Science.gov

Sample records for abiotic environmental variables

  1. Abiotic environmental factors influencing blowfly colonisation patterns in the field.

    PubMed

    George, Kelly A; Archer, Melanie S; Toop, Tes

    2013-06-10

    The accuracy of minimum post-mortem interval (mPMI) estimates usually hinges upon the ability of forensic entomologists to predict the conditions under which calliphorids will colonise bodies. However, there can be delays between death and colonisation due to poorly understood abiotic and biotic factors, hence the need for a mPMI. To quantify the importance of various meteorological and light-level factors, beef liver baits were placed in the field (Victoria, Australia) on 88 randomly selected days over 3 years in all seasons and observed every 60-90 min for evidence of colonisation. Baits were exposed during daylight, and the following parameters were measured: barometric pressure, light intensity, wind speed, ambient temperature, relative humidity and rainfall. Collected data were analysed using backward LR logistic regression to produce an equation of colonisation probability. This type of analysis removes factors with the least influence on colonisation in successive steps until all remaining variables significantly increase the accuracy of predicting colonisation presence or absence. Ambient temperature was a positive predictor variable (an increase in temperature increased the probability of calliphorid colonisation). Relative humidity was a negative predictor variable (an increase in humidity decreased the probability of calliphorid colonisation). Barometric pressure, light intensity, wind speed and rainfall did not enhance the accuracy of the probability model; however, analysis of species activity patterns suggests that heavy rainfall and strong wind speeds inhibit calliphorid colonisation. PMID:23683914

  2. Maternal, social and abiotic environmental effects on growth vary across life stages in a cooperative mammal.

    PubMed

    English, Sinead; Bateman, Andrew W; Mares, Rafael; Ozgul, Arpat; Clutton-Brock, Tim H

    2014-03-01

    Resource availability plays a key role in driving variation in somatic growth and body condition, and the factors determining access to resources vary considerably across life stages. Parents and carers may exert important influences in early life, when individuals are nutritionally dependent, with abiotic environmental effects having stronger influences later in development as individuals forage independently. Most studies have measured specific factors influencing growth across development or have compared relative influences of different factors within specific life stages. Such studies may not capture whether early-life factors continue to have delayed effects at later stages, or whether social factors change when individuals become nutritionally independent and adults become competitors for, rather than providers of, food. Here, we examined variation in the influence of the abiotic, social and maternal environment on growth across life stages in a wild population of cooperatively breeding meerkats. Cooperatively breeding vertebrates are ideal for investigating environmental influences on growth. In addition to experiencing highly variable abiotic conditions, cooperative breeders are typified by heterogeneity both among breeders, with mothers varying in age and social status, and in the number of carers present. Recent rainfall had a consistently marked effect on growth across life stages, yet other seasonal terms only influenced growth during stages when individuals were growing fastest. Group size and maternal dominance status had positive effects on growth during the period of nutritional dependence on carers, but did not influence mass at emergence (at 1 month) or growth at independent stages (>4 months). Pups born to older mothers were lighter at 1 month of age and subsequently grew faster as subadults. Males grew faster than females during the juvenile and subadult stage only. Our findings demonstrate the complex ways in which the external environment

  3. Assessing Utilization and Environmental Risks of Important Genes in Plant Abiotic Stress Tolerance.

    PubMed

    Khan, Mohammad S; Khan, Muhammad A; Ahmad, Dawood

    2016-01-01

    Transgenic plants with improved salt and drought stress tolerance have been developed with a large number of abiotic stress-related genes. Among these, the most extensively used genes are the glycine betaine biosynthetic codA, the DREB transcription factors, and vacuolar membrane Na(+)/H(+) antiporters. The use of codA, DREBs, and Na(+)/H(+) antiporters in transgenic plants has conferred stress tolerance and improved plant phenotype. However, the future deployment and commercialization of these plants depend on their safety to the environment. Addressing environmental risk assessment is challenging since mechanisms governing abiotic stress tolerance are much more complex than that of insect resistance and herbicide tolerance traits, which have been considered to date. Therefore, questions arise, whether abiotic stress tolerance genes need additional considerations and new measurements in risk assessment and, whether these genes would have effects on weediness and invasiveness potential of transgenic plants? While considering these concerns, the environmental risk assessment of abiotic stress tolerance genes would need to focus on the magnitude of stress tolerance, plant phenotype and characteristics of the potential receiving environment. In the present review, we discuss environmental concerns and likelihood of concerns associated with the use of abiotic stress tolerance genes. Based on our analysis, we conclude that the uses of these genes in domesticated crop plants are safe for the environment. Risk assessment, however, should be carefully conducted on biofeedstocks and perennial plants taking into account plant phenotype and the potential receiving environment. PMID:27446095

  4. Assessing Utilization and Environmental Risks of Important Genes in Plant Abiotic Stress Tolerance

    PubMed Central

    Khan, Mohammad S.; Khan, Muhammad A.; Ahmad, Dawood

    2016-01-01

    Transgenic plants with improved salt and drought stress tolerance have been developed with a large number of abiotic stress-related genes. Among these, the most extensively used genes are the glycine betaine biosynthetic codA, the DREB transcription factors, and vacuolar membrane Na+/H+ antiporters. The use of codA, DREBs, and Na+/H+ antiporters in transgenic plants has conferred stress tolerance and improved plant phenotype. However, the future deployment and commercialization of these plants depend on their safety to the environment. Addressing environmental risk assessment is challenging since mechanisms governing abiotic stress tolerance are much more complex than that of insect resistance and herbicide tolerance traits, which have been considered to date. Therefore, questions arise, whether abiotic stress tolerance genes need additional considerations and new measurements in risk assessment and, whether these genes would have effects on weediness and invasiveness potential of transgenic plants? While considering these concerns, the environmental risk assessment of abiotic stress tolerance genes would need to focus on the magnitude of stress tolerance, plant phenotype and characteristics of the potential receiving environment. In the present review, we discuss environmental concerns and likelihood of concerns associated with the use of abiotic stress tolerance genes. Based on our analysis, we conclude that the uses of these genes in domesticated crop plants are safe for the environment. Risk assessment, however, should be carefully conducted on biofeedstocks and perennial plants taking into account plant phenotype and the potential receiving environment. PMID:27446095

  5. Environmentally Regulated Abiotic Release of Volatile Pheromones from the Sugar-based Oral Secretions of Caribflies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report an abiotic mechanism for the emission of volatile insect pheromones that is controlled by environmentally-induced change in the physicochemical properties of the sugar-based release matrix. Male Anastrepha suspensa [Loew] (caribflies) mark mating sites on leaf surfaces by depositing oral ...

  6. Fitting response models of benthic community structure to abiotic variables in a polluted estuarine system

    NASA Astrophysics Data System (ADS)

    González-Oreja, José Antonio; Saiz-Salinas, José Ignacio

    1999-07-01

    Models of the macrozoobenthic community responses to abiotic variables measured in the polluted Bilbao estuary were obtained by multiple linear regression analyses. Total, Oligochaeta and Nematoda abundance and biomass were considered as dependent variables. Intertidal level, dissolved oxygen at the bottom of the water column (DOXB) and organic content of the sediment were selected by the analyses as the three principal explanatory variables. Goodness-of-fit of the models was high ( overlinex=71.3% ). Total abundance and biomass increased as a linear function of DOXB. The principal outcome of the vast sewage scheme currently in progress in the study area is an important contributor of increasing DOXB levels. The models exposed in this paper will serve as a tool to evaluate the expected changes in the near future.

  7. Using abiotic variables to predict importance of sites for species representation.

    PubMed

    Albuquerque, Fabio; Beier, Paul

    2015-10-01

    In systematic conservation planning, species distribution data for all sites in a planning area are used to prioritize each site in terms of the site's importance toward meeting the goal of species representation. But comprehensive species data are not available in most planning areas and would be expensive to acquire. As a shortcut, ecologists use surrogates, such as occurrences of birds or another well-surveyed taxon, or land types defined from remotely sensed data, in the hope that sites that represent the surrogates also represent biodiversity. Unfortunately, surrogates have not performed reliably. We propose a new type of surrogate, predicted importance, that can be developed from species data for a q% subset of sites. With species data from this subset of sites, importance can be modeled as a function of abiotic variables available at no charge for all terrestrial areas on Earth. Predicted importance can then be used as a surrogate to prioritize all sites. We tested this surrogate with 8 sets of species data. For each data set, we used a q% subset of sites to model importance as a function of abiotic variables, used the resulting function to predict importance for all sites, and evaluated the number of species in the sites with highest predicted importance. Sites with the highest predicted importance represented species efficiently for all data sets when q = 25% and for 7 of 8 data sets when q = 20%. Predicted importance requires less survey effort than direct selection for species representation and meets representation goals well compared with other surrogates currently in use. This less expensive surrogate may be useful in those areas of the world that need it most, namely tropical regions with the highest biodiversity, greatest biodiversity loss, most severe lack of inventory data, and poorly developed protected area networks. PMID:25959590

  8. Inter-annual variability of carbon fluxes in temperate forest ecosystems: effects of biotic and abiotic factors

    NASA Astrophysics Data System (ADS)

    Chen, M.; Keenan, T. F.; Hufkens, K.; Munger, J. W.; Bohrer, G.; Brzostek, E. R.; Richardson, A. D.

    2014-12-01

    Carbon dynamics in terrestrial ecosystems are influenced by both abiotic and biotic factors. Abiotic factors, such as variation in meteorological conditions, directly drive biophysical and biogeochemical processes; biotic factors, referring to the inherent properties of the ecosystem components, reflect the internal regulating effects including temporal dynamics and memory. The magnitude of the effect of abiotic and biotic factors on forest ecosystem carbon exchange has been suggested to vary at different time scales. In this study, we design and conduct a model-data fusion experiment to investigate the role and relative importance of the biotic and abiotic factors for inter-annual variability of the net ecosystem CO2 exchange (NEE) of temperate deciduous forest ecosystems in the Northeastern US. A process-based model (FöBAAR) is parameterized at four eddy-covariance sites using all available flux and biometric measurements. We conducted a "transplant" modeling experiment, that is, cross- site and parameter simulations with different combinations of site meteorology and parameters. Using wavelet analysis and variance partitioning techniques, analysis of model predictions identifies both spatial variant and spatially invariant parameters. Variability of NEE was primarily modulated by gross primary productivity (GPP), with relative contributions varying from hourly to yearly time scales. The inter-annual variability of GPP and NEE is more regulated by meteorological forcing, but spatial variability in certain model parameters (biotic response) has more substantial effects on the inter-annual variability of ecosystem respiration (Reco) through the effects on carbon pools. Both the biotic and abiotic factors play significant roles in modulating the spatial and temporal variability in terrestrial carbon cycling in the region. Together, our study quantifies the relative importance of both, and calls for better understanding of them to better predict regional CO2

  9. Environmental Association Analyses Identify Candidates for Abiotic Stress Tolerance in Glycine soja, the Wild Progenitor of Cultivated Soybeans.

    PubMed

    Anderson, Justin E; Kono, Thomas J Y; Stupar, Robert M; Kantar, Michael B; Morrell, Peter L

    2016-01-01

    Natural populations across a species range demonstrate population structure owing to neutral processes such as localized origins of mutations and migration limitations. Selection also acts on a subset of loci, contributing to local adaptation. An understanding of the genetic basis of adaptation to local environmental conditions is a fundamental goal in basic biological research. When applied to crop wild relatives, this same research provides the opportunity to identify adaptive genetic variation that may be used to breed for crops better adapted to novel or changing environments. The present study explores an ex situ conservation collection, the USDA germplasm collection, genotyped at 32,416 SNPs to identify population structure and test for associations with bioclimatic and biophysical variables in Glycine soja, the wild progenitor of Glycine max (soybean). Candidate loci were detected that putatively contribute to adaptation to abiotic stresses. The identification of potentially adaptive variants in this ex situ collection may permit a more targeted use of germplasm collections. PMID:26818076

  10. Environmental Association Analyses Identify Candidates for Abiotic Stress Tolerance in Glycine soja, the Wild Progenitor of Cultivated Soybeans

    PubMed Central

    Anderson, Justin E.; Kono, Thomas J. Y.; Stupar, Robert M.; Kantar, Michael B.; Morrell, Peter L.

    2016-01-01

    Natural populations across a species range demonstrate population structure owing to neutral processes such as localized origins of mutations and migration limitations. Selection also acts on a subset of loci, contributing to local adaptation. An understanding of the genetic basis of adaptation to local environmental conditions is a fundamental goal in basic biological research. When applied to crop wild relatives, this same research provides the opportunity to identify adaptive genetic variation that may be used to breed for crops better adapted to novel or changing environments. The present study explores an ex situ conservation collection, the USDA germplasm collection, genotyped at 32,416 SNPs to identify population structure and test for associations with bioclimatic and biophysical variables in Glycine soja, the wild progenitor of Glycine max (soybean). Candidate loci were detected that putatively contribute to adaptation to abiotic stresses. The identification of potentially adaptive variants in this ex situ collection may permit a more targeted use of germplasm collections. PMID:26818076

  11. Abiotic factors influencing the spatial and temporal variability of juvenile fish in Pamlico Sound, North Carolina

    SciTech Connect

    Pietrafesa, L.J.; Janowitz, G.S.; Miller, J.M.; Noble, E.B.; Ross, S.W.; Epperly, S.P.

    1985-07-01

    A 3-D, time dependent model of the circulation in Pamlico Sound, NC, is used to relate the direction and magnitude of winds to the number of juvenile fish sampled at specified estuarine nursery locations. NC marine sport fishes are known to be spawned in NC continental waters, and then make transit to an through barrier island inlets, into Pamlico Sound. The juveniles then move 40-70 kilometers across the Sound to the nurseries. It is hypothesized that wind driven, pressure gradient induced and topographically steered currents, all abiotic factors, provide the transport mechanisms, during the recruitment period February-April, necessary for the transect. Moreover, the inherent variability in the atmospherically derived physical factors and the influence of topographic irregularities such as a large shoal which laterally bisects the Sound and bifurcates the bottom currents are seen as sources of the temporal and spatial variation observed in the distribution of juvenile fish, while the influence of biological processes is viewed as providing fine-tuned structuring.

  12. Developing standards for environmental toxicants: the need to consider abiotic environmental factors and microbe-mediated ecologic processes.

    PubMed Central

    Babich, H; Stotzky, G

    1983-01-01

    This article suggests and discusses two novel aspects for the formulation of standards for environmental toxicants. First, uniform national standards for each pollutant will be underprotective for some ecosystems and overprotective for others, inasmuch as the toxicity of a pollutant to the indigenous biota is dependent on the physicochemical properties of the recipient environment. As the number of chemicals that need regulation is immense and as microbes appear to respond similarly to pollutant-abiotic factor interactions as do plants and animals, it is suggested that microbial assays be used initially to identify those abiotic factors that most influence the toxicity of specific pollutants. Thereafter, additional studies using plants and animals can focus on these pollutant-abiotic factor interactions, and more meaningful standards can then be formulated more rapidly and inexpensively. Second, it is suggested that the response to pollutants of microbe-mediated ecologic processes be used to quantitate the sensitivity of different ecosystems to various toxicants. Such a quantification, expressed in terms of an "ecological dose 50%" (EcD50), could be easily incorporated into the methodologies currently used to set water quality criteria and would also be applicable to setting criteria for terrestrial ecosystems. PMID:6339225

  13. Environmental Selenium Transformations: Distinguishing Abiotic and Biotic Factors Influencing Se Redox Transformations

    NASA Astrophysics Data System (ADS)

    Rosenfeld, C.; Kenyon, J.; James, B. R.; Santelli, C. M.

    2014-12-01

    Worldwide, selenium (Se) is proving to be a significant environmental concern, with many anthropogenic activities (e.g. coal mining and combustion, phosphate mining and agricultural irrigation) releasing potentially hazardous concentrations into surface and subsurface ecosystems. The US EPA is currently considering aquatic Se regulations, however no guidelines exist for excess soil Se, despite its ability to act as a persistent Se source. Various abiotic and biological processes mediate Se oxidation/reduction (redox) transformations in soils, thus influencing its solubility and bioavailability. In this research we assess (1) the ability of metal-transforming fungal species to aerobically reduce Se (Se (IV and/or VI) to Se(0)), and (2) the relative contribution of biotic and abiotic pathways for aerobic Se transformation. The primary objective of this research is to determine what abiotic and biotic factors enhance or restrict Se bioavailability. Results indicate that fungal-mediated Se reduction may be quite widespread, with at least 7 out of 10 species of known Mn(II)-oxidizing fungi isolated from metal impacted environments also identified as capable of aerobically reducing Se(IV) and/or Se(VI) to Se(0). Increasing concentrations of selenite (SeO32-; Se(IV)) and selenate (SeO42-; Se(VI)) generally reduced fungal growth rates, although selenate was more likely to inhibit fungal growth than selenite. To study oxidation, Se(0) was combined with Mn(III/IV) (hydr)oxides (henceforth referred to as Mn oxides), Se-transforming fungi (Alternaria alternata), and oxalic acid to mimic Se biogeochemistry at the plant-soil interface. Increased pH in the presence of fungi (7.2 with fungi, 6.8 without fungi after 24 days) was observed. Additionally, a slight decrease in redox potential was measured for incubations without Mn oxides (236 mV with Mn oxides, 205 mV without Mn oxides after 24 days), indicating that Mn oxides may enhance Se oxidation. Elemental Se oxidation rates to

  14. Connecting RNA Processing to Abiotic Environmental Response in Arabidopsis: the role of a polyadenylation factor

    NASA Astrophysics Data System (ADS)

    Li, Q. Q.; Xu, R.; Hunt, A. G.; Falcone, D. L.

