Science.gov

Sample records for abiotic environmental conditions

  1. The Role of Abiotic Environmental Conditions and Herbivory in Shaping Bacterial Community Composition in Floral Nectar

    PubMed Central

    Samuni-Blank, Michal; Izhaki, Ido; Laviad, Sivan; Bar-Massada, Avi; Gerchman, Yoram; Halpern, Malka

    2014-01-01

    Identifying the processes that drive community assembly has long been a central theme in ecology. For microorganisms, a traditional prevailing hypothesis states that “everything is everywhere, but the environment selects”. Although the bacterial community in floral nectar may be affected by both atmosphere (air-borne bacteria) and animals as dispersal vectors, the environmental and geographic factors that shape microbial communities in floral nectar are unknown. We studied culturable bacterial communities in Asphodelus aestivus floral nectar and in its typical herbivorous bug Capsodes infuscatus, along an aridity gradient. Bacteria were sampled from floral nectar and bugs at four sites, spanning a geographical range of 200 km from Mediterranean to semi-arid conditions, under open and bagged flower treatments. In agreement with the niche assembly hypothesis, the differences in bacterial community compositions were explained by differences in abiotic environmental conditions. These results suggest that microbial model systems are useful for addressing macro-ecological questions. In addition, similar bacterial communities were found in the nectar and on the surface of the bugs that were documented visiting the flowers. These similarities imply that floral nectar bacteria dispersal is shaped not only by air borne bacteria and nectar consumers as previously reported, but also by visiting vectors like the mirid bugs. PMID:24922317

  2. Integrated biomarker responses of the invasive species Corbicula fluminea in relation to environmental abiotic conditions: a potential indicator of the likelihood of clam's summer mortality syndrome.

    PubMed

    Oliveira, Cristiana; Vilares, Pedro; Guilhermino, Lúcia

    2015-04-01

    The aim of this study was to investigate the variation of several biomarkers in wild populations of Corbicula fluminea in relation to abiotic condition changes to identify environmental factors associated with increased stress in this species potentially leading to massive mortality events. The study was carried out from July to October in the freshwater tidal areas of the estuaries of Minho and Lima Rivers (NW Iberian Peninsula). Monthly, 7 biomarkers (biotransformation, energy production, anti-oxidant defenses and lipid peroxidation damages) were determined in C. fluminea and 17 abiotic parameters were determined in water or sediments in 4 sampling sites: M1, M2 and M3 in Minho (up=> downstream); and L in Lima estuaries. The results of biomarkers were integrated using the Integrated Biomarker Response (IBR), Index and also analysed in relation to environmental parameters by Redundancy Analysis (RDA). Overall, the findings of the present study indicate that July and August are particularly stressful months for the studied C. fluminea populations, especially at downstream sites; the increase of nutrients and ammonium water concentrations, water temperature and conductivity are major contributors for this increased stress; the biomarkers indicated that in July/August C. fluminea is exposed to oxidative stress inducers, environmental chemical contaminants biotransformed by esterases and glutathione S-transferase enzymes, and that organisms need additional energy to cope with the chemical and/or thermally-induced stress. The findings of the present study stress the importance of biomonitoring the health condition of C. fluminea because it may allow determining the likelihood of summer/post summer mortality syndrome in this species. PMID:25499240

  3. Generation of RNA in abiotic conditions.

    NASA Astrophysics Data System (ADS)

    di Mauro, Ernesto

    Generation of RNA in abiotic conditions. Ernesto Di Mauro Dipartimento di Genetica Bi-ologia Molecolare, Universit` "Sapienza" Roma, Italy. a At least four conditions must be satisfied for the spontaneous generation of (pre)-genetic poly-mers: 1) availability of precursors that are activated enough to spontaneously polymerize. Preliminary studies showed that (a) nucleic bases and acyclonucleosides can be synthesized from formamide H2NCOH by simply heating with prebiotically available mineral catalysts [last reviewed in (1)], and that b) nucleic bases can be phosphorylated in every possible posi-tion [2'; 3'; 5'; cyclic 2',3'; cyclic 3',5' (2)]. The higher stability of the cyclic forms allows their accumulation. 2) A polymerization mechanism. A reaction showing the formation of RNA polymers starting from prebiotically plausible precursors (3',5' cyclic GMP and 3', 5'cyclic AMP) was recently reported (3). Polymerization in these conditions is thermodynamically up-hill and an equilibrium is attained that limits the maximum length of the polymer produced to about 40 nucleotides for polyG and 100 nucleotides for polyA. 3) Ligation of the synthesized oligomers. If this type of reaction could occur according to a terminal-joining mechanism and could generate canonical 3',5' phosphodiester bonds, exponential growth would be obtained of the generated oligomers. This type of reaction has been reported (4) , limited to homogeneous polyA sequences and leading to the production of polyA dimers and tetramers. What is still missing are: 4) mechanisms that provide the proof of principle for the generation of sequence complexity. We will show evidence for two mechanisms providing this proof of principle for simple complementary sequences. Namely: abiotic sequence complementary-driven terminal ligation and sequence-complementary terminal growth. In conclusion: all the steps leading to the generation of RNA in abiotic conditions are satisfied. (1) R Saladino, C Crestini, F

  4. Abiotic transformation of dinitrophenols under sulfate-reducing conditions

    SciTech Connect

    Gui, L.; Bouwer, E.J.

    1996-10-01

    Dinitrophenols are hazardous chemicals commonly detected in the environment. Little is known about their fate under sulfate-reducing conditions (SRC) where H{sub 2}S level is elevated due to microbial activity. Dinitrophenols are susceptible to both biotic and abiotic transformation under SRC. The objectives of this research are to investigate dinitrophenol transformation using hydrogen sulfide as a reductant, and to determine factors that affect the abiotic transformation kinetics under SRC. Dinitrophenols studied were 2,4-dinitrophenol (DNP), 4,6-dinitro-o-cresol (DNOC), and 2-sec-butyl-4,6-dinitrophenol (dinoseb). All three dinitrophenols were transformed through an ortho-nitroreduction pathway. In the presence of H{sub 2}S as the bulk reductant and a small amount of trace metals (10{sup -6} to 10{sup -7} M), pseudo-first-order kinetics was observed. Addition of yeast extract (YE, 0.02%) enhanced dinoseb transformation rate significantly. An increase in HS concentration resulted in Michaelis-Menton type kinetics for dinoseb in the presence of trace metals and YE, suggesting that trace metals and YE functioned as electron mediators.

  5. ABIOTIC DEGRADATION OF TRICHLOROETHYLENE UNDER THERMAL REMEDIATION CONDITIONS

    EPA Science Inventory

    The degradation of TCE (C2HCl3) to carbon dioxide (CO2) and chloride (Cl-) has been reported to occur during thermal remediation of subsurface environments. The overall goal of this study was to evaluate abiotic degradation of TCE at el...

  6. Abiotic environmental factors influencing blowfly colonisation patterns in the field.

    PubMed

    George, Kelly A; Archer, Melanie S; Toop, Tes

    2013-06-10

    The accuracy of minimum post-mortem interval (mPMI) estimates usually hinges upon the ability of forensic entomologists to predict the conditions under which calliphorids will colonise bodies. However, there can be delays between death and colonisation due to poorly understood abiotic and biotic factors, hence the need for a mPMI. To quantify the importance of various meteorological and light-level factors, beef liver baits were placed in the field (Victoria, Australia) on 88 randomly selected days over 3 years in all seasons and observed every 60-90 min for evidence of colonisation. Baits were exposed during daylight, and the following parameters were measured: barometric pressure, light intensity, wind speed, ambient temperature, relative humidity and rainfall. Collected data were analysed using backward LR logistic regression to produce an equation of colonisation probability. This type of analysis removes factors with the least influence on colonisation in successive steps until all remaining variables significantly increase the accuracy of predicting colonisation presence or absence. Ambient temperature was a positive predictor variable (an increase in temperature increased the probability of calliphorid colonisation). Relative humidity was a negative predictor variable (an increase in humidity decreased the probability of calliphorid colonisation). Barometric pressure, light intensity, wind speed and rainfall did not enhance the accuracy of the probability model; however, analysis of species activity patterns suggests that heavy rainfall and strong wind speeds inhibit calliphorid colonisation. PMID:23683914

  7. Maternal, social and abiotic environmental effects on growth vary across life stages in a cooperative mammal.

    PubMed

    English, Sinead; Bateman, Andrew W; Mares, Rafael; Ozgul, Arpat; Clutton-Brock, Tim H

    2014-03-01

    Resource availability plays a key role in driving variation in somatic growth and body condition, and the factors determining access to resources vary considerably across life stages. Parents and carers may exert important influences in early life, when individuals are nutritionally dependent, with abiotic environmental effects having stronger influences later in development as individuals forage independently. Most studies have measured specific factors influencing growth across development or have compared relative influences of different factors within specific life stages. Such studies may not capture whether early-life factors continue to have delayed effects at later stages, or whether social factors change when individuals become nutritionally independent and adults become competitors for, rather than providers of, food. Here, we examined variation in the influence of the abiotic, social and maternal environment on growth across life stages in a wild population of cooperatively breeding meerkats. Cooperatively breeding vertebrates are ideal for investigating environmental influences on growth. In addition to experiencing highly variable abiotic conditions, cooperative breeders are typified by heterogeneity both among breeders, with mothers varying in age and social status, and in the number of carers present. Recent rainfall had a consistently marked effect on growth across life stages, yet other seasonal terms only influenced growth during stages when individuals were growing fastest. Group size and maternal dominance status had positive effects on growth during the period of nutritional dependence on carers, but did not influence mass at emergence (at 1 month) or growth at independent stages (>4 months). Pups born to older mothers were lighter at 1 month of age and subsequently grew faster as subadults. Males grew faster than females during the juvenile and subadult stage only. Our findings demonstrate the complex ways in which the external environment

  8. Adaptation to abiotic conditions drives local adaptation in bacteria and viruses coevolving in heterogeneous environments

    PubMed Central

    Scanlan, Pauline D.; Buckling, Angus

    2016-01-01

    Parasite local adaptation, the greater performance of parasites on their local compared with foreign hosts, has important consequences for the maintenance of diversity and epidemiology. While the abiotic environment may significantly affect local adaptation, most studies to date have failed either to incorporate the effects of the abiotic environment, or to separate them from those of the biotic environment. Here, we tease apart biotic and abiotic components of local adaptation using the bacterium Pseudomonas fluorescens and its viral parasite bacteriophage Φ2. We coevolved replicate populations of bacteria and phages at three different temperatures, and determined their performance against coevolutionary partners from the same and different temperatures. Crucially, we measured performance at different assay temperatures, which allowed us to disentangle adaptation to biotic and abiotic habitat components. Our results show that bacteria and phages are more resistant and infectious, respectively, at the temperature at which they previously coevolved, confirming that local adaptation to abiotic conditions can play a crucial role in determining parasite infectivity and host resistance. Our work underlines the need to assess host–parasite interactions across multiple relevant abiotic environments, and suggests that microbial adaption to local temperatures can create ecological barriers to dispersal across temperature gradients. PMID:26888914

  9. Mismatch in microbial food webs: predators but not prey perform better in their local biotic and abiotic conditions.

    PubMed

    Parain, Elodie C; Gravel, Dominique; Rohr, Rudolf P; Bersier, Louis-Félix; Gray, Sarah M

    2016-07-01

    Understanding how trophic levels respond to changes in abiotic and biotic conditions is key for predicting how food webs will react to environmental perturbations. Different trophic levels may respond disproportionately to change, with lower levels more likely to react faster, as they typically consist of smaller-bodied species with higher reproductive rates. This response could cause a mismatch between trophic levels, in which predators and prey will respond differently to changing abiotic or biotic conditions. This mismatch between trophic levels could result in altered top-down and bottom-up control and changes in interaction strength. To determine the possibility of a mismatch, we conducted a reciprocal-transplant experiment involving Sarracenia purpurea food webs consisting of bacterial communities as prey and a subset of six morphologically similar protozoans as predators. We used a factorial design with four temperatures, four bacteria and protozoan biogeographic origins, replicated four times. This design allowed us to determine how predator and prey dynamics were altered by abiotic (temperature) conditions and biotic (predators paired with prey from either their local or non-local biogeographic origin) conditions. We found that prey reached higher densities in warmer temperature regardless of their temperature of origin. Conversely, predators achieved higher densities in the temperature condition and with the prey from their origin. These results confirm that predators perform better in abiotic and biotic conditions of their origin while their prey do not. This mismatch between trophic levels may be especially significant under climate change, potentially disrupting ecosystem functioning by disproportionately affecting top-down and bottom-up control. PMID:27547320

  10. Assessing Utilization and Environmental Risks of Important Genes in Plant Abiotic Stress Tolerance.

    PubMed

    Khan, Mohammad S; Khan, Muhammad A; Ahmad, Dawood

    2016-01-01

    Transgenic plants with improved salt and drought stress tolerance have been developed with a large number of abiotic stress-related genes. Among these, the most extensively used genes are the glycine betaine biosynthetic codA, the DREB transcription factors, and vacuolar membrane Na(+)/H(+) antiporters. The use of codA, DREBs, and Na(+)/H(+) antiporters in transgenic plants has conferred stress tolerance and improved plant phenotype. However, the future deployment and commercialization of these plants depend on their safety to the environment. Addressing environmental risk assessment is challenging since mechanisms governing abiotic stress tolerance are much more complex than that of insect resistance and herbicide tolerance traits, which have been considered to date. Therefore, questions arise, whether abiotic stress tolerance genes need additional considerations and new measurements in risk assessment and, whether these genes would have effects on weediness and invasiveness potential of transgenic plants? While considering these concerns, the environmental risk assessment of abiotic stress tolerance genes would need to focus on the magnitude of stress tolerance, plant phenotype and characteristics of the potential receiving environment. In the present review, we discuss environmental concerns and likelihood of concerns associated with the use of abiotic stress tolerance genes. Based on our analysis, we conclude that the uses of these genes in domesticated crop plants are safe for the environment. Risk assessment, however, should be carefully conducted on biofeedstocks and perennial plants taking into account plant phenotype and the potential receiving environment. PMID:27446095

  11. Assessing Utilization and Environmental Risks of Important Genes in Plant Abiotic Stress Tolerance

    PubMed Central

    Khan, Mohammad S.; Khan, Muhammad A.; Ahmad, Dawood

    2016-01-01

    Transgenic plants with improved salt and drought stress tolerance have been developed with a large number of abiotic stress-related genes. Among these, the most extensively used genes are the glycine betaine biosynthetic codA, the DREB transcription factors, and vacuolar membrane Na+/H+ antiporters. The use of codA, DREBs, and Na+/H+ antiporters in transgenic plants has conferred stress tolerance and improved plant phenotype. However, the future deployment and commercialization of these plants depend on their safety to the environment. Addressing environmental risk assessment is challenging since mechanisms governing abiotic stress tolerance are much more complex than that of insect resistance and herbicide tolerance traits, which have been considered to date. Therefore, questions arise, whether abiotic stress tolerance genes need additional considerations and new measurements in risk assessment and, whether these genes would have effects on weediness and invasiveness potential of transgenic plants? While considering these concerns, the environmental risk assessment of abiotic stress tolerance genes would need to focus on the magnitude of stress tolerance, plant phenotype and characteristics of the potential receiving environment. In the present review, we discuss environmental concerns and likelihood of concerns associated with the use of abiotic stress tolerance genes. Based on our analysis, we conclude that the uses of these genes in domesticated crop plants are safe for the environment. Risk assessment, however, should be carefully conducted on biofeedstocks and perennial plants taking into account plant phenotype and the potential receiving environment. PMID:27446095

  12. Environmentally Regulated Abiotic Release of Volatile Pheromones from the Sugar-based Oral Secretions of Caribflies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report an abiotic mechanism for the emission of volatile insect pheromones that is controlled by environmentally-induced change in the physicochemical properties of the sugar-based release matrix. Male Anastrepha suspensa [Loew] (caribflies) mark mating sites on leaf surfaces by depositing oral ...

  13. Abiotic synthesis of acylglycerols under simulated hydrothermal conditions and micelle formation

    NASA Astrophysics Data System (ADS)

    Simoneit, B.; Rushdi, A.; Deamer, D.

    Abiotic formation of aliphatic lipid compounds i e fatty acids alcohols and acylglycerols has been reported to occur at elevated temperatures and pressures under simulated hydrothermal conditions McCollom et al 1999 Rushdi and Simoneit 2001 2006 Although abiotic chemistry may occur at these conditions the prebiotic self-assembly of micelles to bilayer to vesicles protocells may have occurred elsewhere Amphipathic compounds such as fatty acids and acylglycerols are important candidates for micelle bilayer vesicle formation Thus it is of interest to demonstrate that abiotic lipids amphiphiles precursor compounds for abiotic cellular membranes Deamer 1997 can be synthesized under hydrothermal conditions Hydrothermal experiments were conducted to study condensation reactions of model lipid precursors in aqueous media to form acylglycerols glyceryl alkanoates at elevated temperatures under confining pressures Stainless steel vessels 316SS Sno-Trik high pressure couplings with internal capacities of 286 underline 2 mu l were used for the condensation reactions using a mixture of 0 14 mM glycerol and 0 35 mM of n-alkanoic acid Nine different alkanoic acids ranging from C 7 to C 16 except C 8 were used in these experiments The condensation products were two isomers each of monoacylglycerols and diacylglycerols as well as the corresponding triacylglycerol The product yields were 13-28 for monoacylglycerols 6-13 for diacylglycerols and 1-4 for triacylglycerols The results indicated that 1

  14. Biostabilization of cohesive sediments: revisiting the role of abiotic conditions, physiology and diversity of microbes, polymeric secretion, and biofilm architecture.

    PubMed

    Gerbersdorf, S U; Wieprecht, S

    2015-01-01

    In aquatic habitats, micro-organisms successfully adhere to and mediate particles, thus changing the erosive response of fine sediments to hydrodynamic forcing by secreting glue-like extracellular polymeric substances (EPS). Because sediment dynamics is vital for many ecological and economic aspects of watersheds and coastal regions, biostabilization of cohesive sediments is one of the important ecosystem services provided by biofilms. Although the research on biostabilization has gained momentum over the last 20 years, we still have limited insights principally due to the complex nature of this topic, the varying spatial, temporal, and community scales examined, oversimplified ecohydraulic experiments with little natural relevance, and the often partial views of the disciplines involved. This review highlights the current state of our knowledge on biostabilization and identifies important areas for future research on: (A) the influence of abiotic conditions on initial colonization and subsequent biofilm growth, focusing on hydrodynamics, substratum, salinity, nutrition, and light climate; (B) the response of microbes in terms of physiological activity and species diversity to environmental settings as well as biotic conditions such as competition and grazing; and (C) the effects of the former on the EPS matrix, its main constituents, their composition, functional groups/substitutes, and structures/linkages. The review focuses specifically on how the numerous mutual feedback mechanisms between abiotic and biotic conditions influence microbial stabilization capacity, and thus cohesive sediment dynamics. PMID:25345370

  15. A proposed abiotic reaction scheme for hydroxylamine and monochloramine under chloramination relevant drinking water conditions.

    PubMed

    Wahman, David G; Speitel, Gerald E; Machavaram, Madhav V

    2014-09-01

    Drinking water monochloramine (NH2Cl) use may promote ammonia-oxidizing bacteria (AOB). AOB use (i) ammonia monooxygenase for biological ammonia (NH3) oxidation to hydroxylamine (NH2OH) and (ii) hydroxylamine oxidoreductase for NH2OH oxidation to nitrite. NH2Cl and NH2OH may react, providing AOB potential benefits and detriments. The NH2Cl/NH2OH reaction would benefit AOB by removing the disinfectant (NH2Cl) and releasing their growth substrate (NH3), but the NH2Cl/NH2OH reaction would also provide a possible additional inactivation mechanism besides direct NH2Cl reaction with cells. Because biological NH2OH oxidation supplies the electrons required for biological NH3 oxidation, the NH2Cl/NH2OH reaction provides a direct mechanism for NH2Cl to inhibit NH3 oxidation, starving the cell of reductant by preventing biological NH2OH oxidation. To investigate possible NH2Cl/NH2OH reaction implications on AOB, an understanding of the underlying abiotic reaction is first required. The present study conducted a detailed literature review and proposed an abiotic NH2Cl/NH2OH reaction scheme (RS) for chloramination relevant drinking water conditions (μM concentrations, air saturation, and pH 7-9). Next, RS literature based kinetics and end-products were evaluated experimentally between pHs 7.7 and 8.3, representing (i) the pH range for future experiments with AOB and (ii) mid-range pHs typically found in chloraminated drinking water. In addition, a (15)N stable isotope experiment was conducted to verify nitrous oxide and nitrogen gas production and their nitrogen source. Finally, the RS was slightly refined using the experimental data and an AQUASIM implemented kinetic model. A chloraminated drinking water relevant RS is proposed and provides the abiotic reaction foundation for future AOB biotic experiments. PMID:24862953

  16. Contribution of acetic acid to the hydrolysis of lignocellulosic biomass under abiotic conditions.

    PubMed

    Trzcinski, Antoine P; Stuckey, David C

    2015-06-01

    Acetic acid was used in abiotic experiments to adjust the solution pH and investigate its influence on the chemical hydrolysis of the Organic Fraction of Municipal Solid Waste (OFMSW). Soluble chemical oxygen demand (SCOD) was used to measure the hydrolysis under oxidative conditions (positive oxidation-reduction potential values), and pH 4 allowed for 20% (±2%) of the COD added to be solubilized, whereas only 12% (±1%) was solubilized at pH7. Under reducing conditions (negative oxidation-reduction potential values) and pH 4, 32.3% (±3%) of the OFMSW was solubilized which shows that acidogenesis at pH 4 during the anaerobic digestion of solid waste can result in chemical hydrolysis. In comparison, bacterial hydrolysis resulted in 54% (±6%) solubilization. PMID:25794810

  17. Developing standards for environmental toxicants: the need to consider abiotic environmental factors and microbe-mediated ecologic processes.

    PubMed Central

    Babich, H; Stotzky, G

    1983-01-01

    This article suggests and discusses two novel aspects for the formulation of standards for environmental toxicants. First, uniform national standards for each pollutant will be underprotective for some ecosystems and overprotective for others, inasmuch as the toxicity of a pollutant to the indigenous biota is dependent on the physicochemical properties of the recipient environment. As the number of chemicals that need regulation is immense and as microbes appear to respond similarly to pollutant-abiotic factor interactions as do plants and animals, it is suggested that microbial assays be used initially to identify those abiotic factors that most influence the toxicity of specific pollutants. Thereafter, additional studies using plants and animals can focus on these pollutant-abiotic factor interactions, and more meaningful standards can then be formulated more rapidly and inexpensively. Second, it is suggested that the response to pollutants of microbe-mediated ecologic processes be used to quantitate the sensitivity of different ecosystems to various toxicants. Such a quantification, expressed in terms of an "ecological dose 50%" (EcD50), could be easily incorporated into the methodologies currently used to set water quality criteria and would also be applicable to setting criteria for terrestrial ecosystems. PMID:6339225

  18. Environmental Association Analyses Identify Candidates for Abiotic Stress Tolerance in Glycine soja, the Wild Progenitor of Cultivated Soybeans.

    PubMed

    Anderson, Justin E; Kono, Thomas J Y; Stupar, Robert M; Kantar, Michael B; Morrell, Peter L

    2016-01-01

    Natural populations across a species range demonstrate population structure owing to neutral processes such as localized origins of mutations and migration limitations. Selection also acts on a subset of loci, contributing to local adaptation. An understanding of the genetic basis of adaptation to local environmental conditions is a fundamental goal in basic biological research. When applied to crop wild relatives, this same research provides the opportunity to identify adaptive genetic variation that may be used to breed for crops better adapted to novel or changing environments. The present study explores an ex situ conservation collection, the USDA germplasm collection, genotyped at 32,416 SNPs to identify population structure and test for associations with bioclimatic and biophysical variables in Glycine soja, the wild progenitor of Glycine max (soybean). Candidate loci were detected that putatively contribute to adaptation to abiotic stresses. The identification of potentially adaptive variants in this ex situ collection may permit a more targeted use of germplasm collections. PMID:26818076

  19. Environmental Association Analyses Identify Candidates for Abiotic Stress Tolerance in Glycine soja, the Wild Progenitor of Cultivated Soybeans

    PubMed Central

    Anderson, Justin E.; Kono, Thomas J. Y.; Stupar, Robert M.; Kantar, Michael B.; Morrell, Peter L.

    2016-01-01

    Natural populations across a species range demonstrate population structure owing to neutral processes such as localized origins of mutations and migration limitations. Selection also acts on a subset of loci, contributing to local adaptation. An understanding of the genetic basis of adaptation to local environmental conditions is a fundamental goal in basic biological research. When applied to crop wild relatives, this same research provides the opportunity to identify adaptive genetic variation that may be used to breed for crops better adapted to novel or changing environments. The present study explores an ex situ conservation collection, the USDA germplasm collection, genotyped at 32,416 SNPs to identify population structure and test for associations with bioclimatic and biophysical variables in Glycine soja, the wild progenitor of Glycine max (soybean). Candidate loci were detected that putatively contribute to adaptation to abiotic stresses. The identification of potentially adaptive variants in this ex situ collection may permit a more targeted use of germplasm collections. PMID:26818076

  20. Abiotic Condensation Synthesis of Glyceride Lipids and Wax Esters Under Simulated Hydrothermal Conditions

    NASA Astrophysics Data System (ADS)

    Rushdi, Ahmed I.; Simoneit, Bernd R. T.

    2006-04-01

    Precursor compounds for abiotic proto cellular membranes are necessary for the origin of life. Amphipathic compounds such as fatty acids and acyl glycerols are important candidates for micelle/bilayer/vesicle formation. Two sets of experiments were conducted to study dehydration reactions of model lipid precursors in aqueous media to form acyl polyols and wax esters, and to evaluate the stability and reactions of the products at elevated temperatures. In the first set, mixtures of n-nonadecanoic acid and ethylene glycol in water, with and without oxalic acid, were heated at discrete temperatures from 150 ∘C to 300 ∘C for 72 h. The products were typically alkyl alkanoates, ethylene glycolyl alkanoates, ethylene glycolyl bis-alkanoates and alkanols. The condensation products had maximum yields between 150 ∘C and 250 ∘C, and were detectable and thus stable under hydrothermal conditions to temperatures < 300 ∘C. In the second set of experiments, mixtures of n-heptanoic acid and glycerol were heated using the same experimental conditions, with and without oxalic acid, between 100 ∘C and 250 ∘C. The main condensation products were two isomers each of monoacylglycerols and diacylglycerols at all temperatures, as well as minor amounts of the fatty acid anhydride and methyl ester. The yield of glyceryl monoheptanoates generally increased with increasing temperature and glyceryl diheptanoates decreased noticeably with increasing temperature. The results indicate that condensation reactions and abiotic synthesis of organic lipid compounds under hydrothermal conditions occur easily, provided precursor concentrations are sufficiently high.

  1. Environmental Selenium Transformations: Distinguishing Abiotic and Biotic Factors Influencing Se Redox Transformations

    NASA Astrophysics Data System (ADS)

    Rosenfeld, C.; Kenyon, J.; James, B. R.; Santelli, C. M.

    2014-12-01

    Worldwide, selenium (Se) is proving to be a significant environmental concern, with many anthropogenic activities (e.g. coal mining and combustion, phosphate mining and agricultural irrigation) releasing potentially hazardous concentrations into surface and subsurface ecosystems. The US EPA is currently considering aquatic Se regulations, however no guidelines exist for excess soil Se, despite its ability to act as a persistent Se source. Various abiotic and biological processes mediate Se oxidation/reduction (redox) transformations in soils, thus influencing its solubility and bioavailability. In this research we assess (1) the ability of metal-transforming fungal species to aerobically reduce Se (Se (IV and/or VI) to Se(0)), and (2) the relative contribution of biotic and abiotic pathways for aerobic Se transformation. The primary objective of this research is to determine what abiotic and biotic factors enhance or restrict Se bioavailability. Results indicate that fungal-mediated Se reduction may be quite widespread, with at least 7 out of 10 species of known Mn(II)-oxidizing fungi isolated from metal impacted environments also identified as capable of aerobically reducing Se(IV) and/or Se(VI) to Se(0). Increasing concentrations of selenite (SeO32-; Se(IV)) and selenate (SeO42-; Se(VI)) generally reduced fungal growth rates, although selenate was more likely to inhibit fungal growth than selenite. To study oxidation, Se(0) was combined with Mn(III/IV) (hydr)oxides (henceforth referred to as Mn oxides), Se-transforming fungi (Alternaria alternata), and oxalic acid to mimic Se biogeochemistry at the plant-soil interface. Increased pH in the presence of fungi (7.2 with fungi, 6.8 without fungi after 24 days) was observed. Additionally, a slight decrease in redox potential was measured for incubations without Mn oxides (236 mV with Mn oxides, 205 mV without Mn oxides after 24 days), indicating that Mn oxides may enhance Se oxidation. Elemental Se oxidation rates to

  2. Connecting RNA Processing to Abiotic Environmental Response in Arabidopsis: the role of a polyadenylation factor

    NASA Astrophysics Data System (ADS)

    Li, Q. Q.; Xu, R.; Hunt, A. G.; Falcone, D. L.

    Plants are constantly challenged by numerous environmental stresses both biotic and abiotic It is clear that plants have evolved to counter these stresses using all but limited means We recently discovered the potential role of a messenger RNA processing factor namely the Arabidopsis cleavage and polyadenylation specificity factor 30 kDa subunit AtCPSF30 when a mutant deficient in this factor displayed altered responses to an array of abiotic stresses This AtCPSF30 mutant named oxt6 exhibited an elevated tolerance to oxidative stress Microarray experiments of oxt6 and its complemented lines revealed an altered gene expression profile among which were antioxidative defense genes Interestingly the same gene encoding AtCPSF30 can also be transcribed into a large transcript that codes for a potential splicing factor Both protein products have a domain for RNA binding and a calmodulin binding domain activities of which have been confirmed by biochemical assays Surprisingly binding of AtCPSF30 to calmodulin inhibits the RNA-binding activity of the protein Mutational analysis shows that a small part of the protein is responsible for calmodulin binding and point mutations in this region abolished both RNA binding activity and the inhibition of this activity by calmodulin Analyses of the potential splicing factor are on going and the results will be presented The interesting possibilities for both the interplay between splicing and polyadenylation and the regulation of these processes by stimuli that act through

  3. Abiotic Formation of Valine Peptides Under Conditions of High Temperature and High Pressure

    NASA Astrophysics Data System (ADS)

    Furukawa, Yoshihiro; Otake, Tsubasa; Ishiguro, Takato; Nakazawa, Hiromoto; Kakegawa, Takeshi

    2012-12-01

    We investigated the oligomerization of solid valine and the stabilities of valine and valine peptides under conditions of high temperature (150-200 °C) and high pressure (50-150 MPa). Experiments were performed under non-aqueous condition in order to promote dehydration reaction. After prolonged exposure of monomeric valine to elevated temperatures and pressures, the products were analyzed by liquid chromatography mass spectrometry comparing their retention times and masses. We identified linear peptides that ranged in size from dimer to hexamer, as well as a cyclic dimer. Previous studies that attempted abiotic oligomerization of valine in the absence of a catalyst have never reported valine peptides larger than a dimer. Increased reaction temperature increased the dissociative decomposition of valine and valine peptides to products such as glycine, β-alanine, ammonia, and amines by processes such as deamination, decarboxylation, and cracking. The amount of residual valine and peptide yields was greater at higher pressures at a given temperature, pressure, and reaction time. This suggests that dissociative decomposition of valine and valine peptides is reduced by pressure. Our findings are relevant to the investigation of diagenetic processes in prebiotic marine sediments where similar pressures occur under water-poor conditions. These findings also suggest that amino acids, such as valine, could have been polymerized to peptides in deep prebiotic marine sediments within a few hundred million years.

  4. Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance.

    PubMed

    Shabala, Sergey; Pottosin, Igor

    2014-07-01

    Intracellular potassium homeostasis is a prerequisite for the optimal operation of plant metabolic machinery and plant's overall performance. It is controlled by K(+) uptake, efflux and intracellular and long-distance relocation, mediated by a large number of K(+) -selective and non-selective channels and transporters located at both plasma and vacuolar membranes. All abiotic and biotic stresses result in a significant disturbance to intracellular potassium homeostasis. In this work, we discuss molecular mechanisms and messengers mediating potassium transport and homeostasis focusing on four major environmental stresses: salinity, drought, flooding and biotic factors. We argue that cytosolic K(+) content may be considered as one of the 'master switches' enabling plant transition from the normal metabolism to 'hibernated state' during first hours after the stress exposure and then to a recovery phase. We show that all these stresses trigger substantial disturbance to K(+) homeostasis and provoke a feedback control on K(+) channels and transporters expression and post-translational regulation of their activity, optimizing K(+) absorption and usage, and, at the extreme end, assisting the programmed cell death. We discuss specific modes of regulation of the activity of K(+) channels and transporters by membrane voltage, intracellular Ca(2+) , reactive oxygen species, polyamines, phytohormones and gasotransmitters, and link this regulation with plant-adaptive responses to hostile environments. PMID:24506225

  5. Evaluation of Arbuscular Mycorrhizal Fungi Capacity to Alleviate Abiotic Stress of Olive (Olea europaea L.) Plants at Different Transplant Conditions

    PubMed Central

    Bompadre, María Josefina; Pérgola, Mariana; Fernández Bidondo, Laura; Colombo, Roxana Paula; Silvani, Vanesa Analía; Pardo, Alejandro Guillermo; Ocampo, Juan Antonio; Godeas, Alicia Margarita

    2014-01-01

    The capacity of roots to sense soil physicochemical parameters plays an essential role in maintaining plant nutritional and developmental functions under abiotic stress. These conditions generate reactive oxygen species (ROS) in plant tissues causing oxidation of proteins and lipids among others. Some plants have developed adaptive mechanisms to counteract such adverse conditions such as symbiotic association with arbuscular mycorrhizal fungi (AMF). AMF enhance plant growth and improve transplant survival by protecting host plants against environmental stresses. The aim of this study was to evaluate the alleviation of transplanting stress by two strains of Rhizophagus irregularis (GC2 and GA5) in olive. Our results show that olive plants have an additional energetic expense in growth due to an adaptative response to the growing stage and to the mycorrhizal colonization at the first transplant. However, at the second transplant the coinoculation improves olive plant growth and protects against oxidative stress followed by the GA5-inoculation. In conclusion, a combination of two AMF strains at the beginning of olive propagation produces vigorous plants successfully protected in field cultivation even with an additional cost at the beginning of growth. PMID:24688382

  6. USING ABIOTIC INDICATORS OF REFERENCE CONDITION AND BIOTIC INDICATORS OF CONDITION TO ASSESS GREAT RIVER ECOSYSTEMS

    EPA Science Inventory

    This presentation outlines the approach and preliminary assessment results for EMAP-GRE. The use of biological indicators and reference conditions for river assessments has implications for scientists, river managers, and state and tribal natural resource regulators.

  7. Effect of H2 and redox condition on biotic and abiotic MTBE transformation

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.; Landmeyer, J.E.

    2006-01-01

    Laboratory studies conducted with surface water sediment from a methyl tert-butyl ether (MTBE)-contaminated site in South Carolina demonstrated that, under methanogenic conditions, [U-14C] MTBE was transformed to 14C tert-butyl alcohol (TBA) with no measurable production of 14CO2. Production of TBA was not attributed to the activity of methanogenic microorganisms, however, because comparable transformation of [U-14C] MTBE to 14C-TBA also was observed in heat-sterilized controls with dissolved H2 concentrations > 5 nM. The results suggest that the transformation of MTBE to TBA may be an abiotic process that is driven by biologically produced H2 under in situ conditions. In contrast, mineralization of [U-14C] MTBE to 14CO2 was completely inhibited by heat sterilization and only observed in treatments characterized by dissolved H2 concentrations < 2 nM. These results suggest that the pathway of MTBE transformation is influenced by in situ H2 concentrations and that in situ H2 concentrations may be an useful indicator of MTBE transformation pathways in ground water systems.

  8. A Modelling Framework to Assess the Effect of Pressures on River Abiotic Habitat Conditions and Biota

    PubMed Central

    Kail, Jochem; Guse, Björn; Radinger, Johannes; Schröder, Maria; Kiesel, Jens; Kleinhans, Maarten; Schuurman, Filip; Fohrer, Nicola; Hering, Daniel; Wolter, Christian

    2015-01-01

    River biota are affected by global reach-scale pressures, but most approaches for predicting biota of rivers focus on river reach or segment scale processes and habitats. Moreover, these approaches do not consider long-term morphological changes that affect habitat conditions. In this study, a modelling framework was further developed and tested to assess the effect of pressures at different spatial scales on reach-scale habitat conditions and biota. Ecohydrological and 1D hydrodynamic models were used to predict discharge and water quality at the catchment scale and the resulting water level at the downstream end of a study reach. Long-term reach morphology was modelled using empirical regime equations, meander migration and 2D morphodynamic models. The respective flow and substrate conditions in the study reach were predicted using a 2D hydrodynamic model, and the suitability of these habitats was assessed with novel habitat models. In addition, dispersal models for fish and macroinvertebrates were developed to assess the re-colonization potential and to finally compare habitat suitability and the availability / ability of species to colonize these habitats. Applicability was tested and model performance was assessed by comparing observed and predicted conditions in the lowland Treene River in northern Germany. Technically, it was possible to link the different models, but future applications would benefit from the development of open source software for all modelling steps to enable fully automated model runs. Future research needs concern the physical modelling of long-term morphodynamics, feedback of biota (e.g., macrophytes) on abiotic habitat conditions, species interactions, and empirical data on the hydraulic habitat suitability and dispersal abilities of macroinvertebrates. The modelling framework is flexible and allows for including additional models and investigating different research and management questions, e.g., in climate impact research as well

  9. The interactive biotic and abiotic processes of DDT transformation under dissimilatory iron-reducing conditions.

    PubMed

    Jin, Xin; Wang, Fang; Gu, Chenggang; Yang, Xinglun; Kengara, Fredrick O; Bian, Yongrong; Song, Yang; Jiang, Xin

    2015-11-01

    The objective of the study was to elucidate the biotic and abiotic processes under dissimilatory iron reducing conditions involved in reductive dechlorination and iron reduction. DDT transformation was investigated in cultures of Shewanella putrefaciens 200 with/without α-FeOOH. A modified first-order kinetics model was developed and described DDT transformation well. Both the α-FeOOH reduction rate and the dechlorination rate of DDT were positively correlated to the biomass. Addition of α-FeOOH enhanced reductive dechlorination of DDT by favoring the cell survival and generating Fe(II) which was absorbed on the surface of bacteria and iron oxide. 92% of the absorbed Fe(II) was Na-acetate (1M) extractable. However, α-FeOOH also played a negative role of competing for electrons as reflected by the dechlorination rate of DDT was inhibited when increasing the α-FeOOH from 1 g L(-1) to 5 g L(-1). DDT was measured to be toxic to S. putrefaciens 200. The metabolites DDD, DDE and DDMU were recalcitrant to S. putrefaciens 200. The results suggested that iron oxide was not the key factor to promote the dissipation of DDX (DDT and the metabolites), whereas the one-electron reduction potential (E1) of certain organochlorines is the main factor and that the E1 higher than the threshold of the reductive driving forces of DIRB probably ensures the occur of reductive dechlorination. PMID:26025430

  10. Invasive earthworms interact with abiotic conditions to influence the invasion of common buckthorn (Rhamnus cathartica).

    PubMed

    Roth, Alexander M; Whitfeld, Timothy J S; Lodge, Alexandra G; Eisenhauer, Nico; Frelich, Lee E; Reich, Peter B

    2015-05-01

    Common buckthorn (Rhamnus cathartica L.) is one of the most abundant and ecologically harmful non-native plants in forests of the Upper Midwest United States. At the same time, European earthworms are invading previously glaciated areas in this region, with largely anecdotal evidence suggesting they compound the negative effects of buckthorn and influence the invasibility of these forests. Germination and seedling establishment are important control points for colonization by any species, and manipulation of the conditions influencing these life history stages may provide insight into why invasive species are successful in some environments and not others. Using a greenhouse microcosm experiment, we examined the effects of important biotic and abiotic factors on the germination and seedling establishment of common buckthorn. We manipulated light levels, leaf litter depth and earthworm presence to investigate the independent and interactive effects of these treatments on buckthorn establishment. We found that light and leaf litter depth were significant predictors of buckthorn germination but that the presence of earthworms was the most important factor; earthworms interacted with light and leaf litter to increase the number and biomass of buckthorn across all treatments. Path analysis suggested both direct and moisture-mediated indirect mechanisms controlled these processes. The results suggest that the action of earthworms may provide a pathway through which buckthorn invades forests of the Upper Midwest United States. Hence, researchers and managers should consider co-invasion of plants and earthworms when investigating invasibility and creating preemptive or post-invasion management plans. PMID:25481818

  11. Toxic hydrogen sulfide and dark caves: phenotypic and genetic divergence across two abiotic environmental gradients in Poecilia mexicana.

    PubMed

    Tobler, Michael; Dewitt, Thomas J; Schlupp, Ingo; García de León, Francisco J; Herrmann, Roger; Feulner, Philine G D; Tiedemann, Ralph; Plath, Martin

    2008-10-01

    Divergent natural selection drives evolutionary diversification. It creates phenotypic diversity by favoring developmental plasticity within populations or genetic differentiation and local adaptation among populations. We investigated phenotypic and genetic divergence in the livebearing fish Poecilia mexicana along two abiotic environmental gradients. These fish typically inhabit nonsulfidic surface rivers, but also colonized sulfidic and cave habitats. We assessed phenotypic variation among a factorial combination of habitat types using geometric and traditional morphometrics, and genetic divergence using quantitative and molecular genetic analyses. Fish in caves (sulfidic or not) exhibited reduced eyes and slender bodies. Fish from sulfidic habitats (surface or cave) exhibited larger heads and longer gill filaments. Common-garden rearing suggested that these morphological differences are partly heritable. Population genetic analyses using microsatellites as well as cytochrome b gene sequences indicate high population differentiation over small spatial scale and very low rates of gene flow, especially among different habitat types. This suggests that divergent environmental conditions constitute barriers to gene flow. Strong molecular divergence over short distances as well as phenotypic and quantitative genetic divergence across habitats in directions classic to fish ecomorphology suggest that divergent selection is structuring phenotypic variation in this system. PMID:18637957

  12. Mechanisms of hydroxyl radical production from abiotic oxidation of pyrite under acidic conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Yuan, Songhu; Liao, Peng

    2016-01-01

    Hydroxyl radicals (radOH) produced from pyrite oxidation by O2 have been recognized, but mechanisms regarding the production under anoxic and oxic conditions are not well understood. In this study, the mechanisms of radOH production from pyrite oxidation under anoxic and oxic conditions were explored using benzoic acid (BA) as an radOH probe. Batch experiments were conducted at pH 2.6 to explore radOH production under anoxic and oxic conditions. The cumulative radOH concentrations produced under anoxic and oxic conditions increased linearly to 7.5 and 52.2 μM, respectively within 10 h at 10 g/L pyrite. Under anoxic conditions, radOH was produced from the oxidation of H2O on the sulfur-deficient sites on pyrite surface, showing an increased production with the increase of pyrite surface exposure due to oxidation. Under oxic conditions, the formation of radOH proceeds predominantly via the two-electron reduction of O2 on pyrite surface along with a minor contribution from the oxidation of H2O on surface sulfur-defects and the reactions of Fe2+/sulfur intermediates with O2. For both O2 reduction and H2O oxidation on the surface sulfur-defects, H2O2 was the predominant intermediate, which subsequently transformed to radOH through Fenton mechanism. The radOH produced had a significant impact on the transformation of contaminants in the environment. Anoxic pyrite suspensions oxidized 13.9% As(III) (C0 = 6.67 μM) and 17.6% sulfanilamide (C0 = 2.91 μM) within 10 h at pH 2.6 and 10 g/L pyrite, while oxic pyrite suspensions improved the oxidation percentages to 55.4% for As(III) and 51.9% for sulfanilamide. The ratios of anoxic to oxic oxidation are consistent with the relative contribution of surface sulfur-defects to radOH production. However, Fe2+ produced from pyrite oxidation competed with the contaminants for radOH, which is of particular significance with the increase of time in a static environment. We conclude that radOH can be produced from abiotic oxidation of

  13. Abiotic formation of acylglycerols under simulated hydrothermal conditions and self-assembly properties of such lipid products

    NASA Astrophysics Data System (ADS)

    Simoneit, Bernd R. T.; Rushdi, Ahmed I.; Deamer, David W.

    The abiotic formation of aliphatic lipid compounds (i.e., fatty acids, alcohols, and acylglycerols) has been reported to occur at elevated temperatures and pressures under simulated hydrothermal conditions. Although abiotic synthetic chemistry can occur under these conditions, the prebiotic self-assembly of micelles to bilayer to vesicles (protocells) may have occurred elsewhere. Amphiphilic compounds such as fatty acids are important candidates for micelle/bilayer/vesicle formation, because they are abundant products of Fischer-Tropsch-type reactions and are also found in carbonaceous meteorites. Thus, it is of interest to determine whether more complex amphiphilic precursor compounds, capable of assembling into stable membrane structures, can be synthesized under hydrothermal conditions. Hydrothermal experiments were conducted to study condensation reactions of model lipid precursors in aqueous media, i.e., glycerol and alkanoic acids, to form acylglycerols (glyceryl alkanoates) at elevated temperature under confining pressure. Nine different alkanoic acids ranging from C 7 to C 16 (except C 8) were used in these experiments. The condensation products were two isomers each of monoacylglycerols and diacylglycerols, as well as the corresponding triacylglycerol. The results indicated that: (1) condensation (dehydration) reactions are possible under aqueous pyrolysis conditions; (2) abiotic synthesis and subsequent condensation reactions of aliphatic lipid compounds are possible under hydrothermal conditions; and (3) such molecules have robust properties of self-assembly into membranous structures that would be suitable boundary structures for primitive forms of cellular life.

  14. Multiple abiotic stimuli are integrated in the regulation of rice gene expression under field conditions.

    PubMed

    Plessis, Anne; Hafemeister, Christoph; Wilkins, Olivia; Gonzaga, Zennia Jean; Meyer, Rachel Sarah; Pires, Inês; Müller, Christian; Septiningsih, Endang M; Bonneau, Richard; Purugganan, Michael

    2015-01-01

    Plants rely on transcriptional dynamics to respond to multiple climatic fluctuations and contexts in nature. We analyzed the genome-wide gene expression patterns of rice (Oryza sativa) growing in rainfed and irrigated fields during two distinct tropical seasons and determined simple linear models that relate transcriptomic variation to climatic fluctuations. These models combine multiple environmental parameters to account for patterns of expression in the field of co-expressed gene clusters. We examined the similarities of our environmental models between tropical and temperate field conditions, using previously published data. We found that field type and macroclimate had broad impacts on transcriptional responses to environmental fluctuations, especially for genes involved in photosynthesis and development. Nevertheless, variation in solar radiation and temperature at the timescale of hours had reproducible effects across environmental contexts. These results provide a basis for broad-based predictive modeling of plant gene expression in the field. PMID:26609814

  15. Interactions of biotic and abiotic environmental factors in an ectomycorrhizal symbiosis, and the potential for selection mosaics

    PubMed Central

    Piculell, Bridget J; Hoeksema, Jason D; Thompson, John N

    2008-01-01

    Background Geographic selection mosaics, in which species exert different evolutionary impacts on each other in different environments, may drive diversification in coevolving species. We studied the potential for geographic selection mosaics in plant-mycorrhizal interactions by testing whether the interaction between bishop pine (Pinus muricata D. Don) and one of its common ectomycorrhizal fungi (Rhizopogon occidentalis Zeller and Dodge) varies in outcome, when different combinations of plant and fungal genotypes are tested under a range of different abiotic and biotic conditions. Results We used a 2 × 2 × 2 × 2 factorial experiment to test the main and interactive effects of plant lineage (two maternal seed families), fungal lineage (two spore collections), soil type (lab mix or field soil), and non-mycorrhizal microbes (with or without) on the performance of plants and fungi. Ecological outcomes, as assessed by plant and fungal performance, varied widely across experimental environments, including interactions between plant or fungal lineages and soil environmental factors. Conclusion These results show the potential for selection mosaics in plant-mycorrhizal interactions, and indicate that these interactions are likely to coevolve in different ways in different environments, even when initially the genotypes of the interacting species are the same across all environments. Hence, selection mosaics may be equally as effective as genetic differences among populations in driving divergent coevolution among populations of interacting species. PMID:18507825

  16. Modeling regeneration responses of big sagebrush (Artemisia tridentata) to abiotic conditions

    USGS Publications Warehouse

    Schlaepfer, Daniel R.; Lauenroth, William K.; Bradford, John B.

    2014-01-01

    Ecosystems dominated by big sagebrush, Artemisia tridentata Nuttall (Asteraceae), which are the most widespread ecosystems in semiarid western North America, have been affected by land use practices and invasive species. Loss of big sagebrush and the decline of associated species, such as greater sage-grouse, are a concern to land managers and conservationists. However, big sagebrush regeneration remains difficult to achieve by restoration and reclamation efforts and there is no regeneration simulation model available. We present here the first process-based, daily time-step, simulation model to predict yearly big sagebrush regeneration including relevant germination and seedling responses to abiotic factors. We estimated values, uncertainty, and importance of 27 model parameters using a total of 1435 site-years of observation. Our model explained 74% of variability of number of years with successful regeneration at 46 sites. It also achieved 60% overall accuracy predicting yearly regeneration success/failure. Our results identify specific future research needed to improve our understanding of big sagebrush regeneration, including data at the subspecies level and improved parameter estimates for start of seed dispersal, modified wet thermal-time model of germination, and soil water potential influences. We found that relationships between big sagebrush regeneration and climate conditions were site specific, varying across the distribution of big sagebrush. This indicates that statistical models based on climate are unsuitable for understanding range-wide regeneration patterns or for assessing the potential consequences of changing climate on sagebrush regeneration and underscores the value of this process-based model. We used our model to predict potential regeneration across the range of sagebrush ecosystems in the western United States, which confirmed that seedling survival is a limiting factor, whereas germination is not. Our results also suggested that modeled

  17. Azerbaijan: environmental conditions and outlook.

    PubMed

    Shelton, Napier

    2003-06-01

    The author describes present environmental conditions in Azerbaijan in relation to the Soviet legacy and measures taken since independence. Environmental projects have been financed largely by international organizations and foreign companies. The most serious problems are contaminants in the Caspian Sea; air, water, and soil pollution in Sumgait; illegal fishing; poor quality of drinking water; cutting of forests for fuel and pasture; overgrazing; and soil erosion and salinization. Progress in developing an environmental conscience, necessary for sustained protection of the environment, will depend most importantly on environmental education, growth of democratic institutions and attitudes that encourage both governmental and citizen responsibility for the environment, and economic development that produces a substantial middle class. Positive advances include a Constitution and laws that require protection of the environment, and individuals who speak out for environmental care. Negative factors include poverty and the present government's low priority for environmental protection. PMID:12956597

  18. Stress-related hormones and glycinebetaine interplay in protection of photosynthesis under abiotic stress conditions.

    PubMed

    Kurepin, Leonid V; Ivanov, Alexander G; Zaman, Mohammad; Pharis, Richard P; Allakhverdiev, Suleyman I; Hurry, Vaughan; Hüner, Norman P A

    2015-12-01

    Plants subjected to abiotic stresses such as extreme high and low temperatures, drought or salinity, often exhibit decreased vegetative growth and reduced reproductive capabilities. This is often associated with decreased photosynthesis via an increase in photoinhibition, and accompanied by rapid changes in endogenous levels of stress-related hormones such as abscisic acid (ABA), salicylic acid (SA) and ethylene. However, certain plant species and/or genotypes exhibit greater tolerance to abiotic stress because they are capable of accumulating endogenous levels of the zwitterionic osmolyte-glycinebetaine (GB). The accumulation of GB via natural production, exogenous application or genetic engineering, enhances plant osmoregulation and thus increases abiotic stress tolerance. The final steps of GB biosynthesis occur in chloroplasts where GB has been shown to play a key role in increasing the protection of soluble stromal and lumenal enzymes, lipids and proteins, of the photosynthetic apparatus. In addition, we suggest that the stress-induced GB biosynthesis pathway may well serve as an additional or alternative biochemical sink, one which consumes excess photosynthesis-generated electrons, thus protecting photosynthetic apparatus from overreduction. Glycinebetaine biosynthesis in chloroplasts is up-regulated by increases in endogenous ABA or SA levels. In this review, we propose and discuss a model describing the close interaction and synergistic physiological effects of GB and ABA in the process of cold acclimation of higher plants. PMID:25823797

  19. Multiple abiotic stimuli are integrated in the regulation of rice gene expression under field conditions

    PubMed Central

    Plessis, Anne; Hafemeister, Christoph; Wilkins, Olivia; Gonzaga, Zennia Jean; Meyer, Rachel Sarah; Pires, Inês; Müller, Christian; Septiningsih, Endang M; Bonneau, Richard; Purugganan, Michael

    2015-01-01

    Plants rely on transcriptional dynamics to respond to multiple climatic fluctuations and contexts in nature. We analyzed the genome-wide gene expression patterns of rice (Oryza sativa) growing in rainfed and irrigated fields during two distinct tropical seasons and determined simple linear models that relate transcriptomic variation to climatic fluctuations. These models combine multiple environmental parameters to account for patterns of expression in the field of co-expressed gene clusters. We examined the similarities of our environmental models between tropical and temperate field conditions, using previously published data. We found that field type and macroclimate had broad impacts on transcriptional responses to environmental fluctuations, especially for genes involved in photosynthesis and development. Nevertheless, variation in solar radiation and temperature at the timescale of hours had reproducible effects across environmental contexts. These results provide a basis for broad-based predictive modeling of plant gene expression in the field. DOI: http://dx.doi.org/10.7554/eLife.08411.001 PMID:26609814

  20. Constraining the role of iron in environmental nitrogen transformations: Dual stable isotope systematics of abiotic NO2- reduction by Fe(II) and its production of N2O

    NASA Astrophysics Data System (ADS)

    Buchwald, Carolyn; Grabb, Kalina; Hansel, Colleen M.; Wankel, Scott D.

    2016-08-01

    Despite mounting evidence for biogeochemical interactions between iron and nitrogen, our understanding of their environmental importance remains limited. Here we present an investigation of abiotic nitrite (NO2-) reduction by Fe(II) or 'chemodenitrification', and its relevance to the production of nitrous oxide (N2O), specifically focusing on dual (N and O) isotope systematics under a variety of environmental conditions. We observe a range of kinetic isotope effects that are regulated by reaction rates, with faster rates at higher pH (∼8), higher concentrations of Fe(II) and in the presence of mineral surfaces. A clear non-linear relationship between rate constant and kinetic isotope effects of NO2- reduction was evident (with larger isotope effects at slower rates) and is interpreted as reflecting the dynamics of Fe(II)-N reaction intermediates. N and O isotopic composition of product N2O also suggests a complex network of parallel and/or competing pathways. Our findings suggest that NO2- reduction by Fe(II) may represent an important abiotic source of environmental N2O, especially in iron-rich environments experiencing dynamic redox variations. This study provides a multi-compound, multi-isotope framework for evaluating the environmental occurrence of abiotic NO2- reduction and N2O formation, helping future studies constrain the relative roles of abiotic and biological N2O production pathways.

  1. Environmental hazard assessment of chemicals and products. Part VI. Abiotic degradation in the troposphere.

    PubMed

    Klöpffer, W

    1996-09-01

    The atmosphere constitutes an important sink for many volatile and semivolatile organic compounds (Part II). Even non-volatile compounds may enter the troposphere due to incomplete burning of fuel and industrial, agricultural and traffic-related processes. Depending on vapour pressure, temperature and content of aerosol particles, chemicals prefer the free gas phase, the surface of the particles, or both compartments. Polar compounds (low Henry-coefficient) may dissolve in cloud- and fog droplets. Clearly, the prefered compartment influences the dominant abiotic degradation path. In this paper, a survey is given about the distribution and degradation pathways of chemicals in the troposphere. In the free gas phase of the troposphere, the reaction with OH-radicals is the dominant degradation path. In addition, the reactions with ozone and nitrate-radicals, and direct photochemical reactions also play a role in abiotic degradation. PMID:8784998

  2. Environmentally relevant impacts of nano-TiO2 on abiotic degradation of bisphenol A under sunlight irradiation.

    PubMed

    Wu, Wei; Shan, Guoqiang; Wang, Shanfeng; Zhu, Lingyan; Yue, Longfei; Xiang, Qian; Zhang, Yinqing; Li, Zhuo

    2016-09-01

    Understanding the effects of nano-TiO2 particles on the environmental behaviors of organic pollutants in natural aquatic environments is of paramount importance considering that large amount of nano-TiO2 is being released in the environment. In this study, the effect of nano-TiO2 on the degradation of bisphenol A (BPA) in water was investigated under simulated solar light irradiation. The results indicated that nano-TiO2 at environmentally relevant concentration (1 mg/L) could significantly facilitate the abiotic degradation of BPA (also at low concentration) under mild solar light irradiation, with the pseudo first-order rate constant (kobs) for BPA degradation raised by 1-2 orders of magnitude. As reflected by the inhibition experiments, hydroxyl radicals (OHs) and superoxide radical species were the predominant active species responsible for BPA degradation. The reaction was affected by water pH, and the degradation rate was higher at acidic or alkaline conditions than that at neutral condition. Humic acid (HA) also affected the reaction rate, depending on its concentration. At lower concentration (the mass ratio of HA/nano-TiO2 was 0.1:1), HA improved the dispersion and stability of nano-TiO2 in aquatic environment. As a result, the yield of OHs by nano-TiO2 under sunlight irradiation increased and BPA degradation was facilitated. When the HA concentration increased, a coating of HA formed on the surface of nano-TiO2. Although nano-TiO2 became more stable, the light absorption by nano-TiO2 was significantly reduced due to the strong light absorption of the HA coated on the surface. As a consequence, the yield of OH decreased and BPA degradation was depressed. The results imply that nano-TiO2 at low concentration may distinctly mediate BPA degradation, and can contribute to the natural attenuation of some organic pollutants in aquatic environment with low level of HA. However, this process would be significantly reduced in the presence of high level of HA. PMID

  3. Abiotic stress growth conditions induce different responses in kernel iron concentration across genotypically distinct maize inbred varieties

    PubMed Central

    Kandianis, Catherine B.; Michenfelder, Abigail S.; Simmons, Susan J.; Grusak, Michael A.; Stapleton, Ann E.

    2013-01-01

    The improvement of grain nutrient profiles for essential minerals and vitamins through breeding strategies is a target important for agricultural regions where nutrient poor crops like maize contribute a large proportion of the daily caloric intake. Kernel iron concentration in maize exhibits a broad range. However, the magnitude of genotype by environment (GxE) effects on this trait reduces the efficacy and predictability of selection programs, particularly when challenged with abiotic stress such as water and nitrogen limitations. Selection has also been limited by an inverse correlation between kernel iron concentration and the yield component of kernel size in target environments. Using 25 maize inbred lines for which extensive genome sequence data is publicly available, we evaluated the response of kernel iron density and kernel mass to water and nitrogen limitation in a managed field stress experiment using a factorial design. To further understand GxE interactions we used partition analysis to characterize response of kernel iron and weight to abiotic stressors among all genotypes, and observed two patterns: one characterized by higher kernel iron concentrations in control over stress conditions, and another with higher kernel iron concentration under drought and combined stress conditions. Breeding efforts for this nutritional trait could exploit these complementary responses through combinations of favorable allelic variation from these already well-characterized genetic stocks. PMID:24363659

  4. Illinois Environmental Protection Agency annual environmental conditions report, 1998

    SciTech Connect

    1999-06-01

    This report focuses on the following: Public Review; Environmental Progress Agenda; Environmental Quality Conditions; Air Quality Management; Airshed Conditions; Program Performance; Water Quality Management; Watershed Conditions; Program Performance; Land Quality Management; Site Conditions; Multimedia Management; and Program Performance.

  5. Review of Microbial Responses to Abiotic Environmental Factors in the Context of the Proposed Yucca Mountain Repository

    SciTech Connect

    Meike, A.; Stroes-Gascoyne, S.

    2000-08-01

    A workshop on Microbial Activities at Yucca Mountain (May 1995, Lafayette, CA) was held with the intention to compile information on all pertinent aspects of microbial activity for application to a potential repository at Yucca Mountain. The findings of this workshop set off a number of efforts intended to eventually incorporate the impacts of microbial behavior into performance assessment models. One effort was to expand an existing modeling approach to include the distinctive characteristics of a repository at Yucca Mountain (e.g., unsaturated conditions and a significant thermal load). At the same time, a number of experimental studies were initiated as well as a compilation of relevant literature to more thoroughly study the physical, chemical and biological parameters that would affect microbial activity under Yucca Mountain-like conditions. This literature search (completed in 1996) is the subject of the present document. The collected literature can be divided into four categories: (1) abiotic factors, (2) community dynamics and in-situ considerations, (3) nutrient considerations and (4) transport of radionuclides. The complete bibliography represents a considerable resource, but is too large to be discussed in one document. Therefore, the present report focuses on the first category, abiotic factors, and a discussion of these factors in order to facilitate the development of a model for Yucca Mountain.

  6. The net effect of abiotic conditions and biotic interactions in a semi-arid ecosystem NE Spain: implications for the management and restoration.

    NASA Astrophysics Data System (ADS)

    Pueyo, Yolanda; Arroyo, Antonio I.; Saiz, Hugo; Alados, Concepción L.

    2014-05-01

    Degradation in arid and semiarid lands can be irreversible without human intervention, due to a positive plant-soil feedback where the loss of vegetation cover leads to soil degradation, which in turn hampers plant establishment. Human intervention in restoration actions usually involves the amendment of the degraded abiotic conditions, revegetation of bare areas, or both. However, abiotic amelioration is often expensive and too intrusive, and revegetation is not successful in many cases. Biotic interactions between plants, and more specifically facilitation by a "nurse" plant, have been proposed as a new via to take profit of improved abiotic conditions without intervention, and to increase the success rate of revegetation actions. But "nurse" plants can also interfere with others (i.e. by competition for resources or the release of allelopathic compounds), and the net balance between facilitation and interference could depend on plant types involved. We present recent observational and experimental studies performed in the semiarid ecosystems of the Middle Ebro Valley (NE Spain) about the role of abiotic conditions and biotic interactions in the productivity, dynamics and diversity of plant communities under different stress conditions (aridity and grazing). We found that all plant types studied (shrubs and perennial grasses) improved abiotic conditions (soil temperature and water availability for plants) with respect to open areas. However, only some shrubs (mainly Salsola vermiculata) had a positive net balance in the biotic interactions between plants, while other shrubs (Artemisia herba-alba) and perennial grasses (Lygeum spartum) showed interference with other plants. Moreover, the net balance between facilitation and interference among plants in the community shifted from competitive to neutral or from neutral to facilitative with increasing aridity. Grazing status did not strongly change the net biotic interactions between plants. Our results suggest that

  7. Biotic and abiotic factors affecting stemflow variability in downy oak and Scots pine stands in Mediterranean conditions

    NASA Astrophysics Data System (ADS)

    Cayuela, Carles; Garcia-Estringana, Pablo; Latron, Jérôme; Llorens, Pilar

    2015-04-01

    Although stemflow is only a small portion of rainfall, it may represent an important local input of water and nutrients at the plant stem. Previous studies have shown that stemflow has a significant influence on hydrological and biogeochemical processes. Stemflow volume is affected by many biotic factors as species, age, branch or bark characteristics. Moreover, the seasonality of the rainfall regime in Mediterranean areas, which includes both frontal rainfall events and short convective storms, can add complexity to the rainfall-stemflow relationship. This work investigates stemflow dynamics and the influence of biotic and abiotic factors on stemflow rates in two Mediterranean stands during the leafed period - from May to October. The monitored stands are a Downy oak forest (Quercus pubescens) and a Scots pine forest (Pinus sylvestris), both located in the Vallcebre research catchments (NE Spain, 42° 12'N, 1° 49'E). The monitoring design of each plot consists of 7 stemflow rings connected to tipping-buckets, bulk rainfall measured in a nearby clearing and meteorological conditions above the canopies. All data were recorded at 5 min interval. Biometric characteristics of the measured trees were also measured. The analysis of 39 rainfall events (65% smaller than 10 mm) shows that stemflow accounted for less than 1% of the bulk rainfall in both stands. Results also show that, on average, the rainfall amount required for the start of the stemflow and the time delay between the beginning of the precipitation and the start of stemflow are higher in the Downy oak forest. As suggested by stemflow funneling ratios, these differences might be linked to the canopy structure and bark water storage capacity of the trees, indicating that during low magnitude events, oaks have more difficulty to reach storage capacity. The role of other biotic and abiotic parameters on stemflow variability in both stands is still under investigation.

  8. Constraining the role of iron in environmental nitrogen transformations. Dual stable isotope systematics of abiotic NO2- reduction by Fe(II) and its production of N2O

    SciTech Connect

    Johnston, David; Wankel, Scott David; Buchwald, Carolyn; Hansel, Colleen

    2015-09-16

    Redox reactions involving nitrogen and iron have been shown to have important implications for mobilization of priority contaminants. Thus, an understanding of the linkages between their biogeochemical cycling is critical for predicting subsurface mobilization of radionuclides such as uranium. Despite mounting evidence for biogeochemical interactions between iron and nitrogen, our understanding of their environmental importance remains limited. Here we present an investigation of abiotic nitrite (NO2-) reduction by Fe(II) or ‘chemodenitrification,’ and its relevance to the production of nitrous oxide (N2O), specifically focusing on dual (N and O) isotope systematics under a variety of environmentally relevant conditions. We observe a range of kinetic isotope effects that are regulated by reaction rates, with faster rates at higher pH (~8), higher concentrations of Fe(II) and in the presence of mineral surfaces. A clear non-linear relationship between rate constant and kinetic isotope effects of NO2- reduction was evident (with larger isotope effects at slower rates) and is interpreted as reflecting the dynamics of Fe(II)-N reaction intermediates. N and O isotopic composition of product N2O also suggests a complex network of parallel and/or competing pathways. Our findings suggest that NO2- reduction by Fe(II) may represent an important abiotic source of environmental N2O, especially in iron-rich environments experiencing dynamic redox variations. This study provides a multi-compound, multi-isotope framework for evaluating the environmental occurrence of abiotic NO2- reduction and N2O formation, helping future studies constrain the relative roles of abiotic and biological N2O production pathways.

  9. Reference Gene Validation for Quantitative PCR Under Various Biotic and Abiotic Stress Conditions in Toxoptera citricida (Hemiptera, Aphidiae).

    PubMed

    Shang, Feng; Wei, Dan-Dan; Jiang, Xuan-Zhao; Wei, Dong; Shen, Guang-Mao; Feng, Ying-Cai; Li, Ting; Wang, Jin-Jun

    2015-08-01

    The regulation of mRNA expression level is critical for gene expression studies. Currently, quantitative reverse transcription polymerase chain reaction (qRT-PCR) is commonly used to investigate mRNA expression level of genes under various experimental conditions. An important factor that determines the optimal quantification of qRT-PCR data is the choice of the reference gene for normalization. To advance gene expression studies in Toxoptera citricida (Kirkaldy), an important citrus pest and a main vector of the Citrus tristeza virus, we used five tools (GeNorm, NormFinder, BestKeeper, ΔCt methods, and RefFinder) to evaluate seven candidate reference genes (elongation factor-1 alpha [EF1α], beta tubulin [β-TUB], 18S ribosomal RNA [18S], RNA polymerase II large subunit (RNAP II), beta actin (β-ACT), alpha tubulin, and glyceraldhyde-3-phosphate dehydrogenase) under different biotic (developmental stages and wing dimorphism) and abiotic stress (thermal, starvation, and UV irradiation) conditions. The results showed that EF1α and 18S were the most stable genes under various biotic states, β-ACT and β-TUB during thermal stress, EF1α and RNAP II under starvation stress, and RNAP II, β-ACT, and EF1α under UV irradiation stress conditions. This study provides useful resources for the transcriptional profiling of genes in T. citricida and closely related aphid species. PMID:26470351

  10. The oxygen isotope signature of sulfate derived from abiotic sulfite oxidation under different pH conditions

    NASA Astrophysics Data System (ADS)

    Mueller, I.; Brunner, B.; Ferdelman, T. G.

    2011-12-01

    The oxygen isotope composition of sulfate serves as an archive of past oxidative sulfur cycling. It carries information about the oxidants as well as the biochemical pathway involved in the oxidation of reduced sulfur compounds, because oxygen sources can be traced by their distinct oxygen isotope composition. Studies on the aerobic oxidation of pyrite determined varying relative contributions of oxygen from dissolved molecular oxygen (O2) and water (H2O). These discrepancies were assumed to be due to slight differences in the production and consumption of sulfur intermediates which can exchange oxygen isotopes with water. Additionally, changing pH conditions influence the oxidation rate of sulfur intermediates to sulfate as well as the rate of oxygen exchange between sulfur intermediates and water. Consequently, this affects the oxygen isotope signature of produced sulfate. However, very little is known about the oxygen isotope effects during the oxidation of sulfur intermediates. We performed experiments to assess the abiotic oxidation of sulfite to sulfate under different pH conditions, as sulfite is assumed to be an intermediate during the oxidation of reduced sulfur compounds. Dissolved sulfite was oxidized with differently isotopically labeled O2, as well as in differently labeled H2O. The relative contribution of oxygen from O2 and water in produced sulfate was determined, along with the respective oxygen isotope fractionation. Our results provide a more detailed mechanistic understanding of the aerobic oxidation of reduced sulfur species.

  11. Adherence to abiotic surface induces SOS response in Escherichia coli K-12 strains under aerobic and anaerobic conditions.

    PubMed

    Costa, Suelen B; Campos, Ana Carolina C; Pereira, Ana Claudia M; de Mattos-Guaraldi, Ana Luiza; Júnior, Raphael Hirata; Rosa, Ana Cláudia P; Asad, Lídia M B O

    2014-09-01

    During the colonization of surfaces, Escherichia coli bacteria often encounter DNA-damaging agents and these agents can induce several defence mechanisms. Base excision repair (BER) is dedicated to the repair of oxidative DNA damage caused by reactive oxygen species (ROS) generated by chemical and physical agents or by metabolism. In this work, we have evaluated whether the interaction with an abiotic surface by mutants derived from E. coli K-12 deficient in some enzymes that are part of BER causes DNA damage and associated filamentation. Moreover, we studied the role of endonuclease V (nfi gene; 1506 mutant strain) in biofilm formation. Endonuclease V is an enzyme that is involved in DNA repair of nitrosative lesions. We verified that endonuclease V is involved in biofilm formation. Our results showed more filamentation in the xthA mutant (BW9091) and triple xthA nfo nth mutant (BW535) than in the wild-type strain (AB1157). By contrast, the mutant nfi did not present filamentation in biofilm, although its wild-type strain (1466) showed rare filaments in biofilm. The filamentation of bacterial cells attaching to a surface was a consequence of SOS induction measured by the SOS chromotest. However, biofilm formation depended on the ability of the bacteria to induce the SOS response since the mutant lexA Ind(-) did not induce the SOS response and did not form any biofilm. Oxygen tension was an important factor for the interaction of the BER mutants, since these mutants exhibited decreased quantitative adherence under anaerobic conditions. However, our results showed that the presence or absence of oxygen did not affect the viability of BW9091 and BW535 strains. The nfi mutant and its wild-type did not exhibit decreased biofilm formation under anaerobic conditions. Scanning electron microscopy was also performed on the E. coli K-12 strains that had adhered to the glass, and we observed the presence of a structure similar to an extracellular matrix that depended on the

  12. Phenological mismatch with abiotic conditions implications for flowering in Arctic plants.

    PubMed

    Wheeler, Helen C; Høye, Toke T; Schmidt, Niels Martin; Svenning, Jens-Christian; Forchhammer, Mads C

    2015-03-01

    Although many studies have examined the phenological mismatches between interacting organisms, few have addressed the potential for mismatches between phenology and seasonal weather conditions. In the Arctic, rapid phenological changes in many taxa are occurring in association with earlier snowmelt. The timing of snowmelt is jointly affected by the size of the late winter snowpack and the temperature during the spring thaw. Increased winter snowpack results in delayed snowmelt, whereas higher air temperatures and faster snowmelt advance the timing of snowmelt. Where interannual variation in snowpack is substantial, changes in the timing of snowmelt can be largely uncoupled from changes in air temperature. Using detailed, long-term data on the flowering phenology of four arctic plant species from Zackenberg, Greenland, we investigate whether there is a phenological component to the temperature conditions experienced prior to and during flowering. In particular, we assess the role of timing of flowering in determining pre-flowering exposure to freezing temperatures and to the temperatures-experienced prior to flowering. We then examine the implications of flowering phenology for flower abundance. Earlier snowmelt resulted in greater exposure to freezing conditions, suggesting an increased potential for a mismatch between the timing of flowering and seasonal weather conditions and an increased potential for negative consequences, such as freezing 'damage. We also found a parabolic relationship between the timing of flowering and the temperature experienced during flowering after taking interannual temperature effects into account. If timing of flowering advances to a cooler period of the growing season, this may moderate the effects of a general warming trend across years. Flower abundance was quadratically associated with the timing of flowering, such that both early and late flowering led to lower flower abundance than did intermediate flowering. Our results

  13. Circadian regulation of abiotic stress tolerance in plants

    PubMed Central

    Grundy, Jack; Stoker, Claire; Carré, Isabelle A.

    2015-01-01

    Extremes of temperatures, drought and salinity cause widespread crop losses throughout the world and impose severe limitations on the amount of land that can be used for agricultural purposes. Hence, there is an urgent need to develop crops that perform better under such abiotic stress conditions. Here, we discuss intriguing, recent evidence that circadian clock contributes to plants’ ability to tolerate different types of environmental stress, and to acclimate to them. The clock controls expression of a large fraction of abiotic stress-responsive genes, as well as biosynthesis and signaling downstream of stress response hormones. Conversely, abiotic stress results in altered expression and differential splicing of the clock genes, leading to altered oscillations of downstream stress-response pathways. We propose a range of mechanisms by which this intimate coupling between the circadian clock and environmental stress-response pathways may contribute to plant growth and survival under abiotic stress. PMID:26379680

  14. Roles of melatonin in abiotic stress resistance in plants.

    PubMed

    Zhang, Na; Sun, Qianqian; Zhang, Haijun; Cao, Yunyun; Weeda, Sarah; Ren, Shuxin; Guo, Yang-Dong

    2015-02-01

    In recent years melatonin has emerged as a research highlight in plant studies. Melatonin has different functions in many aspects of plant growth and development. The most frequently mentioned functions of melatonin are related to abiotic stresses such as drought, radiation, extreme temperature, and chemical stresses. This review mainly focuses on the regulatory effects of melatonin when plants face harsh environmental conditions. Evidence indicates that environmental stress can increase the level of endogenous melatonin in plants. Overexpression of the melatonin biosynthetic genes elevates melatonin levels in transgenic plants. The transgenic plants show enhanced tolerance to abiotic stresses. Exogenously applied melatonin can also improve the ability of plants to tolerate abiotic stresses. The mechanisms by which melatonin alleviates abiotic stresses are discussed. PMID:25124318

  15. The role of abiotic conditions in shaping the long-term patterns of a high-elevation Argentine ant invasion

    USGS Publications Warehouse

    Krushelnycky, P.D.; Joe, S.M.; Medeiros, A.C.; Daehler, C.C.; Loope, L.L.

