Science.gov

Sample records for abiotic environmental conditions

  1. The role of abiotic environmental conditions and herbivory in shaping bacterial community composition in floral nectar.

    PubMed

    Samuni-Blank, Michal; Izhaki, Ido; Laviad, Sivan; Bar-Massada, Avi; Gerchman, Yoram; Halpern, Malka

    2014-01-01

    Identifying the processes that drive community assembly has long been a central theme in ecology. For microorganisms, a traditional prevailing hypothesis states that "everything is everywhere, but the environment selects". Although the bacterial community in floral nectar may be affected by both atmosphere (air-borne bacteria) and animals as dispersal vectors, the environmental and geographic factors that shape microbial communities in floral nectar are unknown. We studied culturable bacterial communities in Asphodelus aestivus floral nectar and in its typical herbivorous bug Capsodes infuscatus, along an aridity gradient. Bacteria were sampled from floral nectar and bugs at four sites, spanning a geographical range of 200 km from Mediterranean to semi-arid conditions, under open and bagged flower treatments. In agreement with the niche assembly hypothesis, the differences in bacterial community compositions were explained by differences in abiotic environmental conditions. These results suggest that microbial model systems are useful for addressing macro-ecological questions. In addition, similar bacterial communities were found in the nectar and on the surface of the bugs that were documented visiting the flowers. These similarities imply that floral nectar bacteria dispersal is shaped not only by air borne bacteria and nectar consumers as previously reported, but also by visiting vectors like the mirid bugs.

  2. Integrated biomarker responses of the invasive species Corbicula fluminea in relation to environmental abiotic conditions: a potential indicator of the likelihood of clam's summer mortality syndrome.

    PubMed

    Oliveira, Cristiana; Vilares, Pedro; Guilhermino, Lúcia

    2015-04-01

    The aim of this study was to investigate the variation of several biomarkers in wild populations of Corbicula fluminea in relation to abiotic condition changes to identify environmental factors associated with increased stress in this species potentially leading to massive mortality events. The study was carried out from July to October in the freshwater tidal areas of the estuaries of Minho and Lima Rivers (NW Iberian Peninsula). Monthly, 7 biomarkers (biotransformation, energy production, anti-oxidant defenses and lipid peroxidation damages) were determined in C. fluminea and 17 abiotic parameters were determined in water or sediments in 4 sampling sites: M1, M2 and M3 in Minho (up=> downstream); and L in Lima estuaries. The results of biomarkers were integrated using the Integrated Biomarker Response (IBR), Index and also analysed in relation to environmental parameters by Redundancy Analysis (RDA). Overall, the findings of the present study indicate that July and August are particularly stressful months for the studied C. fluminea populations, especially at downstream sites; the increase of nutrients and ammonium water concentrations, water temperature and conductivity are major contributors for this increased stress; the biomarkers indicated that in July/August C. fluminea is exposed to oxidative stress inducers, environmental chemical contaminants biotransformed by esterases and glutathione S-transferase enzymes, and that organisms need additional energy to cope with the chemical and/or thermally-induced stress. The findings of the present study stress the importance of biomonitoring the health condition of C. fluminea because it may allow determining the likelihood of summer/post summer mortality syndrome in this species.

  3. Generation of RNA in abiotic conditions.

    NASA Astrophysics Data System (ADS)

    di Mauro, Ernesto

    Generation of RNA in abiotic conditions. Ernesto Di Mauro Dipartimento di Genetica Bi-ologia Molecolare, Universit` "Sapienza" Roma, Italy. a At least four conditions must be satisfied for the spontaneous generation of (pre)-genetic poly-mers: 1) availability of precursors that are activated enough to spontaneously polymerize. Preliminary studies showed that (a) nucleic bases and acyclonucleosides can be synthesized from formamide H2NCOH by simply heating with prebiotically available mineral catalysts [last reviewed in (1)], and that b) nucleic bases can be phosphorylated in every possible posi-tion [2'; 3'; 5'; cyclic 2',3'; cyclic 3',5' (2)]. The higher stability of the cyclic forms allows their accumulation. 2) A polymerization mechanism. A reaction showing the formation of RNA polymers starting from prebiotically plausible precursors (3',5' cyclic GMP and 3', 5'cyclic AMP) was recently reported (3). Polymerization in these conditions is thermodynamically up-hill and an equilibrium is attained that limits the maximum length of the polymer produced to about 40 nucleotides for polyG and 100 nucleotides for polyA. 3) Ligation of the synthesized oligomers. If this type of reaction could occur according to a terminal-joining mechanism and could generate canonical 3',5' phosphodiester bonds, exponential growth would be obtained of the generated oligomers. This type of reaction has been reported (4) , limited to homogeneous polyA sequences and leading to the production of polyA dimers and tetramers. What is still missing are: 4) mechanisms that provide the proof of principle for the generation of sequence complexity. We will show evidence for two mechanisms providing this proof of principle for simple complementary sequences. Namely: abiotic sequence complementary-driven terminal ligation and sequence-complementary terminal growth. In conclusion: all the steps leading to the generation of RNA in abiotic conditions are satisfied. (1) R Saladino, C Crestini, F

  4. Degradation of the tricyclic antipsychotic drug chlorpromazine under environmental conditions, identification of its main aquatic biotic and abiotic transformation products by LC-MSn and their effects on environmental bacteria.

    PubMed

    Trautwein, Christoph; Kümmerer, Klaus

    2012-03-15

    The search for environmental transformation products of organic pollutants (like drugs) is a difficult task and usually only few compounds are detected. This might be due to effective degradation but could also be a result of analytical deficits dealing with complex matrices. Especially transformation products of very low concentrations in sludge were difficult to identify so far. Additionally, the use of standard separation techniques might lead to the loss of isomeric compounds, which possess identical spectroscopic and spectrometric properties. To date no complete study investigating the environmental fate of any tricyclic antipsychotic drug has been reported. Therefore, this study investigated the popular neuroleptic drug chlorpromazine and its potential transformation by all main environmental pathways: aerobic and anaerobic biodegradation as well as abiotic photolytic degradation by sunlight. Analysis of test samples by high performance liquid chromatography coupled to multiple stage mass-spectrometry (HPLC-MS(n)) allowed the detection of numerous compounds. Further, the use of a special software allowed distinguishing between transformation products of small intensities and background "noise" caused by sludge or matrix. Three aerobic tests of different bacterial density (the Closed Bottle test, OECD 301D; the Manometric Respiratory test, OECD 301F; the modified Zahn-Wellens test, 302B; one anaerobic test (a modified anaerobic degradation test according to ISO 11734) as well as a photodegradation test were performed in the present study. According to the individual test guidelines, chlorpromazine had to be classified as not biodegradable in all of the biodegradation tests. However, a special chromatographic column and gradient along with mass spectrometric fragmentation experiments of higher order uncovered the presence of a total of 61 abiotic and biotic transformation products which where formed during the course of the tests. The structures of three

  5. Modulation of thiamine metabolism in Zea mays seedlings under conditions of abiotic stress.

    PubMed

    Rapala-Kozik, Maria; Kowalska, Ewa; Ostrowska, Katarzyna

    2008-01-01

    The responses of plants to abiotic stress involve the up-regulation of numerous metabolic pathways, including several major routes that engage thiamine diphosphate (TDP)-dependent enzymes. This suggests that the metabolism of thiamine (vitamin B1) and its phosphate esters in plants may be modulated under various stress conditions. In the present study, Zea mays seedlings were used as a model system to analyse for any relation between the plant response to abiotic stress and the properties of thiamine biosynthesis and activation. Conditions of drought, high salt, and oxidative stress were induced by polyethylene glycol, sodium chloride, and hydrogen peroxide, respectively. The expected increases in the abscisic acid levels and in the activities of antioxidant enzymes including catalase, ascorbate peroxidase, and glutathione reductase were found under each stress condition. The total thiamine compound content in the maize seedling leaves increased under each stress condition applied, with the strongest effects on these levels observed under the oxidative stress treatment. This increase was also found to be associated with changes in the relative distribution of free thiamine, thiamine monophosphate (TMP), and TDP. Surprisingly, the activity of the thiamine synthesizing enzyme, TMP synthase, responded poorly to abiotic stress, in contrast to the significant enhancement found for the activities of the TDP synthesizing enzyme, thiamine pyrophosphokinase, and a number of the TDP/TMP phosphatases. Finally, a moderate increase in the activity of transketolase, one of the major TDP-dependent enzymes, was detectable under conditions of salt and oxidative stress. These findings suggest a role of thiamine metabolism in the plant response to environmental stress.

  6. ABIOTIC DEGRADATION OF TRICHLOROETHYLENE UNDER THERMAL REMEDIATION CONDITIONS

    EPA Science Inventory

    The degradation of TCE (C2HCl3) to carbon dioxide (CO2) and chloride (Cl-) has been reported to occur during thermal remediation of subsurface environments. The overall goal of this study was to evaluate abiotic degradation of TCE at el...

  7. Maternal, social and abiotic environmental effects on growth vary across life stages in a cooperative mammal.

    PubMed

    English, Sinead; Bateman, Andrew W; Mares, Rafael; Ozgul, Arpat; Clutton-Brock, Tim H

    2014-03-01

    Resource availability plays a key role in driving variation in somatic growth and body condition, and the factors determining access to resources vary considerably across life stages. Parents and carers may exert important influences in early life, when individuals are nutritionally dependent, with abiotic environmental effects having stronger influences later in development as individuals forage independently. Most studies have measured specific factors influencing growth across development or have compared relative influences of different factors within specific life stages. Such studies may not capture whether early-life factors continue to have delayed effects at later stages, or whether social factors change when individuals become nutritionally independent and adults become competitors for, rather than providers of, food. Here, we examined variation in the influence of the abiotic, social and maternal environment on growth across life stages in a wild population of cooperatively breeding meerkats. Cooperatively breeding vertebrates are ideal for investigating environmental influences on growth. In addition to experiencing highly variable abiotic conditions, cooperative breeders are typified by heterogeneity both among breeders, with mothers varying in age and social status, and in the number of carers present. Recent rainfall had a consistently marked effect on growth across life stages, yet other seasonal terms only influenced growth during stages when individuals were growing fastest. Group size and maternal dominance status had positive effects on growth during the period of nutritional dependence on carers, but did not influence mass at emergence (at 1 month) or growth at independent stages (>4 months). Pups born to older mothers were lighter at 1 month of age and subsequently grew faster as subadults. Males grew faster than females during the juvenile and subadult stage only. Our findings demonstrate the complex ways in which the external environment

  8. Assessing Utilization and Environmental Risks of Important Genes in Plant Abiotic Stress Tolerance

    PubMed Central

    Khan, Mohammad S.; Khan, Muhammad A.; Ahmad, Dawood

    2016-01-01

    Transgenic plants with improved salt and drought stress tolerance have been developed with a large number of abiotic stress-related genes. Among these, the most extensively used genes are the glycine betaine biosynthetic codA, the DREB transcription factors, and vacuolar membrane Na+/H+ antiporters. The use of codA, DREBs, and Na+/H+ antiporters in transgenic plants has conferred stress tolerance and improved plant phenotype. However, the future deployment and commercialization of these plants depend on their safety to the environment. Addressing environmental risk assessment is challenging since mechanisms governing abiotic stress tolerance are much more complex than that of insect resistance and herbicide tolerance traits, which have been considered to date. Therefore, questions arise, whether abiotic stress tolerance genes need additional considerations and new measurements in risk assessment and, whether these genes would have effects on weediness and invasiveness potential of transgenic plants? While considering these concerns, the environmental risk assessment of abiotic stress tolerance genes would need to focus on the magnitude of stress tolerance, plant phenotype and characteristics of the potential receiving environment. In the present review, we discuss environmental concerns and likelihood of concerns associated with the use of abiotic stress tolerance genes. Based on our analysis, we conclude that the uses of these genes in domesticated crop plants are safe for the environment. Risk assessment, however, should be carefully conducted on biofeedstocks and perennial plants taking into account plant phenotype and the potential receiving environment. PMID:27446095

  9. Mismatch in microbial food webs: predators but not prey perform better in their local biotic and abiotic conditions.

    PubMed

    Parain, Elodie C; Gravel, Dominique; Rohr, Rudolf P; Bersier, Louis-Félix; Gray, Sarah M

    2016-07-01

    Understanding how trophic levels respond to changes in abiotic and biotic conditions is key for predicting how food webs will react to environmental perturbations. Different trophic levels may respond disproportionately to change, with lower levels more likely to react faster, as they typically consist of smaller-bodied species with higher reproductive rates. This response could cause a mismatch between trophic levels, in which predators and prey will respond differently to changing abiotic or biotic conditions. This mismatch between trophic levels could result in altered top-down and bottom-up control and changes in interaction strength. To determine the possibility of a mismatch, we conducted a reciprocal-transplant experiment involving Sarracenia purpurea food webs consisting of bacterial communities as prey and a subset of six morphologically similar protozoans as predators. We used a factorial design with four temperatures, four bacteria and protozoan biogeographic origins, replicated four times. This design allowed us to determine how predator and prey dynamics were altered by abiotic (temperature) conditions and biotic (predators paired with prey from either their local or non-local biogeographic origin) conditions. We found that prey reached higher densities in warmer temperature regardless of their temperature of origin. Conversely, predators achieved higher densities in the temperature condition and with the prey from their origin. These results confirm that predators perform better in abiotic and biotic conditions of their origin while their prey do not. This mismatch between trophic levels may be especially significant under climate change, potentially disrupting ecosystem functioning by disproportionately affecting top-down and bottom-up control.

  10. Differential kinetics and temperature dependence of abiotic and biotic processes controlling the environmental fate of TNT in simulated marine systems.

    PubMed

    Chappell, Mark A; Porter, Beth E; Price, Cynthia L; Pettway, Brad A; George, Robert D

    2011-08-01

    This work seeks to understand how the balance of abiotic and biotic kinetic processes in sediments control the residual concentration of TNT in marine systems after release from ocean-dumped source. Kinetics of TNT disappearance were followed using marine sediments at different temperatures and under both biotic and presumably abiotic conditions (through sodium azide addition). Sediments exhibiting the highest rate of TNT disappearance under biotic conditions also exhibited the highest sorption affinity for TNT under abiotic conditions. Significant temperature dependence in the abiotic processes was observed in the diffusion coefficient of TNT and not sediment sorption affinity. At higher temperature, kinetics of biotic processes outpaced abiotic processes, but at low temperature, kinetics of abiotic processes were much more significant. We concluded that the differential influence of temperature on the kinetics of abiotic and biotic processes could provide distinguishing predictions for the potential residual concentration of TNT contamination in marine-sediment systems.

  11. Negative effects of heterospecific pollen receipt vary with abiotic conditions: ecological and evolutionary implications

    PubMed Central

    Celaya, Ileana N.; Arceo-Gómez, Gerardo; Alonso, Conchita; Parra-Tabla, Víctor

    2015-01-01

    Background and Aims Studies that have evaluated the effects of heterospecific pollen (HP) receipt on plant reproductive success have generally overlooked the variability of the natural abiotic environment in which plants grow. Variability in abiotic conditions, such as light and water availability, has the potential to affect pollen–stigma interactions (i.e. conspecific pollen germination and performance), which will probably influence the effects of HP receipt. Thus, a more complete understanding of the extent, strength and consequences of plant–plant interactions via HP transfer requires better consideration of the range of abiotic conditions in which these interactions occur. This study addresses this issue by evaluating the effects of two HP donors (Tamonea curassavica and Angelonia angustifolia) on the reproductive success of Cuphea gaumeri, an endemic species of the Yucatan Peninsula. Methods Mixed (conspecific pollen and HP) and pure (conspecific pollen only) hand-pollinations were conducted under varying conditions of water and light availability in a full factorial design. Reproductive success was measured as the number of pollen tubes that reached the bottom of the style. Key Results Only one of the two HP donors had a significant effect on C. gaumeri reproductive success, but this effect was dependent on water and light availability. Specifically, HP receipt caused a decrease in pollen tube growth, but only when the availability of water, light or both was low, and not when the availability of both resources was high. Conclusions The results show that the outcome of interspecific post-pollination interactions via HP transfer can be context-dependent and vary with abiotic conditions, thus suggesting that abiotic effects in natural populations may be under-estimated. Such context-dependency could lead to spatial and temporal mosaics in the ecological and evolutionary consequences of post-pollination interactions. PMID:26199385

  12. Developing standards for environmental toxicants: the need to consider abiotic environmental factors and microbe-mediated ecologic processes.

    PubMed Central

    Babich, H; Stotzky, G

    1983-01-01

    This article suggests and discusses two novel aspects for the formulation of standards for environmental toxicants. First, uniform national standards for each pollutant will be underprotective for some ecosystems and overprotective for others, inasmuch as the toxicity of a pollutant to the indigenous biota is dependent on the physicochemical properties of the recipient environment. As the number of chemicals that need regulation is immense and as microbes appear to respond similarly to pollutant-abiotic factor interactions as do plants and animals, it is suggested that microbial assays be used initially to identify those abiotic factors that most influence the toxicity of specific pollutants. Thereafter, additional studies using plants and animals can focus on these pollutant-abiotic factor interactions, and more meaningful standards can then be formulated more rapidly and inexpensively. Second, it is suggested that the response to pollutants of microbe-mediated ecologic processes be used to quantitate the sensitivity of different ecosystems to various toxicants. Such a quantification, expressed in terms of an "ecological dose 50%" (EcD50), could be easily incorporated into the methodologies currently used to set water quality criteria and would also be applicable to setting criteria for terrestrial ecosystems. PMID:6339225

  13. A proposed abiotic reaction scheme for hydroxylamine and monochloramine under chloramination relevant drinking water conditions.

    PubMed

    Wahman, David G; Speitel, Gerald E; Machavaram, Madhav V

    2014-09-01

    Drinking water monochloramine (NH2Cl) use may promote ammonia-oxidizing bacteria (AOB). AOB use (i) ammonia monooxygenase for biological ammonia (NH3) oxidation to hydroxylamine (NH2OH) and (ii) hydroxylamine oxidoreductase for NH2OH oxidation to nitrite. NH2Cl and NH2OH may react, providing AOB potential benefits and detriments. The NH2Cl/NH2OH reaction would benefit AOB by removing the disinfectant (NH2Cl) and releasing their growth substrate (NH3), but the NH2Cl/NH2OH reaction would also provide a possible additional inactivation mechanism besides direct NH2Cl reaction with cells. Because biological NH2OH oxidation supplies the electrons required for biological NH3 oxidation, the NH2Cl/NH2OH reaction provides a direct mechanism for NH2Cl to inhibit NH3 oxidation, starving the cell of reductant by preventing biological NH2OH oxidation. To investigate possible NH2Cl/NH2OH reaction implications on AOB, an understanding of the underlying abiotic reaction is first required. The present study conducted a detailed literature review and proposed an abiotic NH2Cl/NH2OH reaction scheme (RS) for chloramination relevant drinking water conditions (μM concentrations, air saturation, and pH 7-9). Next, RS literature based kinetics and end-products were evaluated experimentally between pHs 7.7 and 8.3, representing (i) the pH range for future experiments with AOB and (ii) mid-range pHs typically found in chloraminated drinking water. In addition, a (15)N stable isotope experiment was conducted to verify nitrous oxide and nitrogen gas production and their nitrogen source. Finally, the RS was slightly refined using the experimental data and an AQUASIM implemented kinetic model. A chloraminated drinking water relevant RS is proposed and provides the abiotic reaction foundation for future AOB biotic experiments.

  14. Environmental Association Analyses Identify Candidates for Abiotic Stress Tolerance in Glycine soja, the Wild Progenitor of Cultivated Soybeans

    PubMed Central

    Anderson, Justin E.; Kono, Thomas J. Y.; Stupar, Robert M.; Kantar, Michael B.; Morrell, Peter L.

    2016-01-01

    Natural populations across a species range demonstrate population structure owing to neutral processes such as localized origins of mutations and migration limitations. Selection also acts on a subset of loci, contributing to local adaptation. An understanding of the genetic basis of adaptation to local environmental conditions is a fundamental goal in basic biological research. When applied to crop wild relatives, this same research provides the opportunity to identify adaptive genetic variation that may be used to breed for crops better adapted to novel or changing environments. The present study explores an ex situ conservation collection, the USDA germplasm collection, genotyped at 32,416 SNPs to identify population structure and test for associations with bioclimatic and biophysical variables in Glycine soja, the wild progenitor of Glycine max (soybean). Candidate loci were detected that putatively contribute to adaptation to abiotic stresses. The identification of potentially adaptive variants in this ex situ collection may permit a more targeted use of germplasm collections. PMID:26818076

  15. Environmental Association Analyses Identify Candidates for Abiotic Stress Tolerance in Glycine soja, the Wild Progenitor of Cultivated Soybeans.

    PubMed

    Anderson, Justin E; Kono, Thomas J Y; Stupar, Robert M; Kantar, Michael B; Morrell, Peter L

    2016-04-07

    Natural populations across a species range demonstrate population structure owing to neutral processes such as localized origins of mutations and migration limitations. Selection also acts on a subset of loci, contributing to local adaptation. An understanding of the genetic basis of adaptation to local environmental conditions is a fundamental goal in basic biological research. When applied to crop wild relatives, this same research provides the opportunity to identify adaptive genetic variation that may be used to breed for crops better adapted to novel or changing environments. The present study explores an ex situ conservation collection, the USDA germplasm collection, genotyped at 32,416 SNPs to identify population structure and test for associations with bioclimatic and biophysical variables in Glycine soja, the wild progenitor of Glycine max (soybean). Candidate loci were detected that putatively contribute to adaptation to abiotic stresses. The identification of potentially adaptive variants in this ex situ collection may permit a more targeted use of germplasm collections.

  16. Environmental Selenium Transformations: Distinguishing Abiotic and Biotic Factors Influencing Se Redox Transformations

    NASA Astrophysics Data System (ADS)

    Rosenfeld, C.; Kenyon, J.; James, B. R.; Santelli, C. M.

    2014-12-01

    Worldwide, selenium (Se) is proving to be a significant environmental concern, with many anthropogenic activities (e.g. coal mining and combustion, phosphate mining and agricultural irrigation) releasing potentially hazardous concentrations into surface and subsurface ecosystems. The US EPA is currently considering aquatic Se regulations, however no guidelines exist for excess soil Se, despite its ability to act as a persistent Se source. Various abiotic and biological processes mediate Se oxidation/reduction (redox) transformations in soils, thus influencing its solubility and bioavailability. In this research we assess (1) the ability of metal-transforming fungal species to aerobically reduce Se (Se (IV and/or VI) to Se(0)), and (2) the relative contribution of biotic and abiotic pathways for aerobic Se transformation. The primary objective of this research is to determine what abiotic and biotic factors enhance or restrict Se bioavailability. Results indicate that fungal-mediated Se reduction may be quite widespread, with at least 7 out of 10 species of known Mn(II)-oxidizing fungi isolated from metal impacted environments also identified as capable of aerobically reducing Se(IV) and/or Se(VI) to Se(0). Increasing concentrations of selenite (SeO32-; Se(IV)) and selenate (SeO42-; Se(VI)) generally reduced fungal growth rates, although selenate was more likely to inhibit fungal growth than selenite. To study oxidation, Se(0) was combined with Mn(III/IV) (hydr)oxides (henceforth referred to as Mn oxides), Se-transforming fungi (Alternaria alternata), and oxalic acid to mimic Se biogeochemistry at the plant-soil interface. Increased pH in the presence of fungi (7.2 with fungi, 6.8 without fungi after 24 days) was observed. Additionally, a slight decrease in redox potential was measured for incubations without Mn oxides (236 mV with Mn oxides, 205 mV without Mn oxides after 24 days), indicating that Mn oxides may enhance Se oxidation. Elemental Se oxidation rates to

  17. Connecting RNA Processing to Abiotic Environmental Response in Arabidopsis: the role of a polyadenylation factor

    NASA Astrophysics Data System (ADS)

    Li, Q. Q.; Xu, R.; Hunt, A. G.; Falcone, D. L.

    Plants are constantly challenged by numerous environmental stresses both biotic and abiotic It is clear that plants have evolved to counter these stresses using all but limited means We recently discovered the potential role of a messenger RNA processing factor namely the Arabidopsis cleavage and polyadenylation specificity factor 30 kDa subunit AtCPSF30 when a mutant deficient in this factor displayed altered responses to an array of abiotic stresses This AtCPSF30 mutant named oxt6 exhibited an elevated tolerance to oxidative stress Microarray experiments of oxt6 and its complemented lines revealed an altered gene expression profile among which were antioxidative defense genes Interestingly the same gene encoding AtCPSF30 can also be transcribed into a large transcript that codes for a potential splicing factor Both protein products have a domain for RNA binding and a calmodulin binding domain activities of which have been confirmed by biochemical assays Surprisingly binding of AtCPSF30 to calmodulin inhibits the RNA-binding activity of the protein Mutational analysis shows that a small part of the protein is responsible for calmodulin binding and point mutations in this region abolished both RNA binding activity and the inhibition of this activity by calmodulin Analyses of the potential splicing factor are on going and the results will be presented The interesting possibilities for both the interplay between splicing and polyadenylation and the regulation of these processes by stimuli that act through

  18. Iron-mediated microbial oxidation and abiotic reduction of organic contaminants under anoxic conditions.

    PubMed

    Tobler, Nicole B; Hofstetter, Thomas B; Straub, Kristina L; Fontana, Daniela; Schwarzenbach, René P

    2007-11-15

    In anoxic environments, the oxidation of organic compounds, such as BTEX fuel components, by dissimilatory Fe(III) reduction can generate reactive mineral-bound Fe(II) species, which in turn are able to reduce other classes of organic and inorganic groundwater contaminants. In this study, we designed and evaluated an anaerobic batch reactor that mimicks iron-reducing conditions to investigate the factors that favor the coupling of microbial toluene oxidation and abiotic reduction of nitroaromatic contaminants. We investigated the influence of different Fe(III)-bearing minerals and combinations thereof on the coupling of these two processes. Results from laboratory model systems show that complete oxidation of toluene to CO2 by Geobacter metallireducens in the presence of Fe(III)-bearing minerals leads to the formation of mineral-bound Fe(II) species capable of the reduction of 4-nitroacetophenone. Whereas significant microbial toluene oxidation was only observed in the presence of amorphous Fe(III) phases, reduction of nitroaromatic compounds only proceeded with Fe(II) species bound to crystalline Fe(III) oxides. Our results suggest that in anoxic soils and sediments containing amorphous and crystalline iron phases simultaneously, coupling of microbial oxidation and abiotic reduction of organic compounds may allow for concurrent natural attenuation of different contaminant classes.

  19. Abiotic Formation of Valine Peptides Under Conditions of High Temperature and High Pressure

    NASA Astrophysics Data System (ADS)

    Furukawa, Yoshihiro; Otake, Tsubasa; Ishiguro, Takato; Nakazawa, Hiromoto; Kakegawa, Takeshi

    2012-12-01

    We investigated the oligomerization of solid valine and the stabilities of valine and valine peptides under conditions of high temperature (150-200 °C) and high pressure (50-150 MPa). Experiments were performed under non-aqueous condition in order to promote dehydration reaction. After prolonged exposure of monomeric valine to elevated temperatures and pressures, the products were analyzed by liquid chromatography mass spectrometry comparing their retention times and masses. We identified linear peptides that ranged in size from dimer to hexamer, as well as a cyclic dimer. Previous studies that attempted abiotic oligomerization of valine in the absence of a catalyst have never reported valine peptides larger than a dimer. Increased reaction temperature increased the dissociative decomposition of valine and valine peptides to products such as glycine, β-alanine, ammonia, and amines by processes such as deamination, decarboxylation, and cracking. The amount of residual valine and peptide yields was greater at higher pressures at a given temperature, pressure, and reaction time. This suggests that dissociative decomposition of valine and valine peptides is reduced by pressure. Our findings are relevant to the investigation of diagenetic processes in prebiotic marine sediments where similar pressures occur under water-poor conditions. These findings also suggest that amino acids, such as valine, could have been polymerized to peptides in deep prebiotic marine sediments within a few hundred million years.

  20. Robust RNA silencing-mediated resistance to Plum pox virus under variable abiotic and biotic conditions.

    PubMed

    Di Nicola, Elisa; Tavazza, Mario; Lucioli, Alessandra; Salandri, Laura; Ilardi, Vincenza

    2014-10-01

    Some abiotic and biotic conditions are known to have a negative impact on post-transcriptional gene silencing (PTGS), thus representing a potential concern for the production of stable engineered virus resistance traits. However, depending on the strategy followed to achieve PTGS of the transgene, different responses to external conditions can be expected. In the present study, we utilized the Nicotiana benthamiana–Plum pox virus (PPV) pathosystem to evaluate in detail the stability of intron-hairpin(ihp)-mediated virus resistance under conditions known to adversely affect PTGS. The ihp plants grown at low or high temperatures were fully resistant to multiple PPV challenges, different PPV inoculum concentrations and even to a PPV isolate differing from the ihp construct by more than 28% at the nucleotide level. In addition, infections of ihp plants with viruses belonging to Cucumovirus, Potyvirus or Tombusvirus, all known to affect PTGS at different steps, were not able to defeat PPV resistance. Low temperatures did not affect the accumulation of transgenic small interfering RNAs (siRNAs), whereas a clear increase in the amount of siRNAs was observed during infections sustained by Cucumber mosaic virus and Potato virus Y. Our results show that the above stress factors do not represent an important concern for the production,through ihp-PTGS technology, of transgenic plants having robust virus resistance traits.

  1. USING ABIOTIC INDICATORS OF REFERENCE CONDITION AND BIOTIC INDICATORS OF CONDITION TO ASSESS GREAT RIVER ECOSYSTEMS

    EPA Science Inventory

    This presentation outlines the approach and preliminary assessment results for EMAP-GRE. The use of biological indicators and reference conditions for river assessments has implications for scientists, river managers, and state and tribal natural resource regulators.

  2. Evaluation of Arbuscular Mycorrhizal Fungi Capacity to Alleviate Abiotic Stress of Olive (Olea europaea L.) Plants at Different Transplant Conditions

    PubMed Central

    Bompadre, María Josefina; Pérgola, Mariana; Fernández Bidondo, Laura; Colombo, Roxana Paula; Silvani, Vanesa Analía; Pardo, Alejandro Guillermo; Ocampo, Juan Antonio; Godeas, Alicia Margarita

    2014-01-01

    The capacity of roots to sense soil physicochemical parameters plays an essential role in maintaining plant nutritional and developmental functions under abiotic stress. These conditions generate reactive oxygen species (ROS) in plant tissues causing oxidation of proteins and lipids among others. Some plants have developed adaptive mechanisms to counteract such adverse conditions such as symbiotic association with arbuscular mycorrhizal fungi (AMF). AMF enhance plant growth and improve transplant survival by protecting host plants against environmental stresses. The aim of this study was to evaluate the alleviation of transplanting stress by two strains of Rhizophagus irregularis (GC2 and GA5) in olive. Our results show that olive plants have an additional energetic expense in growth due to an adaptative response to the growing stage and to the mycorrhizal colonization at the first transplant. However, at the second transplant the coinoculation improves olive plant growth and protects against oxidative stress followed by the GA5-inoculation. In conclusion, a combination of two AMF strains at the beginning of olive propagation produces vigorous plants successfully protected in field cultivation even with an additional cost at the beginning of growth. PMID:24688382

  3. Evaluation of arbuscular mycorrhizal fungi capacity to alleviate abiotic stress of olive (Olea europaea L.) plants at different transplant conditions.

    PubMed

    Bompadre, María Josefina; Pérgola, Mariana; Fernández Bidondo, Laura; Colombo, Roxana Paula; Silvani, Vanesa Analía; Pardo, Alejandro Guillermo; Ocampo, Juan Antonio; Godeas, Alicia Margarita

    2014-01-01

    The capacity of roots to sense soil physicochemical parameters plays an essential role in maintaining plant nutritional and developmental functions under abiotic stress. These conditions generate reactive oxygen species (ROS) in plant tissues causing oxidation of proteins and lipids among others. Some plants have developed adaptive mechanisms to counteract such adverse conditions such as symbiotic association with arbuscular mycorrhizal fungi (AMF). AMF enhance plant growth and improve transplant survival by protecting host plants against environmental stresses. The aim of this study was to evaluate the alleviation of transplanting stress by two strains of Rhizophagus irregularis (GC2 and GA5) in olive. Our results show that olive plants have an additional energetic expense in growth due to an adaptative response to the growing stage and to the mycorrhizal colonization at the first transplant. However, at the second transplant the coinoculation improves olive plant growth and protects against oxidative stress followed by the GA5-inoculation. In conclusion, a combination of two AMF strains at the beginning of olive propagation produces vigorous plants successfully protected in field cultivation even with an additional cost at the beginning of growth.

  4. Effect of H2 and redox condition on biotic and abiotic MTBE transformation

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.; Landmeyer, J.E.

    2006-01-01

    Laboratory studies conducted with surface water sediment from a methyl tert-butyl ether (MTBE)-contaminated site in South Carolina demonstrated that, under methanogenic conditions, [U-14C] MTBE was transformed to 14C tert-butyl alcohol (TBA) with no measurable production of 14CO2. Production of TBA was not attributed to the activity of methanogenic microorganisms, however, because comparable transformation of [U-14C] MTBE to 14C-TBA also was observed in heat-sterilized controls with dissolved H2 concentrations > 5 nM. The results suggest that the transformation of MTBE to TBA may be an abiotic process that is driven by biologically produced H2 under in situ conditions. In contrast, mineralization of [U-14C] MTBE to 14CO2 was completely inhibited by heat sterilization and only observed in treatments characterized by dissolved H2 concentrations < 2 nM. These results suggest that the pathway of MTBE transformation is influenced by in situ H2 concentrations and that in situ H2 concentrations may be an useful indicator of MTBE transformation pathways in ground water systems.

  5. A Modelling Framework to Assess the Effect of Pressures on River Abiotic Habitat Conditions and Biota.

    PubMed

    Kail, Jochem; Guse, Björn; Radinger, Johannes; Schröder, Maria; Kiesel, Jens; Kleinhans, Maarten; Schuurman, Filip; Fohrer, Nicola; Hering, Daniel; Wolter, Christian

    2015-01-01

    River biota are affected by global reach-scale pressures, but most approaches for predicting biota of rivers focus on river reach or segment scale processes and habitats. Moreover, these approaches do not consider long-term morphological changes that affect habitat conditions. In this study, a modelling framework was further developed and tested to assess the effect of pressures at different spatial scales on reach-scale habitat conditions and biota. Ecohydrological and 1D hydrodynamic models were used to predict discharge and water quality at the catchment scale and the resulting water level at the downstream end of a study reach. Long-term reach morphology was modelled using empirical regime equations, meander migration and 2D morphodynamic models. The respective flow and substrate conditions in the study reach were predicted using a 2D hydrodynamic model, and the suitability of these habitats was assessed with novel habitat models. In addition, dispersal models for fish and macroinvertebrates were developed to assess the re-colonization potential and to finally compare habitat suitability and the availability/ability of species to colonize these habitats. Applicability was tested and model performance was assessed by comparing observed and predicted conditions in the lowland Treene River in northern Germany. Technically, it was possible to link the different models, but future applications would benefit from the development of open source software for all modelling steps to enable fully automated model runs. Future research needs concern the physical modelling of long-term morphodynamics, feedback of biota (e.g., macrophytes) on abiotic habitat conditions, species interactions, and empirical data on the hydraulic habitat suitability and dispersal abilities of macroinvertebrates. The modelling framework is flexible and allows for including additional models and investigating different research and management questions, e.g., in climate impact research as well as

  6. A Modelling Framework to Assess the Effect of Pressures on River Abiotic Habitat Conditions and Biota

    PubMed Central

    Kail, Jochem; Guse, Björn; Radinger, Johannes; Schröder, Maria; Kiesel, Jens; Kleinhans, Maarten; Schuurman, Filip; Fohrer, Nicola; Hering, Daniel; Wolter, Christian

    2015-01-01

    River biota are affected by global reach-scale pressures, but most approaches for predicting biota of rivers focus on river reach or segment scale processes and habitats. Moreover, these approaches do not consider long-term morphological changes that affect habitat conditions. In this study, a modelling framework was further developed and tested to assess the effect of pressures at different spatial scales on reach-scale habitat conditions and biota. Ecohydrological and 1D hydrodynamic models were used to predict discharge and water quality at the catchment scale and the resulting water level at the downstream end of a study reach. Long-term reach morphology was modelled using empirical regime equations, meander migration and 2D morphodynamic models. The respective flow and substrate conditions in the study reach were predicted using a 2D hydrodynamic model, and the suitability of these habitats was assessed with novel habitat models. In addition, dispersal models for fish and macroinvertebrates were developed to assess the re-colonization potential and to finally compare habitat suitability and the availability / ability of species to colonize these habitats. Applicability was tested and model performance was assessed by comparing observed and predicted conditions in the lowland Treene River in northern Germany. Technically, it was possible to link the different models, but future applications would benefit from the development of open source software for all modelling steps to enable fully automated model runs. Future research needs concern the physical modelling of long-term morphodynamics, feedback of biota (e.g., macrophytes) on abiotic habitat conditions, species interactions, and empirical data on the hydraulic habitat suitability and dispersal abilities of macroinvertebrates. The modelling framework is flexible and allows for including additional models and investigating different research and management questions, e.g., in climate impact research as well

  7. The interactive biotic and abiotic processes of DDT transformation under dissimilatory iron-reducing conditions.

    PubMed

    Jin, Xin; Wang, Fang; Gu, Chenggang; Yang, Xinglun; Kengara, Fredrick O; Bian, Yongrong; Song, Yang; Jiang, Xin

    2015-11-01

    The objective of the study was to elucidate the biotic and abiotic processes under dissimilatory iron reducing conditions involved in reductive dechlorination and iron reduction. DDT transformation was investigated in cultures of Shewanella putrefaciens 200 with/without α-FeOOH. A modified first-order kinetics model was developed and described DDT transformation well. Both the α-FeOOH reduction rate and the dechlorination rate of DDT were positively correlated to the biomass. Addition of α-FeOOH enhanced reductive dechlorination of DDT by favoring the cell survival and generating Fe(II) which was absorbed on the surface of bacteria and iron oxide. 92% of the absorbed Fe(II) was Na-acetate (1M) extractable. However, α-FeOOH also played a negative role of competing for electrons as reflected by the dechlorination rate of DDT was inhibited when increasing the α-FeOOH from 1 g L(-1) to 5 g L(-1). DDT was measured to be toxic to S. putrefaciens 200. The metabolites DDD, DDE and DDMU were recalcitrant to S. putrefaciens 200. The results suggested that iron oxide was not the key factor to promote the dissipation of DDX (DDT and the metabolites), whereas the one-electron reduction potential (E1) of certain organochlorines is the main factor and that the E1 higher than the threshold of the reductive driving forces of DIRB probably ensures the occur of reductive dechlorination.

  8. Invasive earthworms interact with abiotic conditions to influence the invasion of common buckthorn (Rhamnus cathartica).

    PubMed

    Roth, Alexander M; Whitfeld, Timothy J S; Lodge, Alexandra G; Eisenhauer, Nico; Frelich, Lee E; Reich, Peter B

    2015-05-01

    Common buckthorn (Rhamnus cathartica L.) is one of the most abundant and ecologically harmful non-native plants in forests of the Upper Midwest United States. At the same time, European earthworms are invading previously glaciated areas in this region, with largely anecdotal evidence suggesting they compound the negative effects of buckthorn and influence the invasibility of these forests. Germination and seedling establishment are important control points for colonization by any species, and manipulation of the conditions influencing these life history stages may provide insight into why invasive species are successful in some environments and not others. Using a greenhouse microcosm experiment, we examined the effects of important biotic and abiotic factors on the germination and seedling establishment of common buckthorn. We manipulated light levels, leaf litter depth and earthworm presence to investigate the independent and interactive effects of these treatments on buckthorn establishment. We found that light and leaf litter depth were significant predictors of buckthorn germination but that the presence of earthworms was the most important factor; earthworms interacted with light and leaf litter to increase the number and biomass of buckthorn across all treatments. Path analysis suggested both direct and moisture-mediated indirect mechanisms controlled these processes. The results suggest that the action of earthworms may provide a pathway through which buckthorn invades forests of the Upper Midwest United States. Hence, researchers and managers should consider co-invasion of plants and earthworms when investigating invasibility and creating preemptive or post-invasion management plans.

  9. Mechanisms of hydroxyl radical production from abiotic oxidation of pyrite under acidic conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Yuan, Songhu; Liao, Peng

    2016-01-01

    Hydroxyl radicals (radOH) produced from pyrite oxidation by O2 have been recognized, but mechanisms regarding the production under anoxic and oxic conditions are not well understood. In this study, the mechanisms of radOH production from pyrite oxidation under anoxic and oxic conditions were explored using benzoic acid (BA) as an radOH probe. Batch experiments were conducted at pH 2.6 to explore radOH production under anoxic and oxic conditions. The cumulative radOH concentrations produced under anoxic and oxic conditions increased linearly to 7.5 and 52.2 μM, respectively within 10 h at 10 g/L pyrite. Under anoxic conditions, radOH was produced from the oxidation of H2O on the sulfur-deficient sites on pyrite surface, showing an increased production with the increase of pyrite surface exposure due to oxidation. Under oxic conditions, the formation of radOH proceeds predominantly via the two-electron reduction of O2 on pyrite surface along with a minor contribution from the oxidation of H2O on surface sulfur-defects and the reactions of Fe2+/sulfur intermediates with O2. For both O2 reduction and H2O oxidation on the surface sulfur-defects, H2O2 was the predominant intermediate, which subsequently transformed to radOH through Fenton mechanism. The radOH produced had a significant impact on the transformation of contaminants in the environment. Anoxic pyrite suspensions oxidized 13.9% As(III) (C0 = 6.67 μM) and 17.6% sulfanilamide (C0 = 2.91 μM) within 10 h at pH 2.6 and 10 g/L pyrite, while oxic pyrite suspensions improved the oxidation percentages to 55.4% for As(III) and 51.9% for sulfanilamide. The ratios of anoxic to oxic oxidation are consistent with the relative contribution of surface sulfur-defects to radOH production. However, Fe2+ produced from pyrite oxidation competed with the contaminants for radOH, which is of particular significance with the increase of time in a static environment. We conclude that radOH can be produced from abiotic oxidation of

  10. Evaluation of the yield of abiotic-stress-tolerant AtDREB1A transgenic potato under saline conditions in advance of field trials.

    PubMed

    Shimazaki, Takayoshi; Endo, Tsukasa; Kasuga, Mie; Yamaguchi-Shinozaki, Kazuko; Watanabe, Kazuo N; Kikuchi, Akira

    2016-12-01

    Cultivated potato is a drought-, salinity-, and frost-sensitive species. The transgenic approach is one of the methods used to mitigate abiotic stress. The utility of transgenic potatoes that have abiotic stress tolerance should be judged from their yield under stress conditions. In order to establish transgenic potato lines with the AtDREB1A gene that could be used in practical applications, we screened candidate lines in a growth room with growth profiles under non-stress conditions rather than the expression level of transgene. After identifying better transgenic lines (D163 and D164), yield of those lines under stress conditions was evaluated in the special netted-house. Although the yield was lower than the yield under non-stress conditions, two selected transgenic lines were able to maintain their yield under high saline conditions (EC > 10 mS/cm). In this study, fertilizer was not added beyond what was already contained in the soil mix in order to evaluate the yield of the transgenic lines under saline conditions in as simple a manner as possible. In future studies, it will be necessary to evaluate their yield in a farming context in an isolated field after assessing the environmental biosafety of these transgenic potato lines.

  11. Evaluation of the yield of abiotic-stress-tolerant AtDREB1A transgenic potato under saline conditions in advance of field trials

    PubMed Central

    Shimazaki, Takayoshi; Endo, Tsukasa; Kasuga, Mie; Yamaguchi-Shinozaki, Kazuko; Watanabe, Kazuo N.; Kikuchi, Akira

    2016-01-01

    Cultivated potato is a drought-, salinity-, and frost-sensitive species. The transgenic approach is one of the methods used to mitigate abiotic stress. The utility of transgenic potatoes that have abiotic stress tolerance should be judged from their yield under stress conditions. In order to establish transgenic potato lines with the AtDREB1A gene that could be used in practical applications, we screened candidate lines in a growth room with growth profiles under non-stress conditions rather than the expression level of transgene. After identifying better transgenic lines (D163 and D164), yield of those lines under stress conditions was evaluated in the special netted-house. Although the yield was lower than the yield under non-stress conditions, two selected transgenic lines were able to maintain their yield under high saline conditions (EC > 10 mS/cm). In this study, fertilizer was not added beyond what was already contained in the soil mix in order to evaluate the yield of the transgenic lines under saline conditions in as simple a manner as possible. In future studies, it will be necessary to evaluate their yield in a farming context in an isolated field after assessing the environmental biosafety of these transgenic potato lines. PMID:28163586

  12. Interactions of biotic and abiotic environmental factors in an ectomycorrhizal symbiosis, and the potential for selection mosaics

    PubMed Central

    Piculell, Bridget J; Hoeksema, Jason D; Thompson, John N

    2008-01-01

    Background Geographic selection mosaics, in which species exert different evolutionary impacts on each other in different environments, may drive diversification in coevolving species. We studied the potential for geographic selection mosaics in plant-mycorrhizal interactions by testing whether the interaction between bishop pine (Pinus muricata D. Don) and one of its common ectomycorrhizal fungi (Rhizopogon occidentalis Zeller and Dodge) varies in outcome, when different combinations of plant and fungal genotypes are tested under a range of different abiotic and biotic conditions. Results We used a 2 × 2 × 2 × 2 factorial experiment to test the main and interactive effects of plant lineage (two maternal seed families), fungal lineage (two spore collections), soil type (lab mix or field soil), and non-mycorrhizal microbes (with or without) on the performance of plants and fungi. Ecological outcomes, as assessed by plant and fungal performance, varied widely across experimental environments, including interactions between plant or fungal lineages and soil environmental factors. Conclusion These results show the potential for selection mosaics in plant-mycorrhizal interactions, and indicate that these interactions are likely to coevolve in different ways in different environments, even when initially the genotypes of the interacting species are the same across all environments. Hence, selection mosaics may be equally as effective as genetic differences among populations in driving divergent coevolution among populations of interacting species. PMID:18507825

  13. Individual Cell Based Traits Obtained by Scanning Flow-Cytometry Show Selection by Biotic and Abiotic Environmental Factors during a Phytoplankton Spring Bloom

    PubMed Central

    Pomati, Francesco; Kraft, Nathan J. B.; Posch, Thomas; Eugster, Bettina; Jokela, Jukka; Ibelings, Bas W.

    2013-01-01

    In ecology and evolution, the primary challenge in understanding the processes that shape biodiversity is to assess the relationship between the phenotypic traits of organisms and the environment. Here we tested for selection on physio-morphological traits measured by scanning flow-cytometry at the individual level in phytoplankton communities under a temporally changing biotic and abiotic environment. Our aim was to study how high-frequency temporal changes in the environment influence biodiversity dynamics in a natural community. We focused on a spring bloom in Lake Zurich (Switzerland), characterized by rapid changes in phytoplankton, water conditions, nutrients and grazing (mainly mediated by herbivore ciliates). We described bloom dynamics in terms of taxonomic and trait-based diversity and found that diversity dynamics of trait-based groups were more pronounced than those of identified phytoplankton taxa. We characterized the linkage between measured phytoplankton traits, abiotic environmental factors and abundance of the main grazers and observed weak but significant correlations between changing abiotic and biotic conditions and measured size-related and fluorescence-related traits. We tested for deviations in observed community-wide distributions of focal traits from random patterns and found evidence for both clustering and even spacing of traits, occurring sporadically over the time series. Patterns were consistent with environmental filtering and phenotypic divergence under herbivore pressure, respectively. Size-related traits showed significant even spacing during the peak of herbivore abundance, suggesting that morphology-related traits were under selection from grazing. Pigment distribution within cells and colonies appeared instead to be associated with acclimation to temperature and water chemistry. We found support for trade-offs among grazing resistance and environmental tolerance traits, as well as for substantial periods of dynamics in which

  14. Modeling regeneration responses of big sagebrush (Artemisia tridentata) to abiotic conditions

    USGS Publications Warehouse

    Schlaepfer, Daniel R.; Lauenroth, William K.; Bradford, John B.

    2014-01-01

    Ecosystems dominated by big sagebrush, Artemisia tridentata Nuttall (Asteraceae), which are the most widespread ecosystems in semiarid western North America, have been affected by land use practices and invasive species. Loss of big sagebrush and the decline of associated species, such as greater sage-grouse, are a concern to land managers and conservationists. However, big sagebrush regeneration remains difficult to achieve by restoration and reclamation efforts and there is no regeneration simulation model available. We present here the first process-based, daily time-step, simulation model to predict yearly big sagebrush regeneration including relevant germination and seedling responses to abiotic factors. We estimated values, uncertainty, and importance of 27 model parameters using a total of 1435 site-years of observation. Our model explained 74% of variability of number of years with successful regeneration at 46 sites. It also achieved 60% overall accuracy predicting yearly regeneration success/failure. Our results identify specific future research needed to improve our understanding of big sagebrush regeneration, including data at the subspecies level and improved parameter estimates for start of seed dispersal, modified wet thermal-time model of germination, and soil water potential influences. We found that relationships between big sagebrush regeneration and climate conditions were site specific, varying across the distribution of big sagebrush. This indicates that statistical models based on climate are unsuitable for understanding range-wide regeneration patterns or for assessing the potential consequences of changing climate on sagebrush regeneration and underscores the value of this process-based model. We used our model to predict potential regeneration across the range of sagebrush ecosystems in the western United States, which confirmed that seedling survival is a limiting factor, whereas germination is not. Our results also suggested that modeled

  15. Constraining the role of iron in environmental nitrogen transformations: Dual stable isotope systematics of abiotic NO2- reduction by Fe(II) and its production of N2O

    NASA Astrophysics Data System (ADS)

    Buchwald, Carolyn; Grabb, Kalina; Hansel, Colleen M.; Wankel, Scott D.

    2016-08-01

    Despite mounting evidence for biogeochemical interactions between iron and nitrogen, our understanding of their environmental importance remains limited. Here we present an investigation of abiotic nitrite (NO2-) reduction by Fe(II) or 'chemodenitrification', and its relevance to the production of nitrous oxide (N2O), specifically focusing on dual (N and O) isotope systematics under a variety of environmental conditions. We observe a range of kinetic isotope effects that are regulated by reaction rates, with faster rates at higher pH (∼8), higher concentrations of Fe(II) and in the presence of mineral surfaces. A clear non-linear relationship between rate constant and kinetic isotope effects of NO2- reduction was evident (with larger isotope effects at slower rates) and is interpreted as reflecting the dynamics of Fe(II)-N reaction intermediates. N and O isotopic composition of product N2O also suggests a complex network of parallel and/or competing pathways. Our findings suggest that NO2- reduction by Fe(II) may represent an important abiotic source of environmental N2O, especially in iron-rich environments experiencing dynamic redox variations. This study provides a multi-compound, multi-isotope framework for evaluating the environmental occurrence of abiotic NO2- reduction and N2O formation, helping future studies constrain the relative roles of abiotic and biological N2O production pathways.

  16. Multiple abiotic stimuli are integrated in the regulation of rice gene expression under field conditions

    PubMed Central

    Plessis, Anne; Hafemeister, Christoph; Wilkins, Olivia; Gonzaga, Zennia Jean; Meyer, Rachel Sarah; Pires, Inês; Müller, Christian; Septiningsih, Endang M; Bonneau, Richard; Purugganan, Michael

    2015-01-01

    Plants rely on transcriptional dynamics to respond to multiple climatic fluctuations and contexts in nature. We analyzed the genome-wide gene expression patterns of rice (Oryza sativa) growing in rainfed and irrigated fields during two distinct tropical seasons and determined simple linear models that relate transcriptomic variation to climatic fluctuations. These models combine multiple environmental parameters to account for patterns of expression in the field of co-expressed gene clusters. We examined the similarities of our environmental models between tropical and temperate field conditions, using previously published data. We found that field type and macroclimate had broad impacts on transcriptional responses to environmental fluctuations, especially for genes involved in photosynthesis and development. Nevertheless, variation in solar radiation and temperature at the timescale of hours had reproducible effects across environmental contexts. These results provide a basis for broad-based predictive modeling of plant gene expression in the field. DOI: http://dx.doi.org/10.7554/eLife.08411.001 PMID:26609814

  17. Stress-related hormones and glycinebetaine interplay in protection of photosynthesis under abiotic stress conditions.

    PubMed

    Kurepin, Leonid V; Ivanov, Alexander G; Zaman, Mohammad; Pharis, Richard P; Allakhverdiev, Suleyman I; Hurry, Vaughan; Hüner, Norman P A

    2015-12-01

    Plants subjected to abiotic stresses such as extreme high and low temperatures, drought or salinity, often exhibit decreased vegetative growth and reduced reproductive capabilities. This is often associated with decreased photosynthesis via an increase in photoinhibition, and accompanied by rapid changes in endogenous levels of stress-related hormones such as abscisic acid (ABA), salicylic acid (SA) and ethylene. However, certain plant species and/or genotypes exhibit greater tolerance to abiotic stress because they are capable of accumulating endogenous levels of the zwitterionic osmolyte-glycinebetaine (GB). The accumulation of GB via natural production, exogenous application or genetic engineering, enhances plant osmoregulation and thus increases abiotic stress tolerance. The final steps of GB biosynthesis occur in chloroplasts where GB has been shown to play a key role in increasing the protection of soluble stromal and lumenal enzymes, lipids and proteins, of the photosynthetic apparatus. In addition, we suggest that the stress-induced GB biosynthesis pathway may well serve as an additional or alternative biochemical sink, one which consumes excess photosynthesis-generated electrons, thus protecting photosynthetic apparatus from overreduction. Glycinebetaine biosynthesis in chloroplasts is up-regulated by increases in endogenous ABA or SA levels. In this review, we propose and discuss a model describing the close interaction and synergistic physiological effects of GB and ABA in the process of cold acclimation of higher plants.

  18. Environmentally relevant impacts of nano-TiO2 on abiotic degradation of bisphenol A under sunlight irradiation.

    PubMed

    Wu, Wei; Shan, Guoqiang; Wang, Shanfeng; Zhu, Lingyan; Yue, Longfei; Xiang, Qian; Zhang, Yinqing; Li, Zhuo

    2016-09-01

    Understanding the effects of nano-TiO2 particles on the environmental behaviors of organic pollutants in natural aquatic environments is of paramount importance considering that large amount of nano-TiO2 is being released in the environment. In this study, the effect of nano-TiO2 on the degradation of bisphenol A (BPA) in water was investigated under simulated solar light irradiation. The results indicated that nano-TiO2 at environmentally relevant concentration (1 mg/L) could significantly facilitate the abiotic degradation of BPA (also at low concentration) under mild solar light irradiation, with the pseudo first-order rate constant (kobs) for BPA degradation raised by 1-2 orders of magnitude. As reflected by the inhibition experiments, hydroxyl radicals (OHs) and superoxide radical species were the predominant active species responsible for BPA degradation. The reaction was affected by water pH, and the degradation rate was higher at acidic or alkaline conditions than that at neutral condition. Humic acid (HA) also affected the reaction rate, depending on its concentration. At lower concentration (the mass ratio of HA/nano-TiO2 was 0.1:1), HA improved the dispersion and stability of nano-TiO2 in aquatic environment. As a result, the yield of OHs by nano-TiO2 under sunlight irradiation increased and BPA degradation was facilitated. When the HA concentration increased, a coating of HA formed on the surface of nano-TiO2. Although nano-TiO2 became more stable, the light absorption by nano-TiO2 was significantly reduced due to the strong light absorption of the HA coated on the surface. As a consequence, the yield of OH decreased and BPA degradation was depressed. The results imply that nano-TiO2 at low concentration may distinctly mediate BPA degradation, and can contribute to the natural attenuation of some organic pollutants in aquatic environment with low level of HA. However, this process would be significantly reduced in the presence of high level of HA.

  19. Silicon: a duo synergy for regulating crop growth and hormonal signaling under abiotic stress conditions.

    PubMed

    Kim, Yoon-Ha; Khan, Abdul Latif; Lee, In-Jung

    2016-12-01

    Abiotic stresses, such as salinity, heavy metals and drought, are some of the most devastating factors hindering sustainable crop production today. Plants use their own defensive strategies to cope with the adverse effects of these stresses, via the regulation of the expression of essential phytohormones, such as gibberellins (GA), salicylic acid (SA), jasmonates (JA), abscisic acid (ABA) and ethylene (ET). However, the efficacy of the endogenous defensive arsenals of plants often falls short if the stress persists over an extended period. Various strategies are developed to improve stress tolerance in plants. For example, silicon (Si) is widely considered to possess significant potential as a substance which ameliorate the negative effects of abiotic stresses, and improves plant growth and biomass accumulation. This review aims to explain how Si application influences the signaling of the endogenous hormones GA, SA, ABA, JA and ET during salinity, wounding, drought and metal stresses in crop plants. Phytohormonal cross talk plays an important role in the regulation of induced defences against stress. However, detailed molecular and proteomic research into these interactions is needed in order to identify the underlying mechanisms of stress tolerance that is imparted by Si application and uptake.

  20. Responses to abiotic environmental stresses among phylloplane and soil isolates of Beauveria bassiana from two holm oak ecosystems.

    PubMed

    Fernández-Bravo, María; Garrido-Jurado, Inmaculada; Valverde-García, Pablo; Enkerli, Jürg; Quesada-Moraga, Enrique

    2016-11-01

    The response of entomopathogenic mitosporic ascomycete (EMAs) to abiotic stresses might be adapted to the microhabitats in which they inhabit. In phylloplane, these organisms are more exposed to such stresses than they are in soil, which may have led to adaptation to this environment. In the present work, we investigate whether Beauveria bassiana genotype or isolation habitat, i.e., soil or phylloplane, within the same geographic area influences their responses to key environmental stresses, such as temperature, moisture and ultraviolet radiation (UV-B), which can affect their successful use in microbial control. Twenty isolates of B. bassiana obtained from the soil and phylloplane in two ecosystems from southern Spain (holm oak dehesa and a reforested area) were selected to study the population distribution of these isolates and evaluate their thermal, humidity and UV-B requirements. Molecular characterization was conducted by using elongation factor-1α (EF-1α), the intergenic nuclear region Bloc and 15 microsatellite primers. The cluster analysis based on concatenated EF-1α and Bloc sequences grouped the 20 isolates into five clades within B. basiana, with Clades a, b, d and e containing both soil and phylloplane isolates and Clade c including three phylloplane isolates. The dendrogram and the minimal spanning network generated from the genetic distances among multilocus genotypes showed four divergent groups corresponding to the five clades obtained based on the sequence data (Clades b and d were represented in the same group), with a high degree of shared alleles within groups and few alleles shared among groups. Although no relationship was found between MLG and the habitat (soil or phylloplane) of isolation, isolates grouped into Clade c, all of which were collected from phylloplane, formed a separate group of MLGs. To investigate our hypothesis, the responses to temperature (germination and colony growth evaluated in the range 15-35°C), water activity

  1. The effects of abiotic and biotic environmental components on the microbial mineralization of selected xenobiotic compounds in soils

    SciTech Connect

    Knaebel, D.B.

    1990-01-01

    This research investigated the effects of environmental components on the microbial mineralization of xenobiotic compounds in soils. The soils' chemical and physical characteristics, microbial community structure, organic and inorganic components, and other associated biota (plants) were examined for their effects on the biodegradation process. The biodegradation of {sup 14}C foreign, synthetic ({double bond} xenobiotic) compounds was measured by quantifying {sup 14} CO{sub 2} production over time. Mineralization kinetics were estimated by first-order and 3/2 order mineralization models. The compounds displayed different mineralization kinetics in the different soils, which were due to nature of the xenobiotic chemical and to abiotic and biotic soil characteristics. Specific soil components (montmorillonite, humic acids and fulvic acids) inhibited mineralization. Other soil components (sand, illite, kaolinite) had less effect on the biodegradation process. Modified soil microbial communities mineralized the compounds differently. Bacteria-enhanced soils metabolized the compounds to greater extents than the fungi-enhanced soils, which both mineralized the compounds more than actinomycete-enhanced soils. However, the rates of mineralization were only significantly different between the bacteria-enhanced soils and the actinomycete-enhanced soil. Plants significantly increased soil microbial biomass and activity, and stimulated the rate of microbial mineralization of xenobiotic compounds. However, they had no effect on the total amounts of mineralization. In summary, these diverse abiotic and biotic environmental components exerted tremendous influences on the microbial turnover of xenobiotic compounds in soils. Therefore, these components should be considered when modeling the fate of xenobiotic chemicals in the environment.

  2. Abiotic stress growth conditions induce different responses in kernel iron concentration across genotypically distinct maize inbred varieties.

    PubMed

    Kandianis, Catherine B; Michenfelder, Abigail S; Simmons, Susan J; Grusak, Michael A; Stapleton, Ann E

    2013-01-01

    The improvement of grain nutrient profiles for essential minerals and vitamins through breeding strategies is a target important for agricultural regions where nutrient poor crops like maize contribute a large proportion of the daily caloric intake. Kernel iron concentration in maize exhibits a broad range. However, the magnitude of genotype by environment (GxE) effects on this trait reduces the efficacy and predictability of selection programs, particularly when challenged with abiotic stress such as water and nitrogen limitations. Selection has also been limited by an inverse correlation between kernel iron concentration and the yield component of kernel size in target environments. Using 25 maize inbred lines for which extensive genome sequence data is publicly available, we evaluated the response of kernel iron density and kernel mass to water and nitrogen limitation in a managed field stress experiment using a factorial design. To further understand GxE interactions we used partition analysis to characterize response of kernel iron and weight to abiotic stressors among all genotypes, and observed two patterns: one characterized by higher kernel iron concentrations in control over stress conditions, and another with higher kernel iron concentration under drought and combined stress conditions. Breeding efforts for this nutritional trait could exploit these complementary responses through combinations of favorable allelic variation from these already well-characterized genetic stocks.

  3. Abiotic stress growth conditions induce different responses in kernel iron concentration across genotypically distinct maize inbred varieties

    PubMed Central

    Kandianis, Catherine B.; Michenfelder, Abigail S.; Simmons, Susan J.; Grusak, Michael A.; Stapleton, Ann E.

    2013-01-01

    The improvement of grain nutrient profiles for essential minerals and vitamins through breeding strategies is a target important for agricultural regions where nutrient poor crops like maize contribute a large proportion of the daily caloric intake. Kernel iron concentration in maize exhibits a broad range. However, the magnitude of genotype by environment (GxE) effects on this trait reduces the efficacy and predictability of selection programs, particularly when challenged with abiotic stress such as water and nitrogen limitations. Selection has also been limited by an inverse correlation between kernel iron concentration and the yield component of kernel size in target environments. Using 25 maize inbred lines for which extensive genome sequence data is publicly available, we evaluated the response of kernel iron density and kernel mass to water and nitrogen limitation in a managed field stress experiment using a factorial design. To further understand GxE interactions we used partition analysis to characterize response of kernel iron and weight to abiotic stressors among all genotypes, and observed two patterns: one characterized by higher kernel iron concentrations in control over stress conditions, and another with higher kernel iron concentration under drought and combined stress conditions. Breeding efforts for this nutritional trait could exploit these complementary responses through combinations of favorable allelic variation from these already well-characterized genetic stocks. PMID:24363659

  4. Review of Microbial Responses to Abiotic Environmental Factors in the Context of the Proposed Yucca Mountain Repository

    SciTech Connect

    Meike, A.; Stroes-Gascoyne, S.

    2000-08-01

    A workshop on Microbial Activities at Yucca Mountain (May 1995, Lafayette, CA) was held with the intention to compile information on all pertinent aspects of microbial activity for application to a potential repository at Yucca Mountain. The findings of this workshop set off a number of efforts intended to eventually incorporate the impacts of microbial behavior into performance assessment models. One effort was to expand an existing modeling approach to include the distinctive characteristics of a repository at Yucca Mountain (e.g., unsaturated conditions and a significant thermal load). At the same time, a number of experimental studies were initiated as well as a compilation of relevant literature to more thoroughly study the physical, chemical and biological parameters that would affect microbial activity under Yucca Mountain-like conditions. This literature search (completed in 1996) is the subject of the present document. The collected literature can be divided into four categories: (1) abiotic factors, (2) community dynamics and in-situ considerations, (3) nutrient considerations and (4) transport of radionuclides. The complete bibliography represents a considerable resource, but is too large to be discussed in one document. Therefore, the present report focuses on the first category, abiotic factors, and a discussion of these factors in order to facilitate the development of a model for Yucca Mountain.

  5. Abiotic Synthesis of Methane Under Alkaline Hydrothermal Conditions: the Effect of pH in Heterogeneous Catalysis

    NASA Astrophysics Data System (ADS)

    Foustoukos, D. I.; Qi, F.; Seyfried, W. E.

    2004-12-01

    Abiotic formation of methane in hydrothermal reaction zones at mid-ocean ridges likely occurs by Fischer-Tropsch catalytic processes involving reaction of CO2-bearing fluids with mineral surfaces. The elevated concentrations of dissolved methane and low molecular weight hydrocarbons observed in high temperature vent fluids issuing from ultramafic-hosted hydrothermal systems, in particular, suggest that Fe and Cr-bearing mineral phases attribute as catalysts, enhancing abiotic production of alkanes. The chemi-adsorption of dissolved CO2 on the catalytic mineral surface, however, might be influenced by a pH dependent surface electron charge developed within the mineral-fluid interface. Thus, a series of experiments was conducted to evaluate the role of pH on rates of carbon reduction in fluids coexisting with Fe-oxides at 390 degree C and 400 bars. At two distinct pH conditions, acidic (pH = 5) and alkaline (pH = 8.8), the abiotic production of isotopically labelled CH4(aq) was monitored during FeO reaction with aqueous NaCl-NaHCO3-H2-bearing fluid (0.56 mol/kg NaCl, 0.03 mol/kg NaH13CO3). Despite the lower H2(aq) concentrations (120 mmol/kg) in the high pH system, concentrations of abiogenic methane attained values of 195 umol/kg and 120 umol/kg respectively, suggesting enhanced catalytic properties of mineral under moderately high pH. X-ray photoelectron spectroscopy (XPS), performed on unreacted and final solid products, reveal the significantly greater abundances of alkyl (C-C-) groups on the surface of FeO oxidized at elevated pH, in comparison with mineral reacted at low pH conditions. Thus, enhanced adsorption of dissolved CO2 and the resulting Fischer-Tropsch formation of alkyl groups likely contributes to methane production observed at alkaline conditions. Introducing the effect of pH in the Fischer-Tropsch mechanism of alkane formation has important implications for the recently discovered Lost City ultramafic-hosted hydrothermal system, where elevated p

  6. The net effect of abiotic conditions and biotic interactions in a semi-arid ecosystem NE Spain: implications for the management and restoration.

    NASA Astrophysics Data System (ADS)

    Pueyo, Yolanda; Arroyo, Antonio I.; Saiz, Hugo; Alados, Concepción L.

    2014-05-01

    Degradation in arid and semiarid lands can be irreversible without human intervention, due to a positive plant-soil feedback where the loss of vegetation cover leads to soil degradation, which in turn hampers plant establishment. Human intervention in restoration actions usually involves the amendment of the degraded abiotic conditions, revegetation of bare areas, or both. However, abiotic amelioration is often expensive and too intrusive, and revegetation is not successful in many cases. Biotic interactions between plants, and more specifically facilitation by a "nurse" plant, have been proposed as a new via to take profit of improved abiotic conditions without intervention, and to increase the success rate of revegetation actions. But "nurse" plants can also interfere with others (i.e. by competition for resources or the release of allelopathic compounds), and the net balance between facilitation and interference could depend on plant types involved. We present recent observational and experimental studies performed in the semiarid ecosystems of the Middle Ebro Valley (NE Spain) about the role of abiotic conditions and biotic interactions in the productivity, dynamics and diversity of plant communities under different stress conditions (aridity and grazing). We found that all plant types studied (shrubs and perennial grasses) improved abiotic conditions (soil temperature and water availability for plants) with respect to open areas. However, only some shrubs (mainly Salsola vermiculata) had a positive net balance in the biotic interactions between plants, while other shrubs (Artemisia herba-alba) and perennial grasses (Lygeum spartum) showed interference with other plants. Moreover, the net balance between facilitation and interference among plants in the community shifted from competitive to neutral or from neutral to facilitative with increasing aridity. Grazing status did not strongly change the net biotic interactions between plants. Our results suggest that

  7. Constraining the role of iron in environmental nitrogen transformations. Dual stable isotope systematics of abiotic NO2- reduction by Fe(II) and its production of N2O

    SciTech Connect

    Johnston, David; Wankel, Scott David; Buchwald, Carolyn; Hansel, Colleen

    2015-09-16

    Redox reactions involving nitrogen and iron have been shown to have important implications for mobilization of priority contaminants. Thus, an understanding of the linkages between their biogeochemical cycling is critical for predicting subsurface mobilization of radionuclides such as uranium. Despite mounting evidence for biogeochemical interactions between iron and nitrogen, our understanding of their environmental importance remains limited. Here we present an investigation of abiotic nitrite (NO2-) reduction by Fe(II) or ‘chemodenitrification,’ and its relevance to the production of nitrous oxide (N2O), specifically focusing on dual (N and O) isotope systematics under a variety of environmentally relevant conditions. We observe a range of kinetic isotope effects that are regulated by reaction rates, with faster rates at higher pH (~8), higher concentrations of Fe(II) and in the presence of mineral surfaces. A clear non-linear relationship between rate constant and kinetic isotope effects of NO2- reduction was evident (with larger isotope effects at slower rates) and is interpreted as reflecting the dynamics of Fe(II)-N reaction intermediates. N and O isotopic composition of product N2O also suggests a complex network of parallel and/or competing pathways. Our findings suggest that NO2- reduction by Fe(II) may represent an important abiotic source of environmental N2O, especially in iron-rich environments experiencing dynamic redox variations. This study provides a multi-compound, multi-isotope framework for evaluating the environmental occurrence of abiotic NO2- reduction and N2O formation, helping future studies constrain the relative roles of abiotic and biological N2O production pathways.

  8. Reference Gene Validation for Quantitative PCR Under Various Biotic and Abiotic Stress Conditions in Toxoptera citricida (Hemiptera, Aphidiae).

    PubMed

    Shang, Feng; Wei, Dan-Dan; Jiang, Xuan-Zhao; Wei, Dong; Shen, Guang-Mao; Feng, Ying-Cai; Li, Ting; Wang, Jin-Jun

    2015-08-01

    The regulation of mRNA expression level is critical for gene expression studies. Currently, quantitative reverse transcription polymerase chain reaction (qRT-PCR) is commonly used to investigate mRNA expression level of genes under various experimental conditions. An important factor that determines the optimal quantification of qRT-PCR data is the choice of the reference gene for normalization. To advance gene expression studies in Toxoptera citricida (Kirkaldy), an important citrus pest and a main vector of the Citrus tristeza virus, we used five tools (GeNorm, NormFinder, BestKeeper, ΔCt methods, and RefFinder) to evaluate seven candidate reference genes (elongation factor-1 alpha [EF1α], beta tubulin [β-TUB], 18S ribosomal RNA [18S], RNA polymerase II large subunit (RNAP II), beta actin (β-ACT), alpha tubulin, and glyceraldhyde-3-phosphate dehydrogenase) under different biotic (developmental stages and wing dimorphism) and abiotic stress (thermal, starvation, and UV irradiation) conditions. The results showed that EF1α and 18S were the most stable genes under various biotic states, β-ACT and β-TUB during thermal stress, EF1α and RNAP II under starvation stress, and RNAP II, β-ACT, and EF1α under UV irradiation stress conditions. This study provides useful resources for the transcriptional profiling of genes in T. citricida and closely related aphid species.

  9. Three zinc-finger RNA-binding proteins in cabbage (Brassica rapa) play diverse roles in seed germination and plant growth under normal and abiotic stress conditions.