    Plants are constantly challenged by numerous environmental stresses both biotic and abiotic It is clear that plants have evolved to counter these stresses using all but limited means We recently discovered the potential role of a messenger RNA processing factor namely the Arabidopsis cleavage and polyadenylation specificity factor 30 kDa subunit AtCPSF30 when a mutant deficient in this factor displayed altered responses to an array of abiotic stresses This AtCPSF30 mutant named oxt6 exhibited an elevated tolerance to oxidative stress Microarray experiments of oxt6 and its complemented lines revealed an altered gene expression profile among which were antioxidative defense genes Interestingly the same gene encoding AtCPSF30 can also be transcribed into a large transcript that codes for a potential splicing factor Both protein products have a domain for RNA binding and a calmodulin binding domain activities of which have been confirmed by biochemical assays Surprisingly binding of AtCPSF30 to calmodulin inhibits the RNA-binding activity of the protein Mutational analysis shows that a small part of the protein is responsible for calmodulin binding and point mutations in this region abolished both RNA binding activity and the inhibition of this activity by calmodulin Analyses of the potential splicing factor are on going and the results will be presented The interesting possibilities for both the interplay between splicing and polyadenylation and the regulation of these processes by stimuli that act through

  15. Spatial variability of biotic and abiotic tree establishment constraints across a treeline ecotone in the Alaska Range

    USGS Publications Warehouse

    Stueve, K.M.; Isaacs, R.E.; Tyrrell, L.E.; Densmore, R.V.

    2011-01-01

    Throughout interior Alaska (USA), a gradual warming trend in mean monthly temperatures occurred over the last few decades (;2-48C). The accompanying increases in woody vegetation at many alpine treeline (hereafter treeline) locations provided an opportunity to examine how biotic and abiotic local site conditions interact to control tree establishment patterns during warming. We devised a landscape ecological approach to investigate these relationships at an undisturbed treeline in the Alaska Range. We identified treeline changes between 1953 (aerial photography) and 2005 (satellite imagery) in a geographic information system (GIS) and linked them with corresponding local site conditions derived from digital terrain data, ancillary climate data, and distance to 1953 trees. Logistic regressions enabled us to rank the importance of local site conditions in controlling tree establishment. We discovered a spatial transition in the importance of tree establishment controls. The biotic variable (proximity to 1953 trees) was the most important tree establishment predictor below the upper tree limit, providing evidence of response lags with the abiotic setting and suggesting that tree establishment is rarely in equilibrium with the physical environment or responding directly to warming. Elevation and winter sun exposure were important predictors of tree establishment at the upper tree limit, but proximity to trees persisted as an important tertiary predictor, indicating that tree establishment may achieve equilibrium with the physical environment. However, even here, influences from the biotic variable may obscure unequivocal correlations with the abiotic setting (including temperature). Future treeline expansion will likely be patchy and challenging to predict without considering the spatial variability of influences from biotic and abiotic local site conditions. ?? 2011 by the Ecological Society of America.

  16. The Role of Abiotic Environmental Conditions and Herbivory in Shaping Bacterial Community Composition in Floral Nectar

    PubMed Central

    Samuni-Blank, Michal; Izhaki, Ido; Laviad, Sivan; Bar-Massada, Avi; Gerchman, Yoram; Halpern, Malka

    2014-01-01

    Identifying the processes that drive community assembly has long been a central theme in ecology. For microorganisms, a traditional prevailing hypothesis states that “everything is everywhere, but the environment selects”. Although the bacterial community in floral nectar may be affected by both atmosphere (air-borne bacteria) and animals as dispersal vectors, the environmental and geographic factors that shape microbial communities in floral nectar are unknown. We studied culturable bacterial communities in Asphodelus aestivus floral nectar and in its typical herbivorous bug Capsodes infuscatus, along an aridity gradient. Bacteria were sampled from floral nectar and bugs at four sites, spanning a geographical range of 200 km from Mediterranean to semi-arid conditions, under open and bagged flower treatments. In agreement with the niche assembly hypothesis, the differences in bacterial community compositions were explained by differences in abiotic environmental conditions. These results suggest that microbial model systems are useful for addressing macro-ecological questions. In addition, similar bacterial communities were found in the nectar and on the surface of the bugs that were documented visiting the flowers. These similarities imply that floral nectar bacteria dispersal is shaped not only by air borne bacteria and nectar consumers as previously reported, but also by visiting vectors like the mirid bugs. PMID:24922317

  17. Abiotic and biotic controls of soil moisture spatiotemporal variability and the occurrence of hysteresis

    NASA Astrophysics Data System (ADS)

    Fatichi, Simone; Katul, Gabriel G.; Ivanov, Valeriy Y.; Pappas, Christoforos; Paschalis, Athanasios; Consolo, Ada; Kim, Jongho; Burlando, Paolo

    2015-05-01

    An expression that separates biotic and abiotic controls on the temporal dynamics of the soil moisture spatial coefficient of variation Cv(θ) was explored via numerical simulations using a mechanistic ecohydrological model, Tethys-Chloris. Continuous soil moisture spatiotemporal dynamics at an exemplary hillslope domain were computed for six case studies characterized by different climate and vegetation cover and for three configurations of soil properties. It was shown that abiotic controls largely exceed their biotic counterparts in wet climates. Biotic controls on Cv(θ) were found to be more pronounced in Mediterranean climates. The relation between Cv(θ) and spatial mean soil moisture θ¯ was found to be unique in wet locations, regardless of the soil properties. For the case of homogeneous soil texture, hysteretic cycles between Cv(θ) and θ¯ were observed in all Mediterranean climate locations considered here and to a lesser extent in a deciduous temperate forest. Heterogeneity in soil properties increased Cv(θ) to values commensurate with field observations and weakened signatures of hysteresis at all of the studied locations. This finding highlights the role of site-specific heterogeneities in hiding or even eliminating the signature of climatic and biotic controls on Cv(θ), thereby offering a new perspective on causes of confounding results reported across field experiments.

  18. Biotic and abiotic variables influencing plant litter breakdown in streams: a global study.

    PubMed

    Boyero, Luz; Pearson, Richard G; Hui, Cang; Gessner, Mark O; Pérez, Javier; Alexandrou, Markos A; Graça, Manuel A S; Cardinale, Bradley J; Albariño, Ricardo J; Arunachalam, Muthukumarasamy; Barmuta, Leon A; Boulton, Andrew J; Bruder, Andreas; Callisto, Marcos; Chauvet, Eric; Death, Russell G; Dudgeon, David; Encalada, Andrea C; Ferreira, Verónica; Figueroa, Ricardo; Flecker, Alexander S; Gonçalves, José F; Helson, Julie; Iwata, Tomoya; Jinggut, Tajang; Mathooko, Jude; Mathuriau, Catherine; M'Erimba, Charles; Moretti, Marcelo S; Pringle, Catherine M; Ramírez, Alonso; Ratnarajah, Lavenia; Rincon, José; Yule, Catherine M

    2016-04-27

    Plant litter breakdown is a key ecological process in terrestrial and freshwater ecosystems. Streams and rivers, in particular, contribute substantially to global carbon fluxes. However, there is little information available on the relative roles of different drivers of plant litter breakdown in fresh waters, particularly at large scales. We present a global-scale study of litter breakdown in streams to compare the roles of biotic, climatic and other environmental factors on breakdown rates. We conducted an experiment in 24 streams encompassing latitudes from 47.8° N to 42.8° S, using litter mixtures of local species differing in quality and phylogenetic diversity (PD), and alder (Alnus glutinosa) to control for variation in litter traits. Our models revealed that breakdown of alder was driven by climate, with some influence of pH, whereas variation in breakdown of litter mixtures was explained mainly by litter quality and PD. Effects of litter quality and PD and stream pH were more positive at higher temperatures, indicating that different mechanisms may operate at different latitudes. These results reflect global variability caused by multiple factors, but unexplained variance points to the need for expanded global-scale comparisons. PMID:27122551

  19. Biotic and abiotic factors affecting stemflow variability in downy oak and Scots pine stands in Mediterranean conditions

    NASA Astrophysics Data System (ADS)

    Cayuela, Carles; Garcia-Estringana, Pablo; Latron, Jérôme; Llorens, Pilar

    2015-04-01

    Although stemflow is only a small portion of rainfall, it may represent an important local input of water and nutrients at the plant stem. Previous studies have shown that stemflow has a significant influence on hydrological and biogeochemical processes. Stemflow volume is affected by many biotic factors as species, age, branch or bark characteristics. Moreover, the seasonality of the rainfall regime in Mediterranean areas, which includes both frontal rainfall events and short convective storms, can add complexity to the rainfall-stemflow relationship. This work investigates stemflow dynamics and the influence of biotic and abiotic factors on stemflow rates in two Mediterranean stands during the leafed period - from May to October. The monitored stands are a Downy oak forest (Quercus pubescens) and a Scots pine forest (Pinus sylvestris), both located in the Vallcebre research catchments (NE Spain, 42° 12'N, 1° 49'E). The monitoring design of each plot consists of 7 stemflow rings connected to tipping-buckets, bulk rainfall measured in a nearby clearing and meteorological conditions above the canopies. All data were recorded at 5 min interval. Biometric characteristics of the measured trees were also measured. The analysis of 39 rainfall events (65% smaller than 10 mm) shows that stemflow accounted for less than 1% of the bulk rainfall in both stands. Results also show that, on average, the rainfall amount required for the start of the stemflow and the time delay between the beginning of the precipitation and the start of stemflow are higher in the Downy oak forest. As suggested by stemflow funneling ratios, these differences might be linked to the canopy structure and bark water storage capacity of the trees, indicating that during low magnitude events, oaks have more difficulty to reach storage capacity. The role of other biotic and abiotic parameters on stemflow variability in both stands is still under investigation.

  20. Environmental hazard assessment of chemicals and products. Part VI. Abiotic degradation in the troposphere.

    PubMed

    Klöpffer, W

    1996-09-01

    The atmosphere constitutes an important sink for many volatile and semivolatile organic compounds (Part II). Even non-volatile compounds may enter the troposphere due to incomplete burning of fuel and industrial, agricultural and traffic-related processes. Depending on vapour pressure, temperature and content of aerosol particles, chemicals prefer the free gas phase, the surface of the particles, or both compartments. Polar compounds (low Henry-coefficient) may dissolve in cloud- and fog droplets. Clearly, the prefered compartment influences the dominant abiotic degradation path. In this paper, a survey is given about the distribution and degradation pathways of chemicals in the troposphere. In the free gas phase of the troposphere, the reaction with OH-radicals is the dominant degradation path. In addition, the reactions with ozone and nitrate-radicals, and direct photochemical reactions also play a role in abiotic degradation. PMID:8784998

  1. Abiotic variability among different aquatic systems of the central Amazon floodplain during drought and flood events.

    PubMed

    Affonso, A G; Queiroz, H L; Novo, E M L M

    2015-11-01

    This paper examines water properties from lakes, (depression lakes, sensu Junk et al., 2012), channels (scroll lakes with high connectivity, sensu Junk et al., 2012) and paleo-channels (scroll lakes with low connectivity-sensu Junk et al., 2012, locally called ressacas) located in Mamirauá Sustainable Development Reserve, in Central Amazon floodplain, Amazonas, Brazil. We analysed surface temperature, conductivity, pH, dissolved oxygen, turbidity, transparency, suspended inorganic and organic matter, chlorophyll-a, pheophytin, total nitrogen, total phosphorus, organic and inorganic carbon in 2009 high water phase, 2009 and 2010 low water phases. Multivariate statistical analyses of 24 aquatic systems (6 ressacas, 12 lakes and 6 channels, 142 samples) were applied to the variables in order to: 1) quantify differences among aquatic system types; 2) assess how those differences are affected in the different phases of the hydrological year. First, we analysed the entire set of variables to test for differences among phases of the hydrological year and types of aquatic systems using a PERMANOVA two-way crossed design. The results showed that the all measured limnological variables are distinct regarding both factors: types of aquatic systems and hydrological phases. In general, the magnitude and amplitude of all variables were higher in the low water phase than in the high water phase, except for water transparency in all aquatic system's types. PERMANOVA showed that the differences between aquatic system's types and hydrological phases of all variables were highly significant for both main factors (type and phase) and for the type x phase interaction. Limnological patterns of Amazon floodplain aquatic systems are highly dynamic, dependent on the surrounding environment, flood pulse, main river input and system type. These patterns show how undisturbed systems respond to natural variability in such a diverse environment, and how distinct are those aquatic systems

  2. Abiotic and Biotic Stressors Causing Equivalent Mortality Induce Highly Variable Transcriptional Responses in the Soybean Aphid

    PubMed Central

    Enders, Laramy S.; Bickel, Ryan D.; Brisson, Jennifer A.; Heng-Moss, Tiffany M.; Siegfried, Blair D.; Zera, Anthony J.; Miller, Nicholas J.

    2014-01-01

    Environmental stress affects basic organismal functioning and can cause physiological, developmental, and reproductive impairment. However, in many nonmodel organisms, the core molecular stress response remains poorly characterized and the extent to which stress-induced transcriptional changes differ across qualitatively different stress types is largely unexplored. The current study examines the molecular stress response of the soybean aphid (Aphis glycines) using RNA sequencing and compares transcriptional responses to multiple stressors (heat, starvation, and plant defenses) at a standardized stress level (27% adult mortality). Stress-induced transcriptional changes showed remarkable variation, with starvation, heat, and plant defensive stress altering the expression of 3985, 510, and 12 genes, respectively. Molecular responses showed little overlap across all three stressors. However, a common transcriptional stress response was identified under heat and starvation, involved with up-regulation of glycogen biosynthesis and molecular chaperones and down-regulation of bacterial endosymbiont cellular and insect cuticular components. Stressor-specific responses indicated heat affected expression of heat shock proteins and cuticular components, whereas starvation altered a diverse set of genes involved in primary metabolism, oxidative reductive processes, nucleosome and histone assembly, and the regulation of DNA repair and replication. Exposure to host plant defenses elicited the weakest response, of which half of the genes were of unknown function. This study highlights the need for standardizing stress levels when comparing across stress types and provides a basis for understanding the role of general vs. stressor specific molecular responses in aphids. PMID:25538100

  3. Henipavirus susceptibility to environmental variables.

    PubMed

    Fogarty, Rhys; Halpin, Kim; Hyatt, Alex D; Daszak, Peter; Mungall, Bruce A

    2008-03-01

    The routes of henipavirus transmission between hosts are poorly understood. The purpose of this study was to measure the persistence of henipaviruses under various environmental conditions and thereby gain an insight into likely mechanisms of transmission. Henipaviruses survived for more than 4 days at 22 degrees C in pH-neutral fruit bat urine but were sensitive to higher temperatures and pH changes. On mango flesh, survival time varied depending on temperature and fruit pH, ranging from 2h to more than 2 days. Desiccation of viruses substantially reduced survival time to less than 2h. The sensitivity of henipaviruses to pH, temperature and desiccation indicates a need for close contact between hosts for transmission to occur, although under ideal conditions henipaviruses can persist for extended periods facilitating vehicle-borne transmission. PMID:18166242

  4. Toxic hydrogen sulfide and dark caves: phenotypic and genetic divergence across two abiotic environmental gradients in Poecilia mexicana.

    PubMed

    Tobler, Michael; Dewitt, Thomas J; Schlupp, Ingo; García de León, Francisco J; Herrmann, Roger; Feulner, Philine G D; Tiedemann, Ralph; Plath, Martin

    2008-10-01

    Divergent natural selection drives evolutionary diversification. It creates phenotypic diversity by favoring developmental plasticity within populations or genetic differentiation and local adaptation among populations. We investigated phenotypic and genetic divergence in the livebearing fish Poecilia mexicana along two abiotic environmental gradients. These fish typically inhabit nonsulfidic surface rivers, but also colonized sulfidic and cave habitats. We assessed phenotypic variation among a factorial combination of habitat types using geometric and traditional morphometrics, and genetic divergence using quantitative and molecular genetic analyses. Fish in caves (sulfidic or not) exhibited reduced eyes and slender bodies. Fish from sulfidic habitats (surface or cave) exhibited larger heads and longer gill filaments. Common-garden rearing suggested that these morphological differences are partly heritable. Population genetic analyses using microsatellites as well as cytochrome b gene sequences indicate high population differentiation over small spatial scale and very low rates of gene flow, especially among different habitat types. This suggests that divergent environmental conditions constitute barriers to gene flow. Strong molecular divergence over short distances as well as phenotypic and quantitative genetic divergence across habitats in directions classic to fish ecomorphology suggest that divergent selection is structuring phenotypic variation in this system. PMID:18637957

  5. Environmental mapping based on spatial variability.

    PubMed

    Kovalevskaya, Nelley; Pavlov, Vladimir

    2002-01-01

    Environmental maps show the probable environmental states of different types of land use or development of landscape in a geographic context. Remotely sensed data are particularly efficient for environmental mapping in order to outline major environmental types. Multiple schemes of image classification used in environmental mapping are either traditionally statistical or heuristic. While the former methods do not take account of spatial variability in space and aerial data, the latter ones does not lend themselves to optimal solutions we present. Novel probabilistic models of piecewise-homogeneous images are used in environmental mapping to segment real images. The models consider both an image and a land cover map. Such a pair constitutes an example of a Markov random field specified by a joint Gibbs probability distribution of images and maps. Parameters of the model are estimated by using a stochastic approximation technique. Its convergence to the desired values is studied experimentally. Addition of spatial attributes appears to be necessary in most areas where the differences in spatial data between regions in the image occur. Experiments in generating the pairs of images and environmental maps and in segmenting the simulated as well as real images are discussed. PMID:12371162

  6. Diet composition and feeding activity of larval spring-spawning herring: Importance of environmental variability

    NASA Astrophysics Data System (ADS)

    Arula, T.; Kotta, J.; Lankov, A.; Simm, M.; Põlme, S.