    2005-01-01

    Analysis of long-term patterns of invasion can reveal the importance of abiotic factors in influencing invasion dynamics, and can help predict future patterns of spread. In the case of the invasive Argentine ant (Linepithema humile), most prior studies have investigated this species' limitations in hot and dry climates. However, spatial and temporal patterns of spread involving two ant populations over the course of 30 years at a high elevation site in Hawaii suggest that cold and wet conditions have influenced both the ant's distribution and its rate of invasion. In Haleakala National Park on Maui, we found that a population invading at lower elevation is limited by increasing rainfall and presumably by associated decreasing temperatures. A second, higher elevation population has spread outward in all directions, but rates of spread in different directions appear to have been strongly influenced by differences in elevation and temperature. Patterns of foraging activity were strongly tied to soil temperatures, supporting the hypothesis that variation in temperature can influence rates of spread. Based on past patterns of spread, we predicted a total potential range that covers nearly 50% of the park and 75% of the park's subalpine habitats. We compared this rough estimate with point predictions derived from a degree-day model for Argentine ant colony reproduction, and found that the two independent predictions match closely when soil temperatures are used in the model. The cold, wet conditions that have influenced Argentine ant invasion at this site are likely to be influential at other locations in this species' current and future worldwide distribution. ?? 2005 Blackwell Publishing Ltd.

  16. Experimental Study of Abiotic Organic Synthesis at High Temperature and Pressure Conditions: Carbon Isotope and Mineral Surface Characterizations

    NASA Technical Reports Server (NTRS)

    Fu, Qi; Socki, R. A.; Niles, P. B.

    2010-01-01

    Abiotic organic synthesis processes have been proposed as potential mechanisms for methane generation in subseafloor hydrothermal systems on Earth, and on other planets. To better understand the detailed reaction pathways and carbon isotope fractionations in this process under a wide range of physical and chemical conditions, hydrothermal experiments at high temperature (750 C) and pressure (0.55 GPa) were performed using piston cylinder apparatus. Formic acid was used as the source of CO2 and H2, and magnetite was the mineral catalyst. The chemical and carbon isotopic compositions of dissolved organic products were determined by GC-C-MS-IRMS, while organic intermediaries on the mineral catalyst were characterized by Pyrolysis-GC-MS. Among experimental products, dissolved CO2 was the dominant carbon species with a relative abundance of 88 mol%. Dissolved CH4 and C2H6 were also identified with a mole ratio of CH4 over C2H6 of 15:1. No dissolved CO was detected in the experiment, which might be attributable to the loss of H2 through the Au capsule used in the experiments at high temperature and pressure conditions and corresponding conversion of CO to CO2 by the water-gas shift reaction. Carbon isotope results showed that the 13C values of CH4 and C2H6 were -50.3% and -39.3% (V-PDB), respectively. CO2 derived from decarboxylation of formic acid had a (sigma)C-13 value of -19.2%, which was 3.2% heavier than its source, formic acid. The (sigma)C-13 difference between CO2 and CH4 was 31.1%, which was higher than the value of 9.4% calculated from theoretical isotopic equilibrium predictions at experimental conditions, suggesting the presence of a kinetic isotope effect. This number was also higher than the values (4.6 to 27.1%) observed in similar experiments previously performed at 400 C and 50 MPa with longer reaction times. CH4 is 11.0% less enriched in C-13 than C2H6. Alcohols were observed as carbon compounds on magnetite surfaces by Pyrolysis-GC-MS, which confirms

  17. Experimental Study of Abiotic Organic Synthesis at High Temperature and Pressure Conditions: Carbon Isotope and Mineral Surface Characterizations

    NASA Astrophysics Data System (ADS)

    Fu, Q.; Socki, R. A.; Niles, P. B.

    2010-12-01

    Abiotic organic synthesis processes have been proposed as potential mechanisms for methane generation in subseafloor hydrothermal systems on Earth, and on other planets. To better understand the detailed reaction pathways and carbon isotope fractionations in this process under a wide range of physical and chemical conditions, hydrothermal experiments at high temperature (750 °C) and pressure (0.55 GPa) were performed using piston cylinder apparatus. Formic acid was used as the source of CO2 and H2, and magnetite was the mineral catalyst. The chemical and carbon isotopic compositions of dissolved organic products were determined by GC-C-MS-IRMS, while organic intermediaries on the mineral catalyst were characterized by Pyrolysis-GC-MS. Among experimental products, dissolved CO2 was the dominant carbon species with a relative abundance of 88 mol%. Dissolved CH4 and C2H6 were also identified with a mole ratio of CH4 over C2H6 of 15:1. No dissolved CO was detected in the experiment, which might be attributable to the loss of H2 through the Au capsule used in the experiments at high temperature and pressure conditions and corresponding conversion of CO to CO2 by the water-gas shift reaction. Carbon isotope results showed that the δ13C values of CH4 and C2H6 were -50.3‰ and -39.3‰ (V-PDB), respectively. CO2 derived from decarboxylation of formic acid had a δ13C value of -19.2‰, which was 3.2‰ heavier than its source, formic acid. The δ13C difference between CO2 and CH4 was 31.1‰, which was higher than the value of 9.4‰ calculated from theoretical isotopic equilibrium predictions at experimental conditions, suggesting the presence of a kinetic isotope effect. This number was also higher than the values (4.6 to 27.1‰) observed in similar experiments previously performed at 400 °C and 50 MPa with longer reaction times. CH4 is 11.0‰ less enriched in 13C than C2H6. Alcohols were observed as carbon compounds on magnetite surfaces by Pyrolysis-GC-MS, which

  18. Abiotic stress responses in plant roots: a proteomics perspective

    PubMed Central

    Ghosh, Dipanjana; Xu, Jian

    2014-01-01

    Abiotic stress conditions adversely affect plant growth, resulting in significant decline in crop productivity. To mitigate and recover from the damaging effects of such adverse environmental conditions, plants have evolved various adaptive strategies at cellular and metabolic levels. Most of these strategies involve dynamic changes in protein abundance that can be best explored through proteomics. This review summarizes comparative proteomic studies conducted with roots of various plant species subjected to different abiotic stresses especially drought, salinity, flood, and cold. The main purpose of this article is to highlight and classify the protein level changes in abiotic stress response pathways specifically in plant roots. Shared as well as stressor-specific proteome signatures and adaptive mechanism(s) are simultaneously described. Such a comprehensive account will facilitate the design of genetic engineering strategies that enable the development of broad-spectrum abiotic stress-tolerant crops. PMID:24478786

  19. Synergistic interactions of biotic and abiotic environmental stressors on gene expression.

    PubMed

    Altshuler, Ianina; McLeod, Anne M; Colbourne, John K; Yan, Norman D; Cristescu, Melania E

    2015-03-01

    Understanding the response of organisms to multiple stressors is critical for predicting if populations can adapt to rapid environmental change. Natural and anthropogenic stressors often interact, complicating general predictions. In this study, we examined the interactive and cumulative effects of two common environmental stressors, lowered calcium concentration, an anthropogenic stressor, and predator presence, a natural stressor, on the water flea Daphnia pulex. We analyzed expression changes of five genes involved in calcium homeostasis - cuticle proteins (Cutie, Icp2), calbindin (Calb), and calcium pump and channel (Serca and Ip3R) - using real-time quantitative PCR (RT-qPCR) in a full factorial experiment. We observed strong synergistic interactions between low calcium concentration and predator presence. While the Ip3R gene was not affected by the stressors, the other four genes were affected in their transcriptional levels by the combination of the stressors. Transcriptional patterns of genes that code for cuticle proteins (Cutie and Icp2) and a sarcoplasmic calcium pump (Serca) only responded to the combination of stressors, changing their relative expression levels in a synergistic response, while a calcium-binding protein (Calb) responded to low calcium stress and the combination of both stressors. The expression pattern of these genes (Cutie, Icp2, and Serca) were nonlinear, yet they were dose dependent across the calcium gradient. Multiple stressors can have complex, often unexpected effects on ecosystems. This study demonstrates that the dominant interaction for the set of tested genes appears to be synergism. We argue that gene expression patterns can be used to understand and predict the type of interaction expected when organisms are exposed simultaneously to natural and anthropogenic stressors. PMID:26158383

  20. Regulation of Photosynthesis during Abiotic Stress-Induced Photoinhibition.

    PubMed

    Gururani, Mayank Anand; Venkatesh, Jelli; Tran, Lam Son Phan

    2015-09-01

    Plants as sessile organisms are continuously exposed to abiotic stress conditions that impose numerous detrimental effects and cause tremendous loss of yield. Abiotic stresses, including high sunlight, confer serious damage on the photosynthetic machinery of plants. Photosystem II (PSII) is one of the most susceptible components of the photosynthetic machinery that bears the brunt of abiotic stress. In addition to the generation of reactive oxygen species (ROS) by abiotic stress, ROS can also result from the absorption of excessive sunlight by the light-harvesting complex. ROS can damage the photosynthetic apparatus, particularly PSII, resulting in photoinhibition due to an imbalance in the photosynthetic redox signaling pathways and the inhibition of PSII repair. Designing plants with improved abiotic stress tolerance will require a comprehensive understanding of ROS signaling and the regulatory functions of various components, including protein kinases, transcription factors, and phytohormones, in the responses of photosynthetic machinery to abiotic stress. Bioenergetics approaches, such as chlorophyll a transient kinetics analysis, have facilitated our understanding of plant vitality and the assessment of PSII efficiency under adverse environmental conditions. This review discusses the current understanding and indicates potential areas of further studies on the regulation of the photosynthetic machinery under abiotic stress. PMID:25997389

  1. Mechanisms and Dynamics of Abiotic and Biotic Interactions at Environmental Interfaces

    SciTech Connect

    Roso, Kevin M.

    2006-06-01

    The Stanford EMSI (SEMSI) was established in 2004 through joint funding by the National Science Foundation and the OBER-ERSD. It encompasses a number of universities and national laboratories. The PNNL component of the SEMSI is funded by ERSD and is the focus of this report. This component has the objective of providing theory support to the SEMSI by bringing computational capabilities and expertise to bear on important electron transfer problems at mineral/water and mineral/microbe interfaces. PNNL staff member Dr. Kevin Rosso, who is also ''matrixed'' into the Environmental Molecular Sciences Laboratory (EMSL) at PNNL, is a co-PI on the SEMSI project and the PNNL lead. The EMSL computational facilities being applied to the SEMSI project include the 11.8 teraflop massively-parallel supercomputer. Science goals of this EMSL/SEMSI partnership include advancing our understanding of: (1) The kinetics of U(VI) and Cr(VI) reduction by aqueous and solid-phase Fe(II), (2) The structure of mineral surfaces in equilibrium with solution, and (3) Mechanisms of bacterial electron transfer to iron oxide surfaces via outer-membrane cytochromes.

  2. Identification of suitable reference genes in buffalo grass for accurate transcript normalization under various abiotic stress conditions.

    PubMed

    Li, Wei; Qian, Yong-Qiang; Han, Lei; Liu, Jun-Xiang; Sun, Zhen-Yuan

    2014-08-15

    Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) is a sensitive technique for normalization of the gene expression level of target genes. Buffalograss (Buchloe dactyloides), a warm-season turfgrass with strong abiotic stress resistance, is widely used in North China. Up to now, no work was performed to evaluate the reference genes in buffalograss. In this study, the expression profiles of ten potential reference genes were examined by qRT-PCR in 24 buffalograss samples, which were subjected to a different treatment (salt, osmotic, cold and heat). Three qRT-PCR analysis methods (GeNorm, NormFinder, and Bestkeeper) were used to evaluate the stability of gene expression. The results indicated that DNAJ and β-ACTIN were the optimal reference genes for salt-treated leaves, and the combination of PP2A and GAPDH was better reference genes for PEG-treated leaves. Under cold stress, DNAJ and β-ACTIN showed less variety of expression level in leaves. DNAJ and GAPDH exhibited the most stable expression in heat-treated samples. To sum up, glyceral-dehyde-3-phosphate dehydrogenase (GAPDH), β-ACTIN, DNAJ-like protein (DNAJ) and protein phosphatase 2A (PP2A) were selected as the most stable reference gene among all tested samples. To further validate the suitability of these reference genes, the expression levels of DREB2 (homologs of AtDREB2) were analyzed in parallel. Our results show that the best reference genes differed across different experimental conditions, and these results should enable better normalization and quantification of transcript levels in buffalograss in the future. PMID:24914494

  3. Roles of Arbuscular Mycorrhizal Fungi and Soil Abiotic Conditions in the Establishment of a Dry Grassland Community

    PubMed Central

    Knappová, Jana; Pánková, Hana; Münzbergová, Zuzana

    2016-01-01

    Background The importance of soil biota in the composition of mature plant communities is commonly acknowledged. In contrast, the role of soil biota in the early establishment of new plant communities and their relative importance for soil abiotic conditions are still poorly understood. Aims and Methods The aim of this study was to understand the effects of soil origin and soil fungal communities on the composition of a newly established dry grassland plant community. We used soil from two different origins (dry grassland and abandoned field) with different pH and nutrient and mineral content. Grassland microcosms were established by sowing seeds of 54 species of dry grassland plants into the studied soils. To suppress soil fungi, half of the pots were regularly treated with fungicide. In this way, we studied the independent and combined effects of soil origin and soil community on the establishment of dry grassland communities. Key Results The effect of suppressing the soil fungal community on the richness and composition of the plant communities was much stronger than the effect of soil origin. Contrary to our expectations, the effects of these two factors were largely additive, indicating the same degree of importance of soil fungal communities in the establishment of species-rich plant communities in the soils from both origins. The negative effect of suppressing soil fungi on species richness, however, occurred later in the soil from the abandoned field than in the soil from the grassland. This result likely occurred because the negative effects of the suppression of fungi in the field soil were caused mainly by changes in plant community composition and increased competition. In contrast, in the grassland soil, the absence of soil fungi was limiting for plants already at the early stages of their establishment, i.e., in the phases of germination and early recruitment. While fungicide affects not only arbuscular mycorrhizal fungi but also other biota, our data

  4. Abiotic origin of biopolymers

    NASA Technical Reports Server (NTRS)

    Oro, J.; Stephen-Sherwood, E.

    1976-01-01

    A variety of methods have been investigated in different laboratories for the polymerization of amino acids and nucleotides under abiotic conditions. They include (1) thermal polymerization; (2) direct polymerization of certain amino acid nitriles, amides, or esters; (3) polymerization using polyphosphate esters; (4) polymerization under aqueous or drying conditions at moderate temperatures using a variety of simple catalysts or condensing agents like cyanamide, dicyandiamide, or imidazole; and (5) polymerization under similar mild conditions but employing activated monomers or abiotically synthesized high-energy compounds such as adenosine 5'-triphosphate (ATP). The role and significance of these methods for the synthesis of oligopeptides and oligonucleotides under possible primitive-earth conditions is evaluated. It is concluded that the more recent approach involving chemical processes similar to those used by contemporary living organisms appears to offer a reasonable solution to the prebiotic synthesis of these biopolymers.

  5. Formation of pristane from α-tocopherol under simulated anoxic sedimentary conditions: A combination of biotic and abiotic degradative processes

    NASA Astrophysics Data System (ADS)

    Rontani, Jean-François; Nassiry, Mina; Michotey, Valérie; Guasco, Sophie; Bonin, Patricia

    2010-01-01

    Incubation of intact and oxidized α-tocopherol (vitamin E) in anaerobic sediment slurries allowed us to demonstrate that, as previously suggested by Goossens et al. (1984), the degradation of α-tocopherol in anoxic sediments results in the formation of pristane. The conversion of α-tocopherol to this isoprenoid alkane involves a combination of biotic and abiotic degradative processes, i.e. the anaerobic biodegradation (which seems to be mainly induced by denitrifying bacteria) of trimeric structures resulting from the abiotic oxidation of α-tocopherol. On the basis of the results obtained, it is proposed that in the marine environment most of the α-tocopherol present in phytoplanktonic cells should be quickly degraded within the water column and the oxic zone of sediments by way of aerobic biodegradation, photo- and autoxidation processes. Abiotic transformation of this compound mainly results in the production of trimeric oxidation products, sufficiently stable to be incorporated into anoxic sediments and whose subsequent anaerobic bacterial degradation affords pristane. These results confirm that the ratio pristane to phytane cannot be used as an indicator of the oxicity of the environment of deposition; in contrast, they support the use of PFI (Pristane Formation Index) as a proxy for the state of diagenesis of sedimentary organic matter.

  6. Improvement of Polyunsaturated Fatty Acid Production in Echium acanthocarpum Transformed Hairy Root Cultures by Application of Different Abiotic Stress Conditions

    PubMed Central

    Zárate, Rafael; Cequier-Sánchez, Elena; Rodríguez, Covadonga; Dorta-Guerra, Roberto; El Jaber-Vazdekis, Nabil; Ravelo, Ángel G.

    2013-01-01

    Fatty acids are of great nutritional, therapeutic, and physiological importance, especially the polyunsaturated n-3 fatty acids, possessing larger carbon chains and abundant double bonds or their immediate precursors. A few higher plant species are able to accumulate these compounds, like those belonging to the Echium genus. Here, the novel E. acanthocarpum hairy root system, which is able to accumulate many fatty acids, including stearidonic and α-linolenic acids, was optimized for a better production. The application of abiotic stress resulted in larger yields of stearidonic and α-linolenic acids, 60 and 35%, respectively, with a decrease in linoleic acid, when grown in a nutrient medium consisting of B5 basal salts, sucrose or glucose, and, more importantly, at a temperature of 15°C. The application of osmotic stress employing sorbitol showed no positive influence on the fatty acid yields; furthermore, the combination of a lower culture temperature and glucose did not show a cumulative boosting effect on the yield, although this carbon source was similarly attractive. The abiotic stress also influenced the lipid profile of the cultures, significantly increasing the phosphatidylglycerol fraction but not the total lipid neither their biomass, proving the appropriateness of applying various abiotic stress in this culture to achieve larger yields. PMID:25937970

  7. Environmental Conditions in Kentucky's Penal Institutions

    ERIC Educational Resources Information Center

    Bell, Irving

    1974-01-01

    A state task force was organized to identify health or environmental deficiencies existing in Kentucky penal institutions. Based on information gained through direct observation and inmate questionnaires, the task force concluded that many hazardous and unsanitary conditions existed, and recommended that immediate action be given to these…

  8. Polyamines and abiotic stress in plants: a complex relationship.

    PubMed

    Minocha, Rakesh; Majumdar, Rajtilak; Minocha, Subhash C

    2014-01-01

    The physiological relationship between abiotic stress in plants and polyamines was reported more than 40 years ago. Ever since there has been a debate as to whether increased polyamines protect plants against abiotic stress (e.g., due to their ability to deal with oxidative radicals) or cause damage to them (perhaps due to hydrogen peroxide produced by their catabolism). The observation that cellular polyamines are typically elevated in plants under both short-term as well as long-term abiotic stress conditions is consistent with the possibility of their dual effects, i.e., being protectors from as well as perpetrators of stress damage to the cells. The observed increase in tolerance of plants to abiotic stress when their cellular contents are elevated by either exogenous treatment with polyamines or through genetic engineering with genes encoding polyamine biosynthetic enzymes is indicative of a protective role for them. However, through their catabolic production of hydrogen peroxide and acrolein, both strong oxidizers, they can potentially be the cause of cellular harm during stress. In fact, somewhat enigmatic but strong positive relationship between abiotic stress and foliar polyamines has been proposed as a potential biochemical marker of persistent environmental stress in forest trees in which phenotypic symptoms of stress are not yet visible. Such markers may help forewarn forest managers to undertake amelioration strategies before the appearance of visual symptoms of stress and damage at which stage it is often too late for implementing strategies for stress remediation and reversal of damage. This review provides a comprehensive and critical evaluation of the published literature on interactions between abiotic stress and polyamines in plants, and examines the experimental strategies used to understand the functional significance of this relationship with the aim of improving plant productivity, especially under conditions of abiotic stress. PMID:24847338

  9. Polyamines and abiotic stress in plants: a complex relationship1

    PubMed Central

    Minocha, Rakesh; Majumdar, Rajtilak; Minocha, Subhash C.

    2014-01-01

    The physiological relationship between abiotic stress in plants and polyamines was reported more than 40 years ago. Ever since there has been a debate as to whether increased polyamines protect plants against abiotic stress (e.g., due to their ability to deal with oxidative radicals) or cause damage to them (perhaps due to hydrogen peroxide produced by their catabolism). The observation that cellular polyamines are typically elevated in plants under both short-term as well as long-term abiotic stress conditions is consistent with the possibility of their dual effects, i.e., being protectors from as well as perpetrators of stress damage to the cells. The observed increase in tolerance of plants to abiotic stress when their cellular contents are elevated by either exogenous treatment with polyamines or through genetic engineering with genes encoding polyamine biosynthetic enzymes is indicative of a protective role for them. However, through their catabolic production of hydrogen peroxide and acrolein, both strong oxidizers, they can potentially be the cause of cellular harm during stress. In fact, somewhat enigmatic but strong positive relationship between abiotic stress and foliar polyamines has been proposed as a potential biochemical marker of persistent environmental stress in forest trees in which phenotypic symptoms of stress are not yet visible. Such markers may help forewarn forest managers to undertake amelioration strategies before the appearance of visual symptoms of stress and damage at which stage it is often too late for implementing strategies for stress remediation and reversal of damage. This review provides a comprehensive and critical evaluation of the published literature on interactions between abiotic stress and polyamines in plants, and examines the experimental strategies used to understand the functional significance of this relationship with the aim of improving plant productivity, especially under conditions of abiotic stress. PMID:24847338

  10. ROS Regulation During Abiotic Stress Responses in Crop Plants

    PubMed Central

    You, Jun; Chan, Zhulong

    2015-01-01

    Abiotic stresses such as drought, cold, salt and heat cause reduction of plant growth and loss of crop yield worldwide. Reactive oxygen species (ROS) including hydrogen peroxide (H2O2), superoxide anions (O2•-), hydroxyl radical (OH•) and singlet oxygen (1O2) are by-products of physiological metabolisms, and are precisely controlled by enzymatic and non-enzymatic antioxidant defense systems. ROS are significantly accumulated under abiotic stress conditions, which cause oxidative damage and eventually resulting in cell death. Recently, ROS have been also recognized as key players in the complex signaling network of plants stress responses. The involvement of ROS in signal transduction implies that there must be coordinated function of regulation networks to maintain ROS at non-toxic levels in a delicate balancing act between ROS production, involving ROS generating enzymes and the unavoidable production of ROS during basic cellular metabolism, and ROS-scavenging pathways. Increasing evidence showed that ROS play crucial roles in abiotic stress responses of crop plants for the activation of stress-response and defense pathways. More importantly, manipulating ROS levels provides an opportunity to enhance stress tolerances of crop plants under a variety of unfavorable environmental conditions. This review presents an overview of current knowledge about homeostasis regulation of ROS in crop plants. In particular, we summarize the essential proteins that are involved in abiotic stress tolerance of crop plants through ROS regulation. Finally, the challenges toward the improvement of abiotic stress tolerance through ROS regulation in crops are discussed. PMID:26697045

  11. NOVELTY DETECTION UNDER CHANGING ENVIRONMENTAL CONDITIONS

    SciTech Connect

    H. SOHN; K. WORDER; C. R. FARRAR

    2001-04-01

    The primary objective of novelty detection is to examine a system's dynamic response to determine if the system significantly deviates from an initial baseline condition. In reality, the system is often subject to changing environmental and operation conditions that affect its dynamic characteristics. Such variations include changes in loading, boundary conditions, temperature, and moisture. Most damage diagnosis techniques, however, generally neglect the effects of these changing ambient conditions. Here, a novelty detection technique is developed explicitly taking into account these natural variations of the system in order to minimize false positive indications of true system changes. Auto-associative neural networks are employed to discriminate system changes of interest such as structural deterioration and damage from the natural variations of the system.

  12. Identification of Candidate Reference Genes in Perennial Ryegrass for Quantitative RT-PCR under Various Abiotic Stress Conditions

    PubMed Central

    Jiang, Xiaomei; Yin, Guohua; Zhang, Xinquan; Qi, Xiao; Zhang, Yu; Yan, Yanhong; Ma, Xiao; Peng, Yan

    2014-01-01

    Background Quantitative real-time reverse-transcriptase PCR (qRT-PCR) is an important technique for analyzing differences in gene expression due to its sensitivity, accuracy and specificity. However, the stability of the expression of reference genes is necessary to ensure accurate qRT-PCR assessment of expression in genes of interest. Perennial ryegrass (Lolium perenne L.) is important forage and turf grass species in temperate regions, but the expression stability of its reference genes under various stresses has not been well-studied. Methodology/Principal Findings In this study, 11 candidate reference genes were evaluated for use as controls in qRT-PCR to quantify gene expression in perennial ryegrass under drought, high salinity, heat, waterlogging, and ABA (abscisic acid) treatments. Four approaches – Delta CT, geNorm, BestKeeper and Normfinder were used to determine the stability of expression in these reference genes. The results are consistent with the idea that the best reference genes depend on the stress treatment under investigation. Eukaryotic initiation factor 4 alpha (eIF4A), Transcription elongation factor 1 (TEF1) and Tat binding protein-1 (TBP-1) were the three most stably expressed genes under drought stress and were also the three best genes for studying salt stress. eIF4A, TBP-1, and Ubiquitin-conjugating enzyme (E2) were the most suitable reference genes to study heat stress, while eIF4A, TEF1, and E2 were the three best reference genes for studying the effects of ABA. Finally, Ubiquitin (UBQ), TEF1, and eIF4A were the three best reference genes for waterlogging treatments. Conclusions/Significance These results will be helpful in choosing the best reference genes for use in studies related to various abiotic stresses in perennial ryegrass. The stability of expression in these reference genes will enable better normalization and quantification of the transcript levels for studies of gene expression in such studies. PMID:24699822

  13. Cross-taxon congruence and environmental conditions

    PubMed Central

    2010-01-01

    Background Diversity patterns of different taxa typically covary in space, a phenomenon called cross-taxon congruence. This pattern has been explained by the effect of one taxon diversity on taxon diversity, shared biogeographic histories of different taxa, and/or common responses to environmental conditions. A meta-analysis of the association between environment and diversity patterns found that in 83 out of 85 studies, more than 60% of the spatial variability in species richness was related to variables representing energy, water or their interaction. The role of the environment determining taxa diversity patterns leads us to hypothesize that this would explain the observed cross-taxon congruence. However, recent analyses reported the persistence of cross-taxon congruence when environmental effect was statistically removed. Here we evaluate this hypothesis, analyzing the cross-taxon congruence between birds and mammals in the Brazilian Cerrado, and assess the environmental role on the spatial covariation in diversity patterns. Results We found a positive association between avian and mammal richness and a positive latitudinal trend for both groups in the Brazilian Cerrado. Regression analyses indicated an effect of latitude, PET, and mean temperature over both biological groups. In addition, we show that NDVI was only associated with avian diversity; while the annual relative humidity, was only correlated with mammal diversity. We determined the environmental effects on diversity in a path analysis that accounted for 73% and 76% of the spatial variation in avian and mammal richness. However, an association between avian and mammal diversity remains significant. Indeed, the importance of this link between bird and mammal diversity was also supported by a significant association between birds and mammal spatial autoregressive model residuals. Conclusion Our study corroborates the main role of environmental conditions on diversity patterns, but suggests that other

  14. Kinetics of selenate sorption in soil as influenced by biotic and abiotic conditions: a stirred flow-through reactor study.

    PubMed

    Garcia-Sanchez, L; Loffredo, N; Mounier, S; Martin-Garin, A; Coppin, F

    2014-12-01

    This study (i) quantified the kinetics of selenate sorption and (ii) measured the influence of biotic processes in soil selenate stabilisation. Stirred flow-through reactor experiments were conducted on samples of a silty clay soil (pH = 8, Eh = 240-300 mV) from Bure (France) in both non-sterile and sterile conditions. Parameters of the proposed two-site sorption model (EK), adapted from van Genuchten and Wagenet (1989), were estimated by nonlinear regression. Fast selenate sorption on type-1 sites was moderate, with an equilibrium constant of 25.5 and 39.1 L/kg for non-sterile and sterile conditions. Rate-limited sorption on type-2 sites increased with time, and was predominant for longer periods of time in non-sterile conditions. At equilibrium, it would represent over 96% of the sorbed inventory, with mean sorption times of 17 h and 191 h for non-sterile and sterile conditions. Our results showed for Bure soil that (i) selenate sorption in flowing and mildly-oxidising conditions was strongly kinetically controlled, especially in non-sterile conditions, (ii) selenate desorption was much slower than sorption, which suggests its pseudo-irreversible stabilisation, and (iii) microbial activity increased the contribution of rate-limited sorption on type-2 sites, for which it increased sorption rate by a factor 7 but also facilitated its reversibility. This work stresses the limits of the Kd approach to represent selenate sorption in flowing conditions and supports an alternative formulation like the EK model, but also points out that biotic conditions are significant sources of variability for sorption parameters. PMID:25151638

  15. Complete genome sequence of Microbacterium sp. CGR1, bacterium tolerant to wide abiotic conditions isolated from the Atacama Desert.

    PubMed

    Mandakovic, Dinka; Cabrera, Pablo; Pulgar, Rodrigo; Maldonado, Jonathan; Aravena, Pamela; Latorre, Mauricio; Cambiazo, Verónica; González, Mauricio

    2015-12-20

    Microbacterium sp. CGR1 (RGM2230) is an isolate from the Atacama Desert that displays a wide pH, salinity and temperature tolerance. This strain exhibits riboflavin overproducer features and traits for developing an environmental arsenic biosensor. Here, we report the complete genome sequence of this strain, which represents the first genome of the genus Microbacterium sequenced and assembled in a single contig. The genome contains 3,634,864bp, 3299 protein-coding genes, 45 tRNAs, six copies of 5S-16S-23S rRNA and a high genome average GC-content of 68.04%. PMID:26521698

  16. 'In silico expression analysis', a novel PathoPlant web tool to identify abiotic and biotic stress conditions associated with specific cis-regulatory sequences.

    PubMed

    Bolívar, Julio C; Machens, Fabian; Brill, Yuri; Romanov, Artyom; Bülow, Lorenz; Hehl, Reinhard

    2014-01-01

    Using bioinformatics, putative cis-regulatory sequences can be easily identified using pattern recognition programs on promoters of specific gene sets. The abundance of predicted cis-sequences is a major challenge to associate these sequences with a possible function in gene expression regulation. To identify a possible function of the predicted cis-sequences, a novel web tool designated 'in silico expression analysis' was developed that correlates submitted cis-sequences with gene expression data from Arabidopsis thaliana. The web tool identifies the A. thaliana genes harbouring the sequence in a defined promoter region and compares the expression of these genes with microarray data. The result is a hierarchy of abiotic and biotic stress conditions to which these genes are most likely responsive. When testing the performance of the web tool, known cis-regulatory sequences were submitted to the 'in silico expression analysis' resulting in the correct identification of the associated stress conditions. When using a recently identified novel elicitor-responsive sequence, a WT-box (CGACTTTT), the 'in silico expression analysis' predicts that genes harbouring this sequence in their promoter are most likely Botrytis cinerea induced. Consistent with this prediction, the strongest induction of a reporter gene harbouring this sequence in the promoter is observed with B. cinerea in transgenic A. thaliana. DATABASE URL: http://www.pathoplant.de/expression_analysis.php. PMID:24727366

  17. ‘In silico expression analysis’, a novel PathoPlant web tool to identify abiotic and biotic stress conditions associated with specific cis-regulatory sequences

    PubMed Central

    Machens, Fabian; Brill, Yuri; Romanov, Artyom; Bülow, Lorenz; Hehl, Reinhard

    2014-01-01

    Using bioinformatics, putative cis-regulatory sequences can be easily identified using pattern recognition programs on promoters of specific gene sets. The abundance of predicted cis-sequences is a major challenge to associate these sequences with a possible function in gene expression regulation. To identify a possible function of the predicted cis-sequences, a novel web tool designated ‘in silico expression analysis’ was developed that correlates submitted cis-sequences with gene expression data from Arabidopsis thaliana. The web tool identifies the A. thaliana genes harbouring the sequence in a defined promoter region and compares the expression of these genes with microarray data. The result is a hierarchy of abiotic and biotic stress conditions to which these genes are most likely responsive. When testing the performance of the web tool, known cis-regulatory sequences were submitted to the ‘in silico expression analysis’ resulting in the correct identification of the associated stress conditions. When using a recently identified novel elicitor-responsive sequence, a WT-box (CGACTTTT), the ‘in silico expression analysis’ predicts that genes harbouring this sequence in their promoter are most likely Botrytis cinerea induced. Consistent with this prediction, the strongest induction of a reporter gene harbouring this sequence in the promoter is observed with B. cinerea in transgenic A. thaliana. Database URL: http://www.pathoplant.de/expression_analysis.php. PMID:24727366

  18. Abiotic peptide synthesis of glycine adsorbed on saponite at various pH and dry-thermal conditions

    NASA Astrophysics Data System (ADS)

    Mizuno, Y.; Fuchida, S.; Masuda, H.

    2012-12-01

    Amino acids are the most fundamental substances of life, and the stability of amino acids and the polymerization process on the primitive earth are important to the origin of life. The heat of submarine hydrothermal systems would be the driving force of amino acids polymerization, and the clay minerals in the system may be a field of polymerization. The polymerization of amino acids must be promoted under dry condition, since it is dehydration reaction, which is promoted at high pressure and temperature condition appearing in deep sediments. Adsorption behavior of amino acids on clay minerals depends on pH. In hydrothermal, there are various pH conditions and it would be effective in amino acids behavior. To observe the role of clay minerals and effect of pH on peptide formation under dehydration environments, glycine (Gly) was heated with saponite at 150 degree C, and observed the peptization reaction. Gly was adsorbed on saponite in Gly solutions (100mM), of which the pH was controlled at 3, 8, 12 by HCl and NaOH. After drying in a vacuum oven, the saponite was heated at 150 degree C for 72 hrs. The concentrations of DKP, GlyGly and GlyGlyGly remaining in the saponite controlled at pH3 were 193.39μmol/g, 28.32μmol/g and 22.13μmol/g respectively. Those controlled at pH8 and 12 were 141.22μmol/g, 25.00μmol/g and 18.82μmol/g, and the concentrations of DKP, GlyGly in the saponite controlled at pH12 were 2.47μmol/g, 43.07μmol/g and GlyGlyGly was not detected. The observation indicated that the DKP formation is promoted under acidic condition rather than neutral. GlyGly is abundantly formed under basic condition, although the following peptization to form the trimer does not occur. Polymerization of tri and/or the heavier glycine would be passed through the formation of cyclic peptides. Thus, the condensation of DKP must be important for the polymerization of amino acids as the precursor of life. Also, the pH, acidic to neutral condition, must be important to

  19. Effects of the spring snowmelt recession on abiotic and biotic conditions in northern Sierra Nevada CA rivers with varying flow regimes

    NASA Astrophysics Data System (ADS)

    Yarnell, S. M.; Peek, R.; Viers, J. H.

    2012-12-01

    Recent research has discussed the importance of the spring snowmelt recession in montane environments for driving physical and biological stream processes and supporting the success of native riverine species adapted to its predictability, yet there have been no field-based studies that directly address the relationship between the snowmelt recession and stream ecology. There are a variety of studies that explore the relationship between the flow regime and an individual species, the flow regime and riparian habitat, and flow and sediment movement. However, there are few, if any, studies that attempt to delineate the relationship between recession flows and stream ecology or quantify key characteristics of the flow regime beyond determinations of minimum instream flows or peak magnitudes of geomorphic flows. Regulated flow management issues such as suitable ramping rates to transition from peak flows to baseflow or a suitable duration of flooding that provides the greatest habitat heterogeneity during the ecologically-sensitive spring season have not previously been addressed. In this study, we examined the geomorphic, hydraulic and riparian habitat in relation to aquatic biological diversity at six stream study sites across two basins with varying flow regime types: unimpaired, semi-impaired (regulated-bypass reaches), and fully impaired (regulated-peaking or regulated-augmented reaches). In two very different water year types (2011-wet, 2012-dry), we quantified the variability in the spring flow regime using flow metrics (e.g. daily recession rate, timing) and compared it to variability in abiotic stream conditions (e.g. diversity of hydraulic habitat, diversity of riparian habitat) and diversity of biotic conditions (e.g. algal abundance, EPT index). In addition, we analyzed the relationship between habitat heterogeneity and species diversity across flow regime types in both water years. Results indicate both flow regime and water year type contribute to the

  20. 10 CFR 50.36b - Environmental conditions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Environmental conditions. 50.36b Section 50.36b Energy... § 50.36b Environmental conditions. (a) Each construction permit under this part, each early site permit... conditions will be derived from information contained in the environmental report submitted pursuant to §...

  1. 10 CFR 50.36b - Environmental conditions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Environmental conditions. 50.36b Section 50.36b Energy... § 50.36b Environmental conditions. (a) Each construction permit under this part, each early site permit... conditions will be derived from information contained in the environmental report submitted pursuant to §...

  2. 10 CFR 50.36b - Environmental conditions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Environmental conditions. 50.36b Section 50.36b Energy... § 50.36b Environmental conditions. (a) Each construction permit under this part, each early site permit... conditions will be derived from information contained in the environmental report submitted pursuant to §...

  3. 10 CFR 50.36b - Environmental conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Environmental conditions. 50.36b Section 50.36b Energy... § 50.36b Environmental conditions. (a) Each construction permit under this part, each early site permit... conditions will be derived from information contained in the environmental report submitted pursuant to §...

  4. P5CDH affects the pathways contributing to Pro synthesis after ProDH activation by biotic and abiotic stress conditions

    PubMed Central

    Rizzi, Yanina S.; Monteoliva, Mariela I.; Fabro, Georgina; Grosso, Carola L.; Laróvere, Laura E.; Alvarez, María E.

    2015-01-01

    Plants facing adverse conditions usually alter proline (Pro) metabolism, generating changes that help restore the cellular homeostasis. These organisms synthesize Pro from glutamate (Glu) or ornithine (Orn) by two-step reactions that share Δ1 pyrroline-5-carboxylate (P5C) as intermediate. In the catabolic process, Pro is converted back to Glu using a different pathway that involves Pro dehydrogenase (ProDH), P5C dehydrogenase (P5CDH), and P5C as intermediate. Little is known about the coordination of the catabolic and biosynthetic routes under stress. To address this issue, we analyzed how P5CDH affects the activation of Pro synthesis, in Arabidopsis tissues that increase ProDH activity by transient exposure to exogenous Pro, or infection with Pseudomonas syringae pv. tomato. Wild-type (Col-0) and p5cdh mutant plants subjected to these treatments were used to monitor the Pro, Glu, and Orn levels, as well as the expression of genes from Pro metabolism. Col-0 and p5cdh tissues consecutively activated ProDH and Pro biosynthetic genes under both conditions. However, they manifested a different coordination between these routes. When external Pro supply was interrupted, wild-type leaves degraded Pro to basal levels at which point Pro synthesis, mainly via Glu, became activated. Under the same condition, p5cdh leaves sustained ProDH induction without reducing the Pro content but rather increasing it, apparently by stimulating the Orn pathway. In response to pathogen infection, both genotypes showed similar trends. While Col-0 plants seemed to induce both Pro biosynthetic routes, p5cdh mutant plants may primarily activate the Orn route. Our study contributes to the functional characterization of P5CDH in biotic and abiotic stress conditions, by revealing its capacity to modulate the fate of P5C, and prevalence of Orn or Glu as Pro precursors in tissues that initially consumed Pro. PMID:26284090

  5. Investigating the emerging role of comparative proteomics in the search for new biomarkers of metal contamination under varying abiotic conditions.

    PubMed

    Vellinger, Céline; Sohm, Bénédicte; Parant, Marc; Immel, Françoise; Usseglio-Polatera, Philippe

    2016-08-15

    This study aims at investigating the potential use of comparative proteomics as a multi-marker approach of metal contamination, taking into account the potential confounding effect of water temperature. The major objective was to identify combinations of proteins specifically responding to a given metal, even if included in a metal mixture. The diagnostic approach was performed via the comparative analysis of protein expression on spot mapping provided by adult males of Gammarus pulex (Amphipoda, Crustacea) respectively exposed to arsenate (As), cadmium (Cd) or a binary mixture of these metals (AsCd) at three realistic temperatures (5, 10 and 15°C). Proteomic expression analysis was performed by Differential in-Gel Electrophoresis (2D-DiGE), and completed by an adapted inferential statistical approach. Combinations of under/over-expressed protein spots discriminated the metal identity. However, none of these spots discriminated both the individual metal effect (As or Cd) and its effect in metal mixture (AsCd) whatever the tested temperature. Some limits of the two-dimensional analysis of protein spot maps in G. pulex have been highlighted: (i) the presence of contaminating peptides and/or abundant "déja-vu" proteins which can mask the responses of other proteins of interest or (ii) the presence of post-translational modifications. An optimization of the experimental design (especially during the sample preparation) has been described for future investigations. This study has also highlighted (i) the importance of precisely identifying the protein spots of interest to avoid erroneous interpretations in terms of action mechanisms of chemicals and (ii) the importance of working under controlled laboratory conditions with a temperature close to 10°C. In such conditions, we have demonstrated a higher impact of As than Cd on the energetic metabolism of Gammarus. This As impact is reduced in AsCd mixture confirming the antagonistic interaction of this binary mixture

  6. Environmental conditions and reproductive health outcomes

    EPA Science Inventory

    Environmental exposures range across multiple domains to affect human health. In an effort to learn how environmental factors combine to contribute to health outcomes we constructed a multiple environmental domain index (MEDI) for use in health research. We used principal compone...

  7. Mobility of 2-amino-4,6-dinitrobenzoic acid, a photodegradation product of TNT in a tropical soil under saturated abiotic conditions.

    PubMed

    Sheild, Lukas D; Lichwa, Joseph; Colon, Edwin J; Moravcik, Philip; Ray, Chittaranjan

    2013-09-15

    We examined the mobility of 2-amino-4,6-dinitrobenzoic acid (2-A-4,6-DBA) a common photodegradation product of TNT, in soil taken from a former military training area on Oahu Island, Hawaii, USA. 2-A-4,6-DBA is stable and polar and has the potential to migrate to groundwater. Little experimentation has been conducted on explosives in tropical soils which differ chemically from soils in temperate climates. 2,4,6-Trinitrotoluene (TNT) and 1,3,5-hexahydro-1,3,5-trinitrotriazine (RDX) are the most commonly used secondary military explosives. Composition B (Comp B) is a frequently used 59/40/1 combination of RDX, TNT, and wax binder. In order to examine the effect of the presence of Comp B and its degradation products on the mobility of 2-A-4,6-DBA in soil, we dissolved field-collected Comp B fragments in water, exposed the solution to light and pumped it through soil and sand-packed stainless steel columns under abiotic saturated conditions. We found that in the presence of a complex mixture of explosives and degradation products, 2-A-4,6-DBA migrated faster than the parent compound (TNT) and other degradation products through both tropical soil and Ottawa sand (used as a reference) under sterile saturated conditions. The relatively rapid movement of 2-A-4,6-DBA suggests that it has the potential to contaminate underlying groundwater. However, the amount of 2-A-4,6-DBA produced under field conditions and its rate of biotic degradation were not part of this research, therefore, it is unknown how these factors might affect the transport and fate of 2-A-4,6-DBA. PMID:23827728

  8. Crops Models for Varying Environmental Conditions

    NASA Technical Reports Server (NTRS)

    Jones, Harry; Cavazzoni, James; Keas, Paul

    2001-01-01

    New variable environment Modified Energy Cascade (MEC) crop models were developed for all the Advanced Life Support (ALS) candidate crops and implemented in SIMULINK. The MEC models are based on the Volk, Bugbee, and Wheeler Energy Cascade (EC) model and are derived from more recent Top-Level Energy Cascade (TLEC) models. The MEC models simulate crop plant responses to day-to-day changes in photosynthetic photon flux, photoperiod, carbon dioxide level, temperature, and relative humidity. The original EC model allows changes in light energy but uses a less accurate linear approximation. The simulation outputs of the new MEC models for constant nominal environmental conditions are very similar to those of earlier EC models that use parameters produced by the TLEC models. There are a few differences. The new MEC models allow setting the time for seed emergence, have realistic exponential canopy growth, and have corrected harvest dates for potato and tomato. The new MEC models indicate that the maximum edible biomass per meter squared per day is produced at the maximum allowed carbon dioxide level, the nominal temperatures, and the maximum light input. Reducing the carbon dioxide level from the maximum to the minimum allowed in the model reduces crop production significantly. Increasing temperature decreases production more than it decreases the time to harvest, so productivity in edible biomass per meter squared per day is greater at nominal than maximum temperatures, The productivity in edible biomass per meter squared per day is greatest at the maximum light energy input allowed in the model, but the edible biomass produced per light energy input unit is lower than at nominal light levels. Reducing light levels increases light and power use efficiency. The MEC models suggest we can adjust the light energy day-to- day to accommodate power shortages or Lise excess power while monitoring and controlling edible biomass production.

  9. Useful model organisms, indicators, or both? Ground beetles (Coleoptera, Carabidae) reflecting environmental conditions

    PubMed Central

    Koivula, Matti J.

    2011-01-01

    Abstract Classic studies have successfully linked single-species abundances, life-history traits, assemblage structures and biomass of carabid beetles to past and present, human-caused environmental impacts and variation in ‘natural’ conditions. This evidence has led many to suggest carabids to function as ‘indicators’ − a term that bears multiple meanings. Here, a conservation-oriented definition for an indicator is used, carabid indicator potential from seven views is evaluated, and ways to proceed in indicator research are discussed. (1) Carabid species richness poorly indicates the richness and abundance of other taxa, which underlines the importance of using multiple taxa in environmental assessments. The ability of assemblage indices and specialist or functional-group abundances to reflect rare species and habitats should be examined in detail. (2) Experimental evidence suggests that carabids may potentially serve as keystone indicators. (3) Carabids are sensitive to human-altered abiotic conditions, such as pesticide use in agro-ecosystems and heavy metal contamination of soils. Carabids might thus reflect ecological sustainability and ‘ecosystem health’. (4) Carabid assemblages host abundant species characteristic of particular habitat types or successional stages, which makes them promising dominance indicators. (5) Carabids reflect variation in ‘natural’ conditions, but vegetation and structural features are more commonly adopted as condition indicators. Carabids nevertheless provide yet another, equally accurate, view on the structure of the environment. (6) Carabids may function as early-warning signalers, as suggested by recent studies linking climate and carabid distributions. (7) Carabids reflect natural and human-caused disturbances and management, but the usefulness of these responses for conservation purposes requires further research. In summary, European carabids appear useful model organisms and possibly indicators because

  10. Mineral losses during extreme environmental conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Minerals are nutrients that are conserved by the body. During exposure to environmental stimuli, such as heat and/or exercise, the excretion of minerals, macro (Na, K, Ca, Mg) and micro (Cu, Fe, Zn), occurs through the body surface in the form of cellular desquamation and sweat, as well as in the u...

  11. Brachiopods recording environmental conditions and biomineralisation processes

    NASA Astrophysics Data System (ADS)

    Cusack, Maggie; MacDonald, John M.; Fitzer, Susan C.; John, Cedric M.

    2016-04-01

    For around 550 million years, organisms have been exerting biological control on biomineral formation, generating elegant functional biomineral structures from basic components such as calcium phosphate in the case of vertebrate skeletons; silica or calcium carbonate in invertebrate shells and corals. In the marine realm, environmental information on the world's oceans is entrapped within the composition of calcium carbonate biomineral structures such as the shells of molluscs or brachiopods. Here, conventional stable and clumped isotopes of calcium carbonate of brachiopod shells are explored in the context of biological control. The aim is to ensure the correct interpretation of environmental data and to consider the possibility of extracting information on the mechanisms of biomineralisation processes from the data stored in the fossil record.

  12. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants

    PubMed Central

    Sah, Saroj K.; Reddy, Kambham R.; Li, Jiaxu

    2016-01-01

    Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression. PMID:27200044

  13. Portuguese native Artemia parthenogenetica resisting invasion by Artemia franciscana - Assessing reproductive parameters under different environmental conditions

    NASA Astrophysics Data System (ADS)

    Pinto, Pedro M.; Hontoria, Francisco; Vieira, Natividade; Bio, Ana

    2014-05-01

    There is widespread interest in the conservation of native Artemia biodiversity. In Portugal, only two known populations of native Artemia remain: one in the Rio Maior salina, the other in the Aveiro salina complex, both of the diploid Artemia parthenogenetica species. All other Portuguese hypersaline environments where Artemia can be found have been invaded by Artemia franciscana, which has eradicated the native strains. Invasiveness and resilience of, respectively, exotic and indigenous species are thought to depend on strain-specific traits and adaptation to local conditions. This work evaluates the reproductive performance of the two Portuguese native strains and the invasive species exposed to different salinities, temperatures, photoperiods and food supplies. Reproduction periods, quantity and quality of offspring varied significantly, depending on both the Artemia strain and environmental conditions. A. parthenogenetica from Rio Maior reproduced better than A. franciscana at high salinity (150) and low food supply, which may reflect an adaptation to its biotope that aids its resistance to invasion. But A. parthenogenetica form Aveiro performed much worse than its invasive competitor, under most of the conditions tested. It is unlikely that A. franciscana has not been introduced in this salina by chance alone. Other biological traits of the local A. parthenogenetica or adaptation to unstudied local factors (e.g. pollution) are probably responsible for this strain's survival. Further knowledge on specific local conditions and trait-specific tolerances to biotic and abiotic conditions are needed to understand (non-)invasion patterns and preserve the remaining native populations.

  14. Hydrogen isotope exchange between n-alkanes and water under hydrothermal conditions: implications for abiotic and thermogenic hydrocarbons in vent fluids

    NASA Astrophysics Data System (ADS)

    Reeves, E. P.; Seewald, J.; Sylva, S.

    2010-12-01

    Stable isotopes are extensively utilized in studies of hydrocarbons in naturals fluids. However, factors controlling the hydrogen isotope (2H/1H) composition of dissolved hydrocarbons in hydrothermal fluids are still poorly understood despite interest in their 2H/1H signatures as indicators of abiogenesis. Due to its high activation energy for exchange, alkyl-bound hydrogen (H) is typically considered to be isotopically conservative. Incorporation of water-derived H under hydrothermal conditions may, however, obscure any primary signatures associated with abiotic polymerization. To examine this process, we conducted experiments to investigate 2H/1H exchange between aqueous n-alkanes and water using a Au-TiO2 flexible cell hydrothermal apparatus. C1-C5 n-alkanes were heated at 325°C and 350 bar in aqueous solutions of varying initial 2H/1H ratios (δ2H) in the presence of a pyrite-pyrrhotite-magnetite (PPM) mineral redox buffer. Extensive incorporation of water-derived H into C2-C5 n-alkanes was observed on timescales of months. In contrast, relatively minor incorporation was observed for CH4. Isotopic exchange is facilitated by reversible equilibration of n-alkanes and their corresponding alkenes by the reaction: CnH2n+2(aq) = CnH2n(aq) + H2(aq) Where H2(aq) is derived from water. The lack of substantial n-alkane decomposition on the timescale of observation, combined with an approach to steady-state isotopic compositions, indicate that n-alkane δD values likely reflect an approach to isotopic equilibrium rather than kinetically-controlled fractionation effects associated with degradation reactions. Substantially lower amounts of exchange were observed for ethane relative to C3-C5 n-alkanes, which suggests that alkene isomerization reactions may enhance incorporation of water-derived H in these compounds. Thus, reaction mechanisms exist in hydrothermal fluids that allow rapid 2H/1H exchange of alkyl-H with water on timescales comparable to crustal residence times

  15. Lunar Polar Environmental Testing: Regolith Simulant Conditioning

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie Elise

    2014-01-01

    As ISRU system development approaches flight fidelity, there is a need to test hardware in relevant environments. Extensive laboratory and field testing have involved relevant soil (lunar regolith simulants), but the current design iterations necessitate relevant pressure and temperature conditions. Including significant quantities of lunar regolith simulant in a thermal vacuum chamber poses unique challenges. These include facility operational challenges (dust tolerant hardware) and difficulty maintaining a pre-prepared soil state during pump down (consolidation state, moisture retention).For ISRU purposes, the regolith at the lunar poles will be of most interest due to the elevated water content. To test at polar conditions, the regolith simulant must be doped with water to an appropriate percentage and then chilled to cryogenic temperatures while exposed to vacuum conditions. A 1m tall, 28cm diameter bin of simulant was developed for testing these simulant preparation and drilling operations. The bin itself was wrapped with liquid nitrogen cooling loops (100K) so that the simulant bed reached an average temperature of 140K at vacuum. Post-test sampling was used to determine desiccation of the bed due to vacuum exposure. Depth dependent moisture data is presented from frozen and thawed soil samples.Following simulant only evacuation tests, drill hardware was incorporated into the vacuum chamber to test auguring techniques in the frozen soil at thermal vacuum conditions. The focus of this testing was to produce cuttings piles for a newly developed spectrometer to evaluate. This instrument, which is part of the RESOLVE program science hardware, detects water signatures from surface regolith. The drill performance, behavior of simulant during drilling, and characteristics of the cuttings piles will be offered.

  16. Management of Cattle Exposed to Adverse Environmental Conditions.

    PubMed

    Mader, Terry L; Griffin, Dee

    2015-07-01

    During periods of adverse weather, optimum conditions for animal comfort and performance are compromised. Use of alternative supplementation programs need to be considered for livestock challenged by adverse environmental conditions. Use of additional water for consumption and cooling, shade, and/or alternative management strategies need to be considered to help livestock cope with heat stress. For animals reared outside during winter, strategies that increase animal space and environmental buffers need to be used to minimize effects of mud, wet conditions, and windchill. There are ample opportunities for livestock producers to enhance animal welfare and minimize the impact of environmental stress. PMID:26139190

  17. Cross-tolerance to biotic and abiotic stresses in plants: a focus on resistance to aphid infestation.

    PubMed

    Foyer, Christine H; Rasool, Brwa; Davey, Jack W; Hancock, Robert D

    2016-03-01

    Plants co-evolved with an enormous variety of microbial pathogens and insect herbivores under daily and seasonal variations in abiotic environmental conditions. Hence, plant cells display a high capacity to respond to diverse stresses through a flexible and finely balanced response network that involves components such as reduction-oxidation (redox) signalling pathways, stress hormones and growth regulators, as well as calcium and protein kinase cascades. Biotic and abiotic stress responses use common signals, pathways and triggers leading to cross-tolerance phenomena, whereby exposure to one type of stress can activate plant responses that facilitate tolerance to several different types of stress. While the acclimation mechanisms and adaptive responses that facilitate responses to single biotic and abiotic stresses have been extensively characterized, relatively little information is available on the dynamic aspects of combined biotic/abiotic stress response. In this review, we consider how the abiotic environment influences plant responses to attack by phloem-feeding aphids. Unravelling the signalling cascades that underpin cross-tolerance to biotic and abiotic stresses will allow the identification of new targets for increasing environmental resilience in crops. PMID:26936830

  18. ENVIRONMENTALLY FRIENDLIER ORGANIC TRANSFORMATIONS ON MINERAL SUPPORTS UNDER NONTRADITIONAL CONDITIONS

    EPA Science Inventory

    Synthetic organic reactions performed under non-traditional conditions are gaining popularity primarily to circumvent the growing environmental concerns. A solvent-free approach that involves microwave (MW) exposure of neat reactants (undiluted) either in presence of a catalyst o...

  19. Overview of environmental and hydrogeologic conditions at King Salmon, Alaska

    USGS Publications Warehouse

    Waythomas, C.F.

    1994-01-01

    The Federal Aviation Administration is conducting preliminary environmental assessments at most of its present or former facilities in Alaska. Information about environmental conditions at King Salmon, Alaska are presented in this report. This report gives an overview of the geology, hydro- logy, and climate of the King Salmon area and describes general geohydrologic conditions. A thick alluvial aquifer underlies King Salmon and both ground water and surface water are plentiful in the area.

  20. Flexible DCP interface. [environmental sensor and signal conditioning interface

    NASA Technical Reports Server (NTRS)

    Kanemasu, E. T.; Schimmelpfenning, H.

    1974-01-01

    The author has identified the following significant results. A user of an ERTS data collection system (DCS) must supply the sensors and signal-conditioning interface. The electronic interface must be compatible with the NASA-furnished data collection platform. A universal signal-conditioning system for use with a wide range of environmental sensors is described. The interface is environmentally and electronically compatible with the DCP and has operated satisfactorily for a complete winter wheat growing season in Kansas.

  1. Responses of five Mediterranean halophytes to seasonal changes in environmental conditions.

    PubMed

    Gil, Ricardo; Bautista, Inmaculada; Boscaiu, Monica; Lidón, Antonio; Wankhade, Shantanu; Sánchez, Héctor; Llinares, Josep; Vicente, Oscar

    2014-01-01

    In their natural habitats, different mechanisms may contribute to the tolerance of halophytes to high soil salinity and other abiotic stresses, but their relative contribution and ecological relevance, for a given species, remain largely unknown. We studied the responses to changing environmental conditions of five halophytes (Sarcocornia fruticosa, Inula crithmoides, Plantago crassifolia, Juncus maritimus and J. acutus) in a Mediterranean salt marsh, from summer 2009 to autumn 2010. A principal component analysis was used to correlate soil and climatic data with changes in the plants' contents of chemical markers associated with stress responses: ions, osmolytes, malondialdehyde (MDA, a marker of oxidative stress) and antioxidant systems. Stress tolerance in S. fruticosa, I. crithmoides and P. crassifolia (all succulent dicots) seemed to depend mostly on the transport of ions to aerial parts and the biosynthesis of specific osmolytes, whereas both Juncus species (monocots) were able to avoid accumulation of toxic ions, maintaining relatively high K(+)/Na(+) ratios. For the most salt-tolerant taxa (S. fruticosa and I. crithmoides), seasonal variations of Na(+), Cl(-), K(+) and glycine betaine, their major osmolyte, did not correlate with environmental parameters associated with salt or water stress, suggesting that their tolerance mechanisms are constitutive and relatively independent of external conditions, although they could be mediated by changes in the subcellular compartmentalization of ions and compatible osmolytes. Proline levels were too low in all the species to possibly have any effect on osmotic adjustment. However-except for P. crassifolia-proline may play a role in stress tolerance based on its 'osmoprotectant' functions. No correlation was observed between the degree of environmental stress and the levels of MDA or enzymatic and non-enzymatic antioxidants, indicating that the investigated halophytes are not subjected to oxidative stress under natural

  2. Responses of five Mediterranean halophytes to seasonal changes in environmental conditions

    PubMed Central

    Gil, Ricardo; Bautista, Inmaculada; Boscaiu, Monica; Lidón, Antonio; Wankhade, Shantanu; Sánchez, Héctor; Llinares, Josep; Vicente, Oscar

    2014-01-01

    In their natural habitats, different mechanisms may contribute to the tolerance of halophytes to high soil salinity and other abiotic stresses, but their relative contribution and ecological relevance, for a given species, remain largely unknown. We studied the responses to changing environmental conditions of five halophytes (Sarcocornia fruticosa, Inula crithmoides, Plantago crassifolia, Juncus maritimus and J. acutus) in a Mediterranean salt marsh, from summer 2009 to autumn 2010. A principal component analysis was used to correlate soil and climatic data with changes in the plants' contents of chemical markers associated with stress responses: ions, osmolytes, malondialdehyde (MDA, a marker of oxidative stress) and antioxidant systems. Stress tolerance in S. fruticosa, I. crithmoides and P. crassifolia (all succulent dicots) seemed to depend mostly on the transport of ions to aerial parts and the biosynthesis of specific osmolytes, whereas both Juncus species (monocots) were able to avoid accumulation of toxic ions, maintaining relatively high K+/Na+ ratios. For the most salt-tolerant taxa (S. fruticosa and I. crithmoides), seasonal variations of Na+, Cl−, K+ and glycine betaine, their major osmolyte, did not correlate with environmental parameters associated with salt or water stress, suggesting that their tolerance mechanisms are constitutive and relatively independent of external conditions, although they could be mediated by changes in the subcellular compartmentalization of ions and compatible osmolytes. Proline levels were too low in all the species to possibly have any effect on osmotic adjustment. However—except for P. crassifolia—proline may play a role in stress tolerance based on its ‘osmoprotectant’ functions. No correlation was observed between the degree of environmental stress and the levels of MDA or enzymatic and non-enzymatic antioxidants, indicating that the investigated halophytes are not subjected to oxidative stress under natural

  3. Fine-scale spatial variation in plant species richness and its relationship to environmental conditions in coastal marshlands

    USGS Publications Warehouse

    Mancera, J.E.; Meche, G.C.; Cardona-Olarte, P.P.; Castaneda-Moya, E.; Chiasson, R.L.; Geddes, N.A.; Schile, L.M.; Wang, H.G.; Guntenspergen, G.R.; Grace, J.B.

    2005-01-01

    Previous studies have shown that variations in environmental conditions play a major role in explaining variations in plant species richness at community and landscape scales. In this study, we considered the degree to which fine-scale spatial variations in richness could be related to fine-scale variations in abiotic and biotic factors. To examine spatial variation in richness, grids of 1 m(2) plots were laid out at five sites within a coastal riverine wetland landscape. At each site, a 5 x 7 array of plots was established adjacent to the river's edge with plots one meter apart. In addition to the estimation of species richness, environmental measurements included sediment salinity, plot microelevation, percent of plot recently disturbed, and estimated community biomass. Our analysis strategy was to combine the use of structural equation modeling (path modeling) with an assessment of spatial association. Mantel's tests revealed significant spatial autocorrelation in species richness at four of the five sites sampled, indicating that richness in a plot correlated with the richness of nearby plots. We subsequently considered the degree to which spatial autocorrelations in richness could be explained by spatial autocorrelations in environmental conditions. Once data were corrected for environmental correlations, spatial autocorrelation in residual species richness could not be detected at any site. Based on these results, we conclude that in this coastal wetland, there appears to be a fine-scale mapping of diversity to microgradients in environmental conditions.

  4. Affluence and objective environmental conditions: Evidence of differences in environmental concern in metropolitan Brazil

    PubMed Central

    Nawrotzki, Raphael J.; Guedes, Gilvan; do Carmo, Roberto Luiz

    2016-01-01

    In an age of climate change, researchers need to form a deepened understanding of the determinants of environmental concern, particularly in countries of emerging economies. This paper provides a region-specific investigation of the impact of socio-economic status (SES) and objective environmental conditions on environmental concern in urban Brazil. We make use of data that were collected from personal interviews of individuals living in the metropolitan areas of Baixada Santista and Campinas, in the larger São Paulo area. Results from multilevel regression models indicate that wealthier households are more environmentally concerned, as suggested by affluence and post-materialist hypotheses. However, we also observe that increasing environmental concern correlates with a decline in objective environmental conditions. Interactions between objective environmental conditions and SES reveal some intriguing relationships: Among poorer individuals, a decline in environmental conditions increases environmental concern as suggested by the objective problems hypothesis, while for the wealthy, a decline in environmental conditions is associated with lower levels of environmental concern. PMID:27594931

  5. Lipid signalling in plant responses to abiotic stress.

    PubMed

    Hou, Quancan; Ufer, Guido; Bartels, Dorothea

    2016-05-01

    Lipids are one of the major components of biological membranes including the plasma membrane, which is the interface between the cell and the environment. It has become clear that membrane lipids also serve as substrates for the generation of numerous signalling lipids such as phosphatidic acid, phosphoinositides, sphingolipids, lysophospholipids, oxylipins, N-acylethanolamines, free fatty acids and others. The enzymatic production and metabolism of these signalling molecules are tightly regulated and can rapidly be activated upon abiotic stress signals. Abiotic stress like water deficit and temperature stress triggers lipid-dependent signalling cascades, which control the expression of gene clusters and activate plant adaptation processes. Signalling lipids are able to recruit protein targets transiently to the membrane and thus affect conformation and activity of intracellular proteins and metabolites. In plants, knowledge is still scarce of lipid signalling targets and their physiological consequences. This review focuses on the generation of signalling lipids and their involvement in response to abiotic stress. We describe lipid-binding proteins in the context of changing environmental conditions and compare different approaches to determine lipid-protein interactions, crucial for deciphering the signalling cascades. PMID:26510494

  6. Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging

    PubMed Central

    Hossain, Mohammad A.; Bhattacharjee, Soumen; Armin, Saed-Moucheshi; Qian, Pingping; Xin, Wang; Li, Hong-Yu; Burritt, David J.; Fujita, Masayuki; Tran, Lam-Son P.

    2015-01-01

    Plants are constantly challenged by various abiotic stresses that negatively affect growth and productivity worldwide. During the course of their evolution, plants have developed sophisticated mechanisms to recognize external signals allowing them to respond appropriately to environmental conditions, although the degree of adjustability or tolerance to specific stresses differs from species to species. Overproduction of reactive oxygen species (ROS; hydrogen peroxide, H2O2; superoxide, O2⋅-; hydroxyl radical, OH⋅ and singlet oxygen, 1O2) is enhanced under abiotic and/or biotic stresses, which can cause oxidative damage to plant macromolecules and cell structures, leading to inhibition of plant growth and development, or to death. Among the various ROS, freely diffusible and relatively long-lived H2O2 acts as a central player in stress signal transduction pathways. These pathways can then activate multiple acclamatory responses that reinforce resistance to various abiotic and biotic stressors. To utilize H2O2 as a signaling molecule, non-toxic levels must be maintained in a delicate balancing act between H2O2 production and scavenging. Several recent studies have demonstrated that the H2O2-priming can enhance abiotic stress tolerance by modulating ROS detoxification and by regulating multiple stress-responsive pathways and gene expression. Despite the importance of the H2O2-priming, little is known about how this process improves the tolerance of plants to stress. Understanding the mechanisms of H2O2-priming-induced abiotic stress tolerance will be valuable for identifying biotechnological strategies to improve abiotic stress tolerance in crop plants. This review is an overview of our current knowledge of the possible mechanisms associated with H2O2-induced abiotic oxidative stress tolerance in plants, with special reference to antioxidant metabolism. PMID:26136756

  7. Diagnosing Abiotic Degradation

    EPA Science Inventory

    The abiotic degradation of chlorinated solvents in ground water can be difficult to diagnose. Under current practice, most of the “evidence” is negative; specifically the apparent disappearance of chlorinated solvents with an accumulation of vinyl chloride, ethane, ethylene, or ...

  8. [Role of micro-organisms in adapting plants to environmental stress conditions].

    PubMed

    Hirt, Heribert

    2012-01-01

    Due to their sessile nature, plants have always been confronted to various abiotic and biotic stresses in their immediate environment. As a consequence, the survival of plants depended on their ability to adjust rapidly their physiology, development and growth to escape or mitigate the impacts of stress. All plants are known to perceive and respond to stress signals such as drought, heat, salinity, attacks by herbivores and pathogens. Some biochemical processes are common to all plant stress responses including the production of certain stress proteins and metabolites, as well as the modification of the reactive oxygen species (ROS) metabolism. Although there has been extensive research in the plant stress response field, it is not yet known which factors are responsible for conferring to some plant species the capacity to colonize extreme habitats. Although considerable progress has been made in our understanding of plant stress physiology, the contribution of the plant-associated microbial community in the soil, commonly called the rhizosphere, has only recently received enhanced attention. Recent studies showed that some plant species in natural habitats require microbial associations for stress tolerance and survival. Since plants have colonized land, they have evolved mechanisms to respond to changing environmental conditions and settle in extreme habitats. Although many plants lack the adaptive capability to adapt to stress conditions, the ability of a variety of plants to adapt to stress conditions appears to depend on the association with microbes, raising a number of questions: can all plants improve stress tolerance when associated with their appropriate microbial partners? Did we miss identifying the right partners for a given plant species or variety? What distinguishes the microbes and plants that are adapted to extreme environmental conditions from those living in temperate zones? Answers to these questions are likely to revolutionize plant biology

  9. Laboratory screening of potential predators of the poultry red mite (Dermanyssus gallinae) and assessment of Hypoaspis miles performance under varying biotic and abiotic conditions.

    PubMed

    Ali, W; George, D R; Shiel, R S; Sparagano, O A E; Guy, J H

    2012-06-01

    The poultry red mite, Dermanyssus gallinae (De Geer), is the most important ectoparasitic pest of layer hens worldwide and difficult to control through 'conventional' synthetic acaricides. The present study aimed to identify a suitable predator of D. gallinae that could potentially form the basis of biological control in commercial poultry systems. From four selected predatory mite species (Hypoaspis miles (Berlese), Hypoaspis aculeifer (Canestrini), Amblyseius degenerans (Berlese) and Phytoseiulus persimilis (Athias-Henriot)), Hypoaspis mites demonstrated the greatest potential as predators of D. gallinae. Experiments were also conducted to assess the effect of environmental (temperature and dust), physical (presence of harbourages) and biological (presence of alternative prey) factors on the predatory efficacy of H. miles. Predation of D. gallinae per se was observed under all conditions tested, though was found to be temperature-dependent and reduced by the presence of alternative prey. PMID:22301375

  10. Metal ion effects on the kinetics of abiotic formation of glycylglycine and diketopiperazine under the simulated conditions of the Lost City hydrothermal field

    NASA Astrophysics Data System (ADS)

    Sakata, K.; Yabuta, H.

    2010-12-01

    Introduction: The Lost City hydrothermal field has been recently discovered in 2000 and known for its characteristic conditions that differs from the typical hydrothermal vents, such as alkaline pH, low temperature (> ~90°C), metal ion compositions [1, 2]. The hydrothermal system is suggested as a plausible environment for the origin and evolution of life in the early Earth [3]. In our previous study, it was revealed that the dimerization of glycine (Gly) in aqueous solution reached the maximum rate in alkaline solution at pH 9.8 [4], supporting the above hypothesis from the perspective of abiotic chemistry. In this study, the heating experiments of Gly were conducted under the conditions simulating the metal ion composition of the Lost City, in order to evaluate the effects of metal ions on the kinetics of the formation of glycylglycine (GlyGly) and diketopiperazine (DKP). Experimental: Eight milliliter of 100 mM aqueous solutions of Gly at pH 9.3 with MgCl2 : MgSO4 : CaCl2 : NaCl : NaOH concentration ratio (mM) of 9.4 : 4.6 : 23 : 35 : 470 (solution A) were put into Teflon bottles and heated at 120, 140, 160 and 180°C for 1 to 5 days. For comparison, 100 mM aqueous solutions of Gly at pH 9.3 with 32 mM NaOH (solution B) and at pH 6.0 without NaOH (solution C) were heated at 140°C for 14 days. After heating, each sample was diluted and analyzed by HPLC. In this experiment, the four reaction pathways were considered: 2 Gly → GlyGly (the second order), GlyGly → DKP (the first order), DKP → GlyGly (the first order), GlyGly → 2 Gly (the first order). The rate constants were determined by fitting the changes of the concentrations of Gly, GlyGly, and DKP with increasing heating time. Results and discussion: The concentration of GlyGly in solution A at equilibrium was 25 % lower than that in solution B, although the formation rates of GlyGly were similar values for solutions A and B, 1.25 ×10-9 and 0.93 ×10-9 l mol-1 s-1, respectively. This observation is

  11. Influence of abiotic stress signals on secondary metabolites in plants

    PubMed Central

    Ramakrishna, Akula; Ravishankar, Gokare Aswathanarayana

    2011-01-01

    Plant secondary metabolites are unique sources for pharmaceuticals, food additives, flavors, and industrially important biochemicals. Accumulation of such metabolites often occurs in plants subjected to stresses including various elicitors or signal molecules. Secondary metabolites play a major role in the adaptation of plants to the environment and in overcoming stress conditions. Environmental factors viz. temperature, humidity, light intensity, the supply of water, minerals, and CO2 influence the growth of a plant and secondary metabolite production. Drought, high salinity, and freezing temperatures are environmental conditions that cause adverse effects on the growth of plants and the productivity of crops. Plant cell culture technologies have been effective tools for both studying and producing plant secondary metabolites under in vitro conditions and for plant improvement. This brief review summarizes the influence of different abiotic factors include salt, drought, light, heavy metals, frost etc. on secondary metabolites in plants. The focus of the present review is the influence of abiotic factors on secondary metabolite production and some of important plant pharmaceuticals. Also, we describe the results of in vitro cultures and production of some important secondary metabolites obtained in our laboratory. PMID:22041989

  12. Evaluation of Sorghum [Sorghum bicolor (L.)] Reference Genes in Various Tissues and under Abiotic Stress Conditions for Quantitative Real-Time PCR Data Normalization

    PubMed Central

    Sudhakar Reddy, Palakolanu; Srinivas Reddy, Dumbala; Sivasakthi, Kaliamoorthy; Bhatnagar-Mathur, Pooja; Vadez, Vincent; Sharma, Kiran K.

    2016-01-01

    Accurate and reliable gene expression data from qPCR depends on stable reference gene expression for potential gene functional analyses. In this study, 15 reference genes were selected and analyzed in various sample sets including abiotic stress treatments (salt, cold, water stress, heat, and abscisic acid) and tissues (leaves, roots, seedlings, panicle, and mature seeds). Statistical tools, including geNorm, NormFinder and RefFinder, were utilized to assess the suitability of reference genes based on their stability rankings for various sample groups. For abiotic stress, PP2A and CYP were identified as the most stable genes. In contrast, EIF4α was the most stable in the tissue sample set, followed by PP2A; PP2A was the most stable in all the sample set, followed by EIF4α. GAPDH, and UBC1 were the least stably expressed in the tissue and all the sample sets. These results also indicated that the use of two candidate reference genes would be sufficient for the optimization of normalization studies. To further verify the suitability of these genes for use as reference genes, SbHSF5 and SbHSF13 gene expression levels were normalized using the most and least stable sorghum reference genes in root and water stressed-leaf tissues of five sorghum varieties. This is the first systematic study of the selection of the most stable reference genes for qPCR-related assays in Sorghum bicolor that will potentially benefit future gene expression studies in sorghum and other closely related species. PMID:27200008

  13. Low melatonin production by suppression of either serotonin N-acetyltransferase or N-acetylserotonin methyltransferase in rice causes seedling growth retardation with yield penalty, abiotic stress susceptibility, and enhanced coleoptile growth under anoxic conditions.

