sampling issues. The peak in the Plio-Pleistocene occurs when global temperature and land mammal diversity are low, it is statistically the most robust one and it is best explained by global cooling. We conclude that the macroevolutionary patterns observed are a result of the interplay between eco-evolutionary processes and abiotic forcing. PMID:24741007

  5. Carbon Isotopes of Alkanes in Hydrothermal Abiotic Organic Synthesis Processes at High Temperatures and Pressures: An Experimental Study

    NASA Technical Reports Server (NTRS)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.

    2010-01-01

    Observation of methane in the Martian atmosphere has been reported by different detection techniques [1-4]. With more evidence showing extensive water-rock interaction in Martian history [5-7], abiotic formation by Fischer-Tropsch Type (FTT) synthesis during serpentization reactions may be one possible process responsible for methane generation on Mars [8, 9]. While the experimental studies performed to date leave little doubt that chemical reactions exist for the abiotic synthesis of organic compounds by mineral surface-catalyzed reactions [10-12], little is known about the reaction pathways by which CO2 and/or CO are reduced under hydrothermal conditions. Carbon and hydrogen isotope measurements of alkanes have been used as an effective tool to constrain the origin and reaction pathways of hydrocarbon formation. Alkanes generated by thermal breakdown of high molecular weight organic compounds have carbon and hydrogen isotopic signatures completely distinct from those formed abiotically [13-15]. Recent experimental studies, however, showed that different abiogenic hydrocarbon formation processes (e.g., polymerization vs. depolymerization) may have different carbon and hydrogen isotopic patterns [16]. Results from previous experiments studying decomposition of higher molecular weight organic compounds (lignite) also suggested that pressure could be a crucial factor affecting fractionation of carbon isotopes [17]. Under high pressure conditions, no experimental data are available describing fractionation of carbon isotope during mineral catalyzed FTT synthesis. Thus, hydrothermal experiments present an excellent opportunity to provide the requisite carbon isotope data. Such data can also be used to identify reaction pathways of abiotic organic synthesis under experimental conditions.

  6. Developing standards for environmental toxicants: the need to consider abiotic environmental factors and microbe-mediated ecologic processes.

    PubMed Central

    Babich, H; Stotzky, G

    1983-01-01

    This article suggests and discusses two novel aspects for the formulation of standards for environmental toxicants. First, uniform national standards for each pollutant will be underprotective for some ecosystems and overprotective for others, inasmuch as the toxicity of a pollutant to the indigenous biota is dependent on the physicochemical properties of the recipient environment. As the number of chemicals that need regulation is immense and as microbes appear to respond similarly to pollutant-abiotic factor interactions as do plants and animals, it is suggested that microbial assays be used initially to identify those abiotic factors that most influence the toxicity of specific pollutants. Thereafter, additional studies using plants and animals can focus on these pollutant-abiotic factor interactions, and more meaningful standards can then be formulated more rapidly and inexpensively. Second, it is suggested that the response to pollutants of microbe-mediated ecologic processes be used to quantitate the sensitivity of different ecosystems to various toxicants. Such a quantification, expressed in terms of an "ecological dose 50%" (EcD50), could be easily incorporated into the methodologies currently used to set water quality criteria and would also be applicable to setting criteria for terrestrial ecosystems. PMID:6339225

  7. Concentration effects on biotic and abiotic processes in the removal of 1,1,2-trichloroethane and vinyl chloride using carbon-amended ZVI.

    PubMed

    Patterson, Bradley M; Lee, Matthew; Bastow, Trevor P; Wilson, John T; Donn, Michael J; Furness, Andrew; Goodwin, Bryan; Manefield, Mike

    2016-05-01

    A permeable reactive barrier, consisting of both zero valent iron (ZVI) and a biodegradable organic carbon, was evaluated for the remediation of 1,1,2-trichloroethane (1,1,2-TCA) contaminated groundwater. During an 888 day laboratory column study, degradation rates initially stabilized with a degradation half-life of 4.4±0.4 days. Based on the accumulation of vinyl chloride (VC) and limited production of 1,1-dichloroethene (1,1-DCE) and 1,2-dichloroethane (1,2-DCA), the dominant degradation pathway was likely abiotic dichloroelimination to form VC. Degradation of VC was not observed based on the accumulation of VC and limited ethene production. After a step reduction in the influent concentration of 1,1,2-TCA from 170±20 mg L(-1) to 39±11 mg L(-1), the degradation half-life decreased 5-fold to 0.83±0.17 days. The isotopic enrichment factor of 1,1,2-TCA also changed after the step reduction from -14.6±0.7‰ to -0.72±0.12‰, suggesting a possible change in the degradation mechanism from abiotic reductive degradation to biodegradation. Microbiological data suggested a co-culture of Desulfitobacterium and Dehalococcoides was responsible for the biodegradation of 1,1,2-TCA to ethene. PMID:26934432

  8. Concentration effects on biotic and abiotic processes in the removal of 1,1,2-trichloroethane and vinyl chloride using carbon-amended ZVI

    NASA Astrophysics Data System (ADS)

    Patterson, Bradley M.; Lee, Matthew; Bastow, Trevor P.; Wilson, John T.; Donn, Michael J.; Furness, Andrew; Goodwin, Bryan; Manefield, Mike

    2016-05-01

    A permeable reactive barrier, consisting of both zero valent iron (ZVI) and a biodegradable organic carbon, was evaluated for the remediation of 1,1,2-trichloroethane (1,1,2-TCA) contaminated groundwater. During an 888 day laboratory column study, degradation rates initially stabilized with a degradation half-life of 4.4 ± 0.4 days. Based on the accumulation of vinyl chloride (VC) and limited production of 1,1-dichloroethene (1,1-DCE) and 1,2-dichloroethane (1,2-DCA), the dominant degradation pathway was likely abiotic dichloroelimination to form VC. Degradation of VC was not observed based on the accumulation of VC and limited ethene production. After a step reduction in the influent concentration of 1,1,2-TCA from 170 ± 20 mg L- 1 to 39 ± 11 mg L- 1, the degradation half-life decreased 5-fold to 0.83 ± 0.17 days. The isotopic enrichment factor of 1,1,2-TCA also changed after the step reduction from - 14.6 ± 0.7‰ to - 0.72 ± 0.12‰, suggesting a possible change in the degradation mechanism from abiotic reductive degradation to biodegradation. Microbiological data suggested a co-culture of Desulfitobacterium and Dehalococcoides was responsible for the biodegradation of 1,1,2-TCA to ethene.

  9. The role of biotic and abiotic processes in determining equilibrium states and transient dynamics in tidal bio-geomorphic systems

    NASA Astrophysics Data System (ADS)

    da Lio, C.; D'Alpaos, A.; Marani, M.

    2010-12-01

    A point model of the joint evolution of tidal landforms and biota is described and applied to explore the equilibrium states and the transient behaviour of tidal bio-geomorphic systems under varying physical and biological forcings. The model incorporates the dynamics of intertidal vegetation, benthic microbial assemblages, erosional, depositional, and sediment exchange processes, and wind-wave dynamics. Alternative stable states and punctuated equilibria emerge, characterized by possible sudden transitions of the system state, governed by vegetation type, disturbances of the benthic biofilm, sediment availability and marine transgressions or regressions. Multiple stable states are suggested to result from the interplay of erosion, deposition and biostabilization, providing a simple explanation for the ubiquitous presence of the typical landforms observed in tidal environments worldwide. The explicit and dynamically-coupled description of biotic and abiotic processes thus emerges as a key requirement for realistic and predictive models of the evolution of a tidal system as a whole. The analysis of such coupled processes indicates that hysteretic switches between stable states arise because of differences in the threshold values of relative sea level rise inducing transitions from vegetated to unvegetated equilibria and viceversa, with implications for the preservation of tidal environments under a climate change. Finally, we explore the transient behaviour of the system forced by synthetic and observed sea-level rise forcings and identify the effects of the characteristic response time of vegetation to environmental changes on the overall system dynamics.

  10. Predicting parameters of degradation succession processes of Tibetan Kobresia grasslands

    NASA Astrophysics Data System (ADS)

    Lin, L.; Li, Y. K.; Xu, X. L.; Zhang, F. W.; Du, Y. G.; Liu, S. L.; Guo, X. W.; Cao, G. M.

    2015-08-01

    In the past two decades, increasing human activity (i.e., overgrazing) in the Tibetan Plateau has strongly influenced plant succession processes, resulting in the degradation of alpine grasslands. Therefore, it is necessary to diagnose the degree of degradation to enable implementation of appropriate management for sustainable exploitation and protection of alpine grasslands. Here, we investigated environmental factors and plant functional group quantity factors (PFGs) during the alpine grassland succession processes. Principal component analysis (PCA) was used to identify the parameters indicative of degradation. We divided the entire degradation process into six stages. PFG types shifted from rhizome bunch grasses to rhizome plexus and dense plexus grasses during the degradation process. Leguminosae and Gramineae plants were replaced by Sedges during the advanced stages of degradation. The PFGs were classified into two reaction groups: the grazing-sensitive group, containing Kobresia humilis Mey, and Gramineae and Leguminosae plants, and the grazing-insensitive group, containing Kobresia pygmaea Clarke. The first group was correlated with live root biomass in the surface soil (0-10 cm), whereas the second group was strongly correlated with mattic epipedon thickness and K. pygmaea characteristics. The degree of degradation of alpine meadows may be delineated by development of mattic epipedon and PFG composition. Thus, meadows could be easily graded and their use adjusted based on our scaling system, which would help prevent irreversible degradation of important grasslands. Because relatively few environmental factors are investigated, this approach can save time and labor to formulate a conservation management plan for degraded alpine meadows.

  11. Predicting parameters of degradation succession processes of Tibetan Kobresia grasslands

    NASA Astrophysics Data System (ADS)

    Lin, L.; Li, Y. K.; Xu, X. L.; Zhang, F. W.; Du, Y. G.; Liu, S. L.; Guo, X. W.; Cao, G. M.

    2015-11-01

    In the past two decades, increasing human activity (i.e., overgrazing) in the Tibetan Plateau has strongly influenced plant succession processes, resulting in the degradation of alpine grasslands. Therefore, it is necessary to diagnose the degree of degradation to enable implementation of appropriate management for sustainable exploitation and protection of alpine grasslands. Here, we investigated environmental factors and plant functional group (PFG) quantity factors during the alpine grassland succession processes. Principal component analysis (PCA) was used to identify the parameters indicative of degradation. We divided the entire degradation process into six stages. PFG types shifted from rhizome bunchgrasses to rhizome plexus and dense-plexus grasses during the degradation process. Leguminosae and Gramineae plants were replaced by sedges during the advanced stages of degradation. The PFGs were classified into two reaction groups: the grazing-sensitive group, containing Kobresia humilis Mey, and Gramineae and Leguminosae plants, and the grazing-insensitive group, containing Kobresia pygmaea Clarke. The first group was correlated with live root biomass in the surface soil (0-10 cm), whereas the second group was strongly correlated with mattic epipedon thickness and K. pygmaea characteristics. The degree of degradation of alpine meadows may be delineated by development of mattic epipedon and PFG composition. Thus, meadows could be easily graded and their use adjusted based on our scaling system, which would help prevent irreversible degradation of important grasslands. Because relatively few environmental factors are investigated, this approach can save time and labor to formulate a conservation management plan for degraded alpine meadows.

  12. Stable Isotopic Signatures in the Isolated Brine Cyroecosystem of Lake Vida Reveal Evidence of both Abiotic and Biotic Processes

    NASA Astrophysics Data System (ADS)

    Murray, A. E.; Ostrom, N. E.; Glazer, B. T.; McKay, C.; Kenig, F.; Loeffler, F. E.; Fritsen, C. H.; Doran, P. T.

    2011-12-01

    Lake Vida in the Victoria Valley of East Antarctica harbors ice-entrained brine that has been isolated from surface processes for several thousand years. The brine conditions (permanently dark, temperature of -13.4 °C, lack of oxygen, and pH of 6.2) and geochemistry are highly unusual. As an example, the brine contains excessive quantities of both reduced and oxidized nitrogen in nearly all forms, which in several cases are the highest levels found among natural ecosystems on Earth. Though this cryoecosystem appears to be relatively inhospitable, we have evidence that microbial life persists in abundance (cell levels over 107 cells per mL), is capable of protein production at in situ temperatures, and harbors a unique, but not necessarily novel, assemblage of bacterial phylotypes spanning at least eight phyla. In order to assess in situ microbial activities occurring today and in the past, and test hypotheses concerning energy generation in the brine cryoecosystem, the stable isotope signatures of nitrogen, oxygen, and hydrogen have been characterized in liquid and dissolved gas phases of the brine. The data provide evidence for both biotic and potentially abiotic formation of different fractions. The site preference of 15N-nitrous oxide (-3.64) suggests that the primary source of this dissolved gas, which is found at levels as high as 86 μM, is biologically produced by denitrification pathways. This appears to be consistent with detection of Marinobacter and Psychrobacter-related bacterial rRNA gene sequences and isolates in the brine microbial community. On the other hand, dissolved hydrogen present in the brine harbors an δH-H2 isotope signature suggesting that abiotic (potentially via serpentinization) or biotic production is equivocal based on the significant levels of fractionation observed. We postulate however, that a serpentinization production route is more favorable in this system that lies in a basin comprised of Ferrar dolerite sills and granite

  13. Occurrence of cyclophosphamide and ifosfamide in aqueous environment and their removal by biological and abiotic wastewater treatment processes.

    PubMed

    Česen, Marjeta; Kosjek, Tina; Laimou-Geraniou, Maria; Kompare, Boris; Širok, Brane; Lambropolou, Dimitra; Heath, Ester

    2015-09-15

    Cytostatic drug residues in the aqueous environment are of concern due to their possible adverse effects on non-target organisms. Here we report the occurrence and removal efficiency of cyclophosphamide (CP) and ifosfamide (IF) by biological and abiotic treatments including advanced oxidation processes (AOPs). Cyclophosphamide was detected in hospital wastewaters (14-22,000 ng L(-1)), wastewater treatment plant influents (19-27 ng L(-1)) and effluent (17 ng L(-1)), whereas IF was detected only in hospital wastewaters (48-6800 ng L(-1)). The highest removal efficiency during biological treatment (attached growth biomass in a flow through bioreactor) was 59 ± 15% and 35 ± 9.3% for CP and IF, respectively. Also reported are the removal efficiencies of both compounds from wastewater using hydrodynamic cavitation (HC), ozonation (O3) and/or UV, either individually or in combination with hydrogen peroxide (H2O2). Hydrodynamic cavitation did not remove CP and IF to any significant degree. The highest removal efficiencies: 99 ± 0.71% for CP and 94 ± 2.4% for IF, were achieved using UV/O3/H2O2 at 5 g L(-1) for 120 min. When combined with biological treatment, removal efficiencies were >99% for both compounds. This is the first report of combined biological and AOP treatment of CP and IF from wastewater with a removal efficiency >99%. PMID:25981944

  14. Abiotic process for Fe(II) oxidation and green rust mineralization driven by a heterotrophic nitrate reducing bacteria (Klebsiella mobilis).

    PubMed

    Etique, Marjorie; Jorand, Frédéric P A; Zegeye, Asfaw; Grégoire, Brian; Despas, Christelle; Ruby, Christian

    2014-04-01

    Green rusts (GRs) are mixed Fe(II)-Fe(III) hydroxides with a high reactivity toward organic and inorganic pollutants. GRs can be produced from ferric reducing or ferrous oxidizing bacterial activities. In this study, we investigated the capability of Klebsiella mobilis to produce iron minerals in the presence of nitrate and ferrous iron. This bacterium is well-known to reduce nitrate using an organic carbon source as electron donor but is unable to enzymatically oxidize Fe(II) species. During incubation, GR formation occurred as a secondary iron mineral precipitating on cell surfaces, resulting from Fe(II) oxidation by nitrite produced via bacterial respiration of nitrate. For the first time, we demonstrate GR formation by indirect microbial oxidation of Fe(II) (i.e., a combination of biotic/abiotic processes). These results therefore suggest that nitrate-reducing bacteria can potentially contribute to the formation of GR in natural environments. In addition, the chemical reduction of nitrite to ammonium by GR is observed, which gradually turns the GR into the end-product goethite. The nitrogen mass-balance clearly demonstrates that the total amount of ammonium produced corresponds to the quantity of bioreduced nitrate. These findings demonstrate how the activity of nitrate-reducing bacteria in ferrous environments may provide a direct link between the biogeochemical cycles of nitrogen and iron. PMID:24605878

  15. Abiotic origin of biopolymers

    NASA Technical Reports Server (NTRS)

    Oro, J.; Stephen-Sherwood, E.

    1976-01-01

    A variety of methods have been investigated in different laboratories for the polymerization of amino acids and nucleotides under abiotic conditions. They include (1) thermal polymerization; (2) direct polymerization of certain amino acid nitriles, amides, or esters; (3) polymerization using polyphosphate esters; (4) polymerization under aqueous or drying conditions at moderate temperatures using a variety of simple catalysts or condensing agents like cyanamide, dicyandiamide, or imidazole; and (5) polymerization under similar mild conditions but employing activated monomers or abiotically synthesized high-energy compounds such as adenosine 5'-triphosphate (ATP). The role and significance of these methods for the synthesis of oligopeptides and oligonucleotides under possible primitive-earth conditions is evaluated. It is concluded that the more recent approach involving chemical processes similar to those used by contemporary living organisms appears to offer a reasonable solution to the prebiotic synthesis of these biopolymers.

  16. A review of abiotic and biotic interactions in pelagic communities: Processes relevant to L Lake

    SciTech Connect

    Bowers, J.A.

    1988-01-01

    The purpose of this report is to provide a state-of-the-art review of structural and functional processes in pelagic communities and extrapolate these empirical and theoretical results to L Lake, the once-through cooling reservoir at the Savannah River Plant. Man-made reservoirs differ from natural lakes in their origins, hydrodynamics, sedimentation patterns, and general eutrophication histories. Phosphorus and nitrogen limitation of phytoplankton productivity controls the rate of eutrophication, while also determining algal community structure. Here the Lean and Monod models of nutrient fluxing and uptake kinetics provide useful constructs for predictive purposes. Much of the reduced carbon synthesized by primary production is shunted through the microbial loop where heterotrophic flagellates and protozoans pass this carbon on to the macrozooplankton. This recently discovered pathway is common to eutrophic reservoirs where blue-green species dominate phytoplankton assemblages. Through selective grazing and tactile oriented predation, the crustacean zooplankton partially regulates the relative abundance of algae and microzooplankton species. 194 refs., 10 figs.

  17. Microbial degradation of toluene under sulfate-reducing conditions and the influence of iron on the process.

    PubMed Central

    Beller, H R; Grbić-Galić, D; Reinhard, M

    1992-01-01

    Toluene degradation occurred concomitantly with sulfate reduction in anaerobic microcosms inoculated with contaminated subsurface soil from an aviation fuel storage facility near the Patuxent River (Md.). Similar results were obtained for enrichment cultures in which toluene was the sole carbon source. Several lines of evidence suggest that toluene degradation was directly coupled to sulfate reduction in Patuxent River microcosms and enrichment cultures: (i) the two processes were synchronous and highly correlated, (ii) the observed stoichiometric ratios of moles of sulfate consumed per mole of toluene consumed were consistent with the theoretical ratio for the oxidation of toluene to CO2 coupled with the reduction of sulfate to hydrogen sulfide, and (iii) toluene degradation ceased when sulfate was depleted, and conversely, sulfate reduction ceased when toluene was depleted. Mineralization of toluene was confirmed in experiments with [ring-U-14C]toluene. The addition of millimolar concentrations of amorphous Fe(OH)3 to Patuxent River microcosms and enrichment cultures either greatly facilitated the onset of toluene degradation or accelerated the rate once degradation had begun. In iron-amended microcosms and enrichment cultures, ferric iron reduction proceeded concurrently with toluene degradation and sulfate reduction. Stoichiometric data and other observations indicate that ferric iron reduction was not directly coupled to toluene oxidation but was a secondary, presumably abiotic, reaction between ferric iron and biogenic hydrogen sulfide. PMID:1575481

  18. Microbial degradation of toluene under sulfate-reducing conditions and the influence of iron on the process

    SciTech Connect

    Beller, H.R.; Grbic-Galic, D.; Reinhard, M.

    1992-01-01

    Toluene degradation occurred concomitantly with sulfate reduction in anaerobic microcosms inoculated with contaminated subsurface soil from an aviation fuel storage facility near the Patuxent River (Md.). Similar results were obtained from enrichment cultures in which toluene was the sole carbon source. Several lines of evidence suggest that toluene degradation was directly coupled to sulfate reduction in Patuxent River microcosms and enrichment cultures: (1) the two processes were synchronous and highly correlated, (2) the observed stoichiometric ratios of moles of sulfate consumed per mole of toluene consumed were consistent with the theoretical ratio for the oxidation of toluene to CO2 coupled with the reduction of sulfate to hydrogen sulfide, and (3) toluene degradation ceased when sulfate was depleted, and conversely, sulfate reduction ceased when toluene was depleted. Mineralization of toluene was confirmed in experiments with (ring-U-14C)toluene. The addition of millimolar concentrations of amorphous Fe(OH)3 to Patuxent River microcosms and enrichment cultures either greatly facilitated the onset of toluene degradation or accelerated the rate once degradation had begun. In iron-amended microcosms and enrichment cultures, ferric iron reduction proceeded concurrently with toluene degradation and sulfate reduction. Stoichiometric data and other observations indicate that ferric iron reduction was not directly coupled to toluene oxidation but was a secondary, presumably abiotic, reaction between ferric iron and biogenic hydrogen sulfide. (Copyright (c) 1992, American Society for Microbiology.)

  19. Degradation of corticosteroids during activated sludge processing.

    PubMed

    Miyamoto, Aoi; Kitaichi, Yuko; Uchikura, Kazuo

    2014-01-01

    Laboratory tests of the decomposition of corticosteroids during activated sludge processing were investigated. Corticosteroid standards were added to activated sludge, and aliquots were regularly taken for analysis. The corticosteroids were extracted from the samples using a solid-phase extraction method and analyzed LC-MS. Ten types of corticosteroids were measured and roughly classified into three groups: 1) prednisolone, triamcinolone, betamethasone, prednisolone acetate, and hydrocortisone acetate, which decomposed within 4 h; 2) flunisolide, betamethasone valerate, and budesonide of which more than 50% remained after 4 h, but almost all of which decomposed within 24 h; and 3) triamcinolone acetonide, and fluocinolone acetonide of which more than 50% remained after 24 h. The decomposed ratio was correlated with each corticosteroid's Log P, especially groups 2) and 3). PMID:24390495

  20. Degradation of ciprofloxacin in water by advanced oxidation process: kinetics study, influencing parameters and degradation pathways.

    PubMed

    Sayed, Murtaza; Ismail, M; Khan, Sanaullah; Tabassum, Safia; Khan, Hasan M

    2016-03-01

    Gamma-radiation-induced degradation of ciprofloxacin (CIP) in aqueous solution and the factors affecting the degradation process have been investigated. The results showed that CIP (4.6 mg/L) was almost completely degraded at an absorbed dose of 870 Gy. The kinetic studies of aqueous solutions containing 4.6, 10, 15 and 17.9 mg/L indicated that the decomposition of CIP by gamma irradiation followed pseudo-first-order kinetics and the decay constant (k) decreased from 5.9  ×  10(-3) to 1.6  ×  10(-3) Gy(-1) with an increase in CIP initial concentration from 4.6 to 17.9 mg/L. The effect of saturation of CIP solution with N2, N2O or air on radiation-induced degradation of CIP was also investigated. The effects of radical scavengers, such as t-BuOH and i-PrOH, showed the role of reactive radicals towards degradation of CIP in the order of [Formula: see text]. The apparent second-order rate constant of [Formula: see text] with CIP was calculated to be 2.64 × 10(9) M(-1) s(-1). The effects of solution pH as well as natural water contaminants, such as [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text], on CIP degradation by gamma-irradiation were also investigated. Major degradation products, including organic acids, were identified using UPLC-MS/MS and IC, and degradation pathways have been proposed. PMID:26208491

  1. Degradation Modeling of 2024 Aluminum Alloy During Corrosion Process

    NASA Astrophysics Data System (ADS)

    Pidaparti, Ramana M.; Aghazadeh, Babak Seyed

    2011-04-01

    Corrosion is one of the most damaging mechanisms in aluminum alloys used in aerospace engineering structures. In this article, the degradation behavior of AA 2024-T3 as a function of time under corrosive conditions is studied through experiments and modeling. Corrosion experiments were conducted on AA 2024-T3 specimens under controlled electrochemical conditions. The chemical element alloy map was investigated through EDS technique for evaluation purposes. Based on the experimental data, an analytical model is developed relating the material loss to the degradation during the corrosion process. The analytical model uses genetic algorithms (GAs) to map the relationship through optimization. The results obtained from GAs were compared with a standard non-linear regression model. The results obtained indicate that a quadratic relationship exists in time between the material loss due to corrosion and the degradation behavior of the alloy. Based on the good results obtained, the present approach of degradation modeling can be extended to other metals.

  2. Solvent degradation products in nuclear fuel processing solvents

    SciTech Connect

    Shook, H.E. Jr.

    1988-06-01

    The Savannah River Plant uses a modified Purex process to recover enriched uranium and separate fission products. This process uses 7.5% tri-n-butyl phosphate (TBP) dissolved in normal paraffin hydrocarbons for the solvent extraction of a nitric acid solution containing the materials to be separated. Periodic problems in product decontamination result from solvent degradation. A study to improve process efficiency has identified certain solvent degradation products and suggested mitigation measures. Undecanoic acid, lauric acid, and tridecanoic acid were tentatively identified as diluent degradation products in recycle solvent. These long-chain organic acids affect phase separation and lead to low decontamination factors. Solid phase extraction (SPE) was used to concentrate the organic acids in solvent prior to analysis by high performance liquid chromatography (HPLC). SPE and HPLC methods were optimized in this work for analysis of decanoic acid, undecanoic acid, and lauric acid in solvent. Accelerated solvent degradation studies with 7.5% TBP in normal paraffin hydrocarbons showed that long-chain organic acids and long-chain alkyl butyl phosphoric acids are formed by reactions with nitric acid. Degradation of both tributyl phosphate and hydrocarbon can be minimized with purified normal paraffin replacing the standard grade presently used. 12 refs., 1 fig., 3 tabs.

  3. The Arabidopsis Abiotic Stress-Induced TSPO-Related Protein Reduces Cell-Surface Expression of the Aquaporin PIP2;7 through Protein-Protein Interactions and Autophagic Degradation[C][W][OPEN

    PubMed Central

    Hachez, Charles; Veljanovski, Vasko; Reinhardt, Hagen; Guillaumot, Damien; Vanhee, Celine; Chaumont, François

    2014-01-01

    The Arabidopsis thaliana multi-stress regulator TSPO is transiently induced by abiotic stresses. The final destination of this polytopic membrane protein is the Golgi apparatus, where its accumulation is strictly regulated, and TSPO is downregulated through a selective autophagic pathway. TSPO-related proteins regulate the physiology of the cell by generating functional protein complexes. A split-ubiquitin screen for potential TSPO interacting partners uncovered a plasma membrane aquaporin, PIP2;7. Pull-down assays and fluorescence imaging approaches revealed that TSPO physically interacts with PIP2;7 at the endoplasmic reticulum and Golgi membranes in planta. Intriguingly, constitutive expression of fluorescently tagged PIP2;7 in TSPO-overexpressing transgenic lines resulted in patchy distribution of the fluorescence, reminiscent of the pattern of constitutively expressed yellow fluorescent protein-TSPO in Arabidopsis. Mutational stabilization of TSPO or pharmacological inhibition of the autophagic pathway affected concomitantly the detected levels of PIP2;7, suggesting that the complex containing both proteins is degraded through the autophagic pathway. Coexpression of TSPO and PIP2;7 resulted in decreased levels of PIP2;7 in the plasma membrane and abolished the membrane water permeability mediated by transgenic PIP2;7. Taken together, these data support a physiological role for TSPO in regulating the cell-surface expression of PIP2;7 during abiotic stress conditions through protein-protein interaction and demonstrate an aquaporin regulatory mechanism involving TSPO. PMID:25538184

  4. Adsorption and degradation processes of tributyltin and trimethyltin in landfill leachates treated with iron nanoparticles.

    PubMed

    Peeters, Kelly; Lespes, Gaëtane; Milačič, Radmila; Ščančar, Janez

    2015-10-01

    Biotic and abiotic degradation of toxic organotin compounds (OTCs) in landfill leachates is usually not complete. In this work adsorption and degradation processes of tributyltin (TBT) and trimethyltin (TMeT) in leachate sample treated with different iron nanoparticles (FeNPs): Fe(0) (nZVI), FeO and Fe3O4 were investigated to find conditions for their efficient removal. One sample aliquot was kept untreated (pH 8), while to the others (pH 8) FeNPs dispersed with tetramethyl ammonium hydroxide (TMAH) or by mixing were added and samples shaken under aerated conditions for 7 days. The same experiments were done in leachates in which the pH was adjusted to 3 with citric acid. Size distribution of TBT and TMeT between particles >5 µm, 0.45-5 µm, 2.5-0.45 µm, and <2.5 nm was determined by sequential filtration and their concentrations in a given fraction by gas chromatography coupled to inductively coupled plasma mass spectrometry (GC-ICP-MS). Results revealed that most of the TBT or TMeT was present in fractions with particles >2.5 or <2.5 nm, respectively. At pH 8 adsorption of TBT to FeNPs prevailed, while at pH 3, the Fenton reaction provoked degradation of TBT by hydroxyl radicals. TBT was the most effectively removed (96%) when sequential treatment of leachate with nZVI (dispersed by mixing) was applied first at pH 8, followed by nZVI treatment of the aqueous phase, previously acidified to pH 3 with citric acid. Such treatment less effectively removed TMeT (about 40%). It was proven that TMAH provoked methylation of tin, so mixing was recommended for dispersion of nZVI. PMID:26280471

  5. Iodinated contrast media electro-degradation: process performance and degradation pathways.

    PubMed

    Del Moro, Guido; Pastore, Carlo; Di Iaconi, Claudio; Mascolo, Giuseppe

    2015-02-15

    The electrochemical degradation of six of the most widely used iodinated contrast media was investigated. Batch experiments were performed under constant current conditions using two DSA® electrodes (titanium coated with a proprietary and patented mixed metal oxide solution of precious metals such as iridium, ruthenium, platinum, rhodium and tantalum). The degradation removal never fell below 85% (at a current density of 64 mA/cm(2) with a reaction time of 150 min) when perchlorate was used as the supporting electrolyte; however, when sulphate was used, the degradation performance was above 80% (at a current density of 64 mA/cm(2) with a reaction time of 150 min) for all of the compounds studied. Three main degradation pathways were identified, namely, the reductive de-iodination of the aromatic ring, the reduction of alkyl aromatic amides to simple amides and the de-acylation of N-aromatic amides to produce aromatic amines. However, as amidotrizoate is an aromatic carboxylate, this is added via the decarboxylation reaction. The investigation did not reveal toxicity except for the lower current density used, which has shown a modest toxicity, most likely for some reaction intermediates that are not further degraded. In order to obtain total removal of the contrast media, it was necessary to employ a current intensity between 118 and 182 mA/cm(2) with energy consumption higher than 370 kWh/m(3). Overall, the electrochemical degradation was revealed to be a reliable process for the treatment of iodinated contrast media that can be found in contaminated waters such as hospital wastewater or pharmaceutical waste-contaminated streams. PMID:25433384

  6. Water and processes of degradation in the Martian landscape

    NASA Technical Reports Server (NTRS)

    Milton, D. J.

    1973-01-01

    It is shown that erosion has been active on Mars so that many of the surface landforms are products of degradation. Unlike earth, erosion has not been a universal process, but one areally restricted and intermittently active so that a landscape is the product of one or two cycles of erosion and large areas of essentially undisturbed primitive terrain; running water has been the principal agent of degradation. Many features on Mars are most easily explained by assuming running surface water at some time in the past; for a few features, running water is the only possible explanation.

  7. Fate of products of degradation processes: consequences for climatic change.

    PubMed

    Slanina, J; ten Brink, H M; Khlystov, A

    1999-03-01

    The end products of atmospheric degradation are not only CO2 and H2O but also sulfate and nitrate depending on the chemical composition of the substances which are subject to degradation processes. Atmospheric degradation has thus a direct influence on the radiative balance of the earth not only due to formation of greenhouse gases but also of aerosols. Aerosols of a diameter of 0.1 to 2 micrometer, reflect short wave sunlight very efficiently leading to a radiative forcing which is estimated to be about -0.8 watt per m2 by IPCC. Aerosols also influence the radiative balance by way of cloud formation. If more aerosols are present, clouds are formed with more and smaller droplets and these clouds have a higher albedo and are more stable compared to clouds with larger droplets. Not only sulfate, but also nitrate and polar organic compounds, formed as intermediates in degradation processes, contribute to this direct and indirect aerosol effect. Estimates for the Netherlands indicate a direct effect of -4 watt m-2 and an indirect effect of as large as -5 watt m-2. About one third is caused by sulfates, one third by nitrates and last third by polar organic compounds. This large radiative forcing is obviously non-uniform and depends on local conditions. PMID:10070730

  8. Does Signal Degradation Affect Top-Down Processing of Speech?

    PubMed

    Wagner, Anita; Pals, Carina; de Blecourt, Charlotte M; Sarampalis, Anastasios; Başkent, Deniz

    2016-01-01

    Speech perception is formed based on both the acoustic signal and listeners' knowledge of the world and semantic context. Access to semantic information can facilitate interpretation of degraded speech, such as speech in background noise or the speech signal transmitted via cochlear implants (CIs). This paper focuses on the latter, and investigates the time course of understanding words, and how sentential context reduces listeners' dependency on the acoustic signal for natural and degraded speech via an acoustic CI simulation.In an eye-tracking experiment we combined recordings of listeners' gaze fixations with pupillometry, to capture effects of semantic information on both the time course and effort of speech processing. Normal-hearing listeners were presented with sentences with or without a semantically constraining verb (e.g., crawl) preceding the target (baby), and their ocular responses were recorded to four pictures, including the target, a phonological (bay) competitor and a semantic (worm) and an unrelated distractor.The results show that in natural speech, listeners' gazes reflect their uptake of acoustic information, and integration of preceding semantic context. Degradation of the signal leads to a later disambiguation of phonologically similar words, and to a delay in integration of semantic information. Complementary to this, the pupil dilation data show that early semantic integration reduces the effort in disambiguating phonologically similar words. Processing degraded speech comes with increased effort due to the impoverished nature of the signal. Delayed integration of semantic information further constrains listeners' ability to compensate for inaudible signals. PMID:27080670

  9. Using Geo-informational System for determining land degradation processes

    NASA Astrophysics Data System (ADS)

    Mangul, I.; Mangul, S.

    The largest part of agricultural lands of the Republic of Moldova is concentrated in the arid zone Frequent droughts once in 2-4 years inflict vital causalities to agriculture of the Republic of Moldova However droughts influence doesn t only limit itself to forming production Drought after-effect is highly ruinous for water reserves industrial enterprises functioning rhythm and human health Droughts make for the drying up and crumbling of soil which is subject to excessive human influence and result in land degradation desertification Term desertification means land degradation in the droughty zones It is necessary to mention that the droughty ecosystems are extremely fragile and sensitive overexploitation Nowadays in the Republic of Moldova 33-37 of agricultural lands is eroded Republic of Moldova joined the United Nations Convention to Combat Desertification on December 24 1998 The Government of the Republic of Moldova ratified the National Action Plan to Combat Desertification in 2000 Within the framework of executing the National Action Plan by National Committee to Combat Desertification Geo-informational System on arid questions was organized In addition a lot of indexes corresponding to international standards were used for the evaluation of drought of the territory and land degradation processes Mostly this information is presented in maps erosion landslides aridity water resources A rich experience of using satellite information for determining land degradation demonstrates high effectiveness of this method Satellite

  10. Reactive Transport Modeling of Chemical and Isotope Data to Identify Degradation Processes of Chlorinated Ethenes in a Diffusion-Dominated Media

    NASA Astrophysics Data System (ADS)

    Chambon, J. C.; Damgaard, I.; Jeannottat, S.; Hunkeler, D.; Broholm, M. M.; Binning, P. J.; Bjerg, P. L.

    2012-12-01

    Chlorinated ethenes are among the most widespread contaminants in the subsurface and a major threat to groundwater quality at numerous contaminated sites. Many of these contaminated sites are found in low-permeability media, such as clay tills, where contaminant transport is controlled by diffusion. Degradation and transport processes of chlorinated ethenes are not well understood in such geological settings, therefore risk assessment and remediation at these sites are particularly challenging. In this work, a combined approach of chemical and isotope analysis on core samples, and reactive transport modeling has been used to identify the degradation processes occurring at the core scale. The field data was from a site located at Vadsby, Denmark, where chlorinated solvents were spilled during the 1960-70's, resulting in contamination of the clay till and the underlying sandy layer (15 meters below surface). The clay till is heavily contaminated between 4 and 15 mbs, both with the mother compounds PCE/TCE and TCA and the daughter products (DCE, VC, ethene, DCA), indicating the occurrence of natural dechlorination of both PCE/TCE and TCA. Intact core samples of length 0.5m were collected from the source zone (between 6 and 12 mbs). Concentrations and stable isotope ratios of the mother compounds and their daughter products, as well as redox parameters, fatty acids and microbial data, were analyzed with discrete sub-sampling along the cores. More samples (each 5 mm) were collected around the observed higher permeability zones such as sand lenses, sand stringers and fractures, where a higher degradation activity was expected. This study made use of a reactive transport model to investigate the appropriateness of several conceptual models. The conceptual models considered the location of dechlorination and degradation pathways (biotic reductive dechlorination or abiotic β-elimination with iron minerals) in three core profiles. The model includes diffusion in the matrix

  11. Restoration of degraded agricultural terraces: rebuilding landscape structure and process.

    PubMed

    LaFevor, M C

    2014-06-01

    The restoration of severely degraded cropland to productive agricultural capacity increases food supply, improves soil and water conservation, and enhances environmental and ecological services. This article examines the key roles that long-term maintenance plays in the processes of repairing degraded agricultural land. Field measurements from Tlaxcala, Mexico stress that restoring agricultural structures (the arrangements of landforms and vegetation) is alone insufficient. Instead, an effective monitoring and maintenance regime of agricultural structures is also crucial if the efforts are to be successful. Consequently, methods of wildland restoration and agricultural restoration may differ in the degree to which the latter must plan for and facilitate a sustained human involvement. An improved understanding of these distinctions is critical for environmental management as restoration programs that employ the technologies of intensive agriculture continue to grow in number and scope. PMID:24355068

  12. Ultraviolet Radiation Accelerates Litter Decomposition Mainly By Increasing Its Biodegradability but Not Abiotic Photomineralization

    NASA Astrophysics Data System (ADS)

    Liu, L.; Wang, J.; Wang, X.; Chen, Y.

    2014-12-01

    Elevated ultraviolet (UV) radiation has been shown to stimulate litter decomposition. Despite years of research, it is still not fully understood that whether the fast litter degradation is mostly attributed to abiotic photo-mineralization or the combined abiotic and biotic degradation. Here we used meta-analysis to synthesize photodegradation studies and compared the effects of UV radiation on litter mass decomposition and chemistry with and without inhibiting microbial activities. We also conducted a microcosm experiment to separate UV's impacts on abiotic and biotic process during decomposition. Overall, our meta-analysis found that, under abiotic condition, UV radiation reduced litter carbon (C) content by 1% and increased dissolved organic carbon (DOC) concentration by 16%, but had no significant impacts on litter mass remaining. Under the combined abiotic and biotic biodegradation, UV radiation reduced litter lignin content by 14% and mass remaining by 3%. In addition, high UV radiation reduced N immobilization by 19%. Results of our microcosm experiment further found that the amount of respired C induced by UV treated litter increased with UV exposure length, which suggested that longer UV exposure duration leads to greater biodegradability. The microcosm study also found that elevated UV did not alter microbial biomass carbon (MBC) or microbe's ability to degrade organic matter. Overall, our meta-analysis and microcosm study suggested that although UV radiation significantly increase C loss by photo-mineralization, abiotic photo-mineralization was not great enough to induce significantly change in litter mass balance. However, with the presence of microbial activities, UV greatly facilitated litter decomposition. Such facilitating effect could be due to that elevated UV radiation increases lignin's accessibility to microbes, and also increases labile carbon supply to microbes. Our results also highlighted that UV radiation could have significant impacts on

  13. Meadow degradation, hydrological processes and rangeland management in Tibet

    NASA Astrophysics Data System (ADS)

    He, Siyuan; Richards, Keith

    2013-04-01

    Alpine meadow dominated by species of Kobresia is widely distributed in the Tibetan Plateau. Kobresia pygmaea is often a main species and the meadow has evolved as a result of long-term trampling, being a main rangeland resource for livestock grazing. This alpine meadow also plays an important role in regulating the water and energy balance through land-atmosphere interaction, leaving an impact on local hydrological processes and beyond. Therefore, alpine meadow degradation is detrimental to both the health of the ecosystems, and to pastoralism. This research therefore studies the hydrological process with regard to degradation of Kobresia pygmaea meadow, tracing the possible causes, detecting the impacts on soil and biological properties, and further considering the herders' role in future rangeland management. The study area is around the Kema village of the Nagqu Prefecture in Northern Tibet, where human population depends on livestock grazing for livelihood. Main driving factors of alpine meadow degradation are climatic variations and human disturbance. The periodical change in local climate may be related to quasi-oscillatory atmospheric circulations in this monsoon dominated area and the climatic trends with extreme weather conditions can make the whole system hard to recover. Along with climatic variations, overgrazing is predominant with an exceeding of the carrying capacity by almost every household in this village. This is related to the change of rangeland management by the policies of privatisation of pasture and sedentarisation. The acceleration of degradation since the 1980s results in a series of distinct soil-vegetation combination classified in this research as the normal meadow, compact crust and bare soil. The species composition, soil physical and chemical properties and the vertical water movement along the soil-plant-atmosphere continuum are significantly different at the sites representing stages of degradation, revealed by multiple methods

  14. Mechanisms of folate losses during processing: diffusion vs. heat degradation.

    PubMed

    Delchier, Nicolas; Ringling, Christiane; Maingonnat, Jean-François; Rychlik, Michael; Renard, Catherine M G C

    2014-08-15

    Though folates are sensitive to heat treatments, leaching appears to be a major mechanism involved in folate losses in vegetables during processing. The aim of our study was to study folate diffusivity and degradation from spinach and green beans, in order to determine the proportion of each mechanism involved in folate losses. Folate diffusivity constant, calculated according to Fick's second law (Crank, 1975), was 7.4×10(-12) m(2)/s for spinach and 5.8×10(-10) m(2)/s for green beans, which is the same order of magnitude as for sugars and acids for each vegetable considered. Folate thermal degradation kinetics was not monotonous in spinach and green beans especially at 45 °C and did not follow a first order reaction. The proportion of vitamers changed markedly after thermal treatment, with a better retention of formyl derivatives. For spinach, folate losses were mainly due to diffusion while for green beans thermal degradation seemed to be preponderant. PMID:24679802

  15. Groundwater: the processes and global significance of aquifer degradation.

    PubMed

    Foster, S S D; Chilton, P J

    2003-12-29

    The exploitation of groundwater resources for human use dates from the earliest civilizations, but massive resource development has been largely restricted to the past 50 years. Although global in scope, the emphasis of this paper is on groundwater-based economies in a developing nation context, where accelerated resource development has brought major social and economic benefits over the past 20 years. This results from groundwater's significant role in urban water supply and in rural livelihoods, including irrigated agriculture. However, little of the economic benefit of resource development has been reinvested in groundwater management, and concerns about aquifer degradation and resource sustainability began to arise. A general review, for a broad-based audience, is given of the mechanisms and significance of three semi-independent facets of aquifer degradation. These are (i) depletion of aquifer storage and its effects on groundwater availability, terrestrial and aquatic ecosystems; (ii) groundwater salinization arising from various different processes of induced hydraulic disturbance and soil fractionation; and (iii) vulnerability of aquifers to pollution from land-use and effluent discharge practices related to both urban development and agricultural intensification. Globally, data with which to assess the status of aquifer degradation are of questionable reliability, inadequate coverage and poor compilation. Recourse has to be made to 'type examples' and assumptions about the extension of similar hydrogeological settings likely to be experiencing similar conditions of groundwater demand and subsurface contaminant load. It is concluded that (i) aquifer degradation is much more than a localized problem because the sustainability of the resource base for much of the rapid socio-economic development of the second half of the twentieth century is threatened on quite a widespread geographical basis; and (ii) major (and long overdue) investments in groundwater

  16. Groundwater: the processes and global significance of aquifer degradation.

    PubMed Central

    Foster, S S D; Chilton, P J

    2003-01-01

    The exploitation of groundwater resources for human use dates from the earliest civilizations, but massive resource development has been largely restricted to the past 50 years. Although global in scope, the emphasis of this paper is on groundwater-based economies in a developing nation context, where accelerated resource development has brought major social and economic benefits over the past 20 years. This results from groundwater's significant role in urban water supply and in rural livelihoods, including irrigated agriculture. However, little of the economic benefit of resource development has been reinvested in groundwater management, and concerns about aquifer degradation and resource sustainability began to arise. A general review, for a broad-based audience, is given of the mechanisms and significance of three semi-independent facets of aquifer degradation. These are (i) depletion of aquifer storage and its effects on groundwater availability, terrestrial and aquatic ecosystems; (ii) groundwater salinization arising from various different processes of induced hydraulic disturbance and soil fractionation; and (iii) vulnerability of aquifers to pollution from land-use and effluent discharge practices related to both urban development and agricultural intensification. Globally, data with which to assess the status of aquifer degradation are of questionable reliability, inadequate coverage and poor compilation. Recourse has to be made to 'type examples' and assumptions about the extension of similar hydrogeological settings likely to be experiencing similar conditions of groundwater demand and subsurface contaminant load. It is concluded that (i) aquifer degradation is much more than a localized problem because the sustainability of the resource base for much of the rapid socio-economic development of the second half of the twentieth century is threatened on quite a widespread geographical basis; and (ii) major (and long overdue) investments in groundwater

  17. Formation and Degradation of Beta-casomorphins in Dairy Processing

    PubMed Central

    Nguyen, Duc Doan; Johnson, Stuart Keith; Busetti, Francesco; Solah, Vicky Ann

    2015-01-01

    Milk proteins including casein are sources of peptides with bioactivity. One of these peptides is beta-casomorphin (BCM) which belongs to a group of opioid peptides formed from β-casein variants. Beta-casomorphin 7 (BCM7) has been demonstrated to be enzymatically released from the A1 or B β-casein variant. Epidemiological evidence suggests the peptide BCM 7 is a risk factor for development of human diseases, including increased risk of type 1 diabetes and cardiovascular diseases but this has not been thoroughly substantiated by research studies. High performance liquid chromatography coupled to UV-Vis and mass spectrometry detection as well as enzyme–linked immunosorbent assay (ELISA) has been used to analyze BCMs in dairy products. BCMs have been detected in raw cow's milk and human milk and a variety of commercial cheeses, but their presence has yet to be confirmed in commercial yoghurts. The finding that BCMs are present in cheese suggests they could also form in yoghurt, but be degraded during yoghurt processing. Whether BCMs do form in yoghurt and the amount of BCM forming or degrading at different processing steps needs further investigation and possibly will depend on the heat treatment and fermentation process used, but it remains an intriguing unknown. PMID:25077377

  18. Aerobic bacterial catabolism of persistent organic pollutants - potential impact of biotic and abiotic interaction.

    PubMed

    Jeon, Jong-Rok; Murugesan, Kumarasamy; Baldrian, Petr; Schmidt, Stefan; Chang, Yoon-Seok

    2016-04-01

    Several aerobic bacteria possess unique catabolic pathways enabling them to degrade persistent organic pollutants (POPs), including polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), polybrominated diphenylethers (PBDEs), and polychlorinated biphenyls (PCBs). The catabolic activity of aerobic bacteria employed for removal of POPs in the environment may be modulated by several biotic (i.e. fungi, plants, algae, earthworms, and other bacteria) and abiotic (i.e. zero-valent iron, advanced oxidation, and electricity) agents. This review describes the basic biochemistry of the aerobic bacterial catabolism of selected POPs and discusses how biotic and abiotic agents enhance or inhibit the process. Solutions allowing biotic and abiotic agents to exert physical and chemical assistance to aerobic bacterial catabolism of POPs are also discussed. PMID:26851837

  19. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    SciTech Connect

    E.L. Hardin

    2000-07-17

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II).

  20. Degradation of enoxacin antibiotic by the electro-Fenton process: Optimization, biodegradability improvement and degradation mechanism.

    PubMed

    Annabi, Cyrine; Fourcade, Florence; Soutrel, Isabelle; Geneste, Florence; Floner, Didier; Bellakhal, Nizar; Amrane, Abdeltif

    2016-01-01

    This study aims to investigate the effectiveness of the electro-Fenton process on the removal of a second generation of fluoroquinolone, enoxacin. The electrochemical reactor involved a carbon-felt cathode and a platinum anode. The influence of some experimental parameters, namely the initial enoxacin concentration, the applied current intensity and the Fe(II) amount, was examined. The degradation of the target molecule was accompanied by an increase of the biodegradability, assessed from the BOD5 on COD ratio, which increased from 0 before treatment until 0.5 after 180 min of electrolysis at 50 mg L(-1) initial enoxacin concentration, 0.2 mmol L(-1) Fe(II) concentration and 300 mA applied current intensity. TOC and COD time-courses were also evaluated during electrolysis and reached maximum residual yields of 54% and 43% after 120 min of treatment, respectively. Moreover, a simultaneous generation of inorganic ions (fluorides, ammonium and nitrates) were observed and 3 short chain carboxylic acids (formic, acetic and oxalic acids) were identified and monitored during 180 min of electrolysis. By-products were identified according to UPLC-MS/MS results and a degradation pathway was proposed. PMID:26413803

  1. Degradation of ethylenethiourea pesticide metabolite from water by photocatalytic processes.

    PubMed

    Bottrel, Sue Ellen C; Amorim, Camila C; Leão, Mônica M D; Costa, Elizângela P; Lacerda, Igor A

    2014-01-01

    In this study, photocatalytic (photo-Fenton and H2O2/UV) and dark Fenton processes were used to remove ethylenethiourea (ETU) from water. The experiments were conducted in a photo-reactor with an 80 W mercury vapor lamp. The mineralization of ETU was determined by total organic carbon analysis, and ETU degradation was qualitatively monitored by the reduction of UV absorbance at 232 nm. A higher mineralization efficiency was obtained by using the photo-peroxidation process (UV/H2O2). Approximately 77% of ETU was mineralized within 120 min of the reaction using [H2O2]0 = 400 mg L(-1). The photo-Fenton process mineralized 70% of the ETU with [H2O2]0 = 800 mg L(-1) and [Fe(2+)] = 400 mg L(-1), and there is evidence that hydrogen peroxide was the limiting reagent in the reaction because it was rapidly consumed. Moreover, increasing the concentration of H2O2 from 800 mg L(-1) to 1200 mg L(-1) did not enhance the degradation of ETU. Kinetics studies revealed that the pseudo-second-order model best fit the experimental conditions. The k values for the UV/H2O2 and photo-Fenton processes were determined to be 6.2 × 10(-4) mg L(-1) min(-1) and 7.7 × 10(-4) mg L(-1) min(-1), respectively. The mineralization of ETU in the absence of hydrogen peroxide has led to the conclusion that ETU transformation products are susceptible to photolysis by UV light. These are promising results for further research. The processes that were investigated can be used to remove pesticide metabolites from drinking water sources and wastewater in developing countries. PMID:24502213

  2. Degradation of morphine in opium poppy processing waste composting.

    PubMed

    Wang, Yin Quan; Zhang, Jin Lin; Schuchardt, Frank; Wang, Yan

    2014-09-01

    To investigate morphine degradation and optimize turning frequency in opium poppy processing waste composting, a pilot scale windrow composting trial was run for 55 days. Four treatments were designed as without turning (A1), every 5 days turning (A2), every 10 days turning (A3) and every 15 days turning (A4). During composting, a range of physicochemical parameters including the residual morphine degradation, temperature, pH, and the contents of total C, total N, total P and total K were investigated. For all treatments, the residual morphine content decreased below the detection limit and reached the safety standards after day 30 of composting, the longest duration of high temperature (⩾50 °C) was observed in A3, pH increased 16.9-17.54%, total carbon content decreased 15.5-22.5%, C/N ratio reduced from 46 to 26, and the content of total phosphorus and total potassium increased slightly. The final compost obtained by a mixture of all four piles was up to 55.3% of organic matter, 3.3% of total nutrient (N, P2O5 and K2O) and 7.6 of pH. A turning frequency of every ten days for a windrow composting of opium poppy processing waste is recommended to produce homogenous compost. PMID:24613672

  3. Protonation-dissociation reactions of imazamethabenz-methyl and imazamethabenz-Acid in relation to their soil sorption and abiotic degradation.

    PubMed

    Pintado, Sara; Montoya, Mercedes Ruiz; Mellado, José Miguel Rodríguez

    2009-12-01

    This paper present ultraviolet-visible absorption spectra of imazamethabenz-methyl (IMBM) (mixture of the isomers methyl 6-[(RS)-4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl]-m-toluate, m-imazamethabenz, and methyl 2-[(RS)-4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl]-p-toluate, p-imazamethabenz) and the corresponding carboxylic acid, imazamethabenz-acid (IMBA). The spectral characteristics are determined as functions of the pH. The appreciable absorbance in the visible (or near-ultraviolet) region of the spectra indicates that the natural photolytic degradation is possible. From variations of the maximum absorbances of the bands, the pK values of 3.4 +/- 0.2 and 9.4 +/- 0.2 were obtained for protonation of the imidazol (=N-) nitrogen and dissociation of the NH imidazol nitrogen of IMBM, respectively. For IMBA, the dissociation pK of the carboxylic group is very close to that of the imidazol (=N-) nitrogen, both being close to 3.3. The dissociation pK of the NH imidazol nitrogen for IMBA is 9.6 +/- 0.2. The role of the acid-base reactions on the sorption on soils of these herbicides is discussed. PMID:19904942

  4. Temperature controls on sediment production in the Oregon Coast Range - abiotic frost-cracking processes vs. biotic-dominated processes over the last 40 ka

    NASA Astrophysics Data System (ADS)

    Marshall, J. A.; Roering, J. J.; Praskievicz, S. J.; Hales, T. C.; Gavin, D. G.; Bartlein, P. J.

    2012-12-01

    The Oregon Coast Range (OCR) is a mid-latitude soil-mantled landscape wherein measured uplift rates are broadly consistent with long-term measured erosion rates. The OCR was unglaciated during the last glacial period (~ 26 to 13 ka) and therefore is considered an ideal steady-state landscape to study and model geomorphic processes. However, previously published paleoclimate data inferred from a 42 ka paleolake fossil archive in the OCR Little Lake watershed (3 km2) strongly suggest that temperatures in the OCR during the last glacial were well within the frost cracking temperature window of -3 to -8 °C. Therefore, we suggest that while present-day OCR sediment production is dominated by biota, specifically trees, frost-driven abiotic processes may have played a significant role in modulating erosion rates and landscape evolution during the last glacial interval. A new sediment core from the Little Lake basin at the lake's edge, centered proximal to hillslopes, spans ~ 50 ka to 20 ka. We observe a fourfold increase in sediment accumulation rates from the non-glacial interval (~50 ka to ~ 26 ka) to the last glacial interval (~ 26 ka to ~ 20 ka), including > 12 m of sediment from the last glacial maximum, dated at 23,062 - 23,581 cal yr B.P. The decreased inferred temperatures and increased sedimentation rates suggest increased sediment production and transport via frost processes during the last glacial interval, in contrast to sediment production and erosion rates controlled by biotic processes in the non-glacial intervals. We present a climate-time series scenario of likely frost-cracking intensity across the entire Oregon Coast Range from the non-glacial interval (at least 3 °C cooler than present-day temperatures) through the glacial interval (7 to 14 °C cooler) and into the Holocene (January temperatures ~ 5 °C). We use the PRISM dataset, which consists of monthly temperature and precipitation for the contiguous United States, to calculate local monthly

  5. Degradation of atrazine in soil through induced photocatalytic processes

    SciTech Connect

    Pelizzetti, E. ); Carlin, V.; Maurino, V.; Minero, C.; Dolci, M. ); Marchesini, A. )

    1990-08-01

    The authors observed photocatalytic degradation of atrazine in the presence of semiconductor metal oxide particulates (TiO{sub 2}, ZnO) suspended in aqueous solution under simulated sunlight irradiation. The half-life for the process is ca. 5 and 80 min for TiO{sub 2} and ZnO, respectively (at an initial atrazine concentration of 25 mg/liter with 0.5 g of semiconductor per liter and with a photon flux of 3 {times} 10{sup {minus}5} einstein/min, and over a cell cross section of 4 cm{sup 2}). The authors investigated the catalytic activity of different soils. The weak photocatalytic activity of the soils (2 g/liter) is dramatically increased by the addition of 0.5 g of the semiconductor per liter. Half-lives are 10 to 40 minutes, depending on the nature of the soil.

  6. Improvement in the degradation resistance of LDPE for radiochemical processing

    NASA Astrophysics Data System (ADS)

    Zaharescu, Traian; Pleşa, Ilona; Jipa, Silviu

    2014-01-01

    The effect of rosemary extract on radiochemical stability of low density polyethylene was studied by chemiluminescence, FT-IR spectroscopy and differential scanning calorimetry after γ(137Cs)-irradiation at processing low doses (10 and 20 kGy) in respect of pristine material. The additive concentrations (1, 2 and 5 wt%) induced a significant improvement in radiation stability, especially at high temperatures, for example 200 °C, which is proved chiefly by lower values of chemiluminescence intensities. The comparison of neat and rosemary-modified LDPE samples has revealed the protection action of this natural extract, which delays efficiently the propagation of oxidative degradation in γ-exposed polyethylene. The most evident proof for antioxidative protection efficiency promoted by rosemary is the smooth changes in hydroxyl and carbonyl indexes calculated on LDPE/5 wt% rosemary samples at all exposure doses.

  7. Processive Endoglucanases Mediate Degradation of Cellulose by Saccharophagus degradans▿ †

    PubMed Central

    Watson, Brian J.; Zhang, Haitao; Longmire, Atkinson G.; Moon, Young Hwan; Hutcheson, Steven W.

    2009-01-01

    Bacteria and fungi are thought to degrade cellulose through the activity of either a complexed or a noncomplexed cellulolytic system composed of endoglucanases and cellobiohydrolases. The marine bacterium Saccharophagus degradans 2-40 produces a multicomponent cellulolytic system that is unusual in its abundance of GH5-containing endoglucanases. Secreted enzymes of this bacterium release high levels of cellobiose from cellulosic materials. Through cloning and purification, the predicted biochemical activities of the one annotated cellobiohydrolase Cel6A and the GH5-containing endoglucanases were evaluated. Cel6A was shown to be a classic endoglucanase, but Cel5H showed significantly higher activity on several types of cellulose, was the highest expressed, and processively released cellobiose from cellulosic substrates. Cel5G, Cel5H, and Cel5J were found to be members of a separate phylogenetic clade and were all shown to be processive. The processive endoglucanases are functionally equivalent to the endoglucanases and cellobiohydrolases required for other cellulolytic systems, thus providing a cellobiohydrolase-independent mechanism for this bacterium to convert cellulose to glucose. PMID:19617364

  8. Queueing up for enzymatic processing: correlated signaling through coupled degradation.

    PubMed

    Cookson, Natalie A; Mather, William H; Danino, Tal; Mondragón-Palomino, Octavio; Williams, Ruth J; Tsimring, Lev S; Hasty, Jeff

    2011-01-01

    High-throughput technologies have led to the generation of complex wiring diagrams as a post-sequencing paradigm for depicting the interactions between vast and diverse cellular species. While these diagrams are useful for analyzing biological systems on a large scale, a detailed understanding of the molecular mechanisms that underlie the observed network connections is critical for the further development of systems and synthetic biology. Here, we use queueing theory to investigate how 'waiting lines' can lead to correlations between protein 'customers' that are coupled solely through a downstream set of enzymatic 'servers'. Using the E. coli ClpXP degradation machine as a model processing system, we observe significant cross-talk between two networks that are indirectly coupled through a common set of processors. We further illustrate the implications of enzymatic queueing using a synthetic biology application, in which two independent synthetic networks demonstrate synchronized behavior when common ClpXP machinery is overburdened. Our results demonstrate that such post-translational processes can lead to dynamic connections in cellular networks and may provide a mechanistic understanding of existing but currently inexplicable links. PMID:22186735

  9. Quantitating protein synthesis, degradation, and endogenous antigen processing.

    PubMed

    Princiotta, Michael F; Finzi, Diana; Qian, Shu-Bing; Gibbs, James; Schuchmann, Sebastian; Buttgereit, Frank; Bennink, Jack R; Yewdell, Jonathan W

    2003-03-01

    Using L929 cells, we quantitated the macroeconomics of protein synthesis and degradation and the microeconomics of producing MHC class I associated peptides from viral translation products. To maintain a content of 2.6 x 10(9) proteins, each cell's 6 x 10(6) ribosomes produce 4 x 10(6) proteins min(-1). Each of the cell's 8 x 10(5) proteasomes degrades 2.5 substrates min(-1), creating one MHC class I-peptide complex for each 500-3000 viral translation products degraded. The efficiency of complex formation is similar in dendritic cells and macrophages, which play a critical role in activating T cells in vivo. Proteasomes create antigenic peptides at different efficiencies from two distinct substrate pools: rapidly degraded newly synthesized proteins that clearly represent defective ribosomal products (DRiPs) and a less rapidly degraded pool in which DRiPs may also predominate. PMID:12648452

  10. SERDP ER-1421 Abiotic and Biotic Mechanisms Controlling In Situ Remediation of NDMA: Final Report

    SciTech Connect

    Szecsody, James E.; McKinley, James P.; Crocker, Fiona H.; Breshears, Andrew T.; Devary, Brooks J.; Fredrickson, Herbert L.; Thompson, Karen T.

    2009-09-30

    This laboratory-scale project was initiated to investigate in situ abiotic/biotic mineralization of NDMA. Under iron-reducing conditions, aquifer sediments showed rapid abiotic NDMA degradation to dimethylamine (DMA), nitrate, formate, and finally, CO2. These are the first reported experiments of abiotic NDMA mineralization. The NDMA reactivity of these different iron phases showed that adsorbed ferrous iron was the dominant reactive phase that promoted NDMA reduction, and other ferrous phases present (siderite, iron sulfide, magnetite, structural ferrous iron in 2:1 clays) did not promote NDMA degradation. In contrast, oxic sediments that were biostimulated with propane promoted biomineralization of NDMA by a cometabolic monooxygenase enzyme process. Other monooxygenase enzyme processes were not stimulated with methane or toluene additions, and acetylene addition did not block mineralization. Although NDMA mineralization extent was the highest in oxic, biostimulated sediments (30 to 82%, compared to 10 to 26% for abiotic mineralization in reduced sediments), large 1-D column studies (high sediment/water ratio of aquifers) showed 5.6 times higher NDMA mineralization rates in reduced sediment (half-life 410 ± 147 h) than oxic biomineralization (half life 2293 ± 1866 h). Sequential reduced/oxic biostimulated sediment mineralization (half-life 3180 ± 1094 h) was also inefficient compared to reduced sediment. These promising laboratory-scale results for NDMA mineralization should be investigated at field scale. Future studies of NDMA remediation should focus on the comparison of this in situ abiotic NDMA mineralization (iron-reducing environments) to ex situ biomineralization, which has been shown successful in other studies.

  11. The rheology, degradation, processing, and characterization of renewable resource polymers

    NASA Astrophysics Data System (ADS)

    Conrad, Jason David

    Renewable resource polymers have become an increasingly popular alternative to conventional fossil fuel based polymers over the past couple decades. The push by the government as well as both industrial and consumer markets to go "green" has provided the drive for companies to research and develop new materials that are more environmentally friendly and which are derived from renewable materials. Two polymers that are currently being produced commercially are poly-lactic acid (PLA) and polyhydroxyalkanoate (PHA) copolymers, both of which can be derived from renewable feedstocks and have shown to exhibit similar properties to conventional materials such as polypropylene, polyethylene, polystyrene, and PET. PLA and PHA are being used in many applications including food packaging, disposable cups, grocery bags, and biomedical applications. In this work, we report on the rheological properties of blends of PLA and PHA copolymers. The specific materials used in the study include Natureworks RTM 7000D grade PLA and PHA copolymers of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Blends ranging from 10 to 50 percent PHA by weight are also examined. Shear and extensional experiments are performed to characterize the flow behavior of the materials in different flow fields. Transient experiments are performed to study the shear rheology over time in order to determine how the viscoelastic properties change under typical processing conditions and understand the thermal degradation behavior of the materials. For the blends, it is determined that increasing the PHA concentration in the blend results in a decrease in viscosity and increase in degradation. Models are fit to the viscosity of the blends using the pure material viscosities in order to be able to predict the behavior at a given blend composition. We also investigate the processability of these materials into films and examine the resultant properties of the cast films. The mechanical and thermal properties of the

  12. Assembly Processes under Severe Abiotic Filtering: Adaptation Mechanisms of Weed Vegetation to the Gradient of Soil Constraints

    PubMed Central

    Nikolic, Nina; Böcker, Reinhard; Kostic-Kravljanac, Ljiljana; Nikolic, Miroslav

    2014-01-01

    Questions Effects of soil on vegetation patterns are commonly obscured by other environmental factors; clear and general relationships are difficult to find. How would community assembly processes be affected by a substantial change in soil characteristics when all other relevant factors are held constant? In particular, can we identify some functional adaptations which would underpin such soil-induced vegetation response? Location Eastern Serbia: fields partially damaged by long-term and large-scale fluvial deposition of sulphidic waste from a Cu mine; subcontinental/submediterranean climate. Methods We analysed the multivariate response of cereal weed assemblages (including biomass and foliar analyses) to a strong man-made soil gradient (from highly calcareous to highly acidic, nutrient-poor soils) over short distances (field scale). Results The soil gradient favoured a substitution of calcicoles by calcifuges, and an increase in abundance of pseudometallophytes, with preferences for Atlantic climate, broad geographical distribution, hemicryptophytic life form, adapted to low-nutrient and acidic soils, with lower concentrations of Ca, and very narrow range of Cu concentrations in leaves. The trends of abundance of the different ecological groups of indicator species along the soil gradient were systematically reflected in the maintenance of leaf P concentrations, and strong homeostasis in biomass N:P ratio. Conclusion Using annual weed vegetation at the field scale as a fairly simple model, we demonstrated links between gradients in soil properties (pH, nutrient availability) and floristic composition that are normally encountered over large geographic distances. We showed that leaf nutrient status, in particular the maintenance of leaf P concentrations and strong homeostasis of biomass N:P ratio, underpinned a clear functional response of vegetation to mineral stress. These findings can help to understand assembly processes leading to unusual, novel combinations

  13. Abiotic Bromination of Soil Organic Matter.

    PubMed

    Leri, Alessandra C; Ravel, Bruce

    2015-11-17

    Biogeochemical transformations of plant-derived soil organic matter (SOM) involve complex abiotic and microbially mediated reactions. One such reaction is halogenation, which occurs naturally in the soil environment and has been associated with enzymatic activity of decomposer organisms. Building on a recent finding that naturally produced organobromine is ubiquitous in SOM, we hypothesized that inorganic bromide could be subject to abiotic oxidations resulting in bromination of SOM. Through lab-based degradation treatments of plant material and soil humus, we have shown that abiotic bromination of particulate organic matter occurs in the presence of a range of inorganic oxidants, including hydrogen peroxide and assorted forms of ferric iron, producing both aliphatic and aromatic forms of organobromine. Bromination of oak and pine litter is limited primarily by bromide concentration. Fresh plant material is more susceptible to bromination than decayed litter and soil humus, due to a labile pool of mainly aliphatic compounds that break down during early stages of SOM formation. As the first evidence of abiotic bromination of particulate SOM, this study identifies a mechanistic source of the natural organobromine in humic substances and the soil organic horizon. Formation of organobromine through oxidative treatments of plant material also provides insights into the relative stability of aromatic and aliphatic components of SOM. PMID:26468620

  14. Progressive activation of degradation processes in solid oxide fuel cell stacks: Part II: Spatial distribution of the degradation

    NASA Astrophysics Data System (ADS)

    Nakajo, Arata; Mueller, Fabian; Brouwer, Jacob; Van herle, Jan; Favrat, Daniel

    2012-10-01

    Solid oxide fuel cell (SOFC) stack design must yield the highest performance, reliability and durability to achieve the lowest cost of electricity delivered to end-users. Existing modelling tools can cope with the first aim, but cannot yet provide sufficient quantitative guidance in the two others. Repeating unit models, with as degradation processes the decrease in ionic conductivity of the electrolyte, metallic interconnect corrosion, anode nickel particles coarsening and cathode chromium contamination are used to investigate their distribution, evolution and interactions in a stack. The spatial distribution of the degradation is studied for the operating conditions optimised in Part I for the highest system electrical efficiency during long-term operation under constant system power output. Current-voltage characterisations performed at different times underestimate the degradation. In the present conditions, the degradation of the cathode dominates. The lower and more uniform cathode overpotential in counter-flow configuration, combined with the beneficial effect of internal reforming on reducing the air-fuel ratio yields the highest lifetime, because it alleviates chromium contamination and interactions between the degradation processes. Increasing the operating temperature alleviates cathode chromium contamination. The beneficial decreases of the cathode overpotential exceed the detrimental higher release rate of chromium species from the metallic interconnect.

  15. Degradation of Synthetic Dyeing Wastewater by Underwater Electrical Discharge Processes

    NASA Astrophysics Data System (ADS)

    D. Kim, S.; I. Jang, D.; J. Lim, B.; B. Lee, S.; S. Mok, Y.

    2013-07-01

    Electrical discharge treatments of synthetic dyeing wastewater were carried out with two different systems: underwater pulsed electrical discharge (UPED) and underwater dielectric barrier discharge (UDBD). Reactive Blue 4 (RB4) and Acid Red 4 (AR4) were used as model contaminants for the synthetic wastewater. The performance of the aforementioned systems was compared with respect to the chromaticity removal and the energy requirement. The results showed that the present electrical discharge systems were very effective for degradation of the dyes. The dependences of the dye degradation rate on treatment time, initial dye concentration, electrical energy, and the type of working gas including air, O2, and N2 were examined. The change in the initial dye concentration did not largely affect the degradation of either RB4 or AR4. The energy delivered to the UPED system was only partially utilized for generating reactive species capable of degrading the dyes, leading to higher energy requirement than the UDBD system. Among the working gases, the best performance was observed with O2. As the degradation proceeded, the concentration of total dissolved solids and the solution conductivity kept increasing while pH showed a decreasing trend, revealing that the dyes were effectively mineralized.

  16. Perfluorooctanoic Acid Degradation Using UV-Persulfate Process: Modeling of the Degradation and Chlorate Formation.

    PubMed

    Qian, Yajie; Guo, Xin; Zhang, Yalei; Peng, Yue; Sun, Peizhe; Huang, Ching-Hua; Niu, Junfeng; Zhou, Xuefei; Crittenden, John C

    2016-01-19

    In this study, we investigated the destruction and by-product formation of perfluorooctanoic acid (PFOA) using ultraviolet light and persulfate (UV-PS). Additionally, we developed a first-principles kinetic model to simulate both PFOA destruction and by-product and chlorate (ClO3(-)) formation in ultrapure water (UW), surface water (SW), and wastewater (WW). PFOA degradation was significantly suppressed in the presence of chloride and carbonate species and did not occur until all the chloride was converted to ClO3(-) in UW and for low DOC concentrations in SW. The model was able to simulate the PS decay, pH changes, radical concentrations, and ClO3(-) formation for UW and SW. However, our model was unable to simulate PFOA degradation well in WW, possibly from PS activation by NOM, which in turn produced sulfate radicals. PMID:26686982

  17. Landform Degradation and Slope Processes on Io: The Galileo View

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.; Sullivan, Robert J.; Chuang, Frank C.; Head, James W., III; McEwen, Alfred S.; Milazzo, Moses P.; Nixon, Brian E.; Pappalardo, Robert T.; Schenk, Paul M.; Turtle, Elizabeth P.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    The Galileo mission has revealed remarkable evidence of mass movement and landform degradation on Io. We recognize four major slope types observed on a number of intermediate resolution (250 m/pixel) images and several additional textures on very high resolution (10 m/pixel) images. Slopes and scarps on Io often show evidence of erosion, seen in the simplest form as alcove-carving slumps and slides at all scales. Many of the mass movement deposits on Io are probably mostly the consequence of block release and brittle slope failure. Sputtering plays no significant role. Sapping as envisioned by McCauley et al. remains viable. We speculate that alcove-lined canyons seen in one observation and lobed deposits seen along the bases of scarps in several locations may reflect the plastic deformation and 'glacial' flow of interstitial volatiles (e.g., SO2) heated by locally high geothermal energy to mobilize the volatile. The appearance of some slopes and near-slope surface textures seen in very high resolution images is consistent with erosion from sublimation-degradation. However, a suitable volatile (e.g., H2S) that can sublimate fast enough to alter Io's youthful surface has not been identified. Disaggregation from chemical decomposition of solid S2O and other polysulfur oxides may conceivably operate on Io. This mechanism could degrade landforms in a manner that resembles degradation from sublimation, and at a rate that can compete with resurfacing.

  18. Aerobic degradation of BDE-209 by Enterococcus casseliflavus: Isolation, identification and cell changes during degradation process.

    PubMed

    Tang, Shaoyu; Yin, Hua; Chen, Shuona; Peng, Hui; Chang, Jingjing; Liu, Zehua; Dang, Zhi

    2016-05-01

    Decabromodiphenyl ether (BDE-209) is one of the most commonly used brominated flame retardants that have contaminated the environment worldwide. Microbial bioremediation has been considered as an effective technique to remove these sorts of persistent organic pollutants. Enterococcus casseliflavus, a gram-positive bacterium capable of aerobically transforming BDE-209, was isolated by our team from sediments in Guiyu, an e-waste dismantling area in Guangdong Province, China. To promote microbial bioremediation of BDE-209 and elucidate the mechanism behind its aerobic degradation, the effects of BDE-209 on the cell changes of E. casseliflavus were examined in this study. The experimental results demonstrated that the high cell surface hydrophobicity (CSH) of E. casseliflavus made the bacteria absorb hydrophobic BDE-209 more easily. E. casseliflavus responded to BDE-209 stress, resulting in an increase in cell membrane permeability and accumulation of BDE-209 inside the cell. The differential expression of intracellular protein was analyzed through two-dimensional gel electrophoresis (2-DE). More than 50 differentially expressed protein spots were reproducibly detected, including 25 up, and 25 down regulated after a 4 days exposure. Moreover, the apoptotic-like cell changes were observed during E. casseliflavus mediated degradation of BDE-209 by means of flow cytometry. PMID:26852209

  19. Degradation of triketone herbicides, mesotrione and sulcotrione, using advanced oxidation processes.

    PubMed

    Jović, Milica; Manojlović, Dragan; Stanković, Dalibor; Dojčinović, Biljana; Obradović, Bratislav; Gašić, Uroš; Roglić, Goran

    2013-09-15

    Degradation of two triketone herbicides, mesotrione and sulcotrione, was studied using four different advanced oxidation processes (AOPs): ozonization, dielectric barrier discharge (DBD reactor), photocatalysis and Fenton reagent, in order to find differences in mechanism of degradation. Degradation products were identified by high performance liquid chromatography (HPLC-DAD) and UHPLC-Orbitrap-MS analyses. A simple mechanism of degradation for different AOP was proposed. Thirteen products were identified during all degradations for both pesticides. It was assumed that the oxidation mechanisms in the all four technologies were not based only on the production and use of the hydroxyl radical, but they also included other kinds of oxidation mechanisms specific for each technology. Similarity was observed between degradation mechanism of ozonation and DBD. The greatest difference in the products was found in Fenton degradation which included the opening of benzene ring. When degraded with same AOP pesticides gave at the end of treatment the same products. Global toxicity and COD value of samples was determined after all degradations. Real water sample was used to study influence of organic matter on pesticide degradation. These results could lead to accurate estimates of the overall effects of triketone herbicides on environmental ecosystems and also contributed to the development of improved removal processes. PMID:23892174

  20. Small-scale barriers mitigate desertification processes and enhance plant recruitment in a degraded semiarid grassland

    USGS Publications Warehouse

    Fick, Stephen E; Decker, Cheryl E.; Duniway, Michael C.; Miller, Mark E.

    2016-01-01

    Anthropogenic desertification is a problem that plagues drylands globally; however, the factors which maintain degraded states are often unclear. In Canyonlands National Park on the Colorado Plateau of southeastern Utah, many degraded grasslands have not recovered structure and function >40 yr after release from livestock grazing pressure, necessitating active restoration. We hypothesized that multiple factors contribute to the persistent degraded state, including lack of seed availability, surficial soil-hydrological properties, and high levels of spatial connectivity (lack of perennial vegetation and other surface structure to retain water, litter, seed, and sediment). In combination with seeding and surface raking treatments, we tested the effect of small barrier structures (“ConMods”) designed to disrupt the loss of litter, seed and sediment in degraded soil patches within the park. Grass establishment was highest when all treatments (structures, seed addition, and soil disturbance) were combined, but only in the second year after installation, following favorable climatic conditions. We suggest that multiple limiting factors were ameliorated by treatments, including seed limitation and microsite availability, seed removal by harvester ants, and stressful abiotic conditions. Higher densities of grass seedlings on the north and east sides of barrier structures following the summer months suggest that structures may have functioned as artificial “nurse-plants”, sheltering seedlings from wind and radiation as well as accumulating wind-blown resources. Barrier structures increased the establishment of both native perennial grasses and exotic annuals, although there were species-specific differences in mortality related to spatial distribution of seedlings within barrier structures. The unique success of all treatments combined, and even then only under favorable climatic conditions and in certain soil patches, highlights that restoration success (and

  1. Carbon isotope fractionation during abiotic reductive dehalogenation of trichloroethene (TCE).

    PubMed

    Bill, M; Schüth, C; Barth, J A; Kalin, R M

    2001-08-01

    Dehalogenation of trichloroethene (TCE) in the aqueous phase, either on palladium catalysts with hydrogen as the reductant or on metallic iron, was associated with strong changes in delta13C. In general, the delta13C of product phases were more negative than those of the parent compound and were enriched with time and fraction of TCE remaining. For dehalogenation with iron, the delta13C of TCE and products varied from -42/1000 to +5/1000. For the palladium experiments, the final product, ethane, reached the initial delta13C of TCE at completion of the dehalogenation reaction. During dehalogenation, the carbon isotope fractionation between TCE and product phases was not constant. The variation in delta13C of TCE and products offers a new monitoring tool that operates independently of the initial concentration of pollutants for abiotic degradation processes of TCE in the subsurface, and may be useful for evaluation of remediation efficiency. PMID:11513419

  2. Soil quality degradation processes along a deforestation chronosequence in the Ziwuling Area, China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accelerated erosion caused by deforestation and soil degradation has become the primary factor limiting sustainable utilization of soil resources on the Loess Plateau of Northwestern China. We studied the physical, chemical, and microbiological processes of soil degradation along a chronosequence o...

  3. Archaeal community dynamics and abiotic characteristics in a mesophilic anaerobic co-digestion process treating fruit and vegetable processing waste sludge with chopped fresh artichoke waste.

    PubMed

    Ros, M; Franke-Whittle, I H; Morales, A B; Insam, H; Ayuso, M; Pascual, J A

    2013-05-01

    This study evaluated the feasibility of obtaining methane in anaerobic digestion (AD) from the waste products generated by the processing of fruit and vegetables. During the first phase (0-55 d) of the AD using sludge from fruit and vegetable processing, an average value of 244±88 L kg(-1) dry matter d(-1)of biogas production was obtained, and methane content reached 65% of the biogas. Co-digestion with chopped fresh artichoke wastes in a second phase (55-71 d) enhanced biogas production, and resulted in an average value of 354±68 L kg(-1) dry matter d(-1), with higher methane content (more than 70%). The archaeal community involved in methane production was studied using the ANAEROCHIP microarray and real-time PCR. Results indicated that species of Methanosaeta and Methanosarcina were important during the AD process. Methanosarcina numbers increased after the addition of chopped fresh artichoke, while Methanosaeta numbers decreased. PMID:23548398

  4. Kinetic models and pathways of ronidazole degradation by chlorination, UV irradiation and UV/chlorine processes.

    PubMed

    Qin, Lang; Lin, Yi-Li; Xu, Bin; Hu, Chen-Yan; Tian, Fu-Xiang; Zhang, Tian-Yang; Zhu, Wen-Qian; Huang, He; Gao, Nai-Yun

    2014-11-15

    Degradation kinetics and pathways of ronidazole (RNZ) by chlorination (Cl2), UV irradiation and combined UV/chlorine processes were investigated in this paper. The degradation kinetics of RNZ chlorination followed a second-order behavior with the rate constants calculated as (2.13 ± 0.15) × 10(2) M(-2) s(-1), (0.82 ± 0.52) × 10(-2) M(-1) s(-1) and (2.06 ± 0.09) × 10(-1) M(-1) s(-1) for the acid-catalyzed reaction, as well as the reactions of RNZ with HOCl and OCl(-), respectively. Although UV irradiation degraded RNZ more effectively than chlorination did, very low quantum yield of RNZ at 254 nm was obtained as 1.02 × 10(-3) mol E(-1). RNZ could be efficiently degraded and mineralized in the UV/chlorine process due to the generation of hydroxyl radicals. The second-order rate constant between RNZ and hydroxyl radical was determined as (2.92 ± 0.05) × 10(9) M(-1) s(-1). The degradation intermediates of RNZ during the three processes were identified with Ultra Performance Liquid Chromatography - Electrospray Ionization - mass spectrometry and the degradation pathways were then proposed. Moreover, the variation of chloropicrin (TCNM) and chloroform (CF) formation after the three processes were further evaluated. Enhanced formation of CF and TCNM precursors during UV/chlorine process deserves extensive attention in drinking water treatment. PMID:25141357

  5. The limits of feedforward vision: recurrent processing promotes robust object recognition when objects are degraded.

    PubMed

    Wyatte, Dean; Curran, Tim; O'Reilly, Randall

    2012-11-01

    Everyday vision requires robustness to a myriad of environmental factors that degrade stimuli. Foreground clutter can occlude objects of interest, and complex lighting and shadows can decrease the contrast of items. How does the brain recognize visual objects despite these low-quality inputs? On the basis of predictions from a model of object recognition that contains excitatory feedback, we hypothesized that recurrent processing would promote robust recognition when objects were degraded by strengthening bottom-up signals that were weakened because of occlusion and contrast reduction. To test this hypothesis, we used backward masking to interrupt the processing of partially occluded and contrast reduced images during a categorization experiment. As predicted by the model, we found significant interactions between the mask and occlusion and the mask and contrast, such that the recognition of heavily degraded stimuli was differentially impaired by masking. The model provided a close fit of these results in an isomorphic version of the experiment with identical stimuli. The model also provided an intuitive explanation of the interactions between the mask and degradations, indicating that masking interfered specifically with the extensive recurrent processing necessary to amplify and resolve highly degraded inputs, whereas less degraded inputs did not require much amplification and could be rapidly resolved, making them less susceptible to masking. Together, the results of the experiment and the accompanying model simulations illustrate the limits of feedforward vision and suggest that object recognition is better characterized as a highly interactive, dynamic process that depends on the coordination of multiple brain areas. PMID:22905822

  6. Degradation of florfenicol in water by UV/Na2S 2O 8 process.

    PubMed

    Gao, Yu-Qiong; Gao, Nai-Yun; Deng, Yang; Yin, Da-Qiang; Zhang, Yan-Sen

    2015-06-01

    UV irradiation-activated sodium persulfate (UV/PS) was studied to degrade florfenicol (FLO), a phenicol antibiotic commonly used in aquaculture, in water. Compared with UV/H2O2 process, UV/PS process achieves a higher FLO degradation efficiency, greater mineralization, and less cost. The quantum yield for direct photolysis of FLO and the second-order rate constant of FLO with sulfate radicals were determined. The effects of various factors, namely PS concentration, anions (NO3 (-), Cl(-), and HCO3 (-)), ferrous ion, and humic acid (HA), on FLO degradation were investigated. The results showed that the pseudo-first-order rate constant increased linearly with increased PS concentration. The tested anions all adversely affected FLO degradation performance with the order of HCO3 (-) > Cl(-) > NO3 (-). Coexisting ferrous ions enhanced FLO degradation at a Fe(2+)/PS molar ratio under 1:1. HA significantly inhibited FLO degradation due to radical scavenging and light-screening effect. Toxicity assessment showed that it is capable of controlling the toxicity for FLO degradation. These findings indicated that UV/PS is a promising technology for water polluted by antibiotics, and the treatment is optimized only after the impacts of water characteristics are carefully considered. PMID:25567063

  7. Abiotic Buildup of Ozone

    NASA Astrophysics Data System (ADS)

    Domagal-Goldman, S. D.; Meadows, V. S.

    2010-10-01

    Two of the best biosignature gases for remote detection of life on extrasolar planets are oxygen (O2) and its photochemical byproduct, ozone (O3). The main reason for their prominence as biosignatures is that large abiotic fluxes of O2 and O3 are not considered sustainable on geological and astronomical timescales. We show here how buildup of O3 can occur on planets orbiting M stars, even in the absence of the large biological fluxes. This is possible because the destruction of O2 and O3 is driven by UV photochemistry. This chemistry is much slower on planets around these stars, due to the smaller incident UV flux. Because the destruction of these gases is slower, O3 can build up to detectable levels even if the O3 source is small. We will present atmospheric profiles of these gases for planets around AD Leo (an M dwarf) as well as spectra that show the implications for missions such as Darwin and the Terrestrial Planet Finder (TPF).

  8. Process for gamma ray induced degradation of polychlorinated biphenyls

    DOEpatents

    Meikrantz, D.H.; Mincher, B.J.; Arbon, R.E.

    1998-08-25

    The invention is a process for the in-situ destruction of polychlorinated biphenyl (PCB) compounds in transformer oils and transformers. These compounds are broken down selectively by irradiation of the object or mixture using spent nuclear fuel or any isotopic source of high energy gamma radiation. For example, the level of applied dose required to decompose 400 ppm of polychlorinated biphenyl in transformer oil to less than 50 ppm is 500 kilograms. Destruction of polychlorinated biphenyls to levels of less than 50 ppm renders the transformer oil or transformer non-PCB contaminated under current regulations. Therefore, this process can be used to treat PCB contaminated oil and equipment to minimize or eliminate the generation of PCB hazardous waste. 5 figs.

  9. Process for gamma ray induced degradation of polychlorinated biphenyls

    DOEpatents

    Meikrantz, David H.; Mincher, Bruce J.; Arbon, Rodney E.

    1998-01-01

    The invention is a process for the in-situ destruction of polychlorinated biphenyl (PCB) compounds in transformer oils and transformers. These compounds are broken down selectively by irradiation of the object or mixture using spent nuclear fuel or any isotopic source of high energy gamma radiation. For example, the level of applied dose required to decompose 400 ppm of polychlorinated biphenyl in transformer oil to less than 50 ppm is 500 kilogray. Destruction of polychlorinated biphenyls to levels of less than 50 ppm renders the transformer oil or transformer non-PCB contaminated under current regulations. Therefore, this process can be used to treat PCB contaminated oil and equipment to minimize or eliminate the generation of PCB hazardous waste.

  10. Abiotic immobilization/detoxification of recalcitrant organics

    SciTech Connect

    Whelan, G. ); Sims, R.C. )

    1990-11-01

    In contrast to many remedial techniques that simply transfer hazardous wastes from one part of the environment to another (e.g., off-site landfilling), in situ restoration may offer a safe and cost-effective solution through transformation (to less hazardous products) or destruction of recalcitrant organics. Currently, the US Environmental Protection Agency and US Department of Energy are encouraging research that addresses the development of innovative alternatives for hazardous-waste control. One such alternative is biotic and abiotic immobilization and detoxification of polynuclear aromatic hydrocarbons (PNAs) as associated with the soil humification process. This paper discusses (1) the possibility of using abiotic catalysis (with manganese dioxide) to polymerize organic substances; (2) aspects associated with the thermodynamics and kinetics of the process, and (3) a simple model upon which analyses may be based. 36 refs., 7 figs., 3 tabs.

  11. Abiotic Formation of Methyl Halides in the Terrestrial Environment

    NASA Astrophysics Data System (ADS)

    Keppler, F.

    2011-12-01

    Methyl chloride and methyl bromide are the most abundant chlorine and bromine containing organic compounds in the atmosphere. Since both compounds have relatively long tropospheric lifetimes they can effectively transport halogen atoms from the Earth's surface, where they are released, to the stratosphere and following photolytic oxidation form reactive halogen gases that lead to the chemical destruction of ozone. Methyl chloride and methyl bromide account for more than 20% of the ozone-depleting halogens delivered to the stratosphere and are predicted to grow in importance as the chlorine contribution to the stratosphere from anthropogenic CFCs decline. Today methyl chloride and methyl bromide originate mainly from natural sources with only a minor fraction considered to be of anthropogenic origin. However, until as recently as 2000 most of the methyl chloride and methyl bromide input to the atmosphere was considered to originate from the oceans, but investigations in recent years have clearly demonstrated that terrestrial sources such as biomass burning, wood-rotting fungi, coastal salt marshes, tropical vegetation and organic matter degradation must dominate the atmospheric budgets of these trace gases. However, many uncertainties still exist regarding strengths of both sources and sinks, as well as the mechanisms of formation of these naturally occurring halogenated gases. A better understanding of the atmospheric budget of both methyl chloride and methyl bromide is therefore required for reliable prediction of future ozone depletion. Biotic and abiotic methylation processes of chloride and bromide ion are considered to be the dominant pathways of formation of these methyl halides in nature. In this presentation I will focus on abiotic formation processes in the terrestrial environment and the potential parameters that control their emissions. Recent advances in our understanding of the abiotic formation pathway of methyl halides will be discussed. This will

  12. Degradation of the commercial surfactant nonylphenol ethoxylate by advanced oxidation processes.

    PubMed

    da Silva, Salatiel Wohlmuth; Klauck, Cláudia Regina; Siqueira, Marco Antônio; Bernardes, Andréa Moura

    2015-01-23

    Four different oxidation process, namely direct photolysis (DP) and three advanced oxidation processes (heterogeneous photocatalysis - HP, eletrochemical oxidation - EO and photo-assisted electrochemical oxidation - PEO) were applied in the treatment of wastewater containing nonylphenol ethoxylate (NPnEO). The objective of this work was to determine which treatment would be the best option in terms of degradation of NPnEO without the subsequent generation of toxic compounds. In order to investigate the degradation of the surfactant, the processes were compared in terms of UV/Vis spectrum, mineralization (total organic carbon), reaction kinetics, energy efficiency and phytotoxicity. A solution containing NPnEO was prepared as a surrogate of the degreasing wastewater, was used in the processes. The results showed that the photo-assisted processes degrade the surfactant, producing biodegradable intermediates in the reaction. On the other hand, the electrochemical process influences the mineralization of the surfactant. The process of PEO carried out with a 250W lamp and a current density of 10mA/cm(2) showed the best results in terms of degradation, mineralization, reaction kinetics and energy consumption, in addition to not presenting phytotoxicity. Based on this information, this process can be a viable alternative for treating wastewater containing NPnEO, avoiding the contamination of water resources. PMID:25262384

  13. Fate and degradation of nonylphenolic compounds during wastewater treatment process.

    PubMed

    Lian, Jing; Liu, Junxin

    2013-08-01

    In order to explore the biodegradation behavior of nonylphenolic compounds during wastewater treatment processing, two full-scale wastewater treatment plants were investigated and batch biodegradation experiments were conducted. The biodegradation pathways under the various operational conditions were identified from batch experiments: shortening of ethoxy-chains dominated under the anaerobic condition, whereas oxidizing of the terminal alcoholic group prevailed over the other routes under the aerobic condition. Results showed that the anoxic condition could accelerate the biodegradation rates of nonylphenolic compounds, but had no influence on the biodegradation pathway. The biodegradation rates of nonylphenol (NP) and short-chain nonylphenol polyethoxylates (NPnEOs, n: number of ethoxy units) increased from the anaerobic condition, then the anoxic, finally to the aerobic condition, while those of long-chain NPnEOs and nonylphenoxy carboxylates (NPECs) seemed similar under the various conditions. Under every operational condition, long-chain NPnEOs showed the highest biodegradation activity, followed by NPECs and short-chain NPnEOs, whereas NP showed relatively recalcitrant characteristics especially under the anaerobic condition. In addition, introducing sulfate and nitrate to the anaerobic condition could enhance the biodegradation of NP and short-chain NPnEOs by supplying more positive redox potentials. PMID:24520688

  14. HvPap-1 C1A protease actively participates in barley proteolysis mediated by abiotic stresses.

    PubMed

    Velasco-Arroyo, Blanca; Diaz-Mendoza, Mercedes; Gandullo, Jacinto; Gonzalez-Melendi, Pablo; Santamaria, M Estrella; Dominguez-Figueroa, Jose D; Hensel, Goetz; Martinez, Manuel; Kumlehn, Jochen; Diaz, Isabel

    2016-07-01

    Protein breakdown and mobilization from old or stressed tissues to growing and sink organs are some of the metabolic features associated with abiotic/biotic stresses, essential for nutrient recycling. The massive degradation of proteins implies numerous proteolytic events in which cysteine-proteases are the most abundant key players. Analysing the role of barley C1A proteases in response to abiotic stresses is crucial due to their impact on plant growth and grain yield and quality. In this study, dark and nitrogen starvation treatments were selected to induce stress in barley. Results show that C1A proteases participate in the proteolytic processes triggered in leaves by both abiotic treatments, which strongly induce the expression of the HvPap-1 gene encoding a cathepsin F-like protease. Differences in biochemical parameters and C1A gene expression were found when comparing transgenic barley plants overexpressing or silencing the HvPap-1 gene and wild-type dark-treated leaves. These findings associated with morphological changes evidence a lifespan-delayed phenotype of HvPap-1 silenced lines. All these data elucidate on the role of this protease family in response to abiotic stresses and the potential of their biotechnological manipulation to control the timing of plant growth. PMID:27217548

  15. Calcium-promoted catalytic degradation of PCDDs, PCDFs, and coplanar PCBs under a mild wet process.

    PubMed

    Mitoma, Yoshiharu; Tasaka, Norie; Takase, Maki; Masuda, Taizo; Tashiro, Hideki; Egashira, Naoyoshi; Oki, Takashi

    2006-03-15

    The authors achieved highly efficient degradation of polychlorinated aromatic compounds, including polychlorinated dibenzo-p-dioxins, dibenzofurans, and dioxin-like compounds such as coplanar polychlorinated biphenyls (co-PCBs), which are known as persistent organic pollutants. Degradation was accomplished in 24 h through a simple stirring operation using safe and high workability metallic calcium, which acts as both a scavenger and a reducing agent, and Rh/C catalyst in an alcohol solution under mild conditions in a sealed tube at 25 degrees C without a temperature increase within 0.15 MPa of increasing internal pressure during the reaction. In this system, reductive dechlorination by metallic calcium and catalytic reduction by Rh/C and generated hydrogen gas, without any external addition of hydrogen, exert a synergistic effect on the degradation of chlorinated compounds. Alcohol was used as a proton source and hydrogen, which was generated by a side reaction, causes an increase in the activity of Rh/C catalyst. Through the degradation of 4-chloroanisole in ethyl alcohol, anisole and cyclohexyl methyl ether were obtained in good conversions. Using ethyl alcohol as a solvent, treatment of dioxins and co-PCBs in a solution was markedly effective for degradation to reduce 2806 pg TEQ/ml of initial concentration to 31.8 pg TEQ/ml; its yield was 98.5%. Moreover, degradation in methyl alcohol took place in a 99.3% yield. That concentration ultimately reached 20.3 pg TEQ/ml under a mild wet process. All congeners of dioxins and co-PCBs were degraded in high conversions. In this degradation, lower aliphatic alcohol, such as methyl alcohol, is effective for making a new calcium surface as compared to alcohol with more methylene chains. In addition, it seemed that a higher pressure of hydrogen was easily generated in methyl alcohol, and then catalytic degradation was effectivley influenced. PMID:16570607

  16. Significant diethyl phthalate (DEP) degradation by combined advanced oxidation process in aqueous solution.

    PubMed

    Na, Seungmin; Ahn, Yun-Gyong; Cui, Mingcan; Khim, Jeehyeong

    2012-06-30

    Ultrasound (US) combined with ultraviolet (UV) irradiation and a titanium dioxide (TiO(2)) catalyst was used to effectively remove diethyl phthalate (DEP) from aqueous solutions. Single (sonolysis, photolysis, photocatalysis) and combined (sonophotolysis, sonophotocatalysis) processes were performed to confirm the synergistic effects and DEP degradation mechanism. Using only US, the optimum frequency for DEP degradation was 283 kHz. At this frequency a high rate of hydrogen peroxide (H(2)O(2)) formation was observed of approximately 0.32 mM min(-1). The pseudo-first order degradation rate constants were 10(-2)-10(-4) min(-1) depending on the process. Significant degradation and mineralization (TOC) of DEP were observed with the sonophotolytic and sonophotocatalytic processes. Moreover, synergistic effects of 1.29 and 1.95 were exhibited at the sonophotocatalytic and sonophotolytic DEP degradation, respectively. Furthermore, additional advantageous reactions may occur in the heterogeneous sonophotocatalytic process due to interactions between US, UV, and the photocatalyst. PMID:22406850

  17. Oxidative degradation of dimethyl phthalate (DMP) by UV/H(2)O(2) process.

    PubMed

    Xu, Bin; Gao, Nai-Yun; Cheng, Hefa; Xia, Sheng-Ji; Rui, Min; Zhao, Dan-Dan

    2009-03-15

    The photochemical degradation of dimethyl phthalate (DMP) in UV/H(2)O(2) advanced oxidation process was studied and a kinetic model based on the elementary reactions involved was developed in this paper. Relatively slow DMP degradation was observed during UV radiation, while DMP was not oxidized by H(2)O(2) alone. In contrast, the combined UV/H(2)O(2) process could effectively degraded DMP, which is attributed to the strong oxidation strength of hydroxyl radical produced. Results show that DMP degradation rate was affected by H(2)O(2) concentration, intensity of UV radiation, initial DMP concentration, and solution pH. A kinetic model without the pseudo-steady state assumption was established according to the generally accepted elementary reactions in UV/H(2)O(2) advanced oxidation process. The rate constant for the reaction between DMP and hydroxyl radical was found to be 4.0 x 10(9) M(-1)s(-1) through fitting the experimental data to this model. The kinetic model could adequately describe the influence of key factors on DMP degradation rate in UV/H(2)O(2) advanced oxidation process, and could serve as a guide in designing treatment systems for DMP removal. PMID:18639981

  18. Degradation of sodium dodecyl sulphate in water using solar driven Fenton-like advanced oxidation processes.

    PubMed

    Bandala, Erick R; Peláez, Miguel A; Salgado, Maria J; Torres, Luis

    2008-03-01

    Synthetic wastewater samples containing a model surfactant were treated using two different Fenton-like advanced oxidation processes promoted by solar radiation; the photo-Fenton reaction and Co/PMS/UV processes. Comparison between the different experimental conditions was performed by means of the overall surfactant degradation achieved and by obtaining the initial rate in the first 15 min of reaction (IR15). It was found that, for dark Fenton reaction, the maximum surfactant degradation achieved was 14% under low iron and oxidant concentration. Increasing Fenton reagents by one magnitude order, surfactant degradation achieved 63% in 60 min. The use of solar radiation improved the reaction rate by 17% under same conditions and an additional increase of 12.5% was obtained by adjusting initial pH to 2. IR15 values for dark and irradiated Fenton reactions were 0.143 and 0.154 mmol/min, respectively, for similar reaction conditions and this value increased to 0.189 mmol/min when initial pH was adjusted. The use of the Co/PMS system allow us to determine an increase in the degradation rate, for low reaction conditions (1 mM of transition metal; 4 mM oxidant) similar to those used in dark Fenton reaction. Surfactant degradation increased from 3%, for Fenton reaction, to 44.5% in the case of Co/PMS. When solar irradiation was included in the experiments, under same reaction conditions described earlier, surfactant degradation up to 64% was achieved. By increasing Co/PMS reagent concentration by almost 9 times under irradiated conditions, almost complete (>99%) surfactant degradation was reached in 5 min. Comparing IR15 values for Co/PMS and Co/PMS/UV, it allow us to observe that the use of solar radiation increased the degradation rate in one magnitude order when compared with dark experiments and further increase of reagent concentration increased reaction rate twice. PMID:17658215

  19. Reactive oxygen species in abiotic stress signaling.

    PubMed

    Jaspers, Pinja; Kangasjärvi, Jaakko

    2010-04-01

    Reactive oxygen species (ROS) are known to accumulate during abiotic stresses, and different cellular compartments respond to them by distinctive profiles of ROS formation. In contrast to earlier views, it is becoming increasingly evident that even during stress, ROS production is not necessarily a symptom of cellular dysfunction but might represent a necessary signal in adjusting the cellular machinery to the altered conditions. ROS can modulate many signal transduction pathways, such as mitogen-activated protein kinase cascades, and ultimately influence the activity of transcription factors. However, the picture of ROS-mediated signaling is still fragmentary and the issues of ROS perception as well as the signaling specificity remain open. Here, we review some of the recent advances in plant abiotic stress signaling with emphasis on processes known to be affected heavily by ROS. PMID:20028478

  20. Comparative study of the degradation of carbamazepine in water by advanced oxidation processes.

    PubMed

    Dai, Chao-Meng; Zhou, Xue-Fei; Zhang, Ya-Lei; Duan, Yan-Ping; Qiang, Zhi-Min; Zhang, Tian C

    2012-06-01

    Degradation of carbamazepine (CBZ) using ultraviolet (UV), UV/H2O2, Fenton, UV/Fenton and photocatalytic oxidation with TiO2 (UV/TiO2) was studied in deionized water. The five different oxidation processes were compared for the removal kinetics of CBZ. The results showed that all the processes followed pseudo-first-order kinetics. The direct photolysis (UV alone) was found to be less effective than UV/H2O2 oxidation for the degradation of CBZ. An approximate 20% increase in the CBZ removal efficiency occurred with the UV/Fenton reaction as compared with the Fenton oxidation. In the UV/TiO2 system, the kinetics of CBZ degradation in the presence of different concentrations of TiO2 followed the pseudo-first order degradation, which was consistent with the Langmuir-Hinshelwood (L-H) model. On a time basis, the degradation efficiencies ofCBZ were in the following order: UV/Fenton (86.9% +/- 1.7%) > UV/TiO2 (70.4% +/- 4.2%) > Fenton (67.8% +/- 2.6%) > UV/H2O2 (40.65 +/- 5.1%) > UV (12.2% +/- 1.4%). However, the lowest cost was obtained with the Fenton process. PMID:22856279

  1. Sorption and degradation of 17ß-estradiol-17-sulfate in sterilized soil-water systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To identify abiotic processes that govern the fate of a sulfate conjugated estrogen, 17ß-estradiol-17-sulfate (E2-17S), soil batch experiments were conducted to investigate the dissipation, sorption, and degradation of radiolabeled E2-17S under sterilized conditions. The aqueous dissipation half-liv...

  2. Effects of ultrasonic processing on degradation of salvianolic acid B in aqueous solution.

    PubMed

    Guo, Y X; Zhang, L; Lu, L; Liu, E H; Shi, C Z

    2016-09-10

    To evaluate the stability of salvianolic acid B (Sal B) under ultrasound-assisted extraction in the pharmaceutical industry, degradation of Sal B under ultrasonic irradiation was investigated as the function of buffer concentration, pH, and temperature. With regard to Sal-B concentration, a first-order degradation process was determined, with 10% change in assay from its initial concentration as t90=4.81h, under maximum stability acidic conditions (pH 2.0) and at 25°C. The logkpH-pH profile described by specific acid-base catalysis and water molecules supported the experimental results. Liquid chromatography-mass spectrometry (LC-MS) analyses revealed 7 major degradation products whose structures were characterized by electrospray ionization/mass spectrometry. A primary degradation pathway involved cleavage of the ester bond and ring-opening of benzofuran in Sal B was proposed. The complete degradation pathway of Sal B was also proposed. Results showed that ultrasonic irradiation leads to degradation of Sal B in aqueous solution. PMID:27442887

  3. Case study of grate-chain degradation in a Grate-Kiln process

    NASA Astrophysics Data System (ADS)

    Nilsson, Erik A. A.; Pettersson, L.; Antti, M.-L.

    2013-12-01

    Austenitic stainless steels are often used in high temperature applications due to their resistance to corrosion. Grate-Kiln processes that sinter iron ore pellets use grate-chains which are made of austenitic stainless steel to withstand the severe environment. It has been shown, however, that the grate-chain is affected by several degrading mechanisms in the harsh environment of the sintering process. A grate-chain that has been in service for 8 months was investigated in order to find the mechanisms of degradation. Results show that slag products are accumulated on the grate-chain and interact with the steel as hot corrosion. The stainless steel is believed to be sensitized against inter-granular attack by carburization followed by inter-granular attack. The resistance towards degradation seems to decrease with time which is suggested to be caused by depletion of chromium.

  4. Degradation of alachlor using an enhanced sono-Fenton process with efficient Fenton's reagent dosages.

    PubMed

    Wang, Chikang; Liu, Zonghan

    2015-01-01

    In this study, an enhanced sono-Fenton process for the degradation of alachlor is presented. At high ultrasonic power, low pH, and in the presence of adequate Fenton's reagent dosages, alachlor degradation can reach nearly 100%. The toxicity of treated alachlor wastewater, which was measured by changes in cell viability, slightly decreased after the Fenton or ultrasound/H2O2 process and significantly decreased after the enhanced sono-Fenton process. A satisfactory relationship was observed between the total organic carbon removal and cell viability increment, indicating that alachlor mineralization is a key step in reducing the toxicity of the solution. The formation of alachlor degradation byproducts was observed during the oxidation process, in which the first step was the substitution of a chloride by a hydroxyl group. In conclusion, the enhanced sono-Fenton process was effective in the degradation and detoxification of alachlor within a short reaction time. Thus, the treated wastewater can then be passed through a biological treatment unit for further treatment. PMID:25996814

  5. Stochastic Process Underlying Emergent Recognition of Visual Objects Hidden in Degraded Images

    PubMed Central

    Murata, Tsutomu; Hamada, Takashi; Shimokawa, Tetsuya; Tanifuji, Manabu; Yanagida, Toshio

    2014-01-01

    When a degraded two-tone image such as a “Mooney” image is seen for the first time, it is unrecognizable in the initial seconds. The recognition of such an image is facilitated by giving prior information on the object, which is known as top-down facilitation and has been intensively studied. Even in the absence of any prior information, however, we experience sudden perception of the emergence of a salient object after continued observation of the image, whose processes remain poorly understood. This emergent recognition is characterized by a comparatively long reaction time ranging from seconds to tens of seconds. In this study, to explore this time-consuming process of emergent recognition, we investigated the properties of the reaction times for recognition of degraded images of various objects. The results show that the time-consuming component of the reaction times follows a specific exponential function related to levels of image degradation and subject's capability. Because generally an exponential time is required for multiple stochastic events to co-occur, we constructed a descriptive mathematical model inspired by the neurophysiological idea of combination coding of visual objects. Our model assumed that the coincidence of stochastic events complement the information loss of a degraded image leading to the recognition of its hidden object, which could successfully explain the experimental results. Furthermore, to see whether the present results are specific to the task of emergent recognition, we also conducted a comparison experiment with the task of perceptual decision making of degraded images, which is well known to be modeled by the stochastic diffusion process. The results indicate that the exponential dependence on the level of image degradation is specific to emergent recognition. The present study suggests that emergent recognition is caused by the underlying stochastic process which is based on the coincidence of multiple stochastic events

  6. [Degradation of phenol with a Fe/cu-catalytic heterogeneous-Fenton process].

    PubMed

    Yang, Yue-Zhu; Li, Yu-Ping; Yang, Dao-Wu; Duan, Feng; Cao, Hong-Bin

    2013-07-01

    The catalysts of Fe/AC, Cu/AC and Fe-Cu/AC with active carbon as support were prepared by a wet impregnation method, and were characterized using X-ray diffraction (XRD), nitrogen adsorption and X-ray photoelectron spectroscopy (XPS) measurements; the catalytic heterogeneous-Fenton processes of phenol degradation with these catalysts were also investigated, and the degradation mechanism was discussed with analysis of intermediate products and electron spin resonance (ESR) measurement. The results showed that the active component states varied in different catalysts; CuO was the main state of Cu in Cu/AC and Fe exhibited various valence states in Fe/AC. The degradation rate of phenol with Fe/AC, Cu/AC and Fe-Cu/AC as catalyst in the initial 60 min reached 96.7%, 77.5% and 99%, respectively; the dissolution of a little active-component metal was found in Cu/AC and Fe-Cu/AC, but little Fe in Fe/AC was dissolved; the degradation of phenol was performed by heterogeneous Fe/AC instead of dissolved Fe, and the degradation rate was above 93% after Fe/AC was used for three cycle runs, showing a stable catalytic activity. Under the optimum conditions of pH = 3, T = 303 K, and 4.38 mmol x L(-1) H2O2, the removal of phenol and TOC in the Fe/AC-catalytic Fenton process could reach 97% and 53%, respectively, while little phenol was degraded without catalyst. The ESR results indicated that hydroxyl radical was produced in the catalytic decomposition of H2O2 with Fe/AC as catalyst, demonstrating that the degradation of phenol mainly followed an oxidation pathway of hydroxyl radical; intermediates such as hydroquinone, p-benzenequinone and catechol were obtained, and the results showed thatortho- and para-substitution reaction by hydroxyl might be the main mechanism of phenol oxidation. PMID:24027996

  7. Stromal fibroblasts facilitate cancer cell invasion by a novel invadopodia-independent matrix degradation process.

    PubMed

    Cao, H; Eppinga, R D; Razidlo, G L; Krueger, E W; Chen, J; Qiang, L; McNiven, M A

    2016-03-01

    Metastatic invasion of tumors into peripheral tissues is known to rely upon protease-mediated degradation of the surrounding stroma. This remodeling process uses complex, actin-based, specializations of the plasma membrane termed invadopodia that act both to sequester and release matrix metalloproteinases. Here we report that cells of mesenchymal origin, including tumor-associated fibroblasts, degrade substantial amounts of surrounding matrix by a mechanism independent of conventional invadopodia. These degradative sites lack the punctate shape of conventional invadopodia to spread along the cell base and are reticular and/or fibrous in character. In marked contrast to invadopodia, this degradation does not require the action of Src kinase, Cdc42 or Dyn2. Rather, inhibition of Dyn2 causes a marked upregulation of stromal matrix degradation. Further, expression and activity of matrix metalloproteinases are differentially regulated between tumor cells and stromal fibroblasts. This matrix remodeling by fibroblasts increases the invasive capacity of tumor cells, thereby illustrating how the tumor microenvironment can contribute to metastasis. These findings provide evidence for a novel matrix remodeling process conducted by stromal fibroblasts that is substantially more effective than conventional invadopodia, distinct in structural organization and regulated by disparate molecular mechanisms. PMID:25982272

  8. Oxidative degradation of N-Nitrosopyrrolidine by the ozone/UV process: Kinetics and pathways.

    PubMed

    Chen, Zhi; Fang, Jingyun; Fan, Chihhao; Shang, Chii

    2016-05-01

    N-Nitrosopyrrolidine (NPYR) is an emerging contaminant in drinking water and wastewater. The degradation kinetics and mechanisms of NPYR degradation by the O3/UV process were investigated and compared with those of UV direct photolysis and ozonation. A synergistic effect of ozone and UV was observed in the degradation of NPYR due to the accelerated production of OH• by ozone photolysis. This effect was more pronounced at higher ozone dosages. The second-order rate constants of NPYR reacting with OH• and ozone was determined to be 1.38 (± 0.05) × 10(9) M(-1) s(-1) and 0.31 (± 0.02) M(-1) s(-1), respectively. The quantum yield by direct UV photolysis was 0.3 (± 0.01). An empirical model using Rct (the ratio of the exposure of OH• to that of ozone) was established for NPYR degradation in treated drinking water and showed that the contributions of direct UV photolysis and OH• oxidation on NPYR degradation were both significant. As the reaction proceeded, the contribution by OH• became less important due to the exhausting of ozone. Nitrate was the major product in the O3/UV process by two possible pathways. One is through the cleavage of nitroso group to form NO• followed by hydrolysis, and the other is the oxidation of the intermediates of amines by ozonation. PMID:26733013

  9. Improving degradation of paracetamol by integrating gamma radiation and Fenton processes.

    PubMed

    Cruz-González, Germán; Rivas-Ortiz, Iram B; González-Labrada, Katia; Rapado-Paneque, Manuel; Chávez-Ardanza, Armando; Nuevas-Paz, Lauro; Jáuregui-Haza, Ulises J

    2016-10-14

    Degradation of paracetamol (N-(4-hydroxiphenyl)acetamide) in aqueous solution by gamma radiation, gamma radiation/H2O2 and gamma radiation/Fenton processes was studied. Parameters affecting the radiolysis of paracetamol such as radiation dose, initial concentration of pollutant, pH and initial oxidant concentration were investigated. Gamma radiation was performed using a (60)Co source irradiator. Paracetamol degradation and mineralization increased with increasing absorbed radiation dose, but decreased with increasing initial concentration of the drug in aqueous solution. The addition of H2O2 resulted in an increased effect on irradiation-driven paracetamol degradation in comparison with the performance of the irradiation-driven process alone: paracetamol removal increased from 48.9% in the absence of H2O2 to 95.2% for H2O2 concentration of 41.7 mmol/L. However, the best results were obtained with gamma radiation/Fenton process with 100% of the drug removal at 5 kGy, for optimal H2O2 and Fe(2+) concentrations at 13.9 and 2.3 mmol/L, respectively, with a high mineralization of 63.7%. These results suggest gamma radiation/H2O2 and gamma radiation/Fenton processes as promising methods for paracetamol degradation in polluted wastewaters. PMID:27389621

  10. Interaction and reactivity of the components of a fat coal in the process of thermal degradation

    SciTech Connect

    Bronshtein, A.P.; Aksenov, L.N.; Bulashev, V.M.; Makarov, G.N.; Povalyaev, A.N.

    1983-01-01

    The results are given of an investigation of the mutual influence of the components of a fat coal and its plastic mass on the process of their thermal degradation. Features of their behavior on heating in the composition of the coal and autonomously are discussed. An interpretation of the effects detected is given.

  11. Does mechanistic modeling of filter strip pesticide mass balance and degradation processes affect environmental exposure assessments?

    PubMed

    Muñoz-Carpena, Rafael; Ritter, Amy; Fox, Garey A; Perez-Ovilla, Oscar

    2015-11-01

    Vegetative filter strips (VFS) are a widely adopted practice for limiting pesticide transport from adjacent fields to receiving waterbodies. The efficacy of VFS depends on site-specific input factors. To elucidate the complex and non-linear relationships among these factors requires a process-based modeling framework. Previous research proposed linking existing higher-tier environmental exposure models with a well-tested VFS model (VFSMOD). However, the framework assumed pesticide mass stored in the VFS was not available for transport in subsequent storm events. A new pesticide mass balance component was developed to estimate surface pesticide residue trapped in the VFS and its degradation between consecutive runoff events. The influence and necessity of the updated framework on acute and chronic estimated environmental concentrations (EECs) and percent reductions in EECs were investigated across three, 30-year U.S. EPA scenarios: Illinois corn, California tomato, and Oregon wheat. The updated framework with degradation predicted higher EECs than the existing framework without degradation for scenarios with greater sediment transport, longer VFS lengths, and highly sorbing and persistent pesticides. Global sensitivity analysis (GSA) assessed the relative importance of mass balance and degradation processes in the context of other input factors like VFS length (VL), organic-carbon sorption coefficient (Koc), and soil and water half-lives. Considering VFS pesticide residue and degradation was not important if single, large runoff events controlled transport, as is typical for higher percentiles considered in exposure assessments. Degradation processes become more important when considering percent reductions in acute or chronic EECs, especially under scenarios with lower pesticide losses. PMID:26218348

  12. Degradation of hydroxycinnamic acid mixtures in aqueous sucrose solutions by the Fenton process.

    PubMed

    Nguyen, Danny M T; Zhang, Zhanying; Doherty, William O S

    2015-02-11

    The degradation efficiencies and behaviors of caffeic acid (CaA), p-coumaric acid (pCoA), and ferulic acid (FeA) in aqueous sucrose solutions containing the mixture of these hydroxycinnamic acids (HCAs) were studied by the Fenton oxidation process. Central composite design and multiresponse surface methodology were used to evaluate and optimize the interactive effects of process parameters. Four quadratic polynomial models were developed for the degradation of each individual acid in the mixture and the total HCAs degraded. Sucrose was the most influential parameter that significantly affected the total amount of HCA degraded. Under the conditions studied there was a <0.01% loss of sucrose in all reactions. The optimal values of the process parameters for a 200 mg/L HCA mixture in water (pH 4.73, 25.15 °C) and sucrose solution (13 mass %, pH 5.39, 35.98 °C) were 77% and 57%, respectively. Regression analysis showed goodness of fit between the experimental results and the predicted values. The degradation behavior of CaA differed from those of pCoA and FeA, where further CaA degradation is observed at increasing sucrose and decreasing solution pH. The differences (established using UV/vis and ATR-FTIR spectroscopy) were because, unlike the other acids, CaA formed a complex with Fe(III) or with Fe(III) hydrogen-bonded to sucrose and coprecipitated with lepidocrocite, an iron oxyhydroxide. PMID:25585639

  13. Effect of food processing on plant DNA degradation and PCR-based GMO analysis: a review.

    PubMed

    Gryson, Nicolas

    2010-03-01

    The applicability of a DNA-based method for GMO detection and quantification depends on the quality and quantity of the DNA. Important food-processing conditions, for example temperature and pH, may lead to degradation of the DNA, rendering PCR analysis impossible or GMO quantification unreliable. This review discusses the effect of several food processes on DNA degradation and subsequent GMO detection and quantification. The data show that, although many of these processes do indeed lead to the fragmentation of DNA, amplification of the DNA may still be possible. Length and composition of the amplicon may, however, affect the result, as also may the method of extraction used. Also, many techniques are used to describe the behaviour of DNA in food processing, which occasionally makes it difficult to compare research results. Further research should be aimed at defining ingredients in terms of their DNA quality and PCR amplification ability, and elaboration of matrix-specific certified reference materials. PMID:20012944

  14. Degradation of the anti-inflammatory drug ibuprofen by electro-peroxone process.

    PubMed

    Li, Xiang; Wang, Yujue; Yuan, Shi; Li, Zhaoxin; Wang, Bin; Huang, Jun; Deng, Shubo; Yu, Gang

    2014-10-15

    Electro-peroxone (E-peroxone) treatment of the anti-inflammatory drug ibuprofen aqueous solution was investigated in this study. The E-peroxone process combined conventional ozonation with electrolysis processes, and used a carbon-polytetrafluorethylene cathode to electrochemically generate H2O2 from O2 in the sparged ozone generator effluent (O2 and O3 mixture). The in-situ generated H2O2 then reacted with the sparged O3 to produce aqueous •OH, which can in turn oxidize pollutants effectively in the bulk solution. The E-peroxone process overcomes several intrinsic limitations of conventional ozonation and electrolysis processes for pollutant degradation such as the selective oxidation with O3 and mass transfer limitations of pollutants to the electrodes, and thus significantly enhanced both ibuprofen degradation and total organic carbon (TOC) mineralization. Results show that ibuprofen could be completely degraded much more rapidly in the E-peroxone process (e.g., 5-15 min under all tested reaction conditions) than in ozonation (≥30 min) and electrolysis (several hours) processes. In addition, thanks to the powerful and non-selective oxidation capacity of •OH, toxic intermediates formed during ibuprofen degradation could be completely mineralized in the E-peroxone process. The E-peroxone effluent (2 h) thus exhibited much lower toxicity (5% inhibition of bioluminescence of Vibrio fisheri) than the ozonation and electrolysis effluents (22% and 88% inhibition, respectively). The results of this study indicate that the E-peroxone process may provide a promising technology for pharmaceutical wastewater treatment. PMID:24981746

  15. Systematic investigation and microbial community profile of indole degradation processes in two aerobic activated sludge systems

    PubMed Central

    Ma, Qiao; Qu, Yuanyuan; Zhang, Xuwang; Liu, Ziyan; Li, Huijie; Zhang, Zhaojing; Wang, Jingwei; Shen, Wenli; Zhou, Jiti

    2015-01-01

    Indole is widely spread in various environmental matrices. Indole degradation by bacteria has been reported previously, whereas its degradation processes driven by aerobic microbial community were as-yet unexplored. Herein, eight sequencing batch bioreactors fed with municipal and coking activated sludges were constructed for aerobic treatment of indole. The whole operation processes contained three stages, i.e. stage I, glucose and indole as carbon sources; stage II, indole as carbon source; and stage III, indole as carbon and nitrogen source. Indole could be completely removed in both systems. Illumina sequencing revealed that alpha diversity was reduced after indole treatment and microbial communities were significantly distinct among the three stages. At genus level, Azorcus and Thauera were dominant species in stage I in both systems, while Alcaligenes, Comamonas and Pseudomonas were the core genera in stage II and III in municipal sludge system, Alcaligenes and Burkholderia in coking sludge system. In addition, four strains belonged to genera Comamonas, Burkholderia and Xenophilus were isolated using indole as sole carbon source. Burkholderia sp. IDO3 could remove 100 mg/L indole completely within 14 h, the highest degradation rate to date. These findings provide novel information and enrich our understanding of indole aerobic degradation processes. PMID:26657581

  16. Degradation characteristic of monoazo, diazo and anthraquinone dye by UV / H2O2 process

    NASA Astrophysics Data System (ADS)

    Abidin, Che Zulzikrami Azner; Fahmi, Muhammad Ridwan; Fazara, Md Ali Umi; Nadhirah, Siti Nurfatin

    2014-10-01

    In this study, the degradation characteristic of monoazo, diazo and anthraquinone dye by UV / H2O2 process was evaluated based on the trend of color, chemical oxygen demand (COD) and total organic carbon (TOC) removal. Three types of dyes consist of monoazo, diazo and anthraquinone dyes were used to compare the degradation mechanism of the dyes. The UV / H2O2 experiments were conducted in a laboratory scale cylindrical glass reactor operated in semi-batch mode. The UV/Vis characterization of monoazo, diazo and anthraquinone dye indicated that the rapid degradation of the dyes by UV / H2O2 process is meaningful with respect to decolourization, as a result of the azo bonds and substitute antraquinone chromophore degradation. However, this process is not efficient for aromatic amines removal. The monoazo MO was difficult to be decolorized than diazo RR120 dye, which imply that number of sulphonic groups in the dye molecules determines the reactivity with hydroxyl radical. The increased in COD removal is the evidence for oxidation and decreased in carbon content of dye molecules. TOC removal analysis shows that low TOC removal of monoazo MO and diazo RR120, as compared to anthraquinone RB19 may indicate an accumulation of by-products that are resistant to the H2O2 photolysis.

  17. Observation of polymer degradation processes in photovoltaic modules via luminescence detection

    NASA Astrophysics Data System (ADS)

    Röder, B.; Ermilov, E. A.; Philipp, D.; Köhl, M.

    2008-08-01

    The estimation of PV-modules lifetime facilitates the further development and helps to lower risks for producers and investors. One base for this extensive testing work is the knowledge of the degradation kinetics of encapsulating polymer materials. Besides ethylen-vinylacetate copolymer (EVA), which is the prevalent material for encapsulation, new materials like Poly-Vinyl-Butyral (PVB), and thermoplastic Poly-Urethan (TPU) become available and need the assessment of their properties and the durability impact. In this context is it very important to identify the extent of degradation caused by different parameters in order to identify the determining factor of polymer degradation as well as potential interactions between different degradation processes. To simulate long time degeneration processes accelerated aging under damp-heat and high-UV conditions was performed on different EVA, TPU, and PVB samples. In this paper we report first results on measuring fluorescence spectra from different encapsulation materials after accelerated ageing in dependence on time and aging procedure. Our investigations clearly demonstrate that it is possible to follow damp-heat and UV induced aging processes of different polymers used in PV-modules as encapsulation materials by luminescence detection.

  18. Halocarbons produced by natural oxidation processes during degradation of organic matter

    NASA Astrophysics Data System (ADS)

    Keppler, F.; Eiden, R.; Niedan, V.; Pracht, J.; Schöler, H. F.

    2000-01-01

    Volatile halogenated organic compounds (VHOC) play an important role in atmospheric chemical processes-contributing, for example, to stratospheric ozone depletion. For anthropogenic VHOC whose sources are well known, the global atmospheric input can be estimated from industrial production data. Halogenated compounds of natural origin can also contribute significantly to the levels of VHOC in the atmosphere. The oceans have been implicated as one of the main natural sources, where organisms such as macroalgae and microalgae can release large quantities of VHOC to the atmosphere. Some terrestrial sources have also been identified, such as wood-rotting fungi, biomass burning and volcanic emissions. Here we report the identification of a different terrestrial source of naturally occurring VHOC. We find that, in soils and sediments, halide ions can be alkylated during the oxidation of organic matter by an electron acceptor such as Fe( III): sunlight or microbial mediation are not required for these reactions. When the available halide ion is chloride, the reaction products are CH 3Cl, C2H5Cl, C3H7Cl and C4H9Cl. (The corresponding alkyl bromides or alkyl iodides are produced when bromide or iodide are present.) Such abiotic processes could make a significant contribution to the budget of the important atmospheric compounds CH3Cl, CH3Br and CH3I.

  19. Energy loss process analysis for radiation degradation and immediate recovery of amorphous silicon alloy solar cells

    NASA Astrophysics Data System (ADS)

    Sato, Shin-ichiro; Beernink, Kevin; Ohshima, Takeshi

    2015-06-01

    Performance degradation of a-Si/a-SiGe/a-SiGe triple-junction solar cells due to irradiation of silicon ions, electrons, and protons are investigated using an in-situ current-voltage measurement system. The performance recovery immediately after irradiation is also investigated. Significant recovery is always observed independent of radiation species and temperature. It is shown that the characteristic time, which is obtained by analyzing the short-circuit current annealing behavior, is an important parameter for practical applications in space. In addition, the radiation degradation mechanism is discussed by analyzing the energy loss process of incident particles (ionizing energy loss: IEL, and non-ionizing energy loss: NIEL) and their relative damage factors. It is determined that ionizing dose is the primarily parameter for electron degradation whereas displacement damage dose is the primarily parameter for proton degradation. This is because the ratio of NIEL to IEL in the case of electrons is small enough to be ignored the damage due to NIEL although the defect creation ratio of NIEL is much larger than that of IEL in the cases of both protons and electrons. The impact of “radiation quality effect” has to be considered to understand the degradation due to Si ion irradiation.

  20. Experimental data confirm numerical modeling of the degradation process of magnesium alloys stents.

    PubMed

    Wu, Wei; Chen, Shanshan; Gastaldi, Dario; Petrini, Lorenza; Mantovani, Diego; Yang, Ke; Tan, Lili; Migliavacca, Francesco

    2013-11-01

    Biodegradable magnesium alloy stents (MAS) could present improved long-term clinical performances over commercial bare metal or drug-eluting stents. However, MAS were found to show limited mechanical support for diseased vessels due to fast degradation. Optimizing stent design through finite element analysis (FEA) is an efficient way to improve such properties. Following previous FEA works on design optimization and degradation modeling of MAS, this work carried out an experimental validation for the developed FEA model, thus proving its practical applicability of simulating MAS degradation. Twelve stent samples of AZ31B were manufactured according to two MAS designs (an optimized one and a conventional one), with six samples of each design. All the samples were balloon expanded and subsequently immersed in D-Hanks' solution for a degradation test lasting 14 days. The experimental results showed that the samples of the optimized design had better corrosion resistance than those of the conventional design. Furthermore, the degradation process of the samples was dominated by uniform and stress corrosion. With the good match between the simulation and the experimental results, the work shows that the FEA numerical modeling constitutes an effective tool for design and thus the improvement of novel biodegradable MAS. PMID:23128160

  1. Degradation reliability modeling based on an independent increment process with quadratic variance

    NASA Astrophysics Data System (ADS)

    Wang, Zhihua; Zhang, Yongbo; Wu, Qiong; Fu, Huimin; Liu, Chengrui; Krishnaswamy, Sridhar

    2016-03-01

    Degradation testing is an important technique for assessing life time information of complex systems and highly reliable products. Motivated by fatigue crack growth (FCG) data and our previous study, this paper develops a novel degradation modeling approach, in which degradation is represented by an independent increment process with linear mean and general quadratic variance functions of test time or transformed test time if necessary. Based on the constructed degradation model, closed-form expressions of failure time distribution (FTD) and its percentiles can be straightforwardly derived and calculated. A one-stage method is developed to estimate model parameters and FTD. Simulation studies are conducted to validate the proposed approach, and the results illustrate that the approach can provide reasonable estimates even for small sample size situations. Finally, the method is verified by the FCG data set given as the motivating example, and the results show that it can be considered as an effective degradation modeling approach compared with the multivariate normal model and graphic approach.

  2. Degradation Kinetics and Mechanism of a β-Lactam Antibiotic Intermediate, 6-Aminopenicillanic Acid, in a New Integrated Production Process.

    PubMed

    Su, Min; Sun, Hua; Zhao, Yingying; Lu, Aidang; Cao, Xiaohui; Wang, Jingkang

    2016-01-01

    In an effort to promote sustainability and to reduce manufacturing costs, the traditional production process for 6-aminopenicillanic acid (6-APA) has been modified to include less processing units. The objectives of this study are to investigate the degradation kinetics of 6-APA, to propose a reasonable degradation mechanism, and to optimize the manufacturing conditions within this new process. A series of degradation kinetic studies were conducted in the presence of impurities, as well as at various chemical and physical conditions. The concentrations of 6-APA were determined by high-performance liquid chromatography. An Arrhenius-type kinetic model was established to give a more accurate prediction on the degradation rates of 6-APA. A hydrolysis degradation mechanism is shown to be the major pathway for 6-APA. The degradation mechanisms and the kinetic models for 6-APA in the new system enable the design of a good manufacturing process with optimized parameters. PMID:26852849

  3. ProBNP1-108 Processing and Degradation in Human Heart Failure

    PubMed Central

    Huntley, Brenda K.; Sandberg, Sharon M.; Heublein, Denise M.; Sangaralingham, S. Jeson; Burnett, John C.; Ichiki, Tomoko

    2014-01-01

    Background We have reported that proBNP1-108 circulates and is processed to mature BNP1-32 in human blood. Building on these findings, we sought to determine whether proBNP1-108 processed forms in normal circulation are biologically active and stimulate cGMP, and whether proBNP1-108 processing and activity are altered in human heart failure (HF) compared to normal. Since BNP1-32 is deficient while proBNP1-108 is abundant in HF, we hypothesize that proBNP1-108 processing and degradation are impaired in HF patients ex vivo. Methods and Results We measured circulating molecular forms including BNP1-32, proBNP1-108, and NT-proBNP and all were significantly higher in HF patients compared to normals. Fresh serum samples from normals or HF patients were incubated with or without exogenous non-glycosylated proBNP1-108 tagged with 6 C-terminal Histidines to facilitate peptide isolation. His-tag ProBNP1-108 was efficiently processed into BNP1-32/3-32 at 5 min in normal serum, persisted for 15 min, then disappeared. Delayed processing of proBNP1-108 was observed in HF samples and the degradation pattern differed depending on LV function. The 5 min processed forms from both normal and HF serums were active and generated cGMP via GC-A receptors, however the 180 min samples were not active. The proBNP1-108 processing enzyme corin and BNP degrading enzyme DPPIV were reduced in HF versus normal, perhaps contributing to differential BNP metabolism in HF. Conclusions Exogenous proBNP1-108 is processed into active BNP1-32 and ultimately degraded in normal circulation. The processing and degradation of BNP molecular forms was altered but complete in HF which may contribute the pathophysiology of HF. PMID:25339504

  4. The oligomeric architecture of the archaeal exosome is important for processive and efficient RNA degradation.

    PubMed

    Audin, Maxime J C; Wurm, Jan Philip; Cvetkovic, Milos A; Sprangers, Remco

    2016-04-01

    The exosome plays an important role in RNA degradation and processing. In archaea, three Rrp41:Rrp42 heterodimers assemble into a barrel like structure that contains a narrow RNA entrance pore and a lumen that contains three active sites. Here, we demonstrate that this quaternary structure of the exosome is important for efficient RNA degradation. We find that the entrance pore of the barrel is required for nM substrate affinity. This strong interaction is crucial for processive substrate degradation and prevents premature release of the RNA from the enzyme. Using methyl TROSY NMR techniques, we establish that the 3' end of the substrate remains highly flexible inside the lumen. As a result, the RNA jumps between the three active sites that all equally participate in substrate degradation. The RNA jumping rate is, however, much faster than the cleavage rate, indicating that not all active site:substrate encounters result in catalysis. Enzymatic turnover therefore benefits from the confinement of the active sites and substrate in the lumen, which ensures that the RNA is at all times bound to one of the active sites. The evolution of the exosome into a hexameric complex and the optimization of its catalytic efficiency were thus likely co-occurring events. PMID:26837575

  5. The oligomeric architecture of the archaeal exosome is important for processive and efficient RNA degradation

    PubMed Central

    Audin, Maxime J. C.; Wurm, Jan Philip; Cvetkovic, Milos A.; Sprangers, Remco

    2016-01-01

    The exosome plays an important role in RNA degradation and processing. In archaea, three Rrp41:Rrp42 heterodimers assemble into a barrel like structure that contains a narrow RNA entrance pore and a lumen that contains three active sites. Here, we demonstrate that this quaternary structure of the exosome is important for efficient RNA degradation. We find that the entrance pore of the barrel is required for nM substrate affinity. This strong interaction is crucial for processive substrate degradation and prevents premature release of the RNA from the enzyme. Using methyl TROSY NMR techniques, we establish that the 3′ end of the substrate remains highly flexible inside the lumen. As a result, the RNA jumps between the three active sites that all equally participate in substrate degradation. The RNA jumping rate is, however, much faster than the cleavage rate, indicating that not all active site:substrate encounters result in catalysis. Enzymatic turnover therefore benefits from the confinement of the active sites and substrate in the lumen, which ensures that the RNA is at all times bound to one of the active sites. The evolution of the exosome into a hexameric complex and the optimization of its catalytic efficiency were thus likely co-occurring events. PMID:26837575

  6. Degradation processes in high power multi-mode InGaAs strained quantum well lasers

    NASA Astrophysics Data System (ADS)

    Sin, Yongkun; Presser, Nathan; Foran, Brendan; Moss, Steven C.

    2009-02-01

    Recently, broad-area InGaAs-AlGaAs strained quantum well (QW) lasers have attracted much attention because of their unparalleled high optical output power characteristics that narrow stripe lasers or tapered lasers can not achieve. However, broad-area lasers suffer from poor beam quality and their high reliability operation has not been proven for communications applications. This paper concerns reliability and degradation aspects of broad-area lasers. Good facet passivation techniques along with optimized structural designs have led to successful demonstration of reliable 980nm single-mode lasers, and the dominant failure mode of both single-mode and broadarea lasers is catastrophic optical mirror damage (COMD), which limits maximum output powers and also determines operating output powers. Although broad-area lasers have shown characteristics unseen from singlemode lasers including filamentation, their effects on long-term reliability and degradation processes have not been fully investigated. Filamentation can lead to instantaneous increase in optical power density and thus temperature rise at localized areas through spatial-hole burning and thermal lensing which significantly reduces filament sizes under high power operation, enhancing the COMD process. We investigated degradation processes in commercial MOCVD-grown broad-area InGaAs-AlGaAs strained QW lasers at ~975nm with and without passivation layers by performing accelerated lifetests of these devices followed by failure mode analyses with various micro-analytical techniques. Since instantaneous fluctuations of filaments can lead to faster wear-out of passivation layer thus leading to facet degradation, both passivated and unpassivated broad-area lasers were studied that yielded catastrophic failures at the front facet and also in the bulk. Electron beam induced current technique was employed to study dark line defects (DLDs) generated in degraded lasers stressed under different test conditions and focused

  7. Influence of degradation behavior of polyamide 12 powders in laser sintering process on produced parts

    NASA Astrophysics Data System (ADS)

    Wudy, K.; Drummer, D.; Kühnlein, F.; Drexler, M.

    2014-05-01

    Additive manufacturing technologies, such as selective laser melting of polymers enable manufacturing of complex parts without tools and forms. Due to high temperature during processing, a degradation of the used plastic powder occurs. The unmolded material in the building chamber, the so-called partcake, can be removed from the finished component after building and reused for another process. To realize reproducible part properties refreshing of partcake powder is necessary. This paper presents results on the investigations of degradation behavior of polyamide 12 powder during selective laser melting process. The influence of different ambient conditions, e.g. ambient air, nitrogen and vacuum, is investigated in a model experiment. Oven aged polymer powders were analyzed with regard to their process relevant material properties. Considered material properties are phase transition temperatures, melting viscosity or molecular weight. The results of the investigations show, that the influence of high process temperatures on used material can be reduced using other ambient conditions. Process relevant material properties are minor affected by storage under vacuum. In addition to that the influence of different ambient conditions as well as a material pretreatment on the degradation behavior of sls materials, e.g. exclusion of intermolecular located oxygen, is analyzed. To correlate these results of the model experiment with real manufacturing process laser sintering experiments are done. PA12 powder is used for several building processes with refreshing. Produced specimens and resulting partcake powder are analyzed and correlated to the results of model experiment. Correlating effects, regarding process relevant material properties as well as aging influenced mechanical properties of specimens can be detected.

  8. Life cycle assessment of solar photo-Fenton and solar photoelectro-Fenton processes used for the degradation of aqueous α-methylphenylglycine.

    PubMed

    Serra, Anna; Domènech, Xavier; Brillas, Enric; Peral, José

    2011-01-01

    A comparative Life Cycle Assessment (LCA) of solar photo-Fenton and solar photoelectro-Fenton, two solar-driven advanced oxidation processes (AOPs) devoted to the removal of non-biodegradable pollutants in water, is performed. The study is based on the removal, at laboratory scale, of the amino acid α-methylphenylglycine, a good example of soluble and non-biodegradable target pollutant. The system under study includes chemicals, electricity, transport of all raw materials to the plant site, and the generation of emissions, but it does not take into account the impact of the infrastructure needed to build a hypothetical solar plant. Nine environmental impact categories are included in the LCA: global warming potential, ozone depletion potential, aquatic eutrophication potential, acidification potential, human toxicity potential, photochemical ozone formation potential, fresh water aquatic ecotoxicity potential, marine aquatic ecotoxicity potential, and terrestrial ecotoxicity potential and abiotic resource depletion potential. Although previous experimental results show that both AOPs are able to efficiently degrade the pollutant, the LCA indicates that solar-driven photo-Fenton is the most environmentally friendly alternative, mainly because the use of electricity in solar photoelectro-Fenton experiments involves high environmental impacts. PMID:21079836

  9. PAHs in soils: Sorption versus degradation - elucidation of rate-limiting processes

    NASA Astrophysics Data System (ADS)

    Herklotz, Ilka; Gocht, Tilman; Grathwohl, Peter

    2010-05-01

    Polycyclic aromatic hydrocarbons (PAHs) belong to the class of persistent organic pollutants, and are of special interest due to their ubiquituous distribution in the environment at relatively high concentrations. Subsequent to their emmission into the environment through incomplete combustion processes of natural and anthropogenic sources (e.g. vulcano eruptions, forest fires, industry, traffic), PAHs can be transported over long distances. Following atmospheric deposition they accumulate in particular in top-soils and have been found to be stable over long periods of time (decades to centuries). Based on that this study targets on the elucidation of the long-term PAH-fate in top-soils by means of degradation experiments under well-controlled laboratory conditions with well mixed batch experiments at a water to solids ratio 10:1. From a rural site in the Black Forest Mountains, Germany, top-soil samples were taken, which contains approximately 7-8 mg Σ18 PAHs per kg soil. This soil was sieved through 2 mm to sort out stones, roots- and leaf-parts and homogenised afterwards. Within the first month of incubation a depletion of native PAHs were observed. However, an exhaustive sequential extraction using accelerated solvent extraction with 3 cycles of acteone and 4 cycles of toluene (100 bar pressure, 10 min static time, 100°C and 150°C respectively) revealed a reduced extractability of PAHs subsequent to incubation. In order to stimulate PAH degradation a second experiment with a higher water to solid ratio (1000:1) was carried out, and phenanthrene was spiked to the water phase of this set up. Results revealed a reduction of phenanthrene concentration more likely to be due to sorption rather than degradation. The set up was changed to aqueous soil solutions without soil in the batch and spiked again with phenanthrene. Degradation of phenanthrene occurred within 10 days in these batches. The experiments show that the microorganisms present in the Black Forest

  10. Kinetics and mechanisms of degradation of chloroacetonitriles by the UV/H2O2 process.

    PubMed

    Ling, Li; Sun, Jianliang; Fang, Jingyun; Shang, Chii

    2016-08-01

    Haloacetonitriles (HANs) are emerging disinfection by-products (DBPs) that are more toxic than the regulated DBPs and widely found in the chlorinated/chloraminated water. This paper studied kinetics and mechanisms of the degradation of chloroacetonitriles (CANs) by the UV/H2O2 process at pH 6 and 7.5 and H2O2 concentrations of 1 × 10(-3) M, 5 × 10(-3) M and 1 × 10(-2) M. The degradation followed pseudo first-order degradation kinetics. The degradation rate of monochloroacetonitrile (MCAN) remained similar, while those of dichloroacetonitrile (DCAN) and trichloroacetonitrile (TCAN) increased with increasing pH and H2O2 concentrations. The different trends were attributed to the changing contributions of the two major mechanisms: the nucleophilic attack by hydroperoxide ions ( [Formula: see text] ) and the hydroxyl radical (•OH) oxidation. The second-order rate constants of [Formula: see text] towards MCAN, DCAN and TCAN were determined to be 11.8 (±0.62), 4.83 (±0.01) × 10(3), and 2.54 (±0.23) × 10(5) M(-1) s(-1), respectively, while that of •OH were 8.7 × 10(6), 4.4 × 10(6), and < 10(6) M(-1) s(-1), respectively. The degradation of TCAN was mainly attributed to the [Formula: see text] nucleophilic attack, while that of MCAN was dominated by the •OH oxidation. DCAN was degraded by both mechanisms. The nucleophilic attack increased linearly with increasing [Formula: see text] concentration as a result of increasing H2O2 concentration and/or pH, while the •OH oxidation was less dependent on H2O2 concentrations and/or pH. The nucleophilic attack mainly transformed HANs to haloacetamides, while the •OH oxidation dechlorinated HANs. This paper firstly illustrated the importance of the [Formula: see text] nucleophilic attack, in addition to the •OH oxidation, on the CAN degradation in the UV/H2O2 process. PMID:27161887

  11. Degradation of carbamazepine by UV/chlorine advanced oxidation process and formation of disinfection by-products.

    PubMed

    Zhou, Shiqing; Xia, Ying; Li, Ting; Yao, Tian; Shi, Zhou; Zhu, Shumin; Gao, Naiyun

    2016-08-01

    Pharmaceuticals in water are commonly found and are not efficiently removed by current treatment processes. Degradation of antiepileptic drug carbamazepine (CBZ) by UV/chlorine advanced oxidation process was systematically investigated in this study. The results showed that the UV/chlorine process was more effective at degrading CBZ than either UV or chlorination alone. The CBZ degradation followed pseudo-first order reaction kinetics, and the degradation rate constants (kobs) were affected by the chlorine dose, solution pH, and natural organic matter concentration to different degrees. Degradation of CBZ greatly increased with increasing chlorine dose and decreasing solution pH during the UV/chlorine process. Additionally, the presence of natural organic matter in the solution inhibited the degradation of CBZ. UV photolysis, chlorination, and reactive species (hydroxyl radical •OH and chlorine atoms •Cl) were identified as responsible for CBZ degradation in the UV/chlorine process. Finally, a degradation pathway for CBZ in the UV/chlorine process was proposed and the formation potentials of carbonaceous and nitrogenous disinfection by-products were evaluated. Enhanced formation of trichloroacetic acid, dichloroacetonitrile, and trichloronitromethane precursors should be considered when applying UV/chlorine advanced oxidation process to drinking water. PMID:27164884

  12. Degradation of atrazine using solar driven fenton-like advanced oxidation processes.

    PubMed

    Bandala, Erick R; Domínguez, Zair; Rivas, Fernanda; Gelover, Silvia

    2007-01-01

    Atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) was degraded using cobalt-peroximonosulfate (Co/PMS) advanced oxidation process (AOP). Three Co concentrations (0.00, 0.25 and 0.50 mM) and five peroximonosulfate (PMS) concentrations (0, 5, 8, 16 and 32 mM) were tested. Maximum degradation reached was 88% using dark Co/PMS in 126 minutes when 0.25 mM of cobalt and 32 mM of PMS were used. Complete atrazine degradation was achieved when the samples were irradiated by the sun under the same experimental conditions described. Tests for identification of intermediate products allowed identification and quantification of deethylatrazine in both dark and radiated conditions. Kinetic data for both processes was calculated fitting a pseudo-first order reaction rate approach to the experimental data. Having kinetic parameters enabled comparison between both conditions. It was found that the kinetic approach describes data behavior appropriately (R2 > or = 0.95). Pseudo-kinetic constants determined for both Co/PMS processes, show k value of 10(-4) for Co/PMS and a k value of 10(-3) for Co/PMS/ultraviolet (UV). This means, that, with the same Co/PMS concentrations, UV light increases the reaction rate by around one order of magnitude than performing the reaction under dark conditions. PMID:17162564

  13. Degradation of caffeine by photo-Fenton process: optimization of treatment conditions using experimental design.

    PubMed

    Trovó, Alam G; Silva, Tatiane F S; Gomes, Oswaldo; Machado, Antonio E H; Neto, Waldomiro Borges; Muller, Paulo S; Daniel, Daniela

    2013-01-01

    The degradation of caffeine in different kind of effluents, via photo-Fenton process, was investigated in lab-scale and in a solar pilot plant. The treatment conditions (caffeine, Fe(2+) and H(2)O(2) concentrations) were defined by experimental design. The optimized conditions for each variable, obtained using the response factor (% mineralization), were: 52.0 mg L(-1)caffeine, 10.0 mg L(-1)Fe(2+) and 42.0 mg L(-1)H(2)O(2) (replaced in kinetic experiments). Under these conditions, in ultrapure water (UW), the caffeine concentration reached the quantitation limit (0.76 mg L(-1)) after 20 min, and 78% of mineralization was obtained respectively after 120 min of reaction. Using the same conditions, the matrix influence (surface water - SW and sewage treatment plant effluent - STP) on caffeine degradation was also evaluated. The total removal of caffeine in SW was reached at the same time in UW (after 20 min), while 40 min were necessary in STP. Although lower mineralization rates were verified for high organic load, under the same operational conditions, less H(2)O(2) was necessary to mineralize the dissolved organic carbon as the initial organic load increases. A high efficiency of the photo-Fenton process was also observed in caffeine degradation by solar photocatalysis using a CPC reactor, as well as intermediates of low toxicity, demonstrating that photo-Fenton process can be a viable alternative for caffeine removal in wastewater. PMID:22795305

  14. Image analysis of degradation processes of carbon/carbon composites in a high temperature chemical flame

    SciTech Connect

    Kubota, Masao; Kitagawa, Kuniyuki; Arai; Norio; Ushigome, Nobutaka; Kato, Yoshinari

    1998-07-01

    The purpose of this study is to develop a measurement technique for in-situ monitoring of the degradation processes of thermal-resistance materials, such as C/C (carbon fiber reinforced carbon) composites, in high temperature fields. Spatially, spectrally and temporally resolved images of emission from diatomic molecules in an acetylene-air were observed flame by a spectrovideo camera, assembled by combining a conochromator and a high speed UV video camera. Two dimensional atomic adsorption spectrometry (AAS) using the spectrovideo camera was applied to investigate the degradation process. The test samples employed in this study were Mg-doped three different C/C composites with oxidation-resistive double layer coatings of SiC and glass materials. The results indicated that the time changes in the spatial distribution of Mg adsorption observed by the spectrovideo camera proved to be a powerful tool to in-situ monitor the degradation/oxidation processes of the oxidation-resistive C/C composites in high temperature fields.

  15. The cytoplasmic mRNA degradation factor Pat1 is required for rRNA processing.

    PubMed

    Muppavarapu, Mridula; Huch, Susanne; Nissan, Tracy

    2016-04-01

    Pat1 is a key cytoplasmic mRNA degradation factor, the loss of which severely increases mRNA half-lives. Several recent studies have shown that Pat1 can enter the nucleus and can shuttle between the nucleus and the cytoplasm. As a result, many nuclear roles have been proposed for Pat1. In this study, we analyzed four previously suggested nuclear roles of Pat1 and show that Pat1 is not required for efficient pre-mRNA splicing or pre-mRNA decay in yeast. However, lack of Pat1 results in accumulation of pre-rRNA processing intermediates. Intriguingly, we identified a novel genetic relationship between Pat1 and the rRNA decay machinery, specifically the exosome and the TRAMP complex. While the pre-rRNA processing intermediates that accumulate in the pat1 deletion mutant are, at least to some extent, recognized as aberrant by the rRNA degradation machinery, it is unlikely that these accumulations are the cause of their synthetic sick relationship. Here, we show that the dysregulation of the levels of mRNAs related to ribosome biogenesis could be the cause of the accumulation of the pre-rRNA processing intermediates. Although our results support a role for Pat1 in transcription, they nevertheless suggest that the primary cause of the dysregulated mRNA levels is most likely due to Pat1's role in mRNA decapping and mRNA degradation. PMID:26918764

  16. Understanding Fundamental Material Degradation Processes in High Temperature Aggressive Chemomechanical Environments

    SciTech Connect

    Stubbins, James; Gewirth, Andrew; Sehitoglu, Huseyin; Sofronis, Petros; Robertson, Ian

    2014-01-16

    The objective of this project is to develop a fundamental understanding of the mechanisms that limit materials durability for very high-temperature applications. Current design limitations are based on material strength and corrosion resistance. This project will characterize the interactions of high-temperature creep, fatigue, and environmental attack in structural metallic alloys of interest for the very high-temperature gas-cooled reactor (VHTR) or Next–Generation Nuclear Plant (NGNP) and for the associated thermo-chemical processing systems for hydrogen generation. Each of these degradation processes presents a major materials design challenge on its own, but in combination, they can act synergistically to rapidly degrade materials and limit component lives. This research and development effort will provide experimental results to characterize creep-fatigue-environment interactions and develop predictive models to define operation limits for high-temperature structural material applications. Researchers will study individually and in combination creep-fatigue-environmental attack processes in Alloys 617, 230, and 800H, as well as in an advanced Ni-Cr oxide dispersion strengthened steel (ODS) system. For comparison, the study will also examine basic degradation processes in nichrome (Ni-20Cr), which is a basis for most high-temperature structural materials, as well as many of the superalloys. These materials are selected to represent primary candidate alloys, one advanced developmental alloy that may have superior high-temperature durability, and one model system on which basic performance and modeling efforts can be based. The research program is presented in four parts, which all complement each other. The first three are primarily experimental in nature, and the last will tie the work together in a coordinated modeling effort. The sections are (1) dynamic creep-fatigue-environment process, (2) subcritical crack processes, (3) dynamic corrosion – crack

  17. Degradation of thiamethoxam and metoprolol by UV, O3 and UV/O3 hybrid processes: Kinetics, degradation intermediates and toxicity

    NASA Astrophysics Data System (ADS)

    Šojić, D.; Despotović, V.; Orčić, D.; Szabó, E.; Arany, E.; Armaković, S.; Illés, E.; Gajda-Schrantz, K.; Dombi, A.; Alapi, T.; Sajben-Nagy, E.; Palágyi, A.; Vágvölgyi, Cs.; Manczinger, L.; Bjelica, L.; Abramović, B.

    2012-11-01

    SummaryA comprehensive study of the degradation of thiamethoxam (THIA) and metoprolol (MET) was conducted by using UV-induced photolysis (λ = 254 nm), ozonation, and a combination of these methods. In order to investigate how molecular structure of the substrate influences the rate of its degradation, we compared these three processes for the insecticide THIA and the drug MET (a β1-blocker). Of the three treatments applied, the UV photolysis and the combination of UV/O3 were found to be most effective in the degradation of THIA, while the UV/O3 process appeared to be the most efficient in terms of MET decay. The degradation kinetics was monitored by LC-DAD, and spectrophotometry, while the mineralization of the substrates was studied by TOC analysis. Reaction intermediates were studied in detail and a number of them were identified using LC-MS (ESI+/ESI-). Both parent compounds showed slight toxic effects towards algae Pseudokirchneriella subcapitata and bacteria Vibrio fischeri. However, the toxicity of the solutions containing also the degradation intermediates appeared to be much higher for all the test organisms. The inhibition/mortality rates were reduced most efficiently by the UV/O3 procedure. Ames test and Comet assay were used to follow the genotoxicity during the degradation of the studied compounds. Genotoxic intermediates were frequently detected in the case of MET in the UV treatment alone or in the presence of ozone. Treatments of THIA samples resulted less frequently in genotoxic intermediates. To our best knowledge, this work is the first genotoxicological investigation dealing with the photolytic degradation process of the studied compounds.

  18. [Degradation of aniline by a dual-electrode electrochemical oxidation process].

    PubMed

    Cen, Shi-Hong; Song, Xiao-Yan; Chu, Yan-Yang

    2011-08-01

    The efficiency and the mechanism of aniline degradation by an electrochemical oxidation process using a Ti/SnO2-Sb2O5 electrode as the anode and a graphite electrode as the cathode, were studied in two aqueous electrolytes with/without Fe2+. The results showed that the reasonable anodic potential was about 2.0 V +/- 0.1 V for Ti/SnO2-Sb2O5 electrode to oxidize organic compounds, while the optimum cathodic potential was -0.65 V for graphite electrode to reduce O2 generating H2O2. The oxidation degradation of aniline could not take place only by the single action of H2O2. Anodic oxidation was accounted for the degradation of aniline in the absence of Fe2+, while in the presence of Fe2+ both electro-Fenton oxidation and anodic oxidation (dual-electrode electrochemical oxidation) could degradate aniline effectively, and in this case the former was the main mechanism. Under the conditions of -0.65 V cathodic potential, pH 3.0 and 0.5 mmol x L(-1) Fe2+, the removal rate of COD was 77.5% after 10 h treatment and a current efficiency of 97.8% for COD removal could be obtained. This work indicates that the dual-electrode electrochemical oxidation is feasible for the degradation of organic compounds with a high current efficiency by using Ti/SnO2-Sb2O5 as anode as well as the reasonable anodic and cathodic potentials. PMID:22619954

  19. Thermodynamic and kinetic study of phenol degradation by a non-catalytic wet air oxidation process.

    PubMed

    Lefèvre, Sébastien; Boutin, Olivier; Ferrasse, Jean-Henry; Malleret, Laure; Faucherand, Rémy; Viand, Alain

    2011-08-01

    This work is dedicated to an accurate evaluation of thermodynamic and kinetics aspects of phenol degradation using wet air oxidation process. Phenol is a well known polluting molecule and therefore it is important having data of its behaviour during this process. A view cell is used for the experimental study, with an internal volume of 150 mL, able to reach pressures up to 30 MPa and temperatures up to 350°C. Concerning the thermodynamic phase equilibria, experimental and modelling results are obtained for different binary systems (water/nitrogen, water/air) and ternary system (water/nitrogen/phenol). The best model is the Predictive Soave Redlich Kwong one. This information is necessary to predict the composition of the gas phase during the process. It is also important for an implementation in a process simulation. The second part is dedicated to kinetics evaluation of the degradation of phenol. Different compounds have been detected using GC coupled with a MS. A kinetic scheme is deduced, taking into account the evolution of phenol, hydroquinones, catechol, resorcinol and acetic acid. The kinetic parameters are calculated for this scheme. These data are important to evaluate the evolution of the concentration of the different polluting molecules during the process. A simplified kinetic scheme, which can be easily implemented in a process simulation, is also determined for the direct degradation of phenol into H(2)O and CO(2). The Arrhenius law data obtained for the phenol disappearance are the following: k=1.8×10(6)±3.9×10(5)M(-1)s(-1) (pre-exponential factor) and E(a)=77±8 kJ mol(-1) (activation energy). PMID:21700312

  20. Kinetics and pathways of ibuprofen degradation by the UV/chlorine advanced oxidation process.

    PubMed

    Xiang, Yingying; Fang, Jingyun; Shang, Chii

    2016-03-01

    The UV/chlorine advanced oxidation process (AOP), which forms reactive species such as hydroxyl radicals (HO) and reactive chlorine species (RCS) such as chlorine atoms (Cl) and Cl2(-), is being considered as an alternative to the UV/H2O2 AOP for the degradation of emerging contaminants. This study investigated the kinetics and pathways of the degradation of a recalcitrant pharmaceutical and personal care product (PPCP)-ibuprofen (IBP)-by the UV/chlorine AOP. The degradation of IBP followed the pseudo first-order kinetics. The first-order rate constant was 3.3 times higher in the UV/chlorine AOP than in the UV/H2O2 AOP for a given chemical molar dosage at pH 6. The first-order rate constant decreased from 3.1 × 10(-3) s(-1) to 5.5 × 10(-4) s(-1) with increasing pH from 6 to 9. Both HO and RCS contributed to the degradation, and the contribution of RCS increased from 22% to 30% with increasing pH from 6 to 9. The degradation was initiated by HO-induced hydroxylation and Cl-induced chlorine substitution, and sustained through decarboxylation, demethylation, chlorination and ring cleavage to form more stable products. Significant amounts of chlorinated intermediates/byproducts were formed from the UV/chlorine AOP, and four chlorinated products were newly identified. The yield of total organic chlorine (TOCl) was 31.6 μM after 90% degradation of 50 μM IBP under the experimental conditions. The known disinfection by-products (DBPs) comprised 17.4% of the TOCl. The effects of water matrix in filtered drinking water on the degradation were not significant, demonstrating the practicality of the UV/chlorine AOP for the control of some refractory PPCPs. However, the toxicity of the chlorinated products should be further assessed. PMID:26748208

  1. Phase transformations during processing and in vitro degradation of porous calcium polyphosphates.

    PubMed

    Hu, Youxin; Pilliar, Robert; Grynpas, Marc; Kandel, Rita; Werner-Zwanziger, Ulrike; Filiaggi, Mark

    2016-07-01

    A 2-Step sinter/anneal treatment has been reported previously for forming porous CPP as biodegradable bone substitutes [9]. During the 2-Step annealing treatment, the heat treatment used strongly affected the rate of CPP degradation in vitro. In the present study, x-ray diffraction and (31)P solid state nuclear magnetic resonance were used to determine the phases that formed using different heat treating processes. The effect of in vitro degradation (in PBS at 37 °C, pH 7.1 or 4.5) was also studied. During CPP preparation, β-CPP and γ-CPP were identified in powders formed from a calcium monobasic monohydrate precursor after an initial calcining treatment (10 h at 500 °C). Melting of this CPP powder (at 1100 °C), quenching and grinding formed amorphous CPP powders. Annealing powders at 585 °C (Step-1) resulted in rapid sintering to form amorphous porous CPP. Continued annealing to 650 °C resulted in crystallization to form a multi-phase structure of β-CPP primarily plus lesser amounts of α-CPP, calcium ultra-phosphates and retained amorphous CPP. Annealing above 720 °C and up to 950 °C transformed this to β-CPP phase. In vitro degradation of the 585 °C (Step-1 only) and 650 °C Step-2 annealed multi-phase samples occurred significantly faster than the β-CPP samples formed by Step-2 annealing at or above 720 °C. This faster degradation was attributable to preferential degradation of thermodynamically less stable phases that formed in samples annealed at 650 °C (i.e. α-phase, ultra-phosphate and amorphous CPP). Degradation in lower pH solutions significantly increased degradation rates of the 585 and 650 °C annealed samples but had no significant effect on the β-CPP samples. PMID:27255688

  2. Degradation of LIM domain-binding protein three during processing of Spanish dry-cured ham.

    PubMed

    Gallego, Marta; Mora, Leticia; Fraser, Paul D; Aristoy, María-Concepción; Toldrá, Fidel

    2014-04-15

    Extensive proteolysis takes place during the processing of dry-cured ham due to the action of muscle peptidases. The aim of this work was to study the degradation of LIM domain binding protein 3 (LDB3), which is located at the Z-lines of the sarcomere, at different times during the Spanish dry-cured ham processing (2, 3.5, 5, 6.5, and 9 months). A total of 107 peptides have been identified by mass spectrometry, most of them generated from the first region of the protein sequence (position 1-90) providing evidence for the complexity and variability of proteolytic reactions throughout the whole process of dry-curing. Methionine oxidation has been observed in several peptides by the end of the process. The potential of some of the identified peptides to be used as biomarkers of dry-cured ham processing has also been considered. PMID:24295685

  3. Mechanoradical-induced degradation in a pharmaceutical blend during high-shear processing.

    PubMed

    Polizzi, Mark A; Singhal, Dharmendra; Colvin, Joshua

    2008-01-01

    Mechanically generated radicals were shown to affect short-term stability of a model pharmaceutical formulation during high-shear processing. A formulation containing an oxidatively sensitive drug, either amorphous or crystalline, and a polymeric excipient was high-shear mixed and the resulting short-term degradation was determined with HPLC. High-shear mixing of the excipients was also carried out before drug addition to isolate effects on excipients versus those directly on the drug. Short-term drug stability was found to be strongly dependent on the amount of shear added to excipients prior to drug addition, regardless of morphology. A mechanism for the observed degradation based on mechanically generated radicals from microcrystalline cellulose is proposed. These results indicate that excipient high-shear exposure needs to be considered in regards to drug stability. PMID:18720240

  4. Image degradation in aerial imagery duplicates. [photographic processing of photographic film and reproduction (copying)

    NASA Technical Reports Server (NTRS)

    Lockwood, H. E.

    1975-01-01

    A series of Earth Resources Aircraft Program data flights were made over an aerial test range in Arizona for the evaluation of large cameras. Specifically, both medium altitude and high altitude flights were made to test and evaluate a series of color as well as black-and-white films. Image degradation, inherent in duplication processing, was studied. Resolution losses resulting from resolution characteristics of the film types are given. Color duplicates, in general, are shown to be degraded more than black-and-white films because of the limitations imposed by available aerial color duplicating stock. Results indicate that a greater resolution loss may be expected when the original has higher resolution. Photographs of the duplications are shown.

  5. Comparison of Microbial and Photochemical Processes and Their Combination for Degradation of 2-Aminobenzothiazole▿

    PubMed Central

    Bunescu, Andrei; Besse-Hoggan, Pascale; Sancelme, Martine; Mailhot, Gilles; Delort, Anne-Marie

    2008-01-01

    The transformation of 2-aminobenzothiazole (ABT) was studied under various conditions: (i) a photodegradation process at a λ of >300 nm in the presence of an Fe(III)-nitrilotriacetic acid complex (FeNTA), (ii) a biodegradation process using Rhodococcus rhodochrous OBT18 cells, and (iii) the combined processes (FeNTA plus Rhodococcus rhodochrous in the presence or absence of light). The transformation of ABT in the combined system, with or without light, was much more efficient (99% degradation after 25 h) than in the separated systems (37% photodegradation and 26% biodegradation after 125 h). No direct photolysis of ABT was observed. The main result seen is the strong positive impact of FeNTA on the photodegradation, as expected, and on the biotransformation efficiency of ABT, which was more surprising. This positive impact of FeNTA on the microbial metabolism was dependent on the FeNTA concentration. The use of UV high-performance liquid chromatography, liquid chromatography-electrospray ionization mass spectrometry, and in situ 1H nuclear magnetic resonance provided evidence of the intermediary products and thus established transformation pathways of ABT in the different processes. These pathways were identical whether the degradation process was photo- or biotransformation. A new photoproduct was identified (4OH-ABT), corresponding to a hydroxylation reaction on position 4 of the aromatic ring of ABT. PMID:18310409

  6. Role of Ubiquitin-Mediated Degradation System in Plant Biology.

    PubMed

    Sharma, Bhaskar; Joshi, Deepti; Yadav, Pawan K; Gupta, Aditya K; Bhatt, Tarun K

    2016-01-01

    Ubiquitin-mediated proteasomal degradation is an important mechanism to control protein load in the cells. Ubiquitin binds to a protein on lysine residue and usually promotes its degradation through 26S proteasome system. Abnormal proteins and regulators of many processes, are targeted for degradation by the ubiquitin-proteasome system. It allows cells to maintain the response to cellular level signals and altered environmental conditions. The ubiquitin-mediated proteasomal degradation system plays a key role in the plant biology, including abiotic stress, immunity, and hormonal signaling by interfering with key components of these pathways. The involvement of the ubiquitin system in many vital processes led scientists to explore more about the ubiquitin machinery and most importantly its targets. In this review, we have summarized recent discoveries of the plant ubiquitin system and its involvement in critical processes of plant biology. PMID:27375660

  7. Role of Ubiquitin-Mediated Degradation System in Plant Biology

    PubMed Central

    Sharma, Bhaskar; Joshi, Deepti; Yadav, Pawan K.; Gupta, Aditya K.; Bhatt, Tarun K.

    2016-01-01

    Ubiquitin-mediated proteasomal degradation is an important mechanism to control protein load in the cells. Ubiquitin binds to a protein on lysine residue and usually promotes its degradation through 26S proteasome system. Abnormal proteins and regulators of many processes, are targeted for degradation by the ubiquitin-proteasome system. It allows cells to maintain the response to cellular level signals and altered environmental conditions. The ubiquitin-mediated proteasomal degradation system plays a key role in the plant biology, including abiotic stress, immunity, and hormonal signaling by interfering with key components of these pathways. The involvement of the ubiquitin system in many vital processes led scientists to explore more about the ubiquitin machinery and most importantly its targets. In this review, we have summarized recent discoveries of the plant ubiquitin system and its involvement in critical processes of plant biology. PMID:27375660

  8. A Novel Aldo-Keto Reductase (AKR17A1) of Anabaena sp. PCC 7120 Degrades the Rice Field Herbicide Butachlor and Confers Tolerance to Abiotic Stresses in E. coli.

    PubMed

    Agrawal, Chhavi; Sen, Sonia; Yadav, Shivam; Rai, Shweta; Rai, Lal Chand

    2015-01-01

    Present study deals with the identification of a novel aldo/keto reductase, AKR17A1 from Anabaena sp. PCC7120 and adds on as 17th family of AKR superfamily drawn from a wide variety of organisms. AKR17A1 shares many characteristics of a typical AKR such as- (i) conferring tolerance to multiple stresses like heat, UV-B, and cadmium, (ii) excellent activity towards known AKR substrates (isatin and 2-nitrobenzaldehyde), and (iii) obligate dependence on NADPH as a cofactor for enzyme activity. The most novel attribute of AKR17A1, first reported in this study, is its capability to metabolize butachlor, a persistent rice field herbicide that adversely affects agro-ecosystem and non-target organisms. The AKR17A1 catalyzed- degradation of butachlor resulted into formation of 1,2-benzene dicarboxylic acid and 2,6 bis (1,1, dimethylethyl) 4,-methyl phenol as the major products confirmed by GC-MS analysis. PMID:26372161

  9. A Novel Aldo-Keto Reductase (AKR17A1) of Anabaena sp. PCC 7120 Degrades the Rice Field Herbicide Butachlor and Confers Tolerance to Abiotic Stresses in E. coli

    PubMed Central

    Agrawal, Chhavi; Sen, Sonia; Yadav, Shivam; Rai, Shweta; Rai, Lal Chand

    2015-01-01

    Present study deals with the identification of a novel aldo/keto reductase, AKR17A1 from Anabaena sp. PCC7120 and adds on as 17th family of AKR superfamily drawn from a wide variety of organisms. AKR17A1 shares many characteristics of a typical AKR such as— (i) conferring tolerance to multiple stresses like heat, UV-B, and cadmium, (ii) excellent activity towards known AKR substrates (isatin and 2-nitrobenzaldehyde), and (iii) obligate dependence on NADPH as a cofactor for enzyme activity. The most novel attribute of AKR17A1, first reported in this study, is its capability to metabolize butachlor, a persistent rice field herbicide that adversely affects agro-ecosystem and non-target organisms. The AKR17A1 catalyzed- degradation of butachlor resulted into formation of 1,2-benzene dicarboxylic acid and 2,6 bis (1,1, dimethylethyl) 4,-methyl phenol as the major products confirmed by GC-MS analysis. PMID:26372161

  10. Comparison of corn stover cell wall polysaccharide degradability by rumen microbes and a cellulosic ethanol conversion process

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Release of fermentable cell wall sugars in the cellulosic ethanol conversion process is assumed similar to rumen degradability; however, available literature has only reported surrogate rumen degradation measures (dry matter, neutral detergent fiber, and fermentation gases). We determined 72-h in vi...

  11. Decomposition of phenylarsonic acid by AOP processes: degradation rate constants and by-products.

    PubMed

    Jaworek, K; Czaplicka, M; Bratek, Ł

    2014-10-01

    The paper presents results of the studies photodegradation, photooxidation, and oxidation of phenylarsonic acid (PAA) in aquatic solution. The water solutions, which consist of 2.7 g dm(-3) phenylarsonic acid, were subjected to advance oxidation process (AOP) in UV, UV/H2O2, UV/O3, H2O2, and O3 systems under two pH conditions. Kinetic rate constants and half-life of phenylarsonic acid decomposition reaction are presented. The results from the study indicate that at pH 2 and 7, PAA degradation processes takes place in accordance with the pseudo first order kinetic reaction. The highest rate constants (10.45 × 10(-3) and 20.12 × 10(-3)) and degradation efficiencies at pH 2 and 7 were obtained at UV/O3 processes. In solution, after processes, benzene, phenol, acetophenone, o-hydroxybiphenyl, p-hydroxybiphenyl, benzoic acid, benzaldehyde, and biphenyl were identified. PMID:24824504

  12. Degradation Physics of High Power LEDs in Outdoor Environment and the Role of Phosphor in the degradation process

    NASA Astrophysics Data System (ADS)

    Singh, Preetpal; Tan, Cher Ming

    2016-04-01

    A moisture- electrical – temperature (MET) test is proposed to evaluate the outdoor reliability of high power blue LEDs, with and without phosphor, and to understand the degradation physics of LEDs under the environment of combined humidity, temperature and electrical stresses. The blue LEDs with phosphor will be the high power white LEDs. Scanning acoustic microscopy is used to examine the resulted delamination during this test for the LEDs. The degradation mechanisms of blue LEDs (LEDs without phosphor) and white LEDs (LEDs with phosphor) are found to be different, under both the power on (i.e. with 350 mA through each LED) and power off (i.e. without current supply) conditions. Difference in the coefficient of thermal expansion between the molding part and the lens material as well as the heat generated by the phosphor layer are found to account for the major differences in the degradation mechanisms observed. The findings indicate that the proposed MET test is necessary for the LED industry in evaluating the reliability of LEDs under practical outdoor usage environment.

  13. Degradation Physics of High Power LEDs in Outdoor Environment and the Role of Phosphor in the degradation process.

    PubMed

    Singh, Preetpal; Tan, Cher Ming

    2016-01-01

    A moisture- electrical - temperature (MET) test is proposed to evaluate the outdoor reliability of high power blue LEDs, with and without phosphor, and to understand the degradation physics of LEDs under the environment of combined humidity, temperature and electrical stresses. The blue LEDs with phosphor will be the high power white LEDs. Scanning acoustic microscopy is used to examine the resulted delamination during this test for the LEDs. The degradation mechanisms of blue LEDs (LEDs without phosphor) and white LEDs (LEDs with phosphor) are found to be different, under both the power on (i.e. with 350 mA through each LED) and power off (i.e. without current supply) conditions. Difference in the coefficient of thermal expansion between the molding part and the lens material as well as the heat generated by the phosphor layer are found to account for the major differences in the degradation mechanisms observed. The findings indicate that the proposed MET test is necessary for the LED industry in evaluating the reliability of LEDs under practical outdoor usage environment. PMID:27052103

  14. Degradation Physics of High Power LEDs in Outdoor Environment and the Role of Phosphor in the degradation process

    PubMed Central

    Singh, Preetpal; Tan, Cher Ming

    2016-01-01

    A moisture- electrical – temperature (MET) test is proposed to evaluate the outdoor reliability of high power blue LEDs, with and without phosphor, and to understand the degradation physics of LEDs under the environment of combined humidity, temperature and electrical stresses. The blue LEDs with phosphor will be the high power white LEDs. Scanning acoustic microscopy is used to examine the resulted delamination during this test for the LEDs. The degradation mechanisms of blue LEDs (LEDs without phosphor) and white LEDs (LEDs with phosphor) are found to be different, under both the power on (i.e. with 350 mA through each LED) and power off (i.e. without current supply) conditions. Difference in the coefficient of thermal expansion between the molding part and the lens material as well as the heat generated by the phosphor layer are found to account for the major differences in the degradation mechanisms observed. The findings indicate that the proposed MET test is necessary for the LED industry in evaluating the reliability of LEDs under practical outdoor usage environment. PMID:27052103

  15. Radar remote sensing of wind-driven land degradation processes in northeastern Patagonia.

    PubMed

    del Valle, H F; Blanco, P D; Metternicht, G I; Zinck, J A

    2010-01-01

    Wind-driven land degradation negatively impacts on rangeland production and infrastructure in the Valdes Peninsula, northeastern Patagonia. The Valdes Peninsula has the most noticeable dunefields of the Patagonian drylands. Wind erosion has been assessed at different scales in this region, but often with limited data. In general, terrain features caused by wind activity are better discriminated by active microwaves than by sensors operating in the visible and infrared regions of the electromagnetic spectrum. This paper aims to analyze wind-driven land degradation processes that control the radar backscatter observed in different sources of radar imagery. We used subsets derived from SIR-C, ERS-1 and 2, ENVISAT ASAR, RADARSAT-1, and ALOS PALSAR data. The visibility of aeolian features on radar images is mostly a function of wavelength, polarization, and incidence angle. Stabilized sand deposits are clearly observed in radar images, with defined edges but also signals of ongoing wind erosion. One of the most conspicuous features corresponds to old track sand dunes, a mixture of active and inactive barchanoid ridges and parabolic dunes. This is a clear example of deactivation of migrating dunes under the influence of vegetation. The L-band data reveal details of these sand ridges, whereas the C-band data only allow detecting a few of the larger tracks. The results of this study enable us to make recommendations about the utility of some radar sensor configurations for wind-driven land degradation reconnaissance in mid-latitude regions. PMID:20048294

  16. Degradation of the antibiotic amoxicillin by photo-Fenton process--chemical and toxicological assessment.

    PubMed

    Trovó, Alam G; Nogueira, Raquel F Pupo; Agüera, Ana; Fernandez-Alba, Amadeo R; Malato, Sixto

    2011-01-01

    The influence of iron species on amoxicillin (AMX) degradation, intermediate products generated and toxicity during the photo-Fenton process using a solar simulator were evaluated in this work. The AMX degradation was favored in the presence of the potassium ferrioxalate complex (FeOx) when compared to FeSO(4). Total oxidation of AMX in the presence of FeOx was obtained after 5 min, while 15 min were necessary using FeSO(4). The results obtained with Daphnia magna biossays showed that the toxicity decreased from 65 to 5% after 90 min of irradiation in the presence of FeSO(4). However, it increased again to a maximum of 100% after 150 min, what indicates the generation of more toxic intermediates than AMX, reaching 45% after 240 min. However, using FeOx, the inhibition of mobility varied between 100 and 70% during treatment, probably due to the presence of oxalate, which is toxic to the neonates. After 240 min, between 73 and 81% TOC removal was observed. Different pathways of AMX degradation were suggested including the opening of the four-membered β-lactamic ring and further oxidations of the methyl group to aldehyde and/or hydroxylation of the benzoic ring, generating other intermediates after bound cleavage between different atoms and further oxidation to carboxylates such acetate, oxalate and propionate, besides the generation of nitrate and ammonium. PMID:21093887

  17. Joint photomicrobial process for the degradation of the insensitive munition N-guanylurea-dinitramide (FOX-12).

    PubMed

    Perreault, Nancy N; Halasz, Annamaria; Thiboutot, Sonia; Ampleman, Guy; Hawari, Jalal

    2013-05-21

    N-Guanylurea-dinitramide (FOX-12) is a very insensitive energetic material intended to be used in the composition of next-generation insensitive munitions. To help predict the environmental behavior and fate of FOX-12, we conducted a study to determine its photodegradability and biodegradability. When dissolved in water, FOX-12, a guanylurea-dinitramide salt, also named GUDN, dissociated instantly to produce the dinitramide moiety and guanylurea, as demonstrated by high-performance liquid chromatography (HPLC) analysis. When an aqueous solution of FOX-12 was subjected to photolysis using a solar-simulated photoreactor, we found a rapid removal of the dinitramide with concurrent formation of N₂O, NO₂(-), and NO₃(-). The second component, guanylurea, was photostable. However, when FOX-12 was incubated aerobically with the soil isolate Variovorax strain VC1 and protected from light, the dinitramide component of FOX-12 was recalcitrant but guanylurea degraded effectively to ammonia, guanidine, and presumably CO₂. When FOX-12 was incubated with strain VC1 in the presence of light, both components of FOX-12 degraded, giving similar products to those described above. We concluded that the new insensitive explosive FOX-12 can be effectively degraded by a joint photomicrobial process and, therefore, should not cause persistent contamination of surface waters. PMID:23594309

  18. A novel process for diethanolamine recovery from partially degraded solutions. 2: Process analysis

    SciTech Connect

    Abdi, M.A.; Meisen, A.

    1999-08-01

    The performance of a separation process for the purification of contaminated amine solutions is described. The process uses multistage distillation and an inert carrier liquid (hexadecane). A distillation column (50-mm i.d., filled to a height of 250 mm with stainless steel DE-Pak {1/4}-in. packing) was employed to confirm the predictions made with the ASPEN process simulator and using the physical property data presented in part 1. Very good separation efficiencies were obtained under vacuum conditions for impurities typically found in contaminated diethanolamine solutions. The results are compared with conventional single-stage flash distillation.

  19. Documentation Protocols to Generate Risk Indicators Regarding Degradation Processes for Cultural Heritage Risk Evaluation

    NASA Astrophysics Data System (ADS)

    Kioussi, A.; Karoglou, M.; Bakolas, A.; Labropoulos, K.; Moropoulou, A.

    2013-07-01

    Sustainable maintenance and preservation of cultural heritage assets depends highly on its resilience to external or internal alterations and to various hazards. Risk assessment of a heritage asset's can be defined as the identification of all potential hazards affecting it and the evaluation of the asset's vulnerability (building materials and building structure conservation state).Potential hazards for cultural heritage are complex and varying. The risk of decay and damage associated with monuments is not limited to certain long term natural processes, sudden events and human impact (macroscale of the heritage asset) but is also a function of the degradation processes within materials and structural elements due to physical and chemical procedures. Obviously, these factors cover different scales of the problem. The deteriorating processes in materials may be triggered by external influences or caused because of internal chemical and/or physical variations of materials properties and characteristics. Therefore risk evaluation should be dealt in the direction of revealing the specific active decay and damage mechanism both in mesoscale [type of decay and damage] and microscale [decay phenomenon mechanism] level. A prerequisite for risk indicators identification and development is the existence of an organised source of comparable and interoperable data about heritage assets under observation. This unified source of information offers a knowledge based background of the asset's vulnerability through the diagnosis of building materials' and building structure's conservation state, through the identification of all potential hazards affecting these and through mapping of its possible alterations during its entire life-time. In this framework the identification and analysis of risks regarding degradation processes for the development of qualitative and quantitative indicators can be supported by documentation protocols. The data investigated by such protocols help

  20. Applicability of fluidized bed reactor in recalcitrant compound degradation through advanced oxidation processes: a review.

    PubMed

    Tisa, Farhana; Abdul Raman, Abdul Aziz; Wan Daud, Wan Mohd Ashri

    2014-12-15

    Treatment of industrial waste water (e.g. textile waste water, phenol waste water, pharmaceutical etc) faces limitation in conventional treatment procedures. Advanced oxidation processes (AOPs) do not suffer from the limits of conventional treatment processes and consequently degrade toxic pollutants more efficiently. Complexity is faced in eradicating the restrictions of AOPs such as sludge formation, toxic intermediates formation and high requirement for oxidants. Increased mass-transfer in AOPs is an alternate solution to this problem. AOPs combined with Fluidized bed reactor (FBR) can be a potential choice compared to fixed bed or moving bed reactor, as AOP catalysts life-span last for only maximum of 5-10 cycles. Hence, FBR-AOPs require lesser operational and maintenance cost by reducing material resources. The time required for AOP can be minimized using FBR and also treatable working volume can be increased. FBR-AOP can process from 1 to 10 L of volume which is 10 times more than simple batch reaction. The mass transfer is higher thus the reaction time is lesser. For having increased mass transfer sludge production can be successfully avoided. The review study suggests that, optimum particle size, catalyst to reactor volume ratio, catalyst diameter and liquid or gas velocity is required for efficient FBR-AOP systems. However, FBR-AOPs are still under lab-scale investigation and for industrial application cost study is needed. Cost of FBR-AOPs highly depends on energy density needed and the mechanism of degradation of the pollutant. The cost of waste water treatment containing azo dyes was found to be US$ 50 to US$ 500 per 1000 gallons where, the cost for treating phenol water was US$ 50 to US$ 800 per 1000 gallons. The analysis for FBR-AOP costs has been found to depend on the targeted pollutant, degradation mechanism (zero order, 1st order and 2nd order) and energy consumptions by the AOPs. PMID:25190594

  1. Marine coastal sediments microbial hydrocarbon degradation processes: contribution of experimental ecology in the omics’era

    PubMed Central

    Cravo-Laureau, Cristiana; Duran, Robert

    2014-01-01

    Coastal marine sediments, where important biological processes take place, supply essential ecosystem services. By their location, such ecosystems are particularly exposed to human activities as evidenced by the recent Deepwater Horizon disaster. This catastrophe revealed the importance to better understand the microbial processes involved on hydrocarbon degradation in marine sediments raising strong interests of the scientific community. During the last decade, several studies have shown the key role played by microorganisms in determining the fate of hydrocarbons in oil-polluted sediments but only few have taken into consideration the whole sediment’s complexity. Marine coastal sediment ecosystems are characterized by remarkable heterogeneity, owning high biodiversity and are subjected to fluctuations in environmental conditions, especially to important oxygen oscillations due to tides. Thus, for understanding the fate of hydrocarbons in such environments, it is crucial to study microbial activities, taking into account sediment characteristics, physical-chemical factors (electron acceptors, temperature), nutrients, co-metabolites availability as well as sediment’s reworking due to bioturbation activities. Key information could be collected from in situ studies, which provide an overview of microbial processes, but it is difficult to integrate all parameters involved. Microcosm experiments allow to dissect in-depth some mechanisms involved in hydrocarbon degradation but exclude environmental complexity. To overcome these lacks, strategies have been developed, by creating experiments as close as possible to environmental conditions, for studying natural microbial communities subjected to oil pollution. We present here a review of these approaches, their results and limitation, as well as the promising future of applying “omics” approaches to characterize in-depth microbial communities and metabolic networks involved in hydrocarbon degradation. In addition

  2. High-Resolution Crack Imaging Reveals Degradation Processes in Nuclear Reactor Structural Materials

    SciTech Connect

    Olszta, Matthew J.; Schreiber, Daniel K.; Thomas, Larry E.; Bruemmer, Stephen M.

    2012-04-01

    Corrosion and cracking represent critical failure mechanisms for structural materials in many applications. Although a crack can often be seen with the unaided eye, higher resolution imaging techniques are required to understand the nature of the crack tips and underlying degradation processes. Researchers at Pacific Northwest National Laboratory (PNNL) employ a suite of microscopy techniques and site-specific material sampling to analyze corrosion and crack structures, producing images and compositional analyses with near-atomic spatial resolution. The samples are cracked components removed from commercial light-water reactor service or laboratory samples tested in simulated reactor environments.

  3. Advanced oxidation processes for degradation of 2,4-dichlo- and 2,4-dimethylphenol

    SciTech Connect

    Trapido, M.; Veressinina, Y.; Munter, R.

    1998-08-01

    The efficiency of different advanced oxidation processes for degradation of two phenols, 2,4-dimethylphenol (2,4-DMP) and 2,4-dichlorophenol (2,4-DCP), has been under study. Advanced oxidation processes, especially the Fe{sup 2+}/H{sub 2}O{sub 2}/ultraviolet (UV) system, were found to be effective in decomposing phenols and chlorophenols. The degradation rate for 2,4-DCP followed the order, H{sub 2}O{sub 2}/Fe{sup 2+}/UV > H{sub 2}O{sub 2}/Fe{sup 2+} > O{sub 3}/ultrasound (US) > O{sub 3} {ge} O{sub 3}/UV > UV/H{sub 2}O{sub 2} {ge} US > UV. The corresponding order for 2,4-DMP was H{sub 2}O{sub 2}/Fe{sup 2+}/UV > O{sub 3}/US > O{sub 3} {ge} O{sub 3}/UV > H{sub 2}O{sub 2}/Fe{sup 2+} > US {ge} UV/H{sub 2}O{sub 2} > UV. Therefore, the chemical treatment, especially advanced oxidation processes, may be an alternative method for destruction of phenols and purification of wastewaters containing phenolic compounds.

  4. Degradation of estrone in water and wastewater by various advanced oxidation processes.

    PubMed

    Sarkar, Shubhajit; Ali, Sura; Rehmann, Lars; Nakhla, George; Ray, Madhumita B

    2014-08-15

    A comprehensive study was conducted to determine the relative efficacy of various advanced oxidation processes such as O3, H2O2, UV, and combinations of UV/O3, UV/H2O2 for the removal of estrone (E1) from pure water and secondary effluent. In addition to the parent compound (E1) removal, performance of the advanced oxidation processes was characterized using removal of total organic carbon (TOC), and estrogenicity of the effluent. Although E1 removal was high for all the AOPs, intermediates formed were more difficult to degrade leading to slow TOC removal. Energy calculations and cost analysis indicated that, although UV processes have low electricity cost, ozonation is the least cost option ($ 0.34/1000 gallons) when both capital and operating costs were taken into account. Ozonation also is superior to the other tested AOPs due to higher removal of TOC and estrogenicity. The rate of E1 removal decreased linearly with the background TOC in water, however, E1 degradation in the secondary effluent from a local wastewater treatment plant was not affected significantly due to the low COD values in the effluent. PMID:24937659

  5. Degradation of atrazine in aqueous solution with electrophotocatalytic process using TiO2-x photoanode.

    PubMed

    Komtchou, Simon; Dirany, Ahmad; Drogui, Patrick; Delegan, Nazar; El Khakani, My Ali; Robert, Didier; Lafrance, Pierre

    2016-08-01

    The present study investigates the efficiency of a sustainable treatment technology, the electrophotocatalytic (EPC) process using innovative photoanode TiO2-x prepared by a magnetron sputter deposition process to remove the herbicide atrazine (ATZ) from water. The coexistence of anatase and rutile were identified by X-ray diffraction (XRD) and the presence of oxygen vacancies reduce the value of the observed bandgap to 3.0 eV compared to the typical 3.2 eV TiO2, this reduction is concomitant with a partial phase transition which is probably responsible for the increase in photoactivity. The experimental results with an initial concentration of ATZ (100 μg L(-1)) show that more than 99% of ATZ oxidation was obtained after 30 min of treatment and reaction kinetic constant was about 0.146 min(-1). This good efficiency indicates that EPC process is an efficient, simple and green technique for degradation of pesticides such as ATZ in water. The analysis with liquid chromatography technique permits to identify, quantify and see the evolution of ATZ by-products which are generated by dechlorination, dealkylation and alkylic-oxidation mechanisms. Finally, the possible pathways of ATZ degradation by hydroxyl radicals were proposed. PMID:27209556

  6. Weighing Abiotic and Biotic Influences on Weed Seed Predation Rates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed seed predation is an important ecosystem service supporting weed management in low-external-input agroecosystems. Current knowledge of weed seed predation in arable systems focuses on biotic mechanisms, with less understood about the relative impact of abiotic variables on this process. In orde...

  7. Cell wall remodeling under abiotic stress

    PubMed Central

    Tenhaken, Raimund

    2015-01-01

    Plants exposed to abiotic stress respond to unfavorable conditions on multiple levels. One challenge under drought stress is to reduce shoot growth while maintaining root growth, a process requiring differential cell wall synthesis and remodeling. Key players in this process are the formation of reactive oxygen species (ROS) and peroxidases, which initially cross-link phenolic compounds and glycoproteins of the cell walls causing stiffening. The function of ROS shifts after having converted all the peroxidase substrates in the cell wall. If ROS-levels remain high during prolonged stress, OH°-radicals are formed which lead to polymer cleavage. In concert with xyloglucan modifying enzymes and expansins, the resulting cell wall loosening allows further growth of stressed organs. PMID:25709610

  8. Early diagnostic of concurrent gear degradation processes progressing under time-varying loads

    NASA Astrophysics Data System (ADS)

    Guilbault, Raynald; Lalonde, Sébastien

    2016-08-01

    This study develops a gear diagnostic procedure for the detection of multi- and concurrent degradation processes evolving under time-varying loads. Instead of a conventional comparison between a descriptor and an alarm level, this procedure bases its detection strategy on a descriptor evolution tracking; a lasting descriptor increase denotes the presence of ongoing degradation mechanisms. The procedure works from time domain residual signals prepared in the frequency domain, and accepts any gear conditions as reference signature. To extract the load fluctuation repercussions, the procedure integrates a scaling factor. The investigation first examines a simplification assuming a linear connection between the load and the dynamic response amplitudes. However, while generally valuable, the precision losses associated with large load variations may mask the contribution of tiny flaws. To better reflect the real non-linear relation, the paper reformulates the scaling factor; a power law with an exponent value of 0.85 produces noticeable improvements of the load effect extraction. To reduce the consequences of remaining oscillations, the procedure also includes a filtering phase. During the validation program, a synthetic wear progression assuming a commensurate relation between the wear depth and friction assured controlled evolutions of the surface degradation influence, whereas the fillet crack growth remained entirely determined by the operation conditions. Globally, the tested conditions attest that the final strategy provides accurate monitoring of coexisting isolated damages and general surface deterioration, and that its tracking-detection capacities are unaffected by severe time variations of external loads. The procedure promptly detects the presence of evolving abnormal phenomena. The tests show that the descriptor curve shapes virtually describe the constant wear progression superimposed on the crack length evolution. At the tooth fracture, the mean values of

  9. Crystal structure of Escherichia coli PNPase: Central channel residues are involved in processive RNA degradation

    PubMed Central

    Shi, Zhonghao; Yang, Wei-Zen; Lin-Chao, Sue; Chak, Kin-Fu; Yuan, Hanna S.

    2008-01-01

    Bacterial polynucleotide phosphorylase (PNPase) plays a major role in mRNA turnover by the degradation of RNA from the 3′- to 5′-ends. Here, we determined the crystal structures of the wild-type and a C-terminal KH/S1 domain-truncated mutant (ΔKH/S1) of Escherichia coli PNPase at resolutions of 2.6 Å and 2.8 Å, respectively. The six RNase PH domains of the trimeric PNPase assemble into a ring-like structure containing a central channel. The truncated mutant ΔKH/S1 bound and cleaved RNA less efficiently with an eightfold reduced binding affinity. Thermal melting and acid-induced trimer dissociation studies, analyzed by circular dichroism and dynamic light scattering, further showed that ΔKH/S1 formed a less stable trimer than the full-length PNPase. The crystal structure of ΔKH/S1 is more expanded, containing a slightly wider central channel than that of the wild-type PNPase, suggesting that the KH/S1 domain helps PNPase to assemble into a more compact trimer, and it regulates the channel size allosterically. Moreover, site-directed mutagenesis of several arginine residues in the channel neck regions produced defective PNPases that either bound and cleaved RNA less efficiently or generated longer cleaved oligonucleotide products, indicating that these arginines were involved in RNA binding and processive degradation. Taking these results together, we conclude that the constricted central channel and the basic-charged residues in the channel necks of PNPase play crucial roles in trapping RNA for processive exonucleolytic degradation. PMID:18812438

  10. Behavior of cellulose-degrading bacteria in thermophilic anaerobic digestion process.

    PubMed

    Syutsubo, K; Nagaya, Y; Sakai, S; Miya, A

    2005-01-01

    Previously, we found that the newly isolated Clostridium sp. strain JC3 became the dominant cellulose-degrading bacterium in thermophilic methanogenic sludge. In the present study, the behavior of strain JC3 in the thermophilic anaerobic digestion process was investigated quantitatively by molecular biological techniques. A cellulose-degrading experiment was conducted at 55 degrees C with a 9.5 L of anaerobic baffled reactor having three compartments (Nos. 1, 2, 3). Over 80% of the COD input was converted into methane when 2.5 kgCOD m(-3) d(-1) was loaded for an HRT of 27 days. A FISH probe specific for strain JC3 was applied to sludge samples harvested from the baffled reactor. Consequently, the ratio of JC3 cells to DAPI-stained cells increased from below 0.5% (undetectable) to 9.4% (compartment 1), 13.1% (compartment 2) and 21.6% (compartment 3) at day 84 (2.5 kgCOD m(-3)d(-1)). The strain JC3 cell numbers determined by FISH correlated closely with the cellulose-degrading methanogenic activities of retained sludge. A specific primer set targeting the cellulase gene (cellobiohydrolaseA: cbhA) of strain JC3 was designed and applied to digested sludge for treating solid waste such as coffee grounds, wastepaper, garbage, cellulose and so on. The strain JC3 cell numbers determined by quantitative PCR correlated closely with the cellulose-sludge loading of the thermophilic digester. Strain JC3 is thus important in the anaerobic hydrolysis of cellulose in thermophilic anaerobic digestion processes. PMID:16180412

  11. Degradation of metallic surfaces under space conditions, with particular emphasis on Hydrogen recombination processes

    NASA Astrophysics Data System (ADS)

    Sznajder, Maciej; Geppert, Ulrich; Dudek, Mirosław

    2015-07-01

    The widespread use of metallic structures in space technology brings risk of degradation which occurs under space conditions. New types of materials dedicated for space applications, that have been developed in the last decade, are in majority not well tested for different space mission scenarios. Very little is known how material degradation may affect the stability and functionality of space vehicles and devices during long term space missions. Our aim is to predict how the solar wind and electromagnetic radiation degrade metallic structures. Therefore both experimental and theoretical studies of material degradation under space conditions have been performed. The studies are accomplished at German Aerospace Center (DLR) in Bremen (Germany) and University of Zielona Góra (Poland). The paper presents the results of the theoretical part of those studies. It is proposed that metal bubbles filled with Hydrogen molecular gas, resulting from recombination of the metal free electrons and the solar protons, are formed on the irradiated surfaces. A thermodynamic model of bubble formation has been developed. We study the creation process of H2 -bubbles as function of, inter alia, the metal temperature, proton dose and energy. Our model has been verified by irradiation experiments completed at the DLR facility in Bremen. Consequences of the bubble formation are changes of the physical and thermo-optical properties of such degraded metals. We show that a high surface density of bubbles (up to 108cm-2) with a typical bubble diameter of ∼ 0.4 μm will cause a significant increase of the metallic surface roughness. This may have serious consequences to any space mission. Changes in the thermo-optical properties of metallic foils are especially important for the solar sail propulsion technology because its efficiency depends on the effective momentum transfer from the solar photons onto the sail structure. This transfer is proportional to the reflectivity of a sail. Therefore

  12. Solar photocatalytic degradation of naphthenic acids in oil sands process-affected water.

    PubMed

    Leshuk, Tim; Wong, Timothy; Linley, Stuart; Peru, Kerry M; Headley, John V; Gu, Frank

    2016-02-01

    Bitumen mining in the Canadian oil sands creates large volumes of oil sands process-affected water (OSPW), the toxicity of which is due in part to naphthenic acids (NAs) and other acid extractable organics (AEO). The objective of this work was to evaluate the potential of solar photocatalysis over TiO2 to remove AEO from OSPW. One day of photocatalytic treatment under natural sunlight (25 MJ/m(2) over ∼14 h daylight) eradicated AEO from raw OSPW, and acute toxicity of the OSPW toward Vibrio fischeri was eliminated. Nearly complete mineralization of organic carbon was achieved within 1-7 day equivalents of sunlight exposure, and degradation was shown to proceed through a superoxide-mediated oxidation pathway. High resolution mass spectrometry (HRMS) analysis of oxidized intermediate compounds indicated preferential degradation of the heavier and more cyclic NAs (higher number of double bond equivalents), which are the most environmentally persistent fractions. The photocatalyst was shown to be recyclable for multiple uses, and thus solar photocatalysis may be a promising "green" advanced oxidation process (AOP) for OSPW treatment. PMID:26539710

  13. Using digital flow cytometry to assess the degradation of three cyanobacteria species after oxidation processes.

    PubMed

    Wert, Eric C; Dong, Mei Mei; Rosario-Ortiz, Fernando L

    2013-07-01

    Depending on drinking water treatment conditions, oxidation processes may result in the degradation of cyanobacteria cells causing the release of toxic metabolites (microcystin), odorous metabolites (MIB, geosmin), or disinfection byproduct precursors. In this study, a digital flow cytometer (FlowCAM(®)) in combination with chlorophyll-a analysis was used to evaluate the ability of ozone, chlorine, chlorine dioxide, and chloramine to damage or lyse cyanobacteria cells added to Colorado River water. Microcystis aeruginosa (MA), Oscillatoria sp. (OSC) and Lyngbya sp. (LYN) were selected for the study due to their occurrence in surface water supplies, metabolite production, and morphology. Results showed that cell damage was observed without complete lysis or fragmentation of the cell membrane under many of the conditions tested. During ozone and chlorine experiments, the unicellular MA was more susceptible to oxidation than the filamentous OSC and LYN. Rate constants were developed based on the loss of chlorophyll-a and oxidant exposure, which showed the oxidants degraded MA, OSC, and LYN according to the order of ozone > chlorine ~ chlorine dioxide > chloramine. Digital and binary images taken by the digital flow cytometer provided qualitative insight regarding cell damage. When applying this information, drinking water utilities can better understand the risk of cell damage or lysis during oxidation processes. PMID:23726712

  14. Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation.

    PubMed

    Zhang, Tao; Chen, Yin; Wang, Yuru; Le Roux, Julien; Yang, Yang; Croué, Jean-Philippe

    2014-05-20

    Peroxydisulfate (PDS) is an appealing oxidant for contaminated groundwater and toxic industrial wastewaters. Activation of PDS is necessary for application because of its low reactivity. Present activation processes always generate sulfate radicals as actual oxidants which unselectively oxidize organics and halide anions reducing oxidation capacity of PDS and producing toxic halogenated products. Here we report that copper oxide (CuO) can efficiently activate PDS under mild conditions without producing sulfate radicals. The PDS/CuO coupled process is most efficient at neutral pH for decomposing a model compound, 2,4-dichlorophenol (2,4-DCP). In a continuous-flow reaction with an empty-bed contact time of 0.55 min, over 90% of 2,4-DCP (initially 20 μM) and 90% of adsorbable organic chlorine (AOCl) can be removed at the PDS/2,4-DCP molar ratio of 1 and 4, respectively. Based on kinetic study and surface characterization, PDS is proposed to be first activated by CuO through outer-sphere interaction, the rate-limiting step, followed by a rapid reaction with 2,4-DCP present in the solution. In the presence of ubiquitous chloride ions in groundwater/industrial wastewater, the PDS/CuO oxidation shows significant advantages over sulfate radical oxidation by achieving much higher 2,4-DCP degradation capacity and avoiding the formation of highly chlorinated degradation products. This work provides a new way of PDS activation for contaminant removal. PMID:24779765

  15. Improvement of the detection rate in digital watermarked images against image degradation caused by image processing

    NASA Astrophysics Data System (ADS)

    Nishio, Masato; Ando, Yutaka; Tsukamoto, Nobuhiro; Kawashima, Hironao; Nakamura, Shinya

    2004-04-01

    In the current environment of medical information disclosure, the general-purpose image format such as JPEG/BMP which does not require special software for viewing, is suitable for carrying and managing medical image information individually. These formats have no way to know patient and study information. We have therefore developed two kinds of ID embedding methods: one is Bit-swapping method for embedding Alteration detection ID and the other is data-imposing method in Fourier domain using Discrete Cosine Transform (DCT) for embedding Original image source ID. We then applied these two digital watermark methods to four modality images (Chest X-ray, Head CT, Abdomen CT, Bone scintigraphy). However, there were some cases where the digital watermarked ID could not be detected correctly due to image degradation caused by image processing. In this study, we improved the detection rate in digital watermarked image using several techniques, which are Error correction method, Majority correction method, and Scramble location method. We applied these techniques to digital watermarked images against image processing (Smoothing) and evaluated the effectiveness. As a result, Majority correction method is effective to improve the detection rate in digital watermarked image against image degradation.

  16. Kinetic and mechanistic investigations of mesotrione degradation in aqueous medium by Fenton process.

    PubMed

    Bensalah, Nasr; Khodary, Ahmed; Abdel-Wahab, Ahmed

    2011-05-15

    In this work, chemical oxidation of mesotrione herbicide by Fenton process in acidic medium (pH 3.5) was investigated. Total disappearance of mesotrione and up to 95% removal of total organic carbon (TOC) were achieved by Fenton's reagent under optimized initial concentrations of hydrogen peroxide (H(2)O(2)) and ferrous iron (Fe(2+)) at pH 3.5. The time-dependent degradation profiles of mesotrione were satisfactorily fitted by first-order kinetics. Competition kinetic model was used to evaluate a rate constant of 8.8(± 0.2) × 10(9)M(-1) s(-1) for the reaction of mesotrione with hydroxyl radicals. Aromatic and aliphatic intermediates of mesotrione oxidation were identified and quantified by high performance liquid chromatography (HPLC). It seems that the degradation of mesotrione by Fenton process begins with the rupture of mesotrione molecule into two moieties: cyclohexane-1,3-dione derivative and 2-nitro-4-methylsulfonylbenzoic acid. Hydroxylation and release of sulfonyl and/or nitro groups from 2-nitro-4-methylsulfonylbenzoic acid lead to the formation of polyhydroxylated benzoic acid derivatives which undergo an oxidative opening of benzene ring into carboxylic acids that end to be transformed into carbon dioxide. PMID:21397397

  17. Integrated Impacts of environmental factors on the degradation of fumigants

    NASA Astrophysics Data System (ADS)

    Lee, J.; Yates, S. R.

    2007-12-01

    Volatilization of fumigants has been concerned as one of air pollution sources. Fumigants are used to control nematodes and soil-born pathogens for a pre-plant treatment to increase the production of high-cash crops. One of technologies to reduce the volatilization of fumigants to atmosphere is to enhance the degradation of fumigants in soil. Fumigant degradation is affected by environmental factors such as moisture content, temperature, initial concentration of injected fumigants, and soil properties. However, effects of each factor on the degradation were limitedly characterized and integrated Impacts from environmental factors has not been described yet. Degradation of 1,3- dichloropropene (1,3-D) was investigated in various condition of temperatures (20-60 °C), moisture contents (0 ¡V 30 %) and initial concentrations (0.6 ¡V 60 mg/kg) with Arlington sandy loam soil. Abiotic and biotic degradation processes were distinguished using two sterilization methods with HgCl2 and autoclave and impacts of environmental factors were separately assessed for abiotic and biotic degradations. Initially, degradation rates (k) of cis and trans 1,3-D isomers were estimated by first-order kinetics and modified depending on impacts from environmental factors. Arrhenius equation and Walker¡¦s equation which were conventionally used to describe temperature and moisture effects on degradation were assessed for integrated impacts from environmental factors and logarithmical correlation was observed between initial concentrations of applied fumigants and degradation rates. Understanding integrated impacts of environmental factors on degradation will help to design more effective emission reduction schemes in various conditions and provide more practical parameters for modeling simulations.

  18. Biotic and Abiotic Transformation of a Volatile Organics Plume in a Semi-Arid Vadose Zone

    SciTech Connect

    Studer, J.E.; Singletary, M.A.; Miller, D.R.

    1999-04-08

    An evaluation of biotic and abiotic attenuation processes potentially important to chlorinated and non-chlorinated volatile organic compound (VOC) fate and transport in the 148 meter thick vadose zone beneath the Chemical Waste Landfill (CWL) was conducted. A unique feature of this evaluation is the comparison of two estimates of VOC mass present in the soil gas, pore-water, and solid phases (but not including mass as non-aqueous phase liquid [NAPL]) of the vadose zone in 1993. One estimate, 1,800 kg, was obtained from vadose zone transport modeling that incorporated molecular diffusion and volatilization to the atmosphere, but not biotic or chemical processes. The other estimate, 2,120 kg, was obtained from the sum of VOC mass physically removed during soil vapor extraction and an estimate of VOC mass remaining in the vadose zone in 1998, both adjusted to exclude NAPL mass. This comparison indicates that biogeochemical processes were at best slightly important to historical VOC plume development. Some evidence of aerobic degradation of non-chlorinated VOCs and abiotic transformation of 1,1,1-Trichloroethane was identified. Despite potentially amenable site conditions, no evidence was found of cometabolic and anaerobic transformation pathways. Relying principally on soil-gas analytical results, an upper-bound estimate of 21% mass reduction due to natural biogeochemical processes was developed. Although available information for the CWL indicates that natural attenuation processes other than volatilization to the atmosphere did not effective y enhance groundwater protection, these processes could be important in significantly reducing groundwater contamination and exposure risks at other sites. More laboratory and field research is required to improve our collective ability to characterize and exploit natural VOC attenuation processes, especially with respect to the combination of relatively thick and dry vadose zones and chlorinated VOCs.

  19. Carotene Degradation and Isomerization during Thermal Processing: A Review on the Kinetic Aspects.

    PubMed

    Colle, Ines J P; Lemmens, Lien; Knockaert, Griet; Van Loey, Ann; Hendrickx, Marc

    2016-08-17

    Kinetic models are important tools for process design and optimization to balance desired and undesired reactions taking place in complex food systems during food processing and preservation. This review covers the state of the art on kinetic models available to describe heat-induced conversion of carotenoids, in particular lycopene and β-carotene. First, relevant properties of these carotenoids are discussed. Second, some general aspects of kinetic modeling are introduced, including both empirical single-response modeling and mechanism-based multi-response modeling. The merits of multi-response modeling to simultaneously describe carotene degradation and isomerization are demonstrated. The future challenge in this research field lies in the extension of the current multi-response models to better approach the real reaction pathway and in the integration of kinetic models with mass transfer models in case of reaction in multi-phase food systems. PMID:25830560

  20. Hierarchical and serial processing in the spatial auditory cortical pathway is degraded by natural aging

    PubMed Central

    Juarez-Salinas, Dina L.; Engle, James R.; Navarro, Xochi O.; Recanzone, Gregg H.

    2010-01-01

    The compromised abilities to localize sounds and to understand speech are two hallmark deficits in aged individuals. The auditory cortex is necessary for these processes, yet we know little about how normal aging affects these early cortical fields. In this study, we recorded the spatial tuning of single neurons in primary (area A1) and secondary (area CL) auditory cortical areas in young and aged alert rhesus macaques. We found that the neurons of aged animals had greater spontaneous and driven activity, and broader spatial tuning compared to those of younger animals. Importantly, spatial tuning was not sharpened between A1 and CL in aged monkeys as it is in younger monkeys. This implies that a major effect of normal aging is a degradation of the hierarchical processing between serially connected cortical areas, which could be a key contributing mechanism of the general cognitive decline that is commonly observed in normal aging. PMID:21048138

  1. Degradation of bisphenol A using UV and UV/H2O2 processes.

    PubMed

    Felis, Ewa; Ledakowicz, Stanisław; Miller, Jacek S

    2011-12-01

    Bisphenol A (BPA; 4-[2-(4-hydroxyphenyl)propan-2-yl]phenol) is a substance typically used in the plastic industry. It is used in the production of epoxy resins, polycarbonate, or fire retardants or as a stabilizer and an antioxidant in numerous types of plastics. Bisphenol A is introduced into the environment via municipal and industrial wastewater. Because of its hydrophobic properties, BPA has the potential for sorption on activated sludge during the biological wastewater treatment processes. This study investigated the degradation of BPA by means of UV-radiation and in the UV/H2O2 process with the presence and absence of hydrocarbonate ions (HCO3(-)) as hydroxyl radicals (OH*) scavengers. The calculated value of quantum yield was equal to 0.18, and the value of BPA rate constant with hydroxyl radicals was equal to 3.3 x 10(9) M(-1) s(-1). PMID:22368957

  2. Kinetic and thermodynamic analysis of Creosote degradation process under isothermal experimental conditions.

    PubMed

    Janković, Bojan Ž; Janković, Marija M

    2013-01-01

    Isothermal degradation process of commercial Creosote was analyzed by the thermogravimetric (TG) technique in a nitrogen atmosphere, at four different operating temperatures (230, 250, 270 and 290°C). The kinetic triplet [Ea , A and f(α)] and the thermodynamic parameters (ΔH (≠), ΔS (≠)and ΔG (≠)) for investigated Creosote samples were calculated. It was found that two-parameter autocatalytic Šesták-Berggren (SB) kinetic model best describes the process, but in the form of accommodation function with phenomenological character. Applying the multiplicative factor, the true value of activation energy (E (true) a ) was calculated. The experimental density distribution function of the apparent activation energy values was evaluated from isoconversional kinetic analysis. Based of the characteristic shape of distribution curve, it was concluded that the isothermal degradation of Creosote represents a complex physico-chemical process, given the chemical structure of the studied system. It is assumed that the considered process probably includes primary and secondary (autocatalytic) pyrolysis reactions, together with various decomposition reactions and radicals recombination pathways. The objective of the presented work is the proof of principle of the pyrolysis-based thermo-chemical conversion technologies for the production of value-added chemicals from the complex organic compounds, which even include chemical contaminants (such as PAHs). Also, the present work allows us that by using a unified kinetic approach we can obtain a significant physico-chemical characteristics of the tested system, which can then be used in the procedure for the separation of organics from creosote-treated woods and creosote-contaminated soils. The significance of this research is to identify the global kinetic behavior of some target contaminant compounds for pyrolysis, which are primarily PAHs. PMID:23705620

  3. Microbial degradation of N-methyl-2-pyrrolidone in surface water and bacteria responsible for the process.

    PubMed

    Růžička, Jan; Fusková, Jana; Křížek, Karel; Měrková, Markéta; Černotová, Alena; Smělík, Michal

    2016-01-01

    Due to widespread utilization in many industrial spheres and agrochemicals, N-methyl-2-pyrrolidone (NMP) is a potential contaminant of different surface water ecosystems. Hence, investigation was made into its aerobic microbial degradability in samples of water from a river, wetland area and spring. The results showed that the compound was degradable in all water types, and that the fastest NMP removal occurred in 4 days in river water, while in the wetland and spring samples the process was relatively slow, requiring several months to complete. Key bacterial degraders were successfully isolated in all cases, and their identification proved that pseudomonads played a major role in NMP degradation in river water, while the genera Rhodococcus and Patulibacter fulfilled a similar task in the wetland sample. Regarding spring water, degrading members of the Mesorhizobium and Rhizobium genera were found. PMID:26877048

  4. [Degradation of Organic Sunscreens 2-hydroxy-4-methoxybenzophenone by UV/ H2O2 Process: Kinetics and Factors].

    PubMed

    Feng, Xin-xin; Du, Er-deng; Guo, Ying-qing; Li, Hua-jie; Liu, Xiang; Zhou, Fang

    2015-06-01

    Organic sunscreens continue to enter the environment through people's daily consumption, and become a kind of emerging contaminants. The photochemical degradation of benzophenone-3 (BP-3) in water by UV/H2O2 process was investigated. Several factors, including the initial BP-3 concentration, H2O2 concentration, UV light intensity, coexisting cations and anions, humic acid and tert-butyl alcohol, were also discussed. The results showed that BP-3 degradation rate constant decreased with increasing initial BP-3 concentration, while increased with increasing H2O2 dosage and UV intensity. Coexisting anions could reduce the degradation rate, while coexisting ferric ions could stimulate the production of OH through Fenton-like reaction, further significantly accelerated BP-3 degradation process. The BP-3 degradation would be inhibited by humic acid or tert-butyl alcohol. The electrical energy per order (E(Eo)) values were also calculated to evaluate the cost of BP-3 degradation by UV/H2O2 process. The addition of ferric ions significantly reduced the value of E(Eo). The investigation of processing parameter could provide a reference for the practical engineering applications of benzophenone compounds removal by UV/H2O2 process. PMID:26387317

  5. Intensification of degradation of methomyl (carbamate group pesticide) by using the combination of ultrasonic cavitation and process intensifying additives.

    PubMed

    Raut-Jadhav, Sunita; Pinjari, Dipak V; Saini, Daulat R; Sonawane, Shirish H; Pandit, Aniruddha B

    2016-07-01

    In the present work, the degradation of methomyl has been carried out by using the ultrasound cavitation (US) and its combination with H2O2, Fenton and photo-Fenton process. The study of effect of operating pH and ultrasound power density has indicated that maximum extent of degradation of 28.57% could be obtained at the optimal pH of 2.5 and power density of 0.155 W/mL. Application of US in combination with H2O2, Fenton and photo-Fenton process has further accelerated the rate of degradation of methomyl with complete degradation of methomyl in 27 min, 18 min and 9 min respectively. Mineralization study has proved that a combination of US and photo-Fenton process is the most effective process with maximum extent of mineralization of 78.8%. Comparison of energy efficiency and cost effectiveness of various processes has indicated that the electrical cost of 79892.34Rs./m(3) for ultrasonic degradation of methomyl has drastically reduced to 2277.00Rs./m(3), 1518.00Rs./m(3) and 807.58Rs./m(3) by using US in combination with H2O2, Fenton and photo-Fenton process respectively. The cost analysis has also indicated that the combination of US and photo-Fenton process is the most energy efficient and cost effective process. PMID:26964933

  6. Iron in non-hydroxyl radical mediated photochemical processes for dye degradation: Catalyst or inhibitor?

    PubMed

    Wu, Bingdang; Zhang, Shujuan; Li, Xuchun; Liu, Xitong; Pan, Bingcai

    2015-07-01

    The acetylacetone (AA) mediated photochemical process has been proven as an efficient approach for decoloration. For azo dyes, the UV/AA process was several to more than ten times more efficient than the UV/H2O2 process. Iron is one of the most common elements on the earth. It is well known that iron can improve the UV/H2O2 process through thermal Fenton and photo-Fenton reactions. What will be the role of iron in the UV/AA process? Could iron-AA complexes act as photocatalysts in environmental remediation? To answer these questions, the photo-degradation of an azo dye, Acid Orange 7 (AO7), was conducted under the variant combinations of AA with iron species in both ionic (Fe2+, Fe3+) and complex (Fe(AA)3) forms. The pseudo-first-order decoloration rate constants of AO7 in these photochemical processes followed such an order: UV/Fe(II)/AAprocess. Based on spectroscopic analysis, the inner filter effect of iron and the competition between Fe(III) and AA for the complexation with AO7 were attributed to the inhibition effect of iron on the UV/AA process. The understanding of the role of iron provides insight into the practical application of the UV/AA process. PMID:25765264

  7. Processing of receptor-bound somatostatin: internalization and degradation by pancreatic acini

    SciTech Connect

    Viguerie, N.; Esteve, J.P.; Susini, C.; Vaysse, N.; Ribet, A.

    1987-04-01

    The authors have previously demonstrated the presence of specific binding sites for somatostatin on plasma membranes from pancreatic acinar cells. In the present study they attempted to characterize the fate of receptor-bound /sup 125/I-(Tyr/sup 11/)somatostatin. Internalization of somatostatin was rapid (reaching a plateau at 20% of the cell-associated specific radioactivity) and temperature dependent. To follow the processing of bound somatostatin, acini were incubated with /sup 125/I-(Tyr/sup 11/)somatostatin at 5/sup 0/C during 16 h then, after washing, incubated at 37/sup 0/C for 90 min in fresh medium. Surface-bound somatostatin decreased rapidly, whereas radioactivity increased in the cell interior and the incubation medium. Intracellular and membrane-bound radioactivity was mainly intact /sup 125/I-(Tyr/sup 11/)somatostatin. Degradation occurred at the plasma membrane level and led to iodotyrosine production. After 15 min of incubation, 15% of the initially surface-bound /sup 125/I-(Tyr/sup 11/)somatostatin was compartmentalized within the cell, mainly in the microsomal fraction. After 30 min, a significant increase in radioactivity appeared in the nuclear fraction. These results indicate that the major part of somatostatin cellular degradation takes place at the plasma membrane level. Within the cell, somatostatin is routed to the nucleus via particular fractions sedimenting with microsomal vesicles.

  8. Pseudomonas aeruginosa lectin LecB inhibits tissue repair processes by triggering β-catenin degradation

    PubMed Central

    Cott, Catherine; Thuenauer, Roland; Landi, Alessia; Kühn, Katja; Juillot, Samuel; Imberty, Anne; Madl, Josef; Eierhoff, Thorsten; Römer, Winfried

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that induces severe lung infections such as ventilator-associated pneumonia and acute lung injury. Under these conditions, the bacterium diminishes epithelial integrity and inhibits tissue repair mechanisms, leading to persistent infections. Understanding the involved bacterial virulence factors and their mode of action is essential for the development of new therapeutic approaches. In our study we discovered a so far unknown effect of the P. aeruginosa lectin LecB on host cell physiology. LecB alone was sufficient to attenuate migration and proliferation of human lung epithelial cells and to induce transcriptional activity of NF-κB. These effects are characteristic of impaired tissue repair. Moreover, we found a strong degradation of β-catenin, which was partially recovered by the proteasome inhibitor lactacystin. In addition, LecB induced loss of cell–cell contacts and reduced expression of the β-catenin targets c-myc and cyclin D1. Blocking of LecB binding to host cell plasma membrane receptors by soluble l-fucose prevented these changes in host cell behavior and signaling, and thereby provides a powerful strategy to suppress LecB function. Our findings suggest that P. aeruginosa employs LecB as a virulence factor to induce β-catenin degradation, which then represses processes that are directly linked to tissue recovery. PMID:26862060

  9. Translation by Ribosomes with mRNA Degradation: Exclusion Processes on Aging Tracks

    NASA Astrophysics Data System (ADS)

    Nagar, Apoorva; Valleriani, Angelo; Lipowsky, Reinhard

    2011-12-01

    We investigate the role of degradation of mRNA on protein synthesis using the totally asymmetric simple exclusion process (TASEP) as the underlying model for ribosome dynamics. mRNA degradation has a strong effect on the lifetime distribution of the mRNA, which in turn affects polysome statistics such as the number of ribosomes present on an mRNA strand of a given size. An average over mRNA of all ages is equivalent to an average over possible configurations of the corresponding TASEP—both before steady state and in steady state. To evaluate the relevant quantities for the translation problem, we first study the approach towards steady state of the TASEP, starting with an empty lattice representing an unloaded mRNA. When approaching the high density phase, the system shows two distinct phases with the entry and exit boundaries taking control of the density at their respective ends in the second phase. The approach towards the maximal current phase exhibits the surprising property that the ribosome entry flux can exceed the maximum possible steady state value. In all phases, the averaging over the mRNA age distribution shows a decrease in the average ribosome density profile as a function of distance from the entry boundary. For entry/exit parameters corresponding to the high density phase of TASEP, the average ribosome density profile also has a maximum near the exit end.

  10. Pseudomonas aeruginosa lectin LecB inhibits tissue repair processes by triggering β-catenin degradation.

    PubMed

    Cott, Catherine; Thuenauer, Roland; Landi, Alessia; Kühn, Katja; Juillot, Samuel; Imberty, Anne; Madl, Josef; Eierhoff, Thorsten; Römer, Winfried

    2016-06-01

    Pseudomonas aeruginosa is an opportunistic pathogen that induces severe lung infections such as ventilator-associated pneumonia and acute lung injury. Under these conditions, the bacterium diminishes epithelial integrity and inhibits tissue repair mechanisms, leading to persistent infections. Understanding the involved bacterial virulence factors and their mode of action is essential for the development of new therapeutic approaches. In our study we discovered a so far unknown effect of the P. aeruginosa lectin LecB on host cell physiology. LecB alone was sufficient to attenuate migration and proliferation of human lung epithelial cells and to induce transcriptional activity of NF-κB. These effects are characteristic of impaired tissue repair. Moreover, we found a strong degradation of β-catenin, which was partially recovered by the proteasome inhibitor lactacystin. In addition, LecB induced loss of cell-cell contacts and reduced expression of the β-catenin targets c-myc and cyclin D1. Blocking of LecB binding to host cell plasma membrane receptors by soluble l-fucose prevented these changes in host cell behavior and signaling, and thereby provides a powerful strategy to suppress LecB function. Our findings suggest that P. aeruginosa employs LecB as a virulence factor to induce β-catenin degradation, which then represses processes that are directly linked to tissue recovery. PMID:26862060

  11. Degradation of Reactive Black 5 dye by CWPO using Fe/mining sand under photo-Fenton process

    NASA Astrophysics Data System (ADS)

    Amri, Nurulhuda; Nasuha, Norhaslinda; Halim, Siti Fatimah Abdul; Ngah, Khairuddin

    2015-05-01

    This present study was conducted to investigate the effectiveness of catalytic wet peroxide oxidation (CWPO) process using photo-Fenton method and the used of mining sand as support catalyst as well as to determine the optimum parameters and effect of catalyst wt%, pH, H2O2 concentration, initial dye concentration and catalyst dosage on RB 5 degradation. The Fe/mining sand was prepared by impregnation technique and a solar degradation of RB 5 carried out by mean photo-Fenton reaction promoted by solar energy. The dye degradation was monitored during the experimental runs through UV/Vis spectrophotometer. In this process, the reaction condition were optimized at 0.4 of catalyst wt%, pH 2, 4 mM of H2O2 concentration and 0.5 g of catalyst dosage which achieved degradation efficiency at 100% for the three experiments except catalyst dosage which achieved 97.54% respectively within 180 min. The degradation of RB 5 also decreased with the increasing of dye concentration with 10 mg/L achieved the optimum degradation of 99.93%. The results demonstrated that photo-Fenton method could effectively degrade RB 5 and reduce the operating cost by conducting the experiment at optimum conditions.

  12. An evaluation of a pilot-scale nonthermal plasma advanced oxidation process for trace organic compound degradation.

    PubMed

    Gerrity, Daniel; Stanford, Benjamin D; Trenholm, Rebecca A; Snyder, Shane A

    2010-01-01

    This study evaluated a pilot-scale nonthermal plasma (NTP) advanced oxidation process (AOP) for the degradation of trace organic compounds such as pharmaceuticals and potential endocrine disrupting compounds (EDCs). The degradation of seven indicator compounds was monitored in tertiary-treated wastewater and spiked surface water to evaluate the effects of differing water qualities on process efficiency. The tests were also conducted in batch and single-pass modes to examine contaminant degradation rates and the remediation capabilities of the technology, respectively. Values for electrical energy per order (EEO) of magnitude degradation ranged from <0.3 kWh/m(3)-log for easily degraded compounds (e.g., carbamazepine) in surface water to 14 kWh/m(3)-log for more recalcitrant compounds (e.g., meprobamate) in wastewater. Changes in the bulk organic matter based on UV(254) absorbance and excitation-emission matrices (EEM) were also monitored and correlated to contaminant degradation. These results indicate that NTP may be a viable alternative to more common AOPs due to its comparable energy requirements for contaminant degradation and its ability to operate without any additional feed chemicals. PMID:19822343

  13. Genetic diversity in pollen abiotic stress tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic diversity in reproductive abiotic stress tolerance has been investigated by cotton breeders throughout the public and private sectors. The primary focus of these studies has been the evaluation of abiotic stress responses during the development of the flower prior to anthesis. Sterility in...

  14. Genetic Diversity in Pollen Abiotic Stress Tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic diversity in reproductive abiotic stress tolerance has been investigated by cotton breeders throughout the public and private sectors. The primary focus of these studies has been the evaluation of abiotic stress responses during the development of the flower prior to anthesis. Sterility in...

  15. Kinetics of phenol degradation in an anaerobic fixed-biofilm process

    SciTech Connect

    Lin, Y.H.; Lee, K.K.

    2006-06-15

    A mathematical model was developed to describe phenol degradation in an anaerobic fixed-biofilm process. The model incorporates the mechanisms of diffusive mass transport and Monod kinetics. The model was solved using a combination of the orthogonal collocation method and Gear's method. A pilot-scale column reactor was used to verify the model. Batch kinetic tests were conducted independently to determine the biokinetic parameters used in the model, while shear loss and initial thickness of biofilm were assumed so that the model simulated the substrate concentration results well. The removal efficiency for phenol was approximately 98.5% at a steady-state condition. The model accurately described the effluent substrate concentrations and the sequence of biodegradation in the reactor. The model simulations are in agreement with the experimental results. The approaches presented in this paper could be used to design full-scale anaerobic fixed-biofilm reactor systems for the biodegradation of phenolic substrates.

  16. Friction stir processing of magnesium-nanohydroxyapatite composites with controlled in vitro degradation behavior.

    PubMed

    Ratna Sunil, B; Sampath Kumar, T S; Chakkingal, Uday; Nandakumar, V; Doble, Mukesh

    2014-06-01

    Nano-hydroxyapatite (nHA) reinforced magnesium composite (Mg-nHA) was fabricated by friction stir processing (FSP). The effect of smaller grain size and the presence of nHA particles on controlling the degradation of magnesium were investigated. Grain refinement from 1500μm to ≈3.5μm was observed after FSP. In vitro bioactivity studies by immersing the samples in supersaturated simulated body fluid (SBF 5×) indicate that the increased hydrophilicity and pronounced biomineralization are due to grain refinement and the presence of nHA in the composite respectively. Electrochemical test to assess the corrosion behavior also clearly showed the improved corrosion resistance due to grain refinement and enhanced biomineralization. Using MTT colorimetric assay, cytotoxicity study of the samples with rat skeletal muscle (L6) cells indicate marginal increase in cell viability of the FSP-Mg-nHA sample. The composite also showed good cell adhesion. PMID:24863230

  17. Study of Degradation Processes in Dielectric Materials Used in Electronic Control Equipment Operated in ``Kozloduy'' NPP

    NASA Astrophysics Data System (ADS)

    Naydenov, Nayden; Popov, Angel

    2007-04-01

    The electronic equipment for control of different systems of Units 5 and 6 is studied for presence of degradation processes occurring in result of continuous usage in conditions of controlled radiation background in compliance with ``Kozloduy'' NPP safety codes. Systems, operated in a continuous mode in the course of about 10 years were chosen - separate units containing different dielectric materials (varnish coating, circuit board bases, cable insulations, electro protective elements, etc.) were extrapolated. Series of test samples were prepared which were connected with flat or coaxial condensers and their characteristic parameters were measured: tgδ, ɛ, low voltage conductivity and leak currents at voltages that exceed the working ones several times. When comparing the obtained data with the reference ones, a conclusion is made about the effectiveness of electric ageing during operation in the course of time.

  18. Degradation of a commercial textile biocide with advanced oxidation processes and ozone.

    PubMed

    Arslan-Alaton, Idil

    2007-01-01

    The occurrence of significant amounts of biocidal finishing agents in the environment as a consequence of intensive textile finishing activities has become a subject of major public health concern and scientific interest only recently. In the present study, the treatment efficiency of selected, well-known advanced oxidation processes (Fenton, Photo-Fenton, TiO(2)/UV-A, TiO(2)/UV-A/H(2)O(2)) and ozone was compared for the degradation and detoxification of a commercial textile biocide formulation containing a 2,4,4'-trichloro-2'-hydroxydiphenyl ether as the active ingredient. The aqueous biocide solution was prepared to mimic typical effluent originating from the antimicrobial finishing operation (BOD(5,o) < or =5 mg/L; COD(o)=200 mg/L; DOC(o) (dissolved organic carbon)=58 mg/L; AOX(o) (adsorbable organic halogens)=48 mg/L; LC(50,o) (lethal concentration causing 50% death or immobilization in Daphnia magna)=8% v/v). Ozonation experiments were conducted at different ozone doses (500-900 mg/h) and initial pH (7-12) to assess the effect of ozonation on degradation (COD, DOC removal), dearomatization (UV(280) and UV(254) abatement), dechlorination (AOX removal) and detoxification (changes in LC(50)). For the Fenton experiments, the effect of varying ferrous iron catalyst concentrations and UV-A light irradiation (the Photo-Fenton process) was examined. In the heterogenous photocatalytic experiments, Degussa P25-type TiO(2) was used as the catalyst and the effect of reaction pH (3, 7 and 12) and H(2)O(2) addition on the photocatalytic treatment efficiency was examined. Although in the photochemical (i.e. Photo-Fenton, TiO(2)/UV-A and TiO(2)/UV-A/H(2)O(2)) experiments appreciably higher COD and DOC removal efficiencies were obtained, ozonation appeared to be equally effective to achieve dearomatization (UV(280) abatement) at all studied reaction pH. During ozonation of the textile biocide effluent, AOX abatement proceeded significantly faster than dearomatization and was

  19. Degradation of carotenoids in apricot (Prunus armeniaca L.) during drying process.

    PubMed

    Fratianni, Alessandra; Albanese, Donatella; Mignogna, Rossella; Cinquanta, Luciano; Panfili, Gianfranco; Di Matteo, Marisa

    2013-09-01

    Carotenoids are natural compounds whose nutritional importance comes from the provitamin A activity of some of them and their protection against several serious human disorders. The degradation of carotenoids was investigated during apricot drying by microwave and convective hot-air at 60 and 70 °C. Seven carotenoids were identified: antheraxanthin, lutein, zeaxanthin, β-cryptoxanthin, 13-cis-β-carotene, all-trans-β-carotene and 9-cis-β-carotene; among these, all-trans-β-carotene was found to be about 50 % of total carotenoids. First-order kinetic models were found to better describe all-trans-β-carotene reduction during drying, with a degradation rate constant (k1) that increased two folds when temperatures increased by 10 °C, in both methods. No differences were found in k1 between apricots dried by hot air at 70 °C (k1 = 0.0340 h(-1)) and by microwave at 60 °C. The evolution of total carotenoids (117.1 mg/kg on dry basis) during drying highlighted a wider decrease (about 50%) when microwave heating was employed, for both set temperatures. Antheraxantin was found to be the carotenoid most susceptible to heat, disappearing at 6 h during both trials with microwave as well as during convective hot-air at 70 °C. For this reason, antheraxanthin could be a useful marker for the evaluation of thermal damage due to the drying process. Also the degree of isomerization of all-trans-β-carotene could be a useful marker for the evaluation of the drying process. PMID:23807280

  20. The expeditious survey of soils as a management strategy against degradation processes of agroecosystems

    NASA Astrophysics Data System (ADS)

    Machado Siqueira, Glécio; Medeiros Bezerra, Joel

    2013-04-01

    The pressure for agricultural use in hilly areas regarded as marginal to the productive process, committed to carrying capacity of natural systems and exposes the available resources, especially soil and water with higher rates of degradation. This fact, coupled with the lack of planning of production activities, knowing the limitations and capabilities of environmental elements, as well as the use of inappropriate agricultural practices and intensive, quickened the processes that generate environmental imbalance. To circumvent these problems, it is necessary to find mechanisms that mitigate the conflicts generated between productive activities and the environment. One should then respect the specificities and restrictions local soil and their interactions with other components of the environment, trying to select and adapt agricultural practices and techniques best suited to local conditions and enabling the sustainable use of land. For this detailed information and appropriate scale, consistent with the need for rural communities become indispensable instrument to support the management of natural resource use. The expeditious survey of soil provides subsidies to use planning and land management and propose management strategies that ensure higher productivity of soils and maintenance of the environmental quality of the area in question, so as to eliminate or at least alleviate the problems of erosion soil. The joint use of land mapping and topographical and use and occupancy permits integrated management for the recovery of degraded areas, the use of soil conservation practices and indicating areas for reforestation, agriculture and pasture. Thus, this study aims to evaluate the use of GIS tools for improving the expeditious survey of soil. The present study was conducted using data from the municipality of Campo do Meio (Minas Gerais, Brazil). Were prepared soil maps, topography and land use and occupation. Later he was made a map of land use capability (FAO

  1. Abiotic Hydrolysis of Fluorotelomer-Based Polymers as a Source of Perfluorocarboxylates at the Global Scale

    EPA Science Inventory

    Fluorotelomer-based polymers (FTPs) are the main product of the fluorotelomer industry. For nearly 10 years, whether FTPs degrade to form perfluorooctanoate (PFOA) and perfluorocarboxylate (PFCA) homologues has been vigorously contested. Here we show that circum-neutral abiotic h...

  2. Application of poultry processing industry waste: a strategy for vegetation growth in degraded soil.

    PubMed

    do Nascimento, Carla Danielle Vasconcelos; Pontes Filho, Roberto Albuquerque; Artur, Adriana Guirado; Costa, Mirian Cristina Gomes

    2015-02-01

    The disposal of poultry processing industry waste into the environment without proper care, can cause contamination. Agricultural monitored application is an alternative for disposal, considering its high amount of organic matter and its potential as a soil fertilizer. This study aimed to evaluate the potential of poultry processing industry waste to improve the conditions of a degraded soil from a desertification hotspot, contributing to leguminous tree seedlings growth. The study was carried out under greenhouse conditions in a randomized blocks design and a 4 × 2 factorial scheme with five replicates. The treatments featured four amounts of poultry processing industry waste (D1 = control 0 kg ha(-1); D2 = 1020.41 kg ha(-1); D3 = 2040.82 kg ha(-1); D4 = 4081.63 kg ha(-1)) and two leguminous tree species (Mimosa caesalpiniaefolia Benth and Leucaena leucocephala (Lam.) de Wit). The poultry processing industry waste was composed of poultry blood, grease, excrements and substances from the digestive system. Plant height, biomass production, plant nutrient accumulation and soil organic carbon were measured forty days after waste application. Leguminous tree seedlings growth was increased by waste amounts, especially M. caesalpiniaefolia Benth, with height increment of 29.5 cm for the waste amount of 1625 kg ha(-1), and L. leucocephala (Lam.) de Wit, with maximum height increment of 20 cm for the waste amount of 3814.3 kg ha(-1). M. caesalpiniaefolia Benth had greater initial growth, as well as greater biomass and nutrient accumulation compared with L. leucocephala (Lam.) de Wit. However, belowground biomass was similar between the evaluated species, resulting in higher root/shoot ratio for L. leucocephala (Lam.) de Wit. Soil organic carbon did not show significant response to waste amounts, but it did to leguminous tree seedlings growth, especially L. leucocephala (Lam.) de Wit. Poultry processing industry waste contributes to leguminous tree seedlings growth

  3. Abiotic degradation rates for carbon tetrachloride and chloroform: Final report.

    SciTech Connect

    Amonette, James E.; Jeffers, Peter M.; Qafoku, Odeta; Russell, Colleen K.; Humphrys, Daniel R.; Wietsma, Thomas W.; Truex, Michael J.

    2012-12-01

    This report documents the objectives, technical approach, and progress made through FY 2012 on a project initiated in FY 2006 to help address uncertainties related to the rates of hydrolysis in groundwater for carbon tetrachloride (CT) and chloroform (CF). The project also sought to explore the possible effects of contact with minerals and sediment (i.e., heterogeneous hydrolysis) on these rates. We conducted 114 hydrolysis rate experiments in sealed vessels across a temperature range of 20-93 °C for periods as long as 6 years, and used the Arrhenius equation to estimate activation energies and calculate half-lives for typical Hanford groundwater conditions (temperature of 16 °C and pH of 7.75). We calculated a half-life of 630 years for hydrolysis for CT under these conditions and found that CT hydrolysis was unaffected by contact with sterilized, oxidized minerals or Hanford sediment within the sensitivity of our experiments. In contrast to CT, hydrolysis of CF was generally slower and very sensitive to pH due to the presence of both neutral and base-catalyzed hydrolysis pathways. We calculated a half-life of 3400 years for hydrolysis of CF in homogeneous solution at 16 °C and pH 7.75. Experiments in suspensions of Hanford sediment or smectite, the dominant clay mineral in Hanford sediment, equilibrated to an initial pH of 7.2, yielded calculated half-lives of 1700 years and 190 years, respectively, at 16 °C. Experiments with three other mineral phases at the same pH (muscovite mica, albite feldspar, and kaolinite) showed no change from the homogeneous solution results (i.e., a half-life of 3400 years). The strong influence of Hanford sediment on CF hydrolysis was attributed to the presence of smectite and its ability to adsorb protons, thereby buffering the solution pH at a higher level than would otherwise occur. The project also determined liquid-vapor partition coefficients for CT under the temperatures and pressures encountered in the sealed vessels that differ significantly from extrapolations of published Henry’s Law coefficients.

  4. Thermo-mechanical processing of austenitic steel to mitigate surface related degradation

    NASA Astrophysics Data System (ADS)

    Idell, Yaakov Jonathan

    Thermo-mechanical processing plays an important role in materials property optimization through microstructure modification, required by demanding modern materials applications. Due to the critical role of austenitic stainless steels, such as 316L, as structural components in harsh environments, e.g. in nuclear power plants, improved degradation resistance is desirable. A novel two-dimensional plane strain machining process has shown promise achieving significant grain size refinement through severe plastic deformation (SPD) and imparting large strains in the surface and subsurface regions of the substrate in various metals and alloys. The deformation process creates a heavily deformed 20 -- 30 micron thick nanocrystalline surface layer with increased hardness and minimal martensite formation. Post-deformation processing annealing treatments have been applied to assess stability of the refined scale microstructures and the potential for obtaining grain boundary engineered microstructures with increased fraction of low-energy grain boundaries and altered grain boundary network structure. Varying the deformation and heat treatment process parameters, allows for development of a full understanding of the nanocrystalline layer and cross-section of the surface substrate created. Micro-characterization was performed using hardness measurements, magnetometry, x-ray diffraction, scanning and transmission electron microscopy to assess property and microstructural changes. This study provides a fundamental understanding of two-dimensional plane strain machining as a thermo-mechanical processing technique, which may in the future deliver capabilities for creating grain boundary engineered surface modified components, typified by a combination of grain refinement with improved grain boundary network interconnectivity attributes suitable for use in harsh environments, such as those in commercial nuclear power plants where improved resistance to irradiation stress corrosion

  5. Interactions between Biological and Abiotic Pathways in the Reduction of Chlorinated Solvents

    EPA Science Inventory

    While biologically mediated reductive dechlorination continues to be a significant focus of chlorinated solvent remediation, there has been an increased interest in abiotic reductive processes for the remediation of chlorinated solvents. In situ chemical reduction (ISCR) uses zer...

  6. Mud, Macrofauna and Microbes: An ode to benthic organism-abiotic interactions at varying scales

    EPA Science Inventory

    Benthic environments are dynamic habitats, subject to variable sources and rates of sediment delivery, reworking from the abiotic and biotic processes, and complex biogeochemistry. These activities do not occur in a vacuum, and interact synergistically to influence food webs, bi...

  7. Demonstration of significant abiotic iron isotope fractionation in nature

    USGS Publications Warehouse

    Bullen, T.D.; White, A.F.; Childs, C.W.; Vivit, D.V.; Schultz, M.S.

    2001-01-01

    Field and laboratory studies reveal that the mineral ferrihydrite, formed as a result of abiotic oxidation of aqueous ferrous to ferric Fe, contains Fe that is isotopically heavy relative to coexisting aqueous Fe. Because the electron transfer step of the oxidation process at pH >5 is essentially irreversible and should favor the lighter Fe isotopes in the ferric iron product, this result suggests that relatively heavy Fe isotopes are preferentially partitioned into the readily oxidized Fe(II)(OH)x(aq) species or their transition complexes prior to oxidation. The apparent Fe isotope fractionation factor, ??ferrihydrite-water, depends primarily on the relative abundances of the Fe(II)(aq) species. This study demonstrates that abiotic processes can fractionate the Fe isotopes to the same extent as biotic processes, and thus Fe isotopes on their own do not provide an effective biosignature.

  8. Bioresorbable composite screws manufactured via forging process: pull-out, shear, flexural and degradation characteristics.

    PubMed

    Felfel, R M; Ahmed, I; Parsons, A J; Rudd, C D

    2013-02-01

    Bioresorbable screws have the potential to overcome some of the complications associated with metallic screws currently in use. Removal of metallic screws after bone has healed is a serious issue which can lead to refracture due to the presence of screw holes. Poly lactic acid (PLA), fully 40 mol% P(2)O(5) containing phosphate unidirectional (P40UD) and a mixture of UD and short chopped strand random fibre mats (P40 70%UD/30%RM) composite screws were prepared via forging composite bars. Water uptake and mass loss for the composite screws manufactured increased significantly to ∼1.25% (P=0.0002) and ∼1.1% (P<0.0001), respectively, after 42 days of immersion in PBS at 37 °C. The initial maximum flexural load for P40 UD/RM and P40 UD composite screws was ∼60% (P=0.0047) and ∼100% (P=0.0037) higher than for the PLA screws (∼190 N), whilst the shear load was slightly higher in comparison to PLA (∼2.2 kN). The initial pull-out strengths for the P40 UD/RM and PLA screws were similar whereas that for P40 UD screws was ∼75% higher (P=0.022). Mechanical properties for the composite screws decreased initially after 3 days of immersion and this reduction was ascribed to the degradation of the fibre/matrix interface. After 3 days interval the mechanical properties (flexural, shear and pull-out) maintained their integrity for the duration of the study (at 42 days). This property retention was attributed to the chemical durability of the fibres used and stability of the matrix properties during the degradation process. It was also deemed necessary to enhance the fibre/matrix interface via use of a coupling agent in order to maintain the initial mechanical properties acquired for the required period of time. Lastly, it is also suggested that the degrading reinforcement fibres may have the potential to buffer any acidic products released from the PLA matrix. PMID:23262309

  9. Linking trajectories of land change, land degradation processes and ecosystem services.

    PubMed

    Smiraglia, D; Ceccarelli, T; Bajocco, S; Salvati, L; Perini, L

    2016-05-01

    Land Degradation (LD) is a complex phenomenon resulting in a progressive reduction in the capacity of providing ecosystem services (ES). Landscape transformations promoting an unsustainable use of land often reveal latent processes of LD. An evaluation carried out in respect to the different ecosystem services is nowadays regarded as the most appropriate approach for assessing the effects of LD. The aim of this study is to develop an evaluation framework for identifying the linkages between land changes, LD processes and ES and suggesting Sustainable Land Management (SLM) options suited to reverse (or mitigate) LD impact. A SWOT analysis was carried out with the aim to identify internal and external factors that are favorable (or unfavorable) to achieve the proposed SLM actions. The study areas are the Fortore valley and the Valpadana, in Italy. The main trajectory identified for the Fortore valley is related to land abandonment due to population aging and the progressive emigration started in the 1950s. The most relevant LD processes are soil erosion and geomorphological instability, affecting regulating services such as natural hazard and erosion control. SLM options should consider interventions to contrast geomorphological instability, the promotion of climate smart agriculture and of typical products, and an efficient water resources management. The main trajectories identified for Valpadana are related to urban expansion and farmland abandonment and, as a consequence, land take due to anthropogenic pressure and woodland expansion as the main LD process. The reduction of food production was identified as the most relevant provisioning service affected. SLM should envisage best practices finalized to water saving and soil consumption reduction: efficient irrigation solutions, climate smart agriculture and zero sealing practices. This study highlights the diagnostic value of the suggested approach where LD processes are elicited from land change trajectories

  10. Functional genes to assess nitrogen cycling and aromatic hydrocarbon degradation: primers and processing matter

    PubMed Central

    Penton, C. Ryan; Johnson, Timothy A.; Quensen, John F.; Iwai, Shoko; Cole, James R.; Tiedje, James M.

    2013-01-01

    Targeting sequencing to genes involved in key environmental processes, i.e., ecofunctional genes, provides an opportunity to sample nature's gene guilds to greater depth and help link community structure to process-level outcomes. Vastly different approaches have been implemented for sequence processing and, ultimately, for taxonomic placement of these gene reads. The overall quality of next generation sequence analysis of functional genes is dependent on multiple steps and assumptions of unknown diversity. To illustrate current issues surrounding amplicon read processing we provide examples for three ecofunctional gene groups. A combination of in silico, environmental and cultured strain sequences was used to test new primers targeting the dioxin and dibenzofuran degrading genes dxnA1, dbfA1, and carAa. The majority of obtained environmental sequences were classified into novel sequence clusters, illustrating the discovery value of the approach. For the nitrite reductase step in denitrification, the well-known nirK primers exhibited deficiencies in reference database coverage, illustrating the need to refine primer-binding sites and/or to design multiple primers, while nirS primers exhibited bias against five phyla. Amino acid-based OTU clustering of these two N-cycle genes from soil samples yielded only 114 unique nirK and 45 unique nirS genus-level groupings, likely a reflection of constricted primer coverage. Finally, supervised and non-supervised OTU analysis methods were compared using the nifH gene of nitrogen fixation, with generally similar outcomes, but the clustering (non-supervised) method yielded higher diversity estimates and stronger site-based differences. High throughput amplicon sequencing can provide inexpensive and rapid access to nature's related sequences by circumventing the culturing barrier, but each unique gene requires individual considerations in terms of primer design and sequence processing and classification. PMID:24062736

  11. [Effect of processing parameters on the degradation of calcium polyphosphate bioceramic for bone tissue scaffolds].

    PubMed

    Qin, Yingjie; Yu, Xixun; Chen, Yuanwei; Ding, Yulong; Wan, Changxiu

    2007-08-01

    This study was undertaken to elucidate the degradation regularity of calcium polyphosphate (CPP) scaffolds with different preparation parameters. CPP scaffolds with different main crystalline phases were prepared by controlling the particle size of the calcining stuff and the calcining heat. Specimens were soaked into Tris-buffer solution and simulated body fluid (SBF) for 60 days. Results show: alpha-CPP degrades faster than does beta-CPP, and beta-CPP degrades faster than does gamma-CPP; the lower the sinter temperature, the better the degradation of CPP morever, the degradation rate of CPP is inversely proportional to the original particle size. These data suggest that crystal type, sinter temperature and particle size influence the degradation rate of CPP markedly. PMID:17899747

  12. Electrochemical process combined with UV light irradiation for synergistic degradation of ammonia in chloride-containing solutions.

    PubMed

    Xiao, Shuhu; Qu, Jiuhui; Zhao, Xu; Liu, Hujuan; Wan, Dongjin

    2009-03-01

    An electrochemical process combined with ultraviolet light irradiation (UPE) using nonphotoactive dimensionally stable anodes (DSAs) like RuO2/Ti and IrO2/Ti in the presence of chlorides was investigated for ammonia degradation. In this process, the in situ electrogenerated active chlorine and in situ photogenerated chlorine radicals were responsible for the high efficiency of ammonia degradation. More than 97% of ammonia was converted to nitrogen and a significantly synergistic effect was confirmed. Compared with the single electrochemical (E) and photochemical (P) process, the degradation rates of ammonia and the average current efficiencies (ACEs) of the UPE process increased by 1.5 and 1.7 times using RuO2/Ti and IrO2/Ti electrodes, respectively. On the basis of the linear voltammograms, Electrochemical Impedance Spectra (EIS), UV-vis spectra, Electron Spin Resonance (ESR) analysis and a series of experiments designed, the synergistic mechanism was investigated. In addition, this unique process succeeded in transferring the reaction from the electrode surface to the bulk of the solution compared with the conventional photoelectrocatalytic (PEC) process. The loss of chloride decreased from 21.0% to 7.2% and the recycle of chloride was accelerated in the UPE process. Finally the effects of initial pH, current density and ammonia-nitrogen concentration were discussed. Results indicated that pH and ammonia concentration exerted little influences on the degradation rates and current density was the "rate-determining" factor. PMID:19135227

  13. Comparison of the degradation effects of heavy ion, electron, and cobalt-60 irradiation in an advanced bipolar process

    NASA Technical Reports Server (NTRS)

    Zoutendyk, John A.; Goben, Charles A.; Berndt, Dale F.

    1988-01-01

    Experimental measurements are reported of the degradation effects of high-energy particles (heavy Br ions and electrons) and Co-60 gamma-rays on the current gain of minimum-geometry bipolar transistors made from an advanced process. The data clearly illustrate the total-ionizing-dose vs particle-fluence behavior of this bipolar transistor produced by an advanced process. In particular, bulk damage from Co-60 gamma rays in bipolar transistors (base transport factor degradation) and surface damage in bipolar transistors from ionizing radiation (emitter-efficiency degradation) have been observed. The true equivalence between various types of radiation for this process technology has been determined on the basis of damage from the log K1 intercepts.

  14. Influence of degradation and sorption processes on the persistence and movement of alachlor and dicamba in soils

    SciTech Connect

    Yen, P.Y.

    1992-01-01

    The impact of herbicide usage in agriculture on ground water quality is controlled by the interaction of herbicide degradation, sorption, and transport processes as the herbicide moves through the soil to ground water. The objectives of this thesis were to determine the influence of degradation and sorption processes on the fate of a non-ionic (alachlor) and a weak acid (dicamba) herbicide in four soils (Kim loam, Port Byron silt loam, Webster silty clay loam, and Estherville sandy loam) as a function of soil depth. Alachlor dissipated rapidly under field conditions in Kim soil. Although laboratory studied underestimated the rate of alachlor degradation compared to field conditions, they showed that microbial degradation rather than leaching below sampling depth was the major dissipation pathway of alachlor in soil. Laboratory studies are showed that soils obtained from lower depths had capacities to degrade alachlor, however, at slower rates than surface soils. Sorption of alachlor to soils was moderate (Freundlich sorption coefficient, K[sub f] = 0.7 to 7.3). Movement of alachlor in Kim soil under field conditions was overestimated by leachability indices calculated based on laboratory degradation and sorption studies. Leachability indices would classify alachlor as a [open quotes]leacher[close quotes] in Kim, Port Byron and Estherville soils. In the case of Webster soil, alachlor would be classified as transitional between a [open quotes]leacher[close quotes] and [open quotes]nonleacher[close quotes]. Field dissipation experiments are currently being conducted to evaluate potential leachability of dicamba in the three Minnesota soils. Laboratory studies showed that degradation of dicamba in the four soils was slow (50% dissipation time, DT[sub 50] > 70 days) due to a long lag phase. Soils below 15 cm depth demonstrated slower dicamba degradation capacities than the surface soils. Sorption of dicamba to these soils was minimal (K[sub f] = 0.004 to 0.50).

  15. Degradation state of organic matter in surface sediments from the Beaufort Shelf: a lipid approach

    NASA Astrophysics Data System (ADS)

    Rontani, J.-F.; Charriere, B.; Petit, M.; Vaultier, F.; Heipieper, H. J.; Link, H.; Chaillou, G.; Sempéré, R.

    2012-03-01

    The lipid content of surface sediments collected on the Beaufort Shelf was examined. Particular attention was given to biotic and abiotic degradation products of sterols and monounsaturated fatty acids. By using sitosterol and campesterol degradation products as tracers of the degradation of terrestrial higher plant inputs and brassicasterol degradation products as tracers of degradation of phytoplanktonic organisms, it could be observed that autoxidation, photooxidation and biodegradation processes act much more intensively on higher plant debris than on phytoplanktonic organisms. Examination of oxidation products of monounsaturated fatty acids showed that photo- and autoxidation processes act more intensively on bacteria than on phytodetritus. Enhanced damages induced by singlet oxygen (transferred from senescent phytoplanktonic cells) in bacteria were attributed to the lack of an adapted antioxidant system in these microorganisms. The strong oxidative stress observed in the sampled sediments resulted in the production of significant amounts of epoxyacids and unusually very high proportions of monounsaturated fatty acids with a trans double bond. The formation of epoxyacids was attributed to peroxygenases (enzymes playing a protective role against the deleterious effects of fatty acid hydroperoxides in vivo), while cis/trans isomerization was probably induced by thiyl radicals produced during the reaction of thiols with hydroperoxides. Our results confirm the important role played by abiotic oxidative processes in the degradation of marine bacteria and do not support the generally expected refractory character of terrigenous material deposited in deltaic systems.

  16. [Degradation characteristics, patterns, and processes of lakeside wetland in Napahai of northwest Yunnan Plateau, Southwest China].

    PubMed

    Shang, Wen; Yang, Yong-Xing

    2012-12-01

    Two-way indicator species analysis (TWINSPAN) and canonical correspondence analysis (CCA) were employed to analyze the degradation characteristics, patterns, and processes of lakeside wetland in Napahai of northwest Yunnan Plateau. The plant communities in the lakeside wetland could be classified into four associations, according to the TWINSPAN results. The succession patterns of the plant community were represented by aquatic plant community --> swamp plant community --> swamp meadow plant community --> meadow plant community. During the processes of succession, the plant community coverage, density, Shannon diversity index, species richness, and plant aboveground biomass increased, whereas the community height decreased. The succession of the plant hydro-ecotypes followed the sequence of aquatic --> helophyte --> hygrophyte --> mesophyte. With the succession of the plant community, the wetland water quality indices salinity, alkalinity, and hardness decreased but ammonium nitrogen and total phosphorus concentrations increased, while total nitrogen and nitrate nitrogen concentrations showed no significant changes. Meanwhile, the soil pH and soil organic matter and total nitrogen contents decreased gradually, soil total phosphorous and potassium contents were increasing, whereas soil available phosphorous and potassium contents decreased after an initial increase. The CCA showed that the community species composition and structure were mainly affected by the wetland water gradient. The soil pH and total phosphorus content and the water total nitrogen and ammonium nitrogen concentrations had significant effects on the wetland plant species distribution and plant community succession. PMID:23479864

  17. Abiotic dechlorination in rock matrices impacted by long-term exposure to TCE.

    PubMed

    Schaefer, Charles E; Towne, Rachael M; Lippincott, David R; Lacombe, Pierre J; Bishop, Michael E; Dong, Hailiang

    2015-01-01

    Field and laboratory tests were performed to evaluate the abiotic reaction of trichloroethene (TCE) in sedimentary rock matrices. Hydraulically conductive fractures, and the rock directly adjacent to the hydraulically conductive fractures, within a historically contaminated TCE bedrock aquifer were used as the basis for this study. These results were compared to previous work using rock that had not been exposed to TCE (Schaefer et al., 2013) to assess the impact of long-term TCE exposure on the abiotic dechlorination reaction, as the longevity of these reactions after long-term exposure to TCE was hitherto unknown. Results showed that potential abiotic TCE degradation products, including ethane, ethene, and acetylene, were present in the conductive fractures. Using minimally disturbed slices of rock core at and near the fracture faces, laboratory testing on the rocks confirmed that abiotic dechlorination reactions between the rock matrix and TCE were occurring. Abiotic daughter products measured in the laboratory under controlled conditions were consistent with those measured in the conductive fractures, except that propane also was observed as a daughter product. TCE degradation measured in the laboratory was well described by a first order rate constant through the 118-d study. Observed bulk first-order TCE degradation rate constants within the rock matrix were 1.3×10(-8) s(-1). These results clearly show that abiotic dechlorination of TCE is occurring within the rock matrix, despite decades of exposure to TCE. Furthermore, these observed rates of TCE dechlorination are expected to have a substantial impact on TCE migration and uptake/release from rock matrices. PMID:25192648

  18. Assessment of DNA degradation induced by thermal and UV radiation processing: implications for quantification of genetically modified organisms.

    PubMed

    Ballari, Rajashekhar V; Martin, Asha

    2013-12-01

    DNA quality is an important parameter for the detection and quantification of genetically modified organisms (GMO's) using the polymerase chain reaction (PCR). Food processing leads to degradation of DNA, which may impair GMO detection and quantification. This study evaluated the effect of various processing treatments such as heating, baking, microwaving, autoclaving and ultraviolet (UV) irradiation on the relative transgenic content of MON 810 maize using pRSETMON-02, a dual target plasmid as a model system. Amongst all the processing treatments examined, autoclaving and UV irradiation resulted in the least recovery of the transgenic (CaMV 35S promoter) and taxon-specific (zein) target DNA sequences. Although a profound impact on DNA degradation was seen during the processing, DNA could still be reliably quantified by Real-time PCR. The measured mean DNA copy number ratios of the processed samples were in agreement with the expected values. Our study confirms the premise that the final analytical value assigned to a particular sample is independent of the degree of DNA degradation since the transgenic and the taxon-specific target sequences possessing approximately similar lengths degrade in parallel. The results of our study demonstrate that food processing does not alter the relative quantification of the transgenic content provided the quantitative assays target shorter amplicons and the difference in the amplicon size between the transgenic and taxon-specific genes is minimal. PMID:23870938

  19. Effects of grain source, grain processing, and protein degradability on rumen kinetics and microbial protein synthesis in Boer kids.

    PubMed

    Brassard, M-E; Chouinard, P Y; Berthiaume, R; Tremblay, G F; Gervais, R; Martineau, R; Cinq-Mars, D

    2015-11-01

    Microbial protein synthesis in the rumen would be optimized when dietary carbohydrates and proteins have synchronized rates and extent of degradation. The aim of this study was to evaluate the effect of varying ruminal degradation rate of energy and nitrogen sources on intake, nitrogen balance, microbial protein yield, and kinetics of nutrients in the rumen of growing kids. Eight Boer goats (38.2 ± 3.0 kg) were used. The treatments were arranged in a split-plot Latin square design with grain sources (barley or corn) forming the main plots (squares). Grain processing methods and levels of protein degradability formed the subplots in a 2 × 2 factorial arrangement for a total of 8 dietary treatments. The grain processing method was rolling for barley and cracking for corn. Levels of protein degradability were obtained by feeding untreated soybean meal (SBM) or heat-treated soybean meal (HSBM). Each experimental period lasted 21 d, consisting of a 10-d adaptation period, a 7-d digestibility determination period, and a 4-d rumen evacuation and sampling period. Kids fed with corn had higher purine derivatives (PD) excretion when coupled with SBM compared with HSBM and the opposite occurred with barley-fed kids ( ≤ 0.01). Unprocessed grain offered with SBM led to higher PD excretion than with HSBM whereas protein degradability had no effect when processed grain was fed ( ≤ 0.03). Results of the current experiment with high-concentrate diets showed that microbial N synthesis could be maximized in goat kids by combining slowly fermented grains (corn or unprocessed grains) with a highly degradable protein supplement (SBM). With barley, a more rapidly fermented grain, a greater microbial N synthesis was observed when supplementing a low-degradable protein (HSBM). PMID:26641055

  20. Simultaneous enhancement of phenolic compound degradations by Acinetobacter strain V2 via a step-wise continuous acclimation process.

    PubMed

    Lin, Johnson; Sharma, Vikas; Milase, Ridwaan; Mbhense, Ntuthuko

    2016-06-01

    Phenol degradation enhancement of Acinetobacter strain V2 by a step-wise continuous acclimation process was investigated. At the end of 8 months, three stable adapted strains, designated as R, G, and Y, were developed with the sub-lethal concentration of phenol at 800, 1100, and 1400 mg/L, respectively, from 400 mg/L of V2 parent strain. All strains degraded phenol at their sub-lethal level within 24 h, their growth rate increased as the acclimation process continued and retained their degradation properties even after storing at -80 °C for more than 3 years. All adapted strains appeared coccoid with an ungranulated surface under electron microscope compared to typical rod-shaped parental strain V2 . The adapted Y strain also possessed superior degradation ability against aniline, benzoate, and toluene. This study demonstrated the use of long term acclimation process to develop efficient and better pollutant degrading bacterial strains with potentials in industrial and environmental bioremediation. PMID:26471472

  1. Recovery of Nitrogen Pools and Processes in Degraded Riparian Zones in the Southern Appalachians

    EPA Science Inventory

    Soil nitrogen (N) cycling mechanisms were examined over a 4-year period in a restored mountain pasture riparian zone previously degraded by cattle. Chemical and physical effects of grazing were separated by comparing the following treatments: (1) a degraded riparian area with con...

  2. Degradation of diclofenac sodium using combined processes based on hydrodynamic cavitation and heterogeneous photocatalysis.

    PubMed

    Bagal, Manisha V; Gogate, Parag R

    2014-05-01

    Diclofenac sodium, a widely detected pharmaceutical drug in wastewater samples, has been selected as a model pollutant for degradation using novel combined approach of hydrodynamic cavitation and heterogeneous photocatalysis. A slit venturi has been used as cavitating device in the hydrodynamic cavitation reactor. The effect of various operating parameters such as inlet fluid pressure (2-4 bar) and initial pH of the solution (4-7.5) on the extent of degradation have been studied. The maximum extent of degradation of diclofenac sodium was obtained at inlet fluid pressure of 3 bar and initial pH as 4 using hydrodynamic cavitation alone. The loadings of TiO2 and H2O2 have been optimised to maximise the extent of degradation of diclofenac sodium. Kinetic study revealed that the degradation of diclofenac sodium fitted first order kinetics over the selected range of operating protocols. It has been observed that combination of hydrodynamic cavitation with UV, UV/TiO2 and UV/TiO2/H2O2 results in enhanced extents of degradation as compared to the individual schemes. The maximum extent of degradation as 95% with 76% reduction in TOC has been observed using hydrodynamic cavitation in conjunction with UV/TiO2/H2O2 under the optimised operating conditions. The diclofenac sodium degradation byproducts have been identified using LC/MS analysis. PMID:24262760

  3. Three degradation pathways of 1-octyl-3-methylimidazolium cation by activated sludge from wastewater treatment process.

    PubMed

    Cho, Chul-Woong; Pham, Thi Phuong Thuy; Kim, Sok; Song, Myung-Hee; Chung, Yun-Jo; Yun, Yeoung-Sang

    2016-03-01

    The biodegradability and degradation pathways of 1-octyl-3-methylimidazolium cation [OMIM](+) by microbial community of wastewater treatment plant in Jeonju city, Korea were investigated. It was found that [OMIM](+) could be easily degraded by the microbial community. New degradation products and pathways of [OMIM](+) were identified, which are partially different from previous results (Green Chem. 2008, 10, 214-224). For the analysis of the degradation pathways and intermediates, the mass peaks observed in the range m/z of 50-300 were screened by using a tandem mass spectrometer (MS), and their fragmentation patterns were investigated by MS/MS. Surprisingly, we found three different degradation pathways of [OMIM](+), which were separated according to the initially oxidized position i.e. middle of the long alkyl chain, end of the long alkyl chain, and end of the short alkyl chain. The degradation pathways showed that the long and short alkyl chains of [OMIM](+) gradually degraded by repeating oxidation and carbon release. The results presented here shows that [OMIM](+) can be easily biodegraded through three different degradation pathways in wastewater treatment plants. PMID:26748207

  4. An integrated approach to the degradation of phytates in the corn wet milling process.

    PubMed

    Noureddini, H; Dang, J

    2010-12-01

    An integrated process was developed to hydrolyze the phytates in light steep water (LSW) and to simultaneously isolate inorganic phosphate (Pi) and myo-inositol products. The proposed integrated process will be helpful in resolving the environmental and nutritional concerns in the use of corn gluten feed (CGF) in the animal diets. This process comprised of partial and total hydrolysis of LSW and intermediate anion exchange separation technique. The phytates in LSW were initially degraded to negatively charged myo-inositol phosphates (InsP(2)-InsP(5)). The optimized experimental parameters for the partial hydrolysis of LSW were determined to be 2 h hydrolysis with 1FTU Aspergillus niger/g substrate at 35 degrees C. The negatively charged species of the partially hydrolyzed substrate were separated on a strong base anion exchange resin. The negatively charged species, retained by the resin, were eluded with 1M NaCl solution and were subjected to complete hydrolysis with the Escherichia coli, A. niger derived phytases and their respective combinations. The maximum amount of myo-inositol released from the anion exchange column was 3.73+/-0.03 mg/NaCl elution which was detected after 48 h reactions catalyzed by 100 FTU E. coli, 150 FTU E. coli, and 150 FTU the combination of A. niger and E. coli. The time course of Pi released showed a similar trend to that of myo-inositol and the released Pi reached a maximum amount of 3.30+/-0.05 mg/g NaCl elution after 48 h incubation at the enzyme loadings for which the maximum concentration of myo-inositol were reached. PMID:20678926

  5. FEPs Screening of Processes and Issues in Drip Shield and Waste Package Degradation

    SciTech Connect

    K. Mon

    2004-10-11

    The purpose of this report is to evaluate and document the inclusion or exclusion of features, events and processes (FEPs) with respect to drip shield and waste package modeling used to support the Total System Performance Assessment for License Application (TSPA-LA). Thirty-three FEPs associated with the waste package and drip shield performance have been identified (DTN: MO0407SEPFEPLA.000 [DIRS 170760]). A screening decision, either ''included'' or ''excluded,'' has been assigned to each FEP, with the technical bases for screening decisions, as required by the Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 156605]. The FEPs analyses in this report address issues related to the degradation and potential failure of the drip shield and waste package over the post closure regulatory period of 10,000 years after permanent closure. For included FEPs, this report summarizes the disposition of the FEP in TSPA-LA. For excluded FEPs, this report provides the technical bases for the screening arguments for exclusion from TSPA-LA. The analyses are for the TSPA-LA base-case design (BSC 2004 [DIRS 168489]), where a drip shield is placed over the waste package without backfill over the drip shield (BSC 2004 [DIRS 168489]). Each FEP includes one or more specific issues, collectively described by a FEP name and description. The FEP description encompasses a single feature, event, or process, or a few closely related or coupled processes, provided the entire FEP can be addressed by a single specific screening argument or TSPA-LA disposition. The FEPs were assigned to associated Project reports, so the screening decisions reside with the relevant subject-matter experts.

  6. Feedbacks between aeolian processes and ecosystem change in a degraded desert grassland in the southwestern US

    NASA Astrophysics Data System (ADS)

    Li, Junran

    2015-04-01

    The desert grassland in the southwestern US has undergone dramatic vegetation changes with many areas of grassland becoming shrublands in the last 150 years. A principle manifestation of such a land degradation is the wide distribution of fertile islands in once-homogenous landscapes, which changed soil resource redistributions through the movement of resources from plant interspaces to the area beneath plant canopies. A great deal of work has examined the role of water in nutrient reduction and enforcement of islands of fertility in the semiarid landscapes. However, little is known on the role of wind in the removal or redistribution of soil resources, and further the feedbacks between wind and ecosystem change in this area. In spring 2004, a vegetation removal experiment was established in the northern Chihuahuan Desert, southern New Mexico, where vegetation cover on the experimental plots were manually reduced to various levels to study the entire suite of aeolian processes, including erosion, transport, and deposition in creating and enforcing patchy distribution of vegetation. This experiment has been continually maintained for more than ten years, with the sampling and observation of vegetation cover, soil nutrients, sediment flux, topography, and plant physiology. The experimental results highlighted that the aeolian processes in the Chihuahuan Desert are able to change soil properties and community composition in as short as 3 three years. Further, the removal of grasses by 75% may trigger a very substantial increase of wind erosion and the removal of grass by 50% could cause significant amount of C and N loss due to wind erosion. Last but not least, the change of the spatial distribution of soil C and the micro-topography both point to the fact that aeolian processes contribute substantially to the dynamics of fertile islands in this desert grassland.

  7. A study of enhanced performance of VUV/UV process for the degradation of micropollutants from contaminated water.

    PubMed

    Bagheri, Mehdi; Mohseni, Madjid

    2015-08-30

    VUV/UV is a chemical-free and straightforward solution for the degradation of emerging contaminants from water sources. The objective of this work was to investigate the feasibility of VUV/UV advanced oxidation process for the effective degradation of a target micropollutant, atrazine, under continuous flow operation of 0.5-6.5L/min. To provide an in-depth understanding of process, a comprehensive computational fluid dynamics (CFD) model, incorporating flow hydrodynamics, 185nm VUV and 254nm UV radiation propagation along with a complete kinetic scheme, was developed and validated experimentally. The experimental degradation rates and CFD predicted values showed great consistency with less than 2.9% average absolute relative deviation (AARD). Utilizing the verified model, energy-efficiency of the VUV/UV process under a wide range of reactor configurations was assessed in terms of electrical energy-per-order (EEO), OH concentration as well as delivered UV and VUV dose distributions. Thereby, the extent of mixing and circulation zones was found as key parameter controlling the treatment economy and energy-efficiency of the VUV/UV process. Utilizing a CFD-driven baffle design strategy, an improved VUV/UV process with up to 72% reduction in the total electrical energy requirement of atrazine degradation was introduced and verified experimentally. PMID:25827391

  8. Process for measuring degradation of sulfur hexafluoride in high voltage systems

    SciTech Connect

    Sauers, I.

    1986-12-30

    A process is described for detecting by-products from electrically induced degradation of SF/sub 6/ in high voltage systems comprising: at a pressure within the reaction cell sufficient to cause electron attachment to SF/sub 6/, placing an SF/sub 6/ gas to be tested in an ion-molecule reaction cell having a cathode at a first end, an anode opposite the cathode at a second end, a pin hole aperture incorporated into the anode that opens into a negative ion mass spectrometer that is at a lower pressure than is the reaction cell; producing thermal electrons at the cathode thereby ionizing molecules of the SF/sub 6/ gas in the vicinity of the cathode to form SF/sub 6//sup -/ ions; applying an electrical field in the reaction cell to induce the transfer of the SF/sub 6//sup -/ ions from the cathode to the anode resulting in the formation of by-product ions from intervening by-product molecules having a high affinity for fluoride ions; introducing a combination of the SF/sub 6//sup -/ ions and the by-product ions into the pin hole aperture thereby effecting flow of the combination of ions from the reaction cell to the negative ion mass spectrometer; and detecting the by-product ions using negative ion mass spectrometry techniques.

  9. Benzoate degradation by Rhodococcus opacus 1CP after dormancy: Characterization of dioxygenases involved in the process.

    PubMed

    Solyanikova, Inna P; Emelyanova, Elena V; Borzova, Oksana V; Golovleva, Ludmila A

    2016-01-01

    The process of benzoate degradation by strain Rhodococcus opacus 1CP after a five-year dormancy was investigated and its peculiarities were revealed. The strain was shown to be capable of growth on benzoate at a concentration of up to 10 g L(-1). The substrate specificity of benzoate dioxygenase (BDO) during the culture growth on a medium with a low (200-250 mg L(-1)) and high (4 g L(-1)) concentration of benzoate was assessed. BDO of R. opacus 1CP was shown to be an extremely narrow specificity enzyme. Out of 31 substituted benzoates, only with one, 3-chlorobenzoate, its activity was higher than 9% of that of benzoate. Two dioxygenases, catechol 1,2-dioxygenase (Cat 1,2-DO) and protocatechuate 3,4-dioxygenase (PCA 3,4-DO), were identified in a cell-free extract, purified and characterized. The substrate specificity of Cat 1,2-DO isolated from cells of strain 1CP after the dormancy was found to differ significantly from that of Cat 1,2-DO isolated earlier from cells of this strain grown on benzoate. By its substrate specificity, the described Cat 1,2-DO was close to the Cat 1,2-DO from strain 1CP grown on 4-methylbenzoate. Neither activity nor inhibition by protocatechuate was observed during the reaction of Cat 1,2-DO with catechol, and catechol had no inhibitory effect on the reaction of PCA 3,4-DO with protocatechuate. PMID:26669259

  10. Phenol Photocatalytic Degradation by Advanced Oxidation Process under Ultraviolet Radiation Using Titanium Dioxide

    PubMed Central

    Nickheslat, Ali; Amin, Mohammad Mehdi; Izanloo, Hassan; Fatehizadeh, Ali; Mousavi, Seyed Mohammad

    2013-01-01

    Background. The main objective of this study was to examine the photocatalytic degradation of phenol from laboratory samples and petrochemical industries wastewater under UV radiation by using nanoparticles of titanium dioxide coated on the inner and outer quartz glass tubes. Method. The first stage of this study was conducted to stabilize the titanium dioxide nanoparticles in anatase crystal phase, using dip-coating sol-gel method on the inner and outer surfaces of quartz glass tubes. The effect of important parameters including initial phenol concentration, TiO2 catalyst dose, duration of UV radiation, pH of solution, and contact time was investigated. Results. In the dip-coat lining stage, the produced nanoparticles with anatase crystalline structure have the average particle size of 30 nm and are uniformly distributed over the tube surface. The removal efficiency of phenol was increased with the descending of the solution pH and initial phenol concentration and rising of the contact time. Conclusion. Results showed that the light easily passes through four layers of coating (about 105 nm). The highest removal efficiency of phenol with photocatalytic UV/TiO2 process was 50% at initial phenol concentration of 30 mg/L, solution pH of 3, and 300 min contact time. The comparison of synthetic solution and petrochemical wastewater showed that at same conditions the phenol removal efficiency was equal. PMID:23710198

  11. Combined surface analytical methods to characterize degradative processes in anti-stiction films in MEMS devices.

    SciTech Connect

    Tallant, David Robert; Zavadil, Kevin Robert; Ohlhausen, James Anthony; Hankins, Matthew Granholm; Kent, Michael Stuart

    2005-03-01

    The performance and reliability of microelectromechanical (MEMS) devices can be highly dependent on the control of the surface energetics in these structures. Examples of this sensitivity include the use of surface modifying chemistries to control stiction, to minimize friction and wear, and to preserve favorable electrical characteristics in surface micromachined structures. Silane modification of surfaces is one classic approach to controlling stiction in Si-based devices. The time-dependent efficacy of this modifying treatment has traditionally been evaluated by studying the impact of accelerated aging on device performance and conducting subsequent failure analysis. Our interest has been in identifying aging related chemical signatures that represent the early stages of processes like silane displacement or chemical modification that eventually lead to device performance changes. We employ a series of classic surface characterization techniques along with multivariate statistical methods to study subtle changes in the silanized silicon surface and relate these to degradation mechanisms. Examples include the use of spatially resolved time-of-flight secondary ion mass spectrometric, photoelectron spectroscopic, photoluminescence imaging, and scanning probe microscopic techniques to explore the penetration of water through a silane monolayer, the incorporation of contaminant species into a silane monolayer, and local displacement of silane molecules from the Si surface. We have applied this analytical methodology at the Si coupon level up to MEMS devices. This approach can be generalized to other chemical systems to address issues of new materials integration into micro- and nano-scale systems.

  12. Comparison of various advanced oxidation processes for the degradation of phenylurea herbicides.

    PubMed

    Kovács, Krisztina; Farkas, János; Veréb, Gábor; Arany, Eszter; Simon, Gergő; Schrantz, Krisztina; Dombi, András; Hernádi, Klára; Alapi, Tünde

    2016-01-01

    Various types of advanced oxidation processes (AOPs), such as UV photolysis, ozonation, heterogeneous photocatalysis and their combinations were comparatively examined at the same energy input in a home-made reactor. The oxidative transformations of the phenylurea herbicides fenuron, monuron and diuron were investigated. The initial rates of transformation demonstrated that UV photolysis was highly efficient in the cases of diuron and monuron. Ozonation proved to be much more effective in the transformation of fenuron than in those of the chlorine containing monuron and diuron. In heterogeneous photocatalysis, the rate of decomposition decreased with increase of the number of chlorine atoms in the target molecule. Addition of ozone to UV-irradiated solutions and/or TiO2-containing suspensions markedly increased the initial rates of degradation. Dehalogenation of monuron and diuron showed that each of these procedures is suitable for the simultaneous removal of chlorinated pesticides and their chlorinated intermediates. Heterogeneous photocatalysis was found to be effective in the mineralization. PMID:26764571

  13. Effects of material thickness and processing method on poly(lactic-co-glycolic acid) degradation and mechanical performance.

    PubMed

    Shirazi, Reyhaneh Neghabat; Aldabbagh, Fawaz; Ronan, William; Erxleben, Andrea; Rochev, Yury; McHugh, Peter

    2016-10-01

    In this study, the effects of material thickness and processing method on the degradation rate and the changes in the mechanical properties of poly(lactic-co-glycolic acid) material during simulated physiological degradation were investigated. Two types of poly(lactic-co-glycolic acid) materials were considered: 0.12 mm solvent-cast films and 1 mm compression-moulded plates. The experimental results presented in this study were compared to the experimental results of Shirazi et al. (Acta Biomaterialia 10(11):4695-703, 2014) for 0.25 mm solvent-cast films. These experimental observations were used to validate the computational modelling predictions of Shirazi et al. (J Mech Behav Biomed Mater 54: 48-59, 2016) on critical diffusion length scale and also to refine the model parameters. The specific material processing methods considered here did not have a significant effect on the degradation rate and the changes in mechanical properties during degradation; however, they influenced the initial molecular weight and they determined the stiffness and hardness of the poly(lactic-co-glycolic acid) material. The experimental observations strongly supported the computational modelling predictions that showed no significant difference in the degradation rate and the changes in the elastic modulus of poly(lactic-co-glycolic acid) films for thicknesses larger than 100 μm. PMID:27590824

  14. Degradation Mechanism of Cyanobacterial Toxin Cylindrospermopsin by Hydroxyl Radicals in Homogeneous UV/H2O2 Process

    EPA Science Inventory

    The degradation of cylindrospermopsin (CYN), a widely distributed and highly toxic cyanobacterial toxin (cyanotoxin), remains poorly elucidated. In this study, the mechanism of CYN destruction by UV-254 nm/H2O2 advanced oxidation process (AOP) was investigated by mass spectrometr...

  15. Influences of alpine ecosystem degradation on soil temperature in the freezing-thawing process on Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Hu, Hongchang; Wang, Genxu; Liu, Guangsheng; Li, Taibing; Ren, Dongxing; Wang, Yibo; Cheng, Huiyan; Wang, Junfeng

    2009-05-01

    The alpine ecosystem is very sensitive to environmental change due to global and local disturbances. The alpine ecosystem degradation, characterized by reducing vegetation coverage or biomass, has been occurring in the Qinghai-Tibet Plateau, which alters local energy balance, and water and biochemical cycles. However, detailed characterization of the ecosystem degradation effect is lack in literature. In this study, the impact of alpine ecosystem degradation on soil temperature for seasonal frozen soil and permafrost are examined. The vegetation coverage is used to indicate the degree of ecosystems degradation. Daily soil temperature is monitored at different depths for different vegetation coverage, for both permafrost and seasonal frozen soils. Results show that under the insulating effort of the vegetation, the freezing and thawing process become quicker and steeper, and the start of the freezing and thawing process moves up due to the insulating effort of the vegetation. The influence of vegetation coverage on the freezing process is more evident than the thawing process; with the decrease of vegetation coverage, the integral of frozen depth increases for seasonal frozen soil, but is vice versa for permafrost.

  16. In-line monitoring of thermal degradation of PHA during melt-processing by Near-Infrared spectroscopy.

    PubMed

    Montano-Herrera, Liliana; Pratt, Steven; Arcos-Hernandez, Monica V; Halley, Peter J; Lant, Paul A; Werker, Alan; Laycock, Bronwyn

    2014-06-25

    Polyhydroxyalkanoate (PHA) biopolymer processing is often challenged by low thermal stability, meaning that the temperatures and time for which these polymers can be processed is restrictive. Considering the sensitivity of PHA to processing conditions, there is a demand for in-line monitoring of the material behaviour in the melt. This paper investigates the application of Near-Infrared (NIR) spectroscopy for monitoring the thermal degradation of PHAs during melt-processing. Two types of materials were tested: two mixed culture PHAs extracted from biomass produced in laboratory and pilot scale after an acidic pre-treatment, and two commercially available materials derived from pure culture production systems. Thermal degradation studies were carried out in a laboratory scale extruder with conical twin screws connected to a NIR spectrometer by a fibre optic to allow in situ monitoring. Multivariate data analysis methods were applied for assessing thermal degradation kinetics and predicted the degree of degradation as measured by (1)H NMR (proton nuclear magnetic resonance spectroscopy). The pre-treated mixed culture PHAs were found to be more thermally stable when compared with the commercial pure culture PHAs as demonstrated by NIR, (1)H NMR and GPC (gel permeation chromatography). PMID:24161524

  17. Influence of electrochemical reduction and oxidation processes on the decolourisation and degradation of C.I. Reactive Orange 4 solutions.

    PubMed

    del Río, A I; Molina, J; Bonastre, J; Cases, F

    2009-06-01

    The electrochemical treatment of wastewaters from textile industry is a promising treatment technique for substances which are resistant to biodegradation. This paper presents the results of the electrochemical decolourisation and degradation of C.I. Reactive Orange 4 synthetic solutions (commercially known as Procion Orange MX2R). Electrolyses were carried out under galvanostatic conditions in a divided or undivided electrolytic cell. Therefore, oxidation, reduction or oxido-reduction experiences were tested. Ti/SnO(2)-Sb-Pt and stainless steel electrodes were used as anode and cathode, respectively. Degradation of the dye was followed by TOC, total nitrogen, COD and BOD(5) analyses. TOC removal after an oxidation process was higher than after oxido-reduction while COD removal after this last process was about 90%. Besides, the biodegradability of final samples after oxido-reduction process was studied and an improvement was observed. UV-Visible spectra revealed the presence of aromatic structures in solution when an electro-reduction was carried out while oxido-reduction process degraded both azo group and aromatic structures. HPLC analyses indicated the presence of a main intermediate after the reduction process with a chemical structure closely similar to 2-amine-1, 5-naphthalenedisulfonic acid. The lowest decolourisation rate corresponded to electrochemical oxidation. In these experiences a higher number of intermediates were generated as HPLC analysis demonstrated. The decolourisation process for the three electrochemical processes studied presented a pseudo-first order kinetics. PMID:19345978

  18. MICROBIAL DEGRADATION OF TOLUENE UNDER SULFATE- REDUCING CONDITIONS AND THE INFLUENCE OF IRON ON THE PROCESS

    EPA Science Inventory

    Toluene degradation occurred concomitantly with sulfate reduction in anaerobic microcosms inoculated with contaminated subsurface soil from an aviation fuel storage facility near the Patuxent River (Md.). Similar results were obtained for enrichment cultures in which toluene was ...

  19. Marine Oil-Degrading Microorganisms and Biodegradation Process of Petroleum Hydrocarbon in Marine Environments: A Review.

    PubMed

    Xue, Jianliang; Yu, Yang; Bai, Yu; Wang, Liping; Wu, Yanan

    2015-08-01

    Due to the toxicity of petroleum compounds, the increasing accidents of marine oil spills/leakages have had a significant impact on our environment. Recently, different remedial techniques for the treatment of marine petroleum pollution have been proposed, such as bioremediation, controlled burning, skimming, and solidifying. (Hedlund and Staley in Int J Syst Evol Microbiol 51:61-66, 2001). This review introduces an important remedial method for marine oil pollution treatment-bioremediation technique-which is considered as a reliable, efficient, cost-effective, and eco-friendly method. First, the necessity of bioremediation for marine oil pollution was discussed. Second, this paper discussed the species of oil-degrading microorganisms, degradation pathways and mechanisms, the degradation rate and reaction model, and the factors affecting the degradation. Last, several suggestions for the further research in the field of marine oil spill bioremediation were proposed. PMID:25917503

  20. [Effect of degradation succession process on the temperature sensitivity of ecosystem respiration in alpine Potentilla fruticosa scrub meadow].

    PubMed

    Li, Dong; Luo, Xu-Peng; Cao, Guang-Min; Wu, Qin; Hu, Qi-Wu; Zhuo, Ma-Cuo; Li, Hui-Mei

    2015-03-01

    Grazing is one of the main artificial driving forces for the degradation succession process of alpine meadow. In order to quantitatively study the temperature sensitivity of alpine meadow ecosystem respiration in different degradation stages, we conducted the research in Haibei Alpine Meadow Ecosystem Research Station, CAS from July 2003 to July 2004. The static chamber-chromatography methodology was used to observe the seasonal changes of alpine scrub ecosystem respiration flux during different degradation stages. The results showed that: (1) The seasonal changes of ecosystem respiration flux in different degradation stages of alpine shrub presented a unimodal curve. The maximum appeared in August and the minimum appeared during the period from October to next April. The degradation succession process significantly decreased the ecosystem respiratory CO2 release rate. The respiratory rate ranges of alpine Potentilla fruticosa scrub (GG), Kobresia capillifolia meadow (GC) and bare land (GL) were 34.21-1 168.23, 2.30-1 112.38 and 20.40-509.72 mg (m2 x h)(-1), respectively. The average respiration rate of GG was 1.29 and 2.56 times of that of GC and GL, respectively; (2) Temperature was the main factor that affected the ecosystem respiration rate, and contributed 25% - 79% of the variation of the ecosystem respiration. The degradation succession process significantly changed the correlation between ecosystem respiration rate and temperature. The correlation (R2) between ecosystem respiration rate and each temperature indicator (T(s), T(d) and T(a)) was reduced by 47.23%, 46.95% and 55.28%, respectively when the ground vegetation disappeared and the scrub was degraded into secondary bare land; (3) The difference of Q10 between warm and cool seasons was significant (P < 0.05), and the value of cold season was larger than that of warm season. Degradation succession process apparently changed the temperature sensitivity of ecosystem respiration. The Q10 values of GG, GC

  1. Real-time scattered light dark-field microscopic imaging of the dynamic degradation process of sodium dimethyldithiocarbamate

    NASA Astrophysics Data System (ADS)

    Lei, Gang; Gao, Peng Fei; Liu, Hui; Huang, Cheng Zhi

    2015-12-01

    Single nanoparticle analysis (SNA) technique with the aid of a dark-field microscopic imaging (iDFM) technique has attracted wide attention owing to its high sensitivity. Considering that the degradation of pesticides can bring about serious problems in food and the environment, and that the real-time monitoring of the dynamic degradation process of pesticides can help understand and define their degradation mechanisms, herein we real-time monitored the decomposition dynamics of sodium dimethyldithiocarbamate (NaDDC) under neutral and alkaline conditions by imaging single silver nanoparticles (AgNPs) under a dark-field microscope (DFM); the localized surface plasmon resonance (LSPR) scattering signals were measured at a single nanoparticle level. As a result, the chemical mechanism of the degradation of NaDDC under neutral and alkaline conditions was proposed, and the inhibition effects of metal ions including Zn(ii) and Cu(ii) were investigated in order to understand the decomposition process in different environments. It was found that Cu(ii) forms the most stable complex with NaDDC with a stoichiometric ratio of 1 : 2, which greatly reduces the toxicity.Single nanoparticle analysis (SNA) technique with the aid of a dark-field microscopic imaging (iDFM) technique has attracted wide attention owing to its high sensitivity. Considering that the degradation of pesticides can bring about serious problems in food and the environment, and that the real-time monitoring of the dynamic degradation process of pesticides can help understand and define their degradation mechanisms, herein we real-time monitored the decomposition dynamics of sodium dimethyldithiocarbamate (NaDDC) under neutral and alkaline conditions by imaging single silver nanoparticles (AgNPs) under a dark-field microscope (DFM); the localized surface plasmon resonance (LSPR) scattering signals were measured at a single nanoparticle level. As a result, the chemical mechanism of the degradation of Na

  2. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants

    PubMed Central

    Sah, Saroj K.; Reddy, Kambham R.; Li, Jiaxu

    2016-01-01

    Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression. PMID:27200044

  3. Atrazine degradation in a small stream in Iowa

    USGS Publications Warehouse

    Kolpin, D.W.; Kalkhoff, S.J.

    1993-01-01

    A study was conducted during 1990 through an 11.2-km reach of Roberts Creek in northeastern Iowa to determine the fate of atrazine in a surface water environment Water samples were collected at ~1-month intervals from April through November during stable low to medium flow conditions and analyzed for atrazine and two of its initial biotic degradation products, desethylatrazine and deisopropylatrazine. Samples were collected on the basis of a Lagrangian model of streamflow in order to sample the same parcel of water as it moved downstream. Atrazine concentrations substantially decreased (roughly 25-60%) between water entering and exiting the study reach during four of the seven sampling periods. During these same four sampling periods, the concentrations of the two biotic atrazine degradation products were constant or decreasing downstream, suggesting an abiotic degradation process.

  4. Community Structure and Succession Regulation of Fungal Consortia in the Lignocellulose-Degrading Process on Natural Biomass

    PubMed Central

    Wang, Chunxiang; Lv, Ruirui; Zhou, Junxiong; Li, Xin; Zheng, Yi; Jin, Xiangyu; Wang, Mengli; Ye, Yongxia; Huang, Xinyi; Liu, Ping

    2014-01-01

    The study aims to investigate fungal community structures and dynamic changes in forest soil lignocellulose-degrading process. rRNA gene clone libraries for the samples collected in different stages of lignocellulose degradation process were constructed and analyzed. A total of 26 representative RFLP types were obtained from original soil clone library, including Mucoromycotina (29.5%), unclassified Zygomycetes (33.5%), Ascomycota (32.4%), and Basidiomycota (4.6%). When soil accumulated with natural lignocellulose, 16 RFLP types were identified from 8-day clone library, including Basidiomycota (62.5%), Ascomycota (36.1%), and Fungi incertae sedis (1.4%). After enrichment for 15 days, identified 11 RFLP types were placed in 3 fungal groups: Basidiomycota (86.9%), Ascomycota (11.5%), and Fungi incertae sedis (1.6%). The results showed richer, more diversity and abundance fungal groups in original forest soil. With the degradation of lignocellulose, fungal groups Mucoromycotina and Ascomycota decreased gradually, and wood-rotting fungi Basidiomycota increased and replaced the opportunist fungi to become predominant group. Most of the fungal clones identified in sample were related to the reported lignocellulose-decomposing strains. Understanding of the microbial community structure and dynamic change during natural lignocellulose-degrading process will provide us with an idea and a basis to construct available commercial lignocellulosic enzymes or microbial complex. PMID:24574925

  5. Degradation characteristic of monoazo, diazo and anthraquinone dye by UV/H{sub 2}O{sub 2} process

    SciTech Connect

    Abidin, Che Zulzikrami Azner E-mail: drfahmi@unimap.edu.my E-mail: fatinnadhirah89@gmail.com; Fahmi, Muhammad Ridwan E-mail: drfahmi@unimap.edu.my E-mail: fatinnadhirah89@gmail.com; Fazara, Md Ali Umi E-mail: drfahmi@unimap.edu.my E-mail: fatinnadhirah89@gmail.com; Nadhirah, Siti Nurfatin E-mail: drfahmi@unimap.edu.my E-mail: fatinnadhirah89@gmail.com

    2014-10-24

    In this study, the degradation characteristic of monoazo, diazo and anthraquinone dye by UV/H{sub 2}O{sub 2} process was evaluated based on the trend of color, chemical oxygen demand (COD) and total organic carbon (TOC) removal. Three types of dyes consist of monoazo, diazo and anthraquinone dyes were used to compare the degradation mechanism of the dyes. The UV/H{sub 2}O{sub 2} experiments were conducted in a laboratory scale cylindrical glass reactor operated in semi-batch mode. The UV/Vis characterization of monoazo, diazo and anthraquinone dye indicated that the rapid degradation of the dyes by UV/H{sub 2}O{sub 2} process is meaningful with respect to decolourization, as a result of the azo bonds and substitute antraquinone chromophore degradation. However, this process is not efficient for aromatic amines removal. The monoazo MO was difficult to be decolorized than diazo RR120 dye, which imply that number of sulphonic groups in the dye molecules determines the reactivity with hydroxyl radical. The increased in COD removal is the evidence for oxidation and decreased in carbon content of dye molecules. TOC removal analysis shows that low TOC removal of monoazo MO and diazo RR120, as compared to anthraquinone RB19 may indicate an accumulation of by-products that are resistant to the H{sub 2}O{sub 2} photolysis.

  6. Polyamines and abiotic stress tolerance in plants

    PubMed Central

    Gill, Sarvajeet Singh

    2010-01-01

    Environmental stresses including climate change, especially global warming, are severely affecting plant growth and productivity worldwide. It has been estimated that two-thirds of the yield potential of major crops are routinely lost due to the unfavorable environmental factors. On the other hand, the world population is estimated to reach about 10 billion by 2050, which will witness serious food shortages. Therefore, crops with enhanced vigour and high tolerance to various environmental factors should be developed to feed the increasing world population. Maintaining crop yields under adverse environmental stresses is probably the major challenge facing modern agriculture where polyamines can play important role. Polyamines (PAs)(putrescine, spermidine and spermine) are group of phytohormone-like aliphatic amine natural compounds with aliphatic nitrogen structure and present in almost all living organisms including plants. Evidences showed that polyamines are involved in many physiological processes, such as cell growth and development and respond to stress tolerance to various environmental factors. In many cases the relationship of plant stress tolerance was noted with the production of conjugated and bound polyamines as well as stimulation of polyamine oxidation. Therefore, genetic manipulation of crop plants with genes encoding enzymes of polyamine biosynthetic pathways may provide better stress tolerance to crop plants. Furthermore, the exogenous application of PAs is also another option for increasing the stress tolerance potential in plants. Here, we have described the synthesis and role of various polyamines in abiotic stress tolerance in plants. PMID:20592804

  7. Central composite design optimization of pilot plant fluidized-bed heterogeneous Fenton process for degradation of an azo dye.

    PubMed

    Aghdasinia, Hassan; Bagheri, Rasoul; Vahid, Behrouz; Khataee, Alireza

    2016-11-01

    Optimization of Acid Yellow 36 (AY36) degradation by heterogeneous Fenton process in a recirculated fluidized-bed reactor was studied using central composite design (CCD). Natural pyrite was applied as the catalyst characterized by X-ray diffraction and scanning electron microscopy. The CCD model was developed for the estimation of degradation efficiency as a function of independent operational parameters including hydrogen peroxide concentration (0.5-2.5 mmol/L), initial AY36 concentration (5-25 mg/L), pH (3-9) and catalyst dosage (0.4-1.2 mg/L). The obtained data from the model are in good agreement with the experimental data (R(2 )= 0.964). Moreover, this model is applicable not only to determine the optimized experimental conditions for maximum AY36 degradation, but also to find individual and interactive effects of the mentioned parameters. Finally, gas chromatography-mass spectroscopy (GC-MS) was utilized for the identification of some degradation intermediates and a plausible degradation pathway was proposed. PMID:26934385

  8. Degradation of the antibiotics amoxicillin, ampicillin and cloxacillin in aqueous solution by the photo-Fenton process.

    PubMed

    Elmolla, Emad S; Chaudhuri, Malay

    2009-12-30

    The study examined degradation of the antibiotics amoxicillin, ampicillin and cloxacillin in aqueous solution by the photo-Fenton process. The optimum operating conditions for treatment of an aqueous solution containing 104, 105 and 103 mg/L amoxicillin, ampicillin, and cloxacillin, respectively was observed to be H(2)O(2)/COD molar ratio 1.5, H(2)O(2)/Fe(2+) molar ratio 20 and pH 3. Under optimum operating conditions, complete degradation of amoxicillin, ampicillin and cloxacillin occurred in 2 min. Biodegradability (BOD(5)/COD ratio) improved from approximately 0 to 0.4, and COD and DOC degradation were 80.8 and 58.4%, respectively in 50 min. Photo-Fenton treatment resulted in the release and mineralization of organic carbon and nitrogen in the antibiotic molecule. Increase in ammonia and nitrate concentration, and DOC degradation were observed as a result of organic carbon and nitrogen mineralization. DOC degradation increased to 58.4% and ammonia increased from 8 to 13.5mg/L, and nitrate increased from 0.3 to 14.2mg/L in 50 min. PMID:19717236

  9. Degradation of anti-inflammatory drug ketoprofen by electro-oxidation: comparison of electro-Fenton and anodic oxidation processes.

    PubMed

    Feng, Ling; Oturan, Nihal; van Hullebusch, Eric D; Esposito, Giovanni; Oturan, Mehmet A

    2014-01-01

    The electrochemical degradation of the nonsteroidal anti-inflammatory drug ketoprofen in tap water has been studied using electro-Fenton (EF) and anodic oxidation (AO) processes with platinium (Pt) and boron-doped diamond (BDD) anodes and carbon felt cathode. Fast degradation of the parent drug molecule and its degradation intermediates leading to complete mineralization was achieved by BDD/carbon felt, Pt/carbon felt, and AO with BDD anode. The obtained results showed that oxidative degradation rate of ketoprofen and mineralization of its aqueous solution increased by increasing applied current. Degradation kinetics fitted well to a pseudo-first-order reaction. Absolute rate constant of the oxidation of ketoprofen by electrochemically generated hydroxyl radicals was determined to be (2.8 ± 0.1) × 10(9) M(-1) s(-1) by using competition kinetic method. Several reaction intermediates such as 3-hydroxybenzoic acid, pyrogallol, catechol, benzophenone, benzoic acid, and hydroquinone were identified by high-performance liquid chromatography (HPLC) analyses. The formation, identification, and evolution of short-chain aliphatic carboxylic acids like formic, acetic, oxalic, glycolic, and glyoxylic acids were monitored with ion exclusion chromatography. Based on the identified aromatic/cyclic intermediates and carboxylic acids as end products before mineralization, a plausible mineralization pathway was proposed. The evolution of the toxicity during treatments was also monitored using Microtox method, showing a faster detoxification with higher applied current values. PMID:24756667

  10. The efficiency of turn-over processes in degraded peat as investigated under continuous flow conditions

    NASA Astrophysics Data System (ADS)

    Kleimeier, Christian; Karsten, Ulf; Janssen, Manon; Lennartz, Bernd

    2013-04-01

    Nitrate removal from run-off from agricultural land is in general required to reach a "good chemical status" of surface and groundwater bodies according to the European Water Framework Directive. Removing nitrates via heterotrophic denitrification is highly effective but requires stable anoxic environmental conditions as well as available organic carbon as an electron donator. Constructed wetlands, established on peat soils, through which the nitrate-loaded water is routed, may provide denitrification favorable conditions. A long-term flow experiment (mesocosm) was conducted employing a laboratory container set-up filled with decomposed peat aiming at quantifying the nitrate removal efficiency at various nitrate influx rates. The redox potential was measured at different depths to determine the spatial distribution of denitrificating zones. This new methodological approach allows the observation of biological nitrate turn over without interrupting the adjusted flow rate. We investigated the hydraulic properties and derived transport parameters for the mesocosm by analyzing experimental data from tracer tests. The obtained bromide breakthrough curves (BTC) were subjected to model analysis using the CXTFIT routine of the STANMOD software package. It could be demonstrated that the degraded peat has a dual porosity structure with roughly 40% of the pore water not participating in convective flow and transport processes. Further, the first flushing of mineralized nitrate upon rewetting and onset of flux may compromise any positive clean-up and nitrate removal effects occurring during long-term operation of peat wetlands. The development of the spatial sequence of bacterial cultures is characterized by the redox potential. It is dominated by the available substrates that serve as electron acceptors in bacterial respiration and occurs in a thermodynamically determined top-down order. The zonal development of the nitrate-consuming bacteria was observed and used to describe

  11. Combined Surface Analytical Methods to Characterize Degradative Processes in Anti-Stiction Films in MEMS Devices

    NASA Astrophysics Data System (ADS)

    Zavadil, Kevin

    2005-03-01

    The performance and reliability of microelectromechanical (MEMS) devices can be highly dependent on the control of the surface energetics in these structures. Examples of this sensitivity include the use of surface modifying chemistries to control stiction, to minimize friction and wear, and to preserve favorable electrical characteristics in surface micromachined structures. Silane modification of surfaces is one classic approach to controlling stiction in Si-based devices. The time-dependent efficacy of this modifying treatment has traditionally been evaluated by studying the impact of accelerated aging on device performance and conducting subsequent failure analysis. Our interest has been in identifying aging related chemical signatures that represent the early stages of processes like silane displacement or chemical modification that eventually lead to device performance changes. We employ a series of classic surface characterization techniques along with multivariate statistical methods to study subtle changes in the silanized silicon surface and relate these to degradation mechanisms. Examples include the use of spatially resolved time-of-flight secondary ion mass spectrometric, photoelectron spectroscopic, photoluminescence imaging, and scanning probe microscopic techniques to explore the penetration of water through a silane monolayer, the incorporation of contaminant species into a silane monolayer, and local displacement of silane molecules from the Si surface. We have applied this analytical methodology at the Si coupon level up to MEMS devices. This approach can be generalized to other chemical systems to address issues of new materials integration into micro- and nano-scale systems. * This work was supported by the United States Department of Energy under Contract DE-AC04-94AL85000. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security

  12. DDE remediation and degradation.

    PubMed

    Thomas, John E; Ou, Li-Tse; All-Agely, Abid

    2008-01-01

    DDT and its metabolites, DDD and DDE, have been shown to be recalcitrant to degradation. The parent compound, DDT, was used extensively worldwide starting in 1939 and was banned in the United States in 1973. The daughter compound, DDE, may result from aerobic degradation, abiotic dehydrochlorination, or photochemical decomposition. DDE has also occurred as a contaminant in commercial-grade DDT. The p,p'-DDE isomer is more biologically active than the o,p-DDE, with a reported half-life of -5.7 years. However, when DDT was repeatedly applied to the soil, the DDE concentration may remain unchanged for more than 20 yr. Remediation of DDE-contaminated soil and water may be done by several techniques. Phytoremediation involves translocating DDT, DDD, and DDE from the soil into the plant, although some aquatic species (duckweed > elodea > parrot feather) can transform DDT into predominantly DDD with some DDE being formed. Of all the plants that can uptake DDE, Cucurbita pepo has been the most extensively studied, with translocation values approaching "hyperaccumulation" levels. Soil moisture, temperature, and plant density have all been documented as important factors in the uptake of DDE by Cucurbita pepo. Uptake may also be influenced positively by amendments such as biosurfactants, mycorrhizal inoculants, and low molecular weight organic acids (e.g., citric and oxalic acids). DDE microbial degradation by dehalogenases, dioxygenases, and hydrolases occurs under the proper conditions. Although several aerobic degradation pathways have been proposed, none has been fully verified. Very few aerobic pure cultures are capable of fully degrading DDE to CO2. Cometabolism of DDE by Pseudomonas sp., Alicaligens sp., and Terrabacter sp. grown on biphenyl has been reported; however, not all bacterial species that produce biphenyl dioxygenase degraded DDE. Arsenic and copper inhibit DDE degradation by aerobic microorganisms. Similarly, metal chelates such as EDTA inhibit the

  13. Acid attack on hydrated cement — Effect of mineral acids on the degradation process

    SciTech Connect

    Gutberlet, T.; Hilbig, H.; Beddoe, R.E.

    2015-08-15

    During acid attack on concrete structural components, a degraded layer develops whose properties as a protective barrier are decisive for durability. {sup 29}Si NMR spectroscopy and {sup 27}Al NMR spectroscopy were used with XRD to investigate the degraded layer on hardened cement paste exposed to HCl and H{sub 2}SO{sub 4}. The layer comprises an amorphous silica gel with framework silicates, geminate and single silanol groups in which Si is substituted by Al. Amorphous Al(OH){sub 3} and Fe(OH){sub 3} are present. The gel forms by polycondensation and cross-linking of C-A-S-H chains at AlO{sub 4} bridging tetrahedra. In the transition zone between the degraded layer and the undamaged material, portlandite dissolves and Ca is removed from the C-A-S-H phases maintaining their polymer structure at first. With HCl, monosulphate in the transition zone is converted into Friedel's salt and ettringite. With H{sub 2}SO{sub 4}, gypsum precipitates near the degradation front reducing the thickness of the transition zone and the rate of degradation.

  14. A spatial dynamic model to assess piospheric land degradation processes of SW Iberian rangelands

    NASA Astrophysics Data System (ADS)

    Herguido Sevillano, Estela; Ibáñez, Javier; Francisco Lavado Contador, Joaquín; Pulido-Fernández, Manuel; Schnabel, Susanne

    2015-04-01

    Iberian open wooded rangelands (known as dehesas or montados) constitute valuable agro-silvo-pastoral systems traditionally considered as highly sustainable. Nevertheless, in the recent decades, those systems are undergoing changes of land use and management practices that compromise its sustainability. Some of those changes, as the rising construction of watering points and the high spatial fragmentation and livestock movement restriction associated to fencing, show an aggregated effect with livestock, producing an impact gradient over soil and vegetation. Soil compaction related to livestock pressure is higher around watering points, with bare soil halos and patches of scarce vegetation or nude soil developing with higher frequency in areas close to them. Using the freeware Dinamica EGO as environmental modeling platform, we have developed a theoretic spatial dynamic model that represents some of the processes of land degradation associated to livestock grazing in dehesa fenced enclosures. Spatial resolution is high since every cell in the model is a square unit area of 1 m2. We paid particular attention to the relationships between soil degradation by compaction (porosity), livestock pressure, rainfall, pasture growth and shrub cover and bare soil generation. The model considers pasture growth as related to soil compaction, measured by the pore space in the top 10 cm soil layer. Annual precipitation is randomly generated following a normal distribution. When annual precipitation and pore space increase, also does pasture growth. Besides, there is a feedback between pasture growth and pore space, given that pasture roots increases soil porosity. The cell utility for livestock function has been defined as an exponential function of the distance of a cell to watering points and the amount of pasture present in it. The closer the cell to a pond and the higher the amount of pasture, the higher is cell utility. The latter is modulated by a normal random variable to

  15. A spatial dynamic model to assess piospheric land degradation processes of SW Iberian rangelands

    NASA Astrophysics Data System (ADS)

    Herguido Sevillano, Estela; Ibáñez, Javier; Francisco Lavado Contador, Joaquín; Pulido-Fernández, Manuel; Schnabel, Susanne

    2015-04-01

    Iberian open wooded rangelands (known as dehesas or montados) constitute valuable agro-silvo-pastoral systems traditionally considered as highly sustainable. Nevertheless, in the recent decades, those systems are undergoing changes of land use and management practices that compromise its sustainability. Some of those changes, as the rising construction of watering points and the high spatial fragmentation and livestock movement restriction associated to fencing, show an aggregated effect with livestock, producing an impact gradient over soil and vegetation. Soil compaction related to livestock pressure is higher around watering points, with bare soil halos and patches of scarce vegetation or nude soil developing with higher frequency in areas close to them. Using the freeware Dinamica EGO as environmental modeling platform, we have developed a theoretic spatial dynamic model that represents some of the processes of land degradation associated to livestock grazing in dehesa fenced enclosures. Spatial resolution is high since every cell in the model is a square unit area of 1 m2. We paid particular attention to the relationships between soil degradation by compaction (porosity), livestock pressure, rainfall, pasture growth and shrub cover and bare soil generation. The model considers pasture growth as related to soil compaction, measured by the pore space in the top 10 cm soil layer. Annual precipitation is randomly generated following a normal distribution. When annual precipitation and pore space increase, also does pasture growth. Besides, there is a feedback between pasture growth and pore space, given that pasture roots increases soil porosity. The cell utility for livestock function has been defined as an exponential function of the distance of a cell to watering points and the amount of pasture present in it. The closer the cell to a pond and the higher the amount of pasture, the higher is cell utility. The latter is modulated by a normal random variable to

  16. Lipid signalling in plant responses to abiotic stress.

    PubMed

    Hou, Quancan; Ufer, Guido; Bartels, Dorothea

    2016-05-01

    Lipids are one of the major components of biological membranes including the plasma membrane, which is the interface between the cell and the environment. It has become clear that membrane lipids also serve as substrates for the generation of numerous signalling lipids such as phosphatidic acid, phosphoinositides, sphingolipids, lysophospholipids, oxylipins, N-acylethanolamines, free fatty acids and others. The enzymatic production and metabolism of these signalling molecules are tightly regulated and can rapidly be activated upon abiotic stress signals. Abiotic stress like water deficit and temperature stress triggers lipid-dependent signalling cascades, which control the expression of gene clusters and activate plant adaptation processes. Signalling lipids are able to recruit protein targets transiently to the membrane and thus affect conformation and activity of intracellular proteins and metabolites. In plants, knowledge is still scarce of lipid signalling targets and their physiological consequences. This review focuses on the generation of signalling lipids and their involvement in response to abiotic stress. We describe lipid-binding proteins in the context of changing environmental conditions and compare different approaches to determine lipid-protein interactions, crucial for deciphering the signalling cascades. PMID:26510494

  17. Titania may produce abiotic oxygen atmospheres on habitable exoplanets.

    PubMed

    Narita, Norio; Enomoto, Takafumi; Masaoka, Shigeyuki; Kusakabe, Nobuhiko

    2015-01-01

    The search for habitable exoplanets in the Universe is actively ongoing in the field of astronomy. The biggest future milestone is to determine whether life exists on such habitable exoplanets. In that context, oxygen in the atmosphere has been considered strong evidence for the presence of photosynthetic organisms. In this paper, we show that a previously unconsidered photochemical mechanism by titanium (IV) oxide (titania) can produce abiotic oxygen from liquid water under near ultraviolet (NUV) lights on the surface of exoplanets. Titania works as a photocatalyst to dissociate liquid water in this process. This mechanism offers a different source of a possibility of abiotic oxygen in atmospheres of exoplanets from previously considered photodissociation of water vapor in upper atmospheres by extreme ultraviolet (XUV) light. Our order-of-magnitude estimation shows that possible amounts of oxygen produced by this abiotic mechanism can be comparable with or even more than that in the atmosphere of the current Earth, depending on the amount of active surface area for this mechanism. We conclude that titania may act as a potential source of false signs of life on habitable exoplanets. PMID:26354078

  18. Titania may produce abiotic oxygen atmospheres on habitable exoplanets

    PubMed Central

    Narita, Norio; Enomoto, Takafumi; Masaoka, Shigeyuki; Kusakabe, Nobuhiko

    2015-01-01

    The search for habitable exoplanets in the Universe is actively ongoing in the field of astronomy. The biggest future milestone is to determine whether life exists on such habitable exoplanets. In that context, oxygen in the atmosphere has been considered strong evidence for the presence of photosynthetic organisms. In this paper, we show that a previously unconsidered photochemical mechanism by titanium (IV) oxide (titania) can produce abiotic oxygen from liquid water under near ultraviolet (NUV) lights on the surface of exoplanets. Titania works as a photocatalyst to dissociate liquid water in this process. This mechanism offers a different source of a possibility of abiotic oxygen in atmospheres of exoplanets from previously considered photodissociation of water vapor in upper atmospheres by extreme ultraviolet (XUV) light. Our order-of-magnitude estimation shows that possible amounts of oxygen produced by this abiotic mechanism can be comparable with or even more than that in the atmosphere of the current Earth, depending on the amount of active surface area for this mechanism. We conclude that titania may act as a potential source of false signs of life on habitable exoplanets. PMID:26354078

  19. Abiotic Reductive Immobilization of U(VI) by Biogenic Mackinawite

    SciTech Connect

    Veeramani, Harish; Scheinost, Andreas; Monsegue, Niven; Qafoku, Nikolla; Kukkadapu, Ravi K.; Newville, Mathew; Lanzirotti, Anthony; Pruden, Amy; Murayama, Mitsuhiro; Hochella, Michael F.

    2013-03-01

    During subsurface bioremediation of uranium-contaminated sites, indigenous metal and sulfate-reducing bacteria may utilize a variety of electron acceptors, including ferric iron and sulfate that could lead to the formation of various biogenic minerals in-situ. Sulfides, as well as structural and adsorbed Fe(II) associated with biogenic Fe(II)-sulfide phases, can potentially catalyze abiotic U6+ reduction via direct electron transfer processes. In the present work, the propensity of biogenic mackinawite (Fe1+xS, x = 0 to 0.11) to reduce U6+ abiotically was investigated. The biogenic mackinawite produced by Shewanella putrefaciens strain CN32 was characterized by employing a suite of analytical techniques including TEM, SEM, XAS and Mössbauer analyses. Nanoscale and bulk analyses (microscopic and spectroscopic techniques, respectively) of biogenic mackinawite after exposure to U6+ indicate the formation of nanoparticulate UO2. This study suggests the relevance of Fe(II) and sulfide bearing biogenic minerals in mediating abiotic U6+ reduction, an alternative pathway in addition to direct enzymatic U6+ reduction.

  20. Titania may produce abiotic oxygen atmospheres on habitable exoplanets

    NASA Astrophysics Data System (ADS)

    Narita, Norio; Enomoto, Takafumi; Masaoka, Shigeyuki; Kusakabe, Nobuhiko

    2015-12-01

    The search for habitable exoplanets in the Universe is actively ongoing in the field of astronomy. The biggest future milestone is to determine whether life exists on such habitable exoplanets. In that context, oxygen in the atmosphere has been considered strong evidence for the presence of photosynthetic organisms. In this paper, we show that a previously unconsidered photochemical mechanism by titanium (IV) oxide (titania) can produce abiotic oxygen from liquid water under near ultraviolet (NUV) lights on the surface of exoplanets. Titania works as a photocatalyst to dissociate liquid water in this process. This mechanism offers a different source of a possibility of abiotic oxygen in atmospheres of exoplanets from previously considered photodissociation of water vapor in upper atmospheres by extreme ultraviolet (XUV) light. Our order-of-magnitude estimation shows that possible amounts of oxygen produced by this abiotic mechanism can be comparable with or even more than that in the atmosphere of the current Earth, depending on the amount of active surface area for this mechanism. We conclude that titania may act as a potential source of false signs of life on habitable exoplanets.Reference:Narita N. et al.,Scientific Reports 5, Article number: 13977 (2015)http://www.nature.com/articles/srep13977

  1. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants

    PubMed Central

    Khan, M. Iqbal R.; Fatma, Mehar; Per, Tasir S.; Anjum, Naser A.; Khan, Nafees A.

    2015-01-01

    Abiotic stresses (such as metals/metalloids, salinity, ozone, UV-B radiation, extreme temperatures, and drought) are among the most challenging threats to agricultural system and economic yield of crop plants. These stresses (in isolation and/or combination) induce numerous adverse effects in plants, impair biochemical/physiological and molecular processes, and eventually cause severe reductions in plant growth, development and overall productivity. Phytohormones have been recognized as a strong tool for sustainably alleviating adverse effects of abiotic stresses in crop plants. In particular, the significance of salicylic acid (SA) has been increasingly recognized in improved plant abiotic stress-tolerance via SA-mediated control of major plant-metabolic processes. However, the basic biochemical/physiological and molecular mechanisms that potentially underpin SA-induced plant-tolerance to major abiotic stresses remain least discussed. Based on recent reports, this paper: (a) overviews historical background and biosynthesis of SA under both optimal and stressful environments in plants; (b) critically appraises the role of SA in plants exposed to major abiotic stresses; (c) cross-talks potential mechanisms potentially governing SA-induced plant abiotic stress-tolerance; and finally (d) briefly highlights major aspects so far unexplored in the current context. PMID:26175738

  2. Abiotic Versus Biotic Weathering Of Olivine As Possible Biosignatures

    NASA Technical Reports Server (NTRS)

    Longazo, Teresa G.; Wentworth, Susan J.; Clemett, Simon J.; Southam, Gordon; McKay, David S.

    2001-01-01

    We are investigating the weathering of silicate minerals by both purely inorganic, and biologically mediated processes using field-emission scanning electron microscopy (FESEM) and energy dispersive x-ray spectroscopy (EDS). By resolving surface textures and chemical compositions of weathered surfaces at the sub-micron scale we hope to be able to distinguish abiotic from biotic weathering processes and so establish a new biosignature applicable to the study of astromaterials including but not limited to the Martian meteorites. Sterilized olivine grains (San Carlos, Arizona) no more than 1-2 mm in their longest dimension were optically assayed to be uniform in color and free of inclusions were selected as weathering subjects. Prior to all experiments surface morphologies and Fe/Mg ratios were determined for each grain using FE-SEM and EDS. Experiments were divided into two categories abiotic and biotic and were compared with "naturally" weathered samples. For the preliminary experiments, two trials (open and closed to the ambient laboratory environment) were performed under abiotic conditions, and three trials under biotic conditions (control, day 1 and day 2). The open system abiotic trials used sterile grains heated at 98 C and 200 C for both 24 and 48 hours in 1L double distilled de-ionized water. The closed system abiotic trials were conducted under the same conditions but in a sealed two layer steel/Teflon "bomb" apparatus. The biotic trials used sterile grains mounted in a flow-through device attached to a wellhead on the Columbia River aquifer. Several discolored, altered, grains were selected to document "natural" weathering surface textures for comparison with the experimental samples. Preliminary results indicate there are qualitative differences in weathered surface textures among all the designed experiments. The olivine grains in abiotic trials displayed etching, pitting, denticulate margins, dissolution and clay formation. The scale of the features

  3. A Doping Lattice of Aluminum and Copper with Accelerated Electron Transfer Process and Enhanced Reductive Degradation Performance

    PubMed Central

    Zhang, Lin; Gao, Xue; Zhang, Zhixuan; Zhang, Mingbo; Cheng, Yiqian; Su, Jixin

    2016-01-01

    Treatment of azo dye effluents has received increasing concerns over the years due to their potential harms to natural environment and human health. The present study described the degrading ability of the as-synthesized crystalline Al-Cu alloys for removal of high-concentration Acid Scarlet 3R in alkaline aqueous solutions and its degradation mechanism. Al-Cu alloy particles with Al/Cu ratios 19:1 were successfully synthesized by high-energy mechanical milling. Characterization results showed that 10 h mechanical alloying process could lead to the formation of crystalline Al(Cu) solid solution. Batch experiment results confirmed the excellent ability of Al-Cu alloy particles for the degradation of 3R in aqueous solution. Under a certain condition ([Al-Cu]0 = 2 g/L, [3R]0 = 200 mg/L, [NaCl]0 = 25 g/L, initial pH = 10.9), the 3R could be completely degraded within only 3 min. It was also found that the degradation reaction followed zero-order kinetics model with respect to the initial dye concentration. The intermediate compounds were identified by UV-vis, FT-IR and HPLC-MS, and a pathway was proposed. Additionally, post-treatment Al-Cu alloy particles were characterized by SEM and TEM, and the results showed that the degradation might be attributed to the corrosion effect of Al-Cu alloys. PMID:27535800

  4. Degradation mechanism of alachlor during direct ozonation and O(3)/H(2)O(2) advanced oxidation process.

    PubMed

    Qiang, Zhimin; Liu, Chao; Dong, Bingzhi; Zhang, Yalei

    2010-01-01

    The degradation of alachlor by direct ozonation and advanced oxidation process O(3)/H(2)O(2) was investigated in this study with focus on identification of degradation byproducts. The second-order reaction rate constant between ozone and alachlor was determined to be 2.5+/-0.1M(-1)s(-1) at pH 7.0 and 20 degrees C. Twelve and eight high-molecular-weight byproducts (with the benzene ring intact) from alachlor degradation were identified during direct ozonation and O(3)/H(2)O(2), respectively. The common degradation byproducts included N-(2,6-diethylphenyl)-methyleneamine, 8-ethyl-3,4-dihydro-quinoline, 8-ethyl-quinoline, 1-chloroacetyl-2-hydro-3-ketone-7-acetyl-indole, 2-chloro-2',6'-diacetyl-N-(methoxymethyl)acetanilide, 2-chloro-2'-acetyl-6'-ethyl-N-(methoxymethyl)-acetanilide, and two hydroxylated alachlor isomers. In direct ozonation, four more byproducts were also identified including 1-chloroacetyl-2,3-dihydro-7-ethyl-indole, 2-chloro-2',6'-ethyl-acetanilide, 2-chloro-2',6'-acetyl-acetanilide and 2-chloro-2'-ethyl-6'-acetyl-N-(methoxymethyl)-acetanilide. Degradation of alachlor by O(3) and O(3)/H(2)O(2) also led to the formation of low-molecular-weight byproducts including formic, acetic, propionic, monochloroacetic and oxalic acids as well as chloride ion (only detected in O(3)/H(2)O(2)). Nitrite and nitrate formation was negligible. Alachlor degradation occurred via oxidation of the arylethyl group, N-dealkylation, cyclization and cleavage of benzene ring. After O(3) or O(3)/H(2)O(2) treatment, the toxicity of alachlor solution examined by the Daphnia magna bioassay was slightly reduced. PMID:20022076

  5. Influence of under pressure dissolved oxygen on trichloroethylene degradation by the H2O2/TiO2 process

    PubMed Central

    2013-01-01

    Background The widespread use of trichloroethylene (TCE) and its frequent release into the environment has caused many environmental and health problems. In this study the degradation of TCE at different micromolar concentrations was investigated in a stainless steel reactor with various concentrations of H2O2 and TiO2 at different oxygen pressures and three different pHs. Methods To examine the synergistic effect of under pressure oxygen on TCE degradation, the concentrations of H2O2 and TiO2 as well as pH were first optimized, and then the experiments were performed under optimal conditions. Gas chromatography with a flame ionization detector (FID) was used to measure TCE concentrations. Results Results showed that the percentage of TCE degradation without pressurized oxygen was low and it increased with increasing pressure of oxygen at all initial concentrations of TCE. The degradation percentages without oxygen pressure were 48.27%, 51.22%, 58.13% and 64.33% for TCE concentrations of 3000, 1500, 300 and 150 μg/L respectively. At an oxygen pressure of 2.5 atmospheres (atm) the percent degradation of TCE reached 84.85%, 89.14%, 93.13% and 94.99% respectively for the aforementioned TCE concentrations. Conclusions The results of this study show that the application of dissolved oxygen under pressure increases the efficiency of the H2O2/TiO2 process on the degradation of TCE and can be used along with other oxidants as an effective method for the removal of this compound from aqueous solutions. PMID:24359702

  6. A Doping Lattice of Aluminum and Copper with Accelerated Electron Transfer Process and Enhanced Reductive Degradation Performance.

    PubMed

    Zhang, Lin; Gao, Xue; Zhang, Zhixuan; Zhang, Mingbo; Cheng, Yiqian; Su, Jixin

    2016-01-01

    Treatment of azo dye effluents has received increasing concerns over the years due to their potential harms to natural environment and human health. The present study described the degrading ability of the as-synthesized crystalline Al-Cu alloys for removal of high-concentration Acid Scarlet 3R in alkaline aqueous solutions and its degradation mechanism. Al-Cu alloy particles with Al/Cu ratios 19:1 were successfully synthesized by high-energy mechanical milling. Characterization results showed that 10 h mechanical alloying process could lead to the formation of crystalline Al(Cu) solid solution. Batch experiment results confirmed the excellent ability of Al-Cu alloy particles for the degradation of 3R in aqueous solution. Under a certain condition ([Al-Cu]0 = 2 g/L, [3R]0 = 200 mg/L, [NaCl]0 = 25 g/L, initial pH = 10.9), the 3R could be completely degraded within only 3 min. It was also found that the degradation reaction followed zero-order kinetics model with respect to the initial dye concentration. The intermediate compounds were identified by UV-vis, FT-IR and HPLC-MS, and a pathway was proposed. Additionally, post-treatment Al-Cu alloy particles were characterized by SEM and TEM, and the results showed that the degradation might be attributed to the corrosion effect of Al-Cu alloys. PMID:27535800

  7. Interpreting biological degradative processes acting on mammalian hair in the living and the dead: which ones are taphonomic?

    PubMed Central

    Tridico, Silvana R.; Koch, Sandra; Michaud, Amy; Thomson, Gordon; Kirkbride, K. Paul; Bunce, Michael

    2014-01-01

    Although the taphonomic (post-mortem) degradation processes relevant to teeth and bones have been well described, those taking place with regards to mammalian hairs have not been characterized to the same extent. This present article describes, in detail, microscopic changes resulting from the actions of biological agents that digest and degrade hairs. The most noteworthy and prevalent agents responsible for the destruction of hair structure are fungi, which use a range of strategies to invade and digest hairs. One of the most important finds to emerge from this study is that taphonomic structures and processes can easily be interpreted by the unwary as ‘real’, or as class characteristics for a particular animal taxon. Moreover, under certain conditions, ‘taphonomic’ processes normally associated with the dead are also present on the hairs of the living. This work will improve the reliability of hair examinations in forensic, archaeological and palaeontological applications—in addition, the finding has relevance in the protection of mammalian collections susceptible to infestation. This article also addresses the popular myth that ancient peoples were often red-haired and discusses phenomena responsible for this observation. Insights gained from detailed characterization of taphonomic processes in 95 hairs from a variety of species demonstrate the range and breadth of degradative effects on hair structure and colour. Lastly, the study demonstrates that hairs often tell a story and that there is value of extracting as much morphological data as possible from hairs, prior to destructive sampling for biomolecules. PMID:25339725

  8. Leaf Degradation, Macroinvertebrate Shredders & Energy Flow in Streams: A Laboratory-Based Exercise Examining Ecosystem Processes

    ERIC Educational Resources Information Center

    Sparkes, Timothy C.; Mills, Colleen M.; Volesky, Lisa; Talkington, Jennifer; Brooke, Joanna

    2008-01-01

    A laboratory-based exercise that demonstrates mechanisms underlying leaf degradation in streams. Students examine the effects of "leaf conditioning" on the feeding behavior of invertebrate shredders. The exercise is completed in two sessions and can be adapted to both high school and college levels.

  9. Acute ER stress regulates amyloid precursor protein processing through ubiquitin-dependent degradation.

    PubMed

    Jung, Eun Sun; Hong, HyunSeok; Kim, Chaeyoung; Mook-Jung, Inhee

    2015-01-01

    Beta-amyloid (Aβ), a major pathological hallmark of Alzheimer's disease (AD), is derived from amyloid precursor protein (APP) through sequential cleavage by β-secretase and γ-secretase enzymes. APP is an integral membrane protein, and plays a key role in the pathogenesis of AD; however, the biological function of APP is still unclear. The present study shows that APP is rapidly degraded by the ubiquitin-proteasome system (UPS) in the CHO cell line in response to endoplasmic reticulum (ER) stress, such as calcium ionophore, A23187, induced calcium influx. Increased levels of intracellular calcium by A23187 induces polyubiquitination of APP, causing its degradation. A23187-induced reduction of APP is prevented by the proteasome inhibitor MG132. Furthermore, an increase in levels of the endoplasmic reticulum-associated degradation (ERAD) marker, E3 ubiquitin ligase HRD1, proteasome activity, and decreased levels of the deubiquitinating enzyme USP25 were observed during ER stress. In addition, we found that APP interacts with USP25. These findings suggest that acute ER stress induces degradation of full-length APP via the ubiquitin-proteasome proteolytic pathway. PMID:25740315

  10. BIOGEOCHEMICAL CYCLING OF ORGANIC MATTER IN ACIDIC ENVIRONMENTS: ARE MICROBIAL DEGRADATIVE PROCESSES ADAPTED TO LOW PH

    EPA Science Inventory

    The rates of microbial degradation of a variety of dissolved and particulate substrates in water and sediment from the Okenofee Swamp, Georgia, and Corkscrew Swamp, Florida, are compared. These two wetland ecosystems share many of the same types of plant communities and both are ...

  11. Sorption and photo degradation processes govern distribution of sulfamethazine in freshwater-sediment microcosms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The antibiotic sulfamethazine can be transported from manured fields to surface water bodies. We investigated the degradation and fate of sulfamethazine in surface water using 14C-phenyl-sulfamethazine in small pond water microcosms containing intact sediment and pond water. We found a 2.7-d half-li...

  12. Efficient degradation of rhodamine B using Fe-based metallic glass catalyst by Fenton-like process.

    PubMed

    Wang, Xianfei; Pan, Ye; Zhu, Zirun; Wu, Jili

    2014-12-01

    An efficient heterogeneous catalyst, Fe-based metallic glass (Fe–Si–B amorphous ribbon), was successfully prepared for Fenton-like degradation of rhodamine B (RhB) by a melt-spinning method. The catalyst was characterized using XRD and SEM. The effects of various reaction parameters such as H2O2 dosage, temperature, initial pH value, Fe–Si–B dosage and initial RhB concentration on the degradation of RhB were studied. Almost complete degradation of RhB (20 mg L−1) was achieved within only 10 min by 0.5 g L−1 Fe–Si–B catalyst and 1.6 mM H2O2 at pH 3.0 at 295 K. Kinetic analyses showed that the degradation process could be described by a pseudo-first-order kinetic model. The catalytic stability was also investigated and it was found that the Fe–Si–B catalyst exhibited good structural stability and no loss of performance even after three cycles. It was concluded that the Fe–Si–B amorphous ribbon was a potential heterogeneous Fenton-like catalyst for industrial wastewater treatment. PMID:25461929

  13. Tetrahydrohyperforin Inhibits the Proteolytic Processing of Amyloid Precursor Protein and Enhances Its Degradation by Atg5-Dependent Autophagy

    PubMed Central

    Muñoz, Vanessa C.; Yefi, Claudia P.; Bustamante, Hianara A.; Barraza, Rafael R.; Tapia-Rojas, Cheril; Otth, Carola; Barrera, María José; González, Carlos; Mardones, Gonzalo A.; Inestrosa, Nibaldo C.; Burgos, Patricia V.

    2015-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid-β (Aβ) peptide. We have previously shown that the compound tetrahydrohyperforin (IDN5706) prevents accumulation of Aβ species in an in vivo model of AD, however the mechanism that explains this reduction is not well understood. We show herein that IDN5706 decreases the levels of ER degradation enhancer, mannosidase alpha-like 1 (EDEM1), a key chaperone related to endoplasmic-reticulum-associated degradation (ERAD). Moreover, we observed that low levels of EDEM1 correlated with a strong activation of autophagy, suggesting a crosstalk between these two pathways. We observed that IDN5706 perturbs the glycosylation and proteolytic processing of the amyloid precursor protein (APP), resulting in the accumulation of immature APP (iAPP) in the endoplasmic reticulum. To investigate the contribution of autophagy, we tested the effect of IDN5706 in Atg5-depleted cells. We found that depletion of Atg5 enhanced the accumulation of iAPP in response to IDN5706 by slowing down its degradation. Our findings reveal that IDN5706 promotes degradation of iAPP via the activation of Atg5-dependent autophagy, shedding light on the mechanism that may contribute to the reduction of Aβ production in vivo. PMID:26308941

  14. Tetrahydrohyperforin Inhibits the Proteolytic Processing of Amyloid Precursor Protein and Enhances Its Degradation by Atg5-Dependent Autophagy.

    PubMed

    Cavieres, Viviana A; González, Alexis; Muñoz, Vanessa C; Yefi, Claudia P; Bustamante, Hianara A; Barraza, Rafael R; Tapia-Rojas, Cheril; Otth, Carola; Barrera, María José; González, Carlos; Mardones, Gonzalo A; Inestrosa, Nibaldo C; Burgos, Patricia V

    2015-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid-β (Aβ) peptide. We have previously shown that the compound tetrahydrohyperforin (IDN5706) prevents accumulation of Aβ species in an in vivo model of AD, however the mechanism that explains this reduction is not well understood. We show herein that IDN5706 decreases the levels of ER degradation enhancer, mannosidase alpha-like 1 (EDEM1), a key chaperone related to endoplasmic-reticulum-associated degradation (ERAD). Moreover, we observed that low levels of EDEM1 correlated with a strong activation of autophagy, suggesting a crosstalk between these two pathways. We observed that IDN5706 perturbs the glycosylation and proteolytic processing of the amyloid precursor protein (APP), resulting in the accumulation of immature APP (iAPP) in the endoplasmic reticulum. To investigate the contribution of autophagy, we tested the effect of IDN5706 in Atg5-depleted cells. We found that depletion of Atg5 enhanced the accumulation of iAPP in response to IDN5706 by slowing down its degradation. Our findings reveal that IDN5706 promotes degradation of iAPP via the activation of Atg5-dependent autophagy, shedding light on the mechanism that may contribute to the reduction of Aβ production in vivo. PMID:26308941

  15. Oxidative degradation of endotoxin by advanced oxidation process (O3/H2O2 & UV/H2O2).

    PubMed

    Oh, Byung-Taek; Seo, Young-Suk; Sudhakar, Dega; Choe, Ji-Hyun; Lee, Sang-Myeong; Park, Youn-Jong; Cho, Min

    2014-08-30

    The presence of endotoxin in water environments may pose a serious public health hazard. We investigated the effectiveness of advanced oxidative processes (AOP: O3/H2O2 and UV/H2O2) in the oxidative degradation of endotoxin. In addition, we measured the release of endotoxin from Escherichia coli following typical disinfection methods, such as chlorine, ozone alone and UV, and compared it with the use of AOPs. Finally, we tested the AOP-treated samples in their ability to induce tumor necrosis factor alpha (TNF-α) in mouse peritoneal macrophages. The production of hydroxyl radical in AOPs showed superior ability to degrade endotoxin in buffered solution, as well as water samples from Korean water treatment facilities, with the ozone/H2O2 being more efficient compared to UV/H2O2. In addition, the AOPs proved effective not only in eliminating E. coli in the samples, but also in endotoxin degradation, while the standard disinfection methods lead to the release of endotoxin following the bacteria destruction. Furthermore, in the experiments with macrophages, the AOPs-deactivated endotoxin lead to the smallest induction of TNF-α, which shows the loss of inflammation activity, compared to ozone treatment alone. In conclusion, these results suggest that AOPs offer an effective and mild method for endotoxin degradation in the water systems. PMID:25038578

  16. Sulfate radical-induced degradation of Acid Orange 7 by a new magnetic composite catalyzed peroxymonosulfate oxidation process.

    PubMed

    Chen, Dan; Ma, Xiaolong; Zhou, Jizhi; Chen, Xi; Qian, Guangren

    2014-08-30

    We synthesized a novel magnetic composite, Fe3O4/Cu(Ni)Cr-LDH, as a heterogeneous catalyst for the degradation of organic dyes in the solution using sulfate radical-based advanced oxidation processes. The physicochemical properties of the composite synthesized via two-step microwave hydrothermal method were characterized by several techniques, such as X-ray diffraction (XRD), inductively coupled plasma (ICP), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The degradation tests were performed at 25°C with Acid Orange 7 (AO7) initial concentration of 25mg/L and AO7/peroxymonosulfate (PMS) molar ratio of 1:10, which showed that the complete degradation by Fe3O4/Cu1.5Ni0.5Cr-LDH could be achieved and the mineralization rate could reach 46%. PMS was activated by Cu (II) and Fe (II/III) of Fe3O4/Cu(Ni)Cr-LDH to generate sulfate radicals (SO4(-)). Subsequently, the organic functional groups of AO7 molecules were destroyed by sulfate radicals (SO4(-)), inducing the degradation of AO7. Moreover, the catalytic behavior of the catalysts could be reused five times. Therefore, our work suggested that the Fe3O4/Cu(Ni)Cr-LDH composite could be applied widely for the treatment of organic dyes in wastewater. PMID:25103453

  17. Sono-Fenton process for metronidazole degradation in aqueous solution: Effect of acoustic cavitation and peroxydisulfate anion.

    PubMed

    Ammar, Hafedh Belhadj

    2016-11-01

    The present work investigates the application of an improved treatment approach based on the ultrasound irradiation as clean technology driven Fenton in the presence of peroxydisulfate anion (S2O8(2-)) for the removal of metronidazole (MTZ) from aqueous solution. The sono-generation of sulfate radicals (SO4(-)) as a stronger oxidizing agent from S2O8(2-) (redox potential of 2.6V) has improved the degradation of MTZ. However, no studies have focused on the removal of MTZ using peroxydisulfate anion under sono-Fenton process. The MTZ concentration measurement during the processing allowed the evaluation of the kinetics of organic matter decay. The results have shown that the degradation of MTZ dependent on Fe(2+)/H2O2 molar ratio, temperature and S2O8(2-) concentration. The MTZ concentration decay follows pseudo first-order kinetics, within the range studied. Sono-Fenton process using low iron and hydrogen peroxide doses was proved to be an efficient method for the elimination of MTZ with high degradation rates. At optimum conditions, 96% of MTZ removal was achieved at 60°C in the presence of 1mM of S2O8(2-). PMID:27245967

  18. Energy dependence of defects in a-Si:H solar cells during degradation and annealing processes

    SciTech Connect

    Caputo, D.; Lemmi, F.; Palma, F.

    1997-07-01

    In this work the authors report on the effect of current-induced degradation and annealing on p-i-n amorphous silicon solar cells. Current-voltage curves and capacitance measurements under forward bias have been used to monitor the current-induced changes as a function of time. They found that the recovery rate increases with the annealing current, while the stabilized value of efficiency decreases. Comparison of short circuit current and capacitance evolution suggests that defect kinetics in the electronic gap occurs in a different way during degradation and annealing. This behavior can be modeled assuming a faster annealing of defects closest to the extended band and a slower annealing of mid-gap defects.

  19. Quantification of uncertainties in coupled material degradation processes - High temperature, fatigue and creep

    NASA Technical Reports Server (NTRS)

    Boyce, L.; Chamis, C. C.

    1991-01-01

    This paper describes the development of methodology that provides for quantification of uncertainties in lifetime strength of aerospace materials subjected to a number of diverse effects. A probabilistic material degradation model, in the form of a randomized multifactor interaction equation, has been postulated for lifetime strength degradation of structural components of aerospace propulsion systems. The model includes effects that typically reduce lifetime strength and may include temperature, mechanical fatigue, creep and others. The paper also includes the analysis of experimental data from the open literature for Inconel 718. These data are used to provide an initial check for model validity, as well as for calibration of the model's empirical material constants. The model validity check and calibration is carried out for three effects, namely, high temperature, mechanical fatigue and creep.

  20. Computational simulation of coupled material degradation processes for probabilistic lifetime strength of aerospace materials

    NASA Technical Reports Server (NTRS)

    Boyce, Lola; Bast, Callie C.

    1992-01-01

    The research included ongoing development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic material strength degradation model, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subjected to a number of effects or primative variables. These primative variable may include high temperature, fatigue or creep. In most cases, strength is reduced as a result of the action of a variable. This multifactor interaction strength degradation equation has been randomized and is included in the computer program, PROMISS. Also included in the research is the development of methodology to calibrate the above described constitutive equation using actual experimental materials data together with linear regression of that data, thereby predicting values for the empirical material constraints for each effect or primative variable. This regression methodology is included in the computer program, PROMISC. Actual experimental materials data were obtained from the open literature for materials typically of interest to those studying aerospace propulsion system components. Material data for Inconel 718 was analyzed using the developed methodology.

  1. Martian crater degradation by eolian processes: Analogy with the Rio Cuarto Crater Field, Argentina

    NASA Technical Reports Server (NTRS)

    Grant, J. A.; Schultz, P. H.

    1993-01-01

    Numerous degraded and rimless craters occur across broad areas of the Martian surface that are mantled by thick, unconformable deposits. These regions include Arabia, Mesogaea, Electris, Tempe, the interior and surface to the northwest of Isidis Basin, southern Ismenius Lacus, and the polar layered terrains. Occurrence of the deposits and low regional thermal inertias indicate that at least some accumulated fine-grained sediment (effective particle diameters of 0.1-0.5 mm or coarse silt to medium sand) to a thickness of 100's to 1000's of meters. Most unconformable deposits experienced some eolian modification that may be recent in some locales. Despite the presence of these deposits, simple eolian deposition appears incapable of creating the numerous degraded and rimless craters occurring within their limits. Nevertheless, terrestrial analyses of the Rio Cuario craters formed into loessoid deposits demonstrates that eolian redistribution of fine-grained sediment in and around craters produces degraded morphologies that are analogous to some found in mantled regions on Mars.

  2. Kinetic and mechanistic investigations of the degradation of sulfamethazine in heat-activated persulfate oxidation process.

    PubMed

    Fan, Yan; Ji, Yuefei; Kong, Deyang; Lu, Junhe; Zhou, Quansuo

    2015-12-30

    Sulfamethazine (SMZ) is widely used in livestock feeding and aquaculture as an antibiotic agent and growth promoter. Widespread occurrence of SMZ in surface water, groundwater, soil and sediment has been reported. In this study, degradation of SMZ by heat-activated persulfate (PS) oxidation was investigated in aqueous solution. Experimental results demonstrated that SMZ degradation followed pseudo-first-order reaction kinetics. The pseudo-first-order rate constant (kobs) was increased markedly with increasing concentration of PS and temperature. Radical scavenging tests revealed that the predominant oxidizing species was SO4·(-) with HO playing a less important role. Aniline moiety in SMZ molecule was confirmed to be the reactive site for SO4·(-) attack by comparison with substructural analogs. Nontarget natural water constituents affected SMZ removal significantly, e.g., Cl(-) and HCO3(-) improved the degradation while fulvic acid reduced it. Reaction products were enriched by solid phase extraction (SPE) and analyzed by liquid chromatography-electrospray ionization-triple quadrupole mass spectrometry (LC-ESI-MS/MS). 6 products derived from sulfonamide S--N bond cleavage, aniline moiety oxidation and Smiles-type rearrangement were identified, and transformation pathways of SMZ oxidation were proposed. Results reveal that heat-activated PS oxidation could be an efficient approach for remediation of water contaminated by SMZ and related sulfonamides. PMID:26151383

  3. ABIOTIC ORGANIC REACTIONS AT MINERAL SURFACES

    EPA Science Inventory

    Abiotic organic reactions, such as hydrolysis, elimination, substitution, redox, and polymerization reactions, can be influenced by surfaces of clay and primary minerals, and of metal oxides. This influence is due to adsorption of the reactants to surface Lewis and Bronsted sites...

  4. Synergistic degradation of chlorinated hydrocarbons with microorganisms and zero valent iron

    NASA Astrophysics Data System (ADS)

    Schöftner, Philipp; Summer, Dorothea; Leitner, Simon; Watzinger, Andrea; Wimmer, Bernhard; Reichenauer, Thomas

    2016-04-01

    Sites contaminated with chlorinated hydrocarbons (CHC) are located mainly within build-up regions. Therefore in most cases only in-situ technologies without excavation of soil material can be used for remediation. This project examines a novel in-situ remediation method, in which the biotic degradation via bacteria is combined with abiotic degradation via zero-valent iron particles (ZVI). ZVI particles are injected into the aquifer where CHC-molecules are reductively dechlorinated. However Fe0 is also oxidized by reaction with water leading to generation of H2 without any CHC degradation. To achieve biotic degradation often strictly anaerobic strains of the bacteria Dehalococcoides are used. These bacteria can dechlorinate CHC by utilizing H2. By combining these processes the H2, produced during the anaerobic corrosion of Fe0, could be used by bacteria for further CHC degradation. Therefore the amount of used Fe0 and as a consequence also remediation costs could be reduced. Additionally the continuous supply of H2 could make the bacterial degradation more controllable. Different Fe0 particles (nano- and micro-scale) were tested for their perchloroethene (PCE) degradation rate and H2 production rate in microcosms. PCE-degradation rate by different bacterial cultures was investigated in the same microcosm system. In course of these experiments the 13C enrichment factors of the PCE degradation of the different particles and cultures were determined to enable the differentiation of biotic and abiotic degradation. Preliminary results showed, that the nano-scale particles reacted faster with PCE and water than their micro-scaled counterparts. The PCE degradation via micro-scaled particles lead to 13C enrichment factors in the range of -3,6 ‰ ± 0,6 to -9,5 ‰ ± 0,2. With one of the examined bacterial cultures a fast reduction of PCE to ethene was observed. Although PCE and TCE were completely degraded by this culture the metabolites DCE and VC could still be detected

  5. Fundamental processes governing operation and degradation in state of the art P-OLEDs

    NASA Astrophysics Data System (ADS)

    Roberts, Matthew; Asada, Kohei; Cass, Michael; Coward, Chris; King, Simon; Lee, Andrew; Pintani, Martina; Ramon, Miguel; Foden, Clare

    2010-05-01

    We present a theoretical and experimental analysis of operation and degradation of model fluorescent blue bilayer polymer organic light emitting diodes (P-OLED). Optical and electrical simulations of bilayer P-OLEDs are used to highlight the key material and device parameters required for efficient recombination and outcoupling of excitons. Mobility data for a model interlayer material poly (9,9-dioctylfluorene-N-(4-(2-butyl)phenyl)-diphenylamine) (TFB) and a model fluorescent blue light emitting material poly-(9,9'- dioctylfluorene-co-bis-N, N'-(4-butylphenyl)-bis-N,N'- phenyl-1,4-phenylenediamine) (95:5 mol%) (F8-PFB random copoloymer), is shown to satisfy the key charge transport characteristics required to ensure exciton formation at the optimum location for efficient extraction of the light where μh (LEP) < μe (iL) < μe (LEP) < μh (iL). A method to measure the photon generation zone profile and dipole orientation is presented and shown to follow the expected behavior. The efficiency drop of P-OLEDs during device operation is a known issue, the understanding and prevention of which is key for the commercial success of P-OLED technology. We present a detailed degradation study of devices containing model materials, and highlight the generation of fluorescence quenching sites as the key factor limiting the operational stability. A striking feature of this degradation is its partial (~50%) reversibility upon baking above the LEP glass transition temperature. Some reversibility is also observed in the conductivity, suggesting a common origin to the optical and electrical degradation. We also show that the species responsible for the generation of the reversible PL quenching sites are the excitons themselves, and that optically excited excitons can also generate many of the features characteristic of electrical stressing. Finally we demonstrate that materials with a dramatically improved lifetime also suffer from a similar, although slowed down, degradation

  6. [Changes of plant community structure and species diversity in degradation process of Shouqu wetland of Yellow River].

    PubMed

    Hou, Yuan; Guo, Zheng-gang; Long, Rui-jun

    2009-01-01

    Shouqu wetland of Yellow River plays important roles in the ecological security of the lower reaches of Yellow River. By the method of replacing time series with spatial sequence, an investigation was made on the changes of plant species diversity in the process of the natural degradation of the wetland. A comparison was also made to study the effects of artificial drainage on the plant species diversity. The results indicated that in the degradation process of Shouqu wetland, i.e., from swamp to swamp meadow, to alpine meadow, and to steppe meadow, the dominant plants followed the pattern of hygrophytes being gradually replaced by mesophytes and xerophytes, richness index and diversity index were increasing while dominance index was decreasing, and evenness index decreased first and increased then. The species diversity had an overall increasing trend. After artificial drainage, the proportion of poisonous weeds in the plant community increased, resulting in the increase of richness index and diversity index, slight decrease of evenness index and dominance index, and gradual decrease of Sorensen index. Artificial drainage made the habitat drying, which provided a chance for some mesophytes to invade, resulting in the increase of diversity index and richness index and the decrease of evenness index. On the whole, artificial drainage increased the plant diversity in the community, but the increase accompanied with increasing poisonous weeds, and thus, led the Shouqu wetland degraded into weed type wetland. PMID:19449561

  7. Self-bioremediation of cork-processing wastewaters by (chloro)phenol-degrading bacteria immobilised onto residual cork particles.

    PubMed

    del Castillo, I; Hernández, P; Lafuente, A; Rodríguez-Llorente, I D; Caviedes, M A; Pajuelo, E

    2012-04-15

    Cork manufacturing is a traditional industry in Southern Europe, being the main application of this natural product in wine stoppers and insulation. Cork processing begins at boiling the raw material. As a consequence, great volumes of dark wastewaters, with elevated concentrations of chlorophenols, are generated, which must be depurated through costly physicochemical procedures before discarding them into public water courses. This work explores the potential of bacteria, isolated from cork-boiling waters storage ponds, in bioremediation of the same effluent. The bacterial population present in cork-processing wastewaters was analysed by DGGE; low bacterial biodiversity was found. Aerobic bacteria were isolated and investigated for their tolerance against phenol and two chlorophenols. The most tolerant strains were identified by sequencing 16S rDNA. The phenol-degrading capacity was investigated by determining enzyme activities of the phenol-degrading pathway. Moreover, the capacity to form biofilms was analysed in a microtitre plate assay. Finally, the capacity to form biofilms onto the surface of residual small cork particles was evaluated by acridine staining followed by epifluorescence microscopy and by SEM. A low-cost bioremediation system, using phenol-degrading bacteria immobilised onto residual cork particles (a by-product of the industry) is proposed for the remediation of this industrial effluent (self-bioremediation). PMID:22265252

  8. Selective separation and characterisation of stress degradation products and process impurities of prucalopride succinate by LC-QTOF-MS/MS.

    PubMed

    Mahamuni, Baira Shandilya; Jajula, Anupama; Awasthi, Atul; Kalariya, Pradipbhai D; Talluri, M V N Kumar

    2016-06-01

    The present study reports the degradation behaviour of a new prokinetic agent, Prucalopride succinate, under various stress conditions as per International Conference on Harmonization guidelines (ICH, Q1A (R2)). The investigation involved monitoring decomposition of the drug under hydrolytic (acidic, basic and neutral), oxidative, photolytic and thermal stress conditions followed by characterization of the degradation products (DPs) and process related impurities (IMPs). A rapid, precise, accurate and robust reverse phase high performance liquid chromatography (RP-HPLC) method has been developed involving mobile phase of 20mM ammonium bicarbonate buffer and acetonitrile: methanol (80:20v/v) on a Waters Xbridge-C8 (150mm×4.6mm i.d., 3.5μm) column using gradient elution. The drug was found to be degraded in hydrolytic (acidic) and oxidative conditions, whereas it was stable under basic and neutral hydrolytic, photolytic and thermal stress conditions. The method was extended to LC-ESI-QTOF-MS/MS for the structural characterization of DPs and process related IMPs. Structural characterization was carried out based on the generated molecular formula of DPs and its fragment ions. It has been observed that two major DPs were formed under each acid hydrolysis and oxidative stress conditions. The most probable mechanisms involved in the formation of DPs were also proposed. Finally, the method was validated in the term of specificity, linearity, accuracy, precision, and robustness as per ICH guidelines, Q2 (R1). PMID:27037978

  9. Effects of mechanical and chemical processes on the degradation of plastic beach debris on the island of Kauai, Hawaii.

    PubMed

    Cooper, David A; Corcoran, Patricia L

    2010-05-01

    Plastic debris is accumulating on the beaches of Kauai at an alarming rate, averaging 484 pieces/day in one locality. Particles sampled were analyzed to determine the effects of mechanical and chemical processes on the breakdown of polymers in a subtropical setting. Scanning electron microscopy (SEM) indicates that plastic surfaces contain fractures, horizontal notches, flakes, pits, grooves, and vermiculate textures. The mechanically produced textures provide ideal loci for chemical weathering to occur which further weakens the polymer surface leading to embrittlement. Fourier transform infrared spectroscopy (FTIR) results show that some particles have highly oxidized surfaces as indicated by intense peaks in the lower wavenumber region of the spectra. Our textural analyses suggest that polyethylene has the potential to degrade more readily than polypropylene. Further evaluation of plastic degradation in the natural environment may lead to a shift away from the production and use of plastic materials with longer residence times. PMID:20106491

  10. Degradation and Fate of Carbon Tetrachloride in Unadapted Methanogenic Granular Sludge.

    PubMed

    Van Eekert MHA; Schröder; Stams; Schraa; Field

    1998-07-01

    The potential of granular sludge from upflow anaerobic sludge blanket (UASB) reactors for bioremediation of chlorinated pollutants was evaluated by using carbon tetrachloride (CT) as a model compound. Granular sludges cultivated in UASB reactors on methanol, a volatile fatty acid mixture, or sucrose readily degraded CT supplied at a concentration of 1,500 nmol/batch (approximately 10 µM) without any prior exposure to organohalogens. The maximum degradation rate was 1.9 µmol of CT g of volatile suspended solids-1 day-1. The main end products of CT degradation were CO2 and Cl-, and the yields of these end products were 44 and 68%, respectively, of the initial amounts of [14C]CT and CT-Cl. Lower chlorinated methanes accumulated in minor amounts temporarily. Autoclaved (dead) sludges were capable of degrading CT at rates two- to threefold lower than those for living sludges, indicating that abiotic processes (mediated by cofactors or other sludge components) played an important role in the degradation observed. Reduced components in the autoclaved sludge were vital for CT degradation. A major part (51%) of the CT was converted abiotically to CS2. The amount of CO2 produced (23%) was lower and the amount of Cl- produced (86%) was slightly higher with autoclaved sludge than with living sludge. Both living and autoclaved sludges could degrade chloroform. However, only living sludge degraded dichloromethane and methylchloride. These results indicate that reductive dehalogenation, which was mediated better by living sludge than by autoclaved sludge, is only a minor pathway for CT degradation. The main pathway involves substitutive and oxidative dechlorination reactions that lead to the formation of CO2. Granular sludge, therefore, has outstanding potential for gratuitous dechlorination of CT to safe end products. PMID:9647798

  11. Degradation and fate of carbon tetrachloride in unadapted methanogenic granular sludge

    SciTech Connect

    Van Eekert, M.H.A.; Schroeder, T.J.; Stams, A.J.M.; Schraa, G.; Field, J.A.

    1998-07-01

    The potential of granular sludge from upflow anaerobic sludge blanket (UASB) reactors for bioremediation of chlorinated pollutants was evaluated by using carbon tetrachloride (CT) as a model compound. Granular sludges cultivated in UASB reactors on methanol, a volatile fatty acid mixture, or sucrose readily degraded CT supplied at a concentration of 1,500 nmol/batch without any prior exposure to organohalogens. The maximum degradation rate was 1.9 {micro}mol of CT g of volatile suspended solids{sup {minus}1} day{sup {minus}1}. The main end products of CT degradation were CO{sub 2} and Cl{sup {minus}}, and the yields of these end products were 44 and 68%, respectively, of the initial amounts of [{sup 14}C]CT and CT-Cl. Lower chlorinated methanes accumulated in minor amounts temporarily. Autoclaved (dead) sludges were capable of degrading CT at rates two- to threefold lower than those for living sludges, indicating that abiotic processes played an important role in the degradation observed. Reduced components in the autoclaved sludge were vital for CT degradation. A major part (51%) of the CT was converted abiotically to CS{sub 2}. The amount of CO{sub 2} produced was lower and the amount of Cl{sup {minus}} produced was slightly higher with autoclaved sludge than with living sludge. Both living and autoclaved sludges could degrade chloroform. However, only living sludge degraded dichloromethane and methylchloride. These results indicate that reductive dehalogenation, which was mediated better by living sludge than by autoclaved sludge, is only a minor pathway for CT degradation. The main pathway involves substitutive and oxidative dechlorination reactions that lead to the formation of CO{sub 2}. Granular sludge, therefore, has outstanding potential for gratuitous dechlorination of CT to safe end products.

  12. Degradation and Fate of Carbon Tetrachloride in Unadapted Methanogenic Granular Sludge

    PubMed Central

    Van Eekert, Miriam H. A.; Schröder, Thomas J.; Stams, Alfons J. M.; Schraa, Gosse; Field, Jim A.

    1998-01-01

    The potential of granular sludge from upflow anaerobic sludge blanket (UASB) reactors for bioremediation of chlorinated pollutants was evaluated by using carbon tetrachloride (CT) as a model compound. Granular sludges cultivated in UASB reactors on methanol, a volatile fatty acid mixture, or sucrose readily degraded CT supplied at a concentration of 1,500 nmol/batch (approximately 10 μM) without any prior exposure to organohalogens. The maximum degradation rate was 1.9 μmol of CT g of volatile suspended solids−1 day−1. The main end products of CT degradation were CO2 and Cl−, and the yields of these end products were 44 and 68%, respectively, of the initial amounts of [14C]CT and CT-Cl. Lower chlorinated methanes accumulated in minor amounts temporarily. Autoclaved (dead) sludges were capable of degrading CT at rates two- to threefold lower than those for living sludges, indicating that abiotic processes (mediated by cofactors or other sludge components) played an important role in the degradation observed. Reduced components in the autoclaved sludge were vital for CT degradation. A major part (51%) of the CT was converted abiotically to CS2. The amount of CO2 produced (23%) was lower and the amount of Cl− produced (86%) was slightly higher with autoclaved sludge than with living sludge. Both living and autoclaved sludges could degrade chloroform. However, only living sludge degraded dichloromethane and methylchloride. These results indicate that reductive dehalogenation, which was mediated better by living sludge than by autoclaved sludge, is only a minor pathway for CT degradation. The main pathway involves substitutive and oxidative dechlorination reactions that lead to the formation of CO2. Granular sludge, therefore, has outstanding potential for gratuitous dechlorination of CT to safe end products. PMID:9647798

  13. Spatial and temporal runoff processes in the degraded Ethiopian Highlands: the Anjeni Watershed

    NASA Astrophysics Data System (ADS)

    Bayabil, H. K.; Tebebu, T. Y.; Stoof, C. R.; Steenhuis, T. S.

    2015-04-01

    As runoff mechanisms in the Ethiopian highlands are not well understood, performance of many soil and water conservation measures is inadequate because of ineffective placement outside the major runoff source areas. To improve understanding of the runoff generating mechanisms in these highlands, we monitored runoff volumes from 24 runoff plots constructed in the 113 ha Anjeni watershed, where historic data of rainfall and stream discharge were available. In addition, we assessed the effectiveness of charcoal and crop rooting depth in reducing runoff, in which we compared the effect of lupine (a deep-rooted crop) to that of barley. Daily rainfall, surface runoff, and root zone moisture content were measured during the monsoon seasons of 2012 and 2013 (with all plots being tilled in 2012, but only barley plots in 2013). In addition, long-term surface runoff (from four plots) and outlet discharge data from the research site (1989-1993) was analyzed and compared with our observations. Results showed that the degree of soil degradation and soil disturbance (tillage) were significant factors affecting plot runoff responses. As expected runoff was greater from more degraded soils, while tilled plots had greater soil storage and thus less runoff. Overall, barley plots produced significantly less runoff than lupine plots. Specifically, considerable difference was observed for smaller rainfall events (ca. <20 mm) in 2013, when lupine plots (non-tilled) resulted in greater runoff than barley plots (tilled). This suggests that plot rainfall-runoff relationships are greatly affected by root-zone storage, which is directly affected by soil degradation and tillage practices.

  14. The anaerobic degradation of gaseous, nonmethane alkanes — From in situ processes to microorganisms

    PubMed Central

    Musat, Florin

    2015-01-01

    The short chain, gaseous alkanes ethane, propane, n- and iso-butane are released in significant amounts into the atmosphere, where they contribute to tropospheric chemistry and ozone formation. Biodegradation of gaseous alkanes by aerobic microorganisms, mostly bacteria and fungi isolated from terrestrial environments, has been known for several decades. The first indications for short chain alkane anaerobic degradation were provided by geochemical studies of deep-sea environments around hydrocarbon seeps, and included the uncoupling of the sulfate-reduction and anaerobic oxidation of methane rates, the consumption of gaseous alkanes in anoxic sediments, or the enrichment in 13C of gases in interstitial water vs. the source gas. Microorganisms able to degrade gaseous alkanes were recently obtained from deep-sea and terrestrial sediments around hydrocarbon seeps. Up to date, only sulfate-reducing pure or enriched cultures with ethane, propane and n-butane have been reported. The only pure culture presently available, strain BuS5, is affiliated to the Desulfosarcina–Desulfococcus cluster of the Deltaproteobacteria. Other phylotypes involved in gaseous alkane degradation have been identified based on stable-isotope labeling and whole-cell hybridization. Under anoxic conditions, propane and n-butane are activated similar to the higher alkanes, by homolytic cleavage of the C—H bond of a subterminal carbon atom, and addition of the ensuing radical to fumarate, yielding methylalkylsuccinates. An additional mechanism of activation at the terminal carbon atoms was demonstrated for propane, which could in principle be employed also for the activation of ethane. PMID:25904994

  15. A Hypothesis for the Abiotic and Non-Martian Origins of Putative Signs of Ancient Martian Life in ALH84001

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.

    2001-01-01

    Putative evidence of martian life in ALH84001 can be explained by abiotic and non-martian processes consistent with the meteorite's geological history. Additional information is contained in the original extended abstract.

  16. Eco-friendly and facile integrated biological-cum-photo assisted electrooxidation process for degradation of textile wastewater.

    PubMed

    Aravind, Priyadharshini; Subramanyan, Vasudevan; Ferro, Sergio; Gopalakrishnan, Rajagopal

    2016-04-15

    The present article reports an integrated treatment method viz biodegradation followed by photo-assisted electrooxidation, as a new approach, for the abatement of textile wastewater. In the first stage of the integrated treatment scheme, the chemical oxygen demand (COD) of the real textile effluent was reduced by a biodegradation process using hydrogels of cellulose-degrading Bacillus cereus. The bio-treated effluent was then subjected to the second stage of the integrated scheme viz indirect electrooxidation (InDEO) as well as photo-assisted indirect electro oxidation (P-InDEO) process using Ti/IrO2-RuO2-TiO2 and Ti as electrodes and applying a current density of 20 mA cm(-2). The influence of cellulose in InDEO has been reported here, for the first time. UV-Visible light of 280-800 nm has been irradiated toward the anode/electrolyte interface in P-InDEO. The effectiveness of this combined treatment process in textile effluent degradation has been probed by chemical oxygen demand (COD) measurements and (1)H - nuclear magnetic resonance spectroscopy (NMR). The obtained results indicate that the biological treatment allows obtaining a 93% of cellulose degradation and 47% of COD removal, increasing the efficiency of the subsequent InDEO by a 33%. In silico molecular docking analysis ascertained that cellulose fibers affect the InDEO process by interacting with the dyes that are responsible of the COD. On the other hand, P-InDEO resulted in both 95% of decolorization and 68% of COD removal, as a result of radical mediators. Free radicals generated during P-InDEO were characterized as oxychloride (OCl) by electron paramagnetic resonance spectroscopy (EPR). This form of coupled approach is especially suggested for the treatment of textile wastewater containing cellulose. PMID:26921849

  17. Aniline degradation by Electro-Fenton and peroxi-coagulation processes using a flow reactor for wastewater treatment.

    PubMed

    Brillas, Enric; Casado, Juan

    2002-04-01

    The degradation of 10-30 l of a 1000 ppm aniline solution in 0.050 M Na2SO4 + H2SO4 at pH 3.0 and 40 degrees C by Electro-Fenton and peroxi-coagulation processes at constant current until 20 A has been studied using a pilot flow reactor in recirculation mode with a filter-press cell containing an anode and an oxygen diffusion cathode, both of 100 cm2 area. H2O2 is produced by the two-electron reduction of O2 at the cathode, being accumulated with a current efficiency between 60% and 80% at the first stages of electrolyses performed with a Ti/Pt anode. In the presence of 1 mM Fe2+, less H2O2 is accumulated, but it is not detected using an Fe anode. The Electro-Fenton process with 1 mM Fe2+ and a Ti/Pt or DSA anode yields an insoluble violet polymer, while the soluble total organic carbon (TOC) is gradually removed, reaching 61% degradation after 2 h at 20 A. In this treatment, pollutants are preferentially oxidized by hydroxyl radicals formed in solution from reaction of Fe2+ with H2O2. The peroxi-coagulation process with an Fe anode has higher degradation power, allowing to remove more than 95% of pollutants at 20 A, since some intermediates coagulate with the Fe(OH)3 precipitate formed. Both advanced electrochemical oxidation processes (AEOPs) show moderate energy costs, which increase with increasing electrolysis time and applied current. PMID:11996144

  18. Chemiluminescent Diagnostics of Free-Radical Processes in an Abiotic System and in Liver Cells in the Presence of Nanoparticles Based on Rare-Earth Elements nReVO4:Eu3+ (Re = Gd, Y, La) and CeO2

    NASA Astrophysics Data System (ADS)

    Averchenko, E. A.; Kavok, N. S.; Klochkov, V. K.; Malyukin, Yu. V.

    2014-11-01

    We have used luminol-dependent chemiluminescence with Fenton's reagent to study the effect of nanoparticles based on rare-earth elements of different sizes and shapes on free-radical processes in abiotic and biotic cell-free systems, and also in isolated cells in vitro. We have estimated the effects of rare-earth orthovanadate nanoparticles of spherical (GdYVO4:Eu3+, 1-2 nm), spindle-shaped (GdVO4:Eu3+, 25 ×8 nm), and rod-shaped (LaVO4:Eu3+, 57 × (6-8) nm) nanoparticles and spherical CeO2 nanoparticles (sizes 1-2 nm and 8-10 nm). We have shown that in contrast to the abiotic system, in which all types of nanoparticles exhibit antiradical activity, in the presence of biological material, extra-small spherical (1-2 nm) nanoparticles of both types exhibit pro-oxidant activity, and also enhance pro-oxidant induced oxidative stress (for the pro-oxidants hydrogen peroxide and tert-butyl hydroperoxide). The effect of rare-earth orthovanadate spindle and rod shaped nanoparticles in this system was neutral; a moderate antioxidant effect was exhibited by 8-10 nm CeO2 nanoparticles.

  19. Distinguishing Biotic from Abiotic Phosphate Oxygen Isotopic Signatures

    NASA Astrophysics Data System (ADS)

    Blake, R.; Moyer, C.; Colman, A.; Liang, Y.; Dogru, D.

    2006-05-01

    On earth, phosphate has a strong biological oxygen isotope signature due to its concentration and intense cycling by living organisms as an essential nutrient. Phosphate does not undergo oxygen isotope exchange with water at low temperature without enzymatic catalysis, making the oxygen isotope ratio (18O/16O) of phosphate, δ18OP, an attractive biosignature in the search for early and extraterrestrial life. Recent laboratory and field studies have demonstrated that the δ18OP value of dissolved inorganic phosphate (PO4) records specific microbial activity and enzymatic reaction pathways in both laboratory cultures and natural waters/sediments (Blake et al., 2005; Colman et al 2005; Liang and Blake, 2005). Phosphate oxygen isotope biosignatures may be distinguished from abiotic signatures by: (1) evaluating the degree of temperature-dependent PO4-water oxygen isotope exchange in aqueous systems and deviation from equilibrium; and (2) evolution from an abiotic P reservoir signature towards a biotic P reservoir signature. Important abiotic processes potentially affecting phosphate δ18OP values include dissolution/precipitation, adsorption/desorption, recrystallization of PO4 mineral phases, diagenesis and metamorphism. For most of these processes, the recording, retention and alteration of δ18OP biosignatures have not been evaluated. Deep-sea hydrothermal vent fields are an ideal system in which to study the preservation and alteration of δ18OP biosignatures, as well as potential look-alikes produced by heat-promoted PO4 -water oxygen isotope exchange. Results from recent studies of δ18OP biosignatures in hydrothermal deposits near 9 and 21 degrees N. EPR and at Loihi seamount will be presented.

  20. Partial degradation of levofloxacin for biodegradability improvement by electro-Fenton process using an activated carbon fiber felt cathode.

    PubMed

    Gong, Yuexiang; Li, Jiuyi; Zhang, Yanyu; Zhang, Meng; Tian, Xiujun; Wang, Aimin

    2016-03-01

    Solutions of 500 mL 200 mg L(-1) fluoroquinolone antibiotic levofloxacin (LEVO) have been degraded by anodic oxidation (AO), AO with electrogenerated H2O2 (AO-H2O2) and electro-Fenton (EF) processes using an activated carbon fiber (ACF) felt cathode from the point view of not only LEVO disappearance and mineralization, but also biodegradability enhancement. The LEVO decay by EF process followed a pseudo-first-order reaction with an apparent rate constant of 2.37×10(-2)min(-1), which is much higher than that of AO or AO-H2O2 processes. The LEVO mineralization also evidences the order EF>AO-H2O2>AO. The biodegradability (BOD5/COD) increased from 0 initially to 0.24, 0.09, and 0.03 for EF, AO-H2O2 and AO processes after 360 min treatment, respectively. Effects of several parameters such as current density, initial pH and Fe(2+) concentration on the EF degradation have also been examined. Three carboxylic acids including oxalic, formic and acetic acid were detected, as well as the released inorganic ions NH4(+), NO3(-) and F(-). At last, an ultra-performance liquid chromatography coupled with time-of-flight mass spectrometry was used to identify about eight aromatic intermediates formed in 60 min of EF treatment, and a plausible mineralization pathway for LEVO by EF treatment was proposed. PMID:26561756

  1. High-rate two-phase process for the anaerobic degradation of cellulose, employing rumen microorganisms for an efficient acidogenesis

    SciTech Connect

    Gijzen, H.J.; Zwart, K.B.; Verhagen, F.J.M.; Vogels, G.D.

    1988-04-05

    A novel two-stage anaerobic process for the microbial conversion of cellulose into biogas has been developed. In the first phase, a mixed population of rumen bacteria and ciliates was used in the hydrolysis and fermentation of cellulose. The volatile fatty acids (VFA) produced in this acidogenic reactor were subsequently converted into biogas in a UASB-type methanogenic reactor. A stepwise increase of the loading rate from 11.9 to 25.8 g volatile solids/L reactor volume/day (g VS/L/day) did not affect the degradation efficiency in the acidogenic reactor, whereas the methanogenic reactor appeared to be overloaded at the highest loading rate. Cellulose digestion was almost complete at all loading rates applied. The two-stage anaerobic process was also tested with a closed fluid circuit. In this instance total methane production was 0.438 L CH/sub 4//g VS added, which is equivalent to 98% of the theoretical value. The application of rumen microorganisms in combination with a high-rate methane reactor is proposed as a means of efficient anaerobic degradation of cellulosic residues to methane. Because this newly developed two-phase system is based on processes and microorganisms from the ruminant, it will be referred to as Rumen Derived Anaerobic Digestion (RUDAD)-process.

  2. Electroformed iron as new biomaterial for degradable stents: development process and structure-properties relationship.

    PubMed

    Moravej, M; Prima, F; Fiset, M; Mantovani, D

    2010-05-01

    An electroforming technique was developed for fabricating iron foils targeted for application as biodegradable cardiovascular stent material. The microstructure, mechanical properties and corrosion of electroformed iron (E-Fe) foils were evaluated and compared with those of pure iron made by casting and thermomechanical treatment (CTT-Fe), with 316L stainless steel (316L SS) and with other candidate metallic materials for biodegradable stents. Electron backscattered diffraction revealed an average grain size of 4 microm for E-Fe, resulting in a high yield (360 MPa) and ultimate tensile strength (423 MPa) being superior to those of other metallic biodegradable stent materials. Annealing at 550 degrees C was found to improve the ductility of the E-Fe from 8% to 18%. The corrosion rate of E-Fe in Hanks' solution, measured by potentiodynamic polarization, was higher than that of CTT-Fe, which had been found to have a slow in vivo degradation. The results showed that E-Fe possesses fine-grain microstructure, suitable mechanical properties and moderate corrosion rate as a degradable stent material. PMID:20085829

  3. Degradation of drugs in water with advanced oxidation processes and ozone.

    PubMed

    Quero-Pastor, Maria; Valenzuela, Alvaro; Quiroga, Jose M; Acevedo, Asuncion

    2014-05-01

    The aim of this paper is to assess the degradation of a mixture of ibuprofen and clofibric acid and to study the mineralization and toxicity following ozone treatment. To this end, a comparison is presented of the experimental results obtained from ozone treatment using atmospheric air as the feed gas (Experiment I, [O3] = 15 gN/m(3)), with and without addition of H2O2, and those obtained under the same conditions but using concentrated oxygen as the feed gas, obtained by pressure swing adsorption technology (Experiment II, [O3] = 200 gN/m(3)). All tests were conducted using a pilot scale reactor. Under (Experiment II) conditions, degradation exceeded 99% and up to 60% mineralization was achieved for initial compound concentrations, and hydraulic retention time was reduced by 75% compared to (Experiment I). The results of toxicity tests show through increasing the production of ozone gas in (Experiment II), toxicity was eliminated at initial study concentrations of ≤1 mg/l for all treatment times studied. PMID:24681556

  4. Identification, isolation and characterization of potential process-related impurity and its degradation product in vildagliptin.

    PubMed

    Kumar, Neeraj; Devineni, Subba Rao; Singh, Gurmeet; Kadirappa, A; Dubey, Shailendra Kumar; Kumar, Pramod

    2016-02-01

    Vildagliptin is a member of a new class of oral anti-diabetic drug. One unknown impurity was identified in the range of 0.01-0.06% in different laboratory batches of vildagliptin along with known impurities by HPLC analysis. The structure of unknown impurity was proposed as (2S)-1-[2-[(3-hydroxyadamantan-1-yl)imino]acetyl]pyrrolidine-2-carbonitrile (Impurity-E) using LC/ESI-MS(n) study. The unknown impurity was found to be unstable in diluent (H2O:CH3CN) and degrading into another stable impurity. The degraded stable impurity was isolated from enriched reaction crude sample by semi preparative liquid chromatography. The structure of stable impurity was established using FT-IR, NMR ((1)H, (13)C and DEPT), 2D NMR (HSQC, HMBC and COSY) and mass spectral data as (8aS)-3-hydroxy-octahydropyrrolo[1,2-a]piperazine-1,4-dione (Impurity-F). Impurity identification, abnormal behaviour of impurity-E, isolation of impurity-F, fragmentation mechanism and structural elucidation were also discussed. PMID:26678178

  5. Degradation of cyanobacterial biomass in anoxic tidal-flat sediments: a microcosm study of metabolic processes and community changes

    PubMed Central

    Graue, Jutta; Engelen, Bert; Cypionka, Heribert

    2012-01-01

    To follow the anaerobic degradation of organic matter in tidal-flat sediments, a stimulation experiment with 13C-labeled Spirulina biomass (130 mg per 21 g sediment slurry) was conducted over a period of 24 days. A combination of microcalorimetry to record process kinetics, chemical analyses of fermentation products and RNA-based stable-isotope probing (SIP) to follow community changes was applied. Different degradation phases could be identified by microcalorimetry: Within 2 days, heat output reached its maximum (55 μW), while primary fermentation products were formed (in μmol) as follows: acetate 440, ethanol 195, butyrate 128, propionate 112, H2 127 and smaller amounts of valerate, propanol and butanol. Sulfate was depleted within 7 days. Thereafter, methanogenesis was observed and secondary fermentation proceeded. H2 and alcohols disappeared completely, whereas fatty acids decreased in concentration. Three main degraders were identified by RNA-based SIP and denaturant gradient gel electrophoresis. After 12 h, two phylotypes clearly enriched in 13C: (i) Psychrilyobacter atlanticus, a fermenter known to produce hydrogen and acetate and (ii) bacteria distantly related to Propionigenium. A Cytophaga-related bacterium was highly abundant after day 3. Sulfate reduction appeared to be performed by incompletely oxidizing species, as only sulfate-reducing bacteria related to Desulfovibrio were labeled as long as sulfate was available. PMID:21918576

  6. Simplified reaction kinetics, models and experiments for glyphosate degradation in water by the UV/H2O2 process.

    PubMed

    Vidal, Eduardo; Negro, Antonio; Cassano, Alberto; Zalazar, Cristina

    2015-02-01

    A simplified mathematical model to describe the oxidative degradation of glyphosate employing hydrogen peroxide and UV radiation was developed based on a sequence of predominant reactions. The kinetics obtained include all the required significant variables. Consequently, not only were concentration dependencies examined but also the influence of a detailed spatial description of the radiation field was included as part of the modeling. The kinetic parameters were obtained by comparing the simulation concentrations obtained with the model with the experimental values gathered in the laboratory reactor, employing a multiparameter non-linear regression analysis. In addition, the potential of the H2O2/UV process for treating water polluted with a commercial formulation, which was the glyphosate monoisopropylamine salt plus some additives, was studied. The glyphosate and TOC (total organic carbon) conversions reached were close to 80% and 70% respectively at 12 h (0.66 h actual exposure to radiation). It has been shown that a simple reaction scheme for the degradation of glyphosate acid and glyphosate isopropylamine salt from a commercial formulation can represent with good accuracy the performance of both reacting systems. In addition, the degradation procedure allowed a clear reduction of the toxicity of the glyphosate in the formulation over Vibrio fischeri at the end of the experiments. For this reason, reaching complete mineralization might not be necessary. PMID:25412963

  7. Hybrid biotic/abiotic nanofactory

    NASA Astrophysics Data System (ADS)

    Choi, H.-J.; Montemagno, C. D.

    2006-03-01

    In vitro biochemical synthesis is considered a major challenge in replicating cellular functions in engineered systems. Presented is the first nanosized hybrid factory where biochemical reactions take place resulting in the production of biomolecules. A cellular ATP synthesis process is reconstructed in vitro within a bubble architecture using engineered artificial organelles. This is the first introduction of biochemical synthesis from a multiprotein polymersome system and the demonstration of complex proteins' stable functionality in an artificial structure. This hybrid system is expected to have wide application in a number of fields ranging from the in vitro investigation of cellular metabolism to the synthesis of a new class of functional materials.

  8. Efficient degradation of Acid Orange 7 in aqueous solution by iron ore tailing Fenton-like process.

    PubMed

    Zheng, Jianming; Gao, Zhanqi; He, Huan; Yang, Shaogui; Sun, Cheng

    2016-05-01

    An effective method based on iron ore tailing Fenton-like process was studied for removing an azo dye, Acid Orange 7 (AO7) in aqueous solution. Five tailings were characterized by X-ray fluorescence spectroscope (XFS), Brunner-Emmet-Teller (BET) measurement, and Scanning Electron Microscope (SEM). The result of XFS showed that Fe, Si and Ca were the most abundant elements and some toxic heavy metals were also present in the studied tailings. The result of BET analysis indicated that the studied tailings had very low surface areas (0.64-5.68 m(2) g(-1)). The degradation efficiencies of AO7 were positively correlated with the content of iron oxide and cupric oxide, and not related with the BET surface area of the tailings. The co-existing metal elements, particularly Cu, might accelerate the heterogeneous Fenton-like reaction. The effects of other parameters on heterogeneous Fenton-like degradation of AO7 by a converter slag iron tailing (tailing E) which contains highest iron oxide were also investigated. The tailing could be reused 10 times without significant decrease of the catalytic capacity. Very low amount of iron species and almost undetectable toxic elements were leached in the catalytic degradation of AO7 by the tailing E. The reaction products were identified by gas chromatography-mass spectrometry and a possible pathway of AO7 degradation was proposed. This study not only provides an effective method for removing azo dyes in polluted water by employing waste tailings as Fenton-like catalysts, but also uses waste tailings as the secondary resource. PMID:26891355

  9. Degradation of C1-inhibitor by plasmin: implications for the control of inflammatory processes.

    PubMed Central

    Wallace, E. M.; Perkins, S. J.; Sim, R. B.; Willis, A. C.; Feighery, C.; Jackson, J.

    1997-01-01

    BACKGROUND: A correct balance between protease and inhibitor activity is critical in the maintenance of homoeostasis; excessive activation of enzyme pathways is frequently associated with inflammatory disorders. Plasmin is an enzyme ubiquitously activated in inflammatory disorder, and C1-inhibitor (C1-Inh) is a pivotal inhibitor of protease activity, which is particularly important in the regulation of enzyme cascades generated in plasma. The nature of the interaction between plasmin and C1-Inh is poorly understood. MATERIALS AND METHODS: C1-Inh was immunoadsorbed from the plasma of normal individuals (n = 21), from that of patients with systemic lupus erythematosus (n = 18) or adult respiratory distress syndrome (n = 9), and from the plasma and synovial fluid of patients with rheumatoid arthritis (n = 18). As plasmin is a putative enzyme responsible for C1-Inh was examined using SDS-PAGE. In addition, peptides cleaved from C1-Inh by plasmin were isolated and sequenced and the precise cleavage sites determined from the known primary sequence of C1-Inh. Homology models of C1-Inh were then constructed. RESULTS: Increased levels of cleaved and inactivated C1-Inh were found in each of the inflammatory disorders examined. Through SDS-PAGE analysis it was shown that plasmin rapidly degraded C1-Inh in vitro. The pattern of C1-Inh cleavage seen in vivo in patients with inflammatory disorders and that produced in vitro following incubation with plasmin were very similar. Homology models of C1-Inh indicate that the majority of the plasmin cleavage sites are adjacent to the reactive site of the inhibitor. CONCLUSIONS: This study suggests that local C1-Inh degradation by plasmin may be a central and critical event in the loss of protease inhibition during inflammation. These findings have important implications for our understanding of pathogenic mechanisms in inflammation and for the development of more effectively targeted therapeutic regimes. These findings may also explain

  10. Effects of different processing methods of flaxseed on ruminal degradability and in vitro post-ruminal nutrient disappearance.

    PubMed

    Lashkari, Saman; Azizi, Osman; Jahani-Azizabadi, Hossein

    2015-01-01

    The aim of the study was to determine the effects of different heat-processing methods of flaxseed on the in situ effective dry matter degradability (EDMD) and the in situ effective crude protein degradability (ECPD). The treatments included roasting, steep roasting, rolled roasting, rolled steep roasting, microwave irradiation and extrusion. Three rumen-fistulated sheep were used for in situ incubations. Furthermore, the effects of heat-processing methods on post-ruminal in vitro nutrient disappearance and total tract disappearance were measured by a three-step in vitro technique. The seeds were roasted and extruded at 140°C to 145°C. One lot of roasted seeds was gradually cooled for about 1 h (roasting) and another lot was held in temperature isolated barrels for 45 min (steep roasting). Moreover, roasted and steep roasted flaxseed was rolled in a roller mill. The lowest and highest EDMD was observed for unheated and extruded flaxseed, respectively (p < 0.05). The highest ECPD was observed for extruded flaxseed (p < 0.05). Roasting and microwave irradiation reduced ECPD of flaxseed (p < 0.05). In vitro post-ruminal disappearance of crude nutrients including fibre fractions was highest for rolled-roasted and rolled steep-roasted flaxseed (p < 0.05). The lowest and highest total tract disappearance rates of crude nutrients and fibre fractions were estimated for unheated and extruded flaxseed, respectively (p < 0.05). The post-ruminal disappearance of crude nutrients was also increased by roasting, in which rolling enhanced this effect. In conclusion, all investigated heat treatments had significant effects on in situ and in vitro degradability of nutrients. As well, rolling of roasted flaxseed enhanced the respective effects. Therefore, different methods of heat processing can be used to modify the feed value of flaxseed for specific purposes. PMID:25907846

  11. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants.

    PubMed

    Khan, M Iqbal R; Fatma, Mehar; Per, Tasir S; Anjum, Naser A; Khan, Nafees A

    2015-01-01

    Abiotic stresses (such as metals/metalloids, salinity, ozone, UV-B radiation, extreme temperatures, and drought) are among the most challenging threats to agricultural system and economic yield of crop plants. These stresses (in isolation and/or combination) induce numerous adverse effects in plants, impair biochemical/physiological and molecular processes, and eventually cause severe reductions in plant growth, development and overall productivity. Phytohormones have been recognized as a strong tool for sustainably alleviating adverse effects of abiotic stresses in crop plants. In particular, the significance of salicylic acid (SA) has been increasingly recognized in improved plant abiotic stress-tolerance via SA-mediated control of major plant-metabolic processes. However, the basic biochemical/physiological and molecular mechanisms that potentially underpin SA-induced plant-tolerance to major abiotic stresses remain least discussed. Based on recent reports, this paper: (a) overviews historical background and biosynthesis of SA under both optimal and stressful environments in plants; (b) critically appraises the role of SA in plants exposed to major abiotic stresses; PMID:26175738

  12. Process for measuring degradation of sulfur hexafluoride in high voltage systems

    DOEpatents

    Sauers, Isidor

    1986-01-01

    This invention is a method of detecting the presence of toxic and corrosive by-products in high voltage systems produced by electrically induced degradation of SF.sub.6 insulating gas in the presence of certain impurities. It is an improvement over previous methods because it is extremely sensitive, detecting by-products present in parts per billion concentrations, and because the device employed is of a simple design and takes advantage of the by-products natural affinity for fluoride ions. The method employs an ion-molecule reaction cell in which negative ions of the by-products are produced by fluorine attachment. These ions are admitted to a negative ion mass spectrometer and identified by their spectra. This spectrometry technique is an improvement over conventional techniques because the negative ion peaks are strong and not obscured by a major ion spectra of the SF.sub.6 component as is the case in positive ion mass spectrometry.

  13. Process for measuring degradation of sulfur hexafluoride in high voltage systems

    DOEpatents

    Sauers, I.

    1985-04-23

    This invention is a method of detecting the presence of toxic and corrosive by-products in high voltage systems produced by electrically induced degradation of SF/sub 6/ insulating gas in the presence of certain impurities. It is an improvement over previous methods because it is extremely sensitive, detecting by-products present in parts per billion concentrations, and because the device employed is of a simple design and takes advantage of the by-products natural affinity for fluoride ions. The method employs an ion-molecule reaction cell in which negative ions of the by-products are produced by fluorine attachment. These ions are admitted to a negative ion mass spectrometer and identified by their spectra. This spectrometry technique is an improvement over conventional techniques because the negative ion peaks are strong and not obscured by a major ion spectra of the SF/sub 6/ component as is the case in positive ion mass spectrometry.

  14. Kraft lignin biodegradation by Novosphingobium sp. B-7 and analysis of the degradation process.

    PubMed

    Chen, Yuehui; Chai, Liyuan; Tang, Chongjian; Yang, Zhihui; Zheng, Yu; Shi, Yan; Zhang, Huan

    2012-11-01

    This study focused on the biodegradation of kraft lignin (KL) by Novosphingobium sp. B-7 using KL as sole carbon source. Results revealed that Novosphingobium sp. B-7 reduced the chemical oxygen demand (COD) by 34.7% in KL mineral salt medium after 7days of incubation. Additionally, the maximum activities of manganese peroxidase (MnP) of 3229.8Ul(-1) and laccase (Lac) of 1275Ul(-1) were observed at 4th and 5th day, respectively. GC-MS analysis indicated that after incubated with Novosphingobium sp. B-7, low molecular weight alcohols and lignin-related monomer compounds such as ethanediol, p-hydroxy benzoic acid and vanillic acid were formed in the system, which strongly confirmed the degradation of KL by Novosphingobium sp. B-7. PMID:22921251

  15. Do new matrix formulations improve resin composite resistance to degradation processes?

    PubMed

    Fonseca, Andrea Soares Quirino da Silva; Gerhardt, Kátia Maria da Fonseca; Pereira, Gisele Damiana da Silveira; Sinhoreti, Mário Alexandre Coelho; Schneider, Luis Felipe Jochims

    2013-01-01

    The aim of this study was to determine the degradation resistance of three new formulations-silorane-, Ormocer- and dimer-acid-based materials-and compare them to the traditional dimethacrylate-based materials. One silorane- (Filtek P90, P90), one Ormocer- (Ceram-X, CX), one dimer-acid- (N'Durance, ND) and two dimethacrylate-based (Filtek P60, P60; Tetric Ceram, TC) materials were investigated. Water sorption (Wsp) and solubility (Wsl) were determined after the materials were immersed in water for 28 days. Knoop hardness (KH) was determined before and after 24 h immersion in pure ethanol. The flexural-strength (FS) was determined by the bending test after one-week storage in a dry environment or after one-week immersion in pure ethanol. Data were submitted to analysis of variance (ANOVA) and Tukey's test (95%). The three new formulations showed lower Wsp than the dimethacrylate-based formulation. CX (0.50 ± 0.17%) and ND (0.72 ± 0.19%) exhibited the lowest Wsp, whereas P90 (0.02 ± 0.03%) and P60 (0.04 ± 0.03%) showed the lowest Wsl. All resins showed reduced Knoop hardness number (KHN) after ethanol immersion. P60 presented the lowest decrease in KH value (19 ± 5%). TC (48 ± 3%) and P90 (39 ± 9%) showed the highest KHN decrease after ethanol storage. The FS of CX, ND and TC were affected by ethanol storage. The new formulations did not improve the degradation resistance, as compared with the traditional methacrylate-based materials. PMID:24036979

  16. Processing and mechanical behavior of lamellar structured degradable magnesium-hydroxyapatite implants.

    PubMed

    Ratna Sunil, B; Ganapathy, C; Sampath Kumar, T S; Chakkingal, Uday

    2014-12-01

    Multilayered (laminated) composites exhibit tunable mechanical behavior compared to bulk materials due to the presence of more interfaces and therefore magnesium based composites are gaining wide popularity as biodegradable materials targeted for temporary implant applications. The objective of the present work is to fabricate magnesium based lamellar metal matrix composites (MMCs) for degradable implant applications. Nano-hydroxyapatite (HA) powder was selected as the secondary phase and lamellar structured magnesium-nano-hydroxyapatite (Mg-HA) composites of 8, 10 and 15wt% HA were fabricated by ball milling and spark plasma sintering. It was found that HA particles were coated on the Mg flakes after 20h of ball milling carried out using tungsten carbide (WC) as the milling media. Spark plasma sintering of the milled powders resulted in the formation of lamellar structure of Mg with the presence of HA and magnesium oxide (MgO) at the inter-lamellar sites of the composites. Phase analysis of the milled powder by an X-ray diffraction (XRD) method confirms the presence of HA and MgO along with Mg after sintering. Corrosion behavior of the composites investigated by potentiodynamic polarization tests shows a reduction in the inter-lamellar corrosion with increase in HA content and the best corrosion resistance is found for the Mg-10% HA composite. This composite also exhibits maximum Vickers hardness. Young׳s modulus and fracture toughness measured by nano-indentation method were higher for the Mg-8% HA composite. The results thus suggest that lamellar structured Mg composites with 8% and 10% HA show promise for temporary degradable orthopedic implant applications because of their improved corrosion resistance and superior mechanical properties. PMID:25241282

  17. Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging

    PubMed Central

    Hossain, Mohammad A.; Bhattacharjee, Soumen; Armin, Saed-Moucheshi; Qian, Pingping; Xin, Wang; Li, Hong-Yu; Burritt, David J.; Fujita, Masayuki; Tran, Lam-Son P.

    2015-01-01

    Plants are constantly challenged by various abiotic stresses that negatively affect growth and productivity worldwide. During the course of their evolution, plants have developed sophisticated mechanisms to recognize external signals allowing them to respond appropriately to environmental conditions, although the degree of adjustability or tolerance to specific stresses differs from species to species. Overproduction of reactive oxygen species (ROS; hydrogen peroxide, H2O2; superoxide, O2⋅-; hydroxyl radical, OH⋅ and singlet oxygen, 1O2) is enhanced under abiotic and/or biotic stresses, which can cause oxidative damage to plant macromolecules and cell structures, leading to inhibition of plant growth and development, or to death. Among the various ROS, freely diffusible and relatively long-lived H2O2 acts as a central player in stress signal transduction pathways. These pathways can then activate multiple acclamatory responses that reinforce resistance to various abiotic and biotic stressors. To utilize H2O2 as a signaling molecule, non-toxic levels must be maintained in a delicate balancing act between H2O2 production and scavenging. Several recent studies have demonstrated that the H2O2-priming can enhance abiotic stress tolerance by modulating ROS detoxification and by regulating multiple stress-responsive pathways and gene expression. Despite the importance of the H2O2-priming, little is known about how this process improves the tolerance of plants to stress. Understanding the mechanisms of H2O2-priming-induced abiotic stress tolerance will be valuable for identifying biotechnological strategies to improve abiotic stress tolerance in crop plants. This review is an overview of our current knowledge of the possible mechanisms associated with H2O2-induced abiotic oxidative stress tolerance in plants, with special reference to antioxidant metabolism. PMID:26136756

  18. Changes of phospholipase A₂ and C activities during dry-cured duck processing and their relationship with intramuscular phospholipid degradation.

    PubMed

    Wang, Daoying; Zhang, Muhan; Bian, Huan; Xu, Weimin; Xu, Xinglian; Zhu, Yongzhi; Liu, Fang; Geng, Zhiming; Zhou, Guanghong

    2014-02-15

    Phospholipid hydrolysis, as the main stage and cause of phopholipid degradation, is generally attributed to phospholipases. In this study, the changes of phospholipase A₂ (PLA₂) and C (PLC) activities, neutral lipid, free fatty acids and phospholipids in dry-cured duck leg muscles during processing, were examined. The composition of free fatty acids and neutral lipids increased significantly (P<0.05) with extension of processing time while the phospholipids composition decreased. The PLA₂ and PLC activity decreased in the final product, but retained 83.70% and 86.78% of their initial activities, respectively. The relative activities of both PLA₂ and PLC highly correlated with the decline of phospholipids and the increase of free fatty acids. High correlations were also obtained between the relative activities of PLC and the increase of neutral lipid (P<0.01). All these results suggest that PLA₂ and PLC contribute to the degradation of intramuscular phospholipids during the processing of dry-cured duck. PMID:24128575

  19. Characterization of Ni-cermet degradation phenomena I. Long term resistivity monitoring, image processing and X-ray fluorescence analysis

    NASA Astrophysics Data System (ADS)

    Ananyev, M. V.; Bronin, D. I.; Osinkin, D. A.; Eremin, V. A.; Steinberger-Wilckens, R.; de Haart, L. G. J.; Mertens, J.

    2015-07-01

    The present paper is devoted to Ni-cermet degradation phenomena and places emphasis on experimental approaches and data handling. The resistivity of Ni-YSZ cermet (nickel and 8 mol.% yttria stabilized zirconia) anode substrates was monitored during 3000 h at 700 and 800 °C in a gas mixture of 80 vol.% water vapor and 20 vol.% hydrogen. The experimentally evaluated dependence of resistivity of the Ni-YSZ substrates can be well described by exponential decay functions. Post test analysis by image processing and XRF (X-ray fluorescence) analysis for characterization of the microstructure and elemental composition were carried out for virgin samples and after 300, 1000 and 3000 h of exposure time. The 3D-microstructure was reconstructed using an original spheres packing algorithm. Two processes leading to the Ni-YSZ degradation were observed: Ni-phase particle coarsening and volatilization. The effect of these processes on resistivity and such microstructure parameters as porosity, Ni-phase fraction, Ni and YSZ phases particle size distributions, triple phase boundary length, and tortuosity factor are considered in this paper.

  20. [Treatment of oilfield produced water by biological methods-constructed wetland process and degradation characteristics of organic substances].

    PubMed

    Huang, Xiang-feng; Shen, Jie; Wen, Yue; Liu, Jia; Lu, Li-jun; Zhou, Qi

    2010-02-01

    Hydrolysis acidification-aerobic-constructed wetland process and hydrolysis acidification-constructed wetland were used to treat oilfield produced water after the pretreatment of oil separation-coagulation. Gas chromatography-mass spectrometry was used to study the degradation characteristics of organic substances during the treatment process. The results showed that COD and ammonia nitrogen of both the two process effluents were below 80 mg/L and 15 mg/L, respectively, when HRT was 20 h for hydrolysis acidification, 10 h for aeration and 2 d for constructed wetlands or when HRT was 20 h for hydrolysis acidification and 4 d for constructed wetland. The results of GC-MS analysis showed that biodegradability of the oil produced water was significantly improved in hydrolysis acidification. Substantial removal of benzene compounds was achieved in aerobic and constructed wetland. PMID:20391699

  1. Preparation and application of acidified/calcined red mud catalyst for catalytic degradation of butyl xanthate in Fenton-like process.

    PubMed

    Shao, Luhua; Wei, Guangtao; Wang, Yizhi; Li, Zhongmin; Zhang, Linye; Zhao, Shukai; Zhou, Ming

    2016-08-01

    Acidified/calcined red mud (ACRM), a novel catalyst used in Fenton-like process, was prepared by acidification and calcination of red mud (RM). Catalyst characterization showed that iron phase of ACRM was mainly α-Fe2O3 and ACRM was a porous material with rough surface and loose structure. Degradation of butyl xanthate in Fenton-like process catalyzed by ACRM was investigated. Butyl xanthate was effectively degraded, and the degradation of butyl xanthate was well fitted by second order kinetic model. ACRM had an excellent long-term stability in a Fenton-like process. The possible mechanisms of hydroxyl radical production and butyl xanthate degradation in a Fenton-like process catalyzed by ACRM were presented. PMID:27094281

  2. The effect of process variables on the degradation and physical properties of spray dried insulin intended for inhalation.

    PubMed

    Ståhl, Kristina; Claesson, Malin; Lilliehorn, Pontus; Lindén, Helena; Bäckström, Kjell

    2002-02-21

    The aim of this study was to investigate the effect of process variables on the degradation and physical properties of spray dried insulin intended for inhalation. A 2(4) full factorial experimentally designed study was performed to investigate the influence of the following independent spray drying variables: feed flow rate, nozzle gas flow rate, inlet air temperature and aspirator capacity (drying gas flow rate). Human insulin (biosynthetic and Ph.Eur. quality) was dissolved in distilled water to concentrations of 5 mg/ml. The solutions were spray dried in a Mini Spray Dryer Büchi and the dry powders produced were characterized by high performance liquid chromatography, size exclusion chromatography, laser diffraction, thermo gravimetric analysis, scanning electron microscopy and weighing. The degradation of insulin was found to be affected mainly by the process variables that determine the outlet air temperature, i.e.: inlet air temperature, aspirator capacity and feed flow rate. The outlet air temperature should be kept below 120 degrees C to avoid degradation. A statistical optimization of the spray drying variables was performed, and found to recommend an experiment with an outlet air temperature of 61+/-4 degrees C. This experiment ought to generate a yield of 54+/-7% by weight of particles with a mass median diameter 2.9+/-0.4 microm, moisture content 3.9+/-0.5% by weight, content of high molecular weight proteins 0.3+/-0.1% by area, A-21 desamido insulin 0.3+/-0.05% by area and other insulin related compounds 0.3+/-0.1% by area. PMID:11897427

  3. Distortion of genetically modified organism quantification in processed foods: influence of particle size compositions and heat-induced DNA degradation.

    PubMed

    Moreano, Francisco; Busch, Ulrich; Engel, Karl-Heinz

    2005-12-28

    Milling fractions from conventional and transgenic corn were prepared at laboratory scale and used to study the influence of sample composition and heat-induced DNA degradation on the relative quantification of genetically modified organisms (GMO) in food products. Particle size distributions of the obtained fractions (coarse grits, regular grits, meal, and flour) were characterized using a laser diffraction system. The application of two DNA isolation protocols revealed a strong correlation between the degree of comminution of the milling fractions and the DNA yield in the extracts. Mixtures of milling fractions from conventional and transgenic material (1%) were prepared and analyzed via real-time polymerase chain reaction. Accurate quantification of the adjusted GMO content was only possible in mixtures containing conventional and transgenic material in the form of analogous milling fractions, whereas mixtures of fractions exhibiting different particle size distributions delivered significantly over- and underestimated GMO contents depending on their compositions. The process of heat-induced nucleic acid degradation was followed by applying two established quantitative assays showing differences between the lengths of the recombinant and reference target sequences (A, deltal(A) = -25 bp; B, deltal(B) = +16 bp; values related to the amplicon length of the reference gene). Data obtained by the application of method A resulted in underestimated recoveries of GMO contents in the samples of heat-treated products, reflecting the favored degradation of the longer target sequence used for the detection of the transgene. In contrast, data yielded by the application of method B resulted in increasingly overestimated recoveries of GMO contents. The results show how commonly used food technological processes may lead to distortions in the results of quantitative GMO analyses. PMID:16366682

  4. Anaerobic methanethiol degradation and methanogenic community analysis in an alkaline (pH 10) biological process for liquefied petroleum gas desulfurization.

    PubMed

    van Leerdam, Robin C; Bonilla-Salinas, Monica; de Bok, Frank A M; Bruning, H; Lens, Piet N L; Stams, Alfons J M; Janssen, Albert J H

    2008-11-01

    Anaerobic methanethiol (MT) degradation by mesophilic (30 degrees C) alkaliphilic (pH 10) communities was studied in a lab-scale Upflow Anaerobic Sludge Bed (UASB) reactor inoculated with a mixture of sediments from the Wadden Sea (The Netherlands), Soap Lake (Central Washington), and Russian soda lakes. MT degradation started after 32 days of incubation. During the first 252 days, complete degradation was achieved till a volumetric loading rate of 7.5 mmol MT/L/day, and sulfide, methane, and carbon dioxide were the main reaction products. Temporary inhibition of MT degradation occurred after MT peak loads and in the presence of dimethyl disulfide (DMDS), which is the autooxidation product of MT. From day 252 onwards, methanol was dosed to the reactor as co-substrate at a loading rate of 3-6 mmol/L/day to stimulate growth of methylotrophic methanogens. Methanol was completely degraded and also a complete MT degradation was achieved till a volumetric loading rate of 13 mmol MT/L/day (0.77 mmol MT/gVSS/day). However, from day 354 till the end of the experimental run (day 365), acetate was formed and MT was not completely degraded anymore, indicating that methanol-degrading homoacetogenic bacteria had partially outcompeted the methanogenic MT-degrading archea. The archeal community in the reactor sludge was analyzed by DGGE and sequencing of 16S rRNA genes. The methanogenic archea responsible for the degradation of MT in the reactor were related to Methanolobus oregonensis. A pure culture, named strain SODA, was obtained by serial dilutions in medium containing both trimethyl amine and dimethyl sulfide (DMS). Strain SODA degraded MT, DMS, trimethyl amine, and methanol. Flow sheet simulations revealed that for sufficient MT removal from liquefied petroleum gas, the extraction and biological degradation process should be operated above pH 9. PMID:18814290

  5. Proteasome-mediated degradation of IκBα and processing of p105 in Crohn disease and ulcerative colitis

    PubMed Central

    Visekruna, Alexander; Joeris, Thorsten; Seidel, Daniel; Kroesen, Anjo; Loddenkemper, Christoph; Zeitz, Martin; Kaufmann, Stefan H.E.; Schmidt-Ullrich, Ruth; Steinhoff, Ulrich

    2006-01-01

    Enhanced NF-κB activity is involved in the pathology of both forms of inflammatory bowel disease (IBD), Crohn disease (CD) and ulcerative colitis (UC). Here we analyzed the mechanism of proteasome-mediated NF-κB activation in CD and UC. Our studies demonstrate that the subunit composition and the proteolytic function of proteasomes differ between UC and CD. High expression of the immunoproteasome subunits β1i and β2i is characteristic of the inflamed mucosa of CD. In line with this, we found enhanced processing of NF-κB precursor p105 and degradation of inhibitor of NF-κB, IκBα, by immunoproteasomes isolated from the mucosa of CD patients. In comparison with healthy controls and CD patients, UC patients exhibited an intermediate phenotype regarding the proteasome-mediated processing/degradation of NF-κB components. Finally, increased expression of the NF-κB family member c-Rel in the inflamed mucosa of CD patients suggests that p50/c-Rel is important for IFN-γ–mediated induction of immunoproteasomes via IL-12–driven Th1 responses. These findings suggest that distinct proteasome subunits influence the intensity of NF-κB–mediated inflammation in IBD patients. PMID:17124531

  6. Effectiveness of photochemical and sonochemical processes in degradation of Basic Violet 16 (BV16) dye from aqueous solutions

    PubMed Central

    2012-01-01

    In this study, degradation of Basic Violet 16 (BV16) by ultraviolet radiation (UV), ultrasonic irradiation (US), UV/H2O2 and US/H2O2 processes was investigated in a laboratory-scale batch photoreactor equipped with a 55W immersed-type low-pressure mercury vapor lamp and a sonoreactor with high frequency (130kHz) plate type transducer at 100W of acoustic power. The effects of initial dye concentration, concentration of H2O2 and solution pH and presence of Na2SO4 was studied on the sonochemical and photochemical destruction of BV16 in aqueous phase. The results indicated that in the UV/H2O2 and US/H2O2 systems, a sufficient amount of H2O2 was necessary, but a very high H2O2 concentration would inhibit the reaction rate. The optimum H2O2 concentration was achieved in the range of 17 mmol/L at dye concentration of 30 mg/L. A degradation of 99% was obtained with UV/H2O2 within 8 minutes while decolorization efficiency by using UV (23%), US (<6%) and US/H2O2(<15%) processes were negligible for this kind of dye. Pseudo-first order kinetics with respect to dyestuffs concentrations was found to fit all the experimental data. PMID:23369268

  7. Degradation of vinyl chloride (VC) by the sulfite/UV advanced reduction process (ARP): effects of process variables and a kinetic model.

    PubMed

    Liu, Xu; Yoon, Sunhee; Batchelor, Bill; Abdel-Wahab, Ahmed

    2013-06-01

    Vinyl chloride (VC) poses a threat to humans and environment due to its toxicity and carcinogenicity. In this study, an advanced reduction process (ARP) that combines sulfite with UV light was developed to destroy VC. The degradation of VC followed pseudo-first-order decay kinetics and the effects of several experimental factors on the degradation rate constant were investigated. The largest rate constant was observed at pH9, but complete dechlorination was obtained at pH11. Higher sulfite dose and light intensity were found to increase the rate constant linearly. The rate constant had a little drop when the initial VC concentration was below 1.5mg/L and then was approximately constant between 1.5mg/L and 3.1mg/L. A degradation mechanism was proposed to describe reactions between VC and the reactive species that were produced by the photolysis of sulfite. A kinetic model that described major reactions in the system was developed and was able to explain the dependence of the rate constant on the experimental factors examined. This study may provide a new treatment technology for the removal of a variety of halogenated contaminants. PMID:23570912

  8. Degradation of emotion processing ability in corticobasal syndrome and Alzheimer's disease.

    PubMed

    Kumfor, Fiona; Sapey-Triomphe, Laurie-Anne; Leyton, Cristian E; Burrell, James R; Hodges, John R; Piguet, Olivier

    2014-11-01

    Disturbed emotion processing and difficulty with social interactions are present to variable degrees in dementia. They are characteristic features of frontotemporal dementia, whereas these deficits tend to be mild in Alzheimer's disease, reflecting the different patterns of neurodegeneration seen in these disorders. Corticobasal syndrome is an atypical parkinsonian disorder clinically and pathologically related to frontotemporal dementia. Corticobasal syndrome typically presents as a motor disturbance, although cognitive and behavioural changes are now recognized. Pathological changes are found in frontoparietal cortical regions and in the basal ganglia; regions that are heavily involved in emotion processing. Despite the overlap with frontotemporal dementia and the observed regions of brain atrophy, emotion processing has not been systematically explored in corticobasal syndrome. This study aimed to (i) comprehensively examine emotion processing in corticobasal syndrome in comparison to Alzheimer's disease, to determine whether emotion processing deficits exist in this syndrome, beyond those seen in Alzheimer's disease; and (ii) identify the neural correlates underlying emotion processing in corticobasal syndrome and Alzheimer's disease. Sixteen patients with corticobasal syndrome, 18 patients with Alzheimer's disease and 22 matched healthy control subjects were assessed on a comprehensive battery of face and emotion processing tasks. Behavioural analyses revealed deficits in both basic face processing and high-level emotion processing tasks in patients with corticobasal syndrome. Notably, the emotion processing disturbance persisted even after controlling for face processing deficits. In contrast, patients with Alzheimer's disease were impaired on high-level complex and cognitively demanding emotion recognition tasks (Ekman 60, The Awareness of Social Inference Test) only. Neuroimaging analyses using FreeSurfer revealed that emotion processing deficits in

  9. Research advances in major cereal crops for adaptation to abiotic stresses.

    PubMed

    Maiti, R K; Satya, Pratik

    2014-01-01

    With devastating increase in population there is a great necessity to increase crop productivity of staple crops but the productivity is greatly affected by various abiotic stress factors such as drought, salinity. An attempt has been made a brief account on abiotic stress resistance of major cereal crops viz. In spite of good successes obtained on physiological and use molecular biology, the benefits of this high cost technology are beyond the reach of developing countries. This review discusses several morphological, anatomical, physiological, biochemical and molecular mechanisms of major cereal crops related to the adaptation of these crop to abiotic stress factors. It discusses the effect of abiotic stresses on physiological processes such as flowering, grain filling and maturation and plant metabolisms viz. photosynthesis, enzyme activity, mineral nutrition, and respiration. Though significant progress has been attained on the physiological, biochemical basis of resistance to abiotic stress factors, very little progress has been achieved to increase productivity under sustainable agriculture. Therefore, there is a great necessity of inter-disciplinary research to address this issue and to evolve efficient technology and its transfer to the farmers' fields. PMID:25523172

  10. When less is more: Impact of face processing ability on recognition of visually degraded faces.

    PubMed

    Royer, Jessica; Blais, Caroline; Gosselin, Frédéric; Duncan, Justin; Fiset, Daniel

    2015-10-01

    It is generally thought that faces are perceived as indissociable wholes. As a result, many assume that hiding large portions of the face by the addition of noise or by masking limits or qualitatively alters natural "expert" face processing by forcing observers to use atypical processing mechanisms. We addressed this question by measuring face processing abilities with whole faces and with Bubbles (Gosselin & Schyns, 2001), an extreme masking method thought by some to bias the observers toward the use of atypical processing mechanisms by limiting the use of whole-face strategies. We obtained a strong and negative correlation between individual face processing ability and the number of bubbles (r = -.79), and this correlation remained strong even after controlling for general visual/cognitive processing ability (rpartial = -.72). In other words, the better someone is at processing faces, the fewer facial parts they need to accurately carry out this task. Thus, contrary to what many researchers assume, face processing mechanisms appear to be quite insensitive to the visual impoverishment of the face stimulus. PMID:26168140

  11. DIBUTYLPHTHALATE DEGRADATION IN ESTUARINE AND FRESHWATER SITES

    EPA Science Inventory

    Biotic and abiotic degradation of di-n-butylphthalate (DBP) in water and sediment/water systems from six different sites was investigated under laboratory conditions. Water and underlying sediment were collected from freshwater and estuarine sites in Florida, Mississippi, and Lou...

  12. Temporal dynamics of biotic and abiotic drivers of litter decomposition.

    PubMed

    García-Palacios, Pablo; Shaw, E Ashley; Wall, Diana H; Hättenschwiler, Stephan

    2016-05-01

    Climate, litter quality and decomposers drive litter decomposition. However, little is known about whether their relative contribution changes at different decomposition stages. To fill this gap, we evaluated the relative importance of leaf litter polyphenols, decomposer communities and soil moisture for litter C and N loss at different stages throughout the decomposition process. Although both microbial and nematode communities regulated litter C and N loss in the early decomposition stages, soil moisture and legacy effects of initial differences in litter quality played a major role in the late stages of the process. Our results provide strong evidence for substantial shifts in how biotic and abiotic factors control litter C and N dynamics during decomposition. Taking into account such temporal dynamics will increase the predictive power of decomposition models that are currently limited by a single-pool approach applying control variables uniformly to the entire decay process. PMID:26947573

  13. Spectral induced polarization signatures of abiotic FeS precipitation

    SciTech Connect

    Ntarlagiannis, D.; Doherty, R.; Williams, K. H.

    2010-01-15

    In recent years, geophysical methods have been shown to be sensitive to microbial induced mineralization processes. The spectral induced polarization (SIP) method appears to be very promising for monitoring mineralization and microbial processes. With this work, we study the links of mineralization and SIP signals, in the absence of microbial activity. We recorded the SIP response during abiotic FeS precipitation. We show that the SIP signals are diagnostic of FeS mineralization and can be differentiated from SIP signals from bio-mineralization processes. More specifically the imaginary conductivity shows almost linear dependence on the amount of FeS precipitating out of solution, above the threshold value 0.006 gr under our experimental conditions. This research has direct implications for the use of the SIP method as a monitoring, and decision making, tool for sustainable remediation of metals in contaminated soils and groundwater.

  14. Effect of household and industrial processing on the levels of pesticide residues and degradation products in melons.

    PubMed

    Bonnechère, A; Hanot, V; Bragard, C; Bedoret, T; van Loco, J

    2012-01-01

    Two varieties of melons (Cucumis melo) were treated with two fungicides (carbendazim and maneb) and four insecticides (acetamiprid, cyromazin, imazalil and thiamethoxam) to quantify the effect of household processing on the pesticide residues. To ensure sufficiently high levels of residues in flesh and peel, the most concentrated formulations were applied observing good agricultural practice. The peeling step decreased the concentration of pesticide residues for maneb, imazalil and acetamiprid by more than 90%. Cyromazin, carbendazim and thiamethoxam were reduced by approximately 50%. The reduction of the pesticides could not be fully explained by the systemic character of the pesticides. However, the agricultural practices (time of application), solubility and mode of action (systemic versus contact pesticide) of the pesticides could be used to explain the difference in processing factors for the studied pesticides. Degradation products (melamine and ethylenethiourea) were also investigated in this study, but were not detected. PMID:22489844

  15. Preparation of zeolite nanorods by corona discharge plasma for degradation of phenazopyridine by heterogeneous sono-Fenton-like process.

    PubMed

    Khataee, Alireza; Rad, Tannaz Sadeghi; Vahid, Behrouz; Khorram, Sirous

    2016-11-01

    The plasma-modified clinoptilolite (PMC) nanorods were prepared from natural clinoptilolite (NC) utilizing environmentally-friendly corona discharge plasma. The PMC and NC were characterized by XRD, FT-IR, SEM, EDX, XPS and BET, which confirmed the nanocatalyst formation. The catalytic performance of the PMC in the heterogeneous sono-Fenton-like process was greater than the NC for treatment of phenazopyridine (PhP). The desired amounts were obtained for experimental parameters including initial pH (5), PMC dosage (2g/L), K2S2O8 concentration (2mmol/L), ultrasonic power (300W) and PhP concentration (10mg/L). Reactive oxygen species scavengers decreased the removal efficiency of the PhP. The treatment process followed pseudo-first order kinetic and seven degradation intermediates were identified by the GC-MS technique. PMID:27245954

  16. When Seeing Depends on Knowing: Adults with Autism Spectrum Conditions Show Diminished Top-Down Processes in the Visual Perception of Degraded Faces but Not Degraded Objects

    ERIC Educational Resources Information Center

    Loth, Eva; Gomez, Juan Carlos; Happe, Francesca

    2010-01-01

    Behavioural, neuroimaging and neurophysiological approaches emphasise the active and constructive nature of visual perception, determined not solely by the environmental input, but modulated top-down by prior knowledge. For example, degraded images, which at first appear as meaningless "blobs", can easily be recognized as, say, a face, after…

  17. The tomato DWD motif-containing protein DDI1 interacts with the CUL4–DDB1-based ubiquitin ligase and plays a pivotal role in abiotic stress responses

    SciTech Connect

    Miao, Min; Zhu, Yunye; Qiao, Maiju; Tang, Xiaofeng; Zhao, Wei; Xiao, Fangming; Liu, Yongsheng

    2014-08-08

    Highlights: • We identify DDI1 as a DAMAGED DNA BINDING PROTEIN1 (DDB1)-interacting protein. • DDI1 interacts with the CUL4–DDB1-based ubiquitin ligase in the nucleus. • DDI1 plays a positive role in regulating abiotic stress response in tomato. - Abstract: CULLIN4(CUL4)–DAMAGED DNA BINDING PROTEIN1 (DDB1)-based ubiquitin ligase plays significant roles in multiple physiological processes via ubiquitination-mediated degradation of relevant target proteins. The DDB1–CUL4-associated factor (DCAF) acts as substrate receptor in the CUL4–DDB1 ubiquitin ligase complex and determines substrate specificity. In this study, we identified a tomato (Solanum lycopersicum) DDB1-interacting (DDI1) protein as a DCAF protein involved in response to abiotic stresses, including UV radiation, high salinity and osmotic stress. Co-immunoprecipitation and bimolecular fluorescence complementation assay indicated that DDI1 associates with CUL4–DDB1 in the nucleus. Quantitative RT-PCR analysis indicated the DDI1 gene is induced by salt, mannitol and UV-C treatment. Moreover, transgenic tomato plants with overexpression or knockdown of the DDI1 gene exhibited enhanced or attenuated tolerance to salt/mannitol/UV-C, respectively. Thus, our data suggest that DDI1 functions as a substrate receptor of the CUL4–DDB1 ubiquitin ligase, positively regulating abiotic stress response in tomato.

  18. Multifaceted roles of aquaporins as molecular conduits in plant responses to abiotic stresses.

    PubMed

    Srivastava, Ashish Kumar; Penna, Suprasanna; Nguyen, Dong Van; Tran, Lam-Son Phan

    2016-01-01

    Abiotic stress has become a challenge to food security due to occurrences of climate change and environmental degradation. Plants initiate molecular, cellular and physiological changes to respond and adapt to various types of abiotic stress. Understanding of plant response mechanisms will aid in strategies aimed at improving stress tolerance in crop plants. One of the most common and early symptoms associated with these stresses is the disturbance in plant-water homeostasis, which is regulated by a group of proteins called "aquaporins". Aquaporins constitute a small family of proteins which are classified further on the basis of their localization, such as plasma membrane intrinsic proteins, tonoplast intrinsic proteins, nodulin26-like intrinsic proteins (initially identified in symbiosomes of legumes but also found in the plasma membrane and endoplasmic reticulum), small basic intrinsic proteins localized in ER (endoplasmic reticulum) and X intrinsic proteins present in plasma membrane. Apart from water, aquaporins are also known to transport CO2, H2O2, urea, ammonia, silicic acid, arsenite and wide range of small uncharged solutes. Besides, aquaporins also function to modulate abiotic stress-induced signaling. Such kind of versatile functions has made aquaporins a suitable candidate for development of transgenic plants with increased tolerance toward different abiotic stress. Toward this endeavor, the present review describes the versatile functions of aquaporins in water uptake, nutrient balancing, long-distance signal transfer, nutrient/heavy metal acquisition and seed development. Various functional genomic studies showing the potential of specific aquaporin isoforms for enhancing plant abiotic stress tolerance are summarized and future research directions are given to design stress-tolerant crops. PMID:25430890

  19. Exposure to airborne isocyanates and other thermal degradation products at polyurethane-processing workplaces.

    PubMed

    Henriks-Eckerman, Maj-Len; Välimaa, Jarmo; Rosenberg, Christina; Peltonen, Kimmo; Engström, Kerstin

    2002-10-01

    The thermal degradation products of polyurethanes (PURs) and exposure to isocyanates were studied by stationary and personal measurements in five different occupational environments. Isocyanates were collected on glass fibre filters impregnated with 1-(2-methoxyphenyl)piperazine (2MP) and in impingers containing n-dibutylamine (DBA) in toluene. connected to a glass fibre postfilter. The derivatives formed were analysed by liquid chromatography: 2MP derivatives with UV and electrochemical detection and DBA derivatives with mass spectrometric detection. The release of aldehydes and other volatile organic compounds into the air was also studied. In a comparison of the two sampling methods, the 2MP method yielded about 20% lower concentrations for 4,4'-methylenediphenyl diisocyanate (MDI) than did the DBA method. In car repair shops, the median concentration of diisocyanates (given as NCO groups) in the breathing zone was 1.1 microg NCO m(-3) during grinding and 0.3 microg NCO m(-3) during welding, with highest concentrations of 1.7 and 16 pg NCO m(-3), respectively. High concentrations of MDI, up to 25 and 19 microg NCO m(-3), respectively, were also measured in the breathing zone during welding of district heating pipes and turning of a PUR-coated metal cylinder. During installation of PUR-coated floor covering, small amounts of aliphatic diisocyanates were detected in the air. A small-molecular monoisocyanate, methyl isocyanate, and isocyanic acid were detected only during welding and turning operations. The diisocyanate concentrations were in general higher near the emission source than in the workers' breathing zone. A sampling strategy to evaluate the risk of exposure to isocyanates is presented. PMID:12400920

  20. Ubiquitination pathway as a target to develop abiotic stress tolerance in rice

    PubMed Central

    Dametto, Andressa; Buffon, Giseli; Dos Reis Blasi, Édina Aparecida; Sperotto, Raul Antonio

    2015-01-01

    Abiotic stresses may result in significant losses in rice grain productivity. Protein regulation by the ubiquitin/proteasome system has been studied as a target mechanism to optimize adaptation and survival strategies of plants to different environmental stresses. This article aimed at highlighting recent discoveries about the roles ubiquitination may play in the exposure of rice plants to different abiotic stresses, enabling the development of modified plants tolerant to stress. Responses provided by the ubiquitination process include the regulation of the stomatal opening, phytohormones levels, protein stabilization, cell membrane integrity, meristematic cell maintenance, as well as the regulation of reactive oxygen species and heavy metals levels. It is noticeable that ubiquitination is a potential means for developing abiotic stress tolerant plants, being an excellent alternative to rice (and other cultures) improvement programs. PMID:26236935

  1. Identification of abiotic and biotic reductive dechlorination in a chlorinated ethene plume after thermal source remediation by means of isotopic and molecular biology tools

    NASA Astrophysics Data System (ADS)

    Badin, Alice; Broholm, Mette M.; Jacobsen, Carsten S.; Palau, Jordi; Dennis, Philip; Hunkeler, Daniel

    2016-09-01

    Thermal tetrachloroethene (PCE) remediation by steam injection in a sandy aquifer led to the release of dissolved organic carbon (DOC) from aquifer sediments resulting in more reduced redox conditions, accelerated PCE biodegradation, and changes in microbial populations. These changes were documented by comparing data collected prior to the remediation event and eight years later. Based on the premise that dual C-Cl isotope slopes reflect ongoing degradation pathways, the slopes associated with PCE and TCE suggest the predominance of biotic reductive dechlorination near the source area. PCE was the predominant chlorinated ethene near the source area prior to thermal treatment. After thermal treatment, cDCE became predominant. The biotic contribution to these changes was supported by the presence of Dehalococcoides sp. DNA (Dhc) and Dhc targeted rRNA close to the source area. In contrast, dual C-Cl isotope analysis together with the almost absent VC 13C depletion in comparison to cDCE 13C depletion suggested that cDCE was subject to abiotic degradation due to the presence of pyrite, possible surface-bound iron (II) or reduced iron sulphides in the downgradient part of the plume. This interpretation is supported by the relative lack of Dhc in the downgradient part of the plume. The results of this study show that thermal remediation can enhance the biodegradation of chlorinated ethenes, and that this effect can be traced to the mobilisation of DOC due to steam injection. This, in turn, results in more reduced redox conditions which favor active reductive dechlorination and/or may lead to a series of redox reactions which may consecutively trigger biotically induced abiotic degradation. Finally, this study illustrates the valuable complementary application of compound-specific isotopic analysis combined with molecular biology tools to evaluate which biogeochemical processes are taking place in an aquifer contaminated with chlorinated ethenes.

  2. Identification of abiotic and biotic reductive dechlorination in a chlorinated ethene plume after thermal source remediation by means of isotopic and molecular biology tools.

    PubMed

    Badin, Alice; Broholm, Mette M; Jacobsen, Carsten S; Palau, Jordi; Dennis, Philip; Hunkeler, Daniel

    2016-09-01

    Thermal tetrachloroethene (PCE) remediation by steam injection in a sandy aquifer led to the release of dissolved organic carbon (DOC) from aquifer sediments resulting in more reduced redox conditions, accelerated PCE biodegradation, and changes in microbial populations. These changes were documented by comparing data collected prior to the remediation event and eight years later. Based on the premise that dual C-Cl isotope slopes reflect ongoing degradation pathways, the slopes associated with PCE and TCE suggest the predominance of biotic reductive dechlorination near the source area. PCE was the predominant chlorinated ethene near the source area prior to thermal treatment. After thermal treatment, cDCE became predominant. The biotic contribution to these changes was supported by the presence of Dehalococcoides sp. DNA (Dhc) and Dhc targeted rRNA close to the source area. In contrast, dual C-Cl isotope analysis together with the almost absent VC (13)C depletion in comparison to cDCE (13)C depletion suggested that cDCE was subject to abiotic degradation due to the presence of pyrite, possible surface-bound iron (II) or reduced iron sulphides in the downgradient part of the plume. This interpretation is supported by the relative lack of Dhc in the downgradient part of the plume. The results of this study show that thermal remediation can enhance the biodegradation of chlorinated ethenes, and that this effect can be traced to the mobilisation of DOC due to steam injection. This, in turn, results in more reduced redox conditions which favor active reductive dechlorination and/or may lead to a series of redox reactions which may consecutively trigger biotically induced abiotic degradation. Finally, this study illustrates the valuable complementary application of compound-specific isotopic analysis combined with molecular biology tools to evaluate which biogeochemical processes are taking place in an aquifer contaminated with chlorinated ethenes. PMID:27318432

  3. Modeling the contributing factors of desertification and evaluating their relationships to soil degradation process through Geomatic techniques

    NASA Astrophysics Data System (ADS)

    Shoba, P.; Ramakrishnan, S. S.

    2015-12-01

    Desertification is a prolonged stage of land degradation which converts the productive ecosystem to fragile by three crucial events namely evapotranspiration, rainfall and negative human intrusion. The present study concentrates on identifying the causative factors of desertification namely temperature, wind, rainfall and human pressure, distinguishing the desertified land from degraded land and assessing the way from which the soil degradation process gets accelerated by those factors by employing the datasets such as long term (2001-2011) and short term (2012-2015) Meteorological data and Landsat ETM+ and OLI satellite imageries of crop growing period (June-October) into geostatistical methods and newly proposed remote sensing models which yielded good accuracy with in situ observations (R2 = 0.8). In temperature induced desertified region, the rate of increment of the saline affected region was magnified significantly from 16 to 74 % (2001-2015) due to the presence of native fluoride concentration and extreme temperature event over a period of time. The long term exaggeration of soil moisture stress (19 to 90 %) has been notified in the areas that were susceptible to wind induced desertification, due to high evaporation rate invoked by extreme wind event for a substantial period. Similarly rainfall induced desertified regions have also been experiencing high soil moisture stress (4 to 70 %) because of the insufficient reception of rainfall. High human made soil salinity (36 %), human occupancy (16 %), followed by moisture stress (7 %) are observed in the human affected region because of growing population and improper land management of the already fragile land.

  4. Modeling the contributing factors of desertification and evaluating their relationships to the soil degradation process through geomatic techniques

    NASA Astrophysics Data System (ADS)

    Shoba, P.; Ramakrishnan, S. S.

    2016-03-01

    Desertification is a prolonged type of land degradation which converts the productive ecosystem to a fragile one by two crucial factors, namely, climate and negative human intrusion. The present study concentrates on identifying the causative factors of desertification, namely temperature, wind, rainfall scarcity and human pressure. It also concentrates on distinguishing the desertified land from degraded land and assessing the way in which the soil degradation process becomes accelerated by these factors, by employing data sets such as meteorological data and Landsat ETM+ (Enhanced Thematic Mapper) and OLI (Operational Land Imager) satellite images of the crop-growing period (June-October) in geostatistical methods and newly proposed remote sensing models, which yielded good accuracy with in situ observations (R2 = 0.8). The study was centered on two time periods, 2001-2011 (11 years) and 2012-2015 (4 years). In rainfall-temperature/drought-induced desertified region, the rate of salt-affected soils increased significantly from 12 to 58 % (2001-2015) due to the presence of native fluoride concentration and extreme temperature events. The region has also been experiencing high soil moisture stress (5 to 33 %) because of the insufficient occurrence of rainfall over a period of time. A longer term exacerbation of soil moisture stress (19 to 90 %) has been noted in the areas that were susceptible to wind-induced desertification, due to a high evaporation rate caused by extreme wind events for a substantial period. High human-induced soil salinity (36 %), human occupancy (16 %), followed by moisture stress (7 %) are observed in the human-affected region because of growing population and improper land management of the land that is already fragile.

  5. Effect of reprocessing cycles on the degradation of polypropylene copolymer filled with talc or montmorillonite during injection molding process

    SciTech Connect

    Demori, R.; Mauler, R. S.; Ashton, E.; Weschenfelder, V. F.; Cândido, L. H. A.; Kindlein, W.

    2015-05-22

    Mechanical recycling of polymeric materials is a favorable technique resulting in economic and environmental benefits, especially in the case of polymers with a high production volume as the polypropylene copolymer (PP). However, recycling by reprocessing techniques can lead to thermal, mechanical or thermo-oxidative degradation that can affect the structure of the polymer and subsequently the material properties. PP filled with montmorillonite (MMT) or talc are widely produced and studied, however, its degradation reactions by reprocessing cycles are poorly studied so far. In this study, the effects of reprocessing cycles in the structure and in the properties of the PP/MMT and PP/Talc were evaluated. The samples were mixed with 5% talc or MMT Cloisite C15A in a twin-screw extrusion. After extrusion, this filled material was submitted to five reprocessing cycles through an injection molding process. In order to evaluate the changes induced by reprocessing techniques, the samples were characterized by DSC, FT-IR, Izod impact and tensile strength tests. The study showed that Young modulus, elongation at brake and Izod impact were not affected by reprocessing cycles, except when using talc. In this case, the elongation at brake reduced until the fourth cycle, showing rigidity increase. The DSC results showed that melting and crystallization temperature were not affected. A comparison of FT-IR spectra of the reprocessed indicated that in both samples, between the first and the fifth cycle, no noticeable change has occurred. Thus, there is no evidence of thermo oxidative degradation. In general, these results suggest that PP reprocessing cycles using MMT or talc does not change the material properties until the fifth cycle.

  6. Degradation of polycyclic aromatic hydrocarbons (PAHs) in textile dyeing sludge with ultrasound and Fenton processes: Effect of system parameters and synergistic effect study.

    PubMed

    Lin, Meiqing; Ning, Xun-an; An, Taicheng; Zhang, Jianhao; Chen, Changmin; Ke, Yaowei; Wang, Yujie; Zhang, Yaping; Sun, Jian; Liu, Jingyong

    2016-04-15

    To establish an efficient oxidation process for the degradation of polycyclic aromatic hydrocarbons (PAHs) in textile dyeing sludge, the effects of various operating parameters were optimized during the ultrasound process, Fenton process and the combined ultrasound-Fenton process. The results showed that the ultrasonic density of 1.80w/cm(3), both H2O2 and Fe(2+) dosages of 140mmol/L and pH 3 were favorable conditions for the degradation of PAHs. The degradation efficiency of high molecular weight PAHs was close to or even higher than that of light molecular weight PAHs. The highest degradation efficiencies of Σ16 PAHs were obtained within 30min in the order of: Fenton (83.5%) >ultrasound-Fenton (75.5%) >ultrasound (45.5%), then the efficiencies were decreased in the other of: ultrasound-Fenton (73.0%) >Fenton (70.3%) >ultrasound (41.4%) in 60min. The extra PAHs were released from the intracellular substances and the cavities of sludge due to the disruption of sludge during the oxidation process. Also, the degradation of PAHs could be inhibited by the other organic matter in the sludge. The combined ultrasound-Fenton process showed more efficient than both ultrasound process and Fenton process not only in the surface of sludge but also in the sludge interior. PMID:26795704

  7. Contributions of Abiotic and Biotic Dechlorination Following Carboxymethyl Cellulose Stabilized Nanoscale Zero Valent Iron Injection.

    PubMed

    Kocur, Chris M D; Lomheim, Line; Boparai, Hardiljeet K; Chowdhury, Ahmed I A; Weber, Kela P; Austrins, Leanne M; Edwards, Elizabeth A; Sleep, Brent E; O'Carroll, Denis M

    2015-07-21

    A pilot scale injection of nanoscale zerovalent iron (nZVI) stabilized with carboxymethyl cellulose (CMC) was performed at an active field site contaminated with a range of chlorinated volatile organic compounds (cVOC). The cVOC concentrations and microbial populations were monitored at the site before and after nZVI injection. The remedial injection successfully reduced parent compound concentrations on site. A period of abiotic degradation was followed by a period of enhanced biotic degradation. Results suggest that the nZVI/CMC injection created conditions that stimulated the native populations of organohalide-respiring microorganisms. The abundance of Dehalococcoides spp. immediately following the nZVI/CMC injection increased by 1 order of magnitude throughout the nZVI/CMC affected area relative to preinjection abundance. Distinctly higher cVOC degradation occurred as a result of the nZVI/CMC injection over a 3 week evaluation period when compared to control wells. This suggests that both abiotic and biotic degradation occurred following injection. PMID:26090687

  8. Degradation of dyes from aqueous solution by Fenton processes: a review.

    PubMed

    Nidheesh, Puthiya Veetil; Gandhimathi, Rajan; Ramesh, Srikrishnaperumal Thanga

    2013-04-01

    Several industries are using dyes as coloring agents. The effluents from these industries are increasingly becoming an environmental problem. The removal of dyes from aqueous solution has a great potential in the field of environmental engineering. This paper reviews the classification, characteristics, and problems of dyes in detail. Advantages and disadvantages of different methods used for dye removal are also analyzed. Among these methods, Fenton process-based advanced oxidation processes are an emerging prospect in the field of dye removal. Fenton processes have been classified and represented as "Fenton circle". This paper analyzes the recent studies on Fenton processes. The studies include analyzing different configurations of reactors used for dye removal, its efficiency, and the effects of various operating parameters such as pH, catalyst concentration, H2O2 concentration, initial dye concentration, and temperature of Fenton processes. From the present study, it can be conclude that Fenton processes are very effective and environmentally friendly methods for dye removal. PMID:23338990

  9. Ion Transporters and Abiotic Stress Tolerance in Plants

    PubMed Central

    Brini, Faïçal; Masmoudi, Khaled

    2012-01-01

    Adaptation of plants to salt stress requires cellular ion homeostasis involving net intracellular Na+ and Cl− uptake and subsequent vacuolar compartmentalization without toxic ion accumulation in the cytosol. Sodium ions can enter the cell through several low- and high-affinity K+ carriers. Some members of the HKT family function as sodium transporter and contribute to Na+ removal from the ascending xylem sap and recirculation from the leaves to the roots via the phloem vasculature. Na+ sequestration into the vacuole depends on expression and activity of Na+/H+ antiporter that is driven by electrochemical gradient of protons generated by the vacuolar H+-ATPase and the H+-pyrophosphatase. Sodium extrusion at the root-soil interface is presumed to be of critical importance for the salt tolerance. Thus, a very rapid efflux of Na+ from roots must occur to control net rates of influx. The Na+/H+ antiporter SOS1 localized to the plasma membrane is the only Na+ efflux protein from plants characterized so far. In this paper, we analyze available data related to ion transporters and plant abiotic stress responses in order to enhance our understanding about how salinity and other abiotic stresses affect the most fundamental processes of cellular function which have a substantial impact on plant growth development. PMID:27398240

  10. Effects of biotic and abiotic constraints on the symbiosis between rhizobia and the tropical leguminous trees Acacia and Prosopis.

    PubMed

    Räsänen, Leena A; Lindström, Kristina

    2003-10-01

    N2-fixing, drought tolerant and multipurpose Acacia and Prosopis species are appropriate trees for reforestation of degraded areas in arid and semiarid regions of the tropics and subtropics. Acacia and Prosopis trees form N2-fixing nodules with a wide range of rhizobia, for example African acacias mainly with Sinorhizobium sp. and Mesorhizobium sp., and Australian acacias with Bradyrhizobium sp. Although dry and hot seasons restrict formation of N2-fixing nodules on Acacia and Prosopis spp., fully grown trees and their symbiotic partners are well adapted to survive in harsh growth conditions. This review on one hand deals with major constraints of arid and semiarid soils, i.e. drought, salinity and high soil temperature, which affect growth of trees and rhizobia, and on the other hand with adaptation mechanisms by which both organisms survive through unfavourable periods. In addition, defects in infection and nodulation processes due to various abiotic and biotic constraints are reviewed. This knowledge is important when Acacia and Prosopis seedlings are used for forestation of degraded areas in arid and semiarid tropics. PMID:15242281

  11. Degradation state of organic matter in surface sediments from the Southern Beaufort Sea: a lipid approach

    NASA Astrophysics Data System (ADS)

    Rontani, J.-F.; Charriere, B.; Petit, M.; Vaultier, F.; Heipieper, H. J.; Link, H.; Chaillou, G.; Sempéré, R.

    2012-09-01

    For the next decades significant climatic changes should occur in the Arctic zone. The expected destabilisation of permafrost and its consequences for hydrology and plant cover should increase the input of terrigenous carbon to coastal seas. Consequently, the relative importance of the fluxes of terrestrial and marine organic carbon to the seafloor will likely change, strongly impacting the preservation of organic carbon in Arctic marine sediments. Here, we investigated the lipid content of surface sediments collected on the Mackenzie basin in the Beaufort Sea. Particular attention was given to biotic and abiotic degradation products of sterols and monounsaturated fatty acids. By using sitosterol and campesterol degradation products as tracers of the degradation of terrestrial higher plant inputs and brassicasterol degradation products as tracers of degradation of phytoplanktonic organisms, it could be observed that autoxidation, photooxidation and biodegradation processes act much more intensively on higher plant debris than on phytoplanktonic organisms. Examination of oxidation products of monounsaturated fatty acids showed that photo- and autoxidation processes act more intensively on bacteria than on phytodetritus. Enhanced damages induced by singlet oxygen (transferred from senescent phytoplanktonic cells) in bacteria were attributed to the lack of an adapted antioxidant system in these microorganisms. The strong oxidative stress observed in the sampled sediments resulted in the production of significant amounts of epoxy acids and unusually high proportions of monounsaturated fatty acids with a trans double bond. The formation of epoxy acids was attributed to peroxygenases (enzymes playing a protective role against the deleterious effects of fatty acid hydroperoxides in vivo), while cis/trans isomerisation was probably induced by thiyl radicals produced during the reaction of thiols with hydroperoxides. Our results confirm the important role played by abiotic

  12. Chiral Phosphinate Degradation by the Fusarium Species: Scope and Limitation of the Process

    PubMed Central

    Brzezińska-Rodak, Małgorzata

    2013-01-01

    Biodegradable capacities of fungal strains of Fusarium oxysporum (DSMZ 2018) and Fusarium culmorum (DSMZ 1094) were tested towards racemic mixture of chiral 2-hydroxy-2-(ethoxyphenylphosphinyl) acetic acid—a compound with two stereogenic centres. The effectiveness of decomposition was dependent on external factors such as temperature and time of the process. Optimal conditions of complete mineralization were established. Both Fusarium species were able to biodegrade every isomer of tested compound at 30°C, but F. culmorum required 10 days and F. oxysporum 11 days to accomplish the process, which was continuously monitored using the 31P NMR technique. PMID:24324893

  13. Laboratory photochemical processing of aqueous aerosols: formation and degradation of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls

    NASA Astrophysics Data System (ADS)

    Pavuluri, C. M.; Kawamura, K.; Mihalopoulos, N.; Swaminathan, T.

    2015-07-01

    To better understand the photochemical processing of dicarboxylic acids and related polar compounds, we conducted batch UV irradiation experiments on two types of aerosol samples collected from India, which represent anthropogenic (AA) and biogenic (BA) aerosols, for time periods of 0.5 to 120 h. The irradiated samples were analyzed for molecular compositions of diacids, oxoacids and α-dicarbonyls. The results show that photochemical degradation of oxalic (C2), malonic (C3) and other C8-C12 diacids overwhelmed their production in aqueous aerosols, whereas succinic acid (C4) and C5-C7 diacids showed a significant increase (ca. 10 times) during the course of irradiation experiments. The photochemical formation of oxoacids and α-dicarbonyls overwhelmed their degradation during the early stages of experiment except for ω-oxooctanoic acid (ωC8), which showed a similar pattern to that of C4. We also found a gradual decrease in the relative abundance of C2 to total diacids and an increase in the relative abundance of C4 during prolonged experiment. Based on the changes in concentrations and mass ratios of selected species with the irradiation time, we hypothesize that iron-catalyzed photolysis of C2 and C3 diacids controls their concentrations in Fe-rich atmospheric waters, whereas photochemical formation of C4 diacid (via ωC8) is enhanced with photochemical processing of aqueous aerosols in the atmosphere. This study demonstrates that the ambient aerosols contain abundant precursors that produce diacids, oxoacids and α-dicarbonyls, although some species such as oxalic acid decompose extensively during an early stage of photochemical processing.

  14. Cathodoluminescence degradation of SiO{sub 2}:Ce,Tb powder phosphors prepared by a sol-gel process

    SciTech Connect

    Ntwaeaborwa, O. M.; Swart, H. C.; Kroon, R. E.; Botha, J. R.; Holloway, P. H.

    2007-07-15

    Auger electron spectroscopy (AES), cathodoluminescence (CL) spectroscopy, and x-ray photoelectron spectroscopy (XPS) were used to study the CL intensity degradation of SiO{sub 2}:Cb,Tb powder phosphors prepared by a sol-gel process. The AES and the CL data were collected simultaneously when the powders were bombarded for 10 h with a beam of electrons of current density of 54 mA/cm{sup 2}, accelerated by 2 kV in a vacuum chamber containing either 1x10{sup -8} or 1x10{sup -7} Torr O{sub 2}. A decrease of CL intensity was simultaneous with desorption of oxygen (O) from the surface, i.e., there is a correlation between the degradation of CL intensity and desorption of O. The AES and the XPS data suggest that a nonluminescent oxygen-deficient layer of SiO{sub x} (x<2) that could decrease the CL intensity was formed on the surface. Mechanisms by which oxygen desorption leads to a reduction of the CL intensity are discussed.

  15. Acute Acidification of Stratum Corneum Membrane Domains Using Polyhydroxyl Acids Improves Lipid Processing and Inhibits Degradation of Corneodesmosomes

    PubMed Central

    Hachem, Jean-Pierre; Roelandt, Truus; Schürer, Nanna; Pu, Xu; Fluhr, Joachim; Giddelo, Christina; Man, Mao-Qiang; Crumrine, Debra; Roseeuw, Diane; Feingold, Kenneth R.; Mauro, Theodora; Elias, Peter M.

    2010-01-01

    Neutralization of the normally acidic stratum corneum (SC) has deleterious consequences for permeability barrier homeostasis and SC integrity/cohesion attributable to serine proteases (SPs) activation leading to deactivation/degradation of lipid-processing enzymes and corneodesmosomes (CD). As an elevated pH compromises SC structure and function, we asked here whether SC hyperacidification would improve the structure and function. We lowered the pH of mouse SC using two polyhydroxyl acids (PHA), lactobionic acid (LBA), or gluconolactone (GL). Applications of the PHA reduced the pH at all levels of SC of hairless mouse, with further selective acidification of SC membrane domains, as shown by fluorescence lifetime imaging. Hyperacidification improved permeability barrier homeostasis, attributable to increased activities of two key membrane-localized, ceramide-generating hydrolytic enzymes (β-glucocerebrosidase and acidic sphingomyelinase), which correlated with accelerated extracellular maturation of SC lamellar membranes. Hyperacidification generated “supernormal” SC integrity/cohesion, attributable to an SP-dependent decreased degradation of desmoglein-1 (DSG1) and the induction of DSG3 expression in lower SC. As SC hyperacidification improves the structure and function, even of normal epidermis, these studies lay the groundwork for an assessment of the potential utility of SC acidification as a therapeutic strategy for inflammatory dermatoses, characterized by abnormalities in barrier function, cohesion, and surface pH. PMID:19741713

  16. Isolation and characterization of degradation products of citalopram and process-related impurities using RP-HPLC.

    PubMed

    Rao, Ramisetti Nageswara; Raju, Ale Narasa; Narsimha, Ramaram

    2008-06-01

    A reversed-phase high-performance liquid chromatographic method for simultaneous separation and determination of citalopram hydrobromide and its process impurities in bulk drugs and pharmaceutical formulations was developed. The separation was accomplished on an Inertsil ODS 3V (250x4.6 mm; particle size 5 mum) column using 0.3% diethylamine (pH = 4.70) and methanol/acetonitrile (55:45 v/v) as mobile phase in a gradient elution mode. The eluents were monitored by a photodiode array detector set at 225 nm. The chromatographic behavior of all the related substances was examined under variable conditions of different solvents, buffer concentrations, and pH. The method was validated in terms of accuracy, precision, and linearity. The method could be of use not only for rapid and routine evaluation of the quality of citalopram in bulk drug manufacturing units but also for the detection of its impurities in pharmaceutical formulations. Three unknown impurities were consistently observed during the analysis of different batches of citalopram. Forced degradation of citalopram was carried out under thermal, photo, acidic, alkaline, and peroxide conditions. The degradation products and unknown impurities were isolated and characterized by ESI-MS/MS, (1)H NMR, and FT-IR spectroscopy. PMID:18481321

  17. Acute acidification of stratum corneum membrane domains using polyhydroxyl acids improves lipid processing and inhibits degradation of corneodesmosomes.

    PubMed

    Hachem, Jean-Pierre; Roelandt, Truus; Schürer, Nanna; Pu, Xu; Fluhr, Joachim; Giddelo, Christina; Man, Mao-Qiang; Crumrine, Debra; Roseeuw, Diane; Feingold, Kenneth R; Mauro, Theodora; Elias, Peter M

    2010-02-01

    Neutralization of the normally acidic stratum corneum (SC) has deleterious consequences for permeability barrier homeostasis and SC integrity/cohesion attributable to serine proteases (SPs) activation leading to deactivation/degradation of lipid-processing enzymes and corneodesmosomes (CD). As an elevated pH compromises SC structure and function, we asked here whether SC hyperacidification would improve the structure and function. We lowered the pH of mouse SC using two polyhydroxyl acids (PHA), lactobionic acid (LBA), or gluconolactone (GL). Applications of the PHA reduced the pH at all levels of SC of hairless mouse, with further selective acidification of SC membrane domains, as shown by fluorescence lifetime imaging. Hyperacidification improved permeability barrier homeostasis, attributable to increased activities of two key membrane-localized, ceramide-generating hydrolytic enzymes (beta-glucocerebrosidase and acidic sphingomyelinase), which correlated with accelerated extracellular maturation of SC lamellar membranes. Hyperacidification generated "supernormal" SC integrity/cohesion, attributable to an SP-dependent decreased degradation of desmoglein-1 (DSG1) and the induction of DSG3 expression in lower SC. As SC hyperacidification improves the structure and function, even of normal epidermis, these studies lay the groundwork for an assessment of the potential utility of SC acidification as a therapeutic strategy for inflammatory dermatoses, characterized by abnormalities in barrier function, cohesion, and surface pH. PMID:19741713

  18. The impact of soil crusts on overland flow and soil degradation processes in Souss valley, South Morocco

    NASA Astrophysics Data System (ADS)

    Giudici, Christiane; Peter, Klaus Daniel; Schneider, Raimund; Ries, Johannes B.; Aït Hssaïne, Ali

    2013-04-01

    The Moroccan Souss valley between High Atlas and Anti Atlas is one of the fastest growing agricultural regions in Morocco and affected by gully-erosion for 400 years. The transition from traditional farming system into agro-industrial used areas, mostly achieved by land levelling measures, has been raised gully-erosion since the 1960s. The substrate of the re-filled gullies erodes again during the rainfall period, so that old gully systems are resumed with even higher erosion dynamic. Consequently, plantations of citrus fruits, bananas or vegetables get dissected, thus causing high restoration costs and environmental harm. In arid and semi-arid zones, sealing and crusting are important degradation factors which can promote gully-erosion. Due to the sparse vegetation cover and the low soil organic matter content, soil surface is more vulnerable to raindrop impact during the rainfall period. Processes such as sealing and crusting as well as their consequences for environment are well documented in literature. Soil surface sealing reduces infiltration rates and consequently increases the runoff. The aim of this study was to determine the influence of existing soil crusts on runoff and soil degradation in the Souss valley in a two-month field experiment. It was hypothesized that soil crusts with different microstructure exist and may influence runoff and soil degradation in various way. In-situ rainfall simulations with a small portable rainfall simulator were conducted at different sites to determine runoff and soil loss rates on micro-plots with a size of 0.28 m². Levelled and un-levelled gully areas were investigated comparably. The rainfall intensity for each of the 30 minute simulations was 40 mm/h. Additionally, soil crusts were sampled before and after the rainfall simulation. Thin sections were used to analyse the micromorphological structure of each crust. The microscopic evaluation indicated a characteristic micromorphological structure for each soil crust

  19. Degradation of high concentration 2,4-dichlorophenol by simultaneous photocatalytic-enzymatic process using TiO2/UV and laccase.

    PubMed

    Jia, Jingbo; Zhang, Songping; Wang, Ping; Wang, Huajun

    2012-02-29

    Removal of 2,4-dichlorophenol (2,4-DCP) by TiO2/UV photocatalytic, laccase, and simultaneous photocatalytic-enzymatic treatments were investigated. Coupling of native laccase with TiO2/UV showed a negative synergetic effect due to the rapid inactivation of laccase. Immobilizing laccase covalently to controlled porous glass (CPG) effectively enhanced the stability of laccase against TiO2/UV induced inactivation. By coupling CPG-laccase with the TiO2/UV the degradation efficiency of 2,4-DCP was significantly increased as compared with the results obtained when immobilized laccase or TiO2/UV were separately used. Moreover, the enhancement was more remarkable for the degradation of 2,4-DCP with high concentration, such that for the degradation of 5mM 2,4-DCP, 90% removal percentage was achieved within 2h with the coupled degradation process. While for the TiO2/UV and CPG-laccase process, the removal percentage of 2,4-DCP at 2h were only 26.5% and 78.1%, respectively. The degradation kinetics were analyzed using a intermediate model by taking into account of the intermediates formed during the degradation of 2,4-DCP. The high efficiency of the coupled degradation process therefore provided a novel strategy for degradation of concentrated 2,4-DCP. Furthermore, a thermometric biosensor using the immobilized laccase as biorecognition element was constructed for monitoring the degradation of 2,4-DCP, the result indicated that the biosensor was precise and sensitive. PMID:22236949

  20. Multi-pronged assessment of land degradation in West Africa to assess the importance of atmospheric fertilization in masking the processes involved

    NASA Astrophysics Data System (ADS)

    Le, Quang Bao; Tamene, Lulseged; Vlek, Paul L. G.

    2012-07-01

    Separating human-induced land degradation from that caused by natural processes in the world of global climate and atmospheric change is a challenging task, but important for developing mitigation strategies. Current remote-sensing data and spatio-temporal analyses allow the distinction of climate and human-induced land degradation on a sub-continental scale, but the underlying processes cannot be discerned at this scale. This study is conducted at a river-basin scale to (1) identify land degradation hotspots in a basin or sub-basin, and (2) assess the correspondence and divergence of land degradation assessed by NDVI shifts with and without accounting for atmospheric fertilization with that based on soil erosion assessment at a sub-basin scale. Long-term remote sensing (NDVI) and rainfall data were used to identify human-induced land degradation hotspot areas in the Volta basin. The results were compared with the critical zone of soil loss in the White Volta sub-basin derived from a spatially distributed soil erosion model, validated by field-measured data. A spatial comparison of the above studies revealed that the biomass productivity (NDVI)-based land degradation assessment grossly underestimated the extent to which soil is being lost, unless a correction was included to account for atmospheric fertilization. Based on inter-annual NDVI signals land degradation was evident in about 8% of the Volta basin's landmass, but when accounting for atmospheric fertilization, as much as 65% of the land is losing some of its vital attributes such as soil quality or vegetation productivity. The study demonstrates the need for using a multi-pronged assessment strategy in land degradation assessment that offers an insight of the processes involved in land degradation.

  1. Functional changes in inter- and intra-hemispheric cortical processing underlying degraded speech perception.

    PubMed

    Bidelman, Gavin M; Howell, Megan

    2016-01-01

    Previous studies suggest that at poorer signal-to-noise ratios (SNRs), auditory cortical event-related potentials are weakened, prolonged, and show a shift in the functional lateralization of cerebral processing from left to right hemisphere. Increased right hemisphere involvement during speech-in-noise (SIN) processing may reflect the recruitment of additional brain resources to aid speech recognition or alternatively, the progressive loss of involvement from left linguistic brain areas as speech becomes more impoverished (i.e., nonspeech-like). To better elucidate the brain basis of SIN perception, we recorded neuroelectric activity in normal hearing listeners to speech sounds presented at various SNRs. Behaviorally, listeners obtained superior SIN performance for speech presented to the right compared to the left ear (i.e., right ear advantage). Source analysis of neural data assessed the relative contribution of region-specific neural generators (linguistic and auditory brain areas) to SIN processing. We found that left inferior frontal brain areas (e.g., Broca's areas) partially disengage at poorer SNRs but responses do not right lateralize with increasing noise. In contrast, auditory sources showed more resilience to noise in left compared to right primary auditory cortex but also a progressive shift in dominance from left to right hemisphere at lower SNRs. Region- and ear-specific correlations revealed that listeners' right ear SIN advantage was predicted by source activity emitted from inferior frontal gyrus (but not primary auditory cortex). Our findings demonstrate changes in the functional asymmetry of cortical speech processing during adverse acoustic conditions and suggest that "cocktail party" listening skills depend on the quality of speech representations in the left cerebral hemisphere rather than compensatory recruitment of right hemisphere mechanisms. PMID:26386346

  2. Optimisation of decolourisation and degradation of Reactive Black 5 dye under electro-Fenton process using Fe alginate gel beads.

    PubMed

    Iglesias, O; Fernández de Dios, M A; Rosales, E; Pazos, M; Sanromán, M A

    2013-04-01

    The aim of this work was to improve the ability of the electro-Fenton process using Fe alginate gel beads for the remediation of wastewater contaminated with synthetic dyes and using a model diazo dye such as Reactive Black 5 (RB5). Batch experiments were conducted to study the effects of main parameters, such as voltage, pH and iron concentration. Dye decolourisation, reduction of chemical oxygen demand (COD) and energy consumption were studied. Central composite face-centred experimental design matrix and response surface methodology were applied to design the experiments and to evaluate the interactive effects of the three studied parameters. A total of 20 experimental runs were set, and the kinetic data were analysed using first-order and second-order models. In all cases, the experimental data were fitted to the empirical second-order model with a suitable degree for the maximum decolourisation of RB5, COD reduction and energy consumption by electro-Fenton-Fe alginate gel beads treatment. Working with the obtained empirical model, the optimisation of the process was carried out. The second-order polynomial regression model suggests that the optimum conditions for attaining maximum decolourisation, COD reduction and energy consumption are voltage, 5.69 V; pH 2.24 and iron concentration, 2.68 mM. Moreover, the fixation of iron on alginate beads suggests that the degradation process can be developed under this electro-Fenton process in repeated batches and in a continuous mode. PMID:22733554

  3. Evaluation of the performance degradation at PAFC investigation of dealloying process of electrocatalysts with in-situ XRD

    SciTech Connect

    Nakajima, Noriyuki; Uchida, Hiroyuki; Watanabe, Masahiro

    1996-12-31

    As a complementary research project to the demonstration project of 5MW and 1 MW PAFC plants, the mechanism and rate of deterioration of the cells and stacks have been studied from 1995 FY, with the objective of establishing an estimation method for the service life-time of the cell stacks. This work has been performed in the Basic Research Project, as part of that project on PAFC`s, selecting four subjects (Electrocatalysts degradation, Electrolyte fill-level, Cell material corrosion, Electrolyte loss) as the essential factors relating to the life-time. In this study, the effect of temperature and potential on the dealloying process of electrocatalysts was examined in H{sub 3}PO{sub 4} electrolyte with X-ray diffraction measurement.

  4. Kinetics and energy efficiency for the degradation of 1,4-dioxane by electro-peroxone process.

    PubMed

    Wang, Huijiao; Bakheet, Belal; Yuan, Shi; Li, Xiang; Yu, Gang; Murayama, Seiichi; Wang, Yujue

    2015-08-30

    Degradation of 1,4-dioxane by ozonation, electrolysis, and their combined electro-peroxone (E-peroxone) process was investigated. The E-peroxone process used a carbon-polytetrafluorethylene cathode to electrocatalytically convert O2 in the sparged ozone generator effluent (O2 and O3 gas mixture) to H2O2. The electro-generated H2O2 then react with sparged O3 to yield aqueous OH, which can in turn oxidize pollutants rapidly in the bulk solution. Using p-chlorobenzoic acid as OH probe, the pseudo-steady concentration of OH was determined to be ∼0.744×10(-9)mM in the E-peroxone process, which is approximately 10 and 186 times of that in ozonation and electrolysis using a Pt anode. Thanks to its higher OH concentration, the E-peroxone process eliminated 96.6% total organic carbon (TOC) from a 1,4-dioxane solution after 2h treatment with a specific energy consumption (SEC) of 0.376kWhg(-1) TOCremoved. In comparison, ozonation and electrolysis using a boron-doped diamond anode removed only ∼6.1% and 26.9% TOC with SEC of 2.43 and 0.558kWhg(-1) TOCremoved, respectively. The results indicate that the E-peroxone process can significantly improve the kinetics and energy efficiency for 1,4-dioxane mineralization as compared to the two individual processes. The E-peroxone process may thus offer a highly effective and energy-efficient alternative to treat 1,4-dioxane wastewater. PMID:25863024

  5. Heterogeneous sono-Fenton process using pyrite nanorods prepared by non-thermal plasma for degradation of an anthraquinone dye.

    PubMed

    Khataee, Alireza; Gholami, Peyman; Vahid, Behrouz; Joo, Sang Woo

    2016-09-01

    Natural pyrite (NP) was treated using oxygen and nitrogen non-thermal plasmas to form modified catalysts. Cleaning effect of the O2 plasma by chemical etching leads to removal of impurities from catalyst surface and sputtering effect of the N2 plasma results in formation of pyrite nanorods. The mentioned plasmas were applied separately or in the order of first O2 and then N2, respectively. The catalytic performance of the plasma-modified pyrites (PMPs) is better than the NP for treatment of Reactive Blue 69 (RB69) in heterogeneous sono-Fenton process (US/H2O2/PMP). The NP and the most effective modified pyrite (PMP4) samples were characterized by XRD, FT-IR, SEM, EDX, XPS and BET analyses. The desired amounts were chosen for operational parameters including initial pH (5), H2O2 concentration (1mM), PMP4 dosage (0.6g/L), dye concentration (20mg/L), and ultrasonic power (300W). Moreover, the effects of peroxydisulfate and inorganic salts on the degradation efficiency were investigated. Gas chromatography-mass spectrometry (GC-MS) method was applied to identify the generated intermediates and a plausible pathway was proposed for RB69 degradation. Environmentally-friendly modification of the NP, low amount of leached iron and repeated reusability at milder pH are the significant privileges of the PMP4. The phytotoxicity test using Spirodela polyrrhiza verified the remarkable toxicity removal of the RB69 solution after the treatment process. PMID:27150782

  6. Degradation of phthalate esters and acetaminophen in river sediments using the electrokinetic process integrated with a novel Fenton-like process catalyzed by nanoscale schwertmannite.

    PubMed

    Yang, Gordon C C; Huang, Sheng-Chih; Wang, Chih-Lung; Jen, Yu-Sheng

    2016-09-01

    The main objective of this study was to develop and establish an in situ remediation technology coupling nano-schwertmannite/H2O2 process and electrokinetic (EK) process for the removal of phthalates (PAEs) and acetaminophen in river sediments. Test results are given as follows: (1) injection of nano-schwertmannite slurry and H2O2 (collectively, "novel oxidant") into the anode reservoir would yield ·OH radicals that then will be diffused into the sediment compartment and further transported by the electroosmotic flow and/or electrophoresis from the anode end toward the cathode to degrade PAEs and pharmaceuticals in the sediment if any; (2) an electric potential gradient of 1.5 V cm(-1) would help the removal of PAEs and acetaminophen in the blank test, which no "novel oxidants" was added to the remediation system; (3) the practice of electrode polarity reversal would maintain neutral pH for sediment after remediation; (4) injection of equally divided dose of 10 mL novel oxidant into the anode reservoir and four injection ports on the top of sediment chamber would further enhance the removal efficiency; and (5) an extension of treatment time from 14 d to 28 d is beneficial to the removal efficiency as expected. In comparison, the remediation performance obtained by the EK-assisted nano-SHM/H2O2 oxidation process is superior to that of the batch degradation test, but is comparable with other EK integrated technologies for the treatment of same contaminants. Thus, it is expected that the EK-assisted nano-SHM/H2O2 oxidation process is a viable technology for the removal of phthalate esters and pharmaceuticals from river sediments in large-scale operations. PMID:27309673

  7. Comprehensive study of the influence of different environments on degradation processes in F8BT: Correlating optoelectronic properties with Raman measurements

    NASA Astrophysics Data System (ADS)

    Linde, Sivan; Shikler, Rafi

    2013-10-01

    There is a growing interest in conjugated polymers from both industrial and academic points of views. The reasons are their tunable optoelectronic properties, ease of production, and excellent mechanical properties. However, the ease with which their optoelectronic properties are tunable make devices based on them prone to fast degradation and therefore, short life time. The issue of degradation of organic based optoelectronic devices is the topic of many ongoing researches. However, much less attention is given to degradation processes of the individual components of the devices and their dependence on the environmental conditions. In this work, we report on the degradation of a film of a polyfluorene block copolymer F8BT that is used in a variety of optoelectronic devices under different environments: Sun exposure, heating, and UV exposure in inert and ambient conditions. Degradation was observed in most of the optoelectronic properties of the film. Topographic measurements did not show observable changes of the film morphology following degradation. However, Raman spectroscopy measurements show changes that indicate degradation in one of the building blocks of the copolymer that is associated with electron's conduction. The absolute value of the correlation coefficient between the decrease in the Raman signal and the decrease in the optoelectronic properties is larger than 0.95 under sun exposure it is larger than 0.8 under all other ambient exposures and smaller than 0.65 under inert conditions. These results support the assumption that Oxygen, not necessarily through photo-oxidation, and also water play an important role in the degradation process and indicate the part of the polymer that is most susceptible to degradation.

  8. Comprehensive study of the influence of different environments on degradation processes in F8BT: Correlating optoelectronic properties with Raman measurements

    SciTech Connect

    Linde, Sivan; Shikler, Rafi

    2013-10-28

    There is a growing interest in conjugated polymers from both industrial and academic points of views. The reasons are their tunable optoelectronic properties, ease of production, and excellent mechanical properties. However, the ease with which their optoelectronic properties are tunable make devices based on them prone to fast degradation and therefore, short life time. The issue of degradation of organic based optoelectronic devices is the topic of many ongoing researches. However, much less attention is given to degradation processes of the individual components of the devices and their dependence on the environmental conditions. In this work, we report on the degradation of a film of a polyfluorene block copolymer F8BT that is used in a variety of optoelectronic devices under different environments: Sun exposure, heating, and UV exposure in inert and ambient conditions. Degradation was observed in most of the optoelectronic properties of the film. Topographic measurements did not show observable changes of the film morphology following degradation. However, Raman spectroscopy measurements show changes that indicate degradation in one of the building blocks of the copolymer that is associated with electron's conduction. The absolute value of the correlation coefficient between the decrease in the Raman signal and the decrease in the optoelectronic properties is larger than 0.95 under sun exposure it is larger than 0.8 under all other ambient exposures and smaller than 0.65 under inert conditions. These results support the assumption that Oxygen, not necessarily through photo-oxidation, and also water play an important role in the degradation process and indicate the part of the polymer that is most susceptible to degradation.

  9. Degradation of edible oil during food processing by ultrasound: electron paramagnetic resonance, physicochemical, and sensory appreciation.

    PubMed

    Pingret, Daniella; Durand, Grégory; Fabiano-Tixier, Anne-Sylvie; Rockenbauer, Antal; Ginies, Christian; Chemat, Farid

    2012-08-01

    During ultrasound processing of lipid-containing food, some off-flavors can be detected, which can incite depreciation by consumers. The impacts of ultrasound treatment on sunflower oil using two different ultrasound horns (titanium and pyrex) were evaluated. An electron paramagnetic resonance study was performed to identify and quantify the formed radicals, along with the assessment of classical physicochemical parameters such as peroxide value, acid value, anisidine value, conjugated dienes, polar compounds, water content, polymer quantification, fatty acid composition, and volatiles profile. The study shows an increase of formed radicals in sonicated oils, as well as the modification of physicochemical parameters evidencing an oxidation of treated oils. PMID:22804736

  10. Identification of Arabidopsis Candidate Genes in Response to Biotic and Abiotic Stresses Using Comparative Microarrays

    PubMed Central

    Sham, Arjun; Moustafa, Khaled; Al-Ameri, Salma; Al-Azzawi, Ahmed; Iratni, Rabah; AbuQamar, Synan

    2015-01-01

    Plants have evolved with intricate mechanisms to cope with multiple environmental stresses. To adapt with biotic and abiotic stresses, plant responses involve changes at the cellular and molecular levels. The current study was designed to investigate the effects of combinations of different environmental stresses on the transcriptome level of Arabidopsis genome using public microarray databases. We investigated the role of cyclopentenones in mediating plant responses to environmental stress through TGA (TGACG motif-binding factor) transcription factor, independently from jasmonic acid. Candidate genes were identified by comparing plants inoculated with Botrytis cinerea or treated with heat, salt or osmotic stress with non-inoculated or non-treated tissues. About 2.5% heat-, 19% salinity- and 41% osmotic stress-induced genes were commonly upregulated by B. cinerea-treatment; and 7.6%, 19% and 48% of genes were commonly downregulated by B. cinerea-treatment, respectively. Our results indicate that plant responses to biotic and abiotic stresses are mediated by several common regulatory genes. Comparisons between transcriptome data from Arabidopsis stressed-plants support our hypothesis that some molecular and biological processes involved in biotic and abiotic stress response are conserved. Thirteen of the common regulated genes to abiotic and biotic stresses were studied in detail to determine their role in plant resistance to B. cinerea. Moreover, a T-DNA insertion mutant of the Responsive to Dehydration gene (rd20), encoding for a member of the caleosin (lipid surface protein) family, showed an enhanced sensitivity to B. cinerea infection and drought. Overall, the overlapping of plant responses to abiotic and biotic stresses, coupled with the sensitivity of the rd20 mutant, may provide new interesting programs for increased plant resistance to multiple environmental stresses, and ultimately increases its chances to survive. Future research directions towards a

  11. Identification of Arabidopsis candidate genes in response to biotic and abiotic stresses using comparative microarrays.

    PubMed

    Sham, Arjun; Moustafa, Khaled; Al-Ameri, Salma; Al-Azzawi, Ahmed; Iratni, Rabah; AbuQamar, Synan

    2015-01-01

    Plants have evolved with intricate mechanisms to cope with multiple environmental stresses. To adapt with biotic and abiotic stresses, plant responses involve changes at the cellular and molecular levels. The current study was designed to investigate the effects of combinations of different environmental stresses on the transcriptome level of Arabidopsis genome using public microarray databases. We investigated the role of cyclopentenones in mediating plant responses to environmental stress through TGA (TGACG motif-binding factor) transcription factor, independently from jasmonic acid. Candidate genes were identified by comparing plants inoculated with Botrytis cinerea or treated with heat, salt or osmotic stress with non-inoculated or non-treated tissues. About 2.5% heat-, 19% salinity- and 41% osmotic stress-induced genes were commonly upregulated by B. cinerea-treatment; and 7.6%, 19% and 48% of genes were commonly downregulated by B. cinerea-treatment, respectively. Our results indicate that plant responses to biotic and abiotic stresses are mediated by several common regulatory genes. Comparisons between transcriptome data from Arabidopsis stressed-plants support our hypothesis that some molecular and biological processes involved in biotic and abiotic stress response are conserved. Thirteen of the common regulated genes to abiotic and biotic stresses were studied in detail to determine their role in plant resistance to B. cinerea. Moreover, a T-DNA insertion mutant of the Responsive to Dehydration gene (rd20), encoding for a member of the caleosin (lipid surface protein) family, showed an enhanced sensitivity to B. cinerea infection and drought. Overall, the overlapping of plant responses to abiotic and biotic stresses, coupled with the sensitivity of the rd20 mutant, may provide new interesting programs for increased plant resistance to multiple environmental stresses, and ultimately increases its chances to survive. Future research directions towards a

  12. New concepts of microbial treatment processes for the nitrogen removal: effect of protein and amino acids degradation.

    PubMed

    González-Martínez, Alejandro; Calderón, Kadiya; González-López, Jesús

    2016-05-01

    High concentrations of proteins and amino acids can be found in wastewater and wastewater stream produced in anaerobic digesters, having shown that amino acids could persist over different managements for nitrogen removal affecting the nitrogen removal processes. Nitrogen removal is completely necessary because of their implications and the significant adverse environmental impact of ammonium such as eutrophication and toxicity to aquatic life on the receiving bodies. In the last decade, the treatment of effluents with high ammonium concentration through anammox-based bioprocesses has been enhanced because these biotechnologies are cheaper and more environmentally friendly than conventional technologies. However, it has been shown that the presence of important amounts of proteins and amino acids in the effluents seriously affects the microbial autotrophic consortia leading to important losses in terms of ammonium oxidation efficiency. Particularly the presence of sulfur amino acids such as methionine and cysteine has been reported to drastically decrease the autotrophic denitrification processes as well as affect the microbial community structure promoting the decline of ammonium oxidizing bacteria in favor of other phylotypes. In this context we discuss that new biotechnological processes that improve the degradation of protein and amino acids must be considered as a priority to increase the performance of the autotrophic denitrification biotechnologies. PMID:26856581

  13. Characterizations of mortar-degraded spinney waste composite nominated as solidifying agent for radwastes due to immersion processes

    NASA Astrophysics Data System (ADS)

    Saleh, H. M.; Eskander, S. B.

    2012-11-01

    Immobilization process of radioactive wastes is a compromise between economic and reliability factors. It involves the use of inert and cheap matrices to fix the wastes in homogenous monolithic solid forms. The characteristics of the resulting waste form were studied in various disposal options before coming to the final conclusion concerning the solidification process. A proposed mortar composite is formed from a mixture of Portland cement and sand in the weight ratio of 0.33 which by slurry of degraded spinney waste fibers at the ratio of 0.7 relative to the Portland cement. The composite was prepared at the laboratory ambient conditions (25 ± 5 °C). The temperature changes accompanying the hydration process were followed up to 96 h. At the end of 28 days, curing period, the performance of the obtained composite was evaluated under immersion circumstances imitating a flooding scenario that could happen at a disposal site. Compressive strength, porosity and mass changes were investigated under complete static immersion conditions in three different leachants, namely acetic acid, groundwater and seawater for 48 weeks. X-ray and scanning electron microscopy were used to follow and evaluate the changes that may occur for the proposed composite under flooding conditions. Based on the experimental data reached, it could be concluded that the prepared mortar composite can be nominated as a matrix for solidification/stabilization of some radwaste categories, even under the aggressive attacks of various immersion media.

  14. A model of the interfacial processes inhibiting the environmental degradation of Al-Cu alloys

    NASA Astrophysics Data System (ADS)

    Kearns, Jeffery Robert

    A better understanding of the composition and structure of chemically treated Al alloy surfaces is necessary to devise new, more environmentally benign, coating systems for aircraft. In this work, the surface of AA2024-T3, as well as analogs for constituent intermetallic compounds (IMC), were examined at various stages of the Al alloy pretreatment and chromate conversion coating (CCC) process. A complement of techniques were used: imaging and dyanmic Secondary Ion Mass Spectroscopy (SIMS), Variable-Angle X-ray Photoelectron Spectroscopy (VA/XPS), Synchrotron Infrared Microspectroscopy (SIRS), X-ray Absorption Spectroscopy (XAS), and Electrochemical Impedance Spectroscopy (EIS). The water and hydrocarbons in commercial CCC destabilized Cr(VI) during exposure to soft x-rays. However, it was possible to prevent photochemical reduction with the ultra-clean vacuum pumping practice recently developed at Stony Brook. The type of pretreatment used prior to chromate conversion coating influenced the extent of IMC removal, Cu (re)distribution, and surface activity. Cu(I) was observed on all the chemically treated surfaces. Samples pretreated in Sanchem 1000 while galvanically coupled to a Pt mesh had a more desirable distribution of Cu for subsequent processing. Chromate reduction was not a significant factor in CCC aging over a 24-hr period, but surface dehydration and structural change were correlated and causative. Imaging SIMS revealed heterogeneities in the CCC that varied laterally with IMC in the alloy substrate. These regions were depleted in compounds containing Cr, F, and CN. Cu was found at localized sites in the CCC contact surface. Cyano groups were bound as Cr(IlI)-CNFe(H). The chromate available for CCC repair was located on matrix regions through the entire bulk of the CCC. The presence of residual contaminants (e.g. cleaning agents, metal working fluid, ink) affected the distribution of activator compounds (e.g. ferricyanide) in a CCC. The cyanide complex

  15. Metabolomics of the Bio-Degradation Process of Aflatoxin B1 by Actinomycetes at an Initial pH of 6.0

    PubMed Central

    Eshelli, Manal; Harvey, Linda; Edrada-Ebel, RuAngelie; McNeil, Brian

    2015-01-01

    Contamination of food and feed by Aflatoxin B1 (AFB1) is a cause of serious economic and health problems. Different processes have been used to degrade AFB1. In this study, biological degradation of AFB1 was carried out using three Actinomycete species, Rhodococcus erythropolis ATCC 4277, Streptomyces lividans TK 24, and S. aureofaciens ATCC 10762, in liquid cultures. Biodegradation of AFB1 was optimised under a range of temperatures from 25 to 40 °C and pH values of 4.0 to 8.0. An initial concentration of 20 µg/mL of AFB1 was used in this study. The amount of AFB1 remaining was measured against time by thin layer chromatography (TLC) and high-performance liquid chromatography (HPLC), coupled with UV and mass spectrometry (LC-MS). All species were able to degrade the AFB1, and no significant difference was found between them. AFB1 remained in the liquid culture for R. erythropolis, S. lividans and S. aureofaciens were 0.81 µg/mL, 2.41 µg/mL and 2.78 µg/mL respectively, at the end of the first 24 h. Degradation occurred at all incubation temperatures and the pH with the optimal conditions for R. erythropolis was achieved at 30 °C and pH 6, whereas for S. lividans and S. aureofaciens the optimum conditions for degradation were 30 °C and pH 5. Analysis of the degradative route indicated that each microorganism has a different way of degrading AFB1. The metabolites produced by R. erythropolis were significantly different from the other two microorganisms. Products of degradation were identified through metabolomic studies by utilizing high-resolution mass spectral data. Mass spectrometric analysis indicated that the degradation of AFB1 was associated with the appearance of a range of lower molecular weight compounds. The pathway of degradation or chemical alteration of AFB1 was followed by means of high resolution Fourier transform mass spectrometry (HR-FTMS) analysis as well as through the MS2 fragmentation to unravel the degradative pathway for AFB1. AFB1 bio-degradation

  16. Development of mutagenicity during degradation of N-nitrosamines by advanced oxidation processes.

    PubMed

    Mestankova, Hana; Schirmer, Kristin; Canonica, Silvio; von Gunten, Urs

    2014-12-01

    Development of mutagenicity of five N-nitrosamines (N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA), N-nitrosodi-n-propylamine (NDPA), N-nitrosopyrrolidine (NPYR) and N-nitrosodiphenylamine (NDPhA)) was investigated during oxidative processes involving UV-photolysis, ozone and OH radicals. The mutagenicity was detected by the Ames test with 3 different strains, TA98, TAMix and YG7108, a strain which is sensitive for N-nitrosamines, in presence and absence of metabolic activation (S9). UV photolysis of mutagenic N-nitrosamines (NDMA, NDEA, NDPA and NPYR) leads to the removal of their specific mutagenic activity as detected in YG7108 in the presence of S9. A formation of mutagens during UV photolysis was detected only in case of NDPhA in the strain TA98. Oxidation products of NDMA, NDEA and NDPhA did not show any significant mutagenicity in the strains used, whereas oxidation of NDPA and NPYR by hydroxyl radicals seems to lead to the formation of direct mutagens (mutagenic in the absence of S9) in YG7108 and TAMix. Oxidation by hydroxyl radicals of N-nitrosamines with chains longer than ethyl can mimic metabolic activation of N-nitrosamines in vivo. PMID:25240607

  17. Degraded neural and behavioral processing of speech sounds in a rat model of Rett syndrome.

    PubMed

    Engineer, Crystal T; Rahebi, Kimiya C; Borland, Michael S; Buell, Elizabeth P; Centanni, Tracy M; Fink, Melyssa K; Im, Kwok W; Wilson, Linda G; Kilgard, Michael P

    2015-11-01

    Individuals with Rett syndrome have greatly impaired speech and language abilities. Auditory brainstem responses to sounds are normal, but cortical responses are highly abnormal. In this study, we used the novel rat Mecp2 knockout model of Rett syndrome to document the neural and behavioral processing of speech sounds. We hypothesized that both speech discrimination ability and the neural response to speech sounds would be impaired in Mecp2 rats. We expected that extensive speech training would improve speech discrimination ability and the cortical response to speech sounds. Our results reveal that speech responses across all four auditory cortex fields of Mecp2 rats were hyperexcitable, responded slower, and were less able to follow rapidly presented sounds. While Mecp2 rats could accurately perform consonant and vowel discrimination tasks in quiet, they were significantly impaired at speech sound discrimination in background noise. Extensive speech training improved discrimination ability. Training shifted cortical responses in both Mecp2 and control rats to favor the onset of speech sounds. While training increased the response to low frequency sounds in control rats, the opposite occurred in Mecp2 rats. Although neural coding and plasticity are abnormal in the rat model of Rett syndrome, extensive therapy appears to be effective. These findings may help to explain some aspects of communication deficits in Rett syndrome and suggest that extensive rehabilitation therapy might prove beneficial. PMID:26321676

  18. Phytate degradation determines the effect of industrial processing and home cooking on iron absorption from cereal-based foods.

    PubMed

    Hurrell, Richard F; Hurrell, Richard F; Reddy, Manju B; Burri, Joseph; Cook, James D

    2002-08-01

    The aim of the present study was to compare Fe absorption from industrially-manufactured and home-cooked cereal foods. Fe absorption was measured using the radiolabelled Fe extrinsic tag technique in thirty-nine adult human subjects from cereal porridges manufactured by extrusion cooking or roller-drying, and from the same cereal flours after home cooking to produce pancakes, chappattis or bread. One series of cereal porridges was amylase-treated in addition before roller-drying. Fe absorption was relatively low from all products, ranging from 1.8-5.5 % for rice, 2.5-3.5 % for maize, 4.9-13.6 % for low-extraction wheat, and <1 % for high-extraction wheat foods. The phytic acid content remained high after drying of the cereal porridges being about 1.20, 1.70, 3.20, 3.30 mg/g in low-extraction wheat, rice, high-extraction wheat and maize products respectively, and could explain the low Fe absorption. There were little or no differences in Fe absorption between the extruded and roller-dried cereals, although amylase pre-treatment increased Fe absorption from the roller-dried rice cereal 3-fold. This was not due to phytate degradation but possibly because of the more liquid nature of the cereal meal as fed. There were similarly few or no differences in Fe absorption between the industrially-processed cereals and home-cooked cereals made into pancakes or chappattis. Bread-making, however, degraded phytic acid to zero in the low-extraction wheat flour and Fe absorption increased to 13.6 %, the greatest from all cereal foods tested. It is concluded that Fe absorption from extruded, roller-dried or home-cooked cereal foods is similarly low and that only those cooking procedures such as bread-making, which extensively degrades phytic acid, or amylase pre-treatment, which substantially liquifies cereal porridges, improve Fe absorption. PMID:12144715

  19. Natural abiotic formation of trihalomethanes in soil: results from laboratory studies and field samples.

    PubMed

    Huber, Stefan G; Kotte, K; Schöler, Heinz F; Williams, J

    2009-07-01

    Trihalomethanes (THM), especially trichloromethane, play an important role in photochemical processes of the lower atmosphere, but the current knowledge of the known sources and sinks of trichloromethane is still incomplete. The trichloromethane flux through the environment is estimated at approximately 660 kt year(-1) and 90% of the emissions are of natural origin. Next to offshore seawater contributing approximately 360 kt year(-1) unknown soil processes are the most prominent source (approximately 220 kt year(-1)). This paper describes a new abiotic source of trichloromethane from the terrestrial environment induced by the oxidation of organic matter by iron(III) and hydrogen peroxide in the presence of chloride. Different organic-rich soils and a series of organic substances regarded as monomeric constituents of humus were investigated for their release of trichloromethene. The influence of iron(III), hydrogen peroxide, halide, and pH on its formation was assayed. The optimal reaction turn over for the representative compound catechol was 58.4 ng of CHCl3 from 1.8 mg of carbon applying chloride and 1.55 microg of CHBr3 from 1.8 mg of carbon applying bromide; resorcin and hydroquinone displayed similar numbers. Results presented in this paper pinpoint 1,2,4,5-tetrahydroxybenzene as playing a key role as intermediate in the formation pathway of the trihalomethanes. The highest THM yields were obtained when applying the oxidized form of 1,2,4,5-tetrahydroxybenzene as THM precursor. These findings are consistent with the well-known degradation pathway starting from resorcin-like dihydroxylated compounds proceeding via further hydroxylation and after halogenation finally ending up in trihalomethanes. In conclusion, Fenton-like reaction conditions (iron(III) and hydrogen peroxide), elevated halide content and an extended reaction time can be seen as the most important parameters required for an optimal THM formation. PMID:19673288

  20. Autophagy-like processes are involved in lipid droplet degradation in Auxenochlorella protothecoides during the heterotrophy-autotrophy transition

    PubMed Central

    Zhao, Li; Dai, Junbiao; Wu, Qingyu

    2014-01-01

    Autophagy is a cellular degradation process that recycles cytoplasmic components in eukaryotes. Although intensively studied in yeast, plants, and mammals, autophagy in microalgae is not well understood. Auxenochlorella protothecoides is a green microalga that has the ability to grow either autotrophically when under light or heterotrophically when in media containing glucose. The two growth modes are inter-convertible and transition between them is accompanied by drastic changes in morphology and cellular composition; however, the mechanisms underlying these changes are unknown. In this study, we identified autophagy-related genes and characterized their roles in the degradation of lipid droplets during the heterotrophy-to-autotrophy (HA) transition in A. protothecoides. Most of the proteins constituting the eukaryotic “core machinery” were conserved in A. protothecoides. Two proteins, Atg4 and Atg8, were further investigated. A. protothecoides ATG4 was cloned from a cDNA library and expressed within yeast, and was able to functionally restore the autophagy pathway in atg4Δ yeast during nitrogen starvation. Furthermore, Atg8, which displayed high sequence identity with its yeast homolog, was able to conjugate to phosphatidylethanolamine (PE) in vitro and was recruited to the phagophore assembly site in yeast. We also identified a C-terminal glycine residue, G118, that was the cleavage site for Atg4. Finally, we used confocal and transmission electron microscopy to reveal that autophagic-like vacuoles were detectable in algal cells during the HA transition. Our data suggested that the lipid droplets in heterotrophic cells were engulfed directly by the autophagic-like vacuole instead of via autophagosomes. PMID:25177326

  1. Efficient degradation of rhodamine B using modified graphite felt gas diffusion electrode by electro-Fenton process.

    PubMed

    Tian, Jiangnan; Olajuyin, Ayobami Matthew; Mu, Tingzhen; Yang, Maohua; Xing, Jianmin

    2016-06-01

    The electro-Fenton (EF) process treatment of 0.1-M (rhodamine B) RhB solution was studied with different graphite cathode materials, and graphite felt (GF) was selected as a promising material in further investigation. Then, the degradation performances of gas diffusion electrode (GDE) and graphite felt (GF) were compared, and GDE was confirmed to be more efficient in RhB removal. The operational parameters such as Fe(2+) dosage and current density were optimized, and comparison among different modified methods-polytetrafluoroethylene-carbon black (PTFE-CB), polytetrafluoroethylene-carbon nanotube (PTFE-CNT), electrodeposition-CB, and electrodeposition-CNT-showed 98.49 % RhB removal by PTFE-CB-modified cathode in 0.05 M Na2SO4 at a current density of 50 A/m(2) and an air flow rate of 1 L/min after 20 min. Meanwhile, after cathode modified by PTFE-CB, the mineralization efficiency and mineralization current efficiency performed absolutely better than the pristine one. Cyclic voltammograms, SEM images, contact angles, and BET surface area were carried out to demonstrate stronger current responses and higher hydrophilicity of GF after modified. The value of biochemical oxygen demand/chemical oxygen demand (BOD5/COD) increased from 0.049 to 0.331 after 90-min treatment, suggesting the solution was biodegradable, and the modified cathode was confirmed to be stable after ten circle runs. Finally, a proposed degradation pathway of RhB was put forward. PMID:26931661

  2. Abiotic emissions of methane and reduced organic compounds from organic matter

    NASA Astrophysics Data System (ADS)

    Roeckmann, T.; Keppler, F.; Vigano, I.; Derendorp, L.; Holzinger, R.

    2012-12-01

    Recent laboratory studies show that the important greenhouse gas methane, but also other reduced atmospheric trace gases, can be emitted by abiotic processes from organic matter, such as plants, pure organic compounds and soils. It is very difficult to distinguish abiotic from biotic emissions in field studies, but in laboratory experiments this is easier because it is possible to carefully prepare/sterilize samples, or to control external parameters. For example, the abiotic emissions always show a strong increase with temperature when temperatures are increased to 70C or higher, well above the temperature optimum for bacterial activity. UV radiation has also been clearly shown to lead to emission of methane and other reduced gases from organic matter. Interesting information on the production mechanism has been obtained from isotope studies, both at natural abundance and with isotope labeling. For example, the methoxyl groups of pectin were clearly identified to produce methane. However, analysis of the isotopic composition of methane from natural samples clearly indicates that there must be other molecular mechanisms that lead to methane production. Abiotic methane generation could be a ubiquitous process that occurs naturally at low rates from many different sources.

  3. Stable Carbon Isotopic Signatures of Abiotic Organics from Hydrothermal Synthesis Experiments

    NASA Technical Reports Server (NTRS)

    Stern, Jennifer C.; Summers, David P.; Kubo, Mike; Yassar, Saima

    2006-01-01

    Stable carbon isotopes can be powerful biogeochemical markers in the study of life's origins. Biogenic carbon fixation produces organics that are depleted in C-13 by about -20 to -30%0. Less attention has been paid to the isotopic signatures of abiotic processes. The possibility of abiotic processes producing organics with morphologies and isotopic signatures in the biogenic range has been at the center of recent debate over the Earth's earliest microfossils. The abiotic synthesis of organic compounds in hydrothermal environments is one possible source of endogenous organic matter to the prebiotic earth. Simulated hydrothermal settings have been shown to synthesize, among other things, single chain amphiphiles and simple lipids from a mix of CO, CO2, and H2. A key characteristic of these amphiphilic molecules is the ability to self-assemble in aqueous phases into more organized structures called vesicles, which form a selectively permeable boundary and serve the function of containing and concentrating other organic molecules. The ability to form cell like structures also makes these compounds more likely to be mistaken for biogenic. Hydrothermal simulation experiments were conducted from oxalic or formic acid in water at 175 C for 72 hr. The molecular and isotopic composition of the products of these reactions were determined and compared to biogenic fractionations . Preliminary results indicate isotopic fractionation during abiotic hydrocarbon synthesis in hydrothermal environments is on par with biological carbon fixation.

  4. Abiotic Methane Synthesis: Caveats and New Results

    NASA Astrophysics Data System (ADS)

    Zou, R.; Sharma, A.

    2005-12-01

    The role of mineral interaction with geochemical fluids under hydrothermal conditions has invoked models of geochemical synthesis of organic molecules at deep crustal conditions. Since Thomas Gold's (1992) hypothesis of the possibility of an abiotic organic synthesis, there have been several reports of hydrocarbon formation under high pressure and temperature conditions. Several previous experimental studies have recognized that small amounts of methane (and other light HC compounds) can be synthesized via catalysis by transition metals: Fe, Ni (Horita and Berndt, 1999 Science) and Cr (Foustavous and Seyfried, 2004 Science). In light of these pioneering experiments, an investigation of the feasibility of abiotic methane synthesis at higher pressure conditions in deep geological setting and the possible role of catalysis warrants a closer look. We conducted three sets of experiments in hydrothermal diamond anvil cell using FeO nanopowder, CaCO 3 and water at 300° - 600° C and 0.5 - 5 GPa : (a) with stainless steel gasket, (b) gold-lined gasket, and (c) gold-lined gasket with added Fe and Ni nanopowder. The reactions were monitored in-situ using micro-Raman spectroscopy with 532nm and 632nm lasers. The solids phases were characterized in-situ using synchrotron X-ray diffraction at CHESS-Cornell and quenched products with an electron microprobe. Interestingly, a variable amount of hydrocarbon was observed only in runs with stainless steel gasket and with Fe, Ni nanoparticles. Experiments with gold-lined reactors did not show any hydrocarbon formation. Added high resolution microscopy of the products and their textural relationship within the diamond cell with Raman spectroscopy data show that the hydrocarbon (methane and other light fractions) synthesis is a direct result of transition metal catalysis, rather than wustite - calcium carbonate reaction as recently reported by Scott et al (2004, PNAS). The author will further present new results highlighting abiotic

  5. Generation of RNA in abiotic conditions.

    NASA Astrophysics Data System (ADS)

    di Mauro, Ernesto

    Generation of RNA in abiotic conditions. Ernesto Di Mauro Dipartimento di Genetica Bi-ologia Molecolare, Universit` "Sapienza" Roma, Italy. a At least four conditions must be satisfied for the spontaneous generation of (pre)-genetic poly-mers: 1) availability of precursors that are activated enough to spontaneously polymerize. Preliminary studies showed that (a) nucleic bases and acyclonucleosides can be synthesized from formamide H2NCOH by simply heating with prebiotically available mineral catalysts [last reviewed in (1)], and that b) nucleic bases can be phosphorylated in every possible posi-tion [2'; 3'; 5'; cyclic 2',3'; cyclic 3',5' (2)]. The higher stability of the cyclic forms allows their accumulation. 2) A polymerization mechanism. A reaction showing the formation of RNA polymers starting from prebiotically plausible precursors (3',5' cyclic GMP and 3', 5'cyclic AMP) was recently reported (3). Polymerization in these conditions is thermodynamically up-hill and an equilibrium is attained that limits the maximum length of the polymer produced to about 40 nucleotides for polyG and 100 nucleotides for polyA. 3) Ligation of the synthesized oligomers. If this type of reaction could occur according to a terminal-joining mechanism and could generate canonical 3',5' phosphodiester bonds, exponential growth would be obtained of the generated oligomers. This type of reaction has been reported (4) , limited to homogeneous polyA sequences and leading to the production of polyA dimers and tetramers. What is still missing are: 4) mechanisms that provide the proof of principle for the generation of sequence complexity. We will show evidence for two mechanisms providing this proof of principle for simple complementary sequences. Namely: abiotic sequence complementary-driven terminal ligation and sequence-complementary terminal growth. In conclusion: all the steps leading to the generation of RNA in abiotic conditions are satisfied. (1) R Saladino, C Crestini, F

  6. Effect of different carriers and operating parameters on degradation of flax wastewater by fluidized-bed Fenton process.

    PubMed

    Chen, Mengtian; Ren, Hongqiang; Ding, Lili; Gao, Baotian

    2015-01-01

    This investigation evaluates the effectiveness of a fluidized-bed Fenton process in treating flax wastewater. Flax wastewater was taken from a paper-making factory in a secondary sedimentation tank effluent of a paper-making factory in Hebei. The performance of three carriers (SiO2, Al2O3, Fe2O3) used in the reactor was compared, and the effects of different operational conditions, and Fenton reagent concentrations were studied. Experimental results indicated that SiO2 was the most appropriate carrier in the system. The dose of Fe2+ and H2O2 was a significant operating factor in the degradation progress. The bed expansion was considered to be another factor influencing the treatment effect. Under the appropriate conditions (300 mg/L Fe2+, 600 mg/L H2O2, and 74.07 g/L SiO2 as the carrier, at pH=3, 50% bed expansion), the highest removal rate of total organic carbon (TOC) and color was 89% and 94%, respectively. The article also discussed the process of the colority removal of flax wastewater and the kinetics of TOC removal. PMID:26067494

  7. Tg-SwDI Transgenic Mice Exhibit Novel Alterations in AβPP Processing, Aβ Degradation, and Resilient Amyloid Angiopathy

    PubMed Central

    Van Vickle, Gregory D.; Esh, Chera L.; Daugs, Ian D.; Kokjohn, Tyler A.; Kalback, Walter M.; Patton, R. Lyle; Luehrs, Dean C.; Walker, Douglas G.; Lue, Lih-Fen; Beach, Thomas G.; Davis, Judianne; Van Nostrand, William E.; Castaño, Eduardo M.; Roher, Alex E.

    2008-01-01

    Alzheimer’s disease (AD) is characterized by the accumulation of extracellular insoluble amyloid, primarily derived from polymerized amyloid-β (Aβ) peptides. We characterized the chemical composition of the Aβ peptides deposited in the brain parenchyma and cerebrovascular walls of triple transgenic Tg-SwDI mice that produce a rapid and profuse Aβ accumulation. The processing of the N- and C-terminal regions of mutant AβPP differs substantially from humans because the brain parenchyma accumulates numerous, diffuse, nonfibrillar plaques, whereas the thalamic microvessels harbor overwhelming amounts of compact, fibrillar, thioflavine-S- and apolipoprotein E-positive amyloid deposits. The abundant accretion of vascular amyloid, despite low AβPP transgene expression levels, suggests that inefficient Aβ proteolysis because of conformational changes and dimerization may be key pathogenic factors in this animal model. The disruption of amyloid plaque cores by immunotherapy is accompanied by increased perivascular deposition in both humans and transgenic mice. This analogous susceptibility and response to the disruption of amyloid deposits suggests that Tg-SwDI mice provide an excellent model in which to study the functional aftermath of immunotherapeutic interventions. These mice might also reveal new avenues to promote amyloidogenic AβPP processing and fundamental insights into the faulty degradation and clearance of Aβ in AD, pivotal issues in understanding AD pathophysiology and the assessment of new therapeutic agents. PMID:18599612

  8. Channel processes following land use changes in a degrading steep headwater stream in North Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Kasai, Mio

    2006-11-01

    In headwater streams in steep land settings, narrow and steep valley floors provide closely coupled relationships between geomorphic components including hillslopes, tributary fans, and channel reaches. These relationships together with small catchment sizes result in episodic changes to the amount of stored sediment in channels. Major sediment inputs follow high magnitude events. Subsequent exponential losses via removal of material can be represented by a relaxation curve. The influence of hillslope and tributary processes on relaxation curves, and that of altered coupling relations between components, were investigated along a 1.3 km reach of a degrading channel in the 4.8 km 2 Weraamaia Catchment, New Zealand. Extensive deforestation in the late 19th and early 20th centuries, followed by invasion of scrubs and reforestation, induced changes to major erosion types from gully complexes to shallow landslides. Changes in the size and pattern of sediment slugs from 1938 to 2002 were analysed from air photographs tied to detailed field measurement. The rate and calibre of sediment flux changed progressively following substantive hillslope input in a storm in 1938. Subsequently, the channel narrowed and incised, decoupling tributary fans from the main stem, thereby scaling down the size of sediment slugs. As a consequence, the dominant influence on the behaviour of sediment slugs and associated relaxation processes, changed from tributary fans to the type and distribution of bedrock outcrops along the reach.

  9. Nitrogen isotopic fractionation during abiotic synthesis of organic solid particles

    NASA Astrophysics Data System (ADS)

    Kuga, Maïa; Carrasco, Nathalie; Marty, Bernard; Marrocchi, Yves; Bernard, Sylvain; Rigaudier, Thomas; Fleury, Benjamin; Tissandier, Laurent

    2014-05-01

    The formation of organic compounds is generally assumed to result from abiotic processes in the Solar System, with the exception of biogenic organics on Earth. Nitrogen-bearing organics are of particular interest, notably for prebiotic perspectives but also for overall comprehension of organic formation in the young Solar System and in planetary atmospheres. We have investigated abiotic synthesis of organics upon plasma discharge, with special attention to N isotope fractionation. Organic aerosols were synthesized from N2-CH4 and N2-CO gaseous mixtures using low-pressure plasma discharge experiments, aimed at simulating chemistry occurring in Titan's atmosphere and in the protosolar nebula, respectively. The nitrogen content, the N speciation and the N isotopic composition were analyzed in the resulting organic aerosols. Nitrogen is efficiently incorporated into the synthesized solids, independently of the oxidation degree, of the N2 content of the starting gas mixture, and of the nitrogen speciation in the aerosols. The aerosols are depleted in 15N by 15-25‰ relative to the initial N2 gas, whatever the experimental setup is. Such an isotopic fractionation is attributed to mass-dependent kinetic effect(s). Nitrogen isotope fractionation upon electric discharge cannot account for the large N isotope variations observed among Solar System objects and reservoirs. Extreme N isotope signatures in the Solar System are more likely the result of self-shielding during N2 photodissociation, exotic effect during photodissociation of N2 and/or low temperature ion-molecule isotope exchange. Kinetic N isotope fractionation may play a significant role in the Titan's atmosphere. On the Titan's night side, 15N-depletion resulting from electron driven reactions may counterbalance photo-induced 15N enrichments occurring on the day's side. We also suggest that the low δ15N values of Archaean organic matter (Beaumont and Robert, 1999) are partly the result of abiotic synthesis of

  10. Genetic Dissection of Abiotic Stress Tolerance in Sorghum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sorghum, the fifth most important cereal crop in the world is a highly versatile crop and an excellent model species due to its overall tolerance to a number of abiotic stress conditions. To gain a better understanding of the physiological and genetic basis of abiotic stress tolerance in sorghum w...

  11. Rapid degradation of p-arsanilic acid with simultaneous arsenic removal from aqueous solution using Fenton process.

    PubMed

    Xie, Xiande; Hu, Yuanan; Cheng, Hefa

    2016-02-01

    Although banned in some developed countries, p-arsanilic acid (p-ASA) is still used widely as a feed additive for swine production in many countries. With little uptake and transformation in animal bodies, nearly all the p-ASA administered to animals is excreted chemically unchanged in animal wastes, which can subsequently release the more toxic inorganic arsenic species upon degradation in the environment. For safe disposal of the animal wastes laden with p-ASA, we proposed a method of leaching the highly water-soluble p-ASA out of the manure first, followed by treatment of the leachate using the Fenton process to achieve fast oxidation of p-ASA and removal of the inorganic arsenic species released (predominantly arsenate) from solution simultaneously. The effects of solution pH, dosages of H2O2 and Fe(2+), and the presence of dissolved organic matter (DOM) on the treatment efficiency were systematically investigated. Under the optimum treatment conditions (0.53 mmol L(-1) Fe(2+), 2.12 mmol L(-1) H2O2, and initial pH of 3.0), p-ASA (10 mg-As L(-1)) could be completely oxidized to As(V) within 30 min in pure water and 4 natural water samples, and at the final pH of 4.0, the residual arsenic levels in solution phase were as low as 1.1 and 20.1-43.4 μg L(-1) in the two types of water matrixes, respectively. The presence of humic acid significantly retarded the oxidation of p-ASA by scavenging HO, and inhibited the As(V) removal through competitive adsorption on ferric hydroxide. Due to the high contents of DOM in the swine manure leachate samples (TOC at ∼500 mg L(-1)), much higher dosages of Fe(2+) (10.0 mmol L(-1)) and H2O2 (40.0 mmol L(-1)) and a longer treatment time (120 min) were required to achieve near complete oxidation of p-ASA (98.0%), while maintaining the levels of residual arsenic in the solution at <70.0 μg L(-1). The degradation pathway of p-ASA in the Fenton process was proposed based on the major degradation products detected

  12. The influence of grazing intensity on soil properties and degradation processes in Mediterranean rangelands (Extremadura, SW Spain)

    NASA Astrophysics Data System (ADS)

    Pulido-Fernández, Manuel; Schnabel, Susanne; Francisco Lavado-Contador, Joaquín

    2014-05-01

    Rangelands cover vast extensions of land in Spain (>90,000 km2), where a total amount of 13 millions of domestic animals graze extensively their pastures. By clear-cutting shrubs, removing selected trees and by cultivation, these rangelands were created from former Mediterranean oak forests, mainly composed by holm oak and cork oak (Quercus ilex rotundifolia and Q. suber) as tree species, Nowadays this land system is exploited economically in large farms (>100 ha), most of them held on private ownership (80% of total) and dedicated to extensive ranching. Overgrazing is common and the excessive stocking rates may deteriorate soil quality, causing economic losses and environmental damage. Many studies have been developed on the effects of livestock grazing over soil properties and degradation processes, most of them by only comparing extreme cases (e.g. ungrazed vs. grazed or overgrazed areas). The main goal of this study is to contribute to the understanding on how animal grazing affects soil properties and degradation processes. The study is particularly focused on soil compaction and sheet erosion as related to the reduction of vegetation cover by defoliation. Soil properties were analysed from 119 environmental units selected from 56 farms distributed throughout the region of Extremadura (SW Spain). The units are representative of different rangeland types, i.e. scrublands of Retama sphaerocarpa, dehesas (wooded rangelands) and treeless grasslands. Soil surface cover was determined along transects in September 2010 (antecedent rainfall: 413-923 mm) considering the following classes: bare ground, grasses, mosses, litter, stones (<2 mm) and rock outcrops. Farmer interviews were also conducted in order to quantify stocking rates and to assess land management in 12 out of 56 farms. In the farms where transects and farmer interviews could not be carried out, bare soil surface and livestock densities were estimated. Bare soil surface was determined by classifying

  13. Abiotic Organic Chemistry in Hydrothermal Systems.

    NASA Astrophysics Data System (ADS)

    Simoneit, B. R.; Rushdi, A. I.

    2004-12-01

    Abiotic organic chemistry in hydrothermal systems is of interest to biologists, geochemists and oceanographers. This chemistry consists of thermal alteration of organic matter and minor prebiotic synthesis of organic compounds. Thermal alteration has been extensively documented to yield petroleum and heavy bitumen products from contemporary organic detritus. Carbon dioxide, carbon monoxide, ammonia and sulfur species have been used as precursors in prebiotic synthesis experiments to organic compounds. These inorganic species are common components of hot spring gases and marine hydrothermal systems. It is of interest to further test their reactivities in reductive aqueous thermolysis. We have synthesized organic compounds (lipids) in aqueous solutions of oxalic acid, and with carbon disulfide or ammonium bicarbonate at temperatures from 175-400° C. The synthetic lipids from oxalic acid solutions consisted of n-alkanols, n-alkanoic acids, n-alkyl formates, n-alkanones, n-alkenes and n-alkanes, typically to C30 with no carbon number preferences. The products from CS2 in acidic aqueous solutions yielded cyclic thioalkanes, alkyl polysulfides, and thioesters with other numerous minor compounds. The synthesis products from oxalic acid and ammonium bicarbonate solutions were homologous series of n-alkyl amides, n-alkyl amines, n-alkanes and n-alkanoic acids, also to C30 with no carbon number predominance. Condensation (dehydration) reactions also occur under elevated temperatures in aqueous medium as tested by model reactions to form amide, ester and nitrile bonds. It is concluded that the abiotic formation of aliphatic lipids, condensation products (amides, esters, nitriles, and CS2 derivatives (alkyl polysulfides, cyclic polysulfides) is possible under hydrothermal conditions and warrants further studies.

  14. Improved abiotic stress tolerance of bermudagrass by exogenous small molecules.

    PubMed

    Chan, Zhulong; Shi, Haitao

    2015-01-01

    As a widely used warm-season turfgrass in landscapes and golf courses, bermudagrass encounters multiple abiotic stresses during the growth and development. Physiology analysis indicated that abiotic stresses induced the accumulation of ROS and decline of photosynthesis, resulting in increased cell damage and inhibited growth. Proteomic and metabolomic approaches showed that antioxidant enzymes and osmoprotectant contents (sugar, sucrose, dehydrin, proline) were extensively changed under abiotic stress conditions. Exogenous application of small molecules, such as ABA, NO, CaCl2, H2S, polyamine and melatonin, could effectively alleviate damages caused by multiple abiotic stresses, including drought, salt, heat and cold. Based on high through-put RNA seq analysis, genes involved in ROS, transcription factors, hormones, and carbohydrate metabolisms were largely enriched. The data indicated that small molecules induced the accumulation of osmoprotectants and antioxidants, kept cell membrane integrity, increased photosynthesis and kept ion homeostasis, which protected bermudagrass from damages caused by abiotic stresses. PMID:25757363

  15. Pathways for degradation of plastic polymers floating in the marine environment.

    PubMed

    Gewert, Berit; Plassmann, Merle M; MacLeod, Matthew

    2015-09-01

    Each year vast amounts of plastic are produced worldwide. When released to the environment, plastics accumulate, and plastic debris in the world's oceans is of particular environmental concern. More than 60% of all floating debris in the oceans is plastic and amounts are increasing each year. Plastic polymers in the marine environment are exposed to sunlight, oxidants and physical stress, and over time they weather and degrade. The degradation processes and products must be understood to detect and evaluate potential environmental hazards. Some attention has been drawn to additives and persistent organic pollutants that sorb to the plastic surface, but so far the chemicals generated by degradation of the plastic polymers themselves have not been well studied from an environmental perspective. In this paper we review available information about the degradation pathways and chemicals that are formed by degradation of the six plastic types that are most widely used in Europe. We extrapolate that information to likely pathways and possible degradation products under environmental conditions found on the oceans' surface. The potential degradation pathways and products depend on the polymer type. UV-radiation and oxygen are the most important factors that initiate degradation of polymers with a carbon-carbon backbone, leading to chain scission. Smaller polymer fragments formed by chain scission are more susceptible to biodegradation and therefore abiotic degradation is expected to precede biodegradation. When heteroatoms are present in the main chain of a polymer, degradation proceeds by photo-oxidation, hydrolysis, and biodegradation. Degradation of plastic polymers can lead to low molecular weight polymer fragments, like monomers and oligomers, and formation of new end groups, especially carboxylic acids. PMID:26216708

  16. The effects and mode of action of biochar on the degradation of methyl isothiocyanate in soil.

    PubMed

    Fang, Wensheng; Wang, Qiuxia; Han, Dawei; Liu, Pengfei; Huang, Bin; Yan, Dongdong; Ouyang, Canbin; Li, Yuan; Cao, Aocheng

    2016-09-15

    Biochar is used as a new type of fertilizer in agriculture; however, its effect on the fate of fumigants in soil is not fully understood. The objective of this study was to investigate the effects of biochar on methyl isothiocyanate (MITC) degradation in soil in laboratory incubation experiments, including the effects of biochar composition, amendment rate, moisture, temperature, soil sterilization and soil type. The dissipation pathways of MITC in biochars included adsorption and chemical degradation. The adsorption of MITC by biochars was positively correlated with the specific surface area (SSA) of the biochar. Biochar with a high SSA and low H/C value (such as biochar type BC-1) reduced MITC degradation in soil substantially; following BC-1 amendment, the degradation rate was 73.9% slower than in unamended soil. The degradation of MITC was positively correlated with the H/C value of biochar, and MITC degradation in soil increased 2.2-31.1 times following amendment with biochars with higher H/C values (e.g. biochar types BC-3-6). The biochar with the lowest organic matter and low H/C value did not affect the fate of MITC in soil. Biochars affect abiotic degradation processes more than biodegradation. When soil samples had a higher water content (>10%), higher temperature (40°C), and lower organic matter, the addition of BC-1 biochar reduced MITC degradation substantially; and this did not change significantly when the amendment rate increased. However, BC-4 biochar accelerated MITC degradation with increasing amendment rate, increasing temperature, and decreasing soil water content. The differences in degradation rates due to soil type were minimized by amendment with BC-4, but significant differences in BC-1. The results showed that the rational use of biochar has the potential to reduce MITC emission by accelerated degradation and adsorption. PMID:27177140

  17. Microbially driven Fenton reaction for degradation of the widespread environmental contaminant 1,4-dioxane.

    PubMed

    Sekar, Ramanan; DiChristina, Thomas J

    2014-11-01

    The carcinogenic cyclic ether compound 1,4-dioxane is employed as a stabilizer of chlorinated industrial solvents and is a widespread environmental contaminant in surface water and groundwater. In the present study, a microbially driven Fenton reaction was designed to autocatalytically generate hydroxyl (HO•) radicals that degrade 1,4-dioxane. In comparison to conventional (purely abiotic) Fenton reactions, the microbially driven Fenton reaction operated at circumneutral pH and did not the require addition of exogenous H2O2 or UV irradiation to regenerate Fe(II) as Fenton reagents. The 1,4-dioxane degradation process was driven by pure cultures of the Fe(III)-reducing facultative anaerobe Shewanella oneidensis manipulated under controlled laboratory conditions. S. oneidensis batch cultures were provided with lactate, Fe(III), and 1,4-dioxane and were exposed to alternating aerobic and anaerobic conditions. The microbially driven Fenton reaction completely degraded 1,4-dioxane (10 mM initial concentration) in 53 h with an optimal aerobic-anaerobic cycling period of 3 h. Acetate and oxalate were detected as transient intermediates during the microbially driven Fenton degradation of 1,4-dioxane, an indication that conventional and microbially driven Fenton degradation processes follow similar reaction pathways. The microbially driven Fenton reaction provides the foundation for development of alternative in situ remediation technologies to degrade environmental contaminants susceptible to attack by HO• radicals generated by the Fenton reaction. PMID:25313646

  18. MATERIALS DEGRADATION ANALYSIS AND DEVELOPMENT TO ENABLE ULTRA LOW COST, WEB-PROCESSED WHITE P-OLED FOR SSL

    SciTech Connect

    DR. DEVIN MACKENZIE

    2011-12-13

    Progress over Phase II of DE-FG02-07ER86293 'Materials Degradation Analysis and Development to Enable Ultra Low Cost, Web-Processed White P-OLED for SSL' was initially rapid in terms of device performance improvements. We exceeded our device luminance lifetime goals for printed flexible white OLEDs as laid out in our project proposal. Our Phase II performance target was to demonstrate >1500 hours luminance lifetime at 100 Cd/m2 from a printed flexible device. We now have R&D devices well in excess of 8000 hrs lifetime at 100 Cd/m2, tested in air. We also were able to produce devices which met the voltage target of >1500 hours below 15V operation. After completing the initial performance milestones, we went on to focus on color-related degradation issues which were cited as important to commercialization of the technology by our manufacturing partners. We also put additional focus on cathode work as the active material development that occurred over the STTR time period required an adaptation of the cathode from the original cathode formulations which were developed based on previous generation active layer materials. We were able to improve compatibility of the cathode with some of the newer generation active layer materials and improve device yield and voltage behavior. An additional objective of the initial Phase II was to further develop the underlying manufacturing technology and real-life product specifications. This is a key requirement that must be met to ensure eventual commercialization of this DOE-funded technology. The link between commercial investment for full commercialization and R&D efforts in OLED solid State Lighting is often a large one. Add-Vision's lower cost, printed OLED manufacturing approach is an attraction, but close engagement with manufacturing partners and addressing customer specifications is a very important link. Manufacturing technology encompasses development of moisture reduction encapsulation technology, improved cost

  19. Degradation and detection of transgenic Bacillus thuringiensis DNA and proteins in flour of three genetically modified rice events submitted to a set of thermal processes.

    PubMed

    Wang, Xiaofu; Chen, Xiaoyun; Xu, Junfeng; Dai, Chen; Shen, Wenbiao

    2015-10-01

    This study aimed to investigate the degradation of three transgenic Bacillus thuringiensis (Bt) genes (Cry1Ab, Cry1Ac, and Cry1Ab/Ac) and the corresponding encoded Bt proteins in KMD1, KF6, and TT51-1 rice powder, respectively, following autoclaving, cooking, baking, or microwaving. Exogenous Bt genes were more stable than the endogenous sucrose phosphate synthase (SPS) gene, and short DNA fragments were detected more frequently than long DNA fragments in both the Bt and SPS genes. Autoclaving, cooking (boiling in water, 30 min), and baking (200 °C, 30 min) induced the most severe Bt protein degradation effects, and Cry1Ab protein was more stable than Cry1Ac and Cry1Ab/Ac protein, which was further confirmed by baking samples at 180 °C for different periods of time. Microwaving induced mild degradation of the Bt and SPS genes, and Bt proteins, whereas baking (180 °C, 15 min), cooking and autoclaving led to further degradation, and baking (200 °C, 30 min) induced the most severe degradation. The findings of the study indicated that degradation of the Bt genes and proteins somewhat correlated with the treatment intensity. Polymerase chain reaction, enzyme-linked immunosorbent assay, and lateral flow tests were used to detect the corresponding transgenic components. Strategies for detecting transgenic ingredients in highly processed foods are discussed. PMID:26277627

  20. Kinetics of Abiotic Uranium(VI) Reduction by Sulfide

    NASA Astrophysics Data System (ADS)

    Hyun, S.; Davis, J. A.; Hayes, K. F.

    2010-12-01

    Uranium(VI) reduction is an important process affecting the radionuclide’s fate under sulfate reducing conditions. In this work, kinetics of abiotic U(VI) reduction by dissolved sulfide was studied using a batch reactor. The effects of solution pH, dissolved carbonate, Ca(II), U(VI), and S(-II) concentration on the reduction kinetics were tested. The ranges of these experimental variables were designed to cover the variation in groundwater chemistry observed at the Old Rifle uranium mill tailings site (Colorado, USA). Dissolved U concentration was monitored as a function of time using inductively coupled plasma-mass spectrometry to measure the rate of U(VI) reduction. Solid phase reduction products were identified using X-ray diffraction, transmission electron microscopy, and X-ray absorption spectroscopy. The results showed that changes in the experimental variables significantly affected U(VI) reduction kinetics by dissolved sulfide. U(VI) reduction occurred under circumneutral pH while no reduction was observed under alkaline conditions. The reduction rate was slowed by increased dissolved carbonate concentration. One solid phase reduction product was identified as nanoscale uraninite (UO2+x(s)). Thermodynamic modeling showed that the dissolved U(VI) aqueous species changed as a function of solution conditions correlated with the change in the reduction rate. These results show that U(VI) aqueous speciation is important in determining abiotic U(VI) reduction kinetics by dissolved sulfide. This study also illustrates the potential importance of dissolved sulfide in field-scale modeling of U reactive transport, and is expected to contribute to the understanding of long-term effects of biostimulation on U transport at the Rifle site.

  1. Formation of Intermediate Carbon Phases in Hydrothermal Abiotic Organic Synthesis

    NASA Astrophysics Data System (ADS)

    Fu, Q.; Foustoukos, D. I.; Seyfried, W. E.

    2005-12-01

    With high dissolved concentrations of methane and other hydrocarbon species revealed at the Rainbow and Logatchev vent systems on the Mid-Atlantic Ridge, it is essential to better understand reaction pathways of abiotic organic synthesis in hydrothermal systems. Thus, we performed a hydrothermal carbon reduction experiment with 13C labeled carbon source at temperature and pressure conditions that approximate those inferred for ultramafic-hosted hydrothermal systems. Pentlandite, a common alteration mineral phase in subseafloor reaction zones, acted as a potential catalyst. Surface analysis techniques (XPS and ToF-SIMS) were used to characterize intermediate carbon species within this process. Time series dissolved H2 and H2S concentrations indicated thermodynamic equilibrium. Dissolved H2 and H2S concentrations of 13 and 2 mmol/kg, respectively, are approximately equivalent to measured values in Rainbow and Logatchev hydrothermal systems. Isotopically pure 13C methane and other alkane species (C2H6 and C3H8) were observed throughout the experiment, and attained steady state conditions. XPS analysis on mineral product surface indicated carbon enrichment on mineral surface following reaction. The majority of surface carbon involves species containing C-C or C-H bonds, such as alkyl or methylene groups. Alcohol and carboxyl groups in fewer amounts were also observed. ToF-SIMS analysis, which can offer isotope identification with high mass resolution, showed that most of these carbon species were 13C-labeled. Unlike gas phase Fischer-Tropsch synthesis, no carbide was observed on mineral product surface during the experiment. Therefore, a reaction pathway is proposed for formation of dissolved linear alkane species in hydrothermal abiotic organic synthesis, where oxygen-bearing organic compounds are expected to form in aqueous products by way of alcohol and carboxyl groups on mineral catalyst surface.

  2. Degradation and aquatic toxicity of naphthenic acids in oil sands process-affected waters using simulated wetlands.

    PubMed

    Toor, Navdeep S; Franz, Eric D; Fedorak, Phillip M; MacKinnon, Michael D; Liber, Karsten

    2013-01-01

    Oil sands process-affected waters (OSPWs) produced during the extraction of bitumen at the Athabasca Oil Sands (AOS) located in northeastern Alberta, Canada, are toxic to many aquatic organisms. Much of this toxicity is related to a group of dissolved organic acids known as naphthenic acids (NAs). Naphthenic acids are a natural component of bitumen and are released into process water during the separation of bitumen from the oil sand ore by a caustic hot water extraction process. Using laboratory microcosms as an analogue of a proposed constructed wetland reclamation strategy for OSPW, we evaluated the effectiveness of these microcosms in degrading NAs and reducing the aquatic toxicity of OSPW over a 52-week test period. Experimental manipulations included two sources of OSPW (one from Syncrude Canada Ltd. and one from Suncor Energy Inc.), two different hydraulic retention times (HRTs; 40 and 400 d), and increased nutrient availability (added nitrate and phosphate). Microcosms with a longer HRT (for both OSPWs) showed higher reductions in total NAs concentrations (64-74% NAs reduction, p<0.05) over the test period, while nutrient enrichment appeared to have little effect. A 96 h static acute rainbow trout (Oncorhynchus mykiss) bioassay showed that the initial acute toxicity of Syncrude OSPW (LC50=67% v/v) was reduced (LC50>100% v/v) independent of HRT. However, EC20s from separate Microtox® bioassays were relatively unchanged when comparing the input and microcosm waters at both HRTs over the 52-week study period (p>0.05), indicating that some sub-lethal toxicity persisted under these experimental conditions. The present study demonstrated that given sufficiently long HRTs, simulated wetland microcosms containing OSPW significantly reduced total NAs concentrations and acute toxicity, but left behind a persistent component of the NAs mixture that appeared to be associated with residual chronic toxicity. PMID:23000048

  3. Image quality degradation by light-scattering processes in high-performance display devices for medical imaging

    NASA Astrophysics Data System (ADS)

    Badano, Aldo

    1999-11-01

    This thesis addresses the characterization of light scattering processes that degrade image quality in high performance electronic display devices for digital radiography. Using novel experimental and computational tools, we study the lateral diffusion of light in emissive display devices that causes extensive veiling glare and significant reduction of the physical contrast. In addition, we examine the deleterious effects of ambient light reflections that affect the contrast of low luminance regions, and superimpose unwanted structured signal. The analysis begins by introducing the performance limitations of the human visual system to define high fidelity requirements. It is noted that current devices severely suffer from image quality degradation due to optical transport processes. To model the veiling glare and reflectance characteristics of display devices, we introduce a Monte Carlo light transport simulation code, DETECT-II, that tracks individual photons through multiple scattering events. The simulation accounts for the photon polarization state at each scattering event, and provides descriptions for rough surfaces and thin film coatings. A new experimental method to measure veiling glare is described next, based on a conic collimated probe that minimizes contamination from bright areas. The measured veiling glare ratio is taken to be the luminance in the surrounding bright field divided by the luminance in the dark circle. We show that veiling glare ratios in the order of a few hundreds can be measured with an uncertainty of a few percent. The veiling glare response function is obtained by measuring the small spot contrast ratio of test patterns having varying dark spot radius. Using DETECT-II, we then estimate the ring response functions for a high performance medical imaging monitor of current design, and compare the predictions of the model with the experimentally measured response function. The data presented in this thesis demonstrate that although

  4. Label-free, real-time detection of the dynamic processes of protein degradation using oblique-incidence reflectivity difference method

    NASA Astrophysics Data System (ADS)

    Liu, S.; Zhu, J. H.; He, L. P.; Dai, J.; Lu, H. B.; Wu, L.; Jin, K. J.; Yang, G. Z.; Zhu, H.

    2014-04-01

    Based on the requirements for studying the dynamic process of proteinase action substrates in life science, we selected six random proteins including 1L-10, SCGB2A2, CENPQ, GST, HK1, KLHL7, as well as five different concentrations of 1L-10 proteins of 1 mg/ml, 0.5 mg/ml, 0.25 mg/ml, 0.125 mg/ml, and 0.0625 mg/ml, and fabricated two types of substrate protein microarrays, respectively. We detected the dynamic processes of proteins degraded by proteinase K using oblique-incidence reflectivity difference (OIRD) method in a label-free and real-time manner. We obtained the relevant degradation velocities and the degradation time. The experimental results demonstrate that OIRD has the ability to study proteinase action substrates which is out of reach of label methods and is expected to offer opportunities to determine protease-substrate relationships on the systems biology level.

  5. The Stable Isotope Fractionation of Abiotic Reactions: A Benchmark in the Detection of Life

    NASA Technical Reports Server (NTRS)

    Summers, David P.

    2003-01-01

    One very important tool in the analysis of biogenic, and potentially biogenic, samples is the study of their stable isotope distributions. The isotope distribution of a sample depends on the process(es) that created it. One important application of the analysis of C & N stable isotope ratios has been in the determination of whether organic matter in a sample is of biological origin or was produced abiotically. For example, the delta C-13 of organic material found embedded in phosphate grains was cited as a critical part of the evidence for life in 3.8 billion year old samples. The importance of such analysis in establishing biogenicity was highlighted again by the role this issue played in the recent debate over the validity of what had been accepted as the Earth s earliest microfossils. These kinds of analysis imply a comparison with the fractionation that one would have seen if the organic material had been produced by alternative, abiotic, pathways. Could abiotic reactions account for the same level of fractionation? Additionally, since the fractionation can vary between different abiotic reactions, understanding their fractionations can be important in distinguishing what reactions may have been significant in the formation of different abiological samples (such as extraterrestrial samples). There is however, a scarcity of data on the fractionation of carbon and nitrogen by abiotic reactions. In order to interpret properly what the stable isotope ratios of samples tell us about their biotic or abiotic nature, more needs to be known about how abiotic reactions fractionate C and N. Carbon isotope fractionations have been studied for a few abiotic processes. These studies presumed the presence of a reducing atmosphere, focusing on reactions involving spark discharge, W photolysis of reducing gas mixtures, and cyanide polymerization in the presence of ammonia. They did find that the initial products showed a depletion in I3C with values in the range of a few per

  6. Impact of hydrodynamics on pollutant degradation and energy efficiency of VUV/UV and H2O2/UV oxidation processes.

    PubMed

    Bagheri, Mehdi; Mohseni, Madjid

    2015-12-01

    The Vacuum-UV/UV process, an incipient catalyst/chemical-free advanced oxidation process (AOP), is potentially a cost-effective solution for the removal of harmful micropollutants from water. Utilizing a novel mechanistic numerical model, this work aimed to establish a thorough understanding of the degradation mechanisms in the VUV/UV process operating under continuous flow conditions, when compared with the widely applied H2O2/UV AOP. Of particular interest was the examination of the impact of flow characteristics (hydrodynamics) on the degradation efficacy of a target micropollutant during the VUV/UV and H2O2/UV AOPs. While hydroxyl radical (OH) oxidation was the dominant degradation pathway in both processes, the degradation efficacy of the VUV/UV process showed much stronger correlation with the extent of mixing in the photoreactor. Under a uniform flow regime, the degradation efficiency of the target pollutant achieved by the H2O2/UV process with 2- and 5 ppm H2O2 was greater than that provided by the VUV/UV process. Nonetheless, introduction of mixing and circulation zones to the VUV/UV reactor resulted in superior performance compared with the H2O2/UV AOP. Based on the electrical energy-per-order (EEO) analysis, incorporation of circulation zones resulted in a reduction of up to 50% in the overall energy cost of the VUV/UV AOP, while the corresponding reduction for the 5-ppm H2O2/UV system was less than 5%. Furthermore, the extent of OH scavenging of natural organic matter (NOM) on energy efficiency of the VUV/UV and H2O2/UV AOPs under continuous flow conditions was assessed using the EEO analysis. PMID:26363258

  7. Abiotic production of methylmercury by solar radiation.

    PubMed

    Siciliano, Steven D; O'Driscoll, Nelson J; Tordon, Robert; Hill, Jonathan; Beauchamp, Stephen; Lean, David R S

    2005-02-15

    Methylmercury [MeHg(I) in the aerobic surface water of lakes is thought to be rapidly degraded, but contrary to expectations, we show that MeHg(I) concentrations often increase during sunlight hours or remain relatively constant. We hypothesized that there were water column processes that generated MeHg(I) and that these processes were linked to dissolved organic matter (DOM) and solar radiation. A 2-day diurnal pattern of MeHg(I) in surface water with corresponding bottled controls was assessed for two contrasting lakes in Kejimikujik, Nova Scotia, Canada. Following this study, a tangential ultrafiltrator was used to size-fractionate and generate a concentration gradient of DOM from four different lakes located near Lac Berthelot, Quebec, Canada. The watersheds of two of these lakes were not substantially logged whereas the other two had been extensively logged. Different size fractions of DOM as well as different concentrations of DOM were exposed to sunlight for varying periods of time. We observed that, in Keiimikujik, the concentration of MeHg(I) in surface waters peaked in the early afternoon. Furthermore, this also occurred in bottled water for one of the lakes, Puzzle, eliminating the possibility that in-lake mixing played a role in this pattern. The formation of MeHg(I) was found to be dependent on the size fraction and amount of DOM present in the water. Specifically, DOM less than 5 kDa or between 30 and 300 kDa generated MeHg(I) when exposed to sunlight, but larger fractions did not. Furthermore, although data are limited, we found that water from lakes with logged watersheds generated MeHg(I) when exposed to sunlight, whereas water from lakes with low levels of logging in the undisturbed watersheds did not. Our results demonstrate that MeHg(I) can be formed in freshwaters of certain lakes in response to solar radiation. This photoproduction of MeHg(I) is dependent on DOM concentrations and type, with the importance of water chemistry not yet clear. The

  8. Real-time processing of dual band HD video for maintaining operational effectiveness in degraded visual environments

    NASA Astrophysics Data System (ADS)

    Parker, Steve C. J.; Hickman, Duncan L.; Smith, Moira I.

    2015-05-01

    Effective reconnaissance, surveillance and situational awareness, using dual band sensor systems, require the extraction, enhancement and fusion of salient features, with the processed video being presented to the user in an ergonomic and interpretable manner. HALO™ is designed to meet these requirements and provides an affordable, real-time, and low-latency image fusion solution on a low size, weight and power (SWAP) platform. The system has been progressively refined through field trials to increase its operating envelope and robustness. The result is a video processor that improves detection, recognition and identification (DRI) performance, whilst lowering operator fatigue and reaction times in complex and highly dynamic situations. This paper compares the performance of HALO™, both qualitatively and quantitatively, with conventional blended fusion for operation in degraded visual environments (DVEs), such as those experienced during ground and air-based operations. Although image blending provides a simple fusion solution, which explains its common adoption, the results presented demonstrate that its performance is poor compared to the HALO™ fusion scheme in DVE scenarios.

  9. Use of solar advanced oxidation processes for wastewater treatment: Follow-up on degradation products, acute toxicity, genotoxicity and estrogenicity.

    PubMed

    Brienza, M; Mahdi Ahmed, M; Escande, A; Plantard, G; Scrano, L; Chiron, S; Bufo, S A; Goetz, V

    2016-04-01

    Wastewater tertiary treatment by advanced oxidation processes is thought to produce a treated effluent with lower toxicity than the initial influent. Here we performed tertiary treatment of a secondary effluent collected from a Waste Water Treatment Plant via homogeneous (solar/HSO5(-)/Fe(2+)) and heterogeneous (solar/TiO2) solar advanced oxidation aiming at the assessment of their effectiveness in terms of contaminants' and toxicity abatement in a plain solar reactor. A total of 53 organic contaminants were qualitatively identified by liquid chromatography coupled to high-resolution mass spectrometry after solid phase extraction. Solar advanced oxidation totally or partially removed the major part of contaminants detected within 4.5 h. Standard toxicity tests were performed using Vibrio fischeri, Daphnia magna, Pseudokirchneriella subcapitata and Brachionus calyciflorus organisms to evaluate acute and chronic toxicity in the secondary or tertiary effluents, and the EC50% was calculated. Estrogenic and genotoxic tests were carried out in an attempt to obtain an even sharper evaluation of potential hazardous effects due to micropollutants or their degradation by-products in wastewater. Genotoxic effects were not detected in effluent before or after treatment. However, we observed relevant estrogenic activity due to the high sensitivity of the HELN ERα cell line. PMID:26841289

  10. Identification, characterization, synthesis and HPLC quantification of new process-related impurities and degradation products in retigabine.

    PubMed

    Douša, Michal; Srbek, Jan; Rádl, Stanislav; Cerný, Josef; Klecán, Ondřej; Havlíček, Jaroslav; Tkadlecová, Marcela; Pekárek, Tomáš; Gibala, Petr; Nováková, Lucie

    2014-06-01

    Two new impurities were described and determined using gradient HPLC method with UV detection in retigabine (RET). Using LC-HRMS, NMR and IR analysis the impurities were identified as RET-dimer I: diethyl {4,4'-diamino-6,6'-bis[(4-fluorobenzyl)amino]biphenyl-3,3'-diyl}biscarbamate and RET-dimer II: ethyl {2-amino-5-[{2-amino-4-[(4-fluorobenzyl) amino] phenyl} (ethoxycarbonyl) amino]-4-[(4-fluorobenzyl)amino] phenyl}carbamate. Reference standards of these impurities were synthesized followed by semipreparative HPLC purification. The mechanism of the formation of these impurities is also discussed. An HPLC method was optimized in order to separate, selectively detect and quantify all process-related impurities and degradation products of RET. The presented method, which was validated in terms of linearity, limit of detection (LOD), limit of quantification (LOQ) and selectivity is very quick (less than 11min including re-equilibration time) and therefore highly suitable for routine analysis of RET related substances as well as stability studies. PMID:24552644

  11. Regulation of Photosynthesis during Abiotic Stress-Induced Photoinhibition.

    PubMed

    Gururani, Mayank Anand; Venkatesh, Jelli; Tran, Lam Son Phan

    2015-09-01

    Plants as sessile organisms are continuously exposed to abiotic stress conditions that impose numerous detrimental effects and cause tremendous loss of yield. Abiotic stresses, including high sunlight, confer serious damage on the photosynthetic machinery of plants. Photosystem II (PSII) is one of the most susceptible components of the photosynthetic machinery that bears the brunt of abiotic stress. In addition to the generation of reactive oxygen species (ROS) by abiotic stress, ROS can also result from the absorption of excessive sunlight by the light-harvesting complex. ROS can damage the photosynthetic apparatus, particularly PSII, resulting in photoinhibition due to an imbalance in the photosynthetic redox signaling pathways and the inhibition of PSII repair. Designing plants with improved abiotic stress tolerance will require a comprehensive understanding of ROS signaling and the regulatory functions of various components, including protein kinases, transcription factors, and phytohormones, in the responses of photosynthetic machinery to abiotic stress. Bioenergetics approaches, such as chlorophyll a transient kinetics analysis, have facilitated our understanding of plant vitality and the assessment of PSII efficiency under adverse environmental conditions. This review discusses the current understanding and indicates potential areas of further studies on the regulation of the photosynthetic machinery under abiotic stress. PMID:25997389

  12. MICROBIAL DEGRADATION OF TOLUENE UNDER SULFATE-REDUCING CONDITIONS AND THE INFLUENCE OF IRON ON THE PROCESS

    EPA Science Inventory

    Toluene degradation occurred concomitantly with sulfate reduction in anaerobic microcosms inoculated with contaminated subsurface soil from an aviation fuel storage facility near the Patuxent River (MD). imilar results were obtained for enrichment cultures in which toluene was th...

  13. Comparison of degradation reactions of Acid Yellow 61 in both oxidation processes of H2O2/UV and O3.

    PubMed

    Wang, Y Z; Yedeler, A; Kettrup, A

    2001-07-01

    The comparison of degradation of Acid Yellow 61 as a model dye compound in both oxidation processes of H2O2/UV and O3 has been studied. When the decolorization rate of Acid Yellow 61 in both reactions presented similar, it was found there are some differences from the results of AOX removal and production of inorganic ions and organic acids. The results reveal that the H2O2/UV has beneficial effect on mineralization than O3 only for degradation of Acid Yellow 61 solution and it is possible for enhancement of method efficiency by taking longer reaction time and addition of high concentration of oxidants. PMID:11590760

  14. Photooxidative degradation of 4-nitrophenol (4-NP) in UV/H2O2 process: influence of operational parameters and reaction mechanism.

    PubMed

    Daneshvar, N; Behnajady, M A; Zorriyeh Asghar, Y

    2007-01-10

    The photooxidative degradation of 4-nitrophenol (4-NP) was studied in the UV/H2O2 process. The effects of applied H2O2 dose, initial 4-NP concentration and UV light intensity have been studied. Degradation was complete in 13 min and follows apparent first-order kinetics. The removal efficiency of 4-NP depends on the operational parameters and increases as the initial concentration of H2O2 and light intensity are increased but it decreases when the initial concentration of 4-NP is increased. From HPLC analysis, major intermediate products were hydroxyl derivatives of 4-NP as a result of photooxidative hydroxylation. PMID:16860469

  15. Degradation Mechanisms of Solution-Processed Planar Perovskite Solar Cells: Thermally Stimulated Current Measurement for Analysis of Carrier Traps.

    PubMed

    Qin, Chuanjiang; Matsushima, Toshinori; Fujihara, Takashi; Potscavage, William J; Adachi, Chihaya

    2016-01-20

    Degradation mechanisms of CH3 NH3 PbI3 -based planar perovskite solar cells (PSCs) are investigated using a thermally stimulated current technique. Hole traps lying above the valence-band edge of the CH3 NH3 PbI3 are detected in PSCs degraded by continuous simulated solar illumination. One source of the hole traps is the photodegradation of CH3 NH3 PbI3 in the presence of water. PMID:26598398

  16. Recent Molecular Advances on Downstream Plant Responses to Abiotic Stress

    PubMed Central

    dos Reis, Sávio Pinho; Lima, Aline Medeiros; de Souza, Cláudia Regina Batista

    2012-01-01

    Abiotic stresses such as extremes of temperature and pH, high salinity and drought, comprise some of the major factors causing extensive losses to crop production worldwide. Understanding how plants respond and adapt at cellular and molecular levels to continuous environmental changes is a pre-requisite for the generation of resistant or tolerant plants to abiotic stresses. In this review we aimed to present the recent advances on mechanisms of downstream plant responses to abiotic stresses and the use of stress-related genes in the development of genetically engineered crops. PMID:22942725

  17. Chemical Priming of Plants Against Multiple Abiotic Stresses: Mission Possible?

    PubMed

    Savvides, Andreas; Ali, Shawkat; Tester, Mark; Fotopoulos, Vasileios

    2016-04-01

    Crop plants are subjected to multiple abiotic stresses during their lifespan that greatly reduce productivity and threaten global food security. Recent research suggests that plants can be primed by chemical compounds to better tolerate different abiotic stresses. Chemical priming is a promising field in plant stress physiology and crop stress management. We review here promising chemical agents such as sodium nitroprusside, hydrogen peroxide, sodium hydrosulfide, melatonin, and polyamines that can potentially confer enhanced tolerance when plants are exposed to multiple abiotic stresses. The challenges and opportunities of chemical priming are addressed, with the aim to boost future research towards effective application in crop stress management. PMID:26704665

  18. The net effect of abiotic conditions and biotic interactions in a semi-arid ecosystem NE Spain: implications for the management and restoration.

    NASA Astrophysics Data System (ADS)

    Pueyo, Yolanda; Arroyo, Antonio I.; Saiz, Hugo; Alados, Concepción L.

    2014-05-01

    Degradation in arid and semiarid lands can be irreversible without human intervention, due to a positive plant-soil feedback where the loss of vegetation cover leads to soil degradation, which in turn hampers plant establishment. Human intervention in restoration actions usually involves the amendment of the degraded abiotic conditions, revegetation of bare areas, or both. However, abiotic amelioration is often expensive and too intrusive, and revegetation is not successful in many cases. Biotic interactions between plants, and more specifically facilitation by a "nurse" plant, have been proposed as a new via to take profit of improved abiotic conditions without intervention, and to increase the success rate of revegetation actions. But "nurse" plants can also interfere with others (i.e. by competition for resources or the release of allelopathic compounds), and the net balance between facilitation and interference could depend on plant types involved. We present recent observational and experimental studies performed in the semiarid ecosystems of the Middle Ebro Valley (NE Spain) about the role of abiotic conditions and biotic interactions in the productivity, dynamics and diversity of plant communities under different stress conditions (aridity and grazing). We found that all plant types studied (shrubs and perennial grasses) improved abiotic conditions (soil temperature and water availability for plants) with respect to open areas. However, only some shrubs (mainly Salsola vermiculata) had a positive net balance in the biotic interactions between plants, while other shrubs (Artemisia herba-alba) and perennial grasses (Lygeum spartum) showed interference with other plants. Moreover, the net balance between facilitation and interference among plants in the community shifted from competitive to neutral or from neutral to facilitative with increasing aridity. Grazing status did not strongly change the net biotic interactions between plants. Our results suggest that

  19. Progressive activation of degradation processes in solid oxide fuel cells stacks: Part I: Lifetime extension by optimisation of the operating conditions

    NASA Astrophysics Data System (ADS)

    Nakajo, Arata; Mueller, Fabian; Brouwer, Jacob; Van herle, Jan; Favrat, Daniel

    2012-10-01

    The degradation of solid oxide fuel cells (SOFC) depends on stack and system design and operation. A methodology to evaluate synergistically these aspects to achieve the lowest production cost of electricity has not yet been developed. A repeating unit model, with as degradation processes the decrease in ionic conductivity of the electrolyte, metallic interconnect corrosion, anode nickel particles coarsening and cathode chromium contamination, is used to investigate the impact of the operating conditions on the lifetime of an SOFC system. It predicts acceleration of the degradation due to the sequential activation of multiple processes. The requirements for the highest system efficiency at start and at long-term differ. Among the selected degradation processes, those on the cathode side here dominate. Simulations suggest that operation at lower system specific power and higher stack temperature can extend the lifetime by a factor up to 10, because the beneficial decrease in cathode overpotential prevails over the higher release of volatile chromium species, faster metallic interconnect corrosion and higher thermodynamic risks of zirconate formation, for maximum SRU temperature below 1150 K. The counter-flow configuration, combined with the beneficial effect of internal reforming on lowering the parasitic air blower consumption, similarly yields longer lifetime than co-flow.

  20. Association of Bio-energy Processing-Induced Protein Molecular Structure Changes with CNCPS-Based Protein Degradation and Digestion of Co-products in Dairy Cows.

    PubMed

    Li, Xinxin; Zhang, Yonggen; Yu, Peiqiang

    2016-05-25

    The primary objective of this study was to develop a model to predict Cornell Net Carbohydrate Protein System (CNCPS) protein degradation and digestion based on protein molecular structure changes induced by bio-energy processing in different types of co-products (CoPR, CoPC, CoPS = co-products from bioprocessing of rapeseed, canola seed, and soybean, respectively). The results showed that the inherent structure changes induced by the processing had a close relationship with CNCPS predicted protein degradable, undegradable, and digestible contents. The amide I to II ratio and α-helix to β-sheet ratio could be used to predict total degradable protein (R(2) = 0.99, RSD = 0.84, P < 0.001). Total CNCPS intestinal digestible protein could be predicted by protein structure α-helix to β-sheet ratio (R(2) = 0.93, RSD = 0.33, P < 0.001). In conclusion, the processing-induced protein molecular structure changes were highly linked to protein nutritive value of the co-products and could be used as predictors for CNCPS protein degradation and digestion in dairy cattle. PMID:27112731

  1. Abiotic uptake of gases by organic soils

    NASA Astrophysics Data System (ADS)

    Smagin, A. V.

    2007-12-01

    Methodological and experimental studies of the abiotic uptake of gaseous substances by organic soils were performed. The static adsorption method of closed vessels for assessing the interaction of gases with the solid and liquid soil phases and the dynamic method of determining the sorption isotherms of gases by soils were analyzed. The theoretical substantiation of the methods and their practical implementations on the basis of a PGA-7 portable gas analyzer (Russia) were considered. Good agreement between the equilibrium sorption isotherms of the gases and the Langmuir model was revealed; for the real ranges of natural gas concentrations, this model can be reduced to the linear Henry equation. The limit values of the gas sorption (Langmuir monolayer capacity) are typical for dry samples; they vary from 670 4000 g/m3 for methane and oxygen to 20 000 25 000 g/m3 for carbon dioxide. The linear distribution coefficients of gases between the solid and gas phases of organic soils (Henry constants) are 8 18 units for poorly sorbed gases (O2, CH4) and 40 60 units for CO2. The kinetics of the chemicophysical uptake of gases by the soil studied is linear in character and obeys the relaxation kinetic model of the first order with the corresponding relaxation constants, which vary from 1 h -1 in wet samples to 10 h -1 in dry samples.

  2. Probing the diversity of chloromethane-degrading bacteria by comparative genomics and isotopic fractionation

    PubMed Central

    Nadalig, Thierry; Greule, Markus; Bringel, Françoise; Keppler, Frank; Vuilleumier, Stéphane

    2014-01-01

    Chloromethane (CH3Cl) is produced on earth by a variety of abiotic and biological processes. It is the most important halogenated trace gas in the atmosphere, where it contributes to ozone destruction. Current estimates of the global CH3Cl budget are uncertain and suggest that microorganisms might play a more important role in degrading atmospheric CH3Cl than previously thought. Its degradation by bacteria has been demonstrated in marine, terrestrial, and phyllospheric environments. Improving our knowledge of these degradation processes and their magnitude is thus highly relevant for a better understanding of the global budget of CH3Cl. The cmu pathway, for chloromethane utilisation, is the only microbial pathway for CH3Cl degradation elucidated so far, and was characterized in detail in aerobic methylotrophic Alphaproteobacteria. Here, we reveal the potential of using a two-pronged approach involving a combination of comparative genomics and isotopic fractionation during CH3Cl degradation to newly address the question of the diversity of chloromethane-degrading bacteria in the environment. Analysis of available bacterial genome sequences reveals that several bacteria not yet known to degrade CH3Cl contain part or all of the complement of cmu genes required for CH3Cl degradation. These organisms, unlike bacteria shown to grow with CH3Cl using the cmu pathway, are obligate anaerobes. On the other hand, analysis of the complete genome of the chloromethane-degrading bacterium Leisingera methylohalidivorans MB2 showed that this bacterium does not contain cmu genes. Isotope fractionation experiments with L. methylohalidivorans MB2 suggest that the unknown pathway used by this bacterium for growth with CH3Cl can be differentiated from the cmu pathway. This result opens the prospect that contributions from bacteria with the cmu and Leisingera-type pathways to the atmospheric CH3Cl budget may be teased apart in the future. PMID:25360131

  3. Environmental fate of spinosad. 1. Dissipation and degradation in aqueous systems.

    PubMed

    Cleveland, Cheryl B; Bormett, Gary A; Saunders, Donald G; Powers, Fred L; McGibbon, Alec S; Reeves, Graham L; Rutherford, Laura; Balcer, Jesse L

    2002-05-22

    Spinosad is a bacterially derived insect control agent consisting of two active compounds, spinosyns A and D. The objective of this paper is to describe the environmental fate of spinosad in aquatic systems. To this end, several studies performed to meet regulatory requirements are used to study the fate and degradation in individual environmental media. Specifically, investigations of abiotic (hydrolysis and photolysis) and biotic (aerobic and anaerobic aquatic) processes are described. Understanding developed from the laboratory-based studies has been tested and augmented by an outdoor microcosm study. Understanding of aquatic fate is a building block for a complete environmental safety assessment of spinosad products (Cleveland, C. B.; Mayes, M. A.; Cryer, S. A. Pest Manag. Sci. 2001, 58, 70-84). From individual investigations, the following understanding of dissipation emerges: (1) Aqueous photolysis of spinosad is rapid (observed half-lives of <1 up to 2 days in summer sunlight) and will be the primary route of degradation in aquatic systems exposed to sunlight. (2) Biotic transformations contribute to spinosad's dissipation, but less so than photolysis; they will be of primary importance only in the absence of light. (3) Spinosad partitions rapidly (within a few days) from water to organic matter and soil/sediment in aquatic systems but not so rapidly as to replace sunlight as the primary route of dissipation. (4) Abiotic hydrolysis is relatively unimportant compared to other dissipation routes, except under highly basic (artificial) conditions and even then observed half-lives are approximately 8 months. Degradation pathways are understood are follows: (1) Degradation primarily proceeds by loss of the forosamine sugar and reduction of the 13,14-bond on the macrolide ring under aqueous photolytic conditions. (2) Degradation to several other compounds occurs through biotic degradation. Degradation under anaerobic conditions primarily involves changes and

  4. Abiotic stress responses in plant roots: a proteomics perspective

    PubMed Central

    Ghosh, Dipanjana; Xu, Jian

    2014-01-01

    Abiotic stress conditions adversely affect plant growth, resulting in significant decline in crop productivity. To mitigate and recover from the damaging effects of such adverse environmental conditions, plants have evolved various adaptive strategies at cellular and metabolic levels. Most of these strategies involve dynamic changes in protein abundance that can be best explored through proteomics. This review summarizes comparative proteomic studies conducted with roots of various plant species subjected to different abiotic stresses especially drought, salinity, flood, and cold. The main purpose of this article is to highlight and classify the protein level changes in abiotic stress response pathways specifically in plant roots. Shared as well as stressor-specific proteome signatures and adaptive mechanism(s) are simultaneously described. Such a comprehensive account will facilitate the design of genetic engineering strategies that enable the development of broad-spectrum abiotic stress-tolerant crops. PMID:24478786

  5. Circadian regulation of abiotic stress tolerance in plants

    PubMed Central

    Grundy, Jack; Stoker, Claire; Carré, Isabelle A.

    2015-01-01

    Extremes of temperatures, drought and salinity cause widespread crop losses throughout the world and impose severe limitations on the amount of land that can be used for agricultural purposes. Hence, there is an urgent need to develop crops that perform better under such abiotic stress conditions. Here, we discuss intriguing, recent evidence that circadian clock contributes to plants’ ability to tolerate different types of environmental stress, and to acclimate to them. The clock controls expression of a large fraction of abiotic stress-responsive genes, as well as biosynthesis and signaling downstream of stress response hormones. Conversely, abiotic stress results in altered expression and differential splicing of the clock genes, leading to altered oscillations of downstream stress-response pathways. We propose a range of mechanisms by which this intimate coupling between the circadian clock and environmental stress-response pathways may contribute to plant growth and survival under abiotic stress. PMID:26379680

  6. Roles of melatonin in abiotic stress resistance in plants.

    PubMed

    Zhang, Na; Sun, Qianqian; Zhang, Haijun; Cao, Yunyun; Weeda, Sarah; Ren, Shuxin; Guo, Yang-Dong

    2015-02-01

    In recent years melatonin has emerged as a research highlight in plant studies. Melatonin has different functions in many aspects of plant growth and development. The most frequently mentioned functions of melatonin are related to abiotic stresses such as drought, radiation, extreme temperature, and chemical stresses. This review mainly focuses on the regulatory effects of melatonin when plants face harsh environmental conditions. Evidence indicates that environmental stress can increase the level of endogenous melatonin in plants. Overexpression of the melatonin biosynthetic genes elevates melatonin levels in transgenic plants. The transgenic plants show enhanced tolerance to abiotic stresses. Exogenously applied melatonin can also improve the ability of plants to tolerate abiotic stresses. The mechanisms by which melatonin alleviates abiotic stresses are discussed. PMID:25124318

  7. Degradation of tyrosol by a novel electro-Fenton process using pyrite as heterogeneous source of iron catalyst.

    PubMed

    Ammar, Salah; Oturan, Mehmet A; Labiadh, Lazhar; Guersalli, Amor; Abdelhedi, Ridha; Oturan, Nihal; Brillas, Enric

    2015-05-01

    Tyrosol (TY) is one of the most abundant phenolic components of olive oil mill wastewaters. Here, the degradation of synthetic aqueous solutions of 0.30 mM TY was studied by a novel heterogeneous electro-Fenton (EF) process, so-called EF-pyrite, in which pyrite powder was the source of Fe(2+) catalyst instead of a soluble iron salt used in classical EF. Experiments were performed with a cell equipped with a boron-doped diamond anode and a carbon-felt cathode, where TY and its products were destroyed by hydroxyl radicals formed at the anode surface from water oxidation and in the bulk from Fenton's reaction between Fe(2+) and H2O2 generated at the cathode. Addition of 1.0 g L(-1) pyrite provided an easily adjustable pH to 3.0 and an appropriate 0.20 mM Fe(2+) to optimize the EF-pyrite treatment. The effect of current on mineralization rate, mineralization current efficiency and specific energy consumption was examined under comparable EF and EF-pyrite conditions. The performance of EF-pyrite was 8.6% superior at 50 mA due to self-regulation of soluble Fe(2+) by pyrite. The TY decay in this process followed a pseudo-first-order kinetics. The absolute rate constant for TY hydroxylation was 3.57 × 10(9) M(-1) s(-1), as determined by the competition kinetics method. Aromatic products like 3,4-dihydroxyphenylethanol, 4-hydroxyphenylacetic acid, 4-hydroxybenzoic acid, 3,4-dihydroxybenzoic acid and catechol, as well as o-benzoquinone, were identified by GC-MS and reversed-phase HPLC. Short-chain aliphatic carboxylic acids like maleic, glycolic, acetic, oxalic and formic were quantified by ion-exclusion HPLC. Oxalic acid was the major and most persistent product found. Based on detected intermediates, a plausible mineralization pathway for TY by EF-pyrite was proposed. PMID:25720669

  8. From ether to acid: A plausible degradation pathway of glycerol dialkyl glycerol tetraethers

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Lei; Birgel, Daniel; Elling, Felix J.; Sutton, Paul A.; Lipp, Julius S.; Zhu, Rong; Zhang, Chuanlun; Könneke, Martin; Peckmann, Jörn; Rowland, Steven J.; Summons, Roger E.; Hinrichs, Kai-Uwe

    2016-06-01

    Glycerol dialkyl glycerol tetraethers (GDGTs) are ubiquitous microbial lipids with extensive demonstrated and potential roles as paleoenvironmental proxies. Despite the great attention they receive, comparatively little is known regarding their diagenetic fate. Putative degradation products of GDGTs, identified as hydroxyl and carboxyl derivatives, were detected in lipid extracts of marine sediment, seep carbonate, hot spring sediment and cells of the marine thaumarchaeon Nitrosopumilus maritimus. The distribution of GDGT degradation products in environmental samples suggests that both biotic and abiotic processes act as sinks for GDGTs. More than a hundred newly recognized degradation products afford a view of the stepwise degradation of GDGT via (1) ether bond hydrolysis yielding hydroxyl isoprenoids, namely, GDGTol (glycerol dialkyl glycerol triether alcohol), GMGD (glycerol monobiphytanyl glycerol diether), GDD (glycerol dibiphytanol diether), GMM (glycerol monobiphytanol monoether) and bpdiol (biphytanic diol); (2) oxidation of isoprenoidal alcohols into corresponding carboxyl derivatives and (3) chain shortening to yield C39 and smaller isoprenoids. This plausible GDGT degradation pathway from glycerol ethers to isoprenoidal fatty acids provides the link to commonly detected head-to-head linked long chain isoprenoidal hydrocarbons in petroleum and sediment samples. The problematic C80 to C82 tetraacids that cause naphthenate deposits in some oil production facilities can be generated from H-shaped glycerol monoalkyl glycerol tetraethers (GMGTs) following the same process, as indicated by the distribution of related derivatives in hydrothermally influenced sediments.

  9. Environmental fate of roxarsone in poultry litter. I. Degradation of roxarsone during composting

    USGS Publications Warehouse

    Garbarino, J.R.; Bednar, A.J.; Rutherford, D.W.; Beyer, R.S.; Wershaw, R. L.

    2003-01-01

    Roxarsone, 3-nitro-4-hydroxyphenylarsonic acid, is an organoarsenic compound that is used extensively in the feed of broiler poultryto control coccidial intestinal parasites, improve feed efficiency, and promote rapid growth. Nearly all the roxarsone in the feed is excreted unchanged in the manure. Poultry litter composed of the manure and bedding material has a high nutrient content and is used routinely as a fertilizer on cropland and pasture. Investigations were conducted to determine the fate of poultrylitter roxarsone in the environment. Experiments indicated that roxarsone was stable in fresh dried litter; the primary arsenic species extracted with water from dried litter was roxarsone. However, when water was added to litter at about 50 wt % and the mixture was allowed to compost at 40 ??C, the speciation of arsenic shifted from roxarsone to primarily arsenate in about 30 days. Increasing the amount of water increased the rate of degradation. Experiments also suggested that the degradation process most likely was biotic in nature. The rate of degradation was directly proportional to the incubation temperature; heat sterilization eliminated the degradation. Biotic degradation also was supported by results from enterobacteriaceae growth media that were inoculated with litter slurry to enhance the biotic processes and to reduce the concomitant abiotic effects from the complex litter solution. Samples collected from a variety of litter windrows in Arkansas, Oklahoma, and Maryland also showed that roxarsone originally present had been converted to arsenate.

  10. Remediation of PAH-contaminated soil at a gas manufacturing plant by a combined two-phase partition system washing and microbial degradation process.

    PubMed

    Gong, Xuan; Xu, Xinyang; Gong, Zongqiang; Li, Xiaojun; Jia, Chunyun; Guo, Meixia; Li, Haibo

    2015-08-01

    The aim of this study was to design a remediation technique using both soil washing and microbial degradation to remove polycyclic aromatic hydrocarbons (PAHs) from contaminated soil. PAH biodegradation by inoculation of Mycobacterium sp. was first tested. The effectiveness of washing agents (Tween 80 solution, biodiesel, and a two-phase partition system (TPPS)) was then evaluated with column experiments. Third, the combination of TPPS washing and microbial degradation was studied. PAH bioavailability before and after biodegradation and the joint remediation was also assessed using hydroxypropyl-β-cyclodextrin (HPCD) extraction. Only phenanthrene and anthracene were noticeably biodegradable when the soil was inoculated with Mycobacterium sp. TPPS containing 2% (v/v) biodiesel and 2.5% (w/v) Tween 80 was used as the washing agent for the joint remediation test because it gave higher PAH extractions than Tween 80 solution with lower doses, and there was less residue in the soil. Joint TPPS washing and microbial degradation gave a total PAH removal of 92.6%, which was much higher than the results from either the biodegradation or washing experiments alone. Removals of all high molecular weight (HMW) PAHs were improved. Bioavailable concentrations of all PAHs decreased significantly after the joint remediation process, indicating that there were reduced risks from all PAHs. The results demonstrate that the combination of TPPS washing and microbial degradation is a useful and innovative process for remediation of PAH-contaminated soils. PMID:25874432

  11. Numerical and experimental study of the thermal degradation process during the atmospheric re-entry of a TiAl6V4 tank

    NASA Astrophysics Data System (ADS)

    Prévereaud, Y.; Vérant, J.-L.; Balat-Pichelin, M.; Moschetta, J.-M.

    2016-05-01

    To answer the question of space debris survivability during atmospheric entry ONERA uses its software named MUSIC/FAST. So, the first part of this paper is dedicated to the presentation of the ONERA tool and its validation by comparison with flight data and CFD computations. However, the influence of oxidation on the thermal degradation process and material properties in atmospheric entry conditions is still unknown. A second step is then devoted to the presentation of an experimental campaign investigating TA6V oxidation in atmospheric entry conditions, as the most of the debris found on ground are made of this material. Experiments have been realized using the MESOX facility implemented at the 6 kW solar furnace in PROMES-CNRS laboratory. Finally, an application of MUSIC/FAST is proposed on the atmospheric re-entry of a generic TA6V tank. Aiming at degradation assessment, a sensitive study to initial conditions is conducted. To complete computational analysis regarding degradation process by melting, a numerical analysis of the influence of oxidation on the thermal wall degradation during the tank atmospheric re-entry is presented as well.

  12. ROS-mediated abiotic stress-induced programmed cell death in plants

    PubMed Central

    Petrov, Veselin; Hille, Jacques; Mueller-Roeber, Bernd; Gechev, Tsanko S.

    2015-01-01

    During the course of their ontogenesis plants are continuously exposed to a large variety of abiotic stress factors which can damage tissues and jeopardize the survival of the organism unless properly countered. While animals can simply escape and thus evade stressors, plants as sessile organisms have developed complex strategies to withstand them. When the intensity of a detrimental factor is high, one of the defense programs employed by plants is the induction of programmed cell death (PCD). This is an active, genetically controlled process which is initiated to isolate and remove damaged tissues thereby ensuring the survival of the organism. The mechanism of PCD induction usually includes an increase in the levels of reactive oxygen species (ROS) which are utilized as mediators of the stress signal. Abiotic stress-induced PCD is not only a process of fundamental biological importance, but also of considerable interest to agricultural practice as it has the potential to significantly influence crop yield. Therefore, numerous scientific enterprises have focused on elucidating the mechanisms leading to and controlling PCD in response to adverse conditions in plants. This knowledge may help develop novel strategies to obtain more resilient crop varieties with improved tolerance and enhanced productivity. The aim of the present review is to summarize the recent advances in research on ROS-induced PCD related to abiotic stress and the role of the organelles in the process. PMID:25741354

  13. Comparison of biotic and abiotic treatment approaches for co-mingled perchlorate, nitrate, and nitramine explosives in groundwater

    NASA Astrophysics Data System (ADS)

    Schaefer, C. E.; Fuller, M. E.; Condee, C. W.; Lowey, J. M.; Hatzinger, P. B.

    2007-01-01

    Biological and abiotic approaches for treating co-mingled perchlorate, nitrate, and nitramine explosives in groundwater were compared in microcosm and column studies. In microcosms, microscale zero-valent iron (mZVI), nanoscale zero-valent iron (nZVI), and nickel catalyzed the reduction of RDX and HMX from initial concentrations of 9 and 1 mg/L, respectively, to below detection (0.02 mg/L), within 2 h. The mZVI and nZVI also degraded nitrate (3 mg/L) to below 0.4 mg/L, but none of the metal catalysts were observed to appreciably reduce perchlorate (˜ 5 mg/L) in microcosms. Perchlorate losses were observed after approximately 2 months in columns of aquifer solids treated with mZVI, but this decline appears to be the result of biodegradation rather than abiotic reduction. An emulsified vegetable oil substrate was observed to effectively promote the biological reduction of nitrate, RDX and perchlorate in microcosms, and all four target contaminants in the flow-through columns. Nitrate and perchlorate were biodegraded most rapidly, followed by RDX and then HMX, although the rates of biological reduction for the nitramine explosives were appreciably slower than observed for mZVI or nickel. A model was developed to compare contaminant degradation mechanisms and rates between the biotic and abiotic treatments.

  14. Soil microbial response to photo-degraded C60 fullerenes.

    PubMed

    Berry, Timothy D; Clavijo, Andrea P; Zhao, Yingcan; Jafvert, Chad T; Turco, Ronald F; Filley, Timothy R

    2016-04-01

    Recent studies indicate that while unfunctionalized carbon nanomaterials (CNMs) exhibit very low decomposition rates in soils, even minor surface functionalization (e.g., as a result of photochemical weathering) may accelerate microbial decay. We present results from a C60 fullerene-soil incubation study designed to investigate the potential links between photochemical and microbial degradation of photo-irradiated C60. Irradiating aqueous (13)C-labeled C60 with solar-wavelength light resulted in a complex mixture of intermediate products with decreased aromaticity. Although addition of irradiated C60 to soil microcosms had little effect on net soil respiration, excess (13)C in the respired CO2 demonstrates that photo-irradiating C60 enhanced its degradation in soil, with ∼ 0.78% of 60 day photo-irradiated C60 mineralized. Community analysis by DGGE found that soil microbial community structure was altered and depended on the photo-treatment duration. These findings demonstrate how abiotic and biotic transformation processes can couple to influence degradation of CNMs in the natural environment. PMID:26774781

  15. Dicofol degradation to p,p'-dichlorobenzophenone - a potential antiandrogen.

    PubMed

    Thiel, Anette; Guth, Sabine; Böhm, Sonja; Eisenbrand, Gerhard

    2011-04-11

    In the present investigation, the degradation of the acaricide dicofol (also known as kelthane) was investigated with special emphasis on generation of p,p'-dichlorobenzophenone (DCBP) under alkaline conditions as well as induced by UV-light. Dicofol was also incubated in the presence and absence of microsomal preparations to measure potential metabolic formation of DCBP. The results indicate that the degradation of dicofol to DCBP primarily proceeds as an abiotic process via hydroxide ion catalysed elimination of a trichloromethyl anion. The generated anion picks up a proton from the solvent to generate chloroform. Microsomal metabolism does not appear to play a major role in the degradation of dicofol. DCBP is structurally analogous to the antiandrogen p,p'-dichlorodiphenylethene (DDE). We therefore investigated whether DCBP displays antiandrogenic properties. In an in vitro transactivation system utilising transiently transfected African green monkey kidney (COS-7) cells, DCBP showed potent antiandrogenic efficacy. This finding was confirmed by further studies in T47D human mammary carcinoma cells by measuring mRNA and protein expression of androgen dependent genes i.e. TRMP-2 (testosterone-repressed prostate message-2) mRNA and PSA (prostate-specific antigen) protein. PMID:21291947

  16. Comparison of UV/hydrogen peroxide and UV/peroxydisulfate processes for the degradation of humic acid in the presence of halide ions.

    PubMed

    Lou, Xiaoyi; Xiao, Dongxue; Fang, Changling; Wang, Zhaohui; Liu, Jianshe; Guo, Yaoguang; Lu, Shuyu

    2016-03-01

    This study compared the behaviors of two classic advanced oxidation processes (AOPs), hydroxyl radical-based AOPs ((•)OH-based AOPs) and sulfate radical-based AOPs (SO4 (•-)-based AOPs), represented by UV/ hydrogen peroxide (H2O2) and UV/peroxydisulfate (PDS) systems, respectively, to degrade humic acid (HA) in the presence of halide ions (Cl(-) and Br(-)). The effects of different operational parameters, such as oxidant dosages, halide ions concentration, and pH on HA degradation were investigated in UV/H2O2/Cl(-), UV/PDS/Cl(-), UV/H2O2/Br(-), and UV/PDS/Br(-) processes. It was found that the oxidation capacity of H2O2 and PDS to HA degradation in the presence of halides was nearly in the same order. High dosage of peroxides would lead to an increase in HA removal while excess dosage would slightly inhibit the efficiency. Both Cl(-) and Br(-) would have depressing impact on the two AOPs, but the inhibiting effect of Br(-) was more obvious than that of Cl(-), even the concentration of Cl(-) was far above that of Br(-). The increasing pH would have an adverse effect on HA decomposition in UV/H2O2 system, whereas there was no significant impact of pH in UV/PDS process. Furthermore, infrared spectrometer was used to provide the information of degraded HA in UV/H2O2/Cl(-), UV/PDS/Cl(-), UV/H2O2/Br(-), and UV/PDS/Br(-) processes, and halogenated byproducts were identified in using GC-MS analysis in the four processes. The present research might have significant technical implications on water treatment using advanced oxidation technologies. PMID:26538259

  17. Solar photo-Fenton process on the abatement of antibiotics at a pilot scale: Degradation kinetics, ecotoxicity and phytotoxicity assessment and removal of antibiotic resistant enterococci.

    PubMed

    Michael, I; Hapeshi, E; Michael, C; Varela, A R; Kyriakou, S; Manaia, C M; Fatta-Kassinos, D

    2012-11-01

    This work investigated the application of a solar driven advanced oxidation process (solar photo-Fenton), for the degradation of antibiotics at low concentration level (μg L(-1)) in secondary treated domestic effluents at a pilot-scale. The examined antibiotics were ofloxacin (OFX) and trimethoprim (TMP). A compound parabolic collector (CPC) pilot plant was used for the photocatalytic experiments. The process was mainly evaluated by a fast and reliable analytical method based on a UPLC-MS/MS system. Solar photo-Fenton process using low iron and hydrogen peroxide doses ([Fe(2+)](0) = 5 mg L(-1); [H(2)O(2)](0) = 75 mg L(-1)) was proved to be an efficient method for the elimination of these compounds with relatively high degradation rates. The photocatalytic degradation of OFX and TMP with the solar photo-Fenton process followed apparent first-order kinetics. A modification of the first-order kinetic expression was proposed and has been successfully used to explain the degradation kinetics of the compounds during the solar photo-Fenton treatment. The results demonstrated the capacity of the applied advanced process to reduce the initial wastewater toxicity against the examined plant species (Sorghum saccharatum, Lepidium sativum, Sinapis alba) and the water flea Daphnia magna. The phytotoxicity of the treated samples, expressed as root growth inhibition, was higher compared to that observed on the inhibition of seed germination. Enterococci, including those resistant to OFX and TMP, were completely eliminated at the end of the treatment. The total cost of the full scale unit for the treatment of 150 m(3) day(-1) of secondary wastewater effluent was found to be 0.85 € m(-3). PMID:22901406

  18. Enhancing ethylbenzene vapors degradation in a hybrid system based on photocatalytic oxidation UV/TiO2-In and a biofiltration process.

    PubMed

    Hinojosa-Reyes, M; Rodríguez-González, V; Arriaga, S

    2012-03-30

    The use of hybrid processes for the continuous degradation of ethylbenzene (EB) vapors has been evaluated. The hybrid system consists of an UV/TiO(2)-In photooxidation coupled with a biofiltration process. Both the photocatalytic system using P25-Degussa or indium-doped TiO(2) catalysts and the photolytic process were performed at UV-wavelengths of 254 nm and 365 nm. The experiments were carried out in an annular plug flow photoreactor packed with granular perlite previously impregnated with the catalysts, and in a glass biofilter packed with perlite and inoculated with a microbial consortium. Both reactors were operated at an inlet loading rate of 127 g m(-3)h(-1). The greatest degradation rate of EB (0.414 ng m(-2)min(-1)) was obtained with the TiO(2)-In 1%/365 nm photocatalytic system. The elimination capacity (EC) obtained in the control biofilter had values ≈ 60 g m(-3)h(-1). Consequently, the coupled system was operated for 15 days, and a maximal EC of 275 g m(-3)h(-1). Thus, the results indicate that the use of hybrid processes enhanced the EB vapor degradation and that this could be a promising technology for the abatement of recalcitrant volatile organic compounds. PMID:22296707

  19. Kinetics study on the degradation of a model naphthenic acid by ethylenediamine-N,N'-disuccinic acid-modified Fenton process.

    PubMed

    Zhang, Ying; Klamerth, Nikolaus; Messele, Selamawit Ashagre; Chelme-Ayala, Pamela; Gamal El-Din, Mohamed

    2016-11-15

    Naphthenic acids (NAs) are reported to be the main species responsible for the oil sands process-affected water (OSPW) toxicity. In this study, the degradation of cyclohexanoic acid (CHA) as a model compound for NAs by an ethylenediamine-N,N'-disuccinic acid (EDDS)-modified Fenton process was investigated at pH 8. Optimum dose for Fe-EDDS (EDDS:Fe=2:1) was 0.45mM, and 2.94mM for hydrogen peroxide (H2O2). The time profiles of the main species in the process were studied, including CHA, H2O2, Fe(II), total Fe, and Fe-EDDS (in the main form of Fe(III)EDDS). The second-order rate constant between EDDS and hydroxyl radical (OH) at pH 8 was obtained as 2.48±0.43×10(9)M(-1)s(-1). OH was proved to be the main species responsible for the CHA degradation, while superoxide radical (O2(-)) played a minor role. The consecutive addition of H2O2 and Fe-EDDS led to a higher removal of CHA compared to that achieved by adding the reagents at a time. The half-wave potential of Fe(III/II)EDDS was measured at pH 7-9. The EDDS-modified Fenton process is a promising alternative to degrade NAs. PMID:27442987

  20. 14-3-3 proteins: Macro-regulators with great potential for improving abiotic stress tolerance in plants.

    PubMed

    Liu, Qing; Zhang, Shaohong; Liu, Bin

    2016-08-12

    14-3-3 proteins (14-3-3s) are highly conserved regulatory proteins that are uniquely eukaryotic, and deeply involved in protein-protein interactions that mediate diverse signaling pathways. In plants, 14-3-3s have been validated to regulate many biological processes, such as metabolism, light and hormone signaling, cell-cycle control and protein trafficking. Recent years we have also witnessed an increasing number of reports describing the functions of 14-3-3s in plant stress responses through interactions with key proteins in both biotic and abiotic stresses. In this review, we highlight the advances that have been made in investigating the roles of 14-3-3s in plant abiotic stress tolerance. These advances provide a framework for our understanding of how signals are integrated to perceive and respond to the abiotic stresses in plants. PMID:27233603

  1. Effect of height and orientation ( microclimate) on geomorphic degradation rates and processes, late-glacial terrace scarps in central Idaho

    USGS Publications Warehouse

    Pierce, K.L.; Colman, Steven M.

    1986-01-01

    Examines the effects of scarp size (height) and orientation (microclimate) by keeping constant variables such as age, lithology, and regional climate. For scarps 2m high, the degradation rate on S-facing scarps is 2 times that on N-facing scarps; for 10-m scarps, it is 5 times. Scarp morphology may be used to estimate age. -from Authors

  2. Degradation mechanism of Methyl Orange by electrochemical process on RuO(x)-PdO/Ti electrode.

    PubMed

    Du, Lin; Wu, Jin; Qin, Song; Hu, Changwei

    2011-01-01

    The electrochemical degradation of Methyl Orange in 0.1 M NaCl solution over RuO(x)-PdO/Ti anode was investigated. Chemical oxygen demand (COD), ion chromatography (IC), Fourier Transform Infrared Spectroscopy (FTIR) and Gas chromatography-mass spectrometry (GC-MS) were employed to detect the intermediates formed during the electrochemical degradation. In the present reaction system, Methyl Orange could be effectively degraded. After 1 h treatment, the discoloration could reach 97.9% with COD removal of 57.6%. The results indicated that in the presence of chloride, the electrolysis was able to oxidise the dye with partial mineralisation of carbon, nitrogen and sulfur into CO(2), NO(-)(3) and SO(2-)(4), respectively. After 8 h electrolysis, 62% of sulfur contained in Methyl Orange was transformed to SO(4)(2-), and 17.6% of nitrogen changed to NO(3)(-). The intermediates during electroprocess were detected to be low molecular weight compounds, chlorinated compounds, derivatives of benzene and long chain alkanes. Based on these data, a possible degradation mechanism of Methyl Orange was proposed. PMID:21508562

  3. Trichloroethene degradation by UV/H2O2 advanced oxidation process: product study and kinetic modeling.

    PubMed

    Li, Ke; Stefan, Mihaela I; Crittenden, John C

    2007-03-01

    The broadband UV irradiation of 1.1 mM trichloroethene (TCE) aqueous solution in the presence of 10.4 mM H2O2 resulted in formic, oxalic, dichloroacetic (DCA), and monochloroacetic (MCA) acids, as organic byproducts. The organic chlorine was converted completely to chloride ion as a final product. TCE and its degradation products were completely mineralized in 30 min, under a volume-averaged UV-C irradiant power of 35.7 W/L from a 1 kW medium-pressure mercury vapor arc lamp. TCE degraded primarily through hydroxyl radical-induced reactions and onlyto a low extentthrough direct UV photolysis and chlorine atom-induced chain reactions. The experimental patterns of TCE, H2O2, and detected reaction products combined with the literature information on radical reactions in the aqueous phase were used to postulate a degradation mechanism and to develop a kinetic model to predict the TCE decay, formation and degradation of byproducts, and pH and oxygen profiles. The agreement between the model calculations and the experimental data is satisfactory. PMID:17396662

  4. Degradation of a mixture of pollutants in water using the UV/H2O2 process.

    PubMed

    Mariani, M L; Labas, M D; Brandi, R J; Cassano, A E; Zalazar, C S

    2010-01-01

    The degradation reaction of a simple mixture of pollutants (dichloroacetic acid + formic acid) employing H2O2 and UVC radiation (253.7 nm) has been studied in a well-mixed reactor which operates inside a recycling system. The aim of this work is to develop a systematic methodology for treating degradation of mixtures of pollutants, starting from a rather manageable system to more complex aggregates. In this contribution,