    2012-02-01

    Availability of suitable prey in sufficient quantities during the shift to exogenous feeding is an important factor determining survival and growth of larval fish. The question of what factors regulate prey consumption in larval fish has remained a focus of fisheries oceanography. In this paper feeding ecology of the larval spring-spawning herring Clupea harengus membras was studied in relation to selected environmental abiotic and biotic parameters in the shallow sheltered Pärnu Bay during the 1970s and 2000s. The copepod Eurytemora affinis was the strongly dominating dietary item during all the years while other prey items were ingested only sporadically. Feeding activity of herring larvae was governed by different environmental variables and the relationships varied amongst the size classes of herring larvae. The studied abiotic (i.e., wind speed, water temperature, water transparency) or biotic variables (i.e., density of copepod nauplii, copepodite stages I-V and adults of E. affinis, mean developmental stage of copepods and density of fish larvae) had no significant effects on the feeding activity of small larvae. The feeding activity of medium larvae was only affected by water transparency and that of large larvae by a combination of water temperature, wind speed and the structure of local copepod community, respectively. On the other hand, the diet composition of all herring larvae was best described by the density of copepod nauplii. In addition, the density of fish larvae improved the model of small larvae and the density of adult copepods that of medium larvae, respectively. Time was significant for the feeding activity of medium larvae indicating some unexplained variability that was not taken into account by the studied abiotic and biotic variables.

  7. Interactions of biotic and abiotic environmental factors in an ectomycorrhizal symbiosis, and the potential for selection mosaics

    PubMed Central

    Piculell, Bridget J; Hoeksema, Jason D; Thompson, John N

    2008-01-01

    Background Geographic selection mosaics, in which species exert different evolutionary impacts on each other in different environments, may drive diversification in coevolving species. We studied the potential for geographic selection mosaics in plant-mycorrhizal interactions by testing whether the interaction between bishop pine (Pinus muricata D. Don) and one of its common ectomycorrhizal fungi (Rhizopogon occidentalis Zeller and Dodge) varies in outcome, when different combinations of plant and fungal genotypes are tested under a range of different abiotic and biotic conditions. Results We used a 2 × 2 × 2 × 2 factorial experiment to test the main and interactive effects of plant lineage (two maternal seed families), fungal lineage (two spore collections), soil type (lab mix or field soil), and non-mycorrhizal microbes (with or without) on the performance of plants and fungi. Ecological outcomes, as assessed by plant and fungal performance, varied widely across experimental environments, including interactions between plant or fungal lineages and soil environmental factors. Conclusion These results show the potential for selection mosaics in plant-mycorrhizal interactions, and indicate that these interactions are likely to coevolve in different ways in different environments, even when initially the genotypes of the interacting species are the same across all environments. Hence, selection mosaics may be equally as effective as genetic differences among populations in driving divergent coevolution among populations of interacting species. PMID:18507825

  8. Synergistic interactions of biotic and abiotic environmental stressors on gene expression.

    PubMed

    Altshuler, Ianina; McLeod, Anne M; Colbourne, John K; Yan, Norman D; Cristescu, Melania E

    2015-03-01

    Understanding the response of organisms to multiple stressors is critical for predicting if populations can adapt to rapid environmental change. Natural and anthropogenic stressors often interact, complicating general predictions. In this study, we examined the interactive and cumulative effects of two common environmental stressors, lowered calcium concentration, an anthropogenic stressor, and predator presence, a natural stressor, on the water flea Daphnia pulex. We analyzed expression changes of five genes involved in calcium homeostasis - cuticle proteins (Cutie, Icp2), calbindin (Calb), and calcium pump and channel (Serca and Ip3R) - using real-time quantitative PCR (RT-qPCR) in a full factorial experiment. We observed strong synergistic interactions between low calcium concentration and predator presence. While the Ip3R gene was not affected by the stressors, the other four genes were affected in their transcriptional levels by the combination of the stressors. Transcriptional patterns of genes that code for cuticle proteins (Cutie and Icp2) and a sarcoplasmic calcium pump (Serca) only responded to the combination of stressors, changing their relative expression levels in a synergistic response, while a calcium-binding protein (Calb) responded to low calcium stress and the combination of both stressors. The expression pattern of these genes (Cutie, Icp2, and Serca) were nonlinear, yet they were dose dependent across the calcium gradient. Multiple stressors can have complex, often unexpected effects on ecosystems. This study demonstrates that the dominant interaction for the set of tested genes appears to be synergism. We argue that gene expression patterns can be used to understand and predict the type of interaction expected when organisms are exposed simultaneously to natural and anthropogenic stressors. PMID:26158383

  9. Mechanisms and Dynamics of Abiotic and Biotic Interactions at Environmental Interfaces

    SciTech Connect

    Roso, Kevin M.

    2006-06-01

    The Stanford EMSI (SEMSI) was established in 2004 through joint funding by the National Science Foundation and the OBER-ERSD. It encompasses a number of universities and national laboratories. The PNNL component of the SEMSI is funded by ERSD and is the focus of this report. This component has the objective of providing theory support to the SEMSI by bringing computational capabilities and expertise to bear on important electron transfer problems at mineral/water and mineral/microbe interfaces. PNNL staff member Dr. Kevin Rosso, who is also ''matrixed'' into the Environmental Molecular Sciences Laboratory (EMSL) at PNNL, is a co-PI on the SEMSI project and the PNNL lead. The EMSL computational facilities being applied to the SEMSI project include the 11.8 teraflop massively-parallel supercomputer. Science goals of this EMSL/SEMSI partnership include advancing our understanding of: (1) The kinetics of U(VI) and Cr(VI) reduction by aqueous and solid-phase Fe(II), (2) The structure of mineral surfaces in equilibrium with solution, and (3) Mechanisms of bacterial electron transfer to iron oxide surfaces via outer-membrane cytochromes.

  10. Environmentally relevant impacts of nano-TiO2 on abiotic degradation of bisphenol A under sunlight irradiation.

    PubMed

    Wu, Wei; Shan, Guoqiang; Wang, Shanfeng; Zhu, Lingyan; Yue, Longfei; Xiang, Qian; Zhang, Yinqing; Li, Zhuo

    2016-09-01

    Understanding the effects of nano-TiO2 particles on the environmental behaviors of organic pollutants in natural aquatic environments is of paramount importance considering that large amount of nano-TiO2 is being released in the environment. In this study, the effect of nano-TiO2 on the degradation of bisphenol A (BPA) in water was investigated under simulated solar light irradiation. The results indicated that nano-TiO2 at environmentally relevant concentration (1 mg/L) could significantly facilitate the abiotic degradation of BPA (also at low concentration) under mild solar light irradiation, with the pseudo first-order rate constant (kobs) for BPA degradation raised by 1-2 orders of magnitude. As reflected by the inhibition experiments, hydroxyl radicals (OHs) and superoxide radical species were the predominant active species responsible for BPA degradation. The reaction was affected by water pH, and the degradation rate was higher at acidic or alkaline conditions than that at neutral condition. Humic acid (HA) also affected the reaction rate, depending on its concentration. At lower concentration (the mass ratio of HA/nano-TiO2 was 0.1:1), HA improved the dispersion and stability of nano-TiO2 in aquatic environment. As a result, the yield of OHs by nano-TiO2 under sunlight irradiation increased and BPA degradation was facilitated. When the HA concentration increased, a coating of HA formed on the surface of nano-TiO2. Although nano-TiO2 became more stable, the light absorption by nano-TiO2 was significantly reduced due to the strong light absorption of the HA coated on the surface. As a consequence, the yield of OH decreased and BPA degradation was depressed. The results imply that nano-TiO2 at low concentration may distinctly mediate BPA degradation, and can contribute to the natural attenuation of some organic pollutants in aquatic environment with low level of HA. However, this process would be significantly reduced in the presence of high level of HA. PMID

  11. Biotic and abiotic variables affecting internalization and fate of Escherichia coli O157:H7 isolates in leafy green roots.

    PubMed

    Erickson, Marilyn C; Webb, Cathy C; Davey, Lindsey E; Payton, Alison S; Flitcroft, Ian D; Doyle, Michael P

    2014-06-01

    Preharvest internalization of Escherichia coli O157:H7 into the roots of leafy greens is a food safety risk because the pathogen may be systemically transported to edible portions of the plant. In this study, both abiotic (degree of soil moisture) and biotic (E. coli O157:H7 exposure, presence of Shiga toxin genes, and type of leafy green) factors were examined to determine their potential effects on pathogen internalization into roots of leafy greens. Using field soil that should have an active indigenous microbial community, internalized populations in lettuce roots were 0.8 to 1.6 log CFU/g after exposure to soil containing E. coli O157:H7 at 5.6 to 6.1 log CFU/g. Internalization of E. coli O157:H7 into leafy green plant roots was higher when E. coli O157:H7 populations in soil were increased to 7 or 8 log CFU/g or when the soil was saturated with water. No differences were noted in the extent to which internalization of E. coli O157:H7 occurred in spinach, lettuce, or parsley roots; however, in saturated soil, maximum levels in parsley occurred later than did those in spinach or lettuce. Translocation of E. coli O157:H7 from roots to leaves was rare; therefore, decreases observed in root populations over time were likely the result of inactivation within the plant tissue. Shiga toxin-negative (nontoxigenic) E. coli O157:H7 isolates were more stable than were virulent isolates in soil, but the degree of internalization of E. coli O157:H7 into roots did not differ between isolate type. Therefore, these nontoxigenic isolates could be used as surrogates for virulent isolates in field trials involving internalization. PMID:24853507

  12. Environmental variability and child growth in Nepal.

    PubMed

    Shively, Gerald; Sununtnasuk, Celeste; Brown, Molly

    2015-09-01

    Data from the 2011 Nepal Demographic Health Survey are combined with satellite remotely sensed Normalized Difference Vegetation Index (NDVI) data to evaluate whether interannual variability in weather is associated with child health. For stunting, we focus on children older than 24 months of age. NDVI anomaly averages during cropping months are evaluated during the year before birth, the year of birth, and the second year after birth. For wasting, we assess children under 59 months of age and relate growth to NDVI averages for the current and most recent growing periods. Correlations between short-run indicators of child growth and intensity of green vegetation are generally positive. Regressions that control for a range of child-, mother- and household-specific characteristics produce mixed evidence regarding the role of NDVI anomalies during critical periods in a child's early life and the subsequent probability of stunting and wasting. Overall findings suggest that the relationship between environmental conditions and child growth are heterogeneous across the landscape in Nepal and, in many cases, highly non-linear and sensitive to departures from normality. PMID:26183566

  13. Assessing the influence of two environmental variables on microfossil stratigraphies

    NASA Astrophysics Data System (ADS)

    Trachsel, Mathias; Telford, Richard; Birks, John

    2014-05-01

    Biological assemblages are controlled by several environmental variables (e.g. temperature, precipitation, soil, etc.). Usually, the quantitative influence of several environmental variables on modern species assemblages is evaluated by assessing the influence of different variables on modern species assemblages by means of canonical correspondence analysis or related multivariate regression methods (e.g. Juggins 2013). For fossil assemblages, palaeoecologists have only recently started to assess the statistical influence of one environmental variable (Telford and Birks 2011) and have rarely attempted to assess the joint influence of different environmental variables. For this purpose, we propose a simple approach, generating synthetic variables with different proportions of two environmental variables and testing how much variation in the fossil data the reconstructions of these synthetic variables explain. We first applied this approach to simulated environmental and species data, and then applied the method to pollen data from two transects in Norway that both cover gradients from oceanic to continental sites. We found that our method was able to detect variables used to simulate species assemblages, differences in importance of these variables, and correlations between these variables. Applying the method to pollen data we find that pollen assemblages at coastal sites are mainly sensitive to past changes in July temperature, whereas inland continental sites are influenced by both July temperature and annual precipitation. References Juggins (2013) QSR 64, 20 - 32. Telford and Birks (2011) QSR 30, 1272 - 1278

  14. A review of selection-based tests of abiotic surrogates for species representation.

    PubMed

    Beier, Paul; Sutcliffe, Patricia; Hjort, Jan; Faith, Daniel P; Pressey, Robert L; Albuquerque, Fabio

    2015-06-01

    Because conservation planners typically lack data on where species occur, environmental surrogates--including geophysical settings and climate types--have been used to prioritize sites within a planning area. We reviewed 622 evaluations of the effectiveness of abiotic surrogates in representing species in 19 study areas. Sites selected using abiotic surrogates represented more species than an equal number of randomly selected sites in 43% of tests (55% for plants) and on average improved on random selection of sites by about 8% (21% for plants). Environmental diversity (ED) (42% median improvement on random selection) and biotically informed clusters showed promising results and merit additional testing. We suggest 4 ways to improve performance of abiotic surrogates. First, analysts should consider a broad spectrum of candidate variables to define surrogates, including rarely used variables related to geographic separation, distance from coast, hydrology, and within-site abiotic diversity. Second, abiotic surrogates should be defined at fine thematic resolution. Third, sites (the landscape units prioritized within a planning area) should be small enough to ensure that surrogates reflect species' environments and to produce prioritizations that match the spatial resolution of conservation decisions. Fourth, if species inventories are available for some planning units, planners should define surrogates based on the abiotic variables that most influence species turnover in the planning area. Although species inventories increase the cost of using abiotic surrogates, a modest number of inventories could provide the data needed to select variables and evaluate surrogates. Additional tests of nonclimate abiotic surrogates are needed to evaluate the utility of conserving nature's stage as a strategy for conservation planning in the face of climate change. PMID:25923191

  15. Review of Microbial Responses to Abiotic Environmental Factors in the Context of the Proposed Yucca Mountain Repository

    SciTech Connect

    Meike, A.; Stroes-Gascoyne, S.

    2000-08-01

    A workshop on Microbial Activities at Yucca Mountain (May 1995, Lafayette, CA) was held with the intention to compile information on all pertinent aspects of microbial activity for application to a potential repository at Yucca Mountain. The findings of this workshop set off a number of efforts intended to eventually incorporate the impacts of microbial behavior into performance assessment models. One effort was to expand an existing modeling approach to include the distinctive characteristics of a repository at Yucca Mountain (e.g., unsaturated conditions and a significant thermal load). At the same time, a number of experimental studies were initiated as well as a compilation of relevant literature to more thoroughly study the physical, chemical and biological parameters that would affect microbial activity under Yucca Mountain-like conditions. This literature search (completed in 1996) is the subject of the present document. The collected literature can be divided into four categories: (1) abiotic factors, (2) community dynamics and in-situ considerations, (3) nutrient considerations and (4) transport of radionuclides. The complete bibliography represents a considerable resource, but is too large to be discussed in one document. Therefore, the present report focuses on the first category, abiotic factors, and a discussion of these factors in order to facilitate the development of a model for Yucca Mountain.

  16. Integrated biomarker responses of the invasive species Corbicula fluminea in relation to environmental abiotic conditions: a potential indicator of the likelihood of clam's summer mortality syndrome.

    PubMed

    Oliveira, Cristiana; Vilares, Pedro; Guilhermino, Lúcia

    2015-04-01

    The aim of this study was to investigate the variation of several biomarkers in wild populations of Corbicula fluminea in relation to abiotic condition changes to identify environmental factors associated with increased stress in this species potentially leading to massive mortality events. The study was carried out from July to October in the freshwater tidal areas of the estuaries of Minho and Lima Rivers (NW Iberian Peninsula). Monthly, 7 biomarkers (biotransformation, energy production, anti-oxidant defenses and lipid peroxidation damages) were determined in C. fluminea and 17 abiotic parameters were determined in water or sediments in 4 sampling sites: M1, M2 and M3 in Minho (up=> downstream); and L in Lima estuaries. The results of biomarkers were integrated using the Integrated Biomarker Response (IBR), Index and also analysed in relation to environmental parameters by Redundancy Analysis (RDA). Overall, the findings of the present study indicate that July and August are particularly stressful months for the studied C. fluminea populations, especially at downstream sites; the increase of nutrients and ammonium water concentrations, water temperature and conductivity are major contributors for this increased stress; the biomarkers indicated that in July/August C. fluminea is exposed to oxidative stress inducers, environmental chemical contaminants biotransformed by esterases and glutathione S-transferase enzymes, and that organisms need additional energy to cope with the chemical and/or thermally-induced stress. The findings of the present study stress the importance of biomonitoring the health condition of C. fluminea because it may allow determining the likelihood of summer/post summer mortality syndrome in this species. PMID:25499240

  17. Environmental stochasticity controls soil erosion variability

    PubMed Central

    Kim, Jongho; Ivanov, Valeriy Y.; Fatichi, Simone

    2016-01-01

    Understanding soil erosion by water is essential for a range of research areas but the predictive skill of prognostic models has been repeatedly questioned because of scale limitations of empirical data and the high variability of soil loss across space and time scales. Improved understanding of the underlying processes and their interactions are needed to infer scaling properties of soil loss and better inform predictive methods. This study uses data from multiple environments to highlight temporal-scale dependency of soil loss: erosion variability decreases at larger scales but the reduction rate varies with environment. The reduction of variability of the geomorphic response is attributed to a ‘compensation effect’: temporal alternation of events that exhibit either source-limited or transport-limited regimes. The rate of reduction is related to environment stochasticity and a novel index is derived to reflect the level of variability of intra- and inter-event hydrometeorologic conditions. A higher stochasticity index implies a larger reduction of soil loss variability (enhanced predictability at the aggregated temporal scales) with respect to the mean hydrologic forcing, offering a promising indicator for estimating the degree of uncertainty of erosion assessments. PMID:26925542

  18. Environmental stochasticity controls soil erosion variability.

    PubMed

    Kim, Jongho; Ivanov, Valeriy Y; Fatichi, Simone

    2016-01-01

    Understanding soil erosion by water is essential for a range of research areas but the predictive skill of prognostic models has been repeatedly questioned because of scale limitations of empirical data and the high variability of soil loss across space and time scales. Improved understanding of the underlying processes and their interactions are needed to infer scaling properties of soil loss and better inform predictive methods. This study uses data from multiple environments to highlight temporal-scale dependency of soil loss: erosion variability decreases at larger scales but the reduction rate varies with environment. The reduction of variability of the geomorphic response is attributed to a 'compensation effect': temporal alternation of events that exhibit either source-limited or transport-limited regimes. The rate of reduction is related to environment stochasticity and a novel index is derived to reflect the level of variability of intra- and inter-event hydrometeorologic conditions. A higher stochasticity index implies a larger reduction of soil loss variability (enhanced predictability at the aggregated temporal scales) with respect to the mean hydrologic forcing, offering a promising indicator for estimating the degree of uncertainty of erosion assessments. PMID:26925542

  19. Environmental stochasticity controls soil erosion variability

    NASA Astrophysics Data System (ADS)

    Kim, Jongho; Ivanov, Valeriy Y.; Fatichi, Simone

    2016-03-01

    Understanding soil erosion by water is essential for a range of research areas but the predictive skill of prognostic models has been repeatedly questioned because of scale limitations of empirical data and the high variability of soil loss across space and time scales. Improved understanding of the underlying processes and their interactions are needed to infer scaling properties of soil loss and better inform predictive methods. This study uses data from multiple environments to highlight temporal-scale dependency of soil loss: erosion variability decreases at larger scales but the reduction rate varies with environment. The reduction of variability of the geomorphic response is attributed to a ‘compensation effect’: temporal alternation of events that exhibit either source-limited or transport-limited regimes. The rate of reduction is related to environment stochasticity and a novel index is derived to reflect the level of variability of intra- and inter-event hydrometeorologic conditions. A higher stochasticity index implies a larger reduction of soil loss variability (enhanced predictability at the aggregated temporal scales) with respect to the mean hydrologic forcing, offering a promising indicator for estimating the degree of uncertainty of erosion assessments.

  20. Matching Environmental Variability and Organizational Design.

    ERIC Educational Resources Information Center

    Neves, Joao S.

    1990-01-01

    Describes an experiential exercise designed to demonstrate how a good match between environmental characteristics and organizational solutions is critical for the performance of an organization. Use of the game by students and practitioners in production and operations management is explained, and adaptation of the game to other applications is…

  1. Constraining the role of iron in environmental nitrogen transformations: Dual stable isotope systematics of abiotic NO2- reduction by Fe(II) and its production of N2O

    NASA Astrophysics Data System (ADS)

    Buchwald, Carolyn; Grabb, Kalina; Hansel, Colleen M.; Wankel, Scott D.

    2016-08-01

    Despite mounting evidence for biogeochemical interactions between iron and nitrogen, our understanding of their environmental importance remains limited. Here we present an investigation of abiotic nitrite (NO2-) reduction by Fe(II) or 'chemodenitrification', and its relevance to the production of nitrous oxide (N2O), specifically focusing on dual (N and O) isotope systematics under a variety of environmental conditions. We observe a range of kinetic isotope effects that are regulated by reaction rates, with faster rates at higher pH (∼8), higher concentrations of Fe(II) and in the presence of mineral surfaces. A clear non-linear relationship between rate constant and kinetic isotope effects of NO2- reduction was evident (with larger isotope effects at slower rates) and is interpreted as reflecting the dynamics of Fe(II)-N reaction intermediates. N and O isotopic composition of product N2O also suggests a complex network of parallel and/or competing pathways. Our findings suggest that NO2- reduction by Fe(II) may represent an important abiotic source of environmental N2O, especially in iron-rich environments experiencing dynamic redox variations. This study provides a multi-compound, multi-isotope framework for evaluating the environmental occurrence of abiotic NO2- reduction and N2O formation, helping future studies constrain the relative roles of abiotic and biological N2O production pathways.

  2. Relating design and environmental variables to reliability

    NASA Astrophysics Data System (ADS)

    Kolarik, William J.; Landers, Thomas L.

    The combination of space application and nuclear power source demands high reliability hardware. The possibilities of failure, either an inability to provide power or a catastrophic accident, must be minimized. Nuclear power experiences on the ground have led to highly sophisticated probabilistic risk assessment procedures, most of which require quantitative information to adequately assess such risks. In the area of hardware risk analysis, reliability information plays a key role. One of the lessons learned from the Three Mile Island experience is that thorough analyses of critical components are essential. Nuclear grade equipment shows some reliability advantages over commercial. However, no statistically significant difference has been found. A recent study pertaining to spacecraft electronics reliability, examined some 2500 malfunctions on more than 300 aircraft. The study classified the equipment failures into seven general categories. Design deficiencies and lack of environmental protection accounted for about half of all failures. Within each class, limited reliability modeling was performed using a Weibull failure model.

  3. Modeling the role of environmental variables on the population dynamics of the malaria vector Anopheles gambiae sensu stricto

    PubMed Central

    2012-01-01

    Background The impact of weather and climate on malaria transmission has attracted considerable attention in recent years, yet uncertainties around future disease trends under climate change remain. Mathematical models provide powerful tools for addressing such questions and understanding the implications for interventions and eradication strategies, but these require realistic modeling of the vector population dynamics and its response to environmental variables. Methods Published and unpublished field and experimental data are used to develop new formulations for modeling the relationships between key aspects of vector ecology and environmental variables. These relationships are integrated within a validated deterministic model of Anopheles gambiae s.s. population dynamics to provide a valuable tool for understanding vector response to biotic and abiotic variables. Results A novel, parsimonious framework for assessing the effects of rainfall, cloudiness, wind speed, desiccation, temperature, relative humidity and density-dependence on vector abundance is developed, allowing ease of construction, analysis, and integration into malaria transmission models. Model validation shows good agreement with longitudinal vector abundance data from Tanzania, suggesting that recent malaria reductions in certain areas of Africa could be due to changing environmental conditions affecting vector populations. Conclusions Mathematical models provide a powerful, explanatory means of understanding the role of environmental variables on mosquito populations and hence for predicting future malaria transmission under global change. The framework developed provides a valuable advance in this respect, but also highlights key research gaps that need to be resolved if we are to better understand future malaria risk in vulnerable communities. PMID:22877154

  4. Dynamics and spatio-temporal variability of environmental factors in Eastern Australia using functional principal component analysis

    USGS Publications Warehouse

    Szabo, J.K.; Fedriani, E.M.; Segovia-Gonzalez, M. M.; Astheimer, L.B.; Hooper, M.J.

    2010-01-01

    This paper introduces a new technique in ecology to analyze spatial and temporal variability in environmental variables. By using simple statistics, we explore the relations between abiotic and biotic variables that influence animal distributions. However, spatial and temporal variability in rainfall, a key variable in ecological studies, can cause difficulties to any basic model including time evolution. The study was of a landscape scale (three million square kilometers in eastern Australia), mainly over the period of 19982004. We simultaneously considered qualitative spatial (soil and habitat types) and quantitative temporal (rainfall) variables in a Geographical Information System environment. In addition to some techniques commonly used in ecology, we applied a new method, Functional Principal Component Analysis, which proved to be very suitable for this case, as it explained more than 97% of the total variance of the rainfall data, providing us with substitute variables that are easier to manage and are even able to explain rainfall patterns. The main variable came from a habitat classification that showed strong correlations with rainfall values and soil types. ?? 2010 World Scientific Publishing Company.

  5. Sparse modeling of spatial environmental variables associated with asthma

    PubMed Central

    Chang, Timothy S.; Gangnon, Ronald E.; Page, C. David; Buckingham, William R.; Tandias, Aman; Cowan, Kelly J.; Tomasallo, Carrie D.; Arndt, Brian G.; Hanrahan, Lawrence P.; Guilbert, Theresa W.

    2014-01-01

    Geographically distributed environmental factors influence the burden of diseases such as asthma. Our objective was to identify sparse environmental variables associated with asthma diagnosis gathered from a large electronic health record (EHR) dataset while controlling for spatial variation. An EHR dataset from the University of Wisconsin’s Family Medicine, Internal Medicine and Pediatrics Departments was obtained for 199,220 patients aged 5–50 years over a three-year period. Each patient’s home address was geocoded to one of 3,456 geographic census block groups. Over one thousand block group variables were obtained from a commercial database. We developed a Sparse Spatial Environmental Analysis (SASEA). Using this method, the environmental variables were first dimensionally reduced with sparse principal component analysis. Logistic thin plate regression spline modeling was then used to identify block group variables associated with asthma from sparse principal components. The addresses of patients from the EHR dataset were distributed throughout the majority of Wisconsin’s geography. Logistic thin plate regression spline modeling captured spatial variation of asthma. Four sparse principal components identified via model selection consisted of food at home, dog ownership, household size, and disposable income variables. In rural areas, dog ownership and renter occupied housing units from significant sparse principal components were associated with asthma. Our main contribution is the incorporation of sparsity in spatial modeling. SASEA sequentially added sparse principal components to Logistic thin plate regression spline modeling. This method allowed association of geographically distributed environmental factors with asthma using EHR and environmental datasets. SASEA can be applied to other diseases with environmental risk factors. PMID:25533437

  6. Sparse modeling of spatial environmental variables associated with asthma.

    PubMed

    Chang, Timothy S; Gangnon, Ronald E; David Page, C; Buckingham, William R; Tandias, Aman; Cowan, Kelly J; Tomasallo, Carrie D; Arndt, Brian G; Hanrahan, Lawrence P; Guilbert, Theresa W

    2015-02-01

    Geographically distributed environmental factors influence the burden of diseases such as asthma. Our objective was to identify sparse environmental variables associated with asthma diagnosis gathered from a large electronic health record (EHR) dataset while controlling for spatial variation. An EHR dataset from the University of Wisconsin's Family Medicine, Internal Medicine and Pediatrics Departments was obtained for 199,220 patients aged 5-50years over a three-year period. Each patient's home address was geocoded to one of 3456 geographic census block groups. Over one thousand block group variables were obtained from a commercial database. We developed a Sparse Spatial Environmental Analysis (SASEA). Using this method, the environmental variables were first dimensionally reduced with sparse principal component analysis. Logistic thin plate regression spline modeling was then used to identify block group variables associated with asthma from sparse principal components. The addresses of patients from the EHR dataset were distributed throughout the majority of Wisconsin's geography. Logistic thin plate regression spline modeling captured spatial variation of asthma. Four sparse principal components identified via model selection consisted of food at home, dog ownership, household size, and disposable income variables. In rural areas, dog ownership and renter occupied housing units from significant sparse principal components were associated with asthma. Our main contribution is the incorporation of sparsity in spatial modeling. SASEA sequentially added sparse principal components to Logistic thin plate regression spline modeling. This method allowed association of geographically distributed environmental factors with asthma using EHR and environmental datasets. SASEA can be applied to other diseases with environmental risk factors. PMID:25533437

  7. Environmental Concern and Sociodemographic Variables: A Study of Statistical Models

    ERIC Educational Resources Information Center

    Xiao, Chenyang; McCright, Aaron M.

    2007-01-01

    Studies of the social bases of environmental concern over the past 30 years have produced somewhat inconsistent results regarding the effects of sociodemographic variables, such as gender, income, and place of residence. The authors argue that model specification errors resulting from violation of two statistical assumptions (interval-level…

  8. Geographical variability and environmental risk factors in inflammatory bowel disease.

    PubMed

    Ng, Siew C; Bernstein, Charles N; Vatn, Morten H; Lakatos, Peter Laszlo; Loftus, Edward V; Tysk, Curt; O'Morain, Colm; Moum, Bjorn; Colombel, Jean-Frédéric

    2013-04-01

    The changing epidemiology of inflammatory bowel disease (IBD) across time and geography suggests that environmental factors play a major role in modifying disease expression. Disease emergence in developing nations suggests that epidemiological evolution is related to westernisation of lifestyle and industrialisation. The strongest environmental associations identified are cigarette smoking and appendectomy, although neither alone explains the variation in incidence of IBD worldwide. Urbanisation of societies, associated with changes in diet, antibiotic use, hygiene status, microbial exposures and pollution have been implicated as potential environmental risk factors for IBD. Changes in socioeconomic status might occur differently in different geographical areas and populations and, consequently, it is important to consider the heterogeneity of risk factors applicable to the individual patient. Environmental risk factors of individual, familial, community-based, country-based and regionally based origin may all contribute to the pathogenesis of IBD. The geographical variation of IBD provides clues for researchers to investigate possible environmental aetiological factors. The present review aims to provide an update of the literature exploring geographical variability in IBD and to explore the environmental risk factors that may account for this variability. PMID:23335431

  9. Constraining the role of iron in environmental nitrogen transformations. Dual stable isotope systematics of abiotic NO2- reduction by Fe(II) and its production of N2O

    SciTech Connect

    Johnston, David; Wankel, Scott David; Buchwald, Carolyn; Hansel, Colleen

    2015-09-16

    Redox reactions involving nitrogen and iron have been shown to have important implications for mobilization of priority contaminants. Thus, an understanding of the linkages between their biogeochemical cycling is critical for predicting subsurface mobilization of radionuclides such as uranium. Despite mounting evidence for biogeochemical interactions between iron and nitrogen, our understanding of their environmental importance remains limited. Here we present an investigation of abiotic nitrite (NO2-) reduction by Fe(II) or ‘chemodenitrification,’ and its relevance to the production of nitrous oxide (N2O), specifically focusing on dual (N and O) isotope systematics under a variety of environmentally relevant conditions. We observe a range of kinetic isotope effects that are regulated by reaction rates, with faster rates at higher pH (~8), higher concentrations of Fe(II) and in the presence of mineral surfaces. A clear non-linear relationship between rate constant and kinetic isotope effects of NO2- reduction was evident (with larger isotope effects at slower rates) and is interpreted as reflecting the dynamics of Fe(II)-N reaction intermediates. N and O isotopic composition of product N2O also suggests a complex network of parallel and/or competing pathways. Our findings suggest that NO2- reduction by Fe(II) may represent an important abiotic source of environmental N2O, especially in iron-rich environments experiencing dynamic redox variations. This study provides a multi-compound, multi-isotope framework for evaluating the environmental occurrence of abiotic NO2- reduction and N2O formation, helping future studies constrain the relative roles of abiotic and biological N2O production pathways.

  10. Effect of environmental variables on body size evolution of crinoids between periods of mass extinctions

    NASA Astrophysics Data System (ADS)

    Jani, T.; Heim, N. A.; Payne, J.

    2013-12-01

    Body size plays a major role in determining whether or not an organism can sustain in its local environment. The ecosystem of an animal has a major effect on the fitness of organisms, and it would be interesting to note the degree to which various environmental factors alter body size. In my project, I identify three environmental factors that seem to affect body size of crinoids, marine invertebrates from phylum Echinodermata, and explore how these variables play out in the intervals between the five mass extinctions. The particular factors I study include atmospheric CO2 concentration (proxy for temperature), O2 concentration, and sea level. Although the r and p values for all of these factors were statistically insignificant to definitively make any correlation, there was a visual correlation. For O2, I noted a generally positive correlation with body size over time. CO2 trends suggested a negative correlation until the K-T boundary, but a positive correlation afterwards. Correlation with sea level was a little more complicated: correlation was positive from the start of the Phanerozoic to the Permian extinction; it turned negative until the Cretaceous-Tertiary boundary; afterwards, it again became positive. However, for all three variables, statistical values are too low to say definitively mark any correlation. Out of all three factors, CO2 levels had the highest correlation and lowest p-values in the most time intervals: from the start of the Phanerozoic to Ordovician-Silurian Extinction, from the Late Devonian to the Permian Extinction, and from the Cretaceous-Tertiary boundary to the present. When considering first differences, CO2 levels also had the highest correlation from the Permian Extinction to Triassic-Jurassic Extinction and from the Triassic-Jurassic Extinction to Cretaceous-Tertiary Extinction. Using PaleoTS, I found that body size evolution patterns either seemed to follow either an unbiased random walk (URW) or stasis in the intervals between

  11. Environmental versus demographic variability in stochastic predator-prey models

    NASA Astrophysics Data System (ADS)

    Dobramysl, U.; Täuber, U. C.

    2013-10-01

    In contrast to the neutral population cycles of the deterministic mean-field Lotka-Volterra rate equations, including spatial structure and stochastic noise in models for predator-prey interactions yields complex spatio-temporal structures associated with long-lived erratic population oscillations. Environmental variability in the form of quenched spatial randomness in the predation rates results in more localized activity patches. Our previous study showed that population fluctuations in rare favorable regions in turn cause a remarkable increase in the asymptotic densities of both predators and prey. Very intriguing features are found when variable interaction rates are affixed to individual particles rather than lattice sites. Stochastic dynamics with demographic variability in conjunction with inheritable predation efficiencies generate non-trivial time evolution for the predation rate distributions, yet with overall essentially neutral optimization.

  12. Recent changes in aquatic biota in subarctic Fennoscandia - the role of global and local environmental variables

    NASA Astrophysics Data System (ADS)

    Weckström, Jan; Leppänen, Jaakko; Sorvari, Sanna; Kaukolehto, Marjut; Weckström, Kaarina; Korhola, Atte

    2013-04-01

    The Arctic, representing a fifth of the earth's surface, is highly sensitive to the predicted future warming and it has indeed been warming up faster than most other regions. This makes the region critically important and highlights the need to investigate the earliest signals of global warming and its impacts on the arctic and subarctic aquatic ecosystems and their biota. It has been demonstrated that many Arctic freshwater ecosystems have already experienced dramatic and unpreceded regime shifts during the last ca. 150 years, primarily driven by climate warming. However, despite the indisputable impact of climate-related variables on freshwater ecosystems other, especially local-scale catchment related variables (e.g. geology, vegetation, human activities) may override the climate signal and become the primary factor in shaping the structure of aquatic ecosystems. Although many studies have contributed to an improved understanding of limnological and hydrobiological features of Artic and subarctic lakes, much information is still needed especially on the interaction between the biotic and abiotic components, i.e. on factors controlling the food web dynamics in these sensitive aquatic ecosystems. This is of special importance as these lakes are of great value in water storage, flood prevention, and maintenance of biodiversity, in addition to which they are vital resources for settlement patterns, food production, recreation, and tourism. In this study we compare the pre-industrial sediment assemblages of primary producers (diatoms and Pediastrum) and primary consumers (cladoceran and chironomids) with their modern assemblages (a top-bottom approach) from 50 subarctic Fennoscandian lakes. We will evaluate the recent regional pattern of changes in aquatic assemblages, and assess how coherent the lakes' responses are across the subarctic area. Moreover, the impact of global (e.g. climate, precipitation) and local (e.g. lake and its catchment characteristics) scale

  13. Transposons, environmental changes, and heritable induced phenotypic variability.

    PubMed

    Piacentini, Lucia; Fanti, Laura; Specchia, Valeria; Bozzetti, Maria Pia; Berloco, Maria; Palumbo, Gino; Pimpinelli, Sergio

    2014-08-01

    The mechanisms of biological evolution have always been, and still are, the subject of intense debate and modeling. One of the main problems is how the genetic variability is produced and maintained in order to make the organisms adaptable to environmental changes and therefore capable of evolving. In recent years, it has been reported that, in flies and plants, mutations in Hsp90 gene are capable to induce, with a low frequency, many different developmental abnormalities depending on the genetic backgrounds. This has suggested that the reduction of Hsp90 amount makes different development pathways more sensitive to hidden genetic variability. This suggestion revitalized a classical debate around the original Waddington hypothesis of canalization and genetic assimilation making Hsp90 the prototype of morphological capacitor. Other data have also suggested a different mechanism that revitalizes another classic debate about the response of genome to physiological and environmental stress put forward by Barbara McClintock. That data demonstrated that Hsp90 is involved in repression of transposon activity by playing a significant role in piwi-interacting RNA (piRNAs)-dependent RNA interference (RNAi) silencing. The important implication is that the fixed phenotypic abnormalities observed in Hsp90 mutants are probably related to de novo induced mutations by transposon activation. In this case, Hsp90 could be considered as a mutator. In the present theoretical paper, we discuss several possible implications about environmental stress, transposon, and evolution offering also a support to the concept of evolvability. PMID:24752783

  14. Evaluating environmental flows under climate variability and change

    NASA Astrophysics Data System (ADS)

    Wilby, R.

    2012-04-01

    How much river flow is needed to ensure healthy freshwater ecosystems? This is a question that has exercised environmental managers for decades and one that is being made even harder by the prospect of anthropogenic climate change. The response requires balancing the long-term water demands of society with the needs of the environment in a sustainable and least cost way. Meeting these challenges will require more flexible water management systems and processes that recognise changing environmental limits, incentivise more environmentally-sensitive behaviours by water users and abstractors during times of water scarcity, and a move away from capital intensive, supply-side solutions. This talk evaluates the sensitivity of river flows to decadal variations in rainfall, abstraction amounts, licensing regime, and climate change. The overall objective is to determine how achievable abstraction volumes vary with different e-flow standards and water licensing regimes, under climate variability and change. The River Itchen in southern England has historically experienced unsustainable levels of water abstraction and is used as a test basin. The talk will consider the extent to which a 'smarter' approach to abstraction licensing could ensure that e-flow standards are met despite large uncertainty in the future climate, whilst having a minimal impact on security of water supplies.

  15. Diagnosing Abiotic Degradation

    EPA Science Inventory

    The abiotic degradation of chlorinated solvents in ground water can be difficult to diagnose. Under current practice, most of the “evidence” is negative; specifically the apparent disappearance of chlorinated solvents with an accumulation of vinyl chloride, ethane, ethylene, or ...

  16. Confounding variables in the environmental toxicology of arsenic.

    PubMed

    Gebel, T

    2000-04-01

    Arsenic is one of the most important global environmental toxicants. For example, in regions of West Bengal and Inner Mongolia, more than 100000 persons are chronically exposed to well water often strongly contaminated with As. Unfortunately, a toxicologically safe risk assessment and standard setting, especially for long-term and low-dose exposures to arsenic, is not possible. One reason is that the key mechanism of arsenic's tumorigenicity still is not elucidated. Experimental data indicate that either DNA repair inhibition or DNA methylation status alteration may be causal explanations. Moreover, when comparing epidemiological data, it cannot be ruled out that the susceptibility to arsenic's carcinogenicity may be different between Mexican and Taiwanese people. Some other studies indicate that some Andean populations do not develop skin cancer after long-term exposure to As. It is not known yet how this resistance could be mediated. Finally, the situation is even more complicated when taking into consideration that there are several compounds suspected to modulate the chronic environmental toxicity of arsenic, variables that may either enhance or suppress the in vivo genotoxicity and carcinogenicity of the metalloid. Among them are nutritional factors like selenium and zinc as well as drinking water co-contaminants like antimony. Further, yet unidentified factors influencing the body burden and/or the excretion of arsenic are possibly prevailing: preliminary data from own human biomonitoring studies showed a peaking of As in urine samples of non-exposed people which was not caused by elevated exposure to As through seafood consumption. The relevance of these putative confounding variables cannot be finally evaluated yet. Further experimental as well as epidemiological studies are needed to answer these questions. This would help to conduct a toxicologically improved risk assessment, especially for low-dose and long-term exposures to arsenic. PMID:10781883

  17. Abiotic origin of biopolymers

    NASA Technical Reports Server (NTRS)

    Oro, J.; Stephen-Sherwood, E.

    1976-01-01

    A variety of methods have been investigated in different laboratories for the polymerization of amino acids and nucleotides under abiotic conditions. They include (1) thermal polymerization; (2) direct polymerization of certain amino acid nitriles, amides, or esters; (3) polymerization using polyphosphate esters; (4) polymerization under aqueous or drying conditions at moderate temperatures using a variety of simple catalysts or condensing agents like cyanamide, dicyandiamide, or imidazole; and (5) polymerization under similar mild conditions but employing activated monomers or abiotically synthesized high-energy compounds such as adenosine 5'-triphosphate (ATP). The role and significance of these methods for the synthesis of oligopeptides and oligonucleotides under possible primitive-earth conditions is evaluated. It is concluded that the more recent approach involving chemical processes similar to those used by contemporary living organisms appears to offer a reasonable solution to the prebiotic synthesis of these biopolymers.

  18. Environmental Literacy in Madeira Island (Portugal): The Influence of Demographic Variables

    ERIC Educational Resources Information Center

    Spinola, Hélder

    2016-01-01

    Demographic factors are among those that influence environmental literacy and, particularly, environmentally responsible behaviours, either directly or due to an aggregation effect dependent on other types of variables. Present study evaluates a set of demographic variables as predictors for environmental literacy among 9th grade students from…

  19. Influence of environmental variables on Baylisascaris procyonis infection in raccoons.

    PubMed

    Samson, Amanda; Dubay, Shelli A; Huspeni, Todd C; Cyr, Amanda

    2012-12-01

    Baylisascaris procyonis is a zoonotic nematode commonly found in raccoons (Procyon lotor). Human-altered landscapes can support dense populations of raccoons, increasing the potential for interaction between humans and these animals. We used raccoon feces provided by licensed fur trappers to investigate environmental variables that influence prevalence of B. procyonis at 2 sites in Wisconsin. Trappers submitted raccoon feces to us, along with information on sex, age (juvenile and adult), and approximate trap location for each animal. We used zinc sulfate (1.18 specific gravity) flotation to detect B. procyonis eggs in approximately 1 g of fecal matter from each host. We used ArcView software to determine the distance of each trap location to an urban area as determined by the U.S. Census Bureau in 2000. We compared the habitat components in buffered home ranges (0.805 km around trap locations) of infected animals with those from uninfected animals using Mann-Whitney U-tests (P < 0.05). Variables investigated were human population, road density, housing units per census block, and land cover, including area of agriculture, forest, developed, shrubland, water, and grassland. We positively identified eggs in 64.9% of the animals sampled. Raccoons infected with B. procyonis had significantly larger area of agricultural habitats and significantly smaller areas of forested habitats in buffered home ranges than uninfected individuals. We found that raccoons near Madison and Milwaukee, Wisconsin, are commonly infected with B. procyonis , indicating that public education regarding protection from disease is warranted. PMID:22568732

  20. THE ROLE OF INDIVIDUAL VARIABILITY IN POPULATION DYNAMICS UNDER CHANGING ENVIRONMENTAL CONDITIONS

    EPA Science Inventory

    Environmental variability can influence species distributions through changes in
    survival, fecundity, behavior, and metabolic activities. As worldwide coastal populations rise, the associated deforestation and development can increase both quantities and variability in runoff...

  1. Recent Molecular Advances on Downstream Plant Responses to Abiotic Stress

    PubMed Central

    dos Reis, Sávio Pinho; Lima, Aline Medeiros; de Souza, Cláudia Regina Batista

    2012-01-01

    Abiotic stresses such as extremes of temperature and pH, high salinity and drought, comprise some of the major factors causing extensive losses to crop production worldwide. Understanding how plants respond and adapt at cellular and molecular levels to continuous environmental changes is a pre-requisite for the generation of resistant or tolerant plants to abiotic stresses. In this review we aimed to present the recent advances on mechanisms of downstream plant responses to abiotic stresses and the use of stress-related genes in the development of genetically engineered crops. PMID:22942725

  2. Circadian regulation of abiotic stress tolerance in plants

    PubMed Central

    Grundy, Jack; Stoker, Claire; Carré, Isabelle A.

    2015-01-01

    Extremes of temperatures, drought and salinity cause widespread crop losses throughout the world and impose severe limitations on the amount of land that can be used for agricultural purposes. Hence, there is an urgent need to develop crops that perform better under such abiotic stress conditions. Here, we discuss intriguing, recent evidence that circadian clock contributes to plants’ ability to tolerate different types of environmental stress, and to acclimate to them. The clock controls expression of a large fraction of abiotic stress-responsive genes, as well as biosynthesis and signaling downstream of stress response hormones. Conversely, abiotic stress results in altered expression and differential splicing of the clock genes, leading to altered oscillations of downstream stress-response pathways. We propose a range of mechanisms by which this intimate coupling between the circadian clock and environmental stress-response pathways may contribute to plant growth and survival under abiotic stress. PMID:26379680

  3. Roles of melatonin in abiotic stress resistance in plants.

    PubMed

    Zhang, Na; Sun, Qianqian; Zhang, Haijun; Cao, Yunyun; Weeda, Sarah; Ren, Shuxin; Guo, Yang-Dong

    2015-02-01

    In recent years melatonin has emerged as a research highlight in plant studies. Melatonin has different functions in many aspects of plant growth and development. The most frequently mentioned functions of melatonin are related to abiotic stresses such as drought, radiation, extreme temperature, and chemical stresses. This review mainly focuses on the regulatory effects of melatonin when plants face harsh environmental conditions. Evidence indicates that environmental stress can increase the level of endogenous melatonin in plants. Overexpression of the melatonin biosynthetic genes elevates melatonin levels in transgenic plants. The transgenic plants show enhanced tolerance to abiotic stresses. Exogenously applied melatonin can also improve the ability of plants to tolerate abiotic stresses. The mechanisms by which melatonin alleviates abiotic stresses are discussed. PMID:25124318

  4. Influence of environmental and prey variables on low tide shorebird habitat use within the Robbins Passage wetlands, Northwest Tasmania

    NASA Astrophysics Data System (ADS)

    Spruzen, Fiona L.; Richardson, Alastair M. M.; Woehler, Eric J.

    2008-06-01

    Shorebirds feed primarily on tidal flats, and their distribution over these flats is influenced by their prey and abiotic factors. These factors act by influencing the distribution and abundance of the prey, or the shorebirds ability to exploit it. The aims of this study were to investigate the low tide foraging distribution of shorebirds at four sites within the Robbins Passage wetlands, and the environmental and invertebrate factors that may influence their distribution. The greatest densities and number of shorebirds were found at Shipwreck Point and East Inlet. The shorebirds within-site distribution was also non-random, with the shorebirds present in greatest densities at the water's edge and low intertidal stratum, although this varied among species. Generally, on a small spatial scale, invertebrate diversity was positively correlated, and seagrass leaf mass was negatively correlated, with shorebird feeding density. On a large spatial scale, invertebrate biomass and seagrass root mass were positively correlated with shorebird feeding density. Invertebrate biomass and seagrass root mass explained 71% of the variance in total shorebird feeding density on the tidal flats. The variation in shorebird feeding density and diversity was therefore partly explained by invertebrate diversity and biomass, as well as the environmental factors seagrass roots and leaf mass and tidal flat area, although the strength of these relationships was influenced by the two different spatial scales of the study. The strength of the relationships between shorebird feeding density and the invertebrate and environmental variables was stronger on a large spatial scale. The presence of seagrass may have influenced shorebird-feeding density by affecting the invertebrate abundance and composition or the shorebirds ability to detect and capture their prey. The area of the tidal flat had opposing effects on the shorebird species. These results can be used to assist in the development of

  5. Integrating uncertainty and interindividual variability in environmental risk assessment.

    PubMed

    Bogen, K T; Spear, R C

    1987-12-01

    An integrated, quantitative approach to incorporating both uncertainty and interindividual variability into risk prediction models is described. Individual risk R is treated as a variable distributed in both an uncertainty dimension and a variability dimension, whereas population risk I (the number of additional cases caused by R) is purely uncertain. I is shown to follow a compound Poisson-binomial distribution, which in low-level risk contexts can often be approximated well by a corresponding compound Poisson distribution. The proposed analytic framework is illustrated with an application to cancer risk assessment for a California population exposed to 1,2-dibromo-3-chloropropane from ground water. PMID:3444930

  6. Regulation of Photosynthesis during Abiotic Stress-Induced Photoinhibition.

    PubMed

    Gururani, Mayank Anand; Venkatesh, Jelli; Tran, Lam Son Phan

    2015-09-01

    Plants as sessile organisms are continuously exposed to abiotic stress conditions that impose numerous detrimental effects and cause tremendous loss of yield. Abiotic stresses, including high sunlight, confer serious damage on the photosynthetic machinery of plants. Photosystem II (PSII) is one of the most susceptible components of the photosynthetic machinery that bears the brunt of abiotic stress. In addition to the generation of reactive oxygen species (ROS) by abiotic stress, ROS can also result from the absorption of excessive sunlight by the light-harvesting complex. ROS can damage the photosynthetic apparatus, particularly PSII, resulting in photoinhibition due to an imbalance in the photosynthetic redox signaling pathways and the inhibition of PSII repair. Designing plants with improved abiotic stress tolerance will require a comprehensive understanding of ROS signaling and the regulatory functions of various components, including protein kinases, transcription factors, and phytohormones, in the responses of photosynthetic machinery to abiotic stress. Bioenergetics approaches, such as chlorophyll a transient kinetics analysis, have facilitated our understanding of plant vitality and the assessment of PSII efficiency under adverse environmental conditions. This review discusses the current understanding and indicates potential areas of further studies on the regulation of the photosynthetic machinery under abiotic stress. PMID:25997389

  7. Integrated biomarker responses of an estuarine invertebrate to high abiotic stress and decreased metal contamination.

    PubMed

    Rodrigues, Aurélie Pinto; Oliva-Teles, Teresa; Mesquita, Sofia Raquel; Delerue-Matos, Cristina; Guimarães, Laura

    2014-10-01

    An integrated chemical-biological effects monitoring was performed in 2010 and 2012 in two NW Iberian estuaries under different anthropogenic pressure. One is low impacted and the other is contaminated by metals. The aim was to verify the usefulness of a multibiomarker approach, using Carcinus maenas as bioindicator species, to reflect diminishing environmental contamination and improved health status under abiotic variation. Sampling sites were assessed for metal levels in sediments and C. maenas, water abiotic factors and biomarkers (neurotoxicity, energy metabolism, biotransformation, anti-oxidant defences, oxidative damage). High inter-annual and seasonal abiotic variation was observed. Metal levels in sediments and crab tissues were markedly higher in 2010 than in 2012 in the contaminated estuary. Biomarkers indicated differences between the study sites and seasons and an improvement of effects measured in C. maenas from the polluted estuary in 2012. Integrated Biomarker Response (IBR) index depicted sites with higher stress levels whereas Principal Component Analysis (PCA) showed associations between biomarker responses and environmental variables. The multibiomarker approach and integrated assessments proved to be useful to the early diagnosis of remediation measures in impacted sites. PMID:25314018

  8. Abiotic immobilization/detoxification of recalcitrant organics

    SciTech Connect

    Whelan, G. ); Sims, R.C. )

    1990-11-01

    In contrast to many remedial techniques that simply transfer hazardous wastes from one part of the environment to another (e.g., off-site landfilling), in situ restoration may offer a safe and cost-effective solution through transformation (to less hazardous products) or destruction of recalcitrant organics. Currently, the US Environmental Protection Agency and US Department of Energy are encouraging research that addresses the development of innovative alternatives for hazardous-waste control. One such alternative is biotic and abiotic immobilization and detoxification of polynuclear aromatic hydrocarbons (PNAs) as associated with the soil humification process. This paper discusses (1) the possibility of using abiotic catalysis (with manganese dioxide) to polymerize organic substances; (2) aspects associated with the thermodynamics and kinetics of the process, and (3) a simple model upon which analyses may be based. 36 refs., 7 figs., 3 tabs.