    PubMed

    Byeon, Yeong; Back, Kyoungwhan

    2016-04-01

    Serotonin N-acetyltransferase (SNAT) and N-acetylserotonin methyltransferase (ASMT) are the last two key enzymes for melatonin biosynthesis in living organisms. In this study, we demonstrated that transgenic rice (Oryza sativa L.) plants, in which expression of either endogenous SNAT or ASMT was suppressed, had reduced melatonin synthesis, confirming that both SNAT and ASMT are functionally involved in melatonin synthesis. The melatonin-deficient SNAT rice had retarded seedling growth, which was partially restored by exogenous melatonin application, suggesting melatonin's role in seedling growth. In addition, the plants were more sensitive to various abiotic stresses, including salt and cold, compared with the wild type. Melatonin-deficient SNAT rice had increased coleoptile growth under anoxic conditions, indicating that melatonin also inversely regulates plant growth under anaerobic conditions with the concomitant high expression of alcohol dehydrogenase genes. Similarly, the melatonin-deficient ASMT rice exhibited accelerated senescence in detached flag leaves, as well as significantly reduced yield. These loss-of-function studies on the melatonin biosynthetic genes confirmed most previous pharmacological reports that melatonin not only promotes plant growth but also mitigates various abiotic stresses. PMID:26919041

  14. Can environmental conditions trigger cyanobacterial surfaces and following carbonate formation: implication for biomineralization and biotechnology

    NASA Astrophysics Data System (ADS)

    Paulo, C.; Dittrich, M.; Zhu, T.

    2015-12-01

    In this presentation we will give an overview what kind of the factors may trigger carbonate formations at the cell surfaces under a variety of environmental conditions. As examples, we will present the results from our recent studies on formation of calcium carbonates, dolomites and bio-cements. The extracellular polymeric substances (EPS) in the Synechococcuscell envelope are recognized key players in the nucleation of carbonates in marine and freshwater environments. Yet, little is known about a nutrient contents control over the molecular composition of Synechococcus cell envelope, and consequently, biomineralization. In the first study, we investigated how a variation of the phosphorus (P) in the growth media can lead to changes in the surface reactivity of the cells and impact their ability to form carbonates. The objective of the second study is to gain insights into the spatial distribution of cyanobacterial EPS and dolomite from different sediment layers of Khor Al-Adaid sabkha (Qatar). Here, we characterized microbial mats on molecular level in respect of organic and inorganic components using in-situ 2D Raman spectroscopy and Atomic Force Microscopy (AFM) were used. Additionally, 2D chemical maps of sediment layers documented spectral characterizations of minerals and organic matter of microbial origins at high spatial resolution. Finally, we will show the results from the experiments with auto-phototrophic cyanobacteria Gloeocapsa PCC73106, which habitat on the monument surfaces, towards its application for bio-concrete, a product of microbial carbonate precipitation. We studied the biomineralization in biofilm forming Gloeocapsa PCC73106 on the concrete surface as a pre-requirement for microbial carbonate precipitation. Biomineralization on the concrete surface by live cells and killed cells were compared with that under the abiotic condition. Our experiments allow us to conclude that environmental conditions play a significant role in the control of

  15. Autophagy, a Conserved Mechanism for Protein Degradation, Responds to Heat, and Other Abiotic Stresses in Capsicum annuum L.

    PubMed Central

    Zhai, Yufei; Guo, Meng; Wang, Hu; Lu, Jinping; Liu, Jinhong; Zhang, Chong; Gong, Zhenhui; Lu, Minghui

    2016-01-01

    Abiotic stresses negatively affect plants growth and development by inducing protein denaturation, and autophagy degrades the damaged proteins to alleviate their toxicity, however, little is known about the involvement of autophagy in pepper (Capsicum annuum L.) tolerances to abiotic stresses. In this study, we identified autophagy-related gene (ATG) members in the whole genome of pepper by HMM method and analyzed their expression profiles in response to heat and other abiotic stresses by quantitative real-time PCR. The results showed that the CaATG contained 15 core ATG members including 29 ATG proteins with their respective conserved functional domains, involving the whole process of autophagy. Under normal environmental condition, the expression of CaATG genes showed tissue- and developmental stage-specific patterns, while under abiotic stresses of salt, drought, heat, cold and carbohydrate starvation, the accumulation of autophagosome punctate increased and the expression level of CaATG genes changed with stress type-dependent pattern, which indicates the linkage of autophagy in pepper response to abiotic stresses. After treated with heat stress, both the number of up-regulated CaATG genes and the increment of autophagosome punctate were higher in pepper thermotolerant line R9 than those in thermosensitive line B6, implying an association of autophagy with heat tolerance. In addition, CaATG6 was predicted to interact with CaHSP90 family members. Our study suggests that autophagy is connected to pepper tolerances to heat and other abiotic stresses. PMID:26904087

  16. Stress-responsive expression patterns and functional characterization of cold shock domain proteins in cabbage (Brassica rapa) under abiotic stress conditions.

    PubMed

    Choi, Min Ji; Park, Ye Rin; Park, Su Jung; Kang, Hunseung

    2015-11-01

    Although the functional roles of cold shock domain proteins (CSDPs) have been demonstrated during the growth, development, and stress adaptation of Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and wheat (Triticum aestivum), the functions of CSDPs in other plants species, including cabbage (Brassica rapa), are largely unknown. To gain insight into the roles of CSDPs in cabbage under stress conditions, the genes encoding CSDPs in cabbage were isolated, and the functional roles of CSDPs in response to environmental stresses were analyzed. Real-time RT-PCR analysis revealed that the levels of BrCSDP transcripts increased during cold, salt, or drought stress, as well as upon ABA treatment. Among the five BrCSDP genes found in the cabbage genome, one CSDP (BRU12051), named BrCSDP3, was unique in that it is localized to the chloroplast as well as to the nucleus. Ectopic expression of BrCSDP3 in Arabidopsis resulted in accelerated seed germination and better seedling growth compared to the wild-type plants under high salt or dehydration stress conditions, and in response to ABA treatment. BrCSDP3 did not affect the splicing of intron-containing genes and processing of rRNAs in the chloroplast. BrCSDP3 had the ability to complement RNA chaperone-deficient Escherichia coli mutant cells under low temperatures as well as DNA- and RNA-melting abilities, suggesting that it possesses RNA chaperone activity. Taken together, these results suggest that BrCSDP3, harboring RNA chaperone activity, plays a role as a positive regulator in seed germination and seedling growth under stress conditions. PMID:26263516

  17. Genetic Dissection of Abiotic Stress Tolerance in Sorghum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sorghum, the fifth most important cereal crop in the world is a highly versatile crop and an excellent model species due to its overall tolerance to a number of abiotic stress conditions. To gain a better understanding of the physiological and genetic basis of abiotic stress tolerance in sorghum w...

  18. Biofilm formation and persistence on abiotic surfaces in the context of food and medical environments.

    PubMed

    Abdallah, Marwan; Benoliel, Corinne; Drider, Djamel; Dhulster, Pascal; Chihib, Nour-Eddine

    2014-07-01

    The biofilm formation on abiotic surfaces in food and medical sectors constitutes a great public health concerns. In fact, biofilms present a persistent source for pathogens, such as Pseudomonas aeruginosa and Staphylococcus aureus, which lead to severe infections such as foodborne and nosocomial infections. Such biofilms are also a source of material deterioration and failure. The environmental conditions, commonly met in food and medical area, seem also to enhance the biofilm formation and their resistance to disinfectant agents. In this regard, this review highlights the effect of environmental conditions on bacterial adhesion and biofilm formation on abiotic surfaces in the context of food and medical environment. It also describes the current and emergent strategies used to study the biofilm formation and its eradication. The mechanisms of biofilm resistance to commercialized disinfectants are also discussed, since this phenomenon remains unclear to date. PMID:24744186

  19. Abiotic factors influence plant storage lipid accumulation and composition.

    PubMed

    Singer, Stacy D; Zou, Jitao; Weselake, Randall J

    2016-02-01

    The demand for plant-derived oils has increased substantially over the last decade, and is sure to keep growing. While there has been a surge in research efforts to produce plants with improved oil content and quality, in most cases the enhancements have been small. To add further complexity to this situation, substantial differences in seed oil traits among years and field locations have indicated that plant lipid biosynthesis is also influenced to a large extent by multiple environmental factors such as temperature, drought, light availability and soil nutrients. On the molecular and biochemical levels, the expression and/or activities of fatty acid desaturases, as well as diacylglycerol acyltransferase 1, have been found to be affected by abiotic factors, suggesting that they play a role in the lipid content and compositional changes seen under abiotic stress conditions. Unfortunately, while only a very small number of strategies have been developed as of yet to minimize these environmental effects on the production of storage lipids, it is clear that this feat will be of the utmost importance for developing superior oil crops with the capability to perform in a consistent manner in field conditions in the future. PMID:26795146

  20. Environmental Conditions Associated with Elevated Vibrio parahaemolyticus Concentrations in Great Bay Estuary, New Hampshire

    PubMed Central

    Urquhart, Erin A.; Jones, Stephen H.; Yu, Jong W.; Schuster, Brian M.; Marcinkiewicz, Ashley L.; Whistler, Cheryl A.; Cooper, Vaughn S.

    2016-01-01

    Reports from state health departments and the Centers for Disease Control and Prevention indicate that the annual number of reported human vibriosis cases in New England has increased in the past decade. Concurrently, there has been a shift in both the spatial distribution and seasonal detection of Vibrio spp. throughout the region based on limited monitoring data. To determine environmental factors that may underlie these emerging conditions, this study focuses on a long-term database of Vibrio parahaemolyticus concentrations in oyster samples generated from data collected from the Great Bay Estuary, New Hampshire over a period of seven consecutive years. Oyster samples from two distinct sites were analyzed for V. parahaemolyticus abundance, noting significant relationships with various biotic and abiotic factors measured during the same period of study. We developed a predictive modeling tool capable of estimating the likelihood of V. parahaemolyticus presence in coastal New Hampshire oysters. Results show that the inclusion of chlorophyll a concentration to an empirical model otherwise employing only temperature and salinity variables, offers improved predictive capability for modeling the likelihood of V. parahaemolyticus in the Great Bay Estuary. PMID:27144925

  1. Modelling Stream-Fish Functional Traits in Reference Conditions: Regional and Local Environmental Correlates

    PubMed Central

    Oliveira, João M.; Segurado, Pedro; Santos, José M.; Teixeira, Amílcar; Ferreira, Maria T.; Cortes, Rui V.

    2012-01-01

    Identifying the environmental gradients that control the functional structure of biological assemblages in reference conditions is fundamental to help river management and predict the consequences of anthropogenic stressors. Fish metrics (density of ecological guilds, and species richness) from 117 least disturbed stream reaches in several western Iberia river basins were modelled with generalized linear models in order to investigate the importance of regional- and local-scale abiotic gradients to variation in functional structure of fish assemblages. Functional patterns were primarily associated with regional features, such as catchment elevation and slope, rainfall, and drainage area. Spatial variations of fish guilds were thus associated with broad geographic gradients, showing (1) pronounced latitudinal patterns, affected mainly by climatic factors and topography, or (2) at the basin level, strong upstream-downstream patterns related to stream position in the longitudinal gradient. Maximum native species richness was observed in midsize streams in accordance with the river continuum concept. The findings of our study emphasized the need to use a multi-scale approach in order to fully assess the factors that govern the functional organization of biotic assemblages in ‘natural’ streams, as well as to improve biomonitoring and restoration of fluvial ecosystems. PMID:23029242

  2. Unraveling the role of fungal symbionts in plant abiotic stress tolerance

    PubMed Central

    Singh, Lamabam Peter

    2011-01-01

    Fungal symbionts have been found to be associated with every plant studied in the natural ecosystem, where they colonize and reside entirely or partially in the internal tissues of their host plant. Fungal endophytes can express/form a range of different lifestyle/relationships with different host including symbiotic, mutualistic, commensalistic and parasitic in response to host genotype and environmental factors. In mutualistic association fungal endophyte can enhance growth, increase reproductive success and confer biotic and abiotic stress tolerance to its host plant. Since abiotic stress such as, drought, high soil salinity, heat, cold, oxidative stress and heavy metal toxicity is the common adverse environmental conditions that affect and limit crop productivity worldwide. It may be a promising alternative strategy to exploit fungal endophytes to overcome the limitations to crop production brought by abiotic stress. There is an increasing interest in developing the potential biotechnological applications of fungal endophytes for improving plant stress tolerance and sustainable production of food crops. Here we have described the fungal symbioses, fungal symbionts and their role in abiotic stress tolerance. A putative mechanism of stress tolerance by symbionts has also been covered. PMID:21512319

  3. Tissue specific and abiotic stress regulated transcription of histidine kinases in plants is also influenced by diurnal rhythm.

    PubMed

    Singh, Anupama; Kushwaha, Hemant R; Soni, Praveen; Gupta, Himanshu; Singla-Pareek, Sneh L; Pareek, Ashwani

    2015-01-01

    Two-component system (TCS) is one of the key signal sensing machinery which enables species to sense environmental stimuli. It essentially comprises of three major components, sensory histidine kinase proteins (HKs), histidine phosphotransfer proteins (Hpts), and response regulator proteins (RRs). The members of the TCS family have already been identified in Arabidopsis and rice but the knowledge about their functional indulgence during various abiotic stress conditions remains meager. Current study is an attempt to carry out comprehensive analysis of the expression of TCS members in response to various abiotic stress conditions and in various plant tissues in Arabidopsis and rice using MPSS and publicly available microarray data. The analysis suggests that despite having almost similar number of genes, rice expresses higher number of TCS members during various abiotic stress conditions than Arabidopsis. We found that the TCS machinery is regulated by not only various abiotic stresses, but also by the tissue specificity. Analysis of expression of some representative members of TCS gene family showed their regulation by the diurnal cycle in rice seedlings, thus bringing-in another level of their transcriptional control. Thus, we report a highly complex and tight regulatory network of TCS members, as influenced by the tissue, abiotic stress signal, and diurnal rhythm. The insights on the comparative expression analysis presented in this study may provide crucial leads toward dissection of diverse role(s) of the various TCS family members in Arabidopsis and rice. PMID:26442025

  4. Tissue specific and abiotic stress regulated transcription of histidine kinases in plants is also influenced by diurnal rhythm

    PubMed Central

    Singh, Anupama; Kushwaha, Hemant R.; Soni, Praveen; Gupta, Himanshu; Singla-Pareek, Sneh L.; Pareek, Ashwani

    2015-01-01

    Two-component system (TCS) is one of the key signal sensing machinery which enables species to sense environmental stimuli. It essentially comprises of three major components, sensory histidine kinase proteins (HKs), histidine phosphotransfer proteins (Hpts), and response regulator proteins (RRs). The members of the TCS family have already been identified in Arabidopsis and rice but the knowledge about their functional indulgence during various abiotic stress conditions remains meager. Current study is an attempt to carry out comprehensive analysis of the expression of TCS members in response to various abiotic stress conditions and in various plant tissues in Arabidopsis and rice using MPSS and publicly available microarray data. The analysis suggests that despite having almost similar number of genes, rice expresses higher number of TCS members during various abiotic stress conditions than Arabidopsis. We found that the TCS machinery is regulated by not only various abiotic stresses, but also by the tissue specificity. Analysis of expression of some representative members of TCS gene family showed their regulation by the diurnal cycle in rice seedlings, thus bringing-in another level of their transcriptional control. Thus, we report a highly complex and tight regulatory network of TCS members, as influenced by the tissue, abiotic stress signal, and diurnal rhythm. The insights on the comparative expression analysis presented in this study may provide crucial leads toward dissection of diverse role(s) of the various TCS family members in Arabidopsis and rice. PMID:26442025

  5. Mechanism for the abiotic synthesis of uracil via UV-induced oxidation of pyrimidine in pure H2O ices under astrophysical conditions

    NASA Astrophysics Data System (ADS)

    Bera, Partha P.; Nuevo, Michel; Milam, Stefanie N.; Sandford, Scott A.; Lee, Timothy J.

    2010-09-01

    The UV photoirradiation of pyrimidine in pure H2O ices has been explored using second-order Møller-Plesset perturbation theory and density functional theory methods, and compared with experimental results. Mechanisms studied include those starting with neutral pyrimidine or cationic pyrimidine radicals, and reacting with OH radical. The ab initio calculations reveal that the formation of some key species, including the nucleobase uracil, is energetically favored over others. The presence of one or several water molecules is necessary in order to abstract a proton which leads to the final products. Formation of many of the photoproducts in UV-irradiated H2O:pyrimidine=20:1 ice mixtures was established in a previous experimental study. Among all the products, uracil is predicted by quantum chemical calculations to be the most favored, and has been identified in experimental samples by two independent chromatography techniques. The results of the present study strongly support the scenario in which prebiotic molecules, such as the nucleobase uracil, can be formed under abiotic processes in astrophysically relevant environments, namely in condensed phase on the surface of icy, cold grains before being delivered to the telluric planets, like Earth.

  6. Mechanism for the abiotic synthesis of uracil via UV-induced oxidation of pyrimidine in pure H{sub 2}O ices under astrophysical conditions

    SciTech Connect

    Bera, Partha P.; Nuevo, Michel; Sandford, Scott A.; Lee, Timothy J.; Milam, Stefanie N.

    2010-09-14

    The UV photoirradiation of pyrimidine in pure H{sub 2}O ices has been explored using second-order Moeller-Plesset perturbation theory and density functional theory methods, and compared with experimental results. Mechanisms studied include those starting with neutral pyrimidine or cationic pyrimidine radicals, and reacting with OH radical. The ab initio calculations reveal that the formation of some key species, including the nucleobase uracil, is energetically favored over others. The presence of one or several water molecules is necessary in order to abstract a proton which leads to the final products. Formation of many of the photoproducts in UV-irradiated H{sub 2}O:pyrimidine=20:1 ice mixtures was established in a previous experimental study. Among all the products, uracil is predicted by quantum chemical calculations to be the most favored, and has been identified in experimental samples by two independent chromatography techniques. The results of the present study strongly support the scenario in which prebiotic molecules, such as the nucleobase uracil, can be formed under abiotic processes in astrophysically relevant environments, namely in condensed phase on the surface of icy, cold grains before being delivered to the telluric planets, like Earth.

  7. Ceramic production during changing environmental/climatic conditions

    NASA Astrophysics Data System (ADS)

    Oestreich, Daniela B.; Glasmacher, Ulrich A.

    2015-04-01

    Ceramics, with regard to their status as largely everlasting everyday object as well as on the basis of their chronological sensitivity, reflect despite their simplicity the technological level of a culture and therefore also, directly or indirectly, the adaptability of a culture with respect to environmental and/or climatic changes. For that reason the question arises, if it is possible to identify changes in production techniques and raw material sources for ceramic production, as a response to environmental change, e.g. climate change. This paper will present results of a research about Paracas Culture (800 - 200 BC), southern Peru. Through several investigations (e.g. Schittek et al., 2014; Eitel and Mächtle, 2009) it is well known that during Paracas period changes in climate and environmental conditions take place. As a consequence, settlement patterns shifted several times through the various stages of Paracas time. Ceramics from three different sites (Jauranga, Cutamalla, Collanco) and temporal phases of the Paracas period are detailed archaeometric, geochemical and mineralogical characterized, e.g. Raman spectroscopy, XRD, and ICP-MS analyses. The aim of this research is to resolve potential differences in the chemical composition of the Paracas ceramics in space and time and to compare the data with the data sets of pre-Columbian environmental conditions. Thus influences of changing environmental conditions on human societies and their cultural conditions will be discussed. References Eitel, B. and Mächtle, B. 2009. Man and Environment in the eastern Atacama Desert (Southern Peru): Holocene climate changes and their impact on pre-Columbian cultures. In: Reindel, M. & Wagner, G. A. (eds.) New Technologies for Archaeology. Berlin Heidelberg: Springer-Verlag. Schittek, K., Mächtle, B., Schäbitz, F., Forbriger, M., Wennrich, V., Reindel, M., and Eitel, B.. Holocene environmental changes in the highlands of the southern Peruvian Andes (14° S) and their

  8. Matching biological traits to environmental conditions in marine benthic ecosystems

    NASA Astrophysics Data System (ADS)

    Bremner, J.; Rogers, S. I.; Frid, C. L. J.

    2006-05-01

    The effects of variability in environmental conditions on species composition in benthic ecosystems are well established, but relatively little is known about how environmental variability relates to ecosystem functioning. Benthic invertebrate assemblages are heavily involved in the maintenance of ecological processes and investigation of the biological characteristics (traits) expressed in these assemblages can provide information about some aspects of functioning. The aim of this study was to establish and explore relationships between environmental variability and biological traits expressed in megafauna assemblages in two UK regions. Patterns of trait composition were matched to environmental conditions and subsets of variables best describing these patterns determined. The nature of the relationships were subsequently examined at two separate scales, both between and within the regions studied. Over the whole area, some traits related to size, longevity, reproduction, mobility, flexibility, feeding method, sociability and living habit were negatively correlated with salinity, sea surface temperature, annual temperature range and the level of fishing effort, and positively associated with fish taxon richness and shell content of the substratum. Between the two regions, reductions in temperature range and shell content were associated with infrequent relative occurrences of short-lived, moderately mobile, flexible, solitary, opportunistic, permanent-burrow dwelling fauna and those exhibiting reproductive strategies based on benthic development. Relationships between some traits and environmental conditions diverged within the two regions, with increases in fishing effort and shell content of the substratum being associated with low frequencies of occurrence of moderately mobile and moderately to highly flexible fauna within one region, but high frequencies in the other. These changes in trait composition have implications for ecosystem processes, with, for

  9. Biotic and Abiotic Degradation of CL-20 and RDX in Soils

    SciTech Connect

    Crocker, Fiona H.; Thompson, Karen T.; Szecsody, Jim E.; Fredrickson, Herbert L.

    2005-11-01

    The caged cyclic nitramine 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) is a new explosive that has the potential to replace existing military explosives, but little is known about its environmental toxicity, transport, and fate. We quantified and compared the aerobic environmental fate of CL-20 to the widely used cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in surface and subsurface soil microcosms. Soil-free controls and biologically mediated processes. Both abiotic and biological processes significantly degraded CL-20 in all soils examined. Apparent abiotic, first-order degradation rates (k) for CL-20 were not significantly different between soil-free controls (0.018 < k < 0.030 d-1) and biologically attenuated soil controls (0.003 conditions, abiotic degradation rates of RDX were generally slower (0 < k < 0.032 d-1) than abiotic CL-20 degradation rates. In biologically active soil microcosms amended with glucose aerobic RDX degradation rates varied between 0.010 and 0.474 d-1. Biodegradation was a key factor in determining the environmental fate of RDX, while a combination of biotic and abiotic processes was important with CL-20. Our data suggest that CL-20 should be less recalcitrant than RDX in aerobic soils.

  10. Environmental Conditions for Space Flight Hardware: A Survey

    NASA Technical Reports Server (NTRS)

    Plante, Jeannette; Lee, Brandon

    2005-01-01

    Interest in generalization of the physical environment experienced by NASA hardware from the natural Earth environment (on the launch pad), man-made environment on Earth (storage acceptance an d qualification testing), the launch environment, and the space environment, is ed to find commonality among our hardware in an effort to reduce cost and complexity. NASA is entering a period of increase in its number of planetary missions and it is important to understand how our qualification requirements will evolve with and track these new environments. Environmental conditions are described for NASA projects in several ways for the different periods of the mission life cycle. At the beginning, the mission manager defines survivability requirements based on the mission length, orbit, launch date, launch vehicle, and other factors . such as the use of reactor engines. Margins are then applied to these values (temperature extremes, vibration extremes, radiation tolerances, etc,) and a new set of conditions is generalized for design requirements. Mission assurance documents will then assign an additional margin for reliability, and a third set of values is provided for during testing. A fourth set of environmental condition values may evolve intermittently from heritage hardware that has been tested to a level beyond the actual mission requirement. These various sets of environment figures can make it quite confusing and difficult to capture common hardware environmental requirements. Environmental requirement information can be found in a wide variety of places. The most obvious is with the individual projects. We can easily get answers to questions about temperature extremes being used and radiation tolerance goals, but it is more difficult to map the answers to the process that created these requirements: for design, for qualification, and for actual environment with no margin applied. Not everyone assigned to a NASA project may have that kind of insight, as many have

  11. Biological responses to environmental heterogeneity under future ocean conditions.

    PubMed

    Boyd, Philip W; Cornwall, Christopher E; Davison, Andrew; Doney, Scott C; Fourquez, Marion; Hurd, Catriona L; Lima, Ivan D; McMinn, Andrew

    2016-08-01

    Organisms are projected to face unprecedented rates of change in future ocean conditions due to anthropogenic climate-change. At present, marine life encounters a wide range of environmental heterogeneity from natural fluctuations to mean climate change. Manipulation studies suggest that biota from more variable marine environments have more phenotypic plasticity to tolerate environmental heterogeneity. Here, we consider current strategies employed by a range of representative organisms across various habitats - from short-lived phytoplankton to long-lived corals - in response to environmental heterogeneity. We then discuss how, if and when organismal responses (acclimate/migrate/adapt) may be altered by shifts in the magnitude of the mean climate-change signal relative to that for natural fluctuations projected for coming decades. The findings from both novel climate-change modelling simulations and prior biological manipulation studies, in which natural fluctuations are superimposed on those of mean change, provide valuable insights into organismal responses to environmental heterogeneity. Manipulations reveal that different experimental outcomes are evident between climate-change treatments which include natural fluctuations vs. those which do not. Modelling simulations project that the magnitude of climate variability, along with mean climate change, will increase in coming decades, and hence environmental heterogeneity will increase, illustrating the need for more realistic biological manipulation experiments that include natural fluctuations. However, simulations also strongly suggest that the timescales over which the mean climate-change signature will become dominant, relative to natural fluctuations, will vary for individual properties, being most rapid for CO2 (~10 years from present day) to 4 decades for nutrients. We conclude that the strategies used by biota to respond to shifts in environmental heterogeneity may be complex, as they will have to

  12. Endophytic fungi: resource for gibberellins and crop abiotic stress resistance.

    PubMed

    Khan, Abdul Latif; Hussain, Javid; Al-Harrasi, Ahmed; Al-Rawahi, Ahmed; Lee, In-Jung

    2015-03-01

    The beneficial effects of endophytes on plant growth are important for agricultural ecosystems because they reduce the need for fertilizers and decrease soil and water pollution while compensating for environmental perturbations. Endophytic fungi are a novel source of bioactive secondary metabolites; moreover, recently they have been found to produce physiologically active gibberellins as well. The symbiosis of gibberellins producing endophytic fungi with crops can be a promising strategy to overcome the adverse effects of abiotic stresses. The association of such endophytes has not only increased plant biomass but also ameliorated plant-growth during extreme environmental conditions. Endophytic fungi represent a trove of unexplored biodiversity and a frequently overlooked component of crop ecology. The present review describes the role of gibberellins producing endophytic fungi, suggests putative mechanisms involved in plant endophyte stress interactions and discusses future prospects in this field. PMID:23984800

  13. Evolution and Adaptation of Wild Emmer Wheat Populations to Biotic and Abiotic Stresses.

    PubMed

    Huang, Lin; Raats, Dina; Sela, Hanan; Klymiuk, Valentina; Lidzbarsky, Gabriel; Feng, Lihua; Krugman, Tamar; Fahima, Tzion

    2016-08-01

    The genetic bottlenecks associated with plant domestication and subsequent selection in man-made agroecosystems have limited the genetic diversity of modern crops and increased their vulnerability to environmental stresses. Wild emmer wheat, the tetraploid progenitor of domesticated wheat, distributed along a wide range of ecogeographical conditions in the Fertile Crescent, has valuable "left behind" adaptive diversity to multiple diseases and environmental stresses. The biotic and abiotic stress responses are conferred by series of genes and quantitative trait loci (QTLs) that control complex resistance pathways. The study of genetic diversity, genomic organization, expression profiles, protein structure and function of biotic and abiotic stress-resistance genes, and QTLs could shed light on the evolutionary history and adaptation mechanisms of wild emmer populations for their natural habitats. The continuous evolution and adaptation of wild emmer to the changing environment provide novel solutions that can contribute to safeguarding food for the rapidly growing human population. PMID:27296141

  14. Coupled Abiotic-Biotic Degradation of Bisphenol A

    NASA Astrophysics Data System (ADS)

    Im, J.; Prevatte, C.; Campagna, S. R.; Loeffler, F.

    2014-12-01

    Bisphenol A (BPA) is a ubiquitous environmental contaminant with weak estrogenic activity. BPA is readily biodegradable with oxygen available, but is recalcitrant to microbial degradation under anoxic conditions. However, BPA is susceptible to abiotic transformation under anoxic conditions. To better understand the fate of BPA in anoxic environments, the kinetics of BPA transformation by manganese oxide (d-MnO2) were investigated. BPA was rapidly transformed by MnO2 with a pseudo-first-order rate constant of 0.413 min-1. NMR and LC-MS analyses identified 4-hydroxycumyl alcohol (HCA) as a major intermediate. Up to 64% of the initial amount of BPA was recovered as HCA within 5 min, but the conversion efficiency decreased with time, suggesting that HCA was further degraded by MnO2. Further experiments confirmed that HCA was also susceptible to transformation by MnO2, albeit at 5-fold lower rates than BPA transformation. Mass balance approaches suggested that HCA was the major BPA transformation intermediate, but other compounds may also be formed. The abiotic transformation of BPA by MnO2 was affected by pH, and 10-fold higher transformation rates were observed at pH 4.5 than at pH 10. Compared to BPA, HCA has a lower octanol-water partitioning coefficient (Log Kow) of 0.76 vs 2.76 for BPA and a higher aqueous solubility of 2.65 g L-1 vs 0.31 g L-1 for BPA, suggesting higher mobility of HCA in the environment. Microcosms established with freshwater sediment materials collected from four geographically distinct locations and amended with HCA demonstrated rapid HCA biodegradation under oxic, but not under anoxic conditions. These findings suggest that BPA is not inert under anoxic conditions and abiotic reactions with MnO2 generate HCA, which has increased mobility and is susceptible to aerobic degradation. Therefore, coupled abiotic-biotic processes can affect the fate and longevity of BPA in terrestrial environments.

  15. Comparing Environmental Conditions Using Indicators of Pollution Hazard

    PubMed

    Turner; Ruffio; Roberts

    1997-07-01

    / Land use/land cover classifications for 1973 and 1991, derived from the interpretation of satellite imagery, are quantified on the basis of biophysical land units in a study area in southeastern Australia. Nutrient export potentials are estimated for each land unit based on their composition of land use/land cover classes. Spatial and temporal comparisons are made of the land units based on the calculated pollution hazard indicators to provide an insight into changes in the state of the environment and the regional significance of land use changes. For example, one ecosystem, unique to the study, showed a large increase in pollution hazard over the study period as a manifestation of an 11-fold rise in cleared area and an expansion of cropping activities. The benefits to environmental management in general are discussed.KEY WORDS: Land cover change; Nutrient export; Environmental condition; Pollution hazard; Agricultural pollution; Nonpoint source pollution; Diffuse pollution; Environmental degradation PMID:9175549

  16. Recent Molecular Advances on Downstream Plant Responses to Abiotic Stress

    PubMed Central

    dos Reis, Sávio Pinho; Lima, Aline Medeiros; de Souza, Cláudia Regina Batista

    2012-01-01

    Abiotic stresses such as extremes of temperature and pH, high salinity and drought, comprise some of the major factors causing extensive losses to crop production worldwide. Understanding how plants respond and adapt at cellular and molecular levels to continuous environmental changes is a pre-requisite for the generation of resistant or tolerant plants to abiotic stresses. In this review we aimed to present the recent advances on mechanisms of downstream plant responses to abiotic stresses and the use of stress-related genes in the development of genetically engineered crops. PMID:22942725

  17. Improved abiotic stress tolerance of bermudagrass by exogenous small molecules.

    PubMed

    Chan, Zhulong; Shi, Haitao

    2015-01-01

    As a widely used warm-season turfgrass in landscapes and golf courses, bermudagrass encounters multiple abiotic stresses during the growth and development. Physiology analysis indicated that abiotic stresses induced the accumulation of ROS and decline of photosynthesis, resulting in increased cell damage and inhibited growth. Proteomic and metabolomic approaches showed that antioxidant enzymes and osmoprotectant contents (sugar, sucrose, dehydrin, proline) were extensively changed under abiotic stress conditions. Exogenous application of small molecules, such as ABA, NO, CaCl2, H2S, polyamine and melatonin, could effectively alleviate damages caused by multiple abiotic stresses, including drought, salt, heat and cold. Based on high through-put RNA seq analysis, genes involved in ROS, transcription factors, hormones, and carbohydrate metabolisms were largely enriched. The data indicated that small molecules induced the accumulation of osmoprotectants and antioxidants, kept cell membrane integrity, increased photosynthesis and kept ion homeostasis, which protected bermudagrass from damages caused by abiotic stresses. PMID:25757363

  18. Environmental conditions influence tissue regeneration rates in scleractinian corals.

    PubMed

    Sabine, Alexis M; Smith, Tyler B; Williams, Dana E; Brandt, Marilyn E

    2015-06-15

    Natural and anthropogenic factors may influence corals' ability to recover from partial mortality. To examine how environmental conditions affect lesion healing, we assessed several water quality parameters and tissue regeneration rates in corals at six reefs around St. Thomas, US Virgin Islands. We hypothesized that sites closer to developed areas would have poor water quality due to proximity to anthropogenic stresses, which would impede tissue regeneration. We found that water flow and turbidity most strongly influenced lesion recovery rates. The most impacted site, with high turbidity and low flow, recovered almost three times slower than the least impacted site, with low turbidity, high flow, and low levels of anthropogenic disturbance. Our results illustrate that in addition to lesion-specific factors known to affect tissue regeneration, environmental conditions can also control corals' healing rates. Resource managers can use this information to protect low-flow, turbid nearshore reefs by minimizing sources of anthropogenic stress. PMID:25982415

  19. Can environmental conditions experienced in early life influence future generations?

    PubMed Central

    Burton, Tim; Metcalfe, Neil B.

    2014-01-01

    The consequences of early developmental conditions for performance in later life are now subjected to convergent interest from many different biological sub-disciplines. However, striking data, largely from the biomedical literature, show that environmental effects experienced even before conception can be transmissible to subsequent generations. Here, we review the growing evidence from natural systems for these cross-generational effects of early life conditions, showing that they can be generated by diverse environmental stressors, affect offspring in many ways and can be transmitted directly or indirectly by both parental lines for several generations. In doing so, we emphasize why early life might be so sensitive to the transmission of environmentally induced effects across generations. We also summarize recent theoretical advancements within the field of developmental plasticity, and discuss how parents might assemble different ‘internal’ and ‘external’ cues, even from the earliest stages of life, to instruct their investment decisions in offspring. In doing so, we provide a preliminary framework within the context of adaptive plasticity for understanding inter-generational phenomena that arise from early life conditions. PMID:24807254

  20. Protection of chemolithoautotrophic bacteria exposed to simulated Mars environmental conditions

    NASA Astrophysics Data System (ADS)

    Gómez, Felipe; Mateo-Martí, Eva; Prieto-Ballesteros, Olga; Martín-Gago, Jose; Amils, Ricardo

    2010-10-01

    Current surface conditions (strong oxidative atmosphere, UV radiation, low temperatures and xeric conditions) on Mars are considered extremely challenging for life. The question is whether there are any features on Mars that could exert a protective effect against the sterilizing conditions detected on its surface. Potential habitability in the subsurface would increase if the overlaying material played a protective role. With the aim of evaluating this possibility we studied the viability of two microorganisms under different conditions in a Mars simulation chamber. An acidophilic chemolithotroph isolated from Río Tinto belonging to the Acidithiobacillus genus and Deinococcus radiodurans, a radiation resistant microorganism, were exposed to simulated Mars conditions under the protection of a layer of ferric oxides and hydroxides, a Mars regolith analogue. Samples of these microorganisms were exposed to UV radiation in Mars atmospheric conditions at different time intervals under the protection of 2 and 5 mm layers of oxidized iron minerals. Viability was evaluated by inoculation on fresh media and characterization of their growth cultures. Here we report the survival capability of both bacteria to simulated Mars environmental conditions.

  1. The effect and role of environmental conditions on magnetosome synthesis.

    PubMed

    Moisescu, Cristina; Ardelean, Ioan I; Benning, Liane G

    2014-01-01

    Magnetotactic bacteria (MTB) are considered the model species for the controlled biomineralization of magnetic Fe oxide (magnetite, Fe3O4) or Fe sulfide (greigite, Fe3S4) nanocrystals in living organisms. In MTB, magnetic minerals form as membrane-bound, single-magnetic domain crystals known as magnetosomes and the synthesis of magnetosomes by MTB is a highly controlled process at the genetic level. Magnetosome crystals reveal highest purity and highest quality magnetic properties and are therefore increasingly sought after as novel nanoparticulate biomaterials for industrial and medical applications. In addition, "magnetofossils," have been used as both past terrestrial and potential Martian life biosignature. However, until recently, the general belief was that the morphology of mature magnetite crystals formed by MTB was largely unaffected by environmental conditions. Here we review a series of studies that showed how changes in environmental factors such as temperature, pH, external Fe concentration, external magnetic fields, static or dynamic fluid conditions, and nutrient availability or concentrations can all affect the biomineralization of magnetite magnetosomes in MTB. The resulting variations in magnetic nanocrystals characteristics can have consequence both for their commercial value but also for their use as indicators for ancient life. In this paper we will review the recent findings regarding the influence of variable chemical and physical environmental control factors on the synthesis of magnetosome by MTB, and address the role of MTB in the global biogeochemical cycling of iron. PMID:24575087

  2. The effect and role of environmental conditions on magnetosome synthesis

    PubMed Central

    Moisescu, Cristina; Ardelean, Ioan I.; Benning, Liane G.

    2014-01-01

    Magnetotactic bacteria (MTB) are considered the model species for the controlled biomineralization of magnetic Fe oxide (magnetite, Fe3O4) or Fe sulfide (greigite, Fe3S4) nanocrystals in living organisms. In MTB, magnetic minerals form as membrane-bound, single-magnetic domain crystals known as magnetosomes and the synthesis of magnetosomes by MTB is a highly controlled process at the genetic level. Magnetosome crystals reveal highest purity and highest quality magnetic properties and are therefore increasingly sought after as novel nanoparticulate biomaterials for industrial and medical applications. In addition, “magnetofossils,” have been used as both past terrestrial and potential Martian life biosignature. However, until recently, the general belief was that the morphology of mature magnetite crystals formed by MTB was largely unaffected by environmental conditions. Here we review a series of studies that showed how changes in environmental factors such as temperature, pH, external Fe concentration, external magnetic fields, static or dynamic fluid conditions, and nutrient availability or concentrations can all affect the biomineralization of magnetite magnetosomes in MTB. The resulting variations in magnetic nanocrystals characteristics can have consequence both for their commercial value but also for their use as indicators for ancient life. In this paper we will review the recent findings regarding the influence of variable chemical and physical environmental control factors on the synthesis of magnetosome by MTB, and address the role of MTB in the global biogeochemical cycling of iron. PMID:24575087

  3. Abiotic immobilization/detoxification of recalcitrant organics

    SciTech Connect

    Whelan, G. ); Sims, R.C. )

    1990-11-01

    In contrast to many remedial techniques that simply transfer hazardous wastes from one part of the environment to another (e.g., off-site landfilling), in situ restoration may offer a safe and cost-effective solution through transformation (to less hazardous products) or destruction of recalcitrant organics. Currently, the US Environmental Protection Agency and US Department of Energy are encouraging research that addresses the development of innovative alternatives for hazardous-waste control. One such alternative is biotic and abiotic immobilization and detoxification of polynuclear aromatic hydrocarbons (PNAs) as associated with the soil humification process. This paper discusses (1) the possibility of using abiotic catalysis (with manganese dioxide) to polymerize organic substances; (2) aspects associated with the thermodynamics and kinetics of the process, and (3) a simple model upon which analyses may be based. 36 refs., 7 figs., 3 tabs.

  4. Ecological Conditions Favoring Budding in Colonial Organisms under Environmental Disturbance

    PubMed Central

    Nakamaru, Mayuko; Takada, Takenori; Ohtsuki, Akiko; Suzuki, Sayaki U.; Miura, Kanan; Tsuji, Kazuki

    2014-01-01

    Dispersal is a topic of great interest in ecology. Many organisms adopt one of two distinct dispersal tactics at reproduction: the production of small offspring that can disperse over long distances (such as seeds and spawned eggs), or budding. The latter is observed in some colonial organisms, such as clonal plants, corals and ants, in which (super)organisms split their body into components of relatively large size that disperse to a short distance. Contrary to the common dispersal viewpoint, short-dispersal colonial organisms often flourish even in environments with frequent disturbances. In this paper, we investigate the conditions that favor budding over long-distance dispersal of small offspring, focusing on the life history of the colony growth and the colony division ratio. These conditions are the relatively high mortality of very small colonies, logistic growth, the ability of dispersers to peacefully seek and settle unoccupied spaces, and small spatial scale of environmental disturbance. If these conditions hold, budding is advantageous even when environmental disturbance is frequent. These results suggest that the demography or life history of the colony underlies the behaviors of the colonial organisms. PMID:24621824

  5. Assessing environmental conditions of Antarctic footpaths to support management decisions.

    PubMed

    Tejedo, Pablo; Benayas, Javier; Cajiao, Daniela; Albertos, Belén; Lara, Francisco; Pertierra, Luis R; Andrés-Abellán, Manuela; Wic, Consuelo; Luciáñez, Maria José; Enríquez, Natalia; Justel, Ana; Reck, Günther K

    2016-07-15

    Thousands of tourists visit certain Antarctic sites each year, generating a wide variety of environmental impacts. Scientific knowledge of human activities and their impacts can help in the effective design of management measures and impact mitigation. We present a case study from Barrientos Island in which a management measure was originally put in place with the goal of minimizing environmental impacts but resulted in new undesired impacts. Two alternative footpaths used by tourist groups were compared. Both affected extensive moss carpets that cover the middle part of the island and that are very vulnerable to trampling. The first path has been used by tourists and scientists since over a decade and is a marked route that is clearly visible. The second one was created more recently. Several physical and biological indicators were measured in order to assess the environmental conditions for both paths. Some physical variables related to human impact were lower for the first path (e.g. soil penetration resistance and secondary treads), while other biochemical and microbiological variables were higher for the second path (e.g. β-glucosidase and phosphatase activities, soil respiration). Moss communities located along the new path were also more diverse and sensitive to trampling. Soil biota (Collembola) was also more abundant and richer. These data indicate that the decision to adopt the second path did not lead to the reduction of environmental impacts as this path runs over a more vulnerable area with more outstanding biological features (e.g. microbiota activity, flora and soil fauna diversity). In addition, the adoption of a new route effectively doubles the human footprint on the island. We propose using only the original path that is less vulnerable to the impacts of trampling. Finally from this process, we identify several key issues that may be taken into account when carrying out impact assessment and environmental management decision-making in the

  6. Environmental conditions and Puumala virus transmission in Belgium

    PubMed Central

    Linard, Catherine; Tersago, Katrien; Leirs, Herwig; Lambin, Eric F

    2007-01-01

    Background Non-vector-borne zoonoses such as Puumala hantavirus (PUUV) can be transmitted directly, by physical contact between infected and susceptible hosts, or indirectly, with the environment as an intermediate. The objective of this study is to better understand the causal link between environmental features and PUUV prevalence in bank vole population in Belgium, and hence with transmission risk to humans. Our hypothesis was that environmental conditions controlling the direct and indirect transmission paths differ, such that the risk of transmission to humans is not only determined by host abundance. We explored the relationship between, on one hand, environmental variables and, on the other hand, host abundance, PUUV prevalence in the host, and human cases of nephropathia epidemica (NE). Statistical analyses were carried out on 17 field sites situated in Belgian broadleaf forests. Results Linear regressions showed that landscape attributes, particularly landscape configuration, influence the abundance of hosts in broadleaf forests. Based on logistic regressions, we show that PUUV prevalence among bank voles is more linked to variables favouring the survival of the virus in the environment, and thus the indirect transmission: low winter temperatures are strongly linked to prevalence among bank voles, and high soil moisture is linked to the number of NE cases among humans. The transmission risk to humans therefore depends on the efficiency of the indirect transmission path. Human risk behaviours, such as the propensity for people to go in forest areas that best support the virus, also influence the number of human cases. Conclusion The transmission risk to humans of non-vector-borne zoonoses such as PUUV depends on a combination of various environmental factors. To understand the complex causal pathways between the environment and disease risk, one should distinguish between environmental factors related to the abundance of hosts such as land

  7. Reductive transformation of carbamazepine by abiotic and biotic processes.

    PubMed

    König, Anne; Weidauer, Cindy; Seiwert, Bettina; Reemtsma, Thorsten; Unger, Tina; Jekel, Martin

    2016-09-15

    The antiepileptic drug carbamazepine (CBZ) is ubiquitously present in the anthropogenic water cycle and is therefore of concern regarding the potable water supply. Despite of its persistent behavior in the aquatic environment, a redox dependent removal at bank filtration sites with anaerobic aquifer passage was reported repeatedly but not elucidated in detail yet. The reductive transformation of CBZ was studied, using abiotic systems (catalytic hydrogenation, electrochemistry) as well as biologically active systems (column systems, batch degradation tests). In catalytic hydrogenation CBZ is gradually hydrogenated and nine transformation products (TPs) were detected by liquid chromatography high-resolution mass spectrometry. 10,11-Dihydro-CBZ ((2H)-CBZ) was the major stable product in these abiotic, surface catalyzed reduction processes and turned out to be not a precursor of the more hydrogenated TPs. In the biotic reduction processes the formation of (2H)-CBZ alone could not explain the observed CBZ decline. There, also traces of (6H)-CBZ and (8H)-CBZ were formed by microbes under anaerobic conditions and four phase-II metabolites of reduced CBZ could be detected and tentatively identified. Thus, the spectrum of reduction products of CBZ is more diverse than previously thought. In environmental samples CBZ removal along an anaerobic soil passage was confirmed and (2H)-CBZ was determined at one of the sites. PMID:27267475

  8. Mycobacterium ulcerans dynamics in aquatic ecosystems are driven by a complex interplay of abiotic and biotic factors

    PubMed Central

    Garchitorena, Andrés; Guégan, Jean-François; Léger, Lucas; Eyangoh, Sara; Marsollier, Laurent; Roche, Benjamin

    2015-01-01

    Host–parasite interactions are often embedded within complex host communities and can be influenced by a variety of environmental factors, such as seasonal variations in climate or abiotic conditions in water and soil, which confounds our understanding of the main drivers of many multi-host pathogens. Here, we take advantage of a combination of large environmental data sets on Mycobacterium ulcerans (MU), an environmentally persistent microorganism associated to freshwater ecosystems and present in a large variety of aquatic hosts, to characterize abiotic and biotic factors driving the dynamics of this pathogen in two regions of Cameroon. We find that MU dynamics are largely driven by seasonal climatic factors and certain physico-chemical conditions in stagnant and slow-flowing ecosystems, with an important role of pH as limiting factor. Furthermore, water conditions can modify the effect of abundance and diversity of aquatic organisms on MU dynamics, which suggests a different contribution of two MU transmission routes for aquatic hosts (trophic vs environmental transmission) depending on local abiotic factors. DOI: http://dx.doi.org/10.7554/eLife.07616.001 PMID:26216042

  9. Management and sperm production of boars under differing environmental conditions.

    PubMed

    Kunavongkrit, Annop; Suriyasomboon, Annop; Lundeheim, Nils; Heard, Terry W; Einarsson, Stig

    2005-01-15

    The management of boars to ensure good sperm production under differing environmental conditions is a major concern for pig keepers in both tropical countries and countries where there are extreme environmental changes. Such changes create stress in animals and influence the production of spermatozoa. High temperatures during hot summer months may result in lower feed consumption and create stresses that result in the inhibition of spermatogenesis. Although tropical countries do not have a problem with major variations in day length, this can cause problems such as decreased litter size and infertility in other regions of the world. Evaporative cooling systems built into boar accommodation are often used to reduce fluctuations in both temperature and humidity during the hot and humid months seen in tropical countries. The system has become popular in AI boar studs, where it is reported to reduce stress and improve feed consumption. Other management factors, such as housing comfort, social contact, mating conditions and the frequency of mating, are also very important boar management aids that assist good quality semen production; these will be covered briefly in this review. This review will consider primarily those management factors, for example, the management of temperature and humidity using evaporative cooling systems and other techniques that enable AI boar studs to maximize sperm fertility through adjustments to the environment. PMID:15626423

  10. Thermomechanical characterization of environmentally conditioned shape memory polymer using nanoindentation

    NASA Astrophysics Data System (ADS)

    Fulcher, J. T.; Lu, Y. C.; Tandon, G. P.; Foster, D. C.

    2010-04-01

    Shape memory polymers (SMPs) are an emerging class of active polymers that have dual-shape capability, and are therefore candidate materials for multifunctional reconfigurable structures (i.e., morphing structures). However, the SMPs have not been fully tested to work in relevant environments (variable activation temperature, fuel and water swell, UV radiation, etc.) required for Air Force missions. In this study, epoxy-based SMPs were conditioned separately in simulated service environments designed to be reflective of anticipated performance requirements, namely, (1) exposure to UV radiation for 125 cycles, (2) immersion in jet-oil at ambient temperature, (3) immersion in jet-oil at 49°C, and (4) immersion in water at 49°C. The novel high-temperature indentation method was used to evaluate the mechanical properties and shape recovery ability of the conditioned SMPs. Results show that environmentally conditioned SMPs exhibit higher moduli in comparison to an unconditioned one. During free recovery, the indentation impressions of all SMPs disappeared as temperature reached above Tg, indicating that the material's ability to regain shape remains relatively unchanged with conditioning.

  11. Abiotic Buildup of Ozone

    NASA Astrophysics Data System (ADS)

    Domagal-Goldman, S. D.; Meadows, V. S.

    2010-10-01

    Two of the best biosignature gases for remote detection of life on extrasolar planets are oxygen (O2) and its photochemical byproduct, ozone (O3). The main reason for their prominence as biosignatures is that large abiotic fluxes of O2 and O3 are not considered sustainable on geological and astronomical timescales. We show here how buildup of O3 can occur on planets orbiting M stars, even in the absence of the large biological fluxes. This is possible because the destruction of O2 and O3 is driven by UV photochemistry. This chemistry is much slower on planets around these stars, due to the smaller incident UV flux. Because the destruction of these gases is slower, O3 can build up to detectable levels even if the O3 source is small. We will present atmospheric profiles of these gases for planets around AD Leo (an M dwarf) as well as spectra that show the implications for missions such as Darwin and the Terrestrial Planet Finder (TPF).

  12. Multimodal cues improve prey localization under complex environmental conditions.

    PubMed

    Rhebergen, F; Taylor, R C; Ryan, M J; Page, R A; Halfwerk, W

    2015-09-01

    Predators often eavesdrop on sexual displays of their prey. These displays can provide multimodal cues that aid predators, but the benefits in attending to them should depend on the environmental sensory conditions under which they forage. We assessed whether bats hunting for frogs use multimodal cues to locate their prey and whether their use varies with ambient conditions. We used a robotic set-up mimicking the sexual display of a male túngara frog (Physalaemus pustulosus) to test prey assessment by fringe-lipped bats (Trachops cirrhosus). These predatory bats primarily use sound of the frog's call to find their prey, but the bats also use echolocation cues returning from the frog's dynamically moving vocal sac. In the first experiment, we show that multimodal cues affect attack behaviour: bats made narrower flank attack angles on multimodal trials compared with unimodal trials during which they could only rely on the sound of the frog. In the second experiment, we explored the bat's use of prey cues in an acoustically more complex environment. Túngara frogs often form mixed-species choruses with other frogs, including the hourglass frog (Dendropsophus ebraccatus). Using a multi-speaker set-up, we tested bat approaches and attacks on the robofrog under three different levels of acoustic complexity: no calling D. ebraccatus males, two calling D. ebraccatus males and five D. ebraccatus males. We found that bats are more directional in their approach to the robofrog when more D. ebraccatus males were calling. Thus, bats seemed to benefit more from multimodal cues when confronted with increased levels of acoustic complexity in their foraging environments. Our data have important consequences for our understanding of the evolution of multimodal sexual displays as they reveal how environmental conditions can alter the natural selection pressures acting on them. PMID:26336176

  13. Multimodal cues improve prey localization under complex environmental conditions

    PubMed Central

    Rhebergen, F.; Taylor, R. C.; Ryan, M. J.; Page, R. A.; Halfwerk, W.

    2015-01-01

    Predators often eavesdrop on sexual displays of their prey. These displays can provide multimodal cues that aid predators, but the benefits in attending to them should depend on the environmental sensory conditions under which they forage. We assessed whether bats hunting for frogs use multimodal cues to locate their prey and whether their use varies with ambient conditions. We used a robotic set-up mimicking the sexual display of a male túngara frog (Physalaemus pustulosus) to test prey assessment by fringe-lipped bats (Trachops cirrhosus). These predatory bats primarily use sound of the frog's call to find their prey, but the bats also use echolocation cues returning from the frog's dynamically moving vocal sac. In the first experiment, we show that multimodal cues affect attack behaviour: bats made narrower flank attack angles on multimodal trials compared with unimodal trials during which they could only rely on the sound of the frog. In the second experiment, we explored the bat's use of prey cues in an acoustically more complex environment. Túngara frogs often form mixed-species choruses with other frogs, including the hourglass frog (Dendropsophus ebraccatus). Using a multi-speaker set-up, we tested bat approaches and attacks on the robofrog under three different levels of acoustic complexity: no calling D. ebraccatus males, two calling D. ebraccatus males and five D. ebraccatus males. We found that bats are more directional in their approach to the robofrog when more D. ebraccatus males were calling. Thus, bats seemed to benefit more from multimodal cues when confronted with increased levels of acoustic complexity in their foraging environments. Our data have important consequences for our understanding of the evolution of multimodal sexual displays as they reveal how environmental conditions can alter the natural selection pressures acting on them. PMID:26336176

  14. MicroRNAs As Potential Targets for Abiotic Stress Tolerance in Plants

    PubMed Central

    Shriram, Varsha; Kumar, Vinay; Devarumath, Rachayya M.; Khare, Tushar S.; Wani, Shabir H.

    2016-01-01

    The microRNAs (miRNAs) are small (20–24 nt) sized, non-coding, single stranded riboregulator RNAs abundant in higher organisms. Recent findings have established that plants assign miRNAs as critical post-transcriptional regulators of gene expression in sequence-specific manner to respond to numerous abiotic stresses they face during their growth cycle. These small RNAs regulate gene expression via translational inhibition. Usually, stress induced miRNAs downregulate their target mRNAs, whereas, their downregulation leads to accumulation and function of positive regulators. In the past decade, investigations were mainly aimed to identify plant miRNAs, responsive to individual or multiple environmental factors, profiling their expression patterns and recognizing their roles in stress responses and tolerance. Altered expressions of miRNAs implicated in plant growth and development have been reported in several plant species subjected to abiotic stress conditions such as drought, salinity, extreme temperatures, nutrient deprivation, and heavy metals. These findings indicate that miRNAs may hold the key as potential targets for genetic manipulations to engineer abiotic stress tolerance in crop plants. This review is aimed to provide recent updates on plant miRNAs, their biogenesis and functions, target prediction and identification, computational tools and databases available for plant miRNAs, and their roles in abiotic stress-responses and adaptive mechanisms in major crop plants. Besides, the recent case studies for overexpressing the selected miRNAs for miRNA-mediated enhanced abiotic stress tolerance of transgenic plants have been discussed. PMID:27379117

  15. MicroRNAs As Potential Targets for Abiotic Stress Tolerance in Plants.

    PubMed

    Shriram, Varsha; Kumar, Vinay; Devarumath, Rachayya M; Khare, Tushar S; Wani, Shabir H

    2016-01-01

    The microRNAs (miRNAs) are small (20-24 nt) sized, non-coding, single stranded riboregulator RNAs abundant in higher organisms. Recent findings have established that plants assign miRNAs as critical post-transcriptional regulators of gene expression in sequence-specific manner to respond to numerous abiotic stresses they face during their growth cycle. These small RNAs regulate gene expression via translational inhibition. Usually, stress induced miRNAs downregulate their target mRNAs, whereas, their downregulation leads to accumulation and function of positive regulators. In the past decade, investigations were mainly aimed to identify plant miRNAs, responsive to individual or multiple environmental factors, profiling their expression patterns and recognizing their roles in stress responses and tolerance. Altered expressions of miRNAs implicated in plant growth and development have been reported in several plant species subjected to abiotic stress conditions such as drought, salinity, extreme temperatures, nutrient deprivation, and heavy metals. These findings indicate that miRNAs may hold the key as potential targets for genetic manipulations to engineer abiotic stress tolerance in crop plants. This review is aimed to provide recent updates on plant miRNAs, their biogenesis and functions, target prediction and identification, computational tools and databases available for plant miRNAs, and their roles in abiotic stress-responses and adaptive mechanisms in major crop plants. Besides, the recent case studies for overexpressing the selected miRNAs for miRNA-mediated enhanced abiotic stress tolerance of transgenic plants have been discussed. PMID:27379117

  16. Reactive oxygen species in abiotic stress signaling.

    PubMed

    Jaspers, Pinja; Kangasjärvi, Jaakko

    2010-04-01

    Reactive oxygen species (ROS) are known to accumulate during abiotic stresses, and different cellular compartments respond to them by distinctive profiles of ROS formation. In contrast to earlier views, it is becoming increasingly evident that even during stress, ROS production is not necessarily a symptom of cellular dysfunction but might represent a necessary signal in adjusting the cellular machinery to the altered conditions. ROS can modulate many signal transduction pathways, such as mitogen-activated protein kinase cascades, and ultimately influence the activity of transcription factors. However, the picture of ROS-mediated signaling is still fragmentary and the issues of ROS perception as well as the signaling specificity remain open. Here, we review some of the recent advances in plant abiotic stress signaling with emphasis on processes known to be affected heavily by ROS. PMID:20028478

  17. Environmental factors affecting indole metabolism under anaerobic conditions

    SciTech Connect

    Madsen, E.L.; Francis, A.J.; Bollag, J.M.

    1988-01-01

    The influence of physiological and environmental factors on the accumulation of oxindole during anaerobic indole metabolism was investigated by high-performance liquid chromatography. Under methanogenic conditions, indole was temporarily converted to oxindole in stoichiometric amounts in media inoculated with three freshwater sediments and an organic soil. In media inoculated with methanogenic sewage sludge, the modest amounts of oxindole detected at 35/sup 0/C reached higher concentrations and persisted longer when the incubation temperature was decreased from 35 to 15/sup 0/C. Also, decreasing the concentration of sewage sludge used as an inoculum from 50 to 1% caused an increase in the accumulation of oxindole from 10 to 75% of the indole added. Under denitrifying conditions, regardless of the concentration or source of the inoculum, oxindole appeared in trace amounts but did not accumulate during indole metabolism. In addition, denitrifying consortia which previously metabolized indole degraded oxindole with no lag period. Our data suggest that oxindole accumulation under methanogenic, but not under denitrifying conditions is caused by differences between relative rates of oxindole production and destruction.

  18. Pre-exposure of Arabidopsis to the abiotic or biotic environmental stimuli “chilling” or “insect eggs” exhibits different transcriptomic responses to herbivory

    PubMed Central

    Firtzlaff, Vivien; Oberländer, Jana; Geiselhardt, Sven; Hilker, Monika; Kunze, Reinhard

    2016-01-01

    Plants can retain information about environmental stress and thus, prepare themselves for impending stress. In nature, it happens that environmental stimuli like ‘cold’ and ‘insect egg deposition’ precede insect herbivory. Both these stimuli are known to elicit transcriptomic changes in Arabidposis thaliana. It is unknown, however, whether they affect the plant’s anti-herbivore defence and feeding-induced transcriptome when they end prior to herbivory. Here we investigated the transcriptomic response of Arabidopsis to feeding by Pieris brassicae larvae after prior exposure to cold or oviposition. The transcriptome of plants that experienced a five-day-chilling period (4 °C) was not fully reset to the pre-chilling state after deacclimation (20 °C) for one day and responded differently to herbivory than that of chilling-inexperienced plants. In contrast, when after a five-day-lasting oviposition period the eggs were removed, one day later the transcriptome and, consistently, also its response to herbivory resembled that of egg-free plants. Larval performance was unaffected by previous exposure of plants to cold and to eggs, thus indicating P. brassicae tolerance to cold-mediated plant transcriptomic changes. Our results show strong differences in the persistence of the plant’s transcriptomic state after removal of different environmental cues, and consequently differential effects on the transcriptomic response to later herbivory. PMID:27329974

  19. Pre-exposure of Arabidopsis to the abiotic or biotic environmental stimuli "chilling" or "insect eggs" exhibits different transcriptomic responses to herbivory.

    PubMed

    Firtzlaff, Vivien; Oberländer, Jana; Geiselhardt, Sven; Hilker, Monika; Kunze, Reinhard

    2016-01-01

    Plants can retain information about environmental stress and thus, prepare themselves for impending stress. In nature, it happens that environmental stimuli like 'cold' and 'insect egg deposition' precede insect herbivory. Both these stimuli are known to elicit transcriptomic changes in Arabidposis thaliana. It is unknown, however, whether they affect the plant's anti-herbivore defence and feeding-induced transcriptome when they end prior to herbivory. Here we investigated the transcriptomic response of Arabidopsis to feeding by Pieris brassicae larvae after prior exposure to cold or oviposition. The transcriptome of plants that experienced a five-day-chilling period (4 °C) was not fully reset to the pre-chilling state after deacclimation (20 °C) for one day and responded differently to herbivory than that of chilling-inexperienced plants. In contrast, when after a five-day-lasting oviposition period the eggs were removed, one day later the transcriptome and, consistently, also its response to herbivory resembled that of egg-free plants. Larval performance was unaffected by previous exposure of plants to cold and to eggs, thus indicating P. brassicae tolerance to cold-mediated plant transcriptomic changes. Our results show strong differences in the persistence of the plant's transcriptomic state after removal of different environmental cues, and consequently differential effects on the transcriptomic response to later herbivory. PMID:27329974

  20. Environmental conditioning for textile yarn-spinning mill

    SciTech Connect

    Gengler, M.

    1996-06-01

    In mid-1993, Parkdale Mills, Inc., entered into a contract with Pneumafil Corporation to design and construct a total environmental conditioning system for their Plant No. 5 Open-End Spinning Room modernization program. This system was put into use in July 1994. Parkdale Mills in Gastonia, N.C. is one of the true innovators in the textile yarn-spinning business. The company presented a challenge to press technology to a new level to meet a number of well-defined goals. These goals were as follows: (1) Room temperature and humidity control -- Very accurate control to enable consistent production of the highest possible quality of yarn; (2) Energy efficiency -- The best achievable to assure the lowest possible production cost to the mill; (3) Dust levels -- The lowest possible within the mill for compliance with OSHA dust standards and for the least impact on yarn quality; and (4) Installed cost -- Not to exceed that of a conventionally designed system.

  1. [Extracellular factors of bacterial adaptation to unfavorable environmental conditions].

    PubMed

    Nikolaev, Iu A

    2004-01-01

    Data on extracellular compounds of bacteria involved in their adaptation to unfavorable environmental conditions are reviewed, including high or low temperatures, growth-inhibiting or bactericidal concentrations of toxic substances (oxidants, phenols, and heavy metals) and antibiotics, deviation of pH values from optimum levels, and salinity of the medium. Chemically, the compounds identified belong to diverse types (proteins, hydrocarbons, organic acids, nucleotides, amino acids, lipopeptides, volatile substances, etc.). Most of them remain unidentified, and their properties are studied using biological testing. It is proposed to view extracellular adaptation factors (EAFs) as a new group of biologically active substances. EAFs may be divided into several subgroups by the mechanism of action. These subgroups include protectors (stabilizers), signaling molecules inducing defense responses, regulators (e.g., adhesion regulators) not acting as inducers, and antidotes (neutralizers). The fields of EAF study include screening (search for new compounds, using biological tests), identification, and research into mechanisms of action. EAFs may find utility in biotechnology, medicine, agriculture, and environmental protection. PMID:15455710

  2. Leaching of metals from cement under simulated environmental conditions.

    PubMed

    Lu, Huixia; Wei, Fang; Tang, Jingchun; Giesy, John P

    2016-03-15

    Leaching of metals from cement under various environmental conditions was measured to evaluate their environmental safety. A cement product containing clinker, which was produced from cement kiln co-processing of hazardous wastes, was solidified and leaching of metals was characterized using the 8-period test. Concentrations and speciation of metals in cements were determined. Effects of ambient environment and particle size on leachability of metals and mineralogical phases of cement mortars were evaluated by use of XRD and SEM. Results indicated that metals in cements were leachable in various media in descending order of: sea water, groundwater and acid rain. Cr, Ni, As, Co and V were leached by simulated sea water, while Cu, Cd, Pb, Zn, Mn, Sb and Tl were not leached in simulated sea water, groundwater or acid rain. When exposed to simulated acid rain or groundwater, amounts of Cr, Ni, As and V leached was inversely proportional to particle size of cement mortar. According to the one-dimensional diffusion equation, Cr was most leachable and the cumulative leached mass was predicted to be 9.6 mg kg(-1) after 20 years. Results of this study are useful in predicting releases of metals from cement products containing ash and clinkers cement kiln co-processing of hazardous wastes, so that they can be safely applied in the environment. PMID:26802528

  3. The community conditioning hypothesis and its application to environmental toxicology

    SciTech Connect

    Matthews, R.A.; Landis, W.G.; Matthews, G.B.

    1996-04-01

    In this paper the authors present the community conditions hypothesis, ecological communities retain information bout events in their history. This hypothesis, which was derived from the concept of nonequilibrium community ecology, was developed as a framework for understanding the persistence of dose-related responses in multispecies toxicity tests. The authors present data from three standardized aquatic microcosm (SAM) toxicity tests using the water-soluble fractions from turbine fuels (Jet-A, JP-4, and JP-8). In all three tests, the toxicants depressed the Daphnia populations for several weeks, which resulted in algal blooms in the dosed microcosms due to lower predation rates. These effects were short-lived, and by the second and third months of the experiments, the Daphnia populations appeared to have recovered. However, multivariate analysis of the data released dose/response differences that reappeared during the later part of the tests, often due to differences in other consumers (rotifers, ostracods, ciliates), or algae that are not normally consumed (filamentous green algae and bluegreen algae). The findings are consistent with ecological theories that describe communities as the unique production of their etiologies. The implications of this to environmental toxicology are that almost all environmental events leave lasting effects, whether or not they have observed them.

  4. Evaluating microbial indicators of environmental condition in Oregon rivers.

    PubMed

    Pennington, A T; Harding, A K; Hendricks, C W; Campbell, H M

    2001-12-01

    Traditional bacterial indicators used in public health to assess water quality and the Biolog system were evaluated to compare their response to biological, chemical, and physical habitat indicators of stream condition both within the state of Oregon and among ecoregion aggregates (Coast Range, Willamette Valley, Cascades, and eastern Oregon). Forty-three randomly selected Oregon river sites were sampled during the summer in 1997 and 1998. The public health indicators included heterotrophic plate counts (HPC), total coliforms (TC), fecal coliforms (FC) and Escherichia coli (EC). Statewide, HPC correlated strongly with physical habitat (elevation, riparian complexity, % canopy presence, and indices of agriculture, pavement, road, pasture, and total disturbance) and chemistry (pH, dissolved O2, specific conductance, acid-neutralizing capacity, dissolved organic carbon, total N, total P, SiO2, and SO4). FC and EC were significantly correlated generally with the river chemistry indicators. TC bacteria significantly correlated with riparian complexity, road disturbance, dissolved O2, and SiO2 and FC. Analyzing the sites by ecoregion, eastern Oregon was characterized by high HPC, FC, EC, nutrient loads, and indices of human disturbance, whereas the Cascades ecoregion had correspondingly low counts of these indicators. The Coast Range and Willamette Valley presented inconsistent indicator patterns that are more difficult to characterize. Attempts to distinguish between ecoregions with the Biolog system were not successful, nor did a statistical pattern emerge between the first five principle components and the other environmental indicators. Our research suggests that some traditional public health microbial indicators may be useful in measuring the environmental condition of lotic systems. PMID:11915970

  5. Evaluating Microbial Indicators of Environmental Condition in Oregon Rivers

    NASA Astrophysics Data System (ADS)

    Pennington, Alan T.; Harding, Anna K.; Hendricks, Charles W.; Campbell, Heidi M. K.

    2001-12-01

    Traditional bacterial indicators used in public health to assess water quality and the Biolog® system were evaluated to compare their response to biological, chemical, and physical habitat indicators of stream condition both within the state of Oregon and among ecoregion aggregates (Coast Range, Willamette Valley, Cascades, and eastern Oregon). Forty-three randomly selected Oregon river sites were sampled during the summer in 1997 and 1998. The public health indicators included heterotrophic plate counts (HPC), total coliforms (TC), fecal coliforms (FC) and Escherichia coli (EC). Statewide, HPC correlated strongly with physical habitat (elevation, riparian complexity, % canopy presence, and indices of agriculture, pavement, road, pasture, and total disturbance) and chemistry (pH, dissolved O2, specific conductance, acid-neutralizing capacity, dissolved organic carbon, total N, total P, SiO2, and SO4). FC and EC were significantly correlated generally with the river chemistry indicators. TC bacteria significantly correlated with riparian complexity, road disturbance, dissolved O2, and SiO2 and FC. Analyzing the sites by ecoregion, eastern Oregon was characterized by high HPC, FC, EC, nutrient loads, and indices of human disturbance, whereas the Cascades ecoregion had correspondingly low counts of these indicators. The Coast Range and Willamette Valley presented inconsistent indicator patterns that are more difficult to characterize. Attempts to distinguish between ecoregions with the Biolog system were not successful, nor did a statistical pattern emerge between the first five principle components and the other environmental indicators. Our research suggests that some traditional public health microbial indicators may be useful in measuring the environmental condition of lotic systems.

  6. Pervaporative irrigation: a flow rate driven by environmental conditions

    NASA Astrophysics Data System (ADS)

    Todman, L. C.; Mougros, C.; Ireson, A. M.; Butler, A. P.; Templeton, M. R.

    2012-04-01

    Pervaporative irrigation allows in-situ treatment of low quality water (e.g. saline water) whilst simultaneously distributing water throughout the soil. The system is also low energy, requiring only that a positive head of water is maintained in a supply tank. To irrigate using this method a pervaporative polymer membrane is formed into a pipe, buried in the soil and filled with water. Water is transported across the membrane by the process of pervaporation whilst the transport of contaminants is retarded, thus reducing the risk of soil degradation due to the use of low water quality. Uniquely these systems also inherently provide a feedback mechanism by which crops can affect the irrigation rate. Such a system has significant possibilities to provide an irrigation pipe from which water is only applied when required, hence reducing the volume of water used. However such systems are currently not fully understood and, to be implemented effectively, the behaviour of the membrane in different environmental conditions must be quantified. From experimental results this work has identified the significance of vapour flows in predicting the flux from the irrigation system in dry soils. In a 15cm layer of sand, the presence of a desiccant above the soil doubled the flux from the pipe, but more than 70% of this mass was adsorbed by the desiccant. Experiments also show that the flux into typical top soil was greater than into sand because of the greater capacity of the top soil for water adsorption. This adsorption maintained a lower humidity in the soil, hence providing a larger gradient across the irrigation membrane and inducing a higher flux. Although there is some evidence that seeds can absorb water from vapour flows the possibility that plants also do this has not yet been explored. This technology provides future opportunities to explore the interaction of plants both with vapour flows, and with a system where the irrigation rate is influenced by the crop uptake and

  7. Environmental and Sanitary Conditions of Guanabara Bay, Rio de Janeiro

    PubMed Central

    Fistarol, Giovana O.; Coutinho, Felipe H.; Moreira, Ana Paula B.; Venas, Tainá; Cánovas, Alba; de Paula, Sérgio E. M.; Coutinho, Ricardo; de Moura, Rodrigo L.; Valentin, Jean Louis; Tenenbaum, Denise R.; Paranhos, Rodolfo; do Valle, Rogério de A. B.; Vicente, Ana Carolina P.; Amado Filho, Gilberto M.; Pereira, Renato Crespo; Kruger, Ricardo; Rezende, Carlos E.; Thompson, Cristiane C.; Salomon, Paulo S.; Thompson, Fabiano L.

    2015-01-01

    Guanabara Bay is the second largest bay in the coast of Brazil, with an area of 384 km2. In its surroundings live circa 16 million inhabitants, out of which 6 million live in Rio de Janeiro city, one of the largest cities of the country, and the host of the 2016 Olympic Games. Anthropogenic interference in Guanabara Bay area started early in the XVI century, but environmental impacts escalated from 1930, when this region underwent an industrialization process. Herein we present an overview of the current environmental and sanitary conditions of Guanabara Bay, a consequence of all these decades of impacts. We will focus on microbial communities, how they may affect higher trophic levels of the aquatic community and also human health. The anthropogenic impacts in the bay are flagged by heavy eutrophication and by the emergence of pathogenic microorganisms that are either carried by domestic and/or hospital waste (e.g., virus, KPC-producing bacteria, and fecal coliforms), or that proliferate in such conditions (e.g., vibrios). Antibiotic resistance genes are commonly found in metagenomes of Guanabara Bay planktonic microorganisms. Furthermore, eutrophication results in recurrent algal blooms, with signs of a shift toward flagellated, mixotrophic groups, including several potentially harmful species. A recent large-scale fish kill episode, and a long trend decrease in fish stocks also reflects the bay’s degraded water quality. Although pollution of Guanabara Bay is not a recent problem, the hosting of the 2016 Olympic Games propelled the government to launch a series of plans to restore the bay’s water quality. If all plans are fully implemented, the restoration of Guanabara Bay and its shores may be one of the best legacies of the Olympic Games in Rio de Janeiro. PMID:26635734

  8. Environmental and Sanitary Conditions of Guanabara Bay, Rio de Janeiro.

    PubMed

    Fistarol, Giovana O; Coutinho, Felipe H; Moreira, Ana Paula B; Venas, Tainá; Cánovas, Alba; de Paula, Sérgio E M; Coutinho, Ricardo; de Moura, Rodrigo L; Valentin, Jean Louis; Tenenbaum, Denise R; Paranhos, Rodolfo; do Valle, Rogério de A B; Vicente, Ana Carolina P; Amado Filho, Gilberto M; Pereira, Renato Crespo; Kruger, Ricardo; Rezende, Carlos E; Thompson, Cristiane C; Salomon, Paulo S; Thompson, Fabiano L

    2015-01-01

    Guanabara Bay is the second largest bay in the coast of Brazil, with an area of 384 km(2). In its surroundings live circa 16 million inhabitants, out of which 6 million live in Rio de Janeiro city, one of the largest cities of the country, and the host of the 2016 Olympic Games. Anthropogenic interference in Guanabara Bay area started early in the XVI century, but environmental impacts escalated from 1930, when this region underwent an industrialization process. Herein we present an overview of the current environmental and sanitary conditions of Guanabara Bay, a consequence of all these decades of impacts. We will focus on microbial communities, how they may affect higher trophic levels of the aquatic community and also human health. The anthropogenic impacts in the bay are flagged by heavy eutrophication and by the emergence of pathogenic microorganisms that are either carried by domestic and/or hospital waste (e.g., virus, KPC-producing bacteria, and fecal coliforms), or that proliferate in such conditions (e.g., vibrios). Antibiotic resistance genes are commonly found in metagenomes of Guanabara Bay planktonic microorganisms. Furthermore, eutrophication results in recurrent algal blooms, with signs of a shift toward flagellated, mixotrophic groups, including several potentially harmful species. A recent large-scale fish kill episode, and a long trend decrease in fish stocks also reflects the bay's degraded water quality. Although pollution of Guanabara Bay is not a recent problem, the hosting of the 2016 Olympic Games propelled the government to launch a series of plans to restore the bay's water quality. If all plans are fully implemented, the restoration of Guanabara Bay and its shores may be one of the best legacies of the Olympic Games in Rio de Janeiro. PMID:26635734

  9. Spectral Characterization of Phobos Analogues Under Simulated Environmental Conditions

    NASA Astrophysics Data System (ADS)

    Donaldson Hanna, K. L.; Bowles, N. E.; Edwards, C. S.; Glotch, T. D.; Greenhagen, B. T.; Pieters, C. M.; Thomas, I.

    2014-12-01

    The surface of Phobos holds many keys for understanding its formation and evolution as well as the history and dynamics of the Mars-Phobos system. Visible to near infrared (VNIR) observations suggests that Phobos' surface is compositionally heterogeneous with 'redder' and 'bluer' units that both appear to be anhydrous in nature. Lunar highland spectra have been identified as spectral analogues for the 'redder' and 'bluer' units while thermally metamorphosed CI/CM chondrites, lab-heated carbonaceous chondrites and highly space weathered mafic mineral assemblages have been identified as the best analogues for the 'bluer' surface units. Additionally, thermal infrared emissivity spectra indicate that if Phobos' surface is optically mature it may be rich in feldspar, which is consistent with VNIR observations of Phobos' surface being spectrally similar to lunar highland spectra. While remote observations provide key insights into the composition and evolution of planetary surfaces, a fundamentally important component to any remote compositional analysis of planetary surfaces is laboratory measurements of well-characterized samples measured under the appropriate environmental conditions. The vacuum environment of airless bodies creates a steep thermal gradient in the upper hundreds of microns of regolith. Lab studies of particulate rocks and minerals as well as selected lunar soils under vacuum and lunar-like conditions have identified significant effects of this thermal gradient on thermal infrared (TIR) spectral measurements. However recent lab measurements of carbonaceous chondrites demonstrated that simulated asteroid conditions do not affect the resulting emissivity spectra to the degree observed in lunar soils and is highly dependent on composition. Such lab studies demonstrate the high sensitivity of TIR emissivity spectra to environmental conditions under which they are measured and indicate that the near surface environment of all airless bodies do not

  10. 76 FR 59481 - Fifty Eighth Meeting: RTCA Special Committee 135, Environmental Conditions and Test Procedures...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-26

    ... public of a meeting of RTCA Special Committee 135: Environmental Conditions and Test Procedures for...), notice is hereby given for a RTCA Special Committee 135: Environmental Conditions and Test Procedures for... and Test Procedures for Airborne......

  11. Environmental Conditions Determine the Course and Outcome of Phytoplankton Chytridiomycosis.

    PubMed

    Rohrlack, Thomas; Haande, Sigrid; Molversmyr, Åge; Kyle, Marcia

    2015-01-01

    Chytrid fungi are highly potent parasites of phytoplankton. They are thought to force phytoplankton organisms into an evolutionary arms race with high population diversity as the outcome. The underlying selection regime is known as Red Queen dynamics. However, our study suggests a more complex picture for chytrid parasitism in the cyanobacterium Planktothrix. Laboratory experiments identified a "cold thermal refuge", inside which Planktothrix can grow without chytrid infection. A field study in two Norwegian lakes underlined the ecological significance of this finding. The study utilized sediment DNA as a biological archive in combination with existing monitoring data. In one lake, temperature and light conditions forced Planktothrix outside the thermal refuge for most of the growing season. This probably resulted in Red Queen dynamics as suggested by a high parasitic pressure exerted by chytrids, an increase in Planktothrix genotype diversity over time, and a correlation between Planktothrix genotype diversity and duration of bloom events. In the second lake, a colder climate allowed Planktothrix to largely stay inside the thermal refuge. The parasitic pressure exerted by chytrids and Planktothrix genotype diversity remained low, indicating that Planktothrix successfully evaded the Red Queen dynamics. Episodic Planktothrix blooms were observed during spring and autumn circulation, in the metalimnion or under the ice. Interestingly, both lakes were dominated by the same or related Planktothrix genotypes. Taken together, our data suggest that, depending on environmental conditions, chytrid parasitism can impose distinct selection regimes on conspecific phytoplankton populations with similar genotype composition, causing these populations to behave and perhaps to evolve differently. PMID:26714010

  12. Environmental conditions for alternative tree cover states in high latitudes

    NASA Astrophysics Data System (ADS)

    Abis, Beniamino; Brovkin, Victor

    2016-04-01

    Previous analysis of the vegetation cover from remote sensing revealed the existence of three alternative modes in the frequency distribution of boreal tree cover: a sparsely vegetated treeless state, a savanna-like state, and a forest state. Identifying which are the regions subject to multimodality, and assessing which are the main factors underlying their existence, is important to project future change of natural vegetation cover and its effect on climate. We study the impact on the forest cover fraction distribution of seven globally-observed environmental factors: mean annual rainfall, mean minimum temperature, growing degree days above 0, permafrost distribution, soil moisture, wildfire occurrence frequency, and thawing depth. Through the use of generalised additive models, regression trees, and conditional histograms, we find that the main factors determining the forest distribution in high latitudes are: permafrost distribution, mean annual rainfall, mean minimum temperature, soil moisture, and wildfire frequency. Additionally, we find differences between regions within the boreal area, such as Eurasia, Eastern North America, and Western North America. Furthermore, using a classification based on these factors, we show the existence and location of alternative tree cover states under the same climate conditions in the boreal region. These are areas of potential interest for a more detailed analysis of land-atmosphere interactions.

  13. [Individual adaptation strategy under extreme environmental conditions in humans].

    PubMed

    Soroko, S I; Aldasheva, A A

    2012-01-01

    Starting from the researches of I.M. Sechenov, I.P. Pavlov, A.A. Uchtomskii, the Russian psychophysiological school considers adaptation in connection with the biological and social origin of a man as the integrated, coordinated and self-controlled human organism's reaction to maintain the vital functions in the constantly changing environmental conditions. On the base of well-known systemic-dynamic methodology and scrutinizing the issue of man and environment interaction V.I. Medvedev added to the theory of man's adaptation the activity paradigm that enable to uncover the distinctive features of professional activities in various environment conditions. The theoretical and practical investigations based on the activity methodology gave the opportunity to find out the new principles of interaction between man and environment and on the strategy of adaptive behavior. From this investigations one could see that the main characteristic of interaction "man-environment" is that man represents proactive side, man simulate different adaptation strategies using both genetically-fixed and acquired mechanisms of adaptive behavior. PMID:23393785

  14. Improved Tolerance to Various Abiotic Stresses in Transgenic Sweet Potato (Ipomoea batatas) Expressing Spinach Betaine Aldehyde Dehydrogenase

    PubMed Central

    Fan, Weijuan; Zhang, Min; Zhang, Hongxia; Zhang, Peng

    2012-01-01

    Abiotic stresses are critical delimiters for the increased productivity and cultivation expansion of sweet potato (Ipomoea batatas), a root crop with worldwide importance. The increased production of glycine betaine (GB) improves plant tolerance to various abiotic stresses without strong phenotypic changes, providing a feasible approach to improve stable yield production under unfavorable conditions. The gene encoding betaine aldehyde dehydrogenase (BADH) is involved in the biosynthesis of GB in plants, and the accumulation of GB by the heterologous overexpression of BADH improves abiotic stress tolerance in plants. This study is to improve sweet potato, a GB accumulator, resistant to multiple abiotic stresses by promoted GB biosynthesis. A chloroplastic BADH gene from Spinacia oleracea (SoBADH) was introduced into the sweet potato cultivar Sushu-2 via Agrobacterium-mediated transformation. The overexpression of SoBADH in the transgenic sweet potato improved tolerance to various abiotic stresses, including salt, oxidative stress, and low temperature. The increased BADH activity and GB accumulation in the transgenic plant lines under normal and multiple environmental stresses resulted in increased protection against cell damage through the maintenance of cell membrane integrity, stronger photosynthetic activity, reduced reactive oxygen species (ROS) production, and induction or activation of ROS scavenging by the increased activity of free radical-scavenging enzymes. The increased proline accumulation and systemic upregulation of many ROS-scavenging genes in stress-treated transgenic plants also indicated that GB accumulation might stimulate the ROS-scavenging system and proline biosynthesis via an integrative mechanism. This study demonstrates that the enhancement of GB biosynthesis in sweet potato is an effective and feasible approach to improve its tolerance to multiple abiotic stresses without causing phenotypic defects. This strategy for trait improvement in

  15. Plant-insect interactions from Middle Triassic (late Ladinian) of Monte Agnello (Dolomites, N-Italy)-initial pattern and response to abiotic environmental perturbations.

    PubMed

    Wappler, Torsten; Kustatscher, Evelyn; Dellantonio, Elio

    2015-01-01

    The Paleozoic-Mesozoic transition is characterized by the most massive extinction of the Phanerozoic. Nevertheless, an impressive adaptive radiation of herbivorous insects occurred on gymnosperm-dominated floras not earlier than during the Middle to Late Triassic, penecontemporaneous with similar events worldwide, all which exhibit parallel expansions of generalized and mostly specialized insect herbivory on plants, expressed as insect damage on a various plant organs and tissues. The flora from Monte Agnello is distinctive, due to its preservation in subaerially deposited pyroclastic layers with exceptionally preserved details. Thus, the para-autochthonous assemblage provides insights into environmental disturbances, caused by volcanic activity, and how they profoundly affected the structure and composition of herbivory patterns. These diverse Middle Triassic biota supply extensive evidence for insect herbivore colonization, resulting in specific and complex herbivory patterns involving the frequency and diversity of 20 distinctive damage types (DTs). These DT patterns show that external foliage feeders, piercer-and-suckers, leaf miners, gallers, and oviposition culprits were intricately using almost all tissue types from the dominant host plants of voltzialean conifers (e.g., Voltzia), horsetails, ferns (e.g., Neuropteridium, Phlebopteris, Cladophlebis and Thaumatopteris), seed ferns (e.g., Scytophyllum), and cycadophytes (e.g., Bjuvia and Nilssonia). PMID:25945313

  16. Plant–insect interactions from Middle Triassic (late Ladinian) of Monte Agnello (Dolomites, N-Italy)—initial pattern and response to abiotic environmental perturbations

    PubMed Central

    Kustatscher, Evelyn; Dellantonio, Elio

    2015-01-01

    The Paleozoic–Mesozoic transition is characterized by the most massive extinction of the Phanerozoic. Nevertheless, an impressive adaptive radiation of herbivorous insects occurred on gymnosperm-dominated floras not earlier than during the Middle to Late Triassic, penecontemporaneous with similar events worldwide, all which exhibit parallel expansions of generalized and mostly specialized insect herbivory on plants, expressed as insect damage on a various plant organs and tissues. The flora from Monte Agnello is distinctive, due to its preservation in subaerially deposited pyroclastic layers with exceptionally preserved details. Thus, the para-autochthonous assemblage provides insights into environmental disturbances, caused by volcanic activity, and how they profoundly affected the structure and composition of herbivory patterns. These diverse Middle Triassic biota supply extensive evidence for insect herbivore colonization, resulting in specific and complex herbivory patterns involving the frequency and diversity of 20 distinctive damage types (DTs). These DT patterns show that external foliage feeders, piercer-and-suckers, leaf miners, gallers, and oviposition culprits were intricately using almost all tissue types from the dominant host plants of voltzialean conifers (e.g., Voltzia), horsetails, ferns (e.g., Neuropteridium, Phlebopteris, Cladophlebis and Thaumatopteris), seed ferns (e.g., Scytophyllum), and cycadophytes (e.g., Bjuvia and Nilssonia). PMID:25945313

  17. Evaluation of Diesel Exhaust Continuous Monitors in Controlled Environmental Conditions

    PubMed Central

    Yu, Chang Ho; Patton, Allison P.; Zhang, Andrew; Fanac, Zhi-Hua (Tina); Weisel, Clifford P.; Lioy, Paul J.

    2015-01-01

    Diesel exhaust (DE) contains a variety of toxic air pollutants, including diesel particulate matter (DPM) and gaseous contaminants (e.g., carbon monoxide (CO)). DPM is dominated by fine (PM2.5) and ultrafine particles (UFP), and can be representatively determined by its thermal-optical refractory as elemental carbon (EC) or light-absorbing characteristics as black carbon (BC). The currently accepted reference method for sampling and analysis of occupational exposure to DPM is the National Institute for Occupational Safety and Health (NIOSH) Method 5040. However, this method cannot provide in-situ short-term measurements of DPM. Thus, real-time monitors are gaining attention to better examine DE exposures in occupational settings. However, real-time monitors are subject to changing environmental conditions. Field measurements have reported interferences in optical sensors and subsequent real-time readings, under conditions of high humidity and abrupt temperature changes. To begin dealing with these issues, we completed a controlled study to evaluate five real-time monitors: Airtec real-time DPM/EC Monitor, TSI SidePak Personal Aerosol Monitor AM510 (PM2.5), TSI Condensation Particle Counter 3007, microAeth AE51 BC Aethalometer, and Langan T15n CO Measurer. Tests were conducted under different temperatures (55, 70, and 80 °F), relative humidity (10, 40, and 80%), and DPM concentrations (50 and 200 µg/m3) in a controlled exposure facility. The 2-hour averaged EC measurements from the Airtec instrument showed relatively good agreement with NIOSH Method 5040 (R2=0.84; slope=1.17±0.06; N=27) and reported ~17% higher EC concentrations than the NIOSH reference method. Temperature, relative humidity, and DPM levels did not significantly affect relative differences in 2-hour averaged EC concentrations obtained by the Airtec instrument versus the NIOSH method (p<0.05). Multiple linear regression analyses, based on 1-min averaged data, suggested combined effects of up to 5

  18. Biodegradation of a Light NAPL under Varying Soil Environmental Conditions

    NASA Astrophysics Data System (ADS)

    Yadav, B. K.; Hassanizadeh, S. M.; Kleingeld, P. J.

    2009-12-01

    To see the impact of different soil environmental conditions on LNAPL biodegradation, a series of batch, microcosm, column and 2-D tank experiments under controlled conditions have been planned. Microcosms along with batch experiments have been designed for five different moisture contents ranging from residual to saturated, and under varying temperature condition. The batches are being used for two saturated soils containing toluene. For the unsaturated cases, fifteen microcosms are designed to mimic natural conditions more closely. The microcosms consist of a transparent outer column and an air permeable, but watertight, inner tube comprised of toluene phobic material. The space between the outer column and the inner porous tube is filled with a soil having a particular moisture content with a known amount of toluene. The inner porous tube is filled with air at atmospheric pressure, providing sufficient oxygen for the degradation of considered light NAPL. A special sampling mechanism has been fabricated to enable airtight soil sampling. Four columns have been designed for studying the impact of water table fluctuation on the LNAPL fate and transport in variably-saturated soil. Water table in two columns will be static and remaining two will be subjected to a fluctuation. Finally a 2-D tank setup, made of a steel box and a glass cover, has been refurbished for bioremediation process of LNAPL from start to finish. The main body is constructed of one piece of 1.5 mm thick stainless steel formed into a box with inner dimensions of 200cm-long x 94cm-high x 4cm-deep. The front cover is made of glass wall having 19-mm thickness. The soil is going to be packed between the two walls. The groundwater will be flowing horizontally from left to right and the water table level in the tank will be controlled by two end chambers. The chambers are separated from the soil by a fine meshed stainless steel sheet. The spatial and the temporal distributions of the LNAPL and its

  19. Environmental Conditions Determine the Course and Outcome of Phytoplankton Chytridiomycosis

    PubMed Central

    Haande, Sigrid; Molversmyr, Åge

    2015-01-01

    Chytrid fungi are highly potent parasites of phytoplankton. They are thought to force phytoplankton organisms into an evolutionary arms race with high population diversity as the outcome. The underlying selection regime is known as Red Queen dynamics. However, our study suggests a more complex picture for chytrid parasitism in the cyanobacterium Planktothrix. Laboratory experiments identified a “cold thermal refuge”, inside which Planktothrix can grow without chytrid infection. A field study in two Norwegian lakes underlined the ecological significance of this finding. The study utilized sediment DNA as a biological archive in combination with existing monitoring data. In one lake, temperature and light conditions forced Planktothrix outside the thermal refuge for most of the growing season. This probably resulted in Red Queen dynamics as suggested by a high parasitic pressure exerted by chytrids, an increase in Planktothrix genotype diversity over time, and a correlation between Planktothrix genotype diversity and duration of bloom events. In the second lake, a colder climate allowed Planktothrix to largely stay inside the thermal refuge. The parasitic pressure exerted by chytrids and Planktothrix genotype diversity remained low, indicating that Planktothrix successfully evaded the Red Queen dynamics. Episodic Planktothrix blooms were observed during spring and autumn circulation, in the metalimnion or under the ice. Interestingly, both lakes were dominated by the same or related Planktothrix genotypes. Taken together, our data suggest that, depending on environmental conditions, chytrid parasitism can impose distinct selection regimes on conspecific phytoplankton populations with similar genotype composition, causing these populations to behave and perhaps to evolve differently. PMID:26714010

  20. Transport Across Chloroplast Membranes: Optimizing Photosynthesis for Adverse Environmental Conditions.

    PubMed

    Pottosin, Igor; Shabala, Sergey

    2016-03-01

    Chloroplasts are central to solar light harvesting and photosynthesis. Optimal chloroplast functioning is vitally dependent on a very intensive traffic of metabolites and ions between the cytosol and stroma, and should be attuned for adverse environmental conditions. This is achieved by an orchestrated regulation of a variety of transport systems located at chloroplast membranes such as porines, solute channels, ion-specific cation and anion channels, and various primary and secondary active transport systems. In this review we describe the molecular nature and functional properties of the inner and outer envelope and thylakoid membrane channels and transporters. We then discuss how their orchestrated regulation affects thylakoid structure, electron transport and excitation energy transfer, proton-motive force partition, ion homeostasis, stromal pH regulation, and volume regulation. We link the activity of key cation and anion transport systems with stress-specific signaling processes in chloroplasts, and discuss how these signals interact with the signals generated in other organelles to optimize the cell performance, with a special emphasis on Ca(2+) and reactive oxygen species signaling. PMID:26597501

  1. Age at menarche: the influence of environmental conditions

    NASA Astrophysics Data System (ADS)

    Saar, E.; Shalev, C.; Dalal, I.; Sod-Moriah, U. A.

    1988-03-01

    Age at menarche was studied by the recollection method in two groups of Causasian Jewish high school girls, inhabitants of two towns in Israel, Safad and Elat. The two towns differ mainly in climatic conditions. The age at menarche was found to be significantly lower ( P<0.02) in the hot town of Elat than in the temperate town of Safad: 13.30±1.21 and 13.58±0.9 years, respectively (mean ±SD). A significant association was found between the age at menarche and the town in which the girls lived. Accordingly, in the hot town of Elat, the percentage of girls who had their first menstrual cycle by the age of 12 years and earlier, was more than double that of the girls in Safad (17.9% and 7.1%, respectively). It is concluded that the environmental temperature, with or without any possible interaction of humidity, is probably responsible for the tendency for an earlier onset of menarche in girls living in the hot town of Elat.

  2. Interaction of ribonucleotides with oxide and silicate minerals under varying environmental conditions

    NASA Astrophysics Data System (ADS)

    Feuillie, C.; Sverjensky, D. A.; Hazen, R. M.

    2013-12-01

    results provide a better understanding of how nucleic acids attach to mineral surfaces under varying environmental conditions in soil environments. Moreover, the predicted configuration of nucleotide surface species, bound via the phosphate group, could have implications for the abiotic formation and concentration of nucleic acids in the context of the origin of life. References : [1] Lorenz and Wackernagel (1987), Applied and environmental microbial., 2948-2952 [2] Ferris (2005), Reviews in mineralogy & geochemistry 59, 187-210 [3] Cleaves H.J. et al. (2011), Chemosphere 83, 1560-1567 [4] Arora & Kamaluddin (2009), Astrobiology 9, 165-171 [5] Cai et al. (2006), Environ. Sci. Technol. 40 (9), 2971-2976 [6] Franchi and Gallori (2005),Gene 346, 205-214 [7] Scappini et al. (2004), International Journal of Astrobiology 3(1), 17-19 [8] Levy-Booth et al. (2007), Soil Biol. Biochem. 39, 2977-2991. [9] Feuillie et al. (2013), Geochimica et Cosmochimica Acta (in press)

  3. Biological Networks Underlying Abiotic Stress Tolerance in Temperate Crops—A Proteomic Perspective

    PubMed Central

    Kosová, Klára; Vítámvás, Pavel; Urban, Milan Oldřich; Klíma, Miroslav; Roy, Amitava; Prášil, Ilja Tom

    2015-01-01

    Abiotic stress factors, especially low temperatures, drought, and salinity, represent the major constraints limiting agricultural production in temperate climate. Under the conditions of global climate change, the risk of damaging effects of abiotic stresses on crop production increases. Plant stress response represents an active process aimed at an establishment of novel homeostasis under altered environmental conditions. Proteins play a crucial role in plant stress response since they are directly involved in shaping the final phenotype. In the review, results of proteomic studies focused on stress response of major crops grown in temperate climate including cereals: common wheat (Triticum aestivum), durum wheat (Triticum durum), barley (Hordeum vulgare), maize (Zea mays); leguminous plants: alfalfa (Medicago sativa), soybean (Glycine max), common bean (Phaseolus vulgaris), pea (Pisum sativum); oilseed rape (Brassica napus); potato (Solanum tuberosum); tobacco (Nicotiana tabaccum); tomato (Lycopersicon esculentum); and others, to a wide range of abiotic stresses (cold, drought, salinity, heat, imbalances in mineral nutrition and heavy metals) are summarized. The dynamics of changes in various protein functional groups including signaling and regulatory proteins, transcription factors, proteins involved in protein metabolism, amino acid metabolism, metabolism of several stress-related compounds, proteins with chaperone and protective functions as well as structural proteins (cell wall components, cytoskeleton) are briefly overviewed. Attention is paid to the differences found between differentially tolerant genotypes. In addition, proteomic studies aimed at proteomic investigation of multiple stress factors are discussed. In conclusion, contribution of proteomic studies to understanding the complexity of crop response to abiotic stresses as well as possibilities to identify and utilize protein markers in crop breeding processes are discussed. PMID:26340626

  4. Biological Networks Underlying Abiotic Stress Tolerance in Temperate Crops--A Proteomic Perspective.

    PubMed

    Kosová, Klára; Vítámvás, Pavel; Urban, Milan Oldřich; Klíma, Miroslav; Roy, Amitava; Prášil, Ilja Tom

    2015-01-01

    Abiotic stress factors, especially low temperatures, drought, and salinity, represent the major constraints limiting agricultural production in temperate climate. Under the conditions of global climate change, the risk of damaging effects of abiotic stresses on crop production increases. Plant stress response represents an active process aimed at an establishment of novel homeostasis under altered environmental conditions. Proteins play a crucial role in plant stress response since they are directly involved in shaping the final phenotype. In the review, results of proteomic studies focused on stress response of major crops grown in temperate climate including cereals: common wheat (Triticum aestivum), durum wheat (Triticum durum), barley (Hordeum vulgare), maize (Zea mays); leguminous plants: alfalfa (Medicago sativa), soybean (Glycine max), common bean (Phaseolus vulgaris), pea (Pisum sativum); oilseed rape (Brassica napus); potato (Solanum tuberosum); tobacco (Nicotiana tabaccum); tomato (Lycopersicon esculentum); and others, to a wide range of abiotic stresses (cold, drought, salinity, heat, imbalances in mineral nutrition and heavy metals) are summarized. The dynamics of changes in various protein functional groups including signaling and regulatory proteins, transcription factors, proteins involved in protein metabolism, amino acid metabolism, metabolism of several stress-related compounds, proteins with chaperone and protective functions as well as structural proteins (cell wall components, cytoskeleton) are briefly overviewed. Attention is paid to the differences found between differentially tolerant genotypes. In addition, proteomic studies aimed at proteomic investigation of multiple stress factors are discussed. In conclusion, contribution of proteomic studies to understanding the complexity of crop response to abiotic stresses as well as possibilities to identify and utilize protein markers in crop breeding processes are discussed. PMID:26340626

  5. Abiotic transformation of carbon tetrachloride at mineral surfaces. Final report, September 1990-September 1993

    SciTech Connect

    Kriegman-King, M.; Reinhard, M.

    1994-02-01

    The report addresses the ability of natural mineral surfaces to abiotically transform halogenated organic compounds in subsurface environments. The research focuses on carbon tetrachloride (CC14) as the halogenated organic and biotite, vermiculite, and pyrite as the mineral surfaces. The CCl4 transformation rates and products were quantified under different environmental conditions. The disappearance of CCl4 was significantly faster in the presence of mineral surfaces than in homogeneous solution. In systems containing the sheet silicates and HS-, the rate of reaction was dependent on the temperature, hydrogen sulfide ion concentration, surface concentration, and Fe(II) content in the minerals.

  6. Impact of Environmental Conditions on the Survival of Cryptosporidium and Giardia on Environmental Surfaces

    PubMed Central

    Alum, Absar; Absar, Isra M.; Asaad, Hamas; Rubino, Joseph R.; Ijaz, M. Khalid

    2014-01-01

    The objective of this study was to find out the impact of environmental conditions on the survival of intestinal parasites on environmental surfaces commonly implicated in the transmission of these parasites. The study was performed by incubating Cryptosporidium and Giardia (oo)cysts on environmentally relevant surfaces such as brushed stainless steel, formica, ceramic, fabric, and skin. Parallel experiments were conducted using clean and soiled coupons incubated under three temperatures. The die-off coefficient rates (K) were calculated using first-order exponential formula. For both parasites, the fastest die-off was recorded on fabric, followed by ceramic, formica, skin, and steel. Die-off rates were directly correlated to the incubation temperatures and surface porosity. The presence of organic matter enhanced the survivability of the resting stages of test parasites. The decay rates calculated in this study can be used in models for public health decision-making process and highlights the mitigation role of hand hygiene agents in their prevention and control. PMID:25045350

  7. ABIOTIC TRANSFORMATION PATHWAYS OF ORGANIC CHEMICALS IN AQUATIC ECOSYSTEMS

    EPA Science Inventory

    Information is presented for assessing the potential of an organic chemical to undergo abiotic transformation in aquatic ecosystems. hen predicting the environmental fate of an organic chemical, two primary questions must be addressed. irst, what are the reaction kinetics for the...

  8. NAC transcription factors in plant multiple abiotic stress responses: progress and prospects

    PubMed Central

    Shao, Hongbo; Wang, Hongyan; Tang, Xiaoli

    2015-01-01

    Abiotic stresses adversely affect plant growth and agricultural productivity. According to the current climate prediction models, crop plants will face a greater number of environmental stresses, which are likely to occur simultaneously in the future. So it is very urgent to breed broad-spectrum tolerant crops in order to meet an increasing demand for food productivity due to global population increase. As one of the largest families of transcription factors (TFs) in plants, NAC TFs play vital roles in regulating plant growth and development processes including abiotic stress responses. Lots of studies indicated that many stress-responsive NAC TFs had been used to improve stress tolerance in crop plants by genetic engineering. In this review, the recent progress in NAC TFs was summarized, and the potential utilization of NAC TFs in breeding abiotic stress tolerant transgenic crops was also be discussed. In view of the complexity of field conditions and the specificity in multiple stress responses, we suggest that the NAC TFs commonly induced by multiple stresses should be promising candidates to produce plants with enhanced multiple stress tolerance. Furthermore, the field evaluation of transgenic crops harboring NAC genes, as well as the suitable promoters for minimizing the negative effects caused by over-expressing some NAC genes, should be considered. PMID:26579152

  9. Recent Advances in Utilizing Transcription Factors to Improve Plant Abiotic Stress Tolerance by Transgenic Technology

    PubMed Central

    Wang, Hongyan; Wang, Honglei; Shao, Hongbo; Tang, Xiaoli

    2016-01-01

    Agricultural production and quality are adversely affected by various abiotic stresses worldwide and this will be exacerbated by the deterioration of global climate. To feed a growing world population, it is very urgent to breed stress-tolerant crops with higher yields and improved qualities against multiple environmental stresses. Since conventional breeding approaches had marginal success due to the complexity of stress tolerance traits, the transgenic approach is now being popularly used to breed stress-tolerant crops. So identifying and characterizing the critical genes involved in plant stress responses is an essential prerequisite for engineering stress-tolerant crops. Far beyond the manipulation of single functional gene, engineering certain regulatory genes has emerged as an effective strategy now for controlling the expression of many stress-responsive genes. Transcription factors (TFs) are good candidates for genetic engineering to breed stress-tolerant crop because of their role as master regulators of many stress-responsive genes. Many TFs belonging to families AP2/EREBP, MYB, WRKY, NAC, bZIP have been found to be involved in various abiotic stresses and some TF genes have also been engineered to improve stress tolerance in model and crop plants. In this review, we take five large families of TFs as examples and review the recent progress of TFs involved in plant abiotic stress responses and their potential utilization to improve multiple stress tolerance of crops in the field conditions. PMID:26904044

  10. Prediction of glass durability as a function of environmental conditions

    SciTech Connect

    Jantzen, C M

    1988-01-01

    A thermodynamic model of glass durability is applied to natural, ancient, and nuclear waste glasses. The durabilities of over 150 different natural and man-made glasses, including actual ancient Roman and Islamic glasses (Jalame ca. 350 AD, Nishapur 10-11th century AD and Gorgon 9-11th century AD), are compared. Glass durability is a function of the thermodynamic hydration free energy, ..delta..G/sub hyd/, which can be calculated from glass composition and solution pH. The durability of the most durable nuclear waste glasses examined was /approximately/10/sup 6/ years. The least durable waste glass formulations were comparable in durability to the most durable simulated medieval window glasses of /approximately/10/sup 3/ years. In this manner, the durability of nuclear waste glasses has been interpolated to be /approximately/10/sup 6/ years and no less than 10/sup 3/ years. Hydration thermodynamics have been shown to be applicable to the dissolution of glass in various natural environments. Groundwater-glass interactions relative to geologic disposal of nuclear waste, hydration rind dating of obsidians, andor other archeological studies can be modeled, e.g., the relative durabilities of six simulated medieval window glasses have been correctly predicted for both laboratory (one month) and burial (5 years) experiments. Effects of solution pH on glass dissolution has been determined experimentally for the 150 different glasses and can be predicted theoretically by hydration thermodynamics. The effects of solution redox on dissolution of glass matrix elements such as SI and B have shown to be minimal. The combined effects of solution pH and Eh have been described and unified by construction of thermodynamically calculated Pourbaix (pH-Eh) diagrams for glass dissolution. The Pourbaix diagrams have been quantified to describe glass dissolution as a function of environmental conditions by use of the data derived from hydration thermodynamics. 56 refs., 7 figs.

  11. Race, Social and Environmental Conditions, and Health Behaviors in Men.

    PubMed

    Thorpe, Roland J; Kennedy-Hendricks, Alene; Griffith, Derek M; Bruce, Marino A; Coa, Kisha; Bell, Caryn N; Young, Jessica; Bowie, Janice V; LaVeist, Thomas A

    2015-01-01

    Although understanding race differences in health behaviors among men is an important step in reducing disparities in leading causes of death in the United States, progress has been stifled when using national data because of the confounding of race, socioeconomic status, and residential segregation. The purpose of this study is to examine the nature of disparities in health behaviors among African American and white men in the Exploring Health Disparities in Integrated Communities Study-Southwest Baltimore, which was conducted in a racially integrated neighborhood of Baltimore to data from the 2003 National Health Interview Survey. After adjusting for age, marital status, insurance, income, educational attainment, poor or fair health, and obesity status, African American men in National Health Interview Survey had greater odds of being physically inactive (odds ratio [OR] = 1.48; 95% confidence interval [CI], 129-1.69), reduced odds of being a current smoker (OR = 0.77; 95% CI, 0.65-0.90), and reduced odds of being a current drinker (OR = 0.58; 95% CI, 0.50-0.67). In the Exploring Health Disparities in Integrated Communities Study-Southwest Baltimore sample, African American and white men had similar odds of being physically inactive (OR = 0.79; 95% CI, 0.50-1.24), being a current smoker (OR = 0.86; 95% CI, 0.60-1.23), or being a current drinker (OR = 1.34; 95% CI, 0.81-2.21). Because race disparities in these health behaviors were ameliorated in the sample where African American and white men were living under similar social, environmental, and socioeconomic status conditions, these findings suggest that social environment may be an important determinant of health behaviors among African American and white men. Public health interventions and health promotion strategies should consider the social environment when seeking to better understand men's health disparities. PMID:26291190

  12. EVALUATION OF GEOMEMBRANE SEAMS EXPOSED TO SELECTED ENVIRONMENTAL CONDITIONS

    EPA Science Inventory

    The integrity of a geomembrane installation is no better than its seaming system. In an attempt to learn more about the strength and durability of presently available seaming systems, the Municipal Environmental Research Laboratory of the United States Environmental Protection Ag...

  13. 75 FR 47881 - Fifty-Sixth Meeting, RTCA Special Committee 135: Environmental Conditions and Test Procedures for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-09

    ... Federal Aviation Administration Fifty-Sixth Meeting, RTCA Special Committee 135: Environmental Conditions... of Transportation (DOT). ACTION: Notice of RTCA Special Committee 135: Environmental Conditions and... public of a meeting of RTCA Special Committee 135: Environmental Conditions and Test Procedures...

  14. Shipping and natural environmental conditions determine the distribution of the invasive non-indigenous round goby Neogobius melanostomus in a regional sea

    NASA Astrophysics Data System (ADS)

    Kotta, Jonne; Nurkse, Kristiina; Puntila, Riikka; Ojaveer, Henn

    2016-02-01

    Introductions of non-indigenous species (NIS) are considered a major threat to aquatic ecosystems worldwide. While it is valuable to know the distributions and ranges of NIS, predictive spatial models along different environmental gradients are more useful for management of these species. In this study we modelled how external drivers and local environmental conditions contribute to the spatial distribution of an invasive species using the distribution of the round goby Neogobius melanostomus in the Baltic Sea as an example. Using the collected distribution data, an updated map on the species distribution and its invasion progress in the Baltic Sea was produced. The current range of the round goby observations is extensive, covering all major sub-basins of the Baltic Sea. The most recent observations appeared in the northern regions (Northern Baltic Proper, the Gulf of Bothnia and the Gulf of Finland) and on the eastern and western coasts of southern Sweden. Modelling results show that the distribution of the round goby is primarily related to local abiotic hydrological conditions (wave exposure). Furthermore, the probability of round goby occurrence was very high in areas in close proximity to large cargo ports. This links patterns of the round goby distribution in the Baltic Sea to shipping traffic and suggests that human factors together with natural environmental conditions are responsible for the spread of NIS at a regional sea scale.

  15. Current perspectives in proteomic analysis of abiotic stress in Grapevines

    PubMed Central

    George, Iniga S.; Haynes, Paul A.

    2014-01-01

    Grapes are an important crop plant which forms the basis of a globally important industry. Grape and wine production is particularly vulnerable to environmental and climatic fluctuations, which makes it essential for us to develop a greater understanding of the molecular level responses of grape plants to various abiotic stresses. The completion of the initial grape genome sequence in 2007 has led to a significant increase in research on grapes using proteomics approaches. In this article, we discuss some of the current research on abiotic stress in grapevines, in the context of abiotic stress research in other plant species. We also highlight some of the current limitations in grapevine proteomics and identify areas with promising scope for potential future research. PMID:25538720

  16. Transgenic banana plants overexpressing a native plasma membrane aquaporin MusaPIP1;2 display high tolerance levels to different abiotic stresses.

    PubMed

    Sreedharan, Shareena; Shekhawat, Upendra K S; Ganapathi, Thumballi R

    2013-10-01

    Water transport across cellular membranes is regulated by a family of water channel proteins known as aquaporins (AQPs). As most abiotic stresses like suboptimal temperatures, drought or salinity result in cellular dehydration, it is imperative to study the cause-effect relationship between AQPs and the cellular consequences of abiotic stress stimuli. Although plant cells have a high isoform diversity of AQPs, the individual and integrated roles of individual AQPs in optimal and suboptimal physiological conditions remain unclear. Herein, we have identified a plasma membrane intrinsic protein gene (MusaPIP1;2) from banana and characterized it by overexpression in transgenic banana plants. Cellular localization assay performed using MusaPIP1;2::GFP fusion protein indicated that MusaPIP1;2 translocated to plasma membrane in transformed banana cells. Transgenic banana plants overexpressing MusaPIP1;2 constitutively displayed better abiotic stress survival characteristics. The transgenic lines had lower malondialdehyde levels, elevated proline and relative water content and higher photosynthetic efficiency as compared to equivalent controls under different abiotic stress conditions. Greenhouse-maintained hardened transgenic plants showed faster recovery towards normal growth and development after cessation of abiotic stress stimuli, thereby underlining the importance of these plants in actual environmental conditions wherein the stress stimuli is often transient but severe. Further, transgenic plants where the overexpression of MusaPIP1;2 was made conditional by tagging it with a stress-inducible native dehydrin promoter also showed similar stress tolerance characteristics in in vitro and in vivo assays. Plants developed in this study could potentially enable banana cultivation in areas where adverse environmental conditions hitherto preclude commercial banana cultivation. PMID:23745761

  17. Evaluating reaction pathways of hydrothermal abiotic organic synthesis at elevated temperatures and pressures using carbon isotopes

    NASA Astrophysics Data System (ADS)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.

    2015-04-01

    Experiments were performed to better understand the role of environmental factors on reaction pathways and corresponding carbon isotope fractionations during abiotic hydrothermal synthesis of organic compounds using piston cylinder apparatus at 750 °C and 5.5 kbars. Chemical compositions of experimental products and corresponding carbon isotopic values were obtained by a Pyrolysis-GC-MS-IRMS system. Alkanes (methane and ethane), straight-chain saturated alcohols (ethanol and n-butanol) and monocarboxylic acids (formic and acetic acids) were generated with ethanol being the only organic compound with higher δ13C than CO2. CO was not detected in experimental products owing to the favorable water-gas shift reaction under high water pressure conditions. The pattern of δ13C values of CO2, carboxylic acids and alkanes are consistent with their equilibrium isotope relationships: CO2 > carboxylic acids > alkanes, but the magnitude of the fractionation among them is higher than predicted isotope equilibrium values. In particular, the isotopic fractionation between CO2 and CH4 remained constant at ∼31‰, indicating a kinetic effect during CO2 reduction processes. No "isotope reversal" of δ13C values for alkanes or carboxylic acids was observed, which indicates a different reaction pathway than what is typically observed during Fischer-Tropsch synthesis under gas phase conditions. Under constraints imposed in experiments, the anomalous 13C isotope enrichment in ethanol suggests that hydroxymethylene is the organic intermediate, and that the generation of other organic compounds enriched in 12C were facilitated by subsequent Rayleigh fractionation of hydroxymethylene reacting with H2 and/or H2O. Carbon isotope fractionation data obtained in this study are instrumental in assessing the controlling factors on abiotic formation of organic compounds in hydrothermal systems. Knowledge on how environmental conditions affect reaction pathways of abiotic synthesis of organic

  18. OVERALL MASS TRANSFER COEFFICIENT FOR POLLUTANT EMISSIONS FROM SMALL WATER POOLS UNDER SIMULATED INDOOR ENVIRONMENTAL CONDITIONS

    EPA Science Inventory

    Small chamber tests were conducted to experimentally determine the overall mass transfer coefficient for pollutant emissions from still water under simulated indoor-residential or occupational-environmental conditions. Fourteen tests were conducted in small environmental chambers...

  19. INTEGRATED ASSESSMENTS OF THE ENVIRONMENTAL CONDITION OF THE CHESAPEAKE BAY

    EPA Science Inventory

    The Chesapeake Bay, the Nation's largest estuary, has experienced environmental degradation due to nutrient enrichment, contamination, loss of habitat, and over-harvesting of living resources. Resource managers need information on the extent of degradation to formulate restoratio...

  20. Cytosine Methylation Alteration in Natural Populations of Leymus chinensis Induced by Multiple Abiotic Stresses

    PubMed Central

    Yu, Yingjie; Yang, Xuejiao; Wang, Huaying; Shi, Fengxue; Liu, Ying; Liu, Jushan; Li, Linfeng; Wang, Deli; Liu, Bao

    2013-01-01

    Background Human activity has a profound effect on the global environment and caused frequent occurrence of climatic fluctuations. To survive, plants need to adapt to the changing environmental conditions through altering their morphological and physiological traits. One known mechanism for phenotypic innovation to be achieved is environment-induced rapid yet inheritable epigenetic changes. Therefore, the use of molecular techniques to address the epigenetic mechanisms underpinning stress adaptation in plants is an important and challenging topic in biological research. In this study, we investigated the impact of warming, nitrogen (N) addition, and warming+nitrogen (N) addition stresses on the cytosine methylation status of Leymus chinensis Tzvel. at the population level by using the amplified fragment length polymorphism (AFLP), methylation-sensitive amplified polymorphism (MSAP) and retrotransposon based sequence-specific amplification polymorphism (SSAP) techniques. Methodology/Principal Findings Our results showed that, although the percentages of cytosine methylation changes in SSAP are significantly higher than those in MSAP, all the treatment groups showed similar alteration patterns of hypermethylation and hypomethylation. It meant that the abiotic stresses have induced the alterations in cytosine methylation patterns, and the levels of cytosine methylation changes around the transposable element are higher than the other genomic regions. In addition, the identification and analysis of differentially methylated loci (DML) indicated that the abiotic stresses have also caused targeted methylation changes at specific loci and these DML might have contributed to the capability of plants in adaptation to the abiotic stresses. Conclusions/Significance Our results demonstrated that abiotic stresses related to global warming and nitrogen deposition readily evoke alterations of cytosine methylation, and which may provide a molecular basis for rapid adaptation by

  1. Abiotic stress responses in plants: roles of calmodulin-regulated proteins

    PubMed Central

    Virdi, Amardeep S.; Singh, Supreet; Singh, Prabhjeet

    2015-01-01

    Intracellular changes in calcium ions (Ca2+) in response to different biotic and abiotic stimuli are detected by various sensor proteins in the plant cell. Calmodulin (CaM) is one of the most extensively studied Ca2+-sensing proteins and has been shown to be involved in transduction of Ca2+ signals. After interacting with Ca2+, CaM undergoes conformational change and influences the activities of a diverse range of CaM-binding proteins. A number of CaM-binding proteins have also been implicated in stress responses in plants, highlighting the central role played by CaM in adaptation to adverse environmental conditions. Stress adaptation in plants is a highly complex and multigenic response. Identification and characterization of CaM-modulated proteins in relation to different abiotic stresses could, therefore, prove to be essential for a deeper understanding of the molecular mechanisms involved in abiotic stress tolerance in plants. Various studies have revealed involvement of CaM in regulation of metal ions uptake, generation of reactive oxygen species and modulation of transcription factors such as CAMTA3, GTL1, and WRKY39. Activities of several kinases and phosphatases have also been shown to be modulated by CaM, thus providing further versatility to stress-associated signal transduction pathways. The results obtained from contemporary studies are consistent with the proposed role of CaM as an integrator of different stress signaling pathways, which allows plants to maintain homeostasis between different cellular processes. In this review, we have attempted to present the current state of understanding of the role of CaM in modulating different stress-regulated proteins and its implications in augmenting abiotic stress tolerance in plants. PMID:26528296

  2. Resilience of Penicillium resedanum LK6 and exogenous gibberellin in improving Capsicum annuum growth under abiotic stresses.

    PubMed

    Khan, Abdul Latif; Waqas, Muhammad; Lee, In-Jung

    2015-03-01

    Understanding how endophytic fungi mitigate abiotic stresses in plants will be important in a changing global climate. A few endophytes can produce phytohormones, but their ability to induce physiological changes in host plants during extreme environmental conditions are largely unexplored. In the present study, we investigated the ability of Penicillium resedanum LK6 to produce gibberellins and its role in improving the growth of Capsicum annuum L. under salinity, drought, and heat stresses. These effects were compared with exogenous application of gibberellic acid (GA3). Endophyte treatment significantly increased shoot length, biomass, chlorophyll content, and the photosynthesis rate compared with the uninfected control during abiotic stresses. The endophyte and combined endophyte + GA3 treatments significantly ameliorated the negative effects of stresses compared with the control. Stress-responsive endogenous abscisic acid and its encoding genes, such as zeaxanthin epoxidase, 9-cis-epoxycarotenoid dioxygenase 3, and ABA aldehyde oxidase 3, were significantly reduced in endophyte-treated plants under stress. Conversely, salicylic acid and biosynthesis-related gene (isochorismate synthase) had constitutive expressions while pathogenesis related (PR1 and PR5) genes showed attenuated responses during endophyte treatment under abiotic stresses. The present findings suggest that endophytes have effects comparable to those of exogenous GA3; both can significantly increase plant growth and yield under changing environmental conditions by reprogramming the host plant's physiological responses. PMID:25537300

  3. The Use of Chemical Probes for the Characterization of the Predominant Abiotic Reductants in Anaerobic Sediments

    EPA Science Inventory

    Identifying the predominant chemical reductants and pathways for electron transfer in anaerobic systems is paramount to the development of environmental fate models that incorporate pathways for abiotic reductive transformations. Currently, such models do not exist. In this chapt...

  4. Polyamines and abiotic stress tolerance in plants

    PubMed Central

    Gill, Sarvajeet Singh

    2010-01-01

    Environmental stresses including climate change, especially global warming, are severely affecting plant growth and productivity worldwide. It has been estimated that two-thirds of the yield potential of major crops are routinely lost due to the unfavorable environmental factors. On the other hand, the world population is estimated to reach about 10 billion by 2050, which will witness serious food shortages. Therefore, crops with enhanced vigour and high tolerance to various environmental factors should be developed to feed the increasing world population. Maintaining crop yields under adverse environmental stresses is probably the major challenge facing modern agriculture where polyamines can play important role. Polyamines (PAs)(putrescine, spermidine and spermine) are group of phytohormone-like aliphatic amine natural compounds with aliphatic nitrogen structure and present in almost all living organisms including plants. Evidences showed that polyamines are involved in many physiological processes, such as cell growth and development and respond to stress tolerance to various environmental factors. In many cases the relationship of plant stress tolerance was noted with the production of conjugated and bound polyamines as well as stimulation of polyamine oxidation. Therefore, genetic manipulation of crop plants with genes encoding enzymes of polyamine biosynthetic pathways may provide better stress tolerance to crop plants. Furthermore, the exogenous application of PAs is also another option for increasing the stress tolerance potential in plants. Here, we have described the synthesis and role of various polyamines in abiotic stress tolerance in plants. PMID:20592804

  5. Understanding molecular mechanism of higher plant plasticity under abiotic stress.

    PubMed

    Shao, Hong-Bo; Guo, Qing-Jie; Chu, Li-Ye; Zhao, Xi-Ning; Su, Zhong-Liang; Hu, Ya-Chen; Cheng, Jiang-Feng

    2007-01-15

    Higher plants play the most important role in keeping a stable environment on the earth, which regulate global circumstances in many ways in terms of different levels (molecular, individual, community, and so on), but the nature of the mechanism is gene expression and control temporally and spatially at the molecular level. In persistently changing environment, there are many adverse stress conditions such as cold, drought, salinity and UV-B (280-320 mm), which influence plant growth and crop production greatly. Plants differ from animals in many aspects, but the important may be that plants are more easily influenced by environment than animals. Plants have a series of fine mechanisms for responding to environmental changes, which has been established during their long-period evolution and artificial domestication. These mechanisms are involved in many aspects of anatomy, physiology, biochemistry, genetics, development, evolution and molecular biology, in which the adaptive machinery related to molecular biology is the most important. The elucidation of it will extremely and purposefully promote the sustainable utilization of plant resources and make the best use of its current potential under different scales. This molecular mechanism at least include environmental signal recognition (input), signal transduction (many cascade biochemical reactions are involved in this process), signal output, signal responses and phenotype realization, which is a multi-dimensional network system and contain many levels of gene expression and regulation. We will focus on the molecular adaptive machinery of higher plant plasticity under abiotic stresses. PMID:16914294

  6. Environmental conditions that influence toxin biosynthesis in cyanobacteria.

    PubMed

    Neilan, Brett A; Pearson, Leanne A; Muenchhoff, Julia; Moffitt, Michelle C; Dittmann, Elke

    2013-05-01

    Over the past 15 years, the genetic basis for production of many cyanobacterial bioactive compounds has been described. This knowledge has enabled investigations into the environmental factors that regulate the production of these toxins at the molecular level. Such molecular or systems level studies are also likely to reveal the physiological role of the toxin and contribute to effective water resource management. This review focuses on the environmental regulation of some of the most relevant cyanotoxins, namely the microcystins, nodularin, cylindrospermopsin, saxitoxins, anatoxins and jamaicamides. PMID:22429476

  7. Homogenization of Environmental Condition and Benthic Communities in Restored Streams of the North Carolina Piedmont.

    NASA Astrophysics Data System (ADS)

    Tullos, D. D.; Penrose, D. L.; Jennings, G. D.; Wentworth, T. R.

    2005-05-01

    Stream ecosystems, as described through benthic communities and twenty environmental variables, exhibited decreased variances and reduced ordinal dimensionality in restored streams when compared to associated upstream reaches in this upstream-downstream investigation of stream restoration in the North Carolina Piedmont. Through paired t-tests of the environmental variables and several descriptions of community structure and function, the variance for restored stream reaches was lower than the upstream reaches for 70% of environmental characteristics, for 75% of Functional Feeding and Habitat Groups, and for all of the community descriptions, including the Q statistic, Shannon Index, Simpson Index, EPT taxa richness, and NCBI. Further, Nonmetric Multidimensional Scaling of the sites best expressed the upstream reaches on three axes, while the restored stream reaches required only one axis to effectively describe variation in the benthic communities. These results suggest that simplification of the biota may occur following steam restoration activities, indicating the biological losses associated with early recovery in these streams. While the science of stream restoration has advanced since the early construction and implementation at these sites, the consequential homogenization demonstrated by these biotic and abiotic stream corridor features emphasizes the importance of a concentrated effort to re-establish heterogeneity in restoration designs.

  8. Perceiving environmental properties from motion information: Minimal conditions

    NASA Technical Reports Server (NTRS)

    Proffitt, Dennis R.; Kaiser, Mary K.

    1989-01-01

    The status of motion as a minimal information source for perceiving the environmental properties of surface segregation, three-dimensional (3-D) form, displacement, and dynamics is discussed. The selection of these particular properties was motivated by a desire to present research on perceiving properties that span the range of dimensional complexity.

  9. Transposable Elements Contribute to Activation of Maize Genes in Response to Abiotic Stress

    PubMed Central

    Makarevitch, Irina; Waters, Amanda J.; West, Patrick T.; Stitzer, Michelle; Hirsch, Candice N.; Ross-Ibarra, Jeffrey; Springer, Nathan M.

    2015-01-01

    Transposable elements (TEs) account for a large portion of the genome in many eukaryotic species. Despite their reputation as “junk” DNA or genomic parasites deleterious for the host, TEs have complex interactions with host genes and the potential to contribute to regulatory variation in gene expression. It has been hypothesized that TEs and genes they insert near may be transcriptionally activated in response to stress conditions. The maize genome, with many different types of TEs interspersed with genes, provides an ideal system to study the genome-wide influence of TEs on gene regulation. To analyze the magnitude of the TE effect on gene expression response to environmental changes, we profiled gene and TE transcript levels in maize seedlings exposed to a number of abiotic stresses. Many genes exhibit up- or down-regulation in response to these stress conditions. The analysis of TE families inserted within upstream regions of up-regulated genes revealed that between four and nine different TE families are associated with up-regulated gene expression in each of these stress conditions, affecting up to 20% of the genes up-regulated in response to abiotic stress, and as many as 33% of genes that are only expressed in response to stress. Expression of many of these same TE families also responds to the same stress conditions. The analysis of the stress-induced transcripts and proximity of the transposon to the gene suggests that these TEs may provide local enhancer activities that stimulate stress-responsive gene expression. Our data on allelic variation for insertions of several of these TEs show strong correlation between the presence of TE insertions and stress-responsive up-regulation of gene expression. Our findings suggest that TEs provide an important source of allelic regulatory variation in gene response to abiotic stress in maize. PMID:25569788

  10. Abiotic Methane Synthesis: Caveats and New Results

    NASA Astrophysics Data System (ADS)

    Zou, R.; Sharma, A.

    2005-12-01

    The role of mineral interaction with geochemical fluids under hydrothermal conditions has invoked models of geochemical synthesis of organic molecules at deep crustal conditions. Since Thomas Gold's (1992) hypothesis of the possibility of an abiotic organic synthesis, there have been several reports of hydrocarbon formation under high pressure and temperature conditions. Several previous experimental studies have recognized that small amounts of methane (and other light HC compounds) can be synthesized via catalysis by transition metals: Fe, Ni (Horita and Berndt, 1999 Science) and Cr (Foustavous and Seyfried, 2004 Science). In light of these pioneering experiments, an investigation of the feasibility of abiotic methane synthesis at higher pressure conditions in deep geological setting and the possible role of catalysis warrants a closer look. We conducted three sets of experiments in hydrothermal diamond anvil cell using FeO nanopowder, CaCO 3 and water at 300° - 600° C and 0.5 - 5 GPa : (a) with stainless steel gasket, (b) gold-lined gasket, and (c) gold-lined gasket with added Fe and Ni nanopowder. The reactions were monitored in-situ using micro-Raman spectroscopy with 532nm and 632nm lasers. The solids phases were characterized in-situ using synchrotron X-ray diffraction at CHESS-Cornell and quenched products with an electron microprobe. Interestingly, a variable amount of hydrocarbon was observed only in runs with stainless steel gasket and with Fe, Ni nanoparticles. Experiments with gold-lined reactors did not show any hydrocarbon formation. Added high resolution microscopy of the products and their textural relationship within the diamond cell with Raman spectroscopy data show that the hydrocarbon (methane and other light fractions) synthesis is a direct result of transition metal catalysis, rather than wustite - calcium carbonate reaction as recently reported by Scott et al (2004, PNAS). The author will further present new results highlighting abiotic

  11. 77 FR 56253 - 60th Meeting: RTCA Special Committee 135, Environmental Conditions and Test Procedures for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-12

    ... Conditions and Test Procedures for Airborne Equipment SUMMARY: The FAA is issuing this notice to advise the public of the sixtieth meeting of the RTCA Special Committee 135, Environmental Conditions and Test... Test Procedures for Airborne Equipment AGENCY: Federal Aviation......

  12. 76 FR 22161 - Fifty Seventh Meeting: RTCA Special Committee 135, Environmental Conditions and Test Procedures...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-20

    ... Conditions and Test Procedures for Airborne Equipment AGENCY: Federal Aviation Administration (FAA... Conditions and Test Procedures for Airborne Equipment. SUMMARY: The FAA is issuing this notice to advise the public of a meeting of RTCA Special Committee 135: Environmental......

  13. Genetic mapping of abiotic stress responses in sorghum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to rich genetic diversity for tolerance to various abiotic stress conditions, sorghum is an ideal system for genetic mapping and elucidation of genome regions that confer such response among cereal crops. Coupled with the development of DNA marker technologies and most recently the sequencing o...

  14. Common lung conditions: environmental pollutants and lung disease.

    PubMed

    Delzell, John E

    2013-06-01

    Exposure to environmental pollutants can have short- and long-term effects on lung health. Sources of air pollution include gases (eg, carbon monoxide, ozone) and particulate matter (eg, soot, dust). In the United States, the Environmental Protection Agency regulates air pollution. Elevated ozone concentrations are associated with increases in lung-related hospitalizations and mortality. Elevated particulate matter pollution increases the risk of cardiopulmonary and lung cancer mortality. Occupations with high exposures to pollutants (eg, heavy construction work, truck driving, auto mechanics) pose higher risk of chronic obstructive lung disease. Some industrial settings (eg, agriculture, sawmills, meat packing plants) also are associated with higher risks from pollutants. The Environmental Protection Agency issues an air quality index for cities and regions in the United States. The upper levels on the index are associated with increases in asthma-related emergency department visits and hospitalizations. Damp and moldy housing might make asthma symptoms worse; individuals from lower socioeconomic groups who live in lower quality housing are particularly at risk. Other household exposures that can have negative effects on lung health include radon, nanoparticles, and biomass fuels. PMID:23767420

  15. 75 FR 9016 - Fifty-Fifth Meeting, RTCA Special Committee 135: Environmental Conditions and Test Procedures for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ...: Notice of RTCA Special Committee 135: Environmental Conditions and Test Procedures for Airborne Equipment... Committee 135: Environmental Conditions and Test Procedures for Airborne Equipment. DATES: The meeting will... for a Special Committee 135: Environmental......

  16. Assessing the Relationship between Socioeconomic Conditions and Urban Environmental Quality in Accra, Ghana

    PubMed Central

    Fobil, Julius; May, Juergen; Kraemer, Alexander

    2010-01-01

    The influence of socioeconomic status (SES) on health inequalities is widely known, but there is still poor understanding of the precise relationship between area-based socioeconomic conditions and neighborhood environmental quality. This study aimed to investigate the socioeconomic conditions which predict urban neighbourhood environmental quality. The results showed wide variation in levels of association between the socioeconomic variables and environmental conditions, with strong evidence of a real difference in environmental quality across the five socioeconomic classes with respect to total waste generation (p < 0.001), waste collection rate (p < 0.001), sewer disposal rate (p < 0.001), non-sewer disposal (p < 0.003), the proportion of households using public toilets (p = 0.005). Socioeconomic conditions are therefore important drivers of change in environmental quality and urban environmental interventions aimed at infectious disease prevention and control if they should be effective could benefit from simultaneous implementation with other social interventions. PMID:20195437

  17. 78 FR 7850 - Sixty First Meeting: RTCA Special Committee 135, Environmental Conditions and Test Procedures for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Sixty First Meeting: RTCA Special Committee 135, Environmental Conditions... public of the Sixty-First meeting of the RTCA Special Committee 135, Environmental Conditions and...

  18. Effectiveness of Dry Eye Therapy Under Conditions of Environmental Stress

    PubMed Central

    Madden, Louise C.; Simmons, Peter A.

    2013-01-01

    Purpose: Dry eye is often characterized by increased tear evaporation due to poor tear film quality, especially of the lipid component of the tear film. Using an environmental chamber to induce environmental stress, this study compared the effect of three lubricant eye drops on various aspects of tear physiology in a crossover design (evaporation was the principal outcome measure). Methods: Three eye drop formulas were tested: 0.5% carmellose sodium (Drop C), 0.5% carmellose sodium with added lipid (Drop C-L) and 1.0% glycerine with added lipid (Drop G-L). Nineteen control and 18 dry eye subjects used each product for 2 weeks, three times per day, in a random order, with a minimum 1-week washout between treatment periods. Tear evaporation, break up time, osmolarity, tear structure (by interferometry) and patient symptoms were assessed with the subjects adapted for 10 min in an environmental chamber controlled at 20% relative humidity and 22 °C. The treatment effects were analyzed using general linear model repeated measures analyses of variance. Results: In dry eye subjects, evaporation, break up time, osmolarity and symptoms improved for all formulas (p < 0.05). Normal subjects showed some improvements: evaporation with C-L, osmolarity with C and symptoms with C-L and G-L. Change in evaporation was greater for both C-L and G-L versus C (p < 0.05), and there was a trend for C-L to reduce evaporation more than G-L (p < 0.11). There were no significant treatment effects on tear film structure. Conclusion: Overall, the eye drop formula containing both carmellose sodium and lipid (C-L) produced a greater treatment effect on tear evaporation than the other formulations containing only one of these ingredients. This study also demonstrates the utility of a controlled environmental chamber in showing the difference in performance between dry eye treatments. PMID:23294168

  19. EFFECTS OF ENVIRONMENTAL CONDITIONS ON ISOPRENE EMISSION FROM LIVE OAK

    EPA Science Inventory

    Live-oak plants (Quercus virginia) were subjected to various levels of CO2, water stress or photosynthetic photon flux density to test the hypothesis that isoprene biosynthesis occurred only under conditions of restricted CO2 availability. Isoprene emission increases as the ambie...

  20. Overview of environmental and hydrogeologic conditions at Moses Point, Alaska

    USGS Publications Warehouse

    Dorava, J.M.; Ayres, R.P.; Sisco, W.C.

    1994-01-01

    The Federal Aviation Administration facility at Moses Point is located at the mouth of the Kwiniuk River on the Seward Peninsula in northwestern Alaska. This area has long cold winters and short summers which affect the hydrology of the area. The Federal Aviation Administration owns or operates airport support facilities at the Moses Point site and wishes to consider the subsistence lifestyles of area residents and the quality of the current environment when evaluating options for remediation of environmental contamination at their facilities. Currently no operating wells are in the area, but the vulnerability of the aquifer and other alternative water supplies are being evaluated because the Federal Aviation Administration has a potential liability for the storage and use of hazardous materials in the area.

  1. Overview of environmental and hydrogeologic conditions at Galena, Alaska

    USGS Publications Warehouse

    Nakanishi, Allan S.; Dorava, Joseph M.

    1994-01-01

    The remote Native village of Galena along the Yukon River in west-central Alaska has long cold winters and short summers that affects the hydrology of the area. The Federal Aviation Administration owns or operates airport support facilities in Galena and wishes to consider the subsistence lifestyle of the residents and the quality of the current environment when evaluating options for remediation of environmental contamination at these facilities. Galena is located on the flood plain of the Yukon River and obtains its drinking water from a shallow aquifer located in the thick alluvium underlying the village. Surface spills and disposal of hazardous materials combined with annual flooding of the Yukon River may affect the quality of the ground water. Alternative drinking-water sources are available but at significantly greater cost than existing supplies.

  2. Environmental embrittlement of iron aluminides under cyclic loading conditions

    SciTech Connect

    Castagna, A.; Alven, D.A.; Stoloff, N.S.

    1995-08-01

    The tensile and fatigue crack growth behavior in air in hydrogen and in oxygen of an Fe-Al-Cr-Zr alloy is described. The results are compared to data for FA-129. A detailed analysis of frequency effects on fatigue crack growth rates of FA-129, tested in the B2 condition, shows that dislocation transport of hydrogen from the surface is the rate limiting step in fatigue crack growth.

  3. Differential effects of genetic vs. environmental quality in Drosophila melanogaster suggest multiple forms of condition dependence.

    PubMed

    Bonduriansky, Russell; Mallet, Martin A; Arbuthnott, Devin; Pawlowsky-Glahn, Vera; Egozcue, Juan José; Rundle, Howard D

    2015-04-01

    Condition is a central concept in evolutionary ecology, but the roles of genetic and environmental quality in condition-dependent trait expression remain poorly understood. Theory suggests that condition integrates genetic, epigenetic and somatic factors, and therefore predicts alignment between the phenotypic effects of genetic and environmental quality. To test this key prediction, we manipulated both genetic (mutational) and environmental (dietary) quality in Drosophila melanogaster and examined responses in morphological and chemical (cuticular hydrocarbon, CHC) traits in both sexes. While the phenotypic effects of diet were consistent among genotypes, effects of mutation load varied in magnitude and direction. Average effects of diet and mutation were aligned for most morphological traits, but non-aligned for the male sexcombs and CHCs in both sexes. Our results suggest the existence of distinct forms of condition dependence, one integrating both genetic and environmental effects and the other purely environmental. We propose a model to account for these observations. PMID:25649176

  4. Cell wall remodeling under abiotic stress

    PubMed Central

    Tenhaken, Raimund

    2015-01-01

    Plants exposed to abiotic stress respond to unfavorable conditions on multiple levels. One challenge under drought stress is to reduce shoot growth while maintaining root growth, a process requiring differential cell wall synthesis and remodeling. Key players in this process are the formation of reactive oxygen species (ROS) and peroxidases, which initially cross-link phenolic compounds and glycoproteins of the cell walls causing stiffening. The function of ROS shifts after having converted all the peroxidase substrates in the cell wall. If ROS-levels remain high during prolonged stress, OH°-radicals are formed which lead to polymer cleavage. In concert with xyloglucan modifying enzymes and expansins, the resulting cell wall loosening allows further growth of stressed organs. PMID:25709610

  5. Overview of environmental and hydrogeologic conditions at Barrow, Alaska

    USGS Publications Warehouse

    McCarthy, K.A.

    1994-01-01

    To assist the Federal Aviation Administration (FAA) in evaluating the potential effects of environmental contamination at their facility in Barrow, Alaska, a general assessment was made of the hydrologic system is the vicinity of the installation. The City of Barrow is located approximately 16 kilometers southwest of Point Barrow, the northernmost point in Alaska, and therefore lies within the region of continuous permafrost. Migration of surface or shallow- subsurface chemical releases in this environ- ment would be largely restricted by near-surface permafrost to surface water and the upper, suprapermafrost zone of the subsurface. In the arctic climate and tundra terrain of the Barrow area, this shallow environment has a limited capacity to attenuate the effects of either physical disturbances or chemical contamination and is therefore highly susceptible to degradation. Esatkuat Lagoon, the present drink- ing water supply for the City of Barrow, is located approximately 2 kilometers from the FAA facility. This lagoon is the only practical source of drinking water available to the City of Barrow because alternative sources of water in the area are (1) frozen throughout most of the year, (2) insufficient in volume, (3) of poor quality, or (4) too costly to develop and distribute.

  6. Diverse expression pattern of wheat transcription factors against abiotic stresses in wheat species.

    PubMed

    Baloglu, Mehmet Cengiz; Inal, Behcet; Kavas, Musa; Unver, Turgay

    2014-10-15

    Abiotic stress including drought and salinity affects quality and yield of wheat varieties used for the production of both bread and pasta flour. bZIP, MBF1, WRKY, MYB and NAC transcription factor (TF) genes are the largest transcriptional regulators which are involved in growth, development, physiological processes, and biotic/abiotic stress responses in plants. Identification of expression profiling of these TFs plays a crucial role to understand the response of different wheat species against severe environmental changes. In the current study, expression analysis of TaWLIP19 (wheat version of bZIP), TaMBF1, TaWRKY10, TaMYB33 and TaNAC69 genes was examined under drought and salinity stress conditions in Triticum aestivum cv. (Yuregir-89), Triticum turgidum cv. (Kiziltan-91), and Triticum monococcum (Siyez). After drought stress application, all five selected genes in Kiziltan-91 were induced. However, TaMBF1 and TaWLIP19 were the only downregulated genes in Yuregir-89 and Siyez, respectively. Except TaMYB33 in Siyez, expression level of the remaining genes increased under salt stress condition in all Triticum species. For determination of drought response to selected TF members, publicly available RNA-seq data were also analyzed in this study. TaMBF1, TaWLIP19 and TaNAC69 transcripts were detected through in silico analysis. This comprehensive gene expression analysis provides valuable information for understanding the roles of these TFs under abiotic stresses in modern wheat cultivars and ancient einkorn wheat. In addition, selected TFs might be used for determination of drought or salinity-tolerant and susceptible cultivars for molecular breeding studies. PMID:25130909

  7. Compatible Solute Engineering in Plants for Abiotic Stress Tolerance - Role of Glycine Betaine

    PubMed Central

    Wani, Shabir Hussain; Singh, Naorem Brajendra; Haribhushan, Athokpam; Mir, Javed Iqbal

    2013-01-01

    Abiotic stresses collectively are responsible for crop losses worldwide. Among these, drought and salinity are the most destructive. Different strategies have been proposed for management of these stresses. Being a complex trait, conventional breeding approaches have resulted in less success. Biotechnology has emerged as an additional and novel tool for deciphering the mechanism behind these stresses. The role of compatible solutes in abiotic stress tolerance has been studied extensively. Osmotic adjustment, at the physiological level, is an adaptive mechanism involved in drought or salinity tolerance, which permits the maintenance of turgor under conditions of water deficit, as it can counteract the effects of a rapid decline in leaf water potential. Increasing evidence from a series of in vivo and in vitro studies of the physiology, biochemistry, genetics, and molecular biology of plants suggest strongly that Glycine Betaine (GB) performs an important function in plants subjected to environmental stresses. It plays an adaptive role in mediating osmotic adjustment and protecting the sub-cellular structures in stressed plants, protection of the transcriptional and translational machineries and intervention as a molecular chaperone in the refolding of enzymes. Many important crops like rice do not accumulate glycinebetaine under stress conditions. Both the exogenous application of GB and the genetically engineered biosynthesis of GB in such crops is a promising strategy to increase stress tolerance. In this review we will discuss the importance of GB for abiotic stress tolerance in plants. Further, strategies like exogenic application and transgenic development of plants accumulating GB will be also be discussed. Work done on exogenic application and genetically engineered biosynthesis of GB will be listed and its advantages and limitations will be described. PMID:24179438

  8. Fermentation patterns of forage sorghum ensiled under different environmental conditions.

    PubMed

    Tjandraatmadja, M; Norton, B W; Macrae, I C

    1991-03-01

    The effects of temperature, aerobic and anaerobic conditions in the silo and plant characteristics [water-soluble carbohydrate (WSC) contents, growing season] on the fermentation characteristics of a tropical forage species, Sorghum bicolor cv. sugar-drip, were investigated. Silages fermented in oxygen-impermeable bags were well preserved and had low pH (3.7), high lactic acid [72 g kg(-1) dry matter (DM) ≡ 80% of total acids], and low butyric acid (0.12 g kg(-1) DM) and ammonia nitrogen (NH3-N) (57 g kg(-1) total nitrogen contents. Conversely, the use of oxygen-permeable bags as silos allowed aerobic decomposition of the ensiled forages. Increasing the incubation temperature lowered the population of lactic acid bacteria, reduced lactic acid production and caused the pH to rise. The heterofermentative Leuconostoc spp. predominated on fresh forages but homofermentative Lactobacillus plantarum began to dominate after 5 and 8 days of fermentation. Heterofermentative lactobacilli, notably Lactobacillus brevis, were dominant among the isolates obtained from 100-day silages. Varying the WSC contents, by crushing and/or chopping the forage, and growing season did not significantly affect the fermentation quality of the resulting silages. It was concluded that the maintenance of anaerobic conditions is essential if good quality silage is to be produced from tropical forage species. PMID:24424934

  9. Wheat proteomics: proteome modulation and abiotic stress acclimation

    PubMed Central

    Komatsu, Setsuko; Kamal, Abu H. M.; Hossain, Zahed

    2014-01-01

    Cellular mechanisms of stress sensing and signaling represent the initial plant responses to adverse conditions. The development of high-throughput “Omics” techniques has initiated a new era of the study of plant molecular strategies for adapting to environmental changes. However, the elucidation of stress adaptation mechanisms in plants requires the accurate isolation and characterization of stress-responsive proteins. Because the functional part of the genome, namely the proteins and their post-translational modifications, are critical for plant stress responses, proteomic studies provide comprehensive information about the fine-tuning of cellular pathways that primarily involved in stress mitigation. This review summarizes the major proteomic findings related to alterations in the wheat proteomic profile in response to abiotic stresses. Moreover, the strengths and weaknesses of different sample preparation techniques, including subcellular protein extraction protocols, are discussed in detail. The continued development of proteomic approaches in combination with rapidly evolving bioinformatics tools and interactive databases will facilitate understanding of the plant mechanisms underlying stress tolerance. PMID:25538718

  10. Corrosion behavior of carbon steels under tuff repository environmental conditions

    SciTech Connect

    McCright, R.D.; Weiss, H.

    1984-10-01

    Carbon steels may be used for borehole liners in a potential high-level nuclear waste repository in tuff in Nevada. Borehole liners are needed to facilitate emplacement of the waste packages and to facilitate retrieval of the packages, if required. Corrosion rates of low carbon structural steels AISI 1020 and ASTM A-36 were determined in J-13 well water and in saturated steam at 100{sup 0}C. Tests were conducted in air-sparged J-13 water to attain more oxidizing conditions representative of irradiated aqueous environments. A limited number of irradiation corrosion and stress corrosion tests were performed. Chromium-molybdenum alloy steels and cast irons were also tested. These materials showed lower general corrosion but were susceptible to stress corrosion cracking when welded. 4 references, 4 tables.

  11. Rift Valley Fever Outbreaks in Mauritania and Related Environmental Conditions

    PubMed Central

    Caminade, Cyril; Ndione, Jacques A.; Diallo, Mawlouth; MacLeod, Dave A.; Faye, Ousmane; Ba, Yamar; Dia, Ibrahima; Morse, Andrew P.

    2014-01-01

    Four large outbreaks of Rift Valley Fever (RVF) occurred in Mauritania in 1998, 2003, 2010 and 2012 which caused lots of animal and several human deaths. We investigated rainfall and vegetation conditions that might have impacted on RVF transmission over the affected regions. Our results corroborate that RVF transmission generally occurs during the months of September and October in Mauritania, similarly to Senegal. The four outbreaks were preceded by a rainless period lasting at least a week followed by heavy precipitation that took place during the second half of the rainy season. First human infections were generally reported three to five weeks later. By bridging the gap between meteorological forecasting centers and veterinary services, an early warning system might be developed in Senegal and Mauritania to warn decision makers and health services about the upcoming RVF risk. PMID:24413703

  12. Relationships among fisheries exploitation, environmental conditions, and ecological indicators across a series of marine ecosystems

    NASA Astrophysics Data System (ADS)

    Fu, Caihong; Large, Scott; Knight, Ben; Richardson, Anthony J.; Bundy, Alida; Reygondeau, Gabriel; Boldt, Jennifer; van der Meeren, Gro I.; Torres, Maria A.; Sobrino, Ignacio; Auber, Arnaud; Travers-Trolet, Morgane; Piroddi, Chiara; Diallo, Ibrahima; Jouffre, Didier; Mendes, Hugo; Borges, Maria Fatima; Lynam, Christopher P.; Coll, Marta; Shannon, Lynne J.; Shin, Yunne-Jai

    2015-08-01

    Understanding how external pressures impact ecosystem structure and functioning is essential for ecosystem-based approaches to fisheries management. We quantified the relative effects of fisheries exploitation and environmental conditions on ecological indicators derived from two different data sources, fisheries catch data (catch-based) and fisheries independent survey data (survey-based) for 12 marine ecosystems using a partial least squares path modeling approach (PLS-PM). We linked these ecological indicators to the total biomass of the ecosystem. Although the effects of exploitation and environmental conditions differed across the ecosystems, some general results can be drawn from the comparative approach. Interestingly, the PLS-PM analyses showed that survey-based indicators were less tightly associated with each other than the catch-based ones. The analyses also showed that the effects of environmental conditions on the ecological indicators were predominantly significant, and tended to be negative, suggesting that in the recent period, indicators accounted for changes in environmental conditions and the changes were more likely to be adverse. Total biomass was associated with fisheries exploitation and environmental conditions; however its association with the ecological indicators was weak across the ecosystems. Knowledge of the relative influence of exploitation and environmental pressures on the dynamics within exploited ecosystems will help us to move towards ecosystem-based approaches to fisheries management. PLS-PM proved to be a useful approach to quantify the relative effects of fisheries exploitation and environmental conditions and suggest it could be used more widely in fisheries oceanography.

  13. Homeologous genes involved in mannitol synthesis reveal unequal contributions in response to abiotic stress in Coffea arabica.

    PubMed

    de Carvalho, Kenia; Petkowicz, Carmen L O; Nagashima, Getulio T; Bespalhok Filho, João C; Vieira, Luiz G E; Pereira, Luiz F P; Domingues, Douglas S

    2014-10-01

    Polyploid plants can exhibit transcriptional modulation in homeologous genes in response to abiotic stresses. Coffea arabica, an allotetraploid, accounts for 75% of the world's coffee production. Extreme temperatures, salinity and drought limit crop productivity, which includes coffee plants. Mannitol is known to be involved in abiotic stress tolerance in higher plants. This study aimed to investigate the transcriptional responses of genes involved in mannitol biosynthesis and catabolism in C. arabica leaves under water deficit, salt stress and high temperature. Mannitol concentration was significantly increased in leaves of plants under drought and salinity, but reduced by heat stress. Fructose content followed the level of mannitol only in heat-stressed plants, suggesting the partitioning of the former into other metabolites during drought and salt stress conditions. Transcripts of the key enzymes involved in mannitol biosynthesis, CaM6PR, CaPMI and CaMTD, were modulated in distinct ways depending on the abiotic stress. Our data suggest that changes in mannitol accumulation during drought and salt stress in leaves of C. arabica are due, at least in part, to the increased expression of the key genes involved in mannitol biosynthesis. In addition, the homeologs of the Coffea canephora subgenome did not present the same pattern of overall transcriptional response, indicating differential regulation of these genes by the same stimulus. In this way, this study adds new information on the differential expression of C. arabica homeologous genes under adverse environmental conditions showing that abiotic stresses can influence the homeologous gene regulation pattern, in this case, mainly on those involved in mannitol pathway. PMID:24861101

  14. The stability of collected human scent under various environmental conditions.

    PubMed

    Hudson, Davia T; Curran, Allison M; Furton, Kenneth G

    2009-11-01

    Human scent evidence collected from objects at a crime scene is used for scent discrimination with specially trained canines. Storage of the scent evidence is usually required yet no optimized storage protocol has been determined. Storage containers including glass, polyethylene, and aluminized pouches were evaluated to determine the optimal medium for storing human scent evidence of which glass was determined to be the optimal storage matrix. Hand odor samples were collected on three different sorbent materials, sealed in glass vials and subjected to different storage environments including room temperature, -80 degrees C conditions, dark storage, and UVA/UVB light exposure over a 7-week period. Volatile organic compounds (VOCs) in the headspace of the samples were extracted and identified using solid-phase micro-extraction-gas chromatography/mass spectrometry (SPME-GC/MS). Three-dimensional covariance mapping showed that glass containers subjected to minimal UVA/UVB light exposure provide the most stable environment for stored human scent samples. PMID:19737339

  15. Lipoprotein (a): impact by ethnicity and environmental and medical conditions.

    PubMed

    Enkhmaa, Byambaa; Anuurad, Erdembileg; Berglund, Lars

    2016-07-01

    Levels of lipoprotein (a) [Lp(a)], a complex between an LDL-like lipid moiety containing one copy of apoB, and apo(a), a plasminogen-derived carbohydrate-rich hydrophilic protein, are primarily genetically regulated. Although stable intra-individually, Lp(a) levels have a skewed distribution inter-individually and are strongly impacted by a size polymorphism of the LPA gene, resulting in a variable number of kringle IV (KIV) units, a key motif of apo(a). The variation in KIV units is a strong predictor of plasma Lp(a) levels resulting in stable plasma levels across the lifespan. Studies have demonstrated pronounced differences across ethnicities with regard to Lp(a) levels and some of this difference, but not all of it, can be explained by genetic variations across ethnic groups. Increasing evidence suggests that age, sex, and hormonal impact may have a modest modulatory influence on Lp(a) levels. Among clinical conditions, Lp(a) levels are reported to be affected by kidney and liver diseases. PMID:26637279

  16. Environmental and behavioral conditions of bathing among elderly Japanese.

    PubMed

    Takasaki, Yuji; Ohnaka, Tadakatsu; Tochihara, Yutaka; Nagai, Yumiko; Ito, Hiromitsu; Yoshitake, Shiro

    2007-03-01

    This study investigated the bathing conditions of elderly Japanese, and sought to find factors relating to regional differences in death rates from bathtub accidents. A questionnaire survey was carried out in 11 areas of Japan. Questionnaires including questions regarding the length of time since houses had been built, types of facilities, and subjects' indoor thermal sensations and behavior while bathing were distributed to detached houses in each area twice, once in summer and once in winter. Completed questionnaires were collected from approximately 160 elderly people over 65 years old. Information regarding thermal sensations of rooms in winter revealed that a prefabricated bath and insulating window glass eased the cold in the bathroom. Unexpectedly, more subjects in the southern region than in the northern region reported being cold or a little cold while bathing in winter. In the present study, thermal sensations and behaviors while bathing seemed to be more affected by facilities and the location of houses than by the sex and age of the subjects. PMID:17435371

  17. Abiotic stress in crops: candidate genes, osmolytes, polyamines and biotechnological intervention

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural production and quality are adversely affected by various abiotic stresses including water deficit conditions (drought), salinity, extreme temperatures (heat, cold), light intensities beyond those saturating for photosynthesis and radiation (UVB,C). This is exacerbated when such exposure...

  18. Integrating omic approaches for abiotic stress tolerance in soybean

    PubMed Central

    Deshmukh, Rupesh; Sonah, Humira; Patil, Gunvant; Chen, Wei; Prince, Silvas; Mutava, Raymond; Vuong, Tri; Valliyodan, Babu; Nguyen, Henry T.

    2014-01-01

    Soybean production is greatly influenced by abiotic stresses imposed by environmental factors such as drought, water submergence, salt, and heavy metals. A thorough understanding of plant response to abiotic stress at the molecular level is a prerequisite for its effective management. The molecular mechanism of stress tolerance is complex and requires information at the omic level to understand it effectively. In this regard, enormous progress has been made in the omics field in the areas of genomics, transcriptomics, and proteomics. The emerging field of ionomics is also being employed for investigating abiotic stress tolerance in soybean. Omic approaches generate a huge amount of data, and adequate advancements in computational tools have been achieved for effective analysis. However, the integration of omic-scale information to address complex genetics and physiological questions is still a challenge. In this review, we have described advances in omic tools in the view of conventional and modern approaches being used to dissect abiotic stress tolerance in soybean. Emphasis was given to approaches such as quantitative trait loci (QTL) mapping, genome-wide association studies (GWAS), and genomic selection (GS). Comparative genomics and candidate gene approaches are also discussed considering identification of potential genomic loci, genes, and biochemical pathways involved in stress tolerance mechanism in soybean. This review also provides a comprehensive catalog of available online omic resources for soybean and its effective utilization. We have also addressed the significance of phenomics in the integrated approaches and recognized high-throughput multi-dimensional phenotyping as a major limiting factor for the improvement of abiotic stress tolerance in soybean. PMID:24917870

  19. ENVIRONMENTALLY FRIENDLIER ORGANIC TRANSFORMATIONS ON MINERAL SUPPORTS UNDER NON-TRADITIONAL CONDITIONS

    EPA Science Inventory

    Synthetic organic reactions performed under non-traditional conditions are gaining popularity primarily to circumvent the growing environmental concerns. A solvent-free approach that involves microwave (MW) exposure of neat reactants (undiluted) either in presence of a catalyst o...

  20. Damage detection under varying environmental and operational conditions using Wavelet Transform Modulus Maxima decay lines similarity

    NASA Astrophysics Data System (ADS)

    Tjirkallis, A.; Kyprianou, A.

    2016-01-01

    Over the last three decades, there have been increasing demands to develop and deploy Structural Health Monitoring (SHM) systems for engineering structures in service. Since these structures are subjected to varying environmental and operational conditions, reliable SHM methodologies must be capable of not misattributing to damage changes due to environmental conditions. This paper presents a novel damage detection methodology based on the similarity between maxima decay lines of the continuous wavelet transform scalogram of the structural responses obtained under different operational and environmental conditions. The normalized cross correlation (NCC) is used as a measure of this similarity. In addition, the pointwise summation of similar Wavelet Transform Modulus Maxima (WTMM) decay lines is used to identify changes due to the presence of damage from different force realizations and/or varying environmental conditions. The effectiveness of the proposed methodology is demonstrated using a simulated 3DOF system and an experimental cantilever beam.

  1. Environmental Conditions in Northern Gulf of Mexico Estuaries: Before and After the Deepwater Horizon Oil Spill

    EPA Science Inventory

    When conducting an environmental assessment to determine the ecological effects of the Deepwater Horizon (DWH) Oil Spill in the Gulf of Mexico (GOM), baseline environmental data is essential to establish ecosystem condition prior to the incident. EPA’s National Coastal Assessment...

  2. 40 CFR 86.161-00 - Air conditioning environmental test facility ambient requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Air conditioning environmental test facility ambient requirements. 86.161-00 Section 86.161-00 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations...

  3. Neglected Buildings, Damaged Health: A "Snapshot" of New York City Public School Environmental Conditions.

    ERIC Educational Resources Information Center

    Advocates for Children of New York, Inc., Long Island City.

    Survey results are presented from 65 parents, students over 12 years, teachers, and other school employees using 39 different schools about environmental conditions in New York City public schools. It shows the results of years of neglect of infrastructure for children and reveals disturbing new information about the environmental health of school…

  4. 40 CFR 86.161-00 - Air conditioning environmental test facility ambient requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Air conditioning environmental test facility ambient requirements. 86.161-00 Section 86.161-00 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations...

  5. 40 CFR 86.161-00 - Air conditioning environmental test facility ambient requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Air conditioning environmental test facility ambient requirements. 86.161-00 Section 86.161-00 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations...

  6. Using a Physical Education Environmental Survey to Identify Areas of Concern and Improve Conditions

    ERIC Educational Resources Information Center

    Hill, Grant; Hulbert, George

    2007-01-01

    School environmental conditions can impact learning in physical educational classes. It is important for schools to control environmental health hazards, not only to promote a conducive school learning environment, but to also reduce associated health risks. To help physical education leaders determine the quality of physical education facilities…

  7. A membraneless single compartment abiotic glucose fuel cell

    NASA Astrophysics Data System (ADS)

    Slaughter, Gymama; Sunday, Joshua

    2014-09-01

    A simple energy harvesting strategy has been developed to selectively catalyze glucose in the presence of oxygen in a glucose/O2 fuel cell. The anode consists of an abiotic catalyst Al/Au/ZnO, in which ZnO seed layer was deposited on the surface of Al/Au substrate using hydrothermal method. The cathode is constructed from a single rod of platinum with an outer diameter of 500 μm. The abiotic glucose fuel cell was studied in phosphate buffer solution (pH 7.4) containing 5 mM glucose at a temperature of 22 °C. The cell is characterized according to its open-circuit voltage, polarization profile, and power density plot. Under these conditions, the abiotic glucose fuel cell possesses an open-circuit voltage of 840 mV and delivered a maximum power density of 16.2 μW cm-2 at a cell voltage of 495 mV. These characteristics are comparable to biofuel cell utilizing a much more complex system design. Such low-cost lightweight abiotic catalyzed glucose fuel cells have a great promise to be optimized, miniaturized to power bio-implantable devices.

  8. Abiotic Organic Chemistry in Hydrothermal Systems.

    NASA Astrophysics Data System (ADS)

    Simoneit, B. R.; Rushdi, A. I.

    2004-12-01

    Abiotic organic chemistry in hydrothermal systems is of interest to biologists, geochemists and oceanographers. This chemistry consists of thermal alteration of organic matter and minor prebiotic synthesis of organic compounds. Thermal alteration has been extensively documented to yield petroleum and heavy bitumen products from contemporary organic detritus. Carbon dioxide, carbon monoxide, ammonia and sulfur species have been used as precursors in prebiotic synthesis experiments to organic compounds. These inorganic species are common components of hot spring gases and marine hydrothermal systems. It is of interest to further test their reactivities in reductive aqueous thermolysis. We have synthesized organic compounds (lipids) in aqueous solutions of oxalic acid, and with carbon disulfide or ammonium bicarbonate at temperatures from 175-400° C. The synthetic lipids from oxalic acid solutions consisted of n-alkanols, n-alkanoic acids, n-alkyl formates, n-alkanones, n-alkenes and n-alkanes, typically to C30 with no carbon number preferences. The products from CS2 in acidic aqueous solutions yielded cyclic thioalkanes, alkyl polysulfides, and thioesters with other numerous minor compounds. The synthesis products from oxalic acid and ammonium bicarbonate solutions were homologous series of n-alkyl amides, n-alkyl amines, n-alkanes and n-alkanoic acids, also to C30 with no carbon number predominance. Condensation (dehydration) reactions also occur under elevated temperatures in aqueous medium as tested by model reactions to form amide, ester and nitrile bonds. It is concluded that the abiotic formation of aliphatic lipids, condensation products (amides, esters, nitriles, and CS2 derivatives (alkyl polysulfides, cyclic polysulfides) is possible under hydrothermal conditions and warrants further studies.

  9. Abiotic stress-induced oscillations in steady-state transcript levels of Group 3 LEA protein genes in the moss, Physcomitrella patens.

    PubMed

    Shinde, Suhas; Shinde, Rupali; Downey, Frances; Ng, Carl K-Y

    2013-01-01

    The moss, Physcomitrella patens is a non-seed land plant belonging to early diverging lineages of land plants following colonization of land in the Ordovician period in Earth's history. Evidence suggests that mosses can be highly tolerant of abiotic stress. We showed previously that dehydration stress and abscisic acid treatments induced oscillations in steady-state levels of LEA (Late Embryogenesis Abundant) protein transcripts, and that removal of ABA resulted in rapid attenuation of oscillatory increases in transcript levels. Here, we show that other abiotic stresses like salt and osmotic stresses also induced oscillations in steady-state transcript levels and that the amplitudes of the oscillatory increases in steady-state transcript levels are reflective of the severity of the abiotic stress treatment. Together, our results suggest that oscillatory increases in transcript levels in response to abiotic stresses may be a general phenomenon in P. patens and that temporally dynamic increases in steady-state transcript levels may be important for adaptation to life in constantly fluctuating environmental conditions. PMID:23221763

  10. Flexible DCP interface. [signal conditioning system for use with Kansas environmental sensors

    NASA Technical Reports Server (NTRS)

    Kanemasu, E. T. (Principal Investigator); Schimmelpfenning, H.

    1974-01-01

    The author has identified the following significant results. A user of an ERTS data collection system must supply the sensors and signal conditioning interface. The electronic interface must be compatible with the NASA-furnished data collection platform (DCP). A universal signal conditioning system for use with a wide range of environmental sensors is described. The interface is environmentally and electronically compatible with the DCP and has operated satisfactorily for a complete winter wheat growing season in Kansas.

  11. Genetic diversity in pollen abiotic stress tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic diversity in reproductive abiotic stress tolerance has been investigated by cotton breeders throughout the public and private sectors. The primary focus of these studies has been the evaluation of abiotic stress responses during the development of the flower prior to anthesis. Sterility in...

  12. Genetic Diversity in Pollen Abiotic Stress Tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic diversity in reproductive abiotic stress tolerance has been investigated by cotton breeders throughout the public and private sectors. The primary focus of these studies has been the evaluation of abiotic stress responses during the development of the flower prior to anthesis. Sterility in...

  13. Transcriptional Regulation of Cell Cycle Genes in Response to Abiotic Stresses Correlates with Dynamic Changes in Histone Modifications in Maize

    PubMed Central

    Hou, Haoli; Zhang, Hao; Wang, Yapei; Yan, Shihan; Huang, Yan; Li, Hui; Tan, Junjun; Hu, Ao; Gao, Fei; Zhang, Qi; Li, Yingnan; Zhou, Hong; Zhang, Wei; Li, Lijia

    2014-01-01

    The histone modification level has been shown to be related with gene activation and repression in stress-responsive process, but there is little information on the relationship between histone modification and cell cycle gene expression responsive to environmental cues. In this study, the function of histone modifications in mediating the transcriptional regulation of cell cycle genes under various types of stress was investigated in maize (Zea mays L.). Abiotic stresses all inhibit the growth of maize seedlings, and induce total acetylation level increase compared with the control group in maize roots. The positive and negative regulation of the expression of some cell cycle genes leads to perturbation of cell cycle progression in response to abiotic stresses. Chromatin immunoprecipitation analysis reveals that dynamic histone acetylation change in the promoter region of cell cycle genes is involved in the control of gene expression in response to external stress and different cell cycle genes have their own characteristic patterns for histone acetylation. The data also showed that the combinations of hyperacetylation and hypoacetylation states of specific lysine sites on the H3 and H4 tails on the promoter regions of cell cycle genes regulate specific cell cycle gene expression under abiotic stress conditions, thus resulting in prolonged cell cycle duration and an inhibitory effect on growth and development in maize seedlings. PMID:25171199

  14. miR408 is involved in abiotic stress responses in Arabidopsis.

    PubMed

    Ma, Chao; Burd, Shaul; Lers, Amnon

    2015-10-01

    MicroRNAs (miRNAs) are small RNAs that regulate the expression of target genes post-transcriptionally; they are known to play major roles in development and responses to abiotic stress. miR408 is a highly conserved miRNA in plants that responds to the availability of copper and targets genes encoding copper-containing proteins. It was recently recognized to be an important component of the HY5-SPL7 gene network that mediates a coordinated response to light and copper, illustrating its central role in the response of plants to the environment. Expression of miR408 is significantly affected by a variety of developmental and ‏environmental conditions; however, its biological function is ‏unknown. Involvement of miR408 in the abiotic stress response was investigated in Arabidopsis. Expression of miR408, as well as its target genes, was investigated in response to salinity, cold, oxidative stress, drought and osmotic stress. Analyses of transgenic plants with modulated miR408 expression revealed that higher miR408 expression leads to improved tolerance to salinity, cold and oxidative stress, but enhanced sensitivity to drought and osmotic stress. Cellular antioxidant capacity was enhanced in plants with elevated miR408 expression, as manifested by reduced levels of reactive oxygen species and induced expression of genes associated with antioxidative functions, including Cu/Zn superoxide dismutases (CSD1 and CSD2) and glutathione-S-transferase (GST-U25), as well as auxiliary genes: the copper chaperone CCS1 and the redox stress-associated gene SAP12. Overall, the results demonstrate significant involvement of miR408 in abiotic stress responses, emphasizing the central function of miR408 in plant survival. PMID:26312768

  15. Arbuscular mycorrhizal fungal responses to abiotic stresses: A review.

    PubMed

    Lenoir, Ingrid; Fontaine, Joël; Lounès-Hadj Sahraoui, Anissa

    2016-03-01

    The majority of plants live in close collaboration with a diversity of soil organisms among which arbuscular mycorrhizal fungi (AMF) play an essential role. Mycorrhizal symbioses contribute to plant growth and plant protection against various environmental stresses. Whereas the resistance mechanisms induced in mycorrhizal plants after exposure to abiotic stresses, such as drought, salinity and pollution, are well documented, the knowledge about the stress tolerance mechanisms implemented by the AMF themselves is limited. This review provides an overview of the impacts of various abiotic stresses (pollution, salinity, drought, extreme temperatures, CO2, calcareous, acidity) on biodiversity, abundance and development of AMF and examines the morphological, biochemical and molecular mechanisms implemented by AMF to survive in the presence of these stresses. PMID:26803396

  16. Effects of abiotic stressors on lutein production in the green microalga Dunaliella salina

    PubMed Central

    2014-01-01

    Background Recent years have witnessed a rising trend in exploring microalgae for valuable carotenoid products as the demand for lutein and many other carotenoids in global markets has increased significantly. In green microalgae lutein is a major carotenoid protecting cellular components from damage incurred by reactive oxygen species under stress conditions. In this study, we investigated the effects of abiotic stressors on lutein accumulation in a strain of the marine microalga D. salina which had been selected for growth under stress conditions of combined blue and red lights by adaptive laboratory evolution. Results Nitrate concentration, salinity and light quality were selected as three representative influencing factors and their impact on lutein production in batch cultures of D. salina was evaluated using response surface analysis. D. salina was found to be more tolerant to hyper-osmotic stress than to hypo-osmotic stress which caused serious cell damage and death in a high proportion of cells while hyper-osmotic stress increased the average cell size of D. salina only slightly. Two models were developed to explain how lutein productivity depends on the stress factors and for predicting the optimal conditions for lutein productivity. Among the three stress variables for lutein production, stronger interactions were found between nitrate concentration and salinity than between light quality and the other two. The predicted optimal conditions for lutein production were close to the original conditions used for adaptive evolution of D. salina. This suggests that the conditions imposed during adaptive evolution may have selected for the growth optima arrived at. Conclusions This study shows that systematic evaluation of the relationship between abiotic environmental stresses and lutein biosynthesis can help to decipher the key parameters in obtaining high levels of lutein productivity in D. salina. This study may benefit future stress-driven adaptive

  17. Effects of biotic and abiotic factors on phenotypic partitioning of wing morphology and development in Sclerodermus pupariae (Hymenoptera: Bethylidae).

    PubMed

    Wang, Xiaoyi; Wei, Ke; Yang, Zhongqi; Jennings, David E; Duan, Jian J

    2016-01-01

    Wing phenotype polymorphism is commonly observed in insects, yet little is known about the influence of environmental cues on the development or expression of the alternative phenotypes. Here, we report how both biotic and abiotic factors affect the wing morph differentiation of a bethylid parasitoid Sclerodermus pupariae. The percentage of winged female parasitoid progeny increased exponentially with temperature between 20 °C to 30 °C. Low intensity light and short-day photoperiod conditions also significantly induced the development of winged morphs. Interestingly, wingless maternal parasitoids produced more winged progeny. Furthermore, the degree of wing dimorphism was significantly influenced by the interactions between light intensity and maternal wing morphs. The percentage of winged female progeny was not significantly influenced by foundress densities, but increased significantly with parasitoid brood sizes. However, the percentage of male progeny increased significantly with the densities of maternal parasitoids. Our findings highlight the phenotypic partitioning of wing morphology and development in the parasitoid S. pupariae under varied environmental cues, and reveal the most favourable conditions for the production of winged females in this bethylid wasp. It is thus possible to increase winged female parasitoid production for the purposes of biological control by manipulation of biotic and abiotic conditions. PMID:27194095

  18. Effects of biotic and abiotic factors on phenotypic partitioning of wing morphology and development in Sclerodermus pupariae (Hymenoptera: Bethylidae)

    PubMed Central

    Wang, Xiaoyi; Wei, Ke; Yang, Zhongqi; Jennings, David E.; Duan, Jian J.

    2016-01-01

    Wing phenotype polymorphism is commonly observed in insects, yet little is known about the influence of environmental cues on the development or expression of the alternative phenotypes. Here, we report how both biotic and abiotic factors affect the wing morph differentiation of a bethylid parasitoid Sclerodermus pupariae. The percentage of winged female parasitoid progeny increased exponentially with temperature between 20 °C to 30 °C. Low intensity light and short-day photoperiod conditions also significantly induced the development of winged morphs. Interestingly, wingless maternal parasitoids produced more winged progeny. Furthermore, the degree of wing dimorphism was significantly influenced by the interactions between light intensity and maternal wing morphs. The percentage of winged female progeny was not significantly influenced by foundress densities, but increased significantly with parasitoid brood sizes. However, the percentage of male progeny increased significantly with the densities of maternal parasitoids. Our findings highlight the phenotypic partitioning of wing morphology and development in the parasitoid S. pupariae under varied environmental cues, and reveal the most favourable conditions for the production of winged females in this bethylid wasp. It is thus possible to increase winged female parasitoid production for the purposes of biological control by manipulation of biotic and abiotic conditions. PMID:27194095

  19. Plant Survival in a Changing Environment: The Role of Nitric Oxide in Plant Responses to Abiotic Stress

    PubMed Central

    Simontacchi, Marcela; Galatro, Andrea; Ramos-Artuso, Facundo; Santa-María, Guillermo E.

    2015-01-01

    Nitric oxide in plants may originate endogenously or come from surrounding atmosphere and soil. Interestingly, this gaseous free radical is far from having a constant level and varies greatly among tissues depending on a given plant’s ontogeny and environmental fluctuations. Proper plant growth, vegetative development, and reproduction require the integration of plant hormonal activity with the antioxidant network, as well as the maintenance of concentration of reactive oxygen and nitrogen species within a narrow range. Plants are frequently faced with abiotic stress conditions such as low nutrient availability, salinity, drought, high ultraviolet (UV) radiation and extreme temperatures, which can influence developmental processes and lead to growth restriction making adaptive responses the plant’s priority. The ability of plants to respond and survive under environmental-stress conditions involves sensing and signaling events where nitric oxide becomes a critical component mediating hormonal actions, interacting with reactive oxygen species, and modulating gene expression and protein activity. This review focuses on the current knowledge of the role of nitric oxide in adaptive plant responses to some specific abiotic stress conditions, particularly low mineral nutrient supply, drought, salinity and high UV-B radiation. PMID:26617619

  20. Plant Survival in a Changing Environment: The Role of Nitric Oxide in Plant Responses to Abiotic Stress.

    PubMed

    Simontacchi, Marcela; Galatro, Andrea; Ramos-Artuso, Facundo; Santa-María, Guillermo E

    2015-01-01

    Nitric oxide in plants may originate endogenously or come from surrounding atmosphere and soil. Interestingly, this gaseous free radical is far from having a constant level and varies greatly among tissues depending on a given plant's ontogeny and environmental fluctuations. Proper plant growth, vegetative development, and reproduction require the integration of plant hormonal activity with the antioxidant network, as well as the maintenance of concentration of reactive oxygen and nitrogen species within a narrow range. Plants are frequently faced with abiotic stress conditions such as low nutrient availability, salinity, drought, high ultraviolet (UV) radiation and extreme temperatures, which can influence developmental processes and lead to growth restriction making adaptive responses the plant's priority. The ability of plants to respond and survive under environmental-stress conditions involves sensing and signaling events where nitric oxide becomes a critical component mediating hormonal actions, interacting with reactive oxygen species, and modulating gene expression and protein activity. This review focuses on the current knowledge of the role of nitric oxide in adaptive plant responses to some specific abiotic stress conditions, particularly low mineral nutrient supply, drought, salinity and high UV-B radiation. PMID:26617619

  1. Abiotic ozone and oxygen in atmospheres similar to prebiotic Earth

    SciTech Connect

    Domagal-Goldman, Shawn D.; Segura, Antígona; Claire, Mark W.; Robinson, Tyler D.; Meadows, Victoria S.

    2014-09-10

    The search for life on planets outside our solar system will use spectroscopic identification of atmospheric biosignatures. The most robust remotely detectable potential biosignature is considered to be the detection of oxygen (O{sub 2}) or ozone (O{sub 3}) simultaneous to methane (CH{sub 4}) at levels indicating fluxes from the planetary surface in excess of those that could be produced abiotically. Here we use an altitude-dependent photochemical model with the enhanced lower boundary conditions necessary to carefully explore abiotic O{sub 2} and O{sub 3} production on lifeless planets with a wide variety of volcanic gas fluxes and stellar energy distributions. On some of these worlds, we predict limited O{sub 2} and O{sub 3} buildup, caused by fast chemical production of these gases. This results in detectable abiotic O{sub 3} and CH{sub 4} features in the UV-visible, but no detectable abiotic O{sub 2} features. Thus, simultaneous detection of O{sub 3} and CH{sub 4} by a UV-visible mission is not a strong biosignature without proper contextual information. Discrimination between biological and abiotic sources of O{sub 2} and O{sub 3} is possible through analysis of the stellar and atmospheric context—particularly redox state and O atom inventory—of the planet in question. Specifically, understanding the spectral characteristics of the star and obtaining a broad wavelength range for planetary spectra should allow more robust identification of false positives for life. This highlights the importance of wide spectral coverage for future exoplanet characterization missions. Specifically, discrimination between true and false positives may require spectral observations that extend into infrared wavelengths and provide contextual information on the planet's atmospheric chemistry.

  2. The Arabidopsis PLAT domain protein1 promotes abiotic stress tolerance and growth in tobacco.

    PubMed

    Hyun, Tae Kyung; Albacete, Alfonso; van der Graaff, Eric; Eom, Seung Hee; Großkinsky, Dominik K; Böhm, Hannah; Janschek, Ursula; Rim, Yeonggil; Ali, Walid Wahid; Kim, Soo Young; Roitsch, Thomas

    2015-08-01

    Plant growth and consequently crop yield can be severely compromised by abiotic and biotic stress conditions. Transgenic approaches that resulted in increased tolerance against abiotic stresses often were typically accompanied by adverse effects on plant growth and fitness under optimal growing conditions. Proteins that belong to the PLAT-plant-stress protein family harbour a single PLAT (Polycystin, Lipoxygenase, Alpha-toxin and Triacylglycerol lipase) domain and are ubiquitously present in monocot and dicot plant species. Until now, only limited data is available for PLAT-plant-stress family members, which suggested that these proteins in general could promote tolerance towards stress responses. We studied the function of the Arabidopsis PLAT-plant-stress protein AtPLAT1 employing heterologous gain-of-function analysis in tobacco. AtPLAT1 conferred increased abiotic stress tolerance in tobacco, evident by improved tolerance towards cold, drought and salt stresses, and promoted growth, reflected by a faster development under non-stressed conditions. However, the overexpression of AtPLAT1 in tobacco reduced the tolerance towards biotic stress conditions and, therefore, could be involved in regulating the crosstalk between abiotic and biotic stress responses. Thus, we showed that heterologously expressed AtPLAT1 functions as positive regulator of abiotic stress tolerance and plant growth, which could be an important new asset for strategies to develop plants with improved abiotic stress tolerance, without growth and subsequent yield penalties under optimal growth conditions. PMID:25757741

  3. 78 FR 43963 - Sixty-Second Meeting: RTCA Special Committee 135, Environmental Conditions and Test Procedures...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-22

    ... Conditions and Test Procedures for Airborne Equipment. SUMMARY: The FAA is issuing this notice to advise the public of the Sixty-Second meeting of the RTCA Special Committee 135, Environmental Conditions and Test... and Test Procedures for Airborne Equipment AGENCY:......

  4. 77 FR 15449 - 59th Meeting: RTCA Special Committee 135, Environmental Conditions and Test Procedures for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-15

    ... Conditions and Test Procedures for Airborne Equipment. SUMMARY: The FAA is issuing this notice to advise the public of the fifty-ninth meeting of RTCA Special Committee 135, Environmental Conditions and Test... and Test Procedures for Airborne Equipment AGENCY: Federal......

  5. Reverse-engineering the Arabidopsis thaliana transcriptional network under changing environmental conditions

    PubMed Central

    Carrera, Javier; Rodrigo, Guillermo; Jaramillo, Alfonso; Elena, Santiago F

    2009-01-01

    Background Understanding the molecular mechanisms plants have evolved to adapt their biological activities to a constantly changing environment is an intriguing question and one that requires a systems biology approach. Here we present a network analysis of genome-wide expression data combined with reverse-engineering network modeling to dissect the transcriptional control of Arabidopsis thaliana. The regulatory network is inferred by using an assembly of microarray data containing steady-state RNA expression levels from several growth conditions, developmental stages, biotic and abiotic stresses, and a variety of mutant genotypes. Results We show that the A. thaliana regulatory network has the characteristic properties of hierarchical networks. We successfully applied our quantitative network model to predict the full transcriptome of the plant for a set of microarray experiments not included in the training dataset. We also used our model to analyze the robustness in expression levels conferred by network motifs such as the coherent feed-forward loop. In addition, the meta-analysis presented here has allowed us to identify regulatory and robust genetic structures. Conclusions These data suggest that A. thaliana has evolved high connectivity in terms of transcriptional regulation among cellular functions involved in response and adaptation to changing environments, while gene networks constitutively expressed or less related to stress response are characterized by a lower connectivity. Taken together, these findings suggest conserved regulatory strategies that have been selected during the evolutionary history of this eukaryote. PMID:19754933

  6. ABA Inducible Rice Protein Phosphatase 2C Confers ABA Insensitivity and Abiotic Stress Tolerance in Arabidopsis

    PubMed Central

    Singh, Amarjeet; Jha, Saroj K.; Bagri, Jayram; Pandey, Girdhar K.

    2015-01-01

    Arabidopsis PP2C belonging to group A have been extensively worked out and known to negatively regulate ABA signaling. However, rice (Oryza sativa) orthologs of Arabidopsis group A PP2C are scarcely characterized functionally. We have identified a group A PP2C from rice (OsPP108), which is highly inducible under ABA, salt and drought stresses and localized predominantly in the nucleus. Genetic analysis revealed that Arabidopsis plants overexpressing OsPP108 are highly insensitive to ABA and tolerant to high salt and mannitol stresses during seed germination, root growth and overall seedling growth. At adult stage, OsPP108 overexpression leads to high tolerance to salt, mannitol and drought stresses with far better physiological parameters such as water loss, fresh weight, chlorophyll content and photosynthetic potential (Fv/Fm) in transgenic Arabidopsis plants. Expression profile of various stress marker genes in OsPP108 overexpressing plants revealed interplay of ABA dependent and independent pathway for abiotic stress tolerance. Overall, this study has identified a potential rice group A PP2C, which regulates ABA signaling negatively and abiotic stress signaling positively. Transgenic rice plants overexpressing this gene might provide an answer to the problem of low crop yield and productivity during adverse environmental conditions. PMID:25886365

  7. EXB1/WRKY71 transcription factor regulates both shoot branching and responses to abiotic stresses.

    PubMed

    Guo, Dongshu; Qin, Genji

    2016-03-01

    As the sessile organisms, plants evolve different strategies to survive in adverse environmental conditions. The elaborate regulation of shoot branching is an important strategy for plant morphological adaptation to various environments, while the regulation of reactive oxygen species (ROS), salicylic acid (SA) and jasmonic acid (JA) is pivotal for plant responses to biotic and abiotic stresses. Recently, we have demonstrated that Arabidopsis EXB1, a WRKY transcription factor, is a positive regulator of shoot branching as a cover story in Plant Cell. Here we show that WRKY23, an EXB1 close member, has a redundant role in control of shoot branching. We further show that EXB1 is induced by H2O2, ABA or mannitol treatments, suggesting that EXB1 may also play roles in plant responses to abiotic stresses. RNA-sequencing (RNA-seq) analysis using 4EnhpEXB1-EXB1GR inducible line indicates that the genes involved in oxidative stress, oxidation reduction, SA or JA signaling pathway are regulated by EXB1 induction in a short time. We suggest that EXB1/WRKY71 transcription factor may play pivotal roles in plant adaptation to environments by both morphological and physiological ways. PMID:26914912

  8. ABA inducible rice protein phosphatase 2C confers ABA insensitivity and abiotic stress tolerance in Arabidopsis.

    PubMed

    Singh, Amarjeet; Jha, Saroj K; Bagri, Jayram; Pandey, Girdhar K

    2015-01-01

    Arabidopsis PP2C belonging to group A have been extensively worked out and known to negatively regulate ABA signaling. However, rice (Oryza sativa) orthologs of Arabidopsis group A PP2C are scarcely characterized functionally. We have identified a group A PP2C from rice (OsPP108), which is highly inducible under ABA, salt and drought stresses and localized predominantly in the nucleus. Genetic analysis revealed that Arabidopsis plants overexpressing OsPP108 are highly insensitive to ABA and tolerant to high salt and mannitol stresses during seed germination, root growth and overall seedling growth. At adult stage, OsPP108 overexpression leads to high tolerance to salt, mannitol and drought stresses with far better physiological parameters such as water loss, fresh weight, chlorophyll content and photosynthetic potential (Fv/Fm) in transgenic Arabidopsis plants. Expression profile of various stress marker genes in OsPP108 overexpressing plants revealed interplay of ABA dependent and independent pathway for abiotic stress tolerance. Overall, this study has identified a potential rice group A PP2C, which regulates ABA signaling negatively and abiotic stress signaling positively. Transgenic rice plants overexpressing this gene might provide an answer to the problem of low crop yield and productivity during adverse environmental conditions. PMID:25886365

  9. The abiotic degradation of soil organic matter to oxalic acid

    NASA Astrophysics Data System (ADS)

    Studenroth, Sabine; Huber, Stefan; Schöler, H. F.

    2010-05-01

    The abiotic degradation of soil organic matter to volatile organic compounds was studied intensely over the last years (Keppler et al., 2000; Huber et al., 2009). It was shown that soil organic matter is oxidised due to the presence of iron (III), hydrogen peroxide and chloride and thereby produces diverse alkyl halides, which are emitted into the atmosphere. The formation of polar halogenated compounds like chlorinated acetic acids which are relevant toxic environmental substances was also found in soils and sediments (Kilian et al., 2002). The investigation of the formation of other polar halogenated and non-halogenated compounds like diverse mono- and dicarboxylic acids is going to attain more and more importance. Due to its high acidity oxalic acid might have impacts on the environment e.g., nutrient leaching, plant diseases and negative influence on microbial growth. In this study, the abiotic formation of oxalic acid in soil is examined. For a better understanding of natural degradation processes mechanistic studies were conducted using the model compound catechol as representative for structural elements of the humic substances and its reaction with iron (III) and hydrogen peroxide. Iron is one of the most abundant elements on earth and hydrogen peroxide is produced by bacteria or through incomplete reduction of oxygen. To find suitable parameters for an optimal reaction and a qualitative and quantitative analysis method the following reaction parameters are varied: concentration of iron (III) and hydrogen peroxide, time dependence, pH-value and influence of chloride. Analysis of oxalic acid was performed employing an ion chromatograph equipped with a conductivity detector. The time dependent reaction shows a relatively fast formation of oxalic acid, the optimum yield is achieved after 60 minutes. Compared to the concentration of catechol an excess of hydrogen peroxide as well as a low concentration of iron (III) are required. In absence of chloride the

  10. Abiotic production of iodine molecules in irradiated ice

    NASA Astrophysics Data System (ADS)

    Choi, Wonyong; Kim, Kitae; Yabushita, Akihiro

    2015-04-01

    Reactive halogen species play an important role in Earth's environmental systems. Iodine compounds are related to ozone depletion event (ODE) during Antarctic spring, formation of CCN (cloud condensation nuclei), and controlling the atmospheric oxidizing capacity. However, the processes and mechanisms for abiotic formation of iodine compounds in polar region are still unclear. Although the chemical reactions taking place in ice are greatly different from those in aquatic environment, reaction processes of halogens in frozen condition have rarely studied compared to those in water. In this study, we investigated iodide oxidation to form triiodide (I3-) in ice phase under UV irradiation ( λ > 300 nm) and dark condition. The production of I3- through iodide oxidation, which is negligible in aqueous solution, was significantly accelerated in ice phase even in the absence of UV irradiation. The following release of gaseous iodine molecule (I2) to the atmosphere was also monitored by cavity ring-down spectroscopy (CRDS). We speculate that the markedly enhanced iodide oxidation in polycrystalline ice is due to the freeze concentration of iodides, protons, and dissolved oxygen in the ice crystal grain boundaries. The experiments conducted under ambient solar radiation of the Antarctic region (King George Island, 62°13'S 58°47'W, sea level) also confirmed that the generation of I3- via iodide oxidation process is enhanced when iodide is trapped in ice. The observed intrinsic oxidative transformation of iodide to generate I3-(aq) and I2(g) in frozen environment suggests a previously unknown pathway for the substantial release of reactive iodine species to the atmosphere.

  11. Parasitism in early life: environmental conditions shape within-brood variation in responses to infection

    PubMed Central

    Granroth-Wilding, Hanna M V; Burthe, Sarah J; Lewis, Sue; Reed, Thomas E; Herborn, Katherine A; Newell, Mark A; Takahashi, Emi A; Daunt, Francis; Cunningham, Emma J A

    2014-01-01

    Parasites play key ecological and evolutionary roles through the costs they impose on their host. In wild populations, the effect of parasitism is likely to vary considerably with environmental conditions, which may affect the availability of resources to hosts for defense. However, the interaction between parasitism and prevailing conditions is rarely quantified. In addition to environmental variation acting on hosts, individuals are likely to vary in their response to parasitism, and the combined effect of both may increase heterogeneity in host responses. Offspring hierarchies, established by parents in response to uncertain rearing conditions, may be an important source of variation between individuals. Here, we use experimental antiparasite treatment across 5 years of variable conditions to test how annual population productivity (a proxy for environmental conditions) and parasitism interact to affect growth and survival of different brood members in juvenile European shags (Phalacrocorax aristotelis). In control broods, last-hatched chicks had more plastic growth rates, growing faster in more productive years. Older siblings grew at a similar rate in all years. Treatment removed the effect of environment on last-hatched chicks, such that all siblings in treated broods grew at a similar rate across environmental conditions. There were no differences in nematode burden between years or siblings, suggesting that variation in responses arose from intrinsic differences between chicks. Whole-brood growth rate was not affected by treatment, indicating that within-brood differences were driven by a change in resource allocation between siblings rather than a change in overall parental provisioning. We show that gastrointestinal parasites can be a key component of offspring's developmental environment. Our results also demonstrate the value of considering prevailing conditions for our understanding of parasite effects on host life-history traits. Establishing how

  12. Dependence of RNA:DNA ratios and Fulton’s K condition indices on environmental characteristics of plaice and dab nursery grounds

    NASA Astrophysics Data System (ADS)

    De Raedemaecker, F.; Brophy, D.; O'Connor, I.; O'Neill, B.

    2012-02-01

    This field study showed a lack of a correlation between a morphometric (Fulton's K) and biochemical (RNA:DNA ratio) condition index in juvenile plaice ( Pleuronectes platessa) and dab ( Limanda limanda) studied to assess habitat quality in four sandy beach nursery grounds in Galway Bay, Ireland. Based on monthly surveys from June to September in 2008 and 2009, fish growth, indicated by RNA:DNA ratios and Fulton's K, displayed considerable spatio-temporal variability. Site-related patterns in Fulton's K for plaice and dab were consistent between years whereas RNA:DNA ratios displayed annual and interspecific variability among nursery habitats. This indicates a higher sensitivity of RNA:DNA ratios to short-term environmental fluctuations which is not apparent in Fulton's K measurements of juvenile flatfish. Generalized Additive Modelling (GAM) revealed non-linear relationships between the condition indices and (biotic and abiotic) habitat characteristics as well as diet features, derived from gut content analyses. Density of predators, sediment grain size and salinity were the most important predictors of both condition indices. Temperature also affected condition indices in dab whereas plaice condition indices varied with depth. Diet features did not contribute to the explained variability in the models predicting RNA:DNA ratios whereas certain prey groups significantly improved the explained variability in the models predicting Fulton's K of plaice and dab. The value of both indices for assessing fish condition and habitat quality in field studies is discussed. These findings aid understanding of the biological and physical mechanisms promoting fast growth and high survival which will help to identify high quality nursery areas for juvenile plaice and dab.

  13. Sustainable development and quality of life: expected effects of prospective changes in economic and environmental conditions.

    PubMed

    Vlek, C; Skolnik, M; Gatersleben, B

    1998-01-01

    In the context of "sustainable development", we studied which attributes are important to people's quality of life (QoL) and which changes in QoL people would expect from future economic and environmental improvements or deteriorations. About 200 adult subjects evaluated the relative importance of 22 different QoL attributes. They subsequently indicated expected changes in those attributes, under three different scenarios in which economic and environmental conditions would either improve or deteriorate. On average, subjects judged the QoL attributes "healthy", "family", "environmental quality", "nature" and "safety" to be most important, while "recognition", "comfort", "status" and "spiritual life" were found least important. The most important QoL attributes as well as "security" were judged as more important by women than by men. Also observed were income and age effects on relative attribute importance. Our (Dutch) subjects expected significant and varied negative QoL changes from an environmental-deterioration scenario involving either an improved or a deteriorated economy. In contrast, they had mixed positive-negative QoL expectations about environmental improvement combined with economic deterioration. Subjects high in environmental concern assigned greater weight to "environmental" QoL attributes, and they expected environmental improvement versus deterioration to more strongly affect their QoL-attributes "environmental quality", "nature", "health" and "unity with nature", than did subjects low in environmental concern. We conclude that quality of life can be meaningfully conceived as a multi-attribute value concept, useful for assessing the expected effects of future economic and environmental conditions. Suggestions are given for methodological improvement and for further research. PMID:9857825

  14. A review of selection-based tests of abiotic surrogates for species representation.

    PubMed

    Beier, Paul; Sutcliffe, Patricia; Hjort, Jan; Faith, Daniel P; Pressey, Robert L; Albuquerque, Fabio

    2015-06-01

    Because conservation planners typically lack data on where species occur, environmental surrogates--including geophysical settings and climate types--have been used to prioritize sites within a planning area. We reviewed 622 evaluations of the effectiveness of abiotic surrogates in representing species in 19 study areas. Sites selected using abiotic surrogates represented more species than an equal number of randomly selected sites in 43% of tests (55% for plants) and on average improved on random selection of sites by about 8% (21% for plants). Environmental diversity (ED) (42% median improvement on random selection) and biotically informed clusters showed promising results and merit additional testing. We suggest 4 ways to improve performance of abiotic surrogates. First, analysts should consider a broad spectrum of candidate variables to define surrogates, including rarely used variables related to geographic separation, distance from coast, hydrology, and within-site abiotic diversity. Second, abiotic surrogates should be defined at fine thematic resolution. Third, sites (the landscape units prioritized within a planning area) should be small enough to ensure that surrogates reflect species' environments and to produce prioritizations that match the spatial resolution of conservation decisions. Fourth, if species inventories are available for some planning units, planners should define surrogates based on the abiotic variables that most influence species turnover in the planning area. Although species inventories increase the cost of using abiotic surrogates, a modest number of inventories could provide the data needed to select variables and evaluate surrogates. Additional tests of nonclimate abiotic surrogates are needed to evaluate the utility of conserving nature's stage as a strategy for conservation planning in the face of climate change. PMID:25923191

  15. Abiotic systems for the catalytic treatment of solvent-contaminated water

    SciTech Connect

    Betterton, E.A.; Arnold, R.G.; Liu, Zhijie; Hollan, N.

    1996-12-31

    Three abiotic systems are described that catalyze the reductive dehalogenation of heavily halogenated environmental pollutants, including carbon tetrachloride, trichloroethene, and perchloroethene. These systems include (a) an electrolytic reactor in which the potential on the working electrode (cathode) is fixed by using a potentiostat, (b) a light-driven system consisting of a semiconductor and (covalently attached) macrocycle that can accept light transmitted via an optical fiber, and a light-driven, two-solvent (isopropanol/acetone) system that promotes dehalogenation reactions via an unknown mechanism. Each is capable of accelerating reductive dehalogenation reactions to very high rates under laboratory conditions. Typically, millimolar concentrations of aqueous-phase targets can be dehalogenated in minutes to hours. The description of each system includes the elements of reaction mechanism (to the extent known), typical kinetic data, and a discussion of the feasibility of applying this technology for the in situ destruction of hazardous compounds. 14 refs., 11 figs., 2 tabs.

  16. Potential utilization of NAC transcription factors to enhance abiotic stress tolerance in plants by biotechnological approach.

    PubMed

    Tran, Lam-Son Phan; Nishiyama, Rie; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo

    2010-01-01

    Abiotic stresses such as extreme temperature, drought, high salinity, cold and waterlogging often result in significant losses to the yields of economically important crops. Plants constantly exposed to capricious conditions have adapted at the molecular, cellular, physiological and biochemical level, enabling them to survive and cope with adverse environmental stresses. NAC (NAM, ATAF and CUC) transcription factors (TFs), which constitute one of the largest families of plant-specific TFs, have been reported to enhance tolerance against various stresses, such as drought, high salinity and cold, in a number of plants. In this review the NAC TF family will be described and the potential use of NAC TFs in development of improved stress tolerant transgenic crops will be discussed. PMID:21912210

  17. An ATL78-Like RING-H2 Finger Protein Confers Abiotic Stress Tolerance through Interacting with RAV2 and CSN5B in Tomato.

    PubMed

    Song, Jianwen; Xing, Yali; Munir, Shoaib; Yu, Chuying; Song, Lulu; Li, Hanxia; Wang, Taotao; Ye, Zhibiao

    2016-01-01

    RING finger proteins play an important role in plant adaptation to abiotic stresses. In the present study, a wild tomato (Solanum habrochaites) cold-induced RING-H2 finger gene, ShATL78L, was isolated, which has been identified as an abiotic stress responsive gene in tomato. The results showed that ShATL78L was constitutively expressed in various tissues such as root, leaf, petiole, stem, flower, and fruit. Cold stress up-regulated ShATL78L in the cold-tolerant S. habrochaites compared to the susceptible cultivated tomato (S. lycopersicum). Furthermore, ShATL78L expression was also regulated under different stresses such as drought, salt, heat, wound, osmotic stress, and exogenous hormones. Functional characterization showed that cultivated tomato overexpressing ShATL78L had improved tolerance to cold, drought and oxidative stresses compared to the wild-type and the knockdown lines. To understand the underlying molecular mechanism of ShATL78L regulating abiotic stress responses, we performed yeast one-hybrid and two-hybrid assays and found that RAV2 could bind to the promoter of ShATL78L and activates/alters its transcription, and CSN5B could interact with ShATL78L to regulate abiotic stress responses. Taken together, these results show that ShATL78L plays an important role in regulating plant adaptation to abiotic stresses through bound by RAV2 and interacting with CSN5B. Highlight: RAV2 binds to the promoter of ShATL78L to activates/alters its transcription to adapt the environmental conditions; furthermore, ShATL78L interacts with CSN5B to regulate the stress tolerance. PMID:27621744

  18. An ATL78-Like RING-H2 Finger Protein Confers Abiotic Stress Tolerance through Interacting with RAV2 and CSN5B in Tomato

    PubMed Central

    Song, Jianwen; Xing, Yali; Munir, Shoaib; Yu, Chuying; Song, Lulu; Li, Hanxia; Wang, Taotao; Ye, Zhibiao

    2016-01-01

    RING finger proteins play an important role in plant adaptation to abiotic stresses. In the present study, a wild tomato (Solanum habrochaites) cold-induced RING-H2 finger gene, ShATL78L, was isolated, which has been identified as an abiotic stress responsive gene in tomato. The results showed that ShATL78L was constitutively expressed in various tissues such as root, leaf, petiole, stem, flower, and fruit. Cold stress up-regulated ShATL78L in the cold-tolerant S. habrochaites compared to the susceptible cultivated tomato (S. lycopersicum). Furthermore, ShATL78L expression was also regulated under different stresses such as drought, salt, heat, wound, osmotic stress, and exogenous hormones. Functional characterization showed that cultivated tomato overexpressing ShATL78L had improved tolerance to cold, drought and oxidative stresses compared to the wild-type and the knockdown lines. To understand the underlying molecular mechanism of ShATL78L regulating abiotic stress responses, we performed yeast one-hybrid and two-hybrid assays and found that RAV2 could bind to the promoter of ShATL78L and activates/alters its transcription, and CSN5B could interact with ShATL78L to regulate abiotic stress responses. Taken together, these results show that ShATL78L plays an important role in regulating plant adaptation to abiotic stresses through bound by RAV2 and interacting with CSN5B. Highlight: RAV2 binds to the promoter of ShATL78L to activates/alters its transcription to adapt the environmental conditions; furthermore, ShATL78L interacts with CSN5B to regulate the stress tolerance. PMID:27621744

  19. Environmental conditions modulate the switch among different states of the hydrophobin Vmh2 from Pleurotus ostreatus.

    PubMed

    Longobardi, Sara; Picone, Delia; Ercole, Carmine; Spadaccini, Roberta; De Stefano, Luca; Rea, Ilaria; Giardina, Paola

    2012-03-12

    Fungal hydrophobins are amphipathic, highly surface-active, and self-assembling proteins. The class I hydrophobin Vmh2 from the basidiomycete fungus Pleurotus ostreatus seems to be the most hydrophobic hydrophobin characterized so far. Structural and functional properties of the protein as a function of the environmental conditions have been determined. At least three distinct phenomena can occur, being modulated by the environmental conditions: (1) when the pH increases or in the presence of Ca(2+) ions, an assembled state, β-sheet rich, is formed; (2) when the solvent polarity increases, the protein shows an increased tendency to reach hydrophobic/hydrophilic interfaces, with no detectable conformational change; and (3) when a reversible conformational change and reversible aggregation occur at high temperature. Modulation of the Vmh2 conformational/aggregation features by changing the environmental conditions can be very useful in view of the potential protein applications. PMID:22292968

  20. Environmental performance of wastewater reuse systems: impact of system boundaries and external conditions.

    PubMed

    Baresel, Christian; Dalgren, Lena; Almemark, Mats; Lazic, Aleksandra

    2016-01-01

    Wastewater reclamation will be a significant part of future water management and the environmental assessment of various treatment systems to reuse wastewater has become an important research field. The secondary treatment process and sludge handling on-site are, especially, electricity demanding processes due to aeration, pumping, mixing, dewatering, etc. used for operation and are being identified as the main contributor for many environmental impacts. This study discusses how the environmental performance of reuse treatment systems may be influenced by surrounding conditions. This article illustrates and discusses the importance of factors commonly treated as externalities and as such not being included in optimization strategies of reuse systems, but that are necessary to environmentally assess wastewater reclamation systems. This is illustrated by two up-stream and downstream processes; electricity supply and the use of sludge as fertilizer commonly practiced in regions considered for wastewater reclamation. The study shows that external conditions can have a larger impact on the overall environmental performance of reuse treatment systems than internal optimizations could compensate for. These results imply that a more holistic environmental assessment of reuse schemes could provide less environmental impacts as externalities could be included in measures to reduce the overall impacts. PMID:27003080

  1. Application of Whole Genome Expression Analysis to Assess Bacterial Responses to Environmental Conditions

    NASA Astrophysics Data System (ADS)

    Vukanti, R. V.; Mintz, E. M.; Leff, L. G.

    2005-05-01

    Bacterial responses to environmental signals are multifactorial and are coupled to changes in gene expression. An understanding of bacterial responses to environmental conditions is possible using microarray expression analysis. In this study, the utility of microarrays for examining changes in gene expression in Escherichia coli under different environmental conditions was assessed. RNA was isolated, hybridized to Affymetrix E. coli Genome 2.0 chips and analyzed using Affymetrix GCOS and Genespring software. Major limiting factors were obtaining enough quality RNA (107-108 cells to get 10μg RNA)and accounting for differences in growth rates under different conditions. Stabilization of RNA prior to isolation and taking extreme precautions while handling RNA were crucial. In addition, use of this method in ecological studies is limited by availability and cost of commercial arrays; choice of primers for cDNA synthesis, reproducibility, complexity of results generated and need to validate findings. This method may be more widely applicable with the development of better approaches for RNA recovery from environmental samples and increased number of available strain-specific arrays. Diligent experimental design and verification of results with real-time PCR or northern blots is needed. Overall, there is a great potential for use of this technology to discover mechanisms underlying organisms' responses to environmental conditions.

  2. Environmental Condition and its Impact on Landscape Description by Salient Element

    NASA Astrophysics Data System (ADS)

    Soleimani, S.; Malek, M. R.; Soleimani, Z.; Arabsheibani, R.

    2015-12-01

    Describing a landscape means making link between concepts of visible features and people's perception. Most landscape description methods underline salient entities which are a key trigger for wayfinding problems and tourism management. Searching for a better understanding of landscape descriptions implies to explore and identify the main visual properties that differentiate between landscapes depending on both human cognition and environmental condition. Furthermore, this environmental condition affects the credibility of data produced by people, particularly when using Volunteered Geographical Information systems which brings forward a huge amount of information. Then this paper proposes an approach to emerge patterns by which describing landscape in general and choosing salient objects in particular have been influenced.

  3. Resistance of Microorganisms to Extreme Environmental Conditions and Its Contribution to Astrobiology

    NASA Astrophysics Data System (ADS)

    Rampelotto, Pabulo Henrique

    2010-06-01

    In the last decades, substantial changes have occurred regarding what scientists consider the limits of habitable environmental conditions. For every extreme environmental condition investigated, a variety of microorganisms have shown that not only can they tolerate these conditions, but that they also often require these extreme conditions for survival. Microbes can return to life even after hundreds of millions of years. Furthermore, a variety of studies demonstrate that microorganisms can survive under extreme conditions, such as ultracentrifugation, hypervelocity, shock pressure, high temperature variations, vacuums, and different ultraviolet and ionizing radiation intensities, which simulate the conditions that microbes could experience during the ejection from one planet, the journey through space, as well as the impact in another planet. With these discoveries, our knowledge about the biosphere has grown and the putative boundaries of life have expanded. The present work examines the recent discoveries and the principal advances concerning the resistance of microorganisms to extreme environmental conditions, and analyzes its contributions to the development of the main themes of astrobiology: the origins of life, the search for extraterrestrial life, and the dispersion of life in the Universe.

  4. Disentangling effects of abiotic factors and biotic interactions on cross-taxon congruence in species turnover patterns of plants, moths and beetles

    PubMed Central

    Duan, Meichun; Liu, Yunhui; Yu, Zhenrong; Baudry, Jacques; Li, Liangtao; Wang, Changliu; Axmacher, Jan C.

    2016-01-01

    High cross-taxon congruence in species diversity patterns is essential for the use of surrogate taxa in biodiversity conservation, but presence and strength of congruence in species turnover patterns, and the relative contributions of abiotic environmental factors and biotic interaction towards this congruence, remain poorly understood. In our study, we used variation partitioning in multiple regressions to quantify cross-taxon congruence in community dissimilarities of vascular plants, geometrid and arciinid moths and carabid beetles, subsequently investigating their respective underpinning by abiotic factors and biotic interactions. Significant cross-taxon congruence observed across all taxon pairs was linked to their similar responses towards elevation change. Changes in the vegetation composition were closely linked to carabid turnover, with vegetation structure and associated microclimatic conditions proposed causes of this link. In contrast, moth assemblages appeared to be dominated by generalist species whose turnover was weakly associated with vegetation changes. Overall, abiotic factors exerted a stronger influence on cross-taxon congruence across our study sites than biotic interactions. The weak congruence in turnover observed particularly between plants and moths highlights the importance of multi-taxon approaches based on groupings of taxa with similar turnovers, rather than the use of single surrogate taxa or environmental proxies, in biodiversity assessments. PMID:27032533

  5. Disentangling effects of abiotic factors and biotic interactions on cross-taxon congruence in species turnover patterns of plants, moths and beetles.

    PubMed

    Duan, Meichun; Liu, Yunhui; Yu, Zhenrong; Baudry, Jacques; Li, Liangtao; Wang, Changliu; Axmacher, Jan C

    2016-01-01

    High cross-taxon congruence in species diversity patterns is essential for the use of surrogate taxa in biodiversity conservation, but presence and strength of congruence in species turnover patterns, and the relative contributions of abiotic environmental factors and biotic interaction towards this congruence, remain poorly understood. In our study, we used variation partitioning in multiple regressions to quantify cross-taxon congruence in community dissimilarities of vascular plants, geometrid and arciinid moths and carabid beetles, subsequently investigating their respective underpinning by abiotic factors and biotic interactions. Significant cross-taxon congruence observed across all taxon pairs was linked to their similar responses towards elevation change. Changes in the vegetation composition were closely linked to carabid turnover, with vegetation structure and associated microclimatic conditions proposed causes of this link. In contrast, moth assemblages appeared to be dominated by generalist species whose turnover was weakly associated with vegetation changes. Overall, abiotic factors exerted a stronger influence on cross-taxon congruence across our study sites than biotic interactions. The weak congruence in turnover observed particularly between plants and moths highlights the importance of multi-taxon approaches based on groupings of taxa with similar turnovers, rather than the use of single surrogate taxa or environmental proxies, in biodiversity assessments. PMID:27032533

  6. Understanding the responses of rice to environmental stress using proteomics.

    PubMed

    Singh, Raksha; Jwa, Nam-Soo

    2013-11-01

    Diverse abiotic and biotic stresses have marked effects on plant growth and productivity. To combat such stresses, plants have evolved complex but not well understood responses. Common effects upon perception of environmental stress are differential expression of the plant proteome and the synthesis of novel regulatory proteins for protection from and acclimation to stress conditions. Plants respond differently in terms of activation of stress-responsive signaling pathways depending upon the type and nature of the stresses to which they are exposed. Progress in proteomics and systems biology approaches has made it possible to identify the novel proteins and their interactions that function in abiotic stress responses. This will enable elucidation of the functions of individual proteins and their roles in signaling networks. Proteomic analysis of the responses to various stress conditions is performed most commonly using 2D gel electrophoresis and high-throughput identification by LC-MS/MS. Because of recent developments in proteomics techniques, numerous proteomics studies of rice under abiotic stress conditions have been performed. In this review, proteomics studies addressing rice responses to the major environmental stresses--including cold, heat, drought, salt, heavy metals, minerals, UV radiation, and ozone--are discussed. Unique or common protein responses to these stress conditions are summarized and interpreted according to their possible physiological responses in each stress. Additionally, proteomics studies on various plant systems under various abiotic stress conditions are compared to provide deeper understanding of specific and common proteome responses in rice and other plant systems, which will further contribute to the identification of abiotic stress tolerance factor at protein level. Functional analysis of stress-responsive proteins will provide new research objectives with the aim of achieving stable crop productivity in the face of the

  7. The Plant Heat Stress Transcription Factors (HSFs): Structure, Regulation, and Function in Response to Abiotic Stresses

    PubMed Central

    Guo, Meng; Liu, Jin-Hong; Ma, Xiao; Luo, De-Xu; Gong, Zhen-Hui; Lu, Ming-Hui

    2016-01-01

    Abiotic stresses such as high temperature, salinity, and drought adversely affect the survival, growth, and reproduction of plants. Plants respond to such unfavorable changes through developmental, physiological, and biochemical ways, and these responses require expression of stress-responsive genes, which are regulated by a network of transcription factors (TFs), including heat stress transcription factors (HSFs). HSFs play a crucial role in plants response to several abiotic stresses by regulating the expression of stress-responsive genes, such as heat shock proteins (Hsps). In this review, we describe the conserved structure of plant HSFs, the identification of HSF gene families from various plant species, their expression profiling under abiotic stress conditions, regulation at different levels and function in abiotic stresses. Despite plant HSFs share highly conserved structure, their remarkable diversification across plants reflects their numerous functions as well as their integration into the complex stress signaling and response networks, which can be employed in crop improvement strategies via biotechnological intervention. PMID:26904076

  8. Responses of Organic Phosphorus Fractionation to Environmental Conditions and Lake Evolution.

    PubMed

    Lü, Changwei; Wang, Bing; He, Jiang; Vogt, Rolf D; Zhou, Bin; Guan, Rui; Zuo, Le; Wang, Weiying; Xie, Zhilei; Wang, Jinghua; Yan, Daohao

    2016-05-17

    Geochemical fractionation is used to assess the significance of environmental factors on organic phosphorus (OP) pools in sediments. Labile, moderately labile, and nonlabile OP pools in the sediments from Lake Hulun, Inner Mongolia, were fractionated, and their responses to environmental conditions and lake evolution were investigated based on the spatial and vertical distribution of OP fractionations. In light of the recalcitrant characteristics of organic matter (OM) in different environmental conditions, the pH presents significant negative effects on the amount of labile OP, while water depth shows an important role in regulating the distribution between the moderately labile and nonlabile OP pools. A latitudinal zonation in the distribution of OP pools in surface sediments from different lakes was apparent with this zonation likely linked to the gradient effects of climate and anthropogenic activities on OM decomposition and thereby on the sediments capacity to hold phosphorus. These results show that OM plays a role in governing the impacts of weather and environmental factors on OP fractionation in aquatic environments. This work suggests that OP pools in the sediment core could be used as an archive for environmental conditions and lake evolution. PMID:27104794

  9. Environmental heterogeneity influences the reliability of secondary sexual traits as condition indicators.

    PubMed

    Vergara, Pablo; Martinez-Padilla, J; Mougeot, F; Leckie, F; Redpath, S M

    2012-01-01

    Numerous studies have shown positive associations between ornaments and condition, as predicted by indicator models of sexual selection. However, this idea is continuously challenged by opposite results, which reveal our lack of full understanding of how sexual selection works. Environmental heterogeneity may explain such inconsistencies, but valid field tests of this idea are currently lacking. We first analysed the relationship between condition and ornament expression from nine populations over 7 years in a wild bird, the red grouse Lagopus lagopus scoticus. We then manipulated male aggressiveness at the population level by means of testosterone implants in a replicated field experiment. We found that the relationship between condition and ornamentation varied greatly between environments and became stronger when environmental conditions (ECs) were worse or when aggressiveness in the population was experimentally increased. Some ornaments may therefore reliably advertise a better condition only in adverse ECs. Considering environmental heterogeneity can help reconcile conflicting findings regarding the reliability of ornaments as indicators of condition and will help our understanding of sexual selection processes. PMID:22022806

  10. The Impact of Environmental Conditions on Efficiency of Host Plant DNA Barcoding for Polyphagous Beetles.

    PubMed

    Kajtoch, Łukasz; Mazur, Miłosz A

    2015-04-01

    Recently, several papers were published dealing with host plant identification for selected species of insects, including beetles. These studies took advantage of the DNA barcoding approach and generally showed that it is possible to identify diet composition from plant DNA present in insect guts. However, none of these studies considered how the impact of environmental conditions affected the likelihood of insect feeding and, therefore, the presence of host plant DNA that could be amplified and sequenced. In the present study, individuals of the polyphagous weevil Centricnemus leucogrammus (Germar, 1824) (Curculionidae: Entiminae) were used to test the hypothesis that harsh environmental conditions limited its feeding activity. The diet of 50 specimens collected during favourable conditions in the middle of the species reproductive period was compared against the diet of 50 specimens collected during harsh environmental conditions. Results clearly showed that almost no weevils fed during rainy and cold conditions and only a minority of individuals (20%) fed during the drought condition (on drought-resistant plants). It is important to consider such factors in any studies dealing with host plant identification and feeding behaviour. Results of ecological studies could lead to erroneous conclusions, e.g., underestimation of number and composition of host plants in the diet of studies species. PMID:26313186

  11. Self-assembled insect muscle bioactuators with long term function under a range of environmental conditions

    PubMed Central

    Baryshyan, A.L.; Domigan, L.J.; Hunt, B.; Trimmer, B.A.; Kaplan, D. L.

    2014-01-01

    The use of mammalian muscles as device actuators is severely limited by their sensitivity to environmental conditions and short lifetime. To overcome these limitations insect muscle stem cells were used to generate organized 3D muscle constructs with significant enhancements in environmental tolerance and long term function. These tissues self-assembled, self-repaired, survived for months in culture without media replenishment and produced stresses of up to 2 kPa, all under ambient conditions. The muscle tissues continued to function for days even under biologically extreme temperature and pH. Furthermore, the dimensions and geometry of these tissues can be easily scaled to MEMS or meso-scale devices. The versatility, environmental hardiness and long term function provide a new path forward for biological actuators for device needs. PMID:25285210

  12. Applications of remote sensing for the evaluation of Adriatic Sea environmental conditions

    SciTech Connect

    Vitiello, F.; Borfecchia, F.; De Cecco, L.; Martini, S.

    1997-08-01

    The paper shows the remote sensing activities that ENEA is carrying out for the evaluation of Adriatic Sea environmental conditions and their modifications over the last fifteen years. The activities were requested by the Italian Research Ministry to gain knowledge of the circulation model of the Adriatic Sea and to understand what caused algae blooms in some of the last years. The Adriatic Sea is a high environmental risk sea, because its depth is low and a strong pollutant charge is coming into the sea from the Po river and from many other rivers of the NE coast of Italy. Processing of satellite images has covered the period from 1980 up to now and has allowed the reconstruction of modifications of the environmental conditions of the sea. The paper shows the first results obtained by remote sensing images processing that will be utilized for the database of the Adriatic Sea.

  13. Dietary CDP-Choline Supplementation Prevents Memory Impairment Caused by Impoverished Environmental Conditions in Rats

    ERIC Educational Resources Information Center

    Teather, Lisa A.; Wurtman, Richard J.

    2005-01-01

    The authors previously showed that dietary cytidine (5')-diphosphocholine (CDP-choline) supplementation could protect against the development of memory deficits in aging rats. In the present study, younger rats exposed to impoverished environmental conditions and manifesting hippocampal-dependent memory impairments similar to those observed in the…

  14. Engineered nanomaterial transformation under oxidative environmental conditions: Development of an in vitro biomimetic assay

    PubMed Central

    Metz, Kevin M.; Mangham, Andrew N.; Bierman, Matthew J.; Jin, Song; Hamers, Robert J.; Pedersen, Joel A.

    2013-01-01

    Once released into the environment, engineered nanomaterials may be transformed by microbially mediated redox processes altering their toxicity and fate. Little information currently exists on engineered nanomaterial transformation under environmentally relevant conditions. Here, we report the development of an in vitro biomimetic assay for investigation of nanomaterial transformation under simulated oxidative environmental conditions. The assay is based on the extracellular hydroquinone-driven Fenton’s reaction used by lignolytic fungi. We demonstrate the utility of the assay using CdSecore/ZnSshell quantum dots (QDs) functionalized with poly(ethylene glycol). QD transformation was assessed by UV-Visible spectroscopy, inductively-coupled plasma-optical emission spectroscopy, dynamic light scattering, transmission electron microscopy (TEM), and energy dispersive x-ray spectroscopy (EDX). QDs were readily degraded under simulated oxidative environmental conditions: the ZnS shell eroded and cadmium was released from the QD core. TEM, electron diffraction analysis and EDX of transformed QDs revealed formation of amorphous Se aggregates. The biomimetic hydroquinone-driven Fenton’s reaction degraded QDs to a larger extent than did H2O2 and classical Fenton’s reagent (H2O2 + Fe2+). This assay provides a new method to characterize transformations of nanoscale materials expected to occur under oxidative environmental conditions. PMID:19350941

  15. Environmental Control System Installer/Servicer (Residential Air Conditioning Mechanic). V-TECS Guide.

    ERIC Educational Resources Information Center

    Meyer, Calvin F.; Benson, Robert T.

    This guide provides job relevant tasks, performance objectives, performance guides, resources, learning activitites, evaluation standards, and achievement testing in the occupation of environmental control system installer/servicer (residential air conditioning mechanic). It is designed to be used with any chosen teaching method. The course…

  16. Association between Markers of Classroom Environmental Conditions and Teachers' Respiratory Health

    ERIC Educational Resources Information Center

    Claudio, Luz; Rivera, Glory A.; Ramirez, Olivia F.

    2016-01-01

    Background: Studies have assessed health in schoolchildren. Less is known about the environmental and occupational health of teachers. Methods: A cross-sectional survey of teachers was conducted in 24 randomly selected public elementary schools. Questionnaire included sociodemographic information, healthcare, school conditions, and health…

  17. Ebola Virus RNA Stability in Human Blood and Urine in West Africa’s Environmental Conditions

    PubMed Central

    Delaune, Deborah; Poyot, Thomas; Valade, Eric; Mérens, Audrey; Rollin, Pierre E.; Foissaud, Vincent

    2016-01-01

    We evaluated RNA stability of Ebola virus in EDTA blood and urine samples collected from infected patients and stored in West Africa’s environmental conditions. In blood, RNA was stable for at least 18 days when initial cycle threshold values were <30, but in urine, RNA degradation occurred more quickly. PMID:26812135

  18. Purification, storage, and pathogenicity assay of rice false smut fungus under controlled environmental conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice false smut, caused by Ustilaginoidea virens, is serious disease that affects grain yield and quality. In the present study, a method to purify, store, and evaluate pathogenicity of U. virens under controlled environmental conditions was developed. Yellow chlamydospores were collected from fresh...

  19. EVALUATION OF SEVERAL ASSESSMENT METHODS AS INDICATORS OF ESTUARINE ENVIRONMENTAL CONDITIONS

    EPA Science Inventory

    Researchers from U.S. EPA's Gulf Ecology Division have conducted a multi-year evaluation of the environmental condition of near-coastal areas affected by different types of stressors. Areas of study have included coastal rivers, transportation canals, residential canals and estua...

  20. Environmental consequences of impact cratering events as a function of ambient conditions on Earth.

    PubMed

    Kring, David A

    2003-01-01

    The end of the Mesozoic Era is defined by a dramatic floral and faunal turnover that has been linked with the Chicxulub impact event, thus leading to the realization that impact cratering can affect both the geologic and biologic evolution of Earth. However, the environmental consequences of an impact event and any subsequent biological effects rely on several factors, including the ambient environmental conditions and the extant ecosystem structures at the time of impact. Some of the severest environmental perturbations of the Chicxulub impact event would not have been significant in some periods of Earth history. Consequently, the environmental and biological effects of an impact event must be evaluated in the context in which it occurs. PMID:12809133

  1. Environmental Consequences of Impact Cratering Events as a Function of Ambient Conditions on Earth

    NASA Astrophysics Data System (ADS)

    Kring, David A.

    2003-01-01

    The end of the Mesozoic Era is defined by a dramatic floral and faunal turnover that has been linked with the Chicxulub impact event, thus leading to the realization that impact cratering can affect both the geologic and biologic evolution of Earth. However, the environmental consequences of an impact event and any subsequent biological effects rely on several factors, including the ambient environmental conditions and the extant ecosystem structures at the time of impact. Some of the severest environmental perturbations of the Chicxulub impact event would not have been significant in some periods of Earth history. Consequently, the environmental and biological effects of an impact event must be evaluated in the context in which it occurs.

  2. Comparisons between abiotic nitration and biotransformation reactions of phenolic micropollutants in activated sludge.

    PubMed

    Jewell, Kevin S; Wick, Arne; Ternes, Thomas A

    2014-01-01

    The transformation of selected phenolic substances was investigated during biological wastewater treatment. A main emphasis was put on the relevance of abiotic processes leading to toxic nitrophenolic transformation products (TPs). Due to their environmental relevance, the antiseptic ortho-phenylphenol (OPP), the plastics additive bisphenol A (BPA) and the psychoactive drug dextrorphan have been studied. Batch experiments confirmed that nitro- and nitroso-phenolic TPs can be formed under acidic conditions when nitrite is present. HNO2, N2O3 and NO and NO2 radicals are likely involved in the abiotic process. It was found that the process was promoted by the freezing of water samples, since this can lead to an unexpected pH drop. However, under conditions present at wastewater treatment plants (neutral pH, low nitrite concentrations), the formation of appreciable concentrations is rather unlikely through this process, since HNO2 concentrations are extremely low and NO and NO2 radicals will also react with other wastewater constituents. Thus, the transformation of phenolic substances such as OPP and BPA is mainly caused by biotic transformation. In addition to hydroxylation as a common reaction under aerobic conditions, the formation of sulfate conjugates was detected with the original compounds as well as with nitrophenolic TPs. Therefore, even when nitro-phenolic substances are formed it is likely that they are further transformed to sulfate conjugates. In raw wastewater and WWTP effluent nitrated BPA and NO2-dextrorphan were not detected. Only nitro-OPP was found in the influent of a WWTP with 2.3 ng/L, but it was not identified in the WWTP effluents. The concentrations of dextrorphan increased slightly during WWTP passage, possibly due to the cleavage of the glucuronide-conjugate, its human metabolite form, or demethylation of the prodrug dextromethorphan. PMID:24238259

  3. Sleep deprivation impairs the extinction of cocaine-induced environmental conditioning in mice.

    PubMed

    Berro, L F; Hollais, A W; Patti, C L; Fukushiro, D F; Mári-Kawamoto, E; Talhati, F; Costa, J M; Zanin, K A; Lopes-Silva, L B; Ceccon, L M; Santos, R; Procópio-Souza, R; Trombin, T F; Yokoyama, T S; Wuo-Silva, R; Tufik, S; Andersen, M L; Frussa-Filho, R

    2014-09-01

    Persistence of a drug-environment conditioning induced by repeated psychostimulant treatment is thought to play a key role in the addictive cycle. In addition, sleep disorders are a common feature in patients with addictive disorders. Sleep deprivation shares similar neurobiological effects with psychostimulants. Therefore, we investigated whether sleep deprivation would impair the extinction of previously established conditioning between the drug effect and the environmental cues. Four cohorts of male adult mice underwent a behavioral sensitization procedure pairing drug (cocaine at 15 mg/kg, i.p.) or saline with environment (open-field apparatus). The extinction of conditioned locomotion was evaluated after control (home-cage maintained) or sleep deprivation (gentle handling method for 6h) conditions. Sleep deprivation both postponed the initiation and impaired the completeness of extinction of the conditioned locomotion promoted by previous drug-environment conditioning in cocaine-sensitized animals. While the cocaine control group required 5 free-drug sessions of exposure to the open-field apparatus to complete extinction of conditioned locomotion, the cocaine pre-treated group that experienced sleep deprivation before each extinction session still significantly differed from its respective control group on Day 5 of extinction. The possibility that the sleep condition can influence the extinction of a long-lasting association between drug effects and environmental cues can represent new outcomes for clinically relevant phenomena. PMID:24836180

  4. Cell Wall Metabolism in Response to Abiotic Stress

    PubMed Central

    Gall, Hyacinthe Le; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-01-01

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions. PMID:27135320

  5. Cell Wall Metabolism in Response to Abiotic Stress.

    PubMed

    Le Gall, Hyacinthe; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-01-01

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions. PMID:27135320

  6. Partitioning the Relative Importance of Phylogeny and Environmental Conditions on Phytoplankton Fatty Acids.

    PubMed

    Galloway, Aaron W E; Winder, Monika

    2015-01-01

    Essential fatty acids (EFA), which are primarily generated by phytoplankton, limit growth and reproduction in diverse heterotrophs. The biochemical composition of phytoplankton is well-known to be governed both by phylogeny and environmental conditions. Nutrients, light, salinity, and temperature all affect both phytoplankton growth and fatty acid composition. However, the relative importance of taxonomy and environment on algal fatty acid content has yet to be comparatively quantified, thus inhibiting predictions of changes to phytoplankton food quality in response to global environmental change. We compiled 1145 published marine and freshwater phytoplankton fatty acid profiles, consisting of 208 species from six major taxonomic groups, cultured in a wide range of environmental conditions, and used a multivariate distance-based linear model to quantify the total variation explained by each variable. Our results show that taxonomic group accounts for 3-4 times more variation in phytoplankton fatty acids than the most important growth condition variables. The results underscore that environmental conditions clearly affect phytoplankton fatty acid profiles, but also show that conditions account for relatively low variation compared to phylogeny. This suggests that the underlying mechanism determining basal food quality in aquatic habitats is primarily phytoplankton community composition, and allows for prediction of environmental-scale EFA dynamics based on phytoplankton community data. We used the compiled dataset to calculate seasonal dynamics of long-chain EFA (LCEFA; ≥C20 ɷ-3 and ɷ-6 polyunsaturated fatty acid) concentrations and ɷ-3:ɷ-6 EFA ratios in Lake Washington using a multi-decadal phytoplankton community time series. These analyses quantify temporal dynamics of algal-derived LCEFA and food quality in a freshwater ecosystem that has undergone large community changes as a result of shifting resource management practices, highlighting diatoms

  7. Partitioning the Relative Importance of Phylogeny and Environmental Conditions on Phytoplankton Fatty Acids

    PubMed Central

    Galloway, Aaron W. E.; Winder, Monika

    2015-01-01

    Essential fatty acids (EFA), which are primarily generated by phytoplankton, limit growth and reproduction in diverse heterotrophs. The biochemical composition of phytoplankton is well-known to be governed both by phylogeny and environmental conditions. Nutrients, light, salinity, and temperature all affect both phytoplankton growth and fatty acid composition. However, the relative importance of taxonomy and environment on algal fatty acid content has yet to be comparatively quantified, thus inhibiting predictions of changes to phytoplankton food quality in response to global environmental change. We compiled 1145 published marine and freshwater phytoplankton fatty acid profiles, consisting of 208 species from six major taxonomic groups, cultured in a wide range of environmental conditions, and used a multivariate distance-based linear model to quantify the total variation explained by each variable. Our results show that taxonomic group accounts for 3-4 times more variation in phytoplankton fatty acids than the most important growth condition variables. The results underscore that environmental conditions clearly affect phytoplankton fatty acid profiles, but also show that conditions account for relatively low variation compared to phylogeny. This suggests that the underlying mechanism determining basal food quality in aquatic habitats is primarily phytoplankton community composition, and allows for prediction of environmental-scale EFA dynamics based on phytoplankton community data. We used the compiled dataset to calculate seasonal dynamics of long-chain EFA (LCEFA; ≥C20 ɷ-3 and ɷ-6 polyunsaturated fatty acid) concentrations and ɷ-3:ɷ-6 EFA ratios in Lake Washington using a multi-decadal phytoplankton community time series. These analyses quantify temporal dynamics of algal-derived LCEFA and food quality in a freshwater ecosystem that has undergone large community changes as a result of shifting resource management practices, highlighting diatoms

  8. Stable Isotope Systematics of Abiotic Nitrite Reduction Coupled with Anaerobic Iron Oxidation: The Role of Reduced Clays and Fe-bearing Minerals

    NASA Astrophysics Data System (ADS)

    Grabb, K. C.; Buchwald, C.; Hansel, C. M.; Wankel, S. D.

    2014-12-01

    Under anaerobic conditions, it is widely assumed that nitrate (NO3-) and nitrite (NO2-) reduction is primarily the result of microbial respiration. However, it has also been shown that abiotic reduction of nitrate and nitrite by reduced iron (Fe(II)), whether mineral-bound or surface-associated, may also occur under certain environmentally relevant conditions. With a range of experimental conditions, we investigated the nitrogen and oxygen stable isotope systematics of abiotic nitrite reduction by Fe(II) in an effort to characterize biotic and abiotic processes in the environment. While homogenous reactions between NO2- and Fe(II) in artificial seawater showed little reduction, heterogeneous reactions involving Fe-containing minerals showed considerable nitrite loss. Specifically, rapid nitrite reduction was observed in experiments that included reduced clays (illite, Na-montmorillonite, and nontronite) and those that exhibited iron oxide formation (ferrihydrite, magnetite and/or green rust). While these iron oxides and clay minerals offer both a source of reduced iron in the mineral matrix as well as a surface for Fe(II) activation, control experiments with corundum as a non-Fe containing mineral surface showed little NO2- loss, implicating a more dominant role of structural Fe in the clays during nitrite reduction. The isotope effects for 15N and 18O (15ɛ and 18ɛ) ranged from 5 to 14‰ for 15ɛ and 5 to 17‰ for 18ɛ and were typically coupled such that 15ɛ ~ 18ɛ. Reactions below pH 7 were slower and the 18ɛ was affected by oxygen atom exchange with water. Although little data exist for comparison with the dual isotopes of microbial NO2- reduction, these data serve as a benchmark for evaluating the role of abiotic processes in N reduction, particularly in sediment systems low in organic carbon and high in iron.

  9. Examples of landscape indicators for assessing environmental conditions and problems in urban and suburban areas

    USGS Publications Warehouse

    Martin-Duque, J. F.; Godfrey, A.; Diez, A.; Cleaves, E.; Pedraza, J.; Sanz, M.A.; Carrasco, R.M.; Bodoque, J.

    2002-01-01

    Geo-indicators can help to assess environmental conditions in city urban and suburban areas. Those indicators should be meaningful for understanding environmental changes. From examples of Spanish and American cities, geo-indicators for assessing environmental conditions and changes in urban and suburban areas are proposed. The paper explore two types of geo-indicators. The first type presents general information that can be used to indicate the presence of a broad array of geologic conditions, either favouring or limiting various kinds of uses of the land. The second type of geo-indicator is the one most commonly used, and as a group most easily understood; these are site and problem specific and they are generally used after a problem is identified. Among them, watershed processes, seismicity and physiographic diversity are explained in more detail. A second dimension that is considered when discussing geo-indicators is the issue of scale. Broad scale investigations, covering extensive areas are only efficient at cataloguing general conditions common to much of the area or some outstanding feature within the area. This type of information is best used for policy type decisions. Detailed scale investigations can provide information about local conditions, but are not efficient at cataloguing vast areas. Information gathered at the detailed level is necessary for project design and construction.

  10. Biotic and abiotic controls of argentine ant invasion success at local and landscape scales

    USGS Publications Warehouse

    Menke, S.B.; Fisher, R.N.; Jetz, W.; Holway, D.A.

    2007-01-01

    Although the ecological success of introduced species hinges on biotic interactions and physical conditions, few experimental studies - especially on animals - have simultaneously investigated the relative importance of both types of factors. The lack of such research may stem from the common assumption that native and introduced species exhibit similar environmental tolerances. Here we combine experimental and spatial modeling approaches (1) to determine the relative importance of biotic and abiotic controls of Argentine ant (Linepithema humile) invasion success, (2) to examine how the importance of these factors changes with spatial scale in southern California (USA), and (3) to assess how Argentine ants differ from native ants in their environmental tolerances. A factorial field experiment that combined native ant removal with irrigation revealed that Argentine ants failed to invade any dry plots (even those lacking native ants) but readily invaded all moist plots. Native ants slowed the spread of Argentine ants into irrigated plots but did not prevent invasion. In areas without Argentine ants, native ant species showed variable responses to irrigation. At the landscape scale, Argentine ant occurrence was positively correlated with minimum winter temperature (but not precipitation), whereas native ant diversity increased with precipitation and was negatively correlated with minimum winter temperature. These results are of interest for several reasons. First, they demonstrate that fine-scale differences in the physical environment can eclipse biotic resistance from native competitors in determining community susceptibility to invasion. Second, our results illustrate surprising complexities with respect to how the abiotic factors limiting invasion can change with spatial scale, and third, how native and invasive species can differ in their responses to the physical environment. Idiosyncratic and scale-dependent processes complicate attempts to forecast where

  11. Effect of environmental conditions on the fatty acid fingerprint of microbial communities

    NASA Astrophysics Data System (ADS)

    Biryukov, Mikhail; Dippold, Michaela; Kuzyakov, Yakov

    2014-05-01

    Lipid biomarkers, especially phospholipids, are routinely used to characterize microbial community structure in environmental samples. Interpretations of these fingerprints mainly depend on rare results of pure cultures which were cultivated under standardized batch conditions. However, membrane lipids (e.g. phopholipid biomarker) build up the interface between microorganisms and their environment and consequently are prone to be adapted according to the environmental conditions. We cultivated several bacteria, isolated from soil (gram-positive and gram-negative) under various conditions e.g. C supply and temperature regimes. Effect of growth conditions on phospholipids fatty acid (PLFA) as well as neutral lipid fatty acids (NLFA) and glycolipid fatty acids (GLFA) was investigated by conventional method of extraction and derivatization, followed by assessments with gas chromatography mass spectrometry (GC-MS). In addition, phospholipids were measured as intact molecules by ultra high performance liquid chromatography - quadrupole - time of flight mass spectrometer (UHPLC-Q-ToF) to further assess the composition of headgroups with fatty acids residues and their response on changing environmental conditions. PLFA fingerprints revealed a strong effect of growth stage, C supply and temperature e.g. decrease of temperature increased the amount of branched and/or unsaturated fatty acids to maintain the membrane fluidity. This strongly changes the ratio of specific to unspecific fatty acids depending on environmental conditions. Therefore, amounts of specific fatty acids cannot be used to assess biomass of a functional microbial group in soil. Intracellular neutral lipids depended less on environmental conditions reflecting a more stable biomarker group but also showed less specific fatty acids then PLFA. Therefore, combination of several lipid classes is suggested as more powerful tool to assess amounts and functionality of environmental microbial communities. Further

  12. Commercial catch rates of the clam Spisula solida reflect local environmental coastal conditions

    NASA Astrophysics Data System (ADS)

    Baptista, V.; Leitão, F.

    2014-02-01

    The effect of environmental variables and fishing pressure (explanatory variables were lagged 1 year) on commercial catch rates of the clam Spisula solida was studied on an annual basis over a 21 year period in three areas off the Portuguese coast (the Northwest, the Southwest and the South) between 1989 and 2009. Each area showed distinct environmental (oceanographic and hydrological) characteristics. Different sensitivities of S. solida fishing grounds to environmental variables were found among the study areas. On the Northwest coast, the combined effect of NAO indices and sea surface temperature had a positive effect on S. solida fisheries, particularly during the spawning season. On the Southwest coast, the variation of S. solida catches was negatively associated with wind magnitude and positively related with South-Southeast winds. Winter river discharges and summer sea surface temperature negatively affected S. solida catches on the South coast. Fishing effort also affected S. solida catch rates in the South. However, “extreme” changes in environmental conditions were the main drivers of short-term variations in catch rates. These results indicate that variations of S. solida catches strongly reflect a regional signature of local climatic features off the coast. Information on local environmental conditions should therefore be used for the purpose of identifying management actions to ensure long-term sustainability of S. solida fisheries.

  13. Unravelling environmental conditions during the Holocene in the Dead Sea region using multiple archives

    NASA Astrophysics Data System (ADS)

    Rambeau, Claire; van Leeuwen, Jacqueline; van der Knaap, Pim; Gobet, Erika

    2016-04-01

    For the most arid parts of the Southern Levant (roughly corresponding to modern Jordan, Israel and Palestine), environmental reconstructions are impeded by the limited number of archives, and the frequent contradictions between individual palaeoenvironmental records. The Southern Levant is characterised by steep climate gradients; local conditions presently range from arid to dry Mediterranean, with limits that may have fluctuated during the Holocene. This further complicates the determination of site-specific past environmental conditions. Understanding past climate and environmental evolution through time, at a local level, is however crucial to compare these with societal evolution during the Holocene, which features major cultural developments such as cereal cultivation, animal domestication, water management, as well as times of preferential settlement growth or site abandonment. This contribution proposes to examine the different archives available for the Dead Sea region, paying special attention to the most recent pollen data obtained from the area. It will particularly critically compare local to regional-scale information, and try to decipher the main evolutions of environmental conditions during the Holocene in arid and semi-arid Southern Levant.

  14. How environmental conditions affect canopy leaf-level photosynthesis in four deciduous tree species

    SciTech Connect

    Bassow, S.L.; Bazzaz, F.A.

    1998-12-01

    Species composition of temperate forests vary with successional age and seems likely to change in response to significant global climate change. Because photosynthesis rates in co-occurring tree species can differ in their sensitivity to environmental conditions, these changes in species composition are likely to alter the carbon dynamics of temperate forests. To help improve their understanding of such atmosphere-biosphere interactions, the authors explored changes in leaf-level photosynthesis in a 60--70 yr old temperate mixed-deciduous forest in Petersham, Massachusetts (USA). Diurnally and seasonally varying environmental conditions differentially influenced in situ leaf-level photosynthesis rates in the canopies of four mature temperate deciduous tree species: red oak (Quercus rubra), red maple (Acer rubrum), white birch (Betula papyrifera), and yellow birch (Betula alleghaniensis). The authors measured in situ photosynthesis at two heights within the canopies through a diurnal time course on 7 d over two growing seasons. They simultaneously measured a suite of environmental conditions surrounding the leaf at the time of each measurement. The authors used path analysis to examine the influence of environmental factors on in situ photosynthesis in the tree canopies.

  15. Identification of Arabidopsis Candidate Genes in Response to Biotic and Abiotic Stresses Using Comparative Microarrays

    PubMed Central

    Sham, Arjun; Moustafa, Khaled; Al-Ameri, Salma; Al-Azzawi, Ahmed; Iratni, Rabah; AbuQamar, Synan

    2015-01-01

    Plants have evolved with intricate mechanisms to cope with multiple environmental stresses. To adapt with biotic and abiotic stresses, plant responses involve changes at the cellular and molecular levels. The current study was designed to investigate the effects of combinations of different environmental stresses on the transcriptome level of Arabidopsis genome using public microarray databases. We investigated the role of cyclopentenones in mediating plant responses to environmental stress through TGA (TGACG motif-binding factor) transcription factor, independently from jasmonic acid. Candidate genes were identified by comparing plants inoculated with Botrytis cinerea or treated with heat, salt or osmotic stress with non-inoculated or non-treated tissues. About 2.5% heat-, 19% salinity- and 41% osmotic stress-induced genes were commonly upregulated by B. cinerea-treatment; and 7.6%, 19% and 48% of genes were commonly downregulated by B. cinerea-treatment, respectively. Our results indicate that plant responses to biotic and abiotic stresses are mediated by several common regulatory genes. Comparisons between transcriptome data from Arabidopsis stressed-plants support our hypothesis that some molecular and biological processes involved in biotic and abiotic stress response are conserved. Thirteen of the common regulated genes to abiotic and biotic stresses were studied in detail to determine their role in plant resistance to B. cinerea. Moreover, a T-DNA insertion mutant of the Responsive to Dehydration gene (rd20), encoding for a member of the caleosin (lipid surface protein) family, showed an enhanced sensitivity to B. cinerea infection and drought. Overall, the overlapping of plant responses to abiotic and biotic stresses, coupled with the sensitivity of the rd20 mutant, may provide new interesting programs for increased plant resistance to multiple environmental stresses, and ultimately increases its chances to survive. Future research directions towards a

  16. Identification of Arabidopsis candidate genes in response to biotic and abiotic stresses using comparative microarrays.

    PubMed

    Sham, Arjun; Moustafa, Khaled; Al-Ameri, Salma; Al-Azzawi, Ahmed; Iratni, Rabah; AbuQamar, Synan

    2015-01-01

    Plants have evolved with intricate mechanisms to cope with multiple environmental stresses. To adapt with biotic and abiotic stresses, plant responses involve changes at the cellular and molecular levels. The current study was designed to investigate the effects of combinations of different environmental stresses on the transcriptome level of Arabidopsis genome using public microarray databases. We investigated the role of cyclopentenones in mediating plant responses to environmental stress through TGA (TGACG motif-binding factor) transcription factor, independently from jasmonic acid. Candidate genes were identified by comparing plants inoculated with Botrytis cinerea or treated with heat, salt or osmotic stress with non-inoculated or non-treated tissues. About 2.5% heat-, 19% salinity- and 41% osmotic stress-induced genes were commonly upregulated by B. cinerea-treatment; and 7.6%, 19% and 48% of genes were commonly downregulated by B. cinerea-treatment, respectively. Our results indicate that plant responses to biotic and abiotic stresses are mediated by several common regulatory genes. Comparisons between transcriptome data from Arabidopsis stressed-plants support our hypothesis that some molecular and biological processes involved in biotic and abiotic stress response are conserved. Thirteen of the common regulated genes to abiotic and biotic stresses were studied in detail to determine their role in plant resistance to B. cinerea. Moreover, a T-DNA insertion mutant of the Responsive to Dehydration gene (rd20), encoding for a member of the caleosin (lipid surface protein) family, showed an enhanced sensitivity to B. cinerea infection and drought. Overall, the overlapping of plant responses to abiotic and biotic stresses, coupled with the sensitivity of the rd20 mutant, may provide new interesting programs for increased plant resistance to multiple environmental stresses, and ultimately increases its chances to survive. Future research directions towards a

  17. Assessment of the environmental conditions of the Sarno river basin (south Italy): a stream sediment approach.

    PubMed

    Albanese, Stefano; Iavazzo, Pietro; Adamo, Paola; Lima, Annamaria; De Vivo, Benedetto

    2013-06-01

    The Sarno river basin covers an area of 500 km(2) collecting the waters of Solofrana and Cavaiola tributaries. Originally it manly represents a source of livelihood for inhabitants by fishing and transporting goods; currently, the Sarno river, still partially used for irrigation, is affected by an extreme environmental degradation as a result of uncontrolled outflow of industrial waste. Within the framework of a wider geochemical prospecting project aiming at characterizing the whole territory of the Campania region, 89 stream sediment samples with a sampling density of 1 sample per 5 km(2) were collected in the river basin and analyzed by means of inductively coupled plasma-mass spectrometry in order to assess the environmental conditions at a regional scale. A GIS-aided technique, based on both the actual distribution of potentially harmful elements and their regional background values, was used to generate the maps of the contamination factors and of the contamination degrees for As, Cd, Cr, Cu, Hg, Pb and Zn. Furthermore, a factor analysis was performed to assess the nature and the extent of contamination sources for the river sediments. Results showed that the Sarno river basin could be divided in two "environmental status" units: one, low contaminated, corresponding to the hilly and mountain areas, and the second, from moderately to very highly contaminated, corresponding to the economically developed areas of the valley floor characterized by a high population density. This work was developed within a project that aims to investigate the relationships between environmental pollution and human health by analyzing environmental media (stream sediments, water, soil and vegetation) together with human hair of resident population. In this context, the spatial correlation between the extremely compromised environmental conditions of developed areas and the incidence rate of liver cancer in the same area was also explored posing the need of a careful costs

  18. Abiotic stress modifies the synthesis of alpha-tocopherol and beta-carotene in phytoplankton species.

    PubMed

    Häubner, Norbert; Sylvander, Peter; Vuori, Kristiina; Snoeijs, Pauline

    2014-08-01

    We performed laboratory experiments to investi-gate whether the synthesis of the antioxidants α-tocopherol (vitamin E) and β-carotene in phytoplankton depends on changes in abiotic factors. Cultures of Nodularia spumigena, Phaeodactylum tricornutum, Skeletonema costatum, Dunaliella tertiolecta, Prorocentrum cordatum, and Rhodomonas salina were incubated at different tempe-ratures, photon flux densities and salinities for 48 h. We found that abiotic stress, within natural ecological ranges, affects the synthesis of the two antioxidants in different ways in different species. In most cases antioxidant production was stimulated by increased abiotic stress. In P. tricornutum KAC 37 and D. tertiolecta SCCAP K-0591, both good producers of this compound, α-tocopherol accumulation was negatively affected by environmentally induced higher photosystem II efficiency (Fv /Fm ). On the other hand, β-carotene accumulation was positively affected by higher Fv /Fm in N. spumigena KAC 7, P. tricornutum KAC 37, D. tertiolecta SCCAP K-0591 and R. salina SCCAP K-0294. These different patterns in the synthesis of the two compounds may be explained by their different locations and functions in the cell. While α-tocopherol is heavily involved in the protection of prevention of lipid peroxidation in membranes, β-carotene performs immediate photo-oxidative protection in the antennae complex of photosystem II. Overall, our results suggest a high variability in the antioxidant pool of natural aquatic ecosystems, which can be subject to short-term temperature, photon flux density and salinity fluctuations. The antioxidant levels in natural phytoplankton communities depend on species composition, the physiological condition of the species, and their respective strategies to deal with reactive oxygen species. Since α-tocopherol and β-carotene, as well as many other nonenzymatic antioxidants, are exclusively produced by photo-synthetic organisms, and are required by higher

  19. An adaptive ant colony optimization framework for scheduling environmental flow management alternatives under varied environmental water availability conditions

    NASA Astrophysics Data System (ADS)

    Szemis, J. M.; Maier, H. R.; Dandy, G. C.

    2014-10-01

    Human water use is increasing and, as such, water for the environment is limited and needs to be managed efficiently. One method for achieving this is the scheduling of environmental flow management alternatives (EFMAs) (e.g., releases, wetland regulators), with these schedules generally developed over a number of years. However, the availability of environmental water changes annually as a result of natural variability (e.g., drought, wet years). To incorporate this variation and schedule EFMAs in a operational setting, a previously formulated multiobjective optimization approach for EFMA schedule development used for long-term planning has been modified and incorporated into an adaptive framework. As part of this approach, optimal schedules are updated at regular intervals during the planning horizon based on environmental water allocation forecasts, which are obtained using artificial neural networks. In addition, the changes between current and updated schedules can be minimized to reduce any disruptions to long-term planning. The utility of the approach is assessed by applying it to an 89km section of the River Murray in South Australia. Results indicate that the approach is beneficial under a range of hydrological conditions and an improved ecological response is obtained in a operational setting compared with previous long-term approaches. Also, it successfully produces trade-offs between the number of disruptions to schedules and the ecological response, with results suggesting that ecological response increases with minimal alterations required to existing schedules. Overall, the results indicate that the information obtained using the proposed approach potentially aides managers in the efficient management of environmental water.

  20. Abiotic Versus Biotic Weathering Of Olivine As Possible Biosignatures

    NASA Technical Reports Server (NTRS)

    Longazo, Teresa G.; Wentworth, Susan J.; Clemett, Simon J.; Southam, Gordon; McKay, David S.

    2001-01-01

    We are investigating the weathering of silicate minerals by both purely inorganic, and biologically mediated processes using field-emission scanning electron microscopy (FESEM) and energy dispersive x-ray spectroscopy (EDS). By resolving surface textures and chemical compositions of weathered surfaces at the sub-micron scale we hope to be able to distinguish abiotic from biotic weathering processes and so establish a new biosignature applicable to the study of astromaterials including but not limited to the Martian meteorites. Sterilized olivine grains (San Carlos, Arizona) no more than 1-2 mm in their longest dimension were optically assayed to be uniform in color and free of inclusions were selected as weathering subjects. Prior to all experiments surface morphologies and Fe/Mg ratios were determined for each grain using FE-SEM and EDS. Experiments were divided into two categories abiotic and biotic and were compared with "naturally" weathered samples. For the preliminary experiments, two trials (open and closed to the ambient laboratory environment) were performed under abiotic conditions, and three trials under biotic conditions (control, day 1 and day 2). The open system abiotic trials used sterile grains heated at 98 C and 200 C for both 24 and 48 hours in 1L double distilled de-ionized water. The closed system abiotic trials were conducted under the same conditions but in a sealed two layer steel/Teflon "bomb" apparatus. The biotic trials used sterile grains mounted in a flow-through device attached to a wellhead on the Columbia River aquifer. Several discolored, altered, grains were selected to document "natural" weathering surface textures for comparison with the experimental samples. Preliminary results indicate there are qualitative differences in weathered surface textures among all the designed experiments. The olivine grains in abiotic trials displayed etching, pitting, denticulate margins, dissolution and clay formation. The scale of the features

  1. Oil Recovery from Water under Environmentally Relevant Conditions Using Magnetic Nanoparticles.

    PubMed

    Mirshahghassemi, Seyyedali; Lead, Jamie R

    2015-10-01

    Large oil spills and oily wastewater discharges from ships and industrial activities can have serious impacts on the environment with potentially major economic impacts. Current oil remediation techniques are inefficient and may have deleterious environmental consequences. However, nanotechnology offers a new route to potentially remediate oil pollution. In this study, a cheap and facile hydrothermal method was developed to synthesize polyvinylpyrrolidone-coated magnetite nanoparticles to separate a reference MC252 oil from oil-water mixture under environmentally relevant conditions. Fluorescence and Proton nuclear magnetic resonance spectroscopy results showed near 100% oil removal from oil-water mixture in the ultrapure water under optimum condition. Based on gas chromatography-mass spectrometry data, approximately 100% of lower molecular mass alkanes (C9-C21) were removed within 10 min of magnetic separation and by increasing the separation time to 40 min, greater than 67% of C22-25 alkanes were removed. Moreover, nanoparticles removed near 100% oil from synthetic seawater solutions in the presence and absence of fulvic acid showing excellent oil removal capacity of the nanoparticles under different conditions. Results show that these nanoparticles can be utilized to remove oil over a short time with a high removal efficiency under environmentally relevant conditions. PMID:26358198

  2. Environmental conditions associated with bat white-nose syndrome in the north-eastern United States

    USGS Publications Warehouse

    Flory, Abigail R.; Kumar, Sunil; Stohlgren, Thomas J.; Cryan, Paul M.

    2012-01-01

    2. By 2010, the fungus G. destructans was detected in new areas of North America far from the area it was first observed, as well as in eight European bat species in different countries, yet mortality was not observed in many of these new areas of North America or in any part of Europe. This could be because of the differences in the fungus, rates of disease progression and/or in life-history or physiological traits of the affected bat species between different regions. Infection of bats by G. destructans without associated mortality might also suggest that certain environmental conditions might have to co-occur with fungal infection to cause mortality. 3. We tested the environmental conditions hypothesis using Maxent to map and model landscape surface conditions associated with WNS mortality. This approach was unique in that we modelled possible requisite environmental conditions for disease mortality and not simply the presence of the causative agent. 4. The top predictors of WNS mortality were land use/land cover types, mean air temperature of wettest quarter, elevation, frequency of precipitation and annual temperature range. Model results suggest that WNS mortality is most likely to occur in landscapes that are higher in elevation and topographically heterogeneous, drier and colder during winter, and more seasonally variable than surrounding landscapes. 5. Synthesis and applications. This study mapped the most likely environmental surface conditions associated with bat mortality owing to WNS in the north-eastern United Sates; maps can be used for selection of priority monitoring sites. Our results provide a starting point from which to investigate and predict the potential spread and population impacts of this catastrophic emerging disease.

  3. Environmental conditions and transcriptional regulation in Escherichia coli: a physiological integrative approach.

    PubMed

    Martínez-Antonio, Agustino; Salgado, Heladia; Gama-Castro, Socorro; Gutiérrez-Ríos, Rosa María; Jiménez-Jacinto, Verónica; Collado-Vides, Julio

    2003-12-30

    Bacteria develop a number of devices for sensing, responding, and adapting to different environmental conditions. Understanding within a genomic perspective how the transcriptional machinery of bacteria is modulated, as a response for changing conditions, is a major challenge for biologists. Knowledge of which genes are turned on or turned off under specific conditions is essential for our understanding of cell behavior. In this study we describe how the information pertaining to gene expression and associated growth conditions (even with very little knowledge of the associated regulatory mechanisms) is gathered from the literature and incorporated into RegulonDB, a database on transcriptional regulation and operon organization in E. coli. The link between growth conditions, signal transduction, and transcriptional regulation is modeled in the database in a simple format that highlights biological relevant information. As far as we know, there is no other database that explicitly clarifies the effect of environmental conditions on gene transcription. We discuss how this knowledge constitutes a benchmark that will impact future research aimed at integration of regulatory responses in the cell; for instance, analysis of microarrays, predicting culture behavior in biotechnological processes, and comprehension of dynamics of regulatory networks. This integrated knowledge will contribute to the future goal of modeling the behavior of E. coli as an entire cell. The RegulonDB database can be accessed on the web at the URL: http://www.cifn.unam.mx/Computational_Biology/regulondb/. PMID:14708114

  4. Social effects on foraging behavior and success depend on local environmental conditions

    PubMed Central

    Marshall, Harry H; Carter, Alecia J; Ashford, Alexandra; Rowcliffe, J Marcus; Cowlishaw, Guy

    2015-01-01

    In social groups, individuals' dominance rank, social bonds, and kinship with other group members have been shown to influence their foraging behavior. However, there is growing evidence that the particular effects of these social traits may also depend on local environmental conditions. We investigated this by comparing the foraging behavior of wild chacma baboons, Papio ursinus, under natural conditions and in a field experiment where food was spatially clumped. Data were collected from 55 animals across two troops over a 5-month period, including over 900 agonistic foraging interactions and over 600 food patch visits in each condition. In both conditions, low-ranked individuals received more agonism, but this only translated into reduced foraging performances for low-ranked individuals in the high-competition experimental conditions. Our results suggest one possible reason for this pattern may be low-ranked individuals strategically investing social effort to negotiate foraging tolerance, but the rank-offsetting effect of this investment being overwhelmed in the higher-competition experimental environment. Our results also suggest that individuals may use imbalances in their social bonds to negotiate tolerance from others under a wider range of environmental conditions, but utilize the overall strength of their social bonds in more extreme environments where feeding competition is more intense. These findings highlight that behavioral tactics such as the strategic investment of social effort may allow foragers to mitigate the costs of low rank, but that the effectiveness of these tactics is likely to be limited in certain environments. PMID:25691973

  5. Effects of varying environmental conditions on vegetation response to ozone exposure

    SciTech Connect

    Zaleski, R.T.; Triemer, L.R.

    1995-12-31

    Developing an exposure-effects model for plant response to ozone exposure is a complex process. It is known that ozone must enter the plant through the stomata for an effect to occur. Therefore, ozone uptake is related not only to ambient ozone concentrations, but also to environmental factors which control stomatal movement. In addition, cellular factors within the plant can mitigate ozone impact and ultimately control plant response. This paper presents a review of the scientific literature on plant responses (e.g. visible foliar injury, reductions in growth or yield) to ozone exposures under varying environmental conditions known to affect stomatal aperture. The results of this effort show the importance of considering key environmental factors when developing exposure-effects models.

  6. Extent of fungal growth on fiberglass duct liners with and without biocides under challenging environmental conditions.

    PubMed

    Samimi, Behzad S; Ross, Kristen

    2003-03-01

    Eight brands of fiberglass duct liners, including three that contained biocides, were exposed to challenging environmental conditions that would promote fungal growth. Twenty-four rectangular sheet metal ducts in three groups of eight ducts per group were lined with the eight selected liners. Each group of ducts was exposed to one of the three test conditions within an environmental chamber for a period of 15 days. These conditions were a) 75 percent RH, b) 75 percent RH plus water spray, c) 75 percent RH plus dry nutrient, and d) 75 percent RH plus water plus nutrient. Viable spores of Aspergillus niger were aerosolized into each duct as seed. On the 16th day, air and surface samples for fungal spores were collected from inside ducts. The results of air sampling using N6 sampler and visual inspection indicated that two out of three biocide-containing liners, Permacote and Toughgard, inhibited fungal growth but only under condition A. The third biocide-containing liner, Aeroflex Plus, was effective even when it was wet (conditions A and B). All three biocide-containing liners failed to inhibit fungal growth under conditions C and D. Among the five other types of liners that did not contain biocides, ATCO Flex with a smooth Mylar coating was more preferable, exhibiting lower fungal activity during conditions A, B, and C. All liners failed under condition D when nutrient and water were added together. Surface sampling using adhesive tape failed to produce representative results, apparently due to rough/porous surface of duct liners. It was concluded that duct liners with biocide treatment could be less promoting to microbial growth under high humidity as long as their surfaces remain clean and water-free. A liner with an impermeable and smooth surface seems to be less subject to microbial growth under most conditions than biocide-containing liners having porous and/or rough surfaces. PMID:12573965

  7. Microbial Forensics: Predicting Phenotypic Characteristics and Environmental Conditions from Large-Scale Gene Expression Profiles

    PubMed Central

    Kim, Minseung; Zorraquino, Violeta; Tagkopoulos, Ilias

    2015-01-01

    A tantalizing question in cellular physiology is whether the cellular state and environmental conditions can be inferred by the expression signature of an organism. To investigate this relationship, we created an extensive normalized gene expression compendium for the bacterium Escherichia coli that was further enriched with meta-information through an iterative learning procedure. We then constructed an ensemble method to predict environmental and cellular state, including strain, growth phase, medium, oxygen level, antibiotic and carbon source presence. Results show that gene expression is an excellent predictor of environmental structure, with multi-class ensemble models achieving balanced accuracy between 70.0% (±3.5%) to 98.3% (±2.3%) for the various characteristics. Interestingly, this performance can be significantly boosted when environmental and strain characteristics are simultaneously considered, as a composite classifier that captures the inter-dependencies of three characteristics (medium, phase and strain) achieved 10.6% (±1.0%) higher performance than any individual models. Contrary to expectations, only 59% of the top informative genes were also identified as differentially expressed under the respective conditions. Functional analysis of the respective genetic signatures implicates a wide spectrum of Gene Ontology terms and KEGG pathways with condition-specific information content, including iron transport, transferases, and enterobactin synthesis. Further experimental phenotypic-to-genotypic mapping that we conducted for knock-out mutants argues for the information content of top-ranked genes. This work demonstrates the degree at which genome-scale transcriptional information can be predictive of latent, heterogeneous and seemingly disparate phenotypic and environmental characteristics, with far-reaching applications. PMID:25774498

  8. The ammonium excretion of the shore crab, carcinus maenas, in relation to environmental osmotic conditions

    NASA Astrophysics Data System (ADS)

    Spaargaren, D. H.

    Ammonia concentrations were measured in blood and external media of shore crabs, Carcinus maenas, acclimated to 6 different salinities at high (20° C) and low (4° C) temperatures. It is seen that environmental osmotic conditions (temperature and salinity) have a major influence on NH 4+ formation and thus on protein (amino acid) catabolism. Blood ammonia concentrations appear to be strongly stabilized, independent of environmental osmotic conditions, ranging between 0.25 and 0.55 mmol·l -1. At normal, low environmental NH 4+ concentrations blood NH 4+ is strongly hyper-ionic compared to external concentrations; at high environmental NH 4+ concentrations (even when artificially raised to 2.5 mmol·l -1), blood NH 4+ is strongly hypo-ionic. Regulation of the blood NH 4+ concentrations takes place by a variable efflux of NH 4+; at high environmental NH 4+ concentrations (> 0.28 mmol · l -1), in addition to a high NH 4+ efflux, stabilization of the blood NH 4+ concentrations is effectuated by the formation of urea. Ammonia efflux to the surrounding water is highly dependent to the osmotic conditions of the environment: viz. positively related to temperature and inversely related to external salinity, with relatively stable value near the isosmotic salinity. Related to the strong variations in ammonia efflux, external NH 4+ concentrations in a closed volume of water are highly variable. In the course of time very high values develop in media of low salinity at high temperature. A close connection between NH 4+ excretion and extracellular ion regulation is indicated.

  9. Immune activity, body condition and human-associated environmental impacts in a wild marine mammal.

    PubMed

    Brock, Patrick M; Hall, Ailsa J; Goodman, Simon J; Cruz, Marilyn; Acevedo-Whitehouse, Karina

    2013-01-01

    Within individuals, immunity may compete with other life history traits for resources, such as energy and protein, and the damage caused by immunopathology can sometimes outweigh the protective benefits that immune responses confer. However, our understanding of the costs of immunity in the wild and how they relate to the myriad energetic demands on free-ranging organisms is limited. The endangered Galapagos sea lion (Zalophus wollebaeki) is threatened simultaneously by disease from domestic animals and rapid changes in food availability driven by unpredictable environmental variation. We made use of this unique ecology to investigate the relationship between changes in immune activity and changes in body condition. We found that during the first three months of life, changes in antibody concentration were negatively correlated with changes in mass per unit length, skinfold thickness and serum albumin concentration, but only in a sea lion colony exposed to anthropogenic environmental impacts. It has previously been shown that changes in antibody concentration during early Galapagos sea lion development were higher in a colony exposed to anthropogenic environmental impacts than in a control colony. This study allows for the possibility that these relatively large changes in antibody concentration are associated with negative impacts on fitness through an effect on body condition. Our findings suggest that energy availability and the degree of plasticity in immune investment may influence disease risk in natural populations synergistically, through a trade-off between investment in immunity and resistance to starvation. The relative benefits of such investments may change quickly and unpredictably, which allows for the possibility that individuals fine-tune their investment strategies in response to changes in environmental conditions. In addition, our results suggest that anthropogenic environmental impacts may impose subtle energetic costs on individuals, which

  10. Effects of environmental conditions on aerobic degradation of a commercial naphthenic acid.

    PubMed

    Kinley, Ciera M; Gaspari, Daniel P; McQueen, Andrew D; Rodgers, John H; Castle, James W; Friesen, Vanessa; Haakensen, Monique

    2016-10-01

    Naphthenic acids (NAs) are problematic constituents in energy-derived waters, and aerobic degradation may provide a strategy for mitigating risks to aquatic organisms. The overall objective of this study was to determine the influence of concentrations of N (as ammonia) and P (as phosphate), and DO, as well as pH and temperatures on degradation of a commercial NA in bench-scale reactors. Commercial NAs provided replicable compounds necessary to compare influences of environmental conditions on degradation. NAs were quantified using high performance liquid chromatography. Microbial diversity and relative abundance were measured in treatments as explanatory parameters for potential effects of environmental conditions on microbial populations to support analytically measured NA degradation. Environmental conditions that positively influenced degradation rates of Fluka NAs included nutrients (C:N 10:1-500:1, C:P 100:1-5000:1), DO (4.76-8.43 mg L(-1)), pH (6-8), and temperature (5-25 °C). Approximately 50% removal of 61 ± 8 mg L(-1) was achieved in less than 2 d after NA introduction, achieving the method detection limit (5 mg L(-1)) by day 6 of the experiment in treatments with a C:N:P ratio of 100:10:1, DO > 8 mg L(-1), pH ∼8-9, and temperatures >23 °C. Microbial diversity was lowest in lower temperature treatments (6-16 °C), which may have resulted in observed slower NA degradation. Based on results from this study, when macro- and micronutrients were available, DO, pH, and temperature (within environmentally relevant ranges) influenced rates of aerobic degradation of Fluka NAs. This study could serve as a model for systematically evaluating environmental factors that influence NA degradation in field scenarios. PMID:27459161

  11. Investigating the genetic architecture of conditional strategies using the environmental threshold model.

    PubMed

    Buzatto, Bruno A; Buoro, Mathieu; Hazel, Wade N; Tomkins, Joseph L

    2015-12-22

    The threshold expression of dichotomous phenotypes that are environmentally cued or induced comprise the vast majority of phenotypic dimorphisms in colour, morphology, behaviour and life history. Modelled as conditional strategies under the framework of evolutionary game theory, the quantitative genetic basis of these traits is a challenge to estimate. The challenge exists firstly because the phenotypic expression of the trait is dichotomous and secondly because the apparent environmental cue is separate from the biological signal pathway that induces the switch between phenotypes. It is the cryptic variation underlying the translation of cue to phenotype that we address here. With a 'half-sib common environment' and a 'family-level split environment' experiment, we examine the environmental and genetic influences that underlie male dimorphism in the earwig Forficula auricularia. From the conceptual framework of the latent environmental threshold (LET) model, we use pedigree information to dissect the genetic architecture of the threshold expression of forceps length. We investigate for the first time the strength of the correlation between observable and cryptic 'proximate' cues. Furthermore, in support of the environmental threshold model, we found no evidence for a genetic correlation between cue and the threshold between phenotypes. Our results show strong correlations between observable and proximate cues and less genetic variation for thresholds than previous studies have suggested. We discuss the importance of generating better estimates of the genetic variation for thresholds when investigating the genetic architecture and heritability of threshold traits. By investigating genetic architecture by means of the LET model, our study supports several key evolutionary ideas related to conditional strategies and improves our understanding of environmentally cued decisions. PMID:26674955

  12. Creep and Environmental Durability of EBC/CMCs Under Imposed Thermal Gradient Conditions

    NASA Technical Reports Server (NTRS)

    Appleby, Matthew; Morscher, Gregory N.; Zhu, Dongming

    2013-01-01

    Interest in SiC fiber-reinforced SiC ceramic matrix composite (CMC) environmental barrier coating (EBC) systems for use in high temperature structural applications has prompted the need for characterization of material strength and creep performance under complex aerospace turbine engine environments. Stress-rupture tests have been performed on SiC/SiC composites systems, with varying fiber types and coating schemes to demonstrate material behavior under isothermal conditions. Further testing was conducted under exposure to thermal stress gradients to determine the effect on creep resistance and material durability. In order to understand the associated damage mechanisms, emphasis is placed on experimental techniques as well as implementation of non-destructive evaluation; including electrical resistivity monitoring. The influence of environmental and loading conditions on life-limiting material properties is shown.

  13. Environmental and mental conditions predicting the experience of involuntary musical imagery: An experience sampling method study.

    PubMed

    Floridou, Georgia A; Müllensiefen, Daniel

    2015-05-01

    An experience sampling method (ESM) study on 40 volunteers was conducted to explore the environmental factors and psychological conditions related to involuntary musical imagery (INMI) in everyday life. Participants reported 6 times per day for one week on their INMI experiences, relevant contextual information and associated environmental conditions. The resulting data was modeled with Bayesian networks and led to insights into the interplay of factors related to INMI experiences. The activity that a person is engaged was found to play an important role in the experience of mind wandering, which in turn enables the experience of INMI. INMI occurrence is independent of the time of the day while the INMI trigger affects the subjective evaluation of the INMI experience. The results are compared to findings from earlier studies based on retrospective surveys and questionnaires and highlight the advantage of ESM techniques in research on spontaneous experiences like INMI. PMID:25800098

  14. Environmental sanitation conditions and health impact: a case-control study.

    PubMed

    Heller, Léo; Colosimo, Enrico Antonio; Antunes, Carlos Mauricio de Figueiredo

    2003-01-01

    This epidemiological investigation examines the impact of several environmental sanitation conditions and hygiene practices on diarrhea occurrence among children under five years of age living in an urban area. The case-control design was employed; 997 cases and 999 controls were included in the investigation. Cases were defined as children with diarrhea and controls were randomly selected among children under five years of age. After logistic regression adjustment, the following variables were found to be significantly associated with diarrhea: washing and purifying fruit and vegetables; presence of wastewater in the street; refuse storage, collection and disposal; domestic water reservoir conditions; feces disposal from swaddles; presence of vectors in the house and flooding in the lot. The estimates of the relative risks reached values up to 2.87. The present study revealed the feasibility of developing and implementing an adequate model to establish intervention priorities in the field of environmental sanitation. PMID:12715062

  15. Environmental Conditions Influence Allometric Patterns in the Blow Fly, Chrysomya albiceps

    PubMed Central

    Horenstein, M Battán; Peretti, Av

    2011-01-01

    The objective of this research was to study variations in allometry of body characters in females and males of two populations of blow flies, Chrysomya albiceps (Wiedemann) (Diptera: Calliphoridae), under different environmental conditions to establish patterns of morphological variation. Body size of both males and females in the experimental population was significantly higher than in the individuals of the natural population, indicating an important influence of food on body size. All genitalic and non-genitalic characters in males and females of the two populations showed a trend towards negative allometry rather than isometry. Allometric patterns were modified in both sexes and between populations. The data show generally larger allometric slopes in females than in males. We confirmed that the environmental conditions have an important effect on allometric patterns and body size. PMID:22224467

  16. Wireless monitoring of the longitudinal displacement of the Tamar Suspension Bridge deck under changing environmental conditions

    NASA Astrophysics Data System (ADS)

    de Battista, Nicky; Westgate, Robert; Koo, Ki Young; Brownjohn, James

    2011-04-01

    In order to be able to monitor the performance and health of a civil structure it is essential to understand how it behaves under different environmental conditions. It is a well documented fact that the structural performance of bridges can be altered considerably when they are subjected to changes in environmental conditions. This paper presents a study investigating the longitudinal movement of the road deck on Tamar Suspension Bridge in Plymouth in the UK over six months. The expansion joint of the bridge deck was instrumented with pull-wire type extensometers. The data were transmitted wirelessly using commercial wireless sensor nodes and collected at a data acquisition laptop computer, which was accessible online for remote monitoring. In addition, position data of various locations on the bridge deck were collected using a Robotic Total Station (RTS). Environmental data, such as the temperature, and structural data, such as cable tension, were acquired from other monitoring systems. Conclusions drawn from a fusion of the bridge deck's longitudinal displacement with other structural and environmental data are discussed in this paper.

  17. Biotic and abiotic drivers of phenotypic plasticity of wing dimorphism in Sclerodermus pupariae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wing phenotype polymorphism is commonly observed in insects, yet little is known about the influence of environmental cues on the development or expression of the alternative phenotypes. Here, we examined the effects of biotic and abiotic factors including temperature, photoperiod, light intensity,...

  18. Physiological and Molecular Aspects of Tolerance to Environmental Constraints in Grain and Forage Legumes.

    PubMed

    Adnane, Bargaz; Mainassara, Zaman-Allah; Mohamed, Farissi; Mohamed, Lazali; Jean-Jacques, Drevon; Rim, Maougal T; Georg, Carlsson

    2015-01-01

    Despite the agronomical and environmental advantages of the cultivation of legumes, their production is limited by various environmental constraints such as water or nutrient limitation, frost or heat stress and soil salinity, which may be the result of pedoclimatic conditions, intensive use of agricultural lands, decline in soil fertility and environmental degradation. The development of more sustainable agroecosystems that are resilient to environmental constraints will therefore require better understanding of the key mechanisms underlying plant tolerance to abiotic constraints. This review provides highlights of legume tolerance to abiotic constraints with a focus on soil nutrient deficiencies, drought, and salinity. More specifically, recent advances in the physiological and molecular levels of the adaptation of grain and forage legumes to abiotic constraints are discussed. Such adaptation involves complex multigene controlled-traits which also involve multiple sub-traits that are likely regulated under the control of a number of candidate genes. This multi-genetic control of tolerance traits might also be multifunctional, with extended action in response to a number of abiotic constraints. Thus, concrete efforts are required to breed for multifunctional candidate genes in order to boost plant stability under various abiotic constraints. PMID:26287163

  19. Physiological and Molecular Aspects of Tolerance to Environmental Constraints in Grain and Forage Legumes

    PubMed Central

    Bargaz, Adnane; Zaman-Allah, Mainassara; Farissi, Mohamed; Lazali, Mohamed; Drevon, Jean-Jacques; Maougal, Rim T.; Carlsson, Georg

    2015-01-01

    Despite the agronomical and environmental advantages of the cultivation of legumes, their production is limited by various environmental constraints such as water or nutrient limitation, frost or heat stress and soil salinity, which may be the result of pedoclimatic conditions, intensive use of agricultural lands, decline in soil fertility and environmental degradation. The development of more sustainable agroecosystems that are resilient to environmental constraints will therefore require better understanding of the key mechanisms underlying plant tolerance to abiotic constraints. This review provides highlights of legume tolerance to abiotic constraints with a focus on soil nutrient deficiencies, drought, and salinity. More specifically, recent advances in the physiological and molecular levels of the adaptation of grain and forage legumes to abiotic constraints are discussed. Such adaptation involves complex multigene controlled-traits which also involve multiple sub-traits that are likely regulated under the control of a number of candidate genes. This multi-genetic control of tolerance traits might also be multifunctional, with extended action in response to a number of abiotic constraints. Thus, concrete efforts are required to breed for multifunctional candidate genes in order to boost plant stability under various abiotic constraints. PMID:26287163

  20. Environmental conditions in favour of a hantavirus outbreak in 2015 in Germany?

    PubMed

    Reil, D; Imholt, C; Drewes, S; Ulrich, R G; Eccard, J A; Jacob, J

    2016-03-01

    Bank voles can harbour Puumala virus (PUUV) and vole populations usually peak in years after beech mast. A beech mast occurred in 2014 and a predictive model indicates high vole abundance in 2015. This pattern is similar to the years 2009/2011 when beech mast occurred, bank voles multiplied and human PUUV infections increased a year later. Given similar environmental conditions in 2014/2015, increased risk of human PUUV infections in 2015 is likely. Risk management measures are recommended. PMID:26177110

  1. Design of a leaching test framework for coal fly ash accounting for environmental conditions.

    PubMed

    Zandi, Mohammad; Russell, Nigel V

    2007-08-01

    Fly ash from coal combustion contains trace elements which, on disposal or utilisation, may leach out, and therefore be a potential environmental hazard. Environmental conditions have a great impact on the mobility of fly ash constituents as well as the physical and chemical properties of the fly ash. Existing standard leaching methods have been shown to be inadequate by not representing possible disposal or utilisation scenarios. These tests are often criticised on the grounds that the results estimated are not reliable as they are not able to be extrapolated to the application scenario. In order to simulate leaching behaviour of fly ash in different environmental conditions and to reduce deviation between measurements in the fields and the laboratories, it is vital to study sensitivity of the fly ash constituents of interest to major factors controlling leachability. pH, liquid-to-solid ratio, leaching time, leachant type and redox potential are parameters affecting stability of elements in the fly ash. Sensitivity of trace elements to pH and liquid to solid ratio (as two major overriding factors) has been examined. Elements have been classified on the basis of their leaching behaviour under different conditions. Results from this study have been used to identify leaching mechanisms. Also the fly ash has been examined under different standard batch leaching tests in order to evaluate and to compare these tests. A Leaching Test Framework has been devised for assessing the stability of trace elements from fly ashes in different environments. This Framework assists in designing more realistic batch leaching tests appropriate to field conditions and can support the development of regulations and protocols for the management and disposal of coal combustion by-products or other solid wastes of environmental concern. PMID:17171257

  2. Analysis of short-term metabolic alterations in Arabidopsis following changes in the prevailing environmental conditions.

    PubMed

    Florian, Alexandra; Nikoloski, Zoran; Sulpice, Ronan; Timm, Stefan; Araújo, Wagner L; Tohge, Takayuki; Bauwe, Hermann; Fernie, Alisdair R

    2014-05-01

    Although a considerable increase in our knowledge concerning the importance of metabolic adjustments to unfavorable growth conditions has been recently provided, relatively little is known about the adjustments which occur in response to fluctuation in environmental factors. Evaluating the metabolic adjustments occurring under changing environmental conditions thus offers a good opportunity to increase our current understanding of the crosstalk between the major pathways which are affected by such conditions. To this end, plants growing under normal conditions were transferred to different light and temperature conditions which were anticipated to affect (amongst other processes) the rates of photosynthesis and photorespiration and characterized at the physiological, molecular, and metabolic levels following this transition. Our results revealed similar behavior in response to both treatments and imply a tight connectivity of photorespiration with the major pathways of plant metabolism. They further highlight that the majority of the regulation of these pathways is not mediated at the level of transcription but that leaf metabolism is rather pre-poised to adapt to changes in these input parameters. PMID:24503159

  3. Mass spectrometry-based plant metabolomics: Metabolite responses to abiotic stress.

    PubMed

    Jorge, Tiago F; Rodrigues, João A; Caldana, Camila; Schmidt, Romy; van Dongen, Joost T; Thomas-Oates, Jane; António, Carla

    2016-09-01

    Metabolomics is one omics approach that can be used to acquire comprehensive information on the composition of a metabolite pool to provide a functional screen of the cellular state. Studies of the plant metabolome include analysis of a wide range of chemical species with diverse physical properties, from ionic inorganic compounds to biochemically derived hydrophilic carbohydrates, organic and amino acids, and a range of hydrophobic lipid-related compounds. This complexitiy brings huge challenges to the analytical technologies employed in current plant metabolomics programs, and powerful analytical tools are required for the separation and characterization of this extremely high compound diversity present in biological sample matrices. The use of mass spectrometry (MS)-based analytical platforms to profile stress-responsive metabolites that allow some plants to adapt to adverse environmental conditions is fundamental in current plant biotechnology research programs for the understanding and development of stress-tolerant plants. In this review, we describe recent applications of metabolomics and emphasize its increasing application to study plant responses to environmental (stress-) factors, including drought, salt, low oxygen caused by waterlogging or flooding of the soil, temperature, light and oxidative stress (or a combination of them). Advances in understanding the global changes occurring in plant metabolism under specific abiotic stress conditions are fundamental to enhance plant fitness and increase stress tolerance. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 35:620-649, 2016. PMID:25589422

  4. May Cyclic Nucleotides Be a Source for Abiotic RNA Synthesis?

    NASA Astrophysics Data System (ADS)

    Costanzo, Giovanna; Pino, Samanta; Botta, Giorgia; Saladino, Raffaele; di Mauro, Ernesto

    2011-12-01

    Nucleic bases are obtained by heating formamide in the presence of various catalysts. Formamide chemistry also allows the formation of acyclonucleosides and the phosphorylation of nucleosides in every possible position, also affording 2',3' and 3',5' cyclic forms. We have reported that 3',5' cyclic GMP and 3',5' cyclic AMP polymerize in abiotic conditions yielding short oligonucleotides. The characterization of this reaction is being pursued, several of its parameters have been determined and experimental caveats are reported. The yield of non-enzymatic polymerization of cyclic purine nucleotides is very low. Polymerization is strongly enhanced by the presence of base-complementary RNA sequences.

  5. Enhanced Tolerance of Transgenic Potato Plants Over-Expressing Non-specific Lipid Transfer Protein-1 (StnsLTP1) against Multiple Abiotic Stresses.

    PubMed

    Gangadhar, Baniekal H; Sajeesh, Kappachery; Venkatesh, Jelli; Baskar, Venkidasamy; Abhinandan, Kumar; Yu, Jae W; Prasad, Ram; Mishra, Raghvendra K

    2016-01-01

    Abiotic stresses such as heat, drought, and salinity are major environmental constraints that limit potato (Solanum tuberosum L.) production worldwide. Previously, we found a potential thermo-tolerance gene, named StnsLTP1 from potato using yeast functional screening. Here, we report the functional characterization of StnsLTP1 and its role in multiple abiotic stresses in potato plants. Computational analysis of StnsLTP1 with other plant LTPs showed eight conserved cysteine residues, and four α-helices stabilized by four disulfide bridges. Expression analysis of StnsLTP1 gene showed differential expression under heat, water-deficit and salt stresses. Transgenic potato lines over-expressing StnsLTP1 gene displayed enhanced cell membrane integrity under stress conditions, as indicated by reduced membrane lipid per-oxidation, and hydrogen peroxide content relative to untransformed (UT) control plants. In addition, transgenic lines over-expressing StLTP1 also exhibited increased antioxidant enzyme activity with enhanced accumulation of ascorbates, and up-regulation of stress-related genes including StAPX, StCAT, StSOD, StHsfA3, StHSP70, and StsHSP20 compared with the UT plants. These results suggests that StnsLTP1 transgenic plants acquired improved tolerance to multiple abiotic stresses through enhanced activation of antioxidative defense mechanisms via cyclic scavenging of reactive oxygen species and regulated expression of stress-related genes. PMID:27597854

  6. Enhanced Tolerance of Transgenic Potato Plants Over-Expressing Non-specific Lipid Transfer Protein-1 (StnsLTP1) against Multiple Abiotic Stresses

    PubMed Central

    Gangadhar, Baniekal H.; Sajeesh, Kappachery; Venkatesh, Jelli; Baskar, Venkidasamy; Abhinandan, Kumar; Yu, Jae W.; Prasad, Ram; Mishra, Raghvendra K.

    2016-01-01

    Abiotic stresses such as heat, drought, and salinity are major environmental constraints that limit potato (Solanum tuberosum L.) production worldwide. Previously, we found a potential thermo-tolerance gene, named StnsLTP1 from potato using yeast functional screening. Here, we report the functional characterization of StnsLTP1 and its role in multiple abiotic stresses in potato plants. Computational analysis of StnsLTP1 with other plant LTPs showed eight conserved cysteine residues, and four α-helices stabilized by four disulfide bridges. Expression analysis of StnsLTP1 gene showed differential expression under heat, water-deficit and salt stresses. Transgenic potato lines over-expressing StnsLTP1 gene displayed enhanced cell membrane integrity under stress conditions, as indicated by reduced membrane lipid per-oxidation, and hydrogen peroxide content relative to untransformed (UT) control plants. In addition, transgenic lines over-expressing StLTP1 also exhibited increased antioxidant enzyme activity with enhanced accumulation of ascorbates, and up-regulation of stress-related genes including StAPX, StCAT, StSOD, StHsfA3, StHSP70, and StsHSP20 compared with the UT plants. These results suggests that StnsLTP1 transgenic plants acquired improved tolerance to multiple abiotic stresses through enhanced activation of antioxidative defense mechanisms via cyclic scavenging of reactive oxygen species and regulated expression of stress-related genes. PMID:27597854

  7. Effects of surface condition on aqueous corrosion and environmental embrittlement of iron aluminides

    SciTech Connect

    Perrin, R.L.; Buchanan, R.A.

    1996-08-01

    Effects of retained high-temperature surface oxides, produced during thermomechanical processing and/or heat treatment, on the aqueous-corrosion and environmental-embrittlement characteristics of Fe{sub 3}Al-based iron aluminides (FA-84, FA-129 and FAL-Mo), a FeAl-based iron aluminide (FA-385), and a disordered low-aluminum Fe-Al alloy (FAPY) were evaluated. All tests were conducted at room temperature in a mild acid-chloride solution. In cyclic-anodic-polarization testing for aqueous-corrosion behavior, the surface conditions examined were: as-received (i.e., with the retained high-temperature oxides), mechanically cleaned and chemically cleaned. For all materials, the polarization tests showed the critical pitting potentials to be significantly lower in the as-received condition than in the mechanically-cleaned and chemically-cleaned conditions. These results indicate detrimental effects of the retained high-temperature oxides in terms of increased susceptibilities to localized corrosion. In 200-hour U-bend stress-corrosion-cracking tests for environmental-embrittlement behavior, conducted at open-circuit corrosion potentials and at a hydrogen-charging potential of {minus}1500 mV (SHE), the above materials (except FA-385) were examined with retained oxides and with mechanically cleaned surfaces. At the open-circuit corrosion potentials, none of the materials in either surface condition underwent cracking. At the hydrogen-charging potential, none of the materials with retained oxides underwent cracking, but FA-84, FA-129 and FAL-Mo in the mechanically cleaned condition did undergo cracking. These results suggest beneficial effects of the retained high-temperature oxides in terms of increased resistance to environmental hydrogen embrittlement.

  8. Role of phenotypic plasticity and population differentiation in adaptation to novel environmental conditions

    PubMed Central

    Volis, Sergei; Ormanbekova, Danara; Yermekbayev, Kanat

    2015-01-01

    Species can adapt to new environmental conditions either through individual phenotypic plasticity, intraspecific genetic differentiation in adaptive traits, or both. Wild emmer wheat, Triticum dicoccoides, an annual grass with major distribution in Eastern Mediterranean region, is predicted to experience in the near future, as a result of global climate change, conditions more arid than in any part of the current species distribution. To understand the role of the above two means of adaptation, and the effect of population range position, we analyzed reaction norms, extent of plasticity, and phenotypic selection across two experimental environments of high and low water availability in two core and two peripheral populations of this species. We studied 12 quantitative traits, but focused primarily on the onset of reproduction and maternal investment, which are traits that are closely related to fitness and presumably involved in local adaptation in the studied species. We hypothesized that the population showing superior performance under novel environmental conditions will either be genetically differentiated in quantitative traits or exhibit higher phenotypic plasticity than the less successful populations. We found the core population K to be the most plastic in all three trait categories (phenology, reproductive traits, and fitness) and most successful among populations studied, in both experimental environments; at the same time, the core K population was clearly genetically differentiated from the two edge populations. Our results suggest that (1) two means of successful adaptation to new environmental conditions, phenotypic plasticity and adaptive genetic differentiation, are not mutually exclusive ways of achieving high adaptive ability; and (2) colonists from some core populations can be more successful in establishing beyond the current species range than colonists from the range extreme periphery with conditions seemingly closest to those in the new

  9. ABIOTIC ORGANIC REACTIONS AT MINERAL SURFACES

    EPA Science Inventory

    Abiotic organic reactions, such as hydrolysis, elimination, substitution, redox, and polymerization reactions, can be influenced by surfaces of clay and primary minerals, and of metal oxides. This influence is due to adsorption of the reactants to surface Lewis and Bronsted sites...

  10. Abiotic Bromination of Soil Organic Matter.

    PubMed

    Leri, Alessandra C; Ravel, Bruce

    2015-11-17

    Biogeochemical transformations of plant-derived soil organic matter (SOM) involve complex abiotic and microbially mediated reactions. One such reaction is halogenation, which occurs naturally in the soil environment and has been associated with enzymatic activity of decomposer organisms. Building on a recent finding that naturally produced organobromine is ubiquitous in SOM, we hypothesized that inorganic bromide could be subject to abiotic oxidations resulting in bromination of SOM. Through lab-based degradation treatments of plant material and soil humus, we have shown that abiotic bromination of particulate organic matter occurs in the presence of a range of inorganic oxidants, including hydrogen peroxide and assorted forms of ferric iron, producing both aliphatic and aromatic forms of organobromine. Bromination of oak and pine litter is limited primarily by bromide concentration. Fresh plant material is more susceptible to bromination than decayed litter and soil humus, due to a labile pool of mainly aliphatic compounds that break down during early stages of SOM formation. As the first evidence of abiotic bromination of particulate SOM, this study identifies a mechanistic source of the natural organobromine in humic substances and the soil organic horizon. Formation of organobromine through oxidative treatments of plant material also provides insights into the relative stability of aromatic and aliphatic components of SOM. PMID:26468620

  11. Degradation of the pharmaceuticals diclofenac and sulfamethoxazole and their transformation products under controlled environmental conditions.

    PubMed

    Poirier-Larabie, S; Segura, P A; Gagnon, C

    2016-07-01

    Contamination of the aquatic environment by pharmaceuticals via urban effluents is well known. Several classes of drugs have been identified in waterways surrounding these effluents in the last 15years. To better understand the fate of pharmaceuticals in ecosystems, degradation processes need to be investigated and transformation products must be identified. Thus, this study presents the first comparative study between three different natural environmental conditions: photolysis and biodegradation in aerobic and anaerobic conditions both in the dark of diclofenac and sulfamethoxazole, two common drugs present in significant amounts in impacted surface waters. Results indicated that degradation kinetics differed depending on the process and the type of drug and the observed transformation products also differed among these exposure conditions. Diclofenac was nearly degraded by photolysis after 4days, while its concentration only decreased by 42% after 57days of exposure to bacteria in aerobic media and barely 1% in anaerobic media. For sulfamethoxazole, 84% of the initial concentration was still present after 11days of exposure to light, while biodegradation decreased its concentration by 33% after 58days of exposure under aerobic conditions and 5% after 70days of anaerobic exposure. In addition, several transformation products were observed and persisted over time while others degraded in turn. For diclofenac, chlorine atoms were lost primarily in the photolysis, while a redox reaction was promoted by biodegradation under aerobic conditions. For sulfamethoxazole, isomerization was favored by photolysis while a redox reaction was also favored by the biodegradation under aerobic conditions. To summarize this study points out the occurrence of different transformation products under variable degradation conditions and demonstrates that specific functional groups are involved in the tested natural attenuation processes. Given the complexity of environmental samples

  12. Dietary Lysine Responses of Male Broilers From 14 to 28 Days of Age Subjected to Different Environmental Conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary amino acid requirements are influenced by environmental conditions. Two experiments examined growth responses of Ross × Ross TP 16 male broilers fed diets varying in digestible (dig) Lys concentrations from 14 to 28 days of age under different environmental conditions. Experiment 1 was condu...

  13. A Cuvette Design for Measurement of Ethylene Production and Carbon Dioxide Exchange by Intact Shoots under Controlled Environmental Conditions 1

    PubMed Central

    Bassi, Pawan K.; Spencer, Mary S.

    1979-01-01

    A cuvette is described for simultaneous measurement of ethylene production and CO2 fixation by intact shoots under controlled environmental conditions. This design overcomes potential problems associated with closed systems conventionally used for studies on ethylene production, allowing accurate determination of rates of ethylene production in plants exposed to different environmental conditions. PMID:16660994

  14. Digestible Lysine Requirements of Male Broilers From 14 to 28 Days of Age Subjected to Different Environmental Conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary amino acid requirements are influenced by environmental conditions. Two experiments examined growth responses of Ross × Ross TP 16 male broilers fed diets varying in digestible (dig) Lys concentrations from 14 to 28 d of age under different environmental conditions. Experiment 1 was conduc...

  15. Considerations of Environmentally Relevant Test Conditions for Improved Evaluation of Ecological Hazards of Engineered Nanomaterials.

    PubMed

    Holden, Patricia A; Gardea-Torresdey, Jorge L; Klaessig, Fred; Turco, Ronald F; Mortimer, Monika; Hund-Rinke, Kerstin; Cohen Hubal, Elaine A; Avery, David; Barceló, Damià; Behra, Renata; Cohen, Yoram; Deydier-Stephan, Laurence; Ferguson, P Lee; Fernandes, Teresa F; Herr Harthorn, Barbara; Henderson, W Matthew; Hoke, Robert A; Hristozov, Danail; Johnston, John M; Kane, Agnes B; Kapustka, Larry; Keller, Arturo A; Lenihan, Hunter S; Lovell, Wess; Murphy, Catherine J; Nisbet, Roger M; Petersen, Elijah J; Salinas, Edward R; Scheringer, Martin; Sharma, Monita; Speed, David E; Sultan, Yasir; Westerhoff, Paul; White, Jason C; Wiesner, Mark R; Wong, Eva M; Xing, Baoshan; Steele Horan, Meghan; Godwin, Hilary A; Nel, André E

    2016-06-21

    Engineered nanomaterials (ENMs) are increasingly entering the environment with uncertain consequences including potential ecological effects. Various research communities view differently whether ecotoxicological testing of ENMs should be conducted using environmentally relevant concentrations-where observing outcomes is difficult-versus higher ENM doses, where responses are observable. What exposure conditions are typically used in assessing ENM hazards to populations? What conditions are used to test ecosystem-scale hazards? What is known regarding actual ENMs in the environment, via measurements or modeling simulations? How should exposure conditions, ENM transformation, dose, and body burden be used in interpreting biological and computational findings for assessing risks? These questions were addressed in the context of this critical review. As a result, three main recommendations emerged. First, researchers should improve ecotoxicology of ENMs by choosing test end points, duration, and study conditions-including ENM test concentrations-that align with realistic exposure scenarios. Second, testing should proceed via tiers with iterative feedback that informs experiments at other levels of biological organization. Finally, environmental realism in ENM hazard assessments should involve greater coordination among ENM quantitative analysts, exposure modelers, and ecotoxicologists, across government, industry, and academia. PMID:27177237

  16. Is ragweed pollen allergenicity governed by environmental conditions during plant growth and flowering?

    PubMed Central

    Ghiani, Alessandra; Ciappetta, Silvia; Gentili, Rodolfo; Asero, Riccardo; Citterio, Sandra

    2016-01-01

    Pollen allergenicity is one of the main factors influencing the prevalence and/or severity of allergic diseases. However, how genotype and environment contribute to ragweed pollen allergenicity has still to be established. To throw some light on the factors governing allergenicity, in this work 180 ragweed plants from three Regions (Canada, France, Italy) were grown in both controlled (constant) and standard environmental conditions (seasonal changes in temperature, relative humidity and light). Pollen from single plants was characterized for its allergenic potency and for the underlying regulation mechanisms by studying the qualitative and quantitative variations of the main isoforms of the major ragweed allergen Amb a 1. Results showed a statistically higher variability in allergenicity of pollen from standard conditions than from controlled conditions growing plants. This variability was due to differences among single plants, regardless of their origin, and was not ascribed to differences in the expression and IgE reactivity of individual Amb a 1 isoforms but rather to quantitative differences involving all the studied isoforms. It suggests that the allergenic potency of ragweed pollen and thus the severity of ragweed pollinosis mainly depends on environmental conditions during plant growth and flowering, which regulate the total Amb a 1 content. PMID:27457754

  17. Is ragweed pollen allergenicity governed by environmental conditions during plant growth and flowering?

    NASA Astrophysics Data System (ADS)

    Ghiani, Alessandra; Ciappetta, Silvia; Gentili, Rodolfo; Asero, Riccardo; Citterio, Sandra

    2016-07-01

    Pollen allergenicity is one of the main factors influencing the prevalence and/or severity of allergic diseases. However, how genotype and environment contribute to ragweed pollen allergenicity has still to be established. To throw some light on the factors governing allergenicity, in this work 180 ragweed plants from three Regions (Canada, France, Italy) were grown in both controlled (constant) and standard environmental conditions (seasonal changes in temperature, relative humidity and light). Pollen from single plants was characterized for its allergenic potency and for the underlying regulation mechanisms by studying the qualitative and quantitative variations of the main isoforms of the major ragweed allergen Amb a 1. Results showed a statistically higher variability in allergenicity of pollen from standard conditions than from controlled conditions growing plants. This variability was due to differences among single plants, regardless of their origin, and was not ascribed to differences in the expression and IgE reactivity of individual Amb a 1 isoforms but rather to quantitative differences involving all the studied isoforms. It suggests that the allergenic potency of ragweed pollen and thus the severity of ragweed pollinosis mainly depends on environmental conditions during plant growth and flowering, which regulate the total Amb a 1 content.

  18. Ubiquitination pathway as a target to develop abiotic stress tolerance in rice

    PubMed Central

    Dametto, Andressa; Buffon, Giseli; Dos Reis Blasi, Édina Aparecida; Sperotto, Raul Antonio

    2015-01-01

    Abiotic stresses may result in significant losses in rice grain productivity. Protein regulation by the ubiquitin/proteasome system has been studied as a target mechanism to optimize adaptation and survival strategies of plants to different environmental stresses. This article aimed at highlighting recent discoveries about the roles ubiquitination may play in the exposure of rice plants to different abiotic stresses, enabling the development of modified plants tolerant to stress. Responses provided by the ubiquitination process include the regulation of the stomatal opening, phytohormones levels, protein stabilization, cell membrane integrity, meristematic cell maintenance, as well as the regulation of reactive oxygen species and heavy metals levels. It is noticeable that ubiquitination is a potential means for developing abiotic stress tolerant plants, being an excellent alternative to rice (and other cultures) improvement programs. PMID:26236935

  19. Environmental effects and individual body condition drive seasonal fecundity of rabbits: identifying acute and lagged processes.

    PubMed

    Wells, Konstans; O'Hara, Robert B; Cooke, Brian D; Mutze, Greg J; Prowse, Thomas A A; Fordham, Damien A

    2016-07-01

    The reproduction of many species is determined by seasonally-driven resource supply. But it is difficult to quantify whether the fecundity is sensitive to short- or long-term exposure to environmental conditions such as rainfall that drive resource supply. Using 25 years of data on individual fecundity of European female rabbits, Oryctolagus cuniculus, from semiarid Australia, we investigate the role of individual body condition, rainfall and temperature as drivers of seasonal and long-term and population-level changes in fecundity (breeding probability, ovulation rate, embryo survival). We built distributed lag models in a hierarchical Bayesian framework to account for both immediate and time-lagged effects of climate and other environmental drivers, and possible shifts in reproduction over consecutive seasons. We show that rainfall during summer, when rabbits typically breed only rarely, increased breeding probability immediately and with time lags of up to 10 weeks. However, an earlier onset of the yearly breeding period did not result in more overall reproductive output. Better body condition was associated with an earlier onset of breeding and higher embryo survival. Breeding probability in the main breeding season declined with increased breeding activity in the preceding season and only individuals in good body condition were able to breed late in the season. Higher temperatures reduce breeding success across seasons. We conclude that a better understanding of seasonal dynamics and plasticity (and their interplay) in reproduction will provide crucial insights into how lagomorphs are likely to respond and potentially adapt to the influence of future climate and other environmental change. PMID:27028444

  20. Realized niche width of a brackish water submerged aquatic vegetation under current environmental conditions and projected influences of climate change.

    PubMed

    Kotta, Jonne; Möller, Tiia; Orav-Kotta, Helen; Pärnoja, Merli

    2014-12-01

    Little is known about how organisms might respond to multiple climate stressors and this lack of knowledge limits our ability to manage coastal ecosystems under contemporary climate change. Ecological models provide managers and decision makers with greater certainty that the systems affected by their decisions are accurately represented. In this study Boosted Regression Trees modelling was used to relate the cover of submerged aquatic vegetation to the abiotic environment in the brackish Baltic Sea. The analyses showed that the majority of the studied submerged aquatic species are most sensitive to changes in water temperature, current velocity and winter ice scour. Surprisingly, water salinity, turbidity and eutrophication have little impact on the distributional pattern of the studied biota. Both small and large scale environmental variability contributes to the variability of submerged aquatic vegetation. When modelling species distribution under the projected influences of climate change, all of the studied submerged aquatic species appear to be very resilient to a broad range of environmental perturbation and biomass gains are expected when seawater temperature increases. This is mainly because vegetation develops faster in spring and has a longer growing season under the projected climate change scenario. PMID:24933438

  1. Clothing insulation and temperature, layer and mass of clothing under comfortable environmental conditions

    PubMed Central

    2013-01-01

    This study was designed to investigate the relationship between the microclimate temperature and clothing insulation (Icl) under comfortable environmental conditions. In total, 20 subjects (13 women, 7 men) took part in this study. Four environmental temperatures were chosen: 14°C (to represent March/April), 25°C (May/June), 29°C (July/August), and 23°C (September/October). Wind speed (0.14ms-1) and humidity (45%) were held constant. Clothing microclimate temperatures were measured at the chest (Tchest) and on the interscapular region (Tscapular). Clothing temperature of the innermost layer (Tinnermost) was measured on this layer 30 mm above the centre of the left breast. Subjects were free to choose the clothing that offered them thermal comfort under each environmental condition. We found the following results. 1) All clothing factors except the number of lower clothing layers (Llower), showed differences between the different environmental conditions (P<0.05). The ranges of Tchest were 31.6 to 33.5°C and 32.2 to 33.4°C in Tscapular. The range of Tinnermost was 28.6 to 32.0°C. The range of the upper clothing layers (Lupper) and total clothing mass (Mtotal) was 1.1 to 3.2 layers and 473 to 1659 g respectively. The range of Icl was 0.78 to 2.10 clo. 2) Post hoc analyses showed that analysis of Tinnermost produced the same results as for that of Icl. Likewise, the analysis of Lupper produced the same result as the analysis of the number of total layers (Ltotal) within an outfit. 3) Air temperature (ta) had positive relationships with Tchest and Tscapular and with Tinnermost but had inverse correlations with Icl, Mtotal, Lupper and Ltotal. Tchest, Tscapular, and Tinnermost increased as ta rose. 4) Icl had inverse relationships with Tchest and Tinnermost, but positive relationships with Mtotal, Lupper and Ltotal. Icl could be estimated by Mtotal, Lupper, and Tscapular using a multivariate linear regression model. 5) Lupper had positive relationships with Icl

  2. Bill E. Kunkle Interdisciplinary Beef Symposium: Animal welfare concerns for cattle exposed to adverse environmental conditions.

    PubMed

    Mader, T L

    2014-12-01

    Increasing awareness of animal welfare has become a priority in food production systems involving animals. Under normal working environments, production practices are constantly evaluated to maintain optimum levels of animal well-being. However, during periods of adverse weather, optimum conditions for animal comfort, as well as animal performance, are often compromised. In the Midwest and Great Plains states, the heat waves of 1995, 1999, 2006, 2009, 2010, and 2013 were particularly difficult on animals reared in confinement, with documented cattle losses approaching 5,000 head each year. Additionally, during the summer of 2011, nearly 15,000 head of cattle across 5 states were lost as a result of heat stress. During prolonged periods of heat stress, lower conceptions rates are observed in livestock. In addition, animals reared in confinement buildings are often compromised because of limitations in ventilation systems. Under the opposite environmental spectrum, the winters of 1992 to 1993, 1996 to 1997, 1997 to 1998, 2006 to 2007, and 2008 to 2009 caused hardship for livestock producers, particularly for those rearing animals in an outdoor environment. During the winters of 1996 to 1997 and 2008 to 2009 up to 50% of the newborn calves were lost in many areas, with over 75,000 head of cattle lost in the northern plains states. Late fall and early winter snowstorms in 1992, 1997, 2006, and 2013 resulted in the loss of over 25,000 head of cattle each year in the Great Plains region of the United States. Economic losses from reduced performance of cattle experiencing severe environmental stress likely exceed losses associated with livestock death by 5- to 10-fold. Use of alternative supplementation programs may need to be considered for livestock challenged by adverse environmental conditions. Use of additional water for consumption and cooling, shade, and/or alternative management strategies need to be considered to help livestock cope with heat stress. For animals

  3. Identifying the Environmental Conditions Favouring West Nile Virus Outbreaks in Europe

    PubMed Central

    Metz, Markus; Rosà, Roberto; Marini, Giovanni; Chadwick, Elizabeth; Neteler, Markus

    2015-01-01

    West Nile Virus (WNV) is a globally important mosquito borne virus, with significant implications for human and animal health. The emergence and spread of new lineages, and increased pathogenicity, is the cause of escalating public health concern. Pinpointing the environmental conditions that favour WNV circulation and transmission to humans is challenging, due both to the complexity of its biological cycle, and the under-diagnosis and reporting of epidemiological data. Here, we used remote sensing and GIS to enable collation of multiple types of environmental data over a continental spatial scale, in order to model annual West Nile Fever (WNF) incidence across Europe and neighbouring countries. Multi-model selection and inference were used to gain a consensus from multiple linear mixed models. Climate and landscape were key predictors of WNF outbreaks (specifically, high precipitation in late winter/early spring, high summer temperatures, summer drought, occurrence of irrigated croplands and highly fragmented forests). Identification of the environmental conditions associated with WNF outbreaks is key to enabling public health bodies to properly focus surveillance and mitigation of West Nile virus impact, but more work needs to be done to enable accurate predictions of WNF risk. PMID:25803814

  4. Identifying the environmental conditions favouring West Nile Virus outbreaks in Europe.

    PubMed

    Marcantonio, Matteo; Rizzoli, Annapaola; Metz, Markus; Rosà, Roberto; Marini, Giovanni; Chadwick, Elizabeth; Neteler, Markus

    2015-01-01

    West Nile Virus (WNV) is a globally important mosquito borne virus, with significant implications for human and animal health. The emergence and spread of new lineages, and increased pathogenicity, is the cause of escalating public health concern. Pinpointing the environmental conditions that favour WNV circulation and transmission to humans is challenging, due both to the complexity of its biological cycle, and the under-diagnosis and reporting of epidemiological data. Here, we used remote sensing and GIS to enable collation of multiple types of environmental data over a continental spatial scale, in order to model annual West Nile Fever (WNF) incidence across Europe and neighbouring countries. Multi-model selection and inference were used to gain a consensus from multiple linear mixed models. Climate and landscape were key predictors of WNF outbreaks (specifically, high precipitation in late winter/early spring, high summer temperatures, summer drought, occurrence of irrigated croplands and highly fragmented forests). Identification of the environmental conditions associated with WNF outbreaks is key to enabling public health bodies to properly focus surveillance and mitigation of West Nile virus impact, but more work needs to be done to enable accurate predictions of WNF risk. PMID:25803814

  5. Photoacclimation supports environmental tolerance of a sponge to turbid low-light conditions

    NASA Astrophysics Data System (ADS)

    Biggerstaff, A.; Smith, D. J.; Jompa, J.; Bell, J. J.

    2015-12-01

    Changes to coral reefs are occurring worldwide, often resulting in declining environmental quality which can be in the form of higher sedimentation rates and increased turbidity. While environmental acclimation to turbid and low-light conditions has been extensively studied in corals, far less is known about other phototrophic reef invertebrates. The photosynthetic cyanobacteria containing sponge Lamellodysidea herbacea is one of the most abundant sponges in the Wakatobi Marine National Park (WMNP, Indonesia), and its abundance is greatest at highly disturbed, turbid sites. This study investigated photoacclimation of L. herbacea symbionts to turbid reef sites using in situ PAM fluorometry combined with shading and transplant experiments at environmental extremes of light availability for this species. We found in situ photoacclimation of L. herbacea to both shallow, clear, high-light environments and deep, turbid, low-light environments. Shading experiments provide some evidence that L. herbacea are dependent on nutrition from their photosymbionts as significant tissue loss was seen in shaded sponges. Symbionts within surviving shaded tissue showed evidence of photoacclimation. Lamellodysidea herbacea transplanted from high- to low-light conditions appeared to have photoacclimated within 5 d with no significant effect of the lowered light level on survival. This ability of L. herbacea to photoacclimate to rapid and extreme changes in light availability may be one of the factors contributing to their survival on more turbid reef sites in the WMNP. Our study highlights the ability of some sponge species to acclimate to changes in light levels as a result of increased turbidity.

  6. Environmental Conditions in Low-Income Urban Housing: Clustering and Associations With Self-Reported Health

    PubMed Central

    Spengler, John D.; Harley, Amy E.; Stoddard, Anne; Yang, May; Alvarez-Reeves, Marty; Sorensen, Glorian

    2014-01-01

    Objectives. We explored prevalence and clustering of key environmental conditions in low-income housing and associations with self-reported health. Methods. The Health in Common Study, conducted between 2005 and 2009, recruited participants (n = 828) from 20 low-income housing developments in the Boston area. We interviewed 1 participant per household and conducted a brief inspection of the unit (apartment). We created binary indexes and a summed index for household exposures: mold, combustion by-products, secondhand smoke, chemicals, pests, and inadequate ventilation. We used multivariable logistic regression to examine the associations between each index and household characteristics and between each index and self-reported health. Results. Environmental problems were common; more than half of homes had 3 or more exposure-related problems (median summed index = 3). After adjustment for household-level demographics, we found clustering of problems in site (P < .01) for pests, combustion byproducts, mold, and ventilation. Higher summed index values were associated with higher adjusted odds of reporting fair–poor health (odds ratio = 2.7 for highest category; P < .008 for trend). Conclusions. We found evidence that indoor environmental conditions in multifamily housing cluster by site and that cumulative exposures may be associated with poor health. PMID:24028244

  7. Exophiala sp. LHL08 reprograms Cucumis sativus to higher growth under abiotic stresses.

    PubMed

    Khan, Abdul L; Hamayun, Muhammad; Ahmad, Nadeem; Waqas, Muhammad; Kang, Sang-Mo; Kim, Yoon-Ha; Lee, In-Jung

    2011-12-01

    Endophytic fungi are potential sources of secondary metabolites; however, they are little known for phytohormones secretion and amelioration of plant growth under abiotic stresses. We isolated a novel endophyte from the roots of Cucumis sativus and identified it as a strain of Exophiala sp. by sequencing internal transcribed spacer/large subunit rDNA and phylogenetic analysis. Prior to identification, culture filtrate (CF) of Exophiala sp. has shown significant growth promotion of Waito-C [a gibberellins (GAs)-deficient mutant cultivar] and Dongjin-byeo (normal GAs biosynthesis cultivar) rice seedlings. CF analysis of Exophiala sp. showed the presence of physiologically active GAs (GA₁, GA₃, GA₄ and GA₇) and inactive GAs (GA₅, GA₈, GA₉, GA₁₂ and GA₂₀). Exophiala sp. had higher GAs in its CF than wild-type strain of Gibberella fujikuroi except GA₃. Influence of Exophiala sp. was assessed on cucumber plant's growth and endogenous abscisic acid (ABA), salicylic acid (SA) and bioactive GAs under salinity and drought stresses. Exophiala sp.-treated plants have shown significantly higher growth and rescued the host plants from stress promulgated water deficit, osmotic and cellular damage. The altered levels of stress-responsive ABA showed low level of stress confined to endophyte-applied plants than control. Elevated levels of SA and bioactive GAs (GA₃ and GA₄) in endophyte-associated plants suggest stress-modulating response toward salinity and drought. In conclusion, symbiotic relations between Exophiala and cucumber have reprogrammed the host plant growth under abiotic stresses, thus indicating a possible threshold role of endophytic fungi in stress alleviation. This study could be extended for improving agricultural productivity under extreme environmental conditions. PMID:21883250

  8. Using a Novel Wireless-Networked Decentralized Control Scheme under Unpredictable Environmental Conditions.

    PubMed

    Chang, Chung-Liang; Huang, Yi-Ming; Hong, Guo-Fong

    2015-01-01

    The direction of sunshine or the installation sites of environmental control facilities in the greenhouse result in different temperature and humidity levels in the various zones of the greenhouse, and thus, the production quality of crop is inconsistent. This study proposed a wireless-networked decentralized fuzzy control scheme to regulate the environmental parameters of various culture zones within a greenhouse. The proposed scheme can create different environmental conditions for cultivating different crops in various zones and achieve diversification or standardization of crop production. A star-type wireless sensor network is utilized to communicate with each sensing node, actuator node, and control node in various zones within the greenhouse. The fuzzy rule-based inference system is used to regulate the environmental parameters for temperature and humidity based on real-time data of plant growth response provided by a growth stage selector. The growth stage selector defines the control ranges of temperature and humidity of the various culture zones according to the leaf area of the plant, the number of leaves, and the cumulative amount of light. The experimental results show that the proposed scheme is stable and robust and provides basis for future greenhouse applications. PMID:26569264

  9. Experimental evidence of population differences in reproductive investment conditional on environmental stochasticity.

    PubMed

    Gauthey, Zoé; Panserat, Stéphane; Elosegi, Arturo; Herman, Alexandre; Tentelier, Cédric; Labonne, Jacques

    2016-01-15

    Environmental stochasticity is expected to shape life histories of species, wherein organisms subjected to strong environmental variation should display adaptive response by being able to tune their reproductive investment. For riverine ecosystems, climate models forecast an increase in the frequency and intensity of extreme events such as floods and droughts. The speed and the mechanisms by which organisms may adapt their reproductive investment are therefore of primary importance to understand how species will cope with such radical environmental changes. In the present study, we sampled spawners from two different populations of wild brown trout, originating from two environments with contrasting levels of flow stochasticity. We placed them in sympatry within an experimental channel during reproductive season. In one modality, water flow was maintained constant, whereas in another modality, water flow was highly variable. Reproductive investment of all individuals was monitored using weight and energetic plasma metabolite variation throughout the reproductive season. Only the populations originating from the most variable environment showed a plastic response to experimental manipulation of water flow, the females being able to reduce their weight variation (from 19.2% to 13.1%) and metabolites variations (from 84.2% to 18.6% for triglycerides for instance) under variable flow conditions. These results imply that mechanisms to cope with environmental stochasticity can differ between populations of the same species, where some populations can be plastic whereas other cannot. PMID:26406108

  10. Using a Novel Wireless-Networked Decentralized Control Scheme under Unpredictable Environmental Conditions

    PubMed Central

    Chang, Chung-Liang; Huang, Yi-Ming; Hong, Guo-Fong

    2015-01-01

    The direction of sunshine or the installation sites of environmental control facilities in the greenhouse result in different temperature and humidity levels in the various zones of the greenhouse, and thus, the production quality of crop is inconsistent. This study proposed a wireless-networked decentralized fuzzy control scheme to regulate the environmental parameters of various culture zones within a greenhouse. The proposed scheme can create different environmental conditions for cultivating different crops in various zones and achieve diversification or standardization of crop production. A star-type wireless sensor network is utilized to communicate with each sensing node, actuator node, and control node in various zones within the greenhouse. The fuzzy rule-based inference system is used to regulate the environmental parameters for temperature and humidity based on real-time data of plant growth response provided by a growth stage selector. The growth stage selector defines the control ranges of temperature and humidity of the various culture zones according to the leaf area of the plant, the number of leaves, and the cumulative amount of light. The experimental results show that the proposed scheme is stable and robust and provides basis for future greenhouse applications. PMID:26569264

  11. Environmental Conditions Influence the Plant Functional Diversity Effect on Potential Denitrification

    PubMed Central

    Sutton-Grier, Ariana E.; Wright, Justin P.; McGill, Bonnie M.; Richardson, Curtis

    2011-01-01

    Global biodiversity loss has prompted research on the relationship between species diversity and ecosystem functioning. Few studies have examined how plant diversity impacts belowground processes; even fewer have examined how varying resource levels can influence the effect of plant diversity on microbial activity. In a field experiment in a restored wetland, we examined the role of plant trait diversity (or functional diversity, (FD)) and its interactions with natural levels of variability of soil properties, on a microbial process, denitrification potential (DNP). We demonstrated that FD significantly affected microbial DNP through its interactions with soil conditions; increasing FD led to increased DNP but mainly at higher levels of soil resources. Our results suggest that the effect of species diversity on ecosystem functioning may depend on environmental factors such as resource availability. Future biodiversity experiments should examine how natural levels of environmental variability impact the importance of biodiversity to ecosystem functioning. PMID:21311768

  12. Interaction between host genotype and environmental conditions affects bacterial density in Wolbachia symbiosis.

    PubMed

    Mouton, Laurence; Henri, Hélène; Charif, Delphine; Boulétreau, Michel; Vavre, Fabrice

    2007-04-22

    Regulation of microbial population density is a necessity in stable symbiotic interactions. In Wolbachia symbiosis, both bacterial and host genotypes are involved in density regulation, but environmental factors may also affect bacterial population density. Here, we studied the interaction between three strains of Wolbachia in two divergent homozygous lines of the wasp Leptopilina heterotoma at two different temperatures. Wolbachia density varied between the two host genotypes at only one temperature. Moreover, at this temperature, reciprocal-cross F1 insects displayed identical Wolbachia densities, which were intermediate between the densities in the two parental lines. While these findings confirm that the host genotype plays an important role in Wolbachia density, they also highlight its interaction with environmental conditions, making possible the evolution of local adaptations for the regulation of Wolbachia density. PMID:17251124

  13. Identification of suitable qPCR reference genes in leaves of Brassica oleracea under abiotic stresses.

    PubMed

    Brulle, Franck; Bernard, Fabien; Vandenbulcke, Franck; Cuny, Damien; Dumez, Sylvain

    2014-04-01

    Real-time quantitative PCR is nowadays a standard method to study gene expression variations in various samples and experimental conditions. However, to interpret results accurately, data normalization with appropriate reference genes appears to be crucial. The present study describes the identification and the validation of suitable reference genes in Brassica oleracea leaves. Expression stability of eight candidates was tested following drought and cold abiotic stresses by using three different softwares (BestKeeper, NormFinder and geNorm). Four genes (BolC.TUB6, BolC.SAND1, BolC.UBQ2 and BolC.TBP1) emerged as the most stable across the tested conditions. Further gene expression analysis of a drought- and a cold-responsive gene (BolC.DREB2A and BolC.ELIP, respectively), confirmed the stability and the reliability of the identified reference genes when used for normalization in the leaves of B. oleracea. These four genes were finally tested upon a benzene exposure and all appeared to be useful reference genes along this toxicological condition. These results provide a good starting point for future studies involving gene expression measurement on leaves of B. oleracea exposed to environmental modifications. PMID:24566730

  14. Hormonal Signal Amplification Mediates Environmental Conditions during Development and Controls an Irreversible Commitment to Adulthood

    PubMed Central

    Schaedel, Oren N.; Gerisch, Birgit; Antebi, Adam; Sternberg, Paul W.

    2012-01-01

    Many animals can choose between different developmental fates to maximize fitness. Despite the complexity of environmental cues and life history, different developmental fates are executed in a robust fashion. The nematode Caenorhabditis elegans serves as a powerful model to examine this phenomenon because it can adopt one of two developmental fates (adulthood or diapause) depending on environmental conditions. The steroid hormone dafachronic acid (DA) directs development to adulthood by regulating the transcriptional activity of the nuclear hormone receptor DAF-12. The known role of DA suggests that it may be the molecular mediator of environmental condition effects on the developmental fate decision, although the mechanism is yet unknown. We used a combination of physiological and molecular biology techniques to demonstrate that commitment to reproductive adult development occurs when DA levels, produced in the neuroendocrine XXX cells, exceed a threshold. Furthermore, imaging and cell ablation experiments demonstrate that the XXX cells act as a source of DA, which, upon commitment to adult development, is amplified and propagated in the epidermis in a DAF-12 dependent manner. This positive feedback loop increases DA levels and drives adult programs in the gonad and epidermis, thus conferring the irreversibility of the decision. We show that the positive feedback loop canalizes development by ensuring that sufficient amounts of DA are dispersed throughout the body and serves as a robust fate-locking mechanism to enforce an organism-wide binary decision, despite noisy and complex environmental cues. These mechanisms are not only relevant to C. elegans but may be extended to other hormonal-based decision-making mechanisms in insects and mammals. PMID:22505848

  15. Genomic sweep and potential genetic rescue during limiting environmental conditions in an isolated wolf population.

    PubMed

    Adams, Jennifer R; Vucetich, Leah M; Hedrick, Philip W; Peterson, Rolf O; Vucetich, John A

    2011-11-22

    Genetic rescue, in which the introduction of one or more unrelated individuals into an inbred population results in the reduction of detrimental genetic effects and an increase in one or more vital rates, is a potentially important management tool for mitigating adverse effects of inbreeding. We used molecular techniques to document the consequences of a male wolf (Canis lupus) that immigrated, on its own, across Lake Superior ice to the small, inbred wolf population in Isle Royale National Park. The immigrant's fitness so exceeded that of native wolves that within 2.5 generations, he was related to every individual in the population and his ancestry constituted 56 per cent of the population, resulting in a selective sweep of the total genome. In other words, all the male ancestry (50% of the total ancestry) descended from this immigrant, plus 6 per cent owing to the success of some of his inbred offspring. The immigration event occurred in an environment where space was limiting (i.e. packs occupied all available territories) and during a time when environmental conditions had deteriorated (i.e. wolves' prey declined). These conditions probably explain why the immigration event did not obviously improve the population's demography (e.g. increased population numbers or growth rate). Our results show that the beneficial effects of gene flow may be substantial and quickly manifest, short-lived under some circumstances, and how the demographic benefits of genetic rescue might be masked by environmental conditions. PMID:21450731

  16. Genomic sweep and potential genetic rescue during limiting environmental conditions in an isolated wolf population

    PubMed Central

    Adams, Jennifer R.; Vucetich, Leah M.; Hedrick, Philip W.; Peterson, Rolf O.; Vucetich, John A.

    2011-01-01

    Genetic rescue, in which the introduction of one or more unrelated individuals into an inbred population results in the reduction of detrimental genetic effects and an increase in one or more vital rates, is a potentially important management tool for mitigating adverse effects of inbreeding. We used molecular techniques to document the consequences of a male wolf (Canis lupus) that immigrated, on its own, across Lake Superior ice to the small, inbred wolf population in Isle Royale National Park. The immigrant's fitness so exceeded that of native wolves that within 2.5 generations, he was related to every individual in the population and his ancestry constituted 56 per cent of the population, resulting in a selective sweep of the total genome. In other words, all the male ancestry (50% of the total ancestry) descended from this immigrant, plus 6 per cent owing to the success of some of his inbred offspring. The immigration event occurred in an environment where space was limiting (i.e. packs occupied all available territories) and during a time when environmental conditions had deteriorated (i.e. wolves' prey declined). These conditions probably explain why the immigration event did not obviously improve the population's demography (e.g. increased population numbers or growth rate). Our results show that the beneficial effects of gene flow may be substantial and quickly manifest, short-lived under some circumstances, and how the demographic benefits of genetic rescue might be masked by environmental conditions. PMID:21450731

  17. Water retention of selected microorganisms and Martian soil simulants under close to Martian environmental conditions

    NASA Astrophysics Data System (ADS)

    Jänchen, J.; Bauermeister, A.; Feyh, N.; de Vera, J.-P.; Rettberg, P.; Flemming, H.-C.; Szewzyk, U.

    2014-08-01

    Based on the latest knowledge about microorganisms resistant towards extreme conditions on Earth and results of new complex models on the development of the Martian atmosphere we quantitatively examined the water-bearing properties of selected extremophiles and simulated Martian regolith components and their interaction with water vapor under close to Martian environmental conditions. Three different species of microorganisms have been chosen and prepared for our study: Deinococcus geothermalis, Leptothrix sp. OT_B_406, and Xanthoria elegans. Further, two mineral mixtures representing the early and the late Martian surface as well as montmorillonite as a single component of phyllosilicatic minerals, typical for the Noachian period on Mars, were selected. The thermal mass loss of the minerals and bacteria-samples was measured by thermoanalysis. The hydration and dehydration properties were determined under close to Martian environmental conditions by sorption isotherm measurements using a McBain-Bakr quartz spring balance. It was possible to determine the total water content of the materials as well as the reversibly bound water fraction as function of the atmospheres humidity by means of these methods. Our results are important for the evaluation of future space mission outcomes including astrobiological aspects and can support the modeling of the atmosphere/surface interaction by showing the influence on the water inventory of the upper most layer of the Martian surface.

  18. Evaluation of natural colonisation of cementitious materials: effect of bioreceptivity and environmental conditions.

    PubMed

    Manso, Sandra; Calvo-Torras, María Ángeles; De Belie, Nele; Segura, Ignacio; Aguado, Antonio

    2015-04-15

    Incorporation of living organisms, such as photosynthetic organisms, on the structure envelope has become a priority in the area of architecture and construction due to aesthetical, economic and ecological advantages. Important research efforts are made to achieve further improvements, such as for the development of cementitious materials with an enhanced bioreceptivity to stimulate biological growth. Previously, the study of the bioreceptivity of cementitious materials has been carried out mainly under laboratory conditions although field-scale experiments may present different results. This work aims at analysing the colonisation of cementitious materials with different levels of bioreceptivity by placing them in three different environmental conditions. Specimens did not present visual colonisation, which indicates that environmental conditions have a greater impact than intrinsic properties of the material at this stage. Therefore, it appears that in addition to an optimized bioreceptivity of the concrete (i.e., composition, porosity and roughness), extra measures are indispensable for a rapid development of biological growth on concrete surfaces. An analysis of the colonisation in terms of genus and quantity of the most representative microorganisms found on the specimens for each location was carried out and related to weather conditions, such as monthly average temperature and total precipitation, and air quality in terms of NOx, SO2, CO and O3. OPC-based specimens presented a higher colonisation regarding both biodiversity and quantity. However, results obtained in a previous experimental programme under laboratory conditions suggested a higher suitability of Magnesium Phosphate Cement-based (MPC-based) specimens for algal growth. Consequently, carefully considering the environment and the relationships between the different organisms present in an environment is vital for successfully using a cementitious material as a substrate for biological growth. PMID

  19. Thermal Cyclic Behavior of Thermal and Environmental Barrier Coatings Investigated Under High-Heat-Flux Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Lee, Kang N.; Miller, Robert A.

    2002-01-01

    Environmental barrier coatings (EBC's) have been developed to protect silicon-carbide- (SiC) based ceramic components in gas turbine engines from high-temperature environmental attack. With continuously increasing demands for significantly higher engine operating temperature, future EBC systems must be designed for both thermal and environmental protection of the engine components in combustion gases. In particular, the thermal barrier functions of EBC's become a necessity for reducing the engine-component thermal loads and chemical reaction rates, thus maintaining the required mechanical properties and durability of these components. Advances in the development of thermal and environmental barrier coatings (TBC's and EBC's, respectively) will directly impact the successful use of ceramic components in advanced engines. To develop high-performance coating systems, researchers must establish advanced test approaches. In this study, a laser high-heat-flux technique was employed to investigate the thermal cyclic behavior of TBC's and EBC's on SiC-reinforced SiC ceramic matrix composite substrates (SiC/SiC) under high thermal gradient and thermal cycling conditions. Because the laser heat flux test approach can monitor the coating's real-time thermal conductivity variations at high temperature, the coating thermal insulation performance, sintering, and delamination can all be obtained during thermal cycling tests. Plasma-sprayed yttria-stabilized zirconia (ZrO2-8 wt% Y2O3) thermal barrier and barium strontium aluminosilicate-based environmental barrier coatings (BSAS/BSAS+mullite/Si) on SiC/SiC ceramic matrix composites were investigated in this study. These coatings were laser tested in air under thermal gradients (the surface and interface temperatures were approximately 1482 and 1300 C, respectively). Some coating specimens were also subject to alternating furnace cycling (in a 90-percent water vapor environment at 1300 C) and laser thermal gradient cycling tests

  20. Evaluating GIS for establishing and monitoring environmental conditions of oil fields

    SciTech Connect

    Pfeil, R.W.; Ellis, J.W.

    1995-04-01

    Good management of an oil field and compliance with ever-increasing environmental regulations is enhanced by technologies that improve a company`s understanding of field/production facilities and environmental conditions that have occurred to both through time. In Nigeria, Kazakhstan, Indonesia, and offshore Cabinda, remote sensing, computer-aided drafting (CAD) and Global Positioning System (GPF) technologies have effectively been used by Chevron to provide accurate maps of facilities and to better understand environmental conditions. Together these proven technologies have provided a solid and cost-effective base for planning field operation, verifying well and seismic locations, and locating sampling sites. The end product of these technologies is often locations, and locating sampling sites. The end product of these technologies is often cartographic-quality hardcopy images and maps for use in the office and field. Chevron has been evaluating the capability of Geographical Information System (GIS) technology to integrate images, maps, and tabular data into a useful database that can help managers and workers better evaluate conditions in an oil field, plan new facilities, and monitor/predict trends (for example, of air emissions, groundwater, soil chemistry, subsidence, etc.). Remote sensing, CAD (if formatted properly), and GPS data can be integrated to establish the spatial or cartographic base of the GIS. A major obstacle to establishing a sophisticated GIS for an overseas operation is the initial cost of data collection and conversion from legacy data base management systems and hardcopy to appropriate digital format. However, Chevron routinely uses GIS for oil spill modeling and is now using GIS in the field for integrating GPS data with field observations and programs.

  1. Transcriptome analysis reveals the role of the root hairs as environmental sensors to maintain plant functions under water-deficiency conditions.

    PubMed

    Kwasniewski, Miroslaw; Daszkowska-Golec, Agata; Janiak, Agnieszka; Chwialkowska, Karolina; Nowakowska, Urszula; Sablok, Gaurav; Szarejko, Iwona

    2016-02-01

    An important part of the root system is the root hairs, which play a role in mineral and water uptake. Here, we present an analysis of the transcriptomic response to water deficiency of the wild-type (WT) barley cultivar 'Karat' and its root-hairless mutant rhl1.a. A comparison of the transcriptional changes induced by water stress resulted in the identification of genes whose expression was specifically affected in each genotype. At the onset of water stress, more genes were modulated by water shortage in the roots of the WT plants than in the roots of rhl1.a. The roots of the WT plants, but not of rhl1.a, specifically responded with the induction of genes that are related to the abscisic acid biosynthesis, stomatal closure, and cell wall biogenesis, thus indicating the specific activation of processes that are related to water-stress signalling and protection. On the other hand, the processes involved in the further response to abiotic stimuli, including hydrogen peroxide, heat, and high light intensity, were specifically up-regulated in the leaves of rhl1.a. An extended period of severe stress caused more drastic transcriptome changes in the roots and leaves of the rhl1.a mutant than in those of the WT. These results are in agreement with the much stronger damage to photosystem II in the rhl1.a mutant than in its parent cultivar after 10 d of water stress. Taking into account the putative stress sensing and signalling features of the root hair transcriptome, we discuss the role of root hairs as sensors of environmental conditions. PMID:26585228

  2. Transcriptome analysis reveals the role of the root hairs as environmental sensors to maintain plant functions under water-deficiency conditions

    PubMed Central

    Daszkowska-Golec, Agata; Janiak, Agnieszka; Chwialkowska, Karolina; Nowakowska, Urszula; Sablok, Gaurav; Szarejko, Iwona

    2016-01-01

    An important part of the root system is the root hairs, which play a role in mineral and water uptake. Here, we present an analysis of the transcriptomic response to water deficiency of the wild-type (WT) barley cultivar ‘Karat’ and its root-hairless mutant rhl1.a. A comparison of the transcriptional changes induced by water stress resulted in the identification of genes whose expression was specifically affected in each genotype. At the onset of water stress, more genes were modulated by water shortage in the roots of the WT plants than in the roots of rhl1.a. The roots of the WT plants, but not of rhl1.a, specifically responded with the induction of genes that are related to the abscisic acid biosynthesis, stomatal closure, and cell wall biogenesis, thus indicating the specific activation of processes that are related to water-stress signalling and protection. On the other hand, the processes involved in the further response to abiotic stimuli, including hydrogen peroxide, heat, and high light intensity, were specifically up-regulated in the leaves of rhl1.a. An extended period of severe stress caused more drastic transcriptome changes in the roots and leaves of the rhl1.a mutant than in those of the WT. These results are in agreement with the much stronger damage to photosystem II in the rhl1.a mutant than in its parent cultivar after 10 d of water stress. Taking into account the putative stress sensing and signalling features of the root hair transcriptome, we discuss the role of root hairs as sensors of environmental conditions. PMID:26585228

  3. A methodological framework for linking bioreactor function to microbial communities and environmental conditions.

    PubMed

    de los Reyes, Francis L; Weaver, Joseph E; Wang, Ling

    2015-06-01

    In the continuing quest to relate microbial communities in bioreactors to function and environmental and operational conditions, engineers and biotechnologists have adopted the latest molecular and 'omic methods. Despite the large amounts of data generated, gaining mechanistic insights and using the data for predictive and practical purposes is still a huge challenge. We present a methodological framework that can guide experimental design, and discuss specific issues that can affect how researchers generate and use data to elucidate the relationships. We also identify, in general terms, bioreactor research opportunities that appear promising. PMID:25710123

  4. Physical performance and environmental conditions: 2014 World Soccer Cup and 2016 Summer Olympics in Brazil.

    PubMed

    Veneroso, Christiano E; Ramos, Guilherme P; Mendes, Thiago T; Silami-Garcia, Emerson

    2015-01-01

    This editorial is for the special issue "Temperature sciences in Brazil" of the journal Temperature. It focuses on the physical performance and environmental conditions during the 2014 World Cup and the coming 2016 Summer Olympics. It emphasizes that a hot and humid environment imposes a great challenge to the human thermoregulation system, can lead to performance decrements, and increases the risk of developing hyperthermia. Adequate hydration, acclimatization, and body cooling strategies are effective interventions to minimize the risks associated with exercise in the heat. PMID:27227058

  5. Small Scale Solar Cooling Unit in Climate Conditions of Latvia: Environmental and Economical Aspects

    NASA Astrophysics Data System (ADS)

    Jaunzems, Dzintars; Veidenbergs, Ivars

    2010-01-01

    The paper contributes to the analyses from the environmental and economical point of view of small scale solar cooling system in climate conditions of Latvia. Cost analyses show that buildings with a higher cooling load and full load hours have lower costs. For high internal gains, cooling costs are around 1,7 €/kWh and 2,5 €/kWh for buildings with lower internal gains. Despite the fact that solar cooling systems have significant potential to reduce CO2 emissions due to a reduction of electricity consumption, the economic feasibility and attractiveness of solar cooling system is still low.

  6. Oxidative stress in limpets exposed to different environmental conditions in the Beagle Channel.

    PubMed

    Malanga, Gabriela; Estevez, Maria Susana; Calvo, Jorge; Puntarulo, Susana

    2004-09-20

    The aim of this work was to study the oxidative profile of digestive glands of two limpets species (Nacella (Patinigera) magellanica and Nacella (Patinigera) deaurata) exposed to different environmental conditions. The intertidal population of N. (P.) magellanica is subjected to a wide variety of stresses not experienced by N. (P.) deaurata. Although a typical electron paramagnetic resonance (EPR) spectrum of ascorbyl radical in digestive gland from both limpets was observed, neither ascorbyl radical content nor the ascorbyl radical content/ascorbate content ratio was significantly different, suggesting that the difference in the environmental conditions did not appear to be responsible for developing alterations in the oxidative status of both organisms at the hydrophilic level (e.g. cytosol). Lipid peroxidation in the digestive glands was estimated, both as the content of thiobarbituric acid reactive substances (TBARS) and as the content of lipid radicals assessed by EPR, in both organisms. TBARS and lipid radical content were 34.8 and 36.5%, respectively, lower in N. (P.) magellanica as compared to N. (P.) deaurata. On the other hand, total iron content and the rate of generation of superoxide anion were 47.9 and 51.4%, respectively, lower in N. (P.) magellanica as compared to N. (P.) deaurata. The activity of catalase and superoxide dismutase (SOD) was 35.3 and 128.6% higher in N. (P.) magellanica as compared to N. (P.) deaurata, respectively. No significant differences were determined between the digestive glands of both molluscs regarding the content of total thiols. alpha-Tocopherol and beta-carotene content were significantly lower in N. (P.) magellanica as compared to N. (P.) deaurata. A distinctive EPR signal for the adduct Fe--MGD--NO (g = 2.03 and a(N) = 12.5 G) was detected in the homogenates of digestive glands of both limpets. A significant difference in the content of the Fe-MGD-NO adduct in digestive glands from N. (P.) magellanica and N. (P

  7. Physical performance and environmental conditions: 2014 World Soccer Cup and 2016 Summer Olympics in Brazil

    PubMed Central

    Veneroso, Christiano E; Ramos, Guilherme P; Mendes, Thiago T; Silami-Garcia, Emerson

    2015-01-01

    ABSTRACT This editorial is for the special issue “Temperature sciences in Brazil” of the journal Temperature. It focuses on the physical performance and environmental conditions during the 2014 World Cup and the coming 2016 Summer Olympics. It emphasizes that a hot and humid environment imposes a great challenge to the human thermoregulation system, can lead to performance decrements, and increases the risk of developing hyperthermia. Adequate hydration, acclimatization, and body cooling strategies are effective interventions to minimize the risks associated with exercise in the heat. PMID:27227058

  8. A correlational analysis of the effects of changing environmental conditions on the NR atomic hydrogen maser

    NASA Technical Reports Server (NTRS)

    Dragonette, Richard A.; Suter, Joseph J.

    1992-01-01

    An extensive statistical analysis has been undertaken to determine if a correlation exists between changes in an NR atomic hydrogen maser's frequency offset and changes in environmental conditions. Correlation analyses have been performed comparing barometric pressure, humidity, and temperature with maser frequency offset as a function of time for periods ranging from 5.5 to 17 days. Semipartial correlation coefficients as large as -0.9 have been found between barometric pressure and maser frequency offset. Correlation between maser frequency offset and humidity was small compared to barometric pressure and unpredictable. Analysis of temperature data indicates that in the most current design, temperature does not significantly affect maser frequency offset.

  9. Tick community composition in Midwestern US habitats in relation to sampling method and environmental conditions.

    PubMed

    Rynkiewicz, Evelyn C; Clay, Keith

    2014-01-01

    The ranges of many tick species are changing due to climate change and human alteration of the landscape. Understanding tick responses to environmental conditions and how sampling method influences measurement of tick communities will improve our assessment of human disease risk. We compared tick sampling by three collection methods (dragging, CO2 trapping and rodent surveys) in adjacent forested and grassland habitats in the lower Midwest, USA, and analyzed the relationship between tick abundance and microclimate conditions. The study areas were within the overlapping ranges of three tick species, which may provide conditions for pathogen exchange and spread into new vectors. Dermacentor variabilis (American dog tick) was found using all methods, Amblyomma americanum (lonestar tick) was found by dragging and CO2 trapping and Ixodes scapularis (blacklegged deer tick) was found only on rodents. Proportion of each species differed significantly among sampling methods. More ticks were found in forests compared to open habitats. Further, more ticks were collected by dragging and from rodents in hotter, drier conditions. Our results demonstrate that multiple sampling methodologies better measure the tick community and that microclimate conditions strongly influence the abundance and activity of individual tick species. PMID:24705853

  10. Building the crops of tomorrow: advantages of symbiont-based approaches to improving abiotic stress tolerance.

    PubMed

    Coleman-Derr, Devin; Tringe, Susannah G

    2014-01-01

    The exponential growth in world population is feeding a steadily increasing global need for arable farmland, a resource that is already in high demand. This trend has led to increased farming on subprime arid and semi-arid lands, where limited availability of water and a host of environmental stresses often severely reduce crop productivity. The conventional approach to mitigating the abiotic stresses associated with arid climes is to breed for stress-tolerant cultivars, a time and labor intensive venture that often neglects the complex ecological context of the soil environment in which the crop is grown. In recent years, studies have attempted to identify microbial symbionts capable of conferring the same stress-tolerance to their plant hosts, and new developments in genomic technologies have greatly facilitated such research. Here, we highlight many of the advantages of these symbiont-based approaches and argue in favor of the broader recognition of crop species as ecological niches for a diverse community of microorganisms that function in concert with their plant hosts and each other to thrive under fluctuating environmental conditions. PMID:24936202

  11. Programmed cell death and adaptation: two different types of abiotic stress response in a unicellular chlorophyte.

    PubMed

    Zuppini, Anna; Gerotto, Caterina; Baldan, Barbara

    2010-06-01

    Eukaryotic microalgae are highly suitable biological indicators of environmental changes because they are exposed to extreme seasonal fluctuations. The biochemical and molecular targets and regulators of key proteins involved in the stress response in microalgae have yet to be elucidated. This study presents morphological and biochemical evidence of programmed cell death (PCD) in a low temperature strain of Chlorella saccharophila induced by exposure to NaCl stress. Morphological characteristics of PCD, including cell shrinkage, detachment of the plasma membrane from the cell wall, nuclear condensation and DNA fragmentation, were observed. Additionally, a significant production of H(2)O(2) and increase in caspase 3-like activity were detected. We demonstrated that singly applied environmental stresses such as warming or salt stress trigger a pathway of PCD. Intriguingly, the prior application of salt stress seems to reduce heat shock-induced cell death significantly, suggesting a combined effect which activates a defense mechanism in algal cells. These results suggest that C. saccharophila can undergo PCD under stress conditions, and that this PCD shares several features with metazoan PCD. Moreover, the simultaneous exposure of this unicellular chlorophyte to different abiotic stresses results in a tolerance mechanism. PMID:20457671

  12. Building the crops of tomorrow: advantages of symbiont-based approaches to improving abiotic stress tolerance

    PubMed Central

    Coleman-Derr, Devin; Tringe, Susannah G.

    2014-01-01

    The exponential growth in world population is feeding a steadily increasing global need for arable farmland, a resource that is already in high demand. This trend has led to increased farming on subprime arid and semi-arid lands, where limited availability of water and a host of environmental stresses often severely reduce crop productivity. The conventional approach to mitigating the abiotic stresses associated with arid climes is to breed for stress-tolerant cultivars, a time and labor intensive venture that often neglects the complex ecological context of the soil environment in which the crop is grown. In recent years, studies have attempted to identify microbial symbionts capable of conferring the same stress-tolerance to their plant hosts, and new developments in genomic technologies have greatly facilitated such research. Here, we highlight many of the advantages of these symbiont-based approaches and argue in favor of the broader recognition of crop species as ecological niches for a diverse community of microorganisms that function in concert with their plant hosts and each other to thrive under fluctuating environmental conditions. PMID:24936202

  13. Building the crops of tomorrow: advantages of symbiont-based approaches to improving abiotic stress tolerance

    SciTech Connect

    Coleman-Derr, Devin; Tringe, Susannah G.

    2014-06-06

    The exponential growth in world population is feeding a steadily increasing global need for arable farmland, a resource that is already in high demand. This trend has led to increased farming on subprime arid and semi-arid lands, where limited availability of water and a host of environmental stresses often severely reduce crop productivity. The conventional approach to mitigating the abiotic stresses associated with arid climes is to breed for stress-tolerant cultivars, a time and labor intensive venture that often neglects the complex ecological context of the soil environment in which the crop is grown. In recent years, studies have attempted to identify microbial symbionts capable of conferring the same stress-tolerance to their plant hosts, and new developments in genomic technologies have greatly facilitated such research. Here in this paper, we highlight many of the advantages of these symbiont-based approaches and argue in favor of the broader recognition of crop species as ecological niches for a diverse community of microorganisms that function in concert with their plant hosts and each other to thrive under fluctuating environmental conditions

  14. Detection of structural damage using novelty detection algorithm under variational environmental and operational conditions

    NASA Astrophysics Data System (ADS)

    El Mountassir, M.; Yaacoubi, S.; Dahmene, F.

    2015-07-01

    Novelty detection is a widely used algorithm in different fields of study due to its capabilities to recognize any kind of abnormalities in a specific process in order to ensure better working in normal conditions. In the context of Structural Health Monitoring (SHM), this method is utilized as damage detection technique because the presence of defects can be considered as abnormal to the structure. Nevertheless, the performance of such a method could be jeopardized if the structure is operating in harsh environmental and operational conditions (EOCs). In this paper, novelty detection statistical technique is used to investigate the detection of damages under various EOCs. Experiments were conducted with different scenarios: damage sizes and shapes. EOCs effects were simulated by adding stochastic noise to the collected experimental data. Different levels of noise were studied to determine the accuracy and the performance of the proposed method.

  15. Nonlinear Dielectric Properties of Yeast Cells Cultured in Different Environmental Conditions

    NASA Astrophysics Data System (ADS)

    Kawanishi, Gomon; Fukuda, Naoki; Muraji, Masafumi

    The harmonics of the electric current through yeast suspensions, the nonlinear dielectric properties of yeast cells, have particular patterns according to the biological activity of the cells and the measurement of these patterns is a technique for determining the activity of living cells. The concentration of glucose and oxygen in yeast culture medium influences the manifestation of fermentation or respiration of yeast cells. Measurements were made with yeast cells (Saccharomyces cerevisiae) cultured aerobically and anaerobically in sufficient glucose concentration, aerobic fermentation and anaerobic fermentation, and aerobically in limited glucose concentration, respiration. The results showed that the harmonics were barely apparent for yeast cells in aerobic fermentation and respiratory; however, cells in the anaerobic fermentation displayed substantial third and fifth harmonics. We can say that environmental condition affects the yeast cells' nonlinear properties, from another viewpoint, the measurements of the nonlinear properties are available to determine the activity of yeast cells adjusted to the conditions of their cultivation.

  16. Effect of environmental conditions on extracellular lipases production and fungal morphology from Aspergillus niger MYA 135.

    PubMed

    Colin, Veronica Leticia; Baigori, Mario Domingo; Pera, Licia Maria

    2010-02-01

    Under the current assay conditions, lipase production in mineral medium was only detected in the presence of vegetable oils, reaching the highest specific activity with olive oil. In this way, effect of different environmental conditions on fungal morphology and olive oil-induced extracellular lipases production from Aspergillus niger MYA 135 was studied. It was observed that addition of 1.0 g l(-1) FeCl(3)to the medium encouraged filamentous growth and increased the specific activity 6.6 fold after 4 days of incubation compared to the control. However, major novelty of this study was the satisfactory production of an acidic lipase at initial pH 3 of the culture medium (1.74 +/- 0.06 mU microg(-1)), since its potencial applications in food and pharmaceutical industry are highly promising. PMID:20082373

  17. The impact of environmental conditions on Campylobacter jejuni survival in broiler faeces and litter

    PubMed Central

    Smith, Shaun; Meade, Joseph; Gibbons, James; McGill, Kevina; Bolton, Declan; Whyte, Paul

    2016-01-01

    Introduction Campylobacter jejuni is the leading bacterial food-borne pathogen within the European Union, and poultry meat is an important vehicle for its transmission to humans. However, there is limited knowledge about how this organism persists in broiler litter and faeces. The aim of this study was to assess the impact of a number of environmental parameters, such as temperature, humidity, and oxygen, on Campylobacter survival in both broiler litter and faeces. Materials and methods Used litter was collected from a Campylobacter-negative broiler house after final depopulation and fresh faeces were collected from transport crates. Samples were confirmed as Campylobacter negative according to modified ISO methods for veterinary samples. Both sample matrices were inoculated with 9 log10 CFU/ml C. jejuni and incubated under high (≥85%) and low (≤70%) relative humidity conditions at three different temperatures (20°C, 25°C, and 30°C) under both aerobic and microaerophilic atmospheres. Inoculated litter samples were then tested for Campylobacter concentrations at time zero and every 2 hours for 12 hours, while faecal samples were examined at time zero and every 24 hours for 120 hours. A two-tailed t-test assuming unequal variance was used to compare mean Campylobacter concentrations in samples under the various temperature, humidity, and atmospheric conditions. Results and discussion C. jejuni survived significantly longer (P≤0.01) in faeces, with a minimum survival time of 48 hours, compared with 4 hours in used broiler litter. C. jejuni survival was significantly enhanced at 20°C in all environmental conditions in both sample matrices tested compared with survival at 25°C and 30°C. In general, survival was greater in microaerophilic compared with aerobic conditions in both sample matrices. Humidity, at the levels examined, did not appear to significantly impact C. jejuni survival in any sample matrix. The persistence of Campylobacter in broiler litter

  18. Influence of biotic and abiotic factors on the allelopathic activity of the cyanobacterium Cylindrospermopsis raciborskii strain LEGE 99043.

    PubMed

    Antunes, Jorge T; Leão, Pedro N; Vasconcelos, Vítor M

    2012-10-01

    Allelopathy is considered to be one of the factors underlying the global expansion of the toxic cyanobacterium Cylindrospermopsis raciborskii. Although the production and release of allelopathic compounds by cyanobacteria is acknowledged to be influenced by environmental parameters, the response of C. raciborskii remains generally unrecognized. Here, the growth and allelopathic potential of C. raciborskii strain LEGE 99043 towards the ubiquitous microalga Ankistrodesmus falcatus were analyzed under different biotic and abiotic conditions. Filtrates from C. raciborskii cultures growing at different cell densities displayed broad inhibitory activity. Moreover, higher temperature, higher light intensity as well phosphate limitation further enhanced this activity. The distinct and comprehensive patterns of inhibition verified during the growth phase, and under the tested parameters, suggest the action of several, still unidentified allelopathic compounds. It is expectable that the observed increase in allelopathic activity can result in distinct ecological advantages to C. raciborskii. PMID:22562107

  19. Robust ultrasonic damage detection under complex environmental conditions using singular value decomposition.

    PubMed

    Liu, Chang; Harley, Joel B; Bergés, Mario; Greve, David W; Oppenheim, Irving J

    2015-04-01

    Guided wave ultrasonics is an attractive monitoring technique for damage diagnosis in large-scale plate and pipe structures. Damage can be detected by comparing incoming records with baseline records collected on intact structure. However, during long-term monitoring, environmental and operational conditions often vary significantly and produce large changes in the ultrasonic signals, thereby challenging the baseline comparison based damage detection. Researchers developed temperature compensation methods to eliminate the effects of temperature variation, but they have limitations in practical implementations. In this paper, we develop a robust damage detection method based on singular value decomposition (SVD). We show that the orthogonality of singular vectors ensures that the effect of damage and that of environmental and operational variations are separated into different singular vectors. We report on our field ultrasonic monitoring of a 273.05 mm outer diameter pipe segment, which belongs to a hot water piping system in continuous operation. We demonstrate the efficacy of our method on experimental pitch-catch records collected during seven months. We show that our method accurately detects the presence of a mass scatterer, and is robust to the environmental and operational variations exhibited in the practical system. PMID:25600118

  20. Effects of nutritional and environmental conditions on Sinorhizobium meliloti biofilm formation.

    PubMed

    Rinaudi, Luciana; Fujishige, Nancy A; Hirsch, Ann M; Banchio, Erika; Zorreguieta, Angeles; Giordano, Walter

    2006-11-01

    Rhizobia are non-spore-forming soil bacteria that fix atmospheric nitrogen into ammonia in a symbiosis with legume roots. However, in the absence of a legume host, rhizobia manage to survive and hence must have evolved strategies to adapt to diverse environmental conditions. The capacity to respond to variations in nutrient availability enables the persistence of rhizobial species in soil, and consequently improves their ability to colonize and to survive in the host plant. Rhizobia, like many other soil bacteria, persist in nature most likely in sessile communities known as biofilms, which are most often composed of multiple microbial species. We have been employing in vitro assays to study environmental parameters that might influence biofilm formation in the Medicago symbiont Sinorhizobium meliloti. These parameters include carbon source, amount of nitrate, phosphate, calcium and magnesium as well as the effects of osmolarity and pH. The microtiter plate assay facilitates the detection of subtle differences in rhizobial biofilms in response to these parameters, thereby providing insight into how environmental stress or nutritional status influences rhizobial survival. Nutrients such as sucrose, phosphate and calcium enhance biofilm formation as their concentrations increase, whereas extreme temperatures and pH negatively affect biofilm formation. PMID:16887339

  1. Experiment 8: Environmental Conditions in the ASTROCULTURE(trademark) Plant Chamber During the USML-2 Mission

    NASA Technical Reports Server (NTRS)

    Bula, R. J.; Zhou, Weijia; Yetka, R. A.; Draeger, N. A.

    1998-01-01

    Conducting plant research to assess the impact of microgravity on plant growth and development requires a plant chamber that has the capability to control other environmental parameters involved in plant growth and development. The environmental control in a space-based plant chamber must be equivalent to that available in such facilities used for terrestrial plant research. Additionally, plants are very sensitive to a number of atmospheric gaseous materials. Thus, the atmosphere of a plant chamber must be isolated from the space vehicle atmosphere, and the plant growth unit should have the capability to remove any such deleterious materials that may impact plant growth and development. The Wisconsin Center for Space Automation and Robotics (WCSAR), University of Wisconsin-Madison, has developed a totally enclosed controlled environment plant growth unit. The flight unit was used to support the ASTROCULTURE(TM) experiment conducted during the USML-2 mission. The experiment had two major objectives: 1) Provide further validation of the flight unit to control the experiment-defined environmental parameters in the plant chamber, and 2) support a plant experiment to assess the capability of potato plant material to produce tubers in microgravity. This paper describes the temperature, humidity, and carbon dioxide conditions of the plant chamber during the mission, from launch to landing. Another paper will present the plant response data.

  2. The first "space" vegetables have been grown in the "SVET" greenhouse using controlled environmental conditions

    NASA Astrophysics Data System (ADS)

    Ivanova, T. N.; Bercovich, Yu. A.; Mashinskiy, A. L.; Meleshko, G. I.

    The paper describes the "SVET" project—a new generation of space greenhouse with small dimensions. Through the use of a minicomputer, "SVET" is fully capable of automatically operating and controlling environmental systems for higher plant growth. A number of preliminary studies have shown the radish and cabbage to be potentially important crops for CELSS (Closed Environmental Life Support System). The "SVET" space greenhouse was mounted on the "CRYSTAL" technological module docked to the Mir orbital space station on 10 June 1990. Soviet cosmonauts Balandin and Solovyov started the first experiments with the greenhouse on 15 June 1990. Preliminary results of seed cultivation over an initial 54-day period in "SVET" are presented. Morphometrical characteristics of plants brought back to Earth are given. Alteration in plant characteristics, such as growth and developmental changes, or morphological contents were noted. A crop of radish plants was harvested under microgravity conditions. Characteristics of plant environmental control parameters and an estimation of functional properties of control and regulation systems of the "SVET" greenhouse in space flight as received via telemetry data is reported.

  3. A NAP-Family Histone Chaperone Functions in Abiotic Stress Response and Adaptation.

    PubMed

    Tripathi, Amit K; Pareek, Ashwani; Singla-Pareek, Sneh Lata

    2016-08-01

    Modulation of gene expression is one of the most significant molecular mechanisms of abiotic stress response in plants. Via altering DNA accessibility, histone chaperones affect the transcriptional competence of genomic loci. However, in contrast to other factors affecting chromatin dynamics, the role of plant histone chaperones in abiotic stress response and adaptation remains elusive. Here, we studied the physiological function of a stress-responsive putative rice (Oryza sativa) histone chaperone of the NAP superfamily: OsNAPL6. We show that OsNAPL6 is a nuclear-localized H3/H4 histone chaperone capable of assembling a nucleosome-like structure. Utilizing overexpression and knockdown approaches, we found a positive correlation between OsNAPL6 expression levels and adaptation to multiple abiotic stresses. Results of comparative transcriptome profiling and promoter-recruitment studies indicate that OsNAPL6 functions during stress response via modulation of expression of various genes involved in diverse functions. For instance, we show that OsNAPL6 is recruited to OsRad51 promoter, activating its expression and leading to more efficient DNA repair and abrogation of programmed cell death under salinity and genotoxic stress conditions. These results suggest that the histone chaperone OsNAPL6 may serve a regulatory role in abiotic stress physiology possibly via modulating nucleosome dynamics at various stress-associated genomic loci. Taken together, our findings establish a hitherto unknown link between histone chaperones and abiotic stress response in plants. PMID:27342307

  4. A NAP-Family Histone Chaperone Functions in Abiotic Stress Response and Adaptation1[OPEN

    PubMed Central

    Pareek, Ashwani; Singla-Pareek, Sneh Lata

    2016-01-01

    Modulation of gene expression is one of the most significant molecular mechanisms of abiotic stress response in plants. Via altering DNA accessibility, histone chaperones affect the transcriptional competence of genomic loci. However, in contrast to other factors affecting chromatin dynamics, the role of plant histone chaperones in abiotic stress response and adaptation remains elusive. Here, we studied the physiological function of a stress-responsive putative rice (Oryza sativa) histone chaperone of the NAP superfamily: OsNAPL6. We show that OsNAPL6 is a nuclear-localized H3/H4 histone chaperone capable of assembling a nucleosome-like structure. Utilizing overexpression and knockdown approaches, we found a positive correlation between OsNAPL6 expression levels and adaptation to multiple abiotic stresses. Results of comparative transcriptome profiling and promoter-recruitment studies indicate that OsNAPL6 functions during stress response via modulation of expression of various genes involved in diverse functions. For instance, we show that OsNAPL6 is recruited to OsRad51 promoter, activating its expression and leading to more efficient DNA repair and abrogation of programmed cell death under salinity and genotoxic stress conditions. These results suggest that the histone chaperone OsNAPL6 may serve a regulatory role in abiotic stress physiology possibly via modulating nucleosome dynamics at various stress-associated genomic loci. Taken together, our findings establish a hitherto unknown link between histone chaperones and abiotic stress response in plants. PMID:27342307

  5. Abiotic ammonification and gross ammonium photoproduction in the upwelling system off central Chile (36° S)

    NASA Astrophysics Data System (ADS)

    Rain-Franco, A.; Muñoz, C.; Fernandez, C.

    2012-12-01

    We investigated the production of ammonium via photodegradation of dissolved organic matter (DOM) in the coastal upwelling system off central Chile (36° S). Photoammonification experiments were carried out using exudates obtained from representative diatom species (Chaetoceros muelleri and Thalassiosira minuscule) and natural marine DOM under simulated solar radiation conditions. Additionally, we evaluated the use of photoproduced ammonium by natural microbial communities and separated ammonium oxidizing archaea and bacteria by using GC-7 as an inhibitor of the archaeal community. We found photoammonification operating at two levels: via the transformation of DOM by UV radiation (abiotic ammonification) and via the simultaneous occurrence of abiotic phototransformation and biological remineralization of DOM into NH4+ (referred as gross photoproduction of NH4+). The maximum rates of abiotic ammonification reached 0.057 μmol L-1 h-1, whereas maximum rates of gross photoproduction reached 0.746 μmol L-1 h-1. Our results also suggest that ammonium oxidizing archaea could dominate the biotic remineralization induced by photodegradation of organic matter and consequently play an important role in the local N cycle. Abiotic ammonium photoproduction in coastal upwelling systems could support between 7 and 50% of the spring-summer phytoplankton NH4+ demand. Surprisingly, gross ammonium photoproduction (remineralization induced by abiotic ammonification) might support 50 to 180% of spring-summer phytoplankton NH4+ assimilation.

  6. Species traits and environmental conditions govern the relationship between biodiversity effects across trophic levels

    USGS Publications Warehouse

    Spooner, D.E.; Vaughn, C.C.; Galbraith, H.S.

    2012-01-01

    Changing environments can have divergent effects on biodiversity-ecosystem function relationships at alternating trophic levels. Freshwater mussels fertilize stream foodwebs through nutrient excretion, and mussel species-specific excretion rates depend on environmental conditions. We asked how differences in mussel diversity in varying environments influence the dynamics between primary producers and consumers. We conducted field experiments manipulating mussel richness under summer (low flow, high temperature) and fall (moderate flow and temperature) conditions, measured nutrient limitation, algal biomass and grazing chironomid abundance, and analyzed the data with non-transgressive overyielding and tripartite biodiversity partitioning analyses. Algal biomass and chironomid abundance were best explained by trait-independent complementarity among mussel species, but the relationship between biodiversity effects across trophic levels (algae and grazers) depended on seasonal differences in mussel species' trait expression (nutrient excretion and activity level). Both species identity and overall diversity effects were related to the magnitude of nutrient limitation. Our results demonstrate that biodiversity of a resource-provisioning (nutrients and habitat) group of species influences foodweb dynamics and that understanding species traits and environmental context are important for interpreting biodiversity experiments. ?? 2011 Springer-Verlag.

  7. Environmental and Geometrical Conditions to Sustain Crevice Corrosion in Alloy 22

    SciTech Connect

    Carranza, R M; Rodr?guez, M A; Rebak, R B

    2006-11-10

    Alloy 22 (N06022) is highly resistant to localized corrosion. Under aggressive environmental conditions Alloy 22 may be susceptible to crevice corrosion in hot chloride (Cl{sup -}) solutions. The objective of the present work was to explore the environmental and geometrical conditions for crevice corrosion to occur. Electrochemical tests were performed using PCA and prismatic mill annealed Alloy 22 specimens in chloride solutions. Crevice corrosion current density was found to be a function of applied potential. i{sub CREV} values ranged from 40 {micro}A/cm{sup 2} to 20 mA/cm{sup 2}. Such low values of current density explained the absence of pitting corrosion in Alloy 22 at any potential. Decreasing of the effective diffusion distance in a propagating crevice is thought to cause crevice corrosion stifling or repassivation after long anodic polarization. Crevice corrosion breakdown potential is expected to decrease with potential scan rate, approaching repassivation potential for low scan rates. The lowest corrosion potential of Alloy 22 in hydrochloric acid solutions at which active corrosion exists was proposed as the lowest possible repassivation potential for crevice corrosion.

  8. Dependency of seed dormancy types on embryo traits and environmental conditions in Ribes species.

    PubMed

    Mattana, E; Stuppy, W H; Fraser, R; Waller, J; Pritchard, H W

    2014-07-01

    The hypothesis that seed dormancy may be dependent on environmental conditions and seed morphological traits was tested for six Ribes species, across an altitudinal gradient of 1300 m and a longitudinal separation of 120°. Embryo measurements and seed germination experiments were conducted for R. alpinum L., R. hudsonianum Richardson var. petiolare (Douglas) Jancz., R. nevadaense Kellogg, R. roezlii Regel var. cruentum (Greene) Rehder and R. speciosum Pursh, and data taken from the literature for R. multiflorum Kit. ex Schult. ssp. sandalioticum Arrigoni. Germination was compared with seed viability to reveal proportional seed dormancy, which was then correlated to seed/embryo morphological traits and these traits related to the seed provenance environment. The embryos of all the investigated species are linear underdeveloped and all had a morphological component of seed dormancy (MD). Seeds of R. roezlii, R. hudsonianum and R. nevadaense required a temperature and/or hormone pre-treatment in order to germinate, highlighting morphophysiological seed dormancy (MPD). Seed dormancy was found to be strongly negatively correlated with embryo length, but not with embryo to seed (E:S) ratio or seed mass. Initial embryo length was positively related to mean annual temperature. Seed dormancy in the investigated Ribes species could be quantified and predicted by the interaction of embryo traits and environmental conditions. This approach may be helpful in assessing and predicting seed dormancy in the Ribes genus and in other genera and families with underdeveloped embryos. PMID:24138146

  9. A review on the effects of environmental conditions on growth and toxin production of Ostreopsis ovata.

    PubMed

    Pistocchi, R; Pezzolesi, L; Guerrini, F; Vanucci, S; Dell'aversano, C; Fattorusso, E

    2011-03-01

    Since the end of the 1990s the occurrence of blooms of the benthic dinoflagellates Ostreopsis spp. is spreading in many tropical and temperate regions worldwide, sometimes causing benthonic biocenosis suffering and occasional human distress. Ostreopsis ovata has been found to produce palytoxin-like compounds, a class of highly potent toxins. As general, the highest abundances of Ostreopsis spp. are recorded during warmer periods characterized by high temperature, salinity, and water column stability. Moreover, as these cells are easily resuspended in the water column, the role of hydrodynamism in the blooms development and decline has been highlighted. The environmental conditions appear, therefore, to be one of the main factors determining the proliferation of these species as testified by several field surveys. Laboratory studies on the effect of environmental parameters on growth and toxicity of O. ovata are rather scarce. With regard to the effects of temperature, culture results indicate that different strains blooming along Italian coasts displayed different optima, in accordance to blooming periods, and that higher toxin levels correlated with best growth conditions. Additionally, in relation to an Adriatic strain, cell growth positively correlated with the increase in salinity, while toxicity was lowest at the highest salinity value (i.e. 40). For the same strain, both nitrogen and phosphorus limitation determined a decrease in cell toxicity showing different behaviour with respect to many other toxic dinoflagellates. PMID:20920514

  10. Environmental conditions associated with lesions in introduced free-ranging sheep in Hawai‘i

    USGS Publications Warehouse

    Powers, Jenny G.; Duncan, Colleen G.; Spraker, Terry R.; Schuler, Bridget A.; Hess, Steven C.; Faford, Jonathan K.J.; Sin, Hans

    2014-01-01

    Wildlife species which have been translocated between temperate and tropical regions of the world provide unique opportunities to understand how disease processes may be affected by environmental conditions. European mouflon sheep (Ovis gmelini musimon) from the Mediterranean Islands were introduced to the Hawaiian Islands for sport hunting beginning in 1954 and were subsequently hybridized with feral domestic sheep (O. aries), which had been introduced in 1793. Three isolated mouflon populations have become established in the Hawaiian Islands but diseases in these populations have been little studied. The objective of this study was to evaluate and compare gross and histologic lesions in respiratory, renal, and hepatic systems of free-ranging sheep in two isolated volcanic environments on Hawai‘i Island. Tissue and fecal samples were collected in conjunction with population reductions during February 2011. We found gross or histologic evidence of lungworm infection in 44/49 sheep from Mauna Loa which were exposed to gaseous emissions from Kīlauea Volcano. In contrast, only 7/50 sheep from Mauna Kea had lesions consistent with lungworm, but Mauna Kea sheep had significantly more upper respiratory tract inflammation and hyperplasia consistent with chronic antigenic stimulation, possibly associated with exposure to fine airborne particulates during extended drought conditions. We hypothesize that gasses from Kīlauea Volcano contributed to severity of respiratory disease principally associated with chronic lungworm infections at Mauna Loa; however, there were numerous other potentially confounding environmental factors and interactions that merit further investigation.

  11. Physico-chemical characterization of steel slag. Study of its behavior under simulated environmental conditions.

    PubMed

    Navarro, Carla; Díaz, Mario; Villa-García, María A

    2010-07-15

    The chemical and mineralogical composition of steel slag produced in two ArcelorMittal steel plants located in the North of Spain, as well as the study of the influence of simulated environmental conditions on the properties of the slag stored in disposal areas, was carried out by elemental chemical analysis, XRF, X-ray diffraction, thermal analysis, and scanning electron microscopy with EDS analyzer. Spectroscopic characterization of the slag was also performed by using FTIR spectroscopy. Due to the potential uses of the slag as low cost adsorbent for water treatment and pollutants removal, its detailed textural characterization was carried out by nitrogen adsorption-desorption at 77 K and mercury intrusion porosimetry. The results show that the slag is a crystalline heterogeneous material whose main components are iron oxides, calcium (magnesium) compounds (hydroxide, oxide, silicates, and carbonate), elemental iron, and quartz. The slags are porous materials with specific surface area of 11 m(2)g(-1), containing both mesopores and macropores. Slag exposure to simulated environmental conditions lead to the formation of carbonate phases. Carbonation reduces the leaching of alkaline earth elements as well as the release of the harmful trace elements Cr (VI) and V. Steel slags with high contents of portlandite and calcium silicates are potential raw materials for CO(2) long-term storage. PMID:20568743

  12. Environmental conditions and human drivers for changes to north Ethiopian mountain landscapes over 145 years.

    PubMed

    Nyssen, Jan; Frankl, Amaury; Haile, Mitiku; Hurni, Hans; Descheemaeker, Katrien; Crummey, Donald; Ritler, Alfons; Portner, Brigitte; Nievergelt, Bernhard; Moeyersons, Jan; Munro, Neil; Deckers, Jozef; Billi, Paolo; Poesen, Jean

    2014-07-01

    As quantitative or spatially distributed studies of environmental change over truly long-term periods of more than 100 years are extremely rare, we re-photographed 361 landscapes that appear on historical photographs (1868-1994) within a 40,000 km(2) study area in northern Ethiopia. Visible evidence of environmental changes apparent from the paired photographs was analyzed using an expert rating system. The conditions of the woody vegetation, soil and water conservation structures and land management were worse in the earlier periods compared to their present conditions. The cover by indigenous trees is a notable exception: it peaked in the 1930s, declined afterwards and then achieved a second peak in the early 21st century. Particularly in areas with greater population densities, there has been a significant increase in woody vegetation and soil and water conservation structures over the course of the study period. We conclude that except for an apparent upward movement of the upper tree limit, the direct human impacts on the environment are overriding the effects of climate change in the north Ethiopian highlands and that the northern Ethiopian highlands are currently greener than at any other time in the last 145 years. PMID:24717722

  13. Iodine isotopes species fingerprinting environmental conditions in surface water along the northeastern Atlantic Ocean

    PubMed Central

    He, Peng; Hou, Xiaolin; Aldahan, Ala; Possnert, Göran; Yi, Peng

    2013-01-01

    Concentrations and species of iodine isotopes (127I and 129I) provide vital information about iodine geochemistry, environmental conditions and water masses exchange in oceans. Despite extensive investigations of anthropogenic 129I in the Arctic Ocean and the Nordic Seas, concentrations of the isotope in the Atlantic Ocean are, however, still unknown. We here present first data on 129I and 127I, and their species (iodide and iodate) in surface water transect along the northeastern Atlantic between 30° and 50°N. The results show iodate as the predominant species in the analyzed marine waters for both 127I and 129I. Despite the rather constant ratios of 127I−/127IO3−, the 129I−/129IO3− values reveal variations that apparently response to sources, environmental conditions and residence time. These findings provide a new tracer approach that will strongly enhance the application of anthropogenic 129I in ocean environments and impact on climate at the ocean boundary layer. PMID:24284916

  14. Performance of diffusion-barrier scintillation cells under a variety of controlled environmental conditions

    SciTech Connect

    Spangler, R.R.; Langner, G.H., Jr.

    1989-02-01

    The US Department of Energy (DOE) Office of Remedial Action and Waste Technology established the Technical Measurements Center (TMC) at the Grand Junction, Colorado, Projects Office (GJPO), in part, to develop and evaluate new devices for the DOE remedial action projects. The TMC charged the GJPO Radon Laboratory, under the management of UNC Geotech (UNC), with developing and testing a passive scintillation-type, time-averaging radon monitor. Two types of monitors were developed--a diffusion-barrier scintillation cell (DBSC) and a diffusion-barrier liquid scintillation cell (DBLSC). The performance of the DBSCs was tested under different relative humidities, temperatures, and wind speeds. The test results of the DBSCs showed no statistically significant change in accuracy due to the environmental test conditions. Radon-concentration measurement results for diffusion-barrier charcoal canisters (DBCC), exposed along with the DBSCs, did show significant effects due to wind and temperature, but no effects due to relative humidity. The performance of the DBLSCs under a variety of environmental conditions was not tested because a sufficiently sensitive device could not be developed using the existing GJPO liquid-scintillation counting system and a nontoxic counting medium. 10 refs., 10 figs., 10 tabs.

  15. Effect of hot environmental conditions on physical activity patterns and temperature response of football players.

    PubMed

    Ozgünen, K T; Kurdak, S S; Maughan, R J; Zeren, C; Korkmaz, S; Yazici, Z; Ersöz, G; Shirreffs, S M; Binnet, M S; Dvorak, J

    2010-10-01

    Heat stress may contribute to decreased match performance when football is played in extreme heat. This study evaluated activity patterns and thermal responses of players during soccer matches played in different environmental conditions. Non-acclimatized soccer players (n=11, 20±2 years) played two matches in conditions of moderate heat (MH) and high heat (HH) index. Core temperature (T(c) ) and physical performance were measured using a telemetric sensor and a global positioning system, respectively. The average ambient temperature and relative humidity were MH 34±1 °C and 38±2%; HH 36±0 °C and 61±1%. Peak T(c) in the MH match was 39.1±0.4 °C and in the HH match it was 39.6±0.3 °C. The total distance covered in the first and second halves was 4386±367 and 4227±292 m for the MH match and 4301±487 and 3761±358 m for the HH match. Players covered more distance (P<0.001) in the first half of the HH match than in the second half. In football matches played at high environmental temperature and humidity, the physical performance of the players may decrease due to high thermal stress. PMID:21029201

  16. Using Magnetically Responsive Tea Waste to Remove Lead in Waters under Environmentally Relevant Conditions

    PubMed Central

    Yeo, Siang Yee; Choi, Siwon; Dien, Vivian; Sow-Peh, Yoke Keow; Qi, Genggeng; Hatton, T. Alan; Doyle, Patrick S.; Thio, Beng Joo Reginald

    2013-01-01

    We report the use of a simple yet highly effective magnetite-waste tea composite to remove lead(II) (Pb2+) ions from water. Magnetite-waste tea composites were dispersed in four different types of water–deionized (DI), artificial rainwater, artificial groundwater and artificial freshwater–that mimic actual environmental conditions. The water samples had varying initial concentrations (0.16–5.55 ppm) of Pb2+ ions and were mixed with the magnetite-waste tea composite for at least 24 hours to allow adsorption of the Pb2+ ions to reach equilibrium. The magnetite-waste tea composites were stable in all the water samples for at least 3 months and could be easily removed from the aqueous media via the use of permanent magnets. We detected no significant leaching of iron (Fe) ions into the water from the magnetite-waste tea composites. The percentage of Pb adsorbed onto the magnetite-waste tea composite ranged from ∼70% to 100%; the composites were as effective as activated carbon (AC) in removing the Pb2+ ions from water, depending on the initial Pb concentration. Our prepared magnetite-waste tea composites show promise as a green, inexpensive and highly effective sorbent for removal of Pb in water under environmentally realistic conditions. PMID:23818955

  17. Remotely Sensed Environmental Conditions and Malaria Mortality in Three Malaria Endemic Regions in Western Kenya

    PubMed Central

    Ahlm, Clas; Rocklöv, Joacim

    2016-01-01

    Background Malaria is an important cause of morbidity and mortality in malaria endemic countries. The malaria mosquito vectors depend on environmental conditions, such as temperature and rainfall, for reproduction and survival. To investigate the potential for weather driven early warning systems to prevent disease occurrence, the disease relationship to weather conditions need to be carefully investigated. Where meteorological observations are scarce, satellite derived products provide new opportunities to study the disease patterns depending on remotely sensed variables. In this study, we explored the lagged association of Normalized Difference Vegetation Index (NVDI), day Land Surface Temperature (LST) and precipitation on malaria mortality in three areas in Western Kenya. Methodology and Findings The lagged effect of each environmental variable on weekly malaria mortality was modeled using a Distributed Lag Non Linear Modeling approach. For each variable we constructed a natural spline basis with 3 degrees of freedom for both the lag dimension and the variable. Lag periods up to 12 weeks were considered. The effect of day LST varied between the areas with longer lags. In all the three areas, malaria mortality was associated with precipitation. The risk increased with increasing weekly total precipitation above 20 mm and peaking at 80 mm. The NDVI threshold for increased mortality risk was between 0.3 and 0.4 at shorter lags. Conclusion This study identified lag patterns and association of remote- sensing environmental factors and malaria mortality in three malaria endemic regions in Western Kenya. Our results show that rainfall has the most consistent predictive pattern to malaria transmission in the endemic study area. Results highlight a potential for development of locally based early warning forecasts that could potentially reduce the disease burden by enabling timely control actions. PMID:27115874

  18. Functional traits of selected mangrove species in Brazil as biological indicators of different environmental conditions.

    PubMed

    Arrivabene, Hiulana Pereira; Souza, Iara; Có, Walter Luiz Oliveira; Rodella, Roberto Antônio; Wunderlin, Daniel Alberto; Milanez, Camilla Rozindo

    2014-04-01

    Ecological studies on phenotypic plasticity illustrate the relevance of this phenomenon in nature. Conditions of biota reflect environmental changes, highlighting the adaptability of resident species that can be used as bioindicators of such changes. We report the morpho-anatomical plasticity of leaves of Avicennia schaueriana Stapf & Leechm. ex Moldenke, Laguncularia racemosa (L.) C.F.Gaertn. and Rhizophora mangle L., evaluated in three estuaries (Vitória bay, Santa Cruz and Itaúnas River; state of Espírito Santo, Brazil), considering five areas of mangrove ecosystems with diverse environmental issues. Two sampling sites are part of the Ecological Station Lameirão Island in Vitória bay, close to a harbor. A third sampling site in Cariacica (Vitória bay) is inside the Vitória harbor and also is influenced by domestic sewage. The fourth studied area (Santa Cruz) is part of Piraquê Mangrove Ecological Reservation, while the fifth (Itaúnas River) is a small mangrove, with sandy sediment and greater photosynthetically active radiation, also not strongly influenced by anthropic activity. Results pointed out the morpho-anatomical plasticity in studied species, showing that A. schaueriana and L. racemosa might be considered the most appropriate bioindicators to indicate different settings and environmental conditions. Particularly, the dry mass per leaf area (LMA) of A. schaueriana was the main biomarker measured. In our study, LMA of A. schaueriana was positively correlated with salinity (Spearman 0.71), Mn content (0.81) and pH (0.82) but negatively correlated with phosphorus content (-0.63). Thus, the evaluation of modification in LMA of A. schaueriana pointed out changes among five studied sites, suggesting its use to reflect changes in the environment, which could be also useful in the future to evaluate the climate change. PMID:24496023

  19. Review of Abiotic Degradation of Chlorinated Solvents by Reactive Iron Minerals

    EPA Science Inventory

    Abiotic degradation of chlorinated solvents by reactive iron minerals such as iron sulfides, magnetite, green rust, and other Fe(II)-containing minerals has been observed in both laboratory and field conditions. These reactive iron minerals typically form under iron and sulfate ...

  20. ABIOTIC TRANSFORMATIONS OF TOXIC ORGANIC CHEMICALS IN THE LIQUID PHASE AND SEDIMENTS

    EPA Science Inventory

    Analyses of selected groundwater databases provide insight into the abiotic reaction conditions that occur in subsurface ecosystems. With this information it is possible to impose boundaries on the activity of selected chemical species in porous media and narrow the ranges of rea...

  1. The importance of environmental conditions in reflectance spectroscopy of laboratory analogs for Mars surface materials

    NASA Astrophysics Data System (ADS)

    Bishop, J.; Murchie, S.; Pratt, S.; Mustard, J.; Pieters, C.

    Reflectance spectra are presented here for a variety of particulate, ferric-containing analogs to Martian soil (Fe(3+)-doped smectites and palagonites) to facilitate interpretation of remotely acquired spectra. The analog spectra were measured under differing environmental conditions to evaluate the influence of exposure history on water content and absorption features due to H2O in these samples. Each of these materials contains structural OH bonded to metal cations, adsorbed H2O, and bound H2O (either in a glass, structural site, or bound to a cation). Previous experiments involving a variety of Mars analogs have shown that the 3 micron H2O band in spectra of palagonites is more resistant to drying than the 3 micron H2O band in spectra of montmorillonites. Other experiments have shown that spectra of ferrihydrite and montmorillonites doped with ferric sulfate also contain sufficient bound H2O to retain a strong 3 micron band under dry conditions. Once the effects of the environment on bound water in clays, oxides, and salts are better understood, the hydration bands measured via reflectance spectroscopy can be used to gain information about the chemical composition and moisture content of real soil systems. Such information would be especially useful in interpreting observations of Mars where subtle spatial variations in the strengths of metal-OH and H2O absorptions have been observed in telescopic and ISM spectra. We measured bidirectional reflectance spectra of several Mars soil analogs under controlled environmental conditions to assess the effects of moisture content on the metal-OH and H2O absorptions. The samples analyzed include chemically altered montmorillonites, ferrihydrite. and palagonites from Hawaii and Iceland. Procedures for preparation of the cation-exchanged montmorillonites, ferric-salt doped montmorillonites, and ferric oxyhydroxides are described in detail elsewhere.

  2. The importance of environmental conditions in reflectance spectroscopy of laboratory analogs for Mars surface materials

    NASA Technical Reports Server (NTRS)

    Bishop, J.; Murchie, S.; Pratt, S.; Mustard, J.; Pieters, C.

    1993-01-01

    Reflectance spectra are presented here for a variety of particulate, ferric-containing analogs to Martian soil (Fe(3+)-doped smectites and palagonites) to facilitate interpretation of remotely acquired spectra. The analog spectra were measured under differing environmental conditions to evaluate the influence of exposure history on water content and absorption features due to H2O in these samples. Each of these materials contains structural OH bonded to metal cations, adsorbed H2O, and bound H2O (either in a glass, structural site, or bound to a cation). Previous experiments involving a variety of Mars analogs have shown that the 3 micron H2O band in spectra of palagonites is more resistant to drying than the 3 micron H2O band in spectra of montmorillonites. Other experiments have shown that spectra of ferrihydrite and montmorillonites doped with ferric sulfate also contain sufficient bound H2O to retain a strong 3 micron band under dry conditions. Once the effects of the environment on bound water in clays, oxides, and salts are better understood, the hydration bands measured via reflectance spectroscopy can be used to gain information about the chemical composition and moisture content of real soil systems. Such information would be especially useful in interpreting observations of Mars where subtle spatial variations in the strengths of metal-OH and H2O absorptions have been observed in telescopic and ISM spectra. We measured bidirectional reflectance spectra of several Mars soil analogs under controlled environmental conditions to assess the effects of moisture content on the metal-OH and H2O absorptions. The samples analyzed include chemically altered montmorillonites, ferrihydrite. and palagonites from Hawaii and Iceland. Procedures for preparation of the cation-exchanged montmorillonites, ferric-salt doped montmorillonites, and ferric oxyhydroxides are described in detail elsewhere.

  3. Environmental distribution of acetochlor, atrazine, chlorpyrifos, and propisochlor under field conditions.

    PubMed

    Konda, L N; Pásztor, Z

    2001-08-01

    The environmental behavior, movement, distribution, persistence, and runoff by rainfall of the pesticides acetochlor, atrazine, chlorpyrifos, and propisochlor were studied under field conditions during a five-month period at normal weather conditions. The pesticide concentrations in soil depths of 0-5 and 5-20 cm, and in sediment and runoff water samples (collected from an artificial reservoir built in the lower part of the experimental plot) were measured every second week and following every runoff event. The contamination of a stream running across the lowest part of the plot was also monitored. The weather conditions were also recorded at the experimental site. The pesticide residues were quantified by a capillary gas chromatograph equipped with a nitrogen phosphorus selective detector (GC-NPD). There was a consistent decrease in pesticide residues in the 0-5 cm soil layer with time after spaying. At 140 days after treatment only atrazine and chlorpyrifos were present; acetochlor and propisochlor were not detected in this soil layer. Atrazine and chlorpyrifos in the soil at a depth of 5-20 cm were detectable during the whole experimental interval, whereas acetochlor and propisochlor concentrations were below the limit of detection. Pesticide losses by the surface runoff process and the contamination of the stream were closely related to the time of rainfall elapsed after treatment and amount of rain at the experimental plots. Losses were primarily dependent on surface rainfall volume and intensity. The maximum detected residues of atrazine and acetochlor in stream water were 1 order of magnitude higher than the maximum residue limit specified by the European Union (EU) for environmental and drinking water (0.1 microg/L for individual compounds and 0.5 microg/L for total pesticides). Chlorpyrifos and propisochlor were not detected in this matrix. PMID:11513679

  4. The ecophysiology of sulfur isotope fractionation by sulfate reducing bacteria in response to variable environmental conditions

    NASA Astrophysics Data System (ADS)

    Leavitt, W.; Bradley, A. S.; Johnston, D. T.; Pereira, I. A. C.; Venceslau, S.; Wallace, C.

    2014-12-01

    Microbial sulfate reducers (MSR) drive the Earth's biogeochemical sulfur cycle. At the heart of this energy metabolism is a cascade of redox transformations coupling organic carbon and/or hydrogen oxidation to the dissimilatory reduction of sulfate to sulfide. The sulfide produced is depleted in the heavier isotopes of sulfur relative to sulfate. The magnitude of discrimination (fractionation) depends on: i) the cell-specific sulfate reduction rate (csSRR, Kaplan & Rittenberg (1964) Can. J. Microbio.; Chambers et al. (1975) Can. J. Microbio; Sim et al. (2011) GCA; Leavitt et al. (2013) PNAS), ii) the ambient sulfate concentration (Harrison & Thode (1958) Research; Habicht et al. (2002) Science; Bradley et al. in review), iii) both sulfate and electron donor availability, or iv) an intrinsic physiological limitation (e.g. cellular division rate). When neither sulfate nor electron donor limits csSRR a more complex function relates the magnitude of isotope fractionation to cell physiology and environmental conditions. In recent and on-going work we have examined the importance of enzyme-specific fractionation factors, as well as the influence of electron donor or electron acceptor availability under carefully controlled culture conditions (e.g. Leavitt et al. (2013) PNAS). In light of recent advances in MSR genetics and biochemistry we utilize well-characterized mutant strains, along with a continuous-culture methodology (Leavitt et al. (2013) PNAS) to further probe the fractionation capacity of this metabolism under controlled physiological conditions. We present our latest findings on the magnitude of S and D/H isotope fractionation in both wild type and mutant strains. We will discuss these in light of recent theoretical advances (Wing & Halevy (2014) PNAS), examining the mode and relevance of MSR isotope fractionation in the laboratory to modern and ancient environmental settings, particularly anoxic marine sediments.

  5. Living organisms influence on environmental conditions: pH modulation by amphibian embryos versus aluminum toxicity.

    PubMed

    Herkovits, Jorge; Castañaga, Luis Alberto; D'Eramo, José Luis; Jourani, Victoria Platonova

    2015-11-01

    The LC10, 50 and 90/24h of aluminum for Rhinella arenarum embryos at complete operculum stage were 0.55, 0.75 and 1mgAl(3+)/L respectively. Those values did not change significantly by expanding the exposure period till 168h. The aluminum toxicity was evaluated in different pH conditions by means of a citrate buffer resulting for instance, 1mgAl(3+)/L at pH 4, 4.1, 5 and 6 in 100%, 70%, 35% and 0% of lethality respectively. As an outstanding feature, the embryos changed the pH of the maintaining media both in the case of Al(3+) or citrate buffer treatments toward neutral. 10 embryos in 40mL of AMPHITOX solution were able to increase the pH from 4.2 to 7.05, a fact related with a metabolic shift resulting in an increase in nitrogen loss as ammonia. Our study point out the natural selection of the most resistant amphibian embryos both for pH or aluminum as well as the capacity of living organisms (as a population) to alter their chemical environment toward optimal conditions for their survival. As these facts occur at early life stages, it expand the concept that living organisms at ontogenic stages are biomarker of environmental signatures of the evolutionary process (Herkovits, 2006) to a global Onto-Evo concept which imply also the feedback mechanisms from living organisms to shape environmental conditions in a way that benefits them. PMID:26126231

  6. Abiotic CO2 reduction during geologic carbon sequestration facilitated by Fe(II)-bearing minerals

    NASA Astrophysics Data System (ADS)

    Nielsen, L. C.; Maher, K.; Bird, D. K.; Brown, G. E.; Thomas, B.; Johnson, N. C.; Rosenbauer, R. J.

    2012-12-01

    Redox reactions involving subsurface minerals and fluids and can lead to the abiotic generation of hydrocarbons from CO2 under certain conditions. Depleted oil reservoirs and saline aquifers targeted for geologic carbon sequestration (GCS) can contain significant quantities of minerals such as ferrous chlorite, which could facilitate the abiotic reduction of carbon dioxide to n-carboxylic acids, hydrocarbons, and amorphous carbon (C0). If such reactions occur, the injection of supercritical CO2 (scCO2) could significantly alter the oxidation state of the reservoir and cause extensive reorganization of the stable mineral assemblage via dissolution and reprecipitation reactions. Naturally occurring iron oxide minerals such as magnetite are known to catalyze CO2 reduction, resulting in the synthesis of organic compounds. Magnetite is thermodynamically stable in Fe(II) chlorite-bearing mineral assemblages typical of some reservoir formations. Thermodynamic calculations demonstrate that GCS reservoirs buffered by the chlorite-kaolinite-carbonate(siderite/magnesite)-quartz assemblage favor the reduction of CO2 to n-carboxylic acids, hydrocarbons, and C0, although the extent of abiotic CO2 reduction may be kinetically limited. To investigate the rates of abiotic CO2 reduction in the presence of magnetite, we performed batch abiotic CO2 reduction experiments using a Dickson-type rocking hydrothermal apparatus at temperatures (373 K) and pressures (100 bar) within the range of conditions relevant to GCS. Blank experiments containing CO2 and H2 were used to rule out the possibility of catalytic activity of the experimental apparatus. Reaction of brine-suspended magnetite nanoparticles with scCO2 at H2 partial pressures typical of reservoir rocks - up to 100 and 0.1 bars respectively - was used to investigate the kinetics of magnetite-catalyzed abiotic CO2 reduction. Later experiments introducing ferrous chlorite (ripidolite) were carried out to determine the potential for

  7. Ethanol and cocaine: environmental place conditioning, stereotypy, and synergism in planarians.

    PubMed

    Tallarida, Christopher S; Bires, Kristopher; Avershal, Jacob; Tallarida, Ronald J; Seo, Stephanie; Rawls, Scott M

    2014-09-01

    More than 90% of individuals who use cocaine also report concurrent ethanol use, but only a few studies, all conducted with vertebrates, have investigated pharmacodynamic interactions between ethanol and cocaine. Planaria, a type of flatworm often considered to have the simplest 'brain,' is an invertebrate species especially amenable to the quantification of drug-induced behavioral responses and identification of conserved responses. Here, we investigated stereotypical and environmental place conditioning (EPC) effects of ethanol administered alone and in combination with cocaine. Planarians displayed concentration-related increases in C-shaped movements following exposure to ethanol (0.01-1%) (maximal effect: 9.9±1.1 C-shapes/5 min at 0.5%) or cocaine (0.1-5 mM) (maximal effect: 42.8±4.1 C-shapes/5 min at 5 mM). For combined administration, cocaine (0.1-5 mM) was tested with submaximal ethanol concentrations (0.01, 0.1%); the observed effect for the combination was enhanced compared to its predicted effect, indicating synergism for the interaction. The synergy with ethanol was specific for cocaine, as related experiments revealed that combinations of ethanol and nicotine did not result in synergy. For EPC experiments, ethanol (0.0001-1%) concentration-dependently increased EPC, with significant environmental shifts detected at 0.01 and 1%. Cocaine (0.001-1 μM) produced an inverted U-shaped concentration-effect curve, with a significant environmental shift observed at 0.01 μM. For combined exposure, variable cocaine concentrations (0.001-1 μM) were administered with a statistically ineffective concentration of ethanol (0.0001%). For each concentration of cocaine, the environmental shift was enhanced by ethanol, with significance detected at 1 μM. Cocaethylene, a metabolite of cocaine and ethanol, also produced C-shapes and EPC. Lidocaine (0.001-10 μM), an anesthetic and analog of cocaine, did not produce EPC or C-shaped movements. Evidence from planarians

  8. Ethanol and cocaine: environmental place conditioning, stereotypy and synergism in planarians

    PubMed Central

    Tallarida, Christopher S.; Bires, Kristopher; Avershal, Jacob; Tallarida, Ronald J.; Seo, Stephanie; Rawls, Scott M.

    2015-01-01

    More than 90% of individuals who use cocaine also report concurrent ethanol use, but only a few studies, all conducted with vertebrates, have investigated pharmacodynamic interactions between ethanol and cocaine. Planaria, a type of flatworm often considered to have the simplest ‘brain’, is an invertebrate species especially amenable to the quantification of drug-induced behavioral responses and identification of conserved responses. Here, we investigated stereotypical and environmental place conditioning (EPC) effects of ethanol administered alone and in combination with cocaine. Planarians displayed concentration-related increases in C-shape movements following exposure to ethanol (0.01 – 1%) (maximal effect: 9.9 ± 1.1 C-shapes/5 min at 0.5%) or cocaine (0.1 – 5 mM) (maximal effect: 42.8 ± 4.1 C-shapes/5 min at 5 mM). For combined administration, cocaine (0.1 – 5 mM) were tested with submaximal ethanol concentrations (0.01, 0,1%), the observed effect for the combination was enhanced compared to its predicted effect, indicating synergism for the interaction. The synergy with ethanol was specific for cocaine, as related experiments revealed that combinations of ethanol and nicotine did not result in synergy. For EPC experiments, ethanol (0.0001 – 1%) concentration-dependently increased EPC, with significant environmental shifts detected at 0.01 and 1%. Cocaine (0.001 – 1 μM) produced an inverted U-shaped concentration-effect curve, with a significant environmental shift observed at 0.01 μM. For combined exposure, variable cocaine concentrations (0.001 – 1 μM) were administered with a statistically ineffective concentration of ethanol (0.0001%). For each concentration of cocaine, the environmental shift was enhanced by ethanol, with significance detected at 1 μM. Cocaethylene, a metabolite of cocaine and ethanol, also produced C-shapes and EPC. Lidocaine (0.001 – 10 μM), an anesthetic and analog of cocaine, did not produce EPC or C

  9. Major methodological constraints to the assessment of environmental status based on the condition of benthic communities

    NASA Astrophysics Data System (ADS)

    Medeiros, João Paulo; Pinto, Vanessa; Sá, Erica; Silva, Gilda; Azeda, Carla; Pereira, Tadeu; Quintella, Bernardo; Raposo de Almeida, Pedro; Lino Costa, José; José Costa, Maria; Chainho, Paula

    2014-05-01

    The Marine Strategy Framework Directive (MSFD) was published in 2008 and requires Member States to take the necessary measures to achieve or maintain good environmental status in aquatic ecosystems by the year of 2020. The MSFD indicates 11 qualitative descriptors for environmental status assessment, including seafloor integrity, using the condition of the benthic community as an assessment indicator. Member States will have to define monitoring programs for each of the MSFD descriptors based on those indicators in order to understand which areas are in a Good Environmental Status and what measures need to be implemented to improve the status of areas that fail to achieve that major objective. Coastal and offshore marine waters are not frequently monitored in Portugal and assessment tools have only been developed very recently with the implementation of the Water Framework Directive (WFD). The lack of historical data and knowledge on the constraints of benthic indicators in coastal areas requires the development of specific studies addressing this issue. The major objective of the current study was to develop and test and experimental design to assess impacts of offshore projects. The experimental design consisted on the seasonal and interannual assessment of benthic invertebrate communities in the area of future implementation of the structures (impact) and two potential control areas 2 km from the impact area. Seasonal benthic samples were collected at nine random locations within the impact and control areas in two consecutive years. Metrics included in the Portuguese benthic assessment tool (P-BAT) were calculated since this multimetric tool was proposed for the assessment of the ecological status in Portuguese coastal areas under the WFD. Results indicated a high taxonomic richness in this coastal area and no significant differences were found between impact and control areas, indicating the feasibility of establishing adequate control areas in marine

  10. Relationship between environmental conditions and rates of coastal erosion in Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Barnhart, K. R.; Anderson, R. S.; Overeem, I.; Wobus, C. W.; Clow, G. D.; Urban, F. E.; LeWinter, A. L.; Stanton, T. P.

    2012-12-01

    Rates of coastal cliff erosion are a function of the geometry and substrate of the coast; storm frequency, duration, magnitude, and wave field; and regional sediment sources. In the Arctic, the duration of sea ice-free conditions limits the time over which coastal erosion can occur, and sea water temperature modulates erosion rates where ice content of coastal bluffs is high. Predicting how coastal erosion rates in this environment will respond to future climate change requires that we first understand modern coastal erosion rates. Arctic coastlines are responding rapidly to climate change. Remotely sensed observations of coastline position indicate that the mean annual erosion rate along a 60-km reach of Alaska's Beaufort Sea coast, characterized by high ice content and small grain size, doubled from 7 m yr-1 for the period 1955-1979 to 14 m yr-1 for 2002-2007. Over the last 30 years the duration of the open water season expanded from ˜45 days to ˜95 days, increasing exposure of permafrost bluffs to seawater by a factor of 2.5. Time-lapse photography indicates that coastal erosion in this environment is a halting process: most significant erosion occurs during storm events in which local water level is elevated by surge, during which instantaneous submarine erosion rates can reach 1-2 m/day. In contrast, at times of low water, or when sea ice is present, erosion rates are negligible. We employ a 1D coastal cross-section numerical model of the erosion of ice-rich permafrost bluffs to explore the sensitivity of the system to environmental drivers. Our model captures the geometry and style of coastal erosion observed near Drew Point, Alaska, including insertion of a melt-notch, topple of ice-wedge-bounded blocks, and subsequent degradation of these blocks. Using consistent rules, we test our model against the temporal pattern of coastal erosion over two periods: the recent past (~30 years), and a short (~2 week) period in summer 2010. Environmental conditions used

  11. Current Understanding of the Interplay between Phytohormones and Photosynthesis under Environmental Stress.

    PubMed

    Gururani, Mayank Anand; Mohanta, Tapan Kumar; Bae, Hanhong

    2015-01-01

    Abiotic stress accounts for huge crop losses every year across the globe. In plants, the photosynthetic machinery gets severely damaged at various levels due to adverse environmental conditions. Moreover, the reactive oxygen species (ROS) generated as a result of stress further promote the photosynthetic damage by inhibiting the repair system of photosystem II. Earlier studies have suggested that phytohormones are not only required for plant growth and development, but they also play a pivotal role in regulating plants' responses to different abiotic stress conditions. Although, phytohormones have been studied in great detail in the past, their influence on the photosynthetic machinery under abiotic stress has not been studied. One of the major factors that limits researchers from elucidating the precise roles of phytohormones is the highly complex nature of hormonal crosstalk in plants. Another factor that needs to be elucidated is the method used for assessing photosynthetic damage in plants that are subjected to abiotic stress. Here, we review the current understanding on the role of phytohormones in the photosynthetic machinery under various abiotic stress conditions and discuss the potential areas for further research. PMID:26287167

  12. Current Understanding of the Interplay between Phytohormones and Photosynthesis under Environmental Stress

    PubMed Central

    Gururani, Mayank Anand; Mohanta, Tapan Kumar; Bae, Hanhong

    2015-01-01

    Abiotic stress accounts for huge crop losses every year across the globe. In plants, the photosynthetic machinery gets severely damaged at various levels due to adverse environmental conditions. Moreover, the reactive oxygen species (ROS) generated as a result of stress further promote the photosynthetic damage by inhibiting the repair system of photosystem II. Earlier studies have suggested that phytohormones are not only required for plant growth and development, but they also play a pivotal role in regulating plants’ responses to different abiotic stress conditions. Although, phytohormones have been studied in great detail in the past, their influence on the photosynthetic machinery under abiotic stress has not been studied. One of the major factors that limits researchers fromelucidating the precise roles of phytohormones is the highly complex nature of hormonal crosstalk in plants. Another factor that needs to be elucidated is the method used for assessing photosynthetic damage in plants that are subjected to abiotic stress. Here, we review the current understanding on the role of phytohormones in the photosynthetic machinery under various abiotic stress conditions and discuss the potential areas for further research. PMID:26287167

  13. [Social conditions of the exposure to environmental lead observed in children from Piekary Slaskie].

    PubMed

    Szymik, Ewa

    2004-01-01

    The aim of the paper was to evaluate the social conditions of the exposure to environmental lead observed in children from Piekary Slaskie, the patients of The Environmental Health Outpatient Department. The examinations were conducted in 1995, in 183 children: 95 (52%) girls and 88 (48%) boys, which is 5.3% of the total population of children aged 3-12 living in the districts of Piekary Slaskie with the higher risk of lead intoxication: Brzeziny Slaskie, Dabrówka Wielka and Brzozowice-Kamień. The examinations were conducted in the period of April and May. They comprised the following parameters: environmental and paediatric interview, physical examination--evaluation of total condition of the child, and laboratory determination of lead concentration in blood with the method of atomic flameless spectrophotometry. The collected data was statistically elaborated with the use of the "STATISTICA 5.1 PL" programme in the Computer Laboratory at the Silesian Engineering College in Katowice. In 1995 the average lead concentration in blood of 183 children from Piekary Slaskie aged 3-12 ranged from 2.2 to 39.6 microg/dl, and the average population concentration was of 8.22 microg/dl SD: 4.7 microg/dl. Significantly higher average lead concentration in blood was observed in nursery children aged 3-4 (9.56 microg/dl SD: 4.2 microg/dl) when compared to school children (7.4 microg/dl SD: 3.8 microg/dl). In the examined population 19.8% of children crossed the level of 10.0 microg/dl. The conclusions of the examinations may be as follows: bad social-economic conditions (especially unemployment and pathology of families), hygienic customs and nutrition habits of the native population of Piekary Slaskie as well as only the primary or professional education of parents influence the rise in average lead concentration in blood at nursery and school children. PMID:15682943

  14. Immunoreactive intensity of FXPRL amide neuropeptides in response to environmental conditions in the silkworm, Bombyx mori.

    PubMed

    Hagino, Ayako; Kitagawa, Norio; Imai, Kunio; Yamashita, Okitsugu; Shiomi, Kunihiro

    2010-12-01

    In the silkworm Bombyx mori, the diapause hormone-pheromone biosynthesis activating neuropeptide gene, DH-PBAN, is a neuropeptide gene that encodes a polypeptide precursor consisting in five Phe-X-Pro-Arg-Leu-NH(2) (FXPRL) amide (FXPRLa) neuropeptides; DH (diapause hormone), PBAN (pheromone-biosynthesis-activating neuropeptide) and α-, β- and γ-SGNPs (subesophageal ganglion neuropeptides). These neuropeptides are synthesized in DH-PBAN-producing neurosecretory cells contained within three neuromeres, four mandibular cells, six maxillary cells, two labial cells (SLb) and four lateral cells of the subesophageal ganglion. DH is solely responsible, among the FXPRLa peptide family, for embryonic diapause. Functional differentiation has been previously suggested to occur at each neuromere, with the SLb cells releasing DH through brain innervation in order to induce embryonic diapause. We have investigated the immunoreactive intensity of DH in the SLb when thermal (25°C or 15°C) and light (continuous illumination or darkness) conditions are altered and following brain surgery that induces diapause or non-diapause eggs in the progeny. We have also examined the immunoreactivity of the other FXPRLa peptides by using anti-β-SGNP and anti-PBAN antibodies. Pupal SLb somata immunoreactivities seem to be affected by both thermal and light conditions during embryogenesis. Thus, we have been able to identify a close correlation between the immunoreactive intensity of neuropeptides and environmental conditions relating to the determination of embryonic diapause in B. mori. PMID:21103995

  15. INFLUENCE OF ENVIRONMENTAL CONDITIONS ON PROPERTIES OF IONOMERIC AND RESIN SEALANT MATERIALS

    PubMed Central

    Kantovitz, Kamila Rosamilia; Pascon, Fernanda Miori; Correr, Gisele Maria; Alonso, Roberta Caroline Bruschi; Rodrigues, Lidiany Karla Azevedo; Alves, Marcelo Correa; Puppin-Rontani, Regina Maria

    2009-01-01

    Objectives: The aim of this study was to determine the effect of environmental conditions on the degradation of ionomeric and resin sealant materials. Material and Methods: FluroShield, Vitremer, and Ketac Molar disc-shaped specimens (n=18/material) were prepared, polished, subjected to initial hardness and roughness readings. Six discs of each material were randomly assigned to one of three different storage solutions: 0.3% citric acid (CA), demineralization solution (DE), and remineralization solution (RE). The specimens were individually immersed in 3 mL of the test solutions, which were daily changed. After 15 days of storage, new surface roughness and hardness readings were done. Fluoride release in the solutions was measured within 15 days. Data were analyzed by ANOVA and Tukey's and Contrast tests (α=0.05). Results: The storage in CA increased the roughness of Vitremer and Ketac Molar. A significant reduction in hardness was observed for all materials after storage in all solutions. For all materials, the greatest amounts of fluoride release occurred during the 1st day. FluroShield presented the same patterns of fluoride release in all solutions. Ketac Molar and Vitremer released the highest amounts of fluoride in the CA solution. Conclusions: Ionomeric materials are more susceptible to degradation than resin-based materials under acidic conditions. Acidic conditions lead to a higher fluoride release from ionomeric materials. PMID:19668988

  16. Evaluating environmental joint extremes for the offshore industry using the conditional extremes model

    NASA Astrophysics Data System (ADS)

    Ewans, Kevin; Jonathan, Philip

    2014-02-01

    Understanding extreme ocean environments and their interaction with fixed and floating structures is critical for the design of offshore and coastal facilities. The joint effect of various ocean variables on extreme responses of offshore structures is fundamental in determining the design loads. For example, it is known that mean values of wave periods tend to increase with increasing storm intensity, and a floating system responds in a complex way to both variables. Specification of joint extremes in design criteria has often been somewhat ad hoc, being based on fairly arbitrary combinations of extremes of variables estimated independently. Such approaches are even outlined in design guidelines. Mathematically more consistent estimates of the joint occurrence of extreme environmental variables fall into two camps in the offshore industry - response-based and response-independent. Both are outlined here, with emphasis on response-independent methods, particularly those based on the conditional extremes model recently introduced by (Heffernan and Tawn, 2004), which has a solid theoretical motivation. We illustrate an application of the conditional extremes model to joint estimation of extreme storm peak significant wave height and peak period at a northern North Sea location, incorporating storm direction as a model covariate. We also discuss joint estimation of extreme current profiles with depth off the North West Shelf of Australia. Methods such as the conditional extremes model provide valuable additions to the metocean engineer's toolkit.

  17. Novel NAC Transcription Factor TaNAC67 Confers Enhanced Multi-Abiotic Stress Tolerances in Arabidopsis

    PubMed Central

    Mao, Xinguo; Chen, Shuangshuang; Li, Ang; Zhai, Chaochao; Jing, Ruilian

    2014-01-01

    Abiotic stresses are major environmental factors that affect agricultural productivity worldwide. NAC transcription factors play pivotal roles in abiotic stress signaling in plants. As a staple crop, wheat production is severely constrained by abiotic stresses whereas only a few NAC transcription factors have been characterized functionally. To promote the application of NAC genes in wheat improvement by biotechnology, a novel NAC gene designated TaNAC67 was characterized in common wheat. To determine its role, transgenic Arabidopsis overexpressing TaNAC67-GFP controlled by the CaMV-35S promoter was generated and subjected to various abiotic stresses for morphological and physiological assays. Gene expression showed that TaNAC67 was involved in response to drought, salt, cold and ABA treatments. Localization assays revealed that TaNAC67 localized in the nucleus. Morphological analysis indicated the transgenics had enhanced tolerances to drought, salt and freezing stresses, simultaneously supported by enhanced expression of multiple abiotic stress responsive genes and improved physiological traits, including strengthened cell membrane stability, retention of higher chlorophyll contents and Na+ efflux rates, improved photosynthetic potential, and enhanced water retention capability. Overexpression of TaNAC67 resulted in pronounced enhanced tolerances to drought, salt and freezing stresses, therefore it has potential for utilization in transgenic breeding to improve abiotic stress tolerance in crops. PMID:24427285

  18. Nanosized titanium dioxide influences copper-induced toxicity during aging as a function of environmental conditions.

    PubMed

    Rosenfeldt, Ricki R; Seitz, Frank; Haigis, Ann-Cathrin; Höger, Johanna; Zubrod, Jochen P; Schulz, Ralf; Bundschuh, Mirco

    2016-07-01

    Titanium dioxide nanoparticles (TiO2 -NPs) adsorb co-occurring heavy metals in surface waters, modulating their toxicity for freshwater invertebrates. The processes triggering this interaction may be influenced by several environmental parameters; however, their relative importance remains unclear. The present study assessed the implications of aging on the joint acute toxicity of copper (Cu) and TiO2 -NPs for Daphnia magna over a duration of up to 72 h. The influences of aging duration as well as ionic strength, pH, and presence of different qualities of organic matter during aging were assessed. The results indicated that the presence of TiO2 -NPs often reduced the Cu-induced toxicity for daphnids after aging (albeit with varying extent), which was displayed by up to 3-fold higher EC50 (50% effective concentration) values compared to the absence of TiO2 -NPs. Moreover, the Cu speciation, influenced by the ionic composition and the pH as well as the presence of organic additives in the medium, strongly modulated the processes during aging, with partly limited implications of the aging duration on the ecotoxicological response of D. magna. Nonetheless, the present study underpins the potential of TiO2 -NPs to modify toxicity induced by heavy metals in freshwater ecosystems under various environmental conditions. This pattern, however, needs further verification using heavy metal ions with differing properties in combination with further environmental factors, such as ultraviolet irradiation. Environ Toxicol Chem 2016;35:1766-1774. © 2015 SETAC. PMID:26640248

  19. A qualitative study of internal wave ship wakes: Dependence on environmental conditions and experimental parameters

    SciTech Connect

    Mullenhoff, C.J.; Brase, J.M.

    1995-04-24

    For the past several years the UK-US Radar Ocean Imaging Program has conducted a series of field experiments with the primary purpose of gathering real aperture radar (RAR) imagery at low grazing angle of ship-generated internal wave (IW) wakes. The first observations with RAR`s were made in the 1989 Loch Linnhe experiment where it was observed that radar images at low grazing angles (LGA) of approximately six degrees had significantly higher modulation levels than SAR images made at higher grazing angles of 35 - 65 degrees. These initial observations have led to several more experiments designed to verify the phenomenon and to test its dependence on experimental and environmental conditions. A parallel effort began to develop theoretical models of the LGA imaging process. Through this series of experiments we have developed an extensive database of radar imagery and supporting environmental data. The objective of this report is twofold: (1) To describe the database and the associated space of parameters. We will look at the coverage of the parameter space within the database and at areas which should be covered. (2) To take an initial look at the dependence of qualitative modulation strength on the experimental and environmental parameters. This first look will indicate the strongest dependencies which can then be studied in more detail. Section 2 describes the experimental database and Section 3 discusses the parameter space, image quality, and their relationships based on the images in the database. In Section 4 we summarize our conclusions and make recommendations for both future analyses and experiments.

  20. Environmental baseline conditions for impact assessment of unconventional gas exploitation: the G-Baseline project

    NASA Astrophysics Data System (ADS)

    Kloppmann, Wolfram; Mayer, Berhard; Millot, Romain; Parker, Beth L.; Gaucher, Eric; Clarkson, Christopher R.; Cherry, John A.; Humez, Pauline; Cahill, Aaron

    2015-04-01

    A major scientific challenge and an indispensible prerequisite for environmental impact assessment in the context of unconventional gas development is the determination of the baseline conditions against which potential environmental impacts on shallow freshwater resources can be accurately and quantitatively tested. Groundwater and surface water resources overlying the low-permeability hydrocarbon host rocks containing shale gas may be impacted to different extents by naturally occurring saline fluids and by natural gas emanations. Baseline assessments in areas of previous conventional hydrocarbon production may also reveal anthropogenic impacts from these activities not related to unconventional gas development. Once unconventional gas exploitation has started, the baseline may be irrevocably lost by the intricate superposition of geogenic and potential anthropogenic contamination by stray gas, formation waters and chemicals used during hydraulic fracturing. The objective of the Franco-Canadian NSERC-ANR project G-Baseline is to develop an innovative and comprehensive methodology of geochemical and isotopic characterization of the environmental baseline for water and gas samples from all three essential zones: (1) the production zone, including flowback waters, (2) the intermediate zone comprised of overlying formations, and (3) shallow aquifers and surface water systems where contamination may result from diverse natural or human impacts. The outcome will be the establishment of a methodology based on innovative tracer and monitoring techniques, including traditional and non-traditional isotopes (C, H, O, S, B, Sr, Cl, Br, N, U, Li, Cu, Zn, CSIA...) for detecting, quantifying and modeling of potential leakage of stray gas and of saline formation water mixed with flowback fluids into fresh groundwater resources and surface waters taking into account the pathways and mechanisms of fluid and gas migration. Here we present an outline of the project as well as first

  1. On robust regression analysis as a means of exploring environmental and operational conditions for SHM data

    NASA Astrophysics Data System (ADS)

    Dervilis, N.; Worden, K.; Cross, E. J.

    2015-07-01

    In the data-based approach to structural health monitoring (SHM), the absence of data from damaged structures in many cases forces a dependence on novelty detection as a means of diagnosis. Unfortunately, this means that benign variations in the operating or environmental conditions of the structure must be handled very carefully, lest they lead to false alarms. If novelty detection is implemented in terms of outlier detection, the outliers may arise in the data as the result of both benign and malign causes and it is important to understand their sources. Comparatively recent developments in the field of robust regression have the potential to provide ways of exploring and visualising SHM data as a means of shedding light on the different origins of outliers. The current paper will illustrate the use of robust regression for SHM data analysis through experimental data acquired from the Z24 and Tamar Bridges, although the methods are general and not restricted to SHM or civil infrastructure.

  2. Environmental conditions impacting juvenile Chinook salmon growth off central California: An ecosystem model analysis

    NASA Astrophysics Data System (ADS)

    Fiechter, J.; Huff, D. D.; Martin, B. T.; Jackson, D. W.; Edwards, C. A.; Rose, K. A.; Curchitser, E. N.; Hedstrom, K. S.; Lindley, S. T.; Wells, B. K.

    2015-04-01

    A fully coupled ecosystem model is used to identify the effects of environmental conditions and upwelling variability on growth of juvenile Chinook salmon in central California coastal waters. The ecosystem model framework consists of an ocean circulation submodel, a biogeochemical submodel, and an individual-based submodel for salmon. Simulation results indicate that years favorable for juvenile salmon growth off central California are characterized by particularly intense early season upwelling (i.e., March through May), leading to enhanced krill concentrations during summer near the location of ocean entry (i.e., Gulf of the Farallones). Seasonally averaged growth rates in the model are generally consistent with observed values and suggest that juvenile salmon emigrating later in the season (i.e., late May and June) achieve higher weight gains during their first 90 days of ocean residency.

  3. Optimization of mechanical oil spill recovery equipment under variable environmental conditions

    NASA Astrophysics Data System (ADS)

    Broje, Viktoria A.

    Oil spills in marine environments may cause significant damage to marine and coastal ecosystems if not recovered quickly and efficiently. Although mechanical recovery is the most commonly used oil spill response technique, it can be very time consuming and expensive when employed at a large scale due, to its low recovery rates. The goal of this work was to optimize mechanical oil spill recovery for various environmental conditions by analyzing the recovery process and identifying parameters with the most significant impact on the recovery efficiency. As a result of this work, laboratory equipment and procedures tailored to the study of oil spill recovery at small scale were developed. A number of materials and surface patterns that can increase the adhesion skimmer recovery efficiency up to three times were identified and tested in a full scale oil spill recovery study.

  4. Effects of environmental conditions on xylose reductase and xylitol dehydrogenase production by Candida guilliermondii.

    PubMed

    Sene, L; Vitolo, M; Felipe, M G; Silva, S S

    2000-01-01

    The effects of environmental conditions, namely initial pH (2.5-7.0) and temperature (25 and 35 degrees C), on xylose reductase and xylitol dehydrogenase levels, as well as on xylitol production, were evaluated. Although the fermentative parameter values increased with an increase in pH and temperature (the maximum Yp/s and Qp were 0.75 g/g and 0.95 g/[L.h], respectively, both attained at pH 6.0, 35 degrees C), the highest xylose reductase activities (nearly 900 IU/mg of protein) were observed at an initial pH varying from 4.0 to 6.0. Xylitol dehydrogenase was favored by an increase in both initial pH and temperature of the medium. The highest xylitol dehydrogenase specific activity was attained at pH 6.5 and 35 degrees C (577 IU/mg of protein). PMID:10849803

  5. Plant response to environmental conditions: assessing potential production, water demand, and negative effects of water deficit

    PubMed Central

    Tardieu, François

    2013-01-01

    This paper reviews methods for analyzing plant performance and its genetic variability under a range of environmental conditions. Biomass accumulation is linked every day to available light in the photosynthetically active radiation (PAR) domain, multiplied by the proportion of light intercepted by plants and by the radiation use efficiency. Total biomass is cumulated over the duration of the considered phase (e.g., plant cycle or vegetative phase). These durations are essentially constant for a given genotype provided that time is corrected for temperature (thermal time). Several ways of expressing thermal time are reviewed. Two alternative equations are presented, based either on the effect of transpiration, or on yield components. Their comparative interests and drawbacks are discussed. The genetic variability of each term of considered equations affects yield under water deficit, via mechanisms at different scales of plant organization and time. The effect of any physiological mechanism on yield of stressed plants acts via one of these terms, although the link is not always straightforward. Finally, I propose practical ways to compare the productivity of genotypes in field environments, and a “minimum dataset” of environmental data and traits that should be recorded for that. PMID:23423357

  6. Quantifying Preferences and Responsiveness of Marine Zooplankton to Changing Environmental Conditions using Microfluidics

    PubMed Central

    Merten, Christoph A.; Arendt, Detlev

    2015-01-01

    Global environmental change significantly affects marine species composition. However, analyzing the impact of these changes on marine zooplankton communities was so far mostly limited to assessing lethal doses through mortality assays and hence did not allow a direct assessment of the preferred conditions, or preferendum. Here, we use a microfluidic device to characterize individual behavior of actively swimming zooplankton, and to quantitatively determine their ecological preferendum. For the annelid zooplankton model Platynereis dumerilii we observe a broader pH preferendum than for the copepod Euterpina acutifrons, and reveal previously unrecognized sub-populations with different pH preferenda. For Platynereis, the minimum concentration difference required to elicit a response (responsiveness) is ~1 μM for H+ and ~13.7 mM for NaCl. Furthermore, using laser ablations we show that olfactomedin-expressing sensory cells mediate chemical responsiveness in the Platynereis foregut. Taken together, our microfluidic approach allows precise assessment and functional understanding of environmental perception on planktonic behaviour. PMID:26517120

  7. Classifying movement behaviour in relation to environmental conditions using hidden Markov models.

    PubMed

    Patterson, Toby A; Basson, Marinelle; Bravington, Mark V; Gunn, John S

    2009-11-01

    1. Linking the movement and behaviour of animals to their environment is a central problem in ecology. Through the use of electronic tagging and tracking (ETT), collection of in situ data from free-roaming animals is now commonplace, yet statistical approaches enabling direct relation of movement observations to environmental conditions are still in development. 2. In this study, we examine the hidden Markov model (HMM) for behavioural analysis of tracking data. HMMs allow for prediction of latent behavioural states while directly accounting for the serial dependence prevalent in ETT data. Updating the probability of behavioural switches with tag or remote-sensing data provides a statistical method that links environmental data to behaviour in a direct and integrated manner. 3. It is important to assess the reliability of state categorization over the range of time-series lengths typically collected from field instruments and when movement behaviours are similar between movement states. Simulation with varying lengths of times series data and contrast between average movements within each state was used to test the HMMs ability to estimate movement parameters. 4. To demonstrate the methods in a realistic setting, the HMMs were used to categorize resident and migratory phases and the relationship between movement behaviour and ocean temperature using electronic tagging data from southern bluefin tuna (Thunnus maccoyii). Diagnostic tools to evaluate the suitability of different models and inferential methods for investigating differences in behaviour between individuals are also demonstrated. PMID:19563470

  8. The Impact of Different Environmental Conditions on Cognitive Function: A Focused Review.

    PubMed

    Taylor, Lee; Watkins, Samuel L; Marshall, Hannah; Dascombe, Ben J; Foster, Josh

    2015-01-01

    Cognitive function defines performance in objective tasks that require conscious mental effort. Extreme environments, namely heat, hypoxia, and cold can all alter human cognitive function due to a variety of psychological and/or biological processes. The aims of this Focused Review were to discuss; (1) the current state of knowledge on the effects of heat, hypoxic and cold stress on cognitive function, (2) the potential mechanisms underpinning these alterations, and (3) plausible interventions that may maintain cognitive function upon exposure to each of these environmental stressors. The available evidence suggests that the effects of heat, hypoxia, and cold stress on cognitive function are both task and severity dependent. Complex tasks are particularly vulnerable to extreme heat stress, whereas both simple and complex task performance appear to be vulnerable at even at moderate altitudes. Cold stress also appears to negatively impact both simple and complex task performance, however, the research in this area is sparse in comparison to heat and hypoxia. In summary, this focused review provides updated knowledge regarding the effects of extreme environmental stressors on cognitive function and their biological underpinnings. Tyrosine supplementation may help individuals maintain cognitive function in very hot, hypoxic, and/or cold conditions. However, more research is needed to clarify these and other postulated interventions. PMID:26779029

  9. Quantifying Preferences and Responsiveness of Marine Zooplankton to Changing Environmental Conditions using Microfluidics.

    PubMed

    Ramanathan, Nirupama; Simakov, Oleg; Merten, Christoph A; Arendt, Detlev

    2015-01-01

    Global environmental change significantly affects marine species composition. However, analyzing the impact of these changes on marine zooplankton communities was so far mostly limited to assessing lethal doses through mortality assays and hence did not allow a direct assessment of the preferred conditions, or preferendum. Here, we use a microfluidic device to characterize individual behavior of actively swimming zooplankton, and to quantitatively determine their ecological preferendum. For the annelid zooplankton model Platynereis dumerilii we observe a broader pH preferendum than for the copepod Euterpina acutifrons, and reveal previously unrecognized sub-populations with different pH preferenda. For Platynereis, the minimum concentration difference required to elicit a response (responsiveness) is ~1 μM for H+ and ~13.7 mM for NaCl. Furthermore, using laser ablations we show that olfactomedin-expressing sensory cells mediate chemical responsiveness in the Platynereis foregut. Taken together, our microfluidic approach allows precise assessment and functional understanding of environmental perception on planktonic behaviour. PMID:26517120

  10. The Impact of Different Environmental Conditions on Cognitive Function: A Focused Review

    PubMed Central

    Taylor, Lee; Watkins, Samuel L.; Marshall, Hannah; Dascombe, Ben J.; Foster, Josh

    2016-01-01

    Cognitive function defines performance in objective tasks that require conscious mental effort. Extreme environments, namely heat, hypoxia, and cold can all alter human cognitive function due to a variety of psychological and/or biological processes. The aims of this Focused Review were to discuss; (1) the current state of knowledge on the effects of heat, hypoxic and cold stress on cognitive function, (2) the potential mechanisms underpinning these alterations, and (3) plausible interventions that may maintain cognitive function upon exposure to each of these environmental stressors. The available evidence suggests that the effects of heat, hypoxia, and cold stress on cognitive function are both task and severity dependent. Complex tasks are particularly vulnerable to extreme heat stress, whereas both simple and complex task performance appear to be vulnerable at even at moderate altitudes. Cold stress also appears to negatively impact both simple and complex task performance, however, the research in this area is sparse in comparison to heat and hypoxia. In summary, this focused review provides updated knowledge regarding the effects of extreme environmental stressors on cognitive function and their biological underpinnings. Tyrosine supplementation may help individuals maintain cognitive function in very hot, hypoxic, and/or cold conditions. However, more research is needed to clarify these and other postulated interventions. PMID:26779029

  11. Evidence for the role of environmental agents in the initiation or progression of autoimmune conditions.

    PubMed Central

    Powell, J J; Van de Water, J; Gershwin, M E

    1999-01-01

    The concordance of autoimmune disease among identical twins is virtually always less than 50% and often in the 25-40% range. This observation, as well as epidemic clustering of some autoimmune diseases following xenobiotic exposure, reinforces the thesis that autoimmune disease is secondary to both genetic and environmental factors. Because nonliving agents do not have genomes, disease characteristics involving nonliving xenobiotics are primarily secondary to host phenotype and function. In addition, because of individual genetic susceptibilities based not only on major histocompatibility complex differences but also on differences in toxin metabolism, lifestyles, and exposure rates, individuals will react differently to the same chemicals. With these comments in mind it is important to note that there have been associations of a number of xenobiotics with human autoimmune disease, including mercury, iodine, vinyl chloride, canavanine, organic solvents, silica, l-tryptophan, particulates, ultraviolet radiation, and ozone. In addition, there is discussion in the literature that raises the possibility that xenobiotics may also exacerbate an existing autoimmune disease. In this article we discuss these issues and, in particular, the evidence for the role of environmental agents in the initiation or progression of autoimmune conditions. With the worldwide deterioration of the environment, this is a particularly important subject for human health. PMID:10970167

  12. Food for thought: Conditions for discourse reflection in the light of environmental assessment

    SciTech Connect

    Runhaar, Hens; Runhaar, Piety R.; Oegema, Tammo

    2010-11-15

    People tend to take notice of what is happening around them selectively. Discourses-frames through which actors give meaning to aspects of the world-act as built-in filters that distinguish relevant from irrelevant data. Use of knowledge generated by environmental assessments (EAs) in decision-making may be understood from this perspective. Environmental knowledge that is inconsistent with dominant discourses runs the risk of being ignored. Discourses on the value of EA as a tool for decision-making may have a similar effect. Stimulating decision-makers and stakeholders to critically reflect on and reconsider their discourses in the light of EAs-also known as frame reflection or policy learning-may enhance the probability that these assessments and the knowledge that they generate impact upon decision-making. Up to now little has been written about how discourse reflection in the context of EA can be promoted. Valuable inputs are fragmented over different bodies of literature. In this paper we draw from these bodies to identify favourable conditions for discourse reflection.

  13. Adsorption of a Protein Monolayer via Hydrophobic Interactions Prevents Nanoparticle Aggregation under Harsh Environmental Conditions

    PubMed Central

    Dominguez-Medina, Sergio; Blankenburg, Jan; Olson, Jana; Landes, Christy F.; Link, Stephan

    2013-01-01

    We find that citrate-stabilized gold nanoparticles aggregate and precipitate in saline solutions below the NaCl concentration of many bodily fluids and blood plasma. Our experiments indicate that this is due to complexation of the citrate anions with Na+ cations in solution. A dramatically enhanced colloidal stability is achieved when bovine serum albumin is adsorbed to the gold nanoparticle surface, completely preventing nanoparticle aggregation under harsh environmental conditions where the NaCl concentration is well beyond the isotonic point. Furthermore, we explore the mechanism of the formation of this albumin ‘corona’ and find that monolayer protein adsorption is most likely ruled by hydrophobic interactions. As for many nanotechnology-based biomedical and environmental applications, particle aggregation and sedimentation are undesirable and could substantially increase the risk of toxicological side-effects, the formation of the BSA corona presented here provides a low-cost bio-compatible strategy for nanoparticle stabilization and transport in highly ionic environments. PMID:23914342

  14. Bacterial assisted degradation of chlorpyrifos: The key role of environmental conditions, trace metals and organic solvents.

    PubMed

    Khalid, Saira; Hashmi, Imran; Khan, Sher Jamal

    2016-03-01

    Wastewater from pesticide industries, agricultural or surface runoff containing pesticides and their residues has adverse environmental impacts. Present study demonstrates effect of petrochemicals and trace metals on chlorpyrifos (CP) biotransformation often released in wastewater of agrochemical industry. Biodegradation was investigated using bacterial strain Pseudomonas kilonensis SRK1 isolated from wastewater spiked with CP. Optimal environmental conditions for CP removal were CFU (306 × 10(6)), pH (8); initial CP concentration (150 mg/L) and glucose as additional carbon source. Among various organic solvents (petrochemicals) used in this study toluene has stimulatory effect on CP degradation process using SRK1, contrary to this benzene and phenol negatively inhibited degradation process. Application of metal ions (Cu (II), Fe (II) Zn (II) at low concentration (1 mg/L) took part in biochemical reaction and positively stimulated CP degradation process. Metal ions at high concentrations have inhibitory effect on degradation process. A first order growth model was shown to fit the data. It could be concluded that both type and concentration of metal ions and petrochemicals can affect CP degradation process. PMID:26692411

  15. Differential display of skin mRNAs regulated under varying environmental conditions in a mudskipper.

    PubMed

    Sakamoto, T; Yasunaga, H; Yokota, S; Ando, M

    2002-07-01

    To understand the molecular mechanisms underlying the terrestrial adaptation, as well as adaptation to different salinities, of the euryhaline and amphibious mudskipper ( Periophthalmus modestus), we have looked for the skin mRNAs that change during varying environmental conditions. Using differential mRNA display polymerase chain reaction, we compared skin mRNAs in mudskipper transferred from isotonic 30% seawater to fresh water or to seawater for 1 day and 7 days, as well as those kept out of water for 1 day. At the end of these periods, poly(A(+))RNA was prepared from the Cl(-)-secreting pectoral skins and also from the outer opercular skins where ion transport is negligible, and analyzed by differential display. We identified four cDNA products expressed differently under various environments as homologues of known genes. A further 34 cDNAs were expressed differentially, but they have no significant homology to identified sequences in GenBank. Northern blots demonstrate that mRNA levels of the actin-binding protein and the platelet-activating factor acetylhydrolase increased in the pectoral skins during seawater acclimation. The mRNA of the 90 kDa heat shock protein was down-regulated in water-deprived and freshwater fish, whose plasma cortisol levels were high. The aldolase mRNA was induced in both skins after desiccation. These four genes may be involved in the environmental adaptations. PMID:12122461

  16. Testing the Sensitivity of Extratropical Cyclones to Variations in Environmental Conditions

    NASA Astrophysics Data System (ADS)

    Tierney, G.; Booth, J. F.; Posselt, D. J.

    2014-12-01

    Extratropical cyclones are a main driver of mid-latitude weather conditions, continually interacting with their synoptic and mesoscale environment. These systems are a product of the cyclogenetic environment in which they develop, and their associated circulation, latent heating, and radiative heating in turn exert significant influence on the near and far-field dynamic and thermodynamic state. With the projected warming to our climate system, the environments in which mid-latitude cyclones develop are changing, as are the controlling influences on storm characteristics: temperature, moisture content, jet strength, and baroclinicity. Feedbacks between changes in the initial environment and changes in extratropical cyclone properties represent a challenge to our ability to characterize the effects of changes in climate on the winds and rainfall produced by these storms. In this presentation, we consider how extratropical cyclones might respond to simultaneous changes in multiple environmental factors. We utilize an idealized version of the Weather Research and Forecasting model (WRF), allowing for systematic control of environmental conditions. We perform a comprehensive ensemble analysis by tracking the variations in extratropical cyclone properties as a function of the changes in the surrounding environment, with the aim of identifying key controls on cyclone characteristics. We consider the socially relevant impacts of changes in dynamics and precipitation, as well as considering the climatologically relevant impacts of changes in cloud and radiative properties. We identify and implement tunable variables best approximating changes in temperature, moisture content, jet strength, and baroclinicity. Examining the effects of each variable with single-variable sensitivity tests, we document the effect of each variable alone, before filling out a multivariate parameter space by combining variations of two or more variables. In reviewing the multivariate results, we

  17. Holocene size variations in two diatom species off East Antarctica: Productivity vs environmental conditions

    NASA Astrophysics Data System (ADS)

    Crosta, Xavier

    2009-11-01

    I here present a biometric investigation on two diatom species, Fragilariopsis kerguelensis (O'Meara) Hustedt and Fragilariopsis curta (Van Heurck) Hustedt, in Holocene samples from sediment core MD03-2601 from the Antarctic Continental Shelf off Adélie Land, East Antarctica. Apical valve length measurements of the two species are compared to their respective absolute and relative abundances as a proxy for the species productivity. Fragilariopsis kerguelensis valves were longer and more abundant during the warmer Mid-Holocene period and smaller and less abundant during the colder Late-Holocene period. Conversely, F. curta valves were smaller and less abundant during the warmer Mid-Holocene period and longer and more abundant during the colder Late-Holocene period. Mean apical valve length variations even follow centennial-to-millennial oscillations in the species abundances. Maximal valve length and minimal valve length were also larger during the warmer Mid-Holocene period and during the colder Late-Holocene period for F. keguelensis and F. curta, respectively. The observed positive size-abundance relationships are linked to the environmental conditions at the core location that stands today at the lower ecological limit for F. kerguelensis and upper ecological limit for F. curta. More favourable environmental conditions (warmer, less icy for F. kerguelensis and colder, icier for F. curta) allowed for sexual reproduction at the upper range of the sexually inducible size window and subsequent restoration of larger initial cells which, in turn, resulted in overall bigger size of the species populations, though vegetative multiplication was more frequent.

  18. Adaptations of the Secretome of Candida albicans in Response to Host-Related Environmental Conditions

    PubMed Central

    Brul, Stanley

    2015-01-01

    The wall proteome and the secretome of the fungal pathogen Candida albicans help it to thrive in multiple niches of the human body. Mass spectrometry has allowed researchers to study the dynamics of both subproteomes. Here, we discuss some major responses of the secretome to host-related environmental conditions. Three β-1,3-glucan-modifying enzymes, Mp65, Sun41, and Tos1, are consistently found in large amounts in culture supernatants, suggesting that they are needed for construction and expansion of the cell wall β-1,3-glucan layer and thus correlate with growth and might serve as diagnostic biomarkers. The genes ENG1, CHT3, and SCW11, which encode an endoglucanase, the major chitinase, and a β-1,3-glucan-modifying enzyme, respectively, are periodically expressed and peak in M/G1. The corresponding protein abundances in the medium correlate with the degree of cell separation during single-yeast-cell, pseudohyphal, and hyphal growth. We also discuss the observation that cells treated with fluconazole, or other agents causing cell surface stress, form pseudohyphal aggregates. Fluconazole-treated cells secrete abundant amounts of the transglucosylase Phr1, which is involved in the accumulation of β-1,3-glucan in biofilms, raising the question whether this is a general response to cell surface stress. Other abundant secretome proteins also contribute to biofilm formation, emphasizing the important role of secretome proteins in this mode of growth. Finally, we discuss the relevance of these observations to therapeutic intervention. Together, these data illustrate that C. albicans actively adapts its secretome to environmental conditions, thus promoting its survival in widely divergent niches of the human body. PMID:26453650

  19. Characterization of Rice NADPH Oxidase Genes and Their Expression under Various Environmental Conditions

    PubMed Central

    Wang, Gang-Feng; Li, Wen-Qiang; Li, Wen-Yan; Wu, Guo-Li; Zhou, Cong-Yi; Chen, Kun-Ming

    2013-01-01

    Plasma membrane NADPH oxidases (Noxs) are key producers of reactive oxygen species under both normal and stress conditions in plants. We demonstrate that at least eleven genes in the genome of rice (Oryza sativa L.) were predicted to encode Nox proteins, including nine genes (OsNox1–9) that encode typical Noxs and two that encode ancient Nox forms (ferric reduction oxidase 1 and 7, OsFRO1 and OsFRO7). Phylogenetic analysis divided the Noxs from nine plant species into six subfamilies, with rice Nox genes distributed among subfamilies I to V. Gene expression analysis using semi-quantitative RT-PCR and real-time qRT-PCR indicated that the expression of rice Nox genes depends on organs and environmental conditions. Exogenous calcium strongly stimulated the expression of OsNox3, OsNox5, OsNox7, and OsNox8, but depressed the expression of OsFRO1. Drought stress substantially upregulated the expression of OsNox1–3, OsNox5, OsNox9, and OsFRO1, but downregulated OsNox6. High temperature upregulated OsNox5–9, but significantly downregulated OsNox1–3 and OsFRO1. NaCl treatment increased the expression of OsNox2, OsNox8, OsFRO1, and OsFRO7, but decreased that of OsNox1, OsNox3, OsNox5, and OsNox6. These results suggest that the expression profiles of rice Nox genes have unique stress-response characteristics, reflecting their related but distinct functions in response to different environmental stresses. PMID:23629674

  20. Toward an integrated understanding of perceived biodiversity values and environmental conditions in a national park

    USGS Publications Warehouse

    van Riper, Carena J.; Kyle, Gerard T.; Sherrouse, Ben C.; Bagstad, Kenneth J.; Sutton, Stephen G.

    2016-01-01

    In spatial planning and management of protected areas, increased priority is being given to research that integrates social and ecological data. However, public viewpoints of the benefits provided by ecosystems are not easily quantified and often implicitly folded into natural resource management decisions. Drawing on a spatially explicit participatory mapping exercise and a Social Values for Ecosystem Services (SolVES) analysis tool, the present study empirically examined and integrated social values for ecosystem services and environmental conditions within Channel Islands National Park, California. Specifically, a social value indicator of perceived biodiversity was examined using on-site survey data collected from a sample of people who visited the park. This information was modeled alongside eight environmental conditions including faunal species richness for six taxa, vegetation density, categories of marine and terrestrial land cover, and distance to features relevant for decision-makers. Results showed that biodiversity value points assigned to places by the pooled sample of respondents were widely and unevenly mapped, which reflected the belief that biodiversity was embodied to varying degrees by multiple locations in the park. Models generated for two survey subgroups defined by their self-reported knowledge of the Channels Islands revealed distinct spatial patterns of these perceived values. Specifically, respondents with high knowledge valued large spaces that were publicly inaccessible and unlikely to contain on-ground biodiversity, whereas respondents with low knowledge valued places that were experienced first-hand. Accessibility and infrastructure were also important considerations for anticipating how and where people valued the protected land and seascapes of Channel Islands National Park.

  1. Yeast functional screen to identify genetic determinants capable of conferring abiotic stress tolerance in Jatropha curcas

    PubMed Central

    2010-01-01

    Background Environmentally inflicted stresses such as salinity and drought limit the plant productivity both in natural and agricultural system. Increasing emphasis has been directed to molecular breeding strategies to enhance the intrinsic ability of plant to survive stress conditions. Functional screens in microorganisms with heterologous genes are a rapid, effective and powerful tool to identify stress tolerant genes in plants. Jatropha curcas (Physic nut) has been identified as a potential source of biodiesel plant. In order to improve its productivity under stress conditions to benefit commercial plantations, we initiated prospecting of novel genes expressed during stress in J. curcas that can be utilized to enhance stress tolerance ability of plant. Results To identify genes expressed during salt tolerance, cDNA expression libraries were constructed from salt-stressed roots of J. curcas, regulated under the control of the yeast GAL1 system. Using a replica based screening, twenty thousand yeast transformants were screened to identify transformants expressing heterologous gene sequences from J. curcas with enhanced ability to tolerate stress. From the screen we obtained 32 full length genes from J. curcas [GenBank accession numbers FJ489601-FJ489611, FJ619041-FJ619057 and FJ623457-FJ623460] that can confer abiotic stress tolerance. As a part of this screen, we optimized conditions for salt stress in J. curcas, defined parameters for salt stress in yeast, as well as isolated three salt hypersensitive yeast strains shs-2, shs-6 and shs-8 generated through a process of random mutagenesis, and exhibited growth retardation beyond 750 mM NaCl. Further, we demonstrated complementation of the salt sensitive phenotypes in the shs mutants, and analyzed the expression patterns for selected J. curcas genes obtained from the screen in both leaf and root tissues after salt stress treatments. Conclusions The approach described in this report provides a rapid and universal

  2. Male-killing endosymbionts: influence of environmental conditions on persistence of host metapopulation

    PubMed Central

    2008-01-01

    Background Male killing endosymbionts manipulate their arthropod host reproduction by only allowing female embryos to develop into infected females and killing all male offspring. Because of the reproductive manipulation, we expect them to have an effect on the evolution of host dispersal rates. In addition, male killing endosymbionts are expected to approach fixation when fitness of infected individuals is larger than that of uninfected ones and when transmission from mother to offspring is nearly perfect. They then vanish as the host population crashes. High observed infection rates and among-population variation in natural systems can consequently not be explained if defense mechanisms are absent and when transmission efficiency is perfect. Results By simulating the host-endosymbiont dynamics in an individual-based metapopulation model we show that male killing endosymbionts increase host dispersal rates. No fitness compensations were built into the model for male killing endosymbionts, but they spread as a group beneficial trait. Host and parasite populations face extinction under panmictic conditions, i.e. conditions that favor the evolution of high dispersal in hosts. On the other hand, deterministic 'curing' (only parasite goes extinct) can occur under conditions of low dispersal, e.g. under low environmental stochasticity and high dispersal mortality. However, high and stable infection rates can be maintained in metapopulations over a considerable spectrum of conditions favoring intermediate levels of dispersal in the host. Conclusion Male killing endosymbionts without explicit fitness compensation spread as a group selected trait into a metapopulation. Emergent feedbacks through increased evolutionary stable dispersal rates provide an alternative explanation for both, the high male-killing endosymbiont infection rates and the high among-population variation in local infection rates reported for some natural systems. PMID:18764948

  3. Relationship between fumonisin production and FUM gene expression in Fusarium verticillioides under different environmental conditions.

    PubMed

    Fanelli, Francesca; Iversen, Anita; Logrieco, Antonio F; Mulè, Giuseppina

    2013-01-01

    Fusarium verticillioides is the main source of fumonisins, a group of mycotoxins that can contaminate maize-based food and feed and cause diseases in humans and animals. The study of the effect of different environmental conditions on toxin production should provide information that can be used to develop strategies to minimize the risk. This study analysed the effect of temperature (15°C-35°C), water activity (a(w): 0.999-0.93), salinity (0-125 g l(-1) NaCl) and pH (5-8) on the growth and production of fumonisins B(1) (FB1), B(2) (FB2) and B(3) (FB3) and the expression of FUM1 and FUM21 in F. verticillioides. The highest growth rate was measured at 25°C, a(w) of 0.998-0.99 and 0-25 g l(-1) of NaCl. Optimal conditions for fumonisin production were 30°C, a(w) of 0.99, 25 g l(-1) of NaCl and pH 5; nevertheless, the strain showed a good adaptability and was able to produce moderate levels of fumonisins under a wide range of conditions. Gene expression mirrored fumonisin production profile under all conditions with the exception of temperature: FUM1 and FUM21 expression was highest at 15°C, while maximum fumonisin production was at 30°C. These data indicate that a post-transcriptional regulation mechanism could account for the different optimal temperatures for FUM gene expression and fumonisin production. PMID:23167929

  4. Perfluoroalkyl substance concentrations in a terrestrial raptor: relationships to environmental conditions and individual traits.

    PubMed

    Bustnes, Jan O; Bangjord, Georg; Ahrens, Lutz; Herzke, Dorte; Yoccoz, Nigel G

    2015-01-01

    Accumulation of persistent organic pollutants (POPs) in wildlife may be influenced by the physical and biotic environment, and concentrations vary greatly among areas, seasons, and individuals. Different hypotheses about sources of variation in perfluoroalkyl substance (PFAS) concentrations were examined in eggs (n = 107) of tawny owls (Strix aluco) collected over a 24-yr period (1986-2009) in Norway. Predictor variables included the North Atlantic Oscillation (NAO), temperature, snow, food availability (vole abundance), and individual traits such as age, body condition, and clutch size. Concentrations of both perfluoro-octane sulfonate (PFOS) and perfluoroalkyl carboxylates (PFCAs) varied several fold in the population, both inter- and intra-annually. Moreover, individuals laid eggs with several times higher or lower PFAS concentrations within few years (1 yr-5 yr). After controlling for temporal trends (i.e., declining PFOS and increasing PFCA concentrations), both PFOS and PFCAs were positively associated to the winter NAO in the previous year (NAOy - 1 ), suggesting that atmospheric transport may be affecting the input of PFASs to the local ecosystem. Perfluoro-octane sulfonate was negatively related to temperature, but the pattern was complex as there was an interaction between temperature and the feeding conditions. The PFOS accumulation was highest in years with high vole abundance and low to medium temperatures. For PFCAs, there was an interaction between NAOy - 1 and feeding conditions, suggesting that strong air transport toward Norway and high consumption of voles led to a moderate increase in PFCA accumulation. The individual traits, however, had very little impact on the concentrations of PFASs in the eggs. The present study thus suggests that annual variation in environmental conditions influences the concentrations of PFASs in a terrestrial raptor such as the tawny owl. PMID:25323676

  5. Biocontrol agents promote growth of potato pathogens, depending on environmental conditions.

    PubMed

    Cray, Jonathan A; Connor, Mairéad C; Stevenson, Andrew; Houghton, Jonathan D R; Rangel, Drauzio E N; Cooke, Louise R; Hallsworth, John E

    2016-05-01

    There is a pressing need to understand and optimize biological control so as to avoid over-reliance on the synthetic chemical pesticides that can damage environmental and human health. This study focused on interactions between a novel biocontrol-strain, Bacillus sp. JC12GB43, and potato-pathogenic Phytophthora and Fusarium species. In assays carried out in vitro and on the potato tuber, the bacterium was capable of near-complete inhibition of pathogens. This Bacillus was sufficiently xerotolerant (water activity limit for growth = 0.928) to out-perform Phytophthora infestans (~0.960) and challenge Fusarium coeruleum (~0.847) and Fusarium sambucinum (~0.860) towards the lower limits of their growth windows. Under some conditions, however, strain JC12GB43 stimulated proliferation of the pathogens: for instance, Fusarium coeruleum growth-rate was increased under chaotropic conditions in vitro (132 mM urea) by >100% and on tubers (2-M glycerol) by up to 570%. Culture-based assays involving macromolecule-stabilizing (kosmotropic) compatible solutes provided proof-of-principle that the Bacillus may provide kosmotropic metabolites to the plant pathogen under conditions that destabilize macromolecular systems of the fungal cell. Whilst unprecedented, this finding is consistent with earlier reports that fungi can utilize metabolites derived from bacterial cells. Unless the antimicrobial activities of candidate biocontrol strains are assayed over a full range of field-relevant parameters, biocontrol agents may promote plant pathogen infections and thereby reduce crop yields. These findings indicate that biocontrol activity, therefore, ought to be regarded as a mode-of-behaviour (dependent on prevailing conditions) rather than an inherent property of a bacterial strain. PMID:26880001