    PubMed

    Park, Ye Rin; Choi, Min Ji; Park, Su Jung; Kang, Hunseung

    2017-01-01

    Despite the increasing understanding of the stress-responsive roles of zinc-finger RNA-binding proteins (RZs) in several plant species, such as Arabidopsis thaliana, wheat (Triticum aestivum) and rice (Oryza sativa), the functions of RZs in cabbage (Brassica rapa) have not yet been elucidated. In this study, the functional roles of the three RZ family members present in the cabbage genome, designated as BrRZ1, BrRZ2 and BrRZ3, were investigated in transgenic Arabidopsis under normal and environmental stress conditions. Subcellular localization analysis revealed that all BrRZ proteins were exclusively localized in the nucleus. The expression levels of each BrRZ were markedly increased by cold, drought or salt stress and by abscisic acid (ABA) treatment. Expression of BrRZ3 in Arabidopsis retarded seed germination and stem growth and reduced seed yield of Arabidopsis plants under normal growth conditions. Germination of BrRZ2- or BrRZ3-expressing Arabidopsis seeds was delayed compared with that of wild-type seeds under dehydration or salt stress conditions and cold stress conditions, respectively. Seedling growth of BrRZ3-expressing transgenic Arabidopsis plants was significantly inhibited under salt, dehydration or cold stress conditions. Notably, seedling growth of all three BrRZ-expressing transgenic Arabidopsis plants was inhibited upon ABA treatment. Importantly, all BrRZs possessed RNA chaperone activity. Taken together, these results indicate that the three cabbage BrRZs harboring RNA chaperone activity play diverse roles in seed germination and seedling growth of plants under abiotic stress conditions as well as in the presence of ABA.

  10. Hydrolysis and photolysis of diacylhydrazines-type insect growth regulator JS-118 in aqueous solutions under abiotic conditions.

    PubMed

    Hu, J-Y; Liu, C; Zhang, Y-C; Zheng, Z-X

    2009-05-01

    JS-118 is a diacylhydrazines-type insect growth regulator which is now used extensively in China. The hydrolysis and photolysis of the pesticide JS-118 in aqueous solutions have been assessed under natural and controlled conditions in this project. Hydrolysis experimental results show that JS-118 is quite stable in aqueous solutions in dark, with no significant variations be observed in degradation under various conditions. Abiotic hydrolysis is relatively unimportant compared to photolysis. The rate of photodecomposition of JS-118 in aqueous solutions follows first-order kinetics both in UV radiation and natural sunlight. The degradation rates are faster under UV light than sunlight, with the half-lives (t (1/2) = ln2/k) of 6.00-10.85 min and 6.63-10.16 day, respectively. Under UV light, two major photoproducts are detected, and tentatively identified according to HPLC-MS spectral information as N-t-butyl-N-(3,5-dimethylbenzoyl) and 3,7-dimethyl-benzoatedihydrofuran. The corresponding photolysis pathways of JS-118 are also proposed. The results obtained indicate that direct photoreaction is an important dissipation pathway of JS-118 in natural water systems.

  11. Phenological mismatch with abiotic conditions implications for flowering in Arctic plants.

    PubMed

    Wheeler, Helen C; Høye, Toke T; Schmidt, Niels Martin; Svenning, Jens-Christian; Forchhammer, Mads C

    2015-03-01

    Although many studies have examined the phenological mismatches between interacting organisms, few have addressed the potential for mismatches between phenology and seasonal weather conditions. In the Arctic, rapid phenological changes in many taxa are occurring in association with earlier snowmelt. The timing of snowmelt is jointly affected by the size of the late winter snowpack and the temperature during the spring thaw. Increased winter snowpack results in delayed snowmelt, whereas higher air temperatures and faster snowmelt advance the timing of snowmelt. Where interannual variation in snowpack is substantial, changes in the timing of snowmelt can be largely uncoupled from changes in air temperature. Using detailed, long-term data on the flowering phenology of four arctic plant species from Zackenberg, Greenland, we investigate whether there is a phenological component to the temperature conditions experienced prior to and during flowering. In particular, we assess the role of timing of flowering in determining pre-flowering exposure to freezing temperatures and to the temperatures-experienced prior to flowering. We then examine the implications of flowering phenology for flower abundance. Earlier snowmelt resulted in greater exposure to freezing conditions, suggesting an increased potential for a mismatch between the timing of flowering and seasonal weather conditions and an increased potential for negative consequences, such as freezing 'damage. We also found a parabolic relationship between the timing of flowering and the temperature experienced during flowering after taking interannual temperature effects into account. If timing of flowering advances to a cooler period of the growing season, this may moderate the effects of a general warming trend across years. Flower abundance was quadratically associated with the timing of flowering, such that both early and late flowering led to lower flower abundance than did intermediate flowering. Our results

  12. Abiotic synthesis of amino acids and self-crystallization under prebiotic conditions

    NASA Astrophysics Data System (ADS)

    Jiang, Liying; Dziedzic, Pawel; Spacil, Zdenek; Zhao, Gui-Ling; Nilsson, Lennart; Ilag, Leopold L.; Córdova, Armando

    2014-10-01

    Building on previous research on the origin and homochirality of life, this study focuses on analyses profiling important building blocks of life: the natural amino acids. The spark discharge variation of the iconic Miller experiment was performed with a reducing gas mixture of ammonia, methane, water and hydrogen. Amino acid analysis using liquid chromatography coupled with tandem mass spectrometry after pre-column derivatizaiton revealed the generation of several amino acids including those essential for life. Re-crystallization of the synthetic products and enantiomeric ratio analysis were subsequently performed. Results from liquid chromatography coupled with either fluorescent detector or tandem mass spectrometry after pre-column derivatization with chiral reagent revealed spontaneous and effective asymmetric resolution of serine and alanine. This work describes a useful analytical platform for investigation of hypotheses regarding the origin and homochirality of amino acids under prebiotic conditions. The formation of numerous amino acids in the electric discharge experiment and the occurrence of high enantiomeric ratios of amino acids in re-crystallization experiment give valuable implications for future studies in unraveling fundamental questions regarding origins and evolution of life.

  13. Abiotic synthesis of amino acids and self-crystallization under prebiotic conditions

    PubMed Central

    Jiang, Liying; Dziedzic, Pawel; Spacil, Zdenek; Zhao, Gui-Ling; Nilsson, Lennart; Ilag, Leopold L.; Córdova, Armando

    2014-01-01

    Building on previous research on the origin and homochirality of life, this study focuses on analyses profiling important building blocks of life: the natural amino acids. The spark discharge variation of the iconic Miller experiment was performed with a reducing gas mixture of ammonia, methane, water and hydrogen. Amino acid analysis using liquid chromatography coupled with tandem mass spectrometry after pre-column derivatizaiton revealed the generation of several amino acids including those essential for life. Re-crystallization of the synthetic products and enantiomeric ratio analysis were subsequently performed. Results from liquid chromatography coupled with either fluorescent detector or tandem mass spectrometry after pre-column derivatization with chiral reagent revealed spontaneous and effective asymmetric resolution of serine and alanine. This work describes a useful analytical platform for investigation of hypotheses regarding the origin and homochirality of amino acids under prebiotic conditions. The formation of numerous amino acids in the electric discharge experiment and the occurrence of high enantiomeric ratios of amino acids in re-crystallization experiment give valuable implications for future studies in unraveling fundamental questions regarding origins and evolution of life. PMID:25346284

  14. Reference gene selection for quantitative real-time PCR normalization in Caragana intermedia under different abiotic stress conditions.

    PubMed

    Zhu, Jianfeng; Zhang, Lifeng; Li, Wanfeng; Han, Suying; Yang, Wenhua; Qi, Liwang

    2013-01-01

    Quantitative real-time reverse transcription polymerase chain reaction (qPCR), a sensitive technique for gene expression analysis, depends on the stability of the reference genes used for data normalization. Caragana intermedia, a native desert shrub with strong drought-resistance, sand-fixing capacity and high forage value that is widespread in the desert land of west and northwest China, has not been investigated regarding the identification of reference genes suitable for the normalization of qPCR data. In this study, 10 candidate reference genes were analyzed in C. intermedia subjected to different abiotic (osmotic, salt, cold and heat) stresses, in two distinct plant organs (roots and leaves). The expression stability of these genes was assessed using geNorm, NormFinder and BestKeeper algorithms. The best-ranked reference genes differed across the different sets of samples, but UNK2, PP2A and SAND were the most stable across all tested samples. UNK2 and SAND would be appropriate for normalizing gene expression data for salt-treated roots, whereas the combination of UNK2, SAND and EF-1α would be appropriate for salt-treated leaves. UNK1, UNK2 and PP2A would be appropriate for PEG-treated (osmotic) roots, whereas the combination of TIP41 and PP2A was the most suitable for PEG-treated leaves. SAND, PP2A and TIP41 exhibited the most stable expression in heat-treated leaves. In cold-treated leaves, SAND and EF-1α were the most stably expressed. To further validate the suitability of the reference genes identified in this study, the expression levels of DREB1 and DREB2 (homologs of AtDREB1 and AtDREB2) were studied in parallel. This study is the first systematic analysis for the selection of superior reference genes for qPCR in C. intermedia under different abiotic stress conditions, and will benefit future studies on gene expression in C. intermedia and other species of the leguminous genus Caragana.

  15. Mechanisms and Dynamics of Abiotic and Biotic Interactions at Environmental Interfaces

    SciTech Connect

    Roso, Kevin M.

    2006-06-01

    The Stanford EMSI (SEMSI) was established in 2004 through joint funding by the National Science Foundation and the OBER-ERSD. It encompasses a number of universities and national laboratories. The PNNL component of the SEMSI is funded by ERSD and is the focus of this report. This component has the objective of providing theory support to the SEMSI by bringing computational capabilities and expertise to bear on important electron transfer problems at mineral/water and mineral/microbe interfaces. PNNL staff member Dr. Kevin Rosso, who is also ''matrixed'' into the Environmental Molecular Sciences Laboratory (EMSL) at PNNL, is a co-PI on the SEMSI project and the PNNL lead. The EMSL computational facilities being applied to the SEMSI project include the 11.8 teraflop massively-parallel supercomputer. Science goals of this EMSL/SEMSI partnership include advancing our understanding of: (1) The kinetics of U(VI) and Cr(VI) reduction by aqueous and solid-phase Fe(II), (2) The structure of mineral surfaces in equilibrium with solution, and (3) Mechanisms of bacterial electron transfer to iron oxide surfaces via outer-membrane cytochromes.

  16. Perception of Bradyrhizobium japonicum Nod factor by soybean [Glycine max (L.) Merr.] root hairs under abiotic stress conditions.

    PubMed

    Duzan, H M; Zhou, X; Souleimanov, A; Smith, D L

    2004-12-01

    Suboptimal growth conditions, such as low rhizosphere temperature, high salinity, and low pH can negatively affect the rhizobia-legume symbioses, resulting in poor nodulation and lower amounts of nitrogen fixed. Early stages of the Bradyrhizobium japonicum-soybean [Glycine max (L.) Merr.] symbiosis, such as excretion of genistein (the plant-to-bacteria signal) and infection initiation can be inhibited by abiotic stresses; however, the effect on early events modulated by Nod factors (bacteria-to-plant signalling), particularly root hair deformations is unknown. Thus, the objective of this study was to evaluate the perception of Nod factor by soybean root hairs under three stress conditions: low temperature, low pH, and high salinity. Three experiments were conducted using a 1:1 ratio of Nod Bj-V (C(18:1), MeFuc) and Nod Bj-V (Ac, C(16:0), MeFuc). Nod factor induced four types of root hair deformation (HAD), wiggling, bulging, curling, and branching. Under optimal experimental conditions root hair response to the three levels of Nod factor tested (10(-6), 10(-8), and 10(-10) M) was dose-dependent. The highest frequency of root hair deformations was elicited by the 10(-6) M level. Root hair deformation decreased with temperature (25, 17, and 15 degrees C), low pH, and high salinity. Nod factor concentration did not interact with either low temperature or pH. However, salinity strongly inhibited HAD responses to increases in Nod factor concentration. Thus, the addition of higher levels of Nod factor is able to overcome the effects of low pH and temperature stress, but not salinity.

  17. Circadian regulation of abiotic stress tolerance in plants

    PubMed Central

    Grundy, Jack; Stoker, Claire; Carré, Isabelle A.

    2015-01-01

    Extremes of temperatures, drought and salinity cause widespread crop losses throughout the world and impose severe limitations on the amount of land that can be used for agricultural purposes. Hence, there is an urgent need to develop crops that perform better under such abiotic stress conditions. Here, we discuss intriguing, recent evidence that circadian clock contributes to plants’ ability to tolerate different types of environmental stress, and to acclimate to them. The clock controls expression of a large fraction of abiotic stress-responsive genes, as well as biosynthesis and signaling downstream of stress response hormones. Conversely, abiotic stress results in altered expression and differential splicing of the clock genes, leading to altered oscillations of downstream stress-response pathways. We propose a range of mechanisms by which this intimate coupling between the circadian clock and environmental stress-response pathways may contribute to plant growth and survival under abiotic stress. PMID:26379680

  18. The role of abiotic conditions in shaping the long-term patterns of a high-elevation Argentine ant invasion

    USGS Publications Warehouse

    Krushelnycky, P.D.; Joe, S.M.; Medeiros, A.C.; Daehler, C.C.; Loope, L.L.

    2005-01-01

    Analysis of long-term patterns of invasion can reveal the importance of abiotic factors in influencing invasion dynamics, and can help predict future patterns of spread. In the case of the invasive Argentine ant (Linepithema humile), most prior studies have investigated this species' limitations in hot and dry climates. However, spatial and temporal patterns of spread involving two ant populations over the course of 30 years at a high elevation site in Hawaii suggest that cold and wet conditions have influenced both the ant's distribution and its rate of invasion. In Haleakala National Park on Maui, we found that a population invading at lower elevation is limited by increasing rainfall and presumably by associated decreasing temperatures. A second, higher elevation population has spread outward in all directions, but rates of spread in different directions appear to have been strongly influenced by differences in elevation and temperature. Patterns of foraging activity were strongly tied to soil temperatures, supporting the hypothesis that variation in temperature can influence rates of spread. Based on past patterns of spread, we predicted a total potential range that covers nearly 50% of the park and 75% of the park's subalpine habitats. We compared this rough estimate with point predictions derived from a degree-day model for Argentine ant colony reproduction, and found that the two independent predictions match closely when soil temperatures are used in the model. The cold, wet conditions that have influenced Argentine ant invasion at this site are likely to be influential at other locations in this species' current and future worldwide distribution. ?? 2005 Blackwell Publishing Ltd.

  19. Experimental Study of Abiotic Organic Synthesis at High Temperature and Pressure Conditions: Carbon Isotope and Mineral Surface Characterizations

    NASA Astrophysics Data System (ADS)

    Fu, Q.; Socki, R. A.; Niles, P. B.

    2010-12-01

    Abiotic organic synthesis processes have been proposed as potential mechanisms for methane generation in subseafloor hydrothermal systems on Earth, and on other planets. To better understand the detailed reaction pathways and carbon isotope fractionations in this process under a wide range of physical and chemical conditions, hydrothermal experiments at high temperature (750 °C) and pressure (0.55 GPa) were performed using piston cylinder apparatus. Formic acid was used as the source of CO2 and H2, and magnetite was the mineral catalyst. The chemical and carbon isotopic compositions of dissolved organic products were determined by GC-C-MS-IRMS, while organic intermediaries on the mineral catalyst were characterized by Pyrolysis-GC-MS. Among experimental products, dissolved CO2 was the dominant carbon species with a relative abundance of 88 mol%. Dissolved CH4 and C2H6 were also identified with a mole ratio of CH4 over C2H6 of 15:1. No dissolved CO was detected in the experiment, which might be attributable to the loss of H2 through the Au capsule used in the experiments at high temperature and pressure conditions and corresponding conversion of CO to CO2 by the water-gas shift reaction. Carbon isotope results showed that the δ13C values of CH4 and C2H6 were -50.3‰ and -39.3‰ (V-PDB), respectively. CO2 derived from decarboxylation of formic acid had a δ13C value of -19.2‰, which was 3.2‰ heavier than its source, formic acid. The δ13C difference between CO2 and CH4 was 31.1‰, which was higher than the value of 9.4‰ calculated from theoretical isotopic equilibrium predictions at experimental conditions, suggesting the presence of a kinetic isotope effect. This number was also higher than the values (4.6 to 27.1‰) observed in similar experiments previously performed at 400 °C and 50 MPa with longer reaction times. CH4 is 11.0‰ less enriched in 13C than C2H6. Alcohols were observed as carbon compounds on magnetite surfaces by Pyrolysis-GC-MS, which

  20. Experimental Study of Abiotic Organic Synthesis at High Temperature and Pressure Conditions: Carbon Isotope and Mineral Surface Characterizations

    NASA Technical Reports Server (NTRS)

    Fu, Qi; Socki, R. A.; Niles, P. B.

    2010-01-01

    Abiotic organic synthesis processes have been proposed as potential mechanisms for methane generation in subseafloor hydrothermal systems on Earth, and on other planets. To better understand the detailed reaction pathways and carbon isotope fractionations in this process under a wide range of physical and chemical conditions, hydrothermal experiments at high temperature (750 C) and pressure (0.55 GPa) were performed using piston cylinder apparatus. Formic acid was used as the source of CO2 and H2, and magnetite was the mineral catalyst. The chemical and carbon isotopic compositions of dissolved organic products were determined by GC-C-MS-IRMS, while organic intermediaries on the mineral catalyst were characterized by Pyrolysis-GC-MS. Among experimental products, dissolved CO2 was the dominant carbon species with a relative abundance of 88 mol%. Dissolved CH4 and C2H6 were also identified with a mole ratio of CH4 over C2H6 of 15:1. No dissolved CO was detected in the experiment, which might be attributable to the loss of H2 through the Au capsule used in the experiments at high temperature and pressure conditions and corresponding conversion of CO to CO2 by the water-gas shift reaction. Carbon isotope results showed that the 13C values of CH4 and C2H6 were -50.3% and -39.3% (V-PDB), respectively. CO2 derived from decarboxylation of formic acid had a (sigma)C-13 value of -19.2%, which was 3.2% heavier than its source, formic acid. The (sigma)C-13 difference between CO2 and CH4 was 31.1%, which was higher than the value of 9.4% calculated from theoretical isotopic equilibrium predictions at experimental conditions, suggesting the presence of a kinetic isotope effect. This number was also higher than the values (4.6 to 27.1%) observed in similar experiments previously performed at 400 C and 50 MPa with longer reaction times. CH4 is 11.0% less enriched in C-13 than C2H6. Alcohols were observed as carbon compounds on magnetite surfaces by Pyrolysis-GC-MS, which confirms

  1. Abiotic stress responses in plant roots: a proteomics perspective

    PubMed Central

    Ghosh, Dipanjana; Xu, Jian

    2014-01-01

    Abiotic stress conditions adversely affect plant growth, resulting in significant decline in crop productivity. To mitigate and recover from the damaging effects of such adverse environmental conditions, plants have evolved various adaptive strategies at cellular and metabolic levels. Most of these strategies involve dynamic changes in protein abundance that can be best explored through proteomics. This review summarizes comparative proteomic studies conducted with roots of various plant species subjected to different abiotic stresses especially drought, salinity, flood, and cold. The main purpose of this article is to highlight and classify the protein level changes in abiotic stress response pathways specifically in plant roots. Shared as well as stressor-specific proteome signatures and adaptive mechanism(s) are simultaneously described. Such a comprehensive account will facilitate the design of genetic engineering strategies that enable the development of broad-spectrum abiotic stress-tolerant crops. PMID:24478786

  2. Evolutionary relationships can be more important than abiotic conditions in predicting the outcome of plant-plant interactions.

    PubMed

    Soliveres, Santiago; Torices, Rubén; Maestre, Fernando T

    2012-10-01

    Positive and negative plant-plant interactions are major processes shaping plant communities. They are affected by environmental conditions and evolutionary relationships among the interacting plants. However, the generality of these factors as drivers of pairwise plant interactions and their combined effects remain virtually unknown. We conducted an observational study to assess how environmental conditions (altitude, temperature, irradiance and rainfall), the dispersal mechanism of beneficiary species and evolutionary relationships affected the co-occurrence of pairwise interactions in 11 Stipa tenacissima steppes located along an environmental gradient in Spain. We studied 197 pairwise plant-plant interactions involving the two major nurse plants (the resprouting shrub Quercus coccifera and the tussock grass S. tenacissima) found in these communities. The relative importance of the studied factors varied with the nurse species considered. None of the factors studied were good predictors of the co-ocurrence between S. tenacissima and its neighbours. However, both the dispersal mechanism of the beneficiary species and the phylogenetic distance between interacting species were crucial factors affecting the co-occurrence between Q. coccifera and its neighbours, while climatic conditions (irradiance) played a secondary role. Values of phylogenetic distance between 207-272.8 Myr led to competition, while values outside this range or fleshy-fruitness in the beneficiary species led to positive interactions. The low importance of environmental conditions as a general driver of pairwise interactions was caused by the species-specific response to changes in either rainfall or radiation. This result suggests that factors other than climatic conditions must be included in theoretical models aimed to generally predict the outcome of plant-plant interactions. Our study helps to improve current theory on plant-plant interactions and to understand how these interactions can

  3. Roles of Arbuscular Mycorrhizal Fungi and Soil Abiotic Conditions in the Establishment of a Dry Grassland Community

    PubMed Central

    Knappová, Jana; Pánková, Hana; Münzbergová, Zuzana

    2016-01-01

    Background The importance of soil biota in the composition of mature plant communities is commonly acknowledged. In contrast, the role of soil biota in the early establishment of new plant communities and their relative importance for soil abiotic conditions are still poorly understood. Aims and Methods The aim of this study was to understand the effects of soil origin and soil fungal communities on the composition of a newly established dry grassland plant community. We used soil from two different origins (dry grassland and abandoned field) with different pH and nutrient and mineral content. Grassland microcosms were established by sowing seeds of 54 species of dry grassland plants into the studied soils. To suppress soil fungi, half of the pots were regularly treated with fungicide. In this way, we studied the independent and combined effects of soil origin and soil community on the establishment of dry grassland communities. Key Results The effect of suppressing the soil fungal community on the richness and composition of the plant communities was much stronger than the effect of soil origin. Contrary to our expectations, the effects of these two factors were largely additive, indicating the same degree of importance of soil fungal communities in the establishment of species-rich plant communities in the soils from both origins. The negative effect of suppressing soil fungi on species richness, however, occurred later in the soil from the abandoned field than in the soil from the grassland. This result likely occurred because the negative effects of the suppression of fungi in the field soil were caused mainly by changes in plant community composition and increased competition. In contrast, in the grassland soil, the absence of soil fungi was limiting for plants already at the early stages of their establishment, i.e., in the phases of germination and early recruitment. While fungicide affects not only arbuscular mycorrhizal fungi but also other biota, our data

  4. Formation of pristane from α-tocopherol under simulated anoxic sedimentary conditions: A combination of biotic and abiotic degradative processes

    NASA Astrophysics Data System (ADS)

    Rontani, Jean-François; Nassiry, Mina; Michotey, Valérie; Guasco, Sophie; Bonin, Patricia

    2010-01-01

    Incubation of intact and oxidized α-tocopherol (vitamin E) in anaerobic sediment slurries allowed us to demonstrate that, as previously suggested by Goossens et al. (1984), the degradation of α-tocopherol in anoxic sediments results in the formation of pristane. The conversion of α-tocopherol to this isoprenoid alkane involves a combination of biotic and abiotic degradative processes, i.e. the anaerobic biodegradation (which seems to be mainly induced by denitrifying bacteria) of trimeric structures resulting from the abiotic oxidation of α-tocopherol. On the basis of the results obtained, it is proposed that in the marine environment most of the α-tocopherol present in phytoplanktonic cells should be quickly degraded within the water column and the oxic zone of sediments by way of aerobic biodegradation, photo- and autoxidation processes. Abiotic transformation of this compound mainly results in the production of trimeric oxidation products, sufficiently stable to be incorporated into anoxic sediments and whose subsequent anaerobic bacterial degradation affords pristane. These results confirm that the ratio pristane to phytane cannot be used as an indicator of the oxicity of the environment of deposition; in contrast, they support the use of PFI (Pristane Formation Index) as a proxy for the state of diagenesis of sedimentary organic matter.

  5. Improvement of Polyunsaturated Fatty Acid Production in Echium acanthocarpum Transformed Hairy Root Cultures by Application of Different Abiotic Stress Conditions

    PubMed Central

    Zárate, Rafael; Cequier-Sánchez, Elena; Rodríguez, Covadonga; Dorta-Guerra, Roberto; El Jaber-Vazdekis, Nabil; Ravelo, Ángel G.

    2013-01-01

    Fatty acids are of great nutritional, therapeutic, and physiological importance, especially the polyunsaturated n-3 fatty acids, possessing larger carbon chains and abundant double bonds or their immediate precursors. A few higher plant species are able to accumulate these compounds, like those belonging to the Echium genus. Here, the novel E. acanthocarpum hairy root system, which is able to accumulate many fatty acids, including stearidonic and α-linolenic acids, was optimized for a better production. The application of abiotic stress resulted in larger yields of stearidonic and α-linolenic acids, 60 and 35%, respectively, with a decrease in linoleic acid, when grown in a nutrient medium consisting of B5 basal salts, sucrose or glucose, and, more importantly, at a temperature of 15°C. The application of osmotic stress employing sorbitol showed no positive influence on the fatty acid yields; furthermore, the combination of a lower culture temperature and glucose did not show a cumulative boosting effect on the yield, although this carbon source was similarly attractive. The abiotic stress also influenced the lipid profile of the cultures, significantly increasing the phosphatidylglycerol fraction but not the total lipid neither their biomass, proving the appropriateness of applying various abiotic stress in this culture to achieve larger yields. PMID:25937970

  6. Dynamic photosynthesis in different environmental conditions.

    PubMed

    Kaiser, Elias; Morales, Alejandro; Harbinson, Jeremy; Kromdijk, Johannes; Heuvelink, Ep; Marcelis, Leo F M

    2015-05-01

    Incident irradiance on plant leaves often fluctuates, causing dynamic photosynthesis. Whereas steady-state photosynthetic responses to environmental factors have been extensively studied, knowledge of dynamic modulation of photosynthesis remains scarce and scattered. This review addresses this discrepancy by summarizing available data and identifying the research questions necessary to advance our understanding of interactions between environmental factors and dynamic behaviour of photosynthesis using a mechanistic framework. Firstly, dynamic photosynthesis is separated into sub-processes related to proton and electron transport, non-photochemical quenching, control of metabolite flux through the Calvin cycle (activation states of Rubisco and RuBP regeneration, and post-illumination metabolite turnover), and control of CO₂ supply to Rubisco (stomatal and mesophyll conductance changes). Secondly, the modulation of dynamic photosynthesis and its sub-processes by environmental factors is described. Increases in ambient CO₂ concentration and temperature (up to ~35°C) enhance rates of photosynthetic induction and decrease its loss, facilitating more efficient dynamic photosynthesis. Depending on the sensitivity of stomatal conductance, dynamic photosynthesis may additionally be modulated by air humidity. Major knowledge gaps exist regarding environmental modulation of loss of photosynthetic induction, dynamic changes in mesophyll conductance, and the extent of limitations imposed by stomatal conductance for different species and environmental conditions. The study of mutants or genetic transformants for specific processes under various environmental conditions could provide significant progress in understanding the control of dynamic photosynthesis.

  7. Abiotic origin of biopolymers

    NASA Technical Reports Server (NTRS)

    Oro, J.; Stephen-Sherwood, E.

    1976-01-01

    A variety of methods have been investigated in different laboratories for the polymerization of amino acids and nucleotides under abiotic conditions. They include (1) thermal polymerization; (2) direct polymerization of certain amino acid nitriles, amides, or esters; (3) polymerization using polyphosphate esters; (4) polymerization under aqueous or drying conditions at moderate temperatures using a variety of simple catalysts or condensing agents like cyanamide, dicyandiamide, or imidazole; and (5) polymerization under similar mild conditions but employing activated monomers or abiotically synthesized high-energy compounds such as adenosine 5'-triphosphate (ATP). The role and significance of these methods for the synthesis of oligopeptides and oligonucleotides under possible primitive-earth conditions is evaluated. It is concluded that the more recent approach involving chemical processes similar to those used by contemporary living organisms appears to offer a reasonable solution to the prebiotic synthesis of these biopolymers.

  8. Environmental Conditions in Kentucky's Penal Institutions

    ERIC Educational Resources Information Center

    Bell, Irving

    1974-01-01

    A state task force was organized to identify health or environmental deficiencies existing in Kentucky penal institutions. Based on information gained through direct observation and inmate questionnaires, the task force concluded that many hazardous and unsanitary conditions existed, and recommended that immediate action be given to these…

  9. RBM25 Mediates Abiotic Responses in Plants

    PubMed Central

    Cheng, Chunhong; Wang, Zhijuan; Yuan, Bingjian; Li, Xia

    2017-01-01

    Alternative splicing (AS) of pre-mRNAs is one of the most important post-transcriptional regulations that enable a single gene to code for multiple proteins resulting in the biodiversity of proteins in eukaryotes. Recently, we have shown that an Arabidopsis thaliana RNA recognition motif-containing protein RBM25 is a novel splicing factor to modulate plant response to ABA during seed germination and post-germination through regulating HAB1 pre-mRNA AS. Here, we show that RBM25 is preferentially expressed in stomata and vascular tissues in Arabidopsis and is induced by ABA and abiotic stresses. Loss-of-function mutant is highly tolerant to drought and sensitive to salt stress. Bioinformatic analysis and expression assays reveal that Arabidopsis RBM25 is induced by multiple abiotic stresses, suggesting a crucial role of RBM25 in Arabidopsis responses to adverse environmental conditions. Furthermore, we provide a comprehensive characterization of the homologous genes of Arabidopsis RBM25 based on the latest plant genome sequences and public microarray databases. Fourteen homologous genes are identified in different plant species which show similar structure in gene and protein. Notably, the promoter analysis reveals that RBM25 homologs are likely controlled by the regulators involved in multiple plant growth and abiotic stresses, such as drought and unfavorable temperature. The comparative analysis of general and unique cis regulatory elements of the RBM25 homologs highlights the conserved and unique molecular processes that modulate plant response to abiotic stresses through RBM25-mediated alternative splicing. PMID:28344583

  10. RBM25 Mediates Abiotic Responses in Plants.

    PubMed

    Cheng, Chunhong; Wang, Zhijuan; Yuan, Bingjian; Li, Xia

    2017-01-01

    Alternative splicing (AS) of pre-mRNAs is one of the most important post-transcriptional regulations that enable a single gene to code for multiple proteins resulting in the biodiversity of proteins in eukaryotes. Recently, we have shown that an Arabidopsis thaliana RNA recognition motif-containing protein RBM25 is a novel splicing factor to modulate plant response to ABA during seed germination and post-germination through regulating HAB1 pre-mRNA AS. Here, we show that RBM25 is preferentially expressed in stomata and vascular tissues in Arabidopsis and is induced by ABA and abiotic stresses. Loss-of-function mutant is highly tolerant to drought and sensitive to salt stress. Bioinformatic analysis and expression assays reveal that Arabidopsis RBM25 is induced by multiple abiotic stresses, suggesting a crucial role of RBM25 in Arabidopsis responses to adverse environmental conditions. Furthermore, we provide a comprehensive characterization of the homologous genes of Arabidopsis RBM25 based on the latest plant genome sequences and public microarray databases. Fourteen homologous genes are identified in different plant species which show similar structure in gene and protein. Notably, the promoter analysis reveals that RBM25 homologs are likely controlled by the regulators involved in multiple plant growth and abiotic stresses, such as drought and unfavorable temperature. The comparative analysis of general and unique cis regulatory elements of the RBM25 homologs highlights the conserved and unique molecular processes that modulate plant response to abiotic stresses through RBM25-mediated alternative splicing.

  11. The impact of abiotic factors on cellulose synthesis.

    PubMed

    Wang, Ting; McFarlane, Heather E; Persson, Staffan

    2016-01-01

    As sessile organisms, plants require mechanisms to sense and respond to changes in their environment, including both biotic and abiotic factors. One of the most common plant adaptations to environmental changes is differential regulation of growth, which results in growth either away from adverse conditions or towards more favorable conditions. As cell walls shape plant growth, this differential growth response must be accompanied by alterations to the plant cell wall. Here, we review the impact of four abiotic factors (osmotic conditions, ionic stress, light, and temperature) on the synthesis of cellulose, an important component of the plant cell wall. Understanding how different abiotic factors influence cellulose production and addressing key questions that remain in this field can provide crucial information to cope with the need for increased crop production under the mounting pressures of a growing world population and global climate change.

  12. Impact of biotic and abiotic factors on the expression of fungal effector-encoding genes in axenic growth conditions.

    PubMed

    Meyer, Michel; Bourras, Salim; Gervais, Julie; Labadie, Karine; Cruaud, Corinne; Balesdent, Marie-Hélène; Rouxel, Thierry

    2017-02-01

    In phytopathogenic fungi, the expression of hundreds of small secreted protein (SSP)-encoding genes is induced upon primary infection of plants while no or a low level of expression is observed during vegetative growth. In some species such as Leptosphaeria maculans, this coordinated in-planta upregulation of SSP-encoding genes expression relies on an epigenetic control but the signals triggering gene expression in-planta are unknown. In the present study, biotic and abiotic factors that may relieve suppression of SSP-encoding gene expression during axenic growth of L. maculans were investigated. Some abiotic factors (temperature, pH) could have a limited effect on SSP gene expression. In contrast, two types of cellular stresses induced by antibiotics (cycloheximide, phleomycin) activated strongly the transcription of SSP genes. A transcriptomic analysis to cycloheximide exposure revealed that biological processes such as ribosome biosynthesis and rRNA processing were induced whereas important metabolic pathways such as glycogen and nitrogen metabolism, glycolysis and tricarboxylic acid cycle activity were down-regulated. A quantitatively different expression of SSP-encoding genes compared to plant infection was also detected. Interestingly, the same physico-chemical parameters as those identified here for L. maculans effectors were identified to regulate positively or negatively the expression of bacterial effectors. This suggests that apoplastic phytopathogens may react to similar physiological parameters for regulation of their effector genes.

  13. NOVELTY DETECTION UNDER CHANGING ENVIRONMENTAL CONDITIONS

    SciTech Connect

    H. SOHN; K. WORDER; C. R. FARRAR

    2001-04-01

    The primary objective of novelty detection is to examine a system's dynamic response to determine if the system significantly deviates from an initial baseline condition. In reality, the system is often subject to changing environmental and operation conditions that affect its dynamic characteristics. Such variations include changes in loading, boundary conditions, temperature, and moisture. Most damage diagnosis techniques, however, generally neglect the effects of these changing ambient conditions. Here, a novelty detection technique is developed explicitly taking into account these natural variations of the system in order to minimize false positive indications of true system changes. Auto-associative neural networks are employed to discriminate system changes of interest such as structural deterioration and damage from the natural variations of the system.

  14. An omics approach to understand the plant abiotic stress.

    PubMed

    Debnath, Mousumi; Pandey, Mukeshwar; Bisen, P S

    2011-11-01

    Abiotic stress can lead to changes in development, productivity, and severe stress and may even threaten survival of plants. Several environmental stresses cause drastic changes in the growth, physiology, and metabolism of plants leading to the increased accumulation of secondary metabolites. As medicinal plants are important sources of drugs, steps are taken to understand the effect of stress on the physiology, biochemistry, genomic, proteomic, and metabolic levels. The molecular responses of plants to abiotic stress are often considered as a complex process. They are mainly based on the modulation of transcriptional activity of stress-related genes. Many genes have been induced under stress conditions. The products of stress-inducible genes protecting against these stresses includes the enzymes responsible for the synthesis of various osmoprotectants. Genetic engineering of tolerance to abiotic stresses help in molecular understanding of pathways induced in response to one or more of the abiotic stresses. Systems biology and virtual experiments allow visualizing and understanding how plants work to overcome abiotic stress. This review discusses the omic approach to understand the plant response to abiotic stress with special emphasis on medicinal plant.

  15. Nitric oxide signaling in plant responses to abiotic stresses.

    PubMed

    Qiao, Weihua; Fan, Liu-Min

    2008-10-01

    Nitric oxide (NO) plays important roles in diverse physiological processes in plants. NO can provoke both beneficial and harmful effects, which depend on the concentration and location of NO in plant cells. This review is focused on NO synthesis and the functions of NO in plant responses to abiotic environmental stresses. Abiotic stresses mostly induce NO production in plants. NO alleviates the harmfulness of reactive oxygen species, and reacts with other target molecules, and regulates the expression of stress responsive genes under various stress conditions.

  16. Starch as a determinant of plant fitness under abiotic stress.

    PubMed

    Thalmann, Matthias; Santelia, Diana

    2017-03-09

    I. II. III. IV. V. VI. References SUMMARY: Abiotic stresses, such as drought, high salinity and extreme temperatures, pose one of the most important constraints to plant growth and productivity in many regions of the world. A number of investigations have shown that plants, including several important crops, remobilize their starch reserve to release energy, sugars and derived metabolites to help mitigate the stress. This is an essential process for plant fitness with important implications for plant productivity under challenging environmental conditions. In this Tansley insight, we evaluate the current literature on starch metabolism in response to abiotic stresses, and discuss the key enzymes involved and how they are regulated.

  17. Abiotic degradation of plastic films

    NASA Astrophysics Data System (ADS)

    Ángeles-López, Y. G.; Gutiérrez-Mayen, A. M.; Velasco-Pérez, M.; Beltrán-Villavicencio, M.; Vázquez-Morillas, A.; Cano-Blanco, M.

    2017-01-01

    Degradable plastics have been promoted as an option to mitigate the environmental impacts of plastic waste. However, there is no certainty about its degradability under different environmental conditions. The effect of accelerated weathering (AW), natural weathering (NW) and thermal oxidation (TO) on different plastics (high density polyethylene, HDPE; oxodegradable high density polyethylene, HDPE-oxo; compostable plastic, Ecovio ® metalized polypropylene, PP; and oxodegradable metalized polypropylene, PP-oxo) was studied. Plastics films were exposed to AW per 110 hours; to NW per 90 days; and to TO per 30 days. Plastic films exposed to AW and NW showed a general loss on mechanical properties. The highest reduction in elongation at break on AW occurred to HDPE-oxo (from 400.4% to 20.9%) and was higher than 90% for HDPE, HDPE-oxo, Ecovio ® and PP-oxo in NW. No substantial evidence of degradation was found on plastics exposed to TO. Oxo-plastics showed higher degradation rates than their conventional counterparts, and the compostable plastic was resistant to degradation in the studied abiotic conditions. This study shows that degradation of plastics in real life conditions will vary depending in both, their composition and the environment.

  18. Wind as an abiotic factor of Colorado potato beetle (Coleoptera: Chrysomelidae) flight take-off activity under field conditions.

    PubMed

    Boiteau, G; Mccarthy, P C; MacKinley, P D

    2010-10-01

    The flight take-off activity of Colorado potato beetles, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae), was significantly higher at a landscape-protected than at semiexposed and exposed sites in a 2-yr field study. In both years, mean daylight temperature, solar radiation, and relative humidity were generally similar at all sites, but wind speed was lower at the protected site than at the exposed sites. Results suggest that wind was the limiting abiotic factor for flight take-off at the exposed site. Caged beetles exposed to constant wind speeds of 3.4, 4.7, and 7.0 m/s showed a significant corresponding decrease in number of flight take-off. There was no cumulative effect of wind exposure on the readiness of the beetles to fly, suggesting that wind acts as a physical barrier to flight take-off. It should be possible to reduce Colorado potato beetle flight dispersal by selecting fields most exposed to wind over landscape-protected fields when rotating potato, Solanum tuberosum L., crops.

  19. Polyamines and abiotic stress in plants: a complex relationship1

    PubMed Central

    Minocha, Rakesh; Majumdar, Rajtilak; Minocha, Subhash C.

    2014-01-01

    The physiological relationship between abiotic stress in plants and polyamines was reported more than 40 years ago. Ever since there has been a debate as to whether increased polyamines protect plants against abiotic stress (e.g., due to their ability to deal with oxidative radicals) or cause damage to them (perhaps due to hydrogen peroxide produced by their catabolism). The observation that cellular polyamines are typically elevated in plants under both short-term as well as long-term abiotic stress conditions is consistent with the possibility of their dual effects, i.e., being protectors from as well as perpetrators of stress damage to the cells. The observed increase in tolerance of plants to abiotic stress when their cellular contents are elevated by either exogenous treatment with polyamines or through genetic engineering with genes encoding polyamine biosynthetic enzymes is indicative of a protective role for them. However, through their catabolic production of hydrogen peroxide and acrolein, both strong oxidizers, they can potentially be the cause of cellular harm during stress. In fact, somewhat enigmatic but strong positive relationship between abiotic stress and foliar polyamines has been proposed as a potential biochemical marker of persistent environmental stress in forest trees in which phenotypic symptoms of stress are not yet visible. Such markers may help forewarn forest managers to undertake amelioration strategies before the appearance of visual symptoms of stress and damage at which stage it is often too late for implementing strategies for stress remediation and reversal of damage. This review provides a comprehensive and critical evaluation of the published literature on interactions between abiotic stress and polyamines in plants, and examines the experimental strategies used to understand the functional significance of this relationship with the aim of improving plant productivity, especially under conditions of abiotic stress. PMID:24847338

  20. ROS Regulation During Abiotic Stress Responses in Crop Plants.

    PubMed

    You, Jun; Chan, Zhulong

    2015-01-01

    Abiotic stresses such as drought, cold, salt and heat cause reduction of plant growth and loss of crop yield worldwide. Reactive oxygen species (ROS) including hydrogen peroxide (H2O2), superoxide anions (O2 (•-)), hydroxyl radical (OH•) and singlet oxygen ((1)O2) are by-products of physiological metabolisms, and are precisely controlled by enzymatic and non-enzymatic antioxidant defense systems. ROS are significantly accumulated under abiotic stress conditions, which cause oxidative damage and eventually resulting in cell death. Recently, ROS have been also recognized as key players in the complex signaling network of plants stress responses. The involvement of ROS in signal transduction implies that there must be coordinated function of regulation networks to maintain ROS at non-toxic levels in a delicate balancing act between ROS production, involving ROS generating enzymes and the unavoidable production of ROS during basic cellular metabolism, and ROS-scavenging pathways. Increasing evidence showed that ROS play crucial roles in abiotic stress responses of crop plants for the activation of stress-response and defense pathways. More importantly, manipulating ROS levels provides an opportunity to enhance stress tolerances of crop plants under a variety of unfavorable environmental conditions. This review presents an overview of current knowledge about homeostasis regulation of ROS in crop plants. In particular, we summarize the essential proteins that are involved in abiotic stress tolerance of crop plants through ROS regulation. Finally, the challenges toward the improvement of abiotic stress tolerance through ROS regulation in crops are discussed.

  1. ROS Regulation During Abiotic Stress Responses in Crop Plants

    PubMed Central

    You, Jun; Chan, Zhulong

    2015-01-01

    Abiotic stresses such as drought, cold, salt and heat cause reduction of plant growth and loss of crop yield worldwide. Reactive oxygen species (ROS) including hydrogen peroxide (H2O2), superoxide anions (O2•-), hydroxyl radical (OH•) and singlet oxygen (1O2) are by-products of physiological metabolisms, and are precisely controlled by enzymatic and non-enzymatic antioxidant defense systems. ROS are significantly accumulated under abiotic stress conditions, which cause oxidative damage and eventually resulting in cell death. Recently, ROS have been also recognized as key players in the complex signaling network of plants stress responses. The involvement of ROS in signal transduction implies that there must be coordinated function of regulation networks to maintain ROS at non-toxic levels in a delicate balancing act between ROS production, involving ROS generating enzymes and the unavoidable production of ROS during basic cellular metabolism, and ROS-scavenging pathways. Increasing evidence showed that ROS play crucial roles in abiotic stress responses of crop plants for the activation of stress-response and defense pathways. More importantly, manipulating ROS levels provides an opportunity to enhance stress tolerances of crop plants under a variety of unfavorable environmental conditions. This review presents an overview of current knowledge about homeostasis regulation of ROS in crop plants. In particular, we summarize the essential proteins that are involved in abiotic stress tolerance of crop plants through ROS regulation. Finally, the challenges toward the improvement of abiotic stress tolerance through ROS regulation in crops are discussed. PMID:26697045

  2. 10 CFR 50.36b - Environmental conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Environmental conditions. 50.36b Section 50.36b Energy... § 50.36b Environmental conditions. (a) Each construction permit under this part, each early site permit... conditions will be derived from information contained in the environmental report submitted pursuant to §...

  3. Environmental conditions and reproductive health outcomes

    EPA Science Inventory

    Environmental exposures range across multiple domains to affect human health. In an effort to learn how environmental factors combine to contribute to health outcomes we constructed a multiple environmental domain index (MEDI) for use in health research. We used principal compone...

  4. [Guidelines on asthma in extreme environmental conditions].

    PubMed

    Drobnic, Franchek; Borderías Clau, Luis

    2009-01-01

    Asthma is a highly prevalent chronic disease which, if not properly controlled, can limit the patient's activities and lifestyle. In recent decades, owing to the diffusion of educational materials, the application of clinical guidelines and, most importantly, the availability of effective pharmacological treatment, most patients with asthma are now able to lead normal lives. Significant social changes have also taken place during the same period, including more widespread pursuit of sporting activities and tourism. As a result of these changes, individuals with asthma can now participate in certain activities that were inconceivable for these patients only a few years ago, including winter sports, underwater activities, air flight, and travel to remote places with unusual environmental conditions (deserts, high mountain environments, and tropical regions). In spite of the publication of several studies on this subject, our understanding of the effects of these situations on patients with asthma is still limited. The Spanish Society of Pulmonology and Thoracic Surgery (SEPAR) has decided to publish these recommendations based on the available evidence and expert opinion in order to provide information on this topic to both doctors and patients and to avert potentially dangerous situations that could endanger the lives of these patients.

  5. Crops Models for Varying Environmental Conditions

    NASA Technical Reports Server (NTRS)

    Jones, Harry; Cavazzoni, James; Keas, Paul

    2001-01-01

    New variable environment Modified Energy Cascade (MEC) crop models were developed for all the Advanced Life Support (ALS) candidate crops and implemented in SIMULINK. The MEC models are based on the Volk, Bugbee, and Wheeler Energy Cascade (EC) model and are derived from more recent Top-Level Energy Cascade (TLEC) models. The MEC models simulate crop plant responses to day-to-day changes in photosynthetic photon flux, photoperiod, carbon dioxide level, temperature, and relative humidity. The original EC model allows changes in light energy but uses a less accurate linear approximation. The simulation outputs of the new MEC models for constant nominal environmental conditions are very similar to those of earlier EC models that use parameters produced by the TLEC models. There are a few differences. The new MEC models allow setting the time for seed emergence, have realistic exponential canopy growth, and have corrected harvest dates for potato and tomato. The new MEC models indicate that the maximum edible biomass per meter squared per day is produced at the maximum allowed carbon dioxide level, the nominal temperatures, and the maximum light input. Reducing the carbon dioxide level from the maximum to the minimum allowed in the model reduces crop production significantly. Increasing temperature decreases production more than it decreases the time to harvest, so productivity in edible biomass per meter squared per day is greater at nominal than maximum temperatures, The productivity in edible biomass per meter squared per day is greatest at the maximum light energy input allowed in the model, but the edible biomass produced per light energy input unit is lower than at nominal light levels. Reducing light levels increases light and power use efficiency. The MEC models suggest we can adjust the light energy day-to- day to accommodate power shortages or Lise excess power while monitoring and controlling edible biomass production.

  6. Strategies to ameliorate abiotic stress-induced plant senescence.

    PubMed

    Gepstein, Shimon; Glick, Bernard R

    2013-08-01

    The plant senescence syndrome resembles, in many molecular and phenotypic aspects, plant responses to abiotic stresses. Both processes have an enormous negative global agro-economic impact and endanger food security worldwide. Premature plant senescence is the main cause of losses in grain filling and biomass yield due to leaf yellowing and deteriorated photosynthesis, and is also responsible for the losses resulting from the short shelf life of many vegetables and fruits. Under abiotic stress conditions the yield losses are often even greater. The primary challenge in agricultural sciences today is to develop technologies that will increase food production and sustainability of agriculture especially under environmentally limiting conditions. In this chapter, some of the mechanisms involved in abiotic stress-induced plant senescence are discussed. Recent studies have shown that crop yield and nutritional values can be altered as well as plant stress tolerance through manipulating the timing of senescence. It is often difficult to separate the effects of age-dependent senescence from stress-induced senescence since both share many biochemical processes and ultimately result in plant death. The focus of this review is on abiotic stress-induced senescence. Here, a number of the major approaches that have been developed to ameliorate some of the effects of abiotic stress-induced plant senescence are considered and discussed. Some approaches mimic the mechanisms already used by some plants and soil bacteria whereas others are based on development of new improved transgenic plants. While there may not be one simple strategy that can effectively decrease all losses of crop yield that accrue as a consequence of abiotic stress-induced plant senescence, some of the strategies that are discussed already show great promise.

  7. Modulation of antioxidant machinery in α-tocopherol-enriched transgenic Brassica juncea plants tolerant to abiotic stress conditions.

    PubMed

    Kumar, Deepak; Yusuf, Mohd Aslam; Singh, Preeti; Sardar, Meryam; Sarin, Neera Bhalla

    2013-10-01

    The antioxidant machinery in plants consists of several components with unique or overlapping functions that combat the deleterious production of reactive oxygen species (ROS) induced by stress conditions. Tocopherols are a group of powerful antioxidants having additional roles in signaling and gene expression, with α-tocopherol being the most potent form. In the present study, we used wild-type (WT) and α-tocopherol-enriched transgenic (TR) Brassica juncea plants grown under salt, heavy metal, and osmotic stress to compare their relative tolerance to these stresses and to assess the effects of increased α-tocopherol content on the other antioxidative enzymes and molecules. The oxidative damage caused by induced stress was lower in TR plants compared to WT plants as assessed by their higher relative water content and lower electrolyte leakage, malondialdehyde content as well as H(2)O(2) accumulation. Lesser superoxide and H(2)O(2) accumulation was also observed by histochemical staining in TR seedlings exposed to stress. Though no significant differences were evident under normal growth conditions, TR plants showed higher activities and transcript levels of antioxidant enzymes superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase than WT plants under similar stress conditions. A decrease in ascorbate and glutathione content with marginally higher reductive ratios of these compounds was also observed in TR plants under the stress conditions. Our findings implicate the role of higher α-tocopherol levels in conferring better tolerance against salt, heavy metal, and osmotic stresses and also establish the existence of interplay between this lipid-soluble antioxidant and other water-soluble components of plant antioxidant defense.

  8. In vitro production of gymnemic acid from Gymnema sylvestre (Retz) R. Br. ex roemer and schultes through callus culture under abiotic stress conditions.

    PubMed

    Ali Ahmed, Abdul Bakrudeen; Rao, Adhikarla Suryanarayana; Rao, Mandali Venkateswara

    2009-01-01

    Plant secondary metabolites have enormous potential for research and new drug development. Many secondary metabolites have a complex and unique structure and their production is often enhanced by biotic and abiotic stress conditions. Gymnemic acid (C(43)H(68)O(14)), a pentacyclic triterpenoid isolated from the leaves of Gymnema sylvestre, exhibits potent inhibitory effect on diabetes. The gymnemic acid content is determined by chromatographic methods: Camag HPTLC system equipped with a sample applicator Linomat IV and TLC scanner and integration software CAT 4.0. In HPLC C(18) (ODS) reverse phase column; water 486 UV detector; mobile phase, water/methanol (35:65, HPLC grade) + 0.1% acetic acid are used. Sample (20 microL) is applied with a flow rate of 1 mL/min and read at 230 nm with UV detector. The production of gymnemic acid is significantly higher in callus treated with 2,4-dichloro phenoxy acetic acid (2,4-D) and kinetin (KN). The blue light increases gymnemic acid accumulation upto 4.4-fold as compared with fluorescent light treatment and out of which 2.8 is found in leaves. Gymnemic acid is isolated from callus, grown under stress conditions followed by preparative TLC, simple and reproducible character based on HPTLC and high performance liquid chromatography.

  9. 'In silico expression analysis', a novel PathoPlant web tool to identify abiotic and biotic stress conditions associated with specific cis-regulatory sequences.

    PubMed

    Bolívar, Julio C; Machens, Fabian; Brill, Yuri; Romanov, Artyom; Bülow, Lorenz; Hehl, Reinhard

    2014-01-01

    Using bioinformatics, putative cis-regulatory sequences can be easily identified using pattern recognition programs on promoters of specific gene sets. The abundance of predicted cis-sequences is a major challenge to associate these sequences with a possible function in gene expression regulation. To identify a possible function of the predicted cis-sequences, a novel web tool designated 'in silico expression analysis' was developed that correlates submitted cis-sequences with gene expression data from Arabidopsis thaliana. The web tool identifies the A. thaliana genes harbouring the sequence in a defined promoter region and compares the expression of these genes with microarray data. The result is a hierarchy of abiotic and biotic stress conditions to which these genes are most likely responsive. When testing the performance of the web tool, known cis-regulatory sequences were submitted to the 'in silico expression analysis' resulting in the correct identification of the associated stress conditions. When using a recently identified novel elicitor-responsive sequence, a WT-box (CGACTTTT), the 'in silico expression analysis' predicts that genes harbouring this sequence in their promoter are most likely Botrytis cinerea induced. Consistent with this prediction, the strongest induction of a reporter gene harbouring this sequence in the promoter is observed with B. cinerea in transgenic A. thaliana. DATABASE URL: http://www.pathoplant.de/expression_analysis.php.

  10. Effects of the spring snowmelt recession on abiotic and biotic conditions in northern Sierra Nevada CA rivers with varying flow regimes

    NASA Astrophysics Data System (ADS)

    Yarnell, S. M.; Peek, R.; Viers, J. H.

    2012-12-01

    Recent research has discussed the importance of the spring snowmelt recession in montane environments for driving physical and biological stream processes and supporting the success of native riverine species adapted to its predictability, yet there have been no field-based studies that directly address the relationship between the snowmelt recession and stream ecology. There are a variety of studies that explore the relationship between the flow regime and an individual species, the flow regime and riparian habitat, and flow and sediment movement. However, there are few, if any, studies that attempt to delineate the relationship between recession flows and stream ecology or quantify key characteristics of the flow regime beyond determinations of minimum instream flows or peak magnitudes of geomorphic flows. Regulated flow management issues such as suitable ramping rates to transition from peak flows to baseflow or a suitable duration of flooding that provides the greatest habitat heterogeneity during the ecologically-sensitive spring season have not previously been addressed. In this study, we examined the geomorphic, hydraulic and riparian habitat in relation to aquatic biological diversity at six stream study sites across two basins with varying flow regime types: unimpaired, semi-impaired (regulated-bypass reaches), and fully impaired (regulated-peaking or regulated-augmented reaches). In two very different water year types (2011-wet, 2012-dry), we quantified the variability in the spring flow regime using flow metrics (e.g. daily recession rate, timing) and compared it to variability in abiotic stream conditions (e.g. diversity of hydraulic habitat, diversity of riparian habitat) and diversity of biotic conditions (e.g. algal abundance, EPT index). In addition, we analyzed the relationship between habitat heterogeneity and species diversity across flow regime types in both water years. Results indicate both flow regime and water year type contribute to the

  11. Oxylipins and plant abiotic stress resistance.

    PubMed

    Savchenko, T V; Zastrijnaja, O M; Klimov, V V

    2014-04-01

    Oxylipins are signaling molecules formed enzymatically or spontaneously from unsaturated fatty acids in all aerobic organisms. Oxylipins regulate growth, development, and responses to environmental stimuli of organisms. The oxylipin biosynthesis pathway in plants includes a few parallel branches named after first enzyme of the corresponding branch as allene oxide synthase, hydroperoxide lyase, divinyl ether synthase, peroxygenase, epoxy alcohol synthase, and others in which various biologically active metabolites are produced. Oxylipins can be formed non-enzymatically as a result of oxygenation of fatty acids by free radicals and reactive oxygen species. Spontaneously formed oxylipins are called phytoprostanes. The role of oxylipins in biotic stress responses has been described in many published works. The role of oxylipins in plant adaptation to abiotic stress conditions is less studied; there is also obvious lack of available data compilation and analysis in this area of research. In this work we analyze data on oxylipins functions in plant adaptation to abiotic stress conditions, such as wounding, suboptimal light and temperature, dehydration and osmotic stress, and effects of ozone and heavy metals. Modern research articles elucidating the molecular mechanisms of oxylipins action by the methods of biochemistry, molecular biology, and genetics are reviewed here. Data on the role of oxylipins in stress signal transduction, stress-inducible gene expression regulation, and interaction of these metabolites with other signal transduction pathways in cells are described. In this review the general oxylipin-mediated mechanisms that help plants to adjust to a broad spectrum of stress factors are considered, followed by analysis of more specific responses regulated by oxylipins only under certain stress conditions. New approaches to improvement of plant resistance to abiotic stresses based on the induction of oxylipin-mediated processes are discussed.

  12. Enhanced Adhesion of Campylobacter jejuni to Abiotic Surfaces Is Mediated by Membrane Proteins in Oxygen-Enriched Conditions

    PubMed Central

    Sulaeman, Sheiam; Hernould, Mathieu; Schaumann, Annick; Coquet, Laurent; Bolla, Jean-Michel; Dé, Emmanuelle; Tresse, Odile

    2012-01-01

    Campylobacter jejuni is responsible for the major foodborne bacterial enteritis in humans. In contradiction with its fastidious growth requirements, this microaerobic pathogen can survive in aerobic food environments, suggesting that it must employ a variety of protection mechanisms to resist oxidative stress. For the first time, C. jejuni 81–176 inner and outer membrane subproteomes were analyzed separately using two-dimensional protein electrophoresis (2-DE) of oxygen-acclimated cells and microaerobically grown cells. LC-MS/MS analyses successfully identified 42 and 25 spots which exhibited a significantly altered abundance in the IMP-enriched fraction and in the OMP-enriched fraction, respectively, in response to oxidative conditions. These spots corresponded to 38 membrane proteins that could be grouped into different functional classes: (i) transporters, (ii) chaperones, (iii) fatty acid metabolism, (iv) adhesion/virulence and (v) other metabolisms. Some of these proteins were up-regulated at the transcriptional level in oxygen-acclimated cells as confirmed by qRT-PCR. Downstream analyses revealed that adhesion of C. jejuni to inert surfaces and swarming motility were enhanced in oxygen-acclimated cells or paraquat-stressed cells, which could be explained by the higher abundance of membrane proteins involved in adhesion and biofilm formation. The virulence factor CadF, over-expressed in the outer membrane of oxygen-acclimated cells, contributes to the complex process of C. jejuni adhesion to inert surfaces as revealed by a reduction in the capability of C. jejuni 81–176 ΔCadF cells compared to the isogenic strain. Taken together, these data demonstrate that oxygen-enriched conditions promote the over-expression of membrane proteins involved in both the biofilm initiation and virulence of C. jejuni. PMID:23029510

  13. P5CDH affects the pathways contributing to Pro synthesis after ProDH activation by biotic and abiotic stress conditions.

    PubMed

    Rizzi, Yanina S; Monteoliva, Mariela I; Fabro, Georgina; Grosso, Carola L; Laróvere, Laura E; Alvarez, María E

    2015-01-01

    Plants facing adverse conditions usually alter proline (Pro) metabolism, generating changes that help restore the cellular homeostasis. These organisms synthesize Pro from glutamate (Glu) or ornithine (Orn) by two-step reactions that share Δ(1) pyrroline-5-carboxylate (P5C) as intermediate. In the catabolic process, Pro is converted back to Glu using a different pathway that involves Pro dehydrogenase (ProDH), P5C dehydrogenase (P5CDH), and P5C as intermediate. Little is known about the coordination of the catabolic and biosynthetic routes under stress. To address this issue, we analyzed how P5CDH affects the activation of Pro synthesis, in Arabidopsis tissues that increase ProDH activity by transient exposure to exogenous Pro, or infection with Pseudomonas syringae pv. tomato. Wild-type (Col-0) and p5cdh mutant plants subjected to these treatments were used to monitor the Pro, Glu, and Orn levels, as well as the expression of genes from Pro metabolism. Col-0 and p5cdh tissues consecutively activated ProDH and Pro biosynthetic genes under both conditions. However, they manifested a different coordination between these routes. When external Pro supply was interrupted, wild-type leaves degraded Pro to basal levels at which point Pro synthesis, mainly via Glu, became activated. Under the same condition, p5cdh leaves sustained ProDH induction without reducing the Pro content but rather increasing it, apparently by stimulating the Orn pathway. In response to pathogen infection, both genotypes showed similar trends. While Col-0 plants seemed to induce both Pro biosynthetic routes, p5cdh mutant plants may primarily activate the Orn route. Our study contributes to the functional characterization of P5CDH in biotic and abiotic stress conditions, by revealing its capacity to modulate the fate of P5C, and prevalence of Orn or Glu as Pro precursors in tissues that initially consumed Pro.

  14. P5CDH affects the pathways contributing to Pro synthesis after ProDH activation by biotic and abiotic stress conditions

    PubMed Central

    Rizzi, Yanina S.; Monteoliva, Mariela I.; Fabro, Georgina; Grosso, Carola L.; Laróvere, Laura E.; Alvarez, María E.

    2015-01-01

    Plants facing adverse conditions usually alter proline (Pro) metabolism, generating changes that help restore the cellular homeostasis. These organisms synthesize Pro from glutamate (Glu) or ornithine (Orn) by two-step reactions that share Δ1 pyrroline-5-carboxylate (P5C) as intermediate. In the catabolic process, Pro is converted back to Glu using a different pathway that involves Pro dehydrogenase (ProDH), P5C dehydrogenase (P5CDH), and P5C as intermediate. Little is known about the coordination of the catabolic and biosynthetic routes under stress. To address this issue, we analyzed how P5CDH affects the activation of Pro synthesis, in Arabidopsis tissues that increase ProDH activity by transient exposure to exogenous Pro, or infection with Pseudomonas syringae pv. tomato. Wild-type (Col-0) and p5cdh mutant plants subjected to these treatments were used to monitor the Pro, Glu, and Orn levels, as well as the expression of genes from Pro metabolism. Col-0 and p5cdh tissues consecutively activated ProDH and Pro biosynthetic genes under both conditions. However, they manifested a different coordination between these routes. When external Pro supply was interrupted, wild-type leaves degraded Pro to basal levels at which point Pro synthesis, mainly via Glu, became activated. Under the same condition, p5cdh leaves sustained ProDH induction without reducing the Pro content but rather increasing it, apparently by stimulating the Orn pathway. In response to pathogen infection, both genotypes showed similar trends. While Col-0 plants seemed to induce both Pro biosynthetic routes, p5cdh mutant plants may primarily activate the Orn route. Our study contributes to the functional characterization of P5CDH in biotic and abiotic stress conditions, by revealing its capacity to modulate the fate of P5C, and prevalence of Orn or Glu as Pro precursors in tissues that initially consumed Pro. PMID:26284090

  15. Higher order Arabidopsis 14-3-3 mutants show 14-3-3 involvement in primary root growth both under control and abiotic stress conditions

    PubMed Central

    van Kleeff, P. J. M.; Jaspert, N.; Li, K. W.; Rauch, S.; Oecking, C.; de Boer, A. H.

    2014-01-01

    Arabidopsis 14-3-3 proteins are a family of conserved proteins that interact with numerous partner proteins in a phospho-specific manner, and can affect the target proteins in a number of ways; e.g. modification of enzymatic activity. We isolated T-DNA insertion lines in six 14-3-3 genes within the non-epsilon group that phylogenetically group in three closely related gene pairs. In total, 6 single, 3 double, 12 triple, and 3 quadruple mutants were generated. The mutants were phenotyped for primary root growth on control plates: single and double mutants were indistinguishable from WT, whereas six triples and all quadruples showed a shorter primary root. In addition, length of the first epidermal cell with a visible root hair bulge (LEH) was used to determine primary root elongation on medium containing mannitol and 1-aminocyclopropane-1-carboxylic acid (ACC). This analysis showed clear differences depending on the stress and 14-3-3 gene combinations. Next to the phenotypic growth analyses, a 14-3-3 pull-down assay on roots treated with and without mannitol showed that mannitol stress strongly affects the 14-3-3 interactome. In conclusion, we show gene specificity and functional redundancy among 14-3-3 proteins in primary root elongation under control and under abiotic stress conditions and changes in the 14-3-3 interactome during the onset of stress adaptation. PMID:25189593

  16. Test of local adaptation to biotic interactions and soil abiotic conditions in the ant-tended Chamaecrista fasciculata (Fabaceae).

    PubMed

    Abdala-Roberts, Luis; Marquis, Robert J

    2007-11-01

    Few previous studies have assessed the role of herbivores and the third trophic level in the evolution of local adaptation in plants. The overall objectives of this study were to determine (1) whether local adaptation is present in the ant-defended plant, Chamaecrista fasciculata, and (2) the contribution of ant-plant-herbivore interactions and soil source to such adaptation. We used three C. fasciculata populations and performed both a field and a greenhouse experiment. The first involved reciprocally transplanting C. fasciculata seedlings from each population-source to each site, and subsequently applying one of three treatments to one-third of the seedlings of each population-source at each site: control, reduced ant density and reduced folivory. The greenhouse experiment involved reciprocal transplants of population-sources with soil sources to test for a soil-source effect on flower production and local adaptation to soil conditions. Field results showed that ant and herbivore treatments reduced ant density (increasing folivory) and herbivore damage relative to controls, respectively; however, these manipulations did not impact C. fasciculata reproduction or the likelihood of survival. In contrast, greenhouse results showed that soil source significantly affected flower production. Overall, plants in both experiments, regardless of population-source, always had higher reproductive output at one specific site. Native populations did not outperform nonnative ones, causing us to reject the hypothesis of local adaptation. The absence of treatment effects on plant reproduction and the likelihood of survival suggest a limited effect of ants and folivores on C. fasciculata fitness and local adaptation during the study year. Temporally inconsistent effects of biotic forces across years, coupled with the young age of populations, relative proximity of populations and possible counter effects of seed predators may reduce the likelihood of local adaptation in the

  17. Useful model organisms, indicators, or both? Ground beetles (Coleoptera, Carabidae) reflecting environmental conditions

    PubMed Central

    Koivula, Matti J.

    2011-01-01

    Abstract Classic studies have successfully linked single-species abundances, life-history traits, assemblage structures and biomass of carabid beetles to past and present, human-caused environmental impacts and variation in ‘natural’ conditions. This evidence has led many to suggest carabids to function as ‘indicators’ − a term that bears multiple meanings. Here, a conservation-oriented definition for an indicator is used, carabid indicator potential from seven views is evaluated, and ways to proceed in indicator research are discussed. (1) Carabid species richness poorly indicates the richness and abundance of other taxa, which underlines the importance of using multiple taxa in environmental assessments. The ability of assemblage indices and specialist or functional-group abundances to reflect rare species and habitats should be examined in detail. (2) Experimental evidence suggests that carabids may potentially serve as keystone indicators. (3) Carabids are sensitive to human-altered abiotic conditions, such as pesticide use in agro-ecosystems and heavy metal contamination of soils. Carabids might thus reflect ecological sustainability and ‘ecosystem health’. (4) Carabid assemblages host abundant species characteristic of particular habitat types or successional stages, which makes them promising dominance indicators. (5) Carabids reflect variation in ‘natural’ conditions, but vegetation and structural features are more commonly adopted as condition indicators. Carabids nevertheless provide yet another, equally accurate, view on the structure of the environment. (6) Carabids may function as early-warning signalers, as suggested by recent studies linking climate and carabid distributions. (7) Carabids reflect natural and human-caused disturbances and management, but the usefulness of these responses for conservation purposes requires further research. In summary, European carabids appear useful model organisms and possibly indicators because

  18. Mineral losses during extreme environmental conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Minerals are nutrients that are conserved by the body. During exposure to environmental stimuli, such as heat and/or exercise, the excretion of minerals, macro (Na, K, Ca, Mg) and micro (Cu, Fe, Zn), occurs through the body surface in the form of cellular desquamation and sweat, as well as in the u...

  19. Brachiopods recording environmental conditions and biomineralisation processes

    NASA Astrophysics Data System (ADS)

    Cusack, Maggie; MacDonald, John M.; Fitzer, Susan C.; John, Cedric M.

    2016-04-01

    For around 550 million years, organisms have been exerting biological control on biomineral formation, generating elegant functional biomineral structures from basic components such as calcium phosphate in the case of vertebrate skeletons; silica or calcium carbonate in invertebrate shells and corals. In the marine realm, environmental information on the world's oceans is entrapped within the composition of calcium carbonate biomineral structures such as the shells of molluscs or brachiopods. Here, conventional stable and clumped isotopes of calcium carbonate of brachiopod shells are explored in the context of biological control. The aim is to ensure the correct interpretation of environmental data and to consider the possibility of extracting information on the mechanisms of biomineralisation processes from the data stored in the fossil record.

  20. Lunar Polar Environmental Testing: Regolith Simulant Conditioning

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie

    2014-01-01

    As ISRU system development approaches flight fidelity, there is a need to test hardware in relevant environments. Extensive laboratory and field testing have involved relevant soil (lunar regolith simulants), but the current design iterations necessitate relevant pressure and temperature conditions. Including significant quantities of lunar regolith simulant in a thermal vacuum chamber poses unique challenges. These include facility operational challenges (dust tolerant hardware) and difficulty maintaining a pre-prepared soil state during pump down (consolidation state, moisture retention).For ISRU purposes, the regolith at the lunar poles will be of most interest due to the elevated water content. To test at polar conditions, the regolith simulant must be doped with water to an appropriate percentage and then chilled to cryogenic temperatures while exposed to vacuum conditions. A 1m tall, 28cm diameter bin of simulant was developed for testing these simulant preparation and drilling operations. The bin itself was wrapped with liquid nitrogen cooling loops (100K) so that the simulant bed reached an average temperature of 140K at vacuum. Post-test sampling was used to determine desiccation of the bed due to vacuum exposure. Depth dependent moisture data is presented from frozen and thawed soil samples.Following simulant only evacuation tests, drill hardware was incorporated into the vacuum chamber to test auguring techniques in the frozen soil at thermal vacuum conditions. The focus of this testing was to produce cuttings piles for a newly developed spectrometer to evaluate. This instrument, which is part of the RESOLVE program science hardware, detects water signatures from surface regolith. The drill performance, behavior of simulant during drilling, and characteristics of the cuttings piles will be offered.

  1. Portuguese native Artemia parthenogenetica resisting invasion by Artemia franciscana - Assessing reproductive parameters under different environmental conditions

    NASA Astrophysics Data System (ADS)

    Pinto, Pedro M.; Hontoria, Francisco; Vieira, Natividade; Bio, Ana

    2014-05-01

    There is widespread interest in the conservation of native Artemia biodiversity. In Portugal, only two known populations of native Artemia remain: one in the Rio Maior salina, the other in the Aveiro salina complex, both of the diploid Artemia parthenogenetica species. All other Portuguese hypersaline environments where Artemia can be found have been invaded by Artemia franciscana, which has eradicated the native strains. Invasiveness and resilience of, respectively, exotic and indigenous species are thought to depend on strain-specific traits and adaptation to local conditions. This work evaluates the reproductive performance of the two Portuguese native strains and the invasive species exposed to different salinities, temperatures, photoperiods and food supplies. Reproduction periods, quantity and quality of offspring varied significantly, depending on both the Artemia strain and environmental conditions. A. parthenogenetica from Rio Maior reproduced better than A. franciscana at high salinity (150) and low food supply, which may reflect an adaptation to its biotope that aids its resistance to invasion. But A. parthenogenetica form Aveiro performed much worse than its invasive competitor, under most of the conditions tested. It is unlikely that A. franciscana has not been introduced in this salina by chance alone. Other biological traits of the local A. parthenogenetica or adaptation to unstudied local factors (e.g. pollution) are probably responsible for this strain's survival. Further knowledge on specific local conditions and trait-specific tolerances to biotic and abiotic conditions are needed to understand (non-)invasion patterns and preserve the remaining native populations.

  2. Management of Cattle Exposed to Adverse Environmental Conditions.

    PubMed

    Mader, Terry L; Griffin, Dee

    2015-07-01

    During periods of adverse weather, optimum conditions for animal comfort and performance are compromised. Use of alternative supplementation programs need to be considered for livestock challenged by adverse environmental conditions. Use of additional water for consumption and cooling, shade, and/or alternative management strategies need to be considered to help livestock cope with heat stress. For animals reared outside during winter, strategies that increase animal space and environmental buffers need to be used to minimize effects of mud, wet conditions, and windchill. There are ample opportunities for livestock producers to enhance animal welfare and minimize the impact of environmental stress.

  3. Eddy correlation measurements in wet environmental conditions

    NASA Astrophysics Data System (ADS)

    Cuenca, R. H.; Migliori, L.; O Kane, J. P.

    2003-04-01

    The lower Feale catchment is a low-lying peaty area of 200 km^2 situated in southwest Ireland that is subject to inundation by flooding. The catchment lies adjacent to the Feale River and is subject to tidal signals as well as runoff processes. Various mitigation strategies are being investigated to reduce the damage due to flooding. Part of the effort has required development of a detailed hydrologic balance for the study area which is a wet pasture environment with local field drains that are typically flooded. An eddy correlation system was installed in the summer of 2002 to measure components of the energy balance, including evapotranspiration, along with special sensors to measure other hydrologic variables particular to this study. Data collected will be essential for validation of surface flux models to be developed for this site. Data filtering is performed using a combination of software developed by the Boundary-Layer Group (BLG) at Oregon State University together with modifications made to this system for conditions at this site. This automated procedure greatly reduces the tedious inspection of individual records. The package of tests, developed by the BLG for both tower and aircraft high frequency data, checks for electronic spiking, signal dropout, unrealistic magnitudes, extreme higher moment statistics, as well as other error scenarios not covered by the instrumentation diagnostics built into the system. Critical parameter values for each potential error were developed by applying the tests to real fast response turbulent time series. Potential instrumentation problems, flux sampling problems, and unusual physical situations records are flagged for removal or further analysis. A final visual inspection step is required to minimize rejection of physically unusual but real behavior in the time series. The problems of data management, data quality control, individual instrumentation sensitivity, potential underestimation of latent and sensible heat

  4. ENVIRONMENTALLY FRIENDLIER ORGANIC TRANSFORMATIONS ON MINERAL SUPPORTS UNDER NONTRADITIONAL CONDITIONS

    EPA Science Inventory

    Synthetic organic reactions performed under non-traditional conditions are gaining popularity primarily to circumvent the growing environmental concerns. A solvent-free approach that involves microwave (MW) exposure of neat reactants (undiluted) either in presence of a catalyst o...

  5. Overview of environmental and hydrogeologic conditions at King Salmon, Alaska

    USGS Publications Warehouse

    Waythomas, C.F.

    1994-01-01

    The Federal Aviation Administration is conducting preliminary environmental assessments at most of its present or former facilities in Alaska. Information about environmental conditions at King Salmon, Alaska are presented in this report. This report gives an overview of the geology, hydro- logy, and climate of the King Salmon area and describes general geohydrologic conditions. A thick alluvial aquifer underlies King Salmon and both ground water and surface water are plentiful in the area.

  6. Affluence and objective environmental conditions: Evidence of differences in environmental concern in metropolitan Brazil

    PubMed Central

    Nawrotzki, Raphael J.; Guedes, Gilvan; do Carmo, Roberto Luiz

    2016-01-01

    In an age of climate change, researchers need to form a deepened understanding of the determinants of environmental concern, particularly in countries of emerging economies. This paper provides a region-specific investigation of the impact of socio-economic status (SES) and objective environmental conditions on environmental concern in urban Brazil. We make use of data that were collected from personal interviews of individuals living in the metropolitan areas of Baixada Santista and Campinas, in the larger São Paulo area. Results from multilevel regression models indicate that wealthier households are more environmentally concerned, as suggested by affluence and post-materialist hypotheses. However, we also observe that increasing environmental concern correlates with a decline in objective environmental conditions. Interactions between objective environmental conditions and SES reveal some intriguing relationships: Among poorer individuals, a decline in environmental conditions increases environmental concern as suggested by the objective problems hypothesis, while for the wealthy, a decline in environmental conditions is associated with lower levels of environmental concern. PMID:27594931

  7. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants

    PubMed Central

    Sah, Saroj K.; Reddy, Kambham R.; Li, Jiaxu

    2016-01-01

    Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression. PMID:27200044

  8. Environmental Enteropathy: Critical implications of a poorly understood condition

    PubMed Central

    Korpe, Poonum S.; Petri, William A.

    2012-01-01

    Environmental enteropathy (also called tropical enteropathy) is a subclinical condition caused by constant fecal-oral contamination and resulting in blunting of intestinal villi and intestinal inflammation. Although these histological changes were discovered decades ago, the clinical impact of environmental enteropathy is just starting to be recognized. The failure of nutritional interventions and oral vaccines in the developing world may be attributed to environmental enteropathy, as the intestinal absorptive and immunologic functions are significantly deranged. Here we review the existing literature and examine potential mechanisms of pathogenesis for this poorly understood condition. PMID:22633998

  9. Transgenic expression of TaMYB2A confers enhanced tolerance to multiple abiotic stresses in Arabidopsis.

    PubMed

    Mao, Xinguo; Jia, Dongsheng; Li, Ang; Zhang, Hongying; Tian, Shanjun; Zhang, Xiaoke; Jia, Jizeng; Jing, Ruilian

    2011-09-01

    Osmotic stresses such as drought, salinity, and cold are major environmental factors that limit agricultural productivity. Transcription factors play essential roles in abiotic stress signaling in plants. Three TaMYB2 members were identified and designated TaMYB2A, TaMYB2B, and TaMYB2D based on their genomic origins. The cis-regulatory elements in the promoter regions were compared, and their diverse expression patterns under different abiotic stress conditions were identified. TaMYB2A was further characterized because of its earlier response to stresses. Subcellular localization revealed that TaMYB2A localized in the nucleus. To examine the role of TaMYB2A under various environmental stresses, transgenic Arabidopsis plants carrying TaMYB2A controlled by the CaMV 35S promoter were generated and subjected to severe abiotic stress. TaMYB2A transgenics had enhanced tolerance to drought, salt, and freezing stresses, which were confirmed by the enhanced expressions of abiotic stress-responsive genes and several physiological indices, including decreased rate of water loss, enhanced cell membrane stability, improved photosynthetic potential, and reduced osmotic potential. TaMYB2A is a multifunctional regulatory factor. Its overexpression confers enhanced tolerance to multiple abiotic stresses while having no obvious negative effects on phenotype under well-watered and stressed conditions; thus, TaMYB2A has the potential for utilization in transgenic breeding to improve abiotic stress tolerances in crops.

  10. Asymmetric coexistence: bidirectional abiotic and biotic effects between goose barnacles and mussels.

    PubMed

    Kawai, Takashi; Tokeshi, Mutsunori

    2006-07-01

    1. Species coexistence depends on the net effect of interacting species, representing the sum of multiple interaction components that may act simultaneously and vary independently depending on ambient environmental conditions. Consequently, for a comprehensive understanding of the compound nature of species interactions and coexistence, a mechanistic approach that allows a separate evaluation of each interaction component is required. 2. Two sessile filter-feeders, the goose barnacle Capitulum mitella and the mussel Septifer virgatus, coexist on moderately wave-exposed rocky shores in south-western Japan. In the upper intertidal, Capitulum positively influenced Septifer survivorship and growth through amelioration of thermal stress and of physical disturbance. On the other hand, these species are potential competitors as they have similar body sizes and modes of resource utilization. These opposite processes, facilitation and competition, are based on abiotic characteristics and biotic functions of the two species, respectively. 3. In order to quantify the bidirectional abiotic, biotic and net effects, a series of experimental manipulations was conducted involving the use of living neighbours with both abiotic and biotic effects, and artificial mimics to simulate abiotic effects without biotic effects. 4. Capitulum had strong positive abiotic effects on the mussel survivorship in most experimental periods, while the biotic effect was negligible or weakly negative, suggesting that the net effect of Capitulum on mussel survival was largely attributable to the abiotic effect. In contrast, a significantly negative biotic effect on the mussel growth rate was always present, though this was cancelled out by the larger, positive abiotic effect. In the case of Septifer, its abiotic and biotic effects on the survivorship of goose barnacles were negligible, while those on the growth rate showed temporal variation. 5. With respect to the relationship between species

  11. Responses of five Mediterranean halophytes to seasonal changes in environmental conditions

    PubMed Central

    Gil, Ricardo; Bautista, Inmaculada; Boscaiu, Monica; Lidón, Antonio; Wankhade, Shantanu; Sánchez, Héctor; Llinares, Josep; Vicente, Oscar

    2014-01-01

    In their natural habitats, different mechanisms may contribute to the tolerance of halophytes to high soil salinity and other abiotic stresses, but their relative contribution and ecological relevance, for a given species, remain largely unknown. We studied the responses to changing environmental conditions of five halophytes (Sarcocornia fruticosa, Inula crithmoides, Plantago crassifolia, Juncus maritimus and J. acutus) in a Mediterranean salt marsh, from summer 2009 to autumn 2010. A principal component analysis was used to correlate soil and climatic data with changes in the plants' contents of chemical markers associated with stress responses: ions, osmolytes, malondialdehyde (MDA, a marker of oxidative stress) and antioxidant systems. Stress tolerance in S. fruticosa, I. crithmoides and P. crassifolia (all succulent dicots) seemed to depend mostly on the transport of ions to aerial parts and the biosynthesis of specific osmolytes, whereas both Juncus species (monocots) were able to avoid accumulation of toxic ions, maintaining relatively high K+/Na+ ratios. For the most salt-tolerant taxa (S. fruticosa and I. crithmoides), seasonal variations of Na+, Cl−, K+ and glycine betaine, their major osmolyte, did not correlate with environmental parameters associated with salt or water stress, suggesting that their tolerance mechanisms are constitutive and relatively independent of external conditions, although they could be mediated by changes in the subcellular compartmentalization of ions and compatible osmolytes. Proline levels were too low in all the species to possibly have any effect on osmotic adjustment. However—except for P. crassifolia—proline may play a role in stress tolerance based on its ‘osmoprotectant’ functions. No correlation was observed between the degree of environmental stress and the levels of MDA or enzymatic and non-enzymatic antioxidants, indicating that the investigated halophytes are not subjected to oxidative stress under natural

  12. Responses of five Mediterranean halophytes to seasonal changes in environmental conditions.

    PubMed

    Gil, Ricardo; Bautista, Inmaculada; Boscaiu, Monica; Lidón, Antonio; Wankhade, Shantanu; Sánchez, Héctor; Llinares, Josep; Vicente, Oscar

    2014-08-19

    In their natural habitats, different mechanisms may contribute to the tolerance of halophytes to high soil salinity and other abiotic stresses, but their relative contribution and ecological relevance, for a given species, remain largely unknown. We studied the responses to changing environmental conditions of five halophytes (Sarcocornia fruticosa, Inula crithmoides, Plantago crassifolia, Juncus maritimus and J. acutus) in a Mediterranean salt marsh, from summer 2009 to autumn 2010. A principal component analysis was used to correlate soil and climatic data with changes in the plants' contents of chemical markers associated with stress responses: ions, osmolytes, malondialdehyde (MDA, a marker of oxidative stress) and antioxidant systems. Stress tolerance in S. fruticosa, I. crithmoides and P. crassifolia (all succulent dicots) seemed to depend mostly on the transport of ions to aerial parts and the biosynthesis of specific osmolytes, whereas both Juncus species (monocots) were able to avoid accumulation of toxic ions, maintaining relatively high K(+)/Na(+) ratios. For the most salt-tolerant taxa (S. fruticosa and I. crithmoides), seasonal variations of Na(+), Cl(-), K(+) and glycine betaine, their major osmolyte, did not correlate with environmental parameters associated with salt or water stress, suggesting that their tolerance mechanisms are constitutive and relatively independent of external conditions, although they could be mediated by changes in the subcellular compartmentalization of ions and compatible osmolytes. Proline levels were too low in all the species to possibly have any effect on osmotic adjustment. However-except for P. crassifolia-proline may play a role in stress tolerance based on its 'osmoprotectant' functions. No correlation was observed between the degree of environmental stress and the levels of MDA or enzymatic and non-enzymatic antioxidants, indicating that the investigated halophytes are not subjected to oxidative stress under natural

  13. Fine-scale spatial variation in plant species richness and its relationship to environmental conditions in coastal marshlands

    USGS Publications Warehouse

    Mancera, J.E.; Meche, G.C.; Cardona-Olarte, P.P.; Castaneda-Moya, E.; Chiasson, R.L.; Geddes, N.A.; Schile, L.M.; Wang, H.G.; Guntenspergen, G.R.; Grace, J.B.

    2005-01-01

    Previous studies have shown that variations in environmental conditions play a major role in explaining variations in plant species richness at community and landscape scales. In this study, we considered the degree to which fine-scale spatial variations in richness could be related to fine-scale variations in abiotic and biotic factors. To examine spatial variation in richness, grids of 1 m(2) plots were laid out at five sites within a coastal riverine wetland landscape. At each site, a 5 x 7 array of plots was established adjacent to the river's edge with plots one meter apart. In addition to the estimation of species richness, environmental measurements included sediment salinity, plot microelevation, percent of plot recently disturbed, and estimated community biomass. Our analysis strategy was to combine the use of structural equation modeling (path modeling) with an assessment of spatial association. Mantel's tests revealed significant spatial autocorrelation in species richness at four of the five sites sampled, indicating that richness in a plot correlated with the richness of nearby plots. We subsequently considered the degree to which spatial autocorrelations in richness could be explained by spatial autocorrelations in environmental conditions. Once data were corrected for environmental correlations, spatial autocorrelation in residual species richness could not be detected at any site. Based on these results, we conclude that in this coastal wetland, there appears to be a fine-scale mapping of diversity to microgradients in environmental conditions.

  14. Abiotic tooth enamel

    NASA Astrophysics Data System (ADS)

    Yeom, Bongjun; Sain, Trisha; Lacevic, Naida; Bukharina, Daria; Cha, Sang-Ho; Waas, Anthony M.; Arruda, Ellen M.; Kotov, Nicholas A.

    2017-03-01

    Tooth enamel comprises parallel microscale and nanoscale ceramic columns or prisms interlaced with a soft protein matrix. This structural motif is unusually consistent across all species from all geological eras. Such invariability—especially when juxtaposed with the diversity of other tissues—suggests the existence of a functional basis. Here we performed ex vivo replication of enamel-inspired columnar nanocomposites by sequential growth of zinc oxide nanowire carpets followed by layer-by-layer deposition of a polymeric matrix around these. We show that the mechanical properties of these nanocomposites, including hardness, are comparable to those of enamel despite the nanocomposites having a smaller hard-phase content. Our abiotic enamels have viscoelastic figures of merit (VFOM) and weight-adjusted VFOM that are similar to, or higher than, those of natural tooth enamels—we achieve values that exceed the traditional materials limits of 0.6 and 0.8, respectively. VFOM values describe resistance to vibrational damage, and our columnar composites demonstrate that light-weight materials of unusually high resistance to structural damage from shocks, environmental vibrations and oscillatory stress can be made using biomimetic design. The previously inaccessible combinations of high stiffness, damping and light weight that we achieve in these layer-by-layer composites are attributed to efficient energy dissipation in the interfacial portion of the organic phase. The in vivo contribution of this interfacial portion to macroscale deformations along the tooth’s normal is maximized when the architecture is columnar, suggesting an evolutionary advantage of the columnar motif in the enamel of living species. We expect our findings to apply to all columnar composites and to lead to the development of high-performance load-bearing materials.

  15. Abiotic tooth enamel.

    PubMed

    Yeom, Bongjun; Sain, Trisha; Lacevic, Naida; Bukharina, Daria; Cha, Sang-Ho; Waas, Anthony M; Arruda, Ellen M; Kotov, Nicholas A

    2017-03-01

    Tooth enamel comprises parallel microscale and nanoscale ceramic columns or prisms interlaced with a soft protein matrix. This structural motif is unusually consistent across all species from all geological eras. Such invariability-especially when juxtaposed with the diversity of other tissues-suggests the existence of a functional basis. Here we performed ex vivo replication of enamel-inspired columnar nanocomposites by sequential growth of zinc oxide nanowire carpets followed by layer-by-layer deposition of a polymeric matrix around these. We show that the mechanical properties of these nanocomposites, including hardness, are comparable to those of enamel despite the nanocomposites having a smaller hard-phase content. Our abiotic enamels have viscoelastic figures of merit (VFOM) and weight-adjusted VFOM that are similar to, or higher than, those of natural tooth enamels-we achieve values that exceed the traditional materials limits of 0.6 and 0.8, respectively. VFOM values describe resistance to vibrational damage, and our columnar composites demonstrate that light-weight materials of unusually high resistance to structural damage from shocks, environmental vibrations and oscillatory stress can be made using biomimetic design. The previously inaccessible combinations of high stiffness, damping and light weight that we achieve in these layer-by-layer composites are attributed to efficient energy dissipation in the interfacial portion of the organic phase. The in vivo contribution of this interfacial portion to macroscale deformations along the tooth's normal is maximized when the architecture is columnar, suggesting an evolutionary advantage of the columnar motif in the enamel of living species. We expect our findings to apply to all columnar composites and to lead to the development of high-performance load-bearing materials.

  16. Can environmental conditions trigger cyanobacterial surfaces and following carbonate formation: implication for biomineralization and biotechnology

    NASA Astrophysics Data System (ADS)

    Paulo, C.; Dittrich, M.; Zhu, T.

    2015-12-01

    In this presentation we will give an overview what kind of the factors may trigger carbonate formations at the cell surfaces under a variety of environmental conditions. As examples, we will present the results from our recent studies on formation of calcium carbonates, dolomites and bio-cements. The extracellular polymeric substances (EPS) in the Synechococcuscell envelope are recognized key players in the nucleation of carbonates in marine and freshwater environments. Yet, little is known about a nutrient contents control over the molecular composition of Synechococcus cell envelope, and consequently, biomineralization. In the first study, we investigated how a variation of the phosphorus (P) in the growth media can lead to changes in the surface reactivity of the cells and impact their ability to form carbonates. The objective of the second study is to gain insights into the spatial distribution of cyanobacterial EPS and dolomite from different sediment layers of Khor Al-Adaid sabkha (Qatar). Here, we characterized microbial mats on molecular level in respect of organic and inorganic components using in-situ 2D Raman spectroscopy and Atomic Force Microscopy (AFM) were used. Additionally, 2D chemical maps of sediment layers documented spectral characterizations of minerals and organic matter of microbial origins at high spatial resolution. Finally, we will show the results from the experiments with auto-phototrophic cyanobacteria Gloeocapsa PCC73106, which habitat on the monument surfaces, towards its application for bio-concrete, a product of microbial carbonate precipitation. We studied the biomineralization in biofilm forming Gloeocapsa PCC73106 on the concrete surface as a pre-requirement for microbial carbonate precipitation. Biomineralization on the concrete surface by live cells and killed cells were compared with that under the abiotic condition. Our experiments allow us to conclude that environmental conditions play a significant role in the control of

  17. Stable Internal Reference Genes for the Normalization of Real-Time PCR in Different Sweetpotato Cultivars Subjected to Abiotic Stress Conditions

    PubMed Central

    Ji, Chang Yoon; Park, Seyeon; Jeong, Jae cheol; Lee, Haeng-Soon; Kwak, Sang-Soo

    2012-01-01

    Reverse transcription quantitative real-time PCR (RT-qPCR) has become one of the most widely used methods for gene expression analysis, but its successful application depends on the stability of suitable reference genes used for data normalization. In plant studies, the choice and optimal number of reference genes must be experimentally determined for the specific conditions, plant species, and cultivars. In this study, ten candidate reference genes of sweetpotato (Ipomoea batatas) were isolated and the stability of their expression was analyzed using two algorithms, geNorm and NormFinder. The samples consisted of tissues from four sweetpotato cultivars subjected to four different environmental stress treatments, i.e., cold, drought, salt and oxidative stress. The results showed that, for sweetpotato, individual reference genes or combinations thereof should be selected for use in data normalization depending on the experimental conditions and the particular cultivar. In general, the genes ARF, UBI, COX, GAP and RPL were validated as the most suitable reference gene set for every cultivar across total tested samples. Interestingly, the genes ACT and TUB, although widely used, were not the most suitable reference genes in different sweetpotato sample sets. Taken together, these results provide guidelines for reference gene(s) selection under different experimental conditions. In addition, they serve as a foundation for the more accurate and widespread use of RT-qPCR in various sweetpotato cultivars. PMID:23251557

  18. 10 CFR 50.36b - Environmental conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Environmental conditions. 50.36b Section 50.36b Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Applications for Licenses, Certifications, and Regulatory Approvals; Form; Contents; Ineligibility of Certain...

  19. 10 CFR 50.36b - Environmental conditions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Environmental conditions. 50.36b Section 50.36b Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Applications for Licenses, Certifications, and Regulatory Approvals; Form; Contents; Ineligibility of Certain...

  20. 10 CFR 50.36b - Environmental conditions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Environmental conditions. 50.36b Section 50.36b Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Applications for Licenses, Certifications, and Regulatory Approvals; Form; Contents; Ineligibility of Certain...

  1. 10 CFR 50.36b - Environmental conditions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Environmental conditions. 50.36b Section 50.36b Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Applications for Licenses, Certifications, and Regulatory Approvals; Form; Contents; Ineligibility of Certain...

  2. Matching biological traits to environmental conditions in marine benthic ecosystems

    NASA Astrophysics Data System (ADS)

    Bremner, J.; Rogers, S. I.; Frid, C. L. J.

    2006-05-01

    The effects of variability in environmental conditions on species composition in benthic ecosystems are well established, but relatively little is known about how environmental variability relates to ecosystem functioning. Benthic invertebrate assemblages are heavily involved in the maintenance of ecological processes and investigation of the biological characteristics (traits) expressed in these assemblages can provide information about some aspects of functioning. The aim of this study was to establish and explore relationships between environmental variability and biological traits expressed in megafauna assemblages in two UK regions. Patterns of trait composition were matched to environmental conditions and subsets of variables best describing these patterns determined. The nature of the relationships were subsequently examined at two separate scales, both between and within the regions studied. Over the whole area, some traits related to size, longevity, reproduction, mobility, flexibility, feeding method, sociability and living habit were negatively correlated with salinity, sea surface temperature, annual temperature range and the level of fishing effort, and positively associated with fish taxon richness and shell content of the substratum. Between the two regions, reductions in temperature range and shell content were associated with infrequent relative occurrences of short-lived, moderately mobile, flexible, solitary, opportunistic, permanent-burrow dwelling fauna and those exhibiting reproductive strategies based on benthic development. Relationships between some traits and environmental conditions diverged within the two regions, with increases in fishing effort and shell content of the substratum being associated with low frequencies of occurrence of moderately mobile and moderately to highly flexible fauna within one region, but high frequencies in the other. These changes in trait composition have implications for ecosystem processes, with, for

  3. Ceramic production during changing environmental/climatic conditions

    NASA Astrophysics Data System (ADS)

    Oestreich, Daniela B.; Glasmacher, Ulrich A.

    2015-04-01

    Ceramics, with regard to their status as largely everlasting everyday object as well as on the basis of their chronological sensitivity, reflect despite their simplicity the technological level of a culture and therefore also, directly or indirectly, the adaptability of a culture with respect to environmental and/or climatic changes. For that reason the question arises, if it is possible to identify changes in production techniques and raw material sources for ceramic production, as a response to environmental change, e.g. climate change. This paper will present results of a research about Paracas Culture (800 - 200 BC), southern Peru. Through several investigations (e.g. Schittek et al., 2014; Eitel and Mächtle, 2009) it is well known that during Paracas period changes in climate and environmental conditions take place. As a consequence, settlement patterns shifted several times through the various stages of Paracas time. Ceramics from three different sites (Jauranga, Cutamalla, Collanco) and temporal phases of the Paracas period are detailed archaeometric, geochemical and mineralogical characterized, e.g. Raman spectroscopy, XRD, and ICP-MS analyses. The aim of this research is to resolve potential differences in the chemical composition of the Paracas ceramics in space and time and to compare the data with the data sets of pre-Columbian environmental conditions. Thus influences of changing environmental conditions on human societies and their cultural conditions will be discussed. References Eitel, B. and Mächtle, B. 2009. Man and Environment in the eastern Atacama Desert (Southern Peru): Holocene climate changes and their impact on pre-Columbian cultures. In: Reindel, M. & Wagner, G. A. (eds.) New Technologies for Archaeology. Berlin Heidelberg: Springer-Verlag. Schittek, K., Mächtle, B., Schäbitz, F., Forbriger, M., Wennrich, V., Reindel, M., and Eitel, B.. Holocene environmental changes in the highlands of the southern Peruvian Andes (14° S) and their

  4. Laboratory screening of potential predators of the poultry red mite (Dermanyssus gallinae) and assessment of Hypoaspis miles performance under varying biotic and abiotic conditions.

    PubMed

    Ali, W; George, D R; Shiel, R S; Sparagano, O A E; Guy, J H

    2012-06-08

    The poultry red mite, Dermanyssus gallinae (De Geer), is the most important ectoparasitic pest of layer hens worldwide and difficult to control through 'conventional' synthetic acaricides. The present study aimed to identify a suitable predator of D. gallinae that could potentially form the basis of biological control in commercial poultry systems. From four selected predatory mite species (Hypoaspis miles (Berlese), Hypoaspis aculeifer (Canestrini), Amblyseius degenerans (Berlese) and Phytoseiulus persimilis (Athias-Henriot)), Hypoaspis mites demonstrated the greatest potential as predators of D. gallinae. Experiments were also conducted to assess the effect of environmental (temperature and dust), physical (presence of harbourages) and biological (presence of alternative prey) factors on the predatory efficacy of H. miles. Predation of D. gallinae per se was observed under all conditions tested, though was found to be temperature-dependent and reduced by the presence of alternative prey.

  5. Diagnosing Abiotic Degradation

    EPA Science Inventory

    The abiotic degradation of chlorinated solvents in ground water can be difficult to diagnose. Under current practice, most of the “evidence” is negative; specifically the apparent disappearance of chlorinated solvents with an accumulation of vinyl chloride, ethane, ethylene, or ...

  6. Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging

    PubMed Central

    Hossain, Mohammad A.; Bhattacharjee, Soumen; Armin, Saed-Moucheshi; Qian, Pingping; Xin, Wang; Li, Hong-Yu; Burritt, David J.; Fujita, Masayuki; Tran, Lam-Son P.

    2015-01-01

    Plants are constantly challenged by various abiotic stresses that negatively affect growth and productivity worldwide. During the course of their evolution, plants have developed sophisticated mechanisms to recognize external signals allowing them to respond appropriately to environmental conditions, although the degree of adjustability or tolerance to specific stresses differs from species to species. Overproduction of reactive oxygen species (ROS; hydrogen peroxide, H2O2; superoxide, O2⋅-; hydroxyl radical, OH⋅ and singlet oxygen, 1O2) is enhanced under abiotic and/or biotic stresses, which can cause oxidative damage to plant macromolecules and cell structures, leading to inhibition of plant growth and development, or to death. Among the various ROS, freely diffusible and relatively long-lived H2O2 acts as a central player in stress signal transduction pathways. These pathways can then activate multiple acclamatory responses that reinforce resistance to various abiotic and biotic stressors. To utilize H2O2 as a signaling molecule, non-toxic levels must be maintained in a delicate balancing act between H2O2 production and scavenging. Several recent studies have demonstrated that the H2O2-priming can enhance abiotic stress tolerance by modulating ROS detoxification and by regulating multiple stress-responsive pathways and gene expression. Despite the importance of the H2O2-priming, little is known about how this process improves the tolerance of plants to stress. Understanding the mechanisms of H2O2-priming-induced abiotic stress tolerance will be valuable for identifying biotechnological strategies to improve abiotic stress tolerance in crop plants. This review is an overview of our current knowledge of the possible mechanisms associated with H2O2-induced abiotic oxidative stress tolerance in plants, with special reference to antioxidant metabolism. PMID:26136756

  7. Environmental Conditions Associated with Elevated Vibrio parahaemolyticus Concentrations in Great Bay Estuary, New Hampshire

    PubMed Central

    Urquhart, Erin A.; Jones, Stephen H.; Yu, Jong W.; Schuster, Brian M.; Marcinkiewicz, Ashley L.; Whistler, Cheryl A.; Cooper, Vaughn S.

    2016-01-01

    Reports from state health departments and the Centers for Disease Control and Prevention indicate that the annual number of reported human vibriosis cases in New England has increased in the past decade. Concurrently, there has been a shift in both the spatial distribution and seasonal detection of Vibrio spp. throughout the region based on limited monitoring data. To determine environmental factors that may underlie these emerging conditions, this study focuses on a long-term database of Vibrio parahaemolyticus concentrations in oyster samples generated from data collected from the Great Bay Estuary, New Hampshire over a period of seven consecutive years. Oyster samples from two distinct sites were analyzed for V. parahaemolyticus abundance, noting significant relationships with various biotic and abiotic factors measured during the same period of study. We developed a predictive modeling tool capable of estimating the likelihood of V. parahaemolyticus presence in coastal New Hampshire oysters. Results show that the inclusion of chlorophyll a concentration to an empirical model otherwise employing only temperature and salinity variables, offers improved predictive capability for modeling the likelihood of V. parahaemolyticus in the Great Bay Estuary. PMID:27144925

  8. Modelling Stream-Fish Functional Traits in Reference Conditions: Regional and Local Environmental Correlates

    PubMed Central

    Oliveira, João M.; Segurado, Pedro; Santos, José M.; Teixeira, Amílcar; Ferreira, Maria T.; Cortes, Rui V.

    2012-01-01

    Identifying the environmental gradients that control the functional structure of biological assemblages in reference conditions is fundamental to help river management and predict the consequences of anthropogenic stressors. Fish metrics (density of ecological guilds, and species richness) from 117 least disturbed stream reaches in several western Iberia river basins were modelled with generalized linear models in order to investigate the importance of regional- and local-scale abiotic gradients to variation in functional structure of fish assemblages. Functional patterns were primarily associated with regional features, such as catchment elevation and slope, rainfall, and drainage area. Spatial variations of fish guilds were thus associated with broad geographic gradients, showing (1) pronounced latitudinal patterns, affected mainly by climatic factors and topography, or (2) at the basin level, strong upstream-downstream patterns related to stream position in the longitudinal gradient. Maximum native species richness was observed in midsize streams in accordance with the river continuum concept. The findings of our study emphasized the need to use a multi-scale approach in order to fully assess the factors that govern the functional organization of biotic assemblages in ‘natural’ streams, as well as to improve biomonitoring and restoration of fluvial ecosystems. PMID:23029242

  9. Influence of abiotic stress signals on secondary metabolites in plants

    PubMed Central

    Ramakrishna, Akula; Ravishankar, Gokare Aswathanarayana

    2011-01-01

    Plant secondary metabolites are unique sources for pharmaceuticals, food additives, flavors, and industrially important biochemicals. Accumulation of such metabolites often occurs in plants subjected to stresses including various elicitors or signal molecules. Secondary metabolites play a major role in the adaptation of plants to the environment and in overcoming stress conditions. Environmental factors viz. temperature, humidity, light intensity, the supply of water, minerals, and CO2 influence the growth of a plant and secondary metabolite production. Drought, high salinity, and freezing temperatures are environmental conditions that cause adverse effects on the growth of plants and the productivity of crops. Plant cell culture technologies have been effective tools for both studying and producing plant secondary metabolites under in vitro conditions and for plant improvement. This brief review summarizes the influence of different abiotic factors include salt, drought, light, heavy metals, frost etc. on secondary metabolites in plants. The focus of the present review is the influence of abiotic factors on secondary metabolite production and some of important plant pharmaceuticals. Also, we describe the results of in vitro cultures and production of some important secondary metabolites obtained in our laboratory. PMID:22041989

  10. Soil abiotic factors influence interactions between belowground herbivores and plant roots.

    PubMed

    Erb, Matthias; Lu, Jing

    2013-03-01

    Root herbivores are important ecosystem drivers and agricultural pests, and, possibly as a consequence, plants protect their roots using a variety of defensive strategies. One aspect that distinguishes belowground from aboveground plant-insect interactions is that roots are constantly exposed to a set of soil-specific abiotic factors. These factors can profoundly influence root resistance, and, consequently, the outcome of the interaction with belowground feeders. In this review, we synthesize the current literature on the impact of soil moisture, nutrients, and texture on root-herbivore interactions. We show that soil abiotic factors influence the interaction by modulating herbivore abundance and behaviour, root growth and resistance, beneficial microorganisms, as well as natural enemies of the herbivores. We suggest that abiotic heterogeneity may explain the high variability that is often encountered in root-herbivore systems. We also propose that under abiotic stress, the relative fitness value of the roots and the potential negative impact of herbivory increases, which may lead to a higher defensive investment and an increased recruitment of beneficial microorganisms by the plant. At the same time, both root-feeding herbivores and natural enemies are likely to decrease in abundance under extreme environmental conditions, leading to a context- and species-specific impact on plant fitness. Only by using tightly controlled experiments that include soil abiotic heterogeneity will it be possible to understand the impact of root feeders on an ecosystem scale and to develop predictive models for pest occurrence and impact.

  11. The behavior of Kevlar fibers under environmental-stress conditions

    NASA Astrophysics Data System (ADS)

    Perry, Mark Charles

    There are a myriad of mechanisms by which polymers can degrade and fail. It is therefore important to understand the physical mechanics, chemistry, their interactions, and kinetics. This pursuit becomes more than just "academic" because these mechanisms might just change with service conditions (i.e. environment and loading). If one does not understand these processes from the molecular to macroscopic scale it would be exceedingly difficult to gain information from accelerated testing because the mechanisms just might change from one condition to another. The purpose of this study was to probe these processes on scales ranging from molecular to macroscopic in environmental stress conditions. This study reports the results of environmental-stress degradation of Kevlar 49 fibers. The environmental agent of focus was the ubiquitous air pollutant complex NOsb{x}. Other materials and environments were investigated to a lesser extent for purposes of comparison. Mechanical property (i.e., short-term strength, modulus, and creep lifetime) degradation was examined using single fiber, yarn, and epoxy coated yarn (composite) specimens under environmental-stress conditions. Optical and scanning electron microscopes were employed to examine and compare the appearance of fracture features resulting from the various testing conditions. Atomic force microscopy augmented these studies with detailed topographical mappings and measures of the fracture surface frictional and modulus properties. Molecular processes (i.e., chain scission and other mechanical-chemical reactions) were probed by measures of changes in viscosity average molecular weight and the infrared spectra. It was demonstrated that environmental-stress degradation effects do occur in the Kevlar-NOsb{x} gas system. Strength decay in environmentally exposed unloaded fibers was demonstrated and a synergistic response in creep reduced fiber lifetimes by three orders of magnitude at moderate loadings. That is to say, the

  12. CADDIS Volume 4. Data Analysis: Predicting Environmental Conditions from Biological Observations (PECBO Appendix)

    EPA Pesticide Factsheets

    Overview of PECBO Module, using scripts to infer environmental conditions from biological observations, statistically estimating species-environment relationships, methods for inferring environmental conditions, statistical scripts in module.

  13. Environmental Conditions for Space Flight Hardware: A Survey

    NASA Technical Reports Server (NTRS)

    Plante, Jeannette; Lee, Brandon

    2005-01-01

    Interest in generalization of the physical environment experienced by NASA hardware from the natural Earth environment (on the launch pad), man-made environment on Earth (storage acceptance an d qualification testing), the launch environment, and the space environment, is ed to find commonality among our hardware in an effort to reduce cost and complexity. NASA is entering a period of increase in its number of planetary missions and it is important to understand how our qualification requirements will evolve with and track these new environments. Environmental conditions are described for NASA projects in several ways for the different periods of the mission life cycle. At the beginning, the mission manager defines survivability requirements based on the mission length, orbit, launch date, launch vehicle, and other factors . such as the use of reactor engines. Margins are then applied to these values (temperature extremes, vibration extremes, radiation tolerances, etc,) and a new set of conditions is generalized for design requirements. Mission assurance documents will then assign an additional margin for reliability, and a third set of values is provided for during testing. A fourth set of environmental condition values may evolve intermittently from heritage hardware that has been tested to a level beyond the actual mission requirement. These various sets of environment figures can make it quite confusing and difficult to capture common hardware environmental requirements. Environmental requirement information can be found in a wide variety of places. The most obvious is with the individual projects. We can easily get answers to questions about temperature extremes being used and radiation tolerance goals, but it is more difficult to map the answers to the process that created these requirements: for design, for qualification, and for actual environment with no margin applied. Not everyone assigned to a NASA project may have that kind of insight, as many have

  14. Evaluation of Sorghum [Sorghum bicolor (L.)] Reference Genes in Various Tissues and under Abiotic Stress Conditions for Quantitative Real-Time PCR Data Normalization.

    PubMed

    Sudhakar Reddy, Palakolanu; Srinivas Reddy, Dumbala; Sivasakthi, Kaliamoorthy; Bhatnagar-Mathur, Pooja; Vadez, Vincent; Sharma, Kiran K

    2016-01-01

    Accurate and reliable gene expression data from qPCR depends on stable reference gene expression for potential gene functional analyses. In this study, 15 reference genes were selected and analyzed in various sample sets including abiotic stress treatments (salt, cold, water stress, heat, and abscisic acid) and tissues (leaves, roots, seedlings, panicle, and mature seeds). Statistical tools, including geNorm, NormFinder and RefFinder, were utilized to assess the suitability of reference genes based on their stability rankings for various sample groups. For abiotic stress, PP2A and CYP were identified as the most stable genes. In contrast, EIF4α was the most stable in the tissue sample set, followed by PP2A; PP2A was the most stable in all the sample set, followed by EIF4α. GAPDH, and UBC1 were the least stably expressed in the tissue and all the sample sets. These results also indicated that the use of two candidate reference genes would be sufficient for the optimization of normalization studies. To further verify the suitability of these genes for use as reference genes, SbHSF5 and SbHSF13 gene expression levels were normalized using the most and least stable sorghum reference genes in root and water stressed-leaf tissues of five sorghum varieties. This is the first systematic study of the selection of the most stable reference genes for qPCR-related assays in Sorghum bicolor that will potentially benefit future gene expression studies in sorghum and other closely related species.

  15. Evaluation of Sorghum [Sorghum bicolor (L.)] Reference Genes in Various Tissues and under Abiotic Stress Conditions for Quantitative Real-Time PCR Data Normalization

    PubMed Central

    Sudhakar Reddy, Palakolanu; Srinivas Reddy, Dumbala; Sivasakthi, Kaliamoorthy; Bhatnagar-Mathur, Pooja; Vadez, Vincent; Sharma, Kiran K.

    2016-01-01

    Accurate and reliable gene expression data from qPCR depends on stable reference gene expression for potential gene functional analyses. In this study, 15 reference genes were selected and analyzed in various sample sets including abiotic stress treatments (salt, cold, water stress, heat, and abscisic acid) and tissues (leaves, roots, seedlings, panicle, and mature seeds). Statistical tools, including geNorm, NormFinder and RefFinder, were utilized to assess the suitability of reference genes based on their stability rankings for various sample groups. For abiotic stress, PP2A and CYP were identified as the most stable genes. In contrast, EIF4α was the most stable in the tissue sample set, followed by PP2A; PP2A was the most stable in all the sample set, followed by EIF4α. GAPDH, and UBC1 were the least stably expressed in the tissue and all the sample sets. These results also indicated that the use of two candidate reference genes would be sufficient for the optimization of normalization studies. To further verify the suitability of these genes for use as reference genes, SbHSF5 and SbHSF13 gene expression levels were normalized using the most and least stable sorghum reference genes in root and water stressed-leaf tissues of five sorghum varieties. This is the first systematic study of the selection of the most stable reference genes for qPCR-related assays in Sorghum bicolor that will potentially benefit future gene expression studies in sorghum and other closely related species. PMID:27200008

  16. Stress-responsive expression patterns and functional characterization of cold shock domain proteins in cabbage (Brassica rapa) under abiotic stress conditions.

    PubMed

    Choi, Min Ji; Park, Ye Rin; Park, Su Jung; Kang, Hunseung

    2015-11-01

    Although the functional roles of cold shock domain proteins (CSDPs) have been demonstrated during the growth, development, and stress adaptation of Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and wheat (Triticum aestivum), the functions of CSDPs in other plants species, including cabbage (Brassica rapa), are largely unknown. To gain insight into the roles of CSDPs in cabbage under stress conditions, the genes encoding CSDPs in cabbage were isolated, and the functional roles of CSDPs in response to environmental stresses were analyzed. Real-time RT-PCR analysis revealed that the levels of BrCSDP transcripts increased during cold, salt, or drought stress, as well as upon ABA treatment. Among the five BrCSDP genes found in the cabbage genome, one CSDP (BRU12051), named BrCSDP3, was unique in that it is localized to the chloroplast as well as to the nucleus. Ectopic expression of BrCSDP3 in Arabidopsis resulted in accelerated seed germination and better seedling growth compared to the wild-type plants under high salt or dehydration stress conditions, and in response to ABA treatment. BrCSDP3 did not affect the splicing of intron-containing genes and processing of rRNAs in the chloroplast. BrCSDP3 had the ability to complement RNA chaperone-deficient Escherichia coli mutant cells under low temperatures as well as DNA- and RNA-melting abilities, suggesting that it possesses RNA chaperone activity. Taken together, these results suggest that BrCSDP3, harboring RNA chaperone activity, plays a role as a positive regulator in seed germination and seedling growth under stress conditions.

  17. Low melatonin production by suppression of either serotonin N-acetyltransferase or N-acetylserotonin methyltransferase in rice causes seedling growth retardation with yield penalty, abiotic stress susceptibility, and enhanced coleoptile growth under anoxic conditions.

    PubMed

    Byeon, Yeong; Back, Kyoungwhan

    2016-04-01

    Serotonin N-acetyltransferase (SNAT) and N-acetylserotonin methyltransferase (ASMT) are the last two key enzymes for melatonin biosynthesis in living organisms. In this study, we demonstrated that transgenic rice (Oryza sativa L.) plants, in which expression of either endogenous SNAT or ASMT was suppressed, had reduced melatonin synthesis, confirming that both SNAT and ASMT are functionally involved in melatonin synthesis. The melatonin-deficient SNAT rice had retarded seedling growth, which was partially restored by exogenous melatonin application, suggesting melatonin's role in seedling growth. In addition, the plants were more sensitive to various abiotic stresses, including salt and cold, compared with the wild type. Melatonin-deficient SNAT rice had increased coleoptile growth under anoxic conditions, indicating that melatonin also inversely regulates plant growth under anaerobic conditions with the concomitant high expression of alcohol dehydrogenase genes. Similarly, the melatonin-deficient ASMT rice exhibited accelerated senescence in detached flag leaves, as well as significantly reduced yield. These loss-of-function studies on the melatonin biosynthetic genes confirmed most previous pharmacological reports that melatonin not only promotes plant growth but also mitigates various abiotic stresses.

  18. Comparing Environmental Conditions Using Indicators of Pollution Hazard

    PubMed

    Turner; Ruffio; Roberts

    1997-07-01

    / Land use/land cover classifications for 1973 and 1991, derived from the interpretation of satellite imagery, are quantified on the basis of biophysical land units in a study area in southeastern Australia. Nutrient export potentials are estimated for each land unit based on their composition of land use/land cover classes. Spatial and temporal comparisons are made of the land units based on the calculated pollution hazard indicators to provide an insight into changes in the state of the environment and the regional significance of land use changes. For example, one ecosystem, unique to the study, showed a large increase in pollution hazard over the study period as a manifestation of an 11-fold rise in cleared area and an expansion of cropping activities. The benefits to environmental management in general are discussed.KEY WORDS: Land cover change; Nutrient export; Environmental condition; Pollution hazard; Agricultural pollution; Nonpoint source pollution; Diffuse pollution; Environmental degradation

  19. Autophagy, a Conserved Mechanism for Protein Degradation, Responds to Heat, and Other Abiotic Stresses in Capsicum annuum L.

    PubMed Central

    Zhai, Yufei; Guo, Meng; Wang, Hu; Lu, Jinping; Liu, Jinhong; Zhang, Chong; Gong, Zhenhui; Lu, Minghui

    2016-01-01

    Abiotic stresses negatively affect plants growth and development by inducing protein denaturation, and autophagy degrades the damaged proteins to alleviate their toxicity, however, little is known about the involvement of autophagy in pepper (Capsicum annuum L.) tolerances to abiotic stresses. In this study, we identified autophagy-related gene (ATG) members in the whole genome of pepper by HMM method and analyzed their expression profiles in response to heat and other abiotic stresses by quantitative real-time PCR. The results showed that the CaATG contained 15 core ATG members including 29 ATG proteins with their respective conserved functional domains, involving the whole process of autophagy. Under normal environmental condition, the expression of CaATG genes showed tissue- and developmental stage-specific patterns, while under abiotic stresses of salt, drought, heat, cold and carbohydrate starvation, the accumulation of autophagosome punctate increased and the expression level of CaATG genes changed with stress type-dependent pattern, which indicates the linkage of autophagy in pepper response to abiotic stresses. After treated with heat stress, both the number of up-regulated CaATG genes and the increment of autophagosome punctate were higher in pepper thermotolerant line R9 than those in thermosensitive line B6, implying an association of autophagy with heat tolerance. In addition, CaATG6 was predicted to interact with CaHSP90 family members. Our study suggests that autophagy is connected to pepper tolerances to heat and other abiotic stresses. PMID:26904087

  20. Biofilm formation and persistence on abiotic surfaces in the context of food and medical environments.

    PubMed

    Abdallah, Marwan; Benoliel, Corinne; Drider, Djamel; Dhulster, Pascal; Chihib, Nour-Eddine

    2014-07-01

    The biofilm formation on abiotic surfaces in food and medical sectors constitutes a great public health concerns. In fact, biofilms present a persistent source for pathogens, such as Pseudomonas aeruginosa and Staphylococcus aureus, which lead to severe infections such as foodborne and nosocomial infections. Such biofilms are also a source of material deterioration and failure. The environmental conditions, commonly met in food and medical area, seem also to enhance the biofilm formation and their resistance to disinfectant agents. In this regard, this review highlights the effect of environmental conditions on bacterial adhesion and biofilm formation on abiotic surfaces in the context of food and medical environment. It also describes the current and emergent strategies used to study the biofilm formation and its eradication. The mechanisms of biofilm resistance to commercialized disinfectants are also discussed, since this phenomenon remains unclear to date.

  1. Improving Warfighters’ Sustainment and Performance in Extreme Environmental Conditions

    DTIC Science & Technology

    2008-02-18

    performance; 2) reduced stress-induced damage (such as oxidative stress and inflammation, among others) in vital organs (heart, liver , kidneys, and brain); and...among others) in vital organs (heart, liver , kidneys, and brain); and 3) increased the body’s tolerance to these extreme environmental conditions; 5...and the activation of molecular cell survival pathways via activation of erythropoietin ( EPO ), vascular endothelial growth factor (VEGF), hypoxia

  2. Abiotic factors influence plant storage lipid accumulation and composition.

    PubMed

    Singer, Stacy D; Zou, Jitao; Weselake, Randall J

    2016-02-01

    The demand for plant-derived oils has increased substantially over the last decade, and is sure to keep growing. While there has been a surge in research efforts to produce plants with improved oil content and quality, in most cases the enhancements have been small. To add further complexity to this situation, substantial differences in seed oil traits among years and field locations have indicated that plant lipid biosynthesis is also influenced to a large extent by multiple environmental factors such as temperature, drought, light availability and soil nutrients. On the molecular and biochemical levels, the expression and/or activities of fatty acid desaturases, as well as diacylglycerol acyltransferase 1, have been found to be affected by abiotic factors, suggesting that they play a role in the lipid content and compositional changes seen under abiotic stress conditions. Unfortunately, while only a very small number of strategies have been developed as of yet to minimize these environmental effects on the production of storage lipids, it is clear that this feat will be of the utmost importance for developing superior oil crops with the capability to perform in a consistent manner in field conditions in the future.

  3. Can environmental conditions experienced in early life influence future generations?

    PubMed Central

    Burton, Tim; Metcalfe, Neil B.

    2014-01-01

    The consequences of early developmental conditions for performance in later life are now subjected to convergent interest from many different biological sub-disciplines. However, striking data, largely from the biomedical literature, show that environmental effects experienced even before conception can be transmissible to subsequent generations. Here, we review the growing evidence from natural systems for these cross-generational effects of early life conditions, showing that they can be generated by diverse environmental stressors, affect offspring in many ways and can be transmitted directly or indirectly by both parental lines for several generations. In doing so, we emphasize why early life might be so sensitive to the transmission of environmentally induced effects across generations. We also summarize recent theoretical advancements within the field of developmental plasticity, and discuss how parents might assemble different ‘internal’ and ‘external’ cues, even from the earliest stages of life, to instruct their investment decisions in offspring. In doing so, we provide a preliminary framework within the context of adaptive plasticity for understanding inter-generational phenomena that arise from early life conditions. PMID:24807254

  4. Modelling mould growth under suboptimal environmental conditions and inoculum size.

    PubMed

    Garcia, Daiana; Ramos, Antonio J; Sanchis, Vicente; Marín, Sonia

    2010-10-01

    Predictive models can be a tool to develop strategies to prevent mould development and consequently mycotoxin production. The aims of this work were to assess the impact of a) high/low levels of inoculum and b) optimal/suboptimal environmental conditions on fungal responses based on both kinetic and probabilistic models. Different levels of spore suspensions of Aspergillus carbonarius and Penicillium expansum were prepared and inoculated centrally with a needlepoint load on malt extract agar (MEA) with 50 replicates. While optimum conditions led to a colony diameter increase which followed Baranyi's function, suboptimal conditions led to different grow functions. In general, growth rate (mu) and lag phase (lambda) were normally distributed. Specifically, the growth rate (mu) showed similar distributions under optimal growth conditions, regardless of the inoculum level, while suboptimal a(w) and temperature conditions led to higher kurtosis distributions, mainly when the inoculum levels were low. Regarding lambda, more skewed distributions were observed, mainly when the inoculum levels were low. Probability models were not much affected by the inoculum size. Lower probabilities of growth were in general predicted under marginal conditions at a given time for both strains. The slopes of the probability curves were smaller under suboptimal growth conditions due to wider distributions. Results showed that a low inoculum level and suboptimal conditions lead to high variability of the estimated growth parameters and growth probability.

  5. Mechanism for the abiotic synthesis of uracil via UV-induced oxidation of pyrimidine in pure H{sub 2}O ices under astrophysical conditions

    SciTech Connect

    Bera, Partha P.; Nuevo, Michel; Sandford, Scott A.; Lee, Timothy J.; Milam, Stefanie N.

    2010-09-14

    The UV photoirradiation of pyrimidine in pure H{sub 2}O ices has been explored using second-order Moeller-Plesset perturbation theory and density functional theory methods, and compared with experimental results. Mechanisms studied include those starting with neutral pyrimidine or cationic pyrimidine radicals, and reacting with OH radical. The ab initio calculations reveal that the formation of some key species, including the nucleobase uracil, is energetically favored over others. The presence of one or several water molecules is necessary in order to abstract a proton which leads to the final products. Formation of many of the photoproducts in UV-irradiated H{sub 2}O:pyrimidine=20:1 ice mixtures was established in a previous experimental study. Among all the products, uracil is predicted by quantum chemical calculations to be the most favored, and has been identified in experimental samples by two independent chromatography techniques. The results of the present study strongly support the scenario in which prebiotic molecules, such as the nucleobase uracil, can be formed under abiotic processes in astrophysically relevant environments, namely in condensed phase on the surface of icy, cold grains before being delivered to the telluric planets, like Earth.

  6. Unraveling the role of fungal symbionts in plant abiotic stress tolerance

    PubMed Central

    Singh, Lamabam Peter

    2011-01-01

    Fungal symbionts have been found to be associated with every plant studied in the natural ecosystem, where they colonize and reside entirely or partially in the internal tissues of their host plant. Fungal endophytes can express/form a range of different lifestyle/relationships with different host including symbiotic, mutualistic, commensalistic and parasitic in response to host genotype and environmental factors. In mutualistic association fungal endophyte can enhance growth, increase reproductive success and confer biotic and abiotic stress tolerance to its host plant. Since abiotic stress such as, drought, high soil salinity, heat, cold, oxidative stress and heavy metal toxicity is the common adverse environmental conditions that affect and limit crop productivity worldwide. It may be a promising alternative strategy to exploit fungal endophytes to overcome the limitations to crop production brought by abiotic stress. There is an increasing interest in developing the potential biotechnological applications of fungal endophytes for improving plant stress tolerance and sustainable production of food crops. Here we have described the fungal symbioses, fungal symbionts and their role in abiotic stress tolerance. A putative mechanism of stress tolerance by symbionts has also been covered. PMID:21512319

  7. Protection of chemolithoautotrophic bacteria exposed to simulated Mars environmental conditions

    NASA Astrophysics Data System (ADS)

    Gómez, Felipe; Mateo-Martí, Eva; Prieto-Ballesteros, Olga; Martín-Gago, Jose; Amils, Ricardo

    2010-10-01

    Current surface conditions (strong oxidative atmosphere, UV radiation, low temperatures and xeric conditions) on Mars are considered extremely challenging for life. The question is whether there are any features on Mars that could exert a protective effect against the sterilizing conditions detected on its surface. Potential habitability in the subsurface would increase if the overlaying material played a protective role. With the aim of evaluating this possibility we studied the viability of two microorganisms under different conditions in a Mars simulation chamber. An acidophilic chemolithotroph isolated from Río Tinto belonging to the Acidithiobacillus genus and Deinococcus radiodurans, a radiation resistant microorganism, were exposed to simulated Mars conditions under the protection of a layer of ferric oxides and hydroxides, a Mars regolith analogue. Samples of these microorganisms were exposed to UV radiation in Mars atmospheric conditions at different time intervals under the protection of 2 and 5 mm layers of oxidized iron minerals. Viability was evaluated by inoculation on fresh media and characterization of their growth cultures. Here we report the survival capability of both bacteria to simulated Mars environmental conditions.

  8. Formation of singlet oxygen and protection against its oxidative damage in Photosystem II under abiotic stress.

    PubMed

    Pospíšil, Pavel; Prasad, Ankush

    2014-08-01

    Photosystem II (PSII) is exposed to various abiotic stresses associated with adverse environmental conditions such as high light, heat, heavy metals or mechanical injury. Distinctive functional response to adverse environmental conditions is formation of singlet oxygen ((1)O2). In this review, recent progress on mechanistic principles on (1)O2 formation under abiotic stresses is summarized. Under high light, (1)O2 is formed by excitation energy transfer from triplet chlorophylls to molecular oxygen formed by the spin conversion via photosensitization Type II reaction in the PSII antenna complex or by the recombination of (1)[P680(+)Pheo(-)] radical pair in the PSII reaction center. Apart from well-described (1)O2 formation by excitation energy transfer, (1)O2 formation by decomposition of dioxetane and tetroxide is summarized as a potential source of (1)O2 in PSII under heat, heavy metals and mechanical stress. The description of mechanistic principles on (1)O2 formation under abiotic stress allows us to understand how plants respond to adverse environmental conditions in vivo.

  9. Plankton bioindicators of environmental conditions in coastal lagoons

    NASA Astrophysics Data System (ADS)

    Hemraj, Deevesh A.; Hossain, Md A.; Ye, Qifeng; Qin, Jian G.; Leterme, Sophie C.

    2017-01-01

    Coastal lagoons are characterised by strong spatial gradient of environmental parameters, especially hypersalinity, and are prone to anthropogenic disturbance. The Coorong (South Australia) is an inverse estuarine coastal lagoon separated from the sea by sand dunes. It is exposed to extreme water quality changes that affect its aquatic communities. Here, we used plankton as indicators of extreme environmental fluctuations to monitor and manage the environmental health of such complex systems. We defined the relationship of different plankton communities with water quality fluctuations and determined plankton species suitable for monitoring the ecosystem health. Two distinct communities of phytoplankton and zooplankton were identified, with salinity and nutrients being the principal factors impacting species distribution. Thus, two sets of indicator species were selected based on the different communities observed. Polychaete and gastropod larvae were positive indicators, showing salinity range restriction of brackish to marine. The distribution Acartia cf. fancetti represented healthy hypersaline conditions (salinity 40-60), while Cyclophora sp. and Scrippsiella sp. were negative indicators, correlating with extreme salinity and ammonia levels. The implementation of planktonic organisms as environmental indicators provided a constructive tool for the management of ecosystem health of the Coorong and will be applicable to similar coastal lagoons.

  10. The apparatus "Photostat-I" for simulating Martian environmental conditions.

    PubMed

    Zaar, E I; Zelikson, V G; Kitaigorodsky, M G; Lozina-Lozinsky, L K; Koshelev, G V; Rybin, M A

    1970-01-01

    One of the main tasks of exobiology is to determine conditions required for life on different planets of our solar system. At present, experimental ecological methods permitting the study of responses of living systems to extreme influences and, in particular, to simulated environmental Martian conditions, are widely used. To study the reaction of Earth organisms, special chambers and mechanisms are used which allow the modelling of conditions different from ours, mainly Martian. Existing devices capable of simulating the Martian environment. Our apparatus "Photostat-I" permits the simulation of pressure and visible light illumination (up to 60,000 lux), the irradiation of biological objectives in UV light (220-400 nm) and the production of a daily temperature cycle typical of Mars with a high degree of accuracy.

  11. The effect and role of environmental conditions on magnetosome synthesis

    PubMed Central

    Moisescu, Cristina; Ardelean, Ioan I.; Benning, Liane G.

    2014-01-01

    Magnetotactic bacteria (MTB) are considered the model species for the controlled biomineralization of magnetic Fe oxide (magnetite, Fe3O4) or Fe sulfide (greigite, Fe3S4) nanocrystals in living organisms. In MTB, magnetic minerals form as membrane-bound, single-magnetic domain crystals known as magnetosomes and the synthesis of magnetosomes by MTB is a highly controlled process at the genetic level. Magnetosome crystals reveal highest purity and highest quality magnetic properties and are therefore increasingly sought after as novel nanoparticulate biomaterials for industrial and medical applications. In addition, “magnetofossils,” have been used as both past terrestrial and potential Martian life biosignature. However, until recently, the general belief was that the morphology of mature magnetite crystals formed by MTB was largely unaffected by environmental conditions. Here we review a series of studies that showed how changes in environmental factors such as temperature, pH, external Fe concentration, external magnetic fields, static or dynamic fluid conditions, and nutrient availability or concentrations can all affect the biomineralization of magnetite magnetosomes in MTB. The resulting variations in magnetic nanocrystals characteristics can have consequence both for their commercial value but also for their use as indicators for ancient life. In this paper we will review the recent findings regarding the influence of variable chemical and physical environmental control factors on the synthesis of magnetosome by MTB, and address the role of MTB in the global biogeochemical cycling of iron. PMID:24575087

  12. Odors eliciting fear: a conditioning approach to Idiopathic Environmental Intolerances.

    PubMed

    Leer, Arne; Smeets, Monique A M; Bulsing, Patricia J; van den Hout, Marcel A

    2011-06-01

    Patients suffering from Idiopathic Environmental Intolerances (IEI) report health symptoms, referable to multiple organ systems, which are triggered by harmless odors and therefore medically unexplainable. In line with previous research that predominantly points towards psychological explanations, the present study tests the hypothesis that IEI symptoms result from learning via classical conditioning of odors to fear. A differential conditioning paradigm was employed. Hedonically different odors were compared on ease of fear acquisition. Conditioned stimuli (CSs) were Dimethyl Sulfide (unpleasant) and peach (pleasant). The unconditioned stimulus (US) was an electrical shock. During acquisition one odor (CS+) was followed by shock, while the other odor (CS-) was not. Next, fear extinction was tested by presenting both CS+ and CS- without US. Electrodermal response, odor evaluation, and sniffing behavior were monitored. Results showed successful fear conditioning irrespective of hedonic character as evidenced by electrodermal response. Acquired fear did not extinguish. There was no evidence of evaluative conditioning taking place, as CS evaluation did not change during fear acquisition. Early avoidance of the CS+, as deduced from odor inhalation measures, was demonstrated, but did not sustain during the entire acquisition phase. This study suggests that a fear conditioning account of IEI is only partially satisfactory.

  13. Overview of environmental and hydrogeologic conditions at Dillingham, Alaska

    USGS Publications Warehouse

    Palcsak, Betty B.; Dorava, Joseph M.

    1994-01-01

    The remote city of Dillingham is at the northern end of Bristol Bay in southwestern Alaska. The hydrology of the area is strongly affected by the mild maritime climate and local geologic conditions. Dillingham residents obtain drinking water from both deep and shallow aquifers composed of gravels and sands and separated by layers of clay underlying the community. Alternative sources of drinking water are limited to the development of new wells because surface-water sources are of inadequate quantity or quality or are located at too great a distance from the population. The Federal Aviation Administration owns or operates airway support facilities in Dillingham and wishes to consider the severity of contamination and the current environmental setting when they evaluate options for compliance with environmental regulations at their facilities. This report describes the climate. vegetation, geology, soils, ground-water and surface-water hydrology, and flood potential of the areas surrounding the Federal Aviation Administration facilities near Dillingham.

  14. Assessing environmental conditions of Antarctic footpaths to support management decisions.

    PubMed

    Tejedo, Pablo; Benayas, Javier; Cajiao, Daniela; Albertos, Belén; Lara, Francisco; Pertierra, Luis R; Andrés-Abellán, Manuela; Wic, Consuelo; Luciáñez, Maria José; Enríquez, Natalia; Justel, Ana; Reck, Günther K

    2016-07-15

    Thousands of tourists visit certain Antarctic sites each year, generating a wide variety of environmental impacts. Scientific knowledge of human activities and their impacts can help in the effective design of management measures and impact mitigation. We present a case study from Barrientos Island in which a management measure was originally put in place with the goal of minimizing environmental impacts but resulted in new undesired impacts. Two alternative footpaths used by tourist groups were compared. Both affected extensive moss carpets that cover the middle part of the island and that are very vulnerable to trampling. The first path has been used by tourists and scientists since over a decade and is a marked route that is clearly visible. The second one was created more recently. Several physical and biological indicators were measured in order to assess the environmental conditions for both paths. Some physical variables related to human impact were lower for the first path (e.g. soil penetration resistance and secondary treads), while other biochemical and microbiological variables were higher for the second path (e.g. β-glucosidase and phosphatase activities, soil respiration). Moss communities located along the new path were also more diverse and sensitive to trampling. Soil biota (Collembola) was also more abundant and richer. These data indicate that the decision to adopt the second path did not lead to the reduction of environmental impacts as this path runs over a more vulnerable area with more outstanding biological features (e.g. microbiota activity, flora and soil fauna diversity). In addition, the adoption of a new route effectively doubles the human footprint on the island. We propose using only the original path that is less vulnerable to the impacts of trampling. Finally from this process, we identify several key issues that may be taken into account when carrying out impact assessment and environmental management decision-making in the

  15. Endophytic fungi: resource for gibberellins and crop abiotic stress resistance.

    PubMed

    Khan, Abdul Latif; Hussain, Javid; Al-Harrasi, Ahmed; Al-Rawahi, Ahmed; Lee, In-Jung

    2015-03-01

    The beneficial effects of endophytes on plant growth are important for agricultural ecosystems because they reduce the need for fertilizers and decrease soil and water pollution while compensating for environmental perturbations. Endophytic fungi are a novel source of bioactive secondary metabolites; moreover, recently they have been found to produce physiologically active gibberellins as well. The symbiosis of gibberellins producing endophytic fungi with crops can be a promising strategy to overcome the adverse effects of abiotic stresses. The association of such endophytes has not only increased plant biomass but also ameliorated plant-growth during extreme environmental conditions. Endophytic fungi represent a trove of unexplored biodiversity and a frequently overlooked component of crop ecology. The present review describes the role of gibberellins producing endophytic fungi, suggests putative mechanisms involved in plant endophyte stress interactions and discusses future prospects in this field.

  16. Evolution and Adaptation of Wild Emmer Wheat Populations to Biotic and Abiotic Stresses.

    PubMed

    Huang, Lin; Raats, Dina; Sela, Hanan; Klymiuk, Valentina; Lidzbarsky, Gabriel; Feng, Lihua; Krugman, Tamar; Fahima, Tzion

    2016-08-04

    The genetic bottlenecks associated with plant domestication and subsequent selection in man-made agroecosystems have limited the genetic diversity of modern crops and increased their vulnerability to environmental stresses. Wild emmer wheat, the tetraploid progenitor of domesticated wheat, distributed along a wide range of ecogeographical conditions in the Fertile Crescent, has valuable "left behind" adaptive diversity to multiple diseases and environmental stresses. The biotic and abiotic stress responses are conferred by series of genes and quantitative trait loci (QTLs) that control complex resistance pathways. The study of genetic diversity, genomic organization, expression profiles, protein structure and function of biotic and abiotic stress-resistance genes, and QTLs could shed light on the evolutionary history and adaptation mechanisms of wild emmer populations for their natural habitats. The continuous evolution and adaptation of wild emmer to the changing environment provide novel solutions that can contribute to safeguarding food for the rapidly growing human population.

  17. Coupled Abiotic-Biotic Degradation of Bisphenol A

    NASA Astrophysics Data System (ADS)

    Im, J.; Prevatte, C.; Campagna, S. R.; Loeffler, F.

    2014-12-01

    Bisphenol A (BPA) is a ubiquitous environmental contaminant with weak estrogenic activity. BPA is readily biodegradable with oxygen available, but is recalcitrant to microbial degradation under anoxic conditions. However, BPA is susceptible to abiotic transformation under anoxic conditions. To better understand the fate of BPA in anoxic environments, the kinetics of BPA transformation by manganese oxide (d-MnO2) were investigated. BPA was rapidly transformed by MnO2 with a pseudo-first-order rate constant of 0.413 min-1. NMR and LC-MS analyses identified 4-hydroxycumyl alcohol (HCA) as a major intermediate. Up to 64% of the initial amount of BPA was recovered as HCA within 5 min, but the conversion efficiency decreased with time, suggesting that HCA was further degraded by MnO2. Further experiments confirmed that HCA was also susceptible to transformation by MnO2, albeit at 5-fold lower rates than BPA transformation. Mass balance approaches suggested that HCA was the major BPA transformation intermediate, but other compounds may also be formed. The abiotic transformation of BPA by MnO2 was affected by pH, and 10-fold higher transformation rates were observed at pH 4.5 than at pH 10. Compared to BPA, HCA has a lower octanol-water partitioning coefficient (Log Kow) of 0.76 vs 2.76 for BPA and a higher aqueous solubility of 2.65 g L-1 vs 0.31 g L-1 for BPA, suggesting higher mobility of HCA in the environment. Microcosms established with freshwater sediment materials collected from four geographically distinct locations and amended with HCA demonstrated rapid HCA biodegradation under oxic, but not under anoxic conditions. These findings suggest that BPA is not inert under anoxic conditions and abiotic reactions with MnO2 generate HCA, which has increased mobility and is susceptible to aerobic degradation. Therefore, coupled abiotic-biotic processes can affect the fate and longevity of BPA in terrestrial environments.

  18. Recent Molecular Advances on Downstream Plant Responses to Abiotic Stress

    PubMed Central

    dos Reis, Sávio Pinho; Lima, Aline Medeiros; de Souza, Cláudia Regina Batista

    2012-01-01

    Abiotic stresses such as extremes of temperature and pH, high salinity and drought, comprise some of the major factors causing extensive losses to crop production worldwide. Understanding how plants respond and adapt at cellular and molecular levels to continuous environmental changes is a pre-requisite for the generation of resistant or tolerant plants to abiotic stresses. In this review we aimed to present the recent advances on mechanisms of downstream plant responses to abiotic stresses and the use of stress-related genes in the development of genetically engineered crops. PMID:22942725

  19. Improved abiotic stress tolerance of bermudagrass by exogenous small molecules.

    PubMed

    Chan, Zhulong; Shi, Haitao

    2015-01-01

    As a widely used warm-season turfgrass in landscapes and golf courses, bermudagrass encounters multiple abiotic stresses during the growth and development. Physiology analysis indicated that abiotic stresses induced the accumulation of ROS and decline of photosynthesis, resulting in increased cell damage and inhibited growth. Proteomic and metabolomic approaches showed that antioxidant enzymes and osmoprotectant contents (sugar, sucrose, dehydrin, proline) were extensively changed under abiotic stress conditions. Exogenous application of small molecules, such as ABA, NO, CaCl2, H2S, polyamine and melatonin, could effectively alleviate damages caused by multiple abiotic stresses, including drought, salt, heat and cold. Based on high through-put RNA seq analysis, genes involved in ROS, transcription factors, hormones, and carbohydrate metabolisms were largely enriched. The data indicated that small molecules induced the accumulation of osmoprotectants and antioxidants, kept cell membrane integrity, increased photosynthesis and kept ion homeostasis, which protected bermudagrass from damages caused by abiotic stresses.

  20. Multimodal cues improve prey localization under complex environmental conditions

    PubMed Central

    Rhebergen, F.; Taylor, R. C.; Ryan, M. J.; Page, R. A.; Halfwerk, W.

    2015-01-01

    Predators often eavesdrop on sexual displays of their prey. These displays can provide multimodal cues that aid predators, but the benefits in attending to them should depend on the environmental sensory conditions under which they forage. We assessed whether bats hunting for frogs use multimodal cues to locate their prey and whether their use varies with ambient conditions. We used a robotic set-up mimicking the sexual display of a male túngara frog (Physalaemus pustulosus) to test prey assessment by fringe-lipped bats (Trachops cirrhosus). These predatory bats primarily use sound of the frog's call to find their prey, but the bats also use echolocation cues returning from the frog's dynamically moving vocal sac. In the first experiment, we show that multimodal cues affect attack behaviour: bats made narrower flank attack angles on multimodal trials compared with unimodal trials during which they could only rely on the sound of the frog. In the second experiment, we explored the bat's use of prey cues in an acoustically more complex environment. Túngara frogs often form mixed-species choruses with other frogs, including the hourglass frog (Dendropsophus ebraccatus). Using a multi-speaker set-up, we tested bat approaches and attacks on the robofrog under three different levels of acoustic complexity: no calling D. ebraccatus males, two calling D. ebraccatus males and five D. ebraccatus males. We found that bats are more directional in their approach to the robofrog when more D. ebraccatus males were calling. Thus, bats seemed to benefit more from multimodal cues when confronted with increased levels of acoustic complexity in their foraging environments. Our data have important consequences for our understanding of the evolution of multimodal sexual displays as they reveal how environmental conditions can alter the natural selection pressures acting on them. PMID:26336176

  1. Multimodal cues improve prey localization under complex environmental conditions.

    PubMed

    Rhebergen, F; Taylor, R C; Ryan, M J; Page, R A; Halfwerk, W

    2015-09-07

    Predators often eavesdrop on sexual displays of their prey. These displays can provide multimodal cues that aid predators, but the benefits in attending to them should depend on the environmental sensory conditions under which they forage. We assessed whether bats hunting for frogs use multimodal cues to locate their prey and whether their use varies with ambient conditions. We used a robotic set-up mimicking the sexual display of a male túngara frog (Physalaemus pustulosus) to test prey assessment by fringe-lipped bats (Trachops cirrhosus). These predatory bats primarily use sound of the frog's call to find their prey, but the bats also use echolocation cues returning from the frog's dynamically moving vocal sac. In the first experiment, we show that multimodal cues affect attack behaviour: bats made narrower flank attack angles on multimodal trials compared with unimodal trials during which they could only rely on the sound of the frog. In the second experiment, we explored the bat's use of prey cues in an acoustically more complex environment. Túngara frogs often form mixed-species choruses with other frogs, including the hourglass frog (Dendropsophus ebraccatus). Using a multi-speaker set-up, we tested bat approaches and attacks on the robofrog under three different levels of acoustic complexity: no calling D. ebraccatus males, two calling D. ebraccatus males and five D. ebraccatus males. We found that bats are more directional in their approach to the robofrog when more D. ebraccatus males were calling. Thus, bats seemed to benefit more from multimodal cues when confronted with increased levels of acoustic complexity in their foraging environments. Our data have important consequences for our understanding of the evolution of multimodal sexual displays as they reveal how environmental conditions can alter the natural selection pressures acting on them.

  2. Changes in Environmental Conditions Modify Infection Kinetics of Dairy Phages.

    PubMed

    Zaburlin, Delfina; Quiberoni, Andrea; Mercanti, Diego

    2017-04-08

    Latent period, burst time, and burst size, kinetic parameters of phage infection characteristic of a given phage/host system, have been measured for a wide variety of lactic acid bacteria. However, most studies to date were conducted in optimal growth conditions of host bacteria and did not consider variations due to changes in external factors. In this work, we determined the effect of temperature, pH, and starvation on kinetic parameters of phages infecting Lactobacillus paracasei, Lactobacillus plantarum, and Leuconostoc mesenteroides. For kinetics assessment, one-step growth curves were carried out in MRS broth at optimal conditions (control), lower temperature, pH 6.0 and 5.0 (MRS6 and MRS5, respectively), or in medium lacking carbon (MRSN) or nitrogen (MRSC) sources. Phage infection was progressively impaired as environmental conditions were modified from optimal. At lower temperature or pH, infection was delayed, as perceived by longer latent and burst times. Burst size, however, was lower, equal or higher than for controls, but this effect was highly dependent on the particular phage-host system studied. Phage infection was strongly inhibited in MRSC, but only mildly impaired in MRSN. Nevertheless, growth of all the bacterial strains tested was severely compromised by starvation, without significant differences between MRSC and MRSN, indicating that nitrogen compounds are specifically required for a successful phage infection, beyond their influence on bacterial growth.

  3. The community conditioning hypothesis and its application to environmental toxicology

    SciTech Connect

    Matthews, R.A.; Landis, W.G.; Matthews, G.B.

    1996-04-01

    In this paper the authors present the community conditions hypothesis, ecological communities retain information bout events in their history. This hypothesis, which was derived from the concept of nonequilibrium community ecology, was developed as a framework for understanding the persistence of dose-related responses in multispecies toxicity tests. The authors present data from three standardized aquatic microcosm (SAM) toxicity tests using the water-soluble fractions from turbine fuels (Jet-A, JP-4, and JP-8). In all three tests, the toxicants depressed the Daphnia populations for several weeks, which resulted in algal blooms in the dosed microcosms due to lower predation rates. These effects were short-lived, and by the second and third months of the experiments, the Daphnia populations appeared to have recovered. However, multivariate analysis of the data released dose/response differences that reappeared during the later part of the tests, often due to differences in other consumers (rotifers, ostracods, ciliates), or algae that are not normally consumed (filamentous green algae and bluegreen algae). The findings are consistent with ecological theories that describe communities as the unique production of their etiologies. The implications of this to environmental toxicology are that almost all environmental events leave lasting effects, whether or not they have observed them.

  4. Leaching of metals from cement under simulated environmental conditions.

    PubMed

    Lu, Huixia; Wei, Fang; Tang, Jingchun; Giesy, John P

    2016-03-15

    Leaching of metals from cement under various environmental conditions was measured to evaluate their environmental safety. A cement product containing clinker, which was produced from cement kiln co-processing of hazardous wastes, was solidified and leaching of metals was characterized using the 8-period test. Concentrations and speciation of metals in cements were determined. Effects of ambient environment and particle size on leachability of metals and mineralogical phases of cement mortars were evaluated by use of XRD and SEM. Results indicated that metals in cements were leachable in various media in descending order of: sea water, groundwater and acid rain. Cr, Ni, As, Co and V were leached by simulated sea water, while Cu, Cd, Pb, Zn, Mn, Sb and Tl were not leached in simulated sea water, groundwater or acid rain. When exposed to simulated acid rain or groundwater, amounts of Cr, Ni, As and V leached was inversely proportional to particle size of cement mortar. According to the one-dimensional diffusion equation, Cr was most leachable and the cumulative leached mass was predicted to be 9.6 mg kg(-1) after 20 years. Results of this study are useful in predicting releases of metals from cement products containing ash and clinkers cement kiln co-processing of hazardous wastes, so that they can be safely applied in the environment.

  5. K, U, and Th behavior in Martian environmental conditions

    NASA Technical Reports Server (NTRS)

    Zolotov, M. YU.; Krot, T. V.; Moroz, L. V.

    1993-01-01

    The possibility of K, U, and Th content determination from orbit and in situ allows consideration of those elements as geochemical indicators in the planetary studies. In the case of Mars the unambiguous interpretations of such data in terms of igneous rocks are remarkably constrained by the widespread rock alteration and the existence of exogenic deposits. Besides, the terrestrial experience indicates that K, U, and Th contents could be used as indicators of environmental geochemical processes. Thus the determination of K, U, and Th contents in the Martian surface materials could provide the indirect data on the conditions of some exogenic geological processes. The speculations on the K, U, and Th behavior in the Martian environments show that aeolian and aqueous processes leads to the preferential accumulation of K, U, and Th in fine dust material. The separation of K, U, and Th on Mars is smaller in scale to that on Earth.

  6. Environmental conditioning for textile yarn-spinning mill

    SciTech Connect

    Gengler, M.

    1996-06-01

    In mid-1993, Parkdale Mills, Inc., entered into a contract with Pneumafil Corporation to design and construct a total environmental conditioning system for their Plant No. 5 Open-End Spinning Room modernization program. This system was put into use in July 1994. Parkdale Mills in Gastonia, N.C. is one of the true innovators in the textile yarn-spinning business. The company presented a challenge to press technology to a new level to meet a number of well-defined goals. These goals were as follows: (1) Room temperature and humidity control -- Very accurate control to enable consistent production of the highest possible quality of yarn; (2) Energy efficiency -- The best achievable to assure the lowest possible production cost to the mill; (3) Dust levels -- The lowest possible within the mill for compliance with OSHA dust standards and for the least impact on yarn quality; and (4) Installed cost -- Not to exceed that of a conventionally designed system.

  7. Environmental and Sanitary Conditions of Guanabara Bay, Rio de Janeiro.

    PubMed

    Fistarol, Giovana O; Coutinho, Felipe H; Moreira, Ana Paula B; Venas, Tainá; Cánovas, Alba; de Paula, Sérgio E M; Coutinho, Ricardo; de Moura, Rodrigo L; Valentin, Jean Louis; Tenenbaum, Denise R; Paranhos, Rodolfo; do Valle, Rogério de A B; Vicente, Ana Carolina P; Amado Filho, Gilberto M; Pereira, Renato Crespo; Kruger, Ricardo; Rezende, Carlos E; Thompson, Cristiane C; Salomon, Paulo S; Thompson, Fabiano L

    2015-01-01

    Guanabara Bay is the second largest bay in the coast of Brazil, with an area of 384 km(2). In its surroundings live circa 16 million inhabitants, out of which 6 million live in Rio de Janeiro city, one of the largest cities of the country, and the host of the 2016 Olympic Games. Anthropogenic interference in Guanabara Bay area started early in the XVI century, but environmental impacts escalated from 1930, when this region underwent an industrialization process. Herein we present an overview of the current environmental and sanitary conditions of Guanabara Bay, a consequence of all these decades of impacts. We will focus on microbial communities, how they may affect higher trophic levels of the aquatic community and also human health. The anthropogenic impacts in the bay are flagged by heavy eutrophication and by the emergence of pathogenic microorganisms that are either carried by domestic and/or hospital waste (e.g., virus, KPC-producing bacteria, and fecal coliforms), or that proliferate in such conditions (e.g., vibrios). Antibiotic resistance genes are commonly found in metagenomes of Guanabara Bay planktonic microorganisms. Furthermore, eutrophication results in recurrent algal blooms, with signs of a shift toward flagellated, mixotrophic groups, including several potentially harmful species. A recent large-scale fish kill episode, and a long trend decrease in fish stocks also reflects the bay's degraded water quality. Although pollution of Guanabara Bay is not a recent problem, the hosting of the 2016 Olympic Games propelled the government to launch a series of plans to restore the bay's water quality. If all plans are fully implemented, the restoration of Guanabara Bay and its shores may be one of the best legacies of the Olympic Games in Rio de Janeiro.

  8. Environmental and Sanitary Conditions of Guanabara Bay, Rio de Janeiro

    PubMed Central

    Fistarol, Giovana O.; Coutinho, Felipe H.; Moreira, Ana Paula B.; Venas, Tainá; Cánovas, Alba; de Paula, Sérgio E. M.; Coutinho, Ricardo; de Moura, Rodrigo L.; Valentin, Jean Louis; Tenenbaum, Denise R.; Paranhos, Rodolfo; do Valle, Rogério de A. B.; Vicente, Ana Carolina P.; Amado Filho, Gilberto M.; Pereira, Renato Crespo; Kruger, Ricardo; Rezende, Carlos E.; Thompson, Cristiane C.; Salomon, Paulo S.; Thompson, Fabiano L.

    2015-01-01

    Guanabara Bay is the second largest bay in the coast of Brazil, with an area of 384 km2. In its surroundings live circa 16 million inhabitants, out of which 6 million live in Rio de Janeiro city, one of the largest cities of the country, and the host of the 2016 Olympic Games. Anthropogenic interference in Guanabara Bay area started early in the XVI century, but environmental impacts escalated from 1930, when this region underwent an industrialization process. Herein we present an overview of the current environmental and sanitary conditions of Guanabara Bay, a consequence of all these decades of impacts. We will focus on microbial communities, how they may affect higher trophic levels of the aquatic community and also human health. The anthropogenic impacts in the bay are flagged by heavy eutrophication and by the emergence of pathogenic microorganisms that are either carried by domestic and/or hospital waste (e.g., virus, KPC-producing bacteria, and fecal coliforms), or that proliferate in such conditions (e.g., vibrios). Antibiotic resistance genes are commonly found in metagenomes of Guanabara Bay planktonic microorganisms. Furthermore, eutrophication results in recurrent algal blooms, with signs of a shift toward flagellated, mixotrophic groups, including several potentially harmful species. A recent large-scale fish kill episode, and a long trend decrease in fish stocks also reflects the bay’s degraded water quality. Although pollution of Guanabara Bay is not a recent problem, the hosting of the 2016 Olympic Games propelled the government to launch a series of plans to restore the bay’s water quality. If all plans are fully implemented, the restoration of Guanabara Bay and its shores may be one of the best legacies of the Olympic Games in Rio de Janeiro. PMID:26635734

  9. Pervaporative irrigation: a flow rate driven by environmental conditions

    NASA Astrophysics Data System (ADS)

    Todman, L. C.; Mougros, C.; Ireson, A. M.; Butler, A. P.; Templeton, M. R.

    2012-04-01

    Pervaporative irrigation allows in-situ treatment of low quality water (e.g. saline water) whilst simultaneously distributing water throughout the soil. The system is also low energy, requiring only that a positive head of water is maintained in a supply tank. To irrigate using this method a pervaporative polymer membrane is formed into a pipe, buried in the soil and filled with water. Water is transported across the membrane by the process of pervaporation whilst the transport of contaminants is retarded, thus reducing the risk of soil degradation due to the use of low water quality. Uniquely these systems also inherently provide a feedback mechanism by which crops can affect the irrigation rate. Such a system has significant possibilities to provide an irrigation pipe from which water is only applied when required, hence reducing the volume of water used. However such systems are currently not fully understood and, to be implemented effectively, the behaviour of the membrane in different environmental conditions must be quantified. From experimental results this work has identified the significance of vapour flows in predicting the flux from the irrigation system in dry soils. In a 15cm layer of sand, the presence of a desiccant above the soil doubled the flux from the pipe, but more than 70% of this mass was adsorbed by the desiccant. Experiments also show that the flux into typical top soil was greater than into sand because of the greater capacity of the top soil for water adsorption. This adsorption maintained a lower humidity in the soil, hence providing a larger gradient across the irrigation membrane and inducing a higher flux. Although there is some evidence that seeds can absorb water from vapour flows the possibility that plants also do this has not yet been explored. This technology provides future opportunities to explore the interaction of plants both with vapour flows, and with a system where the irrigation rate is influenced by the crop uptake and

  10. Environmental conditions for alternative tree cover states in high latitudes

    NASA Astrophysics Data System (ADS)

    Abis, Beniamino; Brovkin, Victor

    2016-04-01

    Previous analysis of the vegetation cover from remote sensing revealed the existence of three alternative modes in the frequency distribution of boreal tree cover: a sparsely vegetated treeless state, a savanna-like state, and a forest state. Identifying which are the regions subject to multimodality, and assessing which are the main factors underlying their existence, is important to project future change of natural vegetation cover and its effect on climate. We study the impact on the forest cover fraction distribution of seven globally-observed environmental factors: mean annual rainfall, mean minimum temperature, growing degree days above 0, permafrost distribution, soil moisture, wildfire occurrence frequency, and thawing depth. Through the use of generalised additive models, regression trees, and conditional histograms, we find that the main factors determining the forest distribution in high latitudes are: permafrost distribution, mean annual rainfall, mean minimum temperature, soil moisture, and wildfire frequency. Additionally, we find differences between regions within the boreal area, such as Eurasia, Eastern North America, and Western North America. Furthermore, using a classification based on these factors, we show the existence and location of alternative tree cover states under the same climate conditions in the boreal region. These are areas of potential interest for a more detailed analysis of land-atmosphere interactions.

  11. Environmental safety conditions for mobile base stations in Alexandria.

    PubMed

    el-Shal, W; el-Sebaie, O

    2000-01-01

    The use of wireless communications devices e.g. cellular phones is increasing rapidly all over the world and in Egypt as well. This translates into a potentially significant public health problem: how far is the risk associated with these devices? Another risk is expected from the cellular towers or base stations, which transmit and receive these electromagnetic waves. Usually, these base stations should be constructed over residential buildings to cover all areas. Considering the increased public awareness about electromagnetic fields (EMF) exposure associated with these towers, this work aimed at investigation and evaluation of authorized environmental safety conditions for some mobile base stations in different districts of Alexandria city. The different mobile base stations were investigated for 12 standard safety specifications of the buildings' roofs on which mobile base stations are constructed. Although some of the standard specifications in the examined base stations were in compliance with standard specifications, some items were not in a safe condition. Only base stations F & G had complete safe conditions for all investigated items because of being erected on lighting towers of a sports stadium. On the other hand, base stations C, D, E, I, J, K, L1 & L2 needed a raise in the height of the antennas over buildings' roofs of 1-4.5 m. However, base stations C, D, H, K, L1 & L2 may pose a risk to near living population and consequently the towers have to be moved away. The violating distances are 3, 5.5, 3, 4.5, 4, 3 meters, respectively, while the environmental standard is 6 m. Therefore, the towers should be moved away from these populated areas Nevertheless, guided directions should be constructed in all base stations to warn close living population. Safety regulations as well as frequent inspection need to be applied, on both Egyptian mobile phone companies, to ensure the application of all standard specifications. A significant research effort is needed

  12. Pre-exposure of Arabidopsis to the abiotic or biotic environmental stimuli “chilling” or “insect eggs” exhibits different transcriptomic responses to herbivory

    PubMed Central

    Firtzlaff, Vivien; Oberländer, Jana; Geiselhardt, Sven; Hilker, Monika; Kunze, Reinhard

    2016-01-01

    Plants can retain information about environmental stress and thus, prepare themselves for impending stress. In nature, it happens that environmental stimuli like ‘cold’ and ‘insect egg deposition’ precede insect herbivory. Both these stimuli are known to elicit transcriptomic changes in Arabidposis thaliana. It is unknown, however, whether they affect the plant’s anti-herbivore defence and feeding-induced transcriptome when they end prior to herbivory. Here we investigated the transcriptomic response of Arabidopsis to feeding by Pieris brassicae larvae after prior exposure to cold or oviposition. The transcriptome of plants that experienced a five-day-chilling period (4 °C) was not fully reset to the pre-chilling state after deacclimation (20 °C) for one day and responded differently to herbivory than that of chilling-inexperienced plants. In contrast, when after a five-day-lasting oviposition period the eggs were removed, one day later the transcriptome and, consistently, also its response to herbivory resembled that of egg-free plants. Larval performance was unaffected by previous exposure of plants to cold and to eggs, thus indicating P. brassicae tolerance to cold-mediated plant transcriptomic changes. Our results show strong differences in the persistence of the plant’s transcriptomic state after removal of different environmental cues, and consequently differential effects on the transcriptomic response to later herbivory. PMID:27329974

  13. Mycobacterium ulcerans dynamics in aquatic ecosystems are driven by a complex interplay of abiotic and biotic factors.

    PubMed

    Garchitorena, Andrés; Guégan, Jean-François; Léger, Lucas; Eyangoh, Sara; Marsollier, Laurent; Roche, Benjamin

    2015-07-28

    Host-parasite interactions are often embedded within complex host communities and can be influenced by a variety of environmental factors, such as seasonal variations in climate or abiotic conditions in water and soil, which confounds our understanding of the main drivers of many multi-host pathogens. Here, we take advantage of a combination of large environmental data sets on Mycobacterium ulcerans (MU), an environmentally persistent microorganism associated to freshwater ecosystems and present in a large variety of aquatic hosts, to characterize abiotic and biotic factors driving the dynamics of this pathogen in two regions of Cameroon. We find that MU dynamics are largely driven by seasonal climatic factors and certain physico-chemical conditions in stagnant and slow-flowing ecosystems, with an important role of pH as limiting factor. Furthermore, water conditions can modify the effect of abundance and diversity of aquatic organisms on MU dynamics, which suggests a different contribution of two MU transmission routes for aquatic hosts (trophic vs environmental transmission) depending on local abiotic factors.

  14. Guaranteeing robustness of structural condition monitoring to environmental variability

    NASA Astrophysics Data System (ADS)

    Van Buren, Kendra; Reilly, Jack; Neal, Kyle; Edwards, Harry; Hemez, François

    2017-01-01

    Advances in sensor deployment and computational modeling have allowed significant strides to be recently made in the field of Structural Health Monitoring (SHM). One widely used SHM strategy is to perform a vibration analysis where a model of the structure's pristine (undamaged) condition is compared with vibration response data collected from the physical structure. Discrepancies between model predictions and monitoring data can be interpreted as structural damage. Unfortunately, multiple sources of uncertainty must also be considered in the analysis, including environmental variability, unknown model functional forms, and unknown values of model parameters. Not accounting for these sources of uncertainty can lead to false-positives or false-negatives in the structural condition assessment. To manage the uncertainty, we propose a robust SHM methodology that combines three technologies. A time series algorithm is trained using "baseline" data to predict the vibration response, compare predictions to actual measurements collected on a potentially damaged structure, and calculate a user-defined damage indicator. The second technology handles the uncertainty present in the problem. An analysis of robustness is performed to propagate this uncertainty through the time series algorithm and obtain the corresponding bounds of variation of the damage indicator. The uncertainty description and robustness analysis are both inspired by the theory of info-gap decision-making. Lastly, an appropriate "size" of the uncertainty space is determined through physical experiments performed in laboratory conditions. Our hypothesis is that examining how the uncertainty space changes throughout time might lead to superior diagnostics of structural damage as compared to only monitoring the damage indicator. This methodology is applied to a portal frame structure to assess if the strategy holds promise for robust SHM. (Publication approved for unlimited, public release on October-28

  15. Evaluation of Diesel Exhaust Continuous Monitors in Controlled Environmental Conditions

    PubMed Central

    Yu, Chang Ho; Patton, Allison P.; Zhang, Andrew; Fanac, Zhi-Hua (Tina); Weisel, Clifford P.; Lioy, Paul J.

    2015-01-01

    Diesel exhaust (DE) contains a variety of toxic air pollutants, including diesel particulate matter (DPM) and gaseous contaminants (e.g., carbon monoxide (CO)). DPM is dominated by fine (PM2.5) and ultrafine particles (UFP), and can be representatively determined by its thermal-optical refractory as elemental carbon (EC) or light-absorbing characteristics as black carbon (BC). The currently accepted reference method for sampling and analysis of occupational exposure to DPM is the National Institute for Occupational Safety and Health (NIOSH) Method 5040. However, this method cannot provide in-situ short-term measurements of DPM. Thus, real-time monitors are gaining attention to better examine DE exposures in occupational settings. However, real-time monitors are subject to changing environmental conditions. Field measurements have reported interferences in optical sensors and subsequent real-time readings, under conditions of high humidity and abrupt temperature changes. To begin dealing with these issues, we completed a controlled study to evaluate five real-time monitors: Airtec real-time DPM/EC Monitor, TSI SidePak Personal Aerosol Monitor AM510 (PM2.5), TSI Condensation Particle Counter 3007, microAeth AE51 BC Aethalometer, and Langan T15n CO Measurer. Tests were conducted under different temperatures (55, 70, and 80 °F), relative humidity (10, 40, and 80%), and DPM concentrations (50 and 200 µg/m3) in a controlled exposure facility. The 2-hour averaged EC measurements from the Airtec instrument showed relatively good agreement with NIOSH Method 5040 (R2=0.84; slope=1.17±0.06; N=27) and reported ~17% higher EC concentrations than the NIOSH reference method. Temperature, relative humidity, and DPM levels did not significantly affect relative differences in 2-hour averaged EC concentrations obtained by the Airtec instrument versus the NIOSH method (p<0.05). Multiple linear regression analyses, based on 1-min averaged data, suggested combined effects of up to 5

  16. Biodegradation of a Light NAPL under Varying Soil Environmental Conditions

    NASA Astrophysics Data System (ADS)

    Yadav, B. K.; Hassanizadeh, S. M.; Kleingeld, P. J.

    2009-12-01

    To see the impact of different soil environmental conditions on LNAPL biodegradation, a series of batch, microcosm, column and 2-D tank experiments under controlled conditions have been planned. Microcosms along with batch experiments have been designed for five different moisture contents ranging from residual to saturated, and under varying temperature condition. The batches are being used for two saturated soils containing toluene. For the unsaturated cases, fifteen microcosms are designed to mimic natural conditions more closely. The microcosms consist of a transparent outer column and an air permeable, but watertight, inner tube comprised of toluene phobic material. The space between the outer column and the inner porous tube is filled with a soil having a particular moisture content with a known amount of toluene. The inner porous tube is filled with air at atmospheric pressure, providing sufficient oxygen for the degradation of considered light NAPL. A special sampling mechanism has been fabricated to enable airtight soil sampling. Four columns have been designed for studying the impact of water table fluctuation on the LNAPL fate and transport in variably-saturated soil. Water table in two columns will be static and remaining two will be subjected to a fluctuation. Finally a 2-D tank setup, made of a steel box and a glass cover, has been refurbished for bioremediation process of LNAPL from start to finish. The main body is constructed of one piece of 1.5 mm thick stainless steel formed into a box with inner dimensions of 200cm-long x 94cm-high x 4cm-deep. The front cover is made of glass wall having 19-mm thickness. The soil is going to be packed between the two walls. The groundwater will be flowing horizontally from left to right and the water table level in the tank will be controlled by two end chambers. The chambers are separated from the soil by a fine meshed stainless steel sheet. The spatial and the temporal distributions of the LNAPL and its

  17. Surface monitoring measurements of materials on environmental change conditions

    NASA Astrophysics Data System (ADS)

    Tornari, Vivi; Bernikola, Eirini; Bellendorf, Paul; Bertolin, Chiara; Camuffo, Dario; Kotova, Lola; Jacobs, Daniela; Zarnic, Roko; Rajcic, Vlatka; Leissner, Johanna

    2013-05-01

    Climate Change is one of the most critical global challenges of our time and the burdened cultural heritage of Europe is particularly vulnerable to be left unprotected. Climate for Culture2 project exploits the damage impact of climate change on cultural heritage at regional scale. In this paper the progress of the study with in situ measurements and investigations at cultural heritage sites throughout Europe combined with laboratory simulations is described. Cultural works of art are susceptible to deterioration with environmental changes causing imperceptibly slow but steady accumulation of damaging effects directly impacted on structural integrity. Laser holographic interference method is employed to provide remote non destructive field-wise detection of the structural differences occurred as climate responses. The first results from climate simulation of South East Europe (Crete) are presented. A full study in regards to the four climate regions of Europe is foreseen to provide values for development of a precise and integrated model of thermographic building simulations for evaluation of impact of climate change. Development of a third generation user interface software optimised portable metrology system (DHSPI II) is designed to record in custom intervals the surface of materials witnessing reactions under simulated climatic conditions both onfield and in laboratory. The climate conditions refer to real data-loggers readings representing characteristic historical building in selected climate zones. New generation impact sensors termed Glass Sensors and Free Water Sensors are employed in the monitoring procedure to cross-correlate climate data with deformation data. In this paper results from the combined methodology are additionally presented.

  18. Environmental Conditions Determine the Course and Outcome of Phytoplankton Chytridiomycosis

    PubMed Central

    Haande, Sigrid; Molversmyr, Åge

    2015-01-01

    Chytrid fungi are highly potent parasites of phytoplankton. They are thought to force phytoplankton organisms into an evolutionary arms race with high population diversity as the outcome. The underlying selection regime is known as Red Queen dynamics. However, our study suggests a more complex picture for chytrid parasitism in the cyanobacterium Planktothrix. Laboratory experiments identified a “cold thermal refuge”, inside which Planktothrix can grow without chytrid infection. A field study in two Norwegian lakes underlined the ecological significance of this finding. The study utilized sediment DNA as a biological archive in combination with existing monitoring data. In one lake, temperature and light conditions forced Planktothrix outside the thermal refuge for most of the growing season. This probably resulted in Red Queen dynamics as suggested by a high parasitic pressure exerted by chytrids, an increase in Planktothrix genotype diversity over time, and a correlation between Planktothrix genotype diversity and duration of bloom events. In the second lake, a colder climate allowed Planktothrix to largely stay inside the thermal refuge. The parasitic pressure exerted by chytrids and Planktothrix genotype diversity remained low, indicating that Planktothrix successfully evaded the Red Queen dynamics. Episodic Planktothrix blooms were observed during spring and autumn circulation, in the metalimnion or under the ice. Interestingly, both lakes were dominated by the same or related Planktothrix genotypes. Taken together, our data suggest that, depending on environmental conditions, chytrid parasitism can impose distinct selection regimes on conspecific phytoplankton populations with similar genotype composition, causing these populations to behave and perhaps to evolve differently. PMID:26714010

  19. Impact of Environmental Conditions on the Survival of Cryptosporidium and Giardia on Environmental Surfaces

    PubMed Central

    Alum, Absar; Absar, Isra M.; Asaad, Hamas; Rubino, Joseph R.; Ijaz, M. Khalid

    2014-01-01

    The objective of this study was to find out the impact of environmental conditions on the survival of intestinal parasites on environmental surfaces commonly implicated in the transmission of these parasites. The study was performed by incubating Cryptosporidium and Giardia (oo)cysts on environmentally relevant surfaces such as brushed stainless steel, formica, ceramic, fabric, and skin. Parallel experiments were conducted using clean and soiled coupons incubated under three temperatures. The die-off coefficient rates (K) were calculated using first-order exponential formula. For both parasites, the fastest die-off was recorded on fabric, followed by ceramic, formica, skin, and steel. Die-off rates were directly correlated to the incubation temperatures and surface porosity. The presence of organic matter enhanced the survivability of the resting stages of test parasites. The decay rates calculated in this study can be used in models for public health decision-making process and highlights the mitigation role of hand hygiene agents in their prevention and control. PMID:25045350

  20. Effects of plant growth promoting bacteria and mycorrhizal on Capsicum annuum L. var. aviculare ([Dierbach] D'Arcy and Eshbaugh) germination under stressing abiotic conditions.

    PubMed

    Rueda-Puente, Edgar Omar; Murillo-Amador, Bernardo; Castellanos-Cervantes, T; García-Hernández, José Luís; Tarazòn-Herrera, Mario Antonio; Moreno Medina, Salomòn; Gerlach Barrera, Luis Ernesto

    2010-08-01

    Capsicum annuum var. aviculare to Tarahumara and Papago Indians and farmers of Sonora desert is a promising biological and commercial value as a natural resource from arid and semiarid coastal zones. Traditionally, apply synthetic fertilizers to compensate for soil nitrogen deficiency. However, indiscriminate use of these fertilizers might increase salinity. The inoculation by plant growth promoting bacteria (PGPB) and arbuscular mycorrhizal fungi (AMF) represents an alternative as potential bio fertilizer resources for salty areas. Seeds ecotypes from four areas of Sonora desert (Mazocahui, Baviacora, Arizpe, La Tortuga), in order to inoculate them with one species of PGPB and AMF. Two germination tests were carried out to study the effect of salinity, temperature regime (night/day) and inoculation with PGPB and AMF growth factors measured on germination (percentage and rate), plant height, root length, and produced biomass (fresh and dry matter). The results indicated that from four studied ecotypes, Mazocahui was the most outstanding of all, showing the highest germination under saline and non-saline conditions. However, the PGPB and AMF influenced the others variables evaluated. This study is the first step to obtain an ideal ecotype of C. a. var. aviculare, which grows in the northwest of México and promoting this type of microorganisms as an efficient and reliable biological product. Studies of the association of PGPB and AMF with the C. a. var. aviculare-Mazocahui ecotype are recommended to determine the extent to which these observations can be reproduced under field conditions.

  1. Do Environmental Conditions Contribute to Narcosis Onset and Symptom Severity?

    PubMed

    Lafère, P; Balestra, C; Hemelryck, W; Guerrero, F; Germonpré, P

    2016-12-01

    Although many factors contributing to inert gas narcosis onset and severity have been put forward, the available evidence is not particularly strong. Using objective criteria, we have assessed brain impairment associated with narcosis under various environmental diving conditions. 40 volunteers performed a no-decompression dive (33 m for 20 min) either in a dry chamber, a pool or open sea. They were assessed by critical flicker fusion frequency before the dive, upon arriving at depth, 5 min before ascent, on surfacing and 30 min post-dive. Compared to the pre-dive value, the mean value of each measurement was significantly different. An increase of flicker fusion to 105.00±0.69% when arriving at depth is followed by a decrease to 94.05±0.65%. This impairment persists when surfacing and 30 min post-dive, decreasing further to 96.36±0.73% and 96.24±0.73%, respectively. Intragroup comparison failed to demonstrate any statistical difference. When objectively measured narcosis may not be influenced by external factors other than pressure and gas. This might be of importance for training to avoid any over- or underestimation of the severity of narcosis based only on subjective symptoms.

  2. Age at menarche: the influence of environmental conditions

    NASA Astrophysics Data System (ADS)

    Saar, E.; Shalev, C.; Dalal, I.; Sod-Moriah, U. A.

    1988-03-01

    Age at menarche was studied by the recollection method in two groups of Causasian Jewish high school girls, inhabitants of two towns in Israel, Safad and Elat. The two towns differ mainly in climatic conditions. The age at menarche was found to be significantly lower ( P<0.02) in the hot town of Elat than in the temperate town of Safad: 13.30±1.21 and 13.58±0.9 years, respectively (mean ±SD). A significant association was found between the age at menarche and the town in which the girls lived. Accordingly, in the hot town of Elat, the percentage of girls who had their first menstrual cycle by the age of 12 years and earlier, was more than double that of the girls in Safad (17.9% and 7.1%, respectively). It is concluded that the environmental temperature, with or without any possible interaction of humidity, is probably responsible for the tendency for an earlier onset of menarche in girls living in the hot town of Elat.

  3. MicroRNAs As Potential Targets for Abiotic Stress Tolerance in Plants

    PubMed Central

    Shriram, Varsha; Kumar, Vinay; Devarumath, Rachayya M.; Khare, Tushar S.; Wani, Shabir H.

    2016-01-01

    The microRNAs (miRNAs) are small (20–24 nt) sized, non-coding, single stranded riboregulator RNAs abundant in higher organisms. Recent findings have established that plants assign miRNAs as critical post-transcriptional regulators of gene expression in sequence-specific manner to respond to numerous abiotic stresses they face during their growth cycle. These small RNAs regulate gene expression via translational inhibition. Usually, stress induced miRNAs downregulate their target mRNAs, whereas, their downregulation leads to accumulation and function of positive regulators. In the past decade, investigations were mainly aimed to identify plant miRNAs, responsive to individual or multiple environmental factors, profiling their expression patterns and recognizing their roles in stress responses and tolerance. Altered expressions of miRNAs implicated in plant growth and development have been reported in several plant species subjected to abiotic stress conditions such as drought, salinity, extreme temperatures, nutrient deprivation, and heavy metals. These findings indicate that miRNAs may hold the key as potential targets for genetic manipulations to engineer abiotic stress tolerance in crop plants. This review is aimed to provide recent updates on plant miRNAs, their biogenesis and functions, target prediction and identification, computational tools and databases available for plant miRNAs, and their roles in abiotic stress-responses and adaptive mechanisms in major crop plants. Besides, the recent case studies for overexpressing the selected miRNAs for miRNA-mediated enhanced abiotic stress tolerance of transgenic plants have been discussed. PMID:27379117

  4. Abiotic stresses and endophyte effects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abiotic stresses consist of nonorganismal, nonpathogenic factors that inhibit plant function. Tall fescue [Lolium arundinaceum (Schreb.) Darbysh.] is widely symbiotic with a naturally occurring endophytic fungus [Neotyphodium coenophialum (Morgan-Jones and Gams) Glenn, Bacon, and Hanlin], which con...

  5. Plant–insect interactions from Middle Triassic (late Ladinian) of Monte Agnello (Dolomites, N-Italy)—initial pattern and response to abiotic environmental perturbations

    PubMed Central

    Kustatscher, Evelyn; Dellantonio, Elio

    2015-01-01

    The Paleozoic–Mesozoic transition is characterized by the most massive extinction of the Phanerozoic. Nevertheless, an impressive adaptive radiation of herbivorous insects occurred on gymnosperm-dominated floras not earlier than during the Middle to Late Triassic, penecontemporaneous with similar events worldwide, all which exhibit parallel expansions of generalized and mostly specialized insect herbivory on plants, expressed as insect damage on a various plant organs and tissues. The flora from Monte Agnello is distinctive, due to its preservation in subaerially deposited pyroclastic layers with exceptionally preserved details. Thus, the para-autochthonous assemblage provides insights into environmental disturbances, caused by volcanic activity, and how they profoundly affected the structure and composition of herbivory patterns. These diverse Middle Triassic biota supply extensive evidence for insect herbivore colonization, resulting in specific and complex herbivory patterns involving the frequency and diversity of 20 distinctive damage types (DTs). These DT patterns show that external foliage feeders, piercer-and-suckers, leaf miners, gallers, and oviposition culprits were intricately using almost all tissue types from the dominant host plants of voltzialean conifers (e.g., Voltzia), horsetails, ferns (e.g., Neuropteridium, Phlebopteris, Cladophlebis and Thaumatopteris), seed ferns (e.g., Scytophyllum), and cycadophytes (e.g., Bjuvia and Nilssonia). PMID:25945313

  6. Interaction of ribonucleotides with oxide and silicate minerals under varying environmental conditions

    NASA Astrophysics Data System (ADS)

    Feuillie, C.; Sverjensky, D. A.; Hazen, R. M.

    2013-12-01

    results provide a better understanding of how nucleic acids attach to mineral surfaces under varying environmental conditions in soil environments. Moreover, the predicted configuration of nucleotide surface species, bound via the phosphate group, could have implications for the abiotic formation and concentration of nucleic acids in the context of the origin of life. References : [1] Lorenz and Wackernagel (1987), Applied and environmental microbial., 2948-2952 [2] Ferris (2005), Reviews in mineralogy & geochemistry 59, 187-210 [3] Cleaves H.J. et al. (2011), Chemosphere 83, 1560-1567 [4] Arora & Kamaluddin (2009), Astrobiology 9, 165-171 [5] Cai et al. (2006), Environ. Sci. Technol. 40 (9), 2971-2976 [6] Franchi and Gallori (2005),Gene 346, 205-214 [7] Scappini et al. (2004), International Journal of Astrobiology 3(1), 17-19 [8] Levy-Booth et al. (2007), Soil Biol. Biochem. 39, 2977-2991. [9] Feuillie et al. (2013), Geochimica et Cosmochimica Acta (in press)

  7. Differential regulation of 3-aminomethylindole/N-methyl-3-aminomethylindole N-methyltransferase and gramine in barley by both biotic and abiotic stress conditions.

    PubMed

    Larsson, Kristina A E; Saheed, Sefiu A; Gradin, Therese; Delp, Gabriele; Karpinska, Barbara; Botha, Christiaan E J; Jonsson, Lisbeth M V

    2011-01-01

    The expression of NMT (3-aminomethylindole/N-methyl-3-aminomethylindole N-methyltransferase; EC 2.1.1.), involved in the biosynthesis of the indole alkaloid gramine, was investigated in aphid-infested barley (Hordeum vulgare L.). NMT is induced by methyl jasmonate and it was hypothesized that the gene would be more strongly upregulated in aphid-resistant barley. We examined the effects of feeding by three aphid species; Russian wheat aphid (Diuraphis noxia Mordvilko), rose-grain aphid (Metopolophium dirhodum Walker) and bird cherry-oat aphid (Rhopalosiphum padi L.) on barley genotypes with varying resistance characteristics. The barley genotypes selected included the cultivar Libra, known to upregulate gramine after feeding by Schizaphis graminum. Infestation by R. padi and M. dirhodum resulted in higher NMT expression in the doubled haploid line 5172-28:4 (DH28:4), which has moderate resistance against R. padi, but not in other aphid-barley combinations. None of the aphid-plant combinations had however increased gramine, suggesting that aphid-induction of gramine is specific to S. graminum. The increased abundance of NMT transcript in aphid-infested DH28:4 did not lead to higher amounts of NMT protein or NMT enzyme activity, neither did 200 times upregulation of NMT transcript in cotyledons incubated with methyl jasmonate, illustrating that even large differences measured at transcript level may have no metabolic consequences. Drought stress or treatments with abscisic acid did lead to higher gramine concentrations in several barley cultivars, but without any concomitant increase of NMT transcripts. Thus, the regulation of the biosynthetic pathway to gramine at transcript and metabolite level diverges during two different stress conditions.

  8. Prediction of glass durability as a function of environmental conditions

    SciTech Connect

    Jantzen, C M

    1988-01-01

    A thermodynamic model of glass durability is applied to natural, ancient, and nuclear waste glasses. The durabilities of over 150 different natural and man-made glasses, including actual ancient Roman and Islamic glasses (Jalame ca. 350 AD, Nishapur 10-11th century AD and Gorgon 9-11th century AD), are compared. Glass durability is a function of the thermodynamic hydration free energy, ..delta..G/sub hyd/, which can be calculated from glass composition and solution pH. The durability of the most durable nuclear waste glasses examined was /approximately/10/sup 6/ years. The least durable waste glass formulations were comparable in durability to the most durable simulated medieval window glasses of /approximately/10/sup 3/ years. In this manner, the durability of nuclear waste glasses has been interpolated to be /approximately/10/sup 6/ years and no less than 10/sup 3/ years. Hydration thermodynamics have been shown to be applicable to the dissolution of glass in various natural environments. Groundwater-glass interactions relative to geologic disposal of nuclear waste, hydration rind dating of obsidians, andor other archeological studies can be modeled, e.g., the relative durabilities of six simulated medieval window glasses have been correctly predicted for both laboratory (one month) and burial (5 years) experiments. Effects of solution pH on glass dissolution has been determined experimentally for the 150 different glasses and can be predicted theoretically by hydration thermodynamics. The effects of solution redox on dissolution of glass matrix elements such as SI and B have shown to be minimal. The combined effects of solution pH and Eh have been described and unified by construction of thermodynamically calculated Pourbaix (pH-Eh) diagrams for glass dissolution. The Pourbaix diagrams have been quantified to describe glass dissolution as a function of environmental conditions by use of the data derived from hydration thermodynamics. 56 refs., 7 figs.

  9. Race, Social and Environmental Conditions, and Health Behaviors in Men

    PubMed Central

    Thorpe, Roland J.; Kennedy-Hendricks, Alene; Griffith, Derek M.; Bruce, Marino A.; Coa, Kisha; Bell, Caryn N.; Young, Jessica; Bowie, Janice V.; LaVeist, Thomas A.

    2016-01-01

    Although understanding race differences in health behaviors among men is an important step in reducing disparities in leading causes of death in the United States, progress has been stifled when using national data because of the confounding of race, socioeconomic status (SES), and residential segregation. The purpose of this study is to examine the nature of disparities in health behaviors among African American and White men in the Exploring Health Disparities in Integrated Communities Study-Southwest Baltimore (EHDIC-SWB) which was conducted in a racially a racially-integrated neighborhood of Baltimore to data from the 2003 National Health Interview Survey (NHIS). After adjusting for age, marital status, insurance, income, educational attainment, poor or fair health, and obesity status, African American men in NHIS had greater odds of being physically inactive (odds ratio [OR] =1.48, 95% confidence interval [CI] 129, 1.69), reduced odds of being a current smoker (OR= 0.77, 95% CI 0.65, 0.90), and reduced odds of being a current drinker (OR= 0.58, 95% CI 0.50, 0.67). In the EHDIC-SWB sample, African American and white men had similar odds of being physically inactive (OR = 0.79, 95% CI 0.50, 1.24), being a current smoker (OR = 0.86, 95% CI 0.60, 1.23), or being a current drinker (OR = 1.34, 95% CI 0.81, 2.21). Because race disparities in these health behaviors were ameliorated in the sample where African American and white men were living under similar social, environmental and SES conditions, these findings suggest that social environment may be an important determinant of health behaviors among African American and White men. Public health interventions and health promotion strategies should consider the social environment when seeking to better understand men’s health disparities. PMID:26291190

  10. Effects of Environmental Conditions on an Urban Wetland's Methane Fluxes

    NASA Astrophysics Data System (ADS)

    Naor Azrieli, L.; Morin, T. H.; Bohrer, G.; Schafer, K. V.; Brooker, M.; Mitsch, W. J.

    2013-12-01

    Methane emissions from wetlands are the largest natural source of uncertainty in the global methane (CH4) budget. Wetlands are highly productive ecosystems with a large carbon sequestration potential. While wetlands are a net sink for carbon dioxide, they also release methane, a potent greenhouse gas. To effectively develop wetland management techniques, it is important to properly calculate the carbon budget of wetlands by understand the driving factors of methane fluxes. We constructed an eddy flux covariance system in the Olentangy River Wetland Research Park, a series of created and restored wetland in Columbus Ohio. Through the use of high frequency open path infrared gas analyzer (IRGA) sensors, we have continuously monitored the methane fluxes associated with the wetland since May 2011. To account for the heterogeneous landscape surrounding the tower, a footprint analysis was used to isolate data originating from within the wetland. Continuous measurements of the meteorological and environmental conditions at the wetlands coinciding with the flux measurements allow the interactions between methane fluxes and the climate and ecological forcing to be studied. The wintertime daily cycle of methane peaks around midday indicating a typical diurnal pattern in cold months. In the summer, the peak shifts to earlier in the day and also includes a daily peak occurring at approximately 10 AM. We believe this peak is associated with the onset of photosynthesis in Typha latifolia flushing methane from the plant's air filled tissue. Correlations with methane fluxes include latent heat flux, soil temperature, and incoming radiation. The connection to radiation may be further evidence of plant activity as a driver of methane fluxes. Higher methane fluxes corresponding with higher soil temperature indicates that warmer days stimulate the methanogenic consortium. Further analysis will focus on separating the methane fluxes into emissions from different terrain types within

  11. Race, Social and Environmental Conditions, and Health Behaviors in Men.

    PubMed

    Thorpe, Roland J; Kennedy-Hendricks, Alene; Griffith, Derek M; Bruce, Marino A; Coa, Kisha; Bell, Caryn N; Young, Jessica; Bowie, Janice V; LaVeist, Thomas A

    2015-01-01

    Although understanding race differences in health behaviors among men is an important step in reducing disparities in leading causes of death in the United States, progress has been stifled when using national data because of the confounding of race, socioeconomic status, and residential segregation. The purpose of this study is to examine the nature of disparities in health behaviors among African American and white men in the Exploring Health Disparities in Integrated Communities Study-Southwest Baltimore, which was conducted in a racially integrated neighborhood of Baltimore to data from the 2003 National Health Interview Survey. After adjusting for age, marital status, insurance, income, educational attainment, poor or fair health, and obesity status, African American men in National Health Interview Survey had greater odds of being physically inactive (odds ratio [OR] = 1.48; 95% confidence interval [CI], 129-1.69), reduced odds of being a current smoker (OR = 0.77; 95% CI, 0.65-0.90), and reduced odds of being a current drinker (OR = 0.58; 95% CI, 0.50-0.67). In the Exploring Health Disparities in Integrated Communities Study-Southwest Baltimore sample, African American and white men had similar odds of being physically inactive (OR = 0.79; 95% CI, 0.50-1.24), being a current smoker (OR = 0.86; 95% CI, 0.60-1.23), or being a current drinker (OR = 1.34; 95% CI, 0.81-2.21). Because race disparities in these health behaviors were ameliorated in the sample where African American and white men were living under similar social, environmental, and socioeconomic status conditions, these findings suggest that social environment may be an important determinant of health behaviors among African American and white men. Public health interventions and health promotion strategies should consider the social environment when seeking to better understand men's health disparities.

  12. Environmental degradation of polyacrylamides. 1. Effects of artificial environmental conditions: temperature, light, and pH.

    PubMed

    Smith, E A; Prues, S L; Oehme, F W

    1996-11-01

    A polyacrylamide thickening agent (PATA) was formulated at four concentrations in distilled-deionized water, without and with a glyphosate-surfactant herbicide (GH). Over a 6-week period, these mixtures were exposed to various controlled temperature and light conditions. Acrylamide concentration, ammonium concentration, and pH were measured at weekly intervals to assess the degradation of polyacrylamide and acrylamide. Satellite studies were conducted to examine the effect of altered pH on solutions of PATA (i.e., does pH promote polyacrylamide depolymerization?) and GH binding to amine groups (i.e., protection from degradation). The results of these studies suggest that polyacrylamide can degrade to acrylamide by thermal and photolytic effects, that changes in pH do not promote the depolymerization of polyacrylamide, and that GH does protect polyacrylamide and acrylamide from environmental degradation. Statistically there was no linear correlation between the various parameters measured.

  13. OVERALL MASS TRANSFER COEFFICIENT FOR POLLUTANT EMISSIONS FROM SMALL WATER POOLS UNDER SIMULATED INDOOR ENVIRONMENTAL CONDITIONS

    EPA Science Inventory

    Small chamber tests were conducted to experimentally determine the overall mass transfer coefficient for pollutant emissions from still water under simulated indoor-residential or occupational-environmental conditions. Fourteen tests were conducted in small environmental chambers...

  14. Environmental Growth Conditions of Trichoderma spp. Affects Indole Acetic Acid Derivatives, Volatile Organic Compounds, and Plant Growth Promotion.

    PubMed

    Nieto-Jacobo, Maria F; Steyaert, Johanna M; Salazar-Badillo, Fatima B; Nguyen, Dianne Vi; Rostás, Michael; Braithwaite, Mark; De Souza, Jorge T; Jimenez-Bremont, Juan F; Ohkura, Mana; Stewart, Alison; Mendoza-Mendoza, Artemio

    2017-01-01

    Trichoderma species are soil-borne filamentous fungi widely utilized for their many plant health benefits, such as conferring improved growth, disease resistance and abiotic stress tolerance to their hosts. Many Trichoderma species are able to produce the auxin phytohormone indole-3-acetic acid (IAA), and its production has been suggested to promote root growth. Here we show that the production of IAA is strain dependent and diverse external stimuli are associated with its production. In in vitro assays, Arabidopsis primary root length was negatively affected by the interaction with some Trichoderma strains. In soil experiments, a continuum effect on plant growth was shown and this was also strain dependent. In plate assays, some strains of Trichoderma spp. inhibited the expression of the auxin reporter gene DR5 in Arabidopsis primary roots but not secondary roots. When Trichoderma spp. and A. thaliana were physically separated, enhancement of both shoot and root biomass, increased root production and chlorophyll content were observed, which strongly suggested that volatile production by the fungus influenced the parameters analyzed. Trichoderma strains T. virens Gv29.8, T. atroviride IMI206040, T. sp. "atroviride B" LU132, and T. asperellum LU1370 were demonstrated to promote plant growth through volatile production. However, contrasting differences were observed with LU1370 which had a negative effect on plant growth in soil but a positive effect in plate assays. Altogether our results suggest that the mechanisms and molecules involved in plant growth promotion by Trichoderma spp. are multivariable and are affected by the environmental conditions.

  15. Abiotic Stress Responses and Microbe-Mediated Mitigation in Plants: The Omics Strategies

    PubMed Central

    Meena, Kamlesh K.; Sorty, Ajay M.; Bitla, Utkarsh M.; Choudhary, Khushboo; Gupta, Priyanka; Pareek, Ashwani; Singh, Dhananjaya P.; Prabha, Ratna; Sahu, Pramod K.; Gupta, Vijai K.; Singh, Harikesh B.; Krishanani, Kishor K.; Minhas, Paramjit S.

    2017-01-01

    Abiotic stresses are the foremost limiting factors for agricultural productivity. Crop plants need to cope up adverse external pressure created by environmental and edaphic conditions with their intrinsic biological mechanisms, failing which their growth, development, and productivity suffer. Microorganisms, the most natural inhabitants of diverse environments exhibit enormous metabolic capabilities to mitigate abiotic stresses. Since microbial interactions with plants are an integral part of the living ecosystem, they are believed to be the natural partners that modulate local and systemic mechanisms in plants to offer defense under adverse external conditions. Plant-microbe interactions comprise complex mechanisms within the plant cellular system. Biochemical, molecular and physiological studies are paving the way in understanding the complex but integrated cellular processes. Under the continuous pressure of increasing climatic alterations, it now becomes more imperative to define and interpret plant-microbe relationships in terms of protection against abiotic stresses. At the same time, it also becomes essential to generate deeper insights into the stress-mitigating mechanisms in crop plants for their translation in higher productivity. Multi-omics approaches comprising genomics, transcriptomics, proteomics, metabolomics and phenomics integrate studies on the interaction of plants with microbes and their external environment and generate multi-layered information that can answer what is happening in real-time within the cells. Integration, analysis and decipherization of the big-data can lead to a massive outcome that has significant chance for implementation in the fields. This review summarizes abiotic stresses responses in plants in-terms of biochemical and molecular mechanisms followed by the microbe-mediated stress mitigation phenomenon. We describe the role of multi-omics approaches in generating multi-pronged information to provide a better understanding

  16. Abiotic reduction reactions of anthropogenic organic chemicals in anaerobic systems: A critical review

    NASA Astrophysics Data System (ADS)

    Macalady, Donald L.; Tratnyek, Paul G.; Grundl, Timothy J.

    1986-02-01

    This review is predicated upon the need for a detailed process-level understanding of factors influencing the reduction of anthropogenic organic chemicals in natural aquatic systems. In particular, abiotic reductions of anthropogenic organic chemicals are reviewed. The most important reductive reaction is alkyl dehalogenation (replacement of chloride with hydrogen) which occurs in organisms, sediments, sewage sludge, and reduced iron porphyrin model systems. An abiotic mechanism involving a free radical intermediate has been proposed. The abstraction of vicinal dihalides (also termed dehalogenation) is another reduction that may have an abiotic component in natural systems. Reductive dehalogenation of aryl halides has recently been reported and further study of this reaction is needed. Several other degradation reactions of organohalides that occur in anaerobic environments are mentioned, the most important of which is dehydrohalogenation. The reduction of nitro groups to amines has also been thoroughly studied. The reactions can occur abiotically, and are affected by the redox conditions of the experimental system. However, a relationship between nitro-reduction rate and measured redox potential has not been clearly established. Reductive dealkylation of the N- and O-heteroatom of hydrocarbon pollutants has been observed but not investigated in detail. Azo compounds can be reduced to their hydrazo derivatives and a thorough study of this reaction indicates that it can be caused by extracellular electron transfer agents. Quinone-hydroquinone couples are important reactive groups in humic materials and similar structures in resazurin and indigo carmine make them useful as models for environmental redox conditions. The interconversion of sulfones, sulfoxides, and sulfides is a redox process and is implicated in the degradation of several pesticides though the reactions need more study. Two reductive heterocyclic cleavage reactions are also mentioned. Finally, several

  17. Abiotic Stress Responses and Microbe-Mediated Mitigation in Plants: The Omics Strategies.

    PubMed

    Meena, Kamlesh K; Sorty, Ajay M; Bitla, Utkarsh M; Choudhary, Khushboo; Gupta, Priyanka; Pareek, Ashwani; Singh, Dhananjaya P; Prabha, Ratna; Sahu, Pramod K; Gupta, Vijai K; Singh, Harikesh B; Krishanani, Kishor K; Minhas, Paramjit S

    2017-01-01

    Abiotic stresses are the foremost limiting factors for agricultural productivity. Crop plants need to cope up adverse external pressure created by environmental and edaphic conditions with their intrinsic biological mechanisms, failing which their growth, development, and productivity suffer. Microorganisms, the most natural inhabitants of diverse environments exhibit enormous metabolic capabilities to mitigate abiotic stresses. Since microbial interactions with plants are an integral part of the living ecosystem, they are believed to be the natural partners that modulate local and systemic mechanisms in plants to offer defense under adverse external conditions. Plant-microbe interactions comprise complex mechanisms within the plant cellular system. Biochemical, molecular and physiological studies are paving the way in understanding the complex but integrated cellular processes. Under the continuous pressure of increasing climatic alterations, it now becomes more imperative to define and interpret plant-microbe relationships in terms of protection against abiotic stresses. At the same time, it also becomes essential to generate deeper insights into the stress-mitigating mechanisms in crop plants for their translation in higher productivity. Multi-omics approaches comprising genomics, transcriptomics, proteomics, metabolomics and phenomics integrate studies on the interaction of plants with microbes and their external environment and generate multi-layered information that can answer what is happening in real-time within the cells. Integration, analysis and decipherization of the big-data can lead to a massive outcome that has significant chance for implementation in the fields. This review summarizes abiotic stresses responses in plants in-terms of biochemical and molecular mechanisms followed by the microbe-mediated stress mitigation phenomenon. We describe the role of multi-omics approaches in generating multi-pronged information to provide a better understanding

  18. Improved Tolerance to Various Abiotic Stresses in Transgenic Sweet Potato (Ipomoea batatas) Expressing Spinach Betaine Aldehyde Dehydrogenase

    PubMed Central

    Fan, Weijuan; Zhang, Min; Zhang, Hongxia; Zhang, Peng

    2012-01-01

    Abiotic stresses are critical delimiters for the increased productivity and cultivation expansion of sweet potato (Ipomoea batatas), a root crop with worldwide importance. The increased production of glycine betaine (GB) improves plant tolerance to various abiotic stresses without strong phenotypic changes, providing a feasible approach to improve stable yield production under unfavorable conditions. The gene encoding betaine aldehyde dehydrogenase (BADH) is involved in the biosynthesis of GB in plants, and the accumulation of GB by the heterologous overexpression of BADH improves abiotic stress tolerance in plants. This study is to improve sweet potato, a GB accumulator, resistant to multiple abiotic stresses by promoted GB biosynthesis. A chloroplastic BADH gene from Spinacia oleracea (SoBADH) was introduced into the sweet potato cultivar Sushu-2 via Agrobacterium-mediated transformation. The overexpression of SoBADH in the transgenic sweet potato improved tolerance to various abiotic stresses, including salt, oxidative stress, and low temperature. The increased BADH activity and GB accumulation in the transgenic plant lines under normal and multiple environmental stresses resulted in increased protection against cell damage through the maintenance of cell membrane integrity, stronger photosynthetic activity, reduced reactive oxygen species (ROS) production, and induction or activation of ROS scavenging by the increased activity of free radical-scavenging enzymes. The increased proline accumulation and systemic upregulation of many ROS-scavenging genes in stress-treated transgenic plants also indicated that GB accumulation might stimulate the ROS-scavenging system and proline biosynthesis via an integrative mechanism. This study demonstrates that the enhancement of GB biosynthesis in sweet potato is an effective and feasible approach to improve its tolerance to multiple abiotic stresses without causing phenotypic defects. This strategy for trait improvement in

  19. Shipping and natural environmental conditions determine the distribution of the invasive non-indigenous round goby Neogobius melanostomus in a regional sea

    NASA Astrophysics Data System (ADS)

    Kotta, Jonne; Nurkse, Kristiina; Puntila, Riikka; Ojaveer, Henn

    2016-02-01

    Introductions of non-indigenous species (NIS) are considered a major threat to aquatic ecosystems worldwide. While it is valuable to know the distributions and ranges of NIS, predictive spatial models along different environmental gradients are more useful for management of these species. In this study we modelled how external drivers and local environmental conditions contribute to the spatial distribution of an invasive species using the distribution of the round goby Neogobius melanostomus in the Baltic Sea as an example. Using the collected distribution data, an updated map on the species distribution and its invasion progress in the Baltic Sea was produced. The current range of the round goby observations is extensive, covering all major sub-basins of the Baltic Sea. The most recent observations appeared in the northern regions (Northern Baltic Proper, the Gulf of Bothnia and the Gulf of Finland) and on the eastern and western coasts of southern Sweden. Modelling results show that the distribution of the round goby is primarily related to local abiotic hydrological conditions (wave exposure). Furthermore, the probability of round goby occurrence was very high in areas in close proximity to large cargo ports. This links patterns of the round goby distribution in the Baltic Sea to shipping traffic and suggests that human factors together with natural environmental conditions are responsible for the spread of NIS at a regional sea scale.

  20. The spatial structure of bacterial communities is influenced by historical environmental conditions.

    PubMed

    Andersson, Martin G I; Berga, Mercè; Lindström, Eva S; Langenheder, Silke

    2014-05-01

    The spatial structure of ecological communities, including that of bacteria, is often influenced by species sorting by contemporary environmental conditions. Moreover, historical processes, i.e., ecological and evolutionary events that have occurred at some point in the past, such as dispersal limitation, drift, priority effects, or selection by past environmental conditions, can be important, but are generally investigated much less. Here, we conducted a field study using 16 rock pools, where we specifically compared the importance of past vs. contemporary environmental conditions for bacterial community structure by correlating present differences in bacterial community composition among pools to environmental conditions measured on the same day, as well as to those measured 2, 4, 6, and 8 d earlier. The results prove that selection by past environmental conditions exists, since we were able to show that bacterial communities are, to a greater extent, an imprint of past compared to contemporary environmental conditions. We suggest that this is the result of a combination of different mechanisms, including priority effects that cause rapid adaptation to new environmental conditions of taxa that have been initially selected by past environmental conditions, and slower rates of turnover in community composition compared to environmental conditions.

  1. Abiotic transformation of carbon tetrachloride at mineral surfaces. Final report, September 1990-September 1993

    SciTech Connect

    Kriegman-King, M.; Reinhard, M.

    1994-02-01

    The report addresses the ability of natural mineral surfaces to abiotically transform halogenated organic compounds in subsurface environments. The research focuses on carbon tetrachloride (CC14) as the halogenated organic and biotite, vermiculite, and pyrite as the mineral surfaces. The CCl4 transformation rates and products were quantified under different environmental conditions. The disappearance of CCl4 was significantly faster in the presence of mineral surfaces than in homogeneous solution. In systems containing the sheet silicates and HS-, the rate of reaction was dependent on the temperature, hydrogen sulfide ion concentration, surface concentration, and Fe(II) content in the minerals.

  2. Molecular responses of genetically modified maize to abiotic stresses as determined through proteomic and metabolomic analyses.

    PubMed

    Benevenuto, Rafael Fonseca; Agapito-Tenfen, Sarah Zanon; Vilperte, Vinicius; Wikmark, Odd-Gunnar; van Rensburg, Peet Jansen; Nodari, Rubens Onofre

    2017-01-01

    Some genetically modified (GM) plants have transgenes that confer tolerance to abiotic stressors. Meanwhile, other transgenes may interact with abiotic stressors, causing pleiotropic effects that will affect the plant physiology. Thus, physiological alteration might have an impact on the product safety. However, routine risk assessment (RA) analyses do not evaluate the response of GM plants exposed to different environmental conditions. Therefore, we here present a proteome profile of herbicide-tolerant maize, including the levels of phytohormones and related compounds, compared to its near-isogenic non-GM variety under drought and herbicide stresses. Twenty differentially abundant proteins were detected between GM and non-GM hybrids under different water deficiency conditions and herbicide sprays. Pathway enrichment analysis showed that most of these proteins are assigned to energetic/carbohydrate metabolic processes. Among phytohormones and related compounds, different levels of ABA, CA, JA, MeJA and SA were detected in the maize varieties and stress conditions analysed. In pathway and proteome analyses, environment was found to be the major source of variation followed by the genetic transformation factor. Nonetheless, differences were detected in the levels of JA, MeJA and CA and in the abundance of 11 proteins when comparing the GM plant and its non-GM near-isogenic variety under the same environmental conditions. Thus, these findings do support molecular studies in GM plants Risk Assessment analyses.

  3. Molecular responses of genetically modified maize to abiotic stresses as determined through proteomic and metabolomic analyses

    PubMed Central

    Benevenuto, Rafael Fonseca; Agapito-Tenfen, Sarah Zanon; Vilperte, Vinicius; Wikmark, Odd-Gunnar; van Rensburg, Peet Jansen; Nodari, Rubens Onofre

    2017-01-01

    Some genetically modified (GM) plants have transgenes that confer tolerance to abiotic stressors. Meanwhile, other transgenes may interact with abiotic stressors, causing pleiotropic effects that will affect the plant physiology. Thus, physiological alteration might have an impact on the product safety. However, routine risk assessment (RA) analyses do not evaluate the response of GM plants exposed to different environmental conditions. Therefore, we here present a proteome profile of herbicide-tolerant maize, including the levels of phytohormones and related compounds, compared to its near-isogenic non-GM variety under drought and herbicide stresses. Twenty differentially abundant proteins were detected between GM and non-GM hybrids under different water deficiency conditions and herbicide sprays. Pathway enrichment analysis showed that most of these proteins are assigned to energetic/carbohydrate metabolic processes. Among phytohormones and related compounds, different levels of ABA, CA, JA, MeJA and SA were detected in the maize varieties and stress conditions analysed. In pathway and proteome analyses, environment was found to be the major source of variation followed by the genetic transformation factor. Nonetheless, differences were detected in the levels of JA, MeJA and CA and in the abundance of 11 proteins when comparing the GM plant and its non-GM near-isogenic variety under the same environmental conditions. Thus, these findings do support molecular studies in GM plants Risk Assessment analyses. PMID:28245233

  4. Perceiving environmental properties from motion information: Minimal conditions

    NASA Technical Reports Server (NTRS)

    Proffitt, Dennis R.; Kaiser, Mary K.

    1989-01-01

    The status of motion as a minimal information source for perceiving the environmental properties of surface segregation, three-dimensional (3-D) form, displacement, and dynamics is discussed. The selection of these particular properties was motivated by a desire to present research on perceiving properties that span the range of dimensional complexity.

  5. Biological Networks Underlying Abiotic Stress Tolerance in Temperate Crops—A Proteomic Perspective

    PubMed Central

    Kosová, Klára; Vítámvás, Pavel; Urban, Milan Oldřich; Klíma, Miroslav; Roy, Amitava; Prášil, Ilja Tom

    2015-01-01

    Abiotic stress factors, especially low temperatures, drought, and salinity, represent the major constraints limiting agricultural production in temperate climate. Under the conditions of global climate change, the risk of damaging effects of abiotic stresses on crop production increases. Plant stress response represents an active process aimed at an establishment of novel homeostasis under altered environmental conditions. Proteins play a crucial role in plant stress response since they are directly involved in shaping the final phenotype. In the review, results of proteomic studies focused on stress response of major crops grown in temperate climate including cereals: common wheat (Triticum aestivum), durum wheat (Triticum durum), barley (Hordeum vulgare), maize (Zea mays); leguminous plants: alfalfa (Medicago sativa), soybean (Glycine max), common bean (Phaseolus vulgaris), pea (Pisum sativum); oilseed rape (Brassica napus); potato (Solanum tuberosum); tobacco (Nicotiana tabaccum); tomato (Lycopersicon esculentum); and others, to a wide range of abiotic stresses (cold, drought, salinity, heat, imbalances in mineral nutrition and heavy metals) are summarized. The dynamics of changes in various protein functional groups including signaling and regulatory proteins, transcription factors, proteins involved in protein metabolism, amino acid metabolism, metabolism of several stress-related compounds, proteins with chaperone and protective functions as well as structural proteins (cell wall components, cytoskeleton) are briefly overviewed. Attention is paid to the differences found between differentially tolerant genotypes. In addition, proteomic studies aimed at proteomic investigation of multiple stress factors are discussed. In conclusion, contribution of proteomic studies to understanding the complexity of crop response to abiotic stresses as well as possibilities to identify and utilize protein markers in crop breeding processes are discussed. PMID:26340626

  6. Coordinated Actions of Glyoxalase and Antioxidant Defense Systems in Conferring Abiotic Stress Tolerance in Plants

    PubMed Central

    Hasanuzzaman, Mirza; Nahar, Kamrun; Hossain, Md. Shahadat; Mahmud, Jubayer Al; Rahman, Anisur; Inafuku, Masashi; Oku, Hirosuke; Fujita, Masayuki

    2017-01-01

    Being sessile organisms, plants are frequently exposed to various environmental stresses that cause several physiological disorders and even death. Oxidative stress is one of the common consequences of abiotic stress in plants, which is caused by excess generation of reactive oxygen species (ROS). Sometimes ROS production exceeds the capacity of antioxidant defense systems, which leads to oxidative stress. In line with ROS, plants also produce a high amount of methylglyoxal (MG), which is an α-oxoaldehyde compound, highly reactive, cytotoxic, and produced via different enzymatic and non-enzymatic reactions. This MG can impair cells or cell components and can even destroy DNA or cause mutation. Under stress conditions, MG concentration in plants can be increased 2- to 6-fold compared with normal conditions depending on the plant species. However, plants have a system developed to detoxify this MG consisting of two major enzymes: glyoxalase I (Gly I) and glyoxalase II (Gly II), and hence known as the glyoxalase system. Recently, a novel glyoxalase enzyme, named glyoxalase III (Gly III), has been detected in plants, providing a shorter pathway for MG detoxification, which is also a signpost in the research of abiotic stress tolerance. Glutathione (GSH) acts as a co-factor for this system. Therefore, this system not only detoxifies MG but also plays a role in maintaining GSH homeostasis and subsequent ROS detoxification. Upregulation of both Gly I and Gly II as well as their overexpression in plant species showed enhanced tolerance to various abiotic stresses including salinity, drought, metal toxicity, and extreme temperature. In the past few decades, a considerable amount of reports have indicated that both antioxidant defense and glyoxalase systems have strong interactions in conferring abiotic stress tolerance in plants through the detoxification of ROS and MG. In this review, we will focus on the mechanisms of these interactions and the coordinated action of

  7. Homogenization of Environmental Condition and Benthic Communities in Restored Streams of the North Carolina Piedmont.

    NASA Astrophysics Data System (ADS)

    Tullos, D. D.; Penrose, D. L.; Jennings, G. D.; Wentworth, T. R.

    2005-05-01

    Stream ecosystems, as described through benthic communities and twenty environmental variables, exhibited decreased variances and reduced ordinal dimensionality in restored streams when compared to associated upstream reaches in this upstream-downstream investigation of stream restoration in the North Carolina Piedmont. Through paired t-tests of the environmental variables and several descriptions of community structure and function, the variance for restored stream reaches was lower than the upstream reaches for 70% of environmental characteristics, for 75% of Functional Feeding and Habitat Groups, and for all of the community descriptions, including the Q statistic, Shannon Index, Simpson Index, EPT taxa richness, and NCBI. Further, Nonmetric Multidimensional Scaling of the sites best expressed the upstream reaches on three axes, while the restored stream reaches required only one axis to effectively describe variation in the benthic communities. These results suggest that simplification of the biota may occur following steam restoration activities, indicating the biological losses associated with early recovery in these streams. While the science of stream restoration has advanced since the early construction and implementation at these sites, the consequential homogenization demonstrated by these biotic and abiotic stream corridor features emphasizes the importance of a concentrated effort to re-establish heterogeneity in restoration designs.

  8. Search for past life on Mars: Physical and chemical characterization of calcite minerals of biotic and abiotic origin

    NASA Astrophysics Data System (ADS)

    Stalport, S.; Coll, C.; Cabane, C.; Navarro González, N. G.; Raulin, R.; Vaulay, V.; Ausset, A.; Szopa, S.; McKay, M.

    Several lines of evidence suggest that early Mars once had liquid water on its surface a denser atmosphere and a mild climate Similar environmental conditions led to the origin of life on the Earth more than 3 5 billion years ago consequently life might also have originated on Mars We contend that inorganic compounds could give us interesting clues as to the existence of possible biological activity in future astrobiological missions to Mars Consequently we have investigated the physical and chemical properties of calcite which could be expected on Mars because liquid water was certainly present on the surface of early Mars and carbon dioxide was abundant in its atmosphere Calcite is interesting because on Earth this mineral is produced by abiotic processes as well as by biological activity One may suppose that crystalline defects and trace element in the crystal lattice and the growth speed of biotic calcites must indicate a difference between them and pure abiotic calcites We investigated twelve different terrestrial calcite samples from various origins biotic diagenetic and abiotic The minerals were studied by X-ray diffraction and electron scanning microscopy to determine their mineralogical and chemical composition and differential thermal analysis coupled to thermogravimetric analysis DTA-TG to determine their thermal behavior Our results show that the thermal degradation of abiotic calcite starts at a temperature at least 40oC higher than the degradation temperature of any biotic calcite investigated Consequently in the case of a Martian in-situ

  9. Overview of environmental and hydrogeologic conditions at Saint Marys, Alaska

    USGS Publications Warehouse

    Nakanishi, Allan S.; Dorava, Joseph M.

    1994-01-01

    The Federal Aviation Administration (FAA) owns or operates airway support facilities near Saint Marys along the Yukon River in west-central Alaska. The FAA is evaluating the severity of environmental contamination and options for remediation of environmental contamination at their facilities. Saint Marys is on a flood plain near the continence of the Yukon and Andreafsky Rivers and has long cold winters and short summers. Residents obtain their drinking water from an infiltration gallery fed by a creek near the village. Surface spills and disposal of hazardous materials combined with potential flooding may affect the quality of the surface and ground water. Alternative drinking-water sources are available, but would likely cost more than existing supplies to develop.

  10. Environmental Conditions in the Norwegian-Iceland Seas, May 1987.

    DTIC Science & Technology

    1987-06-01

    2 I (U) PREJIMflQON. The goal of the prediction element was threefold: (1) using TOPS together with the winds forecasted by the Navy Operational ...predictions by NORDA at the Anti-Submarine Warfare Operations Center (ASWOC), Keflavik, Iceland; (3) near-real-time tactical scale ocean dynamic forcasts...segments by briefly describing the field efforts and the analysis/forecast segment of the operation . Some initial findings concerning the environmental

  11. NAC transcription factors in plant multiple abiotic stress responses: progress and prospects

    PubMed Central

    Shao, Hongbo; Wang, Hongyan; Tang, Xiaoli

    2015-01-01

    Abiotic stresses adversely affect plant growth and agricultural productivity. According to the current climate prediction models, crop plants will face a greater number of environmental stresses, which are likely to occur simultaneously in the future. So it is very urgent to breed broad-spectrum tolerant crops in order to meet an increasing demand for food productivity due to global population increase. As one of the largest families of transcription factors (TFs) in plants, NAC TFs play vital roles in regulating plant growth and development processes including abiotic stress responses. Lots of studies indicated that many stress-responsive NAC TFs had been used to improve stress tolerance in crop plants by genetic engineering. In this review, the recent progress in NAC TFs was summarized, and the potential utilization of NAC TFs in breeding abiotic stress tolerant transgenic crops was also be discussed. In view of the complexity of field conditions and the specificity in multiple stress responses, we suggest that the NAC TFs commonly induced by multiple stresses should be promising candidates to produce plants with enhanced multiple stress tolerance. Furthermore, the field evaluation of transgenic crops harboring NAC genes, as well as the suitable promoters for minimizing the negative effects caused by over-expressing some NAC genes, should be considered. PMID:26579152

  12. Recent Advances in Utilizing Transcription Factors to Improve Plant Abiotic Stress Tolerance by Transgenic Technology

    PubMed Central

    Wang, Hongyan; Wang, Honglei; Shao, Hongbo; Tang, Xiaoli

    2016-01-01

    Agricultural production and quality are adversely affected by various abiotic stresses worldwide and this will be exacerbated by the deterioration of global climate. To feed a growing world population, it is very urgent to breed stress-tolerant crops with higher yields and improved qualities against multiple environmental stresses. Since conventional breeding approaches had marginal success due to the complexity of stress tolerance traits, the transgenic approach is now being popularly used to breed stress-tolerant crops. So identifying and characterizing the critical genes involved in plant stress responses is an essential prerequisite for engineering stress-tolerant crops. Far beyond the manipulation of single functional gene, engineering certain regulatory genes has emerged as an effective strategy now for controlling the expression of many stress-responsive genes. Transcription factors (TFs) are good candidates for genetic engineering to breed stress-tolerant crop because of their role as master regulators of many stress-responsive genes. Many TFs belonging to families AP2/EREBP, MYB, WRKY, NAC, bZIP have been found to be involved in various abiotic stresses and some TF genes have also been engineered to improve stress tolerance in model and crop plants. In this review, we take five large families of TFs as examples and review the recent progress of TFs involved in plant abiotic stress responses and their potential utilization to improve multiple stress tolerance of crops in the field conditions. PMID:26904044

  13. Common lung conditions: environmental pollutants and lung disease.

    PubMed

    Delzell, John E

    2013-06-01

    Exposure to environmental pollutants can have short- and long-term effects on lung health. Sources of air pollution include gases (eg, carbon monoxide, ozone) and particulate matter (eg, soot, dust). In the United States, the Environmental Protection Agency regulates air pollution. Elevated ozone concentrations are associated with increases in lung-related hospitalizations and mortality. Elevated particulate matter pollution increases the risk of cardiopulmonary and lung cancer mortality. Occupations with high exposures to pollutants (eg, heavy construction work, truck driving, auto mechanics) pose higher risk of chronic obstructive lung disease. Some industrial settings (eg, agriculture, sawmills, meat packing plants) also are associated with higher risks from pollutants. The Environmental Protection Agency issues an air quality index for cities and regions in the United States. The upper levels on the index are associated with increases in asthma-related emergency department visits and hospitalizations. Damp and moldy housing might make asthma symptoms worse; individuals from lower socioeconomic groups who live in lower quality housing are particularly at risk. Other household exposures that can have negative effects on lung health include radon, nanoparticles, and biomass fuels.

  14. 78 FR 43963 - Sixty-Second Meeting: RTCA Special Committee 135, Environmental Conditions and Test Procedures...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Sixty-Second Meeting: RTCA Special Committee 135, Environmental Conditions... public of the Sixty-Second meeting of the RTCA Special Committee 135, Environmental Conditions and...

  15. Integrated metabolomics for abiotic stress responses in plants.

    PubMed

    Nakabayashi, Ryo; Saito, Kazuki

    2015-04-01

    Plants are considered to biosynthesize specialized (traditionally called secondary) metabolites to adapt to environmental stresses such as biotic and abiotic stresses. The majority of specialized metabolites induced by abiotic stress characteristically exhibit antioxidative activity in vitro, but their function in vivo is largely yet to be experimentally confirmed. In this review, we highlight recent advances in the identification of the role of abiotic stress-responsive specialized metabolites with an emphasis on flavonoids. Integrated 'omics' analysis, centered on metabolomics with a series of plant resources differing in their flavonoid accumulation, showed experimentally that flavonoids play a major role in antioxidation in vivo. In addition, the results also suggest the role of flavonoids in the vacuole. To obtain more in-depth insights, chemical and biological challenges need to be addressed for the identification of unknown specialized metabolites and their in vivo functions.

  16. Transgenic banana plants overexpressing a native plasma membrane aquaporin MusaPIP1;2 display high tolerance levels to different abiotic stresses.

    PubMed

    Sreedharan, Shareena; Shekhawat, Upendra K S; Ganapathi, Thumballi R

    2013-10-01

    Water transport across cellular membranes is regulated by a family of water channel proteins known as aquaporins (AQPs). As most abiotic stresses like suboptimal temperatures, drought or salinity result in cellular dehydration, it is imperative to study the cause-effect relationship between AQPs and the cellular consequences of abiotic stress stimuli. Although plant cells have a high isoform diversity of AQPs, the individual and integrated roles of individual AQPs in optimal and suboptimal physiological conditions remain unclear. Herein, we have identified a plasma membrane intrinsic protein gene (MusaPIP1;2) from banana and characterized it by overexpression in transgenic banana plants. Cellular localization assay performed using MusaPIP1;2::GFP fusion protein indicated that MusaPIP1;2 translocated to plasma membrane in transformed banana cells. Transgenic banana plants overexpressing MusaPIP1;2 constitutively displayed better abiotic stress survival characteristics. The transgenic lines had lower malondialdehyde levels, elevated proline and relative water content and higher photosynthetic efficiency as compared to equivalent controls under different abiotic stress conditions. Greenhouse-maintained hardened transgenic plants showed faster recovery towards normal growth and development after cessation of abiotic stress stimuli, thereby underlining the importance of these plants in actual environmental conditions wherein the stress stimuli is often transient but severe. Further, transgenic plants where the overexpression of MusaPIP1;2 was made conditional by tagging it with a stress-inducible native dehydrin promoter also showed similar stress tolerance characteristics in in vitro and in vivo assays. Plants developed in this study could potentially enable banana cultivation in areas where adverse environmental conditions hitherto preclude commercial banana cultivation.

  17. Evaluating reaction pathways of hydrothermal abiotic organic synthesis at elevated temperatures and pressures using carbon isotopes

    NASA Astrophysics Data System (ADS)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.

    2015-04-01

    Experiments were performed to better understand the role of environmental factors on reaction pathways and corresponding carbon isotope fractionations during abiotic hydrothermal synthesis of organic compounds using piston cylinder apparatus at 750 °C and 5.5 kbars. Chemical compositions of experimental products and corresponding carbon isotopic values were obtained by a Pyrolysis-GC-MS-IRMS system. Alkanes (methane and ethane), straight-chain saturated alcohols (ethanol and n-butanol) and monocarboxylic acids (formic and acetic acids) were generated with ethanol being the only organic compound with higher δ13C than CO2. CO was not detected in experimental products owing to the favorable water-gas shift reaction under high water pressure conditions. The pattern of δ13C values of CO2, carboxylic acids and alkanes are consistent with their equilibrium isotope relationships: CO2 > carboxylic acids > alkanes, but the magnitude of the fractionation among them is higher than predicted isotope equilibrium values. In particular, the isotopic fractionation between CO2 and CH4 remained constant at ∼31‰, indicating a kinetic effect during CO2 reduction processes. No "isotope reversal" of δ13C values for alkanes or carboxylic acids was observed, which indicates a different reaction pathway than what is typically observed during Fischer-Tropsch synthesis under gas phase conditions. Under constraints imposed in experiments, the anomalous 13C isotope enrichment in ethanol suggests that hydroxymethylene is the organic intermediate, and that the generation of other organic compounds enriched in 12C were facilitated by subsequent Rayleigh fractionation of hydroxymethylene reacting with H2 and/or H2O. Carbon isotope fractionation data obtained in this study are instrumental in assessing the controlling factors on abiotic formation of organic compounds in hydrothermal systems. Knowledge on how environmental conditions affect reaction pathways of abiotic synthesis of organic

  18. Resilience of Penicillium resedanum LK6 and exogenous gibberellin in improving Capsicum annuum growth under abiotic stresses.

    PubMed

    Khan, Abdul Latif; Waqas, Muhammad; Lee, In-Jung

    2015-03-01

    Understanding how endophytic fungi mitigate abiotic stresses in plants will be important in a changing global climate. A few endophytes can produce phytohormones, but their ability to induce physiological changes in host plants during extreme environmental conditions are largely unexplored. In the present study, we investigated the ability of Penicillium resedanum LK6 to produce gibberellins and its role in improving the growth of Capsicum annuum L. under salinity, drought, and heat stresses. These effects were compared with exogenous application of gibberellic acid (GA3). Endophyte treatment significantly increased shoot length, biomass, chlorophyll content, and the photosynthesis rate compared with the uninfected control during abiotic stresses. The endophyte and combined endophyte + GA3 treatments significantly ameliorated the negative effects of stresses compared with the control. Stress-responsive endogenous abscisic acid and its encoding genes, such as zeaxanthin epoxidase, 9-cis-epoxycarotenoid dioxygenase 3, and ABA aldehyde oxidase 3, were significantly reduced in endophyte-treated plants under stress. Conversely, salicylic acid and biosynthesis-related gene (isochorismate synthase) had constitutive expressions while pathogenesis related (PR1 and PR5) genes showed attenuated responses during endophyte treatment under abiotic stresses. The present findings suggest that endophytes have effects comparable to those of exogenous GA3; both can significantly increase plant growth and yield under changing environmental conditions by reprogramming the host plant's physiological responses.

  19. Abiotic stress responses in plants: roles of calmodulin-regulated proteins

    PubMed Central

    Virdi, Amardeep S.; Singh, Supreet; Singh, Prabhjeet

    2015-01-01

    Intracellular changes in calcium ions (Ca2+) in response to different biotic and abiotic stimuli are detected by various sensor proteins in the plant cell. Calmodulin (CaM) is one of the most extensively studied Ca2+-sensing proteins and has been shown to be involved in transduction of Ca2+ signals. After interacting with Ca2+, CaM undergoes conformational change and influences the activities of a diverse range of CaM-binding proteins. A number of CaM-binding proteins have also been implicated in stress responses in plants, highlighting the central role played by CaM in adaptation to adverse environmental conditions. Stress adaptation in plants is a highly complex and multigenic response. Identification and characterization of CaM-modulated proteins in relation to different abiotic stresses could, therefore, prove to be essential for a deeper understanding of the molecular mechanisms involved in abiotic stress tolerance in plants. Various studies have revealed involvement of CaM in regulation of metal ions uptake, generation of reactive oxygen species and modulation of transcription factors such as CAMTA3, GTL1, and WRKY39. Activities of several kinases and phosphatases have also been shown to be modulated by CaM, thus providing further versatility to stress-associated signal transduction pathways. The results obtained from contemporary studies are consistent with the proposed role of CaM as an integrator of different stress signaling pathways, which allows plants to maintain homeostasis between different cellular processes. In this review, we have attempted to present the current state of understanding of the role of CaM in modulating different stress-regulated proteins and its implications in augmenting abiotic stress tolerance in plants. PMID:26528296

  20. Polyamines and abiotic stress tolerance in plants

    PubMed Central

    Gill, Sarvajeet Singh

    2010-01-01

    Environmental stresses including climate change, especially global warming, are severely affecting plant growth and productivity worldwide. It has been estimated that two-thirds of the yield potential of major crops are routinely lost due to the unfavorable environmental factors. On the other hand, the world population is estimated to reach about 10 billion by 2050, which will witness serious food shortages. Therefore, crops with enhanced vigour and high tolerance to various environmental factors should be developed to feed the increasing world population. Maintaining crop yields under adverse environmental stresses is probably the major challenge facing modern agriculture where polyamines can play important role. Polyamines (PAs)(putrescine, spermidine and spermine) are group of phytohormone-like aliphatic amine natural compounds with aliphatic nitrogen structure and present in almost all living organisms including plants. Evidences showed that polyamines are involved in many physiological processes, such as cell growth and development and respond to stress tolerance to various environmental factors. In many cases the relationship of plant stress tolerance was noted with the production of conjugated and bound polyamines as well as stimulation of polyamine oxidation. Therefore, genetic manipulation of crop plants with genes encoding enzymes of polyamine biosynthetic pathways may provide better stress tolerance to crop plants. Furthermore, the exogenous application of PAs is also another option for increasing the stress tolerance potential in plants. Here, we have described the synthesis and role of various polyamines in abiotic stress tolerance in plants. PMID:20592804

  1. Environmental conditions regulate the impact of plants on cloud formation

    NASA Astrophysics Data System (ADS)

    Zhao, D. F.; Buchholz, A.; Tillmann, R.; Kleist, E.; Wu, C.; Rubach, F.; Kiendler-Scharr, A.; Rudich, Y.; Wildt, J.; Mentel, Th. F.

    2017-02-01

    The terrestrial vegetation emits large amounts of volatile organic compounds (VOC) into the atmosphere, which on oxidation produce secondary organic aerosol (SOA). By acting as cloud condensation nuclei (CCN), SOA influences cloud formation and climate. In a warming climate, changes in environmental factors can cause stresses to plants, inducing changes of the emitted VOC. These can modify particle size and composition. Here we report how induced emissions eventually affect CCN activity of SOA, a key parameter in cloud formation. For boreal forest tree species, insect infestation by aphids causes additional VOC emissions which modifies SOA composition thus hygroscopicity and CCN activity. Moderate heat increases the total amount of constitutive VOC, which has a minor effect on hygroscopicity, but affects CCN activity by increasing the particles' size. The coupling of plant stresses, VOC composition and CCN activity points to an important impact of induced plant emissions on cloud formation and climate.

  2. Overview of environmental and hydrogeologic conditions at Tanana, Alaska

    USGS Publications Warehouse

    Nakanishi, Allan S.; Dorava, Joseph M.

    1994-01-01

    The remote Native village of Tanana along the Yukon River in west-central Alaska has long cold winters and short summers. The Federal Aviation Administration owns or operates airway support facilities near Tanana and wishes to consider the subsistence lifestyle of the residents and the quality of the current environment when evaluating the severity of environmental contamination at these facilities. Tanana is located on the flood plain of the Yukon River and obtains its drinking water from a shallow aquifer located in thick alluvium underlying the village. Surface spills and disposal of hazardous materials combined with annual flooding of the Yukon River may affect the quality of the ground water. Alternative drinking-water sources are available, but may cost more than existing supplies.

  3. Overview of environmental and hydrogeologic conditions at Moses Point, Alaska

    USGS Publications Warehouse

    Dorava, J.M.; Ayres, R.P.; Sisco, W.C.

    1994-01-01

    The Federal Aviation Administration facility at Moses Point is located at the mouth of the Kwiniuk River on the Seward Peninsula in northwestern Alaska. This area has long cold winters and short summers which affect the hydrology of the area. The Federal Aviation Administration owns or operates airport support facilities at the Moses Point site and wishes to consider the subsistence lifestyles of area residents and the quality of the current environment when evaluating options for remediation of environmental contamination at their facilities. Currently no operating wells are in the area, but the vulnerability of the aquifer and other alternative water supplies are being evaluated because the Federal Aviation Administration has a potential liability for the storage and use of hazardous materials in the area.

  4. Environmental overview and hydrogeologic conditions at Aniak, Alaska

    USGS Publications Warehouse

    Dorava, J.M.

    1994-01-01

    The remote Native village of Aniak, on the flood plain of the Kuskokwim River in southwestern Alaska, has long cold winters and short summers that affect both the hydrology of the area and the lifestyle of the residents. Aniak obtains its drinking water from a shallow aquifer in the thick alluvium underlying the village. Surface spills and disposal of hazardous materials combined with annual flooding of the Kuskokwim River may affect the quality of the ground water. Alternative drinking water sources are available but at significantly greater cost than existing supplies. The Federal Aviation Administration (FAA) owns or operates airport support facilities in Aniak. The subsistence lifestyle of the villagers and the quality of the current environment must be taken into consideration when the FAA evaluates options for remediation of environmental contamination at these facilities. This report describes the ground- and surface-water hydrology, geology, climate, vegetation, soils, and flood potential of the areas surrounding the FAA sites.

  5. Overview of environmental and hydrogeologic conditions at Fort Yukon, Alaska

    USGS Publications Warehouse

    Nakanishi, Allan S.; Dorava, Joseph M.

    1994-01-01

    The village of Fort Yukon along the Yukon River in east-central Alaska has long cold winters and short summers. The Federal Aviation Administration operates and supports some airport facilities in Fort Yukon and is evaluating the severity of environmental contamination and options for remediation of such contamination at their facilites. Fort Yukon is located on the flood plain of the Yukon River and obtains its drinking water from a shallow aquifer located in the thick alluvium underlying the village. Surface spills and disposal of hazardous materials combined with annual flooding of the Yukon River may affect the quality of the ground water. Alternative drinking-water sources are available from local surface-water bodies or from presently unidentified confined aquifers.

  6. Overview of environmental and hydrogeologic conditions at Galena, Alaska

    USGS Publications Warehouse

    Nakanishi, Allan S.; Dorava, Joseph M.

    1994-01-01

    The remote Native village of Galena along the Yukon River in west-central Alaska has long cold winters and short summers that affects the hydrology of the area. The Federal Aviation Administration owns or operates airport support facilities in Galena and wishes to consider the subsistence lifestyle of the residents and the quality of the current environment when evaluating options for remediation of environmental contamination at these facilities. Galena is located on the flood plain of the Yukon River and obtains its drinking water from a shallow aquifer located in the thick alluvium underlying the village. Surface spills and disposal of hazardous materials combined with annual flooding of the Yukon River may affect the quality of the ground water. Alternative drinking-water sources are available but at significantly greater cost than existing supplies.

  7. Environmental conditions regulate the impact of plants on cloud formation

    PubMed Central

    Zhao, D. F.; Buchholz, A.; Tillmann, R.; Kleist, E.; Wu, C.; Rubach, F.; Kiendler-Scharr, A.; Rudich, Y.; Wildt, J.; Mentel, Th. F.

    2017-01-01

    The terrestrial vegetation emits large amounts of volatile organic compounds (VOC) into the atmosphere, which on oxidation produce secondary organic aerosol (SOA). By acting as cloud condensation nuclei (CCN), SOA influences cloud formation and climate. In a warming climate, changes in environmental factors can cause stresses to plants, inducing changes of the emitted VOC. These can modify particle size and composition. Here we report how induced emissions eventually affect CCN activity of SOA, a key parameter in cloud formation. For boreal forest tree species, insect infestation by aphids causes additional VOC emissions which modifies SOA composition thus hygroscopicity and CCN activity. Moderate heat increases the total amount of constitutive VOC, which has a minor effect on hygroscopicity, but affects CCN activity by increasing the particles' size. The coupling of plant stresses, VOC composition and CCN activity points to an important impact of induced plant emissions on cloud formation and climate. PMID:28218253

  8. The Use of Chemical Probes for the Characterization of the Predominant Abiotic Reductants in Anaerobic Sediments

    EPA Science Inventory

    Identifying the predominant chemical reductants and pathways for electron transfer in anaerobic systems is paramount to the development of environmental fate models that incorporate pathways for abiotic reductive transformations. Currently, such models do not exist. In this chapt...

  9. Environmental embrittlement of iron aluminides under cyclic loading conditions

    SciTech Connect

    Castagna, A.; Alven, D.A.; Stoloff, N.S.

    1995-08-01

    The tensile and fatigue crack growth behavior in air in hydrogen and in oxygen of an Fe-Al-Cr-Zr alloy is described. The results are compared to data for FA-129. A detailed analysis of frequency effects on fatigue crack growth rates of FA-129, tested in the B2 condition, shows that dislocation transport of hydrogen from the surface is the rate limiting step in fatigue crack growth.

  10. Combined effects of working environmental conditions in VDT work.

    PubMed

    Takahashi, K; Sasaki, H; Saito, T; Hosokawa, T; Kurasaki, M; Saito, K

    2001-04-15

    The combined effects of city noise and luminance of the computer display were evaluated from the changes in lymphocytes and mental activities of participants. Healthy male students were tested under the following four experimental conditions: (1) a calculating task on a video display terminal (VDT) with luminance of 90 cd m(-2) without city noise; (2) a calculating task on a VDT with luminance of 20 cd m(-2) without city noise; (3) a calculating task on a VDT with luminance of 90 cd m(-2) with city noise of 70 dB(A); and (4) a calculating task on a VDT with luminance of 20 cd m(-2) with city noise of 70 dB(A). A visual reaction test (VRT) was performed, and critical flicker fusion frequency (CFF), heart rate (HR), numbers of circulating white blood cells (WBCs), lymphocyte subsets and subjective symptoms of fatigue were measured (1) before; (2) just after; and (3) 30 min after each 60 min test. Subjective symptoms of fatigue significantly increased just after experiments conducted under the two noisy conditions. VRT and CFF showed significant changes in the case of the high-luminance display with noise. WBCs and neutrophils showed significant increases in the two quiet conditions. These results suggested that high luminance with noise had the most effect on subjective fatigue and mental activities.

  11. Optoelectronic methods in potential application in monitoring of environmental conditions

    NASA Astrophysics Data System (ADS)

    Mularczyk-Oliwa, Monika; Bombalska, Aneta; Kwaśny, Mirosław; Kopczyński, Krzysztof; Włodarski, Maksymilian; Kaliszewski, Miron; Kostecki, Jerzy

    2016-12-01

    Allergic rhinitis, also known as hay fever is a type of inflammation which occurs when the immune system overreacts to allergens in the air. It became the most common disease among people. It became important to monitor air content for the presence of a particular type of allergen. For the purposes of environmental monitoring there is a need to widen the group of traditional methods of identification of pollen for faster and more accurate research systems. The aim of the work was the characterization and classification of certain types of plant pollens by using laser optical methods, which were supported by the chemmometrics. Several species of pollen were examined, for which a database of spectral characteristics was created, using LIF, Raman scattering and FTIR methods. Spectral database contains characteristics of both common allergens and pollen of minor importance. Based on registered spectra, statistical analysis was made, which allows the classification of the tested pollen species. For the study of the emission spectra Nd:YAG laser was used with the fourth harmonic generation (266 nm) and GaN diode laser (375 nm). For Raman scattering spectra spectrometer Nicolet IS-50 with a excitation wavelength of 1064 nm was used. The FTIR spectra, recorded in the mid infrared1 range (4000-650 cm-1) were collected with use of transmission mode (KBr pellet), ATR and DRIFT.

  12. Overview of environmental and hydrogeologic conditions at Barrow, Alaska

    USGS Publications Warehouse

    McCarthy, K.A.

    1994-01-01

    To assist the Federal Aviation Administration (FAA) in evaluating the potential effects of environmental contamination at their facility in Barrow, Alaska, a general assessment was made of the hydrologic system is the vicinity of the installation. The City of Barrow is located approximately 16 kilometers southwest of Point Barrow, the northernmost point in Alaska, and therefore lies within the region of continuous permafrost. Migration of surface or shallow- subsurface chemical releases in this environ- ment would be largely restricted by near-surface permafrost to surface water and the upper, suprapermafrost zone of the subsurface. In the arctic climate and tundra terrain of the Barrow area, this shallow environment has a limited capacity to attenuate the effects of either physical disturbances or chemical contamination and is therefore highly susceptible to degradation. Esatkuat Lagoon, the present drink- ing water supply for the City of Barrow, is located approximately 2 kilometers from the FAA facility. This lagoon is the only practical source of drinking water available to the City of Barrow because alternative sources of water in the area are (1) frozen throughout most of the year, (2) insufficient in volume, (3) of poor quality, or (4) too costly to develop and distribute.

  13. Methylglyoxal: An Emerging Signaling Molecule in Plant Abiotic Stress Responses and Tolerance

    PubMed Central

    Hoque, Tahsina S.; Hossain, Mohammad A.; Mostofa, Mohammad G.; Burritt, David J.; Fujita, Masayuki; Tran, Lam-Son P.

    2016-01-01

    The oxygenated short aldehyde methylglyoxal (MG) is produced in plants as a by-product of a number of metabolic reactions, including elimination of phosphate groups from glycolysis intermediates dihydroxyacetone phosphate and glyceraldehyde 3-phosphate. MG is mostly detoxified by the combined actions of the enzymes glyoxalase I and glyoxalase II that together with glutathione make up the glyoxalase system. Under normal growth conditions, basal levels of MG remain low in plants; however, when plants are exposed to abiotic stress, MG can accumulate to much higher levels. Stress-induced MG functions as a toxic molecule, inhibiting different developmental processes, including seed germination, photosynthesis and root growth, whereas MG, at low levels, acts as an important signaling molecule, involved in regulating diverse events, such as cell proliferation and survival, control of the redox status of cells, and many other aspects of general metabolism and cellular homeostases. MG can modulate plant stress responses by regulating stomatal opening and closure, the production of reactive oxygen species, cytosolic calcium ion concentrations, the activation of inward rectifying potassium channels and the expression of many stress-responsive genes. MG appears to play important roles in signal transduction by transmitting and amplifying cellular signals and functions that promote adaptation of plants growing under adverse environmental conditions. Thus, MG is now considered as a potential biochemical marker for plant abiotic stress tolerance, and is receiving considerable attention by the scientific community. In this review, we will summarize recent findings regarding MG metabolism in plants under abiotic stress, and evaluate the concept of MG signaling. In addition, we will demonstrate the importance of giving consideration to MG metabolism and the glyoxalase system, when investigating plant adaptation and responses to various environmental stresses. PMID:27679640

  14. Moose body mass variation revisited: disentangling effects of environmental conditions and genetics.

    PubMed

    Herfindal, Ivar; Haanes, Hallvard; Solberg, Erling J; Røed, Knut H; Høgda, Kjell Arild; Sæther, Bernt-Erik

    2014-02-01

    Large-scale geographical variation in phenotypic traits within species is often correlated to local environmental conditions and population density. Such phenotypic variation has recently been shown to also be influenced by genetic structuring of populations. In ungulates, large-scale geographical variation in phenotypic traits, such as body mass, has been related to environmental conditions and population density, but little is known about the genetic influences. Research on the genetic structure of moose suggests two distinct genetic lineages in Norway, structured along a north-south gradient. This corresponds with many environmental gradients, thus genetic structuring provides an additional factor affecting geographical phenotypic variation in Norwegian moose. We investigated if genetic structure explained geographical variation in body mass in Norwegian moose while accounting for environmental conditions, age and sex, and if it captured some of the variance in body mass that previously was attributed to environmental factors. Genetic structuring of moose was the most important variable in explaining the geographic variation in body mass within age and sex classes. Several environmental variables also had strong explanatory power, related to habitat diversity, environmental seasonality and winter harshness. The results suggest that environmental conditions, landscape characteristics, and genetic structure should be evaluated together when explaining large-scale patterns in phenotypic characters or life history traits. However, to better understand the role of genetic and environmental effects on phenotypic traits in moose, an extended individual-based study of variation in fitness-related characters is needed, preferably in an area of convergence between different genetic lineages.

  15. Transposable Elements Contribute to Activation of Maize Genes in Response to Abiotic Stress

    PubMed Central

    Makarevitch, Irina; Waters, Amanda J.; West, Patrick T.; Stitzer, Michelle; Hirsch, Candice N.; Ross-Ibarra, Jeffrey; Springer, Nathan M.

    2015-01-01

    Transposable elements (TEs) account for a large portion of the genome in many eukaryotic species. Despite their reputation as “junk” DNA or genomic parasites deleterious for the host, TEs have complex interactions with host genes and the potential to contribute to regulatory variation in gene expression. It has been hypothesized that TEs and genes they insert near may be transcriptionally activated in response to stress conditions. The maize genome, with many different types of TEs interspersed with genes, provides an ideal system to study the genome-wide influence of TEs on gene regulation. To analyze the magnitude of the TE effect on gene expression response to environmental changes, we profiled gene and TE transcript levels in maize seedlings exposed to a number of abiotic stresses. Many genes exhibit up- or down-regulation in response to these stress conditions. The analysis of TE families inserted within upstream regions of up-regulated genes revealed that between four and nine different TE families are associated with up-regulated gene expression in each of these stress conditions, affecting up to 20% of the genes up-regulated in response to abiotic stress, and as many as 33% of genes that are only expressed in response to stress. Expression of many of these same TE families also responds to the same stress conditions. The analysis of the stress-induced transcripts and proximity of the transposon to the gene suggests that these TEs may provide local enhancer activities that stimulate stress-responsive gene expression. Our data on allelic variation for insertions of several of these TEs show strong correlation between the presence of TE insertions and stress-responsive up-regulation of gene expression. Our findings suggest that TEs provide an important source of allelic regulatory variation in gene response to abiotic stress in maize. PMID:25569788

  16. Vibration-based structural health monitoring using adaptive statistical method under varying environmental condition

    NASA Astrophysics Data System (ADS)

    Jin, Seung-Seop; Jung, Hyung-Jo

    2014-03-01

    It is well known that the dynamic properties of a structure such as natural frequencies depend not only on damage but also on environmental condition (e.g., temperature). The variation in dynamic characteristics of a structure due to environmental condition may mask damage of the structure. Without taking the change of environmental condition into account, false-positive or false-negative damage diagnosis may occur so that structural health monitoring becomes unreliable. In order to address this problem, an approach to construct a regression model based on structural responses considering environmental factors has been usually used by many researchers. The key to success of this approach is the formulation between the input and output variables of the regression model to take into account the environmental variations. However, it is quite challenging to determine proper environmental variables and measurement locations in advance for fully representing the relationship between the structural responses and the environmental variations. One alternative (i.e., novelty detection) is to remove the variations caused by environmental factors from the structural responses by using multivariate statistical analysis (e.g., principal component analysis (PCA), factor analysis, etc.). The success of this method is deeply depending on the accuracy of the description of normal condition. Generally, there is no prior information on normal condition during data acquisition, so that the normal condition is determined by subjective perspective with human-intervention. The proposed method is a novel adaptive multivariate statistical analysis for monitoring of structural damage detection under environmental change. One advantage of this method is the ability of a generative learning to capture the intrinsic characteristics of the normal condition. The proposed method is tested on numerically simulated data for a range of noise in measurement under environmental variation. A comparative

  17. Abiotic formation of oligonucleotides on basalt surfaces

    NASA Astrophysics Data System (ADS)

    Otroshchenko, V. A.; Vasilyeva, N. V.; Kopilov, A. M.

    1985-06-01

    The complication and further evolution of abiotic syntheses products occurred under environmental influences at the prebiological stage. From this point of view, the influence of some types of irradiation on the organic molecules adsorbed on the surfaces of volcanic rocks, appeared to be of great importance. In this connection, the effect of gamma rays on the AMP molecules adsorbed on mineral surfaces such as cinders and ashes has been studied. It has been shown that they can polymerize with the formation of oligonucleotides. The treatment of oligomers obtained by venom phosphodiesterase has shown that a polymeric product has mainly 3' 5' and 2' 5' bonds between nucleotides. The results obtained have been discussed from the evolutionary aspect.

  18. The stability of collected human scent under various environmental conditions.

    PubMed

    Hudson, Davia T; Curran, Allison M; Furton, Kenneth G

    2009-11-01

    Human scent evidence collected from objects at a crime scene is used for scent discrimination with specially trained canines. Storage of the scent evidence is usually required yet no optimized storage protocol has been determined. Storage containers including glass, polyethylene, and aluminized pouches were evaluated to determine the optimal medium for storing human scent evidence of which glass was determined to be the optimal storage matrix. Hand odor samples were collected on three different sorbent materials, sealed in glass vials and subjected to different storage environments including room temperature, -80 degrees C conditions, dark storage, and UVA/UVB light exposure over a 7-week period. Volatile organic compounds (VOCs) in the headspace of the samples were extracted and identified using solid-phase micro-extraction-gas chromatography/mass spectrometry (SPME-GC/MS). Three-dimensional covariance mapping showed that glass containers subjected to minimal UVA/UVB light exposure provide the most stable environment for stored human scent samples.

  19. Corrosion behavior of carbon steels under tuff repository environmental conditions

    SciTech Connect

    McCright, R.D.; Weiss, H.

    1984-10-01

    Carbon steels may be used for borehole liners in a potential high-level nuclear waste repository in tuff in Nevada. Borehole liners are needed to facilitate emplacement of the waste packages and to facilitate retrieval of the packages, if required. Corrosion rates of low carbon structural steels AISI 1020 and ASTM A-36 were determined in J-13 well water and in saturated steam at 100{sup 0}C. Tests were conducted in air-sparged J-13 water to attain more oxidizing conditions representative of irradiated aqueous environments. A limited number of irradiation corrosion and stress corrosion tests were performed. Chromium-molybdenum alloy steels and cast irons were also tested. These materials showed lower general corrosion but were susceptible to stress corrosion cracking when welded. 4 references, 4 tables.

  20. Environmental Growth Conditions of Trichoderma spp. Affects Indole Acetic Acid Derivatives, Volatile Organic Compounds, and Plant Growth Promotion

    PubMed Central

    Nieto-Jacobo, Maria F.; Steyaert, Johanna M.; Salazar-Badillo, Fatima B.; Nguyen, Dianne Vi; Rostás, Michael; Braithwaite, Mark; De Souza, Jorge T.; Jimenez-Bremont, Juan F.; Ohkura, Mana; Stewart, Alison

    2017-01-01

    Trichoderma species are soil-borne filamentous fungi widely utilized for their many plant health benefits, such as conferring improved growth, disease resistance and abiotic stress tolerance to their hosts. Many Trichoderma species are able to produce the auxin phytohormone indole-3-acetic acid (IAA), and its production has been suggested to promote root growth. Here we show that the production of IAA is strain dependent and diverse external stimuli are associated with its production. In in vitro assays, Arabidopsis primary root length was negatively affected by the interaction with some Trichoderma strains. In soil experiments, a continuum effect on plant growth was shown and this was also strain dependent. In plate assays, some strains of Trichoderma spp. inhibited the expression of the auxin reporter gene DR5 in Arabidopsis primary roots but not secondary roots. When Trichoderma spp. and A. thaliana were physically separated, enhancement of both shoot and root biomass, increased root production and chlorophyll content were observed, which strongly suggested that volatile production by the fungus influenced the parameters analyzed. Trichoderma strains T. virens Gv29.8, T. atroviride IMI206040, T. sp. “atroviride B” LU132, and T. asperellum LU1370 were demonstrated to promote plant growth through volatile production. However, contrasting differences were observed with LU1370 which had a negative effect on plant growth in soil but a positive effect in plate assays. Altogether our results suggest that the mechanisms and molecules involved in plant growth promotion by Trichoderma spp. are multivariable and are affected by the environmental conditions. PMID:28232840

  1. Relationships among fisheries exploitation, environmental conditions, and ecological indicators across a series of marine ecosystems

    NASA Astrophysics Data System (ADS)

    Fu, Caihong; Large, Scott; Knight, Ben; Richardson, Anthony J.; Bundy, Alida; Reygondeau, Gabriel; Boldt, Jennifer; van der Meeren, Gro I.; Torres, Maria A.; Sobrino, Ignacio; Auber, Arnaud; Travers-Trolet, Morgane; Piroddi, Chiara; Diallo, Ibrahima; Jouffre, Didier; Mendes, Hugo; Borges, Maria Fatima; Lynam, Christopher P.; Coll, Marta; Shannon, Lynne J.; Shin, Yunne-Jai

    2015-08-01

    Understanding how external pressures impact ecosystem structure and functioning is essential for ecosystem-based approaches to fisheries management. We quantified the relative effects of fisheries exploitation and environmental conditions on ecological indicators derived from two different data sources, fisheries catch data (catch-based) and fisheries independent survey data (survey-based) for 12 marine ecosystems using a partial least squares path modeling approach (PLS-PM). We linked these ecological indicators to the total biomass of the ecosystem. Although the effects of exploitation and environmental conditions differed across the ecosystems, some general results can be drawn from the comparative approach. Interestingly, the PLS-PM analyses showed that survey-based indicators were less tightly associated with each other than the catch-based ones. The analyses also showed that the effects of environmental conditions on the ecological indicators were predominantly significant, and tended to be negative, suggesting that in the recent period, indicators accounted for changes in environmental conditions and the changes were more likely to be adverse. Total biomass was associated with fisheries exploitation and environmental conditions; however its association with the ecological indicators was weak across the ecosystems. Knowledge of the relative influence of exploitation and environmental pressures on the dynamics within exploited ecosystems will help us to move towards ecosystem-based approaches to fisheries management. PLS-PM proved to be a useful approach to quantify the relative effects of fisheries exploitation and environmental conditions and suggest it could be used more widely in fisheries oceanography.

  2. Abiotic Methane Synthesis: Caveats and New Results

    NASA Astrophysics Data System (ADS)

    Zou, R.; Sharma, A.

    2005-12-01

    The role of mineral interaction with geochemical fluids under hydrothermal conditions has invoked models of geochemical synthesis of organic molecules at deep crustal conditions. Since Thomas Gold's (1992) hypothesis of the possibility of an abiotic organic synthesis, there have been several reports of hydrocarbon formation under high pressure and temperature conditions. Several previous experimental studies have recognized that small amounts of methane (and other light HC compounds) can be synthesized via catalysis by transition metals: Fe, Ni (Horita and Berndt, 1999 Science) and Cr (Foustavous and Seyfried, 2004 Science). In light of these pioneering experiments, an investigation of the feasibility of abiotic methane synthesis at higher pressure conditions in deep geological setting and the possible role of catalysis warrants a closer look. We conducted three sets of experiments in hydrothermal diamond anvil cell using FeO nanopowder, CaCO 3 and water at 300° - 600° C and 0.5 - 5 GPa : (a) with stainless steel gasket, (b) gold-lined gasket, and (c) gold-lined gasket with added Fe and Ni nanopowder. The reactions were monitored in-situ using micro-Raman spectroscopy with 532nm and 632nm lasers. The solids phases were characterized in-situ using synchrotron X-ray diffraction at CHESS-Cornell and quenched products with an electron microprobe. Interestingly, a variable amount of hydrocarbon was observed only in runs with stainless steel gasket and with Fe, Ni nanoparticles. Experiments with gold-lined reactors did not show any hydrocarbon formation. Added high resolution microscopy of the products and their textural relationship within the diamond cell with Raman spectroscopy data show that the hydrocarbon (methane and other light fractions) synthesis is a direct result of transition metal catalysis, rather than wustite - calcium carbonate reaction as recently reported by Scott et al (2004, PNAS). The author will further present new results highlighting abiotic

  3. EVALUATION OF WASTE PACKAGE EXTERNAL ENVIRONMENTAL CONDITION STUDY

    SciTech Connect

    E. N. Lindner and E. F. Dembowski

    1998-07-23

    The U. S. Department of Energy (DOE) is studying Yucca Mountain as the possible site for a permanent underground repository for disposal of spent nuclear fuel (SNF) and other high-level waste (HLW). The emplacement of high-level radioactive waste in Yucca Mountain will release a large amount of heat into the rock above and below the repository. Due to this heat, the rock temperature will rise, and then decrease when the production of decay heat falls below the rate at which heat escapes from the hot zone. In addition to raising the rock temperature, the heat will vaporize water, which will condense in cooler regions. The condensate water may drain back toward the emplacement drifts or it may ''shed'' through the pillars between emplacement drifts. Other effects, such as coupled chemical and mechanical processes, may influence the movement of water above, within, and below the emplacement drifts. This study examined near field environmental parameters that could have an effect on the waste package, including temperature, humidity, seepage rate, pH of seepage, chemistry (dissolved salts/minerals) of seepage, composition of drift atmosphere, colloids, and biota. This report is a Type I analysis performed in support of the development of System Description Documents (SDDs). A Type I analysis is a quantitative or qualitative analysis that may fulfill any of a variety of purposes associated with the Monitored Geologic Repository (MGR), other than providing direct analytical support for design output documents. A Type I analysis may establish design input, as defined in the ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998). This study establishes a technical basis for emplacement drift (i.e. at the waste package surface) environment criteria to be considered in the development of the waste package design. The information will support development of several SDDs and resolve emplacement drift external environment questions in the criteria of those

  4. Plant cell organelle proteomics in response to abiotic stress.

    PubMed

    Hossain, Zahed; Nouri, Mohammad-Zaman; Komatsu, Setsuko

    2012-01-01

    Proteomics is one of the finest molecular techniques extensively being used for the study of protein profiling of a given plant species experiencing stressed conditions. Plants respond to a stress by alteration in the pattern of protein expression, either by up-regulating of the existing protein pool or by the synthesizing novel proteins primarily associated with plants antioxidative defense mechanism. Improved protein extraction protocols and advance techniques for identification of novel proteins have been standardized in different plant species at both cellular and whole plant level for better understanding of abiotic stress sensing and intracellular stress signal transduction mechanisms. In contrast, an in-depth proteome study of subcellular organelles could generate much detail information about the intrinsic mechanism of stress response as it correlates the possible relationship between the protein abundance and plant stress tolerance. Although a wealth of reviews devoted to plant proteomics are available, review articles dedicated to plant cell organelle proteins response under abiotic stress are very scanty. In the present review, an attempt has been made to summarize all significant contributions related to abiotic stresses and their impacts on organelle proteomes for better understanding of plants abiotic stress tolerance mechanism at protein level. This review will not only provide new insights into the plants stress response mechanisms, which are necessary for future development of genetically engineered stress tolerant crop plants for the benefit of humankind, but will also highlight the importance of studying changes in protein abundance within the cell organelles in response to abiotic stress.

  5. Genetic mapping of abiotic stress responses in sorghum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to rich genetic diversity for tolerance to various abiotic stress conditions, sorghum is an ideal system for genetic mapping and elucidation of genome regions that confer such response among cereal crops. Coupled with the development of DNA marker technologies and most recently the sequencing o...

  6. Neglected Buildings, Damaged Health: A "Snapshot" of New York City Public School Environmental Conditions.

    ERIC Educational Resources Information Center

    Advocates for Children of New York, Inc., Long Island City.

    Survey results are presented from 65 parents, students over 12 years, teachers, and other school employees using 39 different schools about environmental conditions in New York City public schools. It shows the results of years of neglect of infrastructure for children and reveals disturbing new information about the environmental health of school…

  7. Using a Physical Education Environmental Survey to Identify Areas of Concern and Improve Conditions

    ERIC Educational Resources Information Center

    Hill, Grant; Hulbert, George

    2007-01-01

    School environmental conditions can impact learning in physical educational classes. It is important for schools to control environmental health hazards, not only to promote a conducive school learning environment, but to also reduce associated health risks. To help physical education leaders determine the quality of physical education facilities…

  8. Environmental Conditions in Northern Gulf of Mexico Estuaries: Before and After the Deepwater Horizon Oil Spill

    EPA Science Inventory

    When conducting an environmental assessment to determine the ecological effects of the Deepwater Horizon (DWH) Oil Spill in the Gulf of Mexico (GOM), baseline environmental data is essential to establish ecosystem condition prior to the incident. EPA’s National Coastal Assessment...

  9. ENVIRONMENTALLY FRIENDLIER ORGANIC TRANSFORMATIONS ON MINERAL SUPPORTS UNDER NON-TRADITIONAL CONDITIONS

    EPA Science Inventory

    Synthetic organic reactions performed under non-traditional conditions are gaining popularity primarily to circumvent the growing environmental concerns. A solvent-free approach that involves microwave (MW) exposure of neat reactants (undiluted) either in presence of a catalyst o...

  10. Environmental Conditions in the Gulf of Mexico during November-December

    DTIC Science & Technology

    1990-10-01

    The purpose of this technical note is to describe some of the environmental conditions in a region of the Gulf of Mexico in which an experiment will take place in November and December 1990. The general area

  11. Abiotic methane formation during experimental serpentinization of olivine.

    PubMed

    McCollom, Thomas M

    2016-12-06

    Fluids circulating through actively serpentinizing systems are often highly enriched in methane (CH4). In many cases, the CH4 in these fluids is thought to derive from abiotic reduction of inorganic carbon, but the conditions under which this process can occur in natural systems remain unclear. In recent years, several studies have reported abiotic formation of CH4 during experimental serpentinization of olivine at temperatures at or below 200 °C. However, these results seem to contradict studies conducted at higher temperatures (300 °C to 400 °C), where substantial kinetic barriers to CH4 synthesis have been observed. Here, the potential for abiotic formation of CH4 from dissolved inorganic carbon during olivine serpentinization is reevaluated in a series of laboratory experiments conducted at 200 °C to 320 °C. A (13)C-labeled inorganic carbon source was used to unambiguously determine the origin of CH4 generated in the experiments. Consistent with previous high-temperature studies, the results indicate that abiotic formation of CH4 from reduction of dissolved inorganic carbon during the experiments is extremely limited, with nearly all of the observed CH4 derived from background sources. The results indicate that the potential for abiotic synthesis of CH4 in low-temperature serpentinizing environments may be much more limited than some recent studies have suggested. However, more extensive production of CH4 was observed in one experiment performed under conditions that allowed an H2-rich vapor phase to form, suggesting that shallow serpentinization environments where a separate gas phase is present may be more favorable for abiotic synthesis of CH4.

  12. Abiotic methane formation during experimental serpentinization of olivine

    NASA Astrophysics Data System (ADS)

    McCollom, Thomas M.

    2016-12-01

    Fluids circulating through actively serpentinizing systems are often highly enriched in methane (CH4). In many cases, the CH4 in these fluids is thought to derive from abiotic reduction of inorganic carbon, but the conditions under which this process can occur in natural systems remain unclear. In recent years, several studies have reported abiotic formation of CH4 during experimental serpentinization of olivine at temperatures at or below 200 °C. However, these results seem to contradict studies conducted at higher temperatures (300 °C to 400 °C), where substantial kinetic barriers to CH4 synthesis have been observed. Here, the potential for abiotic formation of CH4 from dissolved inorganic carbon during olivine serpentinization is reevaluated in a series of laboratory experiments conducted at 200 °C to 320 °C. A 13C-labeled inorganic carbon source was used to unambiguously determine the origin of CH4 generated in the experiments. Consistent with previous high-temperature studies, the results indicate that abiotic formation of CH4 from reduction of dissolved inorganic carbon during the experiments is extremely limited, with nearly all of the observed CH4 derived from background sources. The results indicate that the potential for abiotic synthesis of CH4 in low-temperature serpentinizing environments may be much more limited than some recent studies have suggested. However, more extensive production of CH4 was observed in one experiment performed under conditions that allowed an H2-rich vapor phase to form, suggesting that shallow serpentinization environments where a separate gas phase is present may be more favorable for abiotic synthesis of CH4.

  13. MicroRNA: a new target for improving plant tolerance to abiotic stress

    PubMed Central

    Zhang, Baohong

    2015-01-01

    MicroRNAs (miRNAs) are an extensive class of endogenous, small RNA molecules that sit at the heart of regulating gene expression in multiple developmental and signalling pathways. Recent studies have shown that abiotic stresses induce aberrant expression of many miRNAs, thus suggesting that miRNAs may be a new target for genetically improving plant tolerance to certain stresses. These studies have also shown that miRNAs respond to environmental stresses in a miRNA-, stress-, tissue-, and genotype-dependent manner. During abiotic stress, miRNAs function by regulating target genes within the miRNA–target gene network and by controlling signalling pathways and root development. Generally speaking, stress-induced miRNAs lead to down-regulation of negative regulators of stress tolerance whereas stress-inhibited miRNAs allow the accumulation and function of positive regulators. Currently, the majority of miRNA-based studies have focused on the identification of miRNAs that are responsive to different stress conditions and analysing their expression profile changes during these treatments. This has predominately been accomplished using deep sequencing technologies and other expression analyses, such as quantitative real-time PCR. In the future, more function and expression studies will be necessary in order to elucidate the common miRNA-mediated regulatory mechanisms that underlie tolerance to different abiotic stresses. The use of artificial miRNAs, as well as overexpression and knockout/down of both miRNAs and their targets, will be the best techniques for determining the specific roles of individual miRNAs in response to environmental stresses. PMID:25697792

  14. Cell wall remodeling under abiotic stress

    PubMed Central

    Tenhaken, Raimund

    2015-01-01

    Plants exposed to abiotic stress respond to unfavorable conditions on multiple levels. One challenge under drought stress is to reduce shoot growth while maintaining root growth, a process requiring differential cell wall synthesis and remodeling. Key players in this process are the formation of reactive oxygen species (ROS) and peroxidases, which initially cross-link phenolic compounds and glycoproteins of the cell walls causing stiffening. The function of ROS shifts after having converted all the peroxidase substrates in the cell wall. If ROS-levels remain high during prolonged stress, OH°-radicals are formed which lead to polymer cleavage. In concert with xyloglucan modifying enzymes and expansins, the resulting cell wall loosening allows further growth of stressed organs. PMID:25709610

  15. Wheat proteomics: proteome modulation and abiotic stress acclimation

    PubMed Central

    Komatsu, Setsuko; Kamal, Abu H. M.; Hossain, Zahed

    2014-01-01

    Cellular mechanisms of stress sensing and signaling represent the initial plant responses to adverse conditions. The development of high-throughput “Omics” techniques has initiated a new era of the study of plant molecular strategies for adapting to environmental changes. However, the elucidation of stress adaptation mechanisms in plants requires the accurate isolation and characterization of stress-responsive proteins. Because the functional part of the genome, namely the proteins and their post-translational modifications, are critical for plant stress responses, proteomic studies provide comprehensive information about the fine-tuning of cellular pathways that primarily involved in stress mitigation. This review summarizes the major proteomic findings related to alterations in the wheat proteomic profile in response to abiotic stresses. Moreover, the strengths and weaknesses of different sample preparation techniques, including subcellular protein extraction protocols, are discussed in detail. The continued development of proteomic approaches in combination with rapidly evolving bioinformatics tools and interactive databases will facilitate understanding of the plant mechanisms underlying stress tolerance. PMID:25538718

  16. Effects of Solar Loading and Other Environmental Conditions on Thermographic Imaging of Subsurface Defects in Concrete

    NASA Astrophysics Data System (ADS)

    Washer, G. A.; Fenwick, R. G.; Bolleni, N.; Harper, J.

    2009-03-01

    The detection of subsurface defects in concrete using infrared cameras relies on thermal variations in the ambient environment to provide heat flow. Solar loading can provide significant thermal energy that enables the imaging of subsurface defects. This paper presents results of a study to determine the optimum environmental conditions for conducting thermal inspection of concrete bridges. This study has included continuous monitoring of a large concrete specimen under ambient environmental condition in central Missouri. The thermal contrast of subsurface targets in the specimen has been analyzed to determine the optimum conditions and time for detection of subsurface features as a function of depth. Environmental conditions that result in the largest contrast in surface temperature are discussed.

  17. Parasitism in early life: environmental conditions shape within-brood variation in responses to infection

    PubMed Central

    Granroth-Wilding, Hanna M V; Burthe, Sarah J; Lewis, Sue; Reed, Thomas E; Herborn, Katherine A; Newell, Mark A; Takahashi, Emi A; Daunt, Francis; Cunningham, Emma J A

    2014-01-01

    Parasites play key ecological and evolutionary roles through the costs they impose on their host. In wild populations, the effect of parasitism is likely to vary considerably with environmental conditions, which may affect the availability of resources to hosts for defense. However, the interaction between parasitism and prevailing conditions is rarely quantified. In addition to environmental variation acting on hosts, individuals are likely to vary in their response to parasitism, and the combined effect of both may increase heterogeneity in host responses. Offspring hierarchies, established by parents in response to uncertain rearing conditions, may be an important source of variation between individuals. Here, we use experimental antiparasite treatment across 5 years of variable conditions to test how annual population productivity (a proxy for environmental conditions) and parasitism interact to affect growth and survival of different brood members in juvenile European shags (Phalacrocorax aristotelis). In control broods, last-hatched chicks had more plastic growth rates, growing faster in more productive years. Older siblings grew at a similar rate in all years. Treatment removed the effect of environment on last-hatched chicks, such that all siblings in treated broods grew at a similar rate across environmental conditions. There were no differences in nematode burden between years or siblings, suggesting that variation in responses arose from intrinsic differences between chicks. Whole-brood growth rate was not affected by treatment, indicating that within-brood differences were driven by a change in resource allocation between siblings rather than a change in overall parental provisioning. We show that gastrointestinal parasites can be a key component of offspring's developmental environment. Our results also demonstrate the value of considering prevailing conditions for our understanding of parasite effects on host life-history traits. Establishing how

  18. Impact of the environmental conditions and substrate pre-treatment on whey protein hydrolysis: A review.

    PubMed

    Cheison, Seronei Chelulei; Kulozik, Ulrich

    2017-01-22

    Proteins in solution are subject to myriad forces stemming from interactions with each other as well as with the solvent media. The role of the environmental conditions, namely pH, temperature, ionic strength remains under-estimated yet it impacts protein conformations and consequently its interaction with, and susceptibility to, the enzyme. Enzymes, being proteins are also amenable to the environmental conditions because they are either activated or denatured depending on the choice of the conditions. Furthermore, enzyme specificity is restricted to a narrow regime of optimal conditions while opportunities outside the optimum conditions remain untapped. In addition, the composition of protein substrate (whether mixed or single purified) have been underestimated in previous studies. In addition, protein pre-treatment methods like heat denaturation prior to hydrolysis is a complex phenomenon whose progression is influenced by the environmental conditions including the presence or absence of sugars like lactose, ionic strength, purity of the protein, and the molecular structure of the mixed proteins particularly presence of free thiol groups. In this review, we revisit protein hydrolysis with a focus on the impact of the hydrolysis environment and show that preference of peptide bonds and/or one protein over another during hydrolysis is driven by the environmental conditions. Likewise, heat-denaturing is a process which is dependent on not only the environment but the presence or absence of other proteins.

  19. Characterizing the environmental conditions and estimating aboveground biomass productivity for switchgrass in the Great Plains, USA

    NASA Astrophysics Data System (ADS)

    Gu, Y.; Wylie, B. K.; Howard, D. M.

    2013-12-01

    Switchgrass is being evaluated as a potential feedstock source for cellulosic biofuels and is being cultivated in several regions of the United States. The recent availability of switchgrass land cover maps derived from the National Agricultural Statistics Service cropland data layer for the conterminous United States provides an opportunity to assess the environmental conditions of switchgrass over large areas and across different geographic locations. The main goal of this study is to investigate the relationship between site environmental conditions and switchgrass productivity and identify the optimal conditions for productive switchgrass in the Great Plains (GP). Environmental and climate variables such as elevation, soil organic carbon, available water capacity, climate, and seasonal weather were used in this study. Satellite-derived growing season averaged Normalized Difference Vegetation Index was used as a proxy for switchgrass productivity. The environmental conditions for switchgrass sites of variable productivity were summarized and a data-driven multiple regression switchgrass productivity model was developed. Results show that spring precipitation has the strongest correlation with switchgrass productivity (r = 0.92, 176 samples) and spring minimum temperature has the weakest correlation with switchgrass productivity (r = 0.16). An estimated switchgrass productivity map for the entire GP based on site environmental and climate conditions was generated. The estimated switchgrass biomass productivity map indicates that highly productive switchgrass areas are mainly located in the eastern part of the GP. Results from this study provide useful information for assessing economic feasibility or optimal land use decisions regarding switchgrass development in the GP.

  20. Protein Tyrosine Nitration during Development and Abiotic Stress Response in Plants

    PubMed Central

    Mata-Pérez, Capilla; Begara-Morales, Juan C.; Chaki, Mounira; Sánchez-Calvo, Beatriz; Valderrama, Raquel; Padilla, María N.; Corpas, Francisco J.; Barroso, Juan B.

    2016-01-01

    In recent years, the study of nitric oxide (NO) in plant systems has attracted the attention of many researchers. A growing number of investigations have shown the significance of NO as a signal molecule or as a molecule involved in the response against (a)biotic processes. NO can be responsible of the post-translational modifications (NO-PTM) of target proteins by mechanisms such as the nitration of tyrosine residues. The study of protein tyrosine nitration during development and under biotic and adverse environmental conditions has increased in the last decade; nevertheless, there is also an endogenous nitration which seems to have regulatory functions. Moreover, the advance in proteome techniques has enabled the identification of new nitrated proteins, showing the high variability among plant organs, development stage and species. Finally, it may be important to discern between a widespread protein nitration because of greater RNS content, and the specific nitration of key targets which could affect cell-signaling processes. In view of the above point, we present a mini-review that offers an update about the endogenous protein tyrosine nitration, during plant development and under several abiotic stress conditions. PMID:27895655

  1. Vertical and temporal variation in phytoplankton assemblages correlated with environmental conditions in the Mundaú reservoir, semi-arid northeastern Brazil.

    PubMed

    Lira, G A S T; Moura, A N; Vilar, M C P; Cordeiro-Araújo, M K; Bittencourt-Oliveira, M C

    2014-08-01

    The goal of this study was to analyse the vertical structure of the phytoplankton community at the Mundaú reservoir, located in the semi-arid region of northeastern Brazil, and to correlate it to environmental conditions over two distinct seasons, dry and rainy. Samples were collected bimonthly at eight depths in the dry and rainy season for analyses of the physical and chemical variables of the water, as well as density, abundance, dominance, species diversity index and equitability of the community. Analysis of variance (ANOVA-two way) was used to analyse the vertical and seasonal differences, and Canonical Correspondence Analysis (CCA) was used to assess associations between phytoplankton and environmental variables Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Raju was the only dominant species and Geitlerinema amphibium (C. Agardh) Anagnostidis, Merismopedia punctata Meyen and Synedra rumpens Kützing. Others six taxa were abundant in at least one of the samples. Distinct vertical distribution patterns were observed for the abundant taxa between depths and seasons. The cyanobacteria, with the exception of C. raciborskii, showed similar seasonal patterns, with higher densities in the dry season. The CCA showed a strong correlation between the density of the phytoplanktonic species and abiotic variables. The vertical changes in abundant taxa revealed distinct patterns regulated by the variation in the environmental factors that were directly linked to seasonality, with the success of one or more species being dependent on their life strategies and ecological needs. The present study restates the importance of environmental and seasonal factors for phytoplankton composition and distribution in a freshwater tropical reservoir through a vertical gradient.

  2. The study of minerals under simulated planetary conditions: Experiments of hydrated sulphates at environmental conditions of martian surface

    NASA Astrophysics Data System (ADS)

    Prieto-Ballesteros, O.; Mateo-Martí, E.; Fernández-Remolar, D.

    2007-08-01

    Minerals on planetary surfaces are usually identified comparing remote infrared spectral data to laboratory mineral databases obtained under terrestrial conditions. However, environmental conditions at other planetary surfaces could produce alterations on the standard mineral spectra. Spectroscopic signals of hydrated magnesium, calcium and hydroxlated iron sulphates have been recently detected on surface of Mars. Some experiments using environmental conditions at the martian surface (temperature and pressure ranges; atmospheric composition, including water vapor content; and ultraviolet radiation) of different sulphates have been performed in order to both, constrain the stability of the hydrated phases and detect any possible modification in their spectra. Experiments have been done in a simulation chamber located in Centro de Astrobiologia, Madrid. The equipment has been developed for a wide range of simulation conditions, including a range of irradiation sources, and the implementation of analytical techniques, including IR and UV spectroscopy and mass spectrometry. The equipment consists of a main vacuum chamber with dimensions of 50 cm long x 40 cm diameter, a second internal chamber connected by differential pumping with the main one, and a third side chamber for the gases analysis using a mass spectrometer. Chambers pressures are monitorized by different pirani-penning gauges. A liquid nitrogen cooling system is connected to the sample holder, and a gas system allows the mixing of gases and water.

  3. Space and Time Scale Characterization of Image Data in Varying Environmental Conditions for Better Scene Understanding

    DTIC Science & Technology

    2015-09-01

    field of view, depth of view, image resolution, pixel size, pixel separation, color matrix size, scene color or shading variations as a function of...environmental and weather conditions, the field of view, depth of view, and image resolution, as noted above. Table 2 provides a list of several space...field of view, and depth of view. Together with the environmental effects, these data can be used as a basic building block for the analysis of

  4. Integrating omic approaches for abiotic stress tolerance in soybean

    PubMed Central

    Deshmukh, Rupesh; Sonah, Humira; Patil, Gunvant; Chen, Wei; Prince, Silvas; Mutava, Raymond; Vuong, Tri; Valliyodan, Babu; Nguyen, Henry T.

    2014-01-01

    Soybean production is greatly influenced by abiotic stresses imposed by environmental factors such as drought, water submergence, salt, and heavy metals. A thorough understanding of plant response to abiotic stress at the molecular level is a prerequisite for its effective management. The molecular mechanism of stress tolerance is complex and requires information at the omic level to understand it effectively. In this regard, enormous progress has been made in the omics field in the areas of genomics, transcriptomics, and proteomics. The emerging field of ionomics is also being employed for investigating abiotic stress tolerance in soybean. Omic approaches generate a huge amount of data, and adequate advancements in computational tools have been achieved for effective analysis. However, the integration of omic-scale information to address complex genetics and physiological questions is still a challenge. In this review, we have described advances in omic tools in the view of conventional and modern approaches being used to dissect abiotic stress tolerance in soybean. Emphasis was given to approaches such as quantitative trait loci (QTL) mapping, genome-wide association studies (GWAS), and genomic selection (GS). Comparative genomics and candidate gene approaches are also discussed considering identification of potential genomic loci, genes, and biochemical pathways involved in stress tolerance mechanism in soybean. This review also provides a comprehensive catalog of available online omic resources for soybean and its effective utilization. We have also addressed the significance of phenomics in the integrated approaches and recognized high-throughput multi-dimensional phenotyping as a major limiting factor for the improvement of abiotic stress tolerance in soybean. PMID:24917870

  5. Photodegradation behaviour of sethoxydim and its comercial formulation Poast(®) under environmentally-relevant conditions in aqueous media. Study of photoproducts and their toxicity.

    PubMed

    Sevilla-Morán, Beatriz; Calvo, Luisa; López-Goti, Carmen; Alonso-Prados, José L; Sandín-España, Pilar

    2017-02-01

    Photolysis is an important route for the abiotic degradation of many pesticides. However, the knowledge of the photolytic behaviour of these compounds and their commercial formulations under environmentally-relevant conditions are limited. The present study investigated the importance of photochemical processes on the persistence and fate of the herbicide sethoxydim and its commercial formulation Poast(®) in aqueous media. Moreover, the effect of important natural water substances (nitrate, calcium, and ferric ions) on the photolysis of the herbicide was also studied. The results showed that additives existing in the commercial formulation Poast(®) accelerated the rate of photolysis of sethoxydim by a factor of 3. On the contrary, the presence of nitrate and calcium ions had no effect on the photodegradation rate while ferric ions resulted in an important decrease in the half-life of sethoxydim possibly due to the formation of a complex. Different transformation products were identified in the course of sethoxydim irradiation and the effect of experimental conditions on their concentrations was investigated. Finally, Microtox(®) test revealed that aqueous solutions of sethoxydim photoproducts increased the toxicity to the bacteria Vibrio fischeri.

  6. Abiotic stress in crops: candidate genes, osmolytes, polyamines and biotechnological intervention

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural production and quality are adversely affected by various abiotic stresses including water deficit conditions (drought), salinity, extreme temperatures (heat, cold), light intensities beyond those saturating for photosynthesis and radiation (UVB,C). This is exacerbated when such exposure...

  7. Transgenic expression of the Trichoderma harzianum hsp70 gene increases Arabidopsis resistance to heat and other abiotic stresses.

    PubMed

    Montero-Barrientos, Marta; Hermosa, Rosa; Cardoza, Rosa E; Gutiérrez, Santiago; Nicolás, Carlos; Monte, Enrique

    2010-05-15

    The ability of some Trichoderma strains, a biological control agent, to overcome extreme environmental conditions has previously been reported and related to heat-shock proteins (HSPs). These proteins are induced environmentally and are involved in important processes, acting as molecular chaperones in all organisms. In a previous study, we demonstrated, by overexpression, that the Trichoderma harzianum hsp70 gene conferred tolerance to heat and other abiotic stresses to this fungus. In this work, we investigate the function of the T. harzianum T34 hsp70 gene in Arabidopsis thaliana. We analyze transgenic plant responses under adverse environmental conditions and the expression levels of a set of seven stress genes, using quantitative RT-PCR. As expected, transgenic plants expressing the T. harzianum hsp70 gene exhibited enhanced tolerance to heat stress. In addition, they did not show growth inhibition and, after heat pre-treatment, transgenic seedlings were more tolerant to osmotic, salt and oxidative stresses with respect to the wild-type behavior. Transgenic lines also had increased transcript levels of the Na(+)/H(+) exchanger 1 (SOS1) and ascorbate peroxidase 1 (APX1) genes, involved in salt and oxidative stress responses, respectively. However, the heat-shock factor (HSF) and four HSP genes tested were down-regulated in 35S:hsp70 plants. Overall, our results indicate that hsp70 confers tolerance to heat and other abiotic stresses and that the fungal HSP70 protein acts as a negative regulator of the HSF transcriptional activity in Arabidopsis.

  8. Dependence of RNA:DNA ratios and Fulton’s K condition indices on environmental characteristics of plaice and dab nursery grounds

    NASA Astrophysics Data System (ADS)

    De Raedemaecker, F.; Brophy, D.; O'Connor, I.; O'Neill, B.

    2012-02-01

    This field study showed a lack of a correlation between a morphometric (Fulton's K) and biochemical (RNA:DNA ratio) condition index in juvenile plaice ( Pleuronectes platessa) and dab ( Limanda limanda) studied to assess habitat quality in four sandy beach nursery grounds in Galway Bay, Ireland. Based on monthly surveys from June to September in 2008 and 2009, fish growth, indicated by RNA:DNA ratios and Fulton's K, displayed considerable spatio-temporal variability. Site-related patterns in Fulton's K for plaice and dab were consistent between years whereas RNA:DNA ratios displayed annual and interspecific variability among nursery habitats. This indicates a higher sensitivity of RNA:DNA ratios to short-term environmental fluctuations which is not apparent in Fulton's K measurements of juvenile flatfish. Generalized Additive Modelling (GAM) revealed non-linear relationships between the condition indices and (biotic and abiotic) habitat characteristics as well as diet features, derived from gut content analyses. Density of predators, sediment grain size and salinity were the most important predictors of both condition indices. Temperature also affected condition indices in dab whereas plaice condition indices varied with depth. Diet features did not contribute to the explained variability in the models predicting RNA:DNA ratios whereas certain prey groups significantly improved the explained variability in the models predicting Fulton's K of plaice and dab. The value of both indices for assessing fish condition and habitat quality in field studies is discussed. These findings aid understanding of the biological and physical mechanisms promoting fast growth and high survival which will help to identify high quality nursery areas for juvenile plaice and dab.

  9. Environmental conditions modulate neurotoxic effects of psychomotor stimulant drugs of abuse.

    PubMed

    Kiyatkin, Eugene A; Sharma, Hari Shanker

    2012-01-01

    Psychomotor stimulants such as methamphetamine (METH), amphetamine, and 3,4-metylenedioxymethamphetamine (MDMA or ecstasy) are potent addictive drugs. While it is known that their abuse could result in adverse health complications, including neurotoxicity, both the environmental conditions and activity states associated with their intake could strongly enhance drug toxicity, often resulting in life-threatening health complications. In this review, we analyze results of animal experiments that suggest that even moderate increases in environmental temperatures and physiological activation, the conditions typical of human raves parties, dramatically potentiate brain hyperthermic effects of METH and MDMA. We demonstrate that METH also induces breakdown of the blood-brain barrier, acute glial activation, brain edema, and structural abnormalities of various subtypes of brain cells; these effects are also strongly enhanced when the drug is used at moderately warm environmental conditions. We consider the mechanisms underlying environmental modulation of acute drug neurotoxicity and focus on the role of brain temperature, a critical homeostatic parameter that could be affected by metabolism-enhancing drugs and environmental conditions and affect neural activity and functions.

  10. Abiotic Organic Chemistry in Hydrothermal Systems.

    NASA Astrophysics Data System (ADS)

    Simoneit, B. R.; Rushdi, A. I.

    2004-12-01

    Abiotic organic chemistry in hydrothermal systems is of interest to biologists, geochemists and oceanographers. This chemistry consists of thermal alteration of organic matter and minor prebiotic synthesis of organic compounds. Thermal alteration has been extensively documented to yield petroleum and heavy bitumen products from contemporary organic detritus. Carbon dioxide, carbon monoxide, ammonia and sulfur species have been used as precursors in prebiotic synthesis experiments to organic compounds. These inorganic species are common components of hot spring gases and marine hydrothermal systems. It is of interest to further test their reactivities in reductive aqueous thermolysis. We have synthesized organic compounds (lipids) in aqueous solutions of oxalic acid, and with carbon disulfide or ammonium bicarbonate at temperatures from 175-400° C. The synthetic lipids from oxalic acid solutions consisted of n-alkanols, n-alkanoic acids, n-alkyl formates, n-alkanones, n-alkenes and n-alkanes, typically to C30 with no carbon number preferences. The products from CS2 in acidic aqueous solutions yielded cyclic thioalkanes, alkyl polysulfides, and thioesters with other numerous minor compounds. The synthesis products from oxalic acid and ammonium bicarbonate solutions were homologous series of n-alkyl amides, n-alkyl amines, n-alkanes and n-alkanoic acids, also to C30 with no carbon number predominance. Condensation (dehydration) reactions also occur under elevated temperatures in aqueous medium as tested by model reactions to form amide, ester and nitrile bonds. It is concluded that the abiotic formation of aliphatic lipids, condensation products (amides, esters, nitriles, and CS2 derivatives (alkyl polysulfides, cyclic polysulfides) is possible under hydrothermal conditions and warrants further studies.

  11. Abiotic stress-induced oscillations in steady-state transcript levels of Group 3 LEA protein genes in the moss, Physcomitrella patens.

    PubMed

    Shinde, Suhas; Shinde, Rupali; Downey, Frances; Ng, Carl K-Y

    2013-01-01

    The moss, Physcomitrella patens is a non-seed land plant belonging to early diverging lineages of land plants following colonization of land in the Ordovician period in Earth's history. Evidence suggests that mosses can be highly tolerant of abiotic stress. We showed previously that dehydration stress and abscisic acid treatments induced oscillations in steady-state levels of LEA (Late Embryogenesis Abundant) protein transcripts, and that removal of ABA resulted in rapid attenuation of oscillatory increases in transcript levels. Here, we show that other abiotic stresses like salt and osmotic stresses also induced oscillations in steady-state transcript levels and that the amplitudes of the oscillatory increases in steady-state transcript levels are reflective of the severity of the abiotic stress treatment. Together, our results suggest that oscillatory increases in transcript levels in response to abiotic stresses may be a general phenomenon in P. patens and that temporally dynamic increases in steady-state transcript levels may be important for adaptation to life in constantly fluctuating environmental conditions.

  12. Environmental Condition and its Impact on Landscape Description by Salient Element

    NASA Astrophysics Data System (ADS)

    Soleimani, S.; Malek, M. R.; Soleimani, Z.; Arabsheibani, R.

    2015-12-01

    Describing a landscape means making link between concepts of visible features and people's perception. Most landscape description methods underline salient entities which are a key trigger for wayfinding problems and tourism management. Searching for a better understanding of landscape descriptions implies to explore and identify the main visual properties that differentiate between landscapes depending on both human cognition and environmental condition. Furthermore, this environmental condition affects the credibility of data produced by people, particularly when using Volunteered Geographical Information systems which brings forward a huge amount of information. Then this paper proposes an approach to emerge patterns by which describing landscape in general and choosing salient objects in particular have been influenced.

  13. Reference genes for high-throughput quantitative reverse transcription-PCR analysis of gene expression in organs and tissues of Eucalyptus grown in various environmental conditions.

    PubMed

    Cassan-Wang, Hua; Soler, Marçal; Yu, Hong; Camargo, Eduardo Leal O; Carocha, Victor; Ladouce, Nathalie; Savelli, Bruno; Paiva, Jorge A P; Leplé, Jean-Charles; Grima-Pettenati, Jacqueline

    2012-12-01

    Interest in the genomics of Eucalyptus has skyrocketed thanks to the recent sequencing of the genome of Eucalyptus grandis and to a growing number of large-scale transcriptomic studies. Quantitative reverse transcription-PCR (RT-PCR) is the method of choice for gene expression analysis and can now also be used as a high-throughput method. The selection of appropriate internal controls is becoming of utmost importance to ensure accurate expression results in Eucalyptus. To this end, we selected 21 candidate reference genes and used high-throughput microfluidic dynamic arrays to assess their expression among a large panel of developmental and environmental conditions with a special focus on wood-forming tissues. We analyzed the expression stability of these genes by using three distinct statistical algorithms (geNorm, NormFinder and ΔCt), and used principal component analysis to compare methods and rankings. We showed that the most stable genes identified depended not only on the panel of biological samples considered but also on the statistical method used. We then developed a comprehensive integration of the rankings generated by the three methods and identified the optimal reference genes for 17 distinct experimental sets covering 13 organs and tissues, as well as various developmental and environmental conditions. The expression patterns of Eucalyptus master genes EgMYB1 and EgMYB2 experimentally validated our selection. Our findings provide an important resource for the selection of appropriate reference genes for accurate and reliable normalization of gene expression data in the organs and tissues of Eucalyptus trees grown in a range of conditions including abiotic stresses.

  14. Resistance of Microorganisms to Extreme Environmental Conditions and Its Contribution to Astrobiology

    NASA Astrophysics Data System (ADS)

    Rampelotto, Pabulo Henrique

    2010-06-01

    In the last decades, substantial changes have occurred regarding what scientists consider the limits of habitable environmental conditions. For every extreme environmental condition investigated, a variety of microorganisms have shown that not only can they tolerate these conditions, but that they also often require these extreme conditions for survival. Microbes can return to life even after hundreds of millions of years. Furthermore, a variety of studies demonstrate that microorganisms can survive under extreme conditions, such as ultracentrifugation, hypervelocity, shock pressure, high temperature variations, vacuums, and different ultraviolet and ionizing radiation intensities, which simulate the conditions that microbes could experience during the ejection from one planet, the journey through space, as well as the impact in another planet. With these discoveries, our knowledge about the biosphere has grown and the putative boundaries of life have expanded. The present work examines the recent discoveries and the principal advances concerning the resistance of microorganisms to extreme environmental conditions, and analyzes its contributions to the development of the main themes of astrobiology: the origins of life, the search for extraterrestrial life, and the dispersion of life in the Universe.

  15. A PROBABILISTIC ASSESSMENT OF BENTHIC CONDITION OF CALIFORNIA ESTUARIES: RESULTS FROM THE NATIONAL COASTAL ASSESSMENT 1999

    EPA Science Inventory

    As part of the National Coastal Assessment, the Environmental Monitoring and Assessment Program of EPA is conducting a three year evaluation of benthic habitat condition of California estuaries. In 1999, probabilistic sampling for a variety of biotic and abiotic condition indica...

  16. Hormone balance and abiotic stress tolerance in crop plants.

    PubMed

    Peleg, Zvi; Blumwald, Eduardo

    2011-06-01

    Plant hormones play central roles in the ability of plants to adapt to changing environments, by mediating growth, development, nutrient allocation, and source/sink transitions. Although ABA is the most studied stress-responsive hormone, the role of cytokinins, brassinosteroids, and auxins during environmental stress is emerging. Recent evidence indicated that plant hormones are involved in multiple processes. Cross-talk between the different plant hormones results in synergetic or antagonic interactions that play crucial roles in response of plants to abiotic stress. The characterization of the molecular mechanisms regulating hormone synthesis, signaling, and action are facilitating the modification of hormone biosynthetic pathways for the generation of transgenic crop plants with enhanced abiotic stress tolerance.

  17. SUMO, a heavyweight player in plant abiotic stress responses.

    PubMed

    Castro, Pedro Humberto; Tavares, Rui Manuel; Bejarano, Eduardo R; Azevedo, Herlânder

    2012-10-01

    Protein post-translational modifications diversify the proteome and install new regulatory levels that are crucial for the maintenance of cellular homeostasis. Over the last decade, the ubiquitin-like modifying peptide small ubiquitin-like modifier (SUMO) has been shown to regulate various nuclear processes, including transcriptional control. In plants, the sumoylation pathway has been significantly implicated in the response to environmental stimuli, including heat, cold, drought, and salt stresses, modulation of abscisic acid and other hormones, and nutrient homeostasis. This review focuses on the emerging importance of SUMO in the abiotic stress response, summarizing the molecular implications of sumoylation and emphasizing how high-throughput approaches aimed at identifying the full set of SUMO targets will greatly enhance our understanding of the SUMO-abiotic stress association.

  18. Arbuscular mycorrhizal fungal responses to abiotic stresses: A review.

    PubMed

    Lenoir, Ingrid; Fontaine, Joël; Lounès-Hadj Sahraoui, Anissa

    2016-03-01

    The majority of plants live in close collaboration with a diversity of soil organisms among which arbuscular mycorrhizal fungi (AMF) play an essential role. Mycorrhizal symbioses contribute to plant growth and plant protection against various environmental stresses. Whereas the resistance mechanisms induced in mycorrhizal plants after exposure to abiotic stresses, such as drought, salinity and pollution, are well documented, the knowledge about the stress tolerance mechanisms implemented by the AMF themselves is limited. This review provides an overview of the impacts of various abiotic stresses (pollution, salinity, drought, extreme temperatures, CO2, calcareous, acidity) on biodiversity, abundance and development of AMF and examines the morphological, biochemical and molecular mechanisms implemented by AMF to survive in the presence of these stresses.

  19. Plant Survival in a Changing Environment: The Role of Nitric Oxide in Plant Responses to Abiotic Stress

    PubMed Central

    Simontacchi, Marcela; Galatro, Andrea; Ramos-Artuso, Facundo; Santa-María, Guillermo E.

    2015-01-01

    Nitric oxide in plants may originate endogenously or come from surrounding atmosphere and soil. Interestingly, this gaseous free radical is far from having a constant level and varies greatly among tissues depending on a given plant’s ontogeny and environmental fluctuations. Proper plant growth, vegetative development, and reproduction require the integration of plant hormonal activity with the antioxidant network, as well as the maintenance of concentration of reactive oxygen and nitrogen species within a narrow range. Plants are frequently faced with abiotic stress conditions such as low nutrient availability, salinity, drought, high ultraviolet (UV) radiation and extreme temperatures, which can influence developmental processes and lead to growth restriction making adaptive responses the plant’s priority. The ability of plants to respond and survive under environmental-stress conditions involves sensing and signaling events where nitric oxide becomes a critical component mediating hormonal actions, interacting with reactive oxygen species, and modulating gene expression and protein activity. This review focuses on the current knowledge of the role of nitric oxide in adaptive plant responses to some specific abiotic stress conditions, particularly low mineral nutrient supply, drought, salinity and high UV-B radiation. PMID:26617619

  20. Effects of biotic and abiotic factors on phenotypic partitioning of wing morphology and development in Sclerodermus pupariae (Hymenoptera: Bethylidae).

    PubMed

    Wang, Xiaoyi; Wei, Ke; Yang, Zhongqi; Jennings, David E; Duan, Jian J

    2016-05-19

    Wing phenotype polymorphism is commonly observed in insects, yet little is known about the influence of environmental cues on the development or expression of the alternative phenotypes. Here, we report how both biotic and abiotic factors affect the wing morph differentiation of a bethylid parasitoid Sclerodermus pupariae. The percentage of winged female parasitoid progeny increased exponentially with temperature between 20 °C to 30 °C. Low intensity light and short-day photoperiod conditions also significantly induced the development of winged morphs. Interestingly, wingless maternal parasitoids produced more winged progeny. Furthermore, the degree of wing dimorphism was significantly influenced by the interactions between light intensity and maternal wing morphs. The percentage of winged female progeny was not significantly influenced by foundress densities, but increased significantly with parasitoid brood sizes. However, the percentage of male progeny increased significantly with the densities of maternal parasitoids. Our findings highlight the phenotypic partitioning of wing morphology and development in the parasitoid S. pupariae under varied environmental cues, and reveal the most favourable conditions for the production of winged females in this bethylid wasp. It is thus possible to increase winged female parasitoid production for the purposes of biological control by manipulation of biotic and abiotic conditions.

  1. Plant Survival in a Changing Environment: The Role of Nitric Oxide in Plant Responses to Abiotic Stress.

    PubMed

    Simontacchi, Marcela; Galatro, Andrea; Ramos-Artuso, Facundo; Santa-María, Guillermo E

    2015-01-01

    Nitric oxide in plants may originate endogenously or come from surrounding atmosphere and soil. Interestingly, this gaseous free radical is far from having a constant level and varies greatly among tissues depending on a given plant's ontogeny and environmental fluctuations. Proper plant growth, vegetative development, and reproduction require the integration of plant hormonal activity with the antioxidant network, as well as the maintenance of concentration of reactive oxygen and nitrogen species within a narrow range. Plants are frequently faced with abiotic stress conditions such as low nutrient availability, salinity, drought, high ultraviolet (UV) radiation and extreme temperatures, which can influence developmental processes and lead to growth restriction making adaptive responses the plant's priority. The ability of plants to respond and survive under environmental-stress conditions involves sensing and signaling events where nitric oxide becomes a critical component mediating hormonal actions, interacting with reactive oxygen species, and modulating gene expression and protein activity. This review focuses on the current knowledge of the role of nitric oxide in adaptive plant responses to some specific abiotic stress conditions, particularly low mineral nutrient supply, drought, salinity and high UV-B radiation.

  2. Effects of biotic and abiotic factors on phenotypic partitioning of wing morphology and development in Sclerodermus pupariae (Hymenoptera: Bethylidae)

    PubMed Central

    Wang, Xiaoyi; Wei, Ke; Yang, Zhongqi; Jennings, David E.; Duan, Jian J.

    2016-01-01

    Wing phenotype polymorphism is commonly observed in insects, yet little is known about the influence of environmental cues on the development or expression of the alternative phenotypes. Here, we report how both biotic and abiotic factors affect the wing morph differentiation of a bethylid parasitoid Sclerodermus pupariae. The percentage of winged female parasitoid progeny increased exponentially with temperature between 20 °C to 30 °C. Low intensity light and short-day photoperiod conditions also significantly induced the development of winged morphs. Interestingly, wingless maternal parasitoids produced more winged progeny. Furthermore, the degree of wing dimorphism was significantly influenced by the interactions between light intensity and maternal wing morphs. The percentage of winged female progeny was not significantly influenced by foundress densities, but increased significantly with parasitoid brood sizes. However, the percentage of male progeny increased significantly with the densities of maternal parasitoids. Our findings highlight the phenotypic partitioning of wing morphology and development in the parasitoid S. pupariae under varied environmental cues, and reveal the most favourable conditions for the production of winged females in this bethylid wasp. It is thus possible to increase winged female parasitoid production for the purposes of biological control by manipulation of biotic and abiotic conditions. PMID:27194095

  3. Effects of diverse environmental conditions on {phi}LC3 prophage stability in Lactococcus lactis.

    PubMed

    Lunde, Merete; Aastveit, Are Halvor; Blatny, Janet Martha; Nes, Ingolf F

    2005-02-01

    The effects of various growth conditions on spontaneous phiLC3 prophage induction in Lactococcus lactis subsp. cremoris IMN-C1814 was analyzed with a half fraction of a 4(4) factorial experimental design. The four factors included in the study were nutrient availability, acidity, osmolarity, and temperature, each applied at four levels. These environmental factors are related to the fermentation processes in the dairy industry, in which bacteriophage attacks on sensitive starter strains are a constant threat to successful fermentation processes. The frequency of spontaneous phiLC3 induction was determined by quantitative analyses of restored DNA attachment sites (attB) on the bacterial chromosomes in a population of lysogenic cells. Statistical analysis revealed that all four environmental factors tested affected phiLC3 prophage stability and that the environmental factors were involved in interactions (interactions exist when the effect of one factor depends on the level of another factor). The spontaneous phiLC3 induction frequency varied from 0.08 to 1.76%. In general, the induction frequency remained at the same rate or decreased when level 1 to 3 of the four environmental factors was applied. At level 4, which generally gave the least favorable growth conditions, the induction frequency was either unchanged, decreased, or increased, depending on the type of stress. It appeared that the spontaneous induction frequency was independent of the growth behavior of the host. It was the environmental growth conditions that were the decisive factor in induction frequency.

  4. Responses of Organic Phosphorus Fractionation to Environmental Conditions and Lake Evolution.

    PubMed

    Lü, Changwei; Wang, Bing; He, Jiang; Vogt, Rolf D; Zhou, Bin; Guan, Rui; Zuo, Le; Wang, Weiying; Xie, Zhilei; Wang, Jinghua; Yan, Daohao

    2016-05-17

    Geochemical fractionation is used to assess the significance of environmental factors on organic phosphorus (OP) pools in sediments. Labile, moderately labile, and nonlabile OP pools in the sediments from Lake Hulun, Inner Mongolia, were fractionated, and their responses to environmental conditions and lake evolution were investigated based on the spatial and vertical distribution of OP fractionations. In light of the recalcitrant characteristics of organic matter (OM) in different environmental conditions, the pH presents significant negative effects on the amount of labile OP, while water depth shows an important role in regulating the distribution between the moderately labile and nonlabile OP pools. A latitudinal zonation in the distribution of OP pools in surface sediments from different lakes was apparent with this zonation likely linked to the gradient effects of climate and anthropogenic activities on OM decomposition and thereby on the sediments capacity to hold phosphorus. These results show that OM plays a role in governing the impacts of weather and environmental factors on OP fractionation in aquatic environments. This work suggests that OP pools in the sediment core could be used as an archive for environmental conditions and lake evolution.

  5. Environmental Transmission Electron Microscopy Study of Diesel Carbon Soot Combustion under Simulated Catalytic-Reaction Conditions.

    PubMed

    Mori, Kohsuke; Watanabe, Keitaro; Sato, Takeshi; Yamashita, Hiromi

    2015-05-18

    Environmental transmission electron microscopy (ETEM) is used to monitor the catalytic combustion of diesel carbon soot upon exposure to molecular oxygen at elevated temperatures by using a gas-injection specimen heating holder. The reaction conditions simulated in the ETEM experiments reconstruct real conditions effectively. This study demonstrated for the first time that soot combustion occurs at the soot-catalyst interface for both Ag/CeO2 and Cu/BaO/La2 O3 catalysts.

  6. Exploration of Genetic and Genomic Resources for Abiotic and Biotic Stress Tolerance in Pearl Millet

    PubMed Central

    Shivhare, Radha; Lata, Charu

    2017-01-01

    Pearl millet is one of the most important small-grained C4 Panicoid crops with a large genome size (∼2352 Mb), short life cycle and outbreeding nature. It is highly resilient to areas with scanty rain and high temperature. Pearl millet is a nutritionally superior staple crop for people inhabiting hot, drought-prone arid and semi-arid regions of South Asia and Africa where it is widely grown and used for food, hay, silage, bird feed, building material, and fuel. Having excellent nutrient composition and exceptional buffering capacity against variable climatic conditions and pathogen attack makes pearl millet a wonderful model crop for stress tolerance studies. Pearl millet germplasm show a large range of genotypic and phenotypic variations including tolerance to abiotic and biotic stresses. Conventional breeding for enhancing abiotic and biotic stress resistance in pearl millet have met with considerable success, however, in last few years various novel approaches including functional genomics and molecular breeding have been attempted in this crop for augmenting yield under adverse environmental conditions, and there is still a lot of scope for further improvement using genomic tools. Discovery and use of various DNA-based markers such as EST-SSRs, DArT, CISP, and SSCP-SNP in pearl millet not only help in determining population structure and genetic diversity but also prove to be important for developing strategies for crop improvement at a faster rate and greater precision. Molecular marker-based genetic linkage maps and identification of genomic regions determining yield under abiotic stresses particularly terminal drought have paved way for marker-assisted selection and breeding of pearl millet cultivars. Reference collections and marker-assisted backcrossing have also been used to improve biotic stress resistance in pearl millet specifically to downy mildew. Whole genome sequencing of pearl millet genome will give new insights for processing of functional

  7. Environmental consequences of impact cratering events as a function of ambient conditions on Earth.

    PubMed

    Kring, David A

    2003-01-01

    The end of the Mesozoic Era is defined by a dramatic floral and faunal turnover that has been linked with the Chicxulub impact event, thus leading to the realization that impact cratering can affect both the geologic and biologic evolution of Earth. However, the environmental consequences of an impact event and any subsequent biological effects rely on several factors, including the ambient environmental conditions and the extant ecosystem structures at the time of impact. Some of the severest environmental perturbations of the Chicxulub impact event would not have been significant in some periods of Earth history. Consequently, the environmental and biological effects of an impact event must be evaluated in the context in which it occurs.

  8. Applications of remote sensing for the evaluation of Adriatic Sea environmental conditions

    SciTech Connect

    Vitiello, F.; Borfecchia, F.; De Cecco, L.; Martini, S.

    1997-08-01

    The paper shows the remote sensing activities that ENEA is carrying out for the evaluation of Adriatic Sea environmental conditions and their modifications over the last fifteen years. The activities were requested by the Italian Research Ministry to gain knowledge of the circulation model of the Adriatic Sea and to understand what caused algae blooms in some of the last years. The Adriatic Sea is a high environmental risk sea, because its depth is low and a strong pollutant charge is coming into the sea from the Po river and from many other rivers of the NE coast of Italy. Processing of satellite images has covered the period from 1980 up to now and has allowed the reconstruction of modifications of the environmental conditions of the sea. The paper shows the first results obtained by remote sensing images processing that will be utilized for the database of the Adriatic Sea.

  9. Ebola Virus RNA Stability in Human Blood and Urine in West Africa’s Environmental Conditions

    PubMed Central

    Delaune, Deborah; Poyot, Thomas; Valade, Eric; Mérens, Audrey; Rollin, Pierre E.; Foissaud, Vincent

    2016-01-01

    We evaluated RNA stability of Ebola virus in EDTA blood and urine samples collected from infected patients and stored in West Africa’s environmental conditions. In blood, RNA was stable for at least 18 days when initial cycle threshold values were <30, but in urine, RNA degradation occurred more quickly. PMID:26812135

  10. 78 FR 7850 - Sixty First Meeting: RTCA Special Committee 135, Environmental Conditions and Test Procedures for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ...-691) Review open proposals for Users Guides Review Working Group Drafts Section 4 Section 5 Section 8... Federal Aviation Administration Sixty First Meeting: RTCA Special Committee 135, Environmental Conditions.... Department of Transportation (DOT). ACTION: Meeting Notice of RTCA Special Committee 135,...

  11. 77 FR 56253 - 60th Meeting: RTCA Special Committee 135, Environmental Conditions and Test Procedures for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-12

    ... Working Group activities Section 4 Section 5 Section 8 Section 16 Section 20 Section 21 RTCA Workspace... Federal Aviation Administration 60th Meeting: RTCA Special Committee 135, Environmental Conditions and... of Transportation (DOT) ACTION: Meeting Notice of RTCA Special Committee 135,...

  12. Association between Markers of Classroom Environmental Conditions and Teachers' Respiratory Health

    ERIC Educational Resources Information Center

    Claudio, Luz; Rivera, Glory A.; Ramirez, Olivia F.

    2016-01-01

    Background: Studies have assessed health in schoolchildren. Less is known about the environmental and occupational health of teachers. Methods: A cross-sectional survey of teachers was conducted in 24 randomly selected public elementary schools. Questionnaire included sociodemographic information, healthcare, school conditions, and health…

  13. EVALUATION OF SEVERAL ASSESSMENT METHODS AS INDICATORS OF ESTUARINE ENVIRONMENTAL CONDITIONS

    EPA Science Inventory

    Researchers from U.S. EPA's Gulf Ecology Division have conducted a multi-year evaluation of the environmental condition of near-coastal areas affected by different types of stressors. Areas of study have included coastal rivers, transportation canals, residential canals and estua...

  14. Environmental Control System Installer/Servicer (Residential Air Conditioning Mechanic). V-TECS Guide.

    ERIC Educational Resources Information Center

    Meyer, Calvin F.; Benson, Robert T.

    This guide provides job relevant tasks, performance objectives, performance guides, resources, learning activitites, evaluation standards, and achievement testing in the occupation of environmental control system installer/servicer (residential air conditioning mechanic). It is designed to be used with any chosen teaching method. The course…

  15. Purification, storage, and pathogenicity assay of rice false smut fungus under controlled environmental conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice false smut, caused by Ustilaginoidea virens, is serious disease that affects grain yield and quality. In the present study, a method to purify, store, and evaluate pathogenicity of U. virens under controlled environmental conditions was developed. Yellow chlamydospores were collected from fresh...

  16. Dietary CDP-Choline Supplementation Prevents Memory Impairment Caused by Impoverished Environmental Conditions in Rats

    ERIC Educational Resources Information Center

    Teather, Lisa A.; Wurtman, Richard J.

    2005-01-01

    The authors previously showed that dietary cytidine (5')-diphosphocholine (CDP-choline) supplementation could protect against the development of memory deficits in aging rats. In the present study, younger rats exposed to impoverished environmental conditions and manifesting hippocampal-dependent memory impairments similar to those observed in the…

  17. Reactive oxygen species signaling in plants under abiotic stress.

    PubMed

    Choudhury, Shuvasish; Panda, Piyalee; Sahoo, Lingaraj; Panda, Sanjib Kumar

    2013-04-01

    Abiotic stresses like heavy metals, drought, salt, low temperature, etc. are the major factors that limit crop productivity and yield. These stresses are associated with production of certain deleterious chemical entities called reactive oxygen species (ROS), which include hydrogen peroxide (H₂O₂), superoxide radical (O₂(-)), hydroxyl radical (OH(-)), etc. ROS are capable of inducing cellular damage by degradation of proteins, inactivation of enzymes, alterations in the gene and interfere in various pathways of metabolic importance. Our understanding on ROS in response to abiotic stress is revolutionized with the advancements in plant molecular biology, where the basic understanding on chemical behavior of ROS is better understood. Understanding the molecular mechanisms involved in ROS generation and its potential role during abiotic stress is important to identify means by which plant growth and metabolism can be regulated under acute stress conditions. ROS mediated oxidative stress, which is the key to understand stress related toxicity have been widely studied in many plants and the results in those studies clearly revealed that oxidative stress is the main symptom of toxicity. Plants have their own antioxidant defense mechanisms to encounter ROS that is of enzymic and non-enzymic nature . Coordinated activities of these antioxidants regulate ROS detoxification and reduces oxidative load in plants. Though ROS are always regarded to impart negative impact on plants, some reports consider them to be important in regulating key cellular functions; however, such reports in plant are limited. Molecular approaches to understand ROS metabolism and signaling have opened new avenues to comprehend its critical role in abiotic stress. ROS also acts as secondary messenger that signals key cellular functions like cell proliferation, apoptosis and necrosis. In higher eukaryotes, ROS signaling is not fully understood. In this review we summarize our understanding on ROS

  18. Abiotic ozone and oxygen in atmospheres similar to prebiotic Earth

    SciTech Connect

    Domagal-Goldman, Shawn D.; Segura, Antígona; Claire, Mark W.; Robinson, Tyler D.; Meadows, Victoria S.

    2014-09-10

    The search for life on planets outside our solar system will use spectroscopic identification of atmospheric biosignatures. The most robust remotely detectable potential biosignature is considered to be the detection of oxygen (O{sub 2}) or ozone (O{sub 3}) simultaneous to methane (CH{sub 4}) at levels indicating fluxes from the planetary surface in excess of those that could be produced abiotically. Here we use an altitude-dependent photochemical model with the enhanced lower boundary conditions necessary to carefully explore abiotic O{sub 2} and O{sub 3} production on lifeless planets with a wide variety of volcanic gas fluxes and stellar energy distributions. On some of these worlds, we predict limited O{sub 2} and O{sub 3} buildup, caused by fast chemical production of these gases. This results in detectable abiotic O{sub 3} and CH{sub 4} features in the UV-visible, but no detectable abiotic O{sub 2} features. Thus, simultaneous detection of O{sub 3} and CH{sub 4} by a UV-visible mission is not a strong biosignature without proper contextual information. Discrimination between biological and abiotic sources of O{sub 2} and O{sub 3} is possible through analysis of the stellar and atmospheric context—particularly redox state and O atom inventory—of the planet in question. Specifically, understanding the spectral characteristics of the star and obtaining a broad wavelength range for planetary spectra should allow more robust identification of false positives for life. This highlights the importance of wide spectral coverage for future exoplanet characterization missions. Specifically, discrimination between true and false positives may require spectral observations that extend into infrared wavelengths and provide contextual information on the planet's atmospheric chemistry.

  19. Search For Past Life On Mars: Physical And Chemical Characterization Of Calcite Minerals Of Biotic And Abiotic Origin

    NASA Astrophysics Data System (ADS)

    Stalport, Fabien; Coll, P.; Cabane, M.; Person, A.; Navarro-Gonzales, R.; Raulin, F.; Valay, M.; Ausset, P.; Szopa, C.; McKay, C. P.

    2006-09-01

    Several lines of evidence suggest that early Mars once had liquid water on its surface, a denser atmosphere and a mild climate. Similar environmental conditions led to the origin of life on the Earth more than 3.5 billion years ago; consequently, life might also have originated on Mars. We contend that inorganic compounds could give us interesting clues as to the existence of possible biological activity in future astrobiological missions to Mars. Consequently, we have investigated the physical and chemical properties of calcite, which could be expected on Mars because liquid water was certainly present on the surface of early Mars and carbon dioxide was abundant in its atmosphere. Calcite is interesting because on Earth this mineral is produced by abiotic processes as well as by biological activity. One may suppose that crystalline defects and trace element in the crystal lattice and the growth speed of biotic calcites must indicate a difference between them and pure abiotic calcites. We investigated twelve different terrestrial calcite samples from various origins: biotic, diagenetic and abiotic. The minerals were studied by X-ray diffraction and electron scanning microscopy to determine their mineralogical and chemical composition, and differential thermal analysis coupled to thermogravimetric analysis (DTA-TG) to determine their thermal behavior. Our results show that the thermal degradation of abiotic calcite starts at a temperature at least 40°C higher than the degradation temperature of any biotic calcite investigated. Consequently, in the case of a Martian in-situ study or in a sample return mission, the analysis of Martian minerals by DTA-TG represents a promising approach to detect evidence of past biological activity on Mars.

  20. Search for past life on Mars: Physical and chemical characterization of minerals of biotic and abiotic origin: part 1 - Calcite

    NASA Astrophysics Data System (ADS)

    Stalport, Fabien; Coll, Patrice; Cabane, Michel; Person, Alain; González, Rafael Navarro; Raulin, Francois; Vaulay, Marie Jo; Ausset, Patrick; McKay, Chris P.; Szopa, Cyril; Zarnecki, John

    2005-12-01

    Several lines of evidence suggest that early Mars once had liquid water on its surface, a denser atmosphere and a mild climate. Similar environmental conditions led to the origin of life on the Earth more than 3.5 billion years ago; consequently, life might also have originated on Mars. The Viking landers searched for evidence of organic molecules on the surface of Mars, and found that the Martian soil is depleted in organics at ppb levels at the landing sites. We contend that inorganic compounds could give us interesting clues as to the existence of possible biological activity in future astrobiological missions to Mars. Consequently, we have investigated the physical and chemical properties of calcite, which could be expected on Mars because liquid water was certainly present on the surface of early Mars and carbon dioxide was abundant in its atmosphere. Calcite is interesting because on Earth this mineral is produced by abiotic processes as well as by biological activity. One may suppose that crystalline defects and trace element in the crystal lattice and the growth speed of biotic calcites must indicate a difference between them and pure abiotic calcites. We investigated twelve different terrestrial calcite samples from various origins: biotic, diagenetic and abiotic. The minerals were studied by X-ray diffraction and electron scanning microscopy to determine their mineralogical and chemical composition, and differential thermal analysis coupled to thermogravimetric analysis (DTA-TG) to determine their thermal behavior. Our results show that the thermal degradation of abiotic calcite starts at a temperature at least 40°C higher than the degradation temperature of any biotic calcite investigated. Consequently, in the case of a Martian in-situ study or in a sample return mission, the analysis of Martian minerals by DTA-TG represents a promising approach to detect evidence of past biological activity on Mars.

  1. Abiotic production of iodine molecules in irradiated ice

    NASA Astrophysics Data System (ADS)

    Choi, Wonyong; Kim, Kitae; Yabushita, Akihiro

    2015-04-01

    Reactive halogen species play an important role in Earth's environmental systems. Iodine compounds are related to ozone depletion event (ODE) during Antarctic spring, formation of CCN (cloud condensation nuclei), and controlling the atmospheric oxidizing capacity. However, the processes and mechanisms for abiotic formation of iodine compounds in polar region are still unclear. Although the chemical reactions taking place in ice are greatly different from those in aquatic environment, reaction processes of halogens in frozen condition have rarely studied compared to those in water. In this study, we investigated iodide oxidation to form triiodide (I3-) in ice phase under UV irradiation ( λ > 300 nm) and dark condition. The production of I3- through iodide oxidation, which is negligible in aqueous solution, was significantly accelerated in ice phase even in the absence of UV irradiation. The following release of gaseous iodine molecule (I2) to the atmosphere was also monitored by cavity ring-down spectroscopy (CRDS). We speculate that the markedly enhanced iodide oxidation in polycrystalline ice is due to the freeze concentration of iodides, protons, and dissolved oxygen in the ice crystal grain boundaries. The experiments conducted under ambient solar radiation of the Antarctic region (King George Island, 62°13'S 58°47'W, sea level) also confirmed that the generation of I3- via iodide oxidation process is enhanced when iodide is trapped in ice. The observed intrinsic oxidative transformation of iodide to generate I3-(aq) and I2(g) in frozen environment suggests a previously unknown pathway for the substantial release of reactive iodine species to the atmosphere.

  2. A membrane-bound NAC transcription factor as an integrator of biotic and abiotic stress signals.

    PubMed

    Seo, Pil Joon; Park, Chung-Mo

    2010-05-01

    Transcription factors are central components of gene regulatory networks that mediate virtually all aspects of growth and developmental processes in biological systems. The activity of transcription factors is regulated at multiple steps, such as gene transcription, posttranscriptional RNA processing, posttranslational modification, protein-protein interactions, and controlled protein turnover. Controlled activation of dormant, membrane-bound transcription factor (MTF) is an intriguing regulatory mechanism that ensures quick transcriptional responses to environmental fluctuations in plants, in which various stress hormones serve as signaling mediators. NTL6 is proteolytically activated upon exposure to cold and induces expression of the Pathogenesis-Related (PR) genes. The membrane-mediated cold signaling in inducing pathogen resistance is considered to be an adaptive strategy that protects plants against infection by hydrophilic pathogens frequently occurring during cold season. We found that NTL6 also mediates abscisic acid (ABA) regulation of abiotic stress responses in Arabidopsis. NTL6 is proteolytically activated by ABA. Transgenic plants overexpressing a nuclear NTL6 form (35S:6ΔC) exhibited a hypersensitive response to ABA and high salinity in seed germination. Taken together, these observations indicate that NTL6 plays an integrative role in plant responses to both biotic and abiotic stress conditions.

  3. ABA Inducible Rice Protein Phosphatase 2C Confers ABA Insensitivity and Abiotic Stress Tolerance in Arabidopsis

    PubMed Central

    Singh, Amarjeet; Jha, Saroj K.; Bagri, Jayram; Pandey, Girdhar K.

    2015-01-01

    Arabidopsis PP2C belonging to group A have been extensively worked out and known to negatively regulate ABA signaling. However, rice (Oryza sativa) orthologs of Arabidopsis group A PP2C are scarcely characterized functionally. We have identified a group A PP2C from rice (OsPP108), which is highly inducible under ABA, salt and drought stresses and localized predominantly in the nucleus. Genetic analysis revealed that Arabidopsis plants overexpressing OsPP108 are highly insensitive to ABA and tolerant to high salt and mannitol stresses during seed germination, root growth and overall seedling growth. At adult stage, OsPP108 overexpression leads to high tolerance to salt, mannitol and drought stresses with far better physiological parameters such as water loss, fresh weight, chlorophyll content and photosynthetic potential (Fv/Fm) in transgenic Arabidopsis plants. Expression profile of various stress marker genes in OsPP108 overexpressing plants revealed interplay of ABA dependent and independent pathway for abiotic stress tolerance. Overall, this study has identified a potential rice group A PP2C, which regulates ABA signaling negatively and abiotic stress signaling positively. Transgenic rice plants overexpressing this gene might provide an answer to the problem of low crop yield and productivity during adverse environmental conditions. PMID:25886365

  4. ABA inducible rice protein phosphatase 2C confers ABA insensitivity and abiotic stress tolerance in Arabidopsis.

    PubMed

    Singh, Amarjeet; Jha, Saroj K; Bagri, Jayram; Pandey, Girdhar K

    2015-01-01

    Arabidopsis PP2C belonging to group A have been extensively worked out and known to negatively regulate ABA signaling. However, rice (Oryza sativa) orthologs of Arabidopsis group A PP2C are scarcely characterized functionally. We have identified a group A PP2C from rice (OsPP108), which is highly inducible under ABA, salt and drought stresses and localized predominantly in the nucleus. Genetic analysis revealed that Arabidopsis plants overexpressing OsPP108 are highly insensitive to ABA and tolerant to high salt and mannitol stresses during seed germination, root growth and overall seedling growth. At adult stage, OsPP108 overexpression leads to high tolerance to salt, mannitol and drought stresses with far better physiological parameters such as water loss, fresh weight, chlorophyll content and photosynthetic potential (Fv/Fm) in transgenic Arabidopsis plants. Expression profile of various stress marker genes in OsPP108 overexpressing plants revealed interplay of ABA dependent and independent pathway for abiotic stress tolerance. Overall, this study has identified a potential rice group A PP2C, which regulates ABA signaling negatively and abiotic stress signaling positively. Transgenic rice plants overexpressing this gene might provide an answer to the problem of low crop yield and productivity during adverse environmental conditions.

  5. Abiotic autumnal organic matter deposition and grazing disturbance effects on epilithic biofilm succession.

    PubMed

    Lang, Jennifer M; McEwan, Ryan W; Benbow, M Eric

    2015-06-01

    Stream epilithic biofilm community assembly is influenced in part by environmental factors. Autumn leaf deposition is an annual resource subsidy to streams, but the physical effects of leaves settling on epilithic biofilms has not been investigated.We hypothesized that bacterial and microeukaryotic community assembly would follow a successional sequence that was mediated by abiotic effects that were simulating leaf deposition (reduced light and flow) and by biotic (snail grazing)disturbance. This hypothesis was tested using an in situ experimental manipulation. Ambient biofilms had greater algal biomass and distinct ARISA community profiles compared to biofilms developed under manipulated conditions. There were no significant differences in biofilm characteristics associated with grazing, suggesting that results were driven by reduced light/flow rather than invertebrate disturbance; however, grazing appeared to increase bacterial taxon richness.Interestingly at day 38, all treatments grouped together in ordination space and had similar algal/total biomass ratios. We suggest that algal priming promoted a shift in ambient biofilms but that this effect is dependent upon successional timing of algal establishment. These data demonstrate that abiotic effects were more influential than local grazing disturbance and imply that leaf litter deposition may have bottom-up effects on the stream ecosystem through altered epilithic biofilms.

  6. A database of annotated tentative orthologs from crop abiotic stress transcripts.

    PubMed

    Balaji, Jayashree; Crouch, Jonathan H; Petite, Prasad V N S; Hoisington, David A

    2006-10-07

    A minimal requirement to initiate a comparative genomics study on plant responses to abiotic stresses is a dataset of orthologous sequences. The availability of a large amount of sequence information, including those derived from stress cDNA libraries allow for the identification of stress related genes and orthologs associated with the stress response. Orthologous sequences serve as tools to explore genes and their relationships across species. For this purpose, ESTs from stress cDNA libraries across 16 crop species including 6 important cereal crops and 10 dicots were systematically collated and subjected to bioinformatics analysis such as clustering, grouping of tentative orthologous sets, identification of protein motifs/patterns in the predicted protein sequence, and annotation with stress conditions, tissue/library source and putative function. All data are available to the scientific community at http://intranet.icrisat.org/gt1/tog/homepage.htm. We believe that the availability of annotated plant abiotic stress ortholog sets will be a valuable resource for researchers studying the biology of environmental stresses in plant systems, molecular evolution and genomics.

  7. The abiotic degradation of soil organic matter to oxalic acid

    NASA Astrophysics Data System (ADS)

    Studenroth, Sabine; Huber, Stefan; Schöler, H. F.

    2010-05-01

    The abiotic degradation of soil organic matter to volatile organic compounds was studied intensely over the last years (Keppler et al., 2000; Huber et al., 2009). It was shown that soil organic matter is oxidised due to the presence of iron (III), hydrogen peroxide and chloride and thereby produces diverse alkyl halides, which are emitted into the atmosphere. The formation of polar halogenated compounds like chlorinated acetic acids which are relevant toxic environmental substances was also found in soils and sediments (Kilian et al., 2002). The investigation of the formation of other polar halogenated and non-halogenated compounds like diverse mono- and dicarboxylic acids is going to attain more and more importance. Due to its high acidity oxalic acid might have impacts on the environment e.g., nutrient leaching, plant diseases and negative influence on microbial growth. In this study, the abiotic formation of oxalic acid in soil is examined. For a better understanding of natural degradation processes mechanistic studies were conducted using the model compound catechol as representative for structural elements of the humic substances and its reaction with iron (III) and hydrogen peroxide. Iron is one of the most abundant elements on earth and hydrogen peroxide is produced by bacteria or through incomplete reduction of oxygen. To find suitable parameters for an optimal reaction and a qualitative and quantitative analysis method the following reaction parameters are varied: concentration of iron (III) and hydrogen peroxide, time dependence, pH-value and influence of chloride. Analysis of oxalic acid was performed employing an ion chromatograph equipped with a conductivity detector. The time dependent reaction shows a relatively fast formation of oxalic acid, the optimum yield is achieved after 60 minutes. Compared to the concentration of catechol an excess of hydrogen peroxide as well as a low concentration of iron (III) are required. In absence of chloride the

  8. Sleep deprivation impairs the extinction of cocaine-induced environmental conditioning in mice.

    PubMed

    Berro, L F; Hollais, A W; Patti, C L; Fukushiro, D F; Mári-Kawamoto, E; Talhati, F; Costa, J M; Zanin, K A; Lopes-Silva, L B; Ceccon, L M; Santos, R; Procópio-Souza, R; Trombin, T F; Yokoyama, T S; Wuo-Silva, R; Tufik, S; Andersen, M L; Frussa-Filho, R

    2014-09-01

    Persistence of a drug-environment conditioning induced by repeated psychostimulant treatment is thought to play a key role in the addictive cycle. In addition, sleep disorders are a common feature in patients with addictive disorders. Sleep deprivation shares similar neurobiological effects with psychostimulants. Therefore, we investigated whether sleep deprivation would impair the extinction of previously established conditioning between the drug effect and the environmental cues. Four cohorts of male adult mice underwent a behavioral sensitization procedure pairing drug (cocaine at 15 mg/kg, i.p.) or saline with environment (open-field apparatus). The extinction of conditioned locomotion was evaluated after control (home-cage maintained) or sleep deprivation (gentle handling method for 6h) conditions. Sleep deprivation both postponed the initiation and impaired the completeness of extinction of the conditioned locomotion promoted by previous drug-environment conditioning in cocaine-sensitized animals. While the cocaine control group required 5 free-drug sessions of exposure to the open-field apparatus to complete extinction of conditioned locomotion, the cocaine pre-treated group that experienced sleep deprivation before each extinction session still significantly differed from its respective control group on Day 5 of extinction. The possibility that the sleep condition can influence the extinction of a long-lasting association between drug effects and environmental cues can represent new outcomes for clinically relevant phenomena.

  9. Abiotic stress and the plant circadian clock

    PubMed Central

    Sanchez, Alfredo; Shin, Jieun

    2011-01-01

    In this review, we focus on the interaction between the circadian clock of higher plants to that of metabolic and physiological processes that coordinate growth and performance under a predictable, albeit changing environment. In this, the phytochrome and cryptochrome photoreceptors have shown to be important, but not essential for oscillator control under diurnal cycles of light and dark. From this foundation, we will examine how emerging findings have firmly linked the circadian clock, as a central mediator in the coordination of metabolism, to maintain homeostasis. This occurs by oscillator synchronization of global transcription, which leads to a dynamic control of a host of physiological processes. These include the determination of the levels of primary and secondary metabolites, and the anticipation of future environmental stresses, such as mid-day drought and midnight coldness. Interestingly, metabolic and stress cues themselves appear to feedback on oscillator function. In such a way, the circadian clock of plants and abiotic-stress tolerance appear to be firmly interconnected processes. PMID:21325898

  10. The Arabidopsis PLAT domain protein1 promotes abiotic stress tolerance and growth in tobacco.

    PubMed

    Hyun, Tae Kyung; Albacete, Alfonso; van der Graaff, Eric; Eom, Seung Hee; Großkinsky, Dominik K; Böhm, Hannah; Janschek, Ursula; Rim, Yeonggil; Ali, Walid Wahid; Kim, Soo Young; Roitsch, Thomas

    2015-08-01

    Plant growth and consequently crop yield can be severely compromised by abiotic and biotic stress conditions. Transgenic approaches that resulted in increased tolerance against abiotic stresses often were typically accompanied by adverse effects on plant growth and fitness under optimal growing conditions. Proteins that belong to the PLAT-plant-stress protein family harbour a single PLAT (Polycystin, Lipoxygenase, Alpha-toxin and Triacylglycerol lipase) domain and are ubiquitously present in monocot and dicot plant species. Until now, only limited data is available for PLAT-plant-stress family members, which suggested that these proteins in general could promote tolerance towards stress responses. We studied the function of the Arabidopsis PLAT-plant-stress protein AtPLAT1 employing heterologous gain-of-function analysis in tobacco. AtPLAT1 conferred increased abiotic stress tolerance in tobacco, evident by improved tolerance towards cold, drought and salt stresses, and promoted growth, reflected by a faster development under non-stressed conditions. However, the overexpression of AtPLAT1 in tobacco reduced the tolerance towards biotic stress conditions and, therefore, could be involved in regulating the crosstalk between abiotic and biotic stress responses. Thus, we showed that heterologously expressed AtPLAT1 functions as positive regulator of abiotic stress tolerance and plant growth, which could be an important new asset for strategies to develop plants with improved abiotic stress tolerance, without growth and subsequent yield penalties under optimal growth conditions.

  11. Partitioning the Relative Importance of Phylogeny and Environmental Conditions on Phytoplankton Fatty Acids

    PubMed Central

    Galloway, Aaron W. E.; Winder, Monika

    2015-01-01

    Essential fatty acids (EFA), which are primarily generated by phytoplankton, limit growth and reproduction in diverse heterotrophs. The biochemical composition of phytoplankton is well-known to be governed both by phylogeny and environmental conditions. Nutrients, light, salinity, and temperature all affect both phytoplankton growth and fatty acid composition. However, the relative importance of taxonomy and environment on algal fatty acid content has yet to be comparatively quantified, thus inhibiting predictions of changes to phytoplankton food quality in response to global environmental change. We compiled 1145 published marine and freshwater phytoplankton fatty acid profiles, consisting of 208 species from six major taxonomic groups, cultured in a wide range of environmental conditions, and used a multivariate distance-based linear model to quantify the total variation explained by each variable. Our results show that taxonomic group accounts for 3-4 times more variation in phytoplankton fatty acids than the most important growth condition variables. The results underscore that environmental conditions clearly affect phytoplankton fatty acid profiles, but also show that conditions account for relatively low variation compared to phylogeny. This suggests that the underlying mechanism determining basal food quality in aquatic habitats is primarily phytoplankton community composition, and allows for prediction of environmental-scale EFA dynamics based on phytoplankton community data. We used the compiled dataset to calculate seasonal dynamics of long-chain EFA (LCEFA; ≥C20 ɷ-3 and ɷ-6 polyunsaturated fatty acid) concentrations and ɷ-3:ɷ-6 EFA ratios in Lake Washington using a multi-decadal phytoplankton community time series. These analyses quantify temporal dynamics of algal-derived LCEFA and food quality in a freshwater ecosystem that has undergone large community changes as a result of shifting resource management practices, highlighting diatoms

  12. Partitioning the Relative Importance of Phylogeny and Environmental Conditions on Phytoplankton Fatty Acids.

    PubMed

    Galloway, Aaron W E; Winder, Monika

    2015-01-01

    Essential fatty acids (EFA), which are primarily generated by phytoplankton, limit growth and reproduction in diverse heterotrophs. The biochemical composition of phytoplankton is well-known to be governed both by phylogeny and environmental conditions. Nutrients, light, salinity, and temperature all affect both phytoplankton growth and fatty acid composition. However, the relative importance of taxonomy and environment on algal fatty acid content has yet to be comparatively quantified, thus inhibiting predictions of changes to phytoplankton food quality in response to global environmental change. We compiled 1145 published marine and freshwater phytoplankton fatty acid profiles, consisting of 208 species from six major taxonomic groups, cultured in a wide range of environmental conditions, and used a multivariate distance-based linear model to quantify the total variation explained by each variable. Our results show that taxonomic group accounts for 3-4 times more variation in phytoplankton fatty acids than the most important growth condition variables. The results underscore that environmental conditions clearly affect phytoplankton fatty acid profiles, but also show that conditions account for relatively low variation compared to phylogeny. This suggests that the underlying mechanism determining basal food quality in aquatic habitats is primarily phytoplankton community composition, and allows for prediction of environmental-scale EFA dynamics based on phytoplankton community data. We used the compiled dataset to calculate seasonal dynamics of long-chain EFA (LCEFA; ≥C20 ɷ-3 and ɷ-6 polyunsaturated fatty acid) concentrations and ɷ-3:ɷ-6 EFA ratios in Lake Washington using a multi-decadal phytoplankton community time series. These analyses quantify temporal dynamics of algal-derived LCEFA and food quality in a freshwater ecosystem that has undergone large community changes as a result of shifting resource management practices, highlighting diatoms

  13. Improvement of plant abiotic stress tolerance through modulation of the polyamine pathway.

    PubMed

    Shi, Haitao; Chan, Zhulong

    2014-02-01

    Polyamines (mainly putrescine (Put), spermidine (Spd), and spermine (Spm)) have been widely found in a range of physiological processes and in almost all diverse environmental stresses. In various plant species, abiotic stresses modulated the accumulation of polyamines and related gene expression. Studies using loss-of-function mutants and transgenic overexpression plants modulating polyamine metabolic pathways confirmed protective roles of polyamines during plant abiotic stress responses, and indicated the possibility to improve plant tolerance through genetic manipulation of the polyamine pathway. Additionally, putative mechanisms of polyamines involved in plant abiotic stress tolerance were thoroughly discussed and crosstalks among polyamine, abscisic acid, and nitric oxide in plant responses to abiotic stress were emphasized. Special attention was paid to the interaction between polyamine and reactive oxygen species, ion channels, amino acid and carbon metabolism, and other adaptive responses. Further studies are needed to elucidate the polyamine signaling pathway, especially polyamine-regulated downstream targets and the connections between polyamines and other stress responsive molecules.

  14. Examples of landscape indicators for assessing environmental conditions and problems in urban and suburban areas

    USGS Publications Warehouse

    Martin-Duque, J. F.; Godfrey, A.; Diez, A.; Cleaves, E.; Pedraza, J.; Sanz, M.A.; Carrasco, R.M.; Bodoque, J.; Brebbia, C.A.; Martin-Duque, J.F.; Wadhwa, L.C.

    2002-01-01

    Geo-indicators can help to assess environmental conditions in city urban and suburban areas. Those indicators should be meaningful for understanding environmental changes. From examples of Spanish and American cities, geo-indicators for assessing environmental conditions and changes in urban and suburban areas are proposed. The paper explore two types of geo-indicators. The first type presents general information that can be used to indicate the presence of a broad array of geologic conditions, either favouring or limiting various kinds of uses of the land. The second type of geo-indicator is the one most commonly used, and as a group most easily understood; these are site and problem specific and they are generally used after a problem is identified. Among them, watershed processes, seismicity and physiographic diversity are explained in more detail. A second dimension that is considered when discussing geo-indicators is the issue of scale. Broad scale investigations, covering extensive areas are only efficient at cataloguing general conditions common to much of the area or some outstanding feature within the area. This type of information is best used for policy type decisions. Detailed scale investigations can provide information about local conditions, but are not efficient at cataloguing vast areas. Information gathered at the detailed level is necessary for project design and construction.

  15. Effect of environmental conditions on the fatty acid fingerprint of microbial communities

    NASA Astrophysics Data System (ADS)

    Biryukov, Mikhail; Dippold, Michaela; Kuzyakov, Yakov

    2014-05-01

    Lipid biomarkers, especially phospholipids, are routinely used to characterize microbial community structure in environmental samples. Interpretations of these fingerprints mainly depend on rare results of pure cultures which were cultivated under standardized batch conditions. However, membrane lipids (e.g. phopholipid biomarker) build up the interface between microorganisms and their environment and consequently are prone to be adapted according to the environmental conditions. We cultivated several bacteria, isolated from soil (gram-positive and gram-negative) under various conditions e.g. C supply and temperature regimes. Effect of growth conditions on phospholipids fatty acid (PLFA) as well as neutral lipid fatty acids (NLFA) and glycolipid fatty acids (GLFA) was investigated by conventional method of extraction and derivatization, followed by assessments with gas chromatography mass spectrometry (GC-MS). In addition, phospholipids were measured as intact molecules by ultra high performance liquid chromatography - quadrupole - time of flight mass spectrometer (UHPLC-Q-ToF) to further assess the composition of headgroups with fatty acids residues and their response on changing environmental conditions. PLFA fingerprints revealed a strong effect of growth stage, C supply and temperature e.g. decrease of temperature increased the amount of branched and/or unsaturated fatty acids to maintain the membrane fluidity. This strongly changes the ratio of specific to unspecific fatty acids depending on environmental conditions. Therefore, amounts of specific fatty acids cannot be used to assess biomass of a functional microbial group in soil. Intracellular neutral lipids depended less on environmental conditions reflecting a more stable biomarker group but also showed less specific fatty acids then PLFA. Therefore, combination of several lipid classes is suggested as more powerful tool to assess amounts and functionality of environmental microbial communities. Further

  16. An adaptive ant colony optimization framework for scheduling environmental flow management alternatives under varied environmental water availability conditions

    NASA Astrophysics Data System (ADS)

    Szemis, J. M.; Maier, H. R.; Dandy, G. C.

    2014-10-01

    Human water use is increasing and, as such, water for the environment is limited and needs to be managed efficiently. One method for achieving this is the scheduling of environmental flow management alternatives (EFMAs) (e.g., releases, wetland regulators), with these schedules generally developed over a number of years. However, the availability of environmental water changes annually as a result of natural variability (e.g., drought, wet years). To incorporate this variation and schedule EFMAs in a operational setting, a previously formulated multiobjective optimization approach for EFMA schedule development used for long-term planning has been modified and incorporated into an adaptive framework. As part of this approach, optimal schedules are updated at regular intervals during the planning horizon based on environmental water allocation forecasts, which are obtained using artificial neural networks. In addition, the changes between current and updated schedules can be minimized to reduce any disruptions to long-term planning. The utility of the approach is assessed by applying it to an 89km section of the River Murray in South Australia. Results indicate that the approach is beneficial under a range of hydrological conditions and an improved ecological response is obtained in a operational setting compared with previous long-term approaches. Also, it successfully produces trade-offs between the number of disruptions to schedules and the ecological response, with results suggesting that ecological response increases with minimal alterations required to existing schedules. Overall, the results indicate that the information obtained using the proposed approach potentially aides managers in the efficient management of environmental water.

  17. Abiotic systems for the catalytic treatment of solvent-contaminated water

    SciTech Connect

    Betterton, E.A.; Arnold, R.G.; Liu, Zhijie; Hollan, N.

    1996-12-31

    Three abiotic systems are described that catalyze the reductive dehalogenation of heavily halogenated environmental pollutants, including carbon tetrachloride, trichloroethene, and perchloroethene. These systems include (a) an electrolytic reactor in which the potential on the working electrode (cathode) is fixed by using a potentiostat, (b) a light-driven system consisting of a semiconductor and (covalently attached) macrocycle that can accept light transmitted via an optical fiber, and a light-driven, two-solvent (isopropanol/acetone) system that promotes dehalogenation reactions via an unknown mechanism. Each is capable of accelerating reductive dehalogenation reactions to very high rates under laboratory conditions. Typically, millimolar concentrations of aqueous-phase targets can be dehalogenated in minutes to hours. The description of each system includes the elements of reaction mechanism (to the extent known), typical kinetic data, and a discussion of the feasibility of applying this technology for the in situ destruction of hazardous compounds. 14 refs., 11 figs., 2 tabs.

  18. How environmental conditions affect canopy leaf-level photosynthesis in four deciduous tree species

    SciTech Connect

    Bassow, S.L.; Bazzaz, F.A.

    1998-12-01

    Species composition of temperate forests vary with successional age and seems likely to change in response to significant global climate change. Because photosynthesis rates in co-occurring tree species can differ in their sensitivity to environmental conditions, these changes in species composition are likely to alter the carbon dynamics of temperate forests. To help improve their understanding of such atmosphere-biosphere interactions, the authors explored changes in leaf-level photosynthesis in a 60--70 yr old temperate mixed-deciduous forest in Petersham, Massachusetts (USA). Diurnally and seasonally varying environmental conditions differentially influenced in situ leaf-level photosynthesis rates in the canopies of four mature temperate deciduous tree species: red oak (Quercus rubra), red maple (Acer rubrum), white birch (Betula papyrifera), and yellow birch (Betula alleghaniensis). The authors measured in situ photosynthesis at two heights within the canopies through a diurnal time course on 7 d over two growing seasons. They simultaneously measured a suite of environmental conditions surrounding the leaf at the time of each measurement. The authors used path analysis to examine the influence of environmental factors on in situ photosynthesis in the tree canopies.

  19. Unravelling environmental conditions during the Holocene in the Dead Sea region using multiple archives

    NASA Astrophysics Data System (ADS)

    Rambeau, Claire; van Leeuwen, Jacqueline; van der Knaap, Pim; Gobet, Erika

    2016-04-01

    For the most arid parts of the Southern Levant (roughly corresponding to modern Jordan, Israel and Palestine), environmental reconstructions are impeded by the limited number of archives, and the frequent contradictions between individual palaeoenvironmental records. The Southern Levant is characterised by steep climate gradients; local conditions presently range from arid to dry Mediterranean, with limits that may have fluctuated during the Holocene. This further complicates the determination of site-specific past environmental conditions. Understanding past climate and environmental evolution through time, at a local level, is however crucial to compare these with societal evolution during the Holocene, which features major cultural developments such as cereal cultivation, animal domestication, water management, as well as times of preferential settlement growth or site abandonment. This contribution proposes to examine the different archives available for the Dead Sea region, paying special attention to the most recent pollen data obtained from the area. It will particularly critically compare local to regional-scale information, and try to decipher the main evolutions of environmental conditions during the Holocene in arid and semi-arid Southern Levant.

  20. A review of selection-based tests of abiotic surrogates for species representation.

    PubMed

    Beier, Paul; Sutcliffe, Patricia; Hjort, Jan; Faith, Daniel P; Pressey, Robert L; Albuquerque, Fabio

    2015-06-01

    Because conservation planners typically lack data on where species occur, environmental surrogates--including geophysical settings and climate types--have been used to prioritize sites within a planning area. We reviewed 622 evaluations of the effectiveness of abiotic surrogates in representing species in 19 study areas. Sites selected using abiotic surrogates represented more species than an equal number of randomly selected sites in 43% of tests (55% for plants) and on average improved on random selection of sites by about 8% (21% for plants). Environmental diversity (ED) (42% median improvement on random selection) and biotically informed clusters showed promising results and merit additional testing. We suggest 4 ways to improve performance of abiotic surrogates. First, analysts should consider a broad spectrum of candidate variables to define surrogates, including rarely used variables related to geographic separation, distance from coast, hydrology, and within-site abiotic diversity. Second, abiotic surrogates should be defined at fine thematic resolution. Third, sites (the landscape units prioritized within a planning area) should be small enough to ensure that surrogates reflect species' environments and to produce prioritizations that match the spatial resolution of conservation decisions. Fourth, if species inventories are available for some planning units, planners should define surrogates based on the abiotic variables that most influence species turnover in the planning area. Although species inventories increase the cost of using abiotic surrogates, a modest number of inventories could provide the data needed to select variables and evaluate surrogates. Additional tests of nonclimate abiotic surrogates are needed to evaluate the utility of conserving nature's stage as a strategy for conservation planning in the face of climate change.

  1. Incorporating temporal heterogeneity in environmental conditions into a somatic growth model

    USGS Publications Warehouse

    Dzul, Maria C.; Yackulic, Charles B.; Korman, Josh; Yard, Michael D.; Muehlbauer, Jeffrey D.

    2017-01-01

    Evaluating environmental effects on fish growth can be challenging because environmental conditions may vary at relatively fine temporal scales compared to sampling occasions. Here we develop a Bayesian state-space growth model to evaluate effects of monthly environmental data on growth of fish that are observed less frequently (e.g., from mark-recapture data where time between captures can range from months to years). We assess effects of temperature, turbidity duration, food availability, flow variability, and trout abundance on subadult humpback chub (Gila cypha) growth in two rivers, the Colorado River (CR) and the Little Colorado River (LCR), and we use out-of-sample prediction to rank competing models. Environmental covariates explained a high proportion of the variation in growth in both rivers; however, the best growth models were river-specific and included either positive temperature and turbidity duration effects (CR) or positive temperature and food availability effects (LCR). Our approach to analyzing environmental controls on growth should be applicable in other systems where environmental data vary over relatively short time scales compared to animal observations.

  2. Toward understanding transcriptional regulatory networks in abiotic stress responses and tolerance in rice

    PubMed Central

    2012-01-01

    Abiotic stress causes loss of crop production. Under abiotic stress conditions, expression of many genes is induced, and their products have important roles in stress responses and tolerance. Progress has been made in understanding the biological roles of regulons in abiotic stress responses in rice. A number of transcription factors (TFs) regulate stress-responsive gene expression. OsDREB1s and OsDREB2s were identified as abiotic-stress responsive TFs that belong to the AP2/ERF family. Similar to Arabidopsis, these DREB regulons were most likely not involved in the abscisic acid (ABA) pathway. OsAREBs such as OsAREB1 were identified as key components in ABA-dependent transcriptional networks in rice. OsNAC/SNACs including OsNAC6 were characterized as factors that regulate expression of genes important for abiotic stress responses in rice. Here, we review on the rice abiotic-stress responses mediated by transcriptional networks, with the main focus on TFs that function in abiotic stress responses and confer stress tolerance in rice. PMID:24764506

  3. Oil Recovery from Water under Environmentally Relevant Conditions Using Magnetic Nanoparticles.

    PubMed

    Mirshahghassemi, Seyyedali; Lead, Jamie R

    2015-10-06

    Large oil spills and oily wastewater discharges from ships and industrial activities can have serious impacts on the environment with potentially major economic impacts. Current oil remediation techniques are inefficient and may have deleterious environmental consequences. However, nanotechnology offers a new route to potentially remediate oil pollution. In this study, a cheap and facile hydrothermal method was developed to synthesize polyvinylpyrrolidone-coated magnetite nanoparticles to separate a reference MC252 oil from oil-water mixture under environmentally relevant conditions. Fluorescence and Proton nuclear magnetic resonance spectroscopy results showed near 100% oil removal from oil-water mixture in the ultrapure water under optimum condition. Based on gas chromatography-mass spectrometry data, approximately 100% of lower molecular mass alkanes (C9-C21) were removed within 10 min of magnetic separation and by increasing the separation time to 40 min, greater than 67% of C22-25 alkanes were removed. Moreover, nanoparticles removed near 100% oil from synthetic seawater solutions in the presence and absence of fulvic acid showing excellent oil removal capacity of the nanoparticles under different conditions. Results show that these nanoparticles can be utilized to remove oil over a short time with a high removal efficiency under environmentally relevant conditions.

  4. Environmental conditions associated with bat white-nose syndrome in the north-eastern United States

    USGS Publications Warehouse

    Flory, Abigail R.; Kumar, Sunil; Stohlgren, Thomas J.; Cryan, Paul M.

    2012-01-01

    2. By 2010, the fungus G. destructans was detected in new areas of North America far from the area it was first observed, as well as in eight European bat species in different countries, yet mortality was not observed in many of these new areas of North America or in any part of Europe. This could be because of the differences in the fungus, rates of disease progression and/or in life-history or physiological traits of the affected bat species between different regions. Infection of bats by G. destructans without associated mortality might also suggest that certain environmental conditions might have to co-occur with fungal infection to cause mortality. 3. We tested the environmental conditions hypothesis using Maxent to map and model landscape surface conditions associated with WNS mortality. This approach was unique in that we modelled possible requisite environmental conditions for disease mortality and not simply the presence of the causative agent. 4. The top predictors of WNS mortality were land use/land cover types, mean air temperature of wettest quarter, elevation, frequency of precipitation and annual temperature range. Model results suggest that WNS mortality is most likely to occur in landscapes that are higher in elevation and topographically heterogeneous, drier and colder during winter, and more seasonally variable than surrounding landscapes. 5. Synthesis and applications. This study mapped the most likely environmental surface conditions associated with bat mortality owing to WNS in the north-eastern United Sates; maps can be used for selection of priority monitoring sites. Our results provide a starting point from which to investigate and predict the potential spread and population impacts of this catastrophic emerging disease.

  5. An ATL78-Like RING-H2 Finger Protein Confers Abiotic Stress Tolerance through Interacting with RAV2 and CSN5B in Tomato

    PubMed Central

    Song, Jianwen; Xing, Yali; Munir, Shoaib; Yu, Chuying; Song, Lulu; Li, Hanxia; Wang, Taotao; Ye, Zhibiao

    2016-01-01

    RING finger proteins play an important role in plant adaptation to abiotic stresses. In the present study, a wild tomato (Solanum habrochaites) cold-induced RING-H2 finger gene, ShATL78L, was isolated, which has been identified as an abiotic stress responsive gene in tomato. The results showed that ShATL78L was constitutively expressed in various tissues such as root, leaf, petiole, stem, flower, and fruit. Cold stress up-regulated ShATL78L in the cold-tolerant S. habrochaites compared to the susceptible cultivated tomato (S. lycopersicum). Furthermore, ShATL78L expression was also regulated under different stresses such as drought, salt, heat, wound, osmotic stress, and exogenous hormones. Functional characterization showed that cultivated tomato overexpressing ShATL78L had improved tolerance to cold, drought and oxidative stresses compared to the wild-type and the knockdown lines. To understand the underlying molecular mechanism of ShATL78L regulating abiotic stress responses, we performed yeast one-hybrid and two-hybrid assays and found that RAV2 could bind to the promoter of ShATL78L and activates/alters its transcription, and CSN5B could interact with ShATL78L to regulate abiotic stress responses. Taken together, these results show that ShATL78L plays an important role in regulating plant adaptation to abiotic stresses through bound by RAV2 and interacting with CSN5B. Highlight: RAV2 binds to the promoter of ShATL78L to activates/alters its transcription to adapt the environmental conditions; furthermore, ShATL78L interacts with CSN5B to regulate the stress tolerance. PMID:27621744

  6. Social effects on foraging behavior and success depend on local environmental conditions

    PubMed Central

    Marshall, Harry H; Carter, Alecia J; Ashford, Alexandra; Rowcliffe, J Marcus; Cowlishaw, Guy

    2015-01-01

    In social groups, individuals' dominance rank, social bonds, and kinship with other group members have been shown to influence their foraging behavior. However, there is growing evidence that the particular effects of these social traits may also depend on local environmental conditions. We investigated this by comparing the foraging behavior of wild chacma baboons, Papio ursinus, under natural conditions and in a field experiment where food was spatially clumped. Data were collected from 55 animals across two troops over a 5-month period, including over 900 agonistic foraging interactions and over 600 food patch visits in each condition. In both conditions, low-ranked individuals received more agonism, but this only translated into reduced foraging performances for low-ranked individuals in the high-competition experimental conditions. Our results suggest one possible reason for this pattern may be low-ranked individuals strategically investing social effort to negotiate foraging tolerance, but the rank-offsetting effect of this investment being overwhelmed in the higher-competition experimental environment. Our results also suggest that individuals may use imbalances in their social bonds to negotiate tolerance from others under a wider range of environmental conditions, but utilize the overall strength of their social bonds in more extreme environments where feeding competition is more intense. These findings highlight that behavioral tactics such as the strategic investment of social effort may allow foragers to mitigate the costs of low rank, but that the effectiveness of these tactics is likely to be limited in certain environments. PMID:25691973

  7. Status report on assessment of environmentally assisted fatigue for LWR extended service conditions

    SciTech Connect

    Mohanty, S.; Soppet, W. K.; Majumdar, S.; Natesan, K.

    2014-07-09

    This report provides an update on an earlier assessment of environmentally assisted fatigue for light water reactor (LWR) materials under extended service conditions. This report is a deliverable in September 2013, under the work package for environmentally assisted fatigue in the Light Water Reactor Sustainability (LWRS) program. The overall objective of this LWRS project is to assess the degradation by environmentally assisted cracking/fatigue of LWR materials, such as various alloy base metals and their welds used in reactor coolant system piping. This effort is to support the U.S. Department of Energy LWRS program for developing tools to predict the aging/failure mechanism and to correspondingly predict the remaining life of LWR components for anticipated 60-80 year operation.

  8. Effects of varying environmental conditions on vegetation response to ozone exposure

    SciTech Connect

    Zaleski, R.T.; Triemer, L.R.

    1995-12-31

    Developing an exposure-effects model for plant response to ozone exposure is a complex process. It is known that ozone must enter the plant through the stomata for an effect to occur. Therefore, ozone uptake is related not only to ambient ozone concentrations, but also to environmental factors which control stomatal movement. In addition, cellular factors within the plant can mitigate ozone impact and ultimately control plant response. This paper presents a review of the scientific literature on plant responses (e.g. visible foliar injury, reductions in growth or yield) to ozone exposures under varying environmental conditions known to affect stomatal aperture. The results of this effort show the importance of considering key environmental factors when developing exposure-effects models.

  9. Investigating the genetic architecture of conditional strategies using the environmental threshold model

    PubMed Central

    Hazel, Wade N.; Tomkins, Joseph L.

    2015-01-01

    The threshold expression of dichotomous phenotypes that are environmentally cued or induced comprise the vast majority of phenotypic dimorphisms in colour, morphology, behaviour and life history. Modelled as conditional strategies under the framework of evolutionary game theory, the quantitative genetic basis of these traits is a challenge to estimate. The challenge exists firstly because the phenotypic expression of the trait is dichotomous and secondly because the apparent environmental cue is separate from the biological signal pathway that induces the switch between phenotypes. It is the cryptic variation underlying the translation of cue to phenotype that we address here. With a ‘half-sib common environment’ and a ‘family-level split environment’ experiment, we examine the environmental and genetic influences that underlie male dimorphism in the earwig Forficula auricularia. From the conceptual framework of the latent environmental threshold (LET) model, we use pedigree information to dissect the genetic architecture of the threshold expression of forceps length. We investigate for the first time the strength of the correlation between observable and cryptic ‘proximate’ cues. Furthermore, in support of the environmental threshold model, we found no evidence for a genetic correlation between cue and the threshold between phenotypes. Our results show strong correlations between observable and proximate cues and less genetic variation for thresholds than previous studies have suggested. We discuss the importance of generating better estimates of the genetic variation for thresholds when investigating the genetic architecture and heritability of threshold traits. By investigating genetic architecture by means of the LET model, our study supports several key evolutionary ideas related to conditional strategies and improves our understanding of environmentally cued decisions. PMID:26674955

  10. Investigating the genetic architecture of conditional strategies using the environmental threshold model.

    PubMed

    Buzatto, Bruno A; Buoro, Mathieu; Hazel, Wade N; Tomkins, Joseph L

    2015-12-22

    The threshold expression of dichotomous phenotypes that are environmentally cued or induced comprise the vast majority of phenotypic dimorphisms in colour, morphology, behaviour and life history. Modelled as conditional strategies under the framework of evolutionary game theory, the quantitative genetic basis of these traits is a challenge to estimate. The challenge exists firstly because the phenotypic expression of the trait is dichotomous and secondly because the apparent environmental cue is separate from the biological signal pathway that induces the switch between phenotypes. It is the cryptic variation underlying the translation of cue to phenotype that we address here. With a 'half-sib common environment' and a 'family-level split environment' experiment, we examine the environmental and genetic influences that underlie male dimorphism in the earwig Forficula auricularia. From the conceptual framework of the latent environmental threshold (LET) model, we use pedigree information to dissect the genetic architecture of the threshold expression of forceps length. We investigate for the first time the strength of the correlation between observable and cryptic 'proximate' cues. Furthermore, in support of the environmental threshold model, we found no evidence for a genetic correlation between cue and the threshold between phenotypes. Our results show strong correlations between observable and proximate cues and less genetic variation for thresholds than previous studies have suggested. We discuss the importance of generating better estimates of the genetic variation for thresholds when investigating the genetic architecture and heritability of threshold traits. By investigating genetic architecture by means of the LET model, our study supports several key evolutionary ideas related to conditional strategies and improves our understanding of environmentally cued decisions.

  11. The ammonium excretion of the shore crab, carcinus maenas, in relation to environmental osmotic conditions

    NASA Astrophysics Data System (ADS)

    Spaargaren, D. H.

    Ammonia concentrations were measured in blood and external media of shore crabs, Carcinus maenas, acclimated to 6 different salinities at high (20° C) and low (4° C) temperatures. It is seen that environmental osmotic conditions (temperature and salinity) have a major influence on NH 4+ formation and thus on protein (amino acid) catabolism. Blood ammonia concentrations appear to be strongly stabilized, independent of environmental osmotic conditions, ranging between 0.25 and 0.55 mmol·l -1. At normal, low environmental NH 4+ concentrations blood NH 4+ is strongly hyper-ionic compared to external concentrations; at high environmental NH 4+ concentrations (even when artificially raised to 2.5 mmol·l -1), blood NH 4+ is strongly hypo-ionic. Regulation of the blood NH 4+ concentrations takes place by a variable efflux of NH 4+; at high environmental NH 4+ concentrations (> 0.28 mmol · l -1), in addition to a high NH 4+ efflux, stabilization of the blood NH 4+ concentrations is effectuated by the formation of urea. Ammonia efflux to the surrounding water is highly dependent to the osmotic conditions of the environment: viz. positively related to temperature and inversely related to external salinity, with relatively stable value near the isosmotic salinity. Related to the strong variations in ammonia efflux, external NH 4+ concentrations in a closed volume of water are highly variable. In the course of time very high values develop in media of low salinity at high temperature. A close connection between NH 4+ excretion and extracellular ion regulation is indicated.

  12. Microbial forensics: predicting phenotypic characteristics and environmental conditions from large-scale gene expression profiles.

    PubMed

    Kim, Minseung; Zorraquino, Violeta; Tagkopoulos, Ilias

    2015-03-01

    A tantalizing question in cellular physiology is whether the cellular state and environmental conditions can be inferred by the expression signature of an organism. To investigate this relationship, we created an extensive normalized gene expression compendium for the bacterium Escherichia coli that was further enriched with meta-information through an iterative learning procedure. We then constructed an ensemble method to predict environmental and cellular state, including strain, growth phase, medium, oxygen level, antibiotic and carbon source presence. Results show that gene expression is an excellent predictor of environmental structure, with multi-class ensemble models achieving balanced accuracy between 70.0% (±3.5%) to 98.3% (±2.3%) for the various characteristics. Interestingly, this performance can be significantly boosted when environmental and strain characteristics are simultaneously considered, as a composite classifier that captures the inter-dependencies of three characteristics (medium, phase and strain) achieved 10.6% (±1.0%) higher performance than any individual models. Contrary to expectations, only 59% of the top informative genes were also identified as differentially expressed under the respective conditions. Functional analysis of the respective genetic signatures implicates a wide spectrum of Gene Ontology terms and KEGG pathways with condition-specific information content, including iron transport, transferases, and enterobactin synthesis. Further experimental phenotypic-to-genotypic mapping that we conducted for knock-out mutants argues for the information content of top-ranked genes. This work demonstrates the degree at which genome-scale transcriptional information can be predictive of latent, heterogeneous and seemingly disparate phenotypic and environmental characteristics, with far-reaching applications.

  13. Extent of fungal growth on fiberglass duct liners with and without biocides under challenging environmental conditions.

    PubMed

    Samimi, Behzad S; Ross, Kristen

    2003-03-01

    Eight brands of fiberglass duct liners, including three that contained biocides, were exposed to challenging environmental conditions that would promote fungal growth. Twenty-four rectangular sheet metal ducts in three groups of eight ducts per group were lined with the eight selected liners. Each group of ducts was exposed to one of the three test conditions within an environmental chamber for a period of 15 days. These conditions were a) 75 percent RH, b) 75 percent RH plus water spray, c) 75 percent RH plus dry nutrient, and d) 75 percent RH plus water plus nutrient. Viable spores of Aspergillus niger were aerosolized into each duct as seed. On the 16th day, air and surface samples for fungal spores were collected from inside ducts. The results of air sampling using N6 sampler and visual inspection indicated that two out of three biocide-containing liners, Permacote and Toughgard, inhibited fungal growth but only under condition A. The third biocide-containing liner, Aeroflex Plus, was effective even when it was wet (conditions A and B). All three biocide-containing liners failed to inhibit fungal growth under conditions C and D. Among the five other types of liners that did not contain biocides, ATCO Flex with a smooth Mylar coating was more preferable, exhibiting lower fungal activity during conditions A, B, and C. All liners failed under condition D when nutrient and water were added together. Surface sampling using adhesive tape failed to produce representative results, apparently due to rough/porous surface of duct liners. It was concluded that duct liners with biocide treatment could be less promoting to microbial growth under high humidity as long as their surfaces remain clean and water-free. A liner with an impermeable and smooth surface seems to be less subject to microbial growth under most conditions than biocide-containing liners having porous and/or rough surfaces.

  14. Environmental sex reversal, Trojan sex genes, and sex ratio adjustment: conditions and population consequences.

    PubMed

    Stelkens, Rike B; Wedekind, Claus

    2010-02-01

    The great diversity of sex determination mechanisms in animals and plants ranges from genetic sex determination (GSD, e.g. mammals, birds, and most dioecious plants) to environmental sex determination (ESD, e.g. many reptiles) and includes a mixture of both, for example when an individual's genetically determined sex is environmentally reversed during ontogeny (ESR, environmental sex reversal, e.g. many fish and amphibia). ESD and ESR can lead to widely varying and unstable population sex ratios. Populations exposed to conditions such as endocrine-active substances or temperature shifts may decline over time due to skewed sex ratios, a scenario that may become increasingly relevant with greater anthropogenic interference on watercourses. Continuous exposure of populations to factors causing ESR could lead to the extinction of genetic sex factors and may render a population dependent on the environmental factors that induce the sex change. However, ESR also presents opportunities for population management, especially if the Y or W chromosome is not, or not severely, degenerated. This seems to be the case in many amphibians and fish. Population growth or decline in such species can potentially be controlled through the introduction of so-called Trojan sex genes carriers, individuals that possess sex chromosomes or genes opposite from what their phenotype predicts. Here, we review the conditions for ESR, its prevalence in natural populations, the resulting physiological and reproductive consequences, and how these may become instrumental for population management.

  15. Disentangling effects of abiotic factors and biotic interactions on cross-taxon congruence in species turnover patterns of plants, moths and beetles

    NASA Astrophysics Data System (ADS)

    Duan, Meichun; Liu, Yunhui; Yu, Zhenrong; Baudry, Jacques; Li, Liangtao; Wang, Changliu; Axmacher, Jan C.

    2016-04-01

    High cross-taxon congruence in species diversity patterns is essential for the use of surrogate taxa in biodiversity conservation, but presence and strength of congruence in species turnover patterns, and the relative contributions of abiotic environmental factors and biotic interaction towards this congruence, remain poorly understood. In our study, we used variation partitioning in multiple regressions to quantify cross-taxon congruence in community dissimilarities of vascular plants, geometrid and arciinid moths and carabid beetles, subsequently investigating their respective underpinning by abiotic factors and biotic interactions. Significant cross-taxon congruence observed across all taxon pairs was linked to their similar responses towards elevation change. Changes in the vegetation composition were closely linked to carabid turnover, with vegetation structure and associated microclimatic conditions proposed causes of this link. In contrast, moth assemblages appeared to be dominated by generalist species whose turnover was weakly associated with vegetation changes. Overall, abiotic factors exerted a stronger influence on cross-taxon congruence across our study sites than biotic interactions. The weak congruence in turnover observed particularly between plants and moths highlights the importance of multi-taxon approaches based on groupings of taxa with similar turnovers, rather than the use of single surrogate taxa or environmental proxies, in biodiversity assessments.

  16. Disentangling effects of abiotic factors and biotic interactions on cross-taxon congruence in species turnover patterns of plants, moths and beetles

    PubMed Central

    Duan, Meichun; Liu, Yunhui; Yu, Zhenrong; Baudry, Jacques; Li, Liangtao; Wang, Changliu; Axmacher, Jan C.

    2016-01-01

    High cross-taxon congruence in species diversity patterns is essential for the use of surrogate taxa in biodiversity conservation, but presence and strength of congruence in species turnover patterns, and the relative contributions of abiotic environmental factors and biotic interaction towards this congruence, remain poorly understood. In our study, we used variation partitioning in multiple regressions to quantify cross-taxon congruence in community dissimilarities of vascular plants, geometrid and arciinid moths and carabid beetles, subsequently investigating their respective underpinning by abiotic factors and biotic interactions. Significant cross-taxon congruence observed across all taxon pairs was linked to their similar responses towards elevation change. Changes in the vegetation composition were closely linked to carabid turnover, with vegetation structure and associated microclimatic conditions proposed causes of this link. In contrast, moth assemblages appeared to be dominated by generalist species whose turnover was weakly associated with vegetation changes. Overall, abiotic factors exerted a stronger influence on cross-taxon congruence across our study sites than biotic interactions. The weak congruence in turnover observed particularly between plants and moths highlights the importance of multi-taxon approaches based on groupings of taxa with similar turnovers, rather than the use of single surrogate taxa or environmental proxies, in biodiversity assessments. PMID:27032533

  17. Disentangling effects of abiotic factors and biotic interactions on cross-taxon congruence in species turnover patterns of plants, moths and beetles.

    PubMed

    Duan, Meichun; Liu, Yunhui; Yu, Zhenrong; Baudry, Jacques; Li, Liangtao; Wang, Changliu; Axmacher, Jan C

    2016-04-01

    High cross-taxon congruence in species diversity patterns is essential for the use of surrogate taxa in biodiversity conservation, but presence and strength of congruence in species turnover patterns, and the relative contributions of abiotic environmental factors and biotic interaction towards this congruence, remain poorly understood. In our study, we used variation partitioning in multiple regressions to quantify cross-taxon congruence in community dissimilarities of vascular plants, geometrid and arciinid moths and carabid beetles, subsequently investigating their respective underpinning by abiotic factors and biotic interactions. Significant cross-taxon congruence observed across all taxon pairs was linked to their similar responses towards elevation change. Changes in the vegetation composition were closely linked to carabid turnover, with vegetation structure and associated microclimatic conditions proposed causes of this link. In contrast, moth assemblages appeared to be dominated by generalist species whose turnover was weakly associated with vegetation changes. Overall, abiotic factors exerted a stronger influence on cross-taxon congruence across our study sites than biotic interactions. The weak congruence in turnover observed particularly between plants and moths highlights the importance of multi-taxon approaches based on groupings of taxa with similar turnovers, rather than the use of single surrogate taxa or environmental proxies, in biodiversity assessments.

  18. Environmental conditions and community evenness determine the outcome of biological invasion.

    PubMed

    De Roy, Karen; Marzorati, Massimo; Negroni, Andrea; Thas, Olivier; Balloi, Annalisa; Fava, Fabio; Verstraete, Willy; Daffonchio, Daniele; Boon, Nico

    2013-01-01

    Biological invasion is widely studied, however, conclusions on the outcome of this process mainly originate from observations in systems that leave a large number of experimental variables uncontrolled. Here using a fully controlled system consisting of assembled bacterial communities, we evaluate the degree of invasion and the effect on the community functionality in relation to the initial community evenness under specific environmental stressors. We show that evenness influences the level of invasion and that the introduced species can promote functionality under stress. The evenness-invasibility relationship is negative in the absence and neutral in the presence of stress. Under these conditions, the introduced species is able to maintain the functionality of uneven communities. These results indicate that communities, initially having the same genetic background, in the presence of the same invader, react in a different way with respect to invasibility and functionality depending on specific environmental conditions and community evenness.

  19. Creep and Environmental Durability of EBC/CMCs Under Imposed Thermal Gradient Conditions

    NASA Technical Reports Server (NTRS)

    Appleby, Matthew; Morscher, Gregory N.; Zhu, Dongming

    2013-01-01

    Interest in SiC fiber-reinforced SiC ceramic matrix composite (CMC) environmental barrier coating (EBC) systems for use in high temperature structural applications has prompted the need for characterization of material strength and creep performance under complex aerospace turbine engine environments. Stress-rupture tests have been performed on SiC/SiC composites systems, with varying fiber types and coating schemes to demonstrate material behavior under isothermal conditions. Further testing was conducted under exposure to thermal stress gradients to determine the effect on creep resistance and material durability. In order to understand the associated damage mechanisms, emphasis is placed on experimental techniques as well as implementation of non-destructive evaluation; including electrical resistivity monitoring. The influence of environmental and loading conditions on life-limiting material properties is shown.

  20. Environmental Conditions Influence Allometric Patterns in the Blow Fly, Chrysomya albiceps

    PubMed Central

    Horenstein, M Battán; Peretti, Av

    2011-01-01

    The objective of this research was to study variations in allometry of body characters in females and males of two populations of blow flies, Chrysomya albiceps (Wiedemann) (Diptera: Calliphoridae), under different environmental conditions to establish patterns of morphological variation. Body size of both males and females in the experimental population was significantly higher than in the individuals of the natural population, indicating an important influence of food on body size. All genitalic and non-genitalic characters in males and females of the two populations showed a trend towards negative allometry rather than isometry. Allometric patterns were modified in both sexes and between populations. The data show generally larger allometric slopes in females than in males. We confirmed that the environmental conditions have an important effect on allometric patterns and body size. PMID:22224467

  1. Modelling the effects of environmental conditions on the acoustic occurrence and behaviour of Antarctic blue whales.

    PubMed

    Shabangu, Fannie W; Yemane, Dawit; Stafford, Kathleen M; Ensor, Paul; Findlay, Ken P

    2017-01-01

    Harvested to perilously low numbers by commercial whaling during the past century, the large scale response of Antarctic blue whales Balaenoptera musculus intermedia to environmental variability is poorly understood. This study uses acoustic data collected from 586 sonobuoys deployed in the austral summers of 1997 through 2009, south of 38°S, coupled with visual observations of blue whales during the IWC SOWER line-transect surveys. The characteristic Z-call and D-call of Antarctic blue whales were detected using an automated detection template and visual verification method. Using a random forest model, we showed the environmental preferences pattern, spatial occurrence and acoustic behaviour of Antarctic blue whales. Distance to the southern boundary of the Antarctic Circumpolar Current (SBACC), latitude and distance from the nearest Antarctic shores were the main geographic predictors of blue whale call occurrence. Satellite-derived sea surface height, sea surface temperature, and productivity (chlorophyll-a) were the most important environmental predictors of blue whale call occurrence. Call rates of D-calls were strongly predicted by the location of the SBACC, latitude and visually detected number of whales in an area while call rates of Z-call were predicted by the SBACC, latitude and longitude. Satellite-derived sea surface height, wind stress, wind direction, water depth, sea surface temperatures, chlorophyll-a and wind speed were important environmental predictors of blue whale call rates in the Southern Ocean. Blue whale call occurrence and call rates varied significantly in response to inter-annual and long term variability of those environmental predictors. Our results identify the response of Antarctic blue whales to inter-annual variability in environmental conditions and highlighted potential suitable habitats for this population. Such emerging knowledge about the acoustic behaviour, environmental and habitat preferences of Antarctic blue whales is

  2. Modelling the effects of environmental conditions on the acoustic occurrence and behaviour of Antarctic blue whales

    PubMed Central

    Shabangu, Fannie W.; Yemane, Dawit; Stafford, Kathleen M.; Ensor, Paul; Findlay, Ken P.

    2017-01-01

    Harvested to perilously low numbers by commercial whaling during the past century, the large scale response of Antarctic blue whales Balaenoptera musculus intermedia to environmental variability is poorly understood. This study uses acoustic data collected from 586 sonobuoys deployed in the austral summers of 1997 through 2009, south of 38°S, coupled with visual observations of blue whales during the IWC SOWER line-transect surveys. The characteristic Z-call and D-call of Antarctic blue whales were detected using an automated detection template and visual verification method. Using a random forest model, we showed the environmental preferences pattern, spatial occurrence and acoustic behaviour of Antarctic blue whales. Distance to the southern boundary of the Antarctic Circumpolar Current (SBACC), latitude and distance from the nearest Antarctic shores were the main geographic predictors of blue whale call occurrence. Satellite-derived sea surface height, sea surface temperature, and productivity (chlorophyll-a) were the most important environmental predictors of blue whale call occurrence. Call rates of D-calls were strongly predicted by the location of the SBACC, latitude and visually detected number of whales in an area while call rates of Z-call were predicted by the SBACC, latitude and longitude. Satellite-derived sea surface height, wind stress, wind direction, water depth, sea surface temperatures, chlorophyll-a and wind speed were important environmental predictors of blue whale call rates in the Southern Ocean. Blue whale call occurrence and call rates varied significantly in response to inter-annual and long term variability of those environmental predictors. Our results identify the response of Antarctic blue whales to inter-annual variability in environmental conditions and highlighted potential suitable habitats for this population. Such emerging knowledge about the acoustic behaviour, environmental and habitat preferences of Antarctic blue whales is

  3. The Effects of Data Processing and Environmental Conditions on the Accuracy of the USNO Timescale

    DTIC Science & Technology

    1988-12-01

    THE EFFECTS OF DATA PROCESSING AND ENVIRONMENTAL CONDITIONS ON THE ACCURACY OF THE USNO TIMESCALE Lee A. Breakiron U. S. Naval Observatory Time ...ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U. S. Naval Observatory, Time Service Department,34th and Massachusetts Avenue, N. W.,Washington,DC

  4. Ibero Atlantic Forested Wetlands: Plant-Abiotic Interactions at a Regional Scale

    NASA Astrophysics Data System (ADS)

    Gonzalez, P. R.; Ferreira, T.; Albuquerque, A.; Espirito-Santo, D.; Ramil-Rego, P.

    2005-05-01

    In biogeographical terms, forested wetlands are considered azonal ecosystems due to their special edaphic conditions. Duration of waterlogging decreases the effect of regional climate in vegetation communities. In this work we test this hypothesis by studying the relative contribution of spatial and environmental variation. Plant community composition and vertical structure were inventoried in inland forested wetlands along the Atlantic coast of the Iberian Peninsula. The study area ranges from latitude N 44° to 38° and includes Temperate and Mediterranean climate. Forested wetlands area was delimitated and sampled using plots where all the vascular plants and bryophytes were registered and their percentage cover estimated. Collected environmental regional variables included geographic, climatic, geologic and hydro geomorphologic data. Multivariate analysis was used to interpret species abundance data to assess the relative weight of environmental conditions and the spatial structure in the species data variation. Results of species-environment treatment revealed that tree overstorey species were determinant for vegetation types and that hydroperiod was the key abiotic variable classifying forested wetlands.

  5. ANALYSIS OF BIOTIC AND ABIOTIC FACTORS INFLUENCING THE OCCURRENCE OF WEST NILE VIRUS INFECTION IN TUNISIA.

    PubMed

    Ben Hassine, Th; Calistri, P; Ippoliti, C; Conte, A; Danzetta, M L; Bruno, R; Lelli, R; Bejaoui, M; Hammami, S

    2014-01-01

    Eco-climatic conditions are often associated with the occurrence of West Nile Disease (WND) cases. Among the complex set of biotic and abiotic factors influencing the emergence and spread of this vector-borne disease, two main variables have been considered to have a great influence on the probability of West Nile Virus (WNV) introduction and circulation in Tunisia: the presence of susceptible bird populations and the existence of geographical areas where the environmental and climatic conditions are more favourable to mosquito multiplications. The aim of this study was to identify and classify the climatic and environmental variables possibly associated with the occurrence of WNVhuman cases in Tunisia. The following environmental and climatic variables have been considered: wetlands and humid areas, Normalised Difference Vegetation Index (NDVI), temperatures and elevation. A preliminary analysis for the characterization of main variables associated with areas with a history of WNV human cases in Tunisia between 1997 and 2011 has been made. This preliminary analysis clearly indicates the closeness to marshes ecosystem, where migratory bird populations are located, as an important risk factor for WNV infection. On the contrary the temperature absolute seems to be not a significant factor in Tunisian epidemiological situation. In relation to NDVI values, more complex considerations should be made.

  6. Fitness consequences of environmental conditions at different life stages in a long-lived vertebrate

    PubMed Central

    Douhard, Mathieu; Plard, Floriane; Gaillard, Jean-Michel; Capron, Gilles; Delorme, Daniel; Klein, François; Duncan, Patrick; Loe, Leif Egil; Bonenfant, Christophe

    2014-01-01

    The predictive adaptive response (PAR) hypothesis proposes that animals adjust their physiology and developmental trajectory during early life in anticipation of their future environments. Accordingly, when environmental conditions in early life match environmental conditions during adulthood, individual fitness should be greater. Here, we test this hypothesis in a long-lived mammal, the roe deer, using data from two contrasting populations, intensively monitored for more than 35 years. In the highly productive site, the fitness of female roe deer increased with the quality of environment during adulthood and, contrary to predictions of PAR, individuals born in good conditions always outperformed those born under poor conditions. In the resource-limited site, the fitness of female roe deer born in poor years was better than those born in good conditions in poor years when the animals were adult, but not in good years. Although consistent with predictions of PAR, we showed that this pattern is likely to be a consequence of increased viability selection during the juvenile stage for animals born in poor years. While PARs are often advanced in evolutionary medicine, our findings suggest that detailed biological processes should be investigated before drawing conclusions about the existence of this phenomenon. PMID:24789898

  7. Optimal environmental conditions to detect moisture in ancient buildings: case studies in Northern Italy

    NASA Astrophysics Data System (ADS)

    Rosina, Elisabetta; Ludwig, Nicola; Rosi, Lorenzo

    1998-03-01

    IR thermography allows to identify the thermal anomalies due to moisture in ancient walls. Wet zones can appear warmer or colder in IR images, according to the atmospheric conditions during the scanning; furthermore, thermal monitoring, even in qualitative thermography, allows to obtain a more effective diagnosis of the defects because it records thermal behaviors of the material in different environmental conditions. Thermographic system allows an accurate analysis of transpiration effects on buildings and precise measurements of water content starting from environmental temperature, relative balance and wind speed. These variables play a major role in the causes of damages in buildings. Particularly, the evaluation of transpiration is essential to determine the evaporative rate of water content within the wall. The research has been carried out on two ancient buildings during a period of several months. The main experimental tests were on the church of 'Guardia di Sotto', Corsico, a seventeenth century building on the bank of Pavese Canal. Five thermal scanning have been disposed in different seasons from March 14, 1996 to June 16, 1997. The causes of the wet zones were identified at the basis of the walls were rising damp and rain spread in the ground. The repeated thermographies and thermo-hygrometric test allowed to distinguish the size and the location of the areas damaged by the different causes. In other cases studied - Addolorate Church, Gessate the thermal scanning and the other supporting tests confirmed the list of optimal environmental condition required to detect humidity in walls by thermography.

  8. Heteroaggregation of titanium dioxide nanoparticles with model natural colloids under environmentally relevant conditions.

    PubMed

    Praetorius, Antonia; Labille, Jérôme; Scheringer, Martin; Thill, Antoine; Hungerbühler, Konrad; Bottero, Jean-Yves

    2014-09-16

    The heteroaggregation of engineered nanoparticles (ENPs) with natural colloids (NCs), which are ubiquitous in natural surface waters, is a crucial process affecting the environmental transport and fate of ENPs. Attachment efficiencies for heteroaggregation, α hetero, are required as input parameters in environmental fate models to predict ENP concentrations and contribute to ENP risk assessment. Here, we present a novel method for determining α hetero values by using a combination of laser diffraction measurements and aggregation modeling based on the Smoluchowski equation. Titanium dioxide nanoparticles (TiO2 NPs, 15 nm) were used to demonstrate this new approach together with larger silicon dioxide particles (SiO2, 0.5 μm) representing NCs. Heteroaggregation experiments were performed at different environmentally relevant solution conditions. At pH 5 the TiO2 NPs and the SiO2 particles are of opposite charge, resulting in α hetero values close to 1. At pH 8, where all particles are negatively charged, α hetero was strongly affected by the solution conditions, with α hetero ranging from <0.001 at low ionic strength to 1 at conditions with high NaCl or CaCl2 concentrations. The presence of humic acid stabilized the system against heteroaggregation.

  9. Dietary CDP-choline supplementation prevents memory impairment caused by impoverished environmental conditions in rats.

    PubMed

    Teather, Lisa A; Wurtman, Richard J

    2005-01-01

    We previously showed that dietary cytidine (5')-diphosphocholine (CDP-choline) supplementation could protect against the development of memory deficits in aging rats. In the present study, younger rats exposed to impoverished environmental conditions and manifesting hippocampal-dependent memory impairments similar to those observed in the aging rodents were given CDP-choline, and its effects on this cognitive deficit were assessed. Male Sprague-Dawley rats reared for 3 mo in impoverished (IC) or enriched environmental (EC) conditions concurrently received either a control diet or a diet supplemented with CDP-choline (approximately 500 mg/kg/d). After 3 mo, rats were trained to perform spatial and cued versions of the Morris water maze, and their rates of acquisition and retention were compared. Impoverished rats exhibited a selective deficit in hippocampal-dependent spatial memory which could be ameliorated by feeding them CDP-choline. The CDP-choline had no memory-enhancing effect in enriched rats, nor did it prevent the memory impairment of impoverished rats if the animals consumed it for the initial or final months instead of for the entire 3-mo period. These findings indicate that long-term dietary CDP-choline supplementation can ameliorate the hippocampal-dependent memory impairment caused by impoverished environmental conditions in rats, and suggest that its actions result, in part, from a long-term effect such as enhanced membrane phosphatide synthesis, an effect shown to require long-term dietary supplementation with CDP-choline.

  10. Dietary CDP-choline supplementation prevents memory impairment caused by impoverished environmental conditions in rats

    PubMed Central

    Teather, Lisa A.; Wurtman, Richard J.

    2005-01-01

    We previously showed that dietary cytidine (5′)-diphosphocholine (CDP-choline) supplementation could protect against the development of memory deficits in aging rats. In the present study, younger rats exposed to impoverished environmental conditions and manifesting hippocampal-dependent memory impairments similar to those observed in the aging rodents were given CDP-choline, and its effects on this cognitive deficit were assessed. Male Sprague-Dawley rats reared for 3 mo in impoverished (IC) or enriched environmental (EC) conditions concurrently received either a control diet or a diet supplemented with CDP-choline (∼500 mg/kg/d). After 3 mo, rats were trained to perform spatial and cued versions of the Morris water maze, and their rates of acquisition and retention were compared. Impoverished rats exhibited a selective deficit in hippocampal-dependent spatial memory which could be ameliorated by feeding them CDP-choline. The CDP-choline had no memory-enhancing effect in enriched rats, nor did it prevent the memory impairment of impoverished rats if the animals consumed it for the initial or final months instead of for the entire 3-mo period. These findings indicate that long-term dietary CDP-choline supplementation can ameliorate the hippocampal-dependent memory impairment caused by impoverished environmental conditions in rats, and suggest that its actions result, in part, from a long-term effect such as enhanced membrane phosphatide synthesis, an effect shown to require long-term dietary supplementation with CDP-choline. PMID:15647594

  11. Effects of surface condition on aqueous corrosion and environmental embrittlement of iron aluminides

    SciTech Connect

    Perrin, R.L.; Buchanan, R.A.

    1996-08-01

    Effects of retained high-temperature surface oxides, produced during thermomechanical processing and/or heat treatment, on the aqueous-corrosion and environmental-embrittlement characteristics of Fe{sub 3}Al-based iron aluminides (FA-84, FA-129 and FAL-Mo), a FeAl-based iron aluminide (FA-385), and a disordered low-aluminum Fe-Al alloy (FAPY) were evaluated. All tests were conducted at room temperature in a mild acid-chloride solution. In cyclic-anodic-polarization testing for aqueous-corrosion behavior, the surface conditions examined were: as-received (i.e., with the retained high-temperature oxides), mechanically cleaned and chemically cleaned. For all materials, the polarization tests showed the critical pitting potentials to be significantly lower in the as-received condition than in the mechanically-cleaned and chemically-cleaned conditions. These results indicate detrimental effects of the retained high-temperature oxides in terms of increased susceptibilities to localized corrosion. In 200-hour U-bend stress-corrosion-cracking tests for environmental-embrittlement behavior, conducted at open-circuit corrosion potentials and at a hydrogen-charging potential of {minus}1500 mV (SHE), the above materials (except FA-385) were examined with retained oxides and with mechanically cleaned surfaces. At the open-circuit corrosion potentials, none of the materials in either surface condition underwent cracking. At the hydrogen-charging potential, none of the materials with retained oxides underwent cracking, but FA-84, FA-129 and FAL-Mo in the mechanically cleaned condition did undergo cracking. These results suggest beneficial effects of the retained high-temperature oxides in terms of increased resistance to environmental hydrogen embrittlement.

  12. Role of phenotypic plasticity and population differentiation in adaptation to novel environmental conditions.

    PubMed

    Volis, Sergei; Ormanbekova, Danara; Yermekbayev, Kanat

    2015-09-01

    Species can adapt to new environmental conditions either through individual phenotypic plasticity, intraspecific genetic differentiation in adaptive traits, or both. Wild emmer wheat, Triticum dicoccoides, an annual grass with major distribution in Eastern Mediterranean region, is predicted to experience in the near future, as a result of global climate change, conditions more arid than in any part of the current species distribution. To understand the role of the above two means of adaptation, and the effect of population range position, we analyzed reaction norms, extent of plasticity, and phenotypic selection across two experimental environments of high and low water availability in two core and two peripheral populations of this species. We studied 12 quantitative traits, but focused primarily on the onset of reproduction and maternal investment, which are traits that are closely related to fitness and presumably involved in local adaptation in the studied species. We hypothesized that the population showing superior performance under novel environmental conditions will either be genetically differentiated in quantitative traits or exhibit higher phenotypic plasticity than the less successful populations. We found the core population K to be the most plastic in all three trait categories (phenology, reproductive traits, and fitness) and most successful among populations studied, in both experimental environments; at the same time, the core K population was clearly genetically differentiated from the two edge populations. Our results suggest that (1) two means of successful adaptation to new environmental conditions, phenotypic plasticity and adaptive genetic differentiation, are not mutually exclusive ways of achieving high adaptive ability; and (2) colonists from some core populations can be more successful in establishing beyond the current species range than colonists from the range extreme periphery with conditions seemingly closest to those in the new

  13. Comparisons between abiotic nitration and biotransformation reactions of phenolic micropollutants in activated sludge.

    PubMed

    Jewell, Kevin S; Wick, Arne; Ternes, Thomas A

    2014-01-01

    The transformation of selected phenolic substances was investigated during biological wastewater treatment. A main emphasis was put on the relevance of abiotic processes leading to toxic nitrophenolic transformation products (TPs). Due to their environmental relevance, the antiseptic ortho-phenylphenol (OPP), the plastics additive bisphenol A (BPA) and the psychoactive drug dextrorphan have been studied. Batch experiments confirmed that nitro- and nitroso-phenolic TPs can be formed under acidic conditions when nitrite is present. HNO2, N2O3 and NO and NO2 radicals are likely involved in the abiotic process. It was found that the process was promoted by the freezing of water samples, since this can lead to an unexpected pH drop. However, under conditions present at wastewater treatment plants (neutral pH, low nitrite concentrations), the formation of appreciable concentrations is rather unlikely through this process, since HNO2 concentrations are extremely low and NO and NO2 radicals will also react with other wastewater constituents. Thus, the transformation of phenolic substances such as OPP and BPA is mainly caused by biotic transformation. In addition to hydroxylation as a common reaction under aerobic conditions, the formation of sulfate conjugates was detected with the original compounds as well as with nitrophenolic TPs. Therefore, even when nitro-phenolic substances are formed it is likely that they are further transformed to sulfate conjugates. In raw wastewater and WWTP effluent nitrated BPA and NO2-dextrorphan were not detected. Only nitro-OPP was found in the influent of a WWTP with 2.3 ng/L, but it was not identified in the WWTP effluents. The concentrations of dextrorphan increased slightly during WWTP passage, possibly due to the cleavage of the glucuronide-conjugate, its human metabolite form, or demethylation of the prodrug dextromethorphan.

  14. The Plant Heat Stress Transcription Factors (HSFs): Structure, Regulation, and Function in Response to Abiotic Stresses.

    PubMed

    Guo, Meng; Liu, Jin-Hong; Ma, Xiao; Luo, De-Xu; Gong, Zhen-Hui; Lu, Ming-Hui

    2016-01-01

    Abiotic stresses such as high temperature, salinity, and drought adversely affect the survival, growth, and reproduction of plants. Plants respond to such unfavorable changes through developmental, physiological, and biochemical ways, and these responses require expression of stress-responsive genes, which are regulated by a network of transcription factors (TFs), including heat stress transcription factors (HSFs). HSFs play a crucial role in plants response to several abiotic stresses by regulating the expression of stress-responsive genes, such as heat shock proteins (Hsps). In this review, we describe the conserved structure of plant HSFs, the identification of HSF gene families from various plant species, their expression profiling under abiotic stress conditions, regulation at different levels and function in abiotic stresses. Despite plant HSFs share highly conserved structure, their remarkable diversification across plants reflects their numerous functions as well as their integration into the complex stress signaling and response networks, which can be employed in crop improvement strategies via biotechnological intervention.

  15. The Plant Heat Stress Transcription Factors (HSFs): Structure, Regulation, and Function in Response to Abiotic Stresses

    PubMed Central

    Guo, Meng; Liu, Jin-Hong; Ma, Xiao; Luo, De-Xu; Gong, Zhen-Hui; Lu, Ming-Hui

    2016-01-01

    Abiotic stresses such as high temperature, salinity, and drought adversely affect the survival, growth, and reproduction of plants. Plants respond to such unfavorable changes through developmental, physiological, and biochemical ways, and these responses require expression of stress-responsive genes, which are regulated by a network of transcription factors (TFs), including heat stress transcription factors (HSFs). HSFs play a crucial role in plants response to several abiotic stresses by regulating the expression of stress-responsive genes, such as heat shock proteins (Hsps). In this review, we describe the conserved structure of plant HSFs, the identification of HSF gene families from various plant species, their expression profiling under abiotic stress conditions, regulation at different levels and function in abiotic stresses. Despite plant HSFs share highly conserved structure, their remarkable diversification across plants reflects their numerous functions as well as their integration into the complex stress signaling and response networks, which can be employed in crop improvement strategies via biotechnological intervention. PMID:26904076

  16. Environmental conditions for alternative tree-cover states in high latitudes

    NASA Astrophysics Data System (ADS)

    Abis, Beniamino; Brovkin, Victor

    2017-02-01

    Previous analysis of the vegetation cover from remote sensing revealed the existence of three alternative modes in the frequency distribution of boreal tree cover: a sparsely vegetated treeless state, an open woodland state, and a forest state. Identifying which are the regions subject to multimodality, and assessing which are the main factors underlying their existence, is important to project future change of natural vegetation cover and its effect on climate.We study the link between the tree-cover fraction distribution and eight globally observed environmental factors: mean annual rainfall, mean minimum temperature, growing degree days above 0 °C, permafrost distribution, mean spring soil moisture, wildfire occurrence frequency, soil texture, and mean thawing depth. Through the use of generalised additive models, conditional histograms, and phase-space analysis, we find that environmental conditions exert a strong control over the tree-cover distribution, uniquely determining its state among the three dominant modes in ˜ 95 % of the cases. Additionally, we find that the link between individual environmental variables and tree cover is different within the four boreal regions considered here, namely eastern North Eurasia, western North Eurasia, eastern North America, and western North America. Furthermore, using a classification based on rainfall, minimum temperatures, permafrost distribution, soil moisture, wildfire frequency, and soil texture, we show the location of areas with potentially alternative tree-cover states under the same environmental conditions in the boreal region. These areas, although encompassing a minor fraction of the boreal area ( ˜ 5 %), correspond to possible transition zones with a reduced resilience to disturbances. Hence, they are of interest for a more detailed analysis of land-atmosphere interactions.

  17. Is ragweed pollen allergenicity governed by environmental conditions during plant growth and flowering?

    PubMed Central

    Ghiani, Alessandra; Ciappetta, Silvia; Gentili, Rodolfo; Asero, Riccardo; Citterio, Sandra

    2016-01-01

    Pollen allergenicity is one of the main factors influencing the prevalence and/or severity of allergic diseases. However, how genotype and environment contribute to ragweed pollen allergenicity has still to be established. To throw some light on the factors governing allergenicity, in this work 180 ragweed plants from three Regions (Canada, France, Italy) were grown in both controlled (constant) and standard environmental conditions (seasonal changes in temperature, relative humidity and light). Pollen from single plants was characterized for its allergenic potency and for the underlying regulation mechanisms by studying the qualitative and quantitative variations of the main isoforms of the major ragweed allergen Amb a 1. Results showed a statistically higher variability in allergenicity of pollen from standard conditions than from controlled conditions growing plants. This variability was due to differences among single plants, regardless of their origin, and was not ascribed to differences in the expression and IgE reactivity of individual Amb a 1 isoforms but rather to quantitative differences involving all the studied isoforms. It suggests that the allergenic potency of ragweed pollen and thus the severity of ragweed pollinosis mainly depends on environmental conditions during plant growth and flowering, which regulate the total Amb a 1 content. PMID:27457754

  18. Is ragweed pollen allergenicity governed by environmental conditions during plant growth and flowering?

    NASA Astrophysics Data System (ADS)

    Ghiani, Alessandra; Ciappetta, Silvia; Gentili, Rodolfo; Asero, Riccardo; Citterio, Sandra

    2016-07-01

    Pollen allergenicity is one of the main factors influencing the prevalence and/or severity of allergic diseases. However, how genotype and environment contribute to ragweed pollen allergenicity has still to be established. To throw some light on the factors governing allergenicity, in this work 180 ragweed plants from three Regions (Canada, France, Italy) were grown in both controlled (constant) and standard environmental conditions (seasonal changes in temperature, relative humidity and light). Pollen from single plants was characterized for its allergenic potency and for the underlying regulation mechanisms by studying the qualitative and quantitative variations of the main isoforms of the major ragweed allergen Amb a 1. Results showed a statistically higher variability in allergenicity of pollen from standard conditions than from controlled conditions growing plants. This variability was due to differences among single plants, regardless of their origin, and was not ascribed to differences in the expression and IgE reactivity of individual Amb a 1 isoforms but rather to quantitative differences involving all the studied isoforms. It suggests that the allergenic potency of ragweed pollen and thus the severity of ragweed pollinosis mainly depends on environmental conditions during plant growth and flowering, which regulate the total Amb a 1 content.

  19. In vivo role of nitric oxide in plant response to abiotic and biotic stress.

    PubMed

    Shi, Hai-Tao; Li, Rong-Jun; Cai, Wei; Liu, Wen; Fu, Zheng-Wei; Lu, Ying-Tang

    2012-03-01

    Over the past few years, nitric oxide (NO) has emerged as an important regulator in many physiological events, especially in response to abiotic and biotic stress. However, the roles of NO were mostly derived from pharmacological studies or the mutants impaired NO synthesis unspecifically. In our recent study, we highlighted a novel strategy by expressing the rat neuronal NO synthase (nNOS) in Arabidopsis to explore the in vivo role of NO. Our results suggested that plants were able to perform well in the constitutive presence of nNOS, and provided a new class of plant experimental system with specific in vivo NO release. Furthermore, our findings also confirmed that the in vivo NO is essential for most of environmental abiotic stresses and disease resistance against pathogen infection. Proper level of NO may be necessary and beneficial, not only in plant response to the environmental abiotic stress, but also to biotic stress.

  20. Biotic and abiotic controls of argentine ant invasion success at local and landscape scales

    USGS Publications Warehouse

    Menke, S.B.; Fisher, R.N.; Jetz, W.; Holway, D.A.

    2007-01-01

    Although the ecological success of introduced species hinges on biotic interactions and physical conditions, few experimental studies - especially on animals - have simultaneously investigated the relative importance of both types of factors. The lack of such research may stem from the common assumption that native and introduced species exhibit similar environmental tolerances. Here we combine experimental and spatial modeling approaches (1) to determine the relative importance of biotic and abiotic controls of Argentine ant (Linepithema humile) invasion success, (2) to examine how the importance of these factors changes with spatial scale in southern California (USA), and (3) to assess how Argentine ants differ from native ants in their environmental tolerances. A factorial field experiment that combined native ant removal with irrigation revealed that Argentine ants failed to invade any dry plots (even those lacking native ants) but readily invaded all moist plots. Native ants slowed the spread of Argentine ants into irrigated plots but did not prevent invasion. In areas without Argentine ants, native ant species showed variable responses to irrigation. At the landscape scale, Argentine ant occurrence was positively correlated with minimum winter temperature (but not precipitation), whereas native ant diversity increased with precipitation and was negatively correlated with minimum winter temperature. These results are of interest for several reasons. First, they demonstrate that fine-scale differences in the physical environment can eclipse biotic resistance from native competitors in determining community susceptibility to invasion. Second, our results illustrate surprising complexities with respect to how the abiotic factors limiting invasion can change with spatial scale, and third, how native and invasive species can differ in their responses to the physical environment. Idiosyncratic and scale-dependent processes complicate attempts to forecast where

  1. The NAC-type transcription factor OsNAC2 regulates ABA-dependent genes and abiotic stress tolerance in rice

    PubMed Central

    Shen, Jiabin; Lv, Bo; Luo, Liqiong; He, Jianmei; Mao, Chanjuan; Xi, Dandan; Ming, Feng

    2017-01-01

    Plants can perceive environmental changes and respond to external stressors. Here, we show that OsNAC2, a member of the NAC transcription factor family, was strongly induced by ABA and osmotic stressors such as drought and high salt. With reduced yields under drought conditions at the flowering stage, OsNAC2 overexpression lines had lower resistance to high salt and drought conditions. RNAi plants showed enhanced tolerance to high salinity and drought stress at both the vegetative and flowering stages. Furthermore, RNAi plants had improved yields after drought stress. A microarray assay indicated that many ABA-dependent stress-related genes were down-regulated in OsNAC2 overexpression lines. We further confirmed that OsNAC2 directly binds the promoters of LATE EMBRYOGENESIS ABUNDANT 3 (OsLEA3) and Stress-Activated Protein Kinases 1 (OsSAPK1), two marker genes in the abiotic stress and ABA response pathways, respectively. Our results suggest that in rice OsNAC2 regulates both abiotic stress responses and ABA-mediated responses, and acts at the junction between the ABA and abiotic stress pathways. PMID:28074873

  2. Stable Isotope Systematics of Abiotic Nitrite Reduction Coupled with Anaerobic Iron Oxidation: The Role of Reduced Clays and Fe-bearing Minerals

    NASA Astrophysics Data System (ADS)

    Grabb, K. C.; Buchwald, C.; Hansel, C. M.; Wankel, S. D.

    2014-12-01

    Under anaerobic conditions, it is widely assumed that nitrate (NO3-) and nitrite (NO2-) reduction is primarily the result of microbial respiration. However, it has also been shown that abiotic reduction of nitrate and nitrite by reduced iron (Fe(II)), whether mineral-bound or surface-associated, may also occur under certain environmentally relevant conditions. With a range of experimental conditions, we investigated the nitrogen and oxygen stable isotope systematics of abiotic nitrite reduction by Fe(II) in an effort to characterize biotic and abiotic processes in the environment. While homogenous reactions between NO2- and Fe(II) in artificial seawater showed little reduction, heterogeneous reactions involving Fe-containing minerals showed considerable nitrite loss. Specifically, rapid nitrite reduction was observed in experiments that included reduced clays (illite, Na-montmorillonite, and nontronite) and those that exhibited iron oxide formation (ferrihydrite, magnetite and/or green rust). While these iron oxides and clay minerals offer both a source of reduced iron in the mineral matrix as well as a surface for Fe(II) activation, control experiments with corundum as a non-Fe containing mineral surface showed little NO2- loss, implicating a more dominant role of structural Fe in the clays during nitrite reduction. The isotope effects for 15N and 18O (15ɛ and 18ɛ) ranged from 5 to 14‰ for 15ɛ and 5 to 17‰ for 18ɛ and were typically coupled such that 15ɛ ~ 18ɛ. Reactions below pH 7 were slower and the 18ɛ was affected by oxygen atom exchange with water. Although little data exist for comparison with the dual isotopes of microbial NO2- reduction, these data serve as a benchmark for evaluating the role of abiotic processes in N reduction, particularly in sediment systems low in organic carbon and high in iron.

  3. Cell Wall Metabolism in Response to Abiotic Stress.

    PubMed

    Le Gall, Hyacinthe; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-02-16

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions.

  4. Cell Wall Metabolism in Response to Abiotic Stress

    PubMed Central

    Gall, Hyacinthe Le; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-01-01

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions. PMID:27135320

  5. A Combination of Extreme Environmental Conditions Favor the Prevalence of Endospore-Forming Firmicutes

    PubMed Central

    Filippidou, Sevasti; Wunderlin, Tina; Junier, Thomas; Jeanneret, Nicole; Dorador, Cristina; Molina, Veronica; Johnson, David R.; Junier, Pilar

    2016-01-01

    Environmental conditions unsuitable for microbial growth are the rule rather than the exception in most habitats. In response to this, microorganisms have developed various strategies to withstand environmental conditions that limit active growth. Endospore-forming Firmicutes (EFF) deploy a myriad of survival strategies in order to resist adverse conditions. Like many bacterial groups, they can form biofilms and detect nutrient scarcity through chemotaxis. Moreover, within this paraphyletic group of Firmicutes, ecophysiological optima are diverse. Nonetheless, a response to adversity that delimits this group is the formation of wet-heat resistant spores. These strategies are energetically demanding and therefore might affect the biological success of EFF. Therefore, we hypothesize that abundance and diversity of EFF should be maximized in those environments in which the benefits of these survival strategies offsets the energetic cost. In order to address this hypothesis, geothermal and mineral springs and drillings were selected because in these environments of steep physicochemical gradients, diversified survival strategies may become a successful strategy.We collected 71 samples from geothermal and mineral environments characterized by none (null), single or multiple limiting environmental factors (temperature, pH, UV radiation, and specific mineral composition). To measure success, we quantified EFF gene copy numbers (GCN; spo0A gene) in relation to total bacterial GCN (16S rRNA gene), as well as the contribution of EFF to community composition. The quantification showed that relative GCN for EFF reached up to 20% at sites characterized by multiple limiting environmental factors, whereas it corresponded to less than 1% at sites with one or no limiting environmental factor. Pyrosequencing of the 16S rRNA gene supports a higher contribution of EFF at sites with multiple limiting factors. Community composition suggested a combination of phylotypes for which active

  6. A Combination of Extreme Environmental Conditions Favor the Prevalence of Endospore-Forming Firmicutes.

    PubMed

    Filippidou, Sevasti; Wunderlin, Tina; Junier, Thomas; Jeanneret, Nicole; Dorador, Cristina; Molina, Veronica; Johnson, David R; Junier, Pilar

    2016-01-01

    Environmental conditions unsuitable for microbial growth are the rule rather than the exception in most habitats. In response to this, microorganisms have developed various strategies to withstand environmental conditions that limit active growth. Endospore-forming Firmicutes (EFF) deploy a myriad of survival strategies in order to resist adverse conditions. Like many bacterial groups, they can form biofilms and detect nutrient scarcity through chemotaxis. Moreover, within this paraphyletic group of Firmicutes, ecophysiological optima are diverse. Nonetheless, a response to adversity that delimits this group is the formation of wet-heat resistant spores. These strategies are energetically demanding and therefore might affect the biological success of EFF. Therefore, we hypothesize that abundance and diversity of EFF should be maximized in those environments in which the benefits of these survival strategies offsets the energetic cost. In order to address this hypothesis, geothermal and mineral springs and drillings were selected because in these environments of steep physicochemical gradients, diversified survival strategies may become a successful strategy.We collected 71 samples from geothermal and mineral environments characterized by none (null), single or multiple limiting environmental factors (temperature, pH, UV radiation, and specific mineral composition). To measure success, we quantified EFF gene copy numbers (GCN; spo0A gene) in relation to total bacterial GCN (16S rRNA gene), as well as the contribution of EFF to community composition. The quantification showed that relative GCN for EFF reached up to 20% at sites characterized by multiple limiting environmental factors, whereas it corresponded to less than 1% at sites with one or no limiting environmental factor. Pyrosequencing of the 16S rRNA gene supports a higher contribution of EFF at sites with multiple limiting factors. Community composition suggested a combination of phylotypes for which active

  7. Using a Novel Wireless-Networked Decentralized Control Scheme under Unpredictable Environmental Conditions

    PubMed Central

    Chang, Chung-Liang; Huang, Yi-Ming; Hong, Guo-Fong

    2015-01-01

    The direction of sunshine or the installation sites of environmental control facilities in the greenhouse result in different temperature and humidity levels in the various zones of the greenhouse, and thus, the production quality of crop is inconsistent. This study proposed a wireless-networked decentralized fuzzy control scheme to regulate the environmental parameters of various culture zones within a greenhouse. The proposed scheme can create different environmental conditions for cultivating different crops in various zones and achieve diversification or standardization of crop production. A star-type wireless sensor network is utilized to communicate with each sensing node, actuator node, and control node in various zones within the greenhouse. The fuzzy rule-based inference system is used to regulate the environmental parameters for temperature and humidity based on real-time data of plant growth response provided by a growth stage selector. The growth stage selector defines the control ranges of temperature and humidity of the various culture zones according to the leaf area of the plant, the number of leaves, and the cumulative amount of light. The experimental results show that the proposed scheme is stable and robust and provides basis for future greenhouse applications. PMID:26569264

  8. Relationships between environmental conditions and the morphological variability of planktonic testate amoeba in four neotropical floodplains.

    PubMed

    Arrieira, Rodrigo Leite; Schwind, Leilane Talita Fatoreto; Joko, Ciro Yoshio; Alves, Geziele Mucio; Velho, Luiz Felipe Machado; Lansac-Tôha, Fábio Amodêo

    2016-10-01

    Planktonic testate amoebae in floodplains exhibit a broad-range of morphological variability. The variation size is already known, but it is necessary to know how this is for morphological variables. This study aimed to identify the relationships between testate amoebae morphology and environmental factors in four neotropical floodplains. We conducted detailed morphometric analyses on 27 common species of planktonic testate amoebae from genera Arcella, Centropyxis, Cucurbitella, Suiadifflugia, Difflugia, Lesquereusia and Netzelia. We sampled subsurface water from each lake in 72 lakes in four Brazilian floodplain lakes. Our goals were to assess: (1) the range of their morphological variability (a) over space within each floodplain, and (b) among the four floodplains, and (c) over time, and (2) which environmental factors explained this variation. Mean shell height and breadth varied considerably among the different floodplain lakes, especially in the Pantanal and Amazonian floodplains. The morphological variability of testate amoeba was correlated to environmental conditions (ammonia, nitrate, phosphate, chlorophyll-a, turbidity, temperature, and depth). Thus, understanding the morphological variation of the testate amoeba species can elucidate many questions involving the ecology of these organisms. Furthermore, could help molecular studies, bioindicator role of these organisations, environmental reconstruction, among others.

  9. Ectomycorrhizal fungal traits reflect environmental conditions along a coastal California edaphic gradient.

    PubMed

    Moeller, Holly V; Peay, Kabir G; Fukami, Tadashi

    2014-03-01

    Multispecies mutualisms, such as the association between trees and ectomycorrhizal fungi, are often shaped by environmental context. Here, we explored the functional mechanisms underlying this environmental filtering. Using a single population of Pinus muricata (Bishop pine) growing along a strong edaphic gradient, we examined how environmental stress affected ectomycorrhizal fungi. The gradient spans c. 400000 years of soil age, and reduced nutrient availability and increased water stress dwarf trees on older sites. Fungal community composition shifted with nutrient and water availability and with the stature of the P. muricata host trees. Not only did pygmy trees host a taxonomically different fungal subset as compared to nonpygmy trees, but associated fungal communities also differed in life history strategies: trees in more stressful conditions hosted fungi with more carbon-intensive foraging strategies. Our results indicate a link between environmental controls of host nutritional status and turnover in the ectomycorrhizal fungal community. The transition to more energy-intensive strategies under nutrient stress may allow for close recycling of recalcitrant nutrient pools within the root zone and facilitate transport of nutrients and water over long distances. These results highlight the value of life history data to understanding the mechanistic underpinnings of species distributions.

  10. Clothing insulation and temperature, layer and mass of clothing under comfortable environmental conditions.

    PubMed

    Kwon, JuYoun; Choi, Jeongwha

    2013-07-01

    This study was designed to investigate the relationship between the microclimate temperature and clothing insulation (Icl) under comfortable environmental conditions. In total, 20 subjects (13 women, 7 men) took part in this study. Four environmental temperatures were chosen: 14°C (to represent March/April), 25°C (May/June), 29°C (July/August), and 23°C (September/October). Wind speed (0.14ms-1) and humidity (45%) were held constant. Clothing microclimate temperatures were measured at the chest (Tchest) and on the interscapular region (Tscapular). Clothing temperature of the innermost layer (Tinnermost) was measured on this layer 30 mm above the centre of the left breast. Subjects were free to choose the clothing that offered them thermal comfort under each environmental condition. We found the following results. 1) All clothing factors except the number of lower clothing layers (Llower), showed differences between the different environmental conditions (P<0.05). The ranges of Tchest were 31.6 to 33.5°C and 32.2 to 33.4°C in Tscapular. The range of Tinnermost was 28.6 to 32.0°C. The range of the upper clothing layers (Lupper) and total clothing mass (Mtotal) was 1.1 to 3.2 layers and 473 to 1659 g respectively. The range of Icl was 0.78 to 2.10 clo. 2) Post hoc analyses showed that analysis of Tinnermost produced the same results as for that of Icl. Likewise, the analysis of Lupper produced the same result as the analysis of the number of total layers (Ltotal) within an outfit. 3) Air temperature (ta) had positive relationships with Tchest and Tscapular and with Tinnermost but had inverse correlations with Icl, Mtotal, Lupper and Ltotal. Tchest, Tscapular, and Tinnermost increased as ta rose. 4) Icl had inverse relationships with Tchest and Tinnermost, but positive relationships with Mtotal, Lupper and Ltotal. Icl could be estimated by Mtotal, Lupper, and Tscapular using a multivariate linear regression model. 5) Lupper had positive relationships with Icl

  11. Clothing insulation and temperature, layer and mass of clothing under comfortable environmental conditions

    PubMed Central

    2013-01-01

    This study was designed to investigate the relationship between the microclimate temperature and clothing insulation (Icl) under comfortable environmental conditions. In total, 20 subjects (13 women, 7 men) took part in this study. Four environmental temperatures were chosen: 14°C (to represent March/April), 25°C (May/June), 29°C (July/August), and 23°C (September/October). Wind speed (0.14ms-1) and humidity (45%) were held constant. Clothing microclimate temperatures were measured at the chest (Tchest) and on the interscapular region (Tscapular). Clothing temperature of the innermost layer (Tinnermost) was measured on this layer 30 mm above the centre of the left breast. Subjects were free to choose the clothing that offered them thermal comfort under each environmental condition. We found the following results. 1) All clothing factors except the number of lower clothing layers (Llower), showed differences between the different environmental conditions (P<0.05). The ranges of Tchest were 31.6 to 33.5°C and 32.2 to 33.4°C in Tscapular. The range of Tinnermost was 28.6 to 32.0°C. The range of the upper clothing layers (Lupper) and total clothing mass (Mtotal) was 1.1 to 3.2 layers and 473 to 1659 g respectively. The range of Icl was 0.78 to 2.10 clo. 2) Post hoc analyses showed that analysis of Tinnermost produced the same results as for that of Icl. Likewise, the analysis of Lupper produced the same result as the analysis of the number of total layers (Ltotal) within an outfit. 3) Air temperature (ta) had positive relationships with Tchest and Tscapular and with Tinnermost but had inverse correlations with Icl, Mtotal, Lupper and Ltotal. Tchest, Tscapular, and Tinnermost increased as ta rose. 4) Icl had inverse relationships with Tchest and Tinnermost, but positive relationships with Mtotal, Lupper and Ltotal. Icl could be estimated by Mtotal, Lupper, and Tscapular using a multivariate linear regression model. 5) Lupper had positive relationships with Icl

  12. Bill E. Kunkle Interdisciplinary Beef Symposium: Animal welfare concerns for cattle exposed to adverse environmental conditions.

    PubMed

    Mader, T L

    2014-12-01

    Increasing awareness of animal welfare has become a priority in food production systems involving animals. Under normal working environments, production practices are constantly evaluated to maintain optimum levels of animal well-being. However, during periods of adverse weather, optimum conditions for animal comfort, as well as animal performance, are often compromised. In the Midwest and Great Plains states, the heat waves of 1995, 1999, 2006, 2009, 2010, and 2013 were particularly difficult on animals reared in confinement, with documented cattle losses approaching 5,000 head each year. Additionally, during the summer of 2011, nearly 15,000 head of cattle across 5 states were lost as a result of heat stress. During prolonged periods of heat stress, lower conceptions rates are observed in livestock. In addition, animals reared in confinement buildings are often compromised because of limitations in ventilation systems. Under the opposite environmental spectrum, the winters of 1992 to 1993, 1996 to 1997, 1997 to 1998, 2006 to 2007, and 2008 to 2009 caused hardship for livestock producers, particularly for those rearing animals in an outdoor environment. During the winters of 1996 to 1997 and 2008 to 2009 up to 50% of the newborn calves were lost in many areas, with over 75,000 head of cattle lost in the northern plains states. Late fall and early winter snowstorms in 1992, 1997, 2006, and 2013 resulted in the loss of over 25,000 head of cattle each year in the Great Plains region of the United States. Economic losses from reduced performance of cattle experiencing severe environmental stress likely exceed losses associated with livestock death by 5- to 10-fold. Use of alternative supplementation programs may need to be considered for livestock challenged by adverse environmental conditions. Use of additional water for consumption and cooling, shade, and/or alternative management strategies need to be considered to help livestock cope with heat stress. For animals

  13. Living under stressful conditions: Fish life history strategies across environmental gradients in estuaries

    NASA Astrophysics Data System (ADS)

    Teichert, Nils; Pasquaud, Stéphanie; Borja, Angel; Chust, Guillem; Uriarte, Ainhize; Lepage, Mario

    2017-03-01

    The life history strategies of fishes can be defined by specific combinations of demographic traits that influence species performances depending on environmental features. Hence, the constraints imposed by the local conditions restrict the range of successful strategies by excluding species poorly adapted. In the present study, we compared the demographic strategies of fish caught in 47 estuaries of the North East Atlantic coast, aiming to determine the specific attributes of resident species and test for changes in trait associations along the environmental gradients. Eight demographic traits were considered to project our findings within a conceptual triangular model, composed on three endpoint strategies: (i) periodic (large size, long generation time, high fecundity); (ii) opportunistic (small size, short generation time, high reproductive effort); and (iii) equilibrium (low fecundity, large egg size, parental care). We demonstrated that various life history strategies co-exist in estuaries, but equilibrium species were scarce and restricted to euhaline open-water. Resident species form a specialised assemblage adapted to high spatiotemporal variability of estuarine conditions, i.e. opportunistic attributes associated with parental care. Even with these singular attributes, our findings revealed changes in distribution of resident species across the estuarine gradients linked to their life history traits. Among other patterns, the diversity of life history strategies significantly decreased from euhaline to oligohaline areas and along gradient of human disturbances. These trends were associated with a convergence of species traits toward short generation times, suggesting that long-lived species with late maturation are more severely impacted by disturbance and environmental stress.

  14. Identifying the Environmental Conditions Favouring West Nile Virus Outbreaks in Europe

    PubMed Central

    Metz, Markus; Rosà, Roberto; Marini, Giovanni; Chadwick, Elizabeth; Neteler, Markus

    2015-01-01

    West Nile Virus (WNV) is a globally important mosquito borne virus, with significant implications for human and animal health. The emergence and spread of new lineages, and increased pathogenicity, is the cause of escalating public health concern. Pinpointing the environmental conditions that favour WNV circulation and transmission to humans is challenging, due both to the complexity of its biological cycle, and the under-diagnosis and reporting of epidemiological data. Here, we used remote sensing and GIS to enable collation of multiple types of environmental data over a continental spatial scale, in order to model annual West Nile Fever (WNF) incidence across Europe and neighbouring countries. Multi-model selection and inference were used to gain a consensus from multiple linear mixed models. Climate and landscape were key predictors of WNF outbreaks (specifically, high precipitation in late winter/early spring, high summer temperatures, summer drought, occurrence of irrigated croplands and highly fragmented forests). Identification of the environmental conditions associated with WNF outbreaks is key to enabling public health bodies to properly focus surveillance and mitigation of West Nile virus impact, but more work needs to be done to enable accurate predictions of WNF risk. PMID:25803814

  15. Photoacclimation supports environmental tolerance of a sponge to turbid low-light conditions

    NASA Astrophysics Data System (ADS)

    Biggerstaff, A.; Smith, D. J.; Jompa, J.; Bell, J. J.

    2015-12-01

    Changes to coral reefs are occurring worldwide, often resulting in declining environmental quality which can be in the form of higher sedimentation rates and increased turbidity. While environmental acclimation to turbid and low-light conditions has been extensively studied in corals, far less is known about other phototrophic reef invertebrates. The photosynthetic cyanobacteria containing sponge Lamellodysidea herbacea is one of the most abundant sponges in the Wakatobi Marine National Park (WMNP, Indonesia), and its abundance is greatest at highly disturbed, turbid sites. This study investigated photoacclimation of L. herbacea symbionts to turbid reef sites using in situ PAM fluorometry combined with shading and transplant experiments at environmental extremes of light availability for this species. We found in situ photoacclimation of L. herbacea to both shallow, clear, high-light environments and deep, turbid, low-light environments. Shading experiments provide some evidence that L. herbacea are dependent on nutrition from their photosymbionts as significant tissue loss was seen in shaded sponges. Symbionts within surviving shaded tissue showed evidence of photoacclimation. Lamellodysidea herbacea transplanted from high- to low-light conditions appeared to have photoacclimated within 5 d with no significant effect of the lowered light level on survival. This ability of L. herbacea to photoacclimate to rapid and extreme changes in light availability may be one of the factors contributing to their survival on more turbid reef sites in the WMNP. Our study highlights the ability of some sponge species to acclimate to changes in light levels as a result of increased turbidity.

  16. Identifying the environmental conditions favouring West Nile Virus outbreaks in Europe.

    PubMed

    Marcantonio, Matteo; Rizzoli, Annapaola; Metz, Markus; Rosà, Roberto; Marini, Giovanni; Chadwick, Elizabeth; Neteler, Markus

    2015-01-01

    West Nile Virus (WNV) is a globally important mosquito borne virus, with significant implications for human and animal health. The emergence and spread of new lineages, and increased pathogenicity, is the cause of escalating public health concern. Pinpointing the environmental conditions that favour WNV circulation and transmission to humans is challenging, due both to the complexity of its biological cycle, and the under-diagnosis and reporting of epidemiological data. Here, we used remote sensing and GIS to enable collation of multiple types of environmental data over a continental spatial scale, in order to model annual West Nile Fever (WNF) incidence across Europe and neighbouring countries. Multi-model selection and inference were used to gain a consensus from multiple linear mixed models. Climate and landscape were key predictors of WNF outbreaks (specifically, high precipitation in late winter/early spring, high summer temperatures, summer drought, occurrence of irrigated croplands and highly fragmented forests). Identification of the environmental conditions associated with WNF outbreaks is key to enabling public health bodies to properly focus surveillance and mitigation of West Nile virus impact, but more work needs to be done to enable accurate predictions of WNF risk.

  17. Detection of respiratory viruses in shelter dogs maintained under varying environmental conditions.

    PubMed

    Monteiro, Francielle Liz; Cargnelutti, Juliana Felipetto; Martins, Mathias; Anziliero, Deniz; Erhardt, Magnólia Martins; Weiblen, Rudi; Flores, Eduardo Furtado

    Three dog shelters in Rio Grande do Sul were investigated for associations between the occurrence of respiratory viruses and shelter environmental conditions. Nasal secretions randomly collected during the cold season were tested via PCR, and this data collection was followed by nucleotide sequencing of the amplicons. In shelter #1 (poor sanitary and nutritional conditions, high animal density and constant contact between dogs), 78% (58/74) of the nasal samples were positive, 35% (26/74) of which were in single infections and 44% (32/74) of which were in coinfections. Shelters #2 and #3 had satisfactory sanitary and nutritional conditions, outdoors exercise areas (#2) and animal clustering by groups (#3). In shelter #2, 9% (3/35) of the samples were positive for Canine parainfluenza virus (CPIV), and 6% (2/35) were positive for Canid herpesvirus 1 (CaHV-1). In shelter #3, 9% (7/77) of the samples were positive for Canine adenovirus type 2 (CAdV-2), and 1% (1/77) were positive for Canine distemper virus (CDV). The amplicon sequences (CPIV and CDV nucleoprotein gene; CAdV-2 E3 gene; CaHV-1 glycoprotein B gene) showed 94-100% nucleotide identity with GenBank sequences. Our results demonstrate that CPIV, CAdV-2 and CDV are common in dog shelters and that their frequencies appear to be related with environmental and nutritional conditions. These results indicate the need for control/prevention measures, including vaccination and environmental management, to minimize these infections and improve dog health.

  18. Laboratory emissivity measurements of the plagioclase solid solution series under varying environmental conditions

    NASA Astrophysics Data System (ADS)

    Donaldson Hanna, K. L.; Thomas, I. R.; Bowles, N. E.; Greenhagen, B. T.; Pieters, C. M.; Mustard, J. F.; Jackson, C. R. M.; Wyatt, M. B.

    2012-11-01

    New laboratory thermal infrared emissivity measurements of the plagioclase solid solution series over the 1700 ˜ 400 cm-1 (6-25 μm) spectral range are presented. Thermal infrared (TIR) spectral changes for fine-particulate samples (0-25 μm) are characterized for the first time under different laboratory environmental conditions: ambient (terrestrial-like), half-vacuum (Mars-like), vacuum, and vacuum with cooled chamber (lunar-like). Under all environmental conditions the Christiansen Feature (CF) is observed to vary in a systematic way with Na-rich end-member (albite) having a CF position at the highest wave number (shortest wavelength) and the Ca-rich end-member (anorthite) having a CF position with the lowest wave number (longest wavelength). As pressure decreases to <10-3 mbar four observations are made: (1) the CF position shifts to higher wave numbers, (2) the spectral contrast of the CF increases relative to the RB, (3) the spectral contrast of the RB in the ˜1200-900 spectral range decreases while the spectral contrast of the RB in the ˜800-400 spectral range either increases or remains the same and (4) the TF disappears. A relationship between the wavelength position of the CF measured under simulated lunar conditions and plagioclase composition (An#) is developed. Although its exact form may evolve with additional data, this linear relationship should be applied to current and future TIR data sets of the Moon. Our new spectral measurements demonstrate how sensitive thermal infrared emissivity spectra of plagioclase feldspars are to the environmental conditions under which they are measured and provide important constraints for interpreting current and future thermal infrared data sets.

  19. Physiological and Molecular Aspects of Tolerance to Environmental Constraints in Grain and Forage Legumes

    PubMed Central

    Bargaz, Adnane; Zaman-Allah, Mainassara; Farissi, Mohamed; Lazali, Mohamed; Drevon, Jean-Jacques; Maougal, Rim T.; Carlsson, Georg

    2015-01-01

    Despite the agronomical and environmental advantages of the cultivation of legumes, their production is limited by various environmental constraints such as water or nutrient limitation, frost or heat stress and soil salinity, which may be the result of pedoclimatic conditions, intensive use of agricultural lands, decline in soil fertility and environmental degradation. The development of more sustainable agroecosystems that are resilient to environmental constraints will therefore require better understanding of the key mechanisms underlying plant tolerance to abiotic constraints. This review provides highlights of legume tolerance to abiotic constraints with a focus on soil nutrient deficiencies, drought, and salinity. More specifically, recent advances in the physiological and molecular levels of the adaptation of grain and forage legumes to abiotic constraints are discussed. Such adaptation involves complex multigene controlled-traits which also involve multiple sub-traits that are likely regulated under the control of a number of candidate genes. This multi-genetic control of tolerance traits might also be multifunctional, with extended action in response to a number of abiotic constraints. Thus, concrete efforts are required to breed for multifunctional candidate genes in order to boost plant stability under various abiotic constraints. PMID:26287163

  20. Physiological and Molecular Aspects of Tolerance to Environmental Constraints in Grain and Forage Legumes.

    PubMed

    Adnane, Bargaz; Mainassara, Zaman-Allah; Mohamed, Farissi; Mohamed, Lazali; Jean-Jacques, Drevon; Rim, Maougal T; Georg, Carlsson

    2015-08-13

    Despite the agronomical and environmental advantages of the cultivation of legumes, their production is limited by various environmental constraints such as water or nutrient limitation, frost or heat stress and soil salinity, which may be the result of pedoclimatic conditions, intensive use of agricultural lands, decline in soil fertility and environmental degradation. The development of more sustainable agroecosystems that are resilient to environmental constraints will therefore require better understanding of the key mechanisms underlying plant tolerance to abiotic constraints. This review provides highlights of legume tolerance to abiotic constraints with a focus on soil nutrient deficiencies, drought, and salinity. More specifically, recent advances in the physiological and molecular levels of the adaptation of grain and forage legumes to abiotic constraints are discussed. Such adaptation involves complex multigene controlled-traits which also involve multiple sub-traits that are likely regulated under the control of a number of candidate genes. This multi-genetic control of tolerance traits might also be multifunctional, with extended action in response to a number of abiotic constraints. Thus, concrete efforts are required to breed for multifunctional candidate genes in order to boost plant stability under various abiotic constraints.

  1. Influence of high gravity process conditions on the environmental impact of ethanol production from wheat straw.

    PubMed

    Janssen, Matty; Tillman, Anne-Marie; Cannella, David; Jørgensen, Henning

    2014-12-01

    Biofuel production processes at high gravity are currently under development. Most of these processes however use sugars or first generation feedstocks as substrate. This paper presents the results of a life cycle assessment (LCA) of the production of bio-ethanol at high gravity conditions from a second generation feedstock, namely, wheat straw. The LCA used lab results of a set of 36 process configurations in which dry matter content, enzyme preparation and loading, and process strategy were varied. The LCA results show that higher dry matter content leads to a higher environmental impact of the ethanol production, but this can be compensated by reducing the impact of enzyme production and use, and by polyethylene glycol addition at high dry matter content. The results also show that the renewable and non-renewable energy use resulting from the different process configurations ultimately determine their environmental impact.

  2. The effect of environmentally relevant conditions on PVP stabilised gold nanoparticles.

    PubMed

    Hitchman, Adam; Smith, Gregory H Sambrook; Ju-Nam, Yon; Sterling, Mark; Lead, Jamie R

    2013-01-01

    Nanoparticles are a major product from the nanotechnology industry and have been shown to have a potentially large environmental exposure and hazard. In this study, sterically stabilised polyvinyl pyrrolidone (PVP) 7 nm gold nanoparticles (NPs) were produced and characterised as prepared by surface plasmon resonance (SPR), size and aggregation, morphology and surface charge. Changes in these properties with changes in environmentally relevant conditions (pH, ionic strength, Ca concentration and fulvic acid presence) were quantified. These sterically stabilised NPs showed no aggregation with changes in pH or inorganic ions, even under high (0.1 M) Ca concentrations. In addition, the presence of fulvic acid resulted in no observable changes in SPR, size, aggregation or surface chemistry, suggesting limited interaction between the PVP stabilised nanoparticles and fulvic acid. Due to the lack of aggregation and interaction, these NPs are expected to be highly mobile and potentially bioavailable in the environment.

  3. Realized niche width of a brackish water submerged aquatic vegetation under current environmental conditions and projected influences of climate change.

    PubMed

    Kotta, Jonne; Möller, Tiia; Orav-Kotta, Helen; Pärnoja, Merli

    2014-12-01

    Little is known about how organisms might respond to multiple climate stressors and this lack of knowledge limits our ability to manage coastal ecosystems under contemporary climate change. Ecological models provide managers and decision makers with greater certainty that the systems affected by their decisions are accurately represented. In this study Boosted Regression Trees modelling was used to relate the cover of submerged aquatic vegetation to the abiotic environment in the brackish Baltic Sea. The analyses showed that the majority of the studied submerged aquatic species are most sensitive to changes in water temperature, current velocity and winter ice scour. Surprisingly, water salinity, turbidity and eutrophication have little impact on the distributional pattern of the studied biota. Both small and large scale environmental variability contributes to the variability of submerged aquatic vegetation. When modelling species distribution under the projected influences of climate change, all of the studied submerged aquatic species appear to be very resilient to a broad range of environmental perturbation and biomass gains are expected when seawater temperature increases. This is mainly because vegetation develops faster in spring and has a longer growing season under the projected climate change scenario.

  4. Environmental Influences on the Release of Ophiosphaerella agrostis Ascospores Under Controlled and Field Conditions.

    PubMed

    Kaminski, John E; Dernoeden, Peter H; O'Neill, Nichole R

    2005-11-01

    ABSTRACT Ophiosphaerella agrostis, the causal agent of dead spot of creeping bentgrass (Agrostis stolonifera), can produce prodigious numbers of pseudothecia and ascospores throughout the summer. The environmental conditions and seasonal timings associated with O. agrostis ascospore release are unknown. The objectives of this research were to (i) determine the influence of light and relative humidity on ascospore release in a controlled environment, (ii) document the seasonal and daily discharge patterns of ascospores in the field, and (iii) elucidate environmental conditions that promote ascospore release under field conditions. In a growth chamber, a sharp decrease (100 to approximately 50%; 25 degrees C) in relative humidity resulted in a rapid (1- to 3-h) discharge of ascospores, regardless of whether pseudothecia were incubated in constant light or dark. In the field, daily ascospore release increased between 1900 and 2300 h and again between 0700 and 1000 h local time. The release of ascospores occurred primarily during the early morning hours when relative humidity was decreasing and the canopy began to dry, or during evening hours when relative humidity was low and dew began to form. Few ascospores were released between 1100 and 1800 h when the bentgrass canopy was dry. The release of ascospores also was triggered by precipitation. Of the ascospores collected during precipitation events, 87% occurred within 10 h of the beginning of each event.

  5. Water retention of selected microorganisms and Martian soil simulants under close to Martian environmental conditions

    NASA Astrophysics Data System (ADS)

    Jänchen, J.; Bauermeister, A.; Feyh, N.; de Vera, J.-P.; Rettberg, P.; Flemming, H.-C.; Szewzyk, U.

    2014-08-01

    Based on the latest knowledge about microorganisms resistant towards extreme conditions on Earth and results of new complex models on the development of the Martian atmosphere we quantitatively examined the water-bearing properties of selected extremophiles and simulated Martian regolith components and their interaction with water vapor under close to Martian environmental conditions. Three different species of microorganisms have been chosen and prepared for our study: Deinococcus geothermalis, Leptothrix sp. OT_B_406, and Xanthoria elegans. Further, two mineral mixtures representing the early and the late Martian surface as well as montmorillonite as a single component of phyllosilicatic minerals, typical for the Noachian period on Mars, were selected. The thermal mass loss of the minerals and bacteria-samples was measured by thermoanalysis. The hydration and dehydration properties were determined under close to Martian environmental conditions by sorption isotherm measurements using a McBain-Bakr quartz spring balance. It was possible to determine the total water content of the materials as well as the reversibly bound water fraction as function of the atmospheres humidity by means of these methods. Our results are important for the evaluation of future space mission outcomes including astrobiological aspects and can support the modeling of the atmosphere/surface interaction by showing the influence on the water inventory of the upper most layer of the Martian surface.

  6. Genomic sweep and potential genetic rescue during limiting environmental conditions in an isolated wolf population.

    PubMed

    Adams, Jennifer R; Vucetich, Leah M; Hedrick, Philip W; Peterson, Rolf O; Vucetich, John A

    2011-11-22

    Genetic rescue, in which the introduction of one or more unrelated individuals into an inbred population results in the reduction of detrimental genetic effects and an increase in one or more vital rates, is a potentially important management tool for mitigating adverse effects of inbreeding. We used molecular techniques to document the consequences of a male wolf (Canis lupus) that immigrated, on its own, across Lake Superior ice to the small, inbred wolf population in Isle Royale National Park. The immigrant's fitness so exceeded that of native wolves that within 2.5 generations, he was related to every individual in the population and his ancestry constituted 56 per cent of the population, resulting in a selective sweep of the total genome. In other words, all the male ancestry (50% of the total ancestry) descended from this immigrant, plus 6 per cent owing to the success of some of his inbred offspring. The immigration event occurred in an environment where space was limiting (i.e. packs occupied all available territories) and during a time when environmental conditions had deteriorated (i.e. wolves' prey declined). These conditions probably explain why the immigration event did not obviously improve the population's demography (e.g. increased population numbers or growth rate). Our results show that the beneficial effects of gene flow may be substantial and quickly manifest, short-lived under some circumstances, and how the demographic benefits of genetic rescue might be masked by environmental conditions.

  7. [Fluorescence parameters of chlorophyll in leaves of caules plants in different environmental conditions].

    PubMed

    Iakovleva, O V; Talipova, E V; Kukarskikh, G P; Krendeleeva, T E; Rubin, A B

    2005-01-01

    The functional state of medicinal plants of Convallaria majalis L., Vaccinium vitis-idaeae L., Arctostaphylos uva-ursi L. in connection with heavy metal accumulation in their leaves under man impact was studied by the pulse-amplitude-modulation (PAM) fluorometric method. The relative yield of variable fluorescence (F(v)/F(m)), induction of fluorescence of chlorophyll, and fluorescence quenching processes in leaves at different distances from the local Kirov-Sovetsk, Kirov-Omutninsk road in Kirov region were analyzed. Changes in biophysical characteristics with the increasing content of heavy metals in leaves were demonstrated. The most informative characteristic is F(v)/F(m). Its value correlates with the activity of the photosynthetic apparatus and reflects the potential effeciency of photosynthesis. The better are the environmental conditions of plant growth, the higher is the F(v)/F(m) ratio and the lower is its average statistical deviation. Fluorescence induction curves do not always vary in shape under our ecological conditions, indicating relatively favorable conditions at places of plant growth investigated. The rate of the environmental pollution in the investigated region is not critical, since the content of heavy metal in leaves does not change considerably with the distance from the road.

  8. Thermal Cyclic Behavior of Thermal and Environmental Barrier Coatings Investigated Under High-Heat-Flux Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Lee, Kang N.; Miller, Robert A.

    2002-01-01

    Environmental barrier coatings (EBC's) have been developed to protect silicon-carbide- (SiC) based ceramic components in gas turbine engines from high-temperature environmental attack. With continuously increasing demands for significantly higher engine operating temperature, future EBC systems must be designed for both thermal and environmental protection of the engine components in combustion gases. In particular, the thermal barrier functions of EBC's become a necessity for reducing the engine-component thermal loads and chemical reaction rates, thus maintaining the required mechanical properties and durability of these components. Advances in the development of thermal and environmental barrier coatings (TBC's and EBC's, respectively) will directly impact the successful use of ceramic components in advanced engines. To develop high-performance coating systems, researchers must establish advanced test approaches. In this study, a laser high-heat-flux technique was employed to investigate the thermal cyclic behavior of TBC's and EBC's on SiC-reinforced SiC ceramic matrix composite substrates (SiC/SiC) under high thermal gradient and thermal cycling conditions. Because the laser heat flux test approach can monitor the coating's real-time thermal conductivity variations at high temperature, the coating thermal insulation performance, sintering, and delamination can all be obtained during thermal cycling tests. Plasma-sprayed yttria-stabilized zirconia (ZrO2-8 wt% Y2O3) thermal barrier and barium strontium aluminosilicate-based environmental barrier coatings (BSAS/BSAS+mullite/Si) on SiC/SiC ceramic matrix composites were investigated in this study. These coatings were laser tested in air under thermal gradients (the surface and interface temperatures were approximately 1482 and 1300 C, respectively). Some coating specimens were also subject to alternating furnace cycling (in a 90-percent water vapor environment at 1300 C) and laser thermal gradient cycling tests

  9. Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses.

    PubMed

    Atkinson, Nicky J; Lilley, Catherine J; Urwin, Peter E

    2013-08-01

    In field conditions, plants may experience numerous environmental stresses at any one time. Research suggests that the plant response to multiple stresses is different from that for individual stresses, producing nonadditive effects. In particular, the molecular signaling pathways controlling biotic and abiotic stress responses may interact and antagonize one another. The transcriptome response of Arabidopsis (Arabidopsis thaliana) to concurrent water deficit (abiotic stress) and infection with the plant-parasitic nematode Heterodera schachtii (biotic stress) was analyzed by microarray. A unique program of gene expression was activated in response to a combination of water deficit and nematode stress, with 50 specifically multiple-stress-regulated genes. Candidate genes with potential roles in controlling the response to multiple stresses were selected and functionally characterized. RAPID ALKALINIZATION FACTOR-LIKE8 (AtRALFL8) was induced in roots by joint stresses but conferred susceptibility to drought stress and nematode infection when overexpressed. Constitutively expressing plants had stunted root systems and extended root hairs. Plants may produce signal peptides such as AtRALFL8 to induce cell wall remodeling in response to multiple stresses. The methionine homeostasis gene METHIONINE GAMMA LYASE (AtMGL) was up-regulated by dual stress in leaves, conferring resistance to nematodes when overexpressed. It may regulate methionine metabolism under conditions of multiple stresses. AZELAIC ACID INDUCED1 (AZI1), involved in defense priming in systemic plant immunity, was down-regulated in leaves by joint stress and conferred drought susceptibility when overexpressed, potentially as part of abscisic acid-induced repression of pathogen response genes. The results highlight the complex nature of multiple stress responses and confirm the importance of studying plant stress factors in combination.

  10. Environmental conditions affecting concentrations of He, CO2, O2 and N2 in soil gases

    USGS Publications Warehouse

    Hinkle, Margaret E.

    1994-01-01

    The measurement of concentrations of volatile species in soil gases has potential for use in geochemical exploration for concealed ore deposits and for monitoring of subsurface contaminants. However, the interpretation of anomalies in surficial gases can be difficult because soil-gas concentrations are dependent on both meteorological and environmental conditions.For this study, concentrations of He, CO2, O2 and N2 and meteorological conditions were monitored for 10–14 months at eight nonmineralized sites in both humid and dry environments. Gases were collected at 0.6–0.7-m depth at seven sites. At one site, gases were collected from 0.3-, 0.6-, 1.2-, and 2.0-m depths; diurnal monitoring studies were conducted at this site also. Rain and snowfall, soil and air temperatures, barometric pressure, and relative humidity were monitored at all the sites. The sand, silt and clay content, and the organic carbon content of surficial soil were measured at each site.Meteorological conditions generally affected He and CO2 concentrations in the same way at all the sites; however, these effects were modified by local environmental conditions. Both seasonal and diurnal concentration changes occurred. The most important seasonal concentration changes were related to rain and snowfall and soil and air temperatures. Seasonal changes tended to be larger then the diurnal changes, but both could be related to the same processes. Local conditions of soil type and organic content affected the amount of pore space and moisture present in the soil and therefore the soil-gas concentrations.

  11. Evaluation of natural colonisation of cementitious materials: effect of bioreceptivity and environmental conditions.

    PubMed

    Manso, Sandra; Calvo-Torras, María Ángeles; De Belie, Nele; Segura, Ignacio; Aguado, Antonio

    2015-04-15

    Incorporation of living organisms, such as photosynthetic organisms, on the structure envelope has become a priority in the area of architecture and construction due to aesthetical, economic and ecological advantages. Important research efforts are made to achieve further improvements, such as for the development of cementitious materials with an enhanced bioreceptivity to stimulate biological growth. Previously, the study of the bioreceptivity of cementitious materials has been carried out mainly under laboratory conditions although field-scale experiments may present different results. This work aims at analysing the colonisation of cementitious materials with different levels of bioreceptivity by placing them in three different environmental conditions. Specimens did not present visual colonisation, which indicates that environmental conditions have a greater impact than intrinsic properties of the material at this stage. Therefore, it appears that in addition to an optimized bioreceptivity of the concrete (i.e., composition, porosity and roughness), extra measures are indispensable for a rapid development of biological growth on concrete surfaces. An analysis of the colonisation in terms of genus and quantity of the most representative microorganisms found on the specimens for each location was carried out and related to weather conditions, such as monthly average temperature and total precipitation, and air quality in terms of NOx, SO2, CO and O3. OPC-based specimens presented a higher colonisation regarding both biodiversity and quantity. However, results obtained in a previous experimental programme under laboratory conditions suggested a higher suitability of Magnesium Phosphate Cement-based (MPC-based) specimens for algal growth. Consequently, carefully considering the environment and the relationships between the different organisms present in an environment is vital for successfully using a cementitious material as a substrate for biological growth.

  12. Abiotic Versus Biotic Weathering Of Olivine As Possible Biosignatures

    NASA Technical Reports Server (NTRS)

    Longazo, Teresa G.; Wentworth, Susan J.; Clemett, Simon J.; Southam, Gordon; McKay, David S.

    2001-01-01

    We are investigating the weathering of silicate minerals by both purely inorganic, and biologically mediated processes using field-emission scanning electron microscopy (FESEM) and energy dispersive x-ray spectroscopy (EDS). By resolving surface textures and chemical compositions of weathered surfaces at the sub-micron scale we hope to be able to distinguish abiotic from biotic weathering processes and so establish a new biosignature applicable to the study of astromaterials including but not limited to the Martian meteorites. Sterilized olivine grains (San Carlos, Arizona) no more than 1-2 mm in their longest dimension were optically assayed to be uniform in color and free of inclusions were selected as weathering subjects. Prior to all experiments surface morphologies and Fe/Mg ratios were determined for each grain using FE-SEM and EDS. Experiments were divided into two categories abiotic and biotic and were compared with "naturally" weathered samples. For the preliminary experiments, two trials (open and closed to the ambient laboratory environment) were performed under abiotic conditions, and three trials under biotic conditions (control, day 1 and day 2). The open system abiotic trials used sterile grains heated at 98 C and 200 C for both 24 and 48 hours in 1L double distilled de-ionized water. The closed system abiotic trials were conducted under the same conditions but in a sealed two layer steel/Teflon "bomb" apparatus. The biotic trials used sterile grains mounted in a flow-through device attached to a wellhead on the Columbia River aquifer. Several discolored, altered, grains were selected to document "natural" weathering surface textures for comparison with the experimental samples. Preliminary results indicate there are qualitative differences in weathered surface textures among all the designed experiments. The olivine grains in abiotic trials displayed etching, pitting, denticulate margins, dissolution and clay formation. The scale of the features

  13. Development of a predictive program for Vibrio parahaemolyticus growth under various environmental conditions.

    PubMed

    Fujikawa, Hiroshi; Kimura, Bon; Fujii, Tateo

    2009-09-01

    In this study, we developed a predictive program for Vibrio parahaemolyticus growth under various environmental conditions. Raw growth data was obtained with a V. parahaemolyticus O3:K6 strain cultured at a variety of broth temperatures, pH, and salt concentrations. Data were analyzed with our logistic model and the parameter values of the model were analyzed with polynomial equations. A prediction program consisting of the growth model and the polynomial equations was then developed. After the range of the growth environments was modified, the program successfully predicted the growth for all environments tested. The program could be a useful tool to ensure the bacteriological safety of seafood.

  14. Note: Electrical resolution during conductive atomic force microscopy measurements under different environmental conditions and contact forces

    SciTech Connect

    Lanza, M.; Porti, M.; Nafria, M.; Aymerich, X.; Whittaker, E.; Hamilton, B.

    2010-10-15

    Conductive atomic force microscopy experiments on gate dielectrics in air, nitrogen, and UHV have been compared to evaluate the impact of the environment on topography and electrical measurements. In current images, an increase of the lateral resolution and a reduction of the conductivity were observed in N{sub 2} and, especially, in UHV (where current depends also on the contact force). Both effects were related to the reduction/elimination of the water layer between the tip and the sample in N{sub 2}/UHV. Therefore, since current measurements are very sensitive to environmental conditions, these factors must be taken into consideration when comparisons between several experiments are performed.

  15. Physical performance and environmental conditions: 2014 World Soccer Cup and 2016 Summer Olympics in Brazil

    PubMed Central

    Veneroso, Christiano E; Ramos, Guilherme P; Mendes, Thiago T; Silami-Garcia, Emerson

    2015-01-01

    ABSTRACT This editorial is for the special issue “Temperature sciences in Brazil” of the journal Temperature. It focuses on the physical performance and environmental conditions during the 2014 World Cup and the coming 2016 Summer Olympics. It emphasizes that a hot and humid environment imposes a great challenge to the human thermoregulation system, can lead to performance decrements, and increases the risk of developing hyperthermia. Adequate hydration, acclimatization, and body cooling strategies are effective interventions to minimize the risks associated with exercise in the heat. PMID:27227058

  16. Small Scale Solar Cooling Unit in Climate Conditions of Latvia: Environmental and Economical Aspects

    NASA Astrophysics Data System (ADS)

    Jaunzems, Dzintars; Veidenbergs, Ivars

    2010-01-01

    The paper contributes to the analyses from the environmental and economical point of view of small scale solar cooling system in climate conditions of Latvia. Cost analyses show that buildings with a higher cooling load and full load hours have lower costs. For high internal gains, cooling costs are around 1,7 €/kWh and 2,5 €/kWh for buildings with lower internal gains. Despite the fact that solar cooling systems have significant potential to reduce CO2 emissions due to a reduction of electricity consumption, the economic feasibility and attractiveness of solar cooling system is still low.

  17. Pre-Convective Environmental Conditions Indicative of Non-Tornadic Severe Thunderstorm Winds over Southeast Florida.

    DTIC Science & Technology

    1987-05-01

    EhEEEEEEEEMhhE mMhhEEEEEMhhhE [EOMOEEE L 6 II125 Am Vl P)COPY RESOI UTION TEST CHART DIlCEiIE COPY PRE-CONVECTIVE ENVIRONMENTAL CONDITIONS INDICATIVE...twelve dates selected by the initial model had reports of severe thunderstorm activity, but independent testing using data from May through September...implications for hail suppression. Quart. J. Roy. Meteor. Soc., 102, 499-533. Burpee , R.W., 1979: Peninsula-scale convergence in the south Florida

  18. A correlational analysis of the effects of changing environmental conditions on the NR atomic hydrogen maser

    NASA Technical Reports Server (NTRS)

    Dragonette, Richard A.; Suter, Joseph J.

    1992-01-01

    An extensive statistical analysis has been undertaken to determine if a correlation exists between changes in an NR atomic hydrogen maser's frequency offset and changes in environmental conditions. Correlation analyses have been performed comparing barometric pressure, humidity, and temperature with maser frequency offset as a function of time for periods ranging from 5.5 to 17 days. Semipartial correlation coefficients as large as -0.9 have been found between barometric pressure and maser frequency offset. Correlation between maser frequency offset and humidity was small compared to barometric pressure and unpredictable. Analysis of temperature data indicates that in the most current design, temperature does not significantly affect maser frequency offset.

  19. Physical performance and environmental conditions: 2014 World Soccer Cup and 2016 Summer Olympics in Brazil.

    PubMed

    Veneroso, Christiano E; Ramos, Guilherme P; Mendes, Thiago T; Silami-Garcia, Emerson

    2015-01-01

    This editorial is for the special issue "Temperature sciences in Brazil" of the journal Temperature. It focuses on the physical performance and environmental conditions during the 2014 World Cup and the coming 2016 Summer Olympics. It emphasizes that a hot and humid environment imposes a great challenge to the human thermoregulation system, can lead to performance decrements, and increases the risk of developing hyperthermia. Adequate hydration, acclimatization, and body cooling strategies are effective interventions to minimize the risks associated with exercise in the heat.

  20. Physiological and genetic analysis of Arabidopsis thaliana anthocyanin biosynthesis mutants under chronic adverse environmental conditions.

    PubMed

    Misyura, Maksym; Colasanti, Joseph; Rothstein, Steven J

    2013-01-01

    Anthocyanin production is a characteristic response of flowering plants to unfavourable environmental conditions. The potential roles of flavonoids and anthocyanins in plant growth were investigated by growing Arabidopsis thaliana anthocyanin production mutants (transparent testa) under limiting nitrogen and high light conditions. Inability to produce kaempferol or subsequent intermediate compounds by some transparent testa lines was correlated with less biomass accumulation in mature plants compared with wild-type control plants under all growth conditions tested. However, under both limiting nitrogen and high light chronic stress conditions, mutant lines defective in later steps of the anthocyanin production pathway produced the same or more biomass than wild-type plants. No difference in senescence between transparent testa and wild-type plants was found using chlorophyll catabolism and SAG12 expression measurements, and no mutants were impaired in the ability to remobilize nutrients from the vegetative to reproductive tissues. Moreover, the absence of anthocyanin and/or upstream flavonoids does not affect the ability of plants to respond to limiting nitrogen by reducing photosynthetic capacity. These results support a role for kaempferol and quercetin accumulation in normal plant growth and development. Further, the absence of anthocyanins has no effect on plant growth under the chronic stress conditions tested.

  1. Physiological and genetic analysis of Arabidopsis thaliana anthocyanin biosynthesis mutants under chronic adverse environmental conditions

    PubMed Central

    Rothstein, Steven J.

    2013-01-01

    Anthocyanin production is a characteristic response of flowering plants to unfavourable environmental conditions. The potential roles of flavonoids and anthocyanins in plant growth were investigated by growing Arabidopsis thaliana anthocyanin production mutants (transparent testa) under limiting nitrogen and high light conditions. Inability to produce kaempferol or subsequent intermediate compounds by some transparent testa lines was correlated with less biomass accumulation in mature plants compared with wild-type control plants under all growth conditions tested. However, under both limiting nitrogen and high light chronic stress conditions, mutant lines defective in later steps of the anthocyanin production pathway produced the same or more biomass than wild-type plants. No difference in senescence between transparent testa and wild-type plants was found using chlorophyll catabolism and SAG12 expression measurements, and no mutants were impaired in the ability to remobilize nutrients from the vegetative to reproductive tissues. Moreover, the absence of anthocyanin and/or upstream flavonoids does not affect the ability of plants to respond to limiting nitrogen by reducing photosynthetic capacity. These results support a role for kaempferol and quercetin accumulation in normal plant growth and development. Further, the absence of anthocyanins has no effect on plant growth under the chronic stress conditions tested. PMID:23162120

  2. Mass spectrometry-based plant metabolomics: Metabolite responses to abiotic stress.

    PubMed

    Jorge, Tiago F; Rodrigues, João A; Caldana, Camila; Schmidt, Romy; van Dongen, Joost T; Thomas-Oates, Jane; António, Carla

    2016-09-01

    Metabolomics is one omics approach that can be used to acquire comprehensive information on the composition of a metabolite pool to provide a functional screen of the cellular state. Studies of the plant metabolome include analysis of a wide range of chemical species with diverse physical properties, from ionic inorganic compounds to biochemically derived hydrophilic carbohydrates, organic and amino acids, and a range of hydrophobic lipid-related compounds. This complexitiy brings huge challenges to the analytical technologies employed in current plant metabolomics programs, and powerful analytical tools are required for the separation and characterization of this extremely high compound diversity present in biological sample matrices. The use of mass spectrometry (MS)-based analytical platforms to profile stress-responsive metabolites that allow some plants to adapt to adverse environmental conditions is fundamental in current plant biotechnology research programs for the understanding and development of stress-tolerant plants. In this review, we describe recent applications of metabolomics and emphasize its increasing application to study plant responses to environmental (stress-) factors, including drought, salt, low oxygen caused by waterlogging or flooding of the soil, temperature, light and oxidative stress (or a combination of them). Advances in understanding the global changes occurring in plant metabolism under specific abiotic stress conditions are fundamental to enhance plant fitness and increase stress tolerance. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 35:620-649, 2016.

  3. Productivity and indoor environmental conditions research: An annotated bibliography for facility engineers. Final report

    SciTech Connect

    Lister, D.B.; Jenicek, E.M.; Preissner, P.F.

    1998-07-01

    Since the energy crisis in the mid-1970s to the renewed interest in reducing the nation`s energy consumption, conservation strategies often have been employed with little regard to their impact on the occupants of the affected buildings. Austere conditions created by the overly zealous mentality that pervaded the facility engineering community in the seventies made building occupants quite uncomfortable and affected their productivity. Today, energy conservation and efficiency-improving measures are again being implemented, but with more emphasis on finding ways to conserve energy while creating comfortable and productive work environments. This annotated bibliography summarizes past and current research that addresses how environmental conditions impact the comfort, workplace satisfaction, and productivity of building occupants. It is intended as a resource to help inform the decisions of facility engineers and managers in the development and implementation of energy conservation strategies.

  4. Nonlinear Dielectric Properties of Yeast Cells Cultured in Different Environmental Conditions

    NASA Astrophysics Data System (ADS)

    Kawanishi, Gomon; Fukuda, Naoki; Muraji, Masafumi

    The harmonics of the electric current through yeast suspensions, the nonlinear dielectric properties of yeast cells, have particular patterns according to the biological activity of the cells and the measurement of these patterns is a technique for determining the activity of living cells. The concentration of glucose and oxygen in yeast culture medium influences the manifestation of fermentation or respiration of yeast cells. Measurements were made with yeast cells (Saccharomyces cerevisiae) cultured aerobically and anaerobically in sufficient glucose concentration, aerobic fermentation and anaerobic fermentation, and aerobically in limited glucose concentration, respiration. The results showed that the harmonics were barely apparent for yeast cells in aerobic fermentation and respiratory; however, cells in the anaerobic fermentation displayed substantial third and fifth harmonics. We can say that environmental condition affects the yeast cells' nonlinear properties, from another viewpoint, the measurements of the nonlinear properties are available to determine the activity of yeast cells adjusted to the conditions of their cultivation.

  5. The impact of environmental conditions on Campylobacter jejuni survival in broiler faeces and litter

    PubMed Central

    Smith, Shaun; Meade, Joseph; Gibbons, James; McGill, Kevina; Bolton, Declan; Whyte, Paul

    2016-01-01

    Introduction Campylobacter jejuni is the leading bacterial food-borne pathogen within the European Union, and poultry meat is an important vehicle for its transmission to humans. However, there is limited knowledge about how this organism persists in broiler litter and faeces. The aim of this study was to assess the impact of a number of environmental parameters, such as temperature, humidity, and oxygen, on Campylobacter survival in both broiler litter and faeces. Materials and methods Used litter was collected from a Campylobacter-negative broiler house after final depopulation and fresh faeces were collected from transport crates. Samples were confirmed as Campylobacter negative according to modified ISO methods for veterinary samples. Both sample matrices were inoculated with 9 log10 CFU/ml C. jejuni and incubated under high (≥85%) and low (≤70%) relative humidity conditions at three different temperatures (20°C, 25°C, and 30°C) under both aerobic and microaerophilic atmospheres. Inoculated litter samples were then tested for Campylobacter concentrations at time zero and every 2 hours for 12 hours, while faecal samples were examined at time zero and every 24 hours for 120 hours. A two-tailed t-test assuming unequal variance was used to compare mean Campylobacter concentrations in samples under the various temperature, humidity, and atmospheric conditions. Results and discussion C. jejuni survived significantly longer (P≤0.01) in faeces, with a minimum survival time of 48 hours, compared with 4 hours in used broiler litter. C. jejuni survival was significantly enhanced at 20°C in all environmental conditions in both sample matrices tested compared with survival at 25°C and 30°C. In general, survival was greater in microaerophilic compared with aerobic conditions in both sample matrices. Humidity, at the levels examined, did not appear to significantly impact C. jejuni survival in any sample matrix. The persistence of Campylobacter in broiler litter

  6. Experiment 8: Environmental Conditions in the ASTROCULTURE(trademark) Plant Chamber During the USML-2 Mission

    NASA Technical Reports Server (NTRS)

    Bula, R. J.; Zhou, Weijia; Yetka, R. A.; Draeger, N. A.

    1998-01-01

    Conducting plant research to assess the impact of microgravity on plant growth and development requires a plant chamber that has the capability to control other environmental parameters involved in plant growth and development. The environmental control in a space-based plant chamber must be equivalent to that available in such facilities used for terrestrial plant research. Additionally, plants are very sensitive to a number of atmospheric gaseous materials. Thus, the atmosphere of a plant chamber must be isolated from the space vehicle atmosphere, and the plant growth unit should have the capability to remove any such deleterious materials that may impact plant growth and development. The Wisconsin Center for Space Automation and Robotics (WCSAR), University of Wisconsin-Madison, has developed a totally enclosed controlled environment plant growth unit. The flight unit was used to support the ASTROCULTURE(TM) experiment conducted during the USML-2 mission. The experiment had two major objectives: 1) Provide further validation of the flight unit to control the experiment-defined environmental parameters in the plant chamber, and 2) support a plant experiment to assess the capability of potato plant material to produce tubers in microgravity. This paper describes the temperature, humidity, and carbon dioxide conditions of the plant chamber during the mission, from launch to landing. Another paper will present the plant response data.

  7. Effects of nutritional and environmental conditions on Sinorhizobium meliloti biofilm formation.

    PubMed

    Rinaudi, Luciana; Fujishige, Nancy A; Hirsch, Ann M; Banchio, Erika; Zorreguieta, Angeles; Giordano, Walter

    2006-11-01

    Rhizobia are non-spore-forming soil bacteria that fix atmospheric nitrogen into ammonia in a symbiosis with legume roots. However, in the absence of a legume host, rhizobia manage to survive and hence must have evolved strategies to adapt to diverse environmental conditions. The capacity to respond to variations in nutrient availability enables the persistence of rhizobial species in soil, and consequently improves their ability to colonize and to survive in the host plant. Rhizobia, like many other soil bacteria, persist in nature most likely in sessile communities known as biofilms, which are most often composed of multiple microbial species. We have been employing in vitro assays to study environmental parameters that might influence biofilm formation in the Medicago symbiont Sinorhizobium meliloti. These parameters include carbon source, amount of nitrate, phosphate, calcium and magnesium as well as the effects of osmolarity and pH. The microtiter plate assay facilitates the detection of subtle differences in rhizobial biofilms in response to these parameters, thereby providing insight into how environmental stress or nutritional status influences rhizobial survival. Nutrients such as sucrose, phosphate and calcium enhance biofilm formation as their concentrations increase, whereas extreme temperatures and pH negatively affect biofilm formation.

  8. The first "space" vegetables have been grown in the "SVET" greenhouse using controlled environmental conditions

    NASA Astrophysics Data System (ADS)

    Ivanova, T. N.; Bercovich, Yu. A.; Mashinskiy, A. L.; Meleshko, G. I.

    The paper describes the "SVET" project—a new generation of space greenhouse with small dimensions. Through the use of a minicomputer, "SVET" is fully capable of automatically operating and controlling environmental systems for higher plant growth. A number of preliminary studies have shown the radish and cabbage to be potentially important crops for CELSS (Closed Environmental Life Support System). The "SVET" space greenhouse was mounted on the "CRYSTAL" technological module docked to the Mir orbital space station on 10 June 1990. Soviet cosmonauts Balandin and Solovyov started the first experiments with the greenhouse on 15 June 1990. Preliminary results of seed cultivation over an initial 54-day period in "SVET" are presented. Morphometrical characteristics of plants brought back to Earth are given. Alteration in plant characteristics, such as growth and developmental changes, or morphological contents were noted. A crop of radish plants was harvested under microgravity conditions. Characteristics of plant environmental control parameters and an estimation of functional properties of control and regulation systems of the "SVET" greenhouse in space flight as received via telemetry data is reported.

  9. Physiological behaviour of gliotoxigenic Aspergillus fumigatus sensu stricto isolated from maize silage under simulated environmental conditions.

    PubMed

    Alonso, V; Vergara, L Díaz; Aminahuel, C; Pereyra, C; Pena, G; Torres, A; Dalcero, A; Cavaglieri, L

    2015-01-01

    Environmental conditions play a key role in fungal development. During the silage production process, humidity, oxygen availability and pH vary among lactic-fermentation phases and among different silage sections. The aim of this work was to study the physiological behaviour of gliotoxicogenic Aspergillus fumigatus strains isolated from maize silage under simulated natural physicochemical conditions - different water activities (a(W)), temperatures (Tº), pH and oxygen pressure - on the growth parameters (growth rate and lag phase) and gliotoxin production. The silage was made with the harvested whole maize plant that was chopped and used for trench-type silo fabrication. Water activity and pH of the silage samples were determined. Total fungal counts were performed on Dichloran Rose Bengal Chloramphenicol agar and Dichloran 18% Glycerol agar. The morphological identification of A. fumigatus was performed with different culture media and at different growth temperature to observe microscopic and macroscopic characteristics. Gliotoxin production by A. fumigatus was determined by HPLC. All strains isolated were morphologically identified as A. fumigatus. Two A. fumigatus strains isolated from the silage samples were selected for the ecophysiological study (A. fumigatus sensu stricto RC031 and RC032). The results of this investigation showed that the fungus grows in the simulated natural physicochemical conditions of corn silage and produces gliotoxin. The study of the physiological behaviour of gliotoxigenic A. fumigatus under simulated environmental conditions allowed its behaviour to be predicted in silage and this will in future enable appropriate control strategies to be developed to prevent the spread of this fungus and toxin production that leads to impairment and reduced quality of silage.

  10. Species traits and environmental conditions govern the relationship between biodiversity effects across trophic levels.

    PubMed

    Spooner, Daniel E; Vaughn, Caryn C; Galbraith, Heather S

    2012-02-01

    Changing environments can have divergent effects on biodiversity-ecosystem function relationships at alternating trophic levels. Freshwater mussels fertilize stream foodwebs through nutrient excretion, and mussel species-specific excretion rates depend on environmental conditions. We asked how differences in mussel diversity in varying environments influence the dynamics between primary producers and consumers. We conducted field experiments manipulating mussel richness under summer (low flow, high temperature) and fall (moderate flow and temperature) conditions, measured nutrient limitation, algal biomass and grazing chironomid abundance, and analyzed the data with non-transgressive overyielding and tripartite biodiversity partitioning analyses. Algal biomass and chironomid abundance were best explained by trait-independent complementarity among mussel species, but the relationship between biodiversity effects across trophic levels (algae and grazers) depended on seasonal differences in mussel species' trait expression (nutrient excretion and activity level). Both species identity and overall diversity effects were related to the magnitude of nutrient limitation. Our results demonstrate that biodiversity of a resource-provisioning (nutrients and habitat) group of species influences foodweb dynamics and that understanding species traits and environmental context are important for interpreting biodiversity experiments.

  11. Using magnetically responsive tea waste to remove lead in waters under environmentally relevant conditions.

    PubMed

    Yeo, Siang Yee; Choi, Siwon; Dien, Vivian; Sow-Peh, Yoke Keow; Qi, Genggeng; Hatton, T Alan; Doyle, Patrick S; Thio, Beng Joo Reginald

    2013-01-01

    We report the use of a simple yet highly effective magnetite-waste tea composite to remove lead(II) (Pb(2+)) ions from water. Magnetite-waste tea composites were dispersed in four different types of water-deionized (DI), artificial rainwater, artificial groundwater and artificial freshwater-that mimic actual environmental conditions. The water samples had varying initial concentrations (0.16-5.55 ppm) of Pb(2+) ions and were mixed with the magnetite-waste tea composite for at least 24 hours to allow adsorption of the Pb(2+) ions to reach equilibrium. The magnetite-waste tea composites were stable in all the water samples for at least 3 months and could be easily removed from the aqueous media via the use of permanent magnets. We detected no significant leaching of iron (Fe) ions into the water from the magnetite-waste tea composites. The percentage of Pb adsorbed onto the magnetite-waste tea composite ranged from ∼70% to 100%; the composites were as effective as activated carbon (AC) in removing the Pb(2+) ions from water, depending on the initial Pb concentration. Our prepared magnetite-waste tea composites show promise as a green, inexpensive and highly effective sorbent for removal of Pb in water under environmentally realistic conditions.

  12. Environmental conditions and human drivers for changes to north Ethiopian mountain landscapes over 145 years.

    PubMed

    Nyssen, Jan; Frankl, Amaury; Haile, Mitiku; Hurni, Hans; Descheemaeker, Katrien; Crummey, Donald; Ritler, Alfons; Portner, Brigitte; Nievergelt, Bernhard; Moeyersons, Jan; Munro, Neil; Deckers, Jozef; Billi, Paolo; Poesen, Jean

    2014-07-01

    As quantitative or spatially distributed studies of environmental change over truly long-term periods of more than 100 years are extremely rare, we re-photographed 361 landscapes that appear on historical photographs (1868-1994) within a 40,000 km(2) study area in northern Ethiopia. Visible evidence of environmental changes apparent from the paired photographs was analyzed using an expert rating system. The conditions of the woody vegetation, soil and water conservation structures and land management were worse in the earlier periods compared to their present conditions. The cover by indigenous trees is a notable exception: it peaked in the 1930s, declined afterwards and then achieved a second peak in the early 21st century. Particularly in areas with greater population densities, there has been a significant increase in woody vegetation and soil and water conservation structures over the course of the study period. We conclude that except for an apparent upward movement of the upper tree limit, the direct human impacts on the environment are overriding the effects of climate change in the north Ethiopian highlands and that the northern Ethiopian highlands are currently greener than at any other time in the last 145 years.

  13. Environmental conditions associated with lesions in introduced free-ranging sheep in Hawai‘i

    USGS Publications Warehouse

    Powers, Jenny G.; Duncan, Colleen G.; Spraker, Terry R.; Schuler, Bridget A.; Hess, Steven C.; Faford, Jonathan K.J.; Sin, Hans

    2014-01-01

    Wildlife species which have been translocated between temperate and tropical regions of the world provide unique opportunities to understand how disease processes may be affected by environmental conditions. European mouflon sheep (Ovis gmelini musimon) from the Mediterranean Islands were introduced to the Hawaiian Islands for sport hunting beginning in 1954 and were subsequently hybridized with feral domestic sheep (O. aries), which had been introduced in 1793. Three isolated mouflon populations have become established in the Hawaiian Islands but diseases in these populations have been little studied. The objective of this study was to evaluate and compare gross and histologic lesions in respiratory, renal, and hepatic systems of free-ranging sheep in two isolated volcanic environments on Hawai‘i Island. Tissue and fecal samples were collected in conjunction with population reductions during February 2011. We found gross or histologic evidence of lungworm infection in 44/49 sheep from Mauna Loa which were exposed to gaseous emissions from Kīlauea Volcano. In contrast, only 7/50 sheep from Mauna Kea had lesions consistent with lungworm, but Mauna Kea sheep had significantly more upper respiratory tract inflammation and hyperplasia consistent with chronic antigenic stimulation, possibly associated with exposure to fine airborne particulates during extended drought conditions. We hypothesize that gasses from Kīlauea Volcano contributed to severity of respiratory disease principally associated with chronic lungworm infections at Mauna Loa; however, there were numerous other potentially confounding environmental factors and interactions that merit further investigation.

  14. Environmental and Geometrical Conditions to Sustain Crevice Corrosion in Alloy 22

    SciTech Connect

    Carranza, R M; Rodr?guez, M A; Rebak, R B

    2006-11-10

    Alloy 22 (N06022) is highly resistant to localized corrosion. Under aggressive environmental conditions Alloy 22 may be susceptible to crevice corrosion in hot chloride (Cl{sup -}) solutions. The objective of the present work was to explore the environmental and geometrical conditions for crevice corrosion to occur. Electrochemical tests were performed using PCA and prismatic mill annealed Alloy 22 specimens in chloride solutions. Crevice corrosion current density was found to be a function of applied potential. i{sub CREV} values ranged from 40 {micro}A/cm{sup 2} to 20 mA/cm{sup 2}. Such low values of current density explained the absence of pitting corrosion in Alloy 22 at any potential. Decreasing of the effective diffusion distance in a propagating crevice is thought to cause crevice corrosion stifling or repassivation after long anodic polarization. Crevice corrosion breakdown potential is expected to decrease with potential scan rate, approaching repassivation potential for low scan rates. The lowest corrosion potential of Alloy 22 in hydrochloric acid solutions at which active corrosion exists was proposed as the lowest possible repassivation potential for crevice corrosion.

  15. Music venues and hearing loss: Opportunities for and barriers to improving environmental conditions.

    PubMed

    Vogel, Ineke; van der Ploeg, Catharina P B; Brug, Johannes; Raat, Hein

    2009-08-01

    This study explores the opportunities for and barriers to improving environmental conditions in order to reduce the risk for music-induced hearing loss in people who attend music venues. Individual semi-structured interviews were held with 20 representatives of music venues and of governmental organizations, according to a semi-structured interview guide. The interviews were audiotaped, transcribed, and systematically coded using a content-analysis technique. Reported opportunities to reduce music volume included improving the acoustics and installing advanced speaker systems. The most important barrier reported was the lack of clear definitions of what levels of high-volume music are hazardous. Other barriers mentioned included economic considerations, and the beliefs that visitors demand high-volume music in music venues and are personally responsible for their own hearing. Before measures to improve environmental conditions are implemented, the exact dangers of exposure to high-volume music have to be established. Evidence-based guidelines and safety standards for leisure-time noise exposure should therefore be developed.

  16. Species traits and environmental conditions govern the relationship between biodiversity effects across trophic levels

    USGS Publications Warehouse

    Spooner, D.E.; Vaughn, C.C.; Galbraith, H.S.

    2012-01-01

    Changing environments can have divergent effects on biodiversity-ecosystem function relationships at alternating trophic levels. Freshwater mussels fertilize stream foodwebs through nutrient excretion, and mussel species-specific excretion rates depend on environmental conditions. We asked how differences in mussel diversity in varying environments influence the dynamics between primary producers and consumers. We conducted field experiments manipulating mussel richness under summer (low flow, high temperature) and fall (moderate flow and temperature) conditions, measured nutrient limitation, algal biomass and grazing chironomid abundance, and analyzed the data with non-transgressive overyielding and tripartite biodiversity partitioning analyses. Algal biomass and chironomid abundance were best explained by trait-independent complementarity among mussel species, but the relationship between biodiversity effects across trophic levels (algae and grazers) depended on seasonal differences in mussel species' trait expression (nutrient excretion and activity level). Both species identity and overall diversity effects were related to the magnitude of nutrient limitation. Our results demonstrate that biodiversity of a resource-provisioning (nutrients and habitat) group of species influences foodweb dynamics and that understanding species traits and environmental context are important for interpreting biodiversity experiments. ?? 2011 Springer-Verlag.

  17. Dependency of seed dormancy types on embryo traits and environmental conditions in Ribes species.

    PubMed

    Mattana, E; Stuppy, W H; Fraser, R; Waller, J; Pritchard, H W

    2014-07-01

    The hypothesis that seed dormancy may be dependent on environmental conditions and seed morphological traits was tested for six Ribes species, across an altitudinal gradient of 1300 m and a longitudinal separation of 120°. Embryo measurements and seed germination experiments were conducted for R. alpinum L., R. hudsonianum Richardson var. petiolare (Douglas) Jancz., R. nevadaense Kellogg, R. roezlii Regel var. cruentum (Greene) Rehder and R. speciosum Pursh, and data taken from the literature for R. multiflorum Kit. ex Schult. ssp. sandalioticum Arrigoni. Germination was compared with seed viability to reveal proportional seed dormancy, which was then correlated to seed/embryo morphological traits and these traits related to the seed provenance environment. The embryos of all the investigated species are linear underdeveloped and all had a morphological component of seed dormancy (MD). Seeds of R. roezlii, R. hudsonianum and R. nevadaense required a temperature and/or hormone pre-treatment in order to germinate, highlighting morphophysiological seed dormancy (MPD). Seed dormancy was found to be strongly negatively correlated with embryo length, but not with embryo to seed (E:S) ratio or seed mass. Initial embryo length was positively related to mean annual temperature. Seed dormancy in the investigated Ribes species could be quantified and predicted by the interaction of embryo traits and environmental conditions. This approach may be helpful in assessing and predicting seed dormancy in the Ribes genus and in other genera and families with underdeveloped embryos.

  18. Iodine isotopes species fingerprinting environmental conditions in surface water along the northeastern Atlantic Ocean

    PubMed Central

    He, Peng; Hou, Xiaolin; Aldahan, Ala; Possnert, Göran; Yi, Peng

    2013-01-01

    Concentrations and species of iodine isotopes (127I and 129I) provide vital information about iodine geochemistry, environmental conditions and water masses exchange in oceans. Despite extensive investigations of anthropogenic 129I in the Arctic Ocean and the Nordic Seas, concentrations of the isotope in the Atlantic Ocean are, however, still unknown. We here present first data on 129I and 127I, and their species (iodide and iodate) in surface water transect along the northeastern Atlantic between 30° and 50°N. The results show iodate as the predominant species in the analyzed marine waters for both 127I and 129I. Despite the rather constant ratios of 127I−/127IO3−, the 129I−/129IO3− values reveal variations that apparently response to sources, environmental conditions and residence time. These findings provide a new tracer approach that will strongly enhance the application of anthropogenic 129I in ocean environments and impact on climate at the ocean boundary layer. PMID:24284916

  19. Remotely Sensed Environmental Conditions and Malaria Mortality in Three Malaria Endemic Regions in Western Kenya

    PubMed Central

    Ahlm, Clas; Rocklöv, Joacim

    2016-01-01

    Background Malaria is an important cause of morbidity and mortality in malaria endemic countries. The malaria mosquito vectors depend on environmental conditions, such as temperature and rainfall, for reproduction and survival. To investigate the potential for weather driven early warning systems to prevent disease occurrence, the disease relationship to weather conditions need to be carefully investigated. Where meteorological observations are scarce, satellite derived products provide new opportunities to study the disease patterns depending on remotely sensed variables. In this study, we explored the lagged association of Normalized Difference Vegetation Index (NVDI), day Land Surface Temperature (LST) and precipitation on malaria mortality in three areas in Western Kenya. Methodology and Findings The lagged effect of each environmental variable on weekly malaria mortality was modeled using a Distributed Lag Non Linear Modeling approach. For each variable we constructed a natural spline basis with 3 degrees of freedom for both the lag dimension and the variable. Lag periods up to 12 weeks were considered. The effect of day LST varied between the areas with longer lags. In all the three areas, malaria mortality was associated with precipitation. The risk increased with increasing weekly total precipitation above 20 mm and peaking at 80 mm. The NDVI threshold for increased mortality risk was between 0.3 and 0.4 at shorter lags. Conclusion This study identified lag patterns and association of remote- sensing environmental factors and malaria mortality in three malaria endemic regions in Western Kenya. Our results show that rainfall has the most consistent predictive pattern to malaria transmission in the endemic study area. Results highlight a potential for development of locally based early warning forecasts that could potentially reduce the disease burden by enabling timely control actions. PMID:27115874

  20. Functional traits of selected mangrove species in Brazil as biological indicators of different environmental conditions.

    PubMed

    Arrivabene, Hiulana Pereira; Souza, Iara; Có, Walter Luiz Oliveira; Rodella, Roberto Antônio; Wunderlin, Daniel Alberto; Milanez, Camilla Rozindo

    2014-04-01

    Ecological studies on phenotypic plasticity illustrate the relevance of this phenomenon in nature. Conditions of biota reflect environmental changes, highlighting the adaptability of resident species that can be used as bioindicators of such changes. We report the morpho-anatomical plasticity of leaves of Avicennia schaueriana Stapf & Leechm. ex Moldenke, Laguncularia racemosa (L.) C.F.Gaertn. and Rhizophora mangle L., evaluated in three estuaries (Vitória bay, Santa Cruz and Itaúnas River; state of Espírito Santo, Brazil), considering five areas of mangrove ecosystems with diverse environmental issues. Two sampling sites are part of the Ecological Station Lameirão Island in Vitória bay, close to a harbor. A third sampling site in Cariacica (Vitória bay) is inside the Vitória harbor and also is influenced by domestic sewage. The fourth studied area (Santa Cruz) is part of Piraquê Mangrove Ecological Reservation, while the fifth (Itaúnas River) is a small mangrove, with sandy sediment and greater photosynthetically active radiation, also not strongly influenced by anthropic activity. Results pointed out the morpho-anatomical plasticity in studied species, showing that A. schaueriana and L. racemosa might be considered the most appropriate bioindicators to indicate different settings and environmental conditions. Particularly, the dry mass per leaf area (LMA) of A. schaueriana was the main biomarker measured. In our study, LMA of A. schaueriana was positively correlated with salinity (Spearman 0.71), Mn content (0.81) and pH (0.82) but negatively correlated with phosphorus content (-0.63). Thus, the evaluation of modification in LMA of A. schaueriana pointed out changes among five studied sites, suggesting its use to reflect changes in the environment, which could be also useful in the future to evaluate the climate change.

  1. Transcriptome analysis reveals the role of the root hairs as environmental sensors to maintain plant functions under water-deficiency conditions

    PubMed Central

    Daszkowska-Golec, Agata; Janiak, Agnieszka; Chwialkowska, Karolina; Nowakowska, Urszula; Sablok, Gaurav; Szarejko, Iwona

    2016-01-01

    An important part of the root system is the root hairs, which play a role in mineral and water uptake. Here, we present an analysis of the transcriptomic response to water deficiency of the wild-type (WT) barley cultivar ‘Karat’ and its root-hairless mutant rhl1.a. A comparison of the transcriptional changes induced by water stress resulted in the identification of genes whose expression was specifically affected in each genotype. At the onset of water stress, more genes were modulated by water shortage in the roots of the WT plants than in the roots of rhl1.a. The roots of the WT plants, but not of rhl1.a, specifically responded with the induction of genes that are related to the abscisic acid biosynthesis, stomatal closure, and cell wall biogenesis, thus indicating the specific activation of processes that are related to water-stress signalling and protection. On the other hand, the processes involved in the further response to abiotic stimuli, including hydrogen peroxide, heat, and high light intensity, were specifically up-regulated in the leaves of rhl1.a. An extended period of severe stress caused more drastic transcriptome changes in the roots and leaves of the rhl1.a mutant than in those of the WT. These results are in agreement with the much stronger damage to photosystem II in the rhl1.a mutant than in its parent cultivar after 10 d of water stress. Taking into account the putative stress sensing and signalling features of the root hair transcriptome, we discuss the role of root hairs as sensors of environmental conditions. PMID:26585228

  2. Enhanced Tolerance of Transgenic Potato Plants Over-Expressing Non-specific Lipid Transfer Protein-1 (StnsLTP1) against Multiple Abiotic Stresses

    PubMed Central

    Gangadhar, Baniekal H.; Sajeesh, Kappachery; Venkatesh, Jelli; Baskar, Venkidasamy; Abhinandan, Kumar; Yu, Jae W.; Prasad, Ram; Mishra, Raghvendra K.

    2016-01-01

    Abiotic stresses such as heat, drought, and salinity are major environmental constraints that limit potato (Solanum tuberosum L.) production worldwide. Previously, we found a potential thermo-tolerance gene, named StnsLTP1 from potato using yeast functional screening. Here, we report the functional characterization of StnsLTP1 and its role in multiple abiotic stresses in potato plants. Computational analysis of StnsLTP1 with other plant LTPs showed eight conserved cysteine residues, and four α-helices stabilized by four disulfide bridges. Expression analysis of StnsLTP1 gene showed differential expression under heat, water-deficit and salt stresses. Transgenic potato lines over-expressing StnsLTP1 gene displayed enhanced cell membrane integrity under stress conditions, as indicated by reduced membrane lipid per-oxidation, and hydrogen peroxide content relative to untransformed (UT) control plants. In addition, transgenic lines over-expressing StLTP1 also exhibited increased antioxidant enzyme activity with enhanced accumulation of ascorbates, and up-regulation of stress-related genes including StAPX, StCAT, StSOD, StHsfA3, StHSP70, and StsHSP20 compared with the UT plants. These results suggests that StnsLTP1 transgenic plants acquired improved tolerance to multiple abiotic stresses through enhanced activation of antioxidative defense mechanisms via cyclic scavenging of reactive oxygen species and regulated expression of stress-related genes. PMID:27597854

  3. AP2/ERF family transcription factors in plant abiotic stress responses.

    PubMed

    Mizoi, Junya; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2012-02-01

    In terrestrial environments, temperature and water conditions are highly variable, and extreme temperatures and water conditions affect the survival, growth and reproduction of plants. To protect cells and sustain growth under such conditions of abiotic stress, plants respond to unfavourable changes in their environments in developmental, physiological and biochemical ways. These responses require expression of stress-responsive genes, which are regulated by a network of transcription factors. The AP2/ERF family is a large family of plant-specific transcription factors that share a well-conserved DNA-binding domain. This transcription factor family includes DRE-binding proteins (DREBs), which activate the expression of abiotic stress-responsive genes via specific binding to the dehydration-responsive element/C-repeat (DRE/CRT) cis-acting element in their promoters. In this review, we discuss the functions of the AP2/ERF-type transcription factors in plant abiotic stress responses, with special emphasis on the regulations and functions of two major types of DREBs, DREB1/CBF and DREB2. In addition, we summarise the involvement of other AP2/ERF-type transcription factors in abiotic stress responses, which has recently become clear. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.

  4. Abiotic Bromination of Soil Organic Matter.

    PubMed

    Leri, Alessandra C; Ravel, Bruce

    2015-11-17

    Biogeochemical transformations of plant-derived soil organic matter (SOM) involve complex abiotic and microbially mediated reactions. One such reaction is halogenation, which occurs naturally in the soil environment and has been associated with enzymatic activity of decomposer organisms. Building on a recent finding that naturally produced organobromine is ubiquitous in SOM, we hypothesized that inorganic bromide could be subject to abiotic oxidations resulting in bromination of SOM. Through lab-based degradation treatments of plant material and soil humus, we have shown that abiotic bromination of particulate organic matter occurs in the presence of a range of inorganic oxidants, including hydrogen peroxide and assorted forms of ferric iron, producing both aliphatic and aromatic forms of organobromine. Bromination of oak and pine litter is limited primarily by bromide concentration. Fresh plant material is more susceptible to bromination than decayed litter and soil humus, due to a labile pool of mainly aliphatic compounds that break down during early stages of SOM formation. As the first evidence of abiotic bromination of particulate SOM, this study identifies a mechanistic source of the natural organobromine in humic substances and the soil organic horizon. Formation of organobromine through oxidative treatments of plant material also provides insights into the relative stability of aromatic and aliphatic components of SOM.

  5. The ecophysiology of sulfur isotope fractionation by sulfate reducing bacteria in response to variable environmental conditions

    NASA Astrophysics Data System (ADS)

    Leavitt, W.; Bradley, A. S.; Johnston, D. T.; Pereira, I. A. C.; Venceslau, S.; Wallace, C.

    2014-12-01

    Microbial sulfate reducers (MSR) drive the Earth's biogeochemical sulfur cycle. At the heart of this energy metabolism is a cascade of redox transformations coupling organic carbon and/or hydrogen oxidation to the dissimilatory reduction of sulfate to sulfide. The sulfide produced is depleted in the heavier isotopes of sulfur relative to sulfate. The magnitude of discrimination (fractionation) depends on: i) the cell-specific sulfate reduction rate (csSRR, Kaplan & Rittenberg (1964) Can. J. Microbio.; Chambers et al. (1975) Can. J. Microbio; Sim et al. (2011) GCA; Leavitt et al. (2013) PNAS), ii) the ambient sulfate concentration (Harrison & Thode (1958) Research; Habicht et al. (2002) Science; Bradley et al. in review), iii) both sulfate and electron donor availability, or iv) an intrinsic physiological limitation (e.g. cellular division rate). When neither sulfate nor electron donor limits csSRR a more complex function relates the magnitude of isotope fractionation to cell physiology and environmental conditions. In recent and on-going work we have examined the importance of enzyme-specific fractionation factors, as well as the influence of electron donor or electron acceptor availability under carefully controlled culture conditions (e.g. Leavitt et al. (2013) PNAS). In light of recent advances in MSR genetics and biochemistry we utilize well-characterized mutant strains, along with a continuous-culture methodology (Leavitt et al. (2013) PNAS) to further probe the fractionation capacity of this metabolism under controlled physiological conditions. We present our latest findings on the magnitude of S and D/H isotope fractionation in both wild type and mutant strains. We will discuss these in light of recent theoretical advances (Wing & Halevy (2014) PNAS), examining the mode and relevance of MSR isotope fractionation in the laboratory to modern and ancient environmental settings, particularly anoxic marine sediments.

  6. The importance of environmental conditions in reflectance spectroscopy of laboratory analogs for Mars surface materials

    NASA Technical Reports Server (NTRS)

    Bishop, J.; Murchie, S.; Pratt, S.; Mustard, J.; Pieters, C.

    1993-01-01

    Reflectance spectra are presented here for a variety of particulate, ferric-containing analogs to Martian soil (Fe(3+)-doped smectites and palagonites) to facilitate interpretation of remotely acquired spectra. The analog spectra were measured under differing environmental conditions to evaluate the influence of exposure history on water content and absorption features due to H2O in these samples. Each of these materials contains structural OH bonded to metal cations, adsorbed H2O, and bound H2O (either in a glass, structural site, or bound to a cation). Previous experiments involving a variety of Mars analogs have shown that the 3 micron H2O band in spectra of palagonites is more resistant to drying than the 3 micron H2O band in spectra of montmorillonites. Other experiments have shown that spectra of ferrihydrite and montmorillonites doped with ferric sulfate also contain sufficient bound H2O to retain a strong 3 micron band under dry conditions. Once the effects of the environment on bound water in clays, oxides, and salts are better understood, the hydration bands measured via reflectance spectroscopy can be used to gain information about the chemical composition and moisture content of real soil systems. Such information would be especially useful in interpreting observations of Mars where subtle spatial variations in the strengths of metal-OH and H2O absorptions have been observed in telescopic and ISM spectra. We measured bidirectional reflectance spectra of several Mars soil analogs under controlled environmental conditions to assess the effects of moisture content on the metal-OH and H2O absorptions. The samples analyzed include chemically altered montmorillonites, ferrihydrite. and palagonites from Hawaii and Iceland. Procedures for preparation of the cation-exchanged montmorillonites, ferric-salt doped montmorillonites, and ferric oxyhydroxides are described in detail elsewhere.

  7. Living organisms influence on environmental conditions: pH modulation by amphibian embryos versus aluminum toxicity.

    PubMed

    Herkovits, Jorge; Castañaga, Luis Alberto; D'Eramo, José Luis; Jourani, Victoria Platonova

    2015-11-01

    The LC10, 50 and 90/24h of aluminum for Rhinella arenarum embryos at complete operculum stage were 0.55, 0.75 and 1mgAl(3+)/L respectively. Those values did not change significantly by expanding the exposure period till 168h. The aluminum toxicity was evaluated in different pH conditions by means of a citrate buffer resulting for instance, 1mgAl(3+)/L at pH 4, 4.1, 5 and 6 in 100%, 70%, 35% and 0% of lethality respectively. As an outstanding feature, the embryos changed the pH of the maintaining media both in the case of Al(3+) or citrate buffer treatments toward neutral. 10 embryos in 40mL of AMPHITOX solution were able to increase the pH from 4.2 to 7.05, a fact related with a metabolic shift resulting in an increase in nitrogen loss as ammonia. Our study point out the natural selection of the most resistant amphibian embryos both for pH or aluminum as well as the capacity of living organisms (as a population) to alter their chemical environment toward optimal conditions for their survival. As these facts occur at early life stages, it expand the concept that living organisms at ontogenic stages are biomarker of environmental signatures of the evolutionary process (Herkovits, 2006) to a global Onto-Evo concept which imply also the feedback mechanisms from living organisms to shape environmental conditions in a way that benefits them.

  8. Multiscale effects of management, environmental conditions, and land use on nitrate leaching in dairy farms.

    PubMed

    Oenema, Jouke; Burgers, Saskia; Verloop, Koos; Hooijboer, Arno; Boumans, Leo; ten Berge, Hein

    2010-01-01

    Nitrate leaching in intensive grassland- and silage maize-based dairy farming systems on sandy soil is a main environmental concern. Here, statistical relationships are presented between management practices and environmental conditions and nitrate concentration in shallow groundwater (0.8 m depth) at farm, field, and point scales in The Netherlands, based on data collected in a participatory approach over a 7-yr period at one experimental and eight pilot commercial dairy farms on sandy soil. Farm milk production ranged from 10 to 24 Mg ha(-1). Soil and hydrological characteristics were derived from surveys and weather conditions from meteorological stations. Statistical analyses were performed with multiple regression models. Mean nitrate concentration at farm scale decreased from 79 mg L(-1) in 1999 to 63 in 2006, with average nitrate concentration in groundwater decreasing under grassland but increasing under maize land over the monitoring period. The effects of management practices on nitrate concentration varied with spatial scale. At farm scale, nitrogen surplus, grazing intensity, and the relative areas of grassland and maize land significantly contributed to explaining the variance in nitrate concentration in groundwater. Mean nitrate concentration was negatively correlated to the concentration of dissolved organic carbon in the shallow groundwater. At field scale, management practices and soil, hydrological, and climatic conditions significantly contributed to explaining the variance in nitrate concentration in groundwater under grassland and maize land. We conclude that, on these intensive dairy farms, additional measures are needed to comply with the European Union water quality standard in groundwater of 50 mg nitrate L(-1). The most promising measures are omitting fertilization of catch crops and reducing fertilization levels of first-year maize in the rotation.

  9. The Role and Regulation of ABI5 (ABA-Insensitive 5) in Plant Development, Abiotic Stress Responses and Phytohormone Crosstalk

    PubMed Central

    Skubacz, Anna; Daszkowska-Golec, Agata; Szarejko, Iwona

    2016-01-01

    ABA Insensitive 5 (ABI5) is a basic leucine zipper transcription factor that plays a key role in the regulation of seed germination and early seedling growth in the presence of ABA and abiotic stresses. ABI5 functions in the core ABA signaling, which is composed of PYR/PYL/RCAR receptors, PP2C phosphatases and SnRK2 kinases, through the regulation of the expression of genes that contain the ABSCISIC ACID RESPONSE ELEMENT (ABRE) motif within their promoter region. The regulated targets include stress adaptation genes, e.g., LEA proteins. However, the expression and activation of ABI5 is not only dependent on the core ABA signaling. Many transcription factors such as ABI3, ABI4, MYB7 and WRKYs play either a positive or a negative role in the regulation of ABI5 expression. Additionally, the stability and activity of ABI5 are also regulated by other proteins through post-translational modifications such as phosphorylation, ubiquitination, sumoylation and S-nitrosylation. Moreover, ABI5 also acts as an ABA and other phytohormone signaling integrator. Components of auxin, cytokinin, gibberellic acid, jasmonate and brassinosteroid signaling and metabolism pathways were shown to take part in ABI5 regulation and/or to be regulated by ABI5. Monocot orthologs of AtABI5 have been identified. Although their roles in the molecular and physiological adaptations during abiotic stress have been elucidated, knowledge about their detailed action still remains elusive. Here, we describe the recent advances in understanding the action of ABI5 in early developmental processes and the adaptation of plants to unfavorable environmental conditions. We also focus on ABI5 relation to other phytohormones in the abiotic stress response of plants. PMID:28018412

  10. Ethanol and cocaine: environmental place conditioning, stereotypy and synergism in planarians

    PubMed Central

    Tallarida, Christopher S.; Bires, Kristopher; Avershal, Jacob; Tallarida, Ronald J.; Seo, Stephanie; Rawls, Scott M.

    2015-01-01

    More than 90% of individuals who use cocaine also report concurrent ethanol use, but only a few studies, all conducted with vertebrates, have investigated pharmacodynamic interactions between ethanol and cocaine. Planaria, a type of flatworm often considered to have the simplest ‘brain’, is an invertebrate species especially amenable to the quantification of drug-induced behavioral responses and identification of conserved responses. Here, we investigated stereotypical and environmental place conditioning (EPC) effects of ethanol administered alone and in combination with cocaine. Planarians displayed concentration-related increases in C-shape movements following exposure to ethanol (0.01 – 1%) (maximal effect: 9.9 ± 1.1 C-shapes/5 min at 0.5%) or cocaine (0.1 – 5 mM) (maximal effect: 42.8 ± 4.1 C-shapes/5 min at 5 mM). For combined administration, cocaine (0.1 – 5 mM) were tested with submaximal ethanol concentrations (0.01, 0,1%), the observed effect for the combination was enhanced compared to its predicted effect, indicating synergism for the interaction. The synergy with ethanol was specific for cocaine, as related experiments revealed that combinations of ethanol and nicotine did not result in synergy. For EPC experiments, ethanol (0.0001 – 1%) concentration-dependently increased EPC, with significant environmental shifts detected at 0.01 and 1%. Cocaine (0.001 – 1 μM) produced an inverted U-shaped concentration-effect curve, with a significant environmental shift observed at 0.01 μM. For combined exposure, variable cocaine concentrations (0.001 – 1 μM) were administered with a statistically ineffective concentration of ethanol (0.0001%). For each concentration of cocaine, the environmental shift was enhanced by ethanol, with significance detected at 1 μM. Cocaethylene, a metabolite of cocaine and ethanol, also produced C-shapes and EPC. Lidocaine (0.001 – 10 μM), an anesthetic and analog of cocaine, did not produce EPC or C

  11. Ethanol and cocaine: environmental place conditioning, stereotypy, and synergism in planarians.

    PubMed

    Tallarida, Christopher S; Bires, Kristopher; Avershal, Jacob; Tallarida, Ronald J; Seo, Stephanie; Rawls, Scott M

    2014-09-01

    More than 90% of individuals who use cocaine also report concurrent ethanol use, but only a few studies, all conducted with vertebrates, have investigated pharmacodynamic interactions between ethanol and cocaine. Planaria, a type of flatworm often considered to have the simplest 'brain,' is an invertebrate species especially amenable to the quantification of drug-induced behavioral responses and identification of conserved responses. Here, we investigated stereotypical and environmental place conditioning (EPC) effects of ethanol administered alone and in combination with cocaine. Planarians displayed concentration-related increases in C-shaped movements following exposure to ethanol (0.01-1%) (maximal effect: 9.9±1.1 C-shapes/5 min at 0.5%) or cocaine (0.1-5 mM) (maximal effect: 42.8±4.1 C-shapes/5 min at 5 mM). For combined administration, cocaine (0.1-5 mM) was tested with submaximal ethanol concentrations (0.01, 0.1%); the observed effect for the combination was enhanced compared to its predicted effect, indicating synergism for the interaction. The synergy with ethanol was specific for cocaine, as related experiments revealed that combinations of ethanol and nicotine did not result in synergy. For EPC experiments, ethanol (0.0001-1%) concentration-dependently increased EPC, with significant environmental shifts detected at 0.01 and 1%. Cocaine (0.001-1 μM) produced an inverted U-shaped concentration-effect curve, with a significant environmental shift observed at 0.01 μM. For combined exposure, variable cocaine concentrations (0.001-1 μM) were administered with a statistically ineffective concentration of ethanol (0.0001%). For each concentration of cocaine, the environmental shift was enhanced by ethanol, with significance detected at 1 μM. Cocaethylene, a metabolite of cocaine and ethanol, also produced C-shapes and EPC. Lidocaine (0.001-10 μM), an anesthetic and analog of cocaine, did not produce EPC or C-shaped movements. Evidence from planarians

  12. Major methodological constraints to the assessment of environmental status based on the condition of benthic communities

    NASA Astrophysics Data System (ADS)

    Medeiros, João Paulo; Pinto, Vanessa; Sá, Erica; Silva, Gilda; Azeda, Carla; Pereira, Tadeu; Quintella, Bernardo; Raposo de Almeida, Pedro; Lino Costa, José; José Costa, Maria; Chainho, Paula

    2014-05-01

    The Marine Strategy Framework Directive (MSFD) was published in 2008 and requires Member States to take the necessary measures to achieve or maintain good environmental status in aquatic ecosystems by the year of 2020. The MSFD indicates 11 qualitative descriptors for environmental status assessment, including seafloor integrity, using the condition of the benthic community as an assessment indicator. Member States will have to define monitoring programs for each of the MSFD descriptors based on those indicators in order to understand which areas are in a Good Environmental Status and what measures need to be implemented to improve the status of areas that fail to achieve that major objective. Coastal and offshore marine waters are not frequently monitored in Portugal and assessment tools have only been developed very recently with the implementation of the Water Framework Directive (WFD). The lack of historical data and knowledge on the constraints of benthic indicators in coastal areas requires the development of specific studies addressing this issue. The major objective of the current study was to develop and test and experimental design to assess impacts of offshore projects. The experimental design consisted on the seasonal and interannual assessment of benthic invertebrate communities in the area of future implementation of the structures (impact) and two potential control areas 2 km from the impact area. Seasonal benthic samples were collected at nine random locations within the impact and control areas in two consecutive years. Metrics included in the Portuguese benthic assessment tool (P-BAT) were calculated since this multimetric tool was proposed for the assessment of the ecological status in Portuguese coastal areas under the WFD. Results indicated a high taxonomic richness in this coastal area and no significant differences were found between impact and control areas, indicating the feasibility of establishing adequate control areas in marine

  13. Ubiquitination pathway as a target to develop abiotic stress tolerance in rice

    PubMed Central

    Dametto, Andressa; Buffon, Giseli; Dos Reis Blasi, Édina Aparecida; Sperotto, Raul Antonio

    2015-01-01

    Abiotic stresses may result in significant losses in rice grain productivity. Protein regulation by the ubiquitin/proteasome system has been studied as a target mechanism to optimize adaptation and survival strategies of plants to different environmental stresses. This article aimed at highlighting recent discoveries about the roles ubiquitination may play in the exposure of rice plants to different abiotic stresses, enabling the development of modified plants tolerant to stress. Responses provided by the ubiquitination process include the regulation of the stomatal opening, phytohormones levels, protein stabilization, cell membrane integrity, meristematic cell maintenance, as well as the regulation of reactive oxygen species and heavy metals levels. It is noticeable that ubiquitination is a potential means for developing abiotic stress tolerant plants, being an excellent alternative to rice (and other cultures) improvement programs. PMID:26236935

  14. Relationship between environmental conditions and rates of coastal erosion in Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Barnhart, K. R.; Anderson, R. S.; Overeem, I.; Wobus, C. W.; Clow, G. D.; Urban, F. E.; LeWinter, A. L.; Stanton, T. P.

    2012-12-01

    Rates of coastal cliff erosion are a function of the geometry and substrate of the coast; storm frequency, duration, magnitude, and wave field; and regional sediment sources. In the Arctic, the duration of sea ice-free conditions limits the time over which coastal erosion can occur, and sea water temperature modulates erosion rates where ice content of coastal bluffs is high. Predicting how coastal erosion rates in this environment will respond to future climate change requires that we first understand modern coastal erosion rates. Arctic coastlines are responding rapidly to climate change. Remotely sensed observations of coastline position indicate that the mean annual erosion rate along a 60-km reach of Alaska's Beaufort Sea coast, characterized by high ice content and small grain size, doubled from 7 m yr-1 for the period 1955-1979 to 14 m yr-1 for 2002-2007. Over the last 30 years the duration of the open water season expanded from ˜45 days to ˜95 days, increasing exposure of permafrost bluffs to seawater by a factor of 2.5. Time-lapse photography indicates that coastal erosion in this environment is a halting process: most significant erosion occurs during storm events in which local water level is elevated by surge, during which instantaneous submarine erosion rates can reach 1-2 m/day. In contrast, at times of low water, or when sea ice is present, erosion rates are negligible. We employ a 1D coastal cross-section numerical model of the erosion of ice-rich permafrost bluffs to explore the sensitivity of the system to environmental drivers. Our model captures the geometry and style of coastal erosion observed near Drew Point, Alaska, including insertion of a melt-notch, topple of ice-wedge-bounded blocks, and subsequent degradation of these blocks. Using consistent rules, we test our model against the temporal pattern of coastal erosion over two periods: the recent past (~30 years), and a short (~2 week) period in summer 2010. Environmental conditions used

  15. Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement.

    PubMed

    Harfouche, Antoine; Meilan, Richard; Altman, Arie

    2014-11-01

    Abiotic stresses, such as drought, salinity and cold, are the major environmental stresses that adversely affect tree growth and, thus, forest productivity, and play a major role in determining the geographic distribution of tree species. Tree responses and tolerance to abiotic stress are complex biological processes that are best analyzed at a systems level using genetic, genomic, metabolomic and phenomic approaches. This will expedite the dissection of stress-sensing and signaling networks to further support efficient genetic improvement programs. Enormous genetic diversity for stress tolerance exists within some forest-tree species, and due to advances in sequencing technologies the molecular genetic basis for this diversity has been rapidly unfolding in recent years. In addition, the use of emerging phenotyping technologies extends the suite of traits that can be measured and will provide us with a better understanding of stress tolerance. The elucidation of abiotic stress-tolerance mechanisms will allow for effective pyramiding of multiple tolerances in a single tree through genetic engineering. Here we review recent progress in the dissection of the molecular basis of abiotic stress tolerance in forest trees, with special emphasis on Populus, Pinus, Picea, Eucalyptus and Quercus spp. We also outline practices that will enable the deployment of trees engineered for abiotic stress tolerance to land owners. Finally, recommendations for future work are discussed.

  16. A PROBABILISTIC ASSESSMENT OF BENTHIC CONDITION OF WEST COAST ESTUARIES: RESULTS FROM THE NATIONAL COASTAL ASSESSMENT 1999-2000

    EPA Science Inventory

    As part of the National Coastal Assessment, the Environmental Monitoring and Assessment Program of EPA is conducting a six year evaluation of benthic habitat condition for coastal waters of the western U.S. In 1999, probabilistic sampling for a range of biotic and abiotic conditi...

  17. Evaluating environmental joint extremes for the offshore industry using the conditional extremes model

    NASA Astrophysics Data System (ADS)

    Ewans, Kevin; Jonathan, Philip

    2014-02-01

    Understanding extreme ocean environments and their interaction with fixed and floating structures is critical for the design of offshore and coastal facilities. The joint effect of various ocean variables on extreme responses of offshore structures is fundamental in determining the design loads. For example, it is known that mean values of wave periods tend to increase with increasing storm intensity, and a floating system responds in a complex way to both variables. Specification of joint extremes in design criteria has often been somewhat ad hoc, being based on fairly arbitrary combinations of extremes of variables estimated independently. Such approaches are even outlined in design guidelines. Mathematically more consistent estimates of the joint occurrence of extreme environmental variables fall into two camps in the offshore industry - response-based and response-independent. Both are outlined here, with emphasis on response-independent methods, particularly those based on the conditional extremes model recently introduced by (Heffernan and Tawn, 2004), which has a solid theoretical motivation. We illustrate an application of the conditional extremes model to joint estimation of extreme storm peak significant wave height and peak period at a northern North Sea location, incorporating storm direction as a model covariate. We also discuss joint estimation of extreme current profiles with depth off the North West Shelf of Australia. Methods such as the conditional extremes model provide valuable additions to the metocean engineer's toolkit.

  18. INFLUENCE OF ENVIRONMENTAL CONDITIONS ON PROPERTIES OF IONOMERIC AND RESIN SEALANT MATERIALS

    PubMed Central

    Kantovitz, Kamila Rosamilia; Pascon, Fernanda Miori; Correr, Gisele Maria; Alonso, Roberta Caroline Bruschi; Rodrigues, Lidiany Karla Azevedo; Alves, Marcelo Correa; Puppin-Rontani, Regina Maria

    2009-01-01

    Objectives: The aim of this study was to determine the effect of environmental conditions on the degradation of ionomeric and resin sealant materials. Material and Methods: FluroShield, Vitremer, and Ketac Molar disc-shaped specimens (n=18/material) were prepared, polished, subjected to initial hardness and roughness readings. Six discs of each material were randomly assigned to one of three different storage solutions: 0.3% citric acid (CA), demineralization solution (DE), and remineralization solution (RE). The specimens were individually immersed in 3 mL of the test solutions, which were daily changed. After 15 days of storage, new surface roughness and hardness readings were done. Fluoride release in the solutions was measured within 15 days. Data were analyzed by ANOVA and Tukey's and Contrast tests (α=0.05). Results: The storage in CA increased the roughness of Vitremer and Ketac Molar. A significant reduction in hardness was observed for all materials after storage in all solutions. For all materials, the greatest amounts of fluoride release occurred during the 1st day. FluroShield presented the same patterns of fluoride release in all solutions. Ketac Molar and Vitremer released the highest amounts of fluoride in the CA solution. Conclusions: Ionomeric materials are more susceptible to degradation than resin-based materials under acidic conditions. Acidic conditions lead to a higher fluoride release from ionomeric materials. PMID:19668988

  19. Raman spectroscopy of a single living cell in environmentally stressed conditions

    NASA Astrophysics Data System (ADS)

    Singh, Gajendra P.; Creely, Caitriona; Volpe, Giovanni; Grotsch, Helga; Petrov, Dmitri

    2005-08-01

    Living cells initiate a stress response in order to survive environmentally stressful conditions. We monitored changes in the Raman spectra of an optically trapped Saccharomyces cerevisiae yeast cell under normal and hyperosmotic stress conditions. When the yeast cells were challenged with a high concentration of glucose so as to exert hyperosmotic stress, it was shown that two chemical substances - glycerol and ethanol - could be monitored in real time in a single cell. The volume of the detection area of our confocal microspectrometer is approximately 1 fL. The average quantities of detected glycerol and ethanol are about 300 attomol and 700 attomol respectively. This amounts to the detection of approximately 108 glycerol molecules and 4 X 108 ethanol molecules after 36 min of hyper osmotic stress. Besides this, we also optically trapped a single yeast cell for up to three hours under normal conditions and monitored the changes in the Raman spectra during the lag phase of its growth and the G1 phase of its cell cycle. During the lag phase the cell synthesises new proteins and the observed behavior of the peaks corresponding to these proteins as well as those of RNA served as a sensitive indicator of the adaptation of the cell to its changed environment. The changes observed in the Raman spectra of a trapped yeast cell in the late G1 phase or the beginning of S phase corresponded to the growth of a bud.

  20. Production of native arbuscular mycorrhizal fungi inoculum under different environmental conditions.

    PubMed

    Torres-Arias, Yamir; Fors, Rosalba Ortega; Nobre, Camila; Gómez, Eduardo Furrazola; Berbara, Ricardo Luis Louro

    In order to obtain an arbuscular mycorrhizal fungi (AMF) native inoculum from Sierra de Moa and determine the most appropriate conditions for its big scale production, four light and temperature combinations were tested in three plant species (Calophyllum antillanum, Talipariti elatum and Paspalum notatum). Growth and development parameters, as well as the mycorrhizal functioning of the seedlings were evaluated. The natural light treatment under high temperatures (L-H) was the most suitable for the growth and development of the three plant species, showing the highest total biomass values, mainly of root, and a positive root-shoot ratio balance. This treatment also promoted higher values of root mycorrhizal colonization, external mycelium and AMF spore density. A total of 38 AMF species were identified among the plants and environmental conditions tested. Archaeospora sp.1, Glomus sp.5, Glomus brohultii and G. glomerulatum were observed in all the treatments. The L-H condition can be recommended for native inoculum production, as it promotes a better expression of the AM symbiosis and an elevated production of mycorrhizal propagules.

  1. A qualitative study of internal wave ship wakes: Dependence on environmental conditions and experimental parameters

    SciTech Connect

    Mullenhoff, C.J.; Brase, J.M.

    1995-04-24

    For the past several years the UK-US Radar Ocean Imaging Program has conducted a series of field experiments with the primary purpose of gathering real aperture radar (RAR) imagery at low grazing angle of ship-generated internal wave (IW) wakes. The first observations with RAR`s were made in the 1989 Loch Linnhe experiment where it was observed that radar images at low grazing angles (LGA) of approximately six degrees had significantly higher modulation levels than SAR images made at higher grazing angles of 35 - 65 degrees. These initial observations have led to several more experiments designed to verify the phenomenon and to test its dependence on experimental and environmental conditions. A parallel effort began to develop theoretical models of the LGA imaging process. Through this series of experiments we have developed an extensive database of radar imagery and supporting environmental data. The objective of this report is twofold: (1) To describe the database and the associated space of parameters. We will look at the coverage of the parameter space within the database and at areas which should be covered. (2) To take an initial look at the dependence of qualitative modulation strength on the experimental and environmental parameters. This first look will indicate the strongest dependencies which can then be studied in more detail. Section 2 describes the experimental database and Section 3 discusses the pa