  9. Abiotic stress responses in plant roots: a proteomics perspective

    PubMed Central

    Ghosh, Dipanjana; Xu, Jian

    2014-01-01

    Abiotic stress conditions adversely affect plant growth, resulting in significant decline in crop productivity. To mitigate and recover from the damaging effects of such adverse environmental conditions, plants have evolved various adaptive strategies at cellular and metabolic levels. Most of these strategies involve dynamic changes in protein abundance that can be best explored through proteomics. This review summarizes comparative proteomic studies conducted with roots of various plant species subjected to different abiotic stresses especially drought, salinity, flood, and cold. The main purpose of this article is to highlight and classify the protein level changes in abiotic stress response pathways specifically in plant roots. Shared as well as stressor-specific proteome signatures and adaptive mechanism(s) are simultaneously described. Such a comprehensive account will facilitate the design of genetic engineering strategies that enable the development of broad-spectrum abiotic stress-tolerant crops. PMID:24478786

  10. The whole relationship between environmental variables and firm performance: competitive advantage and firm resources as mediator variables.

    PubMed

    López-Gamero, María D; Molina-Azorín, José F; Claver-Cortés, Enrique

    2009-07-01

    The examination of the possible direct link between environmental protection and firm performance in the literature has generally produced mixed results. The present paper contributes to the literature by using the resource-based view as a mediating process in this relationship. The study specifically tests whether or not the resource-based view of the firm mediates the positive relationships of proactive environmental management and improved environmental performance with competitive advantage, which also has consequences for financial performance. We also check the possible link between the adoption of a pioneering approach and good environmental management practices. Our findings support that early investment timing and intensity in environmental issues impact on the adoption of a proactive environmental management, which in turn helps to improve environmental performance. The findings also show that a firm's resources and competitive advantage act as mediator variables for a positive relationship between environmental protection and financial performance. This contribution is original because the present paper develops a comprehensive whole picture of this path process, which has previously only been partially discussed in the literature. In addition, this study clarifies a relevant point in the literature, namely that the effect of environmental protection on firm performance is not direct and can vary depending on the sector considered. Whereas competitive advantage in relation to costs influences financial performance in the IPPC law sector, the relevant influence in the hotel sector comes from competitive advantage through differentiation. PMID:19482410

  11. Terrestrial Environmental Variables Derived From EOS Platform Sensors

    NASA Technical Reports Server (NTRS)

    Stadler, Stephen J.; Czajkowski, Kevin P.; Goward, Samuel N.; Xue, Yongkang

    2001-01-01

    The three main objectives of the overall project were: 1. Adaptation of environmental constraint methods to take advantage of EOS sensors, specifically, MODIS, ASTER, and Landsat-7, in addition to the PM AVHRR observations 2. Refinement of environmental constraint methods based on fundamental scientific knowledge. 3. Assessment of spatial scaling patterns in environmental constraint measurements to evaluate the potential biases and errors that occur when estimating regional and global-scale NPP patterns with moderate to coarse satellite observations. These goals were modified because, on one hand, MODIS data did not become available until after the first year of the project and because of project staffing issues at the University of Maryland., The OSU portion of the project contained a modest amount of funding and responsibility compared to the University of Maryland and the University of Toledo.

  12. Abiotic Buildup of Ozone

    NASA Astrophysics Data System (ADS)

    Domagal-Goldman, S. D.; Meadows, V. S.

    2010-10-01

    Two of the best biosignature gases for remote detection of life on extrasolar planets are oxygen (O2) and its photochemical byproduct, ozone (O3). The main reason for their prominence as biosignatures is that large abiotic fluxes of O2 and O3 are not considered sustainable on geological and astronomical timescales. We show here how buildup of O3 can occur on planets orbiting M stars, even in the absence of the large biological fluxes. This is possible because the destruction of O2 and O3 is driven by UV photochemistry. This chemistry is much slower on planets around these stars, due to the smaller incident UV flux. Because the destruction of these gases is slower, O3 can build up to detectable levels even if the O3 source is small. We will present atmospheric profiles of these gases for planets around AD Leo (an M dwarf) as well as spectra that show the implications for missions such as Darwin and the Terrestrial Planet Finder (TPF).

  13. A VARIABLE REACTIVITY MODEL FOR ION BINDING TO ENVIRONMENTAL SORBENTS

    EPA Science Inventory

    The conceptual and mathematical basis for a new general-composite modeling approach for ion binding to environmental sorbents is presented. The work extends the Simple Metal Sorption (SiMS) model previously presented for metal and proton binding to humic substances. A surface com...

  14. Requests for Information: Linguistic, Cognitive, Pragmatic, and Environmental Variables.

    ERIC Educational Resources Information Center

    Schwabe, Annette M.; And Others

    1986-01-01

    The paper presents a review of the constituent skills and environmental factors which influence the initial onset and continued acquisition of requests for information in normally developing children to provide the foundation for a protocol for assessing and treating children impaired in requesting information. Specific assessment and treatment…

  15. Regional variability of environmental effects of energy crop rotations

    NASA Astrophysics Data System (ADS)

    Prescher, Anne-Katrin; Peter, Christiane; Specka, Xenia; Willms, Matthias; Glemnitz, Michael

    2014-05-01

    The use of energy crops for bioenergy production is increasingly promoted by different frameworks and policies (ECCP, UNFCCC). Energy cropping decreases greenhouse gas emissions by replacing the use of fossil fuel. However, despite this, growing in monocultures energy crop rotations has low environmental benefit. It is broadly accepted consensus that sustainable energy cropping is only realizable by crop rotations which include several energy crop species. Four crop rotations consisting of species mixtures of C3, C4 and leguminous plants and their crop positions were tested to identify the environmental effect of energy cropping systems. The experimental design included four replicates per crop rotation each covering four cultivation years. The study took place at five sites across Germany covering a considerable range of soil types (loamy sand to silt loam), temperatures (7.5 ° C - 10.0 ° C) and precipitation (559 mm - 807 mm) which allow a regional comparison of crop rotation performance. Four indicators were used to characterize the environmental conditions: (1) greenhouse gas (GHG) emissions from the management actions; (2) change in humus carbon (Chum); (3) groundwater recharge (RGW) and (4) nitrogen dynamics. The indicators were derived by balance, by an empirical model and by a dynamic model, respectively, all based and calibrated on measured values. The results show that the crop rotation impact on environmental indicators varied between plant species mixtures and the crop positions, between sites and climate. Crop rotations with 100 % energy crops (including C4 plants) had negative influence on Chum, GHG emissions per area and RGW in comparison to the rotation of 50 % energy crops and 50 % cash crops, which were mainly due to the remaining straw on the field. However, the biogas yield of the latter rotation was smaller, thus GHG emissions per product were higher, pointing out the importance to distinguish between GHG emissions per product and per area

  16. Variability of building environmental assessment tools on evaluating carbon emissions

    SciTech Connect

    Ng, S. Thomas Chen Yuan Wong, James M.W.

    2013-01-15

    With an increasing importance of sustainability in construction, more and more clients and designers employ building environmental assessment (BEA) tools to evaluate the environmental friendliness of their building facilities, and one important aspect of evaluation in the BEA models is the assessment of carbon emissions. However, in the absence of any agreed framework for carbon auditing and benchmarking, the results generated by the BEA tools might vary significantly which could lead to confusion or misinterpretation on the carbon performance of a building. This study thus aims to unveil the properties of and the standard imposed by the current BEA models on evaluating the life cycle carbon emissions. The analyses cover the (i) weighting of energy efficiency and emission levels among various environmental performance indicators; (ii) building life cycle stages in which carbon is taken into consideration; (iii) objectiveness of assessment; (iv) baseline set for carbon assessment; (v) mechanism for benchmarking the emission level; and (v) limitations of the carbon assessment approaches. Results indicate that the current BEA schemes focus primarily on operational carbon instead of the emissions generated throughout the entire building life cycle. Besides, the baseline and benchmark for carbon evaluation vary significantly among the BEA tools based on the analytical results of a hypothetical building. The findings point to the needs for a more transparent framework for carbon auditing and benchmarking in BEA modeling. - Highlights: Black-Right-Pointing-Pointer Carbon emission evaluation in building environmental assessment schemes are studied. Black-Right-Pointing-Pointer Simulative carbon emission is modeled for building environmental assessment schemes. Black-Right-Pointing-Pointer Carbon assessments focus primarily on operational stage instead of entire lifecycle. Black-Right-Pointing-Pointer Baseline and benchmark of carbon assessment vary greatly among BEA

  17. Pre-exposure of Arabidopsis to the abiotic or biotic environmental stimuli “chilling” or “insect eggs” exhibits different transcriptomic responses to herbivory

    PubMed Central

    Firtzlaff, Vivien; Oberländer, Jana; Geiselhardt, Sven; Hilker, Monika; Kunze, Reinhard

    2016-01-01

    Plants can retain information about environmental stress and thus, prepare themselves for impending stress. In nature, it happens that environmental stimuli like ‘cold’ and ‘insect egg deposition’ precede insect herbivory. Both these stimuli are known to elicit transcriptomic changes in Arabidposis thaliana. It is unknown, however, whether they affect the plant’s anti-herbivore defence and feeding-induced transcriptome when they end prior to herbivory. Here we investigated the transcriptomic response of Arabidopsis to feeding by Pieris brassicae larvae after prior exposure to cold or oviposition. The transcriptome of plants that experienced a five-day-chilling period (4 °C) was not fully reset to the pre-chilling state after deacclimation (20 °C) for one day and responded differently to herbivory than that of chilling-inexperienced plants. In contrast, when after a five-day-lasting oviposition period the eggs were removed, one day later the transcriptome and, consistently, also its response to herbivory resembled that of egg-free plants. Larval performance was unaffected by previous exposure of plants to cold and to eggs, thus indicating P. brassicae tolerance to cold-mediated plant transcriptomic changes. Our results show strong differences in the persistence of the plant’s transcriptomic state after removal of different environmental cues, and consequently differential effects on the transcriptomic response to later herbivory. PMID:27329974

  18. Pre-exposure of Arabidopsis to the abiotic or biotic environmental stimuli "chilling" or "insect eggs" exhibits different transcriptomic responses to herbivory.

    PubMed

    Firtzlaff, Vivien; Oberländer, Jana; Geiselhardt, Sven; Hilker, Monika; Kunze, Reinhard

    2016-01-01

    Plants can retain information about environmental stress and thus, prepare themselves for impending stress. In nature, it happens that environmental stimuli like 'cold' and 'insect egg deposition' precede insect herbivory. Both these stimuli are known to elicit transcriptomic changes in Arabidposis thaliana. It is unknown, however, whether they affect the plant's anti-herbivore defence and feeding-induced transcriptome when they end prior to herbivory. Here we investigated the transcriptomic response of Arabidopsis to feeding by Pieris brassicae larvae after prior exposure to cold or oviposition. The transcriptome of plants that experienced a five-day-chilling period (4 °C) was not fully reset to the pre-chilling state after deacclimation (20 °C) for one day and responded differently to herbivory than that of chilling-inexperienced plants. In contrast, when after a five-day-lasting oviposition period the eggs were removed, one day later the transcriptome and, consistently, also its response to herbivory resembled that of egg-free plants. Larval performance was unaffected by previous exposure of plants to cold and to eggs, thus indicating P. brassicae tolerance to cold-mediated plant transcriptomic changes. Our results show strong differences in the persistence of the plant's transcriptomic state after removal of different environmental cues, and consequently differential effects on the transcriptomic response to later herbivory. PMID:27329974

  19. Response of fish communities to various environmental variables across multiple spatial scales.

    PubMed

    Kwon, Yong-Su; Li, Fengqing; Chung, Namil; Bae, Mi-Jung; Hwang, Soon-Jin; Byoen, Myeong-Seop; Park, Sang-Jung; Park, Young-Seuk

    2012-10-01

    A better understanding of the relative importance of different spatial scale determinants on fish communities will eventually increase the accuracy and precision of their bioassessments. Many studies have described the influence of environmental variables on fish communities on multiple spatial scales. However, there is very limited information available on this topic for the East Asian monsoon region, including Korea. In this study, we evaluated the relationship between fish communities and environmental variables at multiple spatial scales using self-organizing map (SOM), random forest, and theoretical path models. The SOM explored differences among fish communities, reflecting environmental gradients, such as a longitudinal gradient from upstream to downstream, and differences in land cover types and water quality. The random forest model for predicting fish community patterns that used all 14 environmental variables was more powerful than a model using any single variable or other combination of environmental variables, and the random forest model was effective at predicting the occurrence of species and evaluating the contribution of environmental variables to that prediction. The theoretical path model described the responses of different species to their environment at multiple spatial scales, showing the importance of altitude, forest, and water quality factors to fish assemblages. PMID:23202766

  20. Response of Fish Communities to Various Environmental Variables across Multiple Spatial Scales

    PubMed Central

    Kwon, Yong-Su; Li, Fengqing; Chung, Namil; Bae, Mi-Jung; Hwang, Soon-Jin; Byoen, Myeong-Seop; Park, Sang-Jung; Park, Young-Seuk

    2012-01-01

    A better understanding of the relative importance of different spatial scale determinants on fish communities will eventually increase the accuracy and precision of their bioassessments. Many studies have described the influence of environmental variables on fish communities on multiple spatial scales. However, there is very limited information available on this topic for the East Asian monsoon region, including Korea. In this study, we evaluated the relationship between fish communities and environmental variables at multiple spatial scales using self-organizing map (SOM), random forest, and theoretical path models. The SOM explored differences among fish communities, reflecting environmental gradients, such as a longitudinal gradient from upstream to downstream, and differences in land cover types and water quality. The random forest model for predicting fish community patterns that used all 14 environmental variables was more powerful than a model using any single variable or other combination of environmental variables, and the random forest model was effective at predicting the occurrence of species and evaluating the contribution of environmental variables to that prediction. The theoretical path model described the responses of different species to their environment at multiple spatial scales, showing the importance of altitude, forest, and water quality factors to fish assemblages. PMID:23202766

  1. Bioaccumulation of photoprotective compounds in copepods: environmental triggers and sources of intra-specific variability

    NASA Astrophysics Data System (ADS)

    Zagarese, H. E.; García, P.; Diéguez, M. D.; Ferraro, M. A.

    2012-12-01

    Ultraviolet radiation (UVR) and temperature are two globally important abiotic factors affecting freshwater ecosystems. Planktonic organisms have developed a battery of counteracting mechanisms to minimize the risk of being damaged by UVR, which respond to three basic principles: avoid, protect, repair. Copepods are among the most successful zooplankton groups. They are highly adaptable animals, capable of displaying flexible behaviors, physiologies, and life strategies. In particular, they are well equipped to cope with harmful UVR. Their arsenal includes vertical migration, accumulation of photoprotective compounds, and photorepair. The preference for a particular strategy is affected by a plethora of environmental (extrinsic) parameters, such as the existence of a depth refuge, the risk of visual predation, and temperature. Temperature modifies the environment (e.g. the lake thermal structure), and animal metabolism (e.g., swimming speed, bioaccumulation of photoprotective compounds). In addition, the relative weight of UVR-coping strategies is also influenced by the organism (intrinsic) characteristics (e.g., inter- and intra-specific variability). The UV absorbing compounds, mycosporine-like amino acids (MAAs), are widely distributed among freshwater copepods. Animals are unable to synthesize MAAs, and therefore depend on external sources for accumulating these compounds. Although copepods may acquire MAAs from their food, for the few centropagic species investigated so far, the main source of MAAs are microbial (most likely prokaryotic) organisms living in close association with the copepods. Boeckella gracilipes is a common centropagic copepod in Patagonian lakes. We suspected that its occurrence in different types of lakes, hydrologically unconnected, but within close geographical proximity, could have resulted in different microbial-copepod associations (i.e., different MAAs sources) that could translate into intra-specific differences in the accumulation

  2. Yield estimation in commercial cranberry systems using physiological, environmental, and genetic variables

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study sought to improve the current understanding of yield by measuring the effects of genetic, physiological, and environmental variables on yield. Sixty-six variables representing ‘Stevens’ and ‘Ben Lear’ cultivars were evaluated from samples collected from eight commercial cranberry marshes ...

  3. Investigation of High School Students' Environmental Attitudes in Terms of Some Demographic Variables

    ERIC Educational Resources Information Center

    Koruoglu, Nergiz; Ugulu, Ilker; Yorek, Nurettin

    2015-01-01

    Studying individuals and students' attitudes towards environment and factors affecting students to be responsible individuals towards their environment may provide help towards the solution of environmental problems. In this study, it is aimed to evaluate environmental attitudes of high school students in terms of some variables. The sample of the…

  4. Substrate heterogeneity and environmental variability in the decomposition process

    NASA Astrophysics Data System (ADS)

    Sierra, Carlos; Harmon, Mark; Perakis, Steven

    2010-05-01

    Soil organic matter is a complex mixture of material with heterogeneous biological, physical, and chemical properties. However, traditional analyses of organic matter decomposition assume that a single decomposition rate constant can represent the dynamics of this heterogeneous mix. Terrestrial decomposition models approach this heterogeneity by representing organic matter as a substrate with three to six pools with different susceptibilities to decomposition. Even though it is well recognized that this representation of organic matter in models is less than ideal, there is little work analyzing the effects of assuming substrate homogeneity or simple discrete representations on the mineralization of carbon and nutrients. Using concepts from the continuous quality theory developed by Göran I. Ågren and Ernesto Bosatta, we performed a systematic analysis to explore the consequences of ignoring substrate heterogeneity in modeling decomposition. We found that the compartmentalization of organic matter in a few pools introduces approximation error when both the distribution of carbon and the decomposition rate are continuous functions of quality. This error is generally large for models that use three or four pools. We also found that the pattern of carbon and nitrogen mineralization over time is highly dependent on differences in microbial growth and efficiency for different qualities. In the long-term, stabilization and destabilization processes operating simultaneously result in the accumulation of carbon in lower qualities, independent of the quality of the incoming litter. This large amount of carbon accumulated in lower qualities would produce a major response to temperature change even when its temperature sensitivity is low. The interaction of substrate heterogeneity and temperature variability produces behaviors of carbon accumulation that cannot be predicted by simple decomposition models. Responses of soil organic matter to temperature change would depend

  5. The impact of environmental variability on Atlantic mackerel Scomber scombrus larval abundance to the west of the British Isles

    NASA Astrophysics Data System (ADS)

    Pitois, Sophie G.; Jansen, Teunis; Pinnegar, John

    2015-05-01

    The value of the Continuous Plankton Recorder (CPR) fish larvae dataset, with its extensive spatio-temporal coverage, has been recently demonstrated with studies on long-term changes over decadal scales in the abundance and distribution of fish larvae in relation to physical and biological factors in the North Sea. We used a similar approach in the west and southwest area of the UK shelf and applied a principal component analysis (PCA) using 7 biotic and abiotic parameters, combined with Hierarchical Cluster Analysis (HCA), to investigate the impact of environmental changes in the west and southwest area of the UK shelf on mackerel larvae during the period 1960-2004. The analysis revealed 3 main periods of time (1960-1968; 1969-1994; 1995-2004) reflecting 3 different ecosystem states. The results suggest a transition from an ecosystem characterized by low temperature, high salinity, high abundances of zooplankton and the larger phytoplankton groups, to a system characterized by higher temperature, lower salinities, lower abundances of zooplankton and larger phytoplankton and higher abundances of the small phytoplankton species. Analysis revealed a very weak positive correlation between the Second principal component and mackerel larvae yearly abundance, attributed to the North Atlantic Oscillation (NAO). The results presented here are in broad accord with recent investigations that link climatic variability and dynamics of mackerel reproduction. However, the growing body of literature that documents statistical correlations between environment and mackerel needs to be supplemented by local process studies, to gain more insight and to be able to predict mackerel response to climate change scenarios. Utilising the strength of the CPR dataset, namely its unique temporal coverage, in an analysis where other data (such as egg surveys) are drawn in to compensate for the spatial issues could prove to be the way forward.

  6. Predicting biotic interactions and their variability in a changing environment.

    PubMed

    Kadowaki, Kohmei; Barbera, Claire G; Godsoe, William; Delsuc, Frédéric; Mouquet, Nicolas

    2016-05-01

    Global environmental change is altering the patterns of biodiversity worldwide. Observation and theory suggest that species' distributions and abundances depend on a suite of processes, notably abiotic filtering and biotic interactions, both of which are constrained by species' phylogenetic history. Models predicting species distribution have historically mostly considered abiotic filtering and are only starting to integrate biotic interaction. However, using information on present interactions to forecast the future of biodiversity supposes that biotic interactions will not change when species are confronted with new environments. Using bacterial microcosms, we illustrate how biotic interactions can vary along an environmental gradient and how this variability can depend on the phylogenetic distance between interacting species. PMID:27220858

  7. Design of a WSN for the Sampling of Environmental Variability in Complex Terrain

    PubMed Central

    Martín-Tardío, Miguel A.; Felicísimo, Ángel M.

    2014-01-01

    In-situ environmental parameter measurements using sensor systems connected to a wireless network have become widespread, but the problem of monitoring large and mountainous areas by means of a wireless sensor network (WSN) is not well resolved. The main reasons for this are: (1) the environmental variability distribution is unknown in the field; (2) without this knowledge, a huge number of sensors would be necessary to ensure the complete coverage of the environmental variability and (3) WSN design requirements, for example, effective connectivity (intervisibility), limiting distances and controlled redundancy, are usually solved by trial and error. Using temperature as the target environmental variable, we propose: (1) a method to determine the homogeneous environmental classes to be sampled using the digital elevation model (DEM) and geometric simulations and (2) a procedure to determine an effective WSN design in complex terrain in terms of the number of sensors, redundancy, cost and spatial distribution. The proposed methodology, based on geographic information systems and binary integer programming can be easily adapted to a wide range of applications that need exhaustive and continuous environmental monitoring with high spatial resolution. The results show that the WSN design is perfectly suited to the topography and the technical specifications of the sensors, and provides a complete coverage of the environmental variability in terms of Sun exposure. However these results still need be validated in the field and the proposed procedure must be refined. PMID:25412218

  8. Design of a WSN for the sampling of environmental variability in complex terrain.

    PubMed

    Martín-Tardío, Miguel A; Felicísimo, Ángel M

    2014-01-01

    In-situ environmental parameter measurements using sensor systems connected to a wireless network have become widespread, but the problem of monitoring large and mountainous areas by means of a wireless sensor network (WSN) is not well resolved. The main reasons for this are: (1) the environmental variability distribution is unknown in the field; (2) without this knowledge, a huge number of sensors would be necessary to ensure the complete coverage of the environmental variability and (3) WSN design requirements, for example, effective connectivity (intervisibility), limiting distances and controlled redundancy, are usually solved by trial and error. Using temperature as the target environmental variable, we propose: (1) a method to determine the homogeneous environmental classes to be sampled using the digital elevation model (DEM) and geometric simulations and (2) a procedure to determine an effective WSN design in complex terrain in terms of the number of sensors, redundancy, cost and spatial distribution. The proposed methodology, based on geographic information systems and binary integer programming can be easily adapted to a wide range of applications that need exhaustive and continuous environmental monitoring with high spatial resolution. The results show that the WSN design is perfectly suited to the topography and the technical specifications of the sensors, and provides a complete coverage of the environmental variability in terms of Sun exposure. However these results still need be validated in the field and the proposed procedure must be refined. PMID:25412218

  9. Mapping water table depth using geophysical and environmental variables.

    PubMed

    Buchanan, S; Triantafilis, J

    2009-01-01

    Despite its importance, accurate representation of the spatial distribution of water table depth remains one of the greatest deficiencies in many hydrological investigations. Historically, both inverse distance weighting (IDW) and ordinary kriging (OK) have been used to interpolate depths. These methods, however, have major limitations: namely they require large numbers of measurements to represent the spatial variability of water table depth and they do not represent the variation between measurement points. We address this issue by assessing the benefits of using stepwise multiple linear regression (MLR) with three different ancillary data sets to predict the water table depth at 100-m intervals. The ancillary data sets used are Electromagnetic (EM34 and EM38), gamma radiometric: potassium (K), uranium (eU), thorium (eTh), total count (TC), and morphometric data. Results show that MLR offers significant precision and accuracy benefits over OK and IDW. Inclusion of the morphometric data set yielded the greatest (16%) improvement in prediction accuracy compared with IDW, followed by the electromagnetic data set (5%). Use of the gamma radiometric data set showed no improvement. The greatest improvement, however, resulted when all data sets were combined (37% increase in prediction accuracy over IDW). Significantly, however, the use of MLR also allows for prediction in variations in water table depth between measurement points, which is crucial for land management. PMID:18793206

  10. Consideration of environmental and operational variability for damage diagnosis

    SciTech Connect

    Sohn, H.; Worden, K.; Farrar, C. R.

    2002-01-01

    Damage diagnosis is a problem that can be addressed at many levels. Stated in its most basic form, the objective is to ascertain simply if damage is present or not. In a statistical pattern recognition paradigm of this problem, the philosophy is to collect baseline signatures from a system to be monitored and to compare subsequent data to see if the new 'pattern' deviates significantly from the baseline data. Unfortunately, matters are seldom as simple as this. In reality, structures will be subjected to changing environmental and operational conditions that will affect measured signals. In this case, there may be a wide range of normal conditions, and it is clearly undesirable to signal damage simply because of a change in the environment. In this paper, a unique combination of time series analysis, neural networks, and statistical inference techniques is developed for damage classification explicitly taking into account these natural variations of the system in order to minimize false positive indication of true system changes.

  11. Plant-insect interactions from Middle Triassic (late Ladinian) of Monte Agnello (Dolomites, N-Italy)-initial pattern and response to abiotic environmental perturbations.

    PubMed

    Wappler, Torsten; Kustatscher, Evelyn; Dellantonio, Elio

    2015-01-01

    The Paleozoic-Mesozoic transition is characterized by the most massive extinction of the Phanerozoic. Nevertheless, an impressive adaptive radiation of herbivorous insects occurred on gymnosperm-dominated floras not earlier than during the Middle to Late Triassic, penecontemporaneous with similar events worldwide, all which exhibit parallel expansions of generalized and mostly specialized insect herbivory on plants, expressed as insect damage on a various plant organs and tissues. The flora from Monte Agnello is distinctive, due to its preservation in subaerially deposited pyroclastic layers with exceptionally preserved details. Thus, the para-autochthonous assemblage provides insights into environmental disturbances, caused by volcanic activity, and how they profoundly affected the structure and composition of herbivory patterns. These diverse Middle Triassic biota supply extensive evidence for insect herbivore colonization, resulting in specific and complex herbivory patterns involving the frequency and diversity of 20 distinctive damage types (DTs). These DT patterns show that external foliage feeders, piercer-and-suckers, leaf miners, gallers, and oviposition culprits were intricately using almost all tissue types from the dominant host plants of voltzialean conifers (e.g., Voltzia), horsetails, ferns (e.g., Neuropteridium, Phlebopteris, Cladophlebis and Thaumatopteris), seed ferns (e.g., Scytophyllum), and cycadophytes (e.g., Bjuvia and Nilssonia). PMID:25945313

  12. Plant–insect interactions from Middle Triassic (late Ladinian) of Monte Agnello (Dolomites, N-Italy)—initial pattern and response to abiotic environmental perturbations

    PubMed Central

    Kustatscher, Evelyn; Dellantonio, Elio

    2015-01-01

    The Paleozoic–Mesozoic transition is characterized by the most massive extinction of the Phanerozoic. Nevertheless, an impressive adaptive radiation of herbivorous insects occurred on gymnosperm-dominated floras not earlier than during the Middle to Late Triassic, penecontemporaneous with similar events worldwide, all which exhibit parallel expansions of generalized and mostly specialized insect herbivory on plants, expressed as insect damage on a various plant organs and tissues. The flora from Monte Agnello is distinctive, due to its preservation in subaerially deposited pyroclastic layers with exceptionally preserved details. Thus, the para-autochthonous assemblage provides insights into environmental disturbances, caused by volcanic activity, and how they profoundly affected the structure and composition of herbivory patterns. These diverse Middle Triassic biota supply extensive evidence for insect herbivore colonization, resulting in specific and complex herbivory patterns involving the frequency and diversity of 20 distinctive damage types (DTs). These DT patterns show that external foliage feeders, piercer-and-suckers, leaf miners, gallers, and oviposition culprits were intricately using almost all tissue types from the dominant host plants of voltzialean conifers (e.g., Voltzia), horsetails, ferns (e.g., Neuropteridium, Phlebopteris, Cladophlebis and Thaumatopteris), seed ferns (e.g., Scytophyllum), and cycadophytes (e.g., Bjuvia and Nilssonia). PMID:25945313

  13. Environmental variables controlling the uptake of carbonyl sulfide by lichens

    NASA Astrophysics Data System (ADS)

    Kuhn, U.; Kesselmeier, J.

    2000-11-01

    The uptake of atmospheric carbonyl sulfide (COS) by the lichen species Ramalina menziesii, representative for the open oak woodland in central California, was studied under laboratory conditions. By use of a dynamic cuvette system, the controlling parameters for the COS uptake were investigated under climate chamber conditions. The thallus water content, essential for the overall physiology of lichens, was found to be of basic importance for the trace gas exchange. A water content of 30% was the approximate minimum for COS uptake, with increasing activity up to a water content of 200%. Additionally, actual atmospheric mixing ratios have a significant influence on the exchange. The COS uptake was found to be a linear function of the ambient COS mixing ratio resulting in a compensation point as low as 37 ppt. A temperature optimum of 25°C was indicative of a physiological basis of the COS uptake. The inhibition of the COS consumption in the presence of a specific inhibitor for the enzyme carbonic anhydrase proved this enzyme to be of key relevance for the uptake. All these variables controlling the COS deposition were integrated into an uptake algorithm to model the exchange behavior of this lichen. The applicability of the model to field data is demonstrated. Uptake rates on a dry weight basis normalized to optimized conditions (25°C; 450 ppt COS) reached 0.17±0.09 pmol g-1 s-1 (i.e. 4.2±2.2 pmol m-2 s-1 thallus surface area, respectively). The contribution of lichens to the global COS sink strength is assigned to be about 0.3 Tg a-1, representing not a major but a significant sink.

  14. Spatial Relationships between Polychaete Assemblages and Environmental Variables over Broad Geographical Scales

    PubMed Central

    Benedetti-Cecchi, Lisandro; Iken, Katrin; Konar, Brenda; Cruz-Motta, Juan; Knowlton, Ann; Pohle, Gerhard; Castelli, Alberto; Tamburello, Laura; Mead, Angela; Trott, Tom; Miloslavich, Patricia; Wong, Melisa; Shirayama, Yoshihisa; Lardicci, Claudio; Palomo, Gabriela; Maggi, Elena

    2010-01-01

    This study examined spatial relationships between rocky shore polychaete assemblages and environmental variables over broad geographical scales, using a database compiled within the Census of Marine Life NaGISA (Natural Geography In Shore Areas) research program. The database consisted of abundance measures of polychaetes classified at the genus and family levels for 74 and 93 sites, respectively, from nine geographic regions. We tested the general hypothesis that the set of environmental variables emerging as potentially important drivers of variation in polychaete assemblages depend on the spatial scale considered. Through Moran's eigenvector maps we indentified three submodels reflecting spatial relationships among sampling sites at intercontinental (>10000 km), continental (1000–5000 km) and regional (20–500 km) scales. Using redundancy analysis we found that most environmental variables contributed to explain a large and significant proportion of variation of the intercontinental submodel both for genera and families (54% and 53%, respectively). A subset of these variables, organic pollution, inorganic pollution, primary productivity and nutrient contamination was also significantly related to spatial variation at the continental scale, explaining 25% and 32% of the variance at the genus and family levels, respectively. These variables should therefore be preferably considered when forecasting large-scale spatial patterns of polychaete assemblages in relation to ongoing or predicted changes in environmental conditions. None of the variables considered in this study were significantly related to the regional submodel. PMID:20886075

  15. Weighing Abiotic and Biotic Influences on Weed Seed Predation Rates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed seed predation is an important ecosystem service supporting weed management in low-external-input agroecosystems. Current knowledge of weed seed predation focuses on biotic mechanisms, with less understood about the relative impact of abiotic variables. In order to quantify relative contributio...

  16. Weighing Abiotic and Biotic Influences on Weed Seed Predation Rates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed seed predation is an important ecosystem service supporting weed management in low-external-input agroecosystems. Current knowledge of weed seed predation in arable systems focuses on biotic mechanisms, with less understood about the relative impact of abiotic variables on this process. In orde...

  17. Common trends in German Bight benthic macrofaunal communities: Assessing temporal variability and the relative importance of environmental variables

    NASA Astrophysics Data System (ADS)

    Ghodrati Shojaei, Mehdi; Gutow, Lars; Dannheim, Jennifer; Rachor, Eike; Schröder, Alexander; Brey, Thomas

    2016-01-01

    We examined long-term variability in the abundance of German Bight soft bottom macro-zoobenthos together with major environmental factors (sea surface temperature, winter NAO index, salinity, phosphate, nitrate and silicate) using one of the most comprehensive ecological long-term data sets in the North Sea (1981-2011). Two techniques, Min/Max Autocorrelation Factor Analysis (MAFA) and Dynamic Factor Analysis (DFA) were used to identify underlying common trends in the macrofaunal time series and the relationships between this series and environmental variables. These methods are particularly suitable for relatively short (> 15-25 years), non-stationary multivariate data series. Both MAFA and DFA identify a common trend in German Bight macrofaunal abundance i.e. a slight decrease (1981-mid-1990s) followed by a sharp trough in the late 1990s. Subsequently, scores increased again towards 2011. Our analysis indicates that winter temperature and North Atlantic Oscillation were the predominant environmental drivers of temporal variation in German Bight macrofaunal abundance. The techniques applied here are suitable tools to describe temporal fluctuations in complex and noisy multiple time series data and can detect distinct shifts and trends within such time series.

  18. ABIOTIC TRANSFORMATION PATHWAYS OF ORGANIC CHEMICALS IN AQUATIC ECOSYSTEMS

    EPA Science Inventory

    Information is presented for assessing the potential of an organic chemical to undergo abiotic transformation in aquatic ecosystems. hen predicting the environmental fate of an organic chemical, two primary questions must be addressed. irst, what are the reaction kinetics for the...

  19. Environmental variables measured at multiple spatial scales exert uneven influence on fish assemblages of floodplain lakes

    USGS Publications Warehouse

    Dembkowski, Daniel J.; Miranda, Leandro E.

    2014-01-01

    We examined the interaction between environmental variables measured at three different scales (i.e., landscape, lake, and in-lake) and fish assemblage descriptors across a range of over 50 floodplain lakes in the Mississippi Alluvial Valley of Mississippi and Arkansas. Our goal was to identify important local- and landscape-level determinants of fish assemblage structure. Relationships between fish assemblage structure and variables measured at broader scales (i.e., landscape-level and lake-level) were hypothesized to be stronger than relationships with variables measured at finer scales (i.e., in-lake variables). Results suggest that fish assemblage structure in floodplain lakes was influenced by variables operating on three different scales. However, and contrary to expectations, canonical correlations between in-lake environmental characteristics and fish assemblage structure were generally stronger than correlations between landscape-level and lake-level variables and fish assemblage structure, suggesting a hierarchy of influence. From a resource management perspective, our study suggests that landscape-level and lake-level variables may be manipulated for conservation or restoration purposes, and in-lake variables and fish assemblage structure may be used to monitor the success of such efforts.

  20. Spatiotemporal variability of dimethylsulphoniopropionate on a fringing coral reef: the role of reefal carbonate chemistry and environmental variability.

    PubMed

    Burdett, Heidi L; Donohue, Penelope J C; Hatton, Angela D; Alwany, Magdy A; Kamenos, Nicholas A

    2013-01-01

    Oceanic pH is projected to decrease by up to 0.5 units by 2100 (a process known as ocean acidification, OA), reducing the calcium carbonate saturation state of the oceans. The coastal ocean is expected to experience periods of even lower carbonate saturation state because of the inherent natural variability of coastal habitats. Thus, in order to accurately project the impact of OA on the coastal ocean, we must first understand its natural variability. The production of dimethylsulphoniopropionate (DMSP) by marine algae and the release of DMSP's breakdown product dimethylsulphide (DMS) are often related to environmental stress. This study investigated the spatiotemporal response of tropical macroalgae (Padina sp., Amphiroa sp. and Turbinaria sp.) and the overlying water column to natural changes in reefal carbonate chemistry. We compared macroalgal intracellular DMSP and water column DMSP+DMS concentrations between the environmentally stable reef crest and environmentally variable reef flat of the fringing Suleman Reef, Egypt, over 45-hour sampling periods. Similar diel patterns were observed throughout: maximum intracellular DMSP and water column DMS/P concentrations were observed at night, coinciding with the time of lowest carbonate saturation state. Spatially, water column DMS/P concentrations were highest over areas dominated by seagrass and macroalgae (dissolved DMS/P) and phytoplankton (particulate DMS/P) rather than corals. This research suggests that macroalgae may use DMSP to maintain metabolic function during periods of low carbonate saturation state. In the reef system, seagrass and macroalgae may be more important benthic producers of dissolved DMS/P than corals. An increase in DMS/P concentrations during periods of low carbonate saturation state may become ecologically important in the future under an OA regime, impacting larval settlement and increasing atmospheric emissions of DMS. PMID:23724073

  1. Environmental variability uncovers disruptive effects of species' interactions on population dynamics.

    PubMed

    Gudmundson, Sara; Eklöf, Anna; Wennergren, Uno

    2015-08-01

    How species respond to changes in environmental variability has been shown for single species, but the question remains whether these results are transferable to species when incorporated in ecological communities. Here, we address this issue by analysing the same species exposed to a range of environmental variabilities when (i) isolated or (ii) embedded in a food web. We find that all species in food webs exposed to temporally uncorrelated environments (white noise) show the same type of dynamics as isolated species, whereas species in food webs exposed to positively autocorrelated environments (red noise) can respond completely differently compared with isolated species. This is owing to species following their equilibrium densities in a positively autocorrelated environment that in turn enables species-species interactions to come into play. Our results give new insights into species' response to environmental variation. They especially highlight the importance of considering both species' interactions and environmental autocorrelation when studying population dynamics in a fluctuating environment. PMID:26224705

  2. Environmental variability uncovers disruptive effects of species' interactions on population dynamics

    PubMed Central

    Gudmundson, Sara; Eklöf, Anna; Wennergren, Uno

    2015-01-01

    How species respond to changes in environmental variability has been shown for single species, but the question remains whether these results are transferable to species when incorporated in ecological communities. Here, we address this issue by analysing the same species exposed to a range of environmental variabilities when (i) isolated or (ii) embedded in a food web. We find that all species in food webs exposed to temporally uncorrelated environments (white noise) show the same type of dynamics as isolated species, whereas species in food webs exposed to positively autocorrelated environments (red noise) can respond completely differently compared with isolated species. This is owing to species following their equilibrium densities in a positively autocorrelated environment that in turn enables species–species interactions to come into play. Our results give new insights into species' response to environmental variation. They especially highlight the importance of considering both species' interactions and environmental autocorrelation when studying population dynamics in a fluctuating environment. PMID:26224705

  3. Polyamines and abiotic stress in plants: a complex relationship.

    PubMed

    Minocha, Rakesh; Majumdar, Rajtilak; Minocha, Subhash C

    2014-01-01

    The physiological relationship between abiotic stress in plants and polyamines was reported more than 40 years ago. Ever since there has been a debate as to whether increased polyamines protect plants against abiotic stress (e.g., due to their ability to deal with oxidative radicals) or cause damage to them (perhaps due to hydrogen peroxide produced by their catabolism). The observation that cellular polyamines are typically elevated in plants under both short-term as well as long-term abiotic stress conditions is consistent with the possibility of their dual effects, i.e., being protectors from as well as perpetrators of stress damage to the cells. The observed increase in tolerance of plants to abiotic stress when their cellular contents are elevated by either exogenous treatment with polyamines or through genetic engineering with genes encoding polyamine biosynthetic enzymes is indicative of a protective role for them. However, through their catabolic production of hydrogen peroxide and acrolein, both strong oxidizers, they can potentially be the cause of cellular harm during stress. In fact, somewhat enigmatic but strong positive relationship between abiotic stress and foliar polyamines has been proposed as a potential biochemical marker of persistent environmental stress in forest trees in which phenotypic symptoms of stress are not yet visible. Such markers may help forewarn forest managers to undertake amelioration strategies before the appearance of visual symptoms of stress and damage at which stage it is often too late for implementing strategies for stress remediation and reversal of damage. This review provides a comprehensive and critical evaluation of the published literature on interactions between abiotic stress and polyamines in plants, and examines the experimental strategies used to understand the functional significance of this relationship with the aim of improving plant productivity, especially under conditions of abiotic stress. PMID:24847338

  4. Polyamines and abiotic stress in plants: a complex relationship1

    PubMed Central

    Minocha, Rakesh; Majumdar, Rajtilak; Minocha, Subhash C.

    2014-01-01

    The physiological relationship between abiotic stress in plants and polyamines was reported more than 40 years ago. Ever since there has been a debate as to whether increased polyamines protect plants against abiotic stress (e.g., due to their ability to deal with oxidative radicals) or cause damage to them (perhaps due to hydrogen peroxide produced by their catabolism). The observation that cellular polyamines are typically elevated in plants under both short-term as well as long-term abiotic stress conditions is consistent with the possibility of their dual effects, i.e., being protectors from as well as perpetrators of stress damage to the cells. The observed increase in tolerance of plants to abiotic stress when their cellular contents are elevated by either exogenous treatment with polyamines or through genetic engineering with genes encoding polyamine biosynthetic enzymes is indicative of a protective role for them. However, through their catabolic production of hydrogen peroxide and acrolein, both strong oxidizers, they can potentially be the cause of cellular harm during stress. In fact, somewhat enigmatic but strong positive relationship between abiotic stress and foliar polyamines has been proposed as a potential biochemical marker of persistent environmental stress in forest trees in which phenotypic symptoms of stress are not yet visible. Such markers may help forewarn forest managers to undertake amelioration strategies before the appearance of visual symptoms of stress and damage at which stage it is often too late for implementing strategies for stress remediation and reversal of damage. This review provides a comprehensive and critical evaluation of the published literature on interactions between abiotic stress and polyamines in plants, and examines the experimental strategies used to understand the functional significance of this relationship with the aim of improving plant productivity, especially under conditions of abiotic stress. PMID:24847338

  5. Current perspectives in proteomic analysis of abiotic stress in Grapevines

    PubMed Central

    George, Iniga S.; Haynes, Paul A.

    2014-01-01

    Grapes are an important crop plant which forms the basis of a globally important industry. Grape and wine production is particularly vulnerable to environmental and climatic fluctuations, which makes it essential for us to develop a greater understanding of the molecular level responses of grape plants to various abiotic stresses. The completion of the initial grape genome sequence in 2007 has led to a significant increase in research on grapes using proteomics approaches. In this article, we discuss some of the current research on abiotic stress in grapevines, in the context of abiotic stress research in other plant species. We also highlight some of the current limitations in grapevine proteomics and identify areas with promising scope for potential future research. PMID:25538720

  6. ROS Regulation During Abiotic Stress Responses in Crop Plants

    PubMed Central

    You, Jun; Chan, Zhulong

    2015-01-01

    Abiotic stresses such as drought, cold, salt and heat cause reduction of plant growth and loss of crop yield worldwide. Reactive oxygen species (ROS) including hydrogen peroxide (H2O2), superoxide anions (O2•-), hydroxyl radical (OH•) and singlet oxygen (1O2) are by-products of physiological metabolisms, and are precisely controlled by enzymatic and non-enzymatic antioxidant defense systems. ROS are significantly accumulated under abiotic stress conditions, which cause oxidative damage and eventually resulting in cell death. Recently, ROS have been also recognized as key players in the complex signaling network of plants stress responses. The involvement of ROS in signal transduction implies that there must be coordinated function of regulation networks to maintain ROS at non-toxic levels in a delicate balancing act between ROS production, involving ROS generating enzymes and the unavoidable production of ROS during basic cellular metabolism, and ROS-scavenging pathways. Increasing evidence showed that ROS play crucial roles in abiotic stress responses of crop plants for the activation of stress-response and defense pathways. More importantly, manipulating ROS levels provides an opportunity to enhance stress tolerances of crop plants under a variety of unfavorable environmental conditions. This review presents an overview of current knowledge about homeostasis regulation of ROS in crop plants. In particular, we summarize the essential proteins that are involved in abiotic stress tolerance of crop plants through ROS regulation. Finally, the challenges toward the improvement of abiotic stress tolerance through ROS regulation in crops are discussed. PMID:26697045

  7. [Environmental and demographic variables associated with psychiatric morbidity in former prisoners of war].

    PubMed

    Dethienne, F; Donnay, J M

    1976-01-01

    In this study, present psychiatric morbidity of 100 former prisoners of war is related to 28 environmental and demographic variables grouped in 3 periods: before, during and after WW2. With the exception of the invalidity percentage, all statistically significant relations concern variables of the first two periods. The present results are discussed at the light of former publications by the authors. It appears among others that the age variable has to be taken in consideration in the explanation of psychiatric sequels of captivity, and that the condition "invalid of war" poorly reflects the degree of psychiatric morbidity. PMID:970190

  8. Near-global freshwater-specific environmental variables for biodiversity analyses in 1 km resolution.

    PubMed

    Domisch, Sami; Amatulli, Giuseppe; Jetz, Walter

    2015-01-01

    The lack of freshwater-specific environmental information at sufficiently fine spatial grain hampers broad-scale analyses in aquatic biology, biogeography, conservation, and ecology. Here we present a near-global, spatially continuous, and freshwater-specific set of environmental variables in a standardized 1 km grid. We delineate the sub-catchment for each grid cell along the HydroSHEDS river network and summarize the upstream climate, topography, land cover, surface geology and soil to each grid cell using various metrics (average, minimum, maximum, range, sum, inverse distance-weighted average and sum). All variables were subsequently averaged across single lakes and reservoirs of the Global lakes and Wetlands Database that are connected to the river network. Monthly climate variables were summarized into 19 long-term climatic variables following the 'bioclim' framework. This new set of variables provides a basis for spatial ecological and biodiversity analyses in freshwater ecosystems at near global extent, yet fine spatial grain. To facilitate the generation of freshwater variables for custom study areas and spatial grains, we provide the 'r.stream.watersheds' and 'r.stream.variables' add-ons for the GRASS GIS software. PMID:26647296

  9. Mud, Macrofauna and Microbes: An ode to benthic organism-abiotic interactions at varying scales

    EPA Science Inventory

    Benthic environments are dynamic habitats, subject to variable sources and rates of sediment delivery, reworking from the abiotic and biotic processes, and complex biogeochemistry. These activities do not occur in a vacuum, and interact synergistically to influence food webs, bi...

  10. EFFECT OF ENVIRONMENTAL VARIABLES ON ENTERIC VIRUS SURVIVAL IN SURFACE FRESHWATERS

    EPA Science Inventory

    In a review of published studies which have concerned stability of enteric viruses in surface freshwaters, those environmental variables which have been determined to have a statistically significant effect are pH, chloride, TOC, hardness, turbidity, and exposure to sunlight when...

  11. Variable selection with random forest: Balancing stability, performance, and interpretation in ecological and environmental modeling

    EPA Science Inventory

    Random forest (RF) is popular in ecological and environmental modeling, in part, because of its insensitivity to correlated predictors and resistance to overfitting. Although variable selection has been proposed to improve both performance and interpretation of RF models, it is u...

  12. The Use of Chemical Probes for the Characterization of the Predominant Abiotic Reductants in Anaerobic Sediments

    EPA Science Inventory

    Identifying the predominant chemical reductants and pathways for electron transfer in anaerobic systems is paramount to the development of environmental fate models that incorporate pathways for abiotic reductive transformations. Currently, such models do not exist. In this chapt...

  13. Polyamines and abiotic stress tolerance in plants

    PubMed Central

    Gill, Sarvajeet Singh

    2010-01-01

    Environmental stresses including climate change, especially global warming, are severely affecting plant growth and productivity worldwide. It has been estimated that two-thirds of the yield potential of major crops are routinely lost due to the unfavorable environmental factors. On the other hand, the world population is estimated to reach about 10 billion by 2050, which will witness serious food shortages. Therefore, crops with enhanced vigour and high tolerance to various environmental factors should be developed to feed the increasing world population. Maintaining crop yields under adverse environmental stresses is probably the major challenge facing modern agriculture where polyamines can play important role. Polyamines (PAs)(putrescine, spermidine and spermine) are group of phytohormone-like aliphatic amine natural compounds with aliphatic nitrogen structure and present in almost all living organisms including plants. Evidences showed that polyamines are involved in many physiological processes, such as cell growth and development and respond to stress tolerance to various environmental factors. In many cases the relationship of plant stress tolerance was noted with the production of conjugated and bound polyamines as well as stimulation of polyamine oxidation. Therefore, genetic manipulation of crop plants with genes encoding enzymes of polyamine biosynthetic pathways may provide better stress tolerance to crop plants. Furthermore, the exogenous application of PAs is also another option for increasing the stress tolerance potential in plants. Here, we have described the synthesis and role of various polyamines in abiotic stress tolerance in plants. PMID:20592804

  14. Temporal Variability and Environmental Drivers of Harmful Algal Blooms (HABs) in Western Lake Erie

    NASA Astrophysics Data System (ADS)

    Liang, S.; Tian, D.; Xie, G.; Tian, J.; Tseng, K. S.; Shum, C. K.; Lee, J.

    2014-12-01

    Understanding temporal variability and environmental drivers of harmful algal blooms (HABs) is important for guiding HABs impact mitigation plans in Lake Erie. The objective of this study is to characterize temporal variability and explore environmental driving factors of chlorophyll a (Chl-a) and phycocyanin (PC), which are determinants of HABs, in western Lake Erie. Ten years' (2002 to 2012) biweekly estimates of Chl-a and PC over western Lake Erie were retrieved from remote sensing-based measurements of water color with Medium Resolution Imaging Spectrometer ( MERIS). Nine environmental factors, including water quality and hydrometeorological variables, for the same period were also collected. While Chl-a and PC showed different predictabilities and differences in importance of environmental drivers at different locations and seasons using the Multivariate Adaptive Regression Splines (MARS) with the Variance Inflation Factor (VIF) method, hydrometeorological variables consistently showed great influences on Chl-a and PC in all four seasons. For Chl-a, the most significant environmental drivers are solar radiation and wind speed (spring); water temperature, solar radiation, and total Kjeldahl nitrogen concentration (summer); wind speed (fall); and water temperature and streamflow (winter). For PC, the most important environmental drivers are solar radiation and wind speed (spring); precipitation, water temperature, wind speed, and total Kjeldahl nitrogen concentration (summer); wind speed (fall); precipitation, water temperature, and streamflow ( winter). Wavelet analysis suggested that Chl-a and PC showed strong seasonal and inter-annual pattern - the 0.5- and 1-year periods are the dominant modes for both Chl-a and PC series. These findings offer insights into possible mechanisms underlying the dynamics of the HABs.

  15. The influence of environmental variables on platelet concentration in horse platelet-rich plasma.

    PubMed

    Rinnovati, Riccardo; Romagnoli, Noemi; Gentilini, Fabio; Lambertini, Carlotta; Spadari, Alessandro

    2016-01-01

    Platelet-rich plasma (PRP) commonly refers to blood products which contain a higher platelet (PLT) concentration as compared to normal plasma. Autologous PRP has been shown to be safe and effective in promoting the natural processes of soft tissue healing or reconstruction in humans and horses. Variability in PLT concentration has been observed in practice between PRP preparations from different patients or from the same individual under different conditions. A change in PLT concentration could modify PRP efficacy in routine applications. The aim of this study was to test the influence of environmental, individual and agonistic variables on the PLT concentration of PRP in horses. Six healthy Standardbred mares were exposed to six different variables with a one-week washout period between variables, and PRP was subsequently obtained from each horse. The variables were time of withdrawal during the day (morning/evening), hydration status (overhydration/dehydration) treatment with anti-inflammatory drugs and training periods on a treadmill. The platelet concentration was significantly higher in horses treated with a non-steroidal anti-inflammatory drug (P = 0.03). The leukocyte concentration increased 2-9 fold with respect to whole blood in the PRP which was obtained after exposure to all the variable considered. Environmental variation in platelet concentration should be taken into consideