Science.gov

Sample records for abiotic degradation rates

  1. Abiotic degradation rates for carbon tetrachloride and chloroform: Final report.

    SciTech Connect

    Amonette, James E.; Jeffers, Peter M.; Qafoku, Odeta; Russell, Colleen K.; Humphrys, Daniel R.; Wietsma, Thomas W.; Truex, Michael J.

    2012-12-01

    This report documents the objectives, technical approach, and progress made through FY 2012 on a project initiated in FY 2006 to help address uncertainties related to the rates of hydrolysis in groundwater for carbon tetrachloride (CT) and chloroform (CF). The project also sought to explore the possible effects of contact with minerals and sediment (i.e., heterogeneous hydrolysis) on these rates. We conducted 114 hydrolysis rate experiments in sealed vessels across a temperature range of 20-93 °C for periods as long as 6 years, and used the Arrhenius equation to estimate activation energies and calculate half-lives for typical Hanford groundwater conditions (temperature of 16 °C and pH of 7.75). We calculated a half-life of 630 years for hydrolysis for CT under these conditions and found that CT hydrolysis was unaffected by contact with sterilized, oxidized minerals or Hanford sediment within the sensitivity of our experiments. In contrast to CT, hydrolysis of CF was generally slower and very sensitive to pH due to the presence of both neutral and base-catalyzed hydrolysis pathways. We calculated a half-life of 3400 years for hydrolysis of CF in homogeneous solution at 16 °C and pH 7.75. Experiments in suspensions of Hanford sediment or smectite, the dominant clay mineral in Hanford sediment, equilibrated to an initial pH of 7.2, yielded calculated half-lives of 1700 years and 190 years, respectively, at 16 °C. Experiments with three other mineral phases at the same pH (muscovite mica, albite feldspar, and kaolinite) showed no change from the homogeneous solution results (i.e., a half-life of 3400 years). The strong influence of Hanford sediment on CF hydrolysis was attributed to the presence of smectite and its ability to adsorb protons, thereby buffering the solution pH at a higher level than would otherwise occur. The project also determined liquid-vapor partition coefficients for CT under the temperatures and pressures encountered in the sealed vessels that

  2. Abiotic Degradation Rates for Carbon Tetrachloride and Chloroform: Progress in FY 2010

    SciTech Connect

    Amonette, James E.; Jeffers, Peter M.; Qafoku, Odeta; Russell, Colleen K.; Humphrys, Daniel R.; Wietsma, Thomas W.; Truex, Michael J.

    2010-12-08

    This report documents the progress made through FY 2010 on a project initiated in FY 2006 to help address uncertainties related to the rates of hydrolysis in groundwater at the Hanford Site for carbon tetrachloride (CT) and chloroform (CF). The study also explores the possible effects of contact with minerals and sediment (i.e., heterogeneous hydrolysis) on these rates. The research was initiated to decrease the uncertainties in abiotic degradation rates of CT and chloroform CF associated with temperature and possible heterogeneous effects. After 2 years of data collection, the first evidence for heterogeneous effects was identified for hydrolysis of CT, and preliminary evidence for the effects of different mineral types on CF hydrolysis rates also was reported. The CT data showed no difference among mineral types, whereas significant differences were seen in the CF results, perhaps due to the fact that CF hydrolyzes by both neutral and base-catalyzed mechanisms whereas CT follows only the neutral hydrolysis path. In this report, we review the project objectives, organization, and technical approaches taken, update the status and results of the hydrolysis-rate experiments after 4 years of experimentation (i.e., through FY 2010), and provide a brief discussion of how these results add to scientific understanding of the behavior of the CT/CF plume at the Hanford Site.

  3. Butachlor degradation in tropical soils: effect of application rate, biotic-abiotic interactions and soil conditions.

    PubMed

    Pal, R; Das, P; Chakrabarti, K; Chakraborty, A; Chowdhury, A

    2006-01-01

    The degradative characteristics of butachlor (N-Butoxymethyl-2-chloro-2',6'-diethyla- cetanilide) were studied under controlled laboratory conditions in clay loam alluvial (AL) soil (Typic udifluvent) and coastal saline (CS) soil (Typic endoaquept) from rice cultivated fields. The application rates included field rate (FR), 2-times FR (2FR) and 10-times FR (10FR). The incubation study was carried out at 30 degrees C with and without decomposed cow manure (DCM) at 60% of maximum water holding capacity (WHC) and waterlogged soil condition. The half-life values depended on the soil types and initial concentrations of butachlor. Butachlor degraded faster in AL soil and in soil amended with DCM under waterlogged condition. Microbial degradation is the major avenue of butachlor degradation from soils.

  4. Abiotic Degradation Rates for Carbon Tetrachloride: and Chloroform: Progress in FY 2008

    SciTech Connect

    Amonette, James E.; Jeffers, Peter M.; Qafoku, Odeta; Russell, Colleen K.; Wietsma, Thomas W.; Truex, Michael J.

    2008-10-31

    This is a letter report summarizing work performed in FY2008 to determine the rates of carbon tetrachloride hydrolysis at temperatures close to actual groundwater temperatures. The report describes the project, the methodology, and the results obtained since the project's inception in FY2006. Measurements of hydrolysis rates in homogeneous solution have been completed for temperaturs of 70 C through 40 C, with additional data available at 30 C and 20 C. These results show no difference between the rates in deionized H2O and in filter-sterilized Hanford-Site groundwater. Moreover, the rates measured are 2-3 times slower than predicted from the open literature. Measurements of rates involving sterile suspensions of Hanford-Site sediment in Hanford-Site groundwater, however, show faster hydrolysis at temperatures below 40 C. Extrapolation of the current data available suggests a six-fold increase in rate would be expected at groundwater temperature of 16 C due to the presence of the sediment. This result translates into a 78-year half-life, rather than the 470-680 year half-life that would be predicted from rate determinations in homogeneous solution. The hydrolysis rate data at 20 C, in contrast to those at higher temperatures, are preliminary and have low statistical power. While significant (p < 0.05) differences between the heterogeneous and homogeneous systems are seen at 30 C, the results at 20 C are not statistically significant at this level due to limited data and the very slow nature of the reaction. More time is needed to collect data at these low temperatures to improve the statistical power of our observation. Given the critical need for hydrolysis rate data at temperatures relevant to groundwater systems, we have three recommendations for future work. First, we recommend a continuation of the sampling and analysis of the remaining long-term sealed-ampule experiments described in this report. These are primarily 20 C and 30 C experiments. The data at 20

  5. Abiotic Degradation Rates for Carbon Tetrachloride and Chloroform: Progress in FY2009

    SciTech Connect

    Amonette, James E.; Jeffers, Peter M.; Qafoku, Odeta; Russell, Colleen K.; Wietsma, Thomas W.; Truex, Michael J.

    2010-03-31

    This report documents the progress made through FY 2009 on a project initiated in FY 2006 to help address uncertainties related to the rates of hydrolysis in groundwater for carbon tetrachloride (CT) and chloroform (CF). The study seeks also to explore the possible effects of contact with minerals and sediment (i.e., heterogeneous hydrolysis) on these rates. In previous years the work was funded as two separate projects by various sponsors, all of whom received their funding from the U.S. Department of Energy (DOE). In FY2009, the projects were combined and funded by CH2MHill Plateau Remediation Corporation (CHPRC). Work in FY2009 was performed by staff at the Pacific Northwest National Laboratory (PNNL). Staff from the State University of New York at Cortland (SUNY–Cortland) contributed in previous years.

  6. Coupled Abiotic-Biotic Degradation of Bisphenol A

    NASA Astrophysics Data System (ADS)

    Im, J.; Prevatte, C.; Campagna, S. R.; Loeffler, F.

    2014-12-01

    Bisphenol A (BPA) is a ubiquitous environmental contaminant with weak estrogenic activity. BPA is readily biodegradable with oxygen available, but is recalcitrant to microbial degradation under anoxic conditions. However, BPA is susceptible to abiotic transformation under anoxic conditions. To better understand the fate of BPA in anoxic environments, the kinetics of BPA transformation by manganese oxide (d-MnO2) were investigated. BPA was rapidly transformed by MnO2 with a pseudo-first-order rate constant of 0.413 min-1. NMR and LC-MS analyses identified 4-hydroxycumyl alcohol (HCA) as a major intermediate. Up to 64% of the initial amount of BPA was recovered as HCA within 5 min, but the conversion efficiency decreased with time, suggesting that HCA was further degraded by MnO2. Further experiments confirmed that HCA was also susceptible to transformation by MnO2, albeit at 5-fold lower rates than BPA transformation. Mass balance approaches suggested that HCA was the major BPA transformation intermediate, but other compounds may also be formed. The abiotic transformation of BPA by MnO2 was affected by pH, and 10-fold higher transformation rates were observed at pH 4.5 than at pH 10. Compared to BPA, HCA has a lower octanol-water partitioning coefficient (Log Kow) of 0.76 vs 2.76 for BPA and a higher aqueous solubility of 2.65 g L-1 vs 0.31 g L-1 for BPA, suggesting higher mobility of HCA in the environment. Microcosms established with freshwater sediment materials collected from four geographically distinct locations and amended with HCA demonstrated rapid HCA biodegradation under oxic, but not under anoxic conditions. These findings suggest that BPA is not inert under anoxic conditions and abiotic reactions with MnO2 generate HCA, which has increased mobility and is susceptible to aerobic degradation. Therefore, coupled abiotic-biotic processes can affect the fate and longevity of BPA in terrestrial environments.

  7. Carbon isotopic fractionation of CFCs during abiotic and biotic degradation.

    PubMed

    Archbold, Marie E; Elliot, Trevor; Kalin, Robert M

    2012-02-01

    Carbon stable isotope ((13)C) fractionation in chlorofluorocarbon (CFC) compounds arising from abiotic (chemical) degradation using zero-valent iron (ZVI) and biotic (landfill gas attenuation) processes is investigated. Batch tests (at 25 °C) for CFC-113 and CFC-11 using ZVI show quantitative degradation of CFC-113 to HCFC-123a and CFC-1113 following pseudo-first-order kinetics corresponding to a half-life (τ(1/2)) of 20.5 h, and a ZVI surface-area normalized rate constant (k(SA)) of -(9.8 ± 0.5) × 10(-5) L m(-2) h(-1). CFC-11 degraded to trace HCFC-21 and HCFC-31 following pseudo-first-order kinetics corresponding to τ(1/2) = 17.3 h and k(SA) = -(1.2 ± 0.5) × 10(-4) L m(-2) h(-1). Significant kinetic isotope effects of ε(‰) = -5.0 ± 0.3 (CFC-113) and -17.8 ± 4.8 (CFC-11) were observed. Compound-specific carbon isotope analyses also have been used here to characterize source signatures of CFC gases (HCFC-22, CFC-12, HFC-134a, HCFC-142b, CFC-114, CFC-11, CFC-113) for urban (UAA), rural/remote (RAA), and landfill (LAA) ambient air samples, as well as in situ surface flux chamber (FLUX; NO FLUX) and landfill gas (LFG) samples at the Dargan Road site, Northern Ireland. The latter values reflect biotic degradation and isotopic fractionation in LFG production, and local atmospheric impact of landfill emissions through the cover. Isotopic fractionations of Δ(13)C ∼ -13‰ (HCFC-22), Δ(13)C ∼ -35‰ (CFC-12) and Δ(13)C ∼ -15‰ (CFC-11) were observed for LFG in comparison to characteristic solvent source signatures, with the magnitude of the isotopic effect for CFC-11 apparently similar to the kinetic isotope effect for (abiotic) ZVI degradation.

  8. ABIOTIC DEGRADATION OF TRICHLOROETHYLENE UNDER THERMAL REMEDIATION CONDITIONS

    EPA Science Inventory

    The degradation of TCE (C2HCl3) to carbon dioxide (CO2) and chloride (Cl-) has been reported to occur during thermal remediation of subsurface environments. The overall goal of this study was to evaluate abiotic degradation of TCE at el...

  9. Carbon isotopic fractionation of CFCs during abiotic and biotic degradation.

    PubMed

    Archbold, Marie E; Elliot, Trevor; Kalin, Robert M

    2012-02-01

    Carbon stable isotope ((13)C) fractionation in chlorofluorocarbon (CFC) compounds arising from abiotic (chemical) degradation using zero-valent iron (ZVI) and biotic (landfill gas attenuation) processes is investigated. Batch tests (at 25 °C) for CFC-113 and CFC-11 using ZVI show quantitative degradation of CFC-113 to HCFC-123a and CFC-1113 following pseudo-first-order kinetics corresponding to a half-life (τ(1/2)) of 20.5 h, and a ZVI surface-area normalized rate constant (k(SA)) of -(9.8 ± 0.5) × 10(-5) L m(-2) h(-1). CFC-11 degraded to trace HCFC-21 and HCFC-31 following pseudo-first-order kinetics corresponding to τ(1/2) = 17.3 h and k(SA) = -(1.2 ± 0.5) × 10(-4) L m(-2) h(-1). Significant kinetic isotope effects of ε(‰) = -5.0 ± 0.3 (CFC-113) and -17.8 ± 4.8 (CFC-11) were observed. Compound-specific carbon isotope analyses also have been used here to characterize source signatures of CFC gases (HCFC-22, CFC-12, HFC-134a, HCFC-142b, CFC-114, CFC-11, CFC-113) for urban (UAA), rural/remote (RAA), and landfill (LAA) ambient air samples, as well as in situ surface flux chamber (FLUX; NO FLUX) and landfill gas (LFG) samples at the Dargan Road site, Northern Ireland. The latter values reflect biotic degradation and isotopic fractionation in LFG production, and local atmospheric impact of landfill emissions through the cover. Isotopic fractionations of Δ(13)C ∼ -13‰ (HCFC-22), Δ(13)C ∼ -35‰ (CFC-12) and Δ(13)C ∼ -15‰ (CFC-11) were observed for LFG in comparison to characteristic solvent source signatures, with the magnitude of the isotopic effect for CFC-11 apparently similar to the kinetic isotope effect for (abiotic) ZVI degradation. PMID:22191586

  10. Biotic and abiotic degradation of CL-20 and RDX in soils.

    PubMed

    Crocker, Fiona H; Thompson, Karen T; Szecsody, James E; Fredrickson, Herbert L

    2005-01-01

    The caged cyclic nitramine 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) is a new explosive that has the potential to replace existing military explosives, but little is known about its environmental toxicity, transport, and fate. We quantified and compared the aerobic environmental fate of CL-20 to the widely used cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in surface and subsurface soil microcosms. Soil-free controls and biologically attenuated soil controls were used to separate abiotic processes from biologically mediated processes. Both abiotic and biological processes significantly degraded CL-20 in all soils examined. Apparent abiotic, first-order degradation rates (k) for CL-20 were not significantly different between soil-free controls (0.018 < k < 0.030 d(-1)) and biologically attenuated soil controls (0.003 < k < 0.277 d(-1)). The addition of glucose to biologically active soil microcosms significantly increased CL-20 degradation rates (0.068 < k < 1.22 d(-1)). Extents of mineralization of (14)C-CL-20 to (14)CO(2) in biologically active soil microcosms were 41.1 to 55.7%, indicating that the CL-20 cage was broken, since all carbons are part of the heterocyclic cage. Under aerobic conditions, abiotic degradation rates of RDX were generally slower (0 < k < 0.032 d(-1)) than abiotic CL-20 degradation rates. In biologically active soil microcosms amended with glucose aerobic RDX degradation rates varied between 0.010 and 0.474 d(-1). Biodegradation was a key factor in determining the environmental fate of RDX, while a combination of biotic and abiotic processes was important with CL-20. Our data suggest that CL-20 should be less recalcitrant than RDX in aerobic soils. PMID:16275722

  11. The abiotic degradation of soil organic matter to oxalic acid

    NASA Astrophysics Data System (ADS)

    Studenroth, Sabine; Huber, Stefan; Schöler, H. F.

    2010-05-01

    degradation of catechol to oxalic acid delivers a maximum yield of approximately 60 %, whereas the presence of chloride reduces the formation of oxalic acid to 30 %. Chloride possibly induces further competing reactions of catechol leading to a lower concentration of oxalic acid. Freeze-dried soil samples have been tested for production of oxalic acid, where the rate of organic matter seems to play an important role for the formation. By adding iron (III) and/or hydrogen peroxide oxalic acid yields increase, which demonstrates the reaction of soil organic matter with iron (III) and hydrogen peroxide as expected. Thus the natural abiotic formation of oxalic acid is confirmed. The results of the soil measurements are similar to those obtained with catechol. Therefore, the newly gained insights with model compounds appear to be applicable to soil conditions and these findings increase our understanding of the degradation pathways of soil organic matter. Furthermore an overview of the rates of oxalic acid formation of a variety of soil samples is shown and discussed in the light of different soil parameter.

  12. Biotic and Abiotic Degradation of CL-20 and RDX in Soils

    SciTech Connect

    Crocker, Fiona H.; Thompson, Karen T.; Szecsody, Jim E.; Fredrickson, Herbert L.

    2005-11-01

    The caged cyclic nitramine 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) is a new explosive that has the potential to replace existing military explosives, but little is known about its environmental toxicity, transport, and fate. We quantified and compared the aerobic environmental fate of CL-20 to the widely used cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in surface and subsurface soil microcosms. Soil-free controls and biologically mediated processes. Both abiotic and biological processes significantly degraded CL-20 in all soils examined. Apparent abiotic, first-order degradation rates (k) for CL-20 were not significantly different between soil-free controls (0.018 < k < 0.030 d-1) and biologically attenuated soil controls (0.003 degradation rates (0.068 < k <1.22 d-1). Extents of mineralization of 14C–CL-20 to 14CO2 in biologically active soil microcosms were 41.1 to 55.7%, indicating that the CL-20 cage was broken, since all carbons are part of the heterocyclic cage. Under aerobic conditions, abiotic degradation rates of RDX were generally slower (0 < k < 0.032 d-1) than abiotic CL-20 degradation rates. In biologically active soil microcosms amended with glucose aerobic RDX degradation rates varied between 0.010 and 0.474 d-1. Biodegradation was a key factor in determining the environmental fate of RDX, while a combination of biotic and abiotic processes was important with CL-20. Our data suggest that CL-20 should be less recalcitrant than RDX in aerobic soils.

  13. Abiotic/Biotic Degradation and Mineralization of N-Nitrosodimethylamine in Aquifer Sediments

    SciTech Connect

    Szecsody, James E.; McKinley, James P.; Breshears, Andrew T.; Crocker, Fiona H.

    2008-10-14

    The N-nitrosodimethylamine (NDMA) degradation rate and mineralization rate were measured in two aquifer sediments that received treatments to create oxic, reducing, and sequential reducing/oxic environments. Chemically reduced sediments rapidly abiotically degraded NDMA to nontoxic dimethylamine (DMA) to parts per trillion levels, then degraded to further products. NDMA was partially mineralized in reduced sediments (6 to 28 percent) at a slow rate (half-life 3,460 h) by an unknown abiotic/biotic pathway. In contrast, NDMA was mineralized more rapidly (half-life 342 h) and to a greater extent (30 to 81 percent) in oxic sediments with propane addition, likely by a propane monooxygenase pathway. NDMA mineralization in sequential reduced sediment followed by oxic sediment treatment did result in slightly more rapid mineralization and a greater mineralization extent relative to reduced systems. These increases were minor, so aerobic NDMA mineralization with oxygen and propane addition was the most viable in situ NDMA mineralization strategy.

  14. Abiotic degradation of methyl parathion by manganese dioxide: Kinetics and transformation pathway.

    PubMed

    Liao, Xiaoping; Zhang, Caixiang; Liu, Yuan; Luo, Yinwen; Wu, Sisi; Yuan, Songhu; Zhu, Zhenli

    2016-05-01

    Methyl parathion, a widely used insecticide around the world, has aroused gradually extensive concern of researchers due to its degradation product such as methyl paraoxon, with higher toxicity for mammals and more recalcitrant. Given the ubiquity of manganese dioxide (MnO2) in soils and aquatic sediments, the abiotic degradation of methyl parathion by α-MnO2 was investigated in batch experiments. It was found that methyl parathion was decomposed up to 90% by α-MnO2 in 30 h and the removal efficiency of methyl parathion depended strongly on the loading of α-MnO2 and pH value in the solution where the reactions followed pseudo-first-order model well. The coexisting metal ions (such as Ca(2+), Mg(2+) and Mn(2+)) weakened markedly the degradation of methyl parathion by α-MnO2. However, the effect of dissolved organic matter (HA-Na) on reaction rates presented two sides: to improve hydrolysis rate but deteriorate oxidation rate of methyl parathion. Based on the degradation products identified by gas chromatography-mass spectrometer (GC/MS) and liquid chromatography high-resolution mass spectrometer (LC/HRMS), both hydrolysis and oxidation processes were proposed to be two predominant reaction mechanisms contributing to methyl parathion degradation by α-MnO2. This study provided meaningful information to elucidate the abiotic dissipation of methyl parathion by manganese oxide minerals in the environment. PMID:26891361

  15. Abiotic degradation of methyl parathion by manganese dioxide: Kinetics and transformation pathway.

    PubMed

    Liao, Xiaoping; Zhang, Caixiang; Liu, Yuan; Luo, Yinwen; Wu, Sisi; Yuan, Songhu; Zhu, Zhenli

    2016-05-01

    Methyl parathion, a widely used insecticide around the world, has aroused gradually extensive concern of researchers due to its degradation product such as methyl paraoxon, with higher toxicity for mammals and more recalcitrant. Given the ubiquity of manganese dioxide (MnO2) in soils and aquatic sediments, the abiotic degradation of methyl parathion by α-MnO2 was investigated in batch experiments. It was found that methyl parathion was decomposed up to 90% by α-MnO2 in 30 h and the removal efficiency of methyl parathion depended strongly on the loading of α-MnO2 and pH value in the solution where the reactions followed pseudo-first-order model well. The coexisting metal ions (such as Ca(2+), Mg(2+) and Mn(2+)) weakened markedly the degradation of methyl parathion by α-MnO2. However, the effect of dissolved organic matter (HA-Na) on reaction rates presented two sides: to improve hydrolysis rate but deteriorate oxidation rate of methyl parathion. Based on the degradation products identified by gas chromatography-mass spectrometer (GC/MS) and liquid chromatography high-resolution mass spectrometer (LC/HRMS), both hydrolysis and oxidation processes were proposed to be two predominant reaction mechanisms contributing to methyl parathion degradation by α-MnO2. This study provided meaningful information to elucidate the abiotic dissipation of methyl parathion by manganese oxide minerals in the environment.

  16. Biotic and abiotic degradation of four cephalosporin antibiotics in a lake surface water and sediment.

    PubMed

    Jiang, Muxian; Wang, Lianhong; Ji, Rong

    2010-09-01

    Cephalosporins are widely used veterinary and human antibiotics, but their environmental fate and impacts are still unclear. We studied degradation of four cephalosporins (cefradine, cefuroxime, ceftriaxone, and cefepime) from each generation in the surface water and sediment of Lake Xuanwu, China. The four cephalosporins degraded abiotically in the surface water in the dark with half-lives of 2.7-18.7d, which were almost the same as that in sterilized surface water. Under exposure to simulated sunlight, the half-lives of the cephalosporins decreased significantly to 2.2-5.0d, with the maximal decrease for ceftriaxone from 18.7d in the dark to 4.1d under the light exposure. Effects of dissolved organic matter (DOM) and nitrate on photodegradation of the cephalosporins were compound-specific. While DOM (5 mg L(-1)) stimulated the photodegradation of only cefradine (by 9%) and cefepime (by 34%), nitrate (10 microM) had effects only on cefepime (stimulation by 13%). Elimination rates of the cephalosporins in oxic sediment (half-lives of 0.8-3.1d) were higher than in anoxic sediment (half-lives of 1.1-4.1d), mainly attributed to biodegradation. The data indicate that abiotic hydrolysis (for cefradine, cefuroxime, and cefepime) and direct photolysis (for ceftriaxone) were the primary processes for elimination of the cephalosporins in the surface water of the lake, whereas biodegradation was responsible for the elimination of the cephalosporins in the sediment. Further studies are needed on chemical structure, toxicity, and persistence of transformation products of the cephalosporins in the environment.

  17. Review of Abiotic Degradation of Chlorinated Solvents by Reactive Iron Minerals

    EPA Science Inventory

    Abiotic degradation of chlorinated solvents by reactive iron minerals such as iron sulfides, magnetite, green rust, and other Fe(II)-containing minerals has been observed in both laboratory and field conditions. These reactive iron minerals typically form under iron and sulfate ...

  18. DEMONSTRATION BULLETIN: METAL-ENHANCED ABIOTIC DEGRADATION TECHNOLOGY - ENVIROMETAL TECHNOLOGIES, INC.

    EPA Science Inventory

    EnviroMetal Technologies, Inc. (ETI), of Guelph, ON, Canada, has developed the metal-enhanced abiotic degradation technology to treat halogenated volatile organic compounds (VOC) in water. A reactive, zero-valent, granular iron medium causes reductive dehalogenation of VOCs yield...

  19. Factors controlling the abiotic photo-degradation of monomethylmercury in surface waters

    NASA Astrophysics Data System (ADS)

    Black, Frank J.; Poulin, Brett A.; Flegal, A. Russell

    2012-05-01

    Photo-decomposition is among the most important mechanisms responsible for degrading monomethylmercury (MMHg) in aquatic systems, but this process is not fully understood. We investigated the relative importance of different factors in controlling the rate of MMHg photo-decomposition in surface waters in experiments using DOM isolated from natural waters. We found no evidence of net abiotic production of MMHg in any dark or light exposed treatments. The average (mean ± s.d.) MMHg photo-decomposition rate constant for all light exposed samples using DOM concentrated from three coastal wetlands was 0.0099 ± 0.0020 E-1m2 (range of 0.006-0.015 E-1m2) when expressed in photon flux from 330-700 nm. This was roughly 3-fold higher than the average MMHg photo-decomposition rate constant in coastal seawater of 0.0032 ± 0.0010 E-1m2. MMHg photo-degradation was highly wavelength dependent. The ratio of MMHg photo-decomposition rate constants, with respect to photon flux, was 400:37:1 for UVB:UVA:PAR. However, when integrated across the entire water column over which MMHg photo-demethylation occurs, PAR was responsible for photo-degrading more MMHg than UVB and UVA combined in the three wetland sites because of the more rapid attenuation of UV light with depth. MMHg half-lives in the wetlands were calculated for the upper 250 cm where photo-degradation occurred, and ranged from 7.6 to 20 days under typical summer sunlight conditions at 37°N. Rates of MMHg photo-decomposition decreased with increasing salinity, and were 27% higher at a salinity of 5 than those at a salinity of 25. This difference could not be accounted for by changes in the complexation of MMHg by DOM and chloride. Differences in MMHg photo-degradation rate constants of up to 18% were measured between treatments using DOM concentrated from three different wetlands. Surprisingly, increasing DOM concentration from 1.5 to 11.3 mg OC L-1 had only a small (6%) effect on MMHg photo-decomposition, which was much

  20. The effect of soil mineral phases on the abiotic degradation of selected organic compounds. Final report, June 31, 1990--December 31, 1994

    SciTech Connect

    Sandhu, S.S.

    1994-12-31

    Funds were received from the United States Department of Energy to study the effects of soil mineral phases on the rates of abiotic degradation of tetraphenylborate (TPB) and diphenylboronic acid (DPBA). In addition to kaolinite and montmorillonite clay minerals, the role of goethite, corundum, manganite, and rutile in the degradation of organoborates was also evaluated. The effects of DPBA, argon, molecular dioxygen (O{sub 2}), temperature, and organic matter on the degradation of organoborates were also measured. The results indicated that TPB and DPBA degraded rapidly on the mineral surfaces. The initial products generated from the degradation of TPB were DPBA and biphenyl; however, further degradation resulted in the formation of phenylboric acid and phenol which persisted even after TPB disappeared. The data also showed that the rate of TPB degradation was faster in kaolinite, a 1:1 clay mineral, than in montmorillonite, a double layer mineral. The initial degradation of TPB by corundum was much higher than goethite, manganite and rutile. However, no further degradation by this mineral was observed where as the degradation of TPB continued by goethite and rutile minerals. Over all, the degradation rate of TPB was the highest for goethite as compared to the other metal oxide minerals. The degradation of TPB and DPBA was a redox reaction where metals (Fe, Al, Ti, Mn) acted as Lewis acids. DPBA and argon retarded the TPB degradation where as molecular oxygen organic matter and temperature increased the rate of TPB disappearance.

  1. Biotic and abiotic processes contribute to successful anaerobic degradation of cyanide by UASB reactor biomass treating brewery waste water.

    PubMed

    Novak, Domen; Franke-Whittle, Ingrid H; Pirc, Elizabeta Tratar; Jerman, Vesna; Insam, Heribert; Logar, Romana Marinšek; Stres, Blaž

    2013-07-01

    In contrast to the general aerobic detoxification of industrial effluents containing cyanide, anaerobic cyanide degradation is not well understood, including the microbial communities involved. To address this knowledge gap, this study measured anaerobic cyanide degradation and the rearrangements in bacterial and archaeal microbial communities in an upflow anaerobic sludge blanket (UASB) reactor biomass treating brewery waste water using bio-methane potential assays, molecular profiling, sequencing and microarray approaches. Successful biogas formation and cyanide removal without inhibition were observed at cyanide concentrations up to 5 mg l(-1). At 8.5 mg l(-1) cyanide, there was a 22 day lag phase in microbial activity, but subsequent methane production rates were equivalent to when 5 mg l(-1) was used. The higher cumulative methane production in cyanide-amended samples indicated that part of the biogas was derived from cyanide degradation. Anaerobic degradation of cyanide using autoclaved UASB biomass proceeded at a rate more than two times lower than when UASB biomass was not autoclaved, indicating that anaerobic cyanide degradation was in fact a combination of simultaneous abiotic and biotic processes. Phylogenetic analyses of bacterial and archaeal 16S rRNA genes for the first time identified and linked the bacterial phylum Firmicutes and the archaeal genus Methanosarcina sp. as important microbial groups involved in cyanide degradation. Methanogenic activity of unadapted granulated biomass was detected at higher cyanide concentrations than reported previously for the unadapted suspended biomass, making the aggregated structure and predominantly hydrogenotrophic nature of methanogenic community important features in cyanide degradation. The combination of brewery waste water and cyanide substrate was thus shown to be of high interest for industrial level anaerobic cyanide degradation.

  2. Stable carbon isotope analysis to distinguish biotic and abiotic degradation of 1,1,1-trichloroethane in groundwater sediments.

    PubMed

    Broholm, Mette M; Hunkeler, Daniel; Tuxen, Nina; Jeannottat, Simon; Scheutz, Charlotte

    2014-08-01

    The fate and treatability of 1,1,1-TCA by natural and enhanced reductive dechlorination was studied in laboratory microcosms. The study shows that compound-specific isotope analysis (CSIA) identified an alternative 1,1,1-TCA degradation pathway that cannot be explained by assuming biotic reductive dechlorination. In all biotic microcosms 1,1,1-TCA was degraded with no apparent increase in the biotic degradation product 1,1-DCA. 1,1,1-TCA degradation was documented by a clear enrichment in (13)C in all biotic microcosms, but not in the abiotic control, which suggests biotic or biotically mediated degradation. Biotic degradation by reductive dechlorination of 1,1-DCA to CA only occurred in bioaugmented microcosms and in donor stimulated microcosms with low initial 1,1,1-TCA or after significant decrease in 1,1,1-TCA concentration (after∼day 200). Hence, the primary degradation pathway for 1,1,1-TCA does not appear to be reductive dechlorination via 1,1-DCA. In the biotic microcosms, the degradation of 1,1,1-TCA occurred under iron and sulfate reducing conditions. Biotic reduction of iron and sulfate likely resulted in formation of FeS, which can abiotically degrade 1,1,1-TCA. Hence, abiotic degradation of 1,1,1-TCA mediated by biotic FeS formation constitute an explanation for the observed 1,1,1-TCA degradation. This is supported by a high 1,1,1-TCA (13)C enrichment factor consistent with abiotic degradation in biotic microcosms. 1,1-DCA carbon isotope field data suggest that this abiotic degradation of 1,1,1-TCA is a relevant process also at the field site. PMID:24559936

  3. Stable carbon isotope analysis to distinguish biotic and abiotic degradation of 1,1,1-trichloroethane in groundwater sediments.

    PubMed

    Broholm, Mette M; Hunkeler, Daniel; Tuxen, Nina; Jeannottat, Simon; Scheutz, Charlotte

    2014-08-01

    The fate and treatability of 1,1,1-TCA by natural and enhanced reductive dechlorination was studied in laboratory microcosms. The study shows that compound-specific isotope analysis (CSIA) identified an alternative 1,1,1-TCA degradation pathway that cannot be explained by assuming biotic reductive dechlorination. In all biotic microcosms 1,1,1-TCA was degraded with no apparent increase in the biotic degradation product 1,1-DCA. 1,1,1-TCA degradation was documented by a clear enrichment in (13)C in all biotic microcosms, but not in the abiotic control, which suggests biotic or biotically mediated degradation. Biotic degradation by reductive dechlorination of 1,1-DCA to CA only occurred in bioaugmented microcosms and in donor stimulated microcosms with low initial 1,1,1-TCA or after significant decrease in 1,1,1-TCA concentration (after∼day 200). Hence, the primary degradation pathway for 1,1,1-TCA does not appear to be reductive dechlorination via 1,1-DCA. In the biotic microcosms, the degradation of 1,1,1-TCA occurred under iron and sulfate reducing conditions. Biotic reduction of iron and sulfate likely resulted in formation of FeS, which can abiotically degrade 1,1,1-TCA. Hence, abiotic degradation of 1,1,1-TCA mediated by biotic FeS formation constitute an explanation for the observed 1,1,1-TCA degradation. This is supported by a high 1,1,1-TCA (13)C enrichment factor consistent with abiotic degradation in biotic microcosms. 1,1-DCA carbon isotope field data suggest that this abiotic degradation of 1,1,1-TCA is a relevant process also at the field site.

  4. Environmentally relevant impacts of nano-TiO2 on abiotic degradation of bisphenol A under sunlight irradiation.

    PubMed

    Wu, Wei; Shan, Guoqiang; Wang, Shanfeng; Zhu, Lingyan; Yue, Longfei; Xiang, Qian; Zhang, Yinqing; Li, Zhuo

    2016-09-01

    Understanding the effects of nano-TiO2 particles on the environmental behaviors of organic pollutants in natural aquatic environments is of paramount importance considering that large amount of nano-TiO2 is being released in the environment. In this study, the effect of nano-TiO2 on the degradation of bisphenol A (BPA) in water was investigated under simulated solar light irradiation. The results indicated that nano-TiO2 at environmentally relevant concentration (1 mg/L) could significantly facilitate the abiotic degradation of BPA (also at low concentration) under mild solar light irradiation, with the pseudo first-order rate constant (kobs) for BPA degradation raised by 1-2 orders of magnitude. As reflected by the inhibition experiments, hydroxyl radicals (OHs) and superoxide radical species were the predominant active species responsible for BPA degradation. The reaction was affected by water pH, and the degradation rate was higher at acidic or alkaline conditions than that at neutral condition. Humic acid (HA) also affected the reaction rate, depending on its concentration. At lower concentration (the mass ratio of HA/nano-TiO2 was 0.1:1), HA improved the dispersion and stability of nano-TiO2 in aquatic environment. As a result, the yield of OHs by nano-TiO2 under sunlight irradiation increased and BPA degradation was facilitated. When the HA concentration increased, a coating of HA formed on the surface of nano-TiO2. Although nano-TiO2 became more stable, the light absorption by nano-TiO2 was significantly reduced due to the strong light absorption of the HA coated on the surface. As a consequence, the yield of OH decreased and BPA degradation was depressed. The results imply that nano-TiO2 at low concentration may distinctly mediate BPA degradation, and can contribute to the natural attenuation of some organic pollutants in aquatic environment with low level of HA. However, this process would be significantly reduced in the presence of high level of HA. PMID

  5. Environmentally relevant impacts of nano-TiO2 on abiotic degradation of bisphenol A under sunlight irradiation.

    PubMed

    Wu, Wei; Shan, Guoqiang; Wang, Shanfeng; Zhu, Lingyan; Yue, Longfei; Xiang, Qian; Zhang, Yinqing; Li, Zhuo

    2016-09-01

    Understanding the effects of nano-TiO2 particles on the environmental behaviors of organic pollutants in natural aquatic environments is of paramount importance considering that large amount of nano-TiO2 is being released in the environment. In this study, the effect of nano-TiO2 on the degradation of bisphenol A (BPA) in water was investigated under simulated solar light irradiation. The results indicated that nano-TiO2 at environmentally relevant concentration (1 mg/L) could significantly facilitate the abiotic degradation of BPA (also at low concentration) under mild solar light irradiation, with the pseudo first-order rate constant (kobs) for BPA degradation raised by 1-2 orders of magnitude. As reflected by the inhibition experiments, hydroxyl radicals (OHs) and superoxide radical species were the predominant active species responsible for BPA degradation. The reaction was affected by water pH, and the degradation rate was higher at acidic or alkaline conditions than that at neutral condition. Humic acid (HA) also affected the reaction rate, depending on its concentration. At lower concentration (the mass ratio of HA/nano-TiO2 was 0.1:1), HA improved the dispersion and stability of nano-TiO2 in aquatic environment. As a result, the yield of OHs by nano-TiO2 under sunlight irradiation increased and BPA degradation was facilitated. When the HA concentration increased, a coating of HA formed on the surface of nano-TiO2. Although nano-TiO2 became more stable, the light absorption by nano-TiO2 was significantly reduced due to the strong light absorption of the HA coated on the surface. As a consequence, the yield of OH decreased and BPA degradation was depressed. The results imply that nano-TiO2 at low concentration may distinctly mediate BPA degradation, and can contribute to the natural attenuation of some organic pollutants in aquatic environment with low level of HA. However, this process would be significantly reduced in the presence of high level of HA.

  6. Recalcitrance and degradation of petroleum biomarkers upon abiotic and biotic natural weathering of Deepwater Horizon oil.

    PubMed

    Aeppli, Christoph; Nelson, Robert K; Radović, Jagoš R; Carmichael, Catherine A; Valentine, David L; Reddy, Christopher M

    2014-06-17

    Petroleum biomarkers such as hopanoids, steranes, and triaromatic steroids (TAS) are commonly used to investigate the source and fate of petroleum hydrocarbons in the environment based on the premise that these compounds are resistant to biotic and abiotic degradation. To test the validity of this premise in the context of the Deepwater Horizon disaster, we investigated changes to these biomarkers as induced by natural weathering of crude oil discharged from the Macondo Well (MW). For surface slicks collected from May to June in 2010, and other oiled samples collected on beaches in the northern Gulf of Mexico from July 2010 until August 2012, hopanoids with up to 31 carbons as well as steranes and diasteranes were not systematically affected by weathering processes. In contrast, TAS and C32- to C35-homohopanes were depleted in all samples relative to 17α(H),21β(H)-hopane (C30-hopane). Compared to MW oil, C35-homohopanes and TAS were depleted by 18 ± 10% and 36 ± 20%, respectively, in surface slicks collected from May to June 2010, and by 37 ± 9% and 67 ± 10%, respectively, in samples collected along beaches from April 2011 through August 2012. Based on patterns of relative losses of individual compounds, we hypothesize biodegradation and photooxidation as main degradation processes for homohopanes and TAS, respectively. This study highlights that (i) TAS and homohopanes can be degraded within several years following an oil spill, (ii) the use of homohopanes and TAS for oil spill forensics must account for degradation, and (iii) these compounds provide a window to parse biodegradation and photooxidation during advanced stages of oil weathering.

  7. Autophagy, a Conserved Mechanism for Protein Degradation, Responds to Heat, and Other Abiotic Stresses in Capsicum annuum L.

    PubMed Central

    Zhai, Yufei; Guo, Meng; Wang, Hu; Lu, Jinping; Liu, Jinhong; Zhang, Chong; Gong, Zhenhui; Lu, Minghui

    2016-01-01

    Abiotic stresses negatively affect plants growth and development by inducing protein denaturation, and autophagy degrades the damaged proteins to alleviate their toxicity, however, little is known about the involvement of autophagy in pepper (Capsicum annuum L.) tolerances to abiotic stresses. In this study, we identified autophagy-related gene (ATG) members in the whole genome of pepper by HMM method and analyzed their expression profiles in response to heat and other abiotic stresses by quantitative real-time PCR. The results showed that the CaATG contained 15 core ATG members including 29 ATG proteins with their respective conserved functional domains, involving the whole process of autophagy. Under normal environmental condition, the expression of CaATG genes showed tissue- and developmental stage-specific patterns, while under abiotic stresses of salt, drought, heat, cold and carbohydrate starvation, the accumulation of autophagosome punctate increased and the expression level of CaATG genes changed with stress type-dependent pattern, which indicates the linkage of autophagy in pepper response to abiotic stresses. After treated with heat stress, both the number of up-regulated CaATG genes and the increment of autophagosome punctate were higher in pepper thermotolerant line R9 than those in thermosensitive line B6, implying an association of autophagy with heat tolerance. In addition, CaATG6 was predicted to interact with CaHSP90 family members. Our study suggests that autophagy is connected to pepper tolerances to heat and other abiotic stresses. PMID:26904087

  8. Autophagy, a Conserved Mechanism for Protein Degradation, Responds to Heat, and Other Abiotic Stresses in Capsicum annuum L.

    PubMed

    Zhai, Yufei; Guo, Meng; Wang, Hu; Lu, Jinping; Liu, Jinhong; Zhang, Chong; Gong, Zhenhui; Lu, Minghui

    2016-01-01

    Abiotic stresses negatively affect plants growth and development by inducing protein denaturation, and autophagy degrades the damaged proteins to alleviate their toxicity, however, little is known about the involvement of autophagy in pepper (Capsicum annuum L.) tolerances to abiotic stresses. In this study, we identified autophagy-related gene (ATG) members in the whole genome of pepper by HMM method and analyzed their expression profiles in response to heat and other abiotic stresses by quantitative real-time PCR. The results showed that the CaATG contained 15 core ATG members including 29 ATG proteins with their respective conserved functional domains, involving the whole process of autophagy. Under normal environmental condition, the expression of CaATG genes showed tissue- and developmental stage-specific patterns, while under abiotic stresses of salt, drought, heat, cold and carbohydrate starvation, the accumulation of autophagosome punctate increased and the expression level of CaATG genes changed with stress type-dependent pattern, which indicates the linkage of autophagy in pepper response to abiotic stresses. After treated with heat stress, both the number of up-regulated CaATG genes and the increment of autophagosome punctate were higher in pepper thermotolerant line R9 than those in thermosensitive line B6, implying an association of autophagy with heat tolerance. In addition, CaATG6 was predicted to interact with CaHSP90 family members. Our study suggests that autophagy is connected to pepper tolerances to heat and other abiotic stresses.

  9. Measuring Degradation Rates Without Irradiance Data

    SciTech Connect

    Pulver, S.; Cormode, D.; Cronin, A.; Jordan, D.; Kurtz, S.; Smith, R.

    2011-02-01

    A method to report PV system degradation rates without using irradiance data is demonstrated. First, a set of relative degradation rates are determined by comparing daily AC final yields from a group of PV systems relative to the average final yield of all the PV systems. Then, the difference between relative and absolute degradation rates is found from a statistical analysis. This approach is verified by comparing to methods that utilize irradiance data. This approach is significant because PV systems are often deployed without irradiance sensors, so the analysis method described here may enable measurements of degradation using data that were previously thought to be unsuitable for degradation studies.

  10. Carbon and chlorine isotope analysis to identify abiotic degradation pathways of 1,1,1-trichloroethane.

    PubMed

    Palau, Jordi; Shouakar-Stash, Orfan; Hunkeler, Daniel

    2014-12-16

    This study investigates dual C-Cl isotope fractionation during 1,1,1-TCA transformation by heat-activated persulfate (PS), hydrolysis/dehydrohalogenation (HY/DH) and Fe(0). Compound-specific chlorine isotope analysis of 1,1,1-TCA was performed for the first time, and transformation-associated isotope fractionation ε bulk C and ε bulk Cl values were -4.0 ± 0.2‰ and no chlorine isotope fractionation with PS, -1.6 ± 0.2‰ and -4.7 ± 0.1‰ for HY/DH, -7.8 ± 0.4‰ and -5.2 ± 0.2‰ with Fe(0). Distinctly different dual isotope slopes (Δδ13C/Δδ37Cl): ∞ with PS, 0.33 ± 0.04 for HY/DH and 1.5 ± 0.1 with Fe(0) highlight the potential of this approach to identify abiotic degradation pathways of 1,1,1-TCA in the field. The trend observed with PS agreed with a C-H bond oxidation mechanism in the first reaction step. For HY/DH and Fe(0) pathways, different slopes were obtained although both pathways involve cleavage of a C-Cl bond in their initial reaction step. In contrast to the expected larger primary carbon isotope effects relative to chlorine for C-Cl bond cleavage, ε bulk C < ε bulk Cl was observed for HY/DH and in a similar range for reduction by Fe(0), suggesting the contribution of secondary chlorine isotope effects. Therefore, different magnitude of secondary chlorine isotope effects could at least be partly responsible for the distinct slopes between HY/DH and Fe(0) pathways. Following this dual isotope approach, abiotic transformation processes can unambiguously be identified and quantified.

  11. Photovoltaic Degradation Rates -- An Analytical Review

    SciTech Connect

    Jordan, D. C.; Kurtz, S. R.

    2012-06-01

    As photovoltaic penetration of the power grid increases, accurate predictions of return on investment require accurate prediction of decreased power output over time. Degradation rates must be known in order to predict power delivery. This article reviews degradation rates of flat-plate terrestrial modules and systems reported in published literature from field testing throughout the last 40 years. Nearly 2000 degradation rates, measured on individual modules or entire systems, have been assembled from the literature, showing a median value of 0.5%/year. The review consists of three parts: a brief historical outline, an analytical summary of degradation rates, and a detailed bibliography partitioned by technology.

  12. Formation of pristane from α-tocopherol under simulated anoxic sedimentary conditions: A combination of biotic and abiotic degradative processes

    NASA Astrophysics Data System (ADS)

    Rontani, Jean-François; Nassiry, Mina; Michotey, Valérie; Guasco, Sophie; Bonin, Patricia

    2010-01-01

    Incubation of intact and oxidized α-tocopherol (vitamin E) in anaerobic sediment slurries allowed us to demonstrate that, as previously suggested by Goossens et al. (1984), the degradation of α-tocopherol in anoxic sediments results in the formation of pristane. The conversion of α-tocopherol to this isoprenoid alkane involves a combination of biotic and abiotic degradative processes, i.e. the anaerobic biodegradation (which seems to be mainly induced by denitrifying bacteria) of trimeric structures resulting from the abiotic oxidation of α-tocopherol. On the basis of the results obtained, it is proposed that in the marine environment most of the α-tocopherol present in phytoplanktonic cells should be quickly degraded within the water column and the oxic zone of sediments by way of aerobic biodegradation, photo- and autoxidation processes. Abiotic transformation of this compound mainly results in the production of trimeric oxidation products, sufficiently stable to be incorporated into anoxic sediments and whose subsequent anaerobic bacterial degradation affords pristane. These results confirm that the ratio pristane to phytane cannot be used as an indicator of the oxicity of the environment of deposition; in contrast, they support the use of PFI (Pristane Formation Index) as a proxy for the state of diagenesis of sedimentary organic matter.

  13. A convenient model and program for the assessment of abiotic degradation of chemicals in natural waters

    SciTech Connect

    Frank, R.; Kloepffer, W.

    1989-06-01

    A convenient model for the estimation and comparison of rates of various degradation processes of chemicals in natural waters is described. The estimates are determined by combining physicochemical properties of the chemicals with properties of natural waters and solar photon irradiancies.

  14. Uncertainty Analysis for Photovoltaic Degradation Rates (Poster)

    SciTech Connect

    Jordan, D.; Kurtz, S.; Hansen, C.

    2014-04-01

    Dependable and predictable energy production is the key to the long-term success of the PV industry. PV systems show over the lifetime of their exposure a gradual decline that depends on many different factors such as module technology, module type, mounting configuration, climate etc. When degradation rates are determined from continuous data the statistical uncertainty is easily calculated from the regression coefficients. However, total uncertainty that includes measurement uncertainty and instrumentation drift is far more difficult to determine. A Monte Carlo simulation approach was chosen to investigate a comprehensive uncertainty analysis. The most important effect for degradation rates is to avoid instrumentation that changes over time in the field. For instance, a drifting irradiance sensor, which can be achieved through regular calibration, can lead to a substantially erroneous degradation rates. However, the accuracy of the irradiance sensor has negligible impact on degradation rate uncertainty emphasizing that precision (relative accuracy) is more important than absolute accuracy.

  15. Biotic and abiotic degradation of 1,1,2,2-tetrachloroethane in wetland sediments: Geochemical and microbial community analyses

    USGS Publications Warehouse

    Lorah, M.M.; Voytek, M.A.; Kirshtein, J.

    2000-01-01

    Additional microcosm experiments with the wetland sediment and groundwater at the Aberdeen Proving Ground, MD, site was presented to assist in elucidating the conditions under which these potentially competing biotic and abiotic degradation reactions for 1,1,2,2-tetrachloroethane (PCA) occur in the environment and to evaluate potential seasonal changes in degradation reactions. PCA concentration decreased to below detection within 21 days in the March 1999 experiment, while PCA was still present at day 35 in the July 1999 experiment. Compared to March 1999 experiment, peak concentrations of all daughter products except trichloroethylene (TCE) were delayed in the July 1999 experiment. The relative intensity of the peaks was directly related to the biomass present for each fragment length (bp, base pair). The relative intensities were lower in sediment collected in August 1999 than in March 1999, especially in the bp size range of ??? 160??-240??. These microbial community analyses, along with the geochemical analyses of the microcosms, provide evidence that abiotic production of TCE from PCA degradation is more significant under conditions of low bacterial biomass in the wetland sediments.

  16. Analytical Improvements in PV Degradation Rate Determination

    SciTech Connect

    Jordan, D. C.; Kurtz, S. R.

    2011-02-01

    As photovoltaic (PV) penetration of the power grid increases, it becomes vital to know how decreased power output may affect cost over time. In order to predict power delivery, the decline or degradation rates must be determined accurately. For non-spectrally corrected data several complete seasonal cycles (typically 3-5 years) are required to obtain reasonably accurate degradation rates. In a rapidly evolving industry such a time span is often unacceptable and the need exists to determine degradation rates accurately in a shorter period of time. Occurrence of outliers and data shifts are two examples of analytical problems leading to greater uncertainty and therefore to longer observation times. In this paper we compare three methodologies of data analysis for robustness in the presence of outliers, data shifts and shorter measurement time periods.

  17. Overview of Field Experience - Degradation Rates & Lifetimes

    SciTech Connect

    Jordan, Dirk; Kurtz, Sarah

    2015-09-14

    The way a PV module fails may depend not only on its design and the materials used in its construction, but also on the weather it experiences, the way it is mounted, and the quality control during its manufacture. This presentation gives an overview of Field Experience - what degradation rates and what lifetimes are being observed in various regions.

  18. Testing of the abiotic degradation of chemicals in the atmosphere: the smog chamber approach

    SciTech Connect

    Kloepffer, W.H.; Haag, F.; Kohl, E.G.; Frank, R.

    1988-06-01

    Methods for measuring the hydroxyl-, ozone-, and direct photochemical reactivity of a substance in one specially designed medium size smog chamber are described. Rate coefficients for the reaction of OH with n-hexane, n-heptane, ethene, ethyne, chloroform, trichloroethene, methanol, 2-propanol, benzene, o-xylene, 1,4-dichlorobenzene, 1,2,4-trichlorobenzene, p-chloroaniline, naphthalene, acenaphthene, 1,4-dichloronaphthalene, biphenyl, and fluorenone are given and discussed. An upper limit of 5 X 10(-13) cm3/sec is given for the sum penta- and hexa-chlorobiphenyls (PCB). Rate coefficients for the ozone reaction are given for beta-pinene, limonene, delta 3-carene, cineol, vinyl chloride and 1,3-butadiene. In cases where the literature data are available for comparison, the rate coefficients (kappa OH and kappa O3) reported here compare favorably with the best data reported. The direct photochemical reactivity has been shown to be measurable if the chamber is cleaned carefully. Preliminary results on benzophenone are reported. The methods described here, except that of direct photochemical reactivity, are in agreement with those proposed to OECD. Moreover, part of the Draft OECD Test Guideline (Berlin, 1987) on Photochemical-Oxidative Degradation in the Atmosphere is based on work described here and on closely related work in other laboratories.

  19. Abiotic and Biotic Degradation of Oxo-Biodegradable Plastic Bags by Pleurotus ostreatus

    PubMed Central

    da Luz, José Maria Rodrigues; Paes, Sirlaine Albino; Bazzolli, Denise Mara Soares; Tótola, Marcos Rogério; Demuner, Antônio Jacinto; Kasuya, Maria Catarina Megumi

    2014-01-01

    In this study, we evaluated the growth of Pleurotus ostreatus PLO6 using oxo-biodegradable plastics as a carbon and energy source. Oxo-biodegradable polymers contain pro-oxidants that accelerate their physical and biological degradation. These polymers were developed to decrease the accumulation of plastic waste in landfills. To study the degradation of the plastic polymers, oxo-biodegradable plastic bags were exposed to sunlight for up to 120 days, and fragments of these bags were used as substrates for P. ostreatus. We observed that physical treatment alone was not sufficient to initiate degradation. Instead, mechanical modifications and reduced titanium oxide (TiO2) concentrations caused by sunlight exposure triggered microbial degradation. The low specificity of lignocellulolytic enzymes and presence of endomycotic nitrogen-fixing microorganisms were also contributing factors in this process. PMID:25419675

  20. Abiotic and biotic degradation of oxo-biodegradable plastic bags by Pleurotus ostreatus.

    PubMed

    da Luz, José Maria Rodrigues; Paes, Sirlaine Albino; Bazzolli, Denise Mara Soares; Tótola, Marcos Rogério; Demuner, Antônio Jacinto; Kasuya, Maria Catarina Megumi

    2014-01-01

    In this study, we evaluated the growth of Pleurotus ostreatus PLO6 using oxo-biodegradable plastics as a carbon and energy source. Oxo-biodegradable polymers contain pro-oxidants that accelerate their physical and biological degradation. These polymers were developed to decrease the accumulation of plastic waste in landfills. To study the degradation of the plastic polymers, oxo-biodegradable plastic bags were exposed to sunlight for up to 120 days, and fragments of these bags were used as substrates for P. ostreatus. We observed that physical treatment alone was not sufficient to initiate degradation. Instead, mechanical modifications and reduced titanium oxide (TiO2) concentrations caused by sunlight exposure triggered microbial degradation. The low specificity of lignocellulolytic enzymes and presence of endomycotic nitrogen-fixing microorganisms were also contributing factors in this process.

  1. Carbon isotope effects associated with Fenton-like degradation of toluene: potential for differentiation of abiotic and biotic degradation.

    PubMed

    Ahad, Jason M E; Slater, Greg F

    2008-08-15

    Hydrogen peroxide (H(2)O(2))-mediated oxygenation to enhance subsurface aerobic biodegradation is a frequently employed remediation technique. However, it may be unclear whether observed organic contaminant mass loss is caused by biodegradation or chemical oxidation via hydroxyl radicals generated during catalyzed Fenton-like reactions. Compound-specific carbon isotope analysis has the potential to discriminate between these processes. Here we report laboratory experiments demonstrating no significant carbon isotope fractionation during Fenton-like hydroxyl radical oxidation of toluene. This implies that observation of significant isotopic fractionation of toluene at a site undergoing H(2)O(2)-mediated remediation would provide direct evidence of biodegradation. We applied this approach at a field site that had undergone 27 months of H(2)O(2)-mediated subsurface oxygenation. Despite substantial decreases (>68%) in groundwater toluene concentrations carbon isotope signatures of toluene (delta(13)C(tol)) showed no significant variation (mean=-27.5+/-0.3 per thousand, n=13) over a range of concentrations from 11.1 to 669.0 mg L(-1). Given that aerobic degradation by ring attack has also been shown to result in no significant isotopic fractionation during degradation, at this site we were unable to discern the mechanism of degradation. However, such differentiation is possible at sites where aerobic degradation by methyl group attack results in significant isotopic fractionation.

  2. The thiamine content of phytoplankton cells is affected by abiotic stress and growth rate.

    PubMed

    Sylvander, Peter; Häubner, Norbert; Snoeijs, Pauline

    2013-04-01

    Thiamine (vitamin B1) is produced by many plants, algae and bacteria, but by higher trophic levels, it must be acquired through the diet. We experimentally investigated how the thiamine content of six phytoplankton species belonging to five different phyla is affected by abiotic stress caused by changes in temperature, salinity and photon flux density. Correlations between growth rate and thiamine content per cell were negative for the five eukaryotic species, but not for the cyanobacterium Nodularia spumigena. We demonstrate a high variability in thiamine content among phytoplankton species, with the highest content in N. spumigena. Salinity was the factor with the strongest effect, followed by temperature and photon flux density, although the responses varied between the investigated phytoplankton species. Our results suggest that regime shifts in phytoplankton community composition through large-scale environmental changes has the potential to alter the thiamine availability for higher trophic levels. A decreased access to this essential vitamin may have serious consequences for aquatic food webs. PMID:23263236

  3. The effects of flow rate and concentration on nitrobenzene removal in abiotic and biotic zero-valent iron columns.

    PubMed

    Yin, Weizhao; Wu, Jinhua; Huang, Weilin; Li, Yongtao; Jiang, Gangbiao

    2016-08-01

    This study investigated the effects of varying nitrobenzene (NB) loadings via increasing flow rate or influent NB concentration mode on the removal efficiency in zero-valent iron (ZVI) columns sterilized (abiotic) or preloaded with acclimated microorganisms (biotic). It was shown that physical sequestration via adsorption/co-precipitation and reductive transformation of NB to aniline (AN) were the two major mechanisms for the NB removal in both abiotic and biotic ZVI columns. The NB removal efficiency decreased in both columns as the flow rate increased from 0.25 to 1.0mLmin(-1) whereas the AN recovery increased accordingly, with relatively high AN recovery observed at the flow rate of 1.0mLmin(-1). At the constant flow rate of 0.5mLmin(-1), increasing influent NB concentration from 80 to 400μmolL(-1) resulted in decreasing of the overall NB removal efficiency from 79.5 to 48.6% in the abiotic column and from 85.6 to 62.5% in the biotic column. The results also showed that the sequestration capacity and chemical reduction capacity were respectively 72% and 157.6% higher in the biotic column than in the abiotic column at the same tested hydraulic conditions and NB loadings. The optimal flow rates and influent NB concentrations were at 0.5mLmin(-1) and 80μmolL(-1) for the abiotic column and 2.0mLmin-1 and 240μmolL(-1) for the biotic column, respectively. This study indicated that microorganisms not only enhanced overall reduction of NB, but also facilitated NB sequestration within the porous media and that the optimal loading conditions for overall removal, sequestration, and reduction of NB may be different. Optimal operation conditions should be found for preferred sequestration or transformation (or both) of the target contaminants to meet different goals of groundwater remediation with the ZVI-PRB systems.

  4. The effects of flow rate and concentration on nitrobenzene removal in abiotic and biotic zero-valent iron columns.

    PubMed

    Yin, Weizhao; Wu, Jinhua; Huang, Weilin; Li, Yongtao; Jiang, Gangbiao

    2016-08-01

    This study investigated the effects of varying nitrobenzene (NB) loadings via increasing flow rate or influent NB concentration mode on the removal efficiency in zero-valent iron (ZVI) columns sterilized (abiotic) or preloaded with acclimated microorganisms (biotic). It was shown that physical sequestration via adsorption/co-precipitation and reductive transformation of NB to aniline (AN) were the two major mechanisms for the NB removal in both abiotic and biotic ZVI columns. The NB removal efficiency decreased in both columns as the flow rate increased from 0.25 to 1.0mLmin(-1) whereas the AN recovery increased accordingly, with relatively high AN recovery observed at the flow rate of 1.0mLmin(-1). At the constant flow rate of 0.5mLmin(-1), increasing influent NB concentration from 80 to 400μmolL(-1) resulted in decreasing of the overall NB removal efficiency from 79.5 to 48.6% in the abiotic column and from 85.6 to 62.5% in the biotic column. The results also showed that the sequestration capacity and chemical reduction capacity were respectively 72% and 157.6% higher in the biotic column than in the abiotic column at the same tested hydraulic conditions and NB loadings. The optimal flow rates and influent NB concentrations were at 0.5mLmin(-1) and 80μmolL(-1) for the abiotic column and 2.0mLmin-1 and 240μmolL(-1) for the biotic column, respectively. This study indicated that microorganisms not only enhanced overall reduction of NB, but also facilitated NB sequestration within the porous media and that the optimal loading conditions for overall removal, sequestration, and reduction of NB may be different. Optimal operation conditions should be found for preferred sequestration or transformation (or both) of the target contaminants to meet different goals of groundwater remediation with the ZVI-PRB systems. PMID:27093118

  5. QSARS for predicting biotic and abiotic reductive transformation rate constants of halogenated hydrocarbons in anoxic sediment systems

    SciTech Connect

    Peijnenburg, W.J.G.M.; 't Hart, M.J.; den Hollander, H.A.; van de Meent, D.; Verboom, H.H.

    1991-01-01

    Quantitative structure-activity relationships (QSARs) are developed relating biotic and abiotic pseudo-first-order disappearance rate constants of halogenated hydrocarbons in anoxic sediments to a number of readily available molecular descriptors. Based upon knowledge of the underlying reaction mechanisms, four descriptors were selected: carbon halogen bond strength, the summation of the Hammett (aromatics) and Taft (aliphatics) sigma constants and the inductive constants (aromatics) of the additional substituents, carbon-carbon bond dissociation energy (aliphatics), and steric factors of the additional substituents. Comparison of the abiotic and biotic QSARs clearly showed the close similarities between both processes. By correlating the rate constants for reduction of a number of halocarbons obtained in a number of distinct sediment samples to the organic carbon content of the samples, the QSARs were made operative for predicting rates of reduction of given halocarbons in given sediment-water systems. The correlations were enhanced by taking into account the fraction of the compounds sorbed to the solid phase. (Copyright (c) 1991 Elsevier Science Publishers B.V.)

  6. SENSITIVITY ANALYSIS OF A TPB DEGRADATION RATE MODEL

    SciTech Connect

    Crawford, C; Tommy Edwards, T; Bill Wilmarth, B

    2006-08-01

    A tetraphenylborate (TPB) degradation model for use in aggregating Tank 48 material in Tank 50 is developed in this report. The influential factors for this model are listed as the headings in the table below. A sensitivity study of the predictions of the model over intervals of values for the influential factors affecting the model was conducted. These intervals bound the levels of these factors expected during Tank 50 aggregations. The results from the sensitivity analysis were used to identify settings for the influential factors that yielded the largest predicted TPB degradation rate. Thus, these factor settings are considered as those that yield the ''worst-case'' scenario for TPB degradation rate for Tank 50 aggregation, and, as such they would define the test conditions that should be studied in a waste qualification program whose dual purpose would be the investigation of the introduction of Tank 48 material for aggregation in Tank 50 and the bounding of TPB degradation rates for such aggregations.

  7. Rate-based degradation modeling of lithium-ion cells

    SciTech Connect

    E.V. Thomas; I. Bloom; J.P. Christophersen; V.S. Battaglia

    2012-05-01

    Accelerated degradation testing is commonly used as the basis to characterize battery cell performance over a range of stress conditions (e.g., temperatures). Performance is measured by some response that is assumed to be related to the state of health of the cell (e.g., discharge resistance). Often, the ultimate goal of such testing is to predict cell life at some reference stress condition, where cell life is defined to be the point in time where performance has degraded to some critical level. These predictions are based on a degradation model that expresses the expected performance level versus the time and conditions under which a cell has been aged. Usually, the degradation model relates the accumulated degradation to the time at a constant stress level. The purpose of this article is to present an alternative framework for constructing a degradation model that focuses on the degradation rate rather than the accumulated degradation. One benefit of this alternative approach is that prediction of cell life is greatly facilitated in situations where the temperature exposure is not isothermal. This alternative modeling framework is illustrated via a family of rate-based models and experimental data acquired during calendar-life testing of high-power lithium-ion cells.

  8. The effect of soil mineral phases on the abiotic degradation of selected organic compounds. Progress report, June 31, 1990--May 31, 1993

    SciTech Connect

    Sandhu, S.S.

    1993-05-31

    Tetraphenylborate (TPB) is used to precipitate radioactive 137Cs from high-level nuclear waste water at the Defense Waste Processing Facility (DWPF) operated by the US DOE at the Savannah River Plant (SRP). The process is part of the procedure for the glassification of high-level nuclear waste in preparation for its long-term geological disposal. The decontaminated waste water contains millimolar quantities of TPB that will be processed into salt concretions. The transporation and use of large amounts of TPB can potentially result in the release of TPB into soil or aquatic environments. Previous study has shown that TPB degrades in soils to initially form diphenylborinic acid (DPBA) and biphenyl. DPBA appears to degrade further into other unidentified compounds which subsequently degrade into inorganic boron. The factors which promote the abiotic degradation of TPB need to be investigated since this chemical is used in the processing of radioactive wastes. TPB and its intermediate product, DPBA, have been reported to be toxic to microorganisms and plants, dependent on soil or water environments for their survival and growth.

  9. Accelerating degradation rate of pure iron by zinc ion implantation.

    PubMed

    Huang, Tao; Zheng, Yufeng; Han, Yong

    2016-12-01

    Pure iron has been considered as a promising candidate for biodegradable implant applications. However, a faster degradation rate of pure iron is needed to meet the clinical requirement. In this work, metal vapor vacuum arc technology was adopted to implant zinc ions into the surface of pure iron. Results showed that the implantation depth of zinc ions was about 60 nm. The degradation rate of pure iron was found to be accelerated after zinc ion implantation. The cytotoxicity tests revealed that the implanted zinc ions brought a slight increase on cytotoxicity of the tested cells. In terms of hemocompatibility, the hemolysis of zinc ion implanted pure iron was lower than 2%. However, zinc ions might induce more adhered and activated platelets on the surface of pure iron. Overall, zinc ion implantation can be a feasible way to accelerate the degradation rate of pure iron for biodegradable applications. PMID:27482462

  10. Accelerating degradation rate of pure iron by zinc ion implantation

    PubMed Central

    Huang, Tao; Zheng, Yufeng; Han, Yong

    2016-01-01

    Pure iron has been considered as a promising candidate for biodegradable implant applications. However, a faster degradation rate of pure iron is needed to meet the clinical requirement. In this work, metal vapor vacuum arc technology was adopted to implant zinc ions into the surface of pure iron. Results showed that the implantation depth of zinc ions was about 60 nm. The degradation rate of pure iron was found to be accelerated after zinc ion implantation. The cytotoxicity tests revealed that the implanted zinc ions brought a slight increase on cytotoxicity of the tested cells. In terms of hemocompatibility, the hemolysis of zinc ion implanted pure iron was lower than 2%. However, zinc ions might induce more adhered and activated platelets on the surface of pure iron. Overall, zinc ion implantation can be a feasible way to accelerate the degradation rate of pure iron for biodegradable applications. PMID:27482462

  11. Nitrogen fixation rates in algal turf communities of a degraded versus less degraded coral reef

    NASA Astrophysics Data System (ADS)

    den Haan, Joost; Visser, Petra M.; Ganase, Anjani E.; Gooren, Elfi E.; Stal, Lucas J.; van Duyl, Fleur C.; Vermeij, Mark J. A.; Huisman, Jef

    2014-12-01

    Algal turf communities are ubiquitous on coral reefs in the Caribbean and are often dominated by N2-fixing cyanobacteria. However, it is largely unknown (1) how much N2 is actually fixed by turf communities and (2) which factors affect their N2 fixation rates. Therefore, we compared N2 fixation activity by turf communities at different depths and during day and night-time on a degraded versus a less degraded coral reef site on the island of Curaçao. N2 fixation rates measured with the acetylene reduction assay were slightly higher in shallow (5-10-m depth) than in deep turf communities (30-m depth), and N2 fixation rates during the daytime significantly exceeded those during the night. N2 fixation rates by the turf communities did not differ between the degraded and less degraded reef. Both our study and a literature survey of earlier studies indicated that turf communities tend to have lower N2 fixation rates than cyanobacterial mats. However, at least in our study area, turf communities were more abundant than cyanobacterial mats. Our results therefore suggest that turf communities play an important role in the nitrogen cycle of coral reefs. N2 fixation by turfs may contribute to an undesirable positive feedback that promotes the proliferation of algal turf communities while accelerating coral reef degradation.

  12. Degradation rate of sodium fluoroacetate in three New Zealand soils.

    PubMed

    Northcott, Grant; Jensen, Dwayne; Ying, Lucia; Fisher, Penny

    2014-05-01

    The degradation rate of sodium fluoroacetate (SFA) was assessed in a laboratory microcosm study incorporating 3 New Zealand soil types under different temperature (5 °C, 10 °C, or 20 °C) and soil moisture (35% or 60% water holding capacity) conditions using guideline 307 from the Organisation for Economic Co-operation and Development. A combination of nonlabeled and radiolabeled (14) C-SFA was added to soil microcosms, with sampling and analysis protocols for soil, soil extracts, and evolved CO(2) established using liquid scintillation counting and liquid chromatography-mass spectrometry. Degradation products of SFA and their rates of formation were similar in the 3 soil types. The major degradation pathway for SFA was through microbial degradation to the hydroxyl metabolite, hydroxyacetic acid, and microbial mineralization to CO(2), which constituted the major transformation product. Temperature, rather than soil type or moisture content, was the dominant factor affecting the rate of degradation. Soil treatments incubated at 20 °C displayed a more rapid loss of (14)C-SFA residues than lower temperature treatments. The transformation half-life (DT50) of SFA in the 3 soils increased with decreasing temperature, varying from 6 d to 8 d at 20 °C, 10 d to 21 d at 10 °C, and 22 d to 43 d at 5 °C.

  13. Electrical conductivity as an indicator of iron reduction rates in abiotic and biotic systems

    NASA Astrophysics Data System (ADS)

    Regberg, Aaron; Singha, Kamini; Tien, Ming; Picardal, Flynn; Zheng, Quanxing; Schieber, Jurgen; Roden, Eric; Brantley, Susan L.

    2011-04-01

    Although changes in bulk electrical conductivity (σb) in aquifers have been attributed to microbial activity, σb has never been used to infer biogeochemical reaction rates quantitatively. To explore the use of electrical conductivity to measure reaction rates, we conducted iron oxide reduction experiments of increasing biological complexity. To quantify reaction rates, we propose composite reactions that incorporate the stoichiometry of five different types of reactions: redox, acid-base, sorption, dissolution/precipitation, and biosynthesis. In batch experiments and the early stages of a column experiment, such reaction stoichiometries inferred from a few chemical measurements allowed quantification of the Fe oxide reduction rate based on changes in electrical conductivity. The relationship between electrical conductivity and fluid chemistry did not hold during the latter stages of the column experiment when σb increased while fluid chemistry remained constant. Growth of an electrically conductive biofilm could possibly explain this late stage σb increase. The measured σb increase is consistent with a model proposed by analogy from percolation theory that attributes the increased conductivity to growth of biofilms with conductivity of ˜5.5 S m-1 in at least 3% of the column pore space. This work demonstrates that measurements of σb and flow rate, combined with a few direct chemical measurements, can be used to quantify biogeochemical reaction rates in controlled laboratory situations and may be able to detect the presence of biofilms. This approach may help in designing future field experiments to interpret biogeochemical reactivity from conductivity measurements.

  14. Degradation rates of glycerol polyesters at acidic and basic conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyesters prepared from glycerol with mixtures of adipic and citric acids were evaluated in the laboratory to estimate degradation rates over a range of pH conditions. These renewable polymers provide a market for glycerol that is generated during biodiesel production. The polyesters were prepared...

  15. EVALUATING DEGRADATION RATES OF CHLORINATED ORGANICS IN GROUNDWATER USING ANALYTICAL MODELS

    EPA Science Inventory

    The persistence and fate of organic contaminants in the environment largely depends on their rate of degradation. Most studies of degradation rate are performed in the lab where chemical conditions can be controlled precisely. Unfortunately, literature values for lab degradation ...

  16. Experimental pressure enhancement of the rate of homogenous methanogenesis: implications for abiotic methane yields in terrestrial and planetary environments

    NASA Astrophysics Data System (ADS)

    Lazar, C.; Cody, G. D.

    2011-12-01

    Abiotic methane may play a role in the development of a biosphere on an otherwise lifeless planet. Methane concentrations in fluids emanating from serpentinite-hosted submarine springs such as Rainbow and Logatchev are below that required for equilibrium with coexisting CO2 and H2, indicating that the compositions of such fluids may be kinetically-controlled. The presence of transition metal-bearing accessory minerals in serpentinites has led to the hypothesis that heterogeneous catalysis may influence the rate of methanogenesis. We present new experiments that show pressure can also significantly accelerate homogenous methanogenesis, i.e., methane production in the absence of mineral catalysts. A series of cold-seal experiments were performed from 1-3.5 kbar at 300C for two weeks, using dilute isotopically labeled formic acid as a carbon and hydrogen source (70mmol solution). The experiments showed a significant increase in 13CH4 yield with pressure: e.g., the yield at 3.5 kbar was ~20X the yield at 1 kbar. This pressure enhancement is consistent with our previous results on homogeneous and heterogeneous methanogenesis and suggests that mineral catalysts are not necessary for CH4 equilibration in high pressure environments such as Precambrian crystalline basements or regional blueschist-grade metamorphic systems. Furthermore, in hydrothermal systems wherein fluid residence times are too short to permit equilibration, the reaction progress of methanogenesis is expected to increase with pressure. Recently discovered methane plumes above the mid-Cayman trough have been attributed to methanogenesis in deep serpentinites-hosted springs. The current experimental results lead to the prediction that the mid-Cayman springs (>1 kbar) contain higher methane concentrations than their lower pressure analogues at Rainbow and Logatchev (<0.5kbar). Fluids escaping forearc serpentinization in cold, steeply-dipping subduction zones may yield more methane than in warm shallow

  17. Data Filtering Impact on PV Degradation Rates and Uncertainty (Poster)

    SciTech Connect

    Jordan, D. C.; Kurtz, S. R.

    2012-03-01

    To sustain the commercial success of photovoltaics (PV) it becomes vital to know how power output decreases with time. In order to predict power delivery, degradation rates must be determined accurately. Data filtering, any data treatment assessment of long-term field behavior, is discussed as part of a more comprehensive uncertainty analysis and can be one of the greatest sources of uncertainty in long-term performance studies. Several distinct filtering methods such as outlier removal and inclusion of only sunny days on several different metrics such as PVUSA, performance ratio, DC power to plane-of-array irradiance ratio, uncorrected, and temperature-corrected were examined. PVUSA showed the highest sensitivity while temperature-corrected power over irradiance ratio was found to be the least sensitive to data filtering conditions. Using this ratio it is demonstrated that quantification of degradation rates with a statistical accuracy of +/- 0.2%/year within 4 years of field data is possible on two crystalline silicon and two thin-film systems.

  18. DNA Profiling Success Rates from Degraded Skeletal Remains in Guatemala.

    PubMed

    Johnston, Emma; Stephenson, Mishel

    2016-07-01

    No data are available regarding the success of DNA Short Tandem Repeat (STR) profiling from degraded skeletal remains in Guatemala. Therefore, DNA profiling success rates relating to 2595 skeletons from eleven cases at the Forensic Anthropology Foundation of Guatemala (FAFG) are presented. The typical postmortem interval was 30 years. DNA was extracted from bone powder and amplified using Identifiler and Minifler. DNA profiling success rates differed between cases, ranging from 50.8% to 7.0%, the overall success rate for samples was 36.3%. The best DNA profiling success rates were obtained from femur (36.2%) and tooth (33.7%) samples. DNA profiles were significantly better from lower body bones than upper body bones (p = <0.0001). Bone samples from males gave significantly better profiles than samples from females (p = <0.0001). These results are believed to be related to bone density. The findings are important for designing forensic DNA sampling strategies in future victim recovery investigations. PMID:27364268

  19. DNA Profiling Success Rates from Degraded Skeletal Remains in Guatemala.

    PubMed

    Johnston, Emma; Stephenson, Mishel

    2016-07-01

    No data are available regarding the success of DNA Short Tandem Repeat (STR) profiling from degraded skeletal remains in Guatemala. Therefore, DNA profiling success rates relating to 2595 skeletons from eleven cases at the Forensic Anthropology Foundation of Guatemala (FAFG) are presented. The typical postmortem interval was 30 years. DNA was extracted from bone powder and amplified using Identifiler and Minifler. DNA profiling success rates differed between cases, ranging from 50.8% to 7.0%, the overall success rate for samples was 36.3%. The best DNA profiling success rates were obtained from femur (36.2%) and tooth (33.7%) samples. DNA profiles were significantly better from lower body bones than upper body bones (p = <0.0001). Bone samples from males gave significantly better profiles than samples from females (p = <0.0001). These results are believed to be related to bone density. The findings are important for designing forensic DNA sampling strategies in future victim recovery investigations.

  20. Quantitative response relationships between degradation rates and functional genes during the degradation of beta-cypermethrin in soil.

    PubMed

    Yang, Zhong-Hua; Ji, Guo-Dong

    2015-12-15

    In the present study, the degradation mechanisms of beta-cypermethrin and its metabolites in soil were explored through the quantitative response relationships between the degradation rates and related functional genes. We found that the degradation rate of beta-cypermethrin was rapid in unsterilized soil but not in sterilized soil, which indicated that the degradation process is microbially based. Moreover, three metabolites (3-phenoxybenzoic acid, phenol and protocatechuic acid) were detected during the degradation process and used to identify the degradation pathway and functional genes related to the degradation process. The key rate-limiting functional genes were pytH and pobA, and the relative contributions of these genes to the degradation process were examined with a path analysis. The path analysis revealed that the genes pobA and pytH had the greatest direct effects on the degradation of beta-cypermethrin (pobA), alpha-cypermethrin (pobA), theta-cypermethrin (pytH) and 3-phenoxybenzoic acid (pytH).

  1. Effect of cyclodextrins on the degradation rate of benzylpenicillin.

    PubMed

    Popielec, A; Fenyvesi, É; Yannakopoulou, K; Loftsson, T

    2016-02-01

    The effect of cyclodextrin (CD) inclusion complexes on the degradation of benzylpenicillin in aqueous solutions was investigated at several different pH values and 37°C. The effects of neutral as well as both positively and negatively charged CDs were evaluated; all together 13 different CDs. Kinetic studies with HPβCD and RMβCD at pH ranging from 1.2 to 9.6 showed that CDs have stabilizing effect on the β-lactam ring in aqueous acidic media but generally accelerated the hydrolytic cleavage of the β-lactam ring in neutral and basic media. At physiologic pH (pH 7.4) quaternary ammonium CD derivatives (i.e., positively charged CD derivatives) have the highest catalytic effect, resulting in 6- to 18-fold enhancement of hydrolysis rate, while both the neutral methylated CDs had much less effect, resulting in 2- to 3-fold enhancement, and the negatively charged CD derivatives, resulting in only about 1.1- to 1.2-fold enhancement in the hydrolytic cleavage of the β-lactam ring. Addition of water-soluble polymers to the aqueous reaction media containing CDs was shown to decrease the catalyzing effects of CDs on the β-lactam hydrolysis. PMID:27004370

  2. Effect of cyclodextrins on the degradation rate of benzylpenicillin.

    PubMed

    Popielec, A; Fenyvesi, É; Yannakopoulou, K; Loftsson, T

    2016-02-01

    The effect of cyclodextrin (CD) inclusion complexes on the degradation of benzylpenicillin in aqueous solutions was investigated at several different pH values and 37°C. The effects of neutral as well as both positively and negatively charged CDs were evaluated; all together 13 different CDs. Kinetic studies with HPβCD and RMβCD at pH ranging from 1.2 to 9.6 showed that CDs have stabilizing effect on the β-lactam ring in aqueous acidic media but generally accelerated the hydrolytic cleavage of the β-lactam ring in neutral and basic media. At physiologic pH (pH 7.4) quaternary ammonium CD derivatives (i.e., positively charged CD derivatives) have the highest catalytic effect, resulting in 6- to 18-fold enhancement of hydrolysis rate, while both the neutral methylated CDs had much less effect, resulting in 2- to 3-fold enhancement, and the negatively charged CD derivatives, resulting in only about 1.1- to 1.2-fold enhancement in the hydrolytic cleavage of the β-lactam ring. Addition of water-soluble polymers to the aqueous reaction media containing CDs was shown to decrease the catalyzing effects of CDs on the β-lactam hydrolysis.

  3. A combination of gene expression ranking and co-expression network analysis increases discovery rate in large-scale mutant screens for novel Arabidopsis thaliana abiotic stress genes.

    PubMed

    Ransbotyn, Vanessa; Yeger-Lotem, Esti; Basha, Omer; Acuna, Tania; Verduyn, Christoph; Gordon, Michal; Chalifa-Caspi, Vered; Hannah, Matthew A; Barak, Simon

    2015-05-01

    As challenges to food security increase, the demand for lead genes for improving crop production is growing. However, genetic screens of plant mutants typically yield very low frequencies of desired phenotypes. Here, we present a powerful computational approach for selecting candidate genes for screening insertion mutants. We combined ranking of Arabidopsis thaliana regulatory genes according to their expression in response to multiple abiotic stresses (Multiple Stress [MST] score), with stress-responsive RNA co-expression network analysis to select candidate multiple stress regulatory (MSTR) genes. Screening of 62 T-DNA insertion mutants defective in candidate MSTR genes, for abiotic stress germination phenotypes yielded a remarkable hit rate of up to 62%; this gene discovery rate is 48-fold greater than that of other large-scale insertional mutant screens. Moreover, the MST score of these genes could be used to prioritize them for screening. To evaluate the contribution of the co-expression analysis, we screened 64 additional mutant lines of MST-scored genes that did not appear in the RNA co-expression network. The screening of these MST-scored genes yielded a gene discovery rate of 36%, which is much higher than that of classic mutant screens but not as high as when picking candidate genes from the co-expression network. The MSTR co-expression network that we created, AraSTressRegNet is publicly available at http://netbio.bgu.ac.il/arnet. This systems biology-based screening approach combining gene ranking and network analysis could be generally applicable to enhancing identification of genes regulating additional processes in plants and other organisms provided that suitable transcriptome data are available. PMID:25370817

  4. A combination of gene expression ranking and co-expression network analysis increases discovery rate in large-scale mutant screens for novel Arabidopsis thaliana abiotic stress genes.

    PubMed

    Ransbotyn, Vanessa; Yeger-Lotem, Esti; Basha, Omer; Acuna, Tania; Verduyn, Christoph; Gordon, Michal; Chalifa-Caspi, Vered; Hannah, Matthew A; Barak, Simon

    2015-05-01

    As challenges to food security increase, the demand for lead genes for improving crop production is growing. However, genetic screens of plant mutants typically yield very low frequencies of desired phenotypes. Here, we present a powerful computational approach for selecting candidate genes for screening insertion mutants. We combined ranking of Arabidopsis thaliana regulatory genes according to their expression in response to multiple abiotic stresses (Multiple Stress [MST] score), with stress-responsive RNA co-expression network analysis to select candidate multiple stress regulatory (MSTR) genes. Screening of 62 T-DNA insertion mutants defective in candidate MSTR genes, for abiotic stress germination phenotypes yielded a remarkable hit rate of up to 62%; this gene discovery rate is 48-fold greater than that of other large-scale insertional mutant screens. Moreover, the MST score of these genes could be used to prioritize them for screening. To evaluate the contribution of the co-expression analysis, we screened 64 additional mutant lines of MST-scored genes that did not appear in the RNA co-expression network. The screening of these MST-scored genes yielded a gene discovery rate of 36%, which is much higher than that of classic mutant screens but not as high as when picking candidate genes from the co-expression network. The MSTR co-expression network that we created, AraSTressRegNet is publicly available at http://netbio.bgu.ac.il/arnet. This systems biology-based screening approach combining gene ranking and network analysis could be generally applicable to enhancing identification of genes regulating additional processes in plants and other organisms provided that suitable transcriptome data are available.

  5. Degradation of biomacromolecules during high-rate composting of wheat straw-amended feces.

    PubMed

    Veeken, A H; Adani, F; Nierop, K G; de Jager, P A; Hamelers, H V

    2001-01-01

    Pig (Sus scrofa) feces, separately collected and amended with wheat straw, was composted in a tunnel reactor connected with a cooler. The composting process was monitored for 4 wk and the degradation of organic matter was studied by two chemical extraction methods, 13C cross polarization magic angle spinning (CPMAS) nuclear magnetic resonance (NMR) and pyrolysis gas chromatography-mass spectrometry (GC-MS). Wet-chemical extraction methods were not adequate to study the degradation of specific organic compounds as the extraction reagents did not give selective separation of hemicellulose, cellulose, proteins, and lignins. A new method was proposed to calculate the contribution of four biomacromolecules (aliphatics, proteins, polysaccharides, and lignin) from the 13C CPMAS NMR spectrum. Pyrolysis GC-MS allowed identification of the composition of the biomacromolecules. The biomacromolecules showed different rates of degradation during composting. High initial degradation rates of aliphatics, hemicellulose, and proteins were observed, where aliphatics were completely degraded and hemicellulose and proteins were partly recalcitrant during the four weeks of composting. The degradation rate of cellulose was much lower and degradation was not completed within the four weeks of composting. Lignin was not degraded during the thermophilic stage of composting but started to degrade slowly during the mesophilic stage. A combination of 13C CPMAS NMR and pyrolysis GC-MS gave good qualitative and semiquantitative assessments of the degradation of biomacromolecules during composting.

  6. The Arabidopsis Abiotic Stress-Induced TSPO-Related Protein Reduces Cell-Surface Expression of the Aquaporin PIP2;7 through Protein-Protein Interactions and Autophagic Degradation[C][W][OPEN

    PubMed Central

    Hachez, Charles; Veljanovski, Vasko; Reinhardt, Hagen; Guillaumot, Damien; Vanhee, Celine; Chaumont, François

    2014-01-01

    The Arabidopsis thaliana multi-stress regulator TSPO is transiently induced by abiotic stresses. The final destination of this polytopic membrane protein is the Golgi apparatus, where its accumulation is strictly regulated, and TSPO is downregulated through a selective autophagic pathway. TSPO-related proteins regulate the physiology of the cell by generating functional protein complexes. A split-ubiquitin screen for potential TSPO interacting partners uncovered a plasma membrane aquaporin, PIP2;7. Pull-down assays and fluorescence imaging approaches revealed that TSPO physically interacts with PIP2;7 at the endoplasmic reticulum and Golgi membranes in planta. Intriguingly, constitutive expression of fluorescently tagged PIP2;7 in TSPO-overexpressing transgenic lines resulted in patchy distribution of the fluorescence, reminiscent of the pattern of constitutively expressed yellow fluorescent protein-TSPO in Arabidopsis. Mutational stabilization of TSPO or pharmacological inhibition of the autophagic pathway affected concomitantly the detected levels of PIP2;7, suggesting that the complex containing both proteins is degraded through the autophagic pathway. Coexpression of TSPO and PIP2;7 resulted in decreased levels of PIP2;7 in the plasma membrane and abolished the membrane water permeability mediated by transgenic PIP2;7. Taken together, these data support a physiological role for TSPO in regulating the cell-surface expression of PIP2;7 during abiotic stress conditions through protein-protein interaction and demonstrate an aquaporin regulatory mechanism involving TSPO. PMID:25538184

  7. The Arabidopsis abiotic stress-induced TSPO-related protein reduces cell-surface expression of the aquaporin PIP2;7 through protein-protein interactions and autophagic degradation.

    PubMed

    Hachez, Charles; Veljanovski, Vasko; Reinhardt, Hagen; Guillaumot, Damien; Vanhee, Celine; Chaumont, François; Batoko, Henri

    2014-12-01

    The Arabidopsis thaliana multi-stress regulator TSPO is transiently induced by abiotic stresses. The final destination of this polytopic membrane protein is the Golgi apparatus, where its accumulation is strictly regulated, and TSPO is downregulated through a selective autophagic pathway. TSPO-related proteins regulate the physiology of the cell by generating functional protein complexes. A split-ubiquitin screen for potential TSPO interacting partners uncovered a plasma membrane aquaporin, PIP2;7. Pull-down assays and fluorescence imaging approaches revealed that TSPO physically interacts with PIP2;7 at the endoplasmic reticulum and Golgi membranes in planta. Intriguingly, constitutive expression of fluorescently tagged PIP2;7 in TSPO-overexpressing transgenic lines resulted in patchy distribution of the fluorescence, reminiscent of the pattern of constitutively expressed yellow fluorescent protein-TSPO in Arabidopsis. Mutational stabilization of TSPO or pharmacological inhibition of the autophagic pathway affected concomitantly the detected levels of PIP2;7, suggesting that the complex containing both proteins is degraded through the autophagic pathway. Coexpression of TSPO and PIP2;7 resulted in decreased levels of PIP2;7 in the plasma membrane and abolished the membrane water permeability mediated by transgenic PIP2;7. Taken together, these data support a physiological role for TSPO in regulating the cell-surface expression of PIP2;7 during abiotic stress conditions through protein-protein interaction and demonstrate an aquaporin regulatory mechanism involving TSPO.

  8. Hydroxide based Benzyltrimethylammonium degradation: Quantification of rates and degradation technique development

    DOE PAGES

    Sturgeon, Matthew R.; Macomber, Clay S.; Engtrakul, Chaiwat; Long, Hai; Pivovar, Bryan S.

    2015-01-21

    Anion exchange membranes (AEMs) are of interest as hydroxide conducting polymer electrolytes in electrochemical devices like fuel cells and electrolyzers. AEMs require hydroxide stable covalently tetherable cations to ensure required conductivity. Benzyltrimethylammonium (BTMA) has been the covalently tetherable cation that has been most often employed in anion exchange membranes because it is reasonably basic, compact (limited number of atoms per charge), and easily/cheaply synthesized. Several reports exist that have investigated hydroxide stability of BTMA under specific conditions, but consistency within these reports and comparisons between them have not yet been made. While the hydroxide stability of BTMA has been believedmore » to be a limitation for AEMs, this stability has not been thoroughly reported. In this paper, we have found that several methods reported have inherent flaws in their findings due to the difficulty of performing degradation experiments at high temperature and high pH. In order to address these shortcomings, we have developed a reliable, standardized method of determining cation degradation under conditions similar/relevant to those expected in electrochemical devices. The experimental method has been employed to determine BTMA stabilities at varying cation concentrations and elevated temperatures, and has resulted in improved experimental accuracy and reproducibility. Finally and most notably, these results have shown that BTMA is quite stable at 80°C (half-life of ~4 years), a significant increase in stability over what had been reported previously.« less

  9. Hydroxide based Benzyltrimethylammonium degradation: Quantification of rates and degradation technique development

    SciTech Connect

    Sturgeon, Matthew R.; Macomber, Clay S.; Engtrakul, Chaiwat; Long, Hai; Pivovar, Bryan S.

    2015-01-21

    Anion exchange membranes (AEMs) are of interest as hydroxide conducting polymer electrolytes in electrochemical devices like fuel cells and electrolyzers. AEMs require hydroxide stable covalently tetherable cations to ensure required conductivity. Benzyltrimethylammonium (BTMA) has been the covalently tetherable cation that has been most often employed in anion exchange membranes because it is reasonably basic, compact (limited number of atoms per charge), and easily/cheaply synthesized. Several reports exist that have investigated hydroxide stability of BTMA under specific conditions, but consistency within these reports and comparisons between them have not yet been made. While the hydroxide stability of BTMA has been believed to be a limitation for AEMs, this stability has not been thoroughly reported. In this paper, we have found that several methods reported have inherent flaws in their findings due to the difficulty of performing degradation experiments at high temperature and high pH. In order to address these shortcomings, we have developed a reliable, standardized method of determining cation degradation under conditions similar/relevant to those expected in electrochemical devices. The experimental method has been employed to determine BTMA stabilities at varying cation concentrations and elevated temperatures, and has resulted in improved experimental accuracy and reproducibility. Finally and most notably, these results have shown that BTMA is quite stable at 80°C (half-life of ~4 years), a significant increase in stability over what had been reported previously.

  10. Temporal Dynamics of Abiotic and Biotic Factors on Leaf Litter of Three Plant Species in Relation to Decomposition Rate along a Subalpine Elevation Gradient

    PubMed Central

    Zhu, Jianxiao; Yang, Wanqin; He, Xinhua

    2013-01-01

    Relationships between abiotic (soil temperature and number of freeze-thaw cycles) or biotic factors (chemical elements, microbial biomass, extracellular enzymes, and decomposer communities in litter) and litter decomposition rates were investigated over two years in subalpine forests close to the Qinghai-Tibet Plateau in China. Litterbags with senescent birch, fir, and spruce leaves were placed on the forest floor at 2,704 m, 3,023 m, 3,298 m, and 3,582 m elevation. Results showed that the decomposition rate positively correlated with soil mean temperature during the plant growing season, and with the number of soil freeze-thaw cycles during the winter. Concentrations of soluble nitrogen (N), phosphorus (P) and potassium (K) had positive effects but C:N and lignin:N ratios had negative effects on the decomposition rate (k), especially during the winter. Meanwhile, microbial biomass carbon (MBC), N (MBN), and P (MBP) were positively correlated with k values during the first growing season. These biotic factors accounted for 60.0% and 56.4% of the variation in decomposition rate during the winter and the growing season in the first year, respectively. Specifically, litter chemistry (C, N, P, K, lignin, C:N and lignin:N ratio) independently explained 29.6% and 13.3%, and the microbe-related factors (MBC, MBN, MBP, bacterial and fungal biomass, sucrase and ACP activity) explained 22.9% and 34.9% during the first winter and the first growing season, respectively. We conclude that frequent freeze-thaw cycles and litter chemical properties determine the winter decomposition while microbe-related factors play more important roles in determining decomposition in the subsequent growing season. PMID:23620803

  11. Effect of application rate on fumigant degradation in five agricultural soils.

    PubMed

    Qin, Ruijun; Gao, Suduan; Ajwa, Husein; Hanson, Bradley D

    2016-01-15

    Soil fumigation is an important pest management tool for many high value crops. To address the knowledge gap of how fumigant concentration in soil impacts dissipation, and thereby efficacy, this research determined the degradation characteristics of four fumigants as affected by application rate. Laboratory incubation experiments were conducted to determine degradation rates of 1,3-dichloropropene (both cis- and trans isomers), chloropicrin (CP), dimethyl disulfide (DMDS), and methyl iodide (MeI) in five agricultural soils. Fitted to pseudo first-order kinetics, the degradation rate constant (k) of CP, DMDS, and MeI decreased significantly as application rate increased while the 1,3-D isomers were the least affected by rate. Half-lives increased 12, 17, and 6-fold for CP, DMDS, and MeI, respectively, from the lowest to the highest application rate. At low application rates, the degradation rate of all fumigants in the Hueneme sandy loam soil was reduced by 50-95% in sterilized soil compared to the biologically active controls. However, this difference became much smaller or disappeared at high application rates indicating that biodegradation dominates at low concentrations but chemical degradation is more important at high concentrations. When co-applied, CP degradation was enhanced with biodegradation remained above 50%, while 1,3-D degradation was either reduced or not changed. Among the fumigants tested, the relative importance of biodegradation was DMDS>CP>MeI>1,3-D. These results are useful for determining effective fumigation rates and for informing regulatory decisions on emission controls under different fumigation scenarios. PMID:26439645

  12. Rate Motifs Tune Auxin/Indole-3-Acetic Acid Degradation Dynamics1[OPEN

    PubMed Central

    Moss, Britney L.; Mao, Haibin; Guseman, Jessica M.; Hinds, Thomas R.; Hellmuth, Antje; Kovenock, Marlies; Noorassa, Anisa; Lanctot, Amy; Villalobos, Luz Irina A. Calderón; Zheng, Ning; Nemhauser, Jennifer L.

    2015-01-01

    Ubiquitin-mediated protein degradation is a common feature in diverse plant cell signaling pathways; however, the factors that control the dynamics of regulated protein turnover are largely unknown. One of the best-characterized families of E3 ubiquitin ligases facilitates ubiquitination of auxin (aux)/indole-3-acetic acid (IAA) repressor proteins in the presence of auxin. Rates of auxin-induced degradation vary widely within the Aux/IAA family, and sequences outside of the characterized degron (the minimum region required for auxin-induced degradation) can accelerate or decelerate degradation. We have used synthetic auxin degradation assays in yeast (Saccharomyces cerevisiae) and in plants to characterize motifs flanking the degron that contribute to tuning the dynamics of Aux/IAA degradation. The presence of these rate motifs is conserved in phylogenetically distant members of the Arabidopsis (Arabidopsis thaliana) Aux/IAA family, as well as in their putative Brassica rapa orthologs. We found that rate motifs can act by enhancing interaction between repressors and the E3, but that this is not the only mechanism of action. Phenotypes of transgenic plants expressing a deletion in a rate motif in IAA28 resembled plants expressing degron mutations, underscoring the functional relevance of Aux/IAA degradation dynamics in regulating auxin responses. PMID:26149575

  13. Rate Motifs Tune Auxin/Indole-3-Acetic Acid Degradation Dynamics.

    PubMed

    Moss, Britney L; Mao, Haibin; Guseman, Jessica M; Hinds, Thomas R; Hellmuth, Antje; Kovenock, Marlies; Noorassa, Anisa; Lanctot, Amy; Villalobos, Luz Irina A Calderón; Zheng, Ning; Nemhauser, Jennifer L

    2015-09-01

    Ubiquitin-mediated protein degradation is a common feature in diverse plant cell signaling pathways; however, the factors that control the dynamics of regulated protein turnover are largely unknown. One of the best-characterized families of E3 ubiquitin ligases facilitates ubiquitination of auxin (aux)/indole-3-acetic acid (IAA) repressor proteins in the presence of auxin. Rates of auxin-induced degradation vary widely within the Aux/IAA family, and sequences outside of the characterized degron (the minimum region required for auxin-induced degradation) can accelerate or decelerate degradation. We have used synthetic auxin degradation assays in yeast (Saccharomyces cerevisiae) and in plants to characterize motifs flanking the degron that contribute to tuning the dynamics of Aux/IAA degradation. The presence of these rate motifs is conserved in phylogenetically distant members of the Arabidopsis (Arabidopsis thaliana) Aux/IAA family, as well as in their putative Brassica rapa orthologs. We found that rate motifs can act by enhancing interaction between repressors and the E3, but that this is not the only mechanism of action. Phenotypes of transgenic plants expressing a deletion in a rate motif in IAA28 resembled plants expressing degron mutations, underscoring the functional relevance of Aux/IAA degradation dynamics in regulating auxin responses.

  14. Rate Motifs Tune Auxin/Indole-3-Acetic Acid Degradation Dynamics.

    PubMed

    Moss, Britney L; Mao, Haibin; Guseman, Jessica M; Hinds, Thomas R; Hellmuth, Antje; Kovenock, Marlies; Noorassa, Anisa; Lanctot, Amy; Villalobos, Luz Irina A Calderón; Zheng, Ning; Nemhauser, Jennifer L

    2015-09-01

    Ubiquitin-mediated protein degradation is a common feature in diverse plant cell signaling pathways; however, the factors that control the dynamics of regulated protein turnover are largely unknown. One of the best-characterized families of E3 ubiquitin ligases facilitates ubiquitination of auxin (aux)/indole-3-acetic acid (IAA) repressor proteins in the presence of auxin. Rates of auxin-induced degradation vary widely within the Aux/IAA family, and sequences outside of the characterized degron (the minimum region required for auxin-induced degradation) can accelerate or decelerate degradation. We have used synthetic auxin degradation assays in yeast (Saccharomyces cerevisiae) and in plants to characterize motifs flanking the degron that contribute to tuning the dynamics of Aux/IAA degradation. The presence of these rate motifs is conserved in phylogenetically distant members of the Arabidopsis (Arabidopsis thaliana) Aux/IAA family, as well as in their putative Brassica rapa orthologs. We found that rate motifs can act by enhancing interaction between repressors and the E3, but that this is not the only mechanism of action. Phenotypes of transgenic plants expressing a deletion in a rate motif in IAA28 resembled plants expressing degron mutations, underscoring the functional relevance of Aux/IAA degradation dynamics in regulating auxin responses. PMID:26149575

  15. Abiotic dechlorination in rock matrices impacted by long-term exposure to TCE.

    PubMed

    Schaefer, Charles E; Towne, Rachael M; Lippincott, David R; Lacombe, Pierre J; Bishop, Michael E; Dong, Hailiang

    2015-01-01

    Field and laboratory tests were performed to evaluate the abiotic reaction of trichloroethene (TCE) in sedimentary rock matrices. Hydraulically conductive fractures, and the rock directly adjacent to the hydraulically conductive fractures, within a historically contaminated TCE bedrock aquifer were used as the basis for this study. These results were compared to previous work using rock that had not been exposed to TCE (Schaefer et al., 2013) to assess the impact of long-term TCE exposure on the abiotic dechlorination reaction, as the longevity of these reactions after long-term exposure to TCE was hitherto unknown. Results showed that potential abiotic TCE degradation products, including ethane, ethene, and acetylene, were present in the conductive fractures. Using minimally disturbed slices of rock core at and near the fracture faces, laboratory testing on the rocks confirmed that abiotic dechlorination reactions between the rock matrix and TCE were occurring. Abiotic daughter products measured in the laboratory under controlled conditions were consistent with those measured in the conductive fractures, except that propane also was observed as a daughter product. TCE degradation measured in the laboratory was well described by a first order rate constant through the 118-d study. Observed bulk first-order TCE degradation rate constants within the rock matrix were 1.3×10(-8) s(-1). These results clearly show that abiotic dechlorination of TCE is occurring within the rock matrix, despite decades of exposure to TCE. Furthermore, these observed rates of TCE dechlorination are expected to have a substantial impact on TCE migration and uptake/release from rock matrices.

  16. Abiotic dechlorination in rock matrices impacted by long-term exposure to TCE.

    PubMed

    Schaefer, Charles E; Towne, Rachael M; Lippincott, David R; Lacombe, Pierre J; Bishop, Michael E; Dong, Hailiang

    2015-01-01

    Field and laboratory tests were performed to evaluate the abiotic reaction of trichloroethene (TCE) in sedimentary rock matrices. Hydraulically conductive fractures, and the rock directly adjacent to the hydraulically conductive fractures, within a historically contaminated TCE bedrock aquifer were used as the basis for this study. These results were compared to previous work using rock that had not been exposed to TCE (Schaefer et al., 2013) to assess the impact of long-term TCE exposure on the abiotic dechlorination reaction, as the longevity of these reactions after long-term exposure to TCE was hitherto unknown. Results showed that potential abiotic TCE degradation products, including ethane, ethene, and acetylene, were present in the conductive fractures. Using minimally disturbed slices of rock core at and near the fracture faces, laboratory testing on the rocks confirmed that abiotic dechlorination reactions between the rock matrix and TCE were occurring. Abiotic daughter products measured in the laboratory under controlled conditions were consistent with those measured in the conductive fractures, except that propane also was observed as a daughter product. TCE degradation measured in the laboratory was well described by a first order rate constant through the 118-d study. Observed bulk first-order TCE degradation rate constants within the rock matrix were 1.3×10(-8) s(-1). These results clearly show that abiotic dechlorination of TCE is occurring within the rock matrix, despite decades of exposure to TCE. Furthermore, these observed rates of TCE dechlorination are expected to have a substantial impact on TCE migration and uptake/release from rock matrices. PMID:25192648

  17. Mechanistic QSAR models for interpreting degradation rates of sulfonamides in UV-photocatalysis systems.

    PubMed

    Huang, Xiangfeng; Feng, Yi; Hu, Cui; Xiao, Xiaoyu; Yu, Daliang; Zou, Xiaoming

    2015-11-01

    Photocatalysis is one of the most effective methods for treating antibiotic wastewater. Thus, it is of great significance to determine the relationship between degradation rates and structural characteristics of antibiotics in photocatalysis processes. In the present study, the photocatalytic degradation characteristics of 10 sulfonamides (SAs) were studied using two photocatalytic systems composed of nanophase titanium dioxide (nTiO2) plus ultraviolet (UV) and nTiO2/activated carbon fiber (ACF) plus UV. The results indicated that the largest apparent SA degradation rate constant (Kapp) is approximately 5 times as large as that of the smallest one. Based on the degradation mechanism and the partial least squares regression (PLS) method, optimum Quantitative Structure Activity Relationship (QSAR) models were developed for the two systems. Mechanistic models indicated that the degradation rule of SAs in the TiO2 systems strongly relates to their highest occupied molecular orbital (Ehomo), the maximum values of nucleophilic attack (f(+)x), and the minimum values of the most negative partial charge on a main-chain atom (q(C)min), whereas the maximum values of OH radical attack (f(0)x) and the apparent adsorption rate constant values (kad) are key factors affecting the degradation rule of SAs in the TiO2/ACF system.

  18. Impact of transverse and longitudinal dispersion on first-order degradation rate constant estimation

    NASA Astrophysics Data System (ADS)

    Stenback, Greg A.; Ong, Say Kee; Rogers, Shane W.; Kjartanson, Bruce H.

    2004-09-01

    A two-dimensional analytical model is employed for estimating the first-order degradation rate constant of hydrophobic organic compounds (HOCs) in contaminated groundwater under steady-state conditions. The model may utilize all aqueous concentration data collected downgradient of a source area, but does not require that any data be collected along the plume centerline. Using a least squares fit of the model to aqueous concentrations measured in monitoring wells, degradation rate constants were estimated at a former manufactured gas plant (FMGP) site in the Midwest U.S. The estimated degradation rate constants are 0.0014, 0.0034, 0.0031, 0.0019, and 0.0053 day -1 for acenaphthene, naphthalene, benzene, ethylbenzene, and toluene, respectively. These estimated rate constants were as low as one-half those estimated with the one-dimensional (centerline) approach of Buscheck and Alcantar [Buscheck, T.E., Alcantar, C.M., 1995. Regression techniques and analytical solutions to demonstrate intrinsic bioremediation. In: Hinchee, R.E., Wilson, J.T., Downey, D.C. (Eds.), Intrinsic Bioremediation, Battelle Press, Columbus, OH, pp. 109-116] which does not account for transverse dispersivity. Varying the transverse and longitudinal dispersivity values over one order of magnitude for toluene data obtained from the FMGP site resulted in nearly a threefold variation in the estimated degradation rate constant—highlighting the importance of reliable estimates of the dispersion coefficients for obtaining reasonable estimates of the degradation rate constants. These results have significant implications for decision making and site management where overestimation of a degradation rate may result in remediation times and bioconversion factors that exceed expectations. For a complex source area or non-steady-state plume, a superposition of analytical models that incorporate longitudinal and transverse dispersion and time may be used at sites where the centerline method would not be

  19. Impact of transverse and longitudinal dispersion on first-order degradation rate constant estimation.

    PubMed

    Stenback, Greg A; Ong, Say Kee; Rogers, Shane W; Kjartanson, Bruce H

    2004-09-01

    A two-dimensional analytical model is employed for estimating the first-order degradation rate constant of hydrophobic organic compounds (HOCs) in contaminated groundwater under steady-state conditions. The model may utilize all aqueous concentration data collected downgradient of a source area, but does not require that any data be collected along the plume centerline. Using a least squares fit of the model to aqueous concentrations measured in monitoring wells, degradation rate constants were estimated at a former manufactured gas plant (FMGP) site in the Midwest U.S. The estimated degradation rate constants are 0.0014, 0.0034, 0.0031, 0.0019, and 0.0053 day(-1) for acenaphthene, naphthalene, benzene, ethylbenzene, and toluene, respectively. These estimated rate constants were as low as one-half those estimated with the one-dimensional (centerline) approach of Buscheck and Alcantar [Buscheck, T.E., Alcantar, C.M., 1995. Regression techniques and analytical solutions to demonstrate intrinsic bioremediation. In: Hinchee, R.E., Wilson, J.T., Downey, D.C. (Eds.), Intrinsic Bioremediation, Battelle Press, Columbus, OH, pp. 109-116] which does not account for transverse dispersivity. Varying the transverse and longitudinal dispersivity values over one order of magnitude for toluene data obtained from the FMGP site resulted in nearly a threefold variation in the estimated degradation rate constant-highlighting the importance of reliable estimates of the dispersion coefficients for obtaining reasonable estimates of the degradation rate constants. These results have significant implications for decision making and site management where overestimation of a degradation rate may result in remediation times and bioconversion factors that exceed expectations. For a complex source area or non-steady-state plume, a superposition of analytical models that incorporate longitudinal and transverse dispersion and time may be used at sites where the centerline method would not be

  20. Impact of transverse and longitudinal dispersion on first-order degradation rate constant estimation.

    PubMed

    Stenback, Greg A; Ong, Say Kee; Rogers, Shane W; Kjartanson, Bruce H

    2004-09-01

    A two-dimensional analytical model is employed for estimating the first-order degradation rate constant of hydrophobic organic compounds (HOCs) in contaminated groundwater under steady-state conditions. The model may utilize all aqueous concentration data collected downgradient of a source area, but does not require that any data be collected along the plume centerline. Using a least squares fit of the model to aqueous concentrations measured in monitoring wells, degradation rate constants were estimated at a former manufactured gas plant (FMGP) site in the Midwest U.S. The estimated degradation rate constants are 0.0014, 0.0034, 0.0031, 0.0019, and 0.0053 day(-1) for acenaphthene, naphthalene, benzene, ethylbenzene, and toluene, respectively. These estimated rate constants were as low as one-half those estimated with the one-dimensional (centerline) approach of Buscheck and Alcantar [Buscheck, T.E., Alcantar, C.M., 1995. Regression techniques and analytical solutions to demonstrate intrinsic bioremediation. In: Hinchee, R.E., Wilson, J.T., Downey, D.C. (Eds.), Intrinsic Bioremediation, Battelle Press, Columbus, OH, pp. 109-116] which does not account for transverse dispersivity. Varying the transverse and longitudinal dispersivity values over one order of magnitude for toluene data obtained from the FMGP site resulted in nearly a threefold variation in the estimated degradation rate constant-highlighting the importance of reliable estimates of the dispersion coefficients for obtaining reasonable estimates of the degradation rate constants. These results have significant implications for decision making and site management where overestimation of a degradation rate may result in remediation times and bioconversion factors that exceed expectations. For a complex source area or non-steady-state plume, a superposition of analytical models that incorporate longitudinal and transverse dispersion and time may be used at sites where the centerline method would not be

  1. Kinetics analysis for development of a rate constant estimation model for ultrasonic degradation reaction of methylene blue.

    PubMed

    Kobayashi, Daisuke; Honma, Chiemi; Matsumoto, Hideyuki; Takahashi, Tomoki; Kuroda, Chiaki; Otake, Katsuto; Shono, Atsushi

    2014-07-01

    Ultrasound has been used as an advanced oxidation method for wastewater treatment. Sonochemical degradation of organic compounds in aqueous solution occurs by pyrolysis and/or reaction with hydroxyl radicals. Moreover, kinetics of sonochemical degradation has been proposed. However, the effect of ultrasonic frequency on degradation rate has not been investigated. In our previous study, a simple model for estimating the apparent degradation rate of methylene blue was proposed. In this study, sonochemical degradation of methylene blue was performed at various frequencies. Apparent degradation rate constant was evaluated assuming that sonochemical degradation of methylene blue was a first-order reaction. Specifically, we focused on effects of ultrasonic frequency and power on rate constant, and the applicability of our proposed model was demonstrated. Using this approach, maximum sonochemical degradation rate was observed at 490 kHz, which agrees with a previous investigation into the effect of frequency on the sonochemical efficiency value evaluated by KI oxidation dosimetry. Degradation rate increased with ultrasonic power at every frequency. It was also observed that threshold power must be reached for the degradation reaction to progress. The initial methylene blue concentration and the apparent degradation rate constant have a relation of an inverse proportion. Our proposed model for estimating the apparent degradation rate constant using ultrasonic power and sonochemical efficiency value can apply to this study which extended the frequency and initial concentration range.

  2. Protonation-dissociation reactions of imazamethabenz-methyl and imazamethabenz-Acid in relation to their soil sorption and abiotic degradation.

    PubMed

    Pintado, Sara; Montoya, Mercedes Ruiz; Mellado, José Miguel Rodríguez

    2009-12-01

    This paper present ultraviolet-visible absorption spectra of imazamethabenz-methyl (IMBM) (mixture of the isomers methyl 6-[(RS)-4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl]-m-toluate, m-imazamethabenz, and methyl 2-[(RS)-4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl]-p-toluate, p-imazamethabenz) and the corresponding carboxylic acid, imazamethabenz-acid (IMBA). The spectral characteristics are determined as functions of the pH. The appreciable absorbance in the visible (or near-ultraviolet) region of the spectra indicates that the natural photolytic degradation is possible. From variations of the maximum absorbances of the bands, the pK values of 3.4 +/- 0.2 and 9.4 +/- 0.2 were obtained for protonation of the imidazol (=N-) nitrogen and dissociation of the NH imidazol nitrogen of IMBM, respectively. For IMBA, the dissociation pK of the carboxylic group is very close to that of the imidazol (=N-) nitrogen, both being close to 3.3. The dissociation pK of the NH imidazol nitrogen for IMBA is 9.6 +/- 0.2. The role of the acid-base reactions on the sorption on soils of these herbicides is discussed.

  3. Protonation-dissociation reactions of imazamethabenz-methyl and imazamethabenz-Acid in relation to their soil sorption and abiotic degradation.

    PubMed

    Pintado, Sara; Montoya, Mercedes Ruiz; Mellado, José Miguel Rodríguez

    2009-12-01

    This paper present ultraviolet-visible absorption spectra of imazamethabenz-methyl (IMBM) (mixture of the isomers methyl 6-[(RS)-4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl]-m-toluate, m-imazamethabenz, and methyl 2-[(RS)-4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl]-p-toluate, p-imazamethabenz) and the corresponding carboxylic acid, imazamethabenz-acid (IMBA). The spectral characteristics are determined as functions of the pH. The appreciable absorbance in the visible (or near-ultraviolet) region of the spectra indicates that the natural photolytic degradation is possible. From variations of the maximum absorbances of the bands, the pK values of 3.4 +/- 0.2 and 9.4 +/- 0.2 were obtained for protonation of the imidazol (=N-) nitrogen and dissociation of the NH imidazol nitrogen of IMBM, respectively. For IMBA, the dissociation pK of the carboxylic group is very close to that of the imidazol (=N-) nitrogen, both being close to 3.3. The dissociation pK of the NH imidazol nitrogen for IMBA is 9.6 +/- 0.2. The role of the acid-base reactions on the sorption on soils of these herbicides is discussed. PMID:19904942

  4. Effect of application rate on fumigant degradation in five agricultural soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fumigants continue to be used in soil disinfestation for many high value crops. There is a significant knowledge gap on how fumigant concentration in soil impacts fumigant dissipation and determination of the most efficient rate. The aim of this study was to determine the degradation characteristics...

  5. Spatial Moment Equations for a Groundwater Plume with Degradation and Rate-Limited Sorption

    EPA Science Inventory

    In this note, we analytically derive the solution for the spatial moments of groundwater solute concentration distributions simulated by a one-dimensional model that assumes advective-dispersive transport with first-order degradation and rate-limited sorption. Sorption kinetics...

  6. Enhanced rate of degradation of basic proteins by 26S immunoproteasomes.

    PubMed

    Raule, Mary; Cerruti, Fulvia; Cascio, Paolo

    2014-09-01

    Immunoproteasomes are alternative forms of proteasomes specialized in the generation of MHC class I antigenic peptides and important for efficient cytokine production. We have identified a new biochemical property of 26S immunoproteasomes, namely the ability to hydrolyze basic proteins at greatly increased rates compared to constitutive proteasomes. This enhanced degradative capacity is specific for basic polypeptides, since substrates with a lower content in lysine and arginine residues are hydrolyzed at comparable rates by constitutive and immunoproteasomes. Crucially, selective inhibition of the immunoproteasome tryptic subunit β2i strongly reduces degradation of basic proteins. Therefore, our data demonstrate the rate limiting function of the proteasomal trypsin-like activity in controlling turnover rates of basic protein substrates and suggest new biological roles for immunoproteasomes in maintaining cellular homeostasis by rapidly removing a potentially harmful excess of free histones that can build up under different pathophysiological conditions.

  7. Non-UV light influences the degradation rate of crop protection products.

    PubMed

    Davies, Lawrence O; Bramke, Irene; France, Emma; Marshall, Samantha; Oliver, Robin; Nichols, Carol; Schäfer, Hendrik; Bending, Gary D

    2013-08-01

    Crop protection products (CPPs) are subject to strict regulatory evaluation, including laboratory and field trials, prior to approval for commercial use. Laboratory tests lack environmental realism, while field trials are difficult to control. Addition of environmental complexity to laboratory systems is therefore desirable to mimic a field environment more effectively. We investigated the effect of non-UV light on the degradation of eight CPPs (chlorotoluron, prometryn, cinosulfuron, imidacloprid, lufenuron, propiconazole, fludioxonil, and benzovindiflupyr) by addition of non-UV light to standard OECD 307 guidelines. Time taken for 50% degradation of benzovindiflupyr was halved from 373 to 183 days with the inclusion of light. Similarly, time taken for 90% degradation of chlorotoluron decreased from 79 to 35 days under light conditions. Significant reductions in extractable parent compound occurred under light conditions for prometryn (4%), imidacloprid (8%), and fludioxonil (24%) compared to dark controls. However, a significantly slower rate of cinosulfuron (14%) transformation was observed under light compared to dark conditions. Under light conditions, nonextractable residues were significantly higher for seven of the CPPs. Soil biological and chemical analyses suggest that light stimulates phototroph growth, which may directly and/or indirectly impact CPP degradation rates. The results of this study strongly suggest that light is an important parameter affecting CPP degradation, and inclusion of light into regulatory studies may enhance their environmental realism. PMID:23819841

  8. Rapid estimation of glucosinolate thermal degradation rate constants in leaves of Chinese kale and broccoli (Brassica oleracea) in two seasons.

    PubMed

    Hennig, Kristin; Verkerk, Ruud; Bonnema, Guusje; Dekker, Matthijs

    2012-08-15

    Kinetic modeling was used as a tool to quantitatively estimate glucosinolate thermal degradation rate constants. Literature shows that thermal degradation rates differ in different vegetables. Well-characterized plant material, leaves of broccoli and Chinese kale plants grown in two seasons, was used in the study. It was shown that a first-order reaction is appropriate to model glucosinolate degradation independent from the season. No difference in degradation rate constants of structurally identical glucosinolates was found between broccoli and Chinese kale leaves when grown in the same season. However, glucosinolate degradation rate constants were highly affected by the season (20-80% increase in spring compared to autumn). These results suggest that differences in glucosinolate degradation rate constants can be due to variation in environmental as well as genetic factors. Furthermore, a methodology to estimate rate constants rapidly is provided to enable the analysis of high sample numbers for future studies.

  9. Dose rate effects in radiation degradation of polymer-based cable materials

    NASA Astrophysics Data System (ADS)

    Plaček, V.; Bartoníček, B.; Hnát, V.; Otáhal, B.

    2003-08-01

    Cable ageing under the nuclear power plant (NPP) conditions must be effectively managed to ensure that the required plant safety and reliability are maintained throughout the plant service life. Ionizing radiation is one of the main stressors causing age-related degradation of polymer-based cable materials in air. For a given absorbed dose, radiation-induced damage to a polymer in air environment usually depends on the dose rate of the exposure. In this work, the effect of dose rate on the degradation rate has been studied. Three types of NPP cables (with jacket/insulation combinations PVC/PVC, PVC/PE, XPE/XPE) were irradiated at room temperature using 60Co gamma ray source at average dose rates of 7, 30 and 100 Gy/h with the doses up to 590 kGy. The irradiated samples have been tested for their mechanical properties, thermo-oxidative stability (using differential scanning calorimetry, DSC), and density. In the case of PVC and PE samples, the tested properties have shown evident dose rate effects, while the XPE material has shown no noticeable ones. The values of elongation at break and the thermo-oxidative stability decrease with the advanced degradation, density tends to increase with the absorbed dose. For XPE samples this effect can be partially explained by the increase of crystallinity. It was tested by the DSC determination of the crystalline phase amount.

  10. Competitive kinetics versus stopped flow method for determining the degradation rate constants of steroids by ozonation.

    PubMed

    López-López, Alberto; Flores-Payán, Valentín; León-Becerril, Elizabeth; Hernández-Mena, Leonel; Vallejo-Rodríguez, Ramiro

    2016-01-01

    Steroids are classified as endocrine disrupting chemicals; they are persistent with low biodegradability and are hardly degraded by conventional methods. Ozonation process has been effective for steroids degradation and the determination of the kinetics is a fundamental aspect for the design and operation of the reactor. This study assessed two methods: competitive kinetics and stopped flow, for determining the degradation kinetics of two steroids, estradiol (E2) and ethinylestradiol (EE2) in spiked water. Experiments were performed at pH 6, 21 °C, and using tertbutyl alcohol as scavenger of hydroxyl radicals; competitive kinetics method used sodium phenolate as reference compound. For the stopped flow, the experiments were performed in a BioLogic SFM-3000/S equipment. For both methods, the second order rate constants were in the order of 10(6) and 10(5) M(-1) s(-1) for E2 and EE2 respectively. The competitive kinetics can be applied with assurance and reliability but needing an additional analysis method to measure the residual concentrations. Stopped flow method allows the evaluation of the degradation kinetics in milliseconds and avoids the use of additional analytical methodologies; this method allows determining the reaction times on line. The methods are applicable for degradation of other emerging contaminants or other steroids and could be applied in water treatment at industrial level. Finally, it is important to consider the resources available to implement the most appropriate method, either competitive kinetics or the stopped-flow method. PMID:27478722

  11. DDE remediation and degradation.

    PubMed

    Thomas, John E; Ou, Li-Tse; All-Agely, Abid

    2008-01-01

    breakdown of DDE by the extracellular lignolytic enzymes produced by white rot fungi. The addition of adjutants such as sodium ion, surfactants, and cellulose increased the rate of DDT aerobic or anaerobic degradation but did little to enhance the rate of DDE disappearance under anaerobic conditions. Only in the past decade has it been demonstrated that DDE can undergo reductive dechlorination under methanogenic and sulfidogenic conditions to form the degradation product DDMU, 1-chloro-2,2'-bis-(4'-chlorophenyl)ethane. The only pure culture reported to degrade DDE under anaerobic conditions was the denitrifier Alcaligens denitrificans. The degradation of DDE by this bacterium was enhanced by glucose, whereas biphenyl fumes had no effect. Abiotic remediation by DDE volatilization was enhanced by flooding and irrigation and deepplowing inhibited the volatilization. The use of zero-valent iron and surfactants in flooded soils enhanced DDT degradation but did not significantly alter the rate of DDE removal. Other catalysts (palladized magnesium, palladium on carbon, and nickel/aluminum alloys) degraded DDT and its metabolites, including DDE. However, these systems are often biphasic or involve explosive gases or both. Safer abiotic alternatives use UV light with titanium oxide or visible light with methylene green to degrade DDT, DDD, and DDE in aqueous or mixed solvent systems. Remediation and degradation of DDE in soil and water by phytoextraction, aerobic and anaerobic microorganisms, or abiotic methods can be accomplished. However, success has been limited, and great care must be taken that the method does not transfer the contaminants to another locale (by volatilization, deep plowing, erosion, or runoff) or to another species (by ingestion of accumulating plants or contaminated water). Although the remediation of DDT-, DDD-, and DDE-contaminated soil and water is beset with myriad problems, there remain many open avenues of research. PMID:18069646

  12. Combining chemical and isotopic measurements to estimate pesticide degradation rates in a fractured-rock aquifer

    NASA Astrophysics Data System (ADS)

    Farlin, Julien; Gallé, Tom; Bayerle, Michael; Pittois, Denis; El-Khabbaz, Hassanya; Schreglmann, Kathrin; Höche, Martina; Elsner, Martin

    2013-04-01

    Encouraged by new regulatory requirements for pesticide registration and authorization, the transport and environmental fate of these compounds in the different environmental compartments has been studied extensively. Degradation rates vary widely depending on hydraulic and chemical characteristics, with the strongest degradation usually occuring in the topsoil. Nonetheless, significant pesticide attenuation may still take place during transport in the aquifer, since residence times are generally much longer than in the soil. Ideally, pesticide transformation in the aquifer needs to be determined under real field conditions. Mass balance calculations however are complicated by the fact that the initial pesticide mass leached from the soil is often not known precisely enough. In this study, isotopic and classical pesticide concentration measurements were combined with groundwater dating techniques to assess the degradation rate of atrazine and its metabolite desethylatrazine in a fractured sandstone. The mass balance problem was solved by introducing the desethylatrazine to atrazine ratio, a relative measure which was used to quantify the advancement of atrazine degradation with increasing transport time in the subsurface. The extent of transformation of the parent compound was finally estimated from the shift in the isotopic signal between soil application and the outlet of the groundwater system.

  13. Radiation-induced 1/f noise degradation of PNP bipolar junction transistors at different dose rates

    NASA Astrophysics Data System (ADS)

    Qi-Feng, Zhao; Yi-Qi, Zhuang; Jun-Lin, Bao; Wei, Hu

    2016-04-01

    It is found that ionizing-radiation can lead to the base current and the 1/f noise degradations in PNP bipolar junction transistors. In this paper, it is suggested that the surface of the space charge region of the emitter-base junction is the main source of the base surface 1/f noise. A model is developed which identifies the parameters and describes their interactive contributions to the recombination current at the surface of the space charge region. Based on the theory of carrier number fluctuation and the model of surface recombination current, a 1/f noise model is developed. This model suggests that 1/f noise degradations are the result of the accumulation of oxide-trapped charges and interface states. Combining models of ELDRS, this model can explain the reason why the 1/f noise degradation is more severe at a low dose rate than at a high dose rate. The radiations were performed in a Co60 source up to a total dose of 700 Gy(Si). The low dose rate was 0.001 Gy(Si)/s and the high dose rate was 0.1 Gy(Si)/s. The model accords well with the experimental results. Project supported by the National Natural Science Foundation of China (Grant Nos. 61076101 and 61204092).

  14. Model of radiation-induced gain degradation of NPN bipolar junction transistor at different dose rates

    NASA Astrophysics Data System (ADS)

    Qifeng, Zhao; Yiqi, Zhuang; Junlin, Bao; Wei, Hu

    2015-06-01

    Ionizing-radiation-induced current gain degradation in NPN bipolar junction transistors is due to an increase in base current as a result of recombination at the surface of the device. A model is presented which identifies the physical mechanism responsible for current gain degradation. The increase in surface recombination velocity due to interface states results in an increase in base current. Besides, changing the surface potential along the base surface induced by the oxide-trapped charges can also lead to an increased base current. By combining the production mechanisms of oxide-trapped charges and interface states, this model can explain the fact that the current gain degradation is more severe at a low dose rate than at a high dose rate. The radiations were performed in a Co60 source up to a total dose of 70 krad(Si). The low dose rate was 0.1 rad(Si)/s and the high dose rate was 10 rad(Si)/s. The model accords well with the experimental results. Project supported by the National Natural Science Foundation of China (Nos. 61076101, 61204092).

  15. Bacterial secondary production on vascular plant detritus: relationships to detritus composition and degradation rate.

    PubMed Central

    Moran, M A; Hodson, R E

    1989-01-01

    Bacterial production at the expense of vascular plant detritus was measured for three emergent plant species (Juncus effusus, Panicum hemitomon, and Typha latifolia) degrading in the littoral zone of a thermally impacted lake. Bacterial secondary production, measured as tritiated thymidine incorporation into DNA, ranged from 0.01 to 0.81 microgram of bacterial C mg of detritus-1 day-1. The three plant species differed with respect to the amount of bacterial productivity they supported per milligram of detritus, in accordance with the predicted biodegradability of the plant material based on initial nitrogen content, lignin content, and C/N ratio. Bacterial production also varied throughout the 22 weeks of in situ decomposition and was positively related to the nitrogen content and lignin content of the remaining detritus, as well as to the temperature of the lake water. Over time, production was negatively related to the C/N ratio and cellulose content of the degrading plant material. Bacterial production on degrading plant material was also calculated on the basis of plant surface area and ranged from 0.17 to 1.98 micrograms of bacterial C cm-2 day-1. Surface area-based calculations did not correlate well with either initial plant composition or changing composition of the remaining detritus during decomposition. The rate of bacterial detritus degradation, calculated from measured production of surface-attached bacteria, was much lower than the actual rate of weight loss of plant material. This discrepancy may be attributable to the importance of nonbacterial organisms in the degradation and loss of plant material from litterbags or to the microbially mediated solubilization of particulate material prior to bacterial utilization, or both. PMID:2802603

  16. In situ determination of the rate of unassisted degradation of saturated-zone hydrocarbon contamination

    SciTech Connect

    Kerfoot, H.B.

    1994-07-01

    A method to measure the in situ degradation rate of dissolved hydrocarbon contamination has been developed and applied at two locations at a field site. The method uses the rates of downward diffusion of oxygen and upward diffusion of carbon dioxide through the unsaturated zone, as calculated from vertical soil-gas concentration gradients, combined with stoichiometry to obtain two degradation rates in hydrocarbon mass per water table surface area per time. Values of 0.385 gram per m{sup 2} per day and 0.52 gram per m{sup 2} per day (based upon oxygen data) and 0.056 gram per m{sup 2} per day and 0.12 gram per m{sup 2} per day (based upon carbon dioxide data) were calculated at a field site with dissolved fuel contamination. This result of lower values from ground-air carbon dioxide concentrations is consistent with a significant fraction of the carbon dioxide produced being lost to the aqueous phase. Based upon a single-stage equilibrium phase-transfer model, gas/water volume ratios of 0.02 and 0.2 for the capillary fringe were calculated. Groundwater carbon dioxide fugacities and soil-gas carbon dioxide concentrations were used at the two locations and a third to determine whether the source of elevated soil carbon dioxide concentrations were unsaturated-zone hydrocarbon degradation or a saturated-zone process. 11 refs., 2 figs., 2 tabs.

  17. Poly(amido-amine)-based hydrogels with tailored mechanical properties and degradation rates for tissue engineering.

    PubMed

    Martello, Federico; Tocchio, Alessandro; Tamplenizza, Margherita; Gerges, Irini; Pistis, Valentina; Recenti, Rossella; Bortolin, Monica; Del Fabbro, Massimo; Argentiere, Simona; Milani, Paolo; Lenardi, Cristina

    2014-03-01

    Poly(amido-amine) (PAA) hydrogels containing the 2,2-bisacrylamidoacetic acid-4-amminobutyl guanidine monomeric unit have a known ability to enhance cellular adhesion by interacting with the arginin-glycin-aspartic acid (RGD)-binding αVβ3 integrin, expressed by a wide number of cell types. Scientific interest in this class of materials has traditionally been hampered by their poor mechanical properties and restricted range of degradation rate. Here we present the design of novel biocompatible, RGD-mimic PAA-based hydrogels with wide and tunable degradation rates as well as improved mechanical and biological properties for biomedical applications. This is achieved by radical polymerization of acrylamide-terminated PAA oligomers in both the presence and absence of 2-hydroxyethylmethacrylate. The degradation rate is found to be precisely tunable by adjusting the PAA oligomer molecular weight and acrylic co-monomer concentration in the starting reaction mixture. Cell adhesion and proliferation tests on Madin-Darby canine kidney epithelial cells show that PAA-based hydrogels have the capacity to promote cell adhesion up to 200% compared to the control. Mechanical tests show higher compressive strength of acrylic chain containing hydrogels compared to traditional PAA hydrogels.

  18. Relationship of Bacterial Richness to Organic Degradation Rate and Sediment Age in Subseafloor Sediment

    PubMed Central

    Walsh, Emily A.; Kirkpatrick, John B.; Pockalny, Robert; Sauvage, Justine; Spivack, Arthur J.; Murray, Richard W.; Sogin, Mitchell L.

    2016-01-01

    ABSTRACT Subseafloor sediment hosts a large, taxonomically rich, and metabolically diverse microbial ecosystem. However, the factors that control microbial diversity in subseafloor sediment have rarely been explored. Here, we show that bacterial richness varies with organic degradation rate and sediment age. At three open-ocean sites (in the Bering Sea and equatorial Pacific) and one continental margin site (Indian Ocean), richness decreases exponentially with increasing sediment depth. The rate of decrease in richness with increasing depth varies from site to site. The vertical succession of predominant terminal electron acceptors correlates with abundance-weighted community composition but does not drive the vertical decrease in richness. Vertical patterns of richness at the open-ocean sites closely match organic degradation rates; both properties are highest near the seafloor and decline together as sediment depth increases. This relationship suggests that (i) total catabolic activity and/or electron donor diversity exerts a primary influence on bacterial richness in marine sediment and (ii) many bacterial taxa that are poorly adapted for subseafloor sedimentary conditions are degraded in the geologically young sediment, where respiration rates are high. Richness consistently takes a few hundred thousand years to decline from near-seafloor values to much lower values in deep anoxic subseafloor sediment, regardless of sedimentation rate, predominant terminal electron acceptor, or oceanographic context. IMPORTANCE Subseafloor sediment provides a wonderful opportunity to investigate the drivers of microbial diversity in communities that may have been isolated for millions of years. Our paper shows the impact of in situ conditions on bacterial community structure in subseafloor sediment. Specifically, it shows that bacterial richness in subseafloor sediment declines exponentially with sediment age, and in parallel with organic-fueled oxidation rate. This result

  19. Physical mechanisms contributing to enhanced bipolar gain degradation at low dose rates

    SciTech Connect

    Fleetwood, D.M.; Reber, R.A. Jr.; Winokur, P.S. ); Kosier, S.L.; Schrimpf, R.D.; Wei, A. . ECE Dept.); Nowlin, R.N. ); DeLaus, M. ); Combs, W.E. ); Pease, R.L. )

    1994-12-01

    The authors have performed capacitance-voltage (C-V) and thermally-stimulated-current (TSC) measurements on non-radiation-hard MOS capacitors simulating screen oxides of modern bipolar technologies. For 0-V irradiation of [approximately]25 C, the net trapped-positive-charge density (N[sub ox]) inferred from midgap C-V shifts is [approximately]25--40% greater for low-dose-rate (< 10 rad(SiO[sub 2])/s) than for high-dose-rate (> 100 rad(SiO[sub 2])/s) exposure. Device modeling shows that such a difference in screen-oxide N[sub ox] is enough to account for the enhanced low-rate gain degradation often observed in bipolar devices, due to the [approximately] exp(N[sub ox][sup 2]) dependence of the excess base current. At the higher rates, TSC measurements reveal a [approximately]10% decrease in trapped-hole density over low rates. Also, at high rates, up to [approximately]2.5-times as many trapped holes are compensated by electrons in border traps than at low rates for these devices and irradiation conditions. Both the reduction in trapped-hole density and increased charge compensation reduce the high-rate midgap shift. A physical model is developed which suggests that both effects are caused by time-dependent space charge in the bulk of these soft oxides associated with slowly transporting and/or metastably trapped holes (e.g., in E[delta][prime] centers). On the basis of this model, bipolar transistors and screen-oxide capacitors were irradiated at 60 C at 200 rad(SiO[sub 2])/s in a successful effort to match low-rate damage. these surprising results provide insight into enhanced low-rate bipolar gain degradation and suggest potentially promising new approaches to bipolar and BiCMOS hardness assurance for space applications.

  20. Effect of hydrion evolution by polylactic-co-glycolic acid coating on degradation rate of pure iron.

    PubMed

    Wu, Jingyao; Lu, Xi; Tan, Lili; Zhang, Bingchun; Yang, Ke

    2013-10-01

    For biodegradable iron coronary stents, the major problem is the low degradation rate in body environment. In this study, a new strategy was proposed to increase the degradation rate of iron in vitro. The hydrion evolution was intended to be introduced into the degradation system to increase the degradation rate. To realize this strategy, polylactic-co-glycolic acid (PLGA) was coated onto the surface of pure iron. The degradation process and mechanism of pure iron coated with PLGA were investigated. The results showed that iron coated with PLGA exhibited higher degradation rate in the static immersion test all along. With the degradation of PLGA, the oligomers of PLGA could release abundant H(+) which could dissolve the ferrous oxide to make the electrolyte and oxygen to reach the surface of iron again and simultaneity trigger the hydrion evolution at the middle stage of the degradation. The study also revealed that the solution ions failed to permeate the PLGA coating and the deposition of calcium and phosphorus in the degradation layer was inhibited which further enhanced the degradation.

  1. Determining Rates of Permafrost Degradation Using a Time-Series of High-Resolution Imagery

    NASA Astrophysics Data System (ADS)

    Jorgenson, M. T.; Dissing, D.

    2008-12-01

    Quantifying the nature, extent, and rate of permafrost degradation requires high-resolution imagery because of the high variability in spatial and spectral characteristics of thermokarst landforms. Because rates of lateral degradation usually are <1 m/yr, a spatial resolution <2 m is required to adequately quantify degradation over 10-50 years. Due to the need for high-resolution imagery, however, it is practical to sample degradation only within small areas. We prefer to use high-resolution scans of film for historical airphotos, and to use newly acquired airphotos or high-resolution satellite imagery (e.g. Quickbird, Ikonos). Terrain-corrected satellite imagery is preferred as the base for georectifying and overlaying the historical photography. We prefer manual photointerpretation of permafrost boundaries over image processing because of the complexity of vegetation/surface water responses, and thus spectral characteristics, at the degrading margins. Change can be detected either by vectorizing boundaries of thermokarst landforms or point sampling across the entire time-series of images. While rates of surface permafrost degradation have yet to be assessed comprehensively in Alaska, our measurements of degradation at four sites across a climatic gradient using georectified airphotos provides some initial assessment. At Naknek in southwestern Alaska, the total area with recent thermokarst landforms developing in glacio-lacustrine deposits has increased from 35.5% in 1951 to 42% in 2000. On the Tanana Flats, central Alaska, recent thermokarst fens and bogs on abandoned floodplain deposits have increased from 39% in 1949 to 47% in 1995. At Cape Espenberg, Seward Peninsula, thermokarst lakes, basins, and thermokarst pits and troughs on eolian silt have increased from 73.9% in 1950 to 78.1% in 2005, with the high percentage of thermokarst terrain due to old, drained thaw-lake basins. At Fish Creek on the Beaufort Coastal Plain, where recent thermokarst polygonal

  2. Rate of hydrolysis and degradation of the cyanogenic glycoside - dhurrin - in soil.

    PubMed

    Johansen, Henrik; Rasmussen, Lars Holm; Olsen, Carl Erik; Bruun Hansen, Hans Christian

    2007-02-01

    Cyanogenic glycosides are common plant toxins. Toxic hydrogen cyanide originating from cyanogenic glycosides may affect soil processes and water quality. In this study, hydrolysis, degradation and sorption of dhurrin (4-hydroxymandelonitrile-beta-d-glucoside) produced by sorghum has been studied in order to assess its fate in soil. The log K(ow) of dhurrin was -1.18+/-0.08 (22 degrees C). Hydrolysis was a first-order reaction with respect to dhurrin and hydroxyl ion concentrations. Half lives ranged from 1.2h (pH 8.6; 25 degrees C) to 530d (pH 4; 25 degrees C). The activation energy of hydrolysis was 112+9kJ. At pH 5.8 and room temperature, addition of humic acids (50gl(-1)) increased the rate of hydrolysis tenfold, while addition of kaolinite or goethite (100-250gl(-1)) both decreased the rate considerably. No significant sorption to soil components could be observed. The degradation rates of dhurrin in top and subsoils of Oxisols, Ultisols, Alfisols and Mollisols were studied at 22 degrees C (25mgl(-1), soil:liquid 1:1 (w:V), pH 3.8-8.1). Half-lives were 0.25-2h for topsoils, and 5-288h in subsoils. Hydrolysis in solution explained up to 45% of the degradation in subsoils whereas the contribution in topsoils was less than 14%, indicating the importance of enzymatic degradation processes. The highest risk of dhurrin leaching will take place when the soil is a low activity acid shallow soil with low content of clay minerals, iron oxides and humic acids. PMID:17126881

  3. Effect of compost application rate on carbon degradation and retention in soils.

    PubMed

    Fabrizio, Adani; Tambone, Fulvia; Genevini, Pierluigi

    2009-01-01

    We investigated the effect of a single compost application at two rates (50 and 85Mgha(-1)) on carbon (C) degradation and retention in an agricultural soil cropped with maize after 150d. We used both C mass balance and soil respiration data to trace the fate of compost C. Our results indicated that compost C accumulated in the soil after 150d was 4.24Mgha(-1) and 6.82Mg C ha(-1) for 50 and 85Mg ha(-1) compost rate, respectively. Compost C was sequestered at the rate of 623 and 617g C kg(-1) compost TOC for 50 and 85Mgha(-1) compost dose, respectively. These results point to a linear response between dose of application and both C degradation and retention. The amount of C sequestered was similar to the total recalcitrant C content of compost, which was 586g C kg(-1) compost TOC, indicating that, probably, during the short experiment, the labile C pool of compost (414g C kg(-1) of compost TOC) was completely degraded. Soil respiration measured at different times during the crop growth cycle was stable for soils amended with compost (CO2 flux of 0.96+/-0.11g CO2 m(-2) h(-1) and 1.07+/-0.10g CO2 m(-2) h(-1), respectively, for 50 and 85Mgha(-1)), whereas it increased in the control. The CO2 flux due to compost degradation only, though not statistically significant, was always greatest for the highest compost doses applied (0.22+/-0.40g CO2 m(-2) h(-1) and 0.33+/-0.25g CO2 m(-2) h(-1) for the 50 and 85Mgha(-1) compost dose, respectively). This seems to confirm the highest C degradation for the 85Mgha(-1) compost dose as a consequence of the presence of more labile C. Unlike other studies, the results show a slight increase in the fraction of carbon retained with the increase in compost application rate. This could be due to the highly stable state of the compost prior to application, although it could also be due to sampling uncertainty. Further investigations are needed to better explain how the compost application rate affects carbon sequestration, and how

  4. An investigation of image compression on NIIRS rating degradation through automated image analysis

    NASA Astrophysics Data System (ADS)

    Chen, Hua-Mei; Blasch, Erik; Pham, Khanh; Wang, Zhonghai; Chen, Genshe

    2016-05-01

    The National Imagery Interpretability Rating Scale (NIIRS) is a subjective quantification of static image widely adopted by the Geographic Information System (GIS) community. Efforts have been made to relate NIIRS image quality to sensor parameters using the general image quality equations (GIQE), which make it possible to automatically predict the NIIRS rating of an image through automated image analysis. In this paper, we present an automated procedure to extract line edge profile based on which the NIIRS rating of a given image can be estimated through the GIQEs if the ground sampling distance (GSD) is known. Steps involved include straight edge detection, edge stripes determination, and edge intensity determination, among others. Next, we show how to employ GIQEs to estimate NIIRS degradation without knowing the ground truth GSD and investigate the effects of image compression on the degradation of an image's NIIRS rating. Specifically, we consider JPEG and JPEG2000 image compression standards. The extensive experimental results demonstrate the effect of image compression on the ground sampling distance and relative edge response, which are the major factors effecting NIIRS rating.

  5. Reaction mechanisms and rate constants of waste degradation in landfill bioreactor systems with enzymatic-enhancement.

    PubMed

    Jayasinghe, P A; Hettiaratchi, J P A; Mehrotra, A K; Kumar, S

    2014-06-01

    Augmenting leachate before recirculation with peroxidase enzymes is a novel method to increase the available carbon, and therefore the food supply to microorganisms at the declining phase of the anaerobic landfill bioreactor operation. In order to optimize the enzyme-catalyzed leachate recirculation process, it is necessary to identify the reaction mechanisms and determine rate constants. This paper presents a kinetic model developed to ascertain the reaction mechanisms and determine the rate constants for enzyme catalyzed anaerobic waste degradation. The maximum rate of reaction (Vmax) for MnP enzyme-catalyzed reactors was 0.076 g(TOC)/g(DS).day. The catalytic turnover number (k(cat)) of the MnP enzyme-catalyzed was 506.7 per day while the rate constant (k) of the un-catalyzed reaction was 0.012 per day.

  6. Reaction mechanisms and rate constants of waste degradation in landfill bioreactor systems with enzymatic-enhancement.

    PubMed

    Jayasinghe, P A; Hettiaratchi, J P A; Mehrotra, A K; Kumar, S

    2014-06-01

    Augmenting leachate before recirculation with peroxidase enzymes is a novel method to increase the available carbon, and therefore the food supply to microorganisms at the declining phase of the anaerobic landfill bioreactor operation. In order to optimize the enzyme-catalyzed leachate recirculation process, it is necessary to identify the reaction mechanisms and determine rate constants. This paper presents a kinetic model developed to ascertain the reaction mechanisms and determine the rate constants for enzyme catalyzed anaerobic waste degradation. The maximum rate of reaction (Vmax) for MnP enzyme-catalyzed reactors was 0.076 g(TOC)/g(DS).day. The catalytic turnover number (k(cat)) of the MnP enzyme-catalyzed was 506.7 per day while the rate constant (k) of the un-catalyzed reaction was 0.012 per day. PMID:24759644

  7. Penetration of hydrogen peroxide and degradation rate of different bleaching products.

    PubMed

    Marson, F C; Gonçalves, R S; Silva, C O; Cintra, L T Â; Pascotto, R C; Santos, P H Dos; Briso, A L F

    2015-01-01

    This study's aim was to evaluate the degradation rate of hydrogen peroxide (H2O2) and to quantify its penetration in tooth structure, considering the residence time of bleaching products on the dental enamel. For this study, bovine teeth were randomly divided according to the bleaching product received: Opalescence Xtra Boost 38%, White Gold Office 35%, Whiteness HP Blue 35%, Whiteness HP Maxx 35%, and Lase Peroxide Sensy 35%. To analyze the degradation of H2O2, the titration of bleaching agents with potassium permanganate was used, while the penetration of H2O2 was measured via spectrophotometric analysis of the acetate buffer solution, collected from the artificial pulp chamber. The analyses were performed immediately as well as 15 minutes, 30 minutes, and 45 minutes after product application. The data of degradation rate of H2O2 were submitted to analysis of variance (ANOVA) and Tukey tests, while ANOVA and Fisher tests were used for the quantification of H2O2, at the 5% level. The results showed that all products significantly reduced the concentration of H2O2 activates at the end of 45 minutes. It was also verified that the penetration of H2O2 was enhanced by increasing the residence time of the product on the tooth surface. It was concluded that the bleaching gels retained substantial concentrations of H2O2 after 45 minutes of application, and penetration of H2O2 in the dental structure is time-dependent. PMID:24828134

  8. Degradation and annealing studies on gamma rays irradiated COTS PPD CISs at different dose rates

    NASA Astrophysics Data System (ADS)

    Wang, Zujun; Ma, Yingwu; Liu, Jing; Xue, Yuan; He, Baoping; Yao, Zhibin; Huang, Shaoyan; Liu, Minbo; Sheng, Jiangkun

    2016-06-01

    The degradation and annealing studies on Colbalt-60 gamma-rays irradiated commercial-off-the-shelf (COTS) pinned photodiode (PPD) CMOS image sensors (CISs) at the various dose rates are presented. The irradiation experiments of COTS PPD CISs are carried out at 0.3, 3.0 and 30.0 rad(Si)/s. The COTS PPD CISs are manufactured using a standard 0.18-μm CMOS technology with four-transistor pixel PPD architecture. The behavior of the tested CISs shows a remarkable degradation after irradiation and differs in the dose rates. The dark current, dark signal non-uniformity (DSNU), random noise, saturation output, signal to noise ratio (SNR), and dynamic range (DR) versus the total ionizing dose (TID) at the various dose rates are investigated. The tendency of dark current, DSNU, and random noise increase and saturation output, SNR, and DR to decrease at 3.0 rad(Si)/s are far greater than those at 0.3 and 30.0 rad(Si)/s. The damage mechanisms caused by TID irradiation at the various dose rates are also analyzed. The annealing tests are carried out at room temperature with unbiased conditions after irradiation.

  9. Balancing sample accumulation and DNA degradation rates to optimize noninvasive genetic sampling of sympatric carnivores.

    PubMed

    Lonsinger, Robert C; Gese, Eric M; Dempsey, Steven J; Kluever, Bryan M; Johnson, Timothy R; Waits, Lisette P

    2015-07-01

    Noninvasive genetic sampling, or noninvasive DNA sampling (NDS), can be an effective monitoring approach for elusive, wide-ranging species at low densities. However, few studies have attempted to maximize sampling efficiency. We present a model for combining sample accumulation and DNA degradation to identify the most efficient (i.e. minimal cost per successful sample) NDS temporal design for capture-recapture analyses. We use scat accumulation and faecal DNA degradation rates for two sympatric carnivores, kit fox (Vulpes macrotis) and coyote (Canis latrans) across two seasons (summer and winter) in Utah, USA, to demonstrate implementation of this approach. We estimated scat accumulation rates by clearing and surveying transects for scats. We evaluated mitochondrial (mtDNA) and nuclear (nDNA) DNA amplification success for faecal DNA samples under natural field conditions for 20 fresh scats/species/season from <1-112 days. Mean accumulation rates were nearly three times greater for coyotes (0.076 scats/km/day) than foxes (0.029 scats/km/day) across seasons. Across species and seasons, mtDNA amplification success was ≥95% through day 21. Fox nDNA amplification success was ≥70% through day 21 across seasons. Coyote nDNA success was ≥70% through day 21 in winter, but declined to <50% by day 7 in summer. We identified a common temporal sampling frame of approximately 14 days that allowed species to be monitored simultaneously, further reducing time, survey effort and costs. Our results suggest that when conducting repeated surveys for capture-recapture analyses, overall cost-efficiency for NDS may be improved with a temporal design that balances field and laboratory costs along with deposition and degradation rates.

  10. Balancing sample accumulation and DNA degradation rates to optimize noninvasive genetic sampling of sympatric carnivores.

    PubMed

    Lonsinger, Robert C; Gese, Eric M; Dempsey, Steven J; Kluever, Bryan M; Johnson, Timothy R; Waits, Lisette P

    2015-07-01

    Noninvasive genetic sampling, or noninvasive DNA sampling (NDS), can be an effective monitoring approach for elusive, wide-ranging species at low densities. However, few studies have attempted to maximize sampling efficiency. We present a model for combining sample accumulation and DNA degradation to identify the most efficient (i.e. minimal cost per successful sample) NDS temporal design for capture-recapture analyses. We use scat accumulation and faecal DNA degradation rates for two sympatric carnivores, kit fox (Vulpes macrotis) and coyote (Canis latrans) across two seasons (summer and winter) in Utah, USA, to demonstrate implementation of this approach. We estimated scat accumulation rates by clearing and surveying transects for scats. We evaluated mitochondrial (mtDNA) and nuclear (nDNA) DNA amplification success for faecal DNA samples under natural field conditions for 20 fresh scats/species/season from <1-112 days. Mean accumulation rates were nearly three times greater for coyotes (0.076 scats/km/day) than foxes (0.029 scats/km/day) across seasons. Across species and seasons, mtDNA amplification success was ≥95% through day 21. Fox nDNA amplification success was ≥70% through day 21 across seasons. Coyote nDNA success was ≥70% through day 21 in winter, but declined to <50% by day 7 in summer. We identified a common temporal sampling frame of approximately 14 days that allowed species to be monitored simultaneously, further reducing time, survey effort and costs. Our results suggest that when conducting repeated surveys for capture-recapture analyses, overall cost-efficiency for NDS may be improved with a temporal design that balances field and laboratory costs along with deposition and degradation rates. PMID:25454561

  11. Mangroves in peril: unprecedented degradation rates of peri-urban mangroves in Kenya

    NASA Astrophysics Data System (ADS)

    Bosire, J. O.; Kaino, J. J.; Olagoke, A. O.; Mwihaki, L. M.; Ogendi, G. M.; Kairo, J. G.; Berger, U.; Macharia, D.

    2014-05-01

    Marine ecosystems are experiencing unprecedented degradation rates higher than any other ecosystem on the planet, which in some instances are up to 4 times those of rainforests. Mangrove ecosystems have especially been impacted by compounded anthropogenic pressures leading to significant cover reductions of between 35 and 50% (equivalent to 1-2% loss pa) for the last half century. The main objective of this study was to test the hypothesis that peri-urban mangroves suffering from compounded and intense pressures may be experiencing higher degradation rates than the global mean (and/or national mean for Kenya) using Mombasa mangroves (comprising Tudor and Mwache creeks) as a case study. Stratified sampling was used to sample along 22 and 10 belt transects in Mwache and Tudor respectively, set to capture stand heterogeneity in terms of species composition and structure in addition to perceived human pressure gradients using proximity to human habitations as a proxy. We acquired SPOT (HRV/ HRVIR/ HRS) images of April 1994, May 2000 and January 2009 and a vector mangrove map of 1992 at a scale of 1:50 000 for cover change and species composition analysis. Results from image classification of the 2009 image had 80.23% overall accuracy and Cohen's kappa of 0.77, thus proving satisfactory for use in this context. Structural data indicate that complexity index (CI) which captures stand structural development was higher in Mwache at 1.80 compared to Tudor at 1.71. From cover change data, Tudor lost 86.9% of the forest between 1992 and 2009, compared to Mwache at 45.4%, representing very high hitherto undocumented degradation rates of 5.1 and 2.7% pa, respectively. These unprecedentedly high degradation rates, which far exceed not only the national mean (for Kenya of 0.7% pa) but the global mean as well, strongly suggest that these mangroves are highly threatened due to compounded pressures. Strengthening of governance regimes through enforcement and compliance to halt

  12. Mangroves in peril: unprecedented degradation rates of peri-urban mangroves in Kenya

    NASA Astrophysics Data System (ADS)

    Bosire, J. O.; Kaino, J. J.; Olagoke, A. O.; Mwihaki, L. M.; Ogendi, G. M.; Kairo, J. G.; Berger, U.; Macharia, D.

    2013-10-01

    Marine ecosystems are experiencing unprecedentedly high degradation rates than any other ecosystem on the planet, which in some instances are up to four times that of rainforests. Mangrove ecosystems have especially been impacted by compounded anthropogenic pressures leading to significant cover reductions of between 35 and 50% (equivalent to 1-2% loss pa) for the last half century. The main objective of this study was to test the hypothesis that peri-urban mangroves suffering from compounded and intense pressures may be experiencing higher degradation rates than the global mean (and/or national mean for Kenya) using Mombasa mangroves (comprising of Tudor and Mwache creeks) as a case study. Stratified sampling was used to sample along 22 and 10 belt transects in Mwache and Tudor respectively, set to capture stand heterogeneity in terms of species composition and structure in addition to perceived human pressure gradients using proximity to human habitations as a proxy. We acquired SPOT (HRV/ HRVIR/ HRS) imageries of April 1994, May 2000 and January 2009 and a vector mangrove map of 1992 at a scale of 1 : 50 000 for cover change and species composition analysis. Results from image classification of the 2009 image had 80.23% overall accuracy and Cohen's Kappa of 0.77, thus proving satisfactory for use in this context. Structural data indicate that complexity index (CI) which captures stand structural development was higher in Mwache at 1.80 compared to Tudor at 1.71. From cover change data, Tudor had lost 86.9% of the forest between 1992 and 2009, compared to Mwache at 45.4% representing very high hitherto undocumented degradation rates of 5.1 and 2.7% pa, respectively. These unprecedentedly high degradation rates, which far exceed not only the national mean (for Kenya of 0.7% pa) but the global mean as well, strongly suggest that these mangroves are highly threatened due to compounded pressures. Strengthening of governance regimes through enforcement and compliance

  13. SERDP ER-1421 Abiotic and Biotic Mechanisms Controlling In Situ Remediation of NDMA: Final Report

    SciTech Connect

    Szecsody, James E.; McKinley, James P.; Crocker, Fiona H.; Breshears, Andrew T.; Devary, Brooks J.; Fredrickson, Herbert L.; Thompson, Karen T.

    2009-09-30

    This laboratory-scale project was initiated to investigate in situ abiotic/biotic mineralization of NDMA. Under iron-reducing conditions, aquifer sediments showed rapid abiotic NDMA degradation to dimethylamine (DMA), nitrate, formate, and finally, CO2. These are the first reported experiments of abiotic NDMA mineralization. The NDMA reactivity of these different iron phases showed that adsorbed ferrous iron was the dominant reactive phase that promoted NDMA reduction, and other ferrous phases present (siderite, iron sulfide, magnetite, structural ferrous iron in 2:1 clays) did not promote NDMA degradation. In contrast, oxic sediments that were biostimulated with propane promoted biomineralization of NDMA by a cometabolic monooxygenase enzyme process. Other monooxygenase enzyme processes were not stimulated with methane or toluene additions, and acetylene addition did not block mineralization. Although NDMA mineralization extent was the highest in oxic, biostimulated sediments (30 to 82%, compared to 10 to 26% for abiotic mineralization in reduced sediments), large 1-D column studies (high sediment/water ratio of aquifers) showed 5.6 times higher NDMA mineralization rates in reduced sediment (half-life 410 ± 147 h) than oxic biomineralization (half life 2293 ± 1866 h). Sequential reduced/oxic biostimulated sediment mineralization (half-life 3180 ± 1094 h) was also inefficient compared to reduced sediment. These promising laboratory-scale results for NDMA mineralization should be investigated at field scale. Future studies of NDMA remediation should focus on the comparison of this in situ abiotic NDMA mineralization (iron-reducing environments) to ex situ biomineralization, which has been shown successful in other studies.

  14. Evaluating DNA degradation rates in faecal pellets of the endangered pygmy rabbit.

    PubMed

    DeMay, Stephanie M; Becker, Penny A; Eidson, Chad A; Rachlow, Janet L; Johnson, Timothy R; Waits, Lisette P

    2013-07-01

    Noninvasive genetic sampling of faecal pellets can be a valuable method for monitoring rare and cryptic wildlife populations, like the pygmy rabbit (Brachylagus idahoensis). To investigate this method's efficiency for pygmy rabbit monitoring, we evaluated the effect of sample age on DNA degradation in faecal pellets under summer field conditions. We placed 275 samples from known individuals in natural field conditions for 1-60 days and assessed DNA quality by amplifying a 294-base-pair (bp) mitochondrial DNA (mtDNA) locus and five nuclear DNA (nDNA) microsatellite loci (111-221 bp). DNA degradation was influenced by sample age, DNA type, locus length and rabbit sex. Both mtDNA and nDNA exhibited high PCR success rates (94.4%) in samples <1 day old. Success rates for microsatellite loci declined rapidly from 80.0% to 42.7% between days 5 and 7, likely due to increased environmental temperature. Success rates for mtDNA amplification remained higher than nDNA over time, with moderate success (66.7%) at 21 days. Allelic dropout rates were relatively high (17.6% at <1 day) and increased to 100% at 60 days. False allele rates ranged from 0 to 30.0% and increased gradually over time. We recommend collecting samples as fresh as possible for individual identification during summer field conditions. Our study suggests that this method can be useful for future monitoring efforts, including occupancy surveys, individual identification, population estimation, parentage analysis and monitoring of genetic diversity both of a re-introduced population in central Washington and across their range.

  15. Varying relative degradation rates of oil in different forms and environments revealed by ramped pyrolysis.

    PubMed

    Pendergraft, Matthew A; Rosenheim, Brad E

    2014-09-16

    Degradation of oil contamination yields stabilized products by removing and transforming reactive and volatile compounds. In contaminated coastal environments, the processes of degradation are influenced by shoreline energy, which increases the surface area of the oil as well as exchange between oil, water, sediments, microbes, oxygen, and nutrients. Here, a ramped pyrolysis carbon isotope technique is employed to investigate thermochemical and isotopic changes in organic material from coastal environments contaminated with oil from the 2010 BP Deepwater Horizon oil spill. Oiled beach sediment, tar ball, and marsh samples were collected from a barrier island and a brackish marsh in southeast Louisiana over a period of 881 days. Stable carbon ((13)C) and radiocarbon ((14)C) isotopic data demonstrate a predominance of oil-derived carbon in the organic material. Ramped pyrolysis profiles indicate that the organic material was transformed into more stable forms. Our data indicate relative rates of stabilization in the following order, from fastest to slowest: high energy beach sediments > low energy beach sediments > marsh > tar balls. Oil was transformed most rapidly where shoreline energy and the rates of oil dispersion and exchange with water, sediments, microbes, oxygen, and nutrients were greatest. Still, isotope data reveal persistence of oil. PMID:25105342

  16. Varying relative degradation rates of oil in different forms and environments revealed by ramped pyrolysis.

    PubMed

    Pendergraft, Matthew A; Rosenheim, Brad E

    2014-09-16

    Degradation of oil contamination yields stabilized products by removing and transforming reactive and volatile compounds. In contaminated coastal environments, the processes of degradation are influenced by shoreline energy, which increases the surface area of the oil as well as exchange between oil, water, sediments, microbes, oxygen, and nutrients. Here, a ramped pyrolysis carbon isotope technique is employed to investigate thermochemical and isotopic changes in organic material from coastal environments contaminated with oil from the 2010 BP Deepwater Horizon oil spill. Oiled beach sediment, tar ball, and marsh samples were collected from a barrier island and a brackish marsh in southeast Louisiana over a period of 881 days. Stable carbon ((13)C) and radiocarbon ((14)C) isotopic data demonstrate a predominance of oil-derived carbon in the organic material. Ramped pyrolysis profiles indicate that the organic material was transformed into more stable forms. Our data indicate relative rates of stabilization in the following order, from fastest to slowest: high energy beach sediments > low energy beach sediments > marsh > tar balls. Oil was transformed most rapidly where shoreline energy and the rates of oil dispersion and exchange with water, sediments, microbes, oxygen, and nutrients were greatest. Still, isotope data reveal persistence of oil.

  17. Abiotic Bromination of Soil Organic Matter.

    PubMed

    Leri, Alessandra C; Ravel, Bruce

    2015-11-17

    Biogeochemical transformations of plant-derived soil organic matter (SOM) involve complex abiotic and microbially mediated reactions. One such reaction is halogenation, which occurs naturally in the soil environment and has been associated with enzymatic activity of decomposer organisms. Building on a recent finding that naturally produced organobromine is ubiquitous in SOM, we hypothesized that inorganic bromide could be subject to abiotic oxidations resulting in bromination of SOM. Through lab-based degradation treatments of plant material and soil humus, we have shown that abiotic bromination of particulate organic matter occurs in the presence of a range of inorganic oxidants, including hydrogen peroxide and assorted forms of ferric iron, producing both aliphatic and aromatic forms of organobromine. Bromination of oak and pine litter is limited primarily by bromide concentration. Fresh plant material is more susceptible to bromination than decayed litter and soil humus, due to a labile pool of mainly aliphatic compounds that break down during early stages of SOM formation. As the first evidence of abiotic bromination of particulate SOM, this study identifies a mechanistic source of the natural organobromine in humic substances and the soil organic horizon. Formation of organobromine through oxidative treatments of plant material also provides insights into the relative stability of aromatic and aliphatic components of SOM.

  18. Abiotic origin of biopolymers

    NASA Technical Reports Server (NTRS)

    Oro, J.; Stephen-Sherwood, E.

    1976-01-01

    A variety of methods have been investigated in different laboratories for the polymerization of amino acids and nucleotides under abiotic conditions. They include (1) thermal polymerization; (2) direct polymerization of certain amino acid nitriles, amides, or esters; (3) polymerization using polyphosphate esters; (4) polymerization under aqueous or drying conditions at moderate temperatures using a variety of simple catalysts or condensing agents like cyanamide, dicyandiamide, or imidazole; and (5) polymerization under similar mild conditions but employing activated monomers or abiotically synthesized high-energy compounds such as adenosine 5'-triphosphate (ATP). The role and significance of these methods for the synthesis of oligopeptides and oligonucleotides under possible primitive-earth conditions is evaluated. It is concluded that the more recent approach involving chemical processes similar to those used by contemporary living organisms appears to offer a reasonable solution to the prebiotic synthesis of these biopolymers.

  19. Evaluation of reversible and irreversible degradation rates of polymer electrolyte membrane fuel cells tested in automotive conditions

    NASA Astrophysics Data System (ADS)

    Gazdzick, Pawel; Mitzel, Jens; Garcia Sanchez, Daniel; Schulze, Mathias; Friedrich, K. Andreas

    2016-09-01

    This work provides single cell durability tests of membrane electrode assemblies in dynamic operation regularly interrupted by recovery procedures for the removal of reversible voltage losses. Degradation rates at different loads in one single test can be determined from these tests. Hence, it is possible to report degradation rates versus current density instead of a single degradation rate value. A clear discrimination between reversible and irreversible voltage loss rates is provided. The irreversible degradation rate can be described by a linear regression of voltage values after the recovery steps. Using voltage values before refresh is less adequate due to possible impacts of reversible effects. The reversible contribution to the voltage decay is dominated by an exponential decay after restart, eventually turning into a linear one. A linear-exponential function is proposed to fit the reversible voltage degradation. Due to this function, the degradation behavior of an automotive fuel cell can be described correctly during the first hours after restart. The fit parameters decay constant, exponential amplitude and linear slope are evaluated. Eventually, the reasons for the voltage recovery during shutdown are analyzed showing that ionomer effects in the catalyst layer and/or membrane seem to be the key factor in this process.

  20. Different Stability and Proteasome-Mediated Degradation Rate of SMN Protein Isoforms

    PubMed Central

    Locatelli, Denise; Terao, Mineko; Kurosaki, Mami; Zanellati, Maria Clara; Pletto, Daniela Rita; Finardi, Adele; Colciaghi, Francesca; Garattini, Enrico; Battaglia, Giorgio Stefano

    2015-01-01

    The key pathogenic steps leading to spinal muscular atrophy (SMA), a genetic disease characterized by selective motor neuron degeneration, are not fully clarified. The full-length SMN protein (FL-SMN), the main protein product of the disease gene SMN1, plays an established role in the cytoplasm in snRNP biogenesis ultimately leading to mRNA splicing within the nucleus. It is also involved in the mRNA axonal transport. However, to what extent the impairment of these two SMN functions contributes to SMA pathogenesis remains unknown. A shorter SMN isoform, axonal-SMN or a-SMN, with more specific axonal localization, has been discovered, but whether it might act in concert with FL-SMN in SMA pathogenesis is not known. As a first step in defining common or divergent intracellular roles of FL-SMN vs a-SMN proteins, we here characterized the turn-over of both proteins and investigated which pathway contributed to a-SMN degradation. We performed real time western blot and confocal immunofluorescence analysis in easily controllable in vitro settings. We analyzed co-transfected NSC34 and HeLa cells and cell clones stably expressing both a-SMN and FL-SMN proteins after specific blocking of transcript or protein synthesis and inhibition of known intracellular degradation pathways. Our data indicated that whereas the stability of both FL-SMN and a-SMN transcripts was comparable, the a-SMN protein was characterized by a much shorter half-life than FL-SMN. In addition, as already demonstrated for FL-SMN, the Ub/proteasome pathway played a major role in the a-SMN protein degradation. We hypothesize that the faster degradation rate of a-SMN vs FL-SMN is related to the protection provided by the protein complex in which FL-SMN is assembled. The diverse a-SMN vs FL-SMN C-terminus may dictate different protein interactions and complex formation explaining the different localization and role in the neuronal compartment, and the lower expression and stability of a-SMN. PMID:26214005

  1. On the probability of exceeding allowable leak rates through degraded steam generator tubes

    SciTech Connect

    Cizelj, L.; Sorsek, I.; Riesch-Oppermann, H.

    1997-02-01

    This paper discusses some possible ways of predicting the behavior of the total leak rate through the damaged steam generator tubes. This failure mode is of special concern in cases where most through-wall defects may remain In operation. A particular example is the application of alternate (bobbin coil voltage) plugging criterion to Outside Diameter Stress Corrosion Cracking at the tube support plate intersections. It is the authors aim to discuss some possible modeling options that could be applied to solve the problem formulated as: Estimate the probability that the sum of all individual leak rates through degraded tubes exceeds the predefined acceptable value. The probabilistic approach is of course aiming at reliable and computationaly bearable estimate of the failure probability. A closed form solution is given for a special case of exponentially distributed individual leak rates. Also, some possibilities for the use of computationaly efficient First and Second Order Reliability Methods (FORM and SORM) are discussed. The first numerical example compares the results of approximate methods with closed form results. SORM in particular shows acceptable agreement. The second numerical example considers a realistic case of NPP in Krsko, Slovenia.

  2. Abiotic reduction reactions of anthropogenic organic chemicals in anaerobic systems: A critical review

    NASA Astrophysics Data System (ADS)

    Macalady, Donald L.; Tratnyek, Paul G.; Grundl, Timothy J.

    1986-02-01

    This review is predicated upon the need for a detailed process-level understanding of factors influencing the reduction of anthropogenic organic chemicals in natural aquatic systems. In particular, abiotic reductions of anthropogenic organic chemicals are reviewed. The most important reductive reaction is alkyl dehalogenation (replacement of chloride with hydrogen) which occurs in organisms, sediments, sewage sludge, and reduced iron porphyrin model systems. An abiotic mechanism involving a free radical intermediate has been proposed. The abstraction of vicinal dihalides (also termed dehalogenation) is another reduction that may have an abiotic component in natural systems. Reductive dehalogenation of aryl halides has recently been reported and further study of this reaction is needed. Several other degradation reactions of organohalides that occur in anaerobic environments are mentioned, the most important of which is dehydrohalogenation. The reduction of nitro groups to amines has also been thoroughly studied. The reactions can occur abiotically, and are affected by the redox conditions of the experimental system. However, a relationship between nitro-reduction rate and measured redox potential has not been clearly established. Reductive dealkylation of the N- and O-heteroatom of hydrocarbon pollutants has been observed but not investigated in detail. Azo compounds can be reduced to their hydrazo derivatives and a thorough study of this reaction indicates that it can be caused by extracellular electron transfer agents. Quinone-hydroquinone couples are important reactive groups in humic materials and similar structures in resazurin and indigo carmine make them useful as models for environmental redox conditions. The interconversion of sulfones, sulfoxides, and sulfides is a redox process and is implicated in the degradation of several pesticides though the reactions need more study. Two reductive heterocyclic cleavage reactions are also mentioned. Finally, several

  3. TiO2 photocatalysis of naproxen: effect of the water matrix, anions and diclofenac on degradation rates.

    PubMed

    Kanakaraju, Devagi; Motti, Cherie A; Glass, Beverley D; Oelgemöller, Michael

    2015-11-01

    The TiO2 photocatalytic degradation of the active pharmaceutical ingredient (API) naproxen (NPX) has been studied using a laboratory-scale photoreactor equipped with a medium pressure mercury lamp. UV/TiO2 photocatalysis proved highly efficient in the elimination of NPX from a variety of water matrices, including distilled water, unfiltered river water and drinking water, although the rate of reaction was not always proportional to TiO2 concentration. However, the NPX degradation rate, which follows first-order kinetics, was appreciably reduced in river water spiked with phosphate and chloride ions, a dual anion system. Addition of chloride into drinking water enhanced the TiO2-photocatalysed degradation rate. Competitive degradation studies also revealed that the NPX degradation was greatly reduced in the presence of increased concentrations of another API, diclofenac (DCF). This was established by (i) the extent of mineralization, as determined by dissolved organic carbon (DOC) content, and (ii) the formation of intermediate NPX by-products, identified using liquid chromatography and electrospray ionization (positive and negative mode) mass spectrometry techniques. This study demonstrates that competition for active sites (anions or DCF) and formation of multiple photoproducts resulting from synergistic interactions (between both APIs) are key to the TiO2-photocatalysed NPX degradation.

  4. Potential Landscape and Flux of p53-Mdm2 Oscillator Mediated by Mdm2 Degradation Rate

    NASA Astrophysics Data System (ADS)

    Bi, Yuanhong; Yang, Zhuoqin

    The dynamics of the tumor suppressor p53 can play a crucial role in deciding cell fate after DNA damage. In this paper, we explore the dynamics and stability of p53 mediated by Mdm2 degradation rate in p53-Mdm2 oscillator through bifurcation, the potential landscape and flux. Based on the investigation of the bifurcation, we find that p53 can exhibit rich dynamics including monostability, bistability of two stable steady states and oscillation behaviors as well as bistability between a stable steady state and an oscillatory state. The stability of these states are further validated by the potential landscape. In addition, oscillatory behaviors of p53 are explored by means of the negative gradient of the potential landscape and the probability flux. It is shown that the negative gradient of the potential landscape can attract the system towards the oscillatory path and the flux can drive oscillation along the path. Moreover, the quicker the flux runs, the smaller the period is. Besides, stability and sensitivity of the system are explored by the barrier height and the entropy production rate in a single cell level, and we further compare the potential landscapes at single and population cell levels. Our results may be useful for understanding the regulation of p53 signaling pathways in response to DNA damage.

  5. Green stabilization of microscale iron particles using guar gum: bulk rheology, sedimentation rate and enzymatic degradation.

    PubMed

    Gastone, Francesca; Tosco, Tiziana; Sethi, Rajandrea

    2014-05-01

    Guar gum can be used to effectively improve stability and mobility of microscale zerovalent iron particles (MZVI) used in groundwater remediation. Guar gum is a food-grade, environment friendly natural polysaccharide, which is often used as thickening agent in a broad range of food, pharmaceutical and industrial applications. Guar gum solutions are non-Newtonian, shear thinning fluids, characterized by high viscosity in static conditions and low viscosity in dynamic conditions. In particular, the high zero shear viscosity guarantees the MZVI dispersion stability, reducing the sedimentation rate of the particles thus enabling its storage and field operations. In this work, a comprehensive rheological characterization of guar gum-based slurries of MZVI particles is provided. First, we derived a model to link the bulk shear viscosity to the concentration of guar gum and then we applied it for the derivation of a modified Stokes law for the prediction of the sedimentation rate of the iron particles. The influence of the preparation procedure (cold or hot dissolution and high shear processing) on the viscosity and on the stability of the suspensions was then assessed. Finally, the dosage and concentration of enzymes - an environment friendly breaker--were studied for enhancing and controlling the degradation kinetics of the suspensions. The derived empirical relationships can be used for the implementation of an iron slurry flow and transport model and for the design of full scale injection interventions.

  6. Atmospheric Pressure Plasma Jet in Organic Solution: Spectra, Degradation Effects of Solution Flow Rate and Initial pH Value

    NASA Astrophysics Data System (ADS)

    Chen, Bingyan; Zhu, Changping; Chen, Longwei; Fei, Juntao; Gao, Ying; Wen, Wen; Shan, Minglei; Ren, Zhaoxing

    2014-12-01

    The organic compounds of p-nitrophenol (PNP) solution was treated by the active species generated in a stirred reactor by an atmospheric pressure plasma jet (APPJ). The emission intensities of hydroxyl (OH), oxygen (O), nitric oxide (NO), hydrogen (H) and molecular (N2) were measured by optical emission spectroscopy (OES). The relations between the flow rates of the PNP solution and degradation, the degradation effects and initial pH value of the solution were also investigated. Experimental results show that there exist intense emissions of O (777.1 nm), N2 (337.1 nm), OH (306-310 nm) and NO band (200-290 nm) in the region of plasma. Given the treatment time and gas flow rate, the degradation increased as a function of discharge energy and solution flow rate, respectively. The solution flow rate for the most efficient degradation ranged from 1.414 m/s to 1.702 m/s, and contributed very little when it exceeded 2.199 m/s. This indicates the existence of diffusion-controlled reactions at a low solution flow rate and activation-controlled reactions at a high solution flow rate. Moreover, increasing or decreasing the initial pH value of neutral PNP solution (pH=5.95) could improve the degradation efficiency. Treated by APPJ, the PNP solutions with different initial pH values of 5.95, 7.47 and 2.78 turned more acidic in the end, while the neutral solution had the lowest degradation efficiency. This work clearly demonstrates the close coupling of active species, photolysis of ultraviolet, the organic solution flow rate and the initial pH value, and thus is helpful in the study of the mechanism and application of plasma in wastewater treatment.

  7. Effect of temperature, organic amendment rate and moisture content on the degradation of 1,3-dichloropropene in soil.

    PubMed

    Dungan, R S; Gan, J; Yates, S R

    2001-12-01

    1,3-Dichloropropene (1,3-D), which consists of two isomers, (Z)- and (E)-1,3-D, is considered to be a viable alternative to methyl bromide, but atmospheric emission of 1,3-D is often associated with deterioration of air quality. To minimize environmental impacts of 1,3-D, emission control strategies are in need of investigation. One approach to reduce 1,3-D emissions is to accelerate its degradation by incorporating organic amendments into the soil surface. In this study, we investigated the ability of four organic amendments to enhance the rate of degradation of (Z)- and (E)-1,3-D in a sandy loam soil. Degradation of (Z)- and (E)-1,3-D was well described by first-order kinetics, and rates of degradation for the two isomers were similar. Composted steer manure (SM) was the most reactive of the organic amendments tested. The half-life of both the (Z)- and (E)-isomers in unamended soil at 20 degrees C was 6.3 days; those in 5% SM-amended soil were 1.8 and 1.9 days, respectively. At 40 degrees C, the half-life of both isomers in 5% SM-amended soil was 0.5 day. Activation energy values for amended soil at 2, 5 and 10% SM were 56.5, 53.4 and 64.5 kJ mol-1, respectively. At 20 degrees C, the contribution of degradation from biological mechanisms was largest in soil amended with SM, but chemical mechanisms still accounted for more than 58% of the (Z)- and (E)-1,3-D degradation. The effect of temperature and amendment rate upon degradation should be considered when describing the fate and transport of 1,3-D isomers in soil. Use of organic soil amendments appears to be a promising method to enhance fumigant degradation and reduce volatile emissions.

  8. Dose rate effects on array CCDs exposed by Co-60 γ rays induce saturation output degradation and annealing tests

    SciTech Connect

    Wang, Zujun Chen, Wei; He, Baoping; Yao, Zhibin; Xiao, Zhigang; Sheng, Jiangkun; Liu, Minbo

    2015-10-15

    The experimental tests of dose rate and annealing effects on array charge-coupled devices (CCDs) are presented. The saturation output voltage (V{sub S}) versus the total dose at the dose rates of 0.01, 0.1, 1.0, 10.0 and 50 rad(Si)/s are compared. Annealing tests are performed to eliminate the time-dependent effects. The V{sub S} degradation levels depend on the dose rates. The V{sub S} degradation mechanism induced by dose rate and annealing effects is analyzed. The V{sub S} at 20 krad(Si) with the dose rate of 0.03 rad(Si)/s are supplemented to assure the degradation curves between the dose rates of 0.1 and 0.01 rad(Si)/s. The CCDs are divided into two groups, with one group biased and the other unbiased during {sup 60}Co γ radiation. The V{sub S} degradation levels of the biased CCDs during radiation are more severe than that of the unbiased CCDs.

  9. Functional characterization of normal and degraded bovine meniscus: rate-dependent indentation and friction studies.

    PubMed

    Baro, Vincent J; Bonnevie, Edward D; Lai, Xiaohan; Price, Christopher; Burris, David L; Wang, Liyun

    2012-08-01

    The menisci are known to play important roles in normal joint function and the development of diseases such as osteoarthritis. However, our understanding of meniscus' load bearing and lubrication properties at the tissue level remains limited. The objective of this investigation was to characterize the site- and rate-dependency of the compressive and frictional responses of the meniscus under a spherical contact load. Using a custom testing device, indentation tests with rates of 1, 10, 25, 50, and 100μm/s were performed on bovine medial meniscus explants, which were harvested from five locations including the femoral apposing surface at the anterior, central, and posterior locations and the central portion at the deep layer and at the tibial apposing surface (n=5 per location). Sliding tests with rates of 0.05, 0.25, 1, and 5mm/s were performed on the central femoral aspect and central tibial aspect superficial samples (n=6 per location). A separate set of superficial samples were subjected to papain digestion and tested prior to and post treatment. Our findings are: i) the Hertz contact model can be used to fit the force responses of meniscus under the conditions tested; ii) the anterior region is significantly stiffer than the posterior region and tissue modulus does not vary with tissue depth at the central region; iii) the friction coefficient of the meniscus is on the order of 0.02 under migratory contacts and the femoral apposing surface tends to show lower friction than the tibial apposing surface; iv) the meniscus exhibits increased modulus and lubrication with increased indentation and sliding rates; v) matrix degradation impedes the functional load support and lubrication properties of the tissue. The site- and rate-dependent properties of the meniscus may be attributed to spatial variations of the tissue's biphasic structure. These properties substantiate the role of the meniscus as one of the important bearing surfaces of the knee. These data

  10. The net effect of abiotic conditions and biotic interactions in a semi-arid ecosystem NE Spain: implications for the management and restoration.

    NASA Astrophysics Data System (ADS)

    Pueyo, Yolanda; Arroyo, Antonio I.; Saiz, Hugo; Alados, Concepción L.

    2014-05-01

    Degradation in arid and semiarid lands can be irreversible without human intervention, due to a positive plant-soil feedback where the loss of vegetation cover leads to soil degradation, which in turn hampers plant establishment. Human intervention in restoration actions usually involves the amendment of the degraded abiotic conditions, revegetation of bare areas, or both. However, abiotic amelioration is often expensive and too intrusive, and revegetation is not successful in many cases. Biotic interactions between plants, and more specifically facilitation by a "nurse" plant, have been proposed as a new via to take profit of improved abiotic conditions without intervention, and to increase the success rate of revegetation actions. But "nurse" plants can also interfere with others (i.e. by competition for resources or the release of allelopathic compounds), and the net balance between facilitation and interference could depend on plant types involved. We present recent observational and experimental studies performed in the semiarid ecosystems of the Middle Ebro Valley (NE Spain) about the role of abiotic conditions and biotic interactions in the productivity, dynamics and diversity of plant communities under different stress conditions (aridity and grazing). We found that all plant types studied (shrubs and perennial grasses) improved abiotic conditions (soil temperature and water availability for plants) with respect to open areas. However, only some shrubs (mainly Salsola vermiculata) had a positive net balance in the biotic interactions between plants, while other shrubs (Artemisia herba-alba) and perennial grasses (Lygeum spartum) showed interference with other plants. Moreover, the net balance between facilitation and interference among plants in the community shifted from competitive to neutral or from neutral to facilitative with increasing aridity. Grazing status did not strongly change the net biotic interactions between plants. Our results suggest that

  11. Biotic and Abiotic Factors Controlling Respiration Rates of Above- and Belowground Woody Debris of Fagus crenata and Quercus crispula in Japan.

    PubMed

    Jomura, Mayuko; Akashi, Yuhei; Itoh, Hiromu; Yuki, Risa; Sakai, Yoshimi; Maruyama, Yutaka

    2015-01-01

    As a large, long-term pool and source of carbon and nutrients, woody litter is an important component of forest ecosystems. The objective of this study was to estimate the effect of the factors that regulate the rate of decomposition of coarse and fine woody debris (CFWD) of dominant tree species in a cool-temperate forest in Japan. Respiration rates of dead stems, branches, and coarse and fine roots of Fagus crenata and Quercus crispula felled 4 years prior obtained in situ ranged from 20.9 to 500.1 mg CO2 [kg dry wood](-1) h(-1) in a one-time measurement in summer. Respiration rate had a significant negative relationship with diameter; in particular, that of a sample of Q. crispula with a diameter of >15 cm and substantial heartwood was low. It also had a significant positive relationship with moisture content. The explanatory variables diameter, [N], wood density, and moisture content were interrelated. The most parsimonious path model showed 14 significant correlations among 8 factors and respiration. Diameter and [C] had large negative direct effects on CFWD respiration rate, and moisture content and species had medium positive direct effects. [N] and temperature did not have direct or indirect effects, and position and wood density had indirect effects. The model revealed some interrelationships between controlling factors. We discussed the influence of the direct effects of explanatory variables and the influence especially of species and position. We speculate that the small R2 value of the most parsimonious model was probably due to the omission of microbial biomass and activity. These direct and indirect effects and interrelationships between explanatory variables could be used to develop a process-based CFWD decomposition model. PMID:26658727

  12. Biotic and Abiotic Factors Controlling Respiration Rates of Above- and Belowground Woody Debris of Fagus crenata and Quercus crispula in Japan

    PubMed Central

    Jomura, Mayuko; Akashi, Yuhei; Itoh, Hiromu; Yuki, Risa; Sakai, Yoshimi; Maruyama, Yutaka

    2015-01-01

    As a large, long-term pool and source of carbon and nutrients, woody litter is an important component of forest ecosystems. The objective of this study was to estimate the effect of the factors that regulate the rate of decomposition of coarse and fine woody debris (CFWD) of dominant tree species in a cool-temperate forest in Japan. Respiration rates of dead stems, branches, and coarse and fine roots of Fagus crenata and Quercus crispula felled 4 years prior obtained in situ ranged from 20.9 to 500.1 mg CO2 [kg dry wood]–1 h–1 in a one-time measurement in summer. Respiration rate had a significant negative relationship with diameter; in particular, that of a sample of Q. crispula with a diameter of >15 cm and substantial heartwood was low. It also had a significant positive relationship with moisture content. The explanatory variables diameter, [N], wood density, and moisture content were interrelated. The most parsimonious path model showed 14 significant correlations among 8 factors and respiration. Diameter and [C] had large negative direct effects on CFWD respiration rate, and moisture content and species had medium positive direct effects. [N] and temperature did not have direct or indirect effects, and position and wood density had indirect effects. The model revealed some interrelationships between controlling factors. We discussed the influence of the direct effects of explanatory variables and the influence especially of species and position. We speculate that the small R2 value of the most parsimonious model was probably due to the omission of microbial biomass and activity. These direct and indirect effects and interrelationships between explanatory variables could be used to develop a process-based CFWD decomposition model. PMID:26658727

  13. Uncertainty in degradation rates for organic micro-pollutants during full-scale sewage sludge composting.

    PubMed

    Sadef, Yumna; Poulsen, Tjalfe G; Habib, Kashif; Iqbal, Tariq; Nizami, Abdul Sattar

    2016-10-01

    Composting can potentially remove organic pollutants in sewage sludge. When estimating pollutant removal efficiency, knowledge of estimate uncertainty is important for understanding estimate reliability. In this study the uncertainty (coefficient of variation, CV) in pollutant degradation rate (K1) and relative concentration at 35days of composting (C35/C0) was evaluated. This was done based on recently presented pollutant concentration data, measured under full-scale composting conditions using two different sampling methods for a range of organic pollutants commonly found in sewage sludge. Non-parametric statistical procedures were used to estimate CV values for K1 and C35/C0 for individual pollutants. These were then used to compare the two sampling methods with respect to CV and to determine confidence intervals for average CV. Results showed that sampling method is crucial for reducing uncertainty. The results further indicated that it is possible to achieve CV values for both K1 and C35/C0 of about 15%. PMID:27342191

  14. Influence of the intramedullary nail preparation method on nail's mechanical properties and degradation rate.

    PubMed

    Morawska-Chochół, Anna; Chłopek, Jan; Szaraniec, Barbara; Domalik-Pyzik, Patrycja; Balacha, Ewa; Boguń, Maciej; Kucharski, Rafael

    2015-06-01

    When it comes to the treatment of long bone fractures, scientists are still investigating new materials for intramedullary nails and different manufacturing methods. Some of the most promising materials used in the field are resorbable polymers and their composites, especially since there is a wide range of potential manufacturing and processing methods. The aim of this work was to select the best manufacturing method and technological parameters to obtain multiphase, and multifunctional, biodegradable intramedullary nails. All composites were based on a poly(l-lactide) matrix. Either magnesium alloy wires or carbon and alginate fibres were introduced in order to reinforce the nails. The polylactide matrix was also modified with tricalcium phosphate and gentamicin sulfate. The composite nails were manufactured using three different methods: forming from solution, injection moulding and hot pressing. The effect of each method of manufacturing on mechanical properties and degradation rate of the nails was evaluated. The study showed that injection moulding provides higher uniformity and homogeneity of the particle-modified polylactide matrix, whereas hot pressing favours applying higher volume fractions of fibres and their better impregnation with the polymer matrix. Thus, it was concluded that the fabrication method should be individually selected dependently on the nail's desired phase composition.

  15. Degradation Rate of 5-Fluorouracil in Metastatic Colorectal Cancer: A New Predictive Outcome Biomarker?

    PubMed Central

    Botticelli, Andrea; Borro, Marina; Onesti, Concetta Elisa; Strigari, Lidia; Gentile, Giovanna; Cerbelli, Bruna; Romiti, Adriana; Occhipinti, Mario; Sebastiani, Claudia; Lionetto, Luana; Marchetti, Luca; Simmaco, Maurizio; Marchetti, Paolo; Mazzuca, Federica

    2016-01-01

    Background 5-FU based chemotherapy is the most common first line regimen used for metastatic colorectal cancer (mCRC). Identification of predictive markers of response to chemotherapy is a challenging approach for drug selection. The present study analyzes the predictive role of 5-FU degradation rate (5-FUDR) and genetic polymorphisms (MTHFR, TSER, DPYD) on survival. Materials and Methods Genetic polymorphisms of MTHFR, TSER and DPYD, and the 5-FUDR of homogenous patients with mCRC were retrospectively studied. Genetic markers and the 5-FUDR were correlated with clinical outcome. Results 133 patients affected by mCRC, treated with fluoropyrimidine-based chemotherapy from 2009 to 2014, were evaluated. Patients were classified into three metabolic classes, according to normal distribution of 5-FUDR in more than 1000 patients, as previously published: poor-metabolizer (PM) with 5-FU-DR ≤ 0,85 ng/ml/106 cells/min (8 pts); normal metabolizer with 0,85 < 5-FU-DR < 2,2 ng/ml/106 cells/min (119 pts); ultra-rapid metabolizer (UM) with 5-FU-DR ≥ 2,2 ng/ml/106 cells/min (6 pts). PM and UM groups showed a longer PFS respect to normal metabolizer group (14.5 and 11 months respectively vs 8 months; p = 0.029). A higher G3-4 toxicity rate was observed in PM and UM, respect to normal metabolizer (50% in both PM and UM vs 18%; p = 0.019). No significant associations between genes polymorphisms and outcomes or toxicities were observed. Conclusion 5-FUDR seems to be significantly involved in predicting survival of patients who underwent 5-FU based CHT for mCRC. Although our findings require confirmation in large prospective studies, they reinforce the concept that individual genetic variation may allow personalized selection of chemotherapy to optimize clinical outcomes. PMID:27656891

  16. Wood source and pyrolysis temperature interact to control PyOM degradation rates

    NASA Astrophysics Data System (ADS)

    Bird, J. A.; Hatton, P. J.; Filley, T. R.; Chatterjee, S.; Auclerc, A.; Gormley, M.; Dastmalchi, K.; Stark, R. E.; Nadelhoffer, K. J.

    2015-12-01

    Surprisingly little is known about how shifts in tree species composition and increased forest fire frequency and intensity will affect one of the most stable pools of soil organic matter, i.e. the pyrogenic organic matter (PyOM or char). In a previous study, we showed that wood source and pyrolysis temperature interact to control PyOM structure and potential reactivity for two tree species common in high-latitude forests, jack pine (JP) and red maple (RM). Here, we investigate whether these differences affect PyOM turnover by examining the fates of 13C/15N-enriched JP wood and PyOM pyrolyzed at 300 (JP300) and 450 °C (JP450) and RM pyrolyzed at 450 °C (RM450). The substrates were applied 1-3 cm below the O/A interface of a well-drained Spodosol in a long-term forest fire study located at the University of Michigan Biological Station (Pellston, MI, USA). 13C-CO2effluxes from the first 996 days of decay showed a significant wood source by pyrolysis temperature interaction on PyOM field mineralisation rates, with RM450 mineralising twice faster than JP450 during the first 90 days. Increasing pyrolysis temperature substantially decreased field mineralization rates during the first 996 days, with mineralisation rates 24 and 80 times slower for JP300 and JP450 compared with JP wood. After 1 year, (i) bacterial groups were large sinks for PyOM-derived C as pyrolysis temperature increased and as substrate use efficiency decreased; (ii) potential phenol oxidase and net peroxidase activities were unaffected by the PyOM addition, although net peroxidase activities measured tended to lesser for soils amended with JP450 and RM450; and (iii) Collembola detritivores appeared less likely to be found for soils amended with JP450 and RM450. PyOM-derived C and N recoveries did not differ after 1 year; we will present 3-y recovery data. Our results suggest that the composition of angiosperms (e.g. RM) and gymnosperms (e.g. JP) in high-latitude forests is an underappreciated but

  17. Testing the ecotoxicology of vegetable versus mineral based lubricating oils: 1. Degradation rates using tropical marine microbes.

    PubMed

    Mercurio, Philip; Burns, Kathryn A; Negri, Andrew

    2004-05-01

    Vegetable-derived lubricants (VDL) might be more biodegradable than mineral-derived lubricants (MDL) due to the absence of high molecular weight aromatics, but this remains largely untested in tropical conditions. In this laboratory study, the degradation rates of 2-stroke, 4-stroke and hydraulic VDLs were compared with their MDL counterparts in the presence of mangrove and coral reef microbial communities. While MDLs were comprised largely of unresolved saturated and some aromatic hydrocarbons, their VDL counterparts contained, potentially more degradable, fatty acid methyl esters. Degradation of some VDL was observed by day 7, with the 2-stroke VDL markedly consumed by mangrove microorganisms and the hydraulic VDL degraded by both microorganism communities after this short period. All of the VDL groups were significantly more degraded than the comparable MDLs mineral oil lubricants over 14 days in the presence of either mangrove or coral reef microbial communities. In general the mangrove-sourced microorganisms more efficiently degraded the lubricants than reef-sourced microorganisms.

  18. Biodegradation of geosmin by a novel Gram-negative bacterium; isolation, phylogenetic characterisation and degradation rate determination.

    PubMed

    Hoefel, Daniel; Ho, Lionel; Monis, Paul T; Newcombe, Gayle; Saint, Christopher P

    2009-06-01

    Biologically active sand filters within water treatment plants (WTPs) are now recognised as an effective barrier for the removal of geosmin. However, little is known regarding the actual microbiological processes occurring or the bacteria capable of degrading geosmin. This study reports the enrichment and isolation of a Gram-negative bacterium, Geo48, from the biofilm of a WTP sand filter where the isolate was shown to effectively degrade geosmin individually. Experiments revealed that Geo48 degraded geosmin in a planktonic state by a pseudo-first-order mechanism. Initial geosmin concentrations ranging from 100 to 1000ng/l were shown to directly influence geosmin degradation in reservoir water by Geo48, with rate constants increasing from 0.010h(-1) (R(2)=0.93) to 0.029h(-1) (R(2)=0.97) respectively. Water temperature also influenced degradation of geosmin by Geo48 where temperatures of 11, 22 and 30 degrees C resulted in rate constants of 0.017h(-1) (R(2)=0.98), 0.023h(-1) (R(2)=0.91) and 0.019h(-1) (R(2)=0.85) respectively. Phylogenetic analysis using the 16S rRNA gene of Geo48 revealed it was a member of the Alphaproteobacteria and clustered with 99% bootstrap support with an isolate designated Geo24, a Sphingopyxis sp. previously described as degrading geosmin but only as a member of a bacterial consortium. Of the previously described bacteria, Geo48 was most similar to Sphingopyxis alaskensis (97.2% sequence similarity to a 1454bp fragment of the 16S rRNA gene). To date, this is the only study to report the isolation and characterisation of a Gram-negative bacterium from a biologically active sand filter capable of the sole degradation of geosmin.

  19. Comparison of biotic and abiotic treatment approaches for co-mingled perchlorate, nitrate, and nitramine explosives in groundwater

    NASA Astrophysics Data System (ADS)

    Schaefer, C. E.; Fuller, M. E.; Condee, C. W.; Lowey, J. M.; Hatzinger, P. B.

    2007-01-01

    Biological and abiotic approaches for treating co-mingled perchlorate, nitrate, and nitramine explosives in groundwater were compared in microcosm and column studies. In microcosms, microscale zero-valent iron (mZVI), nanoscale zero-valent iron (nZVI), and nickel catalyzed the reduction of RDX and HMX from initial concentrations of 9 and 1 mg/L, respectively, to below detection (0.02 mg/L), within 2 h. The mZVI and nZVI also degraded nitrate (3 mg/L) to below 0.4 mg/L, but none of the metal catalysts were observed to appreciably reduce perchlorate (˜ 5 mg/L) in microcosms. Perchlorate losses were observed after approximately 2 months in columns of aquifer solids treated with mZVI, but this decline appears to be the result of biodegradation rather than abiotic reduction. An emulsified vegetable oil substrate was observed to effectively promote the biological reduction of nitrate, RDX and perchlorate in microcosms, and all four target contaminants in the flow-through columns. Nitrate and perchlorate were biodegraded most rapidly, followed by RDX and then HMX, although the rates of biological reduction for the nitramine explosives were appreciably slower than observed for mZVI or nickel. A model was developed to compare contaminant degradation mechanisms and rates between the biotic and abiotic treatments.

  20. Comparison of biotic and abiotic treatment approaches for co-mingled perchlorate, nitrate, and nitramine explosives in groundwater.

    PubMed

    Schaefer, C E; Fuller, M E; Condee, C W; Lowey, J M; Hatzinger, P B

    2007-01-30

    Biological and abiotic approaches for treating co-mingled perchlorate, nitrate, and nitramine explosives in groundwater were compared in microcosm and column studies. In microcosms, microscale zero-valent iron (mZVI), nanoscale zero-valent iron (nZVI), and nickel catalyzed the reduction of RDX and HMX from initial concentrations of 9 and 1 mg/L, respectively, to below detection (0.02 mg/L), within 2 h. The mZVI and nZVI also degraded nitrate (3 mg/L) to below 0.4 mg/L, but none of the metal catalysts were observed to appreciably reduce perchlorate ( approximately 5 mg/L) in microcosms. Perchlorate losses were observed after approximately 2 months in columns of aquifer solids treated with mZVI, but this decline appears to be the result of biodegradation rather than abiotic reduction. An emulsified vegetable oil substrate was observed to effectively promote the biological reduction of nitrate, RDX and perchlorate in microcosms, and all four target contaminants in the flow-through columns. Nitrate and perchlorate were biodegraded most rapidly, followed by RDX and then HMX, although the rates of biological reduction for the nitramine explosives were appreciably slower than observed for mZVI or nickel. A model was developed to compare contaminant degradation mechanisms and rates between the biotic and abiotic treatments. PMID:17055109

  1. The effect of microbubbles on gas-liquid mass transfer coefficient and degradation rate of COD in wastewater treatment.

    PubMed

    Yao, Kangning; Chi, Yong; Wang, Fei; Yan, Jianhua; Ni, Mingjiang; Cen, Kefa

    2016-01-01

    A commonly used aeration device at present has the disadvantages of low mass transfer rate because the generated bubbles are several millimeters in diameter which are much bigger than microbubbles. Therefore, the effect of a microbubble on gas-liquid mass transfer and wastewater treatment process was investigated. To evaluate the effect of each bubble type, the volumetric mass transfer coefficients for microbubbles and conventional bubbles were determined. The volumetric mass transfer coefficient was 0.02905 s(-1) and 0.02191 s(-1) at a gas flow rate of 0.67 L min(-1) in tap water for microbubbles and conventional bubbles, respectively. The degradation rate of simulated municipal wastewater was also investigated, using aerobic activated sludge and ozone. Compared with the conventional bubble generator, the chemical oxygen demand (COD) removal rate was 2.04, 5.9, 3.26 times higher than those of the conventional bubble contactor at the same initial COD concentration of COD 200 mg L(-1), 400 mg L(-1), and 600 mg L(-1), while aerobic activated sludge was used. For the ozonation process, the rate of COD removal using microbubble generator was 2.38, 2.51, 2.89 times of those of the conventional bubble generator. Based on the results, the effect of initial COD concentration on the specific COD degradation rate were discussed in different systems. Thus, the results revealed that microbubbles could enhance mass transfer in wastewater treatment and be an effective method to improve the degradation of wastewater.

  2. Abiotic dealkylation and hydrolysis of atrazine by birnessite.

    PubMed

    Shin, Jin Y; Cheney, Marcos A

    2005-06-01

    Atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) and its degradation products are important contaminants of world water systems and have effects on aquatic life. These effects are modulated by the degradation of atrazine, which depends, in part, on its reactivity with soil minerals. We have studied the degradation reaction of atrazine on synthetic birnessite (delta-MnO2) in the aqueous phase using a batch reactor and a developed high-performance liquid chromatography method. The reaction was studied in the absence of light at 25 degrees C and between pH 2.3 to pH 8.3. The reaction rates increased with decreasing pH and increasing delta-MnO2 loading, and they did not follow simple first-order kinetics. The major products are hydroxylated and mono- and didealkylatrazine. Ammeline and cyanuric acid also were detected. The half-life (t 1/2) for the degradation of atrazine was approximately 16.8 d and independent of oxygen. Manganese(II) evolution was a minor product. The mechanism of dealkylation involved proton transfer to Mn(IV)-stabilized oxo and imido bonds, with no net oxidation and reduction. Oxidation was a secondary reaction. The proposed abiotic pathway for the transformation of atrazine on delta-MnO2 was identical to the reported biotic pathway. Thus, delta-MnO2, a common soil component, facilitated the efficient N-dealkylation and hydrolysis of the herbicide atrazine at 25 degrees C, possibly via a nonoxidative mechanisms. The N-dealkylation has been attributed strictly to a biological process in soils.

  3. SERDP ER-1376 Enhancement of In Situ Bioremediation of Energetic Compounds by Coupled Abiotic/Biotic Processes:Final Report for 2004 - 2006

    SciTech Connect

    Szecsody, James E.; Comfort, Steve; Fredrickson, Herbert L.; Boparai, Hardiljeet K.; Devary, Brooks J.; Thompson, Karen T.; Phillips, Jerry L.; Crocker, Fiona H.; Girvin, Donald C.; Resch, Charles T.; Shea, Patrick; Fischer, Ashley E.; Durkin, Lisa M.

    2007-08-07

    This project was initiated by SERDP to quantify processes and determine the effectiveness of abiotic/biotic mineralization of energetics (RDX, HMX, TNT) in aquifer sediments by combinations of biostimulation (carbon, trace nutrient additions) and chemical reduction of sediment to create a reducing environment. Initially it was hypothesized that a balance of chemical reduction of sediment and biostimulation would increase the RDX, HMX, and TNT mineralization rate significantly (by a combination of abiotic and biotic processes) so that this abiotic/biotic treatment may be a more efficient for remediation than biotic treatment alone in some cases. Because both abiotic and biotic processes are involved in energetic mineralization in sediments, it was further hypothesized that consideration for both abiotic reduction and microbial growth was need to optimize the sediment system for the most rapid mineralization rate. Results show that there are separate optimal abiotic/biostimulation aquifer sediment treatments for RDX/HMX and for TNT. Optimal sediment treatment for RDX and HMX (which have chemical similarities and similar degradation pathways) is mainly chemical reduction of sediment, which increased the RDX/HMX mineralization rate 100 to150 times (relative to untreated sediment), with additional carbon or trace nutrient addition, which increased the RDX/HMX mineralization rate an additional 3 to 4 times. In contrast, the optimal aquifer sediment treatment for TNT involves mainly biostimulation (glucose addition), which stimulates a TNT/glucose cometabolic degradation pathway (6.8 times more rapid than untreated sediment), degrading TNT to amino-intermediates that irreversibly sorb (i.e., end product is not CO2). The TNT mass migration risk is minimized by these transformation reactions, as the triaminotoluene and 2,4- and 2,6-diaminonitrotoluene products that irreversibly sorb are no longer mobile in the subsurface environment. These transformation rates are increased

  4. Effects of aeration rate on degradation process of oil palm empty fruit bunch with kinetic-dynamic modeling.

    PubMed

    Talib, Ahmad Tarmezee; Mokhtar, Mohd Noriznan; Baharuddin, Azhari Samsu; Sulaiman, Alawi

    2014-10-01

    The effect of different aeration rates on the organic matter (OM) degradation during the active phase of oil palm empty fruit bunch (EFB)-rabbit manure co-composting process under constant forced-aeration system has been studied. Four different aeration rates, 0.13 L min(-1) kg(DM)(-1),0.26 L min(-1) kg(DM)(-1),0.49 L min(-1) kg(DM)(-1) and 0.74 L min(-1) kg(DM)(-1) were applied. 0.26 L min(-1) kg(DM)(-1) provided enough oxygen level (10%) for the rest of composting period, showing 40.5% of OM reduction that is better than other aeration rates. A dynamic mathematical model describing OM degradation, based on the ratio between OM content and initial OM content with correction functions of moisture content, free air space, oxygen and temperature has been proposed.

  5. Effects of aeration rate on degradation process of oil palm empty fruit bunch with kinetic-dynamic modeling.

    PubMed

    Talib, Ahmad Tarmezee; Mokhtar, Mohd Noriznan; Baharuddin, Azhari Samsu; Sulaiman, Alawi

    2014-10-01

    The effect of different aeration rates on the organic matter (OM) degradation during the active phase of oil palm empty fruit bunch (EFB)-rabbit manure co-composting process under constant forced-aeration system has been studied. Four different aeration rates, 0.13 L min(-1) kg(DM)(-1),0.26 L min(-1) kg(DM)(-1),0.49 L min(-1) kg(DM)(-1) and 0.74 L min(-1) kg(DM)(-1) were applied. 0.26 L min(-1) kg(DM)(-1) provided enough oxygen level (10%) for the rest of composting period, showing 40.5% of OM reduction that is better than other aeration rates. A dynamic mathematical model describing OM degradation, based on the ratio between OM content and initial OM content with correction functions of moisture content, free air space, oxygen and temperature has been proposed. PMID:25079208

  6. Tailoring the degradation rates of thermally responsive hydrogels designed for soft tissue injection by varying the autocatalytic potential

    PubMed Central

    Zhu, Yang; Jiang, Hongbin; Ye, Sang-Ho; Yoshizumi, Tomo; Wagner, William R.

    2015-01-01

    The ability to modulate the degradation properties of biomaterials such as thermally responsive hydrogels is desirable when exploring new therapeutic strategies that rely on the temporary presence of a placed scaffold or gel. Here we report a method of manipulating the absorption rate of a poly(N-isopropylacrylamide) ((poly(NIPAAm)) based hydrogel across a wide range (from 1 d to 5 mo) by small alterations in the composition. Relying upon the autocatalytic effect, the degradation of poly(NIPAAm-co-HEMA-co-MAPLA), (HEMA=2-hydroxyethyl methacrylate; MAPLA=methacrylate-polylactide) was greatly accelerated by adding a fourth monomer methacrylic acid (MAA) at no more than 2 mol% to obtain poly(NIPAAm-co-HEMA-co-MAPLA-co-MAA) (pNHMMj) where j reflects the MAA molar % in the reactant mixture. MAA residue introduction decreased the pH inside the hydrogels and in surrounding buffered solutions. Accelerated degradation positively correlated with MAA content in pNHMMj polymers, putatively by the accelerated cleavage of MAPLA residues to raise the transition temperature of the polymer above body temperature. Physical properties including thermal transition behavior and initial mechanical strength did not vary significantly with MAA content. A rat hindlimb injection model generally reflected the in vitro observation that higher MAA content resulted in more rapid degradation and cellular infiltration. The strategy of tuning the degradation of thermally responsive hydrogels where degradation or solubilization is determined by their polyester components might be applied to other tissue engineering and regenerative medicine applications where designed biomaterial degradation behavior is needed. PMID:25890745

  7. Use of Frankia and actinorhizal plants for degraded lands reclamation.

    PubMed

    Diagne, Nathalie; Arumugam, Karthikeyan; Ngom, Mariama; Nambiar-Veetil, Mathish; Franche, Claudine; Narayanan, Krishna Kumar; Laplaze, Laurent

    2013-01-01

    Degraded lands are defined by soils that have lost primary productivity due to abiotic or biotic stresses. Among the abiotic stresses, drought, salinity, and heavy metals are the main threats in tropical areas. These stresses affect plant growth and reduce their productivity. Nitrogen-fixing plants such as actinorhizal species that are able to grow in poor and disturbed soils are widely planted for the reclamation of such degraded lands. It has been reported that association of soil microbes especially the nitrogen-fixing bacteria Frankia with these actinorhizal plants can mitigate the adverse effects of abiotic and biotic stresses. Inoculation of actinorhizal plants with Frankia significantly improves plant growth, biomass, shoot and root N content, and survival rate after transplanting in fields. However, the success of establishment of actinorhizal plantation in degraded sites depends upon the choice of effective strains of Frankia. Studies related to the beneficial role of Frankia on the establishment of actinorhizal plants in degraded soils are scarce. In this review, we describe some examples of the use of Frankia inoculation to improve actinorhizal plant performances in harsh conditions for reclamation of degraded lands. PMID:24350296

  8. Concentration effects on biotic and abiotic processes in the removal of 1,1,2-trichloroethane and vinyl chloride using carbon-amended ZVI

    NASA Astrophysics Data System (ADS)

    Patterson, Bradley M.; Lee, Matthew; Bastow, Trevor P.; Wilson, John T.; Donn, Michael J.; Furness, Andrew; Goodwin, Bryan; Manefield, Mike

    2016-05-01

    A permeable reactive barrier, consisting of both zero valent iron (ZVI) and a biodegradable organic carbon, was evaluated for the remediation of 1,1,2-trichloroethane (1,1,2-TCA) contaminated groundwater. During an 888 day laboratory column study, degradation rates initially stabilized with a degradation half-life of 4.4 ± 0.4 days. Based on the accumulation of vinyl chloride (VC) and limited production of 1,1-dichloroethene (1,1-DCE) and 1,2-dichloroethane (1,2-DCA), the dominant degradation pathway was likely abiotic dichloroelimination to form VC. Degradation of VC was not observed based on the accumulation of VC and limited ethene production. After a step reduction in the influent concentration of 1,1,2-TCA from 170 ± 20 mg L- 1 to 39 ± 11 mg L- 1, the degradation half-life decreased 5-fold to 0.83 ± 0.17 days. The isotopic enrichment factor of 1,1,2-TCA also changed after the step reduction from - 14.6 ± 0.7‰ to - 0.72 ± 0.12‰, suggesting a possible change in the degradation mechanism from abiotic reductive degradation to biodegradation. Microbiological data suggested a co-culture of Desulfitobacterium and Dehalococcoides was responsible for the biodegradation of 1,1,2-TCA to ethene.

  9. Concentration effects on biotic and abiotic processes in the removal of 1,1,2-trichloroethane and vinyl chloride using carbon-amended ZVI.

    PubMed

    Patterson, Bradley M; Lee, Matthew; Bastow, Trevor P; Wilson, John T; Donn, Michael J; Furness, Andrew; Goodwin, Bryan; Manefield, Mike

    2016-05-01

    A permeable reactive barrier, consisting of both zero valent iron (ZVI) and a biodegradable organic carbon, was evaluated for the remediation of 1,1,2-trichloroethane (1,1,2-TCA) contaminated groundwater. During an 888 day laboratory column study, degradation rates initially stabilized with a degradation half-life of 4.4±0.4 days. Based on the accumulation of vinyl chloride (VC) and limited production of 1,1-dichloroethene (1,1-DCE) and 1,2-dichloroethane (1,2-DCA), the dominant degradation pathway was likely abiotic dichloroelimination to form VC. Degradation of VC was not observed based on the accumulation of VC and limited ethene production. After a step reduction in the influent concentration of 1,1,2-TCA from 170±20 mg L(-1) to 39±11 mg L(-1), the degradation half-life decreased 5-fold to 0.83±0.17 days. The isotopic enrichment factor of 1,1,2-TCA also changed after the step reduction from -14.6±0.7‰ to -0.72±0.12‰, suggesting a possible change in the degradation mechanism from abiotic reductive degradation to biodegradation. Microbiological data suggested a co-culture of Desulfitobacterium and Dehalococcoides was responsible for the biodegradation of 1,1,2-TCA to ethene.

  10. The effects of cutting or of stretching skeletal muscle in vitro on the rates of protein synthesis and degradation

    NASA Technical Reports Server (NTRS)

    Seider, M. J.; Kapp, R.; Chen, C.-P.; Booth, F. W.

    1980-01-01

    Skeletal muscle preparations using cut muscle fibers have often been used in studies of protein metabolism. The present paper reports an investigation of the effect of muscle cutting or stretching in vitro on the rates of protein synthesis and/or degradation. Protein synthesis and content, and ATP and phosphocreatine levels were monitored in soleus and extensor digitorum longus muscles from the rat with various extents of muscle fiber cuts and following stretching to about 120% the resting length. Rates of protein synthesis are found to be significantly lower and protein degradation higher in the cut muscles than in uncut controls, while ATP and phosphocreatine concentrations decreased. Stretched intact muscles, on the other hand, are observed to have higher concentrations of high-energy phosphates than unstretched muscles, while rates of protein degradation were not affected. Results thus demonstrate that the cutting of skeletal muscle fibers alters many aspects of muscle metabolism, and that moderate decreases in ATP concentration do not alter rates of protein concentration in intact muscles in vitro.

  11. Abiotic self-replication.

    PubMed

    Meyer, Adam J; Ellefson, Jared W; Ellington, Andrew D

    2012-12-18

    functions (including the replication of nucleic acids) to more competent protein enzymes would complete the journey from an abiotic world to the molecular biology we see today. PMID:22891822

  12. Abiotic self-replication.

    PubMed

    Meyer, Adam J; Ellefson, Jared W; Ellington, Andrew D

    2012-12-18

    functions (including the replication of nucleic acids) to more competent protein enzymes would complete the journey from an abiotic world to the molecular biology we see today.

  13. The effect of microbubbles on gas-liquid mass transfer coefficient and degradation rate of COD in wastewater treatment.

    PubMed

    Yao, Kangning; Chi, Yong; Wang, Fei; Yan, Jianhua; Ni, Mingjiang; Cen, Kefa

    2016-01-01

    A commonly used aeration device at present has the disadvantages of low mass transfer rate because the generated bubbles are several millimeters in diameter which are much bigger than microbubbles. Therefore, the effect of a microbubble on gas-liquid mass transfer and wastewater treatment process was investigated. To evaluate the effect of each bubble type, the volumetric mass transfer coefficients for microbubbles and conventional bubbles were determined. The volumetric mass transfer coefficient was 0.02905 s(-1) and 0.02191 s(-1) at a gas flow rate of 0.67 L min(-1) in tap water for microbubbles and conventional bubbles, respectively. The degradation rate of simulated municipal wastewater was also investigated, using aerobic activated sludge and ozone. Compared with the conventional bubble generator, the chemical oxygen demand (COD) removal rate was 2.04, 5.9, 3.26 times higher than those of the conventional bubble contactor at the same initial COD concentration of COD 200 mg L(-1), 400 mg L(-1), and 600 mg L(-1), while aerobic activated sludge was used. For the ozonation process, the rate of COD removal using microbubble generator was 2.38, 2.51, 2.89 times of those of the conventional bubble generator. Based on the results, the effect of initial COD concentration on the specific COD degradation rate were discussed in different systems. Thus, the results revealed that microbubbles could enhance mass transfer in wastewater treatment and be an effective method to improve the degradation of wastewater. PMID:27120652

  14. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation.

    PubMed

    Fu, Qiang; Rahaman, Mohamed N; Fu, Hailuo; Liu, Xin

    2010-10-01

    Bioactive glass scaffolds with a microstructure similar to that of dry human trabecular bone but with three different compositions were evaluated for potential applications in bone repair. The preparation of the scaffolds and the effect of the glass composition on the degradation and conversion of the scaffolds to a hydroxyapatite (HA)-type material in a simulated body fluid (SBF) are reported here (Part I). The in vitro response of osteogenic cells to the scaffolds and the in vivo evaluation of the scaffolds in a rat subcutaneous implantation model are described in Part II. Scaffolds (porosity = 78-82%; pore size = 100-500 microm) were prepared using a polymer foam replication technique. The glasses consisted of a silicate (13-93) composition, a borosilicate composition (designated 13-93B1), and a borate composition (13-93B3), in which one-third or all of the SiO2 content of 13-93 was replaced by B2O3, respectively. The conversion rate of the scaffolds to HA in the SBF increased markedly with the B2O3 content of the glass. Concurrently, the pH of the SBF also increased with the B2O3 content of the scaffolds. The compressive strengths of the as-prepared scaffolds (5-11 MPa) were in the upper range of values reported for trabecular bone, but they decreased markedly with immersion time in the SBF and with increasing B2O3 content of the glass. The results show that scaffolds with a wide range of bioactivity and degradation rate can be achieved by replacing varying amounts of SiO(2) in silicate bioactive glass with B2O3.

  15. Abiotic reductive dechlorination of cis-DCE by ferrous monosulfide mackinawite.

    PubMed

    Hyun, Sung Pil; Hayes, Kim F

    2015-11-01

    Cis-1,2,-dichloroethylene (cis-DCE) is a toxic, persistent contaminant occurring mainly as a daughter product of incomplete degradation of perchloroethylene (PCE) and trichloroethylene (TCE). This paper reports on abiotic reductive dechlorination of cis-DCE by mackinawite (FeS1-x), a ferrous monosulfide, under variable geochemical conditions. To assess in situ abiotic cis-DCE dechlorination by mackinawite in the field, mackinawite suspensions prepared in a field groundwater sample collected from a cis-DCE contaminated field site were used for dechlorination experiments. The effects of geochemical variables on the dechlorination rates were monitored. A set of dechlorination experiments were also carried out in the presence of aquifer sediment from the site over a range of pH conditions to better simulate the actual field situations. The results showed that the suspensions of freshly prepared mackinawite reductively transformed cis-DCE to acetylene, whereas the conventionally prepared powder form of mackinawite had practically no reactivity with cis-DCE under the same experimental conditions. Significant cis-DCE degradation by mackinawite has not been reported prior to this study, although mackinawite has been shown to reductively transform PCE and TCE. This study suggests feasibility of using mackinawite for in situ remediation of cis-DCE-contaminated sites with high S levels such as estuaries under naturally achieved or stimulated sulfate-reducing conditions.

  16. Photocatalytic atrazine degradation by synthetic minerals, atmospheric aerosols, and soil particles.

    PubMed

    Lackhoff, Marion; Niessner, Reinhard

    2002-12-15

    In this work, the photocatalytic atrazine degradation by seven synthetic minerals and five environmental particle samples was examined to investigate a possible contribution of photocatalysis to the abiotic degradation of atrazine in the environment. Particle suspensions containing 500 ng/L atrazine were irradiated with a sun simulator, and the atrazine degradation was monitored by enzyme-linked immunosorbent assay (ELISA). Atrazine detection by ELISA proved to be an useful analytical tool because of low cross-reactivity of atrazine metabolites and high sensitivity with detection limits in the lower nanograms per liter range. The atrazine degradation followed first-order kinetics, and the obtained rate coefficients were compared with the rate of direct photolysis. Known photocatalysts, such as TiO2 and ZnO, showed the expected fast photocatalytic degradation (k = 27-327 x 10(-3) min(-1)) of atrazine. The degradation rates detected upon irradiation of titanium-, zinc-, or iron-containing minerals were orders of magnitudes lower (k = 0.15-0.70 x 10(-3) min(-1)) but still significantly faster than direct photolysis without particles (k = 0.10 x 10(-3) min(-1)). With environmental particle samples (soot, fly ash, sand, road dust, and volcanic ash), however, no significant photocatalytic activity was observed (k = 0.07-0.16 x 10(-3) min(-1)). The atrazine degradation rates were in the range of direct photolysis. Thus photocatalysis by aerosol or soil particles appears not to enhance abiotic atrazine degradation in the environment.

  17. Pentachlorophenol (PCP) degradation using heme and hydrogen peroxide

    SciTech Connect

    Chen, S.T.

    1996-11-01

    Investigations of pentachlorophenol (PCP) degradation using both biotic and abiotic methods have been extensively studied. Due to the hydrophobic nature of PCP and its toxicity, the performance of the biotic treatments varies from site to site and is not satisfactory in most cases. An abiotic method for oxidative PCP degradation in soil under unsaturated conditions and a neutral pH was found. Hydrogen peroxide was used as an oxidant and heme as a catalyst. A mechanism was proposed to describe the possible reaction of heme and peroxide at the presence of PCP. In order to ensure that heme and peroxide are the most important factors during the reaction, two screening tests were run. In order to find the best conditions of PCP degradation using heme and peroxide, a statistical technique, so-called response surface methodology (RSM), was employed and the best conditions for PCP degradation in soil were determined. In order to examine the rate and extent of PCP degradation, kinetic studies were conducted and the results showed that about 70% of PCP was degraded within the first two hours and up to 80% of PCP was degraded within one day. Up to 17% of the PCP was mineralized to carbon dioxide as well. A scaled-up experiment was also studied to confirm the results in the laboratory. The result of the scaled-up experiment showed not much difference between the laboratory and the scaled-up experiments.

  18. High-rate two-phase process for the anaerobic degradation of cellulose, employing rumen microorganisms for an efficient acidogenesis

    SciTech Connect

    Gijzen, H.J.; Zwart, K.B.; Verhagen, F.J.M.; Vogels, G.D.

    1988-04-05

    A novel two-stage anaerobic process for the microbial conversion of cellulose into biogas has been developed. In the first phase, a mixed population of rumen bacteria and ciliates was used in the hydrolysis and fermentation of cellulose. The volatile fatty acids (VFA) produced in this acidogenic reactor were subsequently converted into biogas in a UASB-type methanogenic reactor. A stepwise increase of the loading rate from 11.9 to 25.8 g volatile solids/L reactor volume/day (g VS/L/day) did not affect the degradation efficiency in the acidogenic reactor, whereas the methanogenic reactor appeared to be overloaded at the highest loading rate. Cellulose digestion was almost complete at all loading rates applied. The two-stage anaerobic process was also tested with a closed fluid circuit. In this instance total methane production was 0.438 L CH/sub 4//g VS added, which is equivalent to 98% of the theoretical value. The application of rumen microorganisms in combination with a high-rate methane reactor is proposed as a means of efficient anaerobic degradation of cellulosic residues to methane. Because this newly developed two-phase system is based on processes and microorganisms from the ruminant, it will be referred to as Rumen Derived Anaerobic Digestion (RUDAD)-process.

  19. The rate of RNA degradation in human dental pulp reveals post-mortem interval.

    PubMed

    Poór, Viktor S; Lukács, Dénes; Nagy, Tamás; Rácz, Evelin; Sipos, Katalin

    2016-05-01

    Post-mortem interval (PMI) is the amount of time elapsed since the time of death. Over the years, many methods were developed to assess PMI, but their precision and time frame of applicability are often limited. Our present pilot study aimed to prove if RNA degradation of human dental pulp can be used for PMI estimation. RNA was isolated from the pulps of healthy wisdom teeth and premolars. RNA degradation was determined as RNA integrity number (RIN) with Agilent Bioanalyzer and subsequently by amplification of different length products by PCR after reverse transcription. The RNA integrity analysis allowed us to determine the time of post-mortem interval with high confidence level in the first 21 days. With the PCR-based method, we were able to perform a crude estimation of incubation time of teeth between 20 and 42 days post extraction. These results show that this method might be a promising new tool for PMI estimation despite the limitations. PMID:26608472

  20. [Degradation pathways and main degradation products of tetracycline antibiotics: research progress].

    PubMed

    Li, Wei-Ming; Bao, Yan-Yu; Zhou, Qi-Xing

    2012-08-01

    Tetracycline antibiotics (TCs) can produce a series of abiotic degradation reactions in the process of production and storage, and some of the degradation products have lower antibacterial activity but higher toxicity, as compared to the parent antibiotics. TCs can enter the environment via the disposal of livestock and poultry wastes, and then degrade in one or more ways according to the external conditions. Besides abiotic degradation, bio-degradation also happens. This paper reviewed the degradation pathways and main degradation products of TCs in different ecological environments, and discussed the future research directions, aimed to provide valuable reference for the ecological risk assessment of the antibiotics.

  1. The effect of surface area on the degradation rate of nano-fibrous poly(L-lactic acid) foams.

    PubMed

    Chen, Victor J; Ma, Peter X

    2006-07-01

    In vitro hydrolytic degradation behavior was examined for nano-fibrous (NF) poly(L-lactic acid) (PLLA) foams prepared by phase separation. NF foams were incubated in phosphate-buffered saline at 37 degrees C for 15 months. Upon removal, changes in mass, molar mass, morphology, BET specific surface area, mechanical properties, and thermal properties were compared with those of similarly incubated solid-walled (SW) PLLA foams. Initial surface area in NF foams was over 80 times higher than in SW foams. During incubation, NF surface area decreased steadily, only possessing 17% of the original specific surface area after 15 months, SW surface area stayed constant throughout. While molar mass decreased for both types of samples, degradation was much more rapid in NF foams. In NF foams, overall mass loss was 51% while mass loss in SW foams was only 6% after 15 months. Morphology of NF foams began as a mesh of fibers, and became increasingly porous as fibers began to aggregate, thus diminishing the mechanical properties. In SW foams, morphology was non-fibrous and remained unchanged which helped maintain their mechanical properties. These results suggest that the high surface area in NF foams accelerated the rate of hydrolytic degradation.

  2. Push-pull tests to quantify in situ degradation rates at a phytoremediation site.

    PubMed

    Pitterle, Mark T; Andersen, Rikke G; Novak, John T; Widdowson, Mark A

    2005-12-01

    Nine push-pull tests (PPTs) were performed to determine in-situ aerobic respiration rates at a creosote-contaminated site and to assess the contribution of hybrid poplar trees to the remediation of polynuclear aromatic hydrocarbons (PAH) in groundwater. PPTs were conducted by injecting a solution containing dissolved oxygen and naphthalene (reactive tracers) with bromide (nonreactive tracer) into wells constructed in a shallow unconfined aquifer. The objective of this study was to determine seasonal variation and spatial differences (contaminated versus uncontaminated areas and treed versus untreed areas) in the rate of consumption of dissolved oxygen. First-order aerobic respiration rates varied from 0.0 (control well) to 1.25 hr(-1), which occurred at a planted area in early summer (June). Rates measured in winter at treed areas were greater by a factor of 3-5 when compared to winter rates determined at nontreed areas of the site. Rates at treed regions were found to increase by over 4 times in summer relative to winter at the same location.

  3. Evaluating the interaction of faecal pellet deposition rates and DNA degradation rates to optimize sampling design for DNA-based mark-recapture analysis of Sonoran pronghorn.

    PubMed

    Woodruff, S P; Johnson, T R; Waits, L P

    2015-07-01

    Knowledge of population demographics is important for species management but can be challenging in low-density, wide-ranging species. Population monitoring of the endangered Sonoran pronghorn (Antilocapra americana sonoriensis) is critical for assessing the success of recovery efforts, and noninvasive DNA sampling (NDS) could be more cost-effective and less intrusive than traditional methods. We evaluated faecal pellet deposition rates and faecal DNA degradation rates to maximize sampling efficiency for DNA-based mark-recapture analyses. Deposition data were collected at five watering holes using sampling intervals of 1-7 days and averaged one pellet pile per pronghorn per day. To evaluate nuclear DNA (nDNA) degradation, 20 faecal samples were exposed to local environmental conditions and sampled at eight time points from one to 124 days. Average amplification success rates for six nDNA microsatellite loci were 81% for samples on day one, 63% by day seven, 2% by day 14 and 0% by day 60. We evaluated the efficiency of different sampling intervals (1-10 days) by estimating the number of successful samples, success rate of individual identification and laboratory costs per successful sample. Cost per successful sample increased and success and efficiency declined as the sampling interval increased. Results indicate NDS of faecal pellets is a feasible method for individual identification, population estimation and demographic monitoring of Sonoran pronghorn. We recommend collecting samples <7 days old and estimate that a sampling interval of four to seven days in summer conditions (i.e., extreme heat and exposure to UV light) will achieve desired sample sizes for mark-recapture analysis while also maximizing efficiency [Corrected]. PMID:25522240

  4. Evaluating the interaction of faecal pellet deposition rates and DNA degradation rates to optimize sampling design for DNA-based mark-recapture analysis of Sonoran pronghorn.

    PubMed

    Woodruff, S P; Johnson, T R; Waits, L P

    2015-07-01

    Knowledge of population demographics is important for species management but can be challenging in low-density, wide-ranging species. Population monitoring of the endangered Sonoran pronghorn (Antilocapra americana sonoriensis) is critical for assessing the success of recovery efforts, and noninvasive DNA sampling (NDS) could be more cost-effective and less intrusive than traditional methods. We evaluated faecal pellet deposition rates and faecal DNA degradation rates to maximize sampling efficiency for DNA-based mark-recapture analyses. Deposition data were collected at five watering holes using sampling intervals of 1-7 days and averaged one pellet pile per pronghorn per day. To evaluate nuclear DNA (nDNA) degradation, 20 faecal samples were exposed to local environmental conditions and sampled at eight time points from one to 124 days. Average amplification success rates for six nDNA microsatellite loci were 81% for samples on day one, 63% by day seven, 2% by day 14 and 0% by day 60. We evaluated the efficiency of different sampling intervals (1-10 days) by estimating the number of successful samples, success rate of individual identification and laboratory costs per successful sample. Cost per successful sample increased and success and efficiency declined as the sampling interval increased. Results indicate NDS of faecal pellets is a feasible method for individual identification, population estimation and demographic monitoring of Sonoran pronghorn. We recommend collecting samples <7 days old and estimate that a sampling interval of four to seven days in summer conditions (i.e., extreme heat and exposure to UV light) will achieve desired sample sizes for mark-recapture analysis while also maximizing efficiency [Corrected].

  5. Degradation of flubendiamide as affected by elevated CO2, temperature, and carbon mineralization rate in soil.

    PubMed

    Mukherjee, Irani; Das, Shaon Kumar; Kumar, Aman

    2016-10-01

    An experiment was conducted under three levels of atmospheric CO2 [ambient (398 ± 10 μmol mol(-1)), elevated (570 ± 10 μmol mol(-1)) and open condition], three levels of temperature (4, 25, and 40 °C) to study the degradation pattern of flubendiamide in soil and also carbon mineralization in soil. Results of this study revealed that flubendiamide was found to persist longer under outdoor condition (T1/2, 177.0 and 181.1 days) than ambient (T1/2, 168.4 and 172.3 days) and elevated condition (T1/2, 159.3 and 155.3 days) at 1 and 10 μg g(-1) fortification level, respectively. Results also revealed that flubendiamide dissipated faster at 40 °C (T1/2, 189.4 days) than 25 °C (T1/2, 225.3 days). Slower dissipation was recorded at 4 °C (T1/2, 326.3 days). Thus, increased CO2 levels and temperature following global warming might adversely affect flubendiamide degradation in soil. Laboratory study on microbial biomass carbon (MBC) and carbon mineralization (Cmin) in soil revealed that in des-iodo flubendiamide-treated soils, MBC significantly increased up to 45 days and then decreased. Flubendiamide-treated soil showed a non-significantly decreasing trend of soil MBC with time up to the 15th day of incubation and after 15 days significantly decreased up to 90 days of incubation. In des-iodo flubendiamide-treated soil, the evolution of CO2 decreased up to 45 days, which was increased after 45 days up to 90 days. In flubendiamide-treated soil, CO2 evolution decreased up to 30 days and after 45 days, it increased up to 90 days. PMID:27430656

  6. The cellular growth rate controls overall mRNA turnover, and modulates either transcription or degradation rates of particular gene regulons.

    PubMed

    García-Martínez, José; Delgado-Ramos, Lidia; Ayala, Guillermo; Pelechano, Vicent; Medina, Daniel A; Carrasco, Fany; González, Ramón; Andrés-León, Eduardo; Steinmetz, Lars; Warringer, Jonas; Chávez, Sebastián; Pérez-Ortín, José E

    2016-05-01

    We analyzed 80 different genomic experiments, and found a positive correlation between both RNA polymerase II transcription and mRNA degradation with growth rates in yeast. Thus, in spite of the marked variation in mRNA turnover, the total mRNA concentration remained approximately constant. Some genes, however, regulated their mRNA concentration by uncoupling mRNA stability from the transcription rate. Ribosome-related genes modulated their transcription rates to increase mRNA levels under fast growth. In contrast, mitochondria-related and stress-induced genes lowered mRNA levels by reducing mRNA stability or the transcription rate, respectively. We also detected these regulations within the heterogeneity of a wild-type cell population growing in optimal conditions. The transcriptomic analysis of sorted microcolonies confirmed that the growth rate dictates alternative expression programs by modulating transcription and mRNA decay.The regulation of overall mRNA turnover keeps a constant ratio between mRNA decay and the dilution of [mRNA] caused by cellular growth. This regulation minimizes the indiscriminate transmission of mRNAs from mother to daughter cells, and favors the response capacity of the latter to physiological signals and environmental changes. We also conclude that, by uncoupling mRNA synthesis from decay, cells control the mRNA abundance of those gene regulons that characterize fast and slow growth.

  7. The cellular growth rate controls overall mRNA turnover, and modulates either transcription or degradation rates of particular gene regulons

    PubMed Central

    García-Martínez, José; Delgado-Ramos, Lidia; Ayala, Guillermo; Pelechano, Vicent; Medina, Daniel A.; Carrasco, Fany; González, Ramón; Andrés-León, Eduardo; Steinmetz, Lars; Warringer, Jonas; Chávez, Sebastián; Pérez-Ortín, José E.

    2016-01-01

    We analyzed 80 different genomic experiments, and found a positive correlation between both RNA polymerase II transcription and mRNA degradation with growth rates in yeast. Thus, in spite of the marked variation in mRNA turnover, the total mRNA concentration remained approximately constant. Some genes, however, regulated their mRNA concentration by uncoupling mRNA stability from the transcription rate. Ribosome-related genes modulated their transcription rates to increase mRNA levels under fast growth. In contrast, mitochondria-related and stress-induced genes lowered mRNA levels by reducing mRNA stability or the transcription rate, respectively. We also detected these regulations within the heterogeneity of a wild-type cell population growing in optimal conditions. The transcriptomic analysis of sorted microcolonies confirmed that the growth rate dictates alternative expression programs by modulating transcription and mRNA decay. The regulation of overall mRNA turnover keeps a constant ratio between mRNA decay and the dilution of [mRNA] caused by cellular growth. This regulation minimizes the indiscriminate transmission of mRNAs from mother to daughter cells, and favors the response capacity of the latter to physiological signals and environmental changes. We also conclude that, by uncoupling mRNA synthesis from decay, cells control the mRNA abundance of those gene regulons that characterize fast and slow growth. PMID:26717982

  8. The cellular growth rate controls overall mRNA turnover, and modulates either transcription or degradation rates of particular gene regulons.

    PubMed

    García-Martínez, José; Delgado-Ramos, Lidia; Ayala, Guillermo; Pelechano, Vicent; Medina, Daniel A; Carrasco, Fany; González, Ramón; Andrés-León, Eduardo; Steinmetz, Lars; Warringer, Jonas; Chávez, Sebastián; Pérez-Ortín, José E

    2016-05-01

    We analyzed 80 different genomic experiments, and found a positive correlation between both RNA polymerase II transcription and mRNA degradation with growth rates in yeast. Thus, in spite of the marked variation in mRNA turnover, the total mRNA concentration remained approximately constant. Some genes, however, regulated their mRNA concentration by uncoupling mRNA stability from the transcription rate. Ribosome-related genes modulated their transcription rates to increase mRNA levels under fast growth. In contrast, mitochondria-related and stress-induced genes lowered mRNA levels by reducing mRNA stability or the transcription rate, respectively. We also detected these regulations within the heterogeneity of a wild-type cell population growing in optimal conditions. The transcriptomic analysis of sorted microcolonies confirmed that the growth rate dictates alternative expression programs by modulating transcription and mRNA decay.The regulation of overall mRNA turnover keeps a constant ratio between mRNA decay and the dilution of [mRNA] caused by cellular growth. This regulation minimizes the indiscriminate transmission of mRNAs from mother to daughter cells, and favors the response capacity of the latter to physiological signals and environmental changes. We also conclude that, by uncoupling mRNA synthesis from decay, cells control the mRNA abundance of those gene regulons that characterize fast and slow growth. PMID:26717982

  9. Comparing Background and Recent Erosion Rates in Degraded Areas of Southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Fernandes, N.; Bierman, P. R.; Sosa-Gonzalez, V.; Rood, D. H.; Fontes, R. L.; Santos, A. C.; Godoy, J. M.; Bhering, S.

    2014-12-01

    Soil erosion is a major problem in northwestern Rio de Janeiro State where, during the last three centuries, major land-use changes took place, associated with the replacement of the original rainforest by agriculture and grazing. The combination of steep hillslopes, erodible soils, sparse vegetation, natural and human-induced fires, as well as downslope ploughing, led to an increase in surface runoff and surface erosion on soil-mantled hillslopes; together, these actions and responses caused a decline in soil productivity. In order to estimate changes in erosion rates over time, we compared erosion rates measured at different spatial and temporal scales, both background (natural) and short-term (human-induced during last few decades). Background long-term erosion rates were measured using in-situ produced cosmogenic 10Be in the sand fraction quartz of active river channel sediment in four basins in the northwestern portion of Rio de Janeiro State. In these basins, average annual precipitation varies from 1,200 to 1,300 mm, while drainage areas vary from 15 to 7,200 km2. Short-term erosion rates were measured in one of these basins from fallout 210Pb in soil samples collected along a hillslope transect located in an abandoned agriculture field. In this transect, 190 undisturbed soil samples (three replicates) were collected from the surface to 0.50 m depth (5 cm vertical intervals) in six soil pits. 10Be average background, basin-wide, erosion rates in the area are ~ 13 m/My; over the last decades, time-integrated (210Pb) average hillslope erosion rates are around 1450 m/Myr, with maximum values at the steepest portion of convex hillslopes of about 2000 m/Myr. These results suggest that recent hillslope erosion rates are about 2 orders of magnitude above background rates of sediment generation integrated over many millennia. This unsustainable rate of soil loss has severely decreased soil productivity eventually leading to the abandonment of farming activities in

  10. Urea degradation rates by size-fractionated plankton populations in a temperate estuary

    NASA Astrophysics Data System (ADS)

    Savidge, G.; Johnston, J. P.

    1987-04-01

    The distribution of the rates of remineralisation and assimilation of labelled urea by bacteria was determined in a temperate estuary in winter and related to the activities of planktonic populations separated by filtration into a large fraction (LF > 3 μm) and small fractions (SF < 3 μm). A significant relationship was established between remineralisation activity of the SF in situ and the ambient urea concentrations, whereas corresponding relationships between the LF in situ and urea concentrations were inconsistent. A series of comparable artificial dilution experiments demonstrated consistent effects of salinity on rates of urea remineralisation with opposing relationships observed for the LF and SF. However interpretation of the data obtained from the in situ samples in relation to those obtained experimentally indicated only minimal control of the in situ rates of urea remineralisation by salinity, thus confirming the greater influence on these rates of the ambient urea concentrations. Remineralisation activity was approximately an order of magnitude greater than the assimilation activity with no clear trends being shown between assimilation rates and environmental variables. Highest ambient concentrations of urea were consistently recorded adjacent to the freshwater inflow.

  11. Sorption and Oxic Degradation of the Explosive CL-20 During Transport in Subsurface Sediments

    SciTech Connect

    Szecsody, Jim E.; Girvin, Donald C.; Devary, Brooks J.; Campbell, James A.

    2004-08-15

    The abiotic sorption and oxic degradation processes that control the fate of the explosive CL-20, Hexanitrohexaazaisowurtzitane, in the subsurface environment were investigated to determine the potential for vadose and groundwater contamination. Sorption of CL-20 is relatively small (Kd = 0.02 to 4.2 cm3 g-1, 7 low organic carbon sediments, 12 minerals), which results in only slight retardation relative to water, so CL-20 could move quickly through unsaturated and saturated sediments to groundwater. Sorption was mainly to mineral surfaces for these low organic carbon sediments, and the resulting isotherm was nonlinear. CL-20 abiotically degrades in an oxic environment at slow rates (i.e., 10s to 100s of hours) with a wide variety of minerals, but at fast rates (i.e., minutes) in the presence of 2:1 clays (biotite, hectorite, montmorillonite, illite), ferrous iron oxides (i.e., magnetite) and manganous oxide. High concentrations of surface ferrous iron degraded CL-20 the fastest, but 2:1 clays containing no structural or adsorbed ferrous iron (hectorite) could also quickly degrade CL-20. Products of CL-20 oxic degradation included three high molecular weight compounds and anions (nitrite and formate). The 2 to 3.5 moles of nitrite produced suggests the CL-20 cage remains intact. Identification of further degradation products and CL-20 mineralization rates is needed to fully assess the impact of these CL-20 transformation rates on the risk of CL-20 (and degradation product) subsurface movement.

  12. Burn rates of pristine and degraded explosives at elevated temperatures and pressures

    SciTech Connect

    Chandler, J B; Maienschein, J L

    1998-08-10

    We measure the Laminar burn rates of explosives at extreme conditions (up to 520K and 1 GPa) in a hybrid strand burner, to provide reaction rate data for prediction of violence of thermal response. Data from a series of HMX-based explosives show that explosives with high binder content (15 wt%) burn smoothly over the entire pressure range regardless of particle size, while explosives with less binder eventually transition to a rapid erratic burn 10-100 times faster. When heated to ~ 440K, an HMX formulation with fine particles and 15% binder exhibits different burning behav- ior depending on the details of the temperature-pressure history, apparently as a result of the {beta} {yields} {delta} phase transition in HMX. Burn rates can be increased by 1000-fold under certain conditions.

  13. A Novel Aldo-Keto Reductase (AKR17A1) of Anabaena sp. PCC 7120 Degrades the Rice Field Herbicide Butachlor and Confers Tolerance to Abiotic Stresses in E. coli.

    PubMed

    Agrawal, Chhavi; Sen, Sonia; Yadav, Shivam; Rai, Shweta; Rai, Lal Chand

    2015-01-01

    Present study deals with the identification of a novel aldo/keto reductase, AKR17A1 from Anabaena sp. PCC7120 and adds on as 17th family of AKR superfamily drawn from a wide variety of organisms. AKR17A1 shares many characteristics of a typical AKR such as- (i) conferring tolerance to multiple stresses like heat, UV-B, and cadmium, (ii) excellent activity towards known AKR substrates (isatin and 2-nitrobenzaldehyde), and (iii) obligate dependence on NADPH as a cofactor for enzyme activity. The most novel attribute of AKR17A1, first reported in this study, is its capability to metabolize butachlor, a persistent rice field herbicide that adversely affects agro-ecosystem and non-target organisms. The AKR17A1 catalyzed- degradation of butachlor resulted into formation of 1,2-benzene dicarboxylic acid and 2,6 bis (1,1, dimethylethyl) 4,-methyl phenol as the major products confirmed by GC-MS analysis. PMID:26372161

  14. A Novel Aldo-Keto Reductase (AKR17A1) of Anabaena sp. PCC 7120 Degrades the Rice Field Herbicide Butachlor and Confers Tolerance to Abiotic Stresses in E. coli

    PubMed Central

    Agrawal, Chhavi; Sen, Sonia; Yadav, Shivam; Rai, Shweta; Rai, Lal Chand

    2015-01-01

    Present study deals with the identification of a novel aldo/keto reductase, AKR17A1 from Anabaena sp. PCC7120 and adds on as 17th family of AKR superfamily drawn from a wide variety of organisms. AKR17A1 shares many characteristics of a typical AKR such as— (i) conferring tolerance to multiple stresses like heat, UV-B, and cadmium, (ii) excellent activity towards known AKR substrates (isatin and 2-nitrobenzaldehyde), and (iii) obligate dependence on NADPH as a cofactor for enzyme activity. The most novel attribute of AKR17A1, first reported in this study, is its capability to metabolize butachlor, a persistent rice field herbicide that adversely affects agro-ecosystem and non-target organisms. The AKR17A1 catalyzed- degradation of butachlor resulted into formation of 1,2-benzene dicarboxylic acid and 2,6 bis (1,1, dimethylethyl) 4,-methyl phenol as the major products confirmed by GC-MS analysis. PMID:26372161

  15. A Novel Aldo-Keto Reductase (AKR17A1) of Anabaena sp. PCC 7120 Degrades the Rice Field Herbicide Butachlor and Confers Tolerance to Abiotic Stresses in E. coli.

    PubMed

    Agrawal, Chhavi; Sen, Sonia; Yadav, Shivam; Rai, Shweta; Rai, Lal Chand

    2015-01-01

    Present study deals with the identification of a novel aldo/keto reductase, AKR17A1 from Anabaena sp. PCC7120 and adds on as 17th family of AKR superfamily drawn from a wide variety of organisms. AKR17A1 shares many characteristics of a typical AKR such as- (i) conferring tolerance to multiple stresses like heat, UV-B, and cadmium, (ii) excellent activity towards known AKR substrates (isatin and 2-nitrobenzaldehyde), and (iii) obligate dependence on NADPH as a cofactor for enzyme activity. The most novel attribute of AKR17A1, first reported in this study, is its capability to metabolize butachlor, a persistent rice field herbicide that adversely affects agro-ecosystem and non-target organisms. The AKR17A1 catalyzed- degradation of butachlor resulted into formation of 1,2-benzene dicarboxylic acid and 2,6 bis (1,1, dimethylethyl) 4,-methyl phenol as the major products confirmed by GC-MS analysis.

  16. Biodegradability of degradable plastic waste.

    PubMed

    Agamuthu, P; Faizura, Putri Nadzrul

    2005-04-01

    Plastic waste constitutes the third largest waste volume in Malaysian municipal solid waste (MSW), next to putrescible waste and paper. The plastic component in MSW from Kuala Lumpur averages 24% (by weight), whereas the national mean is about 15%. The 144 waste dumps in the country receive about 95% of the MSW, including plastic waste. The useful life of the landfills is fast diminishing as the plastic waste stays un-degraded for more than 50 years. In this study the compostability of polyethylene and pro-oxidant additive-based environmentally degradable plastics (EDP) was investigated. Linear low-density polyethylene (LLDPE) samples exposed hydrolytically or oxidatively at 60 degrees C showed that the abiotic degradation path was oxidative rather than hydrolytic. There was a weight loss of 8% and the plastic has been oxidized as shown by the additional carbonyl group exhibited in the Fourier transform infra red (FTIR) Spectrum. Oxidation rate seemed to be influenced by the amount of pro-oxidant additive, the chemical structure and morphology of the plastic samples, and the surface area. Composting studies during a 45-day experiment showed that the percentage elongation (reduction) was 20% for McD samples [high-density polyethylene, (HDPE) with 3% additive] and LL samples (LLDPE with 7% additive) and 18% reduction for totally degradable plastic (TDP) samples (HDPE with 3% additive). Lastly, microbial experiments using Pseudomonas aeroginosa on carbon-free media with degradable plastic samples as the sole carbon source, showed confirmatory results. A positive bacterial growth and a weight loss of 2.2% for degraded polyethylene samples were evident to show that the degradable plastic is biodegradable.

  17. Relationship between thermal stability, degradation rate and expression yield of barnase variants in the periplasm of Escherichia coli.

    PubMed

    Kwon, W S; Da Silva, N A; Kellis, J T

    1996-12-01

    An advantage of exporting a recombinant protein to the periplasm of Escherichia coli is decreased proteolysis in the periplasm compared with that in the cytoplasm. However, protein degradation in the periplasm also occurs. It has been widely accepted that the thermodynamic stability of a protein is an important factor for protein degradation in the cytoplasm of E.coli. To investigate the effect of the thermodynamic stability of an exported protein on the extent of proteolysis in the periplasm, barnase (an extracellular ribonuclease from Bacillus amyloliquefaciens) fused to alkaline phosphatase leader peptide was used as a model protein. A set of singly or doubly mutated barnase variants were constructed for export to the E.coli periplasm. It was found that the half-life of the barnase variants in vivo increased with their thermodynamic stability in vitro. A dominant factor for the final yield of exported barnase was not exportability but the turnover rate of the barnase variant. The yield of a stabilized mutant was up to 50% higher than that of the wild type. This suggests that exporting a protein to the periplasm and using protein engineering to enhance the stability can be combined as a strategy to optimize the production of recombinant proteins. PMID:9010933

  18. Enantioseparation of the fungicide imazalil in orange juice by chiral HPLC. Study on degradation rates and extractive/enrichment techniques.

    PubMed

    Ruiz-Rodríguez, L; Aguilar, A; Díaz, A N; Sánchez, F G

    2015-07-01

    Imazalil ([1-(β-allyloxy-2,4-dichlorophenethyl)imidazole]) is a systemic chiral fungicide used in postharvest protection of citruses against fungi development for during storage and transportation. The chemical structure of imazalil shows an asymmetric carbon in the C7 position. These enantiomers may have different toxicity. A method for both chiral enantiomers extraction and determination in orange juice is developed in order to provide their concentration and to study the degradation rates in orange juice. Spiked imazalil was extracted from orange juice by dispersive liquid-liquid micro extraction and solid phase extraction. Recovery assays of imazalil enantiomers from spiked orange juice samples showed that solid phase extraction is a better choice in order to obtain higher recovery values. Obtained chromatographic data show that within 24h the (-)-imazalil enantiomer decreases from 0.548 to 0.471 (expressed as enantiomer fraction).

  19. Sciatic nerve regeneration in rats by a promising electrospun collagen/poly(ε-caprolactone) nerve conduit with tailored degradation rate

    PubMed Central

    2011-01-01

    Background To cope with the limitations faced by autograft acquisitions particularly for multiple nerve injuries, artificial nerve conduit has been introduced by researchers as a substitute for autologous nerve graft for the easy specification and availability for mass production. In order to best mimic the structures and components of autologous nerve, great efforts have been made to improve the designation of nerve conduits either from materials or fabrication techniques. Electrospinning is an easy and versatile technique that has recently been used to fabricate fibrous tissue-engineered scaffolds which have great similarity to the extracellular matrix on fiber structure. Results In this study we fabricated a collagen/poly(ε-caprolactone) (collagen/PCL) fibrous scaffold by electrospinning and explored its application as nerve guide substrate or conduit in vitro and in vivo. Material characterizations showed this electrospun composite material which was made of submicron fibers possessed good hydrophilicity and flexibility. In vitro study indicated electrospun collagen/PCL fibrous meshes promoted Schwann cell adhesion, elongation and proliferation. In vivo test showed electrospun collagen/PCL porous nerve conduits successfully supported nerve regeneration through an 8 mm sciatic nerve gap in adult rats, achieving similar electrophysiological and muscle reinnervation results as autografts. Although regenerated nerve fibers were still in a pre-mature stage 4 months postoperatively, the implanted collagen/PCL nerve conduits facilitated more axons regenerating through the conduit lumen and gradually degraded which well matched the nerve regeneration rate. Conclusions All the results demonstrated this collagen/PCL nerve conduit with tailored degradation rate fabricated by electrospinning could be an efficient alternative to autograft for peripheral nerve regeneration research. Due to its advantage of high surface area for cell attachment, it is believed that this

  20. Role of nickel in high rate methanol degradation in anaerobic granular sludge bioreactors

    PubMed Central

    Fermoso, Fernando G.; Collins, Gavin; Bartacek, Jan; O’Flaherty, Vincent

    2008-01-01

    The effect of nickel deprivation from the influent of a mesophilic (30°C) methanol fed upflow anaerobic sludge bed (UASB) reactor was investigated by coupling the reactor performance to the evolution of the Methanosarcina population of the bioreactor sludge. The reactor was operated at pH 7.0 and an organic loading rate (OLR) of 5–15 g COD l−1 day−1 for 191 days. A clear limitation of the specific methanogenic activity (SMA) on methanol due to the absence of nickel was observed after 129 days of bioreactor operation: the SMA of the sludge in medium with the complete trace metal solution except nickel amounted to 1.164 (±0.167) g CH4-COD g VSS−1 day−1 compared to 2.027 (±0.111) g CH4-COD g VSS−1 day−1 in a medium with the complete (including nickel) trace metal solution. The methanol removal efficiency during these 129 days was 99%, no volatile fatty acid (VFA) accumulation was observed and the size of the Methanosarcina population increased compared to the seed sludge. Continuation of the UASB reactor operation with the nickel limited sludge lead to incomplete methanol removal, and thus methanol accumulation in the reactor effluent from day 142 onwards. This methanol accumulation subsequently induced an increase of the acetogenic activity in the UASB reactor on day 160. On day 165, 77% of the methanol fed to the system was converted to acetate and the Methanosarcina population size had substantially decreased. Inclusion of 0.5 μM Ni (dosed as NiCl2) to the influent from day 165 onwards lead to the recovery of the methanol removal efficiency to 99% without VFA accumulation within 2 days of bioreactor operation. PMID:18247139

  1. Reactive oxygen species signaling in plants under abiotic stress.

    PubMed

    Choudhury, Shuvasish; Panda, Piyalee; Sahoo, Lingaraj; Panda, Sanjib Kumar

    2013-04-01

    Abiotic stresses like heavy metals, drought, salt, low temperature, etc. are the major factors that limit crop productivity and yield. These stresses are associated with production of certain deleterious chemical entities called reactive oxygen species (ROS), which include hydrogen peroxide (H₂O₂), superoxide radical (O₂(-)), hydroxyl radical (OH(-)), etc. ROS are capable of inducing cellular damage by degradation of proteins, inactivation of enzymes, alterations in the gene and interfere in various pathways of metabolic importance. Our understanding on ROS in response to abiotic stress is revolutionized with the advancements in plant molecular biology, where the basic understanding on chemical behavior of ROS is better understood. Understanding the molecular mechanisms involved in ROS generation and its potential role during abiotic stress is important to identify means by which plant growth and metabolism can be regulated under acute stress conditions. ROS mediated oxidative stress, which is the key to understand stress related toxicity have been widely studied in many plants and the results in those studies clearly revealed that oxidative stress is the main symptom of toxicity. Plants have their own antioxidant defense mechanisms to encounter ROS that is of enzymic and non-enzymic nature . Coordinated activities of these antioxidants regulate ROS detoxification and reduces oxidative load in plants. Though ROS are always regarded to impart negative impact on plants, some reports consider them to be important in regulating key cellular functions; however, such reports in plant are limited. Molecular approaches to understand ROS metabolism and signaling have opened new avenues to comprehend its critical role in abiotic stress. ROS also acts as secondary messenger that signals key cellular functions like cell proliferation, apoptosis and necrosis. In higher eukaryotes, ROS signaling is not fully understood. In this review we summarize our understanding on ROS

  2. Arabidopsis STAYGREEN-LIKE (SGRL) promotes abiotic stress-induced leaf yellowing during vegetative growth.

    PubMed

    Sakuraba, Yasuhito; Kim, Dami; Kim, Ye-Sol; Hörtensteiner, Stefan; Paek, Nam-Chon

    2014-11-01

    During leaf senescence in Arabidopsis, STAYGREEN 1 (SGR1) and SGR2 regulate chlorophyll degradation positively and negatively, respectively. SGR-LIKE (SGRL) is also expressed in pre-senescing leaves, but its function remains largely unknown. Here we show that under abiotic stress, Arabidopsis plants overexpressing SGRL exhibit early leaf yellowing and sgrl-1 mutants exhibit persistent green color of leaves. Under salt stress, SGR1 and SGRL act synergistically for rapid Chl degradation prior to senescence. Furthermore, SGRL forms homo- and heterodimers with SGR1 and SGR2 in vivo, and interacts with LHCII and chlorophyll catabolic enzymes. The role of SGRL under abiotic stress is discussed.

  3. The abiotic litter decomposition in the drylands

    NASA Astrophysics Data System (ADS)

    Lee, H.; Throop, H.; Rahn, T. A.

    2009-12-01

    The decomposition of litter is an important ecosystem function that controls carbon and nutrient cycling, which is well understood from the relationship between temperature and moisture. However, the decomposition in the arid and semiarid environments (hereafter drylands) is relatively poorly predicted due to several abiotic factors such as the effect of ultraviolet radiation and physical mixing of fallen litter with soil. The relative magnitude of these abiotic factors to ecosystem scale litter decomposition is still in debate. Here, we examine the effect of two major abiotic factors in the drylands litter decomposition by conducting a controlled laboratory study using plant litter and soil collected from Sonoran and Chihuahuan desert areas. The first part of the experiment focused on the effect of soil-litter mixing. We established a complete block design of three levels of soil and litter mixing (no mixing, light soil-litter mixing, and complete soil-litter mixing) in combination with three levels of soil moisture (1%, 2%, and 6% volumetric water content) using 2g of two most dominant species litter, grass and mesquite, and 50g of air-dried soils in 500ml mason jar and incubated them under 25C. We measured CO2 fluxes from these soil-litter incubations and harvested the soil and litter at 0, 1, 2, 4, 8, and 16 weeks and analyzed them of carbon and nitrogen content as well as the actual mass loss in the litter. The second part of the experiment focused on the effect of ultraviolet radiation. We established short-term litter incubation on a quartz chamber and used different temperature, moisture, and minerals to find the mechanism of photodegradation of litter. We measured CO2 fluxes from the litter incubation under ultraviolet radiation and also measured 13CO2 from these emissions. We were able to detect changes in the rate of carbon mineralization as a result of our treatments in the first week of soil-litter mixing experiment. The carbon mineralization rate was

  4. Status Report - Cane Fiberboard Properties and Degradation Rates for Storage of the 9975 Shipping Package in KAMS

    SciTech Connect

    Daugherty, W. L.

    2013-01-31

    Thermal, mechanical and physical properties have been measured on cane fiberboard samples following accelerated aging for up to approximately 7 years. The aging environments have included elevated temperature < 250 ?F (the maximum allowed service temperature for fiberboard in 9975 packages) and elevated humidity. The results from this testing have been analyzed, and aging models fit to the data. Correlations relating several properties (thermal conductivity, energy absorption, weight loss and height decrease) to their rate of change in potential storage environments have been developed. Combined with an estimate of the actual conditions the fiberboard experiences in KAMS, these models allow development of service life predictions. Some of the predicted degradation rates presented in this report are relatively extreme. However, these relate to environments that do not exist within KAMS, or would be postulated only as upset conditions that would not likely persist for an extended period. For a typical package with ~10 watts internal heat load or less, and ambient temperatures below 90 ?F, the fiberboard experiences storage conditions less severe than any of the aging environments. Little or no degradation of the fiberboard is expected for typical storage conditions. It should be noted that the ultimate service life will be determined by the cumulative effect of degradation from all the conditions these packages might encounter. The assumptions and inputs behind the models in this report should be well understood before attempting to identify an actual service life in KAMS. Additional data continue to be collected to permit future refinements to the models and assumptions. For developing service life predictions, the ambient conditions within KAMS can be reasonably identified, and the temperature profiles within the various packages (with a range of heat loads and at varying locations within an array of packages) can be calculated. However, the humidity within the

  5. Determination of rate constants and branching ratios for TCE degradation by zero-valent iron using a chain decay multispecies model

    NASA Astrophysics Data System (ADS)

    Hwang, Hyoun-Tae; Jeen, Sung-Wook; Sudicky, Edward A.; Illman, Walter A.

    2015-06-01

    The applicability of a newly-developed chain-decay multispecies model (CMM) was validated by obtaining kinetic rate constants and branching ratios along the reaction pathways of trichloroethene (TCE) reduction by zero-valent iron (ZVI) from column experiments. Changes in rate constants and branching ratios for individual reactions for degradation products over time for two columns under different geochemical conditions were examined to provide ranges of those parameters expected over the long-term. As compared to the column receiving deionized water, the column receiving dissolved CaCO3 showed higher mean degradation rates for TCE and all of its degradation products. However, the column experienced faster reactivity loss toward TCE degradation due to precipitation of secondary carbonate minerals, as indicated by a higher value for the ratio of maximum to minimum TCE degradation rate observed over time. From the calculated branching ratios, it was found that TCE and cis-dichloroethene (cis-DCE) were dominantly dechlorinated to chloroacetylene and acetylene, respectively, through reductive elimination for both columns. The CMM model, validated by the column test data in this study, provides a convenient tool to determine simultaneously the critical design parameters for permeable reactive barriers and natural attenuation such as rate constants and branching ratios.

  6. Methane emissions and contaminant degradation rates at sites affected by accidental releases of denatured fuel-grade ethanol.

    PubMed

    Sihota, Natasha J; Mayer, K Ulrich; Toso, Mark A; Atwater, Joel F

    2013-08-01

    The recent increase in the use of denatured fuel-grade ethanol (DFE) has enhanced the probability of its environmental release. Due to the highly labile nature of ethanol (EtOH), it is expected to rapidly biodegrade, increasing the potential for inducing methanogenic conditions in the subsurface. As environmental releases of DFE can be expected to occur at the ground surface or in the vadose zone (e.g., due to surficial spills from rail lines or tanker trucks and leaking underground storage tanks), the potential for methane (CH4) generation at DFE spill sites requires evaluation. An assessment is needed because high CH4 generation rates may lead to CH4 fluxes towards the ground surface, which is of particular concern if spills are located close to human habitation-related to concerns of soil vapor intrusion (SVI). This work demonstrates, for the first time, the measurement of surficial gas release rates at large volume DFE spill sites. Two study sites, near Cambria and Balaton, in MN are investigated. Total carbon emissions at the ground surface (summing carbon dioxide (CO2) and CH4 emissions) are used to quantify depth-integrated DFE degradation rates. Results from both sites demonstrate that substantial CO2 and CH4 emissions do occur-even years after a spill. However, large total carbon fluxes, and CH4 emissions in particular, were restricted to a localized area within the DFE source zone. At the Balaton site, estimates of total DFE carbon losses in the source zone ranged between 5 and 174 μmol m(-2) s(-1), and CH4 effluxes ranged between non-detect and 9 μmol m(-2) s(-1). At the Cambria site estimates of total DFE carbon losses in the source zone ranged between 8 and 500 μmol m(-2) s(-1), and CH4 effluxes ranged between non-detect and 393 μmol m(-2) s(-1). Substantial CH4 accumulation, coupled with oxygen (O2) depletion, measured in samples collected from custom-designed gas collection chambers at the Cambria site suggests that the development of explosion

  7. Methane emissions and contaminant degradation rates at sites affected by accidental releases of denatured fuel-grade ethanol

    NASA Astrophysics Data System (ADS)

    Sihota, Natasha J.; Mayer, K. Ulrich; Toso, Mark A.; Atwater, Joel F.

    2013-08-01

    The recent increase in the use of denatured fuel-grade ethanol (DFE) has enhanced the probability of its environmental release. Due to the highly labile nature of ethanol (EtOH), it is expected to rapidly biodegrade, increasing the potential for inducing methanogenic conditions in the subsurface. As environmental releases of DFE can be expected to occur at the ground surface or in the vadose zone (e.g., due to surficial spills from rail lines or tanker trucks and leaking underground storage tanks), the potential for methane (CH4) generation at DFE spill sites requires evaluation. An assessment is needed because high CH4 generation rates may lead to CH4 fluxes towards the ground surface, which is of particular concern if spills are located close to human habitation—related to concerns of soil vapor intrusion (SVI). This work demonstrates, for the first time, the measurement of surficial gas release rates at large volume DFE spill sites. Two study sites, near Cambria and Balaton, in MN are investigated. Total carbon emissions at the ground surface (summing carbon dioxide (CO2) and CH4 emissions) are used to quantify depth-integrated DFE degradation rates. Results from both sites demonstrate that substantial CO2 and CH4 emissions do occur—even years after a spill. However, large total carbon fluxes, and CH4 emissions in particular, were restricted to a localized area within the DFE source zone. At the Balaton site, estimates of total DFE carbon losses in the source zone ranged between 5 and 174 μmol m- 2 s- 1, and CH4 effluxes ranged between non-detect and 9 μmol m- 2 s- 1. At the Cambria site estimates of total DFE carbon losses in the source zone ranged between 8 and 500 μmol m- 2 s- 1, and CH4 effluxes ranged between non-detect and 393 μmol m- 2 s- 1. Substantial CH4 accumulation, coupled with oxygen (O2) depletion, measured in samples collected from custom-designed gas collection chambers at the Cambria site suggests that the development of explosion or

  8. Methane emissions and contaminant degradation rates at sites affected by accidental releases of denatured fuel-grade ethanol.

    PubMed

    Sihota, Natasha J; Mayer, K Ulrich; Toso, Mark A; Atwater, Joel F

    2013-08-01

    The recent increase in the use of denatured fuel-grade ethanol (DFE) has enhanced the probability of its environmental release. Due to the highly labile nature of ethanol (EtOH), it is expected to rapidly biodegrade, increasing the potential for inducing methanogenic conditions in the subsurface. As environmental releases of DFE can be expected to occur at the ground surface or in the vadose zone (e.g., due to surficial spills from rail lines or tanker trucks and leaking underground storage tanks), the potential for methane (CH4) generation at DFE spill sites requires evaluation. An assessment is needed because high CH4 generation rates may lead to CH4 fluxes towards the ground surface, which is of particular concern if spills are located close to human habitation-related to concerns of soil vapor intrusion (SVI). This work demonstrates, for the first time, the measurement of surficial gas release rates at large volume DFE spill sites. Two study sites, near Cambria and Balaton, in MN are investigated. Total carbon emissions at the ground surface (summing carbon dioxide (CO2) and CH4 emissions) are used to quantify depth-integrated DFE degradation rates. Results from both sites demonstrate that substantial CO2 and CH4 emissions do occur-even years after a spill. However, large total carbon fluxes, and CH4 emissions in particular, were restricted to a localized area within the DFE source zone. At the Balaton site, estimates of total DFE carbon losses in the source zone ranged between 5 and 174 μmol m(-2) s(-1), and CH4 effluxes ranged between non-detect and 9 μmol m(-2) s(-1). At the Cambria site estimates of total DFE carbon losses in the source zone ranged between 8 and 500 μmol m(-2) s(-1), and CH4 effluxes ranged between non-detect and 393 μmol m(-2) s(-1). Substantial CH4 accumulation, coupled with oxygen (O2) depletion, measured in samples collected from custom-designed gas collection chambers at the Cambria site suggests that the development of explosion

  9. Roles of abiotic losses, microbes, plant roots, and root exudates on phytoremediation of PAHs in a barren soil.

    PubMed

    Sun, Tian-Ran; Cang, Long; Wang, Quan-Ying; Zhou, Dong-Mei; Cheng, Jie-Min; Xu, Hui

    2010-04-15

    Phytoremediation is an emerging technology for the remediation of polycyclic aromatic hydrocarbons (PAHs). In this study, pot experiments were conducted to evaluate the efficacy of phytoremediation of phenanthrene and pyrene in a typical low organic matter soil (3.75 g kg(-1)), and the contribution proportions of abiotic losses, microbes, plant roots, and root exudates were ascertained during the PAHs dissipation. The results indicated that contribution of abiotic losses from this soil was high both for phenanthrene (83.4%) and pyrene (57.2%). The contributions of root-exudates-enhanced biodegradation of phenanthrene (15.5%) and pyrene (21.3%) were higher than those of indigenous microbial degradation. The role of root exudates on dissipation of phenanthrene and pyrene was evident in this experiment. By the way, with the increasing of ring numbers in PAHs structures, the root-exudates-enhanced degradation became more and more important. BIOLOG-ECO plate analysis indicated that microbial community structure of the soil receiving root exudates had changed. The removal efficiency and substrate utilization rate in the treatment with plant roots were lower than the treatment only with root exudates, which suggested that possible competition between roots and microbes for nutrients had occurred in a low organic matter soil.

  10. Optimization of linear alkylbenzene sulfonate (LAS) degradation in UASB reactors by varying bioavailability of LAS, hydraulic retention time and specific organic load rate.

    PubMed

    Okada, Dagoberto Y; Delforno, Tiago P; Esteves, Andressa S; Sakamoto, Isabel K; Duarte, Iolanda C S; Varesche, Maria B A

    2013-01-01

    Degradation of linear alkylbenzene sulfonate (LAS) in UASB reactors was optimized by varying the bioavailability of LAS based on the concentration of biomass in the system (1.3-16 g TS/L), the hydraulic retention time (HRT), which was operated at 6, 35 or 80 h, and the concentration of co-substrates as specific organic loading rates (SOLR) ranging from 0.03-0.18 g COD/g TVS.d. The highest degradation rate of LAS (76%) was related to the lowest SOLR (0.03 g COD/g TVS.d). Variation of the HRT between 6 and 80 h resulted in degradation rates of LAS ranging from 18% to 55%. Variation in the bioavailability of LAS resulted in discrete changes in the degradation rates (ranging from 37-53%). According to the DGGE profiles, the archaeal communities exhibited greater changes than the bacterial communities, especially in biomass samples that were obtained from the phase separator. The parameters that exhibited more influence on LAS degradation were the SOLR followed by the HRT. PMID:23196232

  11. Mud, Macrofauna and Microbes: An ode to benthic organism-abiotic interactions at varying scales

    EPA Science Inventory

    Benthic environments are dynamic habitats, subject to variable sources and rates of sediment delivery, reworking from the abiotic and biotic processes, and complex biogeochemistry. These activities do not occur in a vacuum, and interact synergistically to influence food webs, bi...

  12. Effect of supplementation of beef cattle with different protein levels and degradation rates during transition from the dry to rainy season.

    PubMed

    Fernandes, Rodolfo Maciel; de Almeida, Chafic Mustafé; Carvalho, Bruna Caldas; Alves Neto, João Alexandrino; Mota, Verônica Aparecida Costa; de Resende, Flávio Dutra; Siqueira, Gustavo Rezende

    2016-01-01

    The objective of this study was to evaluate the effect of increasing the supply of protein with different degradation rates on the performance and metabolism of growing Nellore cattle reared on Brachiaria brizantha cv. Marandu pasture during the transition period from the dry to rainy season. The experiment was installed on an area of 34 ha, divided into 12 paddocks with an average area of 2.85 ha. In the performance evaluation were utilized 72 recently weaned, non-castrated Nellore cattle with an initial body weight (BW) of 199 kg (SEM = 16). The following supplements were used: energy protein supplement containing 25% crude protein (CP) (C-25) and energy protein supplements containing 40% CP with one third highly degradable CP and two thirds poorly degradable CP (40-1/3NPN), one half highly degradable CP and one half poorly degradable CP (40-1/2NPN), and two thirds highly degradable CP and one third poorly degradable CP (40-2/3NPN). Higher protein degradation rates reduced supplement intake (P < 0.01). In the first period, animals consuming supplement 40-1/3NPN exhibited higher average daily gain (ADG) (0.30 kg/day), similar to that of animals receiving supplement 40-1/2NPN (P = 0.04). In the second period, supplement 40-2/3NPN resulted in lower ADG (0.19 kg/day less than the other supplements). There was no effect of supplement on animal performance in the third period (P > 0.10), when ADG was 0.56 kg/day. In conclusion, the response to supplementation is associated with interactions with characteristics of the forage canopy. Supplementation with a true protein source will be beneficial only during the early stage of the dry-rainy season transition period.

  13. A PROPOSED METHOD FOR ESTIMATING FAILURE RATES OF DEGRADED PASSIVE COMPONENTS IN THE NRC SIGNIFICANCE DETERMINATION PROCESS

    SciTech Connect

    Unwin, Stephen D.; Johnson, Kenneth I.; Ivans, William J.; Lowry, Peter P.

    2013-11-01

    This paper outlines a methodology for estimation of the incremental core damage frequency associated with the degradation of passive components with a view to its application in the US Nuclear Regulatory Commission's significance determination process. The method involves use of simplified physics-based models of materials degradation and the probabilistic comparison of transient loads with deteriorating system capacities.

  14. Abiotic Hydrolysis of Fluorotelomer-Based Polymers as a Source of Perfluorocarboxylates at the Global Scale

    EPA Science Inventory

    Fluorotelomer-based polymers (FTPs) are the main product of the fluorotelomer industry. For nearly 10 years, whether FTPs degrade to form perfluorooctanoate (PFOA) and perfluorocarboxylate (PFCA) homologues has been vigorously contested. Here we show that circum-neutral abiotic h...

  15. Abiotic racemization kinetics of amino acids in marine sediments.

    PubMed

    Steen, Andrew D; Jørgensen, Bo Barker; Lomstein, Bente Aa

    2013-01-01

    The ratios of d- versus l-amino acids can be used to infer the sources and composition of sedimentary organic matter. Such inferences, however, rely on knowing the rates at which amino acids in sedimentary organic matter racemize abiotically between the d- and the l-forms. Based on a heating experiment, we report kinetic parameters for racemization of aspartic acid, glutamic acid, serine, and alanine in bulk sediment from Aarhus Bay, Denmark, taken from the surface, 30 cm, and 340 cm depth below seafloor. Extrapolation to a typical cold deep sea sediment temperature of 3°C suggests racemization rate constants of 0.50×10(-5)-11×10(-5) yr(-1). These results can be used in conjunction with measurements of sediment age to predict the ratio of d:l amino acids due solely to abiotic racemization of the source material, deviations from which can indicate the abundance and turnover of active microbial populations.

  16. Improved constraints on in situ rates and on quantification of complete chloroethene degradation from stable carbon isotope mass balances in groundwater plumes.

    PubMed

    Höhener, Patrick; Elsner, Martin; Eisenmann, Heinrich; Atteia, Olivier

    2015-11-01

    Spills of chloroethenes (CEs) at industrial and urban sites can create groundwater plumes in which tetrachloro- and trichloroethene sequentially degrade to dichloroethenes, vinyl chloride (VC) and ethene, or ethane under reducing conditions. For detoxification, degradation must go beyond VC. Assessments based on ethene and ethane, however, are difficult because these products are volatile, may stem from alternative sources, can be further transformed and are not always monitored. To alternatively quantify degradation beyond VC, stable carbon isotope mass balances have been proposed where concentration-weighted CE isotope ratios are summed up and compared to the original source isotope ratio. Reported assessments, however, have provided not satisfactorily quantified results entailing greatly differing upper and lower estimates. This work proposes an integrative approach to better constrain the extent of total chloroethene degradation in groundwater samples. It is based on fitting of measured concentration and compound-specific stable carbon isotope data to an analytical reactive transport equation simulating steady-state plumes in two dimensions using an EXCEL spreadsheet. The fitting also yields estimates of degradation rates, of source width and of dispersivities. The approach is validated using two synthetic benchmark cases where the true extent of degradation is well known, and using data from two real field cases from literature.

  17. Improved constraints on in situ rates and on quantification of complete chloroethene degradation from stable carbon isotope mass balances in groundwater plumes

    NASA Astrophysics Data System (ADS)

    Höhener, Patrick; Elsner, Martin; Eisenmann, Heinrich; Atteia, Olivier

    2015-11-01

    Spills of chloroethenes (CEs) at industrial and urban sites can create groundwater plumes in which tetrachloro- and trichloroethene sequentially degrade to dichloroethenes, vinyl chloride (VC) and ethene, or ethane under reducing conditions. For detoxification, degradation must go beyond VC. Assessments based on ethene and ethane, however, are difficult because these products are volatile, may stem from alternative sources, can be further transformed and are not always monitored. To alternatively quantify degradation beyond VC, stable carbon isotope mass balances have been proposed where concentration-weighted CE isotope ratios are summed up and compared to the original source isotope ratio. Reported assessments, however, have provided not satisfactorily quantified results entailing greatly differing upper and lower estimates. This work proposes an integrative approach to better constrain the extent of total chloroethene degradation in groundwater samples. It is based on fitting of measured concentration and compound-specific stable carbon isotope data to an analytical reactive transport equation simulating steady-state plumes in two dimensions using an EXCEL spreadsheet. The fitting also yields estimates of degradation rates, of source width and of dispersivities. The approach is validated using two synthetic benchmark cases where the true extent of degradation is well known, and using data from two real field cases from literature.

  18. Dose rate dependence of radiation-induced lattice defects and performance degradation in npn Si bipolar transistors by 2-MeV electron irradiation

    NASA Astrophysics Data System (ADS)

    Hayama, K.; Takakura, K.; Ohyama, H.; Kuboyama, S.; Simoen, E.; Mercha, A.; Claeys, C.

    2007-12-01

    Total-dose response of npn Si transistors by 2-MeV electrons is presented for different dose rates. The base current increases after irradiation, whereas the collector current decreases. Therefore, the current gain ( β) decreases by irradiation. The degradation of electrical properties by 2-MeV electrons for low dose rate is higher than that for high dose rate. Similar dose rate dependence of the radiation-induced electron trap densities is observed by deep-level transient spectroscopy (DLTS) measurements.

  19. Balancing the rates of new bone formation and polymer degradation enhances healing of weight-bearing allograft/polyurethane composites in rabbit femoral defects.

    PubMed

    Dumas, Jerald E; Prieto, Edna M; Zienkiewicz, Katarzyna J; Guda, Teja; Wenke, Joseph C; Bible, Jesse; Holt, Ginger E; Guelcher, Scott A

    2014-01-01

    There is a compelling clinical need for bone grafts with initial bone-like mechanical properties that actively remodel for repair of weight-bearing bone defects, such as fractures of the tibial plateau and vertebrae. However, there is a paucity of studies investigating remodeling of weight-bearing bone grafts in preclinical models, and consequently there is limited understanding of the mechanisms by which these grafts remodel in vivo. In this study, we investigated the effects of the rates of new bone formation, matrix resorption, and polymer degradation on healing of settable weight-bearing polyurethane/allograft composites in a rabbit femoral condyle defect model. The grafts induced progressive healing in vivo, as evidenced by an increase in new bone formation, as well as a decrease in residual allograft and polymer from 6 to 12 weeks. However, the mismatch between the rates of autocatalytic polymer degradation and zero-order (independent of time) new bone formation resulted in incomplete healing in the interior of the composite. Augmentation of the grafts with recombinant human bone morphogenetic protein-2 not only increased the rate of new bone formation, but also altered the degradation mechanism of the polymer to approximate a zero-order process. The consequent matching of the rates of new bone formation and polymer degradation resulted in more extensive healing at later time points in all regions of the graft. These observations underscore the importance of balancing the rates of new bone formation and degradation to promote healing of settable weight-bearing bone grafts that maintain bone-like strength, while actively remodeling. PMID:23941405

  20. Balancing the Rates of New Bone Formation and Polymer Degradation Enhances Healing of Weight-Bearing Allograft/Polyurethane Composites in Rabbit Femoral Defects

    PubMed Central

    Dumas, Jerald E.; Prieto, Edna M.; Zienkiewicz, Katarzyna J.; Guda, Teja; Wenke, Joseph C.; Bible, Jesse; Holt, Ginger E.

    2014-01-01

    There is a compelling clinical need for bone grafts with initial bone-like mechanical properties that actively remodel for repair of weight-bearing bone defects, such as fractures of the tibial plateau and vertebrae. However, there is a paucity of studies investigating remodeling of weight-bearing bone grafts in preclinical models, and consequently there is limited understanding of the mechanisms by which these grafts remodel in vivo. In this study, we investigated the effects of the rates of new bone formation, matrix resorption, and polymer degradation on healing of settable weight-bearing polyurethane/allograft composites in a rabbit femoral condyle defect model. The grafts induced progressive healing in vivo, as evidenced by an increase in new bone formation, as well as a decrease in residual allograft and polymer from 6 to 12 weeks. However, the mismatch between the rates of autocatalytic polymer degradation and zero-order (independent of time) new bone formation resulted in incomplete healing in the interior of the composite. Augmentation of the grafts with recombinant human bone morphogenetic protein-2 not only increased the rate of new bone formation, but also altered the degradation mechanism of the polymer to approximate a zero-order process. The consequent matching of the rates of new bone formation and polymer degradation resulted in more extensive healing at later time points in all regions of the graft. These observations underscore the importance of balancing the rates of new bone formation and degradation to promote healing of settable weight-bearing bone grafts that maintain bone-like strength, while actively remodeling. PMID:23941405

  1. Minerals Masquerading As Enzymes: Abiotic Oxidation Of Soil Organic Matter In An Iron-Rich Humid Tropical Forest Soil

    NASA Astrophysics Data System (ADS)

    Hall, S. J.; Silver, W. L.

    2010-12-01

    Oxidative reactions play an important role in decomposing soil organic matter fractions that resist hydrolytic degradation, and fundamentally affect the cycling of recalcitrant soil carbon across ecosystems. Microbial extracellular oxidative enzymes (e.g. lignin peroxidases and laccases) have been assumed to provide a dominant role in catalyzing soil organic matter oxidation, while other potential oxidative mechanisms remain poorly explored. Here, we show that abiotic reactions mediated by the oxidation of ferrous iron (Fe(II)) could explain high potential oxidation rates in humid tropical forest soils, which often contain high concentrations of Fe(II) and experience rapid redox fluctuations between anaerobic and aerobic conditions. These abiotic reactions could provide an additional mechanism to explain high rates of decomposition in these ecosystems, despite frequent oxygen deficits. We sampled humid tropical forest soils in Puerto Rico, USA from various topographic positions, ranging from well-drained ridges to riparian valleys that experience broad fluctuations in redox potential. We measured oxidative activity by adding the model humic compound L-DOPA to soil slurries, followed by colorimetric measurements of the supernatant solution over time. Dilute hydrogen peroxide was added to a subset of slurries to measure peroxidative activity. We found that oxidative and peroxidative activity correlated positively with soil Fe(II) concentrations, counter to prevailing theory that low redox potential should suppress oxidative enzymes. Boiling or autoclaving sub-samples of soil slurries to denature any enzymes present typically increased peroxidative activity and did not eliminate oxidative activity, further suggesting the importance of an abiotic mechanism. We found substantial differences in the oxidation products of the L-DOPA substrate generated by our soil slurries in comparison with oxidation products generated by a purified enzyme (mushroom tyrosinase

  2. Synergistic degradation of chlorinated hydrocarbons with microorganisms and zero valent iron

    NASA Astrophysics Data System (ADS)

    Schöftner, Philipp; Summer, Dorothea; Leitner, Simon; Watzinger, Andrea; Wimmer, Bernhard; Reichenauer, Thomas

    2016-04-01

    Sites contaminated with chlorinated hydrocarbons (CHC) are located mainly within build-up regions. Therefore in most cases only in-situ technologies without excavation of soil material can be used for remediation. This project examines a novel in-situ remediation method, in which the biotic degradation via bacteria is combined with abiotic degradation via zero-valent iron particles (ZVI). ZVI particles are injected into the aquifer where CHC-molecules are reductively dechlorinated. However Fe0 is also oxidized by reaction with water leading to generation of H2 without any CHC degradation. To achieve biotic degradation often strictly anaerobic strains of the bacteria Dehalococcoides are used. These bacteria can dechlorinate CHC by utilizing H2. By combining these processes the H2, produced during the anaerobic corrosion of Fe0, could be used by bacteria for further CHC degradation. Therefore the amount of used Fe0 and as a consequence also remediation costs could be reduced. Additionally the continuous supply of H2 could make the bacterial degradation more controllable. Different Fe0 particles (nano- and micro-scale) were tested for their perchloroethene (PCE) degradation rate and H2 production rate in microcosms. PCE-degradation rate by different bacterial cultures was investigated in the same microcosm system. In course of these experiments the 13C enrichment factors of the PCE degradation of the different particles and cultures were determined to enable the differentiation of biotic and abiotic degradation. Preliminary results showed, that the nano-scale particles reacted faster with PCE and water than their micro-scaled counterparts. The PCE degradation via micro-scaled particles lead to 13C enrichment factors in the range of -3,6 ‰ ± 0,6 to -9,5 ‰ ± 0,2. With one of the examined bacterial cultures a fast reduction of PCE to ethene was observed. Although PCE and TCE were completely degraded by this culture the metabolites DCE and VC could still be detected

  3. Atmospheric reactions of methylcyclohexanes with Cl atoms and OH radicals: determination of rate coefficients and degradation products.

    PubMed

    Ballesteros, Bernabé; Ceacero-Vega, Antonio A; Jiménez, Elena; Albaladejo, José

    2015-04-01

    mechanism for ring-retaining product channels is proposed to justify the observed reaction products. The global tropospheric lifetimes estimated from the reported OH- and Cl-rate coefficients show that the main removal path for the investigated methylcyclohexanes is the reaction with OH radicals. But in marine environments, after sunrise, Cl reactions become more important in the tropospheric degradation. Thus, the estimated lifetimes range from 16 to 24 h for the reactions of the OH radical (calculated with [OH] = 10(6) atoms cm(-3)) and around 7-8 h in the reactions with Cl atoms in marine environments (calculated with [Cl] = 1.3 × 10(5) atoms cm(-3)). The reaction of Cl atoms and OH radicals and methylcylohexanes can proceed by H abstraction from the different positions.

  4. Pore-scale insights to the rate of organic carbon degradation and biofilm formation under variable hydro-biogeochemical conditions in soils and sediments

    NASA Astrophysics Data System (ADS)

    Liu, C.; Yan, Z.; Liu, Y.; Li, M.; Bailey, V. L.

    2015-12-01

    Biogeochemical processes that control microbial growth, organic carbon degradation, and CO2 production and migration are fundamentally occur at the pore scale. In this presentation, we will describe our recent results of a pore-scale simulation research to investigate: 1) how moisture content and distribution affects oxygen delivery, organic carbon availability, and microbial activities that regulate the rate of organic carbon degradation and CO2 production in aerobic systems; and 2) how pore-scale reactive transport processes affect local microbial growth, biofilm formation, and overall rate of microbial reactions in anoxic systems. The results revealed that there is an optimal moisture content for aerobic bacterial respiration and CO2 production. When moisture is below the optimal value, organic carbon availability limits its degradation due to diffusion and osmotic stress to bacterial reactivity; and when moisture is above the optimal value, oxygen delivery limits microbial respiration. The optimal moisture condition is, however, a function of soil texture and physical heterogeneity, bioavailable soil organic carbon, and microbial community function. In anoxic and saturated system, simulation results show that biofilm preferentially forms in concave areas around sand particles and macro aggregates where cross-directional fluxes of organic carbon and electron acceptors (e.g., nitrate) favor microbial growth and attachment. The results provide important insights to the establishment of constitutive relationships between the macroscopic rates of soil organic carbon degradation and moisture content, and to the development of biogeochemical reactive transport models that incorporate biofilm structures and physio-chemical heterogeneity in soils and sediments.

  5. Ultraviolet Radiation Accelerates Litter Decomposition Mainly By Increasing Its Biodegradability but Not Abiotic Photomineralization

    NASA Astrophysics Data System (ADS)

    Liu, L.; Wang, J.; Wang, X.; Chen, Y.

    2014-12-01

    Elevated ultraviolet (UV) radiation has been shown to stimulate litter decomposition. Despite years of research, it is still not fully understood that whether the fast litter degradation is mostly attributed to abiotic photo-mineralization or the combined abiotic and biotic degradation. Here we used meta-analysis to synthesize photodegradation studies and compared the effects of UV radiation on litter mass decomposition and chemistry with and without inhibiting microbial activities. We also conducted a microcosm experiment to separate UV's impacts on abiotic and biotic process during decomposition. Overall, our meta-analysis found that, under abiotic condition, UV radiation reduced litter carbon (C) content by 1% and increased dissolved organic carbon (DOC) concentration by 16%, but had no significant impacts on litter mass remaining. Under the combined abiotic and biotic biodegradation, UV radiation reduced litter lignin content by 14% and mass remaining by 3%. In addition, high UV radiation reduced N immobilization by 19%. Results of our microcosm experiment further found that the amount of respired C induced by UV treated litter increased with UV exposure length, which suggested that longer UV exposure duration leads to greater biodegradability. The microcosm study also found that elevated UV did not alter microbial biomass carbon (MBC) or microbe's ability to degrade organic matter. Overall, our meta-analysis and microcosm study suggested that although UV radiation significantly increase C loss by photo-mineralization, abiotic photo-mineralization was not great enough to induce significantly change in litter mass balance. However, with the presence of microbial activities, UV greatly facilitated litter decomposition. Such facilitating effect could be due to that elevated UV radiation increases lignin's accessibility to microbes, and also increases labile carbon supply to microbes. Our results also highlighted that UV radiation could have significant impacts on

  6. Changes in biotic and abiotic processes following mangrove clearing

    NASA Astrophysics Data System (ADS)

    Granek, Elise; Ruttenberg, Benjamin I.

    2008-12-01

    Mangrove forests, important tropical coastal habitats, are in decline worldwide primarily due to removal by humans. Changes to mangrove systems can alter ecosystem properties through direct effects on abiotic factors such as temperature, light and nutrient supply or through changes in biotic factors such as primary productivity or species composition. Despite the importance of mangroves as transitional habitats between land and sea, little research has examined changes that occur when they are cleared. We examined changes in a number of biotic and abiotic factors following the anthropogenic removal of red mangroves ( Rhizophora mangle) in the Panamanian Caribbean, including algal biomass, algal diversity, algal grazing rates, light penetration, temperature, sedimentation rates and sediment organic content. In this first study examining multiple ecosystem-level effects of mangrove disturbance, we found that areas cleared of mangroves had higher algal biomass and richness than intact mangrove areas. This increase in algal biomass and richness was likely due to changes in abiotic factors (e.g. light intensity, temperature), but not biotic factors (fish herbivory). Additionally the algal and cyanobacterial genera dominating mangrove-cleared areas were rare in intact mangroves and included a number of genera that compete with coral for space on reefs. Interestingly, sedimentation rates did not differ between intact and cleared areas, but the sediments that accumulated in intact mangroves had higher organic content. These findings are the first to demonstrate that anthropogenic clearing of mangroves changes multiple biotic and abiotic processes in mangrove forests and that some of these changes may influence adjacent habitats such as coral reefs and seagrass beds. Additional research is needed to further explore the community and ecosystem-level effects of mangrove clearing and their influence on adjacent habitats, but it is clear that mangrove conservation is an

  7. Biotic and abiotic mercury methylation and demethylation in sediments

    SciTech Connect

    Zhang, L.; Planas, D. )

    1994-05-01

    Inorganic mercury (Hg(II)) methylation and methylmercury (MeHg) demethylation may occur in the water column, sediment-water interface and subsurficial sediment of aquatic ecosystems. These transformations involve mainly microbial mechanisms, although abiotic methylation may play a more important role in the water compartment. The relative importance of biotic versus abiotic mechanisms of methylation has not been determined however, and abiotic demethylation remains unknown. Little quantitative information is available on the role of bacterial activity in mercury transformations. It has been reported that at least 16 genera of aerobic and anaerobic microorganisms are able to methylate HG(II), and that a greater number are able to demethylate MeHg. Nevertheless, not all populations of these species are capable of methyl- and demethyl-transformations. The actual concentration of MeHg in the aquatic environment is regulated by the relative production and decomposition rates. This, in turn, depends on the availability of Hg(II), MeHg, and bacteria as well as on the physico-chemical properties of the sample. The objective of this study was to compare mercury methylation and demethylation rates in sediment samples with and without active bacterial populations. We therefore performed experiments to follow bacterial evolution during the course of Hg(II) methylation and MeHg demethylation in sediment slurries containing both sterile and non-sterile sediments.

  8. Abiotic mediation of a mutualism drives herbivore abundance.

    PubMed

    Mooney, Emily H; Phillips, Joseph S; Tillberg, Chadwick V; Sandrow, Cheryl; Nelson, Annika S; Mooney, Kailen A

    2016-01-01

    Species abundance is typically determined by the abiotic environment, but the extent to which such effects occur through the mediation of biotic interactions, including mutualisms, is unknown. We explored how light environment (open meadow vs. shaded understory) mediates the abundance and ant tending of the aphid Aphis helianthi feeding on the herb Ligusticum porteri. Yearly surveys consistently found aphids to be more than 17-fold more abundant on open meadow plants than on shaded understory plants. Manipulations demonstrated that this abundance pattern was not due to the direct effects of light environment on aphid performance, or indirectly through host plant quality or the effects of predators. Instead, open meadows had higher ant abundance and per capita rates of aphid tending and, accordingly, ants increased aphid population growth in meadow but not understory environments. The abiotic environment thus drives the abundance of this herbivore exclusively through the mediation of a protection mutualism.

  9. Chemical behavior of phthalates under abiotic conditions in landfills.

    PubMed

    Huang, Jingyu; Nkrumah, Philip N; Li, Yi; Appiah-Sefah, Gloria

    2013-01-01

    The phthalates comprise a family of phthalic acid esters that are used primarily as plasticizers in polymeric materials to impart flexibility during the manufacturing process and to the end product. It is estimated that the annual worldwide production of phthalate esters exceeds five million tons. Plasticizers are one of the most prominent classes of chemicals, but unfortunately, they possess endocrine-disrupting chemical properties. As endocrine-disrupting chemicals, plasticizers have produced adverse developmental and reproductive effects in mammalian animal models.Phthalates are easily transported into the environment during manufacture, disposal,and leaching from plastic materials, because they are not covalently bound to the plastics of which they are a component. Because of their fugitive nature and widespread use, the phthalates are commonly detected in air, water, sediment/soil, and biota, including human tissue. Large amounts of phthalic acid esters are often leached from the plastics that are dumped at municipal landfills.Phthalate esters undergo chemical changes when released into the environment.The primary processes by which they are transformed include hydrolysis, photolysis,and biodegradation. It is noteworthy that all of these degradation processes are greatly influenced by the local physical and chemical conditions. Hence, in the present review, we have sought to ascertain from the literature how the phthalate esters undergo transformation when they are released into lower landfill layers.Within the upper landfill layers, biodegradation prevails as the major degradation mechanism by which the phthalates are dissipated. Generally, biodegradation pathways for the phthalates consist of primary biodegradation from phthalate diesters to phthalate monoesters, then to phthalic acid, and ultimately biodegradation of phthalic acid to form C02 and/or CH4• We have noted that the phthalate esters are also degraded through abiotic means,which proceeds via

  10. Critical micelle concentrations and stirring are rate limiting in the loss of lipid mass during membrane degradation by phospholipase A2.

    PubMed

    Speijer, H; Giesen, P L; Zwaal, R F; Hack, C E; Hermens, W T

    1996-05-01

    In phospholipid membranes attacked by phospholipase A(2) (PLA(2)), accumulation of degradation products influences the binding affinity as well as the catalytic activity of PLA(2). Such accumulation in its turn depends on the rate of membrane degradation and the efflux of degradation products from the membrane, the latter being influenced by the stirring conditions in the system. This complicated process was investigated with a new ellipsometric technique for in situ measurement of membrane mass in a well-defined flow system. Planar phospholipid bilayers were formed on rotating silicon discs in buffer solution. After the addition of 0.05-100 ng/ml of PLA(2) (from Naja mocambique mocambique) to the buffer, mass desorption could be measured with a precision of 3-5 ng/cm(2), that is, about 1% of the surface mass of a single bilayer. Using radiolabeled phospholipids and thin-layer chromatography, it was verified that only the degradation products desorb from the membrane, which was confirmed by the desorption of mixtures of phospholipids, lysophospholipids, and fatty acids. The rotating disc allows the exact calculation of the mass transfer constant for transport-limited exchange of lipid between fluid and disc surface, as a function of rotation rate. By using the mass transfer constant, the critical micelle concentrations, and the mole fractions of products, desorption kinetics could be fully described. The amount of degraded phospholipid could be continuously monitored as the sum of the product mass still present in the membrane, as inferred from the desorption rate, and the mass already lost from the surface. It is concluded that ellipsometry is a suitable tool for studying the effects of PLA(2) on membranes.

  11. Microbial degradation at a shallow coastal site: Long-term spectra and rates of exoenzymatic activities in the NE Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Celussi, Mauro; Del Negro, Paola

    2012-12-01

    The degradation of organic matter along the water column is mediated by enzymes released into the environment by planktonic organisms. Variations in enzymes profiles (types and levels of activity) reflect the trophic status of the environment and could be caused by shifts in the dominant species or in the level of enzyme expression by the same species in response to changes in the spectrum of organic substrates. To explore this issue, we examined the maximum rates of hydrolysis of 6 different enzymes (protease, α-glucosidase, β-glucosidase, β-galactosidase, alkaline phosphatase and lipase) along the water column (4 depths) at a coastal station in the Gulf of Trieste (northern Adriatic Sea), from 2000 to 2005. Most of the studied enzymes exhibited a pronounced seasonal variability with winter minima and maxima from April to October. During summer, alkaline phosphatase, lipase and protease reached the highest activities, while polysaccharide degradation prevailed in spring and autumn, associated to phytoplankton blooms. Phosphatase/protease activities ratio was generally low, indicating that microbial communities were rarely P-limited, possibly because of the use of organic P sources. A pronounced interannual variability of degradation patterns was found, with maximum rates of protease being the highest in most of the samples, followed by the alkaline phosphatase's ones. Water column features greatly affected hydrolysis rates, being degradation of linear polysaccharides, lipids, phosphorilated compounds and polypeptides significantly different at different depths during stratified condition. Mixing processes affected especially α-glucosidase activity, possibly as a consequence of resuspension of organic matter from the seabed. Large-impact phenomena such as the 2003 heat wave and mucilage influenced the degradation of specific substrates. Mucilage enhanced lipase, phosphatase and protease, whereas a pronounced inhibition characterised phosphatase and protease

  12. Abiotic and microbial oxidation of laboratory-produced black carbon (biochar).

    PubMed

    Zimmerman, Andrew R

    2010-02-15

    Pyrogenic or "black" carbon is a soil and sediment component that may control pollutant migration. Biochar, black carbon made intentionally by biomass pyrolysis, is increasingly discussed as a possible soil amendment to increase fertility and sequester carbon. Though thought to be extremely refractory, it must degrade at some rate. Better understanding of the rates and factors controlling its remineralization in the environment is needed. Release of CO(2) was measured over 1 year from microbial and sterile incubations of biochars made from a range of biomass types and combustion conditions. Carbon release from abiotic incubations was 50-90% that of microbially inoculated incubations, and both generally decreased with increasing charring temperature. All biochars displayed log-linearly decreasing mineralization rates that, when modeled, were used to calculate 100 year C losses of 3-26% and biochar C half-lives on orders ranging from 10(2) to 10(7) years. Because biochar lability was found to be strongly controlled by the relative amount of a more aliphatic and volatile component, measurements of volatile weight content may be a convenient predictor of biochar C longevity. These results are of practical value to those considering biochar as a tool for soil remediation, amelioration, or atmospheric C sequestration. PMID:20085259

  13. Coupled diffusion and abiotic reaction of trichlorethene in minimally disturbed rock matrices.

    PubMed

    Schaefer, Charles E; Towne, Rachael M; Lippincott, David R; Lazouskaya, Volha; Fischer, Timothy B; Bishop, Michael E; Dong, Hailiang

    2013-05-01

    Laboratory experiments were performed using minimally disturbed sedimentary rocks to measure the coupled diffusion and abiotic reaction of trichloroethene (TCE) through rock core samples. Results showed that, for all rock types studied, TCE dechlorination occurred, as evidenced by generation of acetylene, ethene, and/or ethane daughter products. First-order bulk reaction rate constants for TCE degradation ranged from 8.3 × 10(-10) to 4.2 × 10(-8) s(-1). Observed reaction rate constants showed a general correlation to the available ferrous iron content of the rock, which was determined by evaluating the spatial distribution of ferrous iron relative to that of the rock porosity. For some rock types, exposure to TCE resulted in a decrease in the effective diffusivity. Scanning electron microscopy (SEM) indicated that the decrease in the effective diffusivity was due to a decrease in the porosity that occurred after exposure to TCE. Overall, these coupled diffusion and reaction results suggest that diffusion of TCE into rock matrices as well as the rate and extent of back-diffusion may be substantially mitigated in rocks that contain ferrous iron or other naturally occurring reactive metals, thereby lessening the impacts of matrix diffusion on sustaining dissolved contaminant plumes in bedrock aquifers. PMID:23590334

  14. Coupled diffusion and abiotic reaction of trichlorethene in minimally disturbed rock matrices.

    PubMed

    Schaefer, Charles E; Towne, Rachael M; Lippincott, David R; Lazouskaya, Volha; Fischer, Timothy B; Bishop, Michael E; Dong, Hailiang

    2013-05-01

    Laboratory experiments were performed using minimally disturbed sedimentary rocks to measure the coupled diffusion and abiotic reaction of trichloroethene (TCE) through rock core samples. Results showed that, for all rock types studied, TCE dechlorination occurred, as evidenced by generation of acetylene, ethene, and/or ethane daughter products. First-order bulk reaction rate constants for TCE degradation ranged from 8.3 × 10(-10) to 4.2 × 10(-8) s(-1). Observed reaction rate constants showed a general correlation to the available ferrous iron content of the rock, which was determined by evaluating the spatial distribution of ferrous iron relative to that of the rock porosity. For some rock types, exposure to TCE resulted in a decrease in the effective diffusivity. Scanning electron microscopy (SEM) indicated that the decrease in the effective diffusivity was due to a decrease in the porosity that occurred after exposure to TCE. Overall, these coupled diffusion and reaction results suggest that diffusion of TCE into rock matrices as well as the rate and extent of back-diffusion may be substantially mitigated in rocks that contain ferrous iron or other naturally occurring reactive metals, thereby lessening the impacts of matrix diffusion on sustaining dissolved contaminant plumes in bedrock aquifers.

  15. Degradation and Fate of Carbon Tetrachloride in Unadapted Methanogenic Granular Sludge

    PubMed Central

    Van Eekert, Miriam H. A.; Schröder, Thomas J.; Stams, Alfons J. M.; Schraa, Gosse; Field, Jim A.

    1998-01-01

    The potential of granular sludge from upflow anaerobic sludge blanket (UASB) reactors for bioremediation of chlorinated pollutants was evaluated by using carbon tetrachloride (CT) as a model compound. Granular sludges cultivated in UASB reactors on methanol, a volatile fatty acid mixture, or sucrose readily degraded CT supplied at a concentration of 1,500 nmol/batch (approximately 10 μM) without any prior exposure to organohalogens. The maximum degradation rate was 1.9 μmol of CT g of volatile suspended solids−1 day−1. The main end products of CT degradation were CO2 and Cl−, and the yields of these end products were 44 and 68%, respectively, of the initial amounts of [14C]CT and CT-Cl. Lower chlorinated methanes accumulated in minor amounts temporarily. Autoclaved (dead) sludges were capable of degrading CT at rates two- to threefold lower than those for living sludges, indicating that abiotic processes (mediated by cofactors or other sludge components) played an important role in the degradation observed. Reduced components in the autoclaved sludge were vital for CT degradation. A major part (51%) of the CT was converted abiotically to CS2. The amount of CO2 produced (23%) was lower and the amount of Cl− produced (86%) was slightly higher with autoclaved sludge than with living sludge. Both living and autoclaved sludges could degrade chloroform. However, only living sludge degraded dichloromethane and methylchloride. These results indicate that reductive dehalogenation, which was mediated better by living sludge than by autoclaved sludge, is only a minor pathway for CT degradation. The main pathway involves substitutive and oxidative dechlorination reactions that lead to the formation of CO2. Granular sludge, therefore, has outstanding potential for gratuitous dechlorination of CT to safe end products. PMID:9647798

  16. Degradation and Fate of Carbon Tetrachloride in Unadapted Methanogenic Granular Sludge.

    PubMed

    Van Eekert MHA; Schröder; Stams; Schraa; Field

    1998-07-01

    The potential of granular sludge from upflow anaerobic sludge blanket (UASB) reactors for bioremediation of chlorinated pollutants was evaluated by using carbon tetrachloride (CT) as a model compound. Granular sludges cultivated in UASB reactors on methanol, a volatile fatty acid mixture, or sucrose readily degraded CT supplied at a concentration of 1,500 nmol/batch (approximately 10 µM) without any prior exposure to organohalogens. The maximum degradation rate was 1.9 µmol of CT g of volatile suspended solids-1 day-1. The main end products of CT degradation were CO2 and Cl-, and the yields of these end products were 44 and 68%, respectively, of the initial amounts of [14C]CT and CT-Cl. Lower chlorinated methanes accumulated in minor amounts temporarily. Autoclaved (dead) sludges were capable of degrading CT at rates two- to threefold lower than those for living sludges, indicating that abiotic processes (mediated by cofactors or other sludge components) played an important role in the degradation observed. Reduced components in the autoclaved sludge were vital for CT degradation. A major part (51%) of the CT was converted abiotically to CS2. The amount of CO2 produced (23%) was lower and the amount of Cl- produced (86%) was slightly higher with autoclaved sludge than with living sludge. Both living and autoclaved sludges could degrade chloroform. However, only living sludge degraded dichloromethane and methylchloride. These results indicate that reductive dehalogenation, which was mediated better by living sludge than by autoclaved sludge, is only a minor pathway for CT degradation. The main pathway involves substitutive and oxidative dechlorination reactions that lead to the formation of CO2. Granular sludge, therefore, has outstanding potential for gratuitous dechlorination of CT to safe end products.

  17. Degradation and fate of carbon tetrachloride in unadapted methanogenic granular sludge

    SciTech Connect

    Van Eekert, M.H.A.; Schroeder, T.J.; Stams, A.J.M.; Schraa, G.; Field, J.A.

    1998-07-01

    The potential of granular sludge from upflow anaerobic sludge blanket (UASB) reactors for bioremediation of chlorinated pollutants was evaluated by using carbon tetrachloride (CT) as a model compound. Granular sludges cultivated in UASB reactors on methanol, a volatile fatty acid mixture, or sucrose readily degraded CT supplied at a concentration of 1,500 nmol/batch without any prior exposure to organohalogens. The maximum degradation rate was 1.9 {micro}mol of CT g of volatile suspended solids{sup {minus}1} day{sup {minus}1}. The main end products of CT degradation were CO{sub 2} and Cl{sup {minus}}, and the yields of these end products were 44 and 68%, respectively, of the initial amounts of [{sup 14}C]CT and CT-Cl. Lower chlorinated methanes accumulated in minor amounts temporarily. Autoclaved (dead) sludges were capable of degrading CT at rates two- to threefold lower than those for living sludges, indicating that abiotic processes played an important role in the degradation observed. Reduced components in the autoclaved sludge were vital for CT degradation. A major part (51%) of the CT was converted abiotically to CS{sub 2}. The amount of CO{sub 2} produced was lower and the amount of Cl{sup {minus}} produced was slightly higher with autoclaved sludge than with living sludge. Both living and autoclaved sludges could degrade chloroform. However, only living sludge degraded dichloromethane and methylchloride. These results indicate that reductive dehalogenation, which was mediated better by living sludge than by autoclaved sludge, is only a minor pathway for CT degradation. The main pathway involves substitutive and oxidative dechlorination reactions that lead to the formation of CO{sub 2}. Granular sludge, therefore, has outstanding potential for gratuitous dechlorination of CT to safe end products.

  18. Degradation and Fate of Carbon Tetrachloride in Unadapted Methanogenic Granular Sludge.

    PubMed

    Van Eekert MHA; Schröder; Stams; Schraa; Field

    1998-07-01

    The potential of granular sludge from upflow anaerobic sludge blanket (UASB) reactors for bioremediation of chlorinated pollutants was evaluated by using carbon tetrachloride (CT) as a model compound. Granular sludges cultivated in UASB reactors on methanol, a volatile fatty acid mixture, or sucrose readily degraded CT supplied at a concentration of 1,500 nmol/batch (approximately 10 µM) without any prior exposure to organohalogens. The maximum degradation rate was 1.9 µmol of CT g of volatile suspended solids-1 day-1. The main end products of CT degradation were CO2 and Cl-, and the yields of these end products were 44 and 68%, respectively, of the initial amounts of [14C]CT and CT-Cl. Lower chlorinated methanes accumulated in minor amounts temporarily. Autoclaved (dead) sludges were capable of degrading CT at rates two- to threefold lower than those for living sludges, indicating that abiotic processes (mediated by cofactors or other sludge components) played an important role in the degradation observed. Reduced components in the autoclaved sludge were vital for CT degradation. A major part (51%) of the CT was converted abiotically to CS2. The amount of CO2 produced (23%) was lower and the amount of Cl- produced (86%) was slightly higher with autoclaved sludge than with living sludge. Both living and autoclaved sludges could degrade chloroform. However, only living sludge degraded dichloromethane and methylchloride. These results indicate that reductive dehalogenation, which was mediated better by living sludge than by autoclaved sludge, is only a minor pathway for CT degradation. The main pathway involves substitutive and oxidative dechlorination reactions that lead to the formation of CO2. Granular sludge, therefore, has outstanding potential for gratuitous dechlorination of CT to safe end products. PMID:9647798

  19. Effects of chemical compositions and ensiling on the biogas productivity and degradation rates of agricultural and food processing by-products.

    PubMed

    Kafle, Gopi Krishna; Kim, Sang Hun

    2013-08-01

    The objective of this study was to investigate the effects of chemical compositions and ensiling on the biogas productivity and degradation rates of agricultural and food processing by-products (AFPBPs) using the biogas potential test. The AFPBPs were classified based on their chemical compositions (i.e., carbohydrate, protein and fat contents). The biogas and methane potentials of AFPBPs were calculated to range from 450 to 777 mL/g volatile solids (VS) and 260-543 mL/g VS, respectively. AFPBPs with high fat and protein contents produced significantly higher amounts of biogas than AFPBPs with high carbohydrate and low fat contents. The degradation rate was faster for AFPBPs with high carbohydrate contents compared to AFPBPs with high protein and fat contents. The lag phase and biogas production duration were lower when using ensiled AFPBPs than when using nonsilage AFPBPs. Among the four different silages tested, two silages significantly improved biogas production compared to the nonsilage AFPBPs.

  20. Aerobic bacterial catabolism of persistent organic pollutants - potential impact of biotic and abiotic interaction.

    PubMed

    Jeon, Jong-Rok; Murugesan, Kumarasamy; Baldrian, Petr; Schmidt, Stefan; Chang, Yoon-Seok

    2016-04-01

    Several aerobic bacteria possess unique catabolic pathways enabling them to degrade persistent organic pollutants (POPs), including polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), polybrominated diphenylethers (PBDEs), and polychlorinated biphenyls (PCBs). The catabolic activity of aerobic bacteria employed for removal of POPs in the environment may be modulated by several biotic (i.e. fungi, plants, algae, earthworms, and other bacteria) and abiotic (i.e. zero-valent iron, advanced oxidation, and electricity) agents. This review describes the basic biochemistry of the aerobic bacterial catabolism of selected POPs and discusses how biotic and abiotic agents enhance or inhibit the process. Solutions allowing biotic and abiotic agents to exert physical and chemical assistance to aerobic bacterial catabolism of POPs are also discussed.

  1. Tuning the degradation rate of calcium phosphate cements by incorporating mixtures of polylactic-co-glycolic acid microspheres and glucono-delta-lactone microparticles.

    PubMed

    Sariibrahimoglu, Kemal; An, Jie; van Oirschot, Bart A J A; Nijhuis, Arnold W G; Eman, Rhandy M; Alblas, Jacqueline; Wolke, Joop G C; van den Beucken, Jeroen J J P; Leeuwenburgh, Sander C G; Jansen, John A

    2014-11-01

    Calcium phosphate cements (CPCs) are frequently used as synthetic bone graft materials in view of their excellent osteocompatibility and clinical handling behavior. Hydroxyapatite-forming CPCs, however, degrade at very low rates, thereby limiting complete bone regeneration. The current study has investigated whether degradation of apatite-forming cements can be tuned by incorporating acid-producing slow-resorbing poly(D,L-lactic-co-glycolic) acid (PLGA) porogens, fast-resorbing glucono-delta-lactone (GDL) porogens, or mixtures thereof. The physicochemical, mechanical, and degradation characteristics of these CPC formulations were systematically analyzed upon soaking in phosphate-buffered saline (PBS). In parallel, various CPC formulations were implanted intramuscularly and orthotopically on top of the transverse process of goats followed by analysis of the soft tissue response and bone ingrowth after 12 weeks. In vitro degradation of GDL was almost completed after 2 weeks, as evidenced by characterization of the release of gluconic acid, while PLGA-containing CPCs released glycolic acid throughout the entire study (12 weeks), resulting in a decrease in compression strength of CPC. Extensive in vitro degradation of the CPC matrix was observed upon simultaneous incorporation of 30% PLGA-10% GDL. Histomorphometrical evaluation of the intramuscularly implanted samples revealed that all CPCs exhibited degradation, accompanied by an increase in capsule thickness. In the in vivo goat transverse process model, incorporation of 43% PLGA, 30% PLGA-5% GDL, and 30% PLGA-10% GDL in CPC significantly increased bone formation and resulted in higher bone height compared with both 10% GDL and 20% GDL-containing CPC samples.

  2. Abiotic and biological mechanisms of nitric oxide removal from waste air in biotrickling filters.

    PubMed

    Chen, Jian-Meng; Ma, Jian-Feng

    2006-01-01

    Nitric oxide (NO) may participate in the ozone layer depletion and forming of nitric acid. Abiotic and biological mechanisms of NO removal from waste gases were studied in a biotrickling filter. The abiotic NO removal rate in the biotrickling filter was estimated by a review of the literature. The abiotic and biological removals were also verified in the biotrickling filter. The result has shown that chemical oxidation and bionitrification were both involved in the NO removal. It was found that the NO removal in high concentration (approximately 1000 ppm or higher) was in large measure the result of abiotic removal in both gas-phase and liquid-phase reactions. When NO concentration is low (less than approximately 100 ppm), bionitrification was the main process in the NO removal process in the biotrickling filter.

  3. Effects of prokaryotic diversity changes on hydrocarbon degradation rates and metal partitioning during bioremediation of contaminated anoxic marine sediments.

    PubMed

    Rocchetti, Laura; Beolchini, Francesca; Hallberg, Kevin B; Johnson, D Barrie; Dell'Anno, Antonio

    2012-08-01

    We investigated changes of prokaryotic diversity during bioremediation experiments carried out on anoxic marine sediments characterized by high hydrocarbon and metal content. Microcosms containing contaminated sediments were amended with lactose and acetate and incubated in anaerobic conditions up to 60 d at 20 or 35 °C. Microcosms displaying higher degradation efficiency of hydrocarbons were characterized by the dominance of Alphaproteobacteria and Methanosarcinales and the lack of gene sequences belonging to known hydrocarbonoclastic bacteria. Multivariate analyses support the hypothesis that Alphaproteobacteria are important for hydrocarbon degradation and highlight a potential synergistic effect of archaea and bacteria in changes of metal partitioning. Overall, these results point out that the identification of changes in the prokaryotic diversity during bioremediation of contaminated marine sediments is not only important for the improvement of bio-treatment performance towards hydrocarbons, but also for a better comprehension of changes occurring in metal partitioning which affect their mobility and toxicity.

  4. Mathematical description of the kinetics of the thermal degradation of coals over a wide range of rates of heating

    SciTech Connect

    Aksenov, L.N.; Bronshtein, A.P.; Zadorina, E.N.; Zagorets, A.M.; Makarov, G.N.; Polyakov, A.A.; Shlenskii, O.F.

    1981-01-01

    The determination of the most effective regimes for the thermal processing of solid fuels and the control of these processes requires a well-based selection of mathematical models for them. In the reported theoretical study, the question is considered of the possibility of using the traditional equations of chemical kinetics for describing the thermal degradation of the organic matter of coals. Various methods are proposed for the detemination of thermogravimetric curves. 14 refs.

  5. Synthesis and degradation rates of collagens in vivo in whole skin of rats, studied with 1802 labelling.

    PubMed Central

    Molnar, J A; Alpert, N; Burke, J F; Young, V R

    1986-01-01

    Rats of synthesis and degradation in vivo of collagens in 0.5 M-acetic acid-soluble and -insoluble extracts from skins of three growing rats were determined by using a labelling procedure involving exposure of the animals to an atmosphere of 18O2 for 36 h. For comparison, rats also received injections of [2H]proline. Serial skin biopsies were taken at frequent intervals over 392 days. Enrichment of 18O and 2H in the hydroxyproline of the collagen fractions was determined by gas chromatography-mass spectrometry. Changes in size of the soluble and insoluble collagen pools were considered in the evaluation of isotope kinetic data. The insoluble collagen fraction showed no degradation. The efflux (mean +/- S.D., expressed as mumol of hydroxyproline) from the soluble collagen pool was estimated to be 59.9 +/- 1.9 per day from the 18O data, and 25.5 +/- 7.5 per day from the 2H results. The finding indicates significant reutilization of 2H-radiolabelled proline for hydroxyproline synthesis. From these isotope data and estimates of size of the collagen pools it was determined that 55% of the collagen disappearing from the soluble pool was due to maturation into insoluble collagens and 45% of the disappearance was a result of actual degradation of soluble collagen. These results confirm the utility of 18O2 as a non-reutilizable label for studies of collagen turnover in vivo. PMID:3814092

  6. Reductive transformation of carbamazepine by abiotic and biotic processes.

    PubMed

    König, Anne; Weidauer, Cindy; Seiwert, Bettina; Reemtsma, Thorsten; Unger, Tina; Jekel, Martin

    2016-09-15

    The antiepileptic drug carbamazepine (CBZ) is ubiquitously present in the anthropogenic water cycle and is therefore of concern regarding the potable water supply. Despite of its persistent behavior in the aquatic environment, a redox dependent removal at bank filtration sites with anaerobic aquifer passage was reported repeatedly but not elucidated in detail yet. The reductive transformation of CBZ was studied, using abiotic systems (catalytic hydrogenation, electrochemistry) as well as biologically active systems (column systems, batch degradation tests). In catalytic hydrogenation CBZ is gradually hydrogenated and nine transformation products (TPs) were detected by liquid chromatography high-resolution mass spectrometry. 10,11-Dihydro-CBZ ((2H)-CBZ) was the major stable product in these abiotic, surface catalyzed reduction processes and turned out to be not a precursor of the more hydrogenated TPs. In the biotic reduction processes the formation of (2H)-CBZ alone could not explain the observed CBZ decline. There, also traces of (6H)-CBZ and (8H)-CBZ were formed by microbes under anaerobic conditions and four phase-II metabolites of reduced CBZ could be detected and tentatively identified. Thus, the spectrum of reduction products of CBZ is more diverse than previously thought. In environmental samples CBZ removal along an anaerobic soil passage was confirmed and (2H)-CBZ was determined at one of the sites.

  7. Determining Degradation and Synthesis Rates of Arabidopsis Proteins Using the Kinetics of Progressive 15N Labeling of Two-dimensional Gel-separated Protein Spots*

    PubMed Central

    Li, Lei; Nelson, Clark J.; Solheim, Cory; Whelan, James; Millar, A. Harvey

    2012-01-01

    The growth and development of plant tissues is associated with an ordered succession of cellular processes that are reflected in the appearance and disappearance of proteins. The control of the kinetics of protein turnover is central to how plants can rapidly and specifically alter protein abundance and thus molecular function in response to environmental or developmental cues. However, the processes of turnover are largely hidden during periods of apparent steady-state protein abundance, and even when proteins accumulate it is unclear whether enhanced synthesis or decreased degradation is responsible. We have used a 15N labeling strategy with inorganic nitrogen sources coupled to a two-dimensional fluorescence difference gel electrophoresis and mass spectrometry analysis of two-dimensional IEF/SDS-PAGE gel spots to define the rate of protein synthesis (KS) and degradation (KD) of Arabidopsis cell culture proteins. Through analysis of MALDI-TOF/TOF mass spectra from 120 protein spots, we were able to quantify KS and KD for 84 proteins across six functional groups and observe over 65-fold variation in protein degradation rates. KS and KD correlate with functional roles of the proteins in the cell and the time in the cell culture cycle. This approach is based on progressive 15N labeling that is innocuous for the plant cells and, because it can be used to target analysis of proteins through the use of specific gel spots, it has broad applicability. PMID:22215636

  8. [A field study of tundra plant litter decomposition rate via mass loss and carbon dioxide emission: the role of biotic and abiotic controls, biotope, season of year, and spatial-temporal scale].

    PubMed

    Pochikalov, A V; Karelin, D V

    2014-01-01

    Although many recently published original papers and reviews deal with plant matter decomposition rates and their controls, we are still very short in understanding of these processes in boreal and high latiude plant communities, especially in permafrost areas of our planet. First and foremost, this is holds true for winter period. Here, we present the results of 2-year field observations in south taiga and south shrub tundra ecosystems in European Russia. We pioneered in simultaneous application of two independent methods: classic mass loss estimation by litter-bag technique, and direct measurement of CO2 emission (respiration) of the same litter bags with different types of dead plant matter. Such an approach let us to reconstruct intra-seasonal dynamics of decomposition rates of the main tundra litter fractions with high temporal resolution, to estimate the partial role of different seasons and defragmentation in the process of plant matter decomposition, and to determine its factors under different temporal scale.

  9. [A field study of tundra plant litter decomposition rate via mass loss and carbon dioxide emission: the role of biotic and abiotic controls, biotope, season of year, and spatial-temporal scale].

    PubMed

    Pochikalov, A V; Karelin, D V

    2014-01-01

    Although many recently published original papers and reviews deal with plant matter decomposition rates and their controls, we are still very short in understanding of these processes in boreal and high latiude plant communities, especially in permafrost areas of our planet. First and foremost, this is holds true for winter period. Here, we present the results of 2-year field observations in south taiga and south shrub tundra ecosystems in European Russia. We pioneered in simultaneous application of two independent methods: classic mass loss estimation by litter-bag technique, and direct measurement of CO2 emission (respiration) of the same litter bags with different types of dead plant matter. Such an approach let us to reconstruct intra-seasonal dynamics of decomposition rates of the main tundra litter fractions with high temporal resolution, to estimate the partial role of different seasons and defragmentation in the process of plant matter decomposition, and to determine its factors under different temporal scale. PMID:25771676

  10. Glycinebetaine and abiotic stress tolerance in plants

    PubMed Central

    Giri, Jitender

    2011-01-01

    The accumulation of osmolytes like glycinebetaine (GB) in cell is known to protect organisms against abiotic stresses via osmoregulation or osmoprotection. Transgenic plants engineered to produce GB accumulate very low concentration of GB, which might not be sufficient for osmoregulation. Therefore, other roles of GB like cellular macromolecule protection and ROS detoxification have been suggested as mechanisms responsible for abiotic stress tolerance in transgenic plants. In addition, GB influences expression of several endogenous genes in transgenic plants. The new insights gained about the mechanism of stress tolerance in GB accumulating transgenic plants are discussed. PMID:22057338

  11. Asymmetric coexistence: bidirectional abiotic and biotic effects between goose barnacles and mussels.

    PubMed

    Kawai, Takashi; Tokeshi, Mutsunori

    2006-07-01

    1. Species coexistence depends on the net effect of interacting species, representing the sum of multiple interaction components that may act simultaneously and vary independently depending on ambient environmental conditions. Consequently, for a comprehensive understanding of the compound nature of species interactions and coexistence, a mechanistic approach that allows a separate evaluation of each interaction component is required. 2. Two sessile filter-feeders, the goose barnacle Capitulum mitella and the mussel Septifer virgatus, coexist on moderately wave-exposed rocky shores in south-western Japan. In the upper intertidal, Capitulum positively influenced Septifer survivorship and growth through amelioration of thermal stress and of physical disturbance. On the other hand, these species are potential competitors as they have similar body sizes and modes of resource utilization. These opposite processes, facilitation and competition, are based on abiotic characteristics and biotic functions of the two species, respectively. 3. In order to quantify the bidirectional abiotic, biotic and net effects, a series of experimental manipulations was conducted involving the use of living neighbours with both abiotic and biotic effects, and artificial mimics to simulate abiotic effects without biotic effects. 4. Capitulum had strong positive abiotic effects on the mussel survivorship in most experimental periods, while the biotic effect was negligible or weakly negative, suggesting that the net effect of Capitulum on mussel survival was largely attributable to the abiotic effect. In contrast, a significantly negative biotic effect on the mussel growth rate was always present, though this was cancelled out by the larger, positive abiotic effect. In the case of Septifer, its abiotic and biotic effects on the survivorship of goose barnacles were negligible, while those on the growth rate showed temporal variation. 5. With respect to the relationship between species

  12. Relative contributions of bacteria and fungi to rates of degradation of lignocellulosic detritus in salt-marsh sediments. [Spartina alterniflora; Buergenerula spartinae; Phaeosphaeria typharum; Leptosphaeria obiones

    SciTech Connect

    Benner, R.; Newell, S.Y.; MacCubbin, A.E.; Hodson, R.E.

    1984-07-01

    Specifically radiolabeled (/sup 14/C-lignin)lignocellulose and (/sup 14/C-polysaccharide)lignocellulose from the salt-marsh cordgrass Spartina alterniflora were incubated with an intact salt-marsh sediment microbial assemblage, with a mixed (size-fractionated) bacterial assemblage, and with each of three marine fungi, Buergenerula spartinae, Phaeosphaeria typharum, and Leptosphaeria obiones, isolated from decaying S. alterniflora. The bacterial assemblage alone mineralized the lignin and polysaccharide components of S. alterniflora lignocellulose at approximately the same rate as did intact salt-marsh sediment inocula. The polysaccharide component was mineralized twice as fast as the lignin component; after 23 days of incubation, ca. 10% of the lignin component and 20% of the polysaccharide component of S. alterniflora lignocellulose were mineralized. Relative to the total sediment and bacterial inocula, the three species of fungi mediated only very slow mineralization of the lignin and polysaccharide components of S. alterniflora lignocellulose. Experiments with uniformly /sup 14/C-labeled S. alterniflora material indicated that the three fungi and the bacterial assemblage were capable of degrading the non-lignocellulosic fraction of S. alterniflora material, but only the bacterial assemblage significantly degraded the lignocellulosic fraction. Our results suggest that bacteria are the predominant degraders of lignocellulosic detritus in salt-march sediments.

  13. Sorption and oxic degradation of the explosive CL-20 during transport in subsurface sediments.

    PubMed

    Szecsody, J E; Girvin, D C; Devary, B J; Campbell, J A

    2004-08-01

    The abiotic sorption and oxic degradation processes that control the fate of the explosive CL-20, Hexanitrohexaazaisowurtzitane, in the subsurface environment were investigated to determine the potential for vadose and groundwater contamination. Sorption of aqueous CL-20 is relatively small (K(d) = 0.02-3.83 cm3 g(-1) for 7 sediments and 12 minerals), which results in only slight retardation relative to water movement. Thus, CL-20 could move quickly through unsaturated and saturated sediments of comparable composition to groundwater, similar to the subsurface behavior of RDX. CL-20 sorption was mainly to mineral surfaces of the sediments, and the resulting isotherm was nonlinear. CL-20 abiotically degrades in oxic environments at slow rates (i.e., 10s to 100s of hours) with a wide variety of minerals, but at fast rates (i.e., minutes) in the presence of 2:1 phyllosilicate clays (hectorite, montmorillonite, nontronite), micas (biotite, illite), and specific oxides (MnO2 and the ferrous-ferric iron oxide magnetite). High concentrations of surface ferrous iron in a dithionite reduced sediment degraded CL-20 the fastest (half-life < 0.05 h), but 2:1 clays containing no structural or adsorbed ferrous iron (hectorite) could also quickly degrade CL-20 (half-life < 0.2 h). CL-20 degradation rates were slower in natural sediments (half-life 3-800 h) compared to minerals. Sediments with slow degradation rates and small sorption would exhibit the highest potential for deep subsurface migration. Products of CL-20 oxic degradation included three high molecular weight compounds and anions (nitrite and formate). The 2-3.5 moles of nitrite produced suggest CL-20 nitro-groups are degraded, and the amount of formate produced (0.2-1.2 moles) suggests the CL-20 cage structure is broken in some sediments. Identification of further degradation products and CL-20 mineralization rates is needed to fully assess the impact of these CL-20 transformation rates on the risk of CL-20 (and

  14. Sorption and oxic degradation of the explosive CL-20 during transport in subsurface sediments.

    PubMed

    Szecsody, J E; Girvin, D C; Devary, B J; Campbell, J A

    2004-08-01

    The abiotic sorption and oxic degradation processes that control the fate of the explosive CL-20, Hexanitrohexaazaisowurtzitane, in the subsurface environment were investigated to determine the potential for vadose and groundwater contamination. Sorption of aqueous CL-20 is relatively small (K(d) = 0.02-3.83 cm3 g(-1) for 7 sediments and 12 minerals), which results in only slight retardation relative to water movement. Thus, CL-20 could move quickly through unsaturated and saturated sediments of comparable composition to groundwater, similar to the subsurface behavior of RDX. CL-20 sorption was mainly to mineral surfaces of the sediments, and the resulting isotherm was nonlinear. CL-20 abiotically degrades in oxic environments at slow rates (i.e., 10s to 100s of hours) with a wide variety of minerals, but at fast rates (i.e., minutes) in the presence of 2:1 phyllosilicate clays (hectorite, montmorillonite, nontronite), micas (biotite, illite), and specific oxides (MnO2 and the ferrous-ferric iron oxide magnetite). High concentrations of surface ferrous iron in a dithionite reduced sediment degraded CL-20 the fastest (half-life < 0.05 h), but 2:1 clays containing no structural or adsorbed ferrous iron (hectorite) could also quickly degrade CL-20 (half-life < 0.2 h). CL-20 degradation rates were slower in natural sediments (half-life 3-800 h) compared to minerals. Sediments with slow degradation rates and small sorption would exhibit the highest potential for deep subsurface migration. Products of CL-20 oxic degradation included three high molecular weight compounds and anions (nitrite and formate). The 2-3.5 moles of nitrite produced suggest CL-20 nitro-groups are degraded, and the amount of formate produced (0.2-1.2 moles) suggests the CL-20 cage structure is broken in some sediments. Identification of further degradation products and CL-20 mineralization rates is needed to fully assess the impact of these CL-20 transformation rates on the risk of CL-20 (and

  15. The effect of the potential fuel additive isobutanol on benzene, toluene, ethylbenzene, and p-xylene degradation in aerobic soil microcosms.

    PubMed

    Ding, Liang; Cupples, Alison M

    2015-01-01

    Isobutanol is being considered as a fuel additive; however, the effect of this chemical on gasoline degradation (following a spill) has yet to be fully explored. To address this, the current study investigated the effect of isobutanol on benzene, toluene, ethylbenzene and p-xylene (BTEX) degradation in 14 sets of experiments in saturated soils. This involved four hydrocarbons for three soils (12 experiments) and two extra experiments with a lower level of isobutanol (for toluene only). Each soil and hydrocarbon combination involved four abiotic control microcosms and 12 sample microcosms (six with and six without isobutanol). The time for complete degradation of each hydrocarbon varied between treatments. Both toluene and ethylbenzene were rapidly degraded (5-13 days for toluene and 3-13 days for ethylbenzene). In contrast, the time for complete degradation for benzene ranged from 5 to 47 days. The hydrocarbon p-xylene was the most recalcitrant chemical (time for removal ranged from 14 to 86 days) and, in several microcosms, no p-xylene degradation was observed. The effect of isobutanol on hydrocarbon degradation was determined by comparing degradation lag times with and without isobutanol addition. From the 14 treatments, isobutanol only affected degradation lag times in three cases. In two cases (benzene and p-xylene), an enhancement of degradation (reduced lag times) was observed in the presence of isobutanol. In contrast, toluene degradation in one soil was inhibited (increased lag time). These results indicate that co-contamination with isobutanol should not inhibit aerobic BTEX degradation rates.

  16. Abiotic ammonification and gross ammonium photoproduction in the upwelling system off central Chile (36° S)

    NASA Astrophysics Data System (ADS)

    Rain-Franco, A.; Muñoz, C.; Fernandez, C.

    2012-12-01

    We investigated the production of ammonium via photodegradation of dissolved organic matter (DOM) in the coastal upwelling system off central Chile (36° S). Photoammonification experiments were carried out using exudates obtained from representative diatom species (Chaetoceros muelleri and Thalassiosira minuscule) and natural marine DOM under simulated solar radiation conditions. Additionally, we evaluated the use of photoproduced ammonium by natural microbial communities and separated ammonium oxidizing archaea and bacteria by using GC-7 as an inhibitor of the archaeal community. We found photoammonification operating at two levels: via the transformation of DOM by UV radiation (abiotic ammonification) and via the simultaneous occurrence of abiotic phototransformation and biological remineralization of DOM into NH4+ (referred as gross photoproduction of NH4+). The maximum rates of abiotic ammonification reached 0.057 μmol L-1 h-1, whereas maximum rates of gross photoproduction reached 0.746 μmol L-1 h-1. Our results also suggest that ammonium oxidizing archaea could dominate the biotic remineralization induced by photodegradation of organic matter and consequently play an important role in the local N cycle. Abiotic ammonium photoproduction in coastal upwelling systems could support between 7 and 50% of the spring-summer phytoplankton NH4+ demand. Surprisingly, gross ammonium photoproduction (remineralization induced by abiotic ammonification) might support 50 to 180% of spring-summer phytoplankton NH4+ assimilation.

  17. Different rates of synthesis and degradation of two chloroplastic ammonium-inducible NADP-specific glutamate dehydrogenase isoenzymes during induction and deinduction in Chlorella sorokiniana cells

    SciTech Connect

    Bascomb, N.F.; Prunkard, D.E.; Schmidt, R.R.

    1987-01-01

    The kinetics of accumulation (per milliliter of culture) of the ..cap alpha..- and ..beta..-subunits, associated with chloroplast-localized ammonium inducible nicotinamide adenine dinucleotide phosphate-specific glutamate dehydrogenase (NADP-GDH) isoenzymes, were measured during a 3 hour induction of synchronized daughter cells of Chlorella sorokiniana in 29 millimolar ammonium medium under photoautotrophic conditions. The ..beta..-subunit holoenzyme(s) accumulated in a linear manner for 3 hours without an apparent induction lag. A 40 minute induction lag preceded the accumulation of the ..cap alpha..-subunit holoenzyme(s). After 120 minutes, the ..cap alpha..-subunit ceased accumulating and thereafter remained at a constant level. From pulse-chase experiments, using /sup 35/SO/sub 4/ and immunochemical procedures, the rate of synthesis of the ..cap alpha..-subunit was shown to be greater than the ..beta..-subunit during the first 80 minutes of induction. The ..cap alpha..- and ..beta..-subunits had different rates of degradation during the induction period (t/sub 1/2/ = 50 versus 150 minutes, respectively) and during the deinduction period (t/sub 1/2/ = 5 versus 13.5 minutes) after removal of ammonium from the culture. During deinduction, total NADP-GDH activity decreased with a half-time of 9 minutes. Cycloheximide completely inhibited the synthesis and degradation of both subunits. A model for regulation of expression of the NADP-GDH gene was proposed.

  18. Pre-treatment evaluation of 5-fluorouracil degradation rate: association of poor and ultra-rapid metabolism with severe toxicity in a colorectal cancer patients cohort

    PubMed Central

    Mazzuca, Federica; Borro, Marina; Botticelli, Andrea; Mazzotti, Eva; Marchetti, Luca; Gentile, Giovanna; La Torre, Marco; Lionetto, Luana; Simmaco, Maurizio; Marchetti, Paolo

    2016-01-01

    Despite the wide use of 5-fluorouracil-based chemotherapy, development of severe toxicity that follow the treatment is not a rare event. The efforts to establish pretreatment tools for toxicity prediction, led to the development of various pharmacogenetic and biochemical assays, mainly targeted to assess the activity level of dihydropyrimidine dehydrogenase (DPD), the main metabolizing enzyme for 5-fluorouracil. Using peripheral blood mononuclear cells, we developed a biochemical assay, that is not limited to the evaluation of DPD activity, but determines the net result of all the enzymatic transformation of 5FU, in terms of the amount of drug consumed by the cells in a time unit. This parameter, named 5-fluorauracil degradation rate, presents a normal distribution inside the population and highlight the presence of an ultra-rapid metabolizers class of subjects, besides the expected poor metabolizers class. Here we will show that, in a colorectal cancer patient cohort, both poor and ultra-rapid metabolizers have significantly increased the risk of developing severe toxicity (grade3–4). Patient stratification depending on the individual 5-fluorouracil degradation rate allows to identify a 10% of the overall population at high risk of developing severe toxicity, compared to the 1.3% (as assessed in the Italian population) identified by the most commonly employed pharmacogenetic test, including the DPD polymorphism IVS14+1G>A. PMID:26967565

  19. Photocatalytic degradation of 2-chlorophenol in TiO{sub 2} aqueous suspension: Modeling of reaction rate

    SciTech Connect

    Rideh, L.; Wehrer, A.; Ronze, D.; Zoulalian, A.

    1997-11-01

    The photoassisted oxidation of a dilute aqueous solution of 2-chlorophenol (2-CP) was investigated, over a heterogeneous catalyst of TiO{sub 2}, in an annular photocatalytic reactor. The effects of some physical and chemical parameters such as 2-CP concentration, catalyst concentration, dissolved oxygen concentration, pH, temperature, and absorbed light intensity were studied in order to optimize the process. The experiment, carried out in the presence of electron scavengers such as metallic ions, shows that the reaction rate is significantly higher than that obtained when oxygen is used alone. The results obtained in this study have led the authors, on the basis of experimentally determined adsorption, to propose a kinetic approach in which the rate-determining step is the reaction of OH{sup {sm_bullet}} radicals, identified by a spin trapping technique (EPR), with adsorbed 2-CP. A kinetic model proposed was based on a Langmuir type adsorption involving a competition between solvent and substrate with a supplementary assumption that the further oxygen adsorption sites were different from those of 2-CP and the oxygen adsorption obeys the Freundlich isotherm. This model is able to justify the observed dependence of the pollutant disappearance rate on dissolved 2-CP concentration, oxygen partial pressure, and absorbed light intensity.

  20. Determination of degradation rates of organic substances in the unsaturated soil zone depending on the grain size fractions of various soil types

    NASA Astrophysics Data System (ADS)

    Fichtner, Thomas; Stefan, Catalin; Goersmeyer, Nora

    2015-04-01

    Rate and extent of the biological degradation of organic substances during transport through the unsaturated soil zone is decisively influenced by the chemical and physical properties of the pollutants such as water solubility, toxicity and molecular structure. Furthermore microbial degradation processes are also influenced by soil-specific properties. An important parameter is the soil grain size distribution on which the pore volume and the pore size depends. Changes lead to changes in air and water circulation as well as preferred flow paths. Transport capacity of water inclusive nutrients is lower in existing bad-drainable fine pores in soils with small grain size fractions than in well-drainable coarse pores in a soil with bigger grain size fractions. Because fine pores are saturated with water for a longer time than the coarse pores and oxygen diffusion in water is ten thousand times slower than in air, oxygen is replenished much slower in soils with small grain size fractions. As a result life and growth conditions of the microorganisms are negatively affected. This leads to less biological activity, restricted degradation/mineralization of pollutants or altered microbial processes. The aim of conducted laboratory column experiments was to study the correlation between the grain size fractions respectively pore sizes, the oxygen content and the biodegradation rate of infiltrated organic substances. Therefore two columns (active + sterile control) were filled with different grain size fractions (0,063-0,125 mm, 0,2-0,63 mm and 1-2 mm) of soils. The sterile soil was inoculated with a defined amount of a special bacteria culture (sphingobium yanoikuae). A solution with organic substances glucose, oxalic acid, sinaphylic alcohol and nutrients was infiltrated from the top in intervals. The degradation of organic substances was controlled by the measurement of dissolved organic carbon in the in- and outflow of the column. The control of different pore volumes

  1. Continuous Open Flow-Through System as a Model for Oil Degradation in the Arctic Ocean

    PubMed Central

    Horowitz, Amikam; Atlas, Ronald M.

    1977-01-01

    A continuous flow-through system incubated in situ was used to model oil biodegradation in Arctic coastal waters. High numbers of oil-degrading microorganisms were found in the Arctic coastal waters examined in this study. The microbial community underlying oil slicks increased and showed a population shift to a greater percentage of hydrocarbon-utilizing microorganisms. Microbial populations and oil biodegradation were increased by the addition of nitrogen and phosphorus. Both abiotic and biodegradative losses were lower than expected, perhaps due to the unusually harsh, ice-dominated Arctic summer, during which these tests were conducted. Chromatographic and spectrometric analyses showed that residual oils contained similar percentages of individual components and classes of hydrocarbons, regardless of the amount of degradation, indicating that most components of the oil were being degraded at similar rates. PMID:16345221

  2. Abiotic immobilization/detoxification of recalcitrant organics

    SciTech Connect

    Whelan, G. ); Sims, R.C. )

    1990-11-01

    In contrast to many remedial techniques that simply transfer hazardous wastes from one part of the environment to another (e.g., off-site landfilling), in situ restoration may offer a safe and cost-effective solution through transformation (to less hazardous products) or destruction of recalcitrant organics. Currently, the US Environmental Protection Agency and US Department of Energy are encouraging research that addresses the development of innovative alternatives for hazardous-waste control. One such alternative is biotic and abiotic immobilization and detoxification of polynuclear aromatic hydrocarbons (PNAs) as associated with the soil humification process. This paper discusses (1) the possibility of using abiotic catalysis (with manganese dioxide) to polymerize organic substances; (2) aspects associated with the thermodynamics and kinetics of the process, and (3) a simple model upon which analyses may be based. 36 refs., 7 figs., 3 tabs.

  3. Status Report - Softwood Fiberboard Properties And Degradation Rates For Storage Of The 9975 Shipping Package In KAC

    SciTech Connect

    Daugherty, W.

    2015-12-22

    Thermal, mechanical and physical properties have been measured on softwood fiberboard samples following accelerated aging for up to approximately 7 years. The aging environments have included elevated temperature < 250 ºF (the maximum allowed service temperature for fiberboard in 9975 packages) and elevated humidity. The results from this testing have been analyzed, and preliminary aging models fit to the data. Correlations relating several properties (thermal conductivity, energy absorption, weight, dimensions and density) to their rate of change in potential storage environments have been developed. Combined with acceptance criteria and an estimate of the actual conditions the fiberboard experiences in KAC, these models allow development of service life predictions.

  4. Status Report - Cane Fiberboard Properties And Degradation Rates For Storage Of The 9975 Shipping Package In KAC

    SciTech Connect

    Daugherty, W.

    2015-12-22

    Thermal, mechanical and physical properties have been measured on cane fiberboard samples following accelerated aging for up to approximately 10 years. The aging environments have included elevated temperature < 250 ºF (the maximum allowed service temperature for fiberboard in 9975 packages) and elevated humidity. The results from this testing have been analyzed, and aging models fit to the data. Correlations relating several properties (thermal conductivity, energy absorption, weight, dimensions and density) to their rate of change in potential storage environments have been developed. Combined with an estimate of the actual conditions the fiberboard experiences in KAC, these models allow development of service life predictions.

  5. Linking charring temperature and wood source to the structure and degradation rates of pyrogenic organic matter in soil

    NASA Astrophysics Data System (ADS)

    Hatton, P.; Dastmalchi, K.; Chatterjee, S.; Auclerc, A.; Le Moine, J.; Filley, T. R.; Nadelhoffer, K. J.; Stark, R.; Bird, J. A.

    2013-12-01

    Fire is a major controller of forest C cycling by releasing CO2 to the atmosphere and by contributing pyrogenic organic matter (PyOM or biochar) to soils. Recent studies have shown that much of fire-derived PyOM may turn over in soils at century time scales. Two likely controllers of the chemical structure of PyOM and its resulting decay rate are pyrolysis temperature and the source biomass. However, we know little of how these two factors determine the chemical structure and bioreactivity of the resulting PyOM. To gain further insight into controls on the structure and fate of PyOM, we examined two species of dual-labeled (13C/15N), wood-based PyOM (Pinus banksiana and Acer rubrum) made with 5 pyrolysis temperatures (0, 200, 300, 450, 600 °C) using solid state nuclear magnetic resonance, isotopic and elemental composition (C, H, O, and N), and differential scanning calorimetry. In addition, we are investigating the fate of a subset of these PyOM materials applied to forest soils in a long-term field study located at the University of Michigan Biological Station in Pellston, MI, USA. We will present data of the loss of PyOM C as CO2 and DOC during the first year in situ. We found complementary lines of evidence for a facile removal of cellulose and hemicellulose and a progressive alteration of nitrogenous moieties across the charring gradient for wood-derived PyOM of both tree species as temperature was increased from 0 to 600 °C. Our NMR results show a significant species by pyrolysis temperature interaction on PyOM chemical structure with considerably less condensation for Acer- than Pinus-derived PyOM at 300 °C. In the first year after addition to soil, Acer-derived PyOM pyrolyzed at 450 °C mineralized faster than Pinus-derived PyOM pyrolyzed at 450 °C. Increasing pyrolysis temperatures for Pinus-derived PyOM also resulted in slower CO2 mineralization rates during the first year of field decay. These results relate pyrolysis temperature to the resulting Py

  6. Relevance of proteomic investigations in plant abiotic stress physiology.

    PubMed

    Hakeem, Khalid Rehman; Chandna, Ruby; Ahmad, Parvaiz; Iqbal, Muhammad; Ozturk, Munir

    2012-11-01

    Plant growth and productivity are influenced by various abiotic stresses. Stressful conditions may lead to delays in seed germination, reduced seedling growth, and decreased crop yields. Plants respond to environmental stresses via differential expression of a subset of genes, which results in changes in omic compositions, such as transcriptome, proteome, and metabolome. Since the development of modern biotechnology, various research projects have been carried out to understand the approaches that plants have adopted to overcome environmental stresses. Advancements in omics have made functional genomics easy to understand. Since the fundamentals of classical genomics were unable to clear up confusion related to the functional aspects of the metabolic processes taking place during stress conditions, new fields have been designed and are known as omics. Proteomics, the analysis of genomic complements of proteins, has caused a flurry of activity in the past few years. It defines protein functions in cells and explains how those protein functions respond to changing environmental conditions. The ability of crop plants to cope up with the variety of environmental stresses depends on a number of changes in their proteins, which may be up- and downregulated as a result of altered gene expression. Most of these molecules display an essential function, either in the regulation of the response (e.g., components of the signal transduction pathway), or in the adaptation process (e.g., enzymes involved in stress repair and degradation of damaged cellular contents), allowing plants to recover and survive the stress. Many of these proteins are constitutively expressed under normal conditions, but when under stress, they undergo a modification of their expression levels. This review will explain how proteomics can help in elucidating important plant processes in response to various abiotic stresses.

  7. Abiotic Formation of Methyl Halides in the Terrestrial Environment

    NASA Astrophysics Data System (ADS)

    Keppler, F.

    2011-12-01

    Methyl chloride and methyl bromide are the most abundant chlorine and bromine containing organic compounds in the atmosphere. Since both compounds have relatively long tropospheric lifetimes they can effectively transport halogen atoms from the Earth's surface, where they are released, to the stratosphere and following photolytic oxidation form reactive halogen gases that lead to the chemical destruction of ozone. Methyl chloride and methyl bromide account for more than 20% of the ozone-depleting halogens delivered to the stratosphere and are predicted to grow in importance as the chlorine contribution to the stratosphere from anthropogenic CFCs decline. Today methyl chloride and methyl bromide originate mainly from natural sources with only a minor fraction considered to be of anthropogenic origin. However, until as recently as 2000 most of the methyl chloride and methyl bromide input to the atmosphere was considered to originate from the oceans, but investigations in recent years have clearly demonstrated that terrestrial sources such as biomass burning, wood-rotting fungi, coastal salt marshes, tropical vegetation and organic matter degradation must dominate the atmospheric budgets of these trace gases. However, many uncertainties still exist regarding strengths of both sources and sinks, as well as the mechanisms of formation of these naturally occurring halogenated gases. A better understanding of the atmospheric budget of both methyl chloride and methyl bromide is therefore required for reliable prediction of future ozone depletion. Biotic and abiotic methylation processes of chloride and bromide ion are considered to be the dominant pathways of formation of these methyl halides in nature. In this presentation I will focus on abiotic formation processes in the terrestrial environment and the potential parameters that control their emissions. Recent advances in our understanding of the abiotic formation pathway of methyl halides will be discussed. This will

  8. A poly(glycerol sebacate)-coated mesoporous bioactive glass scaffold with adjustable mechanical strength, degradation rate, controlled-release and cell behavior for bone tissue engineering.

    PubMed

    Lin, Dan; Yang, Kai; Tang, Wei; Liu, Yutong; Yuan, Yuan; Liu, Changsheng

    2015-07-01

    Various requirements in the field of tissue engineering have motivated the development of three-dimensional scaffold with adjustable physicochemical properties and biological functions. A series of multiparameter-adjustable mesoporous bioactive glass (MBG) scaffolds with uncrosslinked poly(glycerol sebacate) (PGS) coating was prepared in this article. MBG scaffold was prepared by a modified F127/PU co-templating process and then PGS was coated by a simple adsorption and lyophilization process. Through controlling macropore parameters and PGS coating amount, the mechanical strength, degradation rate, controlled-release and cell behavior of the composite scaffold could be modulated in a wide range. PGS coating successfully endowed MBG scaffold with improved toughness and adjustable mechanical strength covering the bearing range of trabecular bone (2-12MPa). Multilevel degradation rate of the scaffold and controlled-release rate of protein from mesopore could be achieved, with little impact on the protein activity owing to an "ultralow-solvent" coating and "nano-cavity entrapment" immobilization method. In vitro studies indicated that PGS coating promoted cell attachment and proliferation in a dose-dependent manner, without affecting the osteogenic induction capacity of MBG substrate. These results first provide strong evidence that uncrosslinked PGS might also yield extraordinary achievements in traditional MBG scaffold. With the multiparameter adjustability, the composite MBG/PGS scaffolds would have a hopeful prospect in bone tissue engineering. The design considerations and coating method of this study can also be extended to other ceramic-based artificial scaffolds and are expected to provide new thoughts on development of future tissue engineering materials.

  9. Hydroxyl-radical-induced degradative oxidation of beta-lactam antibiotics in water: absolute rate constant measurements.

    PubMed

    Dail, Michelle K; Mezyk, Stephen P

    2010-08-19

    The beta-lactam antibiotics are some of the most prevalent pharmaceutical contaminants currently being detected in aquatic environments. Because the presence of any trace level of antibiotic in water may adversely affect aquatic ecosystems and contribute to the production of antibiotic-resistant bacteria, active removal by additional water treatments, such as using advanced oxidation and reduction processes (AO/RPs), may be required. However, to ensure that any AOP treatment process occurs efficiently and quantitatively, a full understanding of the kinetics and mechanisms of all of the chemical reactions involved under the conditions of use is necessary. In this study, we report on our kinetic measurements for the hydroxyl-radical-induced oxidation of 11 beta-lactam antibiotics obtained using electron pulse radiolysis techniques. For the 5-member ring species, an average reaction rate constant of (7.9 +/- 0.8) x 10(9) M(-1) s(-1) was obtained, slightly faster than for the analogous 6-member ring containing antibiotics, (6.6 +/- 1.2) x 10(9) M(-1) s(-1). The consistency of these rate constants for each group infers a common reaction mechanism, consisting of the partitioning of the hydroxyl radical between addition to peripheral aromatic rings and reaction with the central double-ring core of these antibiotics.

  10. Effect of insulin on the rates of synthesis and degradation of GLUT1 and GLUT4 glucose transporters in 3T3-L1 adipocytes.

    PubMed Central

    Sargeant, R J; Pâquet, M R

    1993-01-01

    The effect of continuous insulin stimulation on the rates of turnover and on the total cellular contents of the glucose-transporter proteins GLUT1 and GLUT4 in 3T3-L1 adipocytes was investigated. Pulse-and-chase studies with [35S]methionine followed by immunoprecipitation of GLUT1 and GLUT4 with isoform-specific antibodies revealed the half-lives of these proteins to be 19 h and 50 h respectively. Inclusion of 100 nM insulin in the chase medium resulted in a decrease in the half-lives of both proteins to about 15.5 h. This effect of insulin was specific for the glucose-transporter proteins, as the average half-life of all proteins was found to be 55 h both with and without insulin stimulation. The effect of insulin on the rate of synthesis of the glucose transporters was determined by the rate of incorporation of [35S]methionine. After 24 h of insulin treatment, the rate of synthesis of GLUT1 and GLUT4 were elevated over control levels by 3.5-fold and 2-fold respectively. After 72 h of treatment under the same conditions, the rate of synthesis of GLUT1 remained elevated by 2.5-fold, whereas the GLUT4 synthesis rate was not different from control levels. Western-blot analysis of total cellular membranes revealed a 4.5-fold increase in total cellular GLUT1 content and a 50% decrease in total cellular GLUT4 after 72 h of insulin treatment. These observations suggest that the rates of synthesis and degradation of GLUT1 and GLUT4 in 3T3-L1 adipocytes are regulated independently and that these cells respond to prolonged insulin treatment by altering the metabolism of GLUT1 and GLUT4 proteins in a specific manner. Images Figure 1 Figure 3 Figure 4 Figure 5 PMID:8457217

  11. Changes in fermentation and biohydrogenation intermediates in continuous cultures fed low and high levels of fat with increasing rates of starch degradability.

    PubMed

    Lascano, G J; Alende, M; Koch, L E; Jenkins, T C

    2016-08-01

    Excessive levels of starch in diets for lactating dairy cattle is a known risk factor for milk fat depression, but little is known about how this risk is affected by differences in rates of starch degradability (Kd) in the rumen. The objective of this study was to compare accumulation of biohydrogenation intermediates causing milk fat depression, including conjugated linoleic acid (CLA), when corn with low or high Kd were fed to continuous cultures. Diets contained (dry matter basis) 50% forage (alfalfa pellets and grass hay) and 50% concentrate, with either no added fat (LF) or 3.3% added soybean oil (HF). Within both the LF and HF diets, 3 starch degradability treatments were obtained by varying the ratio of processed (heat and pressure treatments) and unprocessed corn sources, giving a total of 6 dietary treatments. Each diet was fed to dual-flow continuous fermenters 3 times a day at 0800, 1600, and 2400h. Diets were fed for four 10-d periods, with 7d for adaptation and 3d for sample collection. Orthogonal contrasts were used in the GLIMMIX procedure of SAS to test the effects of fat, starch degradability, and their interaction. Acetate and acetate:propionate were lower for HF than for LF but daily production of trans-10 18:1 and trans-10,cis-12 CLA were higher for HF than for LF. Increasing starch Kd from low to high increased culture pH, acetate, and valerate but decreased butyrate and isobutyrate. Changes in biohydrogenation intermediates (expressed as % of total isomers) from low to high starch Kd included reductions in trans-11 18:1 and cis-9,trans-11 CLA but increases in trans-10 18:1 and trans-10,cis-12 CLA. The results show that increasing the starch Kd in continuous cultures while holding starch level constant causes elevation of biohydrogenation intermediates linked to milk fat depression. PMID:27265165

  12. Changes in fermentation and biohydrogenation intermediates in continuous cultures fed low and high levels of fat with increasing rates of starch degradability.

    PubMed

    Lascano, G J; Alende, M; Koch, L E; Jenkins, T C

    2016-08-01

    Excessive levels of starch in diets for lactating dairy cattle is a known risk factor for milk fat depression, but little is known about how this risk is affected by differences in rates of starch degradability (Kd) in the rumen. The objective of this study was to compare accumulation of biohydrogenation intermediates causing milk fat depression, including conjugated linoleic acid (CLA), when corn with low or high Kd were fed to continuous cultures. Diets contained (dry matter basis) 50% forage (alfalfa pellets and grass hay) and 50% concentrate, with either no added fat (LF) or 3.3% added soybean oil (HF). Within both the LF and HF diets, 3 starch degradability treatments were obtained by varying the ratio of processed (heat and pressure treatments) and unprocessed corn sources, giving a total of 6 dietary treatments. Each diet was fed to dual-flow continuous fermenters 3 times a day at 0800, 1600, and 2400h. Diets were fed for four 10-d periods, with 7d for adaptation and 3d for sample collection. Orthogonal contrasts were used in the GLIMMIX procedure of SAS to test the effects of fat, starch degradability, and their interaction. Acetate and acetate:propionate were lower for HF than for LF but daily production of trans-10 18:1 and trans-10,cis-12 CLA were higher for HF than for LF. Increasing starch Kd from low to high increased culture pH, acetate, and valerate but decreased butyrate and isobutyrate. Changes in biohydrogenation intermediates (expressed as % of total isomers) from low to high starch Kd included reductions in trans-11 18:1 and cis-9,trans-11 CLA but increases in trans-10 18:1 and trans-10,cis-12 CLA. The results show that increasing the starch Kd in continuous cultures while holding starch level constant causes elevation of biohydrogenation intermediates linked to milk fat depression.

  13. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. II. In vitro and in vivo biological evaluation.

    PubMed

    Fu, Qiang; Rahaman, Mohamed N; Bal, B Sonny; Bonewald, Lynda F; Kuroki, Keiichi; Brown, Roger F

    2010-10-01

    In Part I, the in vitro degradation of bioactivAR52115e glass scaffolds with a microstructure similar to that of human trabecular bone, but with three different compositions, was investigated as a function of immersion time in a simulated body fluid. The glasses consisted of a silicate (13-93) composition, a borosilicate composition (designated 13-93B1), and a borate composition (13-93B3), in which one-third or all of the SiO2 content of 13-93 was replaced by B2O3, respectively. This work is an extension of Part I, to investigate the effect of the glass composition on the in vitro response of osteogenic MLO-A5 cells to these scaffolds, and on the ability of the scaffolds to support tissue infiltration in a rat subcutaneous implantation model. The results of assays for cell viability and alkaline phosphatase activity showed that the slower degrading silicate 13-93 and borosilicate 13-93B1 scaffolds were far better than the borate 13-93B3 scaffolds in supporting cell proliferation and function. However, all three groups of scaffolds showed the ability to support tissue infiltration in vivo after implantation for 6 weeks. The results indicate that the required bioactivity and degradation rate may be achieved by substituting an appropriate amount of SiO2 in 13-93 glass with B2O3, and that these trabecular glass scaffolds could serve as substrates for the repair and regeneration of contained bone defects.

  14. Linear free energy relationships for the biotic and abiotic reduction of nitroaromatic compounds.

    PubMed

    Luan, Fubo; Gorski, Christopher A; Burgos, William D

    2015-03-17

    Nitroaromatic compounds (NACs) are ubiquitous environmental contaminants that are susceptible to biological and abiotic reduction. Prior works have found that for the abiotic reduction of NACs, the logarithm of the NACs’ rate constants correlate with one-electron reduction potential values of the NACs (EH,NAC1) according to linear free energy relationships (LFERs). Here, we extend the application of LFERs to the bioreduction of NACs and to the abiotic reduction of NACs by bioreduced (and pasteurized) iron-bearing clay minerals. A linear correlation (R2=0.96) was found between the NACs’ bioreduction rate constants (kobs) and EH,NAC1 values. The LFER slope of log kobs versus EH,NAC1/(2.303RT/F) was close to one (0.97), which implied that the first electron transfer to the NAC was the rate-limiting step of bioreduction. LFERs were also established between NAC abiotic reduction rate constants by bioreduced iron-bearing clay minerals (montmorillonite SWy-2 and nontronite NAu-2). The second-order NAC reduction rate constants (k) by bioreduced SWy-2 and NAu-2 were well correlated to EH,NAC1 (R2=0.97 for both minerals), consistent with bioreduction results. However, the LFER slopes of log k versus EH,NAC1/(2.303RT/F) were significantly less than one (0.48–0.50) for both minerals, indicating that the first electron transfer to the NAC was not the rate-limiting step of abiotic reduction. Finally, we demonstrate that the rate of 4-acetylnitrobenzene reduction by bioreduced SWy-2 and NAu-2 correlated to the reduction potential of the clay (EH,clay, R2=0.95 for both minerals), indicating that the clay reduction potential also influences its reactivity.

  15. Effects of beach sand properties, temperature and rainfall on the degradation rates of oil in buried oil/beach sand mixtures.

    PubMed

    Rowland, A P; Lindley, D K; Hall, G H; Rossall, M J; Wilson, D R; Benham, D G; Harrison, A F; Daniels, R E

    2000-07-01

    Lysimeters located outdoors have been used to evaluate the decomposition of buried oily beach sand waste (OBS) prepared using Forties light crude oil and sand from different locations around the British coast. The OBS (5% oil by weight) was buried as a 12-cm layer over dune pasture sub-sand and overlain by 20 cm of dune pasture topsoil. Decomposition rates of oil residues averaged 2300 kg ha(-1) in the first year and the pattern of oil decomposition may be represented by a power curve. Oil decomposition was strongly related to the temperature in the OBS layer, but was also significantly affected by rainfall in the previous 12 h. The CO(2) flux at the surface of the treatment lysimeters followed the relationship [log(10) CO(2) (mg C m(-2) h(-1))=0.93+0.058x OBS temp. (degrees C)-0.042x12 h rain (mm)]. There was considerable variation in the rate of oil decomposition in sands collected from different sites. Sand from Askernish supported most microbial activity whilst sand from Tain was relatively inactive. The decomposition process appeared to cease when the sand became saturated with water, i.e. temporarily anaerobic. However, decomposition recommenced when the soil dried out. The fastest rate of decomposition occurred in sand from one of the two sites predicted to have high populations of hydrocarbon-degrading bacteria. Larger particle size and higher Ca content may also be significant factors governing the rate of decomposition. PMID:15092918

  16. Simulating the effect of aerobic biodegradation on soil vapor intrusion into buildings: influence of degradation rate, source concentration, and depth.

    PubMed

    Abreu, Lilian D V; Johnson, Paul C

    2006-04-01

    Steady-state vapor intrusion scenarios involving aerobically biodegradable chemicals are studied using a three-dimensional multicomponent numerical model. In these scenarios, sources of aerobically biodegradable chemical vapors are placed at depths of 1-14 m beneath a 10 m x 10 m basement or slab-on-grade construction building, and the simultaneous transport and reaction of hydrocarbon and oxygen vapors are simulated. The results are presented as Johnson and Ettinger attenuation factors alpha (predicted indoor air hydrocarbon concentration/source vapor concentration), and normalized contour plots of hydrocarbon and oxygen concentrations. In addition to varying the vapor source depth, the effects of source concentration (2-200 mg chemical/L vapor) and oxygen-limited first-order reaction rates (0.018-1.8 h(-1)) are studied. Hydrocarbon inputs were specific to benzene, although the relevant properties are similar to those for a range of hydrocarbons of interest. Overall, the results suggest that aerobic biodegradation could play a significant role in reducing vapor intrusion into buildings (decreased alpha-values) relative to the no-biodegradation case, with the significance of aerobic biodegradation increasing with increasing vapor source depth, decreasing vapor source concentration, and increasing first-order biodegradation rate. In contrast to the no-biodegradation case, differences in foundation construction can be significant in some settings. The significance of aerobic biodegradation is directly related to the extent to which oxygen is capable of migrating beneath the foundation. For example, in the case of a basement scenario with a 200 mg/L vapor source located at 3 m bgs, oxygen is consumed before it can migrate beneath the foundation, so the attenuation factors for simulations with and without aerobic biodegradation are similar for all first-order rates studied. For the case of a 2 mg/L vapor source located at 8 m bgs, the oxygen is widely distributed

  17. Abiotic selenium redox transformations in the presence of Fe(II,III) oxides

    SciTech Connect

    Myneni, S.C.B.; Tokunaga, T.K.; Brown, G.E. Jr.

    1997-11-07

    Many suboxic sediments and soils contain an Fe(II,III) oxide called green rust. Spectroscopic evidence showed that selenium reduces from an oxidation state of +VI to 0 in the presence of green rust at rates comparable with those found in sediments. Selenium speciation was different in solid and aqueous phases. These redox reactions represent an abiotic pathway for selenium cycling in natural environments, which has previously been considered to be mediated principally by microorganisms. Similar green rust-mediated abiotic redox reactions are likely to be involved in the mobility of several other trace elements and contaminants in the environment. 27 refs., 3 figs., 2 tabs.

  18. Biodrying of sewage sludge: kinetics of volatile solids degradation under different initial moisture contents and air-flow rates.

    PubMed

    Villegas, Manuel; Huiliñir, Cesar

    2014-12-01

    This study focuses on the kinetics of the biodegradation of volatile solids (VS) of sewage sludge for biodrying under different initial moisture contents (Mc) and air-flow rates (AFR). For the study, a 3(2) factorial design, whose factors were AFR (1, 2 or 3L/minkgTS) and initial Mc (59%, 68% and 78% w.b.), was used. Using seven kinetic models and a nonlinear regression method, kinetic parameters were estimated and the models were analyzed with two statistical indicators. Initial Mc of around 68% increases the temperature matrix and VS consumption, with higher moisture removal at lower initial Mc values. Lower AFRs gave higher matrix temperatures and VS consumption, while higher AFRs increased water removal. The kinetic models proposed successfully simulate VS biodegradation, with root mean square error (RMSE) between 0.007929 and 0.02744, and they can be used as a tool for satisfactory prediction of VS in biodrying.

  19. The influence of MgH2 on the assessment of electrochemical data to predict the degradation rate of Mg and Mg alloys.

    PubMed

    Mueller, Wolf-Dieter; Hornberger, Helga

    2014-06-26

    Mg and Mg alloys are becoming more and more of interest for several applications. In the case of biomaterial applications, a special interest exists due to the fact that a predictable degradation should be given. Various investigations were made to characterize and predict the corrosion behavior in vitro and in vivo. Mostly, the simple oxidation of Mg to Mg2+ ions connected with adequate hydrogen development is assumed, and the negative difference effect (NDE) is attributed to various mechanisms and electrochemical results. The aim of this paper is to compare the different views on the corrosion pathway of Mg or Mg alloys and to present a neglected pathway based on thermodynamic data as a guideline for possible reactions combined with experimental observations of a delay of visible hydrogen evolution during cyclic voltammetry. Various reaction pathways are considered and discussed to explain these results, like the stability of the Mg+ intermediate state, the stability of MgH2 and the role of hydrogen overpotential. Finally, the impact of MgH2 formation is shown as an appropriate base for the prediction of the degradation behavior and calculation of the corrosion rate of Mg and Mg alloys.

  20. The Influence of MgH2 on the Assessment of Electrochemical Data to Predict the Degradation Rate of Mg and Mg Alloys

    PubMed Central

    Mueller, Wolf-Dieter; Hornberger, Helga

    2014-01-01

    Mg and Mg alloys are becoming more and more of interest for several applications. In the case of biomaterial applications, a special interest exists due to the fact that a predictable degradation should be given. Various investigations were made to characterize and predict the corrosion behavior in vitro and in vivo. Mostly, the simple oxidation of Mg to Mg2+ ions connected with adequate hydrogen development is assumed, and the negative difference effect (NDE) is attributed to various mechanisms and electrochemical results. The aim of this paper is to compare the different views on the corrosion pathway of Mg or Mg alloys and to present a neglected pathway based on thermodynamic data as a guideline for possible reactions combined with experimental observations of a delay of visible hydrogen evolution during cyclic voltammetry. Various reaction pathways are considered and discussed to explain these results, like the stability of the Mg+ intermediate state, the stability of MgH2 and the role of hydrogen overpotential. Finally, the impact of MgH2 formation is shown as an appropriate base for the prediction of the degradation behavior and calculation of the corrosion rate of Mg and Mg alloys. PMID:24972140

  1. Application of Micropatterned Cocultured Hepatocytes to Evaluate the Inductive Potential and Degradation Rate of Major Xenobiotic Metabolizing Enzymes.

    PubMed

    Dixit, Vaishali; Moore, Amanda; Tsao, Hong; Hariparsad, Niresh

    2016-02-01

    Long-term coculture models of hepatocytes are promising tools to study drug transport, clearance, and hepatoxicity. In this report we compare the basal expression of drug disposition genes and the inductive response of prototypical inducers (rifampin, phenobarbital, phenytoin) in hepatocyte two-dimensional monocultures and the long-term coculture model (HepatoPac). All the inducers used in the study increased the expression and activity of CYP3A4, CYP2B6 and CYP2C enzymes in the HepatoPac cultures. The coculture model showed a consistent and higher induction of CYP2C enzymes compared with the monocultures. The EC50 of rifampin for CYP3A4 and CYP2C9 was up to 10-fold lower in HepatoPac than the monocultures. The EC50 of rifampin calculated from the clinical drug interaction studies correlated well with the EC50 observed in the HepatoPac cultures. Owing to the long-term stability of the HepatoPac cultures, we were able to directly measure a half-life (t1/2) for both CYP3A4 and CYP2B6 using the depletion kinetics of mRNA and functional activity. The t1/2 for CYP3A4 mRNA was 26 hours and that for the functional protein was 49 hours. The t1/2 of CYP2B6 was 38 hours (mRNA) and 68 hours (activity), which is longer than CYP3A4 and shows the differential turnover of these two proteins. This is the first study to our knowledge to report the turnover rate of CYP2B6 in human hepatocytes. The data presented here demonstrate that the HepatoPac cultures have the potential to be used in long-term culture to mimic complex clinical scenarios. PMID:26658225

  2. CYP46A1, the rate-limiting enzyme for cholesterol degradation, is neuroprotective in Huntington's disease.

    PubMed

    Boussicault, Lydie; Alves, Sandro; Lamazière, Antonin; Planques, Anabelle; Heck, Nicolas; Moumné, Lara; Despres, Gaëtan; Bolte, Susanne; Hu, Amélie; Pagès, Christiane; Galvan, Laurie; Piguet, Francoise; Aubourg, Patrick; Cartier, Nathalie; Caboche, Jocelyne; Betuing, Sandrine

    2016-03-01

    Huntington's disease is an autosomal dominant neurodegenerative disease caused by abnormal polyglutamine expansion in huntingtin (Exp-HTT) leading to degeneration of striatal neurons. Altered brain cholesterol homeostasis has been implicated in Huntington's disease, with increased accumulation of cholesterol in striatal neurons yet reduced levels of cholesterol metabolic precursors. To elucidate these two seemingly opposing dysregulations, we investigated the expression of cholesterol 24-hydroxylase (CYP46A1), the neuronal-specific and rate-limiting enzyme for cholesterol conversion to 24S-hydroxycholesterol (24S-OHC). CYP46A1 protein levels were decreased in the putamen, but not cerebral cortex samples, of post-mortem Huntington's disease patients when compared to controls. Cyp46A1 mRNA and CYP46A1 protein levels were also decreased in the striatum of the R6/2 Huntington's disease mouse model and in SThdhQ111 cell lines. In vivo, in a wild-type context, knocking down CYP46A1 expression in the striatum, via an adeno-associated virus-mediated delivery of selective shCYP46A1, reproduced the Huntington's disease phenotype, with spontaneous striatal neuron degeneration and motor deficits, as assessed by rotarod. In vitro, CYP46A1 restoration protected SThdhQ111 and Exp-HTT-expressing striatal neurons in culture from cell death. In the R6/2 Huntington's disease mouse model, adeno-associated virus-mediated delivery of CYP46A1 into the striatum decreased neuronal atrophy, decreased the number, intensity level and size of Exp-HTT aggregates and improved motor deficits, as assessed by rotarod and clasping behavioural tests. Adeno-associated virus-CYP46A1 infection in R6/2 mice also restored levels of cholesterol and lanosterol and increased levels of desmosterol. In vitro, lanosterol and desmosterol were found to protect striatal neurons expressing Exp-HTT from death. We conclude that restoring CYP46A1 activity in the striatum promises a new therapeutic approach in

  3. CYP46A1, the rate-limiting enzyme for cholesterol degradation, is neuroprotective in Huntington's disease.

    PubMed

    Boussicault, Lydie; Alves, Sandro; Lamazière, Antonin; Planques, Anabelle; Heck, Nicolas; Moumné, Lara; Despres, Gaëtan; Bolte, Susanne; Hu, Amélie; Pagès, Christiane; Galvan, Laurie; Piguet, Francoise; Aubourg, Patrick; Cartier, Nathalie; Caboche, Jocelyne; Betuing, Sandrine

    2016-03-01

    Huntington's disease is an autosomal dominant neurodegenerative disease caused by abnormal polyglutamine expansion in huntingtin (Exp-HTT) leading to degeneration of striatal neurons. Altered brain cholesterol homeostasis has been implicated in Huntington's disease, with increased accumulation of cholesterol in striatal neurons yet reduced levels of cholesterol metabolic precursors. To elucidate these two seemingly opposing dysregulations, we investigated the expression of cholesterol 24-hydroxylase (CYP46A1), the neuronal-specific and rate-limiting enzyme for cholesterol conversion to 24S-hydroxycholesterol (24S-OHC). CYP46A1 protein levels were decreased in the putamen, but not cerebral cortex samples, of post-mortem Huntington's disease patients when compared to controls. Cyp46A1 mRNA and CYP46A1 protein levels were also decreased in the striatum of the R6/2 Huntington's disease mouse model and in SThdhQ111 cell lines. In vivo, in a wild-type context, knocking down CYP46A1 expression in the striatum, via an adeno-associated virus-mediated delivery of selective shCYP46A1, reproduced the Huntington's disease phenotype, with spontaneous striatal neuron degeneration and motor deficits, as assessed by rotarod. In vitro, CYP46A1 restoration protected SThdhQ111 and Exp-HTT-expressing striatal neurons in culture from cell death. In the R6/2 Huntington's disease mouse model, adeno-associated virus-mediated delivery of CYP46A1 into the striatum decreased neuronal atrophy, decreased the number, intensity level and size of Exp-HTT aggregates and improved motor deficits, as assessed by rotarod and clasping behavioural tests. Adeno-associated virus-CYP46A1 infection in R6/2 mice also restored levels of cholesterol and lanosterol and increased levels of desmosterol. In vitro, lanosterol and desmosterol were found to protect striatal neurons expressing Exp-HTT from death. We conclude that restoring CYP46A1 activity in the striatum promises a new therapeutic approach in

  4. CYP46A1, the rate-limiting enzyme for cholesterol degradation, is neuroprotective in Huntington’s disease

    PubMed Central

    Boussicault, Lydie; Alves, Sandro; Lamazière, Antonin; Planques, Anabelle; Heck, Nicolas; Moumné, Lara; Despres, Gaëtan; Bolte, Susanne; Hu, Amélie; Pagès, Christiane; Galvan, Laurie; Piguet, Francoise; Aubourg, Patrick; Cartier, Nathalie

    2016-01-01

    Huntington’s disease is an autosomal dominant neurodegenerative disease caused by abnormal polyglutamine expansion in huntingtin (Exp-HTT) leading to degeneration of striatal neurons. Altered brain cholesterol homeostasis has been implicated in Huntington’s disease, with increased accumulation of cholesterol in striatal neurons yet reduced levels of cholesterol metabolic precursors. To elucidate these two seemingly opposing dysregulations, we investigated the expression of cholesterol 24-hydroxylase (CYP46A1), the neuronal-specific and rate-limiting enzyme for cholesterol conversion to 24S-hydroxycholesterol (24S-OHC). CYP46A1 protein levels were decreased in the putamen, but not cerebral cortex samples, of post-mortem Huntington’s disease patients when compared to controls. Cyp46A1 mRNA and CYP46A1 protein levels were also decreased in the striatum of the R6/2 Huntington’s disease mouse model and in SThdhQ111 cell lines. In vivo, in a wild-type context, knocking down CYP46A1 expression in the striatum, via an adeno-associated virus-mediated delivery of selective shCYP46A1, reproduced the Huntington’s disease phenotype, with spontaneous striatal neuron degeneration and motor deficits, as assessed by rotarod. In vitro, CYP46A1 restoration protected SThdhQ111 and Exp-HTT-expressing striatal neurons in culture from cell death. In the R6/2 Huntington’s disease mouse model, adeno-associated virus-mediated delivery of CYP46A1 into the striatum decreased neuronal atrophy, decreased the number, intensity level and size of Exp-HTT aggregates and improved motor deficits, as assessed by rotarod and clasping behavioural tests. Adeno-associated virus-CYP46A1 infection in R6/2 mice also restored levels of cholesterol and lanosterol and increased levels of desmosterol. In vitro, lanosterol and desmosterol were found to protect striatal neurons expressing Exp-HTT from death. We conclude that restoring CYP46A1 activity in the striatum promises a new therapeutic approach

  5. Multifaceted roles of aquaporins as molecular conduits in plant responses to abiotic stresses.

    PubMed

    Srivastava, Ashish Kumar; Penna, Suprasanna; Nguyen, Dong Van; Tran, Lam-Son Phan

    2016-01-01

    Abiotic stress has become a challenge to food security due to occurrences of climate change and environmental degradation. Plants initiate molecular, cellular and physiological changes to respond and adapt to various types of abiotic stress. Understanding of plant response mechanisms will aid in strategies aimed at improving stress tolerance in crop plants. One of the most common and early symptoms associated with these stresses is the disturbance in plant-water homeostasis, which is regulated by a group of proteins called "aquaporins". Aquaporins constitute a small family of proteins which are classified further on the basis of their localization, such as plasma membrane intrinsic proteins, tonoplast intrinsic proteins, nodulin26-like intrinsic proteins (initially identified in symbiosomes of legumes but also found in the plasma membrane and endoplasmic reticulum), small basic intrinsic proteins localized in ER (endoplasmic reticulum) and X intrinsic proteins present in plasma membrane. Apart from water, aquaporins are also known to transport CO2, H2O2, urea, ammonia, silicic acid, arsenite and wide range of small uncharged solutes. Besides, aquaporins also function to modulate abiotic stress-induced signaling. Such kind of versatile functions has made aquaporins a suitable candidate for development of transgenic plants with increased tolerance toward different abiotic stress. Toward this endeavor, the present review describes the versatile functions of aquaporins in water uptake, nutrient balancing, long-distance signal transfer, nutrient/heavy metal acquisition and seed development. Various functional genomic studies showing the potential of specific aquaporin isoforms for enhancing plant abiotic stress tolerance are summarized and future research directions are given to design stress-tolerant crops. PMID:25430890

  6. Oxylipins and plant abiotic stress resistance.

    PubMed

    Savchenko, T V; Zastrijnaja, O M; Klimov, V V

    2014-04-01

    Oxylipins are signaling molecules formed enzymatically or spontaneously from unsaturated fatty acids in all aerobic organisms. Oxylipins regulate growth, development, and responses to environmental stimuli of organisms. The oxylipin biosynthesis pathway in plants includes a few parallel branches named after first enzyme of the corresponding branch as allene oxide synthase, hydroperoxide lyase, divinyl ether synthase, peroxygenase, epoxy alcohol synthase, and others in which various biologically active metabolites are produced. Oxylipins can be formed non-enzymatically as a result of oxygenation of fatty acids by free radicals and reactive oxygen species. Spontaneously formed oxylipins are called phytoprostanes. The role of oxylipins in biotic stress responses has been described in many published works. The role of oxylipins in plant adaptation to abiotic stress conditions is less studied; there is also obvious lack of available data compilation and analysis in this area of research. In this work we analyze data on oxylipins functions in plant adaptation to abiotic stress conditions, such as wounding, suboptimal light and temperature, dehydration and osmotic stress, and effects of ozone and heavy metals. Modern research articles elucidating the molecular mechanisms of oxylipins action by the methods of biochemistry, molecular biology, and genetics are reviewed here. Data on the role of oxylipins in stress signal transduction, stress-inducible gene expression regulation, and interaction of these metabolites with other signal transduction pathways in cells are described. In this review the general oxylipin-mediated mechanisms that help plants to adjust to a broad spectrum of stress factors are considered, followed by analysis of more specific responses regulated by oxylipins only under certain stress conditions. New approaches to improvement of plant resistance to abiotic stresses based on the induction of oxylipin-mediated processes are discussed.

  7. Degradation Kinetics of VX

    SciTech Connect

    Gary S. Groenewold

    2010-12-01

    O-ethyl S-(2-diisopropylaminoethyl)phosphonothiolate (VX) is the most toxic of the conventional chemical warfare agents. It is a persistent compound, an attribute derived from its relative involatility and slow rates of hydrolysis. These properties suggest that VX can linger in an exposed environment for extended periods of time long after the air has cleared. Concern over prolonged risk from VX exposure is exacerbated by the fact that it poses a dermal contact hazard. Hence a detailed understanding of volatilization rates, and degradation pathways and rates occurring in various environments is needed. Historically, volatilization has not been considered to be an important mechanism for VX depletion, but recent studies have shown that a significant fraction of VX may volatilize, depending on the matrix. A significant body of research has been conducted over the years to unravel VX degradation reaction pathways and to quantify the rates at which they proceed. Rigorous measurement of degradation rates is frequently difficult, and thus in many cases the degradation of VX has been described in terms of half lives, while in fewer instances rate constants have been measured. This variable approach to describing degradation kinetics reflects uncertainty regarding the exact nature of the degradation mechanisms. In this review, rates of VX degradation are compared on the basis of pseudo-first order rate constants, in order to provide a basis for assessing likelihood of VX persistence in a given environment. An issue of specific concern is that one VX degradation pathway produces S-2-(diisopropylaminoethyl) methylphosphonothioic acid (known as EA2192), which is a degradation product that retains much of the original toxicity of VX. Consequently degradation pathways and rates for EA2192 are also discussed.

  8. Differential degradation rates in vivo and in vitro of biocompatible poly(lactic acid) and poly(glycolic acid) homo- and co-polymers for a polymeric drug-delivery microchip.

    PubMed

    Grayson, Amy C R; Voskerician, Gabriela; Lynn, Aaron; Anderson, James M; Cima, Michael J; Langer, Robert

    2004-01-01

    The biocompatibility and biodegradation rate of component materials are critical when designing a drug-delivery device. The degradation products and rate of degradation may play important roles in determining the local cellular response to the implanted material. In this study, we investigated the biocompatibility and relative biodegradation rates of PLA, PGA and two poly(lactic-co-glycolic acid) (PLGA) polymers of 50:50 mol ratio, thin-film component materials of a drug-delivery microchip developed in our laboratory. The in vivo biocompatibility and both in vivo and in vitro degradation of these materials were characterized using several techniques. Total leukocyte concentration measurements showed normal acute and chronic inflammatory responses to the PGA and low-molecular-weight PLGA that resolved by 21 days, while the normal inflammatory responses to the PLA and high-molecular-weight PLGA were resolved but at slower rates up to 21 days. These results were paralleled by thickness measurements of fibrous capsules surrounding the implants, which showed greater maturation of the capsules for the more rapidly degrading materials after 21 days, but less mature capsules of sustained thicknesses for the PLA and high-molecular-weight PLGA up to 49 days. Gel-permeation chromatography of residual polymer samples confirmed classification of the materials as rapidly or slowly degrading. These materials showed thinner fibrous capsules than have been reported for other materials by our laboratory and have suitable biocompatibility and biodegradation rates for an implantable drug-delivery device.

  9. Abiotic CO2 reduction during geologic carbon sequestration facilitated by Fe(II)-bearing minerals

    NASA Astrophysics Data System (ADS)

    Nielsen, L. C.; Maher, K.; Bird, D. K.; Brown, G. E.; Thomas, B.; Johnson, N. C.; Rosenbauer, R. J.

    2012-12-01

    Redox reactions involving subsurface minerals and fluids and can lead to the abiotic generation of hydrocarbons from CO2 under certain conditions. Depleted oil reservoirs and saline aquifers targeted for geologic carbon sequestration (GCS) can contain significant quantities of minerals such as ferrous chlorite, which could facilitate the abiotic reduction of carbon dioxide to n-carboxylic acids, hydrocarbons, and amorphous carbon (C0). If such reactions occur, the injection of supercritical CO2 (scCO2) could significantly alter the oxidation state of the reservoir and cause extensive reorganization of the stable mineral assemblage via dissolution and reprecipitation reactions. Naturally occurring iron oxide minerals such as magnetite are known to catalyze CO2 reduction, resulting in the synthesis of organic compounds. Magnetite is thermodynamically stable in Fe(II) chlorite-bearing mineral assemblages typical of some reservoir formations. Thermodynamic calculations demonstrate that GCS reservoirs buffered by the chlorite-kaolinite-carbonate(siderite/magnesite)-quartz assemblage favor the reduction of CO2 to n-carboxylic acids, hydrocarbons, and C0, although the extent of abiotic CO2 reduction may be kinetically limited. To investigate the rates of abiotic CO2 reduction in the presence of magnetite, we performed batch abiotic CO2 reduction experiments using a Dickson-type rocking hydrothermal apparatus at temperatures (373 K) and pressures (100 bar) within the range of conditions relevant to GCS. Blank experiments containing CO2 and H2 were used to rule out the possibility of catalytic activity of the experimental apparatus. Reaction of brine-suspended magnetite nanoparticles with scCO2 at H2 partial pressures typical of reservoir rocks - up to 100 and 0.1 bars respectively - was used to investigate the kinetics of magnetite-catalyzed abiotic CO2 reduction. Later experiments introducing ferrous chlorite (ripidolite) were carried out to determine the potential for

  10. Breeding for abiotic stresses for sustainable agriculture.

    PubMed

    Witcombe, J R; Hollington, P A; Howarth, C J; Reader, S; Steele, K A

    2008-02-27

    Using cereal crops as examples, we review the breeding for tolerance to the abiotic stresses of low nitrogen, drought, salinity and aluminium toxicity. All are already important abiotic stress factors that cause large and widespread yield reductions. Drought will increase in importance with climate change, the area of irrigated land that is salinized continues to increase, and the cost of inorganic N is set to rise. There is good potential for directly breeding for adaptation to low N while retaining an ability to respond to high N conditions. Breeding for drought and salinity tolerance have proven to be difficult, and the complex mechanisms of tolerance are reviewed. Marker-assisted selection for component traits of drought in rice and pearl millet and salinity tolerance in wheat has produced some positive results and the pyramiding of stable quantitative trait locuses controlling component traits may provide a solution. New genomic technologies promise to make progress for breeding tolerance to these two stresses through a more fundamental understanding of underlying processes and identification of the genes responsible. In wheat, there is a great potential of breeding genetic resistance for salinity and aluminium tolerance through the contributions of wild relatives.

  11. Multiple abiotic stress responsive rice cyclophilin

    PubMed Central

    Trivedi, Dipesh Kumar; Ansari, Mohammad Wahid; Tuteja, Narendra

    2013-01-01

    Cyclophilins (CYP), a member of immunophillin group of proteins, are more often conserved in all genera including plants. Here, we report on the identification of a new cyclophilin gene OsCYP-25 (LOC_Os09 g39780) from rice which found to be upregulated in response to various abiotic stresses viz., salinity, cold, heat and drought. It has an ORF of 540 bp, encoding a protein of 179 amino acids, consisting of PPIase domain, which is highly conserved. The OsCYP-25 promoter analysis revealed that different cis-regulatory elements (e.g., MYBCORE, MYC, CBFHV, GT1GMSCAM4, DRECRTCOREAT, CCAATBOX1, WRKY71OS and WBOXATNPR1) are involved to mediate OsCYP-25 response under stress. We have also predicted interacting partners by STRING software. In interactome, protein partners includes WD domain containing protein, the 60S ribosome subunit biogenesis protein, the ribosomal protein L10, the DEAD-box helicase, the EIF-2α, YT521-B protein, the 60S ribosomal protein and the PPR repeat domain containing protein. The in silico analysis showed that OsCYP-25 interacts with different proteins involved in cell growth, differentiation, ribosome biogenesis, RNA metabolism, RNA editing, gene expression, signal transduction or stress response. These findings suggest that OsCYP-25 might perform an important function in mediating wide range of cellular response under multiple abiotic stresses. PMID:24265852

  12. Exploring the Role of Nanoscale Zero Valent Iron and Bacteria on the Degradation of a Multi-component Chlorinated Solvent at the Field Scale

    NASA Astrophysics Data System (ADS)

    Kocur, C. M.; Lomheim, L.; Boparai, H.; Chowdhury, A. I.; Weber, K.; Austrins, L. M.; Sleep, B. E.; Edwards, E.; O'Carroll, D. M.

    2013-12-01

    Nanoscale zero valent iron (nZVI) has advanced as a technology for the remediation of priority source zone contaminants in response to early laboratory studies that showed rapid rates of compound degradation. The challenges associated with the delivery of nZVI particles (eg. rapid aggregation and settling) were partially resolved with the addition of a polyelectrolyte polymers, like Carboxymethyl cellulose, that significantly improves the colloidal stability of particles allowing for more controlled injection and transport in the subsurface. Following nZVI application and abiotic contaminant degradation nZVI oxidizes and yields reducing conditions. These reducing conditions are ideal for many dechlorinating bacteria. Given this, application of nZVI for abiotic contaminant degradation followed by bioremediation has become an area of active research interest. In this study nZVI was injected into a contaminated sandy subsurface area. Concentrations of a range of chlorinated compounds, including chlorinated ethenes, ethanes, and methanes were monitored in detail following nano-particle injection in order to access short term abiotic degradation. Monitoring continued over a 2 year period to evaluate the long term effects of nZVI injection on the bacterial communities and the biotic degradation of targeted chlorinated compounds. The study focusses on the degradation and evolution of intermediate compounds from reaction with targeted contaminant compounds along the nZVI flow path. Bacterial populations were quantified before injection to confirm that beneficial chloride reducing bacteria were present on site. The microbiological response to the injection of nZVI was studied and the performance of bacteria along the nZVI flow path and outside the nZVI affected area will be compared.

  13. Chromium Stable Isotope Fractionation During Abiotic Reduction of Hexavalent Chromium

    NASA Astrophysics Data System (ADS)

    Kitchen, J. W.; Johnson, T. M.; Bullen, T. D.

    2004-12-01

    Chromium, a common surface water and ground water contaminant, occurs as Cr(VI), which is soluble and toxic, and Cr(III), which is insoluble and less toxic. Reduction of Cr(VI) to Cr(III) is often the most important reaction controlling attenuation of Cr plumes, and Cr stable isotope (53Cr/52Cr) measurements show great promise as indicators of this reaction. Cr(VI) reduction involves a kinetic isotope effect; lighter isotopes react at greater rates and heavier isotopes become increasingly enriched in the remaining Cr(VI) with increasing extent of reduction. If the size of this effect can be constrained well, then precise estimates of reduction are possible. Cr(VI) reduction can be mediated by microbes, or may occur abiotically in the presence of Fe(II) and a variety of organic compounds. A recent study of bacterial reduction of Cr(VI) under low electron donor conditions yielded a Cr isotope fractionation factor of 1000lnα = 4.1 ± 0.2. A previous study of abiotic reduction indicated a fractionation factor of 1000lnα = 3.4 ± 0.2, but this work was limited to 3 experiments. The present study provides a more detailed look at Cr isotope fractionation induced by abiotic Cr(VI) reduction by: Fe(II); mandelic acid with alumina and goethite catalysts; and humic substances. Reduction occurred slowly, over days or weeks. The fractionation factor for the organic reductants (all at pH=4), including two surface-catalyzed mandelic acid reactions, two fulvic reactions, and one humic reaction,- was 1000lnα = 3.0 ± 0.4, with no statistically significant differences between experiments. The fractionation factors for the Fe(II) experiments were 4.7 ± 0.3, 3.7 ± 0.2, and 2.9 ± 0.2 for pH = 4, 5, and 6, respectively. Further work is necessary to better constrain this pH dependence and to determine if it occurs with the organic reductants. The overall variability in the size of the Cr isotope fractionation during Cr(VI) reduction translates into a moderate level of uncertainty

  14. The influence of redox potential on the degradation of halogenated methanes.

    PubMed

    Olivas, Yolanda; Dolfing, Jan; Smith, Geoffrey B

    2002-03-01

    To determine the influence of redox potential on the reaction mechanism and to quantify kinetics of the dechlorination by digester sludge, the test compounds trichlorofluoromethane (CFCl3), carbon tetrachloride (CCl4), and chloroform (CHCl3) were incubated in the presence of sludge and variable concentrations of reducing agent. Different sources of dehalogenation were examined, including live sludge and heat-killed sludge, and abiotic mechanisms were quantified in the absence of sludge. Batch incubations were done under redox conditions ranging from +/-534 to -348 mV. The highest rates for the dehalogenation of the three compounds were observed at -348 mV. The dechlorination rate of all the compounds by the heat-resistant catalysts was approximately twofold higher than the live treatments. It was proposed that the higher degradation rates by heat-killed sludge were due to the absence of physical barriers such as cell wall and cell membranes. There was no abiotic dechlorination of CFCl3, whereas CCl4 and CHCl3 were both reduced in the absence of sludge catalyst by Ti (III) citrate at > or =2.5 mM. The degradation pathways of CFCl3 and CHCl3 appeared to be only partially reductive since the production of reduced metabolites was low in comparison with the total amount of original halogenated compounds degraded. For CFCl3, the partial reductive degradation implied that different intra- and extracellular pathways were concurrent. The Gibbs free energy and the redox potential for the dehalogenation reactions utilizing Ti (III) citrate and acetate as electron donors are reported here for the first time. PMID:11878461

  15. Abiotic Methane Synthesis: Caveats and New Results

    NASA Astrophysics Data System (ADS)

    Zou, R.; Sharma, A.

    2005-12-01

    The role of mineral interaction with geochemical fluids under hydrothermal conditions has invoked models of geochemical synthesis of organic molecules at deep crustal conditions. Since Thomas Gold's (1992) hypothesis of the possibility of an abiotic organic synthesis, there have been several reports of hydrocarbon formation under high pressure and temperature conditions. Several previous experimental studies have recognized that small amounts of methane (and other light HC compounds) can be synthesized via catalysis by transition metals: Fe, Ni (Horita and Berndt, 1999 Science) and Cr (Foustavous and Seyfried, 2004 Science). In light of these pioneering experiments, an investigation of the feasibility of abiotic methane synthesis at higher pressure conditions in deep geological setting and the possible role of catalysis warrants a closer look. We conducted three sets of experiments in hydrothermal diamond anvil cell using FeO nanopowder, CaCO 3 and water at 300° - 600° C and 0.5 - 5 GPa : (a) with stainless steel gasket, (b) gold-lined gasket, and (c) gold-lined gasket with added Fe and Ni nanopowder. The reactions were monitored in-situ using micro-Raman spectroscopy with 532nm and 632nm lasers. The solids phases were characterized in-situ using synchrotron X-ray diffraction at CHESS-Cornell and quenched products with an electron microprobe. Interestingly, a variable amount of hydrocarbon was observed only in runs with stainless steel gasket and with Fe, Ni nanoparticles. Experiments with gold-lined reactors did not show any hydrocarbon formation. Added high resolution microscopy of the products and their textural relationship within the diamond cell with Raman spectroscopy data show that the hydrocarbon (methane and other light fractions) synthesis is a direct result of transition metal catalysis, rather than wustite - calcium carbonate reaction as recently reported by Scott et al (2004, PNAS). The author will further present new results highlighting abiotic

  16. Generation of RNA in abiotic conditions.

    NASA Astrophysics Data System (ADS)

    di Mauro, Ernesto

    Generation of RNA in abiotic conditions. Ernesto Di Mauro Dipartimento di Genetica Bi-ologia Molecolare, Universit` "Sapienza" Roma, Italy. a At least four conditions must be satisfied for the spontaneous generation of (pre)-genetic poly-mers: 1) availability of precursors that are activated enough to spontaneously polymerize. Preliminary studies showed that (a) nucleic bases and acyclonucleosides can be synthesized from formamide H2NCOH by simply heating with prebiotically available mineral catalysts [last reviewed in (1)], and that b) nucleic bases can be phosphorylated in every possible posi-tion [2'; 3'; 5'; cyclic 2',3'; cyclic 3',5' (2)]. The higher stability of the cyclic forms allows their accumulation. 2) A polymerization mechanism. A reaction showing the formation of RNA polymers starting from prebiotically plausible precursors (3',5' cyclic GMP and 3', 5'cyclic AMP) was recently reported (3). Polymerization in these conditions is thermodynamically up-hill and an equilibrium is attained that limits the maximum length of the polymer produced to about 40 nucleotides for polyG and 100 nucleotides for polyA. 3) Ligation of the synthesized oligomers. If this type of reaction could occur according to a terminal-joining mechanism and could generate canonical 3',5' phosphodiester bonds, exponential growth would be obtained of the generated oligomers. This type of reaction has been reported (4) , limited to homogeneous polyA sequences and leading to the production of polyA dimers and tetramers. What is still missing are: 4) mechanisms that provide the proof of principle for the generation of sequence complexity. We will show evidence for two mechanisms providing this proof of principle for simple complementary sequences. Namely: abiotic sequence complementary-driven terminal ligation and sequence-complementary terminal growth. In conclusion: all the steps leading to the generation of RNA in abiotic conditions are satisfied. (1) R Saladino, C Crestini, F

  17. Meiofauna communities, nematode diversity and C degradation rates in seagrass (Posidonia oceanica L.) and unvegetated sediments invaded by the algae Caulerpa cylindracea (Sonder).

    PubMed

    Pusceddu, Antonio; Fraschetti, Simona; Scopa, Mariaspina; Rizzo, Lucia; Danovaro, Roberto

    2016-08-01

    We investigated meiofauna and sedimentary C cycling in seagrass (Posidonia oceanica) and unvegetated sediments invaded and not invaded by the non-indigenous tropical algae Caulerpa cylindracea. In both habitats, invaded sediments were characterized by higher organic matter contents. No effect was observed for prokaryotes and C degradation rates. In seagrass sediments, C turnover in invaded beds was about half that in not invaded ones. Meiofaunal communities varied significantly among invaded and not invaded grounds only in bare sediments. In both habitats, nematode species richness and assemblage composition were not affected by the algae. The effect of C. cylindracea on the turnover and nestedness components of the Jaccard dissimilarity varied between the two habitats. We show that the presence of C. cylindracea gives rise to variable consequences on meiofauna biodiversity and C cycling in different habitats. We conclude that further studies across different habitats and ecological components are needed to ultimately understand and predict the consequences of C. cylindracea invasion in shallow Mediterranean ecosystems. PMID:27258353

  18. Evaluation by Monte Carlo simulations of the power limits and bit-error rate degradation in wavelength-division multiplexing networks caused by four-wave mixing.

    PubMed

    Neokosmidis, Ioannis; Kamalakis, Thomas; Chipouras, Aristides; Sphicopoulos, Thomas

    2004-09-10

    Fiber nonlinearities can degrade the performance of a wavelength-division multiplexing optical network. For high input power, a low chromatic dispersion coefficient, or low channel spacing, the most severe penalties are due to four-wave mixing (FWM). To compute the bit-error rate that is due to FWM noise, one must evaluate accurately the probability-density functions (pdf) of both the space and the mark states. An accurate evaluation of the pdf of the FWM noise in the space state is given, for the first time to the authors' knowledge, by use of Monte Carlo simulations. Additionally, it is shown that the pdf in the mark state is not symmetric as had been assumed in previous studies. Diagrams are presented that permit estimation of the pdf, given the number of channels in the system. The accuracy of the previous models is also investigated, and finally the results of this study are used to estimate the power limits of a wavelength-division multiplexing system. PMID:15468703

  19. Evaluation by Monte Carlo simulations of the power limits and bit-error rate degradation in wavelength-division multiplexing networks caused by four-wave mixing.

    PubMed

    Neokosmidis, Ioannis; Kamalakis, Thomas; Chipouras, Aristides; Sphicopoulos, Thomas

    2004-09-10

    Fiber nonlinearities can degrade the performance of a wavelength-division multiplexing optical network. For high input power, a low chromatic dispersion coefficient, or low channel spacing, the most severe penalties are due to four-wave mixing (FWM). To compute the bit-error rate that is due to FWM noise, one must evaluate accurately the probability-density functions (pdf) of both the space and the mark states. An accurate evaluation of the pdf of the FWM noise in the space state is given, for the first time to the authors' knowledge, by use of Monte Carlo simulations. Additionally, it is shown that the pdf in the mark state is not symmetric as had been assumed in previous studies. Diagrams are presented that permit estimation of the pdf, given the number of channels in the system. The accuracy of the previous models is also investigated, and finally the results of this study are used to estimate the power limits of a wavelength-division multiplexing system.

  20. The influence of cycling temperature and cycling rate on the phase specific degradation of a positive electrode in lithium ion batteries: A post mortem analysis

    NASA Astrophysics Data System (ADS)

    Darma, Mariyam Susana Dewi; Lang, Michael; Kleiner, Karin; Mereacre, Liuda; Liebau, Verena; Fauth, Francois; Bergfeldt, Thomas; Ehrenberg, Helmut

    2016-09-01

    The influence of cycling temperatures and cycling rates on the cycling stability of the positive electrode (cathode) of commercial batteries are investigated. The cathode is a mixture of LiMn2O4 (LMO), LiNi0.5Co0.2Mn0.3O2 (NCM) and LiNi0.8Co0.15Al0.05O2 (NCA). It is found that increasing the cycling temperature from 25 °C to 40 °C is detrimental to the long term cycling stability of the cathode. Contrastingly, the improved cycling stability is observed for the cathodes cycled at higher charge/discharge rate (2C/3C instead of 1C/2C). The microstructure analysis by X-ray powder diffraction reveals that a significant capacity fading and an increased overvoltage is observed for NCM and NCA in all the fatigued cathodes. After high number of cycling (above 1500 cycles), NCM becomes partially inactive. In contrast to NCM and NCA, LMO shows a good cycling stability at 25 °C. A pronounced degradation of LMO is only observed for the fatigued cathodes cycled at 40 °C. The huge capacity losses of NCM and NCA are most likely because the blended cathodes were cycled up to 4.12 V vs. the graphite anode during the cycle-life test (corresponds to 4.16 V vs. Li+/Li); which is beyond the stability limit of the layered oxides below 4.05 V vs. Li+/Li.

  1. Cell wall remodeling under abiotic stress

    PubMed Central

    Tenhaken, Raimund

    2015-01-01

    Plants exposed to abiotic stress respond to unfavorable conditions on multiple levels. One challenge under drought stress is to reduce shoot growth while maintaining root growth, a process requiring differential cell wall synthesis and remodeling. Key players in this process are the formation of reactive oxygen species (ROS) and peroxidases, which initially cross-link phenolic compounds and glycoproteins of the cell walls causing stiffening. The function of ROS shifts after having converted all the peroxidase substrates in the cell wall. If ROS-levels remain high during prolonged stress, OH°-radicals are formed which lead to polymer cleavage. In concert with xyloglucan modifying enzymes and expansins, the resulting cell wall loosening allows further growth of stressed organs. PMID:25709610

  2. Environmental fate of roxarsone in poultry litter. I. Degradation of roxarsone during composting

    USGS Publications Warehouse

    Garbarino, J.R.; Bednar, A.J.; Rutherford, D.W.; Beyer, R.S.; Wershaw, R. L.

    2003-01-01

    Roxarsone, 3-nitro-4-hydroxyphenylarsonic acid, is an organoarsenic compound that is used extensively in the feed of broiler poultryto control coccidial intestinal parasites, improve feed efficiency, and promote rapid growth. Nearly all the roxarsone in the feed is excreted unchanged in the manure. Poultry litter composed of the manure and bedding material has a high nutrient content and is used routinely as a fertilizer on cropland and pasture. Investigations were conducted to determine the fate of poultrylitter roxarsone in the environment. Experiments indicated that roxarsone was stable in fresh dried litter; the primary arsenic species extracted with water from dried litter was roxarsone. However, when water was added to litter at about 50 wt % and the mixture was allowed to compost at 40 ??C, the speciation of arsenic shifted from roxarsone to primarily arsenate in about 30 days. Increasing the amount of water increased the rate of degradation. Experiments also suggested that the degradation process most likely was biotic in nature. The rate of degradation was directly proportional to the incubation temperature; heat sterilization eliminated the degradation. Biotic degradation also was supported by results from enterobacteriaceae growth media that were inoculated with litter slurry to enhance the biotic processes and to reduce the concomitant abiotic effects from the complex litter solution. Samples collected from a variety of litter windrows in Arkansas, Oklahoma, and Maryland also showed that roxarsone originally present had been converted to arsenate.

  3. Abiotic emissions of methane and reduced organic compounds from organic matter

    NASA Astrophysics Data System (ADS)

    Roeckmann, T.; Keppler, F.; Vigano, I.; Derendorp, L.; Holzinger, R.

    2012-12-01

    Recent laboratory studies show that the important greenhouse gas methane, but also other reduced atmospheric trace gases, can be emitted by abiotic processes from organic matter, such as plants, pure organic compounds and soils. It is very difficult to distinguish abiotic from biotic emissions in field studies, but in laboratory experiments this is easier because it is possible to carefully prepare/sterilize samples, or to control external parameters. For example, the abiotic emissions always show a strong increase with temperature when temperatures are increased to 70C or higher, well above the temperature optimum for bacterial activity. UV radiation has also been clearly shown to lead to emission of methane and other reduced gases from organic matter. Interesting information on the production mechanism has been obtained from isotope studies, both at natural abundance and with isotope labeling. For example, the methoxyl groups of pectin were clearly identified to produce methane. However, analysis of the isotopic composition of methane from natural samples clearly indicates that there must be other molecular mechanisms that lead to methane production. Abiotic methane generation could be a ubiquitous process that occurs naturally at low rates from many different sources.

  4. Loss of ACS7 confers abiotic stress tolerance by modulating ABA sensitivity and accumulation in Arabidopsis.

    PubMed

    Dong, Hui; Zhen, Zhiqin; Peng, Jinying; Chang, Li; Gong, Qingqiu; Wang, Ning Ning

    2011-10-01

    The phytohormones ethylene and abscisic acid (ABA) play essential roles in the abiotic stress adaptation of plants, with both cross-talk of ethylene signalling and ABA biosynthesis and signalling reported. Any reciprocal effects on each other's biosynthesis, however, remain elusive. ACC synthase (ACS) acts as the key enzyme in ethylene biosynthesis. A pilot study on changes in ACS promoter activities in response to abiotic stresses revealed the unique involvement in abiotic stress responses of the only type 3 ACC synthase, ACS7, among all nine ACSs of Arabidopsis. Hence an acs7 mutant was characterized and its abiotic stress responses were analysed. The acs7 mutant germinated slightly faster than the wild type and subsequently maintained a higher growth rate at the vegetative growth stage. Ethylene emission of acs7 was merely one-third of that of the wild type. acs7 exhibited enhanced tolerance to salt, osmotic, and heat stresses. Furthermore, acs7 seeds were hypersensitive to both ABA and glucose during germination. Transcript analyses revealed that acs7 had elevated transcript levels of the stress-responsive genes involved in the ABA-dependent pathway under salt stress. The ABA level was also higher in acs7 following salt treatment. Our data suggest that ACS7 acts as a negative regulator of ABA sensitivity and accumulation under stress and appears as a node in the cross-talk between ethylene and ABA.

  5. ABIOTIC IN SITU TECHNOLOGIES FOR GROUNDWATER REMEDIATION CONFERENCE: PROCEEDINGS

    EPA Science Inventory

    The USEPA conference on Abiotic In Situ Technologies for Groundwater Remediation was held in Dallas, TX, 8/31-9/2/99. The goal of the meeting was to disseminate current information on abiotic in situ groundwater treatment echnologies. Although much information is being provided a...

  6. The interaction between abiotic photodegradation and microbial decomposition under ultraviolet radiation.

    PubMed

    Wang, Jing; Liu, Lingli; Wang, Xin; Chen, Yiwei

    2015-05-01

    Elevated ultraviolet (UV) radiation has been demonstrated to stimulate litter decomposition. Despite years of research, it is still not fully understood whether the acceleration in litter degradation is primarily attributed to abiotic photodegradation or the combined effects of abiotic photodegradation and microbial decomposition. In this study, we used meta-analysis to synthesize photodegradation studies and compared the effects of UV radiation on litter decomposition between abiotic and biotic conditions. We also conducted a microcosm experiment to assess the effects of UV radiation on litter biodegradability and microbial activity. Overall, our meta-analysis found that under abiotic photodegradation, UV radiation reduced the remaining litter mass by 1.44% (95% CI: 0.85% to 2.08%), did not affect the remaining lignin and increased the dissolved organic carbon (DOC) concentration by 14.01% (1.49-23.67%). Under combined abiotic photodegradation and microbial decomposition, UV radiation reduced the remaining litter mass and lignin by 1.60% (0.04-3.58%) and 16.07% (9.27-24.23%), respectively, but did not alter DOC concentration. UV radiation had no significant impact on soil microbial biomass carbon (MBC), but it reduced microbial respiration by 44.91% (2.26-78.62%) and altered the composition of the microbial community. In addition, UV radiation reduced nitrogen (N) immobilization by 19.44% (4.77-37.92%). Our microcosm experiment further indicated that DOC concentration and the amount of respired C in UV-treated litter increased with UV exposure time, suggesting that longer UV exposure resulted in greater biodegradability. Overall, our study suggested that UV exposure could increase litter biodegradability by increasing the microbial accessibility of lignin, as well as the labile carbon supply to microbes. However, the remaining litter mass was not different between the abiotic and biotic conditions, most likely because the positive effect of UV radiation on litter

  7. Improved abiotic stress tolerance of bermudagrass by exogenous small molecules.

    PubMed

    Chan, Zhulong; Shi, Haitao

    2015-01-01

    As a widely used warm-season turfgrass in landscapes and golf courses, bermudagrass encounters multiple abiotic stresses during the growth and development. Physiology analysis indicated that abiotic stresses induced the accumulation of ROS and decline of photosynthesis, resulting in increased cell damage and inhibited growth. Proteomic and metabolomic approaches showed that antioxidant enzymes and osmoprotectant contents (sugar, sucrose, dehydrin, proline) were extensively changed under abiotic stress conditions. Exogenous application of small molecules, such as ABA, NO, CaCl2, H2S, polyamine and melatonin, could effectively alleviate damages caused by multiple abiotic stresses, including drought, salt, heat and cold. Based on high through-put RNA seq analysis, genes involved in ROS, transcription factors, hormones, and carbohydrate metabolisms were largely enriched. The data indicated that small molecules induced the accumulation of osmoprotectants and antioxidants, kept cell membrane integrity, increased photosynthesis and kept ion homeostasis, which protected bermudagrass from damages caused by abiotic stresses. PMID:25757363

  8. Abiotic stresses induce different localizations of anthocyanins in Arabidopsis

    PubMed Central

    Kovinich, Nik; Kayanja, Gilbert; Chanoca, Alexandra; Otegui, Marisa S; Grotewold, Erich

    2015-01-01

    Anthocyanins are induced in plants in response to abiotic stresses such as drought, high salinity, excess light, and cold, where they often correlate with enhanced stress tolerance. Numerous roles have been proposed for anthocyanins induced during abiotic stresses including functioning as ROS scavengers, photoprotectants, and stress signals. We have recently found different profiles of anthocyanins in Arabidopsis (Arabidopsis thaliana) plants exposed to different abiotic stresses, suggesting that not all anthocyanins have the same function. Here, we discuss these findings in the context of other studies and show that anthocyanins induced in Arabidopsis in response to various abiotic stresses have different localizations at the organ and tissue levels. These studies provide a basis to clarify the role of particular anthocyanin species during abiotic stress. PMID:26179363

  9. Identification and prediction of abiotic stress responsive transcription factors involved in abiotic stress signaling in soybean.

    PubMed

    Tran, Lam-Son Phan; Mochida, Keiichi

    2010-03-01

    Abiotic stresses such as extreme temperature, drought, high salinity, cold and waterlogging often result in significant losses to the yields of economically important crops such as soybean (Glycine max L.). Transcription factors (TFs) which bind to DNA through specific cis-regulatory sequences either activate or repress gene transcription have been reported to act as control switches in stress signaling. Recent completion of the soybean genomic sequence has open wide opportunities for large-scale identification and annotations of regulatory TFs in soybean for functional studies. Within the soybean genome, we identified 5,035 TF models which grouped into 61 families. Detailed annotations of soybean TF genes can be accessed at SoybeanTFDB (soybeantfdb.psc.riken.jp). Moreover, we have reported a new idea of high throughput prediction and selection of abiotic stress responsive TFs based on the existence of known stress responsive cis-element(s) located in the promoter regions of respective TFs and GO annotations. We, therefore, have provided a basic platform for the genome-wide analysis of regulatory mechanisms underlying abiotic stress responses and a reliable tool for prediction and selection of stress responsive TFs for further functional studies and genetic engineering.

  10. Microbial degradation of the pharmaceutical ibuprofen and the herbicide 2,4-D in water and soil - use and limits of data obtained from aqueous systems for predicting their fate in soil.

    PubMed

    Girardi, Cristobal; Nowak, Karolina M; Carranza-Diaz, Otoniel; Lewkow, Benjamín; Miltner, Anja; Gehre, Matthias; Schäffer, Andreas; Kästner, Matthias

    2013-02-01

    The persistence of chemicals is a key parameter for their environmental risk assessment. Extrapolating their biodegradability potential in aqueous systems to soil systems would improve the environmental impact assessment. This study compares the fate of (14/13)C-labelled 2,4-D (2,4-dichlorophenoxyacetic acid) and ibuprofen in OECD tests 301 (ready biodegradability in aqueous systems) and 307 (soil). 85% of 2,4-D and 68% of ibuprofen were mineralised in aqueous systems, indicating ready biodegradability, but only 57% and 45% in soil. Parent compounds and metabolites decreased to <2% of the spiked amounts in both systems. In soil, 36% of 2,4-D and 30% of ibuprofen were bound in non-extractable residues (NER). NER formation in the abiotic controls was half as high as in the biotic treatments. However, mineralisation, biodegradation and abiotic residue formation are competing processes. Assuming the same extent of abiotic NER formation in abiotic and biotic systems may therefore overestimate the abiotic contribution in the biotic systems. Mineralisation was described by a logistic model for the aquatic systems and by a two-pool first order degradation model for the soil systems. This agrees with the different abundance of microorganisms in the two systems, but precludes direct comparison of the fitted parameters. Nevertheless, the maximum mineralisable amounts determined by the models were similar in both systems, although the maximum mineralisation rate was about 3.5 times higher in the aqueous systems than in the soil system for both compounds; these parameters may thus be extrapolated from aqueous to soil systems. However, the maximum mineralisable amount is calculated by extrapolation to infinite times and includes intermediately formed biomass derived from the labelled carbon. The amount of labelled carbon within microbial biomass residues is higher in the soil system, resulting in lower degradation rates. Further evaluation of these relationships requires

  11. Assessing microbial degradation of o-xylene at field-scale from the reduction in mass flow rate combined with compound-specific isotope analyses.

    PubMed

    Peter, A; Steinbach, A; Liedl, R; Ptak, T; Michaelis, W; Teutsch, G

    2004-07-01

    In recent years, natural attenuation (NA) has evolved into a possible remediation alternative, especially in the case of BTEX spills. In order to be approved by the regulators, biodegradation needs to be demonstrated which requires efficient site investigation and monitoring tools. Three methods--the Integral Groundwater Investigation method, the compound-specific isotope analysis (CSIA) and a newly developed combination of both--were used in this work to quantify at field scale the biodegradation of o-xylene at a former gasworks site which is heavily contaminated with BTEX and PAHs. First, the Integral Groundwater Investigation method [Schwarz, R., Ptak, T., Holder, T., Teutsch, G., 1998. Groundwater risk assessment at contaminated sites: a new investigation approach. In: Herbert, M. and Kovar, K. (Editors), GQ'98 Groundwater Quality: Remediation and Protection. IAHS Publication 250, pp. 68-71; COH 4 (2000) 170] was applied, which allows the determination of mass flow rates of o-xylene by integral pumping tests. Concentration time series obtained during pumping at two wells were used to calculate inversely contaminant mass flow rates at the two control planes that are defined by the diameter of the maximum isochrone. A reactive transport model was used within a Monte Carlo approach to identify biodegradation as the dominant process for reduction in the contaminant mass flow rate between the two consecutive control planes. Secondly, compound-specific carbon isotope analyses of o-xylene were performed on the basis of point-scale samples from the same two wells. The Rayleigh equation was used to quantify the degree of biodegradation that occurred between the wells. Thirdly, a combination of the Integral Groundwater Investigation method and the compound-specific isotope analysis was developed and applied. It comprises isotope measurements during the integral pumping tests and the evaluation of delta13C time series by an inversion algorithm to obtain spatially

  12. Assessing microbial degradation of o-xylene at field-scale from the reduction in mass flow rate combined with compound-specific isotope analyses

    NASA Astrophysics Data System (ADS)

    Peter, A.; Steinbach, A.; Liedl, R.; Ptak, T.; Michaelis, W.; Teutsch, G.

    2004-07-01

    In recent years, natural attenuation (NA) has evolved into a possible remediation alternative, especially in the case of BTEX spills. In order to be approved by the regulators, biodegradation needs to be demonstrated which requires efficient site investigation and monitoring tools. Three methods—the Integral Groundwater Investigation method, the compound-specific isotope analysis (CSIA) and a newly developed combination of both—were used in this work to quantify at field scale the biodegradation of o-xylene at a former gasworks site which is heavily contaminated with BTEX and PAHs. First, the Integral Groundwater Investigation method [Schwarz, R., Ptak, T., Holder, T., Teutsch, G., 1998. Groundwater risk assessment at contaminated sites: a new investigation approach. In: Herbert, M. and Kovar, K. (Editors), GQ'98 Groundwater Quality: Remediation and Protection. IAHS Publication 250, pp. 68-71; COH 4 (2000) 170] was applied, which allows the determination of mass flow rates of o-xylene by integral pumping tests. Concentration time series obtained during pumping at two wells were used to calculate inversely contaminant mass flow rates at the two control planes that are defined by the diameter of the maximum isochrone. A reactive transport model was used within a Monte Carlo approach to identify biodegradation as the dominant process for reduction in the contaminant mass flow rate between the two consecutive control planes. Secondly, compound-specific carbon isotope analyses of o-xylene were performed on the basis of point-scale samples from the same two wells. The Rayleigh equation was used to quantify the degree of biodegradation that occurred between the wells. Thirdly, a combination of the Integral Groundwater Investigation method and the compound-specific isotope analysis was developed and applied. It comprises isotope measurements during the integral pumping tests and the evaluation of δ13C time series by an inversion algorithm to obtain spatially

  13. Assessing microbial degradation of o-xylene at field-scale from the reduction in mass flow rate combined with compound-specific isotope analyses.

    PubMed

    Peter, A; Steinbach, A; Liedl, R; Ptak, T; Michaelis, W; Teutsch, G

    2004-07-01

    In recent years, natural attenuation (NA) has evolved into a possible remediation alternative, especially in the case of BTEX spills. In order to be approved by the regulators, biodegradation needs to be demonstrated which requires efficient site investigation and monitoring tools. Three methods--the Integral Groundwater Investigation method, the compound-specific isotope analysis (CSIA) and a newly developed combination of both--were used in this work to quantify at field scale the biodegradation of o-xylene at a former gasworks site which is heavily contaminated with BTEX and PAHs. First, the Integral Groundwater Investigation method [Schwarz, R., Ptak, T., Holder, T., Teutsch, G., 1998. Groundwater risk assessment at contaminated sites: a new investigation approach. In: Herbert, M. and Kovar, K. (Editors), GQ'98 Groundwater Quality: Remediation and Protection. IAHS Publication 250, pp. 68-71; COH 4 (2000) 170] was applied, which allows the determination of mass flow rates of o-xylene by integral pumping tests. Concentration time series obtained during pumping at two wells were used to calculate inversely contaminant mass flow rates at the two control planes that are defined by the diameter of the maximum isochrone. A reactive transport model was used within a Monte Carlo approach to identify biodegradation as the dominant process for reduction in the contaminant mass flow rate between the two consecutive control planes. Secondly, compound-specific carbon isotope analyses of o-xylene were performed on the basis of point-scale samples from the same two wells. The Rayleigh equation was used to quantify the degree of biodegradation that occurred between the wells. Thirdly, a combination of the Integral Groundwater Investigation method and the compound-specific isotope analysis was developed and applied. It comprises isotope measurements during the integral pumping tests and the evaluation of delta13C time series by an inversion algorithm to obtain spatially

  14. Soil microbial response to photo-degraded C60 fullerenes.

    PubMed

    Berry, Timothy D; Clavijo, Andrea P; Zhao, Yingcan; Jafvert, Chad T; Turco, Ronald F; Filley, Timothy R

    2016-04-01

    Recent studies indicate that while unfunctionalized carbon nanomaterials (CNMs) exhibit very low decomposition rates in soils, even minor surface functionalization (e.g., as a result of photochemical weathering) may accelerate microbial decay. We present results from a C60 fullerene-soil incubation study designed to investigate the potential links between photochemical and microbial degradation of photo-irradiated C60. Irradiating aqueous (13)C-labeled C60 with solar-wavelength light resulted in a complex mixture of intermediate products with decreased aromaticity. Although addition of irradiated C60 to soil microcosms had little effect on net soil respiration, excess (13)C in the respired CO2 demonstrates that photo-irradiating C60 enhanced its degradation in soil, with ∼ 0.78% of 60 day photo-irradiated C60 mineralized. Community analysis by DGGE found that soil microbial community structure was altered and depended on the photo-treatment duration. These findings demonstrate how abiotic and biotic transformation processes can couple to influence degradation of CNMs in the natural environment.

  15. Regulation of Photosynthesis during Abiotic Stress-Induced Photoinhibition.

    PubMed

    Gururani, Mayank Anand; Venkatesh, Jelli; Tran, Lam Son Phan

    2015-09-01

    Plants as sessile organisms are continuously exposed to abiotic stress conditions that impose numerous detrimental effects and cause tremendous loss of yield. Abiotic stresses, including high sunlight, confer serious damage on the photosynthetic machinery of plants. Photosystem II (PSII) is one of the most susceptible components of the photosynthetic machinery that bears the brunt of abiotic stress. In addition to the generation of reactive oxygen species (ROS) by abiotic stress, ROS can also result from the absorption of excessive sunlight by the light-harvesting complex. ROS can damage the photosynthetic apparatus, particularly PSII, resulting in photoinhibition due to an imbalance in the photosynthetic redox signaling pathways and the inhibition of PSII repair. Designing plants with improved abiotic stress tolerance will require a comprehensive understanding of ROS signaling and the regulatory functions of various components, including protein kinases, transcription factors, and phytohormones, in the responses of photosynthetic machinery to abiotic stress. Bioenergetics approaches, such as chlorophyll a transient kinetics analysis, have facilitated our understanding of plant vitality and the assessment of PSII efficiency under adverse environmental conditions. This review discusses the current understanding and indicates potential areas of further studies on the regulation of the photosynthetic machinery under abiotic stress.

  16. Chemical Reactivity Probes for Assessing Abiotic Natural Attenuation by Reducing Iron Minerals.

    PubMed

    Fan, Dimin; Bradley, Miranda J; Hinkle, Adrian W; Johnson, Richard L; Tratnyek, Paul G

    2016-02-16

    Increasing recognition that abiotic natural attenuation (NA) of chlorinated solvents can be important has created demand for improved methods to characterize the redox properties of the aquifer materials that are responsible for abiotic NA. This study explores one promising approach: using chemical reactivity probes (CRPs) to characterize the thermodynamic and kinetic aspects of contaminant reduction by reducing iron minerals. Assays of thermodynamic CRPs were developed to determine the reduction potentials (ECRP) of suspended minerals by spectrophotometric determination of equilibrium CRP speciation and calculations using the Nernst equation. ECRP varied as expected with mineral type, mineral loading, and Fe(II) concentration. Comparison of ECRP with reduction potentials measured potentiometrically using a Pt electrode (EPt) showed that ECRP was 100-150 mV more negative than EPt. When EPt was measured with small additions of CRPs, the systematic difference between EPt and ECRP was eliminated, suggesting that these CRPs are effective mediators of electron transfer between mineral and electrode surfaces. Model contaminants (4-chloronitrobenzene, 2-chloroacetophenone, and carbon tetrachloride) were used as kinetic CRPs. The reduction rate constants of kinetic CRPs correlated well with the ECRP for mineral suspensions. Using the rate constants compiled from literature for contaminants and relative mineral reduction potentials based on ECRP measurements, qualitatively consistent trends were obtained, suggesting that CRP-based assays may be useful for estimating abiotic NA rates of contaminants in groundwater.

  17. Polyamines and abiotic stress tolerance in plants.

    PubMed

    Gill, Sarvajeet Singh; Tuteja, Narendra

    2010-01-01

    Environmental stresses including climate change, especially global warming, are severely affecting plant growth and productivity worldwide. It has been estimated that two-thirds of the yield potential of major crops are routinely lost due to the unfavorable environmental factors. On the other hand, the world population is estimated to reach about 10 billion by 2050, which will witness serious food shortages. Therefore, crops with enhanced vigour and high tolerance to various environmental factors should be developed to feed the increasing world population. Maintaining crop yields under adverse environmental stresses is probably the major challenge facing modern agriculture where polyamines can play important role. Polyamines (PAs)(putrescine, spermidine and spermine) are group of phytohormone-like aliphatic amine natural compounds with aliphatic nitrogen structure and present in almost all living organisms including plants. Evidences showed that polyamines are involved in many physiological processes, such as cell growth and development and respond to stress tolerance to various environmental factors. In many cases the relationship of plant stress tolerance was noted with the production of conjugated and bound polyamines as well as stimulation of polyamine oxidation. Therefore, genetic manipulation of crop plants with genes encoding enzymes of polyamine biosynthetic pathways may provide better stress tolerance to crop plants. Furthermore, the exogenous application of PAs is also another option for increasing the stress tolerance potential in plants. Here, we have described the synthesis and role of various polyamines in abiotic stress tolerance in plants.

  18. Polyamines and abiotic stress tolerance in plants

    PubMed Central

    Gill, Sarvajeet Singh

    2010-01-01

    Environmental stresses including climate change, especially global warming, are severely affecting plant growth and productivity worldwide. It has been estimated that two-thirds of the yield potential of major crops are routinely lost due to the unfavorable environmental factors. On the other hand, the world population is estimated to reach about 10 billion by 2050, which will witness serious food shortages. Therefore, crops with enhanced vigour and high tolerance to various environmental factors should be developed to feed the increasing world population. Maintaining crop yields under adverse environmental stresses is probably the major challenge facing modern agriculture where polyamines can play important role. Polyamines (PAs)(putrescine, spermidine and spermine) are group of phytohormone-like aliphatic amine natural compounds with aliphatic nitrogen structure and present in almost all living organisms including plants. Evidences showed that polyamines are involved in many physiological processes, such as cell growth and development and respond to stress tolerance to various environmental factors. In many cases the relationship of plant stress tolerance was noted with the production of conjugated and bound polyamines as well as stimulation of polyamine oxidation. Therefore, genetic manipulation of crop plants with genes encoding enzymes of polyamine biosynthetic pathways may provide better stress tolerance to crop plants. Furthermore, the exogenous application of PAs is also another option for increasing the stress tolerance potential in plants. Here, we have described the synthesis and role of various polyamines in abiotic stress tolerance in plants. PMID:20592804

  19. Phenotyping for abiotic stress tolerance in maize.

    PubMed

    Masuka, Benhilda; Araus, Jose Luis; Das, Biswanath; Sonder, Kai; Cairns, Jill E

    2012-04-01

    The ability to quickly develop germplasm having tolerance to several complex polygenic inherited abiotic and biotic stresses combined is critical to the resilience of cropping systems in the face of climate change. Molecular breeding offers the tools to accelerate cereal breeding; however, suitable phenotyping protocols are essential to ensure that the much-anticipated benefits of molecular breeding can be realized. To facilitate the full potential of molecular tools, greater emphasis needs to be given to reducing the within-experimental site variability, application of stress and characterization of the environment and appropriate phenotyping tools. Yield is a function of many processes throughout the plant cycle, and thus integrative traits that encompass crop performance over time or organization level (i.e. canopy level) will provide a better alternative to instantaneous measurements which provide only a snapshot of a given plant process. Many new phenotyping tools based on remote sensing are now available including non-destructive measurements of growth-related parameters based on spectral reflectance and infrared thermometry to estimate plant water status. Here we describe key field phenotyping protocols for maize with emphasis on tolerance to drought and low nitrogen.

  20. Abiotic uptake of gases by organic soils

    NASA Astrophysics Data System (ADS)

    Smagin, A. V.

    2007-12-01

    Methodological and experimental studies of the abiotic uptake of gaseous substances by organic soils were performed. The static adsorption method of closed vessels for assessing the interaction of gases with the solid and liquid soil phases and the dynamic method of determining the sorption isotherms of gases by soils were analyzed. The theoretical substantiation of the methods and their practical implementations on the basis of a PGA-7 portable gas analyzer (Russia) were considered. Good agreement between the equilibrium sorption isotherms of the gases and the Langmuir model was revealed; for the real ranges of natural gas concentrations, this model can be reduced to the linear Henry equation. The limit values of the gas sorption (Langmuir monolayer capacity) are typical for dry samples; they vary from 670 4000 g/m3 for methane and oxygen to 20 000 25 000 g/m3 for carbon dioxide. The linear distribution coefficients of gases between the solid and gas phases of organic soils (Henry constants) are 8 18 units for poorly sorbed gases (O2, CH4) and 40 60 units for CO2. The kinetics of the chemicophysical uptake of gases by the soil studied is linear in character and obeys the relaxation kinetic model of the first order with the corresponding relaxation constants, which vary from 1 h -1 in wet samples to 10 h -1 in dry samples.

  1. Mobility of 2-amino-4,6-dinitrobenzoic acid, a photodegradation product of TNT in a tropical soil under saturated abiotic conditions.

    PubMed

    Sheild, Lukas D; Lichwa, Joseph; Colon, Edwin J; Moravcik, Philip; Ray, Chittaranjan

    2013-09-15

    We examined the mobility of 2-amino-4,6-dinitrobenzoic acid (2-A-4,6-DBA) a common photodegradation product of TNT, in soil taken from a former military training area on Oahu Island, Hawaii, USA. 2-A-4,6-DBA is stable and polar and has the potential to migrate to groundwater. Little experimentation has been conducted on explosives in tropical soils which differ chemically from soils in temperate climates. 2,4,6-Trinitrotoluene (TNT) and 1,3,5-hexahydro-1,3,5-trinitrotriazine (RDX) are the most commonly used secondary military explosives. Composition B (Comp B) is a frequently used 59/40/1 combination of RDX, TNT, and wax binder. In order to examine the effect of the presence of Comp B and its degradation products on the mobility of 2-A-4,6-DBA in soil, we dissolved field-collected Comp B fragments in water, exposed the solution to light and pumped it through soil and sand-packed stainless steel columns under abiotic saturated conditions. We found that in the presence of a complex mixture of explosives and degradation products, 2-A-4,6-DBA migrated faster than the parent compound (TNT) and other degradation products through both tropical soil and Ottawa sand (used as a reference) under sterile saturated conditions. The relatively rapid movement of 2-A-4,6-DBA suggests that it has the potential to contaminate underlying groundwater. However, the amount of 2-A-4,6-DBA produced under field conditions and its rate of biotic degradation were not part of this research, therefore, it is unknown how these factors might affect the transport and fate of 2-A-4,6-DBA. PMID:23827728

  2. Chemical Priming of Plants Against Multiple Abiotic Stresses: Mission Possible?

    PubMed

    Savvides, Andreas; Ali, Shawkat; Tester, Mark; Fotopoulos, Vasileios

    2016-04-01

    Crop plants are subjected to multiple abiotic stresses during their lifespan that greatly reduce productivity and threaten global food security. Recent research suggests that plants can be primed by chemical compounds to better tolerate different abiotic stresses. Chemical priming is a promising field in plant stress physiology and crop stress management. We review here promising chemical agents such as sodium nitroprusside, hydrogen peroxide, sodium hydrosulfide, melatonin, and polyamines that can potentially confer enhanced tolerance when plants are exposed to multiple abiotic stresses. The challenges and opportunities of chemical priming are addressed, with the aim to boost future research towards effective application in crop stress management.

  3. Recent Molecular Advances on Downstream Plant Responses to Abiotic Stress

    PubMed Central

    dos Reis, Sávio Pinho; Lima, Aline Medeiros; de Souza, Cláudia Regina Batista

    2012-01-01

    Abiotic stresses such as extremes of temperature and pH, high salinity and drought, comprise some of the major factors causing extensive losses to crop production worldwide. Understanding how plants respond and adapt at cellular and molecular levels to continuous environmental changes is a pre-requisite for the generation of resistant or tolerant plants to abiotic stresses. In this review we aimed to present the recent advances on mechanisms of downstream plant responses to abiotic stresses and the use of stress-related genes in the development of genetically engineered crops. PMID:22942725

  4. HvPap-1 C1A protease actively participates in barley proteolysis mediated by abiotic stresses.

    PubMed

    Velasco-Arroyo, Blanca; Diaz-Mendoza, Mercedes; Gandullo, Jacinto; Gonzalez-Melendi, Pablo; Santamaria, M Estrella; Dominguez-Figueroa, Jose D; Hensel, Goetz; Martinez, Manuel; Kumlehn, Jochen; Diaz, Isabel

    2016-07-01

    Protein breakdown and mobilization from old or stressed tissues to growing and sink organs are some of the metabolic features associated with abiotic/biotic stresses, essential for nutrient recycling. The massive degradation of proteins implies numerous proteolytic events in which cysteine-proteases are the most abundant key players. Analysing the role of barley C1A proteases in response to abiotic stresses is crucial due to their impact on plant growth and grain yield and quality. In this study, dark and nitrogen starvation treatments were selected to induce stress in barley. Results show that C1A proteases participate in the proteolytic processes triggered in leaves by both abiotic treatments, which strongly induce the expression of the HvPap-1 gene encoding a cathepsin F-like protease. Differences in biochemical parameters and C1A gene expression were found when comparing transgenic barley plants overexpressing or silencing the HvPap-1 gene and wild-type dark-treated leaves. These findings associated with morphological changes evidence a lifespan-delayed phenotype of HvPap-1 silenced lines. All these data elucidate on the role of this protease family in response to abiotic stresses and the potential of their biotechnological manipulation to control the timing of plant growth. PMID:27217548

  5. Abiotic and Microbial Interactions during Anaerobic Transformations of Fe(II) and NOX-

    PubMed Central

    Picardal, Flynn

    2012-01-01

    Microbial Fe(II) oxidation using NO3- as the terminal electron acceptor [nitrate-dependent Fe(II) oxidation, NDFO] has been studied for over 15 years. Although there are reports of autotrophic isolates and stable enrichments, many of the bacteria capable of NDFO are known organotrophic NO3--reducers that require the presence of an organic, primary substrate, e.g., acetate, for significant amounts of Fe(II) oxidation. Although the thermodynamics of Fe(II) oxidation are favorable when coupled to either NO3- or NO2- reduction, the kinetics of abiotic Fe(II) oxidation by NO3- are relatively slow except under special conditions. NDFO is typically studied in batch cultures containing millimolar concentrations of Fe(II), NO3-, and the primary substrate. In such systems, NO2- is often observed to accumulate in culture media during Fe(II) oxidation. Compared to NO3-, abiotic reactions of biogenic NO2- and Fe(II) are relatively rapid. The kinetics and reaction pathways of Fe(II) oxidation by NO2- are strongly affected by medium composition and pH, reactant concentration, and the presence of Fe(II)-sorptive surfaces, e.g., Fe(III) oxyhydroxides and cellular surfaces. In batch cultures, the combination of abiotic and microbial Fe(II) oxidation can alter product distribution and, more importantly, results in the formation of intracellular precipitates and extracellular Fe(III) oxyhydroxide encrustations that apparently limit further cell growth and Fe(II) oxidation. Unless steps are taken to minimize or account for potential abiotic reactions, results of microbial NDFO studies can be obfuscated by artifacts of the chosen experimental conditions, the use of inappropriate analytical methods, and the resulting uncertainties about the relative importance of abiotic and microbial reactions. In this manuscript, abiotic reactions of NO3- and NO2- with aqueous Fe2+, chelated Fe(II), and solid-phase Fe(II) are reviewed along with factors that can influence overall NDFO reaction rates

  6. Coupled biotic-abiotic oxidation of organic matter by biogenic MnO_{2}

    NASA Astrophysics Data System (ADS)

    Gonzalez, Julia; Peña, Jasquelin

    2016-04-01

    Some reactive soil minerals are strongly implicated in stabilising organic matter. However, others can play an active role in the oxidation of organic molecules. In natural systems, layer-type manganese oxide minerals (MnO2) typically occur as biomineral assemblages consisting of mineral particles and microbial biomass. Both the mineral and biological fractions of the assemblage can be powerful oxidants of organic C. The biological compartment relies on a set of enzymes to drive oxidative transformations of reduced C-substrates, whereas MnO2 minerals are strong, less specific abiotic oxidants that are assumed to rely on interfacial interactions between C-substrates and the mineral surface. This project aims to understand the coupling between microbial C mineralization and abiotic C oxidation mediated by MnO2 in bacterial-MnO2 assemblages. Specifically, under conditions of high C turnover, microbial respiration can significantly alter local pH, dissolved oxygen and pool of available reductants, which may modify rates and mechanism of C oxidation by biotic and abiotic components. We first investigated changes in the solution chemistry of Pseudomonas putida suspensions exposed to varying concentrations of glucose, chosen to represent readily bioavailable substrates in soils. Glucose concentrations tested ranged between 0 and 5.5mM and changes in pH, dissolved oxygen and dissolved organic and inorganic carbon were tracked over 48h. We then combined literature review and wet-chemical experiments to compile the pH dependence of rates of organic substrate oxidation by MnO2, including glucose. Our results demonstrate a strong pH dependence for these abiotic reactions. In assemblages of P. putida - MnO2, kinetic limitations for abiotic C oxidation by MnO2 are overcome by changes in biogeochemical conditions that result from bacterial C metabolism. When extrapolated to a soil solution confronted to an input of fresh dissolved organic matter, bacterial C metabolism of the

  7. Constraints on biotic and abiotic role in the formation of Fe-Si oxides from the PACMANUS hydrothermal field

    NASA Astrophysics Data System (ADS)

    Yang, Baoju; Zeng, Zhigang; Qi, Haiyan; Wang, Xiaoyuan; Ma, Yao; Rong, Kunbo

    2015-12-01

    Fe-Si oxide deposits were recovered from the PACMANUS (Papua New Guinea-Australia-Canada-Manus) hydrothermal field in Eastern Manus basin. Samples were loose and fragile. Optical and scanning electron microscopy showed that the samples had abundant rod-like or twisted filamentous and granular structures. Electron probe microanalysis revealed that these filaments and grains were mainly composed of Fe and Si. The presence of spherical grains on the surface of the filaments suggests the intergrowth of biotic and abiotic reactions. Biotic and abiotic kinetics competition always exists in the redox gradient. Based on the physico-chemical conditions of PACMANUS hydrothermal fluids, we calculated a strict abiotic oxidation rate of Fe2+ to Fe3+, which is approximately 0.0123 g/min. If the fluids had been erupting consistently and the concentration of Fe2+ was constant, 3.232 kg per year of Fe would be deposited in this vent. The amount of Fe oxides around the studied vent was larger than the amount determined by strict abiotic kinetic calculation. Bacteria may also play an important role in Fe oxidation. A mesh-like microenvironment constructed by biogenic filaments ensured adequate Fe2+ and low oxygen content for the growth of bacteria. Moreover, this structure promoted the deposition of abiotic Fe-Si oxides.

  8. Olivine Weathering: Abiotic Versus Biotic Processes as Possible Biosignatures

    NASA Technical Reports Server (NTRS)

    Longazo, T. G.; Wentworth, S. J.; McKay, D. S.; Southam, G.; Clemett, S. J.

    2001-01-01

    A preliminary study to determine how abiotic versus biotic processes affect the weathering of olivine crystals. Perhaps the differences between these weathering processes could be used as biosignatures. Additional information is contained in the original extended abstract.

  9. Circadian regulation of abiotic stress tolerance in plants.

    PubMed

    Grundy, Jack; Stoker, Claire; Carré, Isabelle A

    2015-01-01

    Extremes of temperatures, drought and salinity cause widespread crop losses throughout the world and impose severe limitations on the amount of land that can be used for agricultural purposes. Hence, there is an urgent need to develop crops that perform better under such abiotic stress conditions. Here, we discuss intriguing, recent evidence that circadian clock contributes to plants' ability to tolerate different types of environmental stress, and to acclimate to them. The clock controls expression of a large fraction of abiotic stress-responsive genes, as well as biosynthesis and signaling downstream of stress response hormones. Conversely, abiotic stress results in altered expression and differential splicing of the clock genes, leading to altered oscillations of downstream stress-response pathways. We propose a range of mechanisms by which this intimate coupling between the circadian clock and environmental stress-response pathways may contribute to plant growth and survival under abiotic stress.

  10. Roles of melatonin in abiotic stress resistance in plants.

    PubMed

    Zhang, Na; Sun, Qianqian; Zhang, Haijun; Cao, Yunyun; Weeda, Sarah; Ren, Shuxin; Guo, Yang-Dong

    2015-02-01

    In recent years melatonin has emerged as a research highlight in plant studies. Melatonin has different functions in many aspects of plant growth and development. The most frequently mentioned functions of melatonin are related to abiotic stresses such as drought, radiation, extreme temperature, and chemical stresses. This review mainly focuses on the regulatory effects of melatonin when plants face harsh environmental conditions. Evidence indicates that environmental stress can increase the level of endogenous melatonin in plants. Overexpression of the melatonin biosynthetic genes elevates melatonin levels in transgenic plants. The transgenic plants show enhanced tolerance to abiotic stresses. Exogenously applied melatonin can also improve the ability of plants to tolerate abiotic stresses. The mechanisms by which melatonin alleviates abiotic stresses are discussed.

  11. Circadian regulation of abiotic stress tolerance in plants

    PubMed Central

    Grundy, Jack; Stoker, Claire; Carré, Isabelle A.

    2015-01-01

    Extremes of temperatures, drought and salinity cause widespread crop losses throughout the world and impose severe limitations on the amount of land that can be used for agricultural purposes. Hence, there is an urgent need to develop crops that perform better under such abiotic stress conditions. Here, we discuss intriguing, recent evidence that circadian clock contributes to plants’ ability to tolerate different types of environmental stress, and to acclimate to them. The clock controls expression of a large fraction of abiotic stress-responsive genes, as well as biosynthesis and signaling downstream of stress response hormones. Conversely, abiotic stress results in altered expression and differential splicing of the clock genes, leading to altered oscillations of downstream stress-response pathways. We propose a range of mechanisms by which this intimate coupling between the circadian clock and environmental stress-response pathways may contribute to plant growth and survival under abiotic stress. PMID:26379680

  12. Biological and abiotic dechlorination of highly chlorinated dioxins in biphasic microcosms

    SciTech Connect

    Barkovskii, A.; Adriaens, P.

    1995-12-31

    A novel experimental approach to help increase the rates and extent of reductive dechlorination of polychlorinated dibenzo-p-dioxins (PCDD) is presented. Biphasic microcosms emulsions containing eluted microorganisms derived from historically contaminated Passaic River (New Jersey) sediments, and 4% (v/v) of decane, were spiked with mg/L of octaCDD. The microcosms were amended separately with three polyphenolic compounds--catechol, resorcinol, and 3,4-dihydroxybenzoate--to help improve electron transfer during reductive dechlorination. Abiotic controls containing phenolic compounds only, and pasteurized cells were monitored along with the active microcosms. Lesser-chlorinated congeners were observed in all treatments, including killed cells, indicating the potential not only for biological and abiotic, but also biogenic dechlorination mechanisms. After 3 months of incubation, tetraCDD isomers were produced in biological incubations only, and up to 30% of the spiked octaCDD was removed. Polyphenolic compounds first appear to transiently complex with the dioxins prior to further dechlorination, and did not increase the dechlorination rates over unamended cells. Whereas the 2,3,7,8-/1,4,6,9-substitution ratio of heptachlorinated congeners increased in all treatments, 2,3,7,8-substituted hexaCDDs congeners were identified mainly in active cell incubations. Further isomer-specific analysis may thus enable distinction between abiotic and biotic dechlorination processes in anaerobic sediments.

  13. Degradation of metaflumizone in soil: impact of varying moisture, light, temperature, atmospheric CO2 level, soil type and soil sterilization.

    PubMed

    Chatterjee, Niladri Sekhar; Gupta, Suman; Varghese, Eldho

    2013-01-01

    Soil is a major sink for the bulk of globally used pesticides. Hence, fate of pesticides in soil under the influence of various biotic and abiotic factors becomes important for evaluation of stability and safety. This paper presents the impact of varying moisture, light, temperature, atmospheric CO(2) level, soil type and soil sterilization on degradation of metaflumizone, a newly registered insecticide in India. Degradation of metaflumizone in soil followed the first order reaction kinetics and its half life values varied from ~20 to 150 d. Under anaerobic condition, degradation of metaflumizone was faster (t(½) 33.4 d) compared to aerobic condition (t(½) 50.1 d) and dry soil (t(½) 150.4 d). Under different light exposures, degradation was the fastest under UV light (t(½) 27.3 d) followed by Xenon light (t(½) 43 d) and dark condition (t(½) 50.1 d). Degradation rate of metaflumizone increased with temperature and its half life values ranged from 30.1 to 100.3d. Elevated atmospheric CO(2) level increased the degradation in soil (t(½) 20.1-50.1 d). However, overall degradation rate was the fastest at 550 ppm atmospheric CO(2) level, followed by 750 ppm and ambient level (375 ppm). Degradation of metaflumizone was faster in Oxisol (pH 5.2, Total Organic Carbon 1.2%) compared to Inceptisol (pH 8.15, TOC 0.36%). In sterile soil, only 5% dissipation of initial concentration was observed after 90 d of sampling. Under various conditions, 4-cyanobenzoic acid (0.22-1.86 mg kg(-1)) and 4-trifluoromethoxy aniline (0.21-1.23 mg kg(-1)) were detected as major degradation products.

  14. Degradation Testing of Fluorotelomer-based polymers (FTPs)

    EPA Science Inventory

    Over the last decade, concern about sources of per and polyfluorochemicals (PFCs) have led to an increasing need for information on the microbial and/or abiotic degradation of polymer materials that contain PFC structural fragments that may be released. EPA, OECD, ASTM and other...

  15. Microbial degradation of toluene under sulfate-reducing conditions and the influence of iron on the process.

    PubMed Central

    Beller, H R; Grbić-Galić, D; Reinhard, M

    1992-01-01

    Toluene degradation occurred concomitantly with sulfate reduction in anaerobic microcosms inoculated with contaminated subsurface soil from an aviation fuel storage facility near the Patuxent River (Md.). Similar results were obtained for enrichment cultures in which toluene was the sole carbon source. Several lines of evidence suggest that toluene degradation was directly coupled to sulfate reduction in Patuxent River microcosms and enrichment cultures: (i) the two processes were synchronous and highly correlated, (ii) the observed stoichiometric ratios of moles of sulfate consumed per mole of toluene consumed were consistent with the theoretical ratio for the oxidation of toluene to CO2 coupled with the reduction of sulfate to hydrogen sulfide, and (iii) toluene degradation ceased when sulfate was depleted, and conversely, sulfate reduction ceased when toluene was depleted. Mineralization of toluene was confirmed in experiments with [ring-U-14C]toluene. The addition of millimolar concentrations of amorphous Fe(OH)3 to Patuxent River microcosms and enrichment cultures either greatly facilitated the onset of toluene degradation or accelerated the rate once degradation had begun. In iron-amended microcosms and enrichment cultures, ferric iron reduction proceeded concurrently with toluene degradation and sulfate reduction. Stoichiometric data and other observations indicate that ferric iron reduction was not directly coupled to toluene oxidation but was a secondary, presumably abiotic, reaction between ferric iron and biogenic hydrogen sulfide. PMID:1575481

  16. Purex diluent degradation

    SciTech Connect

    Tallent, O.K.; Mailen, J.C.; Pannell, K.D.

    1984-02-01

    The chemical degradation of normal paraffin hydrocarbon (NPH) diluents both in the pure state and mixed with 30% tributyl phosphate (TBP) was investigated in a series of experiments. The results show that degradation of NPH in the TBP-NPH-HNO/sub 3/ system is consistent with the active chemical agent being a radical-like nitrogen dioxide (NO/sub 2/) molecule, not HNO/sub 3/ as such. Spectrophotometric, gas chromatographic, mass spectrographic, and titrimetric methods were used to identify the degradation products, which included alkane nitro and nitrate compounds, alcohols, unsaturated alcohols, nitro alcohols, nitro alkenes, ketones, and carboxylic acids. The degradation rate was found to increase with increases in the HNO/sub 3/ concentration and the temperature. The rate was decreased by argon sparging to remove NO/sub 2/ and by the addition of butanol, which probably acts as a NO/sub 2/ scavenger. 13 references, 11 figures.

  17. Polyamines and abiotic stress in plants: a complex relationship1

    PubMed Central

    Minocha, Rakesh; Majumdar, Rajtilak; Minocha, Subhash C.

    2014-01-01

    The physiological relationship between abiotic stress in plants and polyamines was reported more than 40 years ago. Ever since there has been a debate as to whether increased polyamines protect plants against abiotic stress (e.g., due to their ability to deal with oxidative radicals) or cause damage to them (perhaps due to hydrogen peroxide produced by their catabolism). The observation that cellular polyamines are typically elevated in plants under both short-term as well as long-term abiotic stress conditions is consistent with the possibility of their dual effects, i.e., being protectors from as well as perpetrators of stress damage to the cells. The observed increase in tolerance of plants to abiotic stress when their cellular contents are elevated by either exogenous treatment with polyamines or through genetic engineering with genes encoding polyamine biosynthetic enzymes is indicative of a protective role for them. However, through their catabolic production of hydrogen peroxide and acrolein, both strong oxidizers, they can potentially be the cause of cellular harm during stress. In fact, somewhat enigmatic but strong positive relationship between abiotic stress and foliar polyamines has been proposed as a potential biochemical marker of persistent environmental stress in forest trees in which phenotypic symptoms of stress are not yet visible. Such markers may help forewarn forest managers to undertake amelioration strategies before the appearance of visual symptoms of stress and damage at which stage it is often too late for implementing strategies for stress remediation and reversal of damage. This review provides a comprehensive and critical evaluation of the published literature on interactions between abiotic stress and polyamines in plants, and examines the experimental strategies used to understand the functional significance of this relationship with the aim of improving plant productivity, especially under conditions of abiotic stress. PMID:24847338

  18. Effects of Abiotic Factors on HIPV-Mediated Interactions between Plants and Parasitoids

    PubMed Central

    Becker, Christine; Desneux, Nicolas; Monticelli, Lucie; Fernandez, Xavier; Michel, Thomas; Lavoir, Anne-Violette

    2015-01-01

    In contrast to constitutively emitted plant volatiles (PV), herbivore-induced plant volatiles (HIPV) are specifically emitted by plants when afflicted with herbivores. HIPV can be perceived by parasitoids and predators which parasitize or prey on the respective herbivores, including parasitic hymenoptera. HIPV act as signals and facilitate host/prey detection. They comprise a blend of compounds: main constituents are terpenoids and “green leaf volatiles.” Constitutive emission of PV is well known to be influenced by abiotic factors like temperature, light intensity, water, and nutrient availability. HIPV share biosynthetic pathways with constitutively emitted PV and might therefore likewise be affected by abiotic conditions. However, the effects of abiotic factors on HIPV-mediated biotic interactions have received only limited attention to date. HIPV being influenced by the plant's growing conditions could have major implications for pest management. Quantitative and qualitative changes in HIPV blends may improve or impair biocontrol. Enhanced emission of HIPV may attract a larger number of natural enemies. Reduced emission rates or altered compositions, however, may render blends imperceptible to parasitoides and predators. Predicting the outcome of these changes is highly important for food production and for ecosystems affected by global climate change. PMID:26788501

  19. MICROSCALE METABOLIC, REDOX AND ABIOTIC REACTIONS IN HANFORD 300 AREA SUBSURFACE SEDIMENTS

    SciTech Connect

    Beyenal, Haluk; McLEan, Jeff; Majors, Paul; Fredrickson, Jim

    2013-11-14

    The Hanford 300 Area is a unique site due to periodic hydrologic influence of river water resulting in changes in groundwater elevation and flow direction. This area is also highly subject to uranium remobilization, the source of which is currently believed to be the region at the base of the vadose zone that is subject to period saturation due to the changes in the water levels in the Columbia River. We found that microbial processes and redox and abiotic reactions which operate at the microscale were critical to understanding factors controlling the macroscopic fate and transport of contaminants in the subsurface. The combined laboratory and field research showed how microscale conditions control uranium mobility and how biotic, abiotic and redox reactions relate to each other. Our findings extended the current knowledge to examine U(VI) reduction and immobilization using natural 300 Area communities as well as selected model organisms on redox-sensitive and redox-insensitive minerals. Using innovative techniques developed specifically to probe biogeochemical processes at the microscale, our research expanded our current understanding of the roles played by mineral surfaces, bacterial competition, and local biotic, abiotic and redox reaction rates on the reduction and immobilization of uranium.

  20. Effects of Abiotic Factors on HIPV-Mediated Interactions between Plants and Parasitoids.

    PubMed

    Becker, Christine; Desneux, Nicolas; Monticelli, Lucie; Fernandez, Xavier; Michel, Thomas; Lavoir, Anne-Violette

    2015-01-01

    In contrast to constitutively emitted plant volatiles (PV), herbivore-induced plant volatiles (HIPV) are specifically emitted by plants when afflicted with herbivores. HIPV can be perceived by parasitoids and predators which parasitize or prey on the respective herbivores, including parasitic hymenoptera. HIPV act as signals and facilitate host/prey detection. They comprise a blend of compounds: main constituents are terpenoids and "green leaf volatiles." Constitutive emission of PV is well known to be influenced by abiotic factors like temperature, light intensity, water, and nutrient availability. HIPV share biosynthetic pathways with constitutively emitted PV and might therefore likewise be affected by abiotic conditions. However, the effects of abiotic factors on HIPV-mediated biotic interactions have received only limited attention to date. HIPV being influenced by the plant's growing conditions could have major implications for pest management. Quantitative and qualitative changes in HIPV blends may improve or impair biocontrol. Enhanced emission of HIPV may attract a larger number of natural enemies. Reduced emission rates or altered compositions, however, may render blends imperceptible to parasitoides and predators. Predicting the outcome of these changes is highly important for food production and for ecosystems affected by global climate change.

  1. Effects of Abiotic Factors on HIPV-Mediated Interactions between Plants and Parasitoids.

    PubMed

    Becker, Christine; Desneux, Nicolas; Monticelli, Lucie; Fernandez, Xavier; Michel, Thomas; Lavoir, Anne-Violette

    2015-01-01

    In contrast to constitutively emitted plant volatiles (PV), herbivore-induced plant volatiles (HIPV) are specifically emitted by plants when afflicted with herbivores. HIPV can be perceived by parasitoids and predators which parasitize or prey on the respective herbivores, including parasitic hymenoptera. HIPV act as signals and facilitate host/prey detection. They comprise a blend of compounds: main constituents are terpenoids and "green leaf volatiles." Constitutive emission of PV is well known to be influenced by abiotic factors like temperature, light intensity, water, and nutrient availability. HIPV share biosynthetic pathways with constitutively emitted PV and might therefore likewise be affected by abiotic conditions. However, the effects of abiotic factors on HIPV-mediated biotic interactions have received only limited attention to date. HIPV being influenced by the plant's growing conditions could have major implications for pest management. Quantitative and qualitative changes in HIPV blends may improve or impair biocontrol. Enhanced emission of HIPV may attract a larger number of natural enemies. Reduced emission rates or altered compositions, however, may render blends imperceptible to parasitoides and predators. Predicting the outcome of these changes is highly important for food production and for ecosystems affected by global climate change. PMID:26788501

  2. Rate of CRL4CRBN substrate Ikaros and Aiolos degradation underlies differential activity of lenalidomide and pomalidomide in multiple myeloma cells by regulation of c-Myc and IRF4

    PubMed Central

    Bjorklund, C C; Lu, L; Kang, J; Hagner, P R; Havens, C G; Amatangelo, M; Wang, M; Ren, Y; Couto, S; Breider, M; Ning, Y; Gandhi, A K; Daniel, T O; Chopra, R; Klippel, A; Thakurta, A G

    2015-01-01

    Recent discoveries suggest that the critical events leading to the anti-proliferative activity of the IMiD immunomodulatory agents lenalidomide and pomalidomide in multiple myeloma (MM) cells are initiated by Cereblon-dependent ubiquitination and proteasomal degradation of substrate proteins Ikaros (IKZF1) and Aiolos (IKZF3). By performing kinetic analyses, we found that the downregulation or proteasomal degradation of Ikaros and Aiolos led to specific and sequential downregulation of c-Myc followed by IRF4 and subsequent growth inhibition and apoptosis. Notably, to ensure growth inhibition and cell death, sustained downregulation of Ikaros and Aiolos, c-Myc or IRF4 expression was required. In addition, we found that the half-maximal rate, rather than the final extent of Ikaros and Aiolos degradation, correlated to the relative efficacy of growth inhibition by lenalidomide or pomalidomide. Finally, we observed that all four transcription factors were elevated in primary MM samples compared with normal plasma cells. Taken together, our results suggest a functional link between Ikaros and Aiolos, and the pathological dysregulation of c-Myc and IRF4, and provide a new mechanistic understanding of the relative efficacy of lenalidomide and pomalidomide based on the kinetics of substrate degradation and downregulation of their downstream targets. PMID:26430725

  3. Potential Abiotic Functions of Root Exudates in Rhizosphere Cycling of Soil Organic Matter

    NASA Astrophysics Data System (ADS)

    Pett-Ridge, J.; Keiluweit, M.; Bougoure, J.; Kleber, M.; Nico, P. S.

    2012-12-01

    Carbon cycling in the rhizosphere is a nexus of biophysical interactions between plant roots, microorganisms and the soil organo-mineral matrix. Plant roots are the primary source of C in mineral horizons and can significantly accelerate the rate of soil organic matter mineralization in rhizosphere soils. While a portion of this acceleration results from stimulation of microbial enzymatic capacities (the 'priming effect') - abiotic responses also play a significant role in rhizosphere cycling of soil organic matter (SOM). For example, exudate-stimulated mobilization and dissolution of metal species may release previously complexed SOM, or could affect Fe mobility via redox changes associated with microbially-driven O2 depletion. We have investigated the abiotic response of rhizosphere microenvironments, using additions of several 13C-enriched low molecular weight (LMW) root exudates and 13C-plant detritus to controlled microcosms. We hypothesized that certain abiotic effects are triggered by specific exudate compounds and that the magnitude of the effect depends on the soil physiochemical properties. Using a combination of microsensor measurements, solid-phase extractions, X-ray and IR spectroscopy, we measured how root exudates differ in their potential to create reducing microenvironments, alter metal chemisty and mineralogy, and influence the availability of SOM in the rhizosphere. High resolution X-ray microscopy (STXM) and secondary ion mass spectrometry (NanoSIMS) analyses illustrate the physical fate of the added isotope tracers in both pore water and on mineral surfaces. Our results suggest that certain root exudates facilitate abiotic reactions that increase the pool of bioavailable SOM and stimulate its microbial decomposition in the rhizosphere. In particular, the contrasting ecological functions of LMW organic acids and simple sugars in facilitating SOM breakdown in the rhizosphere will be discussed.

  4. State of chemical modeling modules for the degradation of concrete and cements

    SciTech Connect

    Meike, A.

    1997-04-15

    This report describes the conceptual framework upon which modeling activities will be needed to predict the chemistry of water in contact with concrete and its degradation products cover a broad area, from developing databases for existing abiotic codes, to developing codes that can simulate the chemical impact of microbial activities at a level of sophistication equivalent to that of the abiotic modeling codes, and ultimately, to simulating drift-scale chemical systems in support of hydrological, geochemical,a nd engineering efforts.

  5. Plant cell organelle proteomics in response to abiotic stress.

    PubMed

    Hossain, Zahed; Nouri, Mohammad-Zaman; Komatsu, Setsuko

    2012-01-01

    Proteomics is one of the finest molecular techniques extensively being used for the study of protein profiling of a given plant species experiencing stressed conditions. Plants respond to a stress by alteration in the pattern of protein expression, either by up-regulating of the existing protein pool or by the synthesizing novel proteins primarily associated with plants antioxidative defense mechanism. Improved protein extraction protocols and advance techniques for identification of novel proteins have been standardized in different plant species at both cellular and whole plant level for better understanding of abiotic stress sensing and intracellular stress signal transduction mechanisms. In contrast, an in-depth proteome study of subcellular organelles could generate much detail information about the intrinsic mechanism of stress response as it correlates the possible relationship between the protein abundance and plant stress tolerance. Although a wealth of reviews devoted to plant proteomics are available, review articles dedicated to plant cell organelle proteins response under abiotic stress are very scanty. In the present review, an attempt has been made to summarize all significant contributions related to abiotic stresses and their impacts on organelle proteomes for better understanding of plants abiotic stress tolerance mechanism at protein level. This review will not only provide new insights into the plants stress response mechanisms, which are necessary for future development of genetically engineered stress tolerant crop plants for the benefit of humankind, but will also highlight the importance of studying changes in protein abundance within the cell organelles in response to abiotic stress.

  6. ROS Regulation During Abiotic Stress Responses in Crop Plants

    PubMed Central

    You, Jun; Chan, Zhulong

    2015-01-01

    Abiotic stresses such as drought, cold, salt and heat cause reduction of plant growth and loss of crop yield worldwide. Reactive oxygen species (ROS) including hydrogen peroxide (H2O2), superoxide anions (O2•-), hydroxyl radical (OH•) and singlet oxygen (1O2) are by-products of physiological metabolisms, and are precisely controlled by enzymatic and non-enzymatic antioxidant defense systems. ROS are significantly accumulated under abiotic stress conditions, which cause oxidative damage and eventually resulting in cell death. Recently, ROS have been also recognized as key players in the complex signaling network of plants stress responses. The involvement of ROS in signal transduction implies that there must be coordinated function of regulation networks to maintain ROS at non-toxic levels in a delicate balancing act between ROS production, involving ROS generating enzymes and the unavoidable production of ROS during basic cellular metabolism, and ROS-scavenging pathways. Increasing evidence showed that ROS play crucial roles in abiotic stress responses of crop plants for the activation of stress-response and defense pathways. More importantly, manipulating ROS levels provides an opportunity to enhance stress tolerances of crop plants under a variety of unfavorable environmental conditions. This review presents an overview of current knowledge about homeostasis regulation of ROS in crop plants. In particular, we summarize the essential proteins that are involved in abiotic stress tolerance of crop plants through ROS regulation. Finally, the challenges toward the improvement of abiotic stress tolerance through ROS regulation in crops are discussed. PMID:26697045

  7. Photovoltaic Degradation Risk: Preprint

    SciTech Connect

    Jordan, D. C.; Kurtz, S. R.

    2012-04-01

    The ability to accurately predict power delivery over the course of time is of vital importance to the growth of the photovoltaic (PV) industry. Important cost drivers include the efficiency with which sunlight is converted into power, how this relationship changes over time, and the uncertainty in this prediction. An accurate quantification of power decline over time, also known as degradation rate, is essential to all stakeholders - utility companies, integrators, investors, and researchers alike. In this paper we use a statistical approach based on historical data to quantify degradation rates, discern trends and quantify risks related to measurement uncertainties, number of measurements and methodologies.

  8. Adhesive properties of environmental Vibrio alginolyticus strains to biotic and abiotic surfaces.

    PubMed

    Snoussi, Mejdi; Noumi, Emira; Cheriaa, Jihane; Usai, Donatella; Sechi, Leonardo Antonio; Zanetti, Stefania; Bakhrouf, Amina

    2008-10-01

    The ability of Vibrio alginolyticus strains isolated from a bathing and fishing area (Khenis, Centre of Tunisia) to adhere to both biotic and abiotic surfaces was evaluated in the present work. The biochemical, physiological and enzymatic activities of all strains was also investigated. Three morphotypes of V. alginolyticus were obtained on Congo red agar and only 14 strains produced black colonies. The majority of strains were able to degrade the skin mucus of both Sparus aurata and Dicentrarchus labrax fishes while the fish mucus preparation of these two specimens exhibits a high level of anti-V. alginolyticus strains. Adhesive properties were observed in 37.5% of the analyzed V. alginolyticus strains to Hep-2 cells and 50% to Caco-2 cells. All strains were able to form a purple pellicule on glass tube when they were stained with Crystal violet. Fifteen percent of V. alginolyticus strains (16/32) were strongly adhesive to polystyrene with a values ranging from 3.04 to 18.25 at 595 nm and only four strains were weak biofilm forming. V. alginolyticus bacterium possess a strong adhesive power to both biotic and inertes surfaces. These proprieties may allow to these strains to persist in this biotope in planctonic state or attached to both biotic and abiotic surfaces.

  9. Use of the Complex Conductivity Method to Monitor Hydrocarbon Degradation in Brackish Environments

    NASA Astrophysics Data System (ADS)

    Ntarlagiannis, D.; Beaver, C. L.; Kimak, C.; Slater, L. D.; Atekwana, E. A.; Rossbach, S.

    2015-12-01

    Hydrocarbon contamination of the subsurface is a global environmental problem. The size, location and recurrence rate of contamination very often inhibits active remediation strategies. When there is no direct threat to humans, and direct/invasive remediation methods are prohibited, monitored natural attenuation is often the remediation method of choice. Consequently, long-term monitoring of hydrocarbon degradation is needed to validate remediation. Geophysical methods, frequently utilized to characterize subsurface contamination, have the potential to be adopted for long term monitoring of contaminant degradation. Over the last decade, the complex conductivity method has shown promise as a method for monitoring hydrocarbon degradation processes in freshwater environments. We investigated the sensitivity of complex conductivity to natural attenuation of oil in a brackish setting, being more representative of the conditions where most oil spills occur such as in coastal environments. We performed a series of laboratory hydrocarbon biodegradation experiments whilst continuously monitoring complex conductivity. Sediments from a beach impacted by the Deepwater Horizon (DWH) spill were used to provide the hydrocarbon degraders, while fluids with three different salinities, ranging from fresh water to brackish water, were used as the supporting media. All experimental columns, including two abiotic controls, were run in duplicate. Early results show a dependence of the complex conductivity parameters (both electrolytic and interfacial) on biodegradation processes. Despite the small signals relative to freshwater conditions, the imaginary part of the complex conductivity appears to be sensitive to biodegradation processes. The columns with highest salinity fluids - similar to the salinites for the site where the sediments were collected - showed distinctive complex conductivity responses similar to microbial growth curves. Geochemical monitoring confirmed elevated rates

  10. Current perspectives in proteomic analysis of abiotic stress in Grapevines

    PubMed Central

    George, Iniga S.; Haynes, Paul A.

    2014-01-01

    Grapes are an important crop plant which forms the basis of a globally important industry. Grape and wine production is particularly vulnerable to environmental and climatic fluctuations, which makes it essential for us to develop a greater understanding of the molecular level responses of grape plants to various abiotic stresses. The completion of the initial grape genome sequence in 2007 has led to a significant increase in research on grapes using proteomics approaches. In this article, we discuss some of the current research on abiotic stress in grapevines, in the context of abiotic stress research in other plant species. We also highlight some of the current limitations in grapevine proteomics and identify areas with promising scope for potential future research. PMID:25538720

  11. Integrated metabolomics for abiotic stress responses in plants.

    PubMed

    Nakabayashi, Ryo; Saito, Kazuki

    2015-04-01

    Plants are considered to biosynthesize specialized (traditionally called secondary) metabolites to adapt to environmental stresses such as biotic and abiotic stresses. The majority of specialized metabolites induced by abiotic stress characteristically exhibit antioxidative activity in vitro, but their function in vivo is largely yet to be experimentally confirmed. In this review, we highlight recent advances in the identification of the role of abiotic stress-responsive specialized metabolites with an emphasis on flavonoids. Integrated 'omics' analysis, centered on metabolomics with a series of plant resources differing in their flavonoid accumulation, showed experimentally that flavonoids play a major role in antioxidation in vivo. In addition, the results also suggest the role of flavonoids in the vacuole. To obtain more in-depth insights, chemical and biological challenges need to be addressed for the identification of unknown specialized metabolites and their in vivo functions.

  12. Total Phosphate Influences the Rate of Hydrocarbon Degradation but Phosphate Mineralogy Shapes Microbial Community Composition in Cold-Region Calcareous Soils.

    PubMed

    Siciliano, Steven D; Chen, Tingting; Phillips, Courtney; Hamilton, Jordan; Hilger, David; Chartrand, Blaine; Grosskleg, Jay; Bradshaw, Kris; Carlson, Trevor; Peak, Derek

    2016-05-17

    Managing phosphorus bioaccessibility is critical for the bioremediation of hydrocarbons in calcareous soils. This paper explores how soil mineralogy interacts with a novel biostimulatory solution to both control phosphorus bioavailability and influence bioremediation. Two large bore infiltrators (1 m diameter) were installed at a PHC contaminated site and continuously supplied with a solution containing nutrients and an electron acceptor. Soils from eight contaminated sites were prepared and pretreated, analyzed pretrial, spiked with diesel, placed into nylon bags into the infiltrators, and removed after 3 months. From XAS, we learned that three principal phosphate phases had formed: adsorbed phosphate, brushite, and newberyite. All measures of biodegradation in the samples (in situ degradation estimates, mineralization assays, culturable bacteria, catabolic genes) varied depending upon the soil's phosphate speciation. Notably, adsorbed phosphate increased anaerobic phenanthrene degradation and bzdN catabolic gene prevalence. The dominant mineralogical constraints on community composition were the relative amounts of adsorbed phosphate, brushite, and newberyite. Overall, this study finds that total phosphate influences microbial community phenotypes whereas relative percentages of phosphate minerals influences microbial community genotype composition. PMID:27082646

  13. NAC transcription factors in plant abiotic stress responses.

    PubMed

    Nakashima, Kazuo; Takasaki, Hironori; Mizoi, Junya; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2012-02-01

    Abiotic stresses such as drought and high salinity adversely affect the growth and productivity of plants, including crops. The development of stress-tolerant crops will be greatly advantageous for modern agriculture in areas that are prone to such stresses. In recent years, several advances have been made towards identifying potential stress related genes which are capable of increasing the tolerance of plants to abiotic stress. NAC proteins are plant-specific transcription factors and more than 100 NAC genes have been identified in Arabidopsis and rice to date. Phylogenetic analyses indicate that the six major groups were already established at least in an ancient moss lineage. NAC transcription factors have a variety of important functions not only in plant development but also in abiotic stress responses. Stress-inducible NAC genes have been shown to be involved in abiotic stress tolerance. Transgenic Arabidopsis and rice plants overexpressing stress-responsive NAC (SNAC) genes have exhibited improved drought tolerance. These studies indicate that SNAC factors have important roles for the control of abiotic stress tolerance and that their overexpression can improve stress tolerance via biotechnological approaches. Although these transcription factors can bind to the same core NAC recognition sequence, recent studies have demonstrated that the effects of NAC factors for growth are different. Moreover, the NAC proteins are capable of functioning as homo- or hetero-dimer forms. Thus, SNAC factors can be useful for improving stress tolerance in transgenic plants, although the mechanism for mediating the stress tolerance of these homologous factors is complex in plants. Recent studies also suggest that crosstalk may exist between stress responses and plant growth. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.

  14. Carbon Isotope Fractionation In Biotic Vs. Abiotic Anaerobic Conditions

    NASA Astrophysics Data System (ADS)

    Gebrehiwet, T. A.

    2005-12-01

    Dissimilatory metal reducing bacteria (DMRB) are thought to play an important role in the biogeochemical cycling of Fe, and nutrient elements such as C and P, in the anaerobic subsurface. The consumption of organic carbon sources (including contaminants) by these bacteria can significantly fractionate substrate C isotopes, however the effects of solution composition, electron acceptor, or electron donor on C isotopic fractionation by DMRB is at present poorly quantified. We have conducted experiments to compare the effects of bicarbonate (δ13C = -3‰) and phosphate buffers on carbon isotope fractionation by Shewanella putrefaciens strain 200R. The effects of dissolved carbonate and phosphate on δ13C values of dissolved inorganic C evolved during microbial reduction of ferric citrate (δ 13Cinitial = -25‰) were examined using sodium lactate (δ13Cinitial = -25‰) as electron donor under strict anaerobic conditions at neutral pH and 30°C, under dark and (fluorescent) light conditions. Our results suggest that bicarbonate may enhance the rate of Fe(III) reduction by S. putrefaciens, in comparison with media containing phosphate buffer but no added bicarbonate. Compared with phosphate buffered experiments, the presence of dissolved bicarbonate also resulted in a greater degree of C isotopic fractionation (ɛ=2-3‰ and ɛ=5-7‰, respectively). The effect of light on microbial Fe(III) reduction was negligible, however sterile controls showed a minor but significant quantity of carbon dioxide production in liquid media, most likely from photochemical decomposition of citrate. The abiotic experiments also showed measurable carbon isotope fractionation between the carbon dioxide produced and the organic carbon substrate which will be discussed.

  15. Soil respiration in the cold desert environment of the Colorado Plateau (USA): Abiotic regulators and thresholds

    USGS Publications Warehouse

    Fernandez, D.P.; Neff, J.C.; Belnap, J.; Reynolds, R.L.

    2006-01-01

    Decomposition is central to understanding ecosystem carbon exchange and nutrient-release processes. Unlike mesic ecosystems, which have been extensively studied, xeric landscapes have received little attention; as a result, abiotic soil-respiration regulatory processes are poorly understood in xeric environments. To provide a more complete and quantitative understanding about how abiotic factors influence soil respiration in xeric ecosystems, we conducted soil- respiration and decomposition-cloth measurements in the cold desert of southeast Utah. Our study evaluated when and to what extent soil texture, moisture, temperature, organic carbon, and nitrogen influence soil respiration and examined whether the inverse-texture hypothesis applies to decomposition. Within our study site, the effect of texture on moisture, as described by the inverse texture hypothesis, was evident, but its effect on decomposition was not. Our results show temperature and moisture to be the dominant abiotic controls of soil respiration. Specifically, temporal offsets in temperature and moisture conditions appear to have a strong control on soil respiration, with the highest fluxes occurring in spring when temperature and moisture were favorable. These temporal offsets resulted in decomposition rates that were controlled by soil moisture and temperature thresholds. The highest fluxes of CO2 occurred when soil temperature was between 10 and 16??C and volumetric soil moisture was greater than 10%. Decomposition-cloth results, which integrate decomposition processes across several months, support the soil-respiration results and further illustrate the seasonal patterns of high respiration rates during spring and low rates during summer and fall. Results from this study suggest that the parameters used to predict soil respiration in mesic ecosystems likely do not apply in cold-desert environments. ?? Springer 2006.

  16. Overexpression of Arabidopsis AnnAt8 Alleviates Abiotic Stress in Transgenic Arabidopsis and Tobacco

    PubMed Central

    Yadav, Deepanker; Ahmed, Israr; Shukla, Pawan; Boyidi, Prasanna; Kirti, Pulugurtha Bharadwaja

    2016-01-01

    Abiotic stress results in massive loss of crop productivity throughout the world. Because of our limited knowledge of the plant defense mechanisms, it is very difficult to exploit the plant genetic resources for manipulation of traits that could benefit multiple stress tolerance in plants. To achieve this, we need a deeper understanding of the plant gene regulatory mechanisms involved in stress responses. Understanding the roles of different members of plant gene families involved in different stress responses, would be a step in this direction. Arabidopsis, which served as a model system for the plant research, is also the most suitable system for the functional characterization of plant gene families. Annexin family in Arabidopsis also is one gene family which has not been fully explored. Eight annexin genes have been reported in the genome of Arabidopsis thaliana. Expression studies of different Arabidopsis annexins revealed their differential regulation under various abiotic stress conditions. AnnAt8 (At5g12380), a member of this family has been shown to exhibit ~433 and ~175 fold increase in transcript levels under NaCl and dehydration stress respectively. To characterize Annexin8 (AnnAt8) further, we have generated transgenic Arabidopsis and tobacco plants constitutively expressing AnnAt8, which were evaluated under different abiotic stress conditions. AnnAt8 overexpressing transgenic plants exhibited higher seed germination rates, better plant growth, and higher chlorophyll retention when compared to wild type plants under abiotic stress treatments. Under stress conditions transgenic plants showed comparatively higher levels of proline and lower levels of malondialdehyde compared to the wild-type plants. Real-Time PCR analyses revealed that the expression of several stress-regulated genes was altered in AnnAt8 over-expressing transgenic tobacco plants, and the enhanced tolerance exhibited by the transgenic plants can be correlated with altered expressions of

  17. Significance of the Henri-Michaelis-Menten theory in abiotic catalysis: catechol oxidation by δ-MnO 2

    NASA Astrophysics Data System (ADS)

    Naidja, A.; Huang, P. M.

    2002-05-01

    The Henri-Michaelis-Menten theory, for more than eight decades, was only restricted to homogeneous enzymatic catalysis. A mimic of an enzymatic kinetics based on the Henri-Michaelis-Menten concept was experimentally observed in heterogeneous catalysis in the present study with δ-MnO 2 as an abiotic catalyst in the oxidation of catechol (1,2-dihydroxybenzene). Using the derived linear forms of Lineweaver-Burk or Hofstee, the data show that similar to the enzyme tyrosinase, the kinetics of the catechol oxidation catalyzed by δ-MnO 2 can be described by the Henri-Michaelis-Menten equation, V0= VmaxS/( Km+ S), where Vmax is the maximum velocity and Km the concentration of the substrate ( S) corresponding to an initial velocity ( V0) half of Vmax. By analogy to the enzymatic kinetics, the parameters Vmax and Km for an heterogeneous abiotic catalysis were derived for the first time. Further, based on the concentration of the active centers of the mineral oxide, the kinetic constants kcat and kcat/ Km, respectively, representing the turnover frequency and the efficiency of the mineral catalyst, were also determined from the derived general rate equation of Briggs and Haldane. As an abiotic catalyst, δ-MnO 2 has a paramount role in the oxidation of phenolic compounds in soil, sediment and water environments. Therefore, the present observation is of fundamental and practical significance in elucidating the affinity between an abiotic catalyst and a substrate based on the Henri-Michaelis-Menten theory.

  18. Nylon separators. [thermal degradation

    NASA Technical Reports Server (NTRS)

    Lim, H. S.

    1977-01-01

    A nylon separator was placed in a flooded condition in K0H solution and heated at various high temperatures ranging from 60 C to 110 C. The weight decrease was measured and the molecular weight and decomposition product were analyzed to determine: (1) the effect of K0H concentration on the hydrolysis rate; (2) the effect of K0H concentration on nylon degradation; (3) the activation energy at different K0H concentrations; and (4) the effect of oxygen on nylon degradation. The nylon hydrolysis rate is shown to increase as K0H concentration is decreased 34%, giving a maximum rate at about 16%. Separator hydrolysis is confirmed by molecular weight decrease in age of the batteries, and the reaction of nylon with molecular oxygen is probably negligible, compared to hydrolysis. The extrapolated rate value from the high temperature experiment correlates well with experimental values at 35 degrees.

  19. The degradation behaviour of nine diverse contaminants in urban surface water and wastewater prior to water treatment.

    PubMed

    Cormier, Guillaume; Barbeau, Benoit; Arp, Hans Peter H; Sauvé, Sébastien

    2015-12-01

    An increasing diversity of emerging contaminants are entering urban surface water and wastewater, posing unknown risks for the environment. One of the main contemporary challenges in ensuring water quality is to design efficient strategies for minimizing such risks. As a first step in such strategies, it is important to establish the fate and degradation behavior of contaminants prior to any engineered secondary water treatment. Such information is relevant for assessing treatment solutions by simple storage, or to assess the impacts of contaminant spreading in the absence of water treatment, such as during times of flooding or in areas of poor infrastructure. Therefore in this study we examined the degradation behavior of a broad array of water contaminants in actual urban surface water and wastewater, in the presence and absence of naturally occurring bacteria and at two temperatures. The chemicals included caffeine, sulfamethoxazole, carbamazepine, atrazine, 17β-estradiol, ethinylestradiol, diclofenac, desethylatrazine and norethindrone. Little information on the degradation behavior of these pollutants in actual influent wastewater exist, nor in general in water for desethylatrazine (a transformation product of atrazine) and the synthetic hormone norethindrone. Investigations were done in aerobic conditions, in the absence of sunlight. The results suggest that all chemicals except estradiol are stable in urban surface water, and in waste water neither abiotic nor biological degradation in the absence of sunlight contribute significantly to the disappearance of desethylatrazine, atrazine, carbamazepine and diclofenac. Biological degradation in wastewater was effective at transforming norethindrone, 17β-estradiol, ethinylestradiol, caffeine and sulfamethoxazole, with measured degradation rate constants k and half-lives ranging respectively from 0.0082-0.52 d(-1) and 1.3-85 days. The obtained degradation data generally followed a pseudo-first-order-kinetic model

  20. The degradation behaviour of nine diverse contaminants in urban surface water and wastewater prior to water treatment.

    PubMed

    Cormier, Guillaume; Barbeau, Benoit; Arp, Hans Peter H; Sauvé, Sébastien

    2015-12-01

    An increasing diversity of emerging contaminants are entering urban surface water and wastewater, posing unknown risks for the environment. One of the main contemporary challenges in ensuring water quality is to design efficient strategies for minimizing such risks. As a first step in such strategies, it is important to establish the fate and degradation behavior of contaminants prior to any engineered secondary water treatment. Such information is relevant for assessing treatment solutions by simple storage, or to assess the impacts of contaminant spreading in the absence of water treatment, such as during times of flooding or in areas of poor infrastructure. Therefore in this study we examined the degradation behavior of a broad array of water contaminants in actual urban surface water and wastewater, in the presence and absence of naturally occurring bacteria and at two temperatures. The chemicals included caffeine, sulfamethoxazole, carbamazepine, atrazine, 17β-estradiol, ethinylestradiol, diclofenac, desethylatrazine and norethindrone. Little information on the degradation behavior of these pollutants in actual influent wastewater exist, nor in general in water for desethylatrazine (a transformation product of atrazine) and the synthetic hormone norethindrone. Investigations were done in aerobic conditions, in the absence of sunlight. The results suggest that all chemicals except estradiol are stable in urban surface water, and in waste water neither abiotic nor biological degradation in the absence of sunlight contribute significantly to the disappearance of desethylatrazine, atrazine, carbamazepine and diclofenac. Biological degradation in wastewater was effective at transforming norethindrone, 17β-estradiol, ethinylestradiol, caffeine and sulfamethoxazole, with measured degradation rate constants k and half-lives ranging respectively from 0.0082-0.52 d(-1) and 1.3-85 days. The obtained degradation data generally followed a pseudo-first-order-kinetic model

  1. Recent Advances in Polyamine Metabolism and Abiotic Stress Tolerance

    PubMed Central

    Rangan, Parimalan; Subramani, Rajkumar; Singh, Amit Kumar

    2014-01-01

    Global warming is an alarming problem in agriculture and its effect on yield loss has been estimated to be five per cent for every degree centigrade rise in temperature. Plants exhibit multiple mechanisms like optimizing signaling pathway, involvement of secondary messengers, production of biomolecules specifically in response to stress, modulation of various metabolic networks in accordance with stress, and so forth, in order to overcome abiotic stress factors. Many structural genes and networks of pathway were identified and reported in plant systems for abiotic stress tolerance. One such crucial metabolic pathway that is involved in normal physiological function and also gets modulated during stress to impart tolerance is polyamine metabolic pathway. Besides the role of structural genes, it is also important to know the mechanism by which these structural genes are regulated during stress. Present review highlights polyamine biosynthesis, catabolism, and its role in abiotic stress tolerance with special reference to plant systems. Additionally, a system based approach is discussed as a potential strategy to dissect the existing variation in crop species in unraveling the interacting regulatory components/genetic determinants related to PAs mediated abiotic stress tolerance. PMID:25136565

  2. Recent advances in polyamine metabolism and abiotic stress tolerance.

    PubMed

    Rangan, Parimalan; Subramani, Rajkumar; Kumar, Rajesh; Singh, Amit Kumar; Singh, Rakesh

    2014-01-01

    Global warming is an alarming problem in agriculture and its effect on yield loss has been estimated to be five per cent for every degree centigrade rise in temperature. Plants exhibit multiple mechanisms like optimizing signaling pathway, involvement of secondary messengers, production of biomolecules specifically in response to stress, modulation of various metabolic networks in accordance with stress, and so forth, in order to overcome abiotic stress factors. Many structural genes and networks of pathway were identified and reported in plant systems for abiotic stress tolerance. One such crucial metabolic pathway that is involved in normal physiological function and also gets modulated during stress to impart tolerance is polyamine metabolic pathway. Besides the role of structural genes, it is also important to know the mechanism by which these structural genes are regulated during stress. Present review highlights polyamine biosynthesis, catabolism, and its role in abiotic stress tolerance with special reference to plant systems. Additionally, a system based approach is discussed as a potential strategy to dissect the existing variation in crop species in unraveling the interacting regulatory components/genetic determinants related to PAs mediated abiotic stress tolerance.

  3. Recent advances in polyamine metabolism and abiotic stress tolerance.

    PubMed

    Rangan, Parimalan; Subramani, Rajkumar; Kumar, Rajesh; Singh, Amit Kumar; Singh, Rakesh

    2014-01-01

    Global warming is an alarming problem in agriculture and its effect on yield loss has been estimated to be five per cent for every degree centigrade rise in temperature. Plants exhibit multiple mechanisms like optimizing signaling pathway, involvement of secondary messengers, production of biomolecules specifically in response to stress, modulation of various metabolic networks in accordance with stress, and so forth, in order to overcome abiotic stress factors. Many structural genes and networks of pathway were identified and reported in plant systems for abiotic stress tolerance. One such crucial metabolic pathway that is involved in normal physiological function and also gets modulated during stress to impart tolerance is polyamine metabolic pathway. Besides the role of structural genes, it is also important to know the mechanism by which these structural genes are regulated during stress. Present review highlights polyamine biosynthesis, catabolism, and its role in abiotic stress tolerance with special reference to plant systems. Additionally, a system based approach is discussed as a potential strategy to dissect the existing variation in crop species in unraveling the interacting regulatory components/genetic determinants related to PAs mediated abiotic stress tolerance. PMID:25136565

  4. Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing soil minerals. 2. Green rust.

    PubMed

    Lee, Woojin; Batchelor, Bill

    2002-12-15

    Abiotic reductive dechlorination of chlorinated ethylenes by the sulfate form of green rust (GR(SO4)) was examined in batch reactors. Dechlorination kinetics were described by a modified Langmuir-Hinshelwood model. The rate constant for reductive dechlorination of chlorinated ethylenes at reactive GR(SO4) surfaces was in the range of 0.592 (+/-4.4%) to 1.59 (+/-6.3%) day(-1). The specific reductive capacity of GR(SO4) for target organics was in the range of 9.86 (+/-10.1%) to 18.0 (+/-4.3%) microM/g and sorption coefficient was in the range of 0.53 (+/-2.4%) to 1.22 (+/-4.3%) mM(-1). Surface area-normalized pseudo-first-order initial rate constants for chlorinated ethylenes by GR(SO4) were 3.4 to 8.2 times greater than those by pyrite. Chlorinated ethylenes were mainly transformed to acetylene, and no detectable amounts of chlorinated intermediates were observed. The rate constants for the reductive dechlorination of trichloroethylene (TCE) increased as pH increased (6.8 to 10.1) but were independent of solid concentration and initial TCE concentration. Magnetite and/or maghemite were produced by the oxidation of GR(SO4) by TCE. These findings are relevant to the understanding of the role of abiotic reductive dechlorination during natural attenuation in environments that contain GR(SO4).

  5. Enzymatic degradation of monolayer for poly(lactide) revealed by real-time atomic force microscopy: effects of stereochemical structure, molecular weight, and molecular branches on hydrolysis rates.

    PubMed

    Numata, Keiji; Finne-Wistrand, Anna; Albertsson, Ann-Christine; Doi, Yoshiharu; Abe, Hideki

    2008-08-01

    The influences of the stereochemical structure, the molecular weight, and the number of molecular branches for poly(lactide) (PLA) on enzymatic hydrolysis rates of PLA monolayers were studied by atomic force microscopy (AFM) and the Langmuir-Blodgett (LB) technique. Monolayers of six kinds of PLA with different molecular weights, stereochemical structure, and numbers of molecular branches were prepared by LB techniques and then characterized by AFM in air. The PLA molecules covered homogeneously with a silicon substrate and did not form lamellar crystals in the monolayer. We determined the initial hydrolysis rate of PLA monolayers in presence of proteinase K by volumetric analysis from the continuous AFM height images. The presence of D-lactyl unit reduced the hydrolysis rate of the monolayer. The hydrolysis rate for the linear PLLA samples increased with a decrease in the molecular weight. In contrast, the rates of erosion for branched PLLA monolayers were independent of the molecular weight of samples. The erosion rate of branched PLLA monolayers was found to be dependent on the average molecular weight of PLLA segment in branched molecules, not on the overall molecular weight of samples. From these results, furthermore, the hydrolysis mode of PLAs by proteinase K is discussed.

  6. Anaerobic abiotic transformations of cis-1,2-dichloroethene in fractured sandstone.

    PubMed

    Darlington, Ramona; Lehmicke, Leo G; Andrachek, Richard G; Freedman, David L

    2013-02-01

    A fractured sandstone aquifer at an industrial site is contaminated with trichloroethene to depths greater than 244 m. Field data indicate that trichloroethene is undergoing reduction to cis-1,2-dichloroethene (cDCE); vinyl chloride and ethene are present at much lower concentrations. Transformation of cDCE by pathways other than reductive dechlorination (abiotic and/or biotic) is of interest. Pyrite, which has been linked to abiotic transformation of chlorinated ethenes, is present at varying levels in the sandstone. To evaluate the possible role of pyrite in transforming cDCE, microcosms were prepared with groundwater, ~40 mg L(-1) cDCE+[(14)C]cDCE, and crushed solids (pure pyrite, pyrite-rich sandstone, or typical sandstone). During 120 d of incubation, the highest level of cDCE transformation occurred with typical sandstone (11-14% (14)CO(2), 1-3% (14)C-soluble products), followed by pyrite-rich sandstone (2-4% (14)CO(2), 1% (14)C-soluble products) and even lesser amounts with pure pyrite. These results indicate pyrite is not likely the mineral involved in transforming cDCE. A separate experiment using only typical sandstone compared the rate of cDCE transformation in non-sterilized, autoclaved, and propylene-oxide sterilized treatments, with pseudo-first order rate constants of 8.7, 5.4, and 1.0 yr(-1), respectively; however, transformation stopped after several months of incubation. Autoclaving increased the volume of pores, adsorption pore diameter, and surface area in comparison to non-sterilized typical sandstone. Nevertheless, autoclaving was less disruptive than chemical sterilization. The results provide definitive experimental evidence that cDCE undergoes anaerobic abiotic and biotic transformation in typical sandstone, with formation of CO(2) and soluble products.

  7. Abiotic ozone and oxygen in atmospheres similar to prebiotic Earth

    SciTech Connect

    Domagal-Goldman, Shawn D.; Segura, Antígona; Claire, Mark W.; Robinson, Tyler D.; Meadows, Victoria S.

    2014-09-10

    The search for life on planets outside our solar system will use spectroscopic identification of atmospheric biosignatures. The most robust remotely detectable potential biosignature is considered to be the detection of oxygen (O{sub 2}) or ozone (O{sub 3}) simultaneous to methane (CH{sub 4}) at levels indicating fluxes from the planetary surface in excess of those that could be produced abiotically. Here we use an altitude-dependent photochemical model with the enhanced lower boundary conditions necessary to carefully explore abiotic O{sub 2} and O{sub 3} production on lifeless planets with a wide variety of volcanic gas fluxes and stellar energy distributions. On some of these worlds, we predict limited O{sub 2} and O{sub 3} buildup, caused by fast chemical production of these gases. This results in detectable abiotic O{sub 3} and CH{sub 4} features in the UV-visible, but no detectable abiotic O{sub 2} features. Thus, simultaneous detection of O{sub 3} and CH{sub 4} by a UV-visible mission is not a strong biosignature without proper contextual information. Discrimination between biological and abiotic sources of O{sub 2} and O{sub 3} is possible through analysis of the stellar and atmospheric context—particularly redox state and O atom inventory—of the planet in question. Specifically, understanding the spectral characteristics of the star and obtaining a broad wavelength range for planetary spectra should allow more robust identification of false positives for life. This highlights the importance of wide spectral coverage for future exoplanet characterization missions. Specifically, discrimination between true and false positives may require spectral observations that extend into infrared wavelengths and provide contextual information on the planet's atmospheric chemistry.

  8. Integrating omic approaches for abiotic stress tolerance in soybean

    PubMed Central

    Deshmukh, Rupesh; Sonah, Humira; Patil, Gunvant; Chen, Wei; Prince, Silvas; Mutava, Raymond; Vuong, Tri; Valliyodan, Babu; Nguyen, Henry T.

    2014-01-01

    Soybean production is greatly influenced by abiotic stresses imposed by environmental factors such as drought, water submergence, salt, and heavy metals. A thorough understanding of plant response to abiotic stress at the molecular level is a prerequisite for its effective management. The molecular mechanism of stress tolerance is complex and requires information at the omic level to understand it effectively. In this regard, enormous progress has been made in the omics field in the areas of genomics, transcriptomics, and proteomics. The emerging field of ionomics is also being employed for investigating abiotic stress tolerance in soybean. Omic approaches generate a huge amount of data, and adequate advancements in computational tools have been achieved for effective analysis. However, the integration of omic-scale information to address complex genetics and physiological questions is still a challenge. In this review, we have described advances in omic tools in the view of conventional and modern approaches being used to dissect abiotic stress tolerance in soybean. Emphasis was given to approaches such as quantitative trait loci (QTL) mapping, genome-wide association studies (GWAS), and genomic selection (GS). Comparative genomics and candidate gene approaches are also discussed considering identification of potential genomic loci, genes, and biochemical pathways involved in stress tolerance mechanism in soybean. This review also provides a comprehensive catalog of available online omic resources for soybean and its effective utilization. We have also addressed the significance of phenomics in the integrated approaches and recognized high-throughput multi-dimensional phenotyping as a major limiting factor for the improvement of abiotic stress tolerance in soybean. PMID:24917870

  9. Constructing and enhanced degradation rate of N-AZO/TiO2 core/shell nanocomposite by idiopathic molecular cladding process

    NASA Astrophysics Data System (ADS)

    Deng, Ya-Juan; Wang, Jian-Dong; Liu, Jin-Ku; Tong, Qin; Wang, Jiang-Jie; Yang, Xiao-Hong

    2015-07-01

    The N-AZO/TiO2 heterogeneous nanocomposite with core/shell structure revealed a better photocatalytic activity than the single N-AZO nanocrystals (NCs) even though it has a good photocatalytic effect. The recombination degree of photo-induced electrons and holes reduced significantly after molecular TiO2 layer composited on the surface of N-AZO NCs. From the experiment of degrading rhodamine B solution (2 × 10-5 g/L) under solar light, the optimum photocatalytic efficiency was the N-AZO/TiO2 composite prepared by idiopathic molecule-cladding (IMC) process and the best proportion of Zn/Ti was 2:1 in our research, which improved by 67% than pure N-AZO. Moreover, the N-AZO/TiO2 composite prepared by IMC process achieved a molecular combination level between the two components, which not only can improve the immobility of composite structure, but also can make the photogenerated electrons and holes transport easier.

  10. Habitat degradation correlates with tolerance to climate-change related stressors in the green mussel Perna viridis from West Java, Indonesia.

    PubMed

    Wendling, Carolin Charlotte; Huhn, Mareike; Ayu, Nurina; Bachtiar, Ramadian; von Juterzenka, Karen; Lenz, Mark

    2013-06-15

    It is unclear whether habitat degradation correlates with tolerance of marine invertebrates to abiotic stress. We therefore tested whether resistance to climate change-related stressors differs between populations of the green mussel Perna viridis from a heavily impacted and a mostly pristine site in West Java, Indonesia. In laboratory experiments, we compared their oxygen consumption and mortality under lowered salinity (-13 and -18 units, both responses), hypoxia (0.5 mg/l, mortality only) and thermal stress (+7 °C, mortality only). Mussels from the eutrophied and polluted Jakarta Bay showed a significantly smaller deviation from their normal oxygen consumption and higher survival rates when stressed than their conspecifics from the unaffected Lada Bay. This shows that human induced habitat degradation correlates with mussel tolerance to environmental stress. We discuss possible mechanisms - e.g. the selection of tolerant genotypes or habitat-specific differences in the nutritional status of the mussels - that could explain our observation. PMID:23660441

  11. Habitat degradation correlates with tolerance to climate-change related stressors in the green mussel Perna viridis from West Java, Indonesia.

    PubMed

    Wendling, Carolin Charlotte; Huhn, Mareike; Ayu, Nurina; Bachtiar, Ramadian; von Juterzenka, Karen; Lenz, Mark

    2013-06-15

    It is unclear whether habitat degradation correlates with tolerance of marine invertebrates to abiotic stress. We therefore tested whether resistance to climate change-related stressors differs between populations of the green mussel Perna viridis from a heavily impacted and a mostly pristine site in West Java, Indonesia. In laboratory experiments, we compared their oxygen consumption and mortality under lowered salinity (-13 and -18 units, both responses), hypoxia (0.5 mg/l, mortality only) and thermal stress (+7 °C, mortality only). Mussels from the eutrophied and polluted Jakarta Bay showed a significantly smaller deviation from their normal oxygen consumption and higher survival rates when stressed than their conspecifics from the unaffected Lada Bay. This shows that human induced habitat degradation correlates with mussel tolerance to environmental stress. We discuss possible mechanisms - e.g. the selection of tolerant genotypes or habitat-specific differences in the nutritional status of the mussels - that could explain our observation.

  12. Slow Off-rates and Strong Product Binding Are Required for Processivity and Efficient Degradation of Recalcitrant Chitin by Family 18 Chitinases.

    PubMed

    Kurašin, Mihhail; Kuusk, Silja; Kuusk, Piret; Sørlie, Morten; Väljamäe, Priit

    2015-11-27

    Processive glycoside hydrolases are the key components of enzymatic machineries that decompose recalcitrant polysaccharides, such as chitin and cellulose. The intrinsic processivity (P(Intr)) of cellulases has been shown to be governed by the rate constant of dissociation from polymer chain (koff). However, the reported koff values of cellulases are strongly dependent on the method used for their measurement. Here, we developed a new method for determining koff, based on measuring the exchange rate of the enzyme between a non-labeled and a (14)C-labeled polymeric substrate. The method was applied to the study of the processive chitinase ChiA from Serratia marcescens. In parallel, ChiA variants with weaker binding of the N-acetylglucosamine unit either in substrate-binding site -3 (ChiA-W167A) or the product-binding site +1 (ChiA-W275A) were studied. Both ChiA variants showed increased off-rates and lower apparent processivity on α-chitin. The rate of the production of insoluble reducing groups on the reduced α-chitin was an order of magnitude higher than koff, suggesting that the enzyme can initiate several processive runs without leaving the substrate. On crystalline chitin, the general activity of the wild type enzyme was higher, and the difference was magnifying with hydrolysis time. On amorphous chitin, the variants clearly outperformed the wild type. A model is proposed whereby strong interactions with polymer in the substrate-binding sites (low off-rates) and strong binding of the product in the product-binding sites (high pushing potential) are required for the removal of obstacles, like disintegration of chitin microfibrils.

  13. Slow Off-rates and Strong Product Binding Are Required for Processivity and Efficient Degradation of Recalcitrant Chitin by Family 18 Chitinases.

    PubMed

    Kurašin, Mihhail; Kuusk, Silja; Kuusk, Piret; Sørlie, Morten; Väljamäe, Priit

    2015-11-27

    Processive glycoside hydrolases are the key components of enzymatic machineries that decompose recalcitrant polysaccharides, such as chitin and cellulose. The intrinsic processivity (P(Intr)) of cellulases has been shown to be governed by the rate constant of dissociation from polymer chain (koff). However, the reported koff values of cellulases are strongly dependent on the method used for their measurement. Here, we developed a new method for determining koff, based on measuring the exchange rate of the enzyme between a non-labeled and a (14)C-labeled polymeric substrate. The method was applied to the study of the processive chitinase ChiA from Serratia marcescens. In parallel, ChiA variants with weaker binding of the N-acetylglucosamine unit either in substrate-binding site -3 (ChiA-W167A) or the product-binding site +1 (ChiA-W275A) were studied. Both ChiA variants showed increased off-rates and lower apparent processivity on α-chitin. The rate of the production of insoluble reducing groups on the reduced α-chitin was an order of magnitude higher than koff, suggesting that the enzyme can initiate several processive runs without leaving the substrate. On crystalline chitin, the general activity of the wild type enzyme was higher, and the difference was magnifying with hydrolysis time. On amorphous chitin, the variants clearly outperformed the wild type. A model is proposed whereby strong interactions with polymer in the substrate-binding sites (low off-rates) and strong binding of the product in the product-binding sites (high pushing potential) are required for the removal of obstacles, like disintegration of chitin microfibrils. PMID:26468285

  14. Environmental Selenium Transformations: Distinguishing Abiotic and Biotic Factors Influencing Se Redox Transformations

    NASA Astrophysics Data System (ADS)

    Rosenfeld, C.; Kenyon, J.; James, B. R.; Santelli, C. M.

    2014-12-01

    Worldwide, selenium (Se) is proving to be a significant environmental concern, with many anthropogenic activities (e.g. coal mining and combustion, phosphate mining and agricultural irrigation) releasing potentially hazardous concentrations into surface and subsurface ecosystems. The US EPA is currently considering aquatic Se regulations, however no guidelines exist for excess soil Se, despite its ability to act as a persistent Se source. Various abiotic and biological processes mediate Se oxidation/reduction (redox) transformations in soils, thus influencing its solubility and bioavailability. In this research we assess (1) the ability of metal-transforming fungal species to aerobically reduce Se (Se (IV and/or VI) to Se(0)), and (2) the relative contribution of biotic and abiotic pathways for aerobic Se transformation. The primary objective of this research is to determine what abiotic and biotic factors enhance or restrict Se bioavailability. Results indicate that fungal-mediated Se reduction may be quite widespread, with at least 7 out of 10 species of known Mn(II)-oxidizing fungi isolated from metal impacted environments also identified as capable of aerobically reducing Se(IV) and/or Se(VI) to Se(0). Increasing concentrations of selenite (SeO32-; Se(IV)) and selenate (SeO42-; Se(VI)) generally reduced fungal growth rates, although selenate was more likely to inhibit fungal growth than selenite. To study oxidation, Se(0) was combined with Mn(III/IV) (hydr)oxides (henceforth referred to as Mn oxides), Se-transforming fungi (Alternaria alternata), and oxalic acid to mimic Se biogeochemistry at the plant-soil interface. Increased pH in the presence of fungi (7.2 with fungi, 6.8 without fungi after 24 days) was observed. Additionally, a slight decrease in redox potential was measured for incubations without Mn oxides (236 mV with Mn oxides, 205 mV without Mn oxides after 24 days), indicating that Mn oxides may enhance Se oxidation. Elemental Se oxidation rates to

  15. The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae).

    PubMed

    Lagomarsino, Laura P; Condamine, Fabien L; Antonelli, Alexandre; Mulch, Andreas; Davis, Charles C

    2016-06-01

    The tropical Andes of South America, the world's richest biodiversity hotspot, are home to many rapid radiations. While geological, climatic, and ecological processes collectively explain such radiations, their relative contributions are seldom examined within a single clade. We explore the contribution of these factors by applying a series of diversification models that incorporate mountain building, climate change, and trait evolution to the first dated phylogeny of Andean bellflowers (Campanulaceae: Lobelioideae). Our framework is novel for its direct incorporation of geological data on Andean uplift into a macroevolutionary model. We show that speciation and extinction are differentially influenced by abiotic factors: speciation rates rose concurrently with Andean elevation, while extinction rates decreased during global cooling. Pollination syndrome and fruit type, both biotic traits known to facilitate mutualisms, played an additional role in driving diversification. These abiotic and biotic factors resulted in one of the fastest radiations reported to date: the centropogonids, whose 550 species arose in the last 5 million yr. Our study represents a significant advance in our understanding of plant evolution in Andean cloud forests. It further highlights the power of combining phylogenetic and Earth science models to explore the interplay of geology, climate, and ecology in generating the world's biodiversity.

  16. The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae).

    PubMed

    Lagomarsino, Laura P; Condamine, Fabien L; Antonelli, Alexandre; Mulch, Andreas; Davis, Charles C

    2016-06-01

    The tropical Andes of South America, the world's richest biodiversity hotspot, are home to many rapid radiations. While geological, climatic, and ecological processes collectively explain such radiations, their relative contributions are seldom examined within a single clade. We explore the contribution of these factors by applying a series of diversification models that incorporate mountain building, climate change, and trait evolution to the first dated phylogeny of Andean bellflowers (Campanulaceae: Lobelioideae). Our framework is novel for its direct incorporation of geological data on Andean uplift into a macroevolutionary model. We show that speciation and extinction are differentially influenced by abiotic factors: speciation rates rose concurrently with Andean elevation, while extinction rates decreased during global cooling. Pollination syndrome and fruit type, both biotic traits known to facilitate mutualisms, played an additional role in driving diversification. These abiotic and biotic factors resulted in one of the fastest radiations reported to date: the centropogonids, whose 550 species arose in the last 5 million yr. Our study represents a significant advance in our understanding of plant evolution in Andean cloud forests. It further highlights the power of combining phylogenetic and Earth science models to explore the interplay of geology, climate, and ecology in generating the world's biodiversity. PMID:26990796

  17. Abiotic Nitrous Oxide Production in Natural and Artificial Seawater

    NASA Astrophysics Data System (ADS)

    Ochoa, H.; Stanton, C. L.; Cavazos, A. R.; Ostrom, N. E.; Glass, J. B.

    2014-12-01

    The ocean contributes approximately one third of global sources of nitrous oxide (N2O) to the atmosphere. While nitrification is thought to be the dominant pathway for marine N2O production, mechanisms remain unresolved. Previous studies have carried the implicit assumption that marine N2O originates directly from enzymatic sources. However, abiotic production of N2O is possible via chemical reactions between nitrogenous intermediates and redox active trace metals in seawater. In this study, we investigated N2O production and isotopic composition in treatments with and without added hydroxylamine (NH2OH) and nitric oxide (NO), intermediates in microbial oxidation of ammonia to nitrite, and Fe(III). Addition of substrates to sterile artificial seawater was compared with filtered and unfiltered seawater from Sapelo Island, coastal Georgia, USA. N2O production was observed immediately after addition of Fe(III) in the presence of NH2OH at pH 8 in sterile artificial seawater. Highest N2O production was observed in the presence of Fe(III), NO, and NH2OH. The isotopomer site preference of abiotically produced N2O was consistent with previous studies (31 ± 2 ‰). Higher abiotic N2O production was observed in sterile artificial seawater (salinity: 35 ppt) than filtered Sapelo Island seawater (salinity: 25 ppt) whereas diluted sterile artificial seawater (18 ppt) showed lowest N2O production, suggesting that higher salinity promotes enhanced abiotic N2O production. Addition of Fe(III) to unfiltered Sapelo Island seawater stimulated N2O production. The presence of ammonia-oxidizing archaea (AOA), which lack known N2O producing enzymes, in Sapelo Island seawater was confirmed by successful amplification of the archaeal amoA gene, whereas ammonia-oxidizing bacteria (AOB), which contain N2O-producing enzymes were undetected. Given the few Fe-containing proteins present in AOA, it is likely that Fe(III) addition promoted N2O production via an abiotic vs. enzymatic N2O mechanism

  18. Degradation of SS316L bipolar plates in simulated fuel cell environment: Corrosion rate, barrier film formation kinetics and contact resistance

    NASA Astrophysics Data System (ADS)

    Papadias, Dionissios D.; Ahluwalia, Rajesh K.; Thomson, Jeffery K.; Meyer, Harry M.; Brady, Michael P.; Wang, Heli; Turner, John A.; Mukundan, Rangachary; Borup, Rod

    2015-01-01

    A potentiostatic polarization method is used to evaluate the corrosion behavior of SS316L in simulated anode and cathode environments of polymer electrolyte fuel cells. A passive barrier oxide film is observed to form and reach steady state within ∼10 h of polarization, after which time the total ion release rates are low and nearly constant at ∼0.4 μg cm-2 h-1 for all potentials investigated. The equilibrium film thickness, however, is a function of the applied potential. The main ionic species dissolved in the liquid are predominately Fe followed by Ni, that account for >90% of the steady-state corrosion current. The dissolution rate of Cr is low but increases systematically at potentials higher than 0.8 V. The experimental ion release rates can be correlated with a point defect model using a single set of parameters over a broad range of potentials (0.2-1 V) on the cathode side. The interfacial contact resistance measured after 48 h of polarization is observed to increase with increase in applied potential and can be empirically correlated with applied load and oxide film thickness. The oxide film is substantially thicker at 1.5 V possibly because of alteration in film composition to Fe-rich as indicated by XPS data.

  19. Abiotic production of methane in terrestrial planets.

    PubMed

    Guzmán-Marmolejo, Andrés; Segura, Antígona; Escobar-Briones, Elva

    2013-06-01

    On Earth, methane is produced mainly by life, and it has been proposed that, under certain conditions, methane detected in an exoplanetary spectrum may be considered a biosignature. Here, we estimate how much methane may be produced in hydrothermal vent systems by serpentinization, its main geological source, using the kinetic properties of the main reactions involved in methane production by serpentinization. Hydrogen production by serpentinization was calculated as a function of the available FeO in the crust, given the current spreading rates. Carbon dioxide is the limiting reactant for methane formation because it is highly depleted in aqueous form in hydrothermal vent systems. We estimated maximum CH4 surface fluxes of 6.8×10(8) and 1.3×10(9) molecules cm(-2) s(-1) for rocky planets with 1 and 5 M⊕, respectively. Using a 1-D photochemical model, we simulated atmospheres with volume mixing ratios of 0.03 and 0.1 CO2 to calculate atmospheric methane concentrations for the maximum production of this compound by serpentinization. The resulting abundances were 2.5 and 2.1 ppmv for 1 M⊕ planets and 4.1 and 3.7 ppmv for 5 M⊕ planets. Therefore, low atmospheric concentrations of methane may be produced by serpentinization. For habitable planets around Sun-like stars with N2-CO2 atmospheres, methane concentrations larger than 10 ppmv may indicate the presence of life.

  20. Cross-Family Translational Genomics of Abiotic Stress-Responsive Genes between Arabidopsis and Medicago truncatula

    PubMed Central

    Kim, Jin-Hyun; Yoo, Dongwoon; Seo, Young-Su; Jeong, Soon-Chun; Lee, Jai-Heon; Chung, Youngsoo; Jung, Ki-Hong; Cook, Douglas R.; Choi, Hong-kyu

    2014-01-01

    Cross-species translation of genomic information may play a pivotal role in applying biological knowledge gained from relatively simple model system to other less studied, but related, genomes. The information of abiotic stress (ABS)-responsive genes in Arabidopsis was identified and translated into the legume model system, Medicago truncatula. Various data resources, such as TAIR/AtGI DB, expression profiles and literatures, were used to build a genome-wide list of ABS genes. tBlastX/BlastP similarity search tools and manual inspection of alignments were used to identify orthologous genes between the two genomes. A total of 1,377 genes were finally collected and classified into 18 functional criteria of gene ontology (GO). The data analysis according to the expression cues showed that there was substantial level of interaction among three major types (i.e., drought, salinity and cold stress) of abiotic stresses. In an attempt to translate the ABS genes between these two species, genomic locations for each gene were mapped using an in-house-developed comparative analysis platform. The comparative analysis revealed that fragmental colinearity, represented by only 37 synteny blocks, existed between Arabidopsis and M. truncatula. Based on the combination of E-value and alignment remarks, estimated translation rate was 60.2% for this cross-family translation. As a prelude of the functional comparative genomic approaches, in-silico gene network/interactome analyses were conducted to predict key components in the ABS responses, and one of the sub-networks was integrated with corresponding comparative map. The results demonstrated that core members of the sub-network were well aligned with previously reported ABS regulatory networks. Taken together, the results indicate that network-based integrative approaches of comparative and functional genomics are important to interpret and translate genomic information for complex traits such as abiotic stresses. PMID:24675968

  1. Applications and extensions of degradation modeling

    SciTech Connect

    Hsu, F.; Subudhi, M.; Samanta, P.K. ); Vesely, W.E. )

    1991-01-01

    Component degradation modeling being developed to understand the aging process can have many applications with potential advantages. Previous work has focused on developing the basic concepts and mathematical development of a simple degradation model. Using this simple model, times of degradations and failures occurrences were analyzed for standby components to detect indications of aging and to infer the effectiveness of maintenance in preventing age-related degradations from transforming to failures. Degradation modeling approaches can have broader applications in aging studies and in this paper, we discuss some of the extensions and applications of degradation modeling. The application and extension of degradation modeling approaches, presented in this paper, cover two aspects: (1) application to a continuously operating component, and (2) extension of the approach to analyze degradation-failure rate relationship. The application of the modeling approach to a continuously operating component (namely, air compressors) shows the usefulness of this approach in studying aging effects and the role of maintenance in this type component. In this case, aging effects in air compressors are demonstrated by the increase in both the degradation and failure rate and the faster increase in the failure rate compared to the degradation rate shows the ineffectiveness of the existing maintenance practices. Degradation-failure rate relationship was analyzed using data from residual heat removal system pumps. A simple linear model with a time-lag between these two parameters was studied. The application in this case showed a time-lag of 2 years for degradations to affect failure occurrences. 2 refs.

  2. Applications and extensions of degradation modeling

    SciTech Connect

    Hsu, F.; Subudhi, M.; Samanta, P.K.; Vesely, W.E.

    1991-12-31

    Component degradation modeling being developed to understand the aging process can have many applications with potential advantages. Previous work has focused on developing the basic concepts and mathematical development of a simple degradation model. Using this simple model, times of degradations and failures occurrences were analyzed for standby components to detect indications of aging and to infer the effectiveness of maintenance in preventing age-related degradations from transforming to failures. Degradation modeling approaches can have broader applications in aging studies and in this paper, we discuss some of the extensions and applications of degradation modeling. The application and extension of degradation modeling approaches, presented in this paper, cover two aspects: (1) application to a continuously operating component, and (2) extension of the approach to analyze degradation-failure rate relationship. The application of the modeling approach to a continuously operating component (namely, air compressors) shows the usefulness of this approach in studying aging effects and the role of maintenance in this type component. In this case, aging effects in air compressors are demonstrated by the increase in both the degradation and failure rate and the faster increase in the failure rate compared to the degradation rate shows the ineffectiveness of the existing maintenance practices. Degradation-failure rate relationship was analyzed using data from residual heat removal system pumps. A simple linear model with a time-lag between these two parameters was studied. The application in this case showed a time-lag of 2 years for degradations to affect failure occurrences. 2 refs.

  3. Photo Bleaching of Dissolved Organic Matter Enhances Abiotic Greenhouse Gas Emissions but Inhibits Biotic Emissions

    NASA Astrophysics Data System (ADS)

    Wang, J.; Chow, A. T.; Ng, T.; Wong, P.

    2013-12-01

    Greenhouse gas (GHG) emission from aquatic sources is one of the essential processes in the global carbon cycling. The natural Fenton reaction is commonly occurring in sunlited environment, affecting the degradation of dissolved organic matters (DOMs) and many other biogeochemical processes. In order to evaluate the effect of natural Fenton reaction on the CH4 and CO2 emissions from DOMs, different sources (wetland surface water, wetland soil pore water, and plant litter leachates) of organic matters were incubated under controlled laboratory condition with different dosages of Fenton reagents and environmental conditions. The GHG emissions depended on the dose of Fenton-reagents, reaction time, temperature, and light intensity. Abiotically, the DOMs were photo-degraded into GHGs by both the direct and indirect photolysis. Yet biotically, the reactive oxidative species (ROSs) generated from sunlited waters inactivated the microbes and thus inhibited the biotic GHG emissions. Results of our experiments demonstrate that the dual roles of photo-bleaching of DOM on GHG emission from sunlited surface waters.

  4. Abiotic Production of Methane in Terrestrial Planets

    PubMed Central

    Guzmán-Marmolejo, Andrés; Escobar-Briones, Elva

    2013-01-01

    Abstract On Earth, methane is produced mainly by life, and it has been proposed that, under certain conditions, methane detected in an exoplanetary spectrum may be considered a biosignature. Here, we estimate how much methane may be produced in hydrothermal vent systems by serpentinization, its main geological source, using the kinetic properties of the main reactions involved in methane production by serpentinization. Hydrogen production by serpentinization was calculated as a function of the available FeO in the crust, given the current spreading rates. Carbon dioxide is the limiting reactant for methane formation because it is highly depleted in aqueous form in hydrothermal vent systems. We estimated maximum CH4 surface fluxes of 6.8×108 and 1.3×109 molecules cm−2 s−1 for rocky planets with 1 and 5 M⊕, respectively. Using a 1-D photochemical model, we simulated atmospheres with volume mixing ratios of 0.03 and 0.1 CO2 to calculate atmospheric methane concentrations for the maximum production of this compound by serpentinization. The resulting abundances were 2.5 and 2.1 ppmv for 1 M⊕ planets and 4.1 and 3.7 ppmv for 5 M⊕ planets. Therefore, low atmospheric concentrations of methane may be produced by serpentinization. For habitable planets around Sun-like stars with N2-CO2 atmospheres, methane concentrations larger than 10 ppmv may indicate the presence of life. Key Words: Serpentinization—Exoplanets—Biosignatures—Planetary atmospheres. Astrobiology 13, 550–559. PMID:23742231

  5. Hormone balance and abiotic stress tolerance in crop plants.

    PubMed

    Peleg, Zvi; Blumwald, Eduardo

    2011-06-01

    Plant hormones play central roles in the ability of plants to adapt to changing environments, by mediating growth, development, nutrient allocation, and source/sink transitions. Although ABA is the most studied stress-responsive hormone, the role of cytokinins, brassinosteroids, and auxins during environmental stress is emerging. Recent evidence indicated that plant hormones are involved in multiple processes. Cross-talk between the different plant hormones results in synergetic or antagonic interactions that play crucial roles in response of plants to abiotic stress. The characterization of the molecular mechanisms regulating hormone synthesis, signaling, and action are facilitating the modification of hormone biosynthetic pathways for the generation of transgenic crop plants with enhanced abiotic stress tolerance.

  6. Arbuscular mycorrhizal fungal responses to abiotic stresses: A review.

    PubMed

    Lenoir, Ingrid; Fontaine, Joël; Lounès-Hadj Sahraoui, Anissa

    2016-03-01

    The majority of plants live in close collaboration with a diversity of soil organisms among which arbuscular mycorrhizal fungi (AMF) play an essential role. Mycorrhizal symbioses contribute to plant growth and plant protection against various environmental stresses. Whereas the resistance mechanisms induced in mycorrhizal plants after exposure to abiotic stresses, such as drought, salinity and pollution, are well documented, the knowledge about the stress tolerance mechanisms implemented by the AMF themselves is limited. This review provides an overview of the impacts of various abiotic stresses (pollution, salinity, drought, extreme temperatures, CO2, calcareous, acidity) on biodiversity, abundance and development of AMF and examines the morphological, biochemical and molecular mechanisms implemented by AMF to survive in the presence of these stresses. PMID:26803396

  7. Molecular approaches to improve rice abiotic stress tolerance.

    PubMed

    Mizoi, Junya; Yamaguchi-Shinozaki, Kazuko

    2013-01-01

    Abiotic stress is a major factor limiting productivity of rice crops in large areas of the world. Because plants cannot avoid abiotic stress by moving, they have acquired various mechanisms for stress tolerance in the course of their evolution. Enhancing or introducing such mechanisms in rice is one effective way to develop stress-tolerant cultivars. Based on physiological studies on stress responses, recent progress in plant molecular biology has enabled discovery of many genes involved in stress tolerance. These genes include regulatory genes, which regulate stress response (e.g., transcription factors and protein kinases), and functional genes, which protect the cell (e.g., enzymes for generating protective metabolites and proteins). Both kinds of genes are used to increase stress tolerance in rice. In addition, several quantitative trait loci (QTLs) associated with higher stress tolerance have been cloned, contributing to the discovery of significantly important genes for stress tolerance.

  8. Demonstration of significant abiotic iron isotope fractionation in nature

    USGS Publications Warehouse

    Bullen, T.D.; White, A.F.; Childs, C.W.; Vivit, D.V.; Schultz, M.S.

    2001-01-01

    Field and laboratory studies reveal that the mineral ferrihydrite, formed as a result of abiotic oxidation of aqueous ferrous to ferric Fe, contains Fe that is isotopically heavy relative to coexisting aqueous Fe. Because the electron transfer step of the oxidation process at pH >5 is essentially irreversible and should favor the lighter Fe isotopes in the ferric iron product, this result suggests that relatively heavy Fe isotopes are preferentially partitioned into the readily oxidized Fe(II)(OH)x(aq) species or their transition complexes prior to oxidation. The apparent Fe isotope fractionation factor, ??ferrihydrite-water, depends primarily on the relative abundances of the Fe(II)(aq) species. This study demonstrates that abiotic processes can fractionate the Fe isotopes to the same extent as biotic processes, and thus Fe isotopes on their own do not provide an effective biosignature.

  9. Genomics Approaches for Crop Improvement against Abiotic Stress

    PubMed Central

    Akpınar, Bala Anı; Lucas, Stuart J.; Budak, Hikmet

    2013-01-01

    As sessile organisms, plants are inevitably exposed to one or a combination of stress factors every now and then throughout their growth and development. Stress responses vary considerably even in the same plant species; stress-susceptible genotypes are at one extreme, and stress-tolerant ones are at the other. Elucidation of the stress responses of crop plants is of extreme relevance, considering the central role of crops in food and biofuel production. Crop improvement has been a traditional issue to increase yields and enhance stress tolerance; however, crop improvement against abiotic stresses has been particularly compelling, given the complex nature of these stresses. As traditional strategies for crop improvement approach their limits, the era of genomics research has arisen with new and promising perspectives in breeding improved varieties against abiotic stresses. PMID:23844392

  10. An abiotic analogue of the nuclear pore complex hydrogel.

    PubMed

    Bird, Sean P; Baker, Lane A

    2011-09-12

    We describe an abiotic hydrogel that mimics selectivity of the nuclear pore complex. Copolymerization of peptide tetramers (phenylalanine-serine-phenylalanine-glycine, FSFG) with acrylamide results in hydrophobic interactions significant enough to allow the formation of freestanding hydrogel structures. Incorporation of FSFG motifs also renders the hydrogels selective. Selective binding of importins and nuclear transport receptor-cargo complexes is qualitatively demonstrated and compared with polyacrylamide, hydrogels prepared from a control peptide, and hydrogels prepared from the nuclear pore complex protein Nsp1. These abiotic hydrogels will enable further studies of the unique transport mechanisms of the nuclear pore complex and provide an interesting paradigm for the future development of synthetic platforms for separations and selective interfaces.

  11. Progress and challenges for abiotic stress proteomics of crop plants.

    PubMed

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar

    2013-06-01

    Plants are continually challenged to recognize and respond to adverse changes in their environment to avoid detrimental effects on growth and development. Understanding the mechanisms that crop plants employ to resist and tolerate abiotic stress is of considerable interest for designing agriculture breeding strategies to ensure sustainable productivity. The application of proteomics technologies to advance our knowledge in crop plant abiotic stress tolerance has increased dramatically in the past few years as evidenced by the large amount of publications in this area. This is attributed to advances in various technology platforms associated with MS-based techniques as well as the accessibility of proteomics units to a wider plant research community. This review summarizes the work which has been reported for major crop plants and evaluates the findings in context of the approaches that are widely employed with the aim to encourage broadening the strategies used to increase coverage of the proteome. PMID:23512887

  12. Progress and challenges for abiotic stress proteomics of crop plants.

    PubMed

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar

    2013-06-01

    Plants are continually challenged to recognize and respond to adverse changes in their environment to avoid detrimental effects on growth and development. Understanding the mechanisms that crop plants employ to resist and tolerate abiotic stress is of considerable interest for designing agriculture breeding strategies to ensure sustainable productivity. The application of proteomics technologies to advance our knowledge in crop plant abiotic stress tolerance has increased dramatically in the past few years as evidenced by the large amount of publications in this area. This is attributed to advances in various technology platforms associated with MS-based techniques as well as the accessibility of proteomics units to a wider plant research community. This review summarizes the work which has been reported for major crop plants and evaluates the findings in context of the approaches that are widely employed with the aim to encourage broadening the strategies used to increase coverage of the proteome.

  13. Energy harvesting by implantable abiotically catalyzed glucose fuel cells

    NASA Astrophysics Data System (ADS)

    Kerzenmacher, S.; Ducrée, J.; Zengerle, R.; von Stetten, F.

    Implantable glucose fuel cells are a promising approach to realize an autonomous energy supply for medical implants that solely relies on the electrochemical reaction of oxygen and glucose. Key advantage over conventional batteries is the abundant availability of both reactants in body fluids, rendering the need for regular replacement or external recharging mechanisms obsolete. Implantable glucose fuel cells, based on abiotic catalysts such as noble metals and activated carbon, have already been developed as power supply for cardiac pacemakers in the late-1960s. Whereas, in vitro and preliminary in vivo studies demonstrated their long-term stability, the performance of these fuel cells is limited to the μW-range. Consequently, no further developments have been reported since high-capacity lithium iodine batteries for cardiac pacemakers became available in the mid-1970s. In recent years research has been focused on enzymatically catalyzed glucose fuel cells. They offer higher power densities than their abiotically catalyzed counterparts, but the limited enzyme stability impedes long-term application. In this context, the trend towards increasingly energy-efficient low power MEMS (micro-electro-mechanical systems) implants has revived the interest in abiotic catalysts as a long-term stable alternative. This review covers the state-of-the-art in implantable abiotically catalyzed glucose fuel cells and their development since the 1960s. Different embodiment concepts are presented and the historical achievements of academic and industrial research groups are critically reviewed. Special regard is given to the applicability of the concept as sustainable micro-power generator for implantable devices.

  14. Polyamines in response to abiotic stress tolerance through transgenic approaches

    PubMed Central

    Pathak, Malabika Roy; Teixeira da Silva, Jaime A; Wani, Shabir H

    2014-01-01

    The distribution, growth, development and productivity of crop plants are greatly affected by various abiotic stresses. Worldwide, sustainable crop productivity is facing major challenges caused by abiotic stresses by reducing the potential yield in crop plants by as much as 70%. Plants can generally adapt to one or more environmental stresses to some extent. Physiological and molecular studies at transcriptional, translational, and transgenic plant levels have shown the pronounced involvement of naturally occurring plant polyamines (PAs), in controlling, conferring, and modulating abiotic stress tolerance in plants. PAs are small, low molecular weight, non-protein polycations at physiological pH, that are present in all living organisms, and that have strong binding capacity to negatively charged DNA, RNA, and different protein molecules. They play an important role in plant growth and development by controlling the cell cycle, acting as cell signaling molecules in modulating plant tolerance to a variety of abiotic stresses. The commonly known PAs, putrescine, spermidine, and spermine tend to accumulate together accompanied by an increase in the activities of their biosynthetic enzymes under a range of environmental stresses. PAs help plants to combat stresses either directly or by mediating a signal transduction pathway, as shown by molecular cloning and expression studies of PA biosynthesis-related genes, knowledge of the functions of PAs, as demonstrated by developmental studies, and through the analysis of transgenic plants carrying PA genes. This review highlights how PAs in higher plants act during environmental stress and how transgenic strategies have improved our understanding of the molecular mechanisms at play. PMID:24710064

  15. Wheat EST resources for functional genomics of abiotic stress

    PubMed Central

    Houde, Mario; Belcaid, Mahdi; Ouellet, François; Danyluk, Jean; Monroy, Antonio F; Dryanova, Ani; Gulick, Patrick; Bergeron, Anne; Laroche, André; Links, Matthew G; MacCarthy, Luke; Crosby, William L; Sarhan, Fathey

    2006-01-01

    Background Wheat is an excellent species to study freezing tolerance and other abiotic stresses. However, the sequence of the wheat genome has not been completely characterized due to its complexity and large size. To circumvent this obstacle and identify genes involved in cold acclimation and associated stresses, a large scale EST sequencing approach was undertaken by the Functional Genomics of Abiotic Stress (FGAS) project. Results We generated 73,521 quality-filtered ESTs from eleven cDNA libraries constructed from wheat plants exposed to various abiotic stresses and at different developmental stages. In addition, 196,041 ESTs for which tracefiles were available from the National Science Foundation wheat EST sequencing program and DuPont were also quality-filtered and used in the analysis. Clustering of the combined ESTs with d2_cluster and TGICL yielded a few large clusters containing several thousand ESTs that were refractory to routine clustering techniques. To resolve this problem, the sequence proximity and "bridges" were identified by an e-value distance graph to manually break clusters into smaller groups. Assembly of the resolved ESTs generated a 75,488 unique sequence set (31,580 contigs and 43,908 singletons/singlets). Digital expression analyses indicated that the FGAS dataset is enriched in stress-regulated genes compared to the other public datasets. Over 43% of the unique sequence set was annotated and classified into functional categories according to Gene Ontology. Conclusion We have annotated 29,556 different sequences, an almost 5-fold increase in annotated sequences compared to the available wheat public databases. Digital expression analysis combined with gene annotation helped in the identification of several pathways associated with abiotic stress. The genomic resources and knowledge developed by this project will contribute to a better understanding of the different mechanisms that govern stress tolerance in wheat and other cereals. PMID

  16. Biotic and Abiotic Transformation of a Volatile Organics Plume in a Semi-Arid Vadose Zone

    SciTech Connect

    Studer, J.E.; Singletary, M.A.; Miller, D.R.

    1999-04-08

    An evaluation of biotic and abiotic attenuation processes potentially important to chlorinated and non-chlorinated volatile organic compound (VOC) fate and transport in the 148 meter thick vadose zone beneath the Chemical Waste Landfill (CWL) was conducted. A unique feature of this evaluation is the comparison of two estimates of VOC mass present in the soil gas, pore-water, and solid phases (but not including mass as non-aqueous phase liquid [NAPL]) of the vadose zone in 1993. One estimate, 1,800 kg, was obtained from vadose zone transport modeling that incorporated molecular diffusion and volatilization to the atmosphere, but not biotic or chemical processes. The other estimate, 2,120 kg, was obtained from the sum of VOC mass physically removed during soil vapor extraction and an estimate of VOC mass remaining in the vadose zone in 1998, both adjusted to exclude NAPL mass. This comparison indicates that biogeochemical processes were at best slightly important to historical VOC plume development. Some evidence of aerobic degradation of non-chlorinated VOCs and abiotic transformation of 1,1,1-Trichloroethane was identified. Despite potentially amenable site conditions, no evidence was found of cometabolic and anaerobic transformation pathways. Relying principally on soil-gas analytical results, an upper-bound estimate of 21% mass reduction due to natural biogeochemical processes was developed. Although available information for the CWL indicates that natural attenuation processes other than volatilization to the atmosphere did not effective y enhance groundwater protection, these processes could be important in significantly reducing groundwater contamination and exposure risks at other sites. More laboratory and field research is required to improve our collective ability to characterize and exploit natural VOC attenuation processes, especially with respect to the combination of relatively thick and dry vadose zones and chlorinated VOCs.

  17. Degradation rates of benzotriazoles and benzothiazoles under UV-C irradiation and the advanced oxidation process UV/H2O2.

    PubMed

    Bahnmüller, Sabrina; Loi, Clara H; Linge, Kathryn L; Gunten, Urs von; Canonica, Silvio

    2015-05-01

    Benzotriazoles (BTs) and benzothiazoles (BTHs) are extensively used chemicals found in a wide range of household and industrial products. They are chemically stable and are therefore ubiquitous in the aquatic environment. The present study focuses on the potential of ultraviolet (UV) irradiation, alone or in combination with hydrogen peroxide (H2O2), to remove BTs and BTHs from contaminated waters. Six compounds, three out of each chemical class, were investigated using a low-pressure mercury lamp (main emission at 254 nm) as the radiation source. Initially, the direct phototransformation kinetics and quantum yield in dilute aqueous solution was studied over the pH range of 4-12. All BTs and BTHs, except for benzothiazole, exhibited pH-dependent direct phototransformation rate constants and quantum yields in accordance to their acid-base speciation (7.1 < pKa < 8.9). The direct phototransformation quantum yields (9.0 × 10(-4)-3.0 × 10(-2) mol einstein(-1)), as well as the photon fluence-based rate constants (1.2-48 m(2) einstein(-1)) were quite low. This suggests that UV irradiation alone is not an efficient method to remove BTs and BTHs from impacted waters. The second-order rate constants for the reaction of selected BTs and BTHs with the hydroxyl radical were also determined, and found to fall in the range of 5.1-10.8 × 10(9) M(-1) s(-1), which is typical for aromatic contaminants. Finally, the removal of BTs and BTHs was measured in wastewater and river water during application of UV irradiation or the advanced oxidation process UV/H2O2. The latter process provided an efficient removal, mostly due to the effect of the hydroxyl radical, that was comparable to other aromatic aquatic contaminants, in terms of energy requirement or treatment costs.

  18. Degradation rates of benzotriazoles and benzothiazoles under UV-C irradiation and the advanced oxidation process UV/H2O2.

    PubMed

    Bahnmüller, Sabrina; Loi, Clara H; Linge, Kathryn L; Gunten, Urs von; Canonica, Silvio

    2015-05-01

    Benzotriazoles (BTs) and benzothiazoles (BTHs) are extensively used chemicals found in a wide range of household and industrial products. They are chemically stable and are therefore ubiquitous in the aquatic environment. The present study focuses on the potential of ultraviolet (UV) irradiation, alone or in combination with hydrogen peroxide (H2O2), to remove BTs and BTHs from contaminated waters. Six compounds, three out of each chemical class, were investigated using a low-pressure mercury lamp (main emission at 254 nm) as the radiation source. Initially, the direct phototransformation kinetics and quantum yield in dilute aqueous solution was studied over the pH range of 4-12. All BTs and BTHs, except for benzothiazole, exhibited pH-dependent direct phototransformation rate constants and quantum yields in accordance to their acid-base speciation (7.1 < pKa < 8.9). The direct phototransformation quantum yields (9.0 × 10(-4)-3.0 × 10(-2) mol einstein(-1)), as well as the photon fluence-based rate constants (1.2-48 m(2) einstein(-1)) were quite low. This suggests that UV irradiation alone is not an efficient method to remove BTs and BTHs from impacted waters. The second-order rate constants for the reaction of selected BTs and BTHs with the hydroxyl radical were also determined, and found to fall in the range of 5.1-10.8 × 10(9) M(-1) s(-1), which is typical for aromatic contaminants. Finally, the removal of BTs and BTHs was measured in wastewater and river water during application of UV irradiation or the advanced oxidation process UV/H2O2. The latter process provided an efficient removal, mostly due to the effect of the hydroxyl radical, that was comparable to other aromatic aquatic contaminants, in terms of energy requirement or treatment costs. PMID:25725202

  19. Abiotic Deposition of Fe Complexes onto Leptothrix Sheaths

    PubMed Central

    Kunoh, Tatsuki; Hashimoto, Hideki; McFarlane, Ian R.; Hayashi, Naoaki; Suzuki, Tomoko; Taketa, Eisuke; Tamura, Katsunori; Takano, Mikio; El-Naggar, Mohamed Y.; Kunoh, Hitoshi; Takada, Jun

    2016-01-01

    Bacteria classified in species of the genus Leptothrix produce extracellular, microtubular, Fe-encrusted sheaths. The encrustation has been previously linked to bacterial Fe oxidases, which oxidize Fe(II) to Fe(III) and/or active groups of bacterial exopolymers within sheaths to attract and bind aqueous-phase inorganics. When L. cholodnii SP-6 cells were cultured in media amended with high Fe(II) concentrations, Fe(III) precipitates visibly formed immediately after addition of Fe(II) to the medium, suggesting prompt abiotic oxidation of Fe(II) to Fe(III). Intriguingly, these precipitates were deposited onto the sheath surface of bacterial cells as the population was actively growing. When Fe(III) was added to the medium, similar precipitates formed in the medium first and were abiotically deposited onto the sheath surfaces. The precipitates in the Fe(II) medium were composed of assemblies of globular, amorphous particles (ca. 50 nm diameter), while those in the Fe(III) medium were composed of large, aggregated particles (≥3 µm diameter) with a similar amorphous structure. These precipitates also adhered to cell-free sheaths. We thus concluded that direct abiotic deposition of Fe complexes onto the sheath surface occurs independently of cellular activity in liquid media containing Fe salts, although it remains unclear how this deposition is associated with the previously proposed mechanisms (oxidation enzyme- and/or active group of organic components-involved) of Fe encrustation of the Leptothrix sheaths. PMID:27271677

  20. Cell Wall Metabolism in Response to Abiotic Stress.

    PubMed

    Le Gall, Hyacinthe; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-01-01

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions. PMID:27135320

  1. Titania may produce abiotic oxygen atmospheres on habitable exoplanets

    PubMed Central

    Narita, Norio; Enomoto, Takafumi; Masaoka, Shigeyuki; Kusakabe, Nobuhiko

    2015-01-01

    The search for habitable exoplanets in the Universe is actively ongoing in the field of astronomy. The biggest future milestone is to determine whether life exists on such habitable exoplanets. In that context, oxygen in the atmosphere has been considered strong evidence for the presence of photosynthetic organisms. In this paper, we show that a previously unconsidered photochemical mechanism by titanium (IV) oxide (titania) can produce abiotic oxygen from liquid water under near ultraviolet (NUV) lights on the surface of exoplanets. Titania works as a photocatalyst to dissociate liquid water in this process. This mechanism offers a different source of a possibility of abiotic oxygen in atmospheres of exoplanets from previously considered photodissociation of water vapor in upper atmospheres by extreme ultraviolet (XUV) light. Our order-of-magnitude estimation shows that possible amounts of oxygen produced by this abiotic mechanism can be comparable with or even more than that in the atmosphere of the current Earth, depending on the amount of active surface area for this mechanism. We conclude that titania may act as a potential source of false signs of life on habitable exoplanets. PMID:26354078

  2. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants

    PubMed Central

    Sah, Saroj K.; Reddy, Kambham R.; Li, Jiaxu

    2016-01-01

    Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression. PMID:27200044

  3. Titania may produce abiotic oxygen atmospheres on habitable exoplanets

    NASA Astrophysics Data System (ADS)

    Narita, Norio; Enomoto, Takafumi; Masaoka, Shigeyuki; Kusakabe, Nobuhiko

    2015-12-01

    The search for habitable exoplanets in the Universe is actively ongoing in the field of astronomy. The biggest future milestone is to determine whether life exists on such habitable exoplanets. In that context, oxygen in the atmosphere has been considered strong evidence for the presence of photosynthetic organisms. In this paper, we show that a previously unconsidered photochemical mechanism by titanium (IV) oxide (titania) can produce abiotic oxygen from liquid water under near ultraviolet (NUV) lights on the surface of exoplanets. Titania works as a photocatalyst to dissociate liquid water in this process. This mechanism offers a different source of a possibility of abiotic oxygen in atmospheres of exoplanets from previously considered photodissociation of water vapor in upper atmospheres by extreme ultraviolet (XUV) light. Our order-of-magnitude estimation shows that possible amounts of oxygen produced by this abiotic mechanism can be comparable with or even more than that in the atmosphere of the current Earth, depending on the amount of active surface area for this mechanism. We conclude that titania may act as a potential source of false signs of life on habitable exoplanets.Reference:Narita N. et al.,Scientific Reports 5, Article number: 13977 (2015)http://www.nature.com/articles/srep13977

  4. Titania may produce abiotic oxygen atmospheres on habitable exoplanets

    NASA Astrophysics Data System (ADS)

    Narita, Norio; Enomoto, Takafumi; Masaoka, Shigeyuki; Kusakabe, Nobuhiko

    2015-09-01

    The search for habitable exoplanets in the Universe is actively ongoing in the field of astronomy. The biggest future milestone is to determine whether life exists on such habitable exoplanets. In that context, oxygen in the atmosphere has been considered strong evidence for the presence of photosynthetic organisms. In this paper, we show that a previously unconsidered photochemical mechanism by titanium (IV) oxide (titania) can produce abiotic oxygen from liquid water under near ultraviolet (NUV) lights on the surface of exoplanets. Titania works as a photocatalyst to dissociate liquid water in this process. This mechanism offers a different source of a possibility of abiotic oxygen in atmospheres of exoplanets from previously considered photodissociation of water vapor in upper atmospheres by extreme ultraviolet (XUV) light. Our order-of-magnitude estimation shows that possible amounts of oxygen produced by this abiotic mechanism can be comparable with or even more than that in the atmosphere of the current Earth, depending on the amount of active surface area for this mechanism. We conclude that titania may act as a potential source of false signs of life on habitable exoplanets.

  5. Titania may produce abiotic oxygen atmospheres on habitable exoplanets.

    PubMed

    Narita, Norio; Enomoto, Takafumi; Masaoka, Shigeyuki; Kusakabe, Nobuhiko

    2015-09-10

    The search for habitable exoplanets in the Universe is actively ongoing in the field of astronomy. The biggest future milestone is to determine whether life exists on such habitable exoplanets. In that context, oxygen in the atmosphere has been considered strong evidence for the presence of photosynthetic organisms. In this paper, we show that a previously unconsidered photochemical mechanism by titanium (IV) oxide (titania) can produce abiotic oxygen from liquid water under near ultraviolet (NUV) lights on the surface of exoplanets. Titania works as a photocatalyst to dissociate liquid water in this process. This mechanism offers a different source of a possibility of abiotic oxygen in atmospheres of exoplanets from previously considered photodissociation of water vapor in upper atmospheres by extreme ultraviolet (XUV) light. Our order-of-magnitude estimation shows that possible amounts of oxygen produced by this abiotic mechanism can be comparable with or even more than that in the atmosphere of the current Earth, depending on the amount of active surface area for this mechanism. We conclude that titania may act as a potential source of false signs of life on habitable exoplanets.

  6. Abiotic Reductive Immobilization of U(VI) by Biogenic Mackinawite

    SciTech Connect

    Veeramani, Harish; Scheinost, Andreas; Monsegue, Niven; Qafoku, Nikolla; Kukkadapu, Ravi K.; Newville, Mathew; Lanzirotti, Anthony; Pruden, Amy; Murayama, Mitsuhiro; Hochella, Michael F.

    2013-03-01

    During subsurface bioremediation of uranium-contaminated sites, indigenous metal and sulfate-reducing bacteria may utilize a variety of electron acceptors, including ferric iron and sulfate that could lead to the formation of various biogenic minerals in-situ. Sulfides, as well as structural and adsorbed Fe(II) associated with biogenic Fe(II)-sulfide phases, can potentially catalyze abiotic U6+ reduction via direct electron transfer processes. In the present work, the propensity of biogenic mackinawite (Fe1+xS, x = 0 to 0.11) to reduce U6+ abiotically was investigated. The biogenic mackinawite produced by Shewanella putrefaciens strain CN32 was characterized by employing a suite of analytical techniques including TEM, SEM, XAS and Mössbauer analyses. Nanoscale and bulk analyses (microscopic and spectroscopic techniques, respectively) of biogenic mackinawite after exposure to U6+ indicate the formation of nanoparticulate UO2. This study suggests the relevance of Fe(II) and sulfide bearing biogenic minerals in mediating abiotic U6+ reduction, an alternative pathway in addition to direct enzymatic U6+ reduction.

  7. Abiotic carbonate dissolution traps carbon in a semiarid desert

    PubMed Central

    Fa, Keyu; Liu, Zhen; Zhang, Yuqing; Qin, Shugao; Wu, Bin; Liu, Jiabin

    2016-01-01

    It is generally considered that desert ecosystems release CO2 to the atmosphere, but recent studies in drylands have shown that the soil can absorb CO2 abiotically. However, the mechanisms and exact location of abiotic carbon absorption remain unclear. Here, we used soil sterilization, 13CO2 addition, and detection methods to trace 13C in the soil of the Mu Us Desert, northern China. After 13CO2 addition, a large amount of 13CO2 was absorbed by the sterilised soil, and 13C was found enriched both in the soil gaseous phase and dissolved inorganic carbon (DIC). Further analysis indicated that about 79.45% of the total 13C absorbed by the soil was trapped in DIC, while the amount of 13C in the soil gaseous phase accounted for only 0.22% of the total absorbed 13C. However, about 20.33% of the total absorbed 13C remained undetected. Our results suggest that carbonate dissolution might occur predominately, and the soil liquid phase might trap the majority of abiotically absorbed carbon. It is possible that the trapped carbon in the soil liquid phase leaches into the groundwater; however, further studies are required to support this hypothesis. PMID:27020762

  8. Cell Wall Metabolism in Response to Abiotic Stress

    PubMed Central

    Gall, Hyacinthe Le; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-01-01

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions. PMID:27135320

  9. Abiotic reductive immobilization of U(VI) by biogenic mackinawite.

    PubMed

    Veeramani, Harish; Scheinost, Andreas C; Monsegue, Niven; Qafoku, Nikolla P; Kukkadapu, Ravi; Newville, Matt; Lanzirotti, Antonio; Pruden, Amy; Murayama, Mitsuhiro; Hochella, Michael F

    2013-03-01

    During subsurface bioremediation of uranium-contaminated sites, indigenous metal and sulfate-reducing bacteria may utilize a variety of electron acceptors, including ferric iron and sulfate that could lead to the formation of various biogenic minerals in situ. Sulfides, as well as structural and adsorbed Fe(II) associated with biogenic Fe(II)-sulfide phases, can potentially catalyze abiotic U(VI) reduction via direct electron transfer processes. In the present work, the propensity of biogenic mackinawite (Fe 1+x S, x = 0 to 0.11) to reduce U(VI) abiotically was investigated. The biogenic mackinawite produced by Shewanella putrefaciens strain CN32 was characterized by employing a suite of analytical techniques including TEM, SEM, XAS, and Mössbauer analyses. Nanoscale and bulk analyses (microscopic and spectroscopic techniques, respectively) of biogenic mackinawite after exposure to U(VI) indicate the formation of nanoparticulate UO2. This study suggests the relevance of sulfide-bearing biogenic minerals in mediating abiotic U(VI) reduction, an alternative pathway in addition to direct enzymatic U(VI) reduction. PMID:23373896

  10. Abiotic Deposition of Fe Complexes onto Leptothrix Sheaths.

    PubMed

    Kunoh, Tatsuki; Hashimoto, Hideki; McFarlane, Ian R; Hayashi, Naoaki; Suzuki, Tomoko; Taketa, Eisuke; Tamura, Katsunori; Takano, Mikio; El-Naggar, Mohamed Y; Kunoh, Hitoshi; Takada, Jun

    2016-01-01

    Bacteria classified in species of the genus Leptothrix produce extracellular, microtubular, Fe-encrusted sheaths. The encrustation has been previously linked to bacterial Fe oxidases, which oxidize Fe(II) to Fe(III) and/or active groups of bacterial exopolymers within sheaths to attract and bind aqueous-phase inorganics. When L. cholodnii SP-6 cells were cultured in media amended with high Fe(II) concentrations, Fe(III) precipitates visibly formed immediately after addition of Fe(II) to the medium, suggesting prompt abiotic oxidation of Fe(II) to Fe(III). Intriguingly, these precipitates were deposited onto the sheath surface of bacterial cells as the population was actively growing. When Fe(III) was added to the medium, similar precipitates formed in the medium first and were abiotically deposited onto the sheath surfaces. The precipitates in the Fe(II) medium were composed of assemblies of globular, amorphous particles (ca. 50 nm diameter), while those in the Fe(III) medium were composed of large, aggregated particles (≥3 µm diameter) with a similar amorphous structure. These precipitates also adhered to cell-free sheaths. We thus concluded that direct abiotic deposition of Fe complexes onto the sheath surface occurs independently of cellular activity in liquid media containing Fe salts, although it remains unclear how this deposition is associated with the previously proposed mechanisms (oxidation enzyme- and/or active group of organic components-involved) of Fe encrustation of the Leptothrix sheaths. PMID:27271677

  11. Titania may produce abiotic oxygen atmospheres on habitable exoplanets.

    PubMed

    Narita, Norio; Enomoto, Takafumi; Masaoka, Shigeyuki; Kusakabe, Nobuhiko

    2015-01-01

    The search for habitable exoplanets in the Universe is actively ongoing in the field of astronomy. The biggest future milestone is to determine whether life exists on such habitable exoplanets. In that context, oxygen in the atmosphere has been considered strong evidence for the presence of photosynthetic organisms. In this paper, we show that a previously unconsidered photochemical mechanism by titanium (IV) oxide (titania) can produce abiotic oxygen from liquid water under near ultraviolet (NUV) lights on the surface of exoplanets. Titania works as a photocatalyst to dissociate liquid water in this process. This mechanism offers a different source of a possibility of abiotic oxygen in atmospheres of exoplanets from previously considered photodissociation of water vapor in upper atmospheres by extreme ultraviolet (XUV) light. Our order-of-magnitude estimation shows that possible amounts of oxygen produced by this abiotic mechanism can be comparable with or even more than that in the atmosphere of the current Earth, depending on the amount of active surface area for this mechanism. We conclude that titania may act as a potential source of false signs of life on habitable exoplanets. PMID:26354078

  12. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants.

    PubMed

    Sah, Saroj K; Reddy, Kambham R; Li, Jiaxu

    2016-01-01

    Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression. PMID:27200044

  13. Cell Wall Metabolism in Response to Abiotic Stress.

    PubMed

    Le Gall, Hyacinthe; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-02-16

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions.

  14. Resistance Responses of Potato to Vesicular-Arbuscular Mycorrhizal Fungi under Varying Abiotic Phosphorus Levels 1

    PubMed Central

    McArthur, David A. J.; Knowles, N. Richard

    1992-01-01

    In mycorrhizal symbioses, susceptibility of a host plant to infection by fungi is influenced by environmental factors, especially the availability of soil phosphorus. This study describes morphological and biochemical details of interactions between a vesicular-arbuscular mycorrhizal (VAM) fungus and potato (Solanum tuberosum L. cv Russet Burbank) plants, with a particular focus on the physiological basis for P-induced resistance of roots to infection. Root infection by the VAM fungus Glomus fasciculatum ([Thaxt. sensu Gerdemann] Gerdemann and Trappe) was extensive for plants grown with low abiotic P supply, and plant biomass accumulation was enhanced by the symbiosis. The capacity of excised roots from P-deficient plants to produce ethylene in the presence or absence of exogenous 1-amino cyclopropane-1-carboxylic acid (ACC) was markedly reduced by VAM infection. This apparent inhibition of ACC oxidase (ACCox) activity was localized to areas containing infected roots, as demonstrated in split-root studies. Furthermore, leachate from VAM roots contained a potent water-soluble inhibitor of ethylene generation from exogenous ACC by nonmycorrhizal (NM) roots. The leachate from VAM-infected roots had a higher concentration of phenolics, relative to that from NM roots. Moreover, the rates of ethylene formation and phenolic concentration in leachates from VAM roots were inversely correlated, suggesting that this inhibitor may be of a phenolic nature. The specific activity of extracellular peroxidase recovered in root leachates was not stimulated by VAM infection, although activity on a fresh weight basis was significantly enhanced, reflecting the fact that VAM roots had higher protein content than NM roots. Polyphenol oxidase activity of roots did not differ between NM and VAM roots. These results characterize the low resistance response of P-deficient plants to VAM infection. When plants were grown with higher abiotic P supply, the relative benefit of the VAM symbiosis

  15. Degradation and Volatilization of Chlorofluorocarbons in Contaminated Groundwater Explored by Stable Carbon Isotope Analysis

    NASA Astrophysics Data System (ADS)

    Horst, A.; Lacrampe-Couloume, G.; Sherwood Lollar, B.

    2015-12-01

    Chlorofluorocarbons (CFCs) are ozone depleting compounds whose production was phased out by the regulations of the Montreal Protocol (1987). Accidental release and disposal also led to contamination of groundwater at many locations, however, and this legacy persists. Although very stable, CFCs may degrade via abiotic and biotic pathways. Quantification of the degree of transformation of CFCs has been challenging due to other processes such as dilution, sorption and volatilization. Compound specific stable carbon isotope analysis (CSIA) has been successfully applied for a variety of priority pollutants to distinguish degradation from other processes and to quantify transformation rates. A Purge & Trap - CSIA method developed in our lab was applied to determine the stable carbon isotopic signature of CFCs and HCFCs (hydrochlorofluorocarbons) in groundwater samples from a contaminated site. Preliminary results suggest that degradation of CFCs and HCFCs may result in enriched δ13C values, consistent with fractionation during bond breakage as has been reported for many other hydrocarbon pollutants. The effect of volatile loss during sampling on the isotopic signatures of CFCs was examined in laboratory experiments. Volatilization from pure phase CFCs showed a small inverse isotope effect during open system volatilization, opposite to the normal isotope effect generally observed during biodegradation. For volatilization of CFCs dissolved in water a much smaller isotope effect was observed. An important result from this work is that any volatile loss may introduce only a small change in CFC isotopic signatures in groundwater, and importantly, due to the opposite direction of isotope effects associated with volatilization versus degradation, any effects of volatile loss on the isotopic signatures cannot be confused with transformation of CFCs. At most, volatilization might contribute to a conservative estimate of the extent of degradation.

  16. Degradation and Volatilization of Chlorofluorocarbons in Contaminated Groundwater Explored by Stable Carbon Isotope Analysis

    NASA Astrophysics Data System (ADS)

    Hangx, S.; Pijnenburg, R. P.; Niemeijer, A. R.; Bakker, E.; Samuelson, J. E.; Spiers, C. J.

    2014-12-01

    Chlorofluorocarbons (CFCs) are ozone depleting compounds whose production was phased out by the regulations of the Montreal Protocol (1987). Accidental release and disposal also led to contamination of groundwater at many locations, however, and this legacy persists. Although very stable, CFCs may degrade via abiotic and biotic pathways. Quantification of the degree of transformation of CFCs has been challenging due to other processes such as dilution, sorption and volatilization. Compound specific stable carbon isotope analysis (CSIA) has been successfully applied for a variety of priority pollutants to distinguish degradation from other processes and to quantify transformation rates. A Purge & Trap - CSIA method developed in our lab was applied to determine the stable carbon isotopic signature of CFCs and HCFCs (hydrochlorofluorocarbons) in groundwater samples from a contaminated site. Preliminary results suggest that degradation of CFCs and HCFCs may result in enriched δ13C values, consistent with fractionation during bond breakage as has been reported for many other hydrocarbon pollutants. The effect of volatile loss during sampling on the isotopic signatures of CFCs was examined in laboratory experiments. Volatilization from pure phase CFCs showed a small inverse isotope effect during open system volatilization, opposite to the normal isotope effect generally observed during biodegradation. For volatilization of CFCs dissolved in water a much smaller isotope effect was observed. An important result from this work is that any volatile loss may introduce only a small change in CFC isotopic signatures in groundwater, and importantly, due to the opposite direction of isotope effects associated with volatilization versus degradation, any effects of volatile loss on the isotopic signatures cannot be confused with transformation of CFCs. At most, volatilization might contribute to a conservative estimate of the extent of degradation.

  17. Polysaccharide Degradation

    NASA Astrophysics Data System (ADS)

    Stone, Bruce A.; Svensson, Birte; Collins, Michelle E.; Rastall, Robert A.

    An overview of current and potential enzymes used to degrade polysaccharides is presented. Such depolymerases are comprised of glycoside hydrolases, glycosyl transferases, phosphorylases and lyases, and their classification, active sites and action patterns are discussed. Additionally, the mechanisms that these enzymes use to cleave glycosidic linkages is reviewed as are inhibitors of depolymerase activity; reagents which react with amino acid residues, glycoside derivatives, transition state inhibitors and proteinaceous inhibitors. The characterization of various enzymes of microbial, animal or plant origin has led to their widespread use in the production of important oligosaccharides which can be incorporated into food stuffs. Sources of polysaccharides of particular interest in this chapter are those from plants and include inulin, dextran, xylan and pectin, as their hydrolysis products are purported to be functional foods in the context of gastrointestinal health. An alternative use of degraded polysaccharides is in the treatment of disease. The possibility exists to treat bacterial exopolysaccharide with lyases from bacteriophage to produce oligosaccharides exhibiting bioactive sequences. Although this area is currently in its infancy the knowledge is available to investigate further.

  18. Biotic and abiotic effects on CO2 sequestration during microbially-induced calcium carbonate precipitation.

    PubMed

    Okyay, Tugba Onal; Rodrigues, Debora F

    2015-03-01

    In this study, CO2 sequestration was investigated through the microbially-induced calcium carbonate precipitation (MICP) process with isolates obtained from a cave called 'Cave Without A Name' (Boerne, TX, USA) and the Pamukkale travertines (Denizli, Turkey). The majority of the bacterial isolates obtained from these habitats belonged to the genera Sporosarcina, Brevundimonas, Sphingobacterium and Acinetobacter. The isolates were investigated for their capability to precipitate calcium carbonate and sequester CO2. Biotic and abiotic effects of CO2 sequestration during MICP were also investigated. In the biotic effect, we observed that the rate and concentration of CO2 sequestered was dependent on the species or strains. The main abiotic factors affecting CO2 sequestration during MICP were the pH and medium components. The increase in pH led to enhanced CO2 sequestration by the growth medium. The growth medium components, on the other hand, were shown to affect both the urease activity and CO2 sequestration. Through the Plackett-Burman experimental design, the most important growth medium component involved in CO2 sequestration was determined to be urea. The optimized medium composition by the Plackett-Burman design for each isolate led to a statistically significant increase, of up to 148.9%, in CO2 uptake through calcification mechanisms.

  19. Abiotic production of NO3 in the atmosphere of Early Mars

    NASA Astrophysics Data System (ADS)

    Gronoff, Guillaume; Airapetian, Vladimir; Hebrard, Eric

    2015-11-01

    Recent Curiosity/SAM measurements of Martian sediments have shown the presence of NO3 trapped in the samples. The ratio of nitrate to perchlorate has been suggested to be an indicator for habitability (Stern et al. 2015). However, the efficiency of the production of nitrate in the atmosphere has never been studied for the case of the active young Sun. To evaluate the effect of the abiotic production of nitrates, we apply our 1D atmospheric photochemical collisional model for the nitrogen-rich and CO2 atmosphere of early Mars, and calculate the production rate of NO3 mediated by the precipitation of energetic particles associated with the coronal mass ejections from the young Sun.We propose a method to check the hypothesis of the abiotic production: if the production is driven by the precipitating particles, then the magnetic shielding would reduce the NO3 production at the equator. Thus, samples collected at high latitudes should contain greater concentration of nitrates if the weathering did not homogenize it.

  20. Using Phenomic Analysis of Photosynthetic Function for Abiotic Stress Response Gene Discovery

    PubMed Central

    Rungrat, Tepsuda; Awlia, Mariam; Brown, Tim; Cheng, Riyan; Sirault, Xavier; Fajkus, Jiri; Trtilek, Martin; Furbank, Bob; Badger, Murray; Tester, Mark; Pogson, Barry J; Borevitz, Justin O; Wilson, Pip

    2016-01-01

    Monitoring the photosynthetic performance of plants is a major key to understanding how plants adapt to their growth conditions. Stress tolerance traits have a high genetic complexity as plants are constantly, and unavoidably, exposed to numerous stress factors, which limits their growth rates in the natural environment. Arabidopsis thaliana, with its broad genetic diversity and wide climatic range, has been shown to successfully adapt to stressful conditions to ensure the completion of its life cycle. As a result, A. thaliana has become a robust and renowned plant model system for studying natural variation and conducting gene discovery studies. Genome wide association studies (GWAS) in restructured populations combining natural and recombinant lines is a particularly effective way to identify the genetic basis of complex traits. As most abiotic stresses affect photosynthetic activity, chlorophyll fluorescence measurements are a potential phenotyping technique for monitoring plant performance under stress conditions. This review focuses on the use of chlorophyll fluorescence as a tool to study genetic variation underlying the stress tolerance responses to abiotic stress in A. thaliana. PMID:27695390

  1. Microcosm study of biotic vs abiotic sources of buffering in Mercer Marsh

    SciTech Connect

    Hurt, J.W.; Logue, B.E.; Williams, M.C.

    1987-01-01

    Microcosms were utilized to determine whether the major source of buffering in Mercer Marsh, a naturally occurring urban riparian wetland, is due to biotic or abiotic variables. Three types of systems, each consisting of six microcosms, were constructed. One system consisted of sterilized substrate and sterilized marsh water. The second type of system consisted of sterilized substrate and unsterilized marsh water. The third consisted of unsterilized substrate and unsterilized marsh water. Three microcosms of each type were spiked with sulfuric acid. The spiking of the microcosms lowered the original pH an average of .5 pH units. A subsequent average rise of .7 pH units resulted in all the acid spiked systems over the study period. The system without acid also increased in pH, although at a much slower rate, with an average rise of .2 pH units. The sterilized systems responded in the same manner to the acid spiking as those with unsterilized components, indicating that biota are not needed for buffering. Buffering also occurred in a second group of microcosms without substrate indicating that abiotic materials suspended in the water column are important in this process.

  2. Using Phenomic Analysis of Photosynthetic Function for Abiotic Stress Response Gene Discovery

    PubMed Central

    Rungrat, Tepsuda; Awlia, Mariam; Brown, Tim; Cheng, Riyan; Sirault, Xavier; Fajkus, Jiri; Trtilek, Martin; Furbank, Bob; Badger, Murray; Tester, Mark; Pogson, Barry J; Borevitz, Justin O; Wilson, Pip

    2016-01-01

    Monitoring the photosynthetic performance of plants is a major key to understanding how plants adapt to their growth conditions. Stress tolerance traits have a high genetic complexity as plants are constantly, and unavoidably, exposed to numerous stress factors, which limits their growth rates in the natural environment. Arabidopsis thaliana, with its broad genetic diversity and wide climatic range, has been shown to successfully adapt to stressful conditions to ensure the completion of its life cycle. As a result, A. thaliana has become a robust and renowned plant model system for studying natural variation and conducting gene discovery studies. Genome wide association studies (GWAS) in restructured populations combining natural and recombinant lines is a particularly effective way to identify the genetic basis of complex traits. As most abiotic stresses affect photosynthetic activity, chlorophyll fluorescence measurements are a potential phenotyping technique for monitoring plant performance under stress conditions. This review focuses on the use of chlorophyll fluorescence as a tool to study genetic variation underlying the stress tolerance responses to abiotic stress in A. thaliana.

  3. Biotic and abiotic effects on CO2 sequestration during microbially-induced calcium carbonate precipitation.

    PubMed

    Okyay, Tugba Onal; Rodrigues, Debora F

    2015-03-01

    In this study, CO2 sequestration was investigated through the microbially-induced calcium carbonate precipitation (MICP) process with isolates obtained from a cave called 'Cave Without A Name' (Boerne, TX, USA) and the Pamukkale travertines (Denizli, Turkey). The majority of the bacterial isolates obtained from these habitats belonged to the genera Sporosarcina, Brevundimonas, Sphingobacterium and Acinetobacter. The isolates were investigated for their capability to precipitate calcium carbonate and sequester CO2. Biotic and abiotic effects of CO2 sequestration during MICP were also investigated. In the biotic effect, we observed that the rate and concentration of CO2 sequestered was dependent on the species or strains. The main abiotic factors affecting CO2 sequestration during MICP were the pH and medium components. The increase in pH led to enhanced CO2 sequestration by the growth medium. The growth medium components, on the other hand, were shown to affect both the urease activity and CO2 sequestration. Through the Plackett-Burman experimental design, the most important growth medium component involved in CO2 sequestration was determined to be urea. The optimized medium composition by the Plackett-Burman design for each isolate led to a statistically significant increase, of up to 148.9%, in CO2 uptake through calcification mechanisms. PMID:25764465

  4. Abiotic Versus Biotic Weathering Of Olivine As Possible Biosignatures

    NASA Technical Reports Server (NTRS)

    Longazo, Teresa G.; Wentworth, Susan J.; Clemett, Simon J.; Southam, Gordon; McKay, David S.

    2001-01-01

    We are investigating the weathering of silicate minerals by both purely inorganic, and biologically mediated processes using field-emission scanning electron microscopy (FESEM) and energy dispersive x-ray spectroscopy (EDS). By resolving surface textures and chemical compositions of weathered surfaces at the sub-micron scale we hope to be able to distinguish abiotic from biotic weathering processes and so establish a new biosignature applicable to the study of astromaterials including but not limited to the Martian meteorites. Sterilized olivine grains (San Carlos, Arizona) no more than 1-2 mm in their longest dimension were optically assayed to be uniform in color and free of inclusions were selected as weathering subjects. Prior to all experiments surface morphologies and Fe/Mg ratios were determined for each grain using FE-SEM and EDS. Experiments were divided into two categories abiotic and biotic and were compared with "naturally" weathered samples. For the preliminary experiments, two trials (open and closed to the ambient laboratory environment) were performed under abiotic conditions, and three trials under biotic conditions (control, day 1 and day 2). The open system abiotic trials used sterile grains heated at 98 C and 200 C for both 24 and 48 hours in 1L double distilled de-ionized water. The closed system abiotic trials were conducted under the same conditions but in a sealed two layer steel/Teflon "bomb" apparatus. The biotic trials used sterile grains mounted in a flow-through device attached to a wellhead on the Columbia River aquifer. Several discolored, altered, grains were selected to document "natural" weathering surface textures for comparison with the experimental samples. Preliminary results indicate there are qualitative differences in weathered surface textures among all the designed experiments. The olivine grains in abiotic trials displayed etching, pitting, denticulate margins, dissolution and clay formation. The scale of the features

  5. Degradation of carbofuran by ozonation.

    PubMed

    Suneethi, S; Joseph, Kurian

    2009-04-01

    Degradation of commercial grade carbofuran (2, 3 dihydro-2, 2-dimethyl-7 benzo furanyl-N-methyl carbamate) in aqueous solution by ozone oxidation was investigated using bench scale experiments. The degradation rate was strongly influenced by the ozone dosage, pH, initial concentration of carbofuran and contact time of ozonation. Carbofuran solution of 200ppm concentration was degraded by 79% within 10 minutes consuming 87 mg of ozone at pH 4. The associated TOC reduction was observed to be 53%. Ammonium (20 mg/L) and nitrate (30 mg/L) ions were detected in the effluent as degradation products of ozonation. The results support the effectiveness of ozonation for degradation of organic pesticides such as carbofuran.

  6. Outdoor PV Degradation Comparison

    SciTech Connect

    Jordan, D. C.; Smith, R. M.; Osterwald, C. R.; Gelak, E.; Kurtz, S. R.

    2011-02-01

    As photovoltaic (PV) penetration of the power grid increases, it becomes vital to know how decreased power output; may affect cost over time. In order to predict power delivery, the decline or degradation rates must be determined; accurately. At the Performance and Energy Rating Testbed (PERT) at the Outdoor Test Facility (OTF) at the; National Renewable Energy Laboratory (NREL) more than 40 modules from more than 10 different manufacturers; were compared for their long-term outdoor stability. Because it can accommodate a large variety of modules in a; limited footprint the PERT system is ideally suited to compare modules side-by-side under the same conditions.

  7. Elucidation of the biosynthesis and degradation of allantofuranone by isotopic labelling and fermentation of modified precursors.

    PubMed

    Schüffler, Anja; Liermann, Johannes C; Opatz, Till; Anke, Timm

    2011-01-01

    Feeding experiments with the ascomycete Allantophomopsis lycopodina indicated that the potent fungistatic allantofuranone is biosynthesized from phenylalanine. Further experiments with synthetic precursors gave evidence that the naturally occurring polyporic acid serves as a key intermediate in the biosynthesis. In addition to the formation of allantofuranone, its abiotic and metabolic degradation were investigated.

  8. Stressed out symbiotes: hypotheses for the influence of abiotic stress on arbuscular mycorrhizal fungi.

    PubMed

    Millar, Niall S; Bennett, Alison E

    2016-11-01

    Abiotic stress is a widespread threat to both plant and soil communities. Arbuscular mycorrhizal (AM) fungi can alleviate effects of abiotic stress by improving host plant stress tolerance, but the direct effects of abiotic stress on AM fungi are less well understood. We propose two hypotheses predicting how AM fungi will respond to abiotic stress. The stress exclusion hypothesis predicts that AM fungal abundance and diversity will decrease with persistent abiotic stress. The mycorrhizal stress adaptation hypothesis predicts that AM fungi will evolve in response to abiotic stress to maintain their fitness. We conclude that abiotic stress can have effects on AM fungi independent of the effects on the host plant. AM fungal communities will change in composition in response to abiotic stress, which may mean the loss of important individual species. This could alter feedbacks to the plant community and beyond. AM fungi will adapt to abiotic stress independent of their host plant. The adaptation of AM fungi to abiotic stress should allow the maintenance of the plant-AM fungal mutualism in the face of changing climates.

  9. The transition from abiotic to biotic chemistry: When and where?

    NASA Astrophysics Data System (ADS)

    Bada, J. L.

    2001-12-01

    /product molecules survived long enough to be part of the reaction chain although most researchers who have advanced this scenario favor hydrothermal temperatures. Of the various reactions that have so far been proposed and investigated none have been demonstrated to be autocatalytic. In addition, the reactions are probably not unique to hydrothermal temperatures and would also occur at lower temperatures albeit at slower rates. Based on the estimated Arrhenius activation energies for the synthesis/decomposition reactions of the reactant/product molecules it is likely that they would have been more favorable at lower temperatures. This stability argument is especially important as the autocatalytic reactions advanced to the point of synthesizing informational molecules such as nucleic acids which have very short life times at elevated temperatures. Thus even "metabolic life" as it evolved into biochemistry as we know it would likely only have been feasible if the early Earth was cool. If the transition from abiotic chemistry to biochemistry on the early Earth indeed required cool temperatures, the transition could have occurred during cold, quiescent periods between large bolide impacts. The first life that arose, regardless of the process, may not have survived subsequent bolide impacts, however. Life may have originated several times before surface conditions became tranquil enough for periods sufficiently long to permit the survival and evolution of the first living entities into the first cellular organisms found in the fossil record 3.5 billion years ago. 1. C. Wills and J. L. Bada, 2000. "The Spark of Life: Darwin and the Primeval Soup" (Perseus Publishing, Cambridge MA) 291 pp.

  10. The effects of biotic and abiotic factors on the spatial heterogeneity of alpine grassland vegetation at a small scale on the Qinghai-Tibet Plateau (QTP), China.

    PubMed

    Wen, Lu; Dong, Shi Kui; Li, Yuan Yuan; Sherman, Ruth; Shi, Jian Jun; Liu, De Mei; Wang, Yan Long; Ma, Yu Shou; Zhu, Lei

    2013-10-01

    Understanding the complex effects of biotic and abiotic factors on the composition of vegetation is very important for developing and implementing strategies for promoting sustainable grassland development. The vegetation-disturbance-environment relationship was examined in degraded alpine grasslands in the headwater areas of three rivers on the Qinghai-Tibet Plateau in this study. The investigated hypotheses were that (1) the heterogeneity of the vegetation of the alpine grassland is due to a combination of biotic and abiotic factors and that (2) at a small scale, biotic factors are more important for the distribution of alpine vegetation. On this basis, four transects were set along altitudinal gradients from 3,770 to 3,890 m on a sunny slope, and four parallel transects were set along altitudinal gradients on a shady slope in alpine grasslands in Guoluo Prefecture of Qinghai Province, China. It was found that biological disturbances were the major forces driving the spatial heterogeneity of the alpine grassland vegetation and abiotic factors were of secondary importance. Heavy grazing and intensive rat activity resulted in increases in unpalatable and poisonous weeds and decreased fine forages in the form of sedges, forbs, and grasses in the vegetation composition. Habitat degradation associated with biological disturbances significantly affected the spatial variation of the alpine grassland vegetation, i.e., more pioneer plants of poisonous or unpalatable weed species, such as Ligularia virgaurea and Euphorbia fischeriana, were found in bare patches. Environmental/abiotic factors were less important than biological disturbances in affecting the spatial distribution of the alpine grassland vegetation at a small scale. It was concluded that rat control and light grazing should be applied first in implementing restoration strategies. The primary vegetation in lightly grazed and less rat-damaged sites should be regarded as a reference for devising vegetation

  11. Pathways for abiotic organic synthesis at submarine hydrothermal fields

    PubMed Central

    McDermott, Jill M.; Seewald, Jeffrey S.; German, Christopher R.; Sylva, Sean P.

    2015-01-01

    Arguments for an abiotic origin of low-molecular weight organic compounds in deep-sea hot springs are compelling owing to implications for the sustenance of deep biosphere microbial communities and their potential role in the origin of life. Theory predicts that warm H2-rich fluids, like those emanating from serpentinizing hydrothermal systems, create a favorable thermodynamic drive for the abiotic generation of organic compounds from inorganic precursors. Here, we constrain two distinct reaction pathways for abiotic organic synthesis in the natural environment at the Von Damm hydrothermal field and delineate spatially where inorganic carbon is converted into bioavailable reduced carbon. We reveal that carbon transformation reactions in a single system can progress over hours, days, and up to thousands of years. Previous studies have suggested that CH4 and higher hydrocarbons in ultramafic hydrothermal systems were dependent on H2 generation during active serpentinization. Rather, our results indicate that CH4 found in vent fluids is formed in H2-rich fluid inclusions, and higher n-alkanes may likely be derived from the same source. This finding implies that, in contrast with current paradigms, these compounds may form independently of actively circulating serpentinizing fluids in ultramafic-influenced systems. Conversely, widespread production of formate by ΣCO2 reduction at Von Damm occurs rapidly during shallow subsurface mixing of the same fluids, which may support anaerobic methanogenesis. Our finding of abiogenic formate in deep-sea hot springs has significant implications for microbial life strategies in the present-day deep biosphere as well as early life on Earth and beyond. PMID:26056279

  12. Pathways for abiotic organic synthesis at submarine hydrothermal fields.

    PubMed

    McDermott, Jill M; Seewald, Jeffrey S; German, Christopher R; Sylva, Sean P

    2015-06-23

    Arguments for an abiotic origin of low-molecular weight organic compounds in deep-sea hot springs are compelling owing to implications for the sustenance of deep biosphere microbial communities and their potential role in the origin of life. Theory predicts that warm H2-rich fluids, like those emanating from serpentinizing hydrothermal systems, create a favorable thermodynamic drive for the abiotic generation of organic compounds from inorganic precursors. Here, we constrain two distinct reaction pathways for abiotic organic synthesis in the natural environment at the Von Damm hydrothermal field and delineate spatially where inorganic carbon is converted into bioavailable reduced carbon. We reveal that carbon transformation reactions in a single system can progress over hours, days, and up to thousands of years. Previous studies have suggested that CH4 and higher hydrocarbons in ultramafic hydrothermal systems were dependent on H2 generation during active serpentinization. Rather, our results indicate that CH4 found in vent fluids is formed in H2-rich fluid inclusions, and higher n-alkanes may likely be derived from the same source. This finding implies that, in contrast with current paradigms, these compounds may form independently of actively circulating serpentinizing fluids in ultramafic-influenced systems. Conversely, widespread production of formate by ΣCO2 reduction at Von Damm occurs rapidly during shallow subsurface mixing of the same fluids, which may support anaerobic methanogenesis. Our finding of abiogenic formate in deep-sea hot springs has significant implications for microbial life strategies in the present-day deep biosphere as well as early life on Earth and beyond. PMID:26056279

  13. Pathways for abiotic organic synthesis at submarine hydrothermal fields.

    PubMed

    McDermott, Jill M; Seewald, Jeffrey S; German, Christopher R; Sylva, Sean P

    2015-06-23

    Arguments for an abiotic origin of low-molecular weight organic compounds in deep-sea hot springs are compelling owing to implications for the sustenance of deep biosphere microbial communities and their potential role in the origin of life. Theory predicts that warm H2-rich fluids, like those emanating from serpentinizing hydrothermal systems, create a favorable thermodynamic drive for the abiotic generation of organic compounds from inorganic precursors. Here, we constrain two distinct reaction pathways for abiotic organic synthesis in the natural environment at the Von Damm hydrothermal field and delineate spatially where inorganic carbon is converted into bioavailable reduced carbon. We reveal that carbon transformation reactions in a single system can progress over hours, days, and up to thousands of years. Previous studies have suggested that CH4 and higher hydrocarbons in ultramafic hydrothermal systems were dependent on H2 generation during active serpentinization. Rather, our results indicate that CH4 found in vent fluids is formed in H2-rich fluid inclusions, and higher n-alkanes may likely be derived from the same source. This finding implies that, in contrast with current paradigms, these compounds may form independently of actively circulating serpentinizing fluids in ultramafic-influenced systems. Conversely, widespread production of formate by ΣCO2 reduction at Von Damm occurs rapidly during shallow subsurface mixing of the same fluids, which may support anaerobic methanogenesis. Our finding of abiogenic formate in deep-sea hot springs has significant implications for microbial life strategies in the present-day deep biosphere as well as early life on Earth and beyond.

  14. Exogenous application of hydrogen sulfide donor sodium hydrosulfide enhanced multiple abiotic stress tolerance in bermudagrass (Cynodon dactylon (L). Pers.).

    PubMed

    Shi, Haitao; Ye, Tiantian; Chan, Zhulong

    2013-10-01

    As a gaseous molecule, hydrogen sulfide (H2S) has been recently found to be involved in plant responses to multiple abiotic stress. In this study, salt (150 and 300 mM NaCl), osmotic (15% and 30% PEG6000) and cold (4 °C) stress treatments induced accumulation of endogenous H2S level, indicating that H2S might play a role in bermudagrass responses to salt, osmotic and cold stresses. Exogenous application of H2S donor (sodium hydrosulfide, NaHS) conferred improved salt, osmotic and freezing stress tolerances in bermudagrass, which were evidenced by decreased electrolyte leakage and increased survival rate under stress conditions. Additionally, NaHS treatment alleviated the reactive oxygen species (ROS) burst and cell damage induced by abiotic stress, via modulating metabolisms of several antioxidant enzymes [catalase (CAT), peroxidase (POD) and GR (glutathione reductase)] and non-enzymatic glutathione antioxidant pool and redox state. Moreover, exogenous NaHS treatment led to accumulation of osmolytes (proline, sucrose and soluble total sugars) in stressed bermudagrass plants. Taken together, all these data indicated the protective roles of H2S in bermudagrass responses to salt, osmotic and freezing stresses, via activation of the antioxidant response and osmolyte accumulation. These findings might be applicable to grass and crop engineering to improve abiotic stress tolerance.

  15. Resilience of Penicillium resedanum LK6 and exogenous gibberellin in improving Capsicum annuum growth under abiotic stresses.

    PubMed

    Khan, Abdul Latif; Waqas, Muhammad; Lee, In-Jung

    2015-03-01

    Understanding how endophytic fungi mitigate abiotic stresses in plants will be important in a changing global climate. A few endophytes can produce phytohormones, but their ability to induce physiological changes in host plants during extreme environmental conditions are largely unexplored. In the present study, we investigated the ability of Penicillium resedanum LK6 to produce gibberellins and its role in improving the growth of Capsicum annuum L. under salinity, drought, and heat stresses. These effects were compared with exogenous application of gibberellic acid (GA3). Endophyte treatment significantly increased shoot length, biomass, chlorophyll content, and the photosynthesis rate compared with the uninfected control during abiotic stresses. The endophyte and combined endophyte + GA3 treatments significantly ameliorated the negative effects of stresses compared with the control. Stress-responsive endogenous abscisic acid and its encoding genes, such as zeaxanthin epoxidase, 9-cis-epoxycarotenoid dioxygenase 3, and ABA aldehyde oxidase 3, were significantly reduced in endophyte-treated plants under stress. Conversely, salicylic acid and biosynthesis-related gene (isochorismate synthase) had constitutive expressions while pathogenesis related (PR1 and PR5) genes showed attenuated responses during endophyte treatment under abiotic stresses. The present findings suggest that endophytes have effects comparable to those of exogenous GA3; both can significantly increase plant growth and yield under changing environmental conditions by reprogramming the host plant's physiological responses.

  16. Model Comparison for Abiotic versus Biotic Pollen Dispersal.

    PubMed

    Foster, Erich L; Chan, David M; Dyer, Rodney J

    2016-10-01

    An agent-based model with a correlated random walk is used to explore pollination within a forest. For abiotic dispersal, say via the wind, we use a purely random walk where there is no correlation between consecutive steps and for biotic dispersal, say via insect, we use a moderate or highly correlated random walk. In particular, we examine the differences in a number of biological measurement between a purely random walk and a correlated random walk in terms of gene dispersal in low and high plant densities. PMID:27550704

  17. Model Comparison for Abiotic versus Biotic Pollen Dispersal.

    PubMed

    Foster, Erich L; Chan, David M; Dyer, Rodney J

    2016-10-01

    An agent-based model with a correlated random walk is used to explore pollination within a forest. For abiotic dispersal, say via the wind, we use a purely random walk where there is no correlation between consecutive steps and for biotic dispersal, say via insect, we use a moderate or highly correlated random walk. In particular, we examine the differences in a number of biological measurement between a purely random walk and a correlated random walk in terms of gene dispersal in low and high plant densities.

  18. May Cyclic Nucleotides Be a Source for Abiotic RNA Synthesis?

    NASA Astrophysics Data System (ADS)

    Costanzo, Giovanna; Pino, Samanta; Botta, Giorgia; Saladino, Raffaele; di Mauro, Ernesto

    2011-12-01

    Nucleic bases are obtained by heating formamide in the presence of various catalysts. Formamide chemistry also allows the formation of acyclonucleosides and the phosphorylation of nucleosides in every possible position, also affording 2',3' and 3',5' cyclic forms. We have reported that 3',5' cyclic GMP and 3',5' cyclic AMP polymerize in abiotic conditions yielding short oligonucleotides. The characterization of this reaction is being pursued, several of its parameters have been determined and experimental caveats are reported. The yield of non-enzymatic polymerization of cyclic purine nucleotides is very low. Polymerization is strongly enhanced by the presence of base-complementary RNA sequences.

  19. Mismatch in microbial food webs: predators but not prey perform better in their local biotic and abiotic conditions.

    PubMed

    Parain, Elodie C; Gravel, Dominique; Rohr, Rudolf P; Bersier, Louis-Félix; Gray, Sarah M

    2016-07-01

    Understanding how trophic levels respond to changes in abiotic and biotic conditions is key for predicting how food webs will react to environmental perturbations. Different trophic levels may respond disproportionately to change, with lower levels more likely to react faster, as they typically consist of smaller-bodied species with higher reproductive rates. This response could cause a mismatch between trophic levels, in which predators and prey will respond differently to changing abiotic or biotic conditions. This mismatch between trophic levels could result in altered top-down and bottom-up control and changes in interaction strength. To determine the possibility of a mismatch, we conducted a reciprocal-transplant experiment involving Sarracenia purpurea food webs consisting of bacterial communities as prey and a subset of six morphologically similar protozoans as predators. We used a factorial design with four temperatures, four bacteria and protozoan biogeographic origins, replicated four times. This design allowed us to determine how predator and prey dynamics were altered by abiotic (temperature) conditions and biotic (predators paired with prey from either their local or non-local biogeographic origin) conditions. We found that prey reached higher densities in warmer temperature regardless of their temperature of origin. Conversely, predators achieved higher densities in the temperature condition and with the prey from their origin. These results confirm that predators perform better in abiotic and biotic conditions of their origin while their prey do not. This mismatch between trophic levels may be especially significant under climate change, potentially disrupting ecosystem functioning by disproportionately affecting top-down and bottom-up control.

  20. Mismatch in microbial food webs: predators but not prey perform better in their local biotic and abiotic conditions.

    PubMed

    Parain, Elodie C; Gravel, Dominique; Rohr, Rudolf P; Bersier, Louis-Félix; Gray, Sarah M

    2016-07-01

    Understanding how trophic levels respond to changes in abiotic and biotic conditions is key for predicting how food webs will react to environmental perturbations. Different trophic levels may respond disproportionately to change, with lower levels more likely to react faster, as they typically consist of smaller-bodied species with higher reproductive rates. This response could cause a mismatch between trophic levels, in which predators and prey will respond differently to changing abiotic or biotic conditions. This mismatch between trophic levels could result in altered top-down and bottom-up control and changes in interaction strength. To determine the possibility of a mismatch, we conducted a reciprocal-transplant experiment involving Sarracenia purpurea food webs consisting of bacterial communities as prey and a subset of six morphologically similar protozoans as predators. We used a factorial design with four temperatures, four bacteria and protozoan biogeographic origins, replicated four times. This design allowed us to determine how predator and prey dynamics were altered by abiotic (temperature) conditions and biotic (predators paired with prey from either their local or non-local biogeographic origin) conditions. We found that prey reached higher densities in warmer temperature regardless of their temperature of origin. Conversely, predators achieved higher densities in the temperature condition and with the prey from their origin. These results confirm that predators perform better in abiotic and biotic conditions of their origin while their prey do not. This mismatch between trophic levels may be especially significant under climate change, potentially disrupting ecosystem functioning by disproportionately affecting top-down and bottom-up control. PMID:27547320

  1. Rat myocardial protein degradation.

    PubMed

    Steer, J H; Hopkins, B E

    1981-07-01

    1. Myocardial protein degradation rates were determined by following tyrosine release from rat isolated left hemi-atria in vitro. 2. After two 20 min preincubations the rate of tyrosine release from hemi-atria was constant for 4 h. 3. Skeletal muscle protein degradation was determined by following tyrosine release from rat isolated hemi-diaphragm (Fulks, Li & Goldberg, 1975). 4. Insulin (10(-7) M) inhibited tyrosine release from hemi-atria and hemi-diaphragm to a similar extent. A 48 h fast increased tyrosine release rate from hemi-diaphragm and decreased tyrosine release rate from hemi-atria. Hemi-diaphragm tyrosine release was inhibited by 15 mmol/l D-glucose but a variety of concentrations of D-glucose (0, 5, 15 mmol/l) had no effect on tyrosine release from hemi-atria. Five times the normal plasma levels of the branched-chain amino acids leucine, isoleucine and valine had no effect on tyrosine release from either hemi-atria or hemi-diaphragm.

  2. Role of Ubiquitin-Mediated Degradation System in Plant Biology

    PubMed Central

    Sharma, Bhaskar; Joshi, Deepti; Yadav, Pawan K.; Gupta, Aditya K.; Bhatt, Tarun K.

    2016-01-01

    Ubiquitin-mediated proteasomal degradation is an important mechanism to control protein load in the cells. Ubiquitin binds to a protein on lysine residue and usually promotes its degradation through 26S proteasome system. Abnormal proteins and regulators of many processes, are targeted for degradation by the ubiquitin-proteasome system. It allows cells to maintain the response to cellular level signals and altered environmental conditions. The ubiquitin-mediated proteasomal degradation system plays a key role in the plant biology, including abiotic stress, immunity, and hormonal signaling by interfering with key components of these pathways. The involvement of the ubiquitin system in many vital processes led scientists to explore more about the ubiquitin machinery and most importantly its targets. In this review, we have summarized recent discoveries of the plant ubiquitin system and its involvement in critical processes of plant biology. PMID:27375660

  3. Role of Ubiquitin-Mediated Degradation System in Plant Biology.

    PubMed

    Sharma, Bhaskar; Joshi, Deepti; Yadav, Pawan K; Gupta, Aditya K; Bhatt, Tarun K

    2016-01-01

    Ubiquitin-mediated proteasomal degradation is an important mechanism to control protein load in the cells. Ubiquitin binds to a protein on lysine residue and usually promotes its degradation through 26S proteasome system. Abnormal proteins and regulators of many processes, are targeted for degradation by the ubiquitin-proteasome system. It allows cells to maintain the response to cellular level signals and altered environmental conditions. The ubiquitin-mediated proteasomal degradation system plays a key role in the plant biology, including abiotic stress, immunity, and hormonal signaling by interfering with key components of these pathways. The involvement of the ubiquitin system in many vital processes led scientists to explore more about the ubiquitin machinery and most importantly its targets. In this review, we have summarized recent discoveries of the plant ubiquitin system and its involvement in critical processes of plant biology. PMID:27375660

  4. Abiotic systems for the catalytic treatment of solvent-contaminated water

    SciTech Connect

    Betterton, E.A.; Arnold, R.G.; Liu, Zhijie; Hollan, N.

    1996-12-31

    Three abiotic systems are described that catalyze the reductive dehalogenation of heavily halogenated environmental pollutants, including carbon tetrachloride, trichloroethene, and perchloroethene. These systems include (a) an electrolytic reactor in which the potential on the working electrode (cathode) is fixed by using a potentiostat, (b) a light-driven system consisting of a semiconductor and (covalently attached) macrocycle that can accept light transmitted via an optical fiber, and a light-driven, two-solvent (isopropanol/acetone) system that promotes dehalogenation reactions via an unknown mechanism. Each is capable of accelerating reductive dehalogenation reactions to very high rates under laboratory conditions. Typically, millimolar concentrations of aqueous-phase targets can be dehalogenated in minutes to hours. The description of each system includes the elements of reaction mechanism (to the extent known), typical kinetic data, and a discussion of the feasibility of applying this technology for the in situ destruction of hazardous compounds. 14 refs., 11 figs., 2 tabs.

  5. Small RNAs in Plant Responses to Abiotic Stresses: Regulatory Roles and Study Methods

    PubMed Central

    Ku, Yee-Shan; Wong, Johanna Wing-Hang; Mui, Zeta; Liu, Xuan; Hui, Jerome Ho-Lam; Chan, Ting-Fung; Lam, Hon-Ming

    2015-01-01

    To survive under abiotic stresses in the environment, plants trigger a reprogramming of gene expression, by transcriptional regulation or translational regulation, to turn on protective mechanisms. The current focus of research on how plants cope with abiotic stresses has transitioned from transcriptomic analyses to small RNA investigations. In this review, we have summarized and evaluated the current methodologies used in the identification and validation of small RNAs and their targets, in the context of plant responses to abiotic stresses. PMID:26501263

  6. Ranking of phenols for abiotic oxidation in aqueous environment: a QSPR approach.

    PubMed

    Gramatica, Paola; Pilutti, Pamela; Papa, Ester

    2005-01-01

    The limited availability and variability of data related to the overall degradation of compounds in the environment is a very relevant issue in studies related to environmental fate and chemical behavior. The studied phenol data set consists of reaction rate constants of different oxidation reactions in surface waters, available either experimentally or, to fill the data gap, from our QSAR models reported herein. A PCA (Principal Component Analysis) model based on these oxidative degradations has been proposed to evaluate the degradability of chemicals. The score of the first Principal Component is modelled by theoretical molecular descriptors to obtain a multiple linear regression (MLR) model with high predictive power, both internally and externally validated. This modeling approach allows a fast and preliminary ranking of phenols according to their tendency to be degraded by oxidants in water, starting only from knowledge of their molecular structure.

  7. OsPOP5, A Prolyl Oligopeptidase Family Gene from Rice Confers Abiotic Stress Tolerance in Escherichia coli

    PubMed Central

    Tan, Cun-Mei; Chen, Rong-Jun; Zhang, Jian-Hua; Gao, Xiao-Ling; Li, Li-Hua; Wang, Ping-Rong; Deng, Xiao-Jian; Xu, Zheng-Jun

    2013-01-01

    The prolyl oligopeptidase family, which is a group of serine peptidases, can hydrolyze peptides smaller than 30 residues. The prolyl oligopeptidase family in plants includes four members, which are prolyl oligopeptidase (POP, EC3.4.21.26), dipeptidyl peptidase IV (DPPIV, EC3.4.14.5), oligopeptidase B (OPB, EC3.4.21.83), and acylaminoacyl peptidase (ACPH, EC3.4.19.1). POP is found in human and rat, and plays important roles in multiple biological processes, such as protein secretion, maturation and degradation of peptide hormones, and neuropathies, signal transduction and memory and learning. However, the function of POP is unclear in plants. In order to study POP function in plants, we cloned the cDNA of the OsPOP5 gene from rice by nested-PCR. Sequence analysis showed that the cDNA encodes a protein of 596 amino acid residues with Mw ≈ 67.29 kD. In order to analyze the protein function under different abiotic stresses, OsPOP5 was expressed in Escherichia coli. OsPOP5 protein enhanced the tolerance of E. coli to high salinity, high temperature and simulated drought. The results indicate that OsPOP5 is a stress-related gene in rice and it may play an important role in plant tolerance to abiotic stress. PMID:24152437

  8. Calcium-Mediated Abiotic Stress Signaling in Roots.

    PubMed

    Wilkins, Katie A; Matthus, Elsa; Swarbreck, Stéphanie M; Davies, Julia M

    2016-01-01

    Roots are subjected to a range of abiotic stresses as they forage for water and nutrients. Cytosolic free calcium is a common second messenger in the signaling of abiotic stress. In addition, roots take up calcium both as a nutrient and to stimulate exocytosis in growth. For calcium to fulfill its multiple roles must require strict spatio-temporal regulation of its uptake and efflux across the plasma membrane, its buffering in the cytosol and its sequestration or release from internal stores. This prompts the question of how specificity of signaling output can be achieved against the background of calcium's other uses. Threats to agriculture such as salinity, water availability and hypoxia are signaled through calcium. Nutrient deficiency is also emerging as a stress that is signaled through cytosolic free calcium, with progress in potassium, nitrate and boron deficiency signaling now being made. Heavy metals have the capacity to trigger or modulate root calcium signaling depending on their dose and their capacity to catalyze production of hydroxyl radicals. Mechanical stress and cold stress can both trigger an increase in root cytosolic free calcium, with the possibility of membrane deformation playing a part in initiating the calcium signal. This review addresses progress in identifying the calcium transporting proteins (particularly channels such as annexins and cyclic nucleotide-gated channels) that effect stress-induced calcium increases in roots and explores links to reactive oxygen species, lipid signaling, and the unfolded protein response. PMID:27621742

  9. Influence of abiotic factors on the antimicrobial activity of chitosan.

    PubMed

    Tavaria, Freni K; Costa, Eduardo M; Gens, Eduardo J; Malcata, Francisco Xavier; Pintado, Manuela E

    2013-12-01

    In an effort to bypass the adverse secondary effects attributed to the traditional therapeutic approaches used to treat skin disorders (such as atopic dermatitis), alternative antimicrobials have recently been suggested. One such antimicrobial is chitosan, owing to the already proved biological properties associated with its use. However, the influence of abiotic factors on such activities warrants evaluation. This research effort assessed the antimicrobial activity of chitosan upon skin microorganisms (Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli) in vitro when subject to a combination of different abiotic factors such as pH, ionic strength, organic acids and free fatty acids. Free fatty acids, ionic strength and pH significantly affected chitosan's capability of reducing the viable numbers of S. aureus. This antimicrobial action was potentiated in the presence of palmitic acid and a lower ionic strength (0.2% NaCl), while a higher ionic strength (0.4% NaCl) favored chitosan's action upon the reduction of viable numbers of S. epidermidis and E. coli. Although further studies are needed, these preliminary results advocate that chitosan can in the future be potentially considered as an antimicrobial of choice when handling symptoms associated with atopic dermatitis.

  10. Geochemistry: biosignatures and abiotic constraints on early life.

    PubMed

    Lollar, Barbara Sherwood; McCollom, Thomas M

    2006-12-14

    Ueno et al. contend that methane found in fluid inclusions within hydrothermally precipitated quartz in the Dresser Formation of western Australia (which is roughly 3.5 Gyr old) provides evidence for microbial methanogenesis in the early Archaean era. The authors discount alternative origins for this methane, suggesting that the range of delta(13)C(CH(4)) values that they record (-56 to -36 per thousand) is attributable to mixing between a primary microbial end-member with a delta(13)C(CH(4)) value of less than -56 per thousand and a mature thermogenic gas enriched in (13)C (about -36 per thousand). However, abiotic methane produced experimentally and in other Precambrian greenstone settings has (13)C-depleted delta(13)C(CH(4)) values, as well as Delta(13)C(CO(2)-CH(4)) relationships that encompass the range measured for the inclusions by Ueno et al. - which suggests that an alternative, abiotic origin for the methane is equally plausible. The conclusions of Ueno et al. about the timing of the onset of microbial methanogenesis might not therefore be justified. PMID:17167427

  11. Abiotic stress and control of grain number in cereals.

    PubMed

    Dolferus, Rudy; Ji, Xuemei; Richards, Richard A

    2011-10-01

    Grain number is the only yield component that is directly associated with increased grain yield in important cereal crops like wheat. Historical yield studies show that increases in grain yield are always accompanied by an increase in grain number. Adverse weather conditions can cause severe fluctuations in grain yield and substantial yield losses in cereal crops. The problem is global and despite its impact on world food production breeding and selection approaches have only met with limited success. A specific period during early reproductive development, the young microspore stage of pollen development, is extremely vulnerable to abiotic stress in self-fertilising cereals (wheat, rice, barley, sorghum). A better understanding of the physiological and molecular processes that lead to stress-induced pollen abortion may provide us with the key to finding solutions for maintaining grain number under abiotic stress conditions. Due to the complexity of the problem, stress-proofing our main cereal crops will be a challenging task and will require joint input from different research disciplines.

  12. Influence of abiotic stress signals on secondary metabolites in plants

    PubMed Central

    Ramakrishna, Akula; Ravishankar, Gokare Aswathanarayana

    2011-01-01

    Plant secondary metabolites are unique sources for pharmaceuticals, food additives, flavors, and industrially important biochemicals. Accumulation of such metabolites often occurs in plants subjected to stresses including various elicitors or signal molecules. Secondary metabolites play a major role in the adaptation of plants to the environment and in overcoming stress conditions. Environmental factors viz. temperature, humidity, light intensity, the supply of water, minerals, and CO2 influence the growth of a plant and secondary metabolite production. Drought, high salinity, and freezing temperatures are environmental conditions that cause adverse effects on the growth of plants and the productivity of crops. Plant cell culture technologies have been effective tools for both studying and producing plant secondary metabolites under in vitro conditions and for plant improvement. This brief review summarizes the influence of different abiotic factors include salt, drought, light, heavy metals, frost etc. on secondary metabolites in plants. The focus of the present review is the influence of abiotic factors on secondary metabolite production and some of important plant pharmaceuticals. Also, we describe the results of in vitro cultures and production of some important secondary metabolites obtained in our laboratory. PMID:22041989

  13. Calcium-Mediated Abiotic Stress Signaling in Roots

    PubMed Central

    Wilkins, Katie A.; Matthus, Elsa; Swarbreck, Stéphanie M.; Davies, Julia M.

    2016-01-01

    Roots are subjected to a range of abiotic stresses as they forage for water and nutrients. Cytosolic free calcium is a common second messenger in the signaling of abiotic stress. In addition, roots take up calcium both as a nutrient and to stimulate exocytosis in growth. For calcium to fulfill its multiple roles must require strict spatio-temporal regulation of its uptake and efflux across the plasma membrane, its buffering in the cytosol and its sequestration or release from internal stores. This prompts the question of how specificity of signaling output can be achieved against the background of calcium’s other uses. Threats to agriculture such as salinity, water availability and hypoxia are signaled through calcium. Nutrient deficiency is also emerging as a stress that is signaled through cytosolic free calcium, with progress in potassium, nitrate and boron deficiency signaling now being made. Heavy metals have the capacity to trigger or modulate root calcium signaling depending on their dose and their capacity to catalyze production of hydroxyl radicals. Mechanical stress and cold stress can both trigger an increase in root cytosolic free calcium, with the possibility of membrane deformation playing a part in initiating the calcium signal. This review addresses progress in identifying the calcium transporting proteins (particularly channels such as annexins and cyclic nucleotide-gated channels) that effect stress-induced calcium increases in roots and explores links to reactive oxygen species, lipid signaling, and the unfolded protein response. PMID:27621742

  14. Calcium-Mediated Abiotic Stress Signaling in Roots

    PubMed Central

    Wilkins, Katie A.; Matthus, Elsa; Swarbreck, Stéphanie M.; Davies, Julia M.

    2016-01-01

    Roots are subjected to a range of abiotic stresses as they forage for water and nutrients. Cytosolic free calcium is a common second messenger in the signaling of abiotic stress. In addition, roots take up calcium both as a nutrient and to stimulate exocytosis in growth. For calcium to fulfill its multiple roles must require strict spatio-temporal regulation of its uptake and efflux across the plasma membrane, its buffering in the cytosol and its sequestration or release from internal stores. This prompts the question of how specificity of signaling output can be achieved against the background of calcium’s other uses. Threats to agriculture such as salinity, water availability and hypoxia are signaled through calcium. Nutrient deficiency is also emerging as a stress that is signaled through cytosolic free calcium, with progress in potassium, nitrate and boron deficiency signaling now being made. Heavy metals have the capacity to trigger or modulate root calcium signaling depending on their dose and their capacity to catalyze production of hydroxyl radicals. Mechanical stress and cold stress can both trigger an increase in root cytosolic free calcium, with the possibility of membrane deformation playing a part in initiating the calcium signal. This review addresses progress in identifying the calcium transporting proteins (particularly channels such as annexins and cyclic nucleotide-gated channels) that effect stress-induced calcium increases in roots and explores links to reactive oxygen species, lipid signaling, and the unfolded protein response.

  15. Influence of abiotic stress signals on secondary metabolites in plants.

    PubMed

    Ramakrishna, Akula; Ravishankar, Gokare Aswathanarayana

    2011-11-01

    Plant secondary metabolites are unique sources for pharmaceuticals, food additives, flavors, and industrially important biochemicals. Accumulation of such metabolites often occurs in plants subjected to stresses including various elicitors or signal molecules. Secondary metabolites play a major role in the adaptation of plants to the environment and in overcoming stress conditions. Environmental factors viz. temperature, humidity, light intensity, the supply of water, minerals, and CO2 influence the growth of a plant and secondary metabolite production. Drought, high salinity, and freezing temperatures are environmental conditions that cause adverse effects on the growth of plants and the productivity of crops. Plant cell culture technologies have been effective tools for both studying and producing plant secondary metabolites under in vitro conditions and for plant improvement. This brief review summarizes the influence of different abiotic factors include salt, drought, light, heavy metals, frost etc. on secondary metabolites in plants. The focus of the present review is the influence of abiotic factors on secondary metabolite production and some of important plant pharmaceuticals. Also, we describe the results of in vitro cultures and production of some important secondary metabolites obtained in our laboratory.

  16. Influence of abiotic factors on the antimicrobial activity of chitosan.

    PubMed

    Tavaria, Freni K; Costa, Eduardo M; Gens, Eduardo J; Malcata, Francisco Xavier; Pintado, Manuela E

    2013-12-01

    In an effort to bypass the adverse secondary effects attributed to the traditional therapeutic approaches used to treat skin disorders (such as atopic dermatitis), alternative antimicrobials have recently been suggested. One such antimicrobial is chitosan, owing to the already proved biological properties associated with its use. However, the influence of abiotic factors on such activities warrants evaluation. This research effort assessed the antimicrobial activity of chitosan upon skin microorganisms (Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli) in vitro when subject to a combination of different abiotic factors such as pH, ionic strength, organic acids and free fatty acids. Free fatty acids, ionic strength and pH significantly affected chitosan's capability of reducing the viable numbers of S. aureus. This antimicrobial action was potentiated in the presence of palmitic acid and a lower ionic strength (0.2% NaCl), while a higher ionic strength (0.4% NaCl) favored chitosan's action upon the reduction of viable numbers of S. epidermidis and E. coli. Although further studies are needed, these preliminary results advocate that chitosan can in the future be potentially considered as an antimicrobial of choice when handling symptoms associated with atopic dermatitis. PMID:24330167

  17. Geochemistry: biosignatures and abiotic constraints on early life.

    PubMed

    Lollar, Barbara Sherwood; McCollom, Thomas M

    2006-12-14

    Ueno et al. contend that methane found in fluid inclusions within hydrothermally precipitated quartz in the Dresser Formation of western Australia (which is roughly 3.5 Gyr old) provides evidence for microbial methanogenesis in the early Archaean era. The authors discount alternative origins for this methane, suggesting that the range of delta(13)C(CH(4)) values that they record (-56 to -36 per thousand) is attributable to mixing between a primary microbial end-member with a delta(13)C(CH(4)) value of less than -56 per thousand and a mature thermogenic gas enriched in (13)C (about -36 per thousand). However, abiotic methane produced experimentally and in other Precambrian greenstone settings has (13)C-depleted delta(13)C(CH(4)) values, as well as Delta(13)C(CO(2)-CH(4)) relationships that encompass the range measured for the inclusions by Ueno et al. - which suggests that an alternative, abiotic origin for the methane is equally plausible. The conclusions of Ueno et al. about the timing of the onset of microbial methanogenesis might not therefore be justified.

  18. Hexagonal Lyotropic Liquid Crystal from Simple "Abiotic" Foldamers.

    PubMed

    Chen, Yu; Zhao, Zhiqiang; Bian, Zheng; Jin, Rizhe; Kang, Chuanqing; Qiu, Xuepeng; Guo, Haiquan; Du, Zhijun; Gao, Lianxun

    2016-08-01

    The motivation of foldamer chemistry is to identify novel building blocks that have the potential to imitate natural species. Peptides and peptide mimetics can form stable helical conformations and further self-assemble into diverse aggregates in water, where it is difficult to isolate a single helix. In contrast, most "abiotic" foldamers may fold into helical structures in solution, but are difficult to assemble into tertiary ones. It remains a challenge to obtain "abiotic" species similar to peptides. In this paper, a novel foldamer scaffold, in which p-phenyleneethynylene units are linked by chiral carbon atoms, was designed and prepared. In very dilute solutions, these oligomers were random coils. The hexamer and octamers could form a hexagonal lyotropic liquid crystal (LC) in CH2Cl2 when the concentrations reached the critical values. The microscopic observations indicated that they could assemble into the nanofibers in the LC. Interestingly, after some LC phases were diluted at room temperature, the nanofibers could be preserved. The good stabilities of the assemblies are possibly attributed to a more compact backbone and more rigid side chains. PMID:27547649

  19. Detection of pump degradation

    SciTech Connect

    Casada, D.

    1995-04-01

    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous special vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Pump head and flow rate are also monitored, per code requirements. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition; advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed.

  20. Impact of biotic and abiotic stresses on the competitive ability of multiple herbicide resistant wild oat (Avena fatua).

    PubMed

    Lehnhoff, Erik A; Keith, Barbara K; Dyer, William E; Menalled, Fabian D

    2013-01-01

    Ecological theory predicts that fitness costs of herbicide resistance should lead to the reduced relative abundance of resistant populations upon the cessation of herbicide use. This greenhouse research investigated the potential fitness costs of two multiple herbicide resistant (MHR) wild oat (Avena fatua) populations, an economically important weed that affects cereal and pulse crop production in the Northern Great Plains of North America. We compared the competitive ability of two MHR and two herbicide susceptible (HS) A. fatua populations along a gradient of biotic and abiotic stresses The biotic stress was imposed by three levels of wheat (Triticum aestivum) competition (0, 4, and 8 individuals pot(-1)) and an abiotic stress by three nitrogen (N) fertilization rates (0, 50 and 100 kg N ha(-1)). Data were analyzed with linear mixed-effects models and results showed that the biomass of all A. fatua populations decreased with increasing T. aestivum competition at all N rates. Similarly, A. fatua relative growth rate (RGR) decreased with increasing T. aestivum competition at the medium and high N rates but there was no response with 0 N. There were no differences between the levels of biomass or RGR of HS and MHR populations in response to T. aestivum competition. Overall, the results indicate that MHR does not confer growth-related fitness costs in these A. fatua populations, and that their relative abundance will not be diminished with respect to HS populations in the absence of herbicide treatment.

  1. Effects of Abiotic and Biotic Stresses on the Internalization and Dissemination of Human Norovirus Surrogates in Growing Romaine Lettuce

    PubMed Central

    DiCaprio, Erin; Purgianto, Anastasia

    2015-01-01

    Human norovirus (NoV) is the major causative agent of fresh-produce-related outbreaks of gastroenteritis; however, the ecology and persistence of human NoV in produce systems are poorly understood. In this study, the effects of abiotic and biotic stresses on the internalization and dissemination of two human NoV surrogates (murine norovirus 1 [MNV-1] and Tulane virus [TV]) in romaine lettuce were determined. To induce abiotic stress, romaine lettuce was grown under drought and flood conditions that mimic extreme weather events, followed by inoculation of soil with MNV-1 or TV. Independently, lettuce plants were infected with lettuce mosaic virus (LMV) to induce biotic stress, followed by inoculation with TV. Plants were grown for 14 days, and viral titers in harvested tissues were determined by plaque assays. It was found that drought stress significantly decreased the rates of both MNV-1 and TV internalization and dissemination. In contrast, neither flood stress nor biotic stress significantly impacted viral internalization or dissemination. Additionally, the rates of TV internalization and dissemination in soil-grown lettuce were significantly higher than those for MNV-1. Collectively, these results demonstrated that (i) human NoV surrogates can be internalized via roots and disseminated to shoots and leaves of romaine lettuce grown in soil, (ii) abiotic stress (drought) but not biotic stress (LMV infection) affects the rates of viral internalization and dissemination, and (iii) the type of virus affects the efficiency of internalization and dissemination. This study also highlights the need to develop effective measures to eliminate internalized viruses in fresh produce. PMID:25956773

  2. Effects of Abiotic and Biotic Stresses on the Internalization and Dissemination of Human Norovirus Surrogates in Growing Romaine Lettuce.

    PubMed

    DiCaprio, Erin; Purgianto, Anastasia; Li, Jianrong

    2015-07-01

    Human norovirus (NoV) is the major causative agent of fresh-produce-related outbreaks of gastroenteritis; however, the ecology and persistence of human NoV in produce systems are poorly understood. In this study, the effects of abiotic and biotic stresses on the internalization and dissemination of two human NoV surrogates (murine norovirus 1 [MNV-1] and Tulane virus [TV]) in romaine lettuce were determined. To induce abiotic stress, romaine lettuce was grown under drought and flood conditions that mimic extreme weather events, followed by inoculation of soil with MNV-1 or TV. Independently, lettuce plants were infected with lettuce mosaic virus (LMV) to induce biotic stress, followed by inoculation with TV. Plants were grown for 14 days, and viral titers in harvested tissues were determined by plaque assays. It was found that drought stress significantly decreased the rates of both MNV-1 and TV internalization and dissemination. In contrast, neither flood stress nor biotic stress significantly impacted viral internalization or dissemination. Additionally, the rates of TV internalization and dissemination in soil-grown lettuce were significantly higher than those for MNV-1. Collectively, these results demonstrated that (i) human NoV surrogates can be internalized via roots and disseminated to shoots and leaves of romaine lettuce grown in soil, (ii) abiotic stress (drought) but not biotic stress (LMV infection) affects the rates of viral internalization and dissemination, and (iii) the type of virus affects the efficiency of internalization and dissemination. This study also highlights the need to develop effective measures to eliminate internalized viruses in fresh produce.

  3. Abiotic reduction of trifluralin and pendimethalin by sulfides in black-carbon-amended coastal sediments.

    PubMed

    Gong, Wenwen; Liu, Xinhui; Xia, Shuhua; Liang, Baocui; Zhang, Wei

    2016-06-01

    Dinitroaniline herbicides such as trifluralin and pendimethalin are persistent bioaccumulative toxins to aquatic organisms. Thus, in-situ remediation of contaminated sediments is desired. This study investigated whether black carbons (BCs), including apple wood charcoal (BC1), rice straw biochar (BC2), and activated carbon (BC3), could facilitate abiotic reduction of trifluralin and pendimethalin by sulfides of environmentally-relevant concentrations in anoxic coastal sediments. The reduction rates of trifluralin and pendimethalin increased substantially with increasing BC dosages in the sediments. This enhancing effect was dependent on BC type with the greatest for BC3 followed by BC1 and BC2, which well correlated with their specific surface area. The pseudo-first order reduction rate constants (kobs) for BC3-amended sediment (2%) were 13- and 14 times the rate constants in the BC-free sediment. The reduction rates increased with increasing temperature from 8 to 25°C in the BC-amended sediment, following the Arrhenius relationship. Finally, through molecular modeling by density functional theory and reaction species identification from mass spectra, molecular pathways of trifluralin and pendimethalin reduction were elucidated. In contrary to the separate sequential reduction of each nitro group to amine group, both nitro groups, first reduced to nitroso, then eventually to amine groups. PMID:26905610

  4. The Effects of Abiotic Factors on Induced Volatile Emissions in Corn Plants1

    PubMed Central

    Gouinguené, Sandrine P.; Turlings, Ted C.J.

    2002-01-01

    Many plants respond to herbivory by releasing a specific blend of volatiles that is attractive to natural enemies of the herbivores. In corn (Zea mays), this induced odor blend is mainly composed of terpenoids and indole. The induced signal varies with plant species and genotype, but little is known about the variation due to abiotic factors. Here, we tested the effect of soil humidity, air humidity, temperature, light, and fertilization rate on the emission of induced volatiles in young corn plants. Each factor was tested separately under constant conditions for the other factors. Plants released more when standing in dry soil than in wet soil, whereas for air humidity, the optimal release was found at around 60% relative humidity. Temperatures between 22°C and 27°C led to a higher emission than lower or higher temperatures. Light intensity had a dramatic effect. The emission of volatiles did not occur in the dark and increased steadily with an increase in the light intensity. An experiment with an unnatural light-dark cycle showed that the release was fully photophase dependent. Fertilization also had a strong positive effect; the emission of volatiles was minimal when plants were grown under low nutrition, even when results were corrected for plant biomass. Changes in all abiotic factors caused small but significant changes in the relative ratios among the different compounds (quality) in the induced odor blends, except for air humidity. Hence, climatic conditions and nutrient availability can be important factors in determining the intensity and variability in the release of induced plant volatiles. PMID:12114583

  5. Accumulation of 137Cesium and 90Strontium from abiotic and biotic sources in rodents at Chornobyl, Ukraine.

    PubMed

    Chesser, R K; Rodgers, B E; Wickliffe, J K; Gaschak, S; Chizhevsky, I; Phillips, C J; Baker, R J

    2001-09-01

    Bank voles (Clethrionomys glareolus) and laboratory strains of house mice (Mus musculus BALB and C57BL) were relocated into enclosures in a highly contaminated area of the Red Forest near the Chornobyl (Ukraine) Reactor 4 to evaluate the uptake rates of 137Cs and 90Sr from abiotic sources. Mice were provided with uncontaminated food supplies, ensuring that uptake of radionuclides was through soil ingestion, inhalation, or water. Mice were sampled before introduction and were reanalyzed every 10 d for 137Cs uptake. Levels of 90Sr were assessed in subsamples from the native populations and in experimental animals at the termination of the study. Uptake rates in house mice were greater than those in voles for both 137Cs and 90Sr. Daily uptake rates in house mice were estimated at 2.72 x 10(12) unstable atoms per gram (whole body) for 137Cs and 4.04 x 10(10) unstable atoms per gram for 90Sr. Comparable rates in voles were 2.26 x 10(11) unstable atoms per gram for 137Cs and 1.94 x 10(10) unstable atoms per gram for 90Sr. By comparing values from voles in the enclosures to those from wild voles caught within 50 m of the enclosures, it was estimated that only 8.5% of 137Cs was incorporated from abiotic sources, leaving 91.5% being incorporated by uptake from biotic materials. The fraction of 90Sr uptake from abiotic sources was at least 66.7% (and was probably much higher). Accumulated whole-body doses during the enclosure periods were estimated as 174 mGy from intramuscular 137Cs and 68 mGy by skeletal 90Sr in house mice over 40 d and 98 mGy from 137Cs and 19 mGy from 90Sr in voles over 30 d. Thus, uptake of radionuclides from abiotic materials in the Red Forest at Chornobyl is an important source of internal contamination. PMID:11521818

  6. Contributions of Abiotic and Biotic Processes to the Aerobic Removal of Phenolic Endocrine-Disrupting Chemicals in a Simulated Estuarine Aquatic Environment.

    PubMed

    Yang, Lihua; Cheng, Qiao; Tam, Nora F Y; Lin, Li; Su, Weiqi; Luan, Tiangang

    2016-04-19

    The contributions of abiotic and biotic processes in an estuarine aquatic environment to the removal of four phenolic endocrine-disrupting chemicals (EDCs) were evaluated through simulated batch reactors containing water-only or water-sediment collected from an estuary in South China. More than 90% of the free forms of all four spiked EDCs were removed from these reactors at the end of 28 days under aerobic conditions, with the half-life of 17α-ethynylestradiol (EE2) longer than those of propylparaben (PP), nonylphenol (NP) and 17β-estradiol (E2). The interaction with dissolved oxygen contributed to NP removal and was enhanced by aeration. The PP and E2 removal was positively influenced by adsorption on suspended particles initially, whereas abiotic transformation by estuarine-dissolved matter contributed to their complete removal. Biotic processes, including degradation by active aquatic microorganisms, had significant effects on the removal of EE2. Sedimentary inorganic and organic matter posed a positive effect only when EE2 biodegradation was inhibited. Estrone (E1), the oxidizing product of E2, was detected, proving that E2 was removed by the naturally occurring oxidizers in the estuarine water matrixes. These results revealed that the estuarine aquatic environment was effective in removing free EDCs, and the contributions of abiotic and biotic processes to their removal were compound specific.

  7. Endophytic fungi: resource for gibberellins and crop abiotic stress resistance.

    PubMed

    Khan, Abdul Latif; Hussain, Javid; Al-Harrasi, Ahmed; Al-Rawahi, Ahmed; Lee, In-Jung

    2015-03-01

    The beneficial effects of endophytes on plant growth are important for agricultural ecosystems because they reduce the need for fertilizers and decrease soil and water pollution while compensating for environmental perturbations. Endophytic fungi are a novel source of bioactive secondary metabolites; moreover, recently they have been found to produce physiologically active gibberellins as well. The symbiosis of gibberellins producing endophytic fungi with crops can be a promising strategy to overcome the adverse effects of abiotic stresses. The association of such endophytes has not only increased plant biomass but also ameliorated plant-growth during extreme environmental conditions. Endophytic fungi represent a trove of unexplored biodiversity and a frequently overlooked component of crop ecology. The present review describes the role of gibberellins producing endophytic fungi, suggests putative mechanisms involved in plant endophyte stress interactions and discusses future prospects in this field.

  8. Abiotic factors affecting the toxicity of lead to fungi.

    PubMed Central

    Babich, H; Stotzky, G

    1979-01-01

    The toxicity of lead (Pb) to fungi in pure culture was influenced by several abiotic factors: pH, inorganic anions, clay minerals, and particulate (humic acid) and soluble organic matter. The toxicity of Pb was potentiated under acidic conditions (pH 5 and 6), and phosphate or carbonate anions reduced the toxicity, apparently as a result of the formation of sparingly soluble Pb salts. Clay minerals (montmorillonite greater than attapulgite greater than kaolinite) and particulate humic acid protected against the toxicity of Pb, presumably as the result of sorption, by cation exchange of the Pb to the exchange complexes, which reduced its availability for uptake by the fungi. Soluble organics, such as tryptone, yeast extract, cysteine, succinic acid, and increasing concentrations of neopeptone, also reduced the toxicity of Pb. PMID:43707

  9. An Abiotic Glass-Bead Collector Exhibiting Active Transport

    PubMed Central

    Goto, Youhei; Kanda, Masato; Yamamoto, Daigo; Shioi, Akihisa

    2015-01-01

    Animals relocate objects as needed by active motion. Active transport is ubiquitous in living organisms but has been difficult to realize in abiotic systems. Here we show that a self-propelled droplet can gather scattered beads toward one place on a floor and sweep it clean. This is a biomimetic active transport with loadings and unloadings, because the transport was performed by a carrier and the motion of the carrier was maintained by the energy of the chemical reaction. The oil droplet produced fluctuation of the local number density of the beads on the floor, followed by its autocatalytic growth. This mechanism may inspire the technologies based on active transport wherein chemical and physical substances migrate as in living organisms. PMID:26387743

  10. Temporal dynamics of biotic and abiotic drivers of litter decomposition.

    PubMed

    García-Palacios, Pablo; Shaw, E Ashley; Wall, Diana H; Hättenschwiler, Stephan

    2016-05-01

    Climate, litter quality and decomposers drive litter decomposition. However, little is known about whether their relative contribution changes at different decomposition stages. To fill this gap, we evaluated the relative importance of leaf litter polyphenols, decomposer communities and soil moisture for litter C and N loss at different stages throughout the decomposition process. Although both microbial and nematode communities regulated litter C and N loss in the early decomposition stages, soil moisture and legacy effects of initial differences in litter quality played a major role in the late stages of the process. Our results provide strong evidence for substantial shifts in how biotic and abiotic factors control litter C and N dynamics during decomposition. Taking into account such temporal dynamics will increase the predictive power of decomposition models that are currently limited by a single-pool approach applying control variables uniformly to the entire decay process.

  11. An Abiotic Glass-Bead Collector Exhibiting Active Transport

    NASA Astrophysics Data System (ADS)

    Goto, Youhei; Kanda, Masato; Yamamoto, Daigo; Shioi, Akihisa

    2015-09-01

    Animals relocate objects as needed by active motion. Active transport is ubiquitous in living organisms but has been difficult to realize in abiotic systems. Here we show that a self-propelled droplet can gather scattered beads toward one place on a floor and sweep it clean. This is a biomimetic active transport with loadings and unloadings, because the transport was performed by a carrier and the motion of the carrier was maintained by the energy of the chemical reaction. The oil droplet produced fluctuation of the local number density of the beads on the floor, followed by its autocatalytic growth. This mechanism may inspire the technologies based on active transport wherein chemical and physical substances migrate as in living organisms.

  12. Spectral induced polarization signatures of abiotic FeS precipitation

    SciTech Connect

    Ntarlagiannis, D.; Doherty, R.; Williams, K. H.

    2010-01-15

    In recent years, geophysical methods have been shown to be sensitive to microbial induced mineralization processes. The spectral induced polarization (SIP) method appears to be very promising for monitoring mineralization and microbial processes. With this work, we study the links of mineralization and SIP signals, in the absence of microbial activity. We recorded the SIP response during abiotic FeS precipitation. We show that the SIP signals are diagnostic of FeS mineralization and can be differentiated from SIP signals from bio-mineralization processes. More specifically the imaginary conductivity shows almost linear dependence on the amount of FeS precipitating out of solution, above the threshold value 0.006 gr under our experimental conditions. This research has direct implications for the use of the SIP method as a monitoring, and decision making, tool for sustainable remediation of metals in contaminated soils and groundwater.

  13. Formation of Intermediate Carbon Phases in Hydrothermal Abiotic Organic Synthesis

    NASA Astrophysics Data System (ADS)

    Fu, Q.; Foustoukos, D. I.; Seyfried, W. E.

    2005-12-01

    With high dissolved concentrations of methane and other hydrocarbon species revealed at the Rainbow and Logatchev vent systems on the Mid-Atlantic Ridge, it is essential to better understand reaction pathways of abiotic organic synthesis in hydrothermal systems. Thus, we performed a hydrothermal carbon reduction experiment with 13C labeled carbon source at temperature and pressure conditions that approximate those inferred for ultramafic-hosted hydrothermal systems. Pentlandite, a common alteration mineral phase in subseafloor reaction zones, acted as a potential catalyst. Surface analysis techniques (XPS and ToF-SIMS) were used to characterize intermediate carbon species within this process. Time series dissolved H2 and H2S concentrations indicated thermodynamic equilibrium. Dissolved H2 and H2S concentrations of 13 and 2 mmol/kg, respectively, are approximately equivalent to measured values in Rainbow and Logatchev hydrothermal systems. Isotopically pure 13C methane and other alkane species (C2H6 and C3H8) were observed throughout the experiment, and attained steady state conditions. XPS analysis on mineral product surface indicated carbon enrichment on mineral surface following reaction. The majority of surface carbon involves species containing C-C or C-H bonds, such as alkyl or methylene groups. Alcohol and carboxyl groups in fewer amounts were also observed. ToF-SIMS analysis, which can offer isotope identification with high mass resolution, showed that most of these carbon species were 13C-labeled. Unlike gas phase Fischer-Tropsch synthesis, no carbide was observed on mineral product surface during the experiment. Therefore, a reaction pathway is proposed for formation of dissolved linear alkane species in hydrothermal abiotic organic synthesis, where oxygen-bearing organic compounds are expected to form in aqueous products by way of alcohol and carboxyl groups on mineral catalyst surface.

  14. Oxidation of Black Carbon by Biotic and Abiotic Processes

    SciTech Connect

    Cheng, Chih-hsin; Lehmann, Johannes C.; Thies, Janice E.; Burton, Sarah D.; Engelhard, Mark H.

    2006-11-01

    The objectives of this study were to quantify the relative importance of either biotic or abiotic oxidation of biomass-derived black carbon (BC) and to characterize the surface properties and charge characteristics of oxidized particulate BC. We incubated BC and BC-soil mixtures at two different temperatures (30 C and 70 C) with and without microbial inoculation, nutrient additions, or manure amendments for four months. Abiotic processes were more important for oxidation of BC than biotic processes during this short-term incubation, as inoculation with microorganisms did not change any of the measured parameters. Black C incubated at both 30 C and 70 C without microbial activity showed dramatic decreases in pH (in water) from 5.4 to 5.2 and 3.4, as well as increases in cation exchange capacity (CEC at pH 7) by 53% and 538% and in oxygen (O) contents by 4% and 38%, respectively. Boehm titration and Fourier transform infrared (FTIR) spectroscopy suggested that the formation of carboxylic functional groups was the reason for the enhanced CEC during oxidation. The analyses of BC surface properties by X-ray photoelectron spectroscopy (XPS) indicated that the oxidation of BC particles initiated on the surface. Incubation at 30 C only enhanced oxidation on particle surfaces, while oxidation during incubation at 70 C penetrated into the interior of particles. Such short-term oxidation of BC has great significance for the stability of BC in soils as well as for its effects on soil fertility and biogeochemistry.

  15. Kinetic study and mechanism of Niclosamide degradation.

    PubMed

    Zaazaa, Hala E; Abdelrahman, Maha M; Ali, Nouruddin W; Magdy, Maimana A; Abdelkawy, M

    2014-11-11

    A spectrophotometric kinetic study of Niclosamide alkaline degradation as a function of drug concentration, alkaline concentration and temperature has been established utilizing double divisor-ratio spectra spectrophotometric method. The developed method allowed determination of Niclosamide in presence of its alkaline degradation products; namely; 2-chloro-4-nitro aniline (DEG I) and 5-chloro salicylic acid (DEG II) with characterization of its degradation mechanism. It was found that degradation kinetic of Niclosamide followed pseudo-first order under the established experimental conditions with a degradation rate constant (k) of 0.0829 mol/h and half life (t1/2) of 8.35 h. The overall degradation rate constant as a function of the temperature under the given conditions obeyed Arrhenius equation where the activation energy was calculated to be 3.41 kcal/mol. PMID:24892546

  16. Kinetic study and mechanism of Niclosamide degradation

    NASA Astrophysics Data System (ADS)

    Zaazaa, Hala E.; Abdelrahman, Maha M.; Ali, Nouruddin W.; Magdy, Maimana A.; Abdelkawy, M.

    2014-11-01

    A spectrophotometric kinetic study of Niclosamide alkaline degradation as a function of drug concentration, alkaline concentration and temperature has been established utilizing double divisor-ratio spectra spectrophotometric method. The developed method allowed determination of Niclosamide in presence of its alkaline degradation products; namely; 2-chloro-4-nitro aniline (DEG I) and 5-chloro salicylic acid (DEG II) with characterization of its degradation mechanism. It was found that degradation kinetic of Niclosamide followed pseudo-first order under the established experimental conditions with a degradation rate constant (k) of 0.0829 mol/h and half life (t1/2) of 8.35 h. The overall degradation rate constant as a function of the temperature under the given conditions obeyed Arrhenius equation where the activation energy was calculated to be 3.41 kcal/mol.

  17. A Model of Continental Growth and Mantle Degassing Comparing Biotic and Abiotic Worlds

    NASA Astrophysics Data System (ADS)

    Höning, D.; Hansen-Goos, H.; Spohn, T.

    2012-12-01

    While examples for interaction of the biosphere with the atmosphere can be easily cited (e.g., production and consumption of O2), interaction between the biosphere and the solid planet and its interior is much less established. It has been argued (e.g., Rosing et al. 2006; Sleep et al, 2012) that the formation of continents could be a consequence of bioactivity harvesting solar energy through photosynthesis to help build the continents and that the mantle should carry a chemical biosignature. We present an interaction model that includes mantle convection, mantle water vapor degassing at mid-oceanic ridges and regassing through subduction zones, continental crust formation and erosion and water storage and transport in a porous oceanic crust that includes hydrous mineral phases. The mantle viscosity in this model depends on the water concentration in the mantle. We use boundary layer theory of mantle convection to parameterize the mantle convection flow rate and assume that the plate speed equals the mantle flow rate. The biosphere enters the calculation through the assumption that the continental erosion rate is enhanced by a factor of several through bioactivity and through an assumed reduction of the kinetic barrier to diagenetic and metamorphic reactions (e.g., Kim et al. 2004) in the sedimentary basins in subduction zones that would lead to increased water storage capacities. We further include a stochastic model of continent-to-continent interactions that limits the effective total length of subduction zones. We use present day parameters of the Earth and explore a phase plane spanned by the percentage of surface coverage of the Earth by continents and the total water content of the mantle. We vary the ratio of the erosion rate in a postulated abiotic Earth to the present Earth, as well as the activation barrier to diagenetic and metamorphic reactions that affect the water storage capacity of the subducting crust. We find stable and unstable fixed points in

  18. Nitrogenous gas emissions induced by abiotic nitrite reactions with soil organic matter of a Norway spruce forest

    NASA Astrophysics Data System (ADS)

    Wei, Jing; Vereecken, Harry; Schloter, Michael; Brüggemann, Nicolas

    2016-04-01

    As an important intermediate of the nitrogen cycle, nitrite is highly reactive to soil organic matter (SOM) in forest soils under acidic conditions. However, there is little knowledge about how much its abiotic reactions with SOM contribute to nitrogen (N) gas emissions of forest soils till now. In this study, we provide data on N gas (N2O, NO, NO2) emissions from abiotic nitrite reactions with different fractions of soil organic matter in spruce forest soil, as well as the mechanisms involved. Soil samples were taken from the Oh layer at the TERENO-Wüstebach catchment, Germany, where Norway spruce (Picea abies) dominates. SOM was fractionated into dissolved organic matter (DOM), fulvic acid (FA), humic acid (HA) and humin (HN) according to their solubility. The dynamics of simultaneous NOx and N2O emissions were analyzed with a dynamic flow-through chamber system, coupled to an infrared laser absorption analyzer for N2O and a chemo-luminescence analyzer for NOx (NO and NO2), which allowed emission measurements with high time resolution. The 15N labelling technique was used for tracing the fate of nitrite-N towards establishment of a total N balance. When nitrite was added to the soil fractions, a large amount of NOx was immediately emitted, mostly in the form of NO. N2O emission was delayed by approximately 0.5-1 h. The NO and N2O emission pattern could be almost perfectly fitted with the Hill equation. The N2O formation rates increased significantly in the following order: DOM, FA, HA and HN, while the total amounts of the gases emitted increased significantly in the opposite order. These results revealed that abiotic reactions of nitrite with SOM in spruce forest soil play an important role in N gas emissions, while the chemical nature of the different SOM fractions determines the rate and amount of N gas emissions.

  19. River phosphorus cycling: separating biotic and abiotic uptake during short-term changes in sewage effluent loading.

    PubMed

    Stutter, M I; Demars, B O L; Langan, S J

    2010-08-01

    Medium to small scale point sources continue to threaten river ecosystems through P loadings. The capacity and timescales of within-river processing and P retention are a major factor in how rivers respond to, and protect downstream ecosystems from, elevated concentrations of soluble reactive P (SRP). In this study, the bio-geochemical response of a small river (approximately 40 km(2) catchment area) was determined before, during and after exposure to a fourteen day pulse of treated sewage effluent using an upstream reach as a control. A wide array of approaches (batch and column simulations to in-situ whole stream metabolism) allowed independent comparison and quantification, of the relative contribution of abiotic and biotic processes in-river P cycling. This enabled, for the first time, separating the relative contributions of algae, bacteria and abiotic sorption without the use of labelled P (radioisotope). An SRP mass balance showed that the ecosystem switched from a P sink (during effluent inputs) to a P source (when effluent flow ceased). However, 65-70% of SRP was retained during the exposure time and remained sequestered two-weeks after-effluent flow ceased. Batch studies treated with biocide gave unrealistic results, but P uptake rates derived by other methods were highly comparable. Downstream of the effluent input, net P uptake by algae, bacteria and sediment (including the biofilm polysaccharide matrix) were 0.2 (+/-0.1), 0.4 (+/-0.3), and 1.0 (+/-0.9) mmol m(-2) day(-1) during effluent exposure. While autotrophic production did not respond to the effluent exposure, heterotrophic production increased by 67% relative to the control and this translated into a 50% increase in biological P uptake rate. Therefore, both biological and abiotic components of stream ecosystems uptake P during exposure to treated sewage effluent P inputs, and maintain a long 'memory' of this input in terms of P storage for considerable timescales after loading. PMID:20619439

  20. The interactive biotic and abiotic processes of DDT transformation under dissimilatory iron-reducing conditions.

    PubMed

    Jin, Xin; Wang, Fang; Gu, Chenggang; Yang, Xinglun; Kengara, Fredrick O; Bian, Yongrong; Song, Yang; Jiang, Xin

    2015-11-01

    The objective of the study was to elucidate the biotic and abiotic processes under dissimilatory iron reducing conditions involved in reductive dechlorination and iron reduction. DDT transformation was investigated in cultures of Shewanella putrefaciens 200 with/without α-FeOOH. A modified first-order kinetics model was developed and described DDT transformation well. Both the α-FeOOH reduction rate and the dechlorination rate of DDT were positively correlated to the biomass. Addition of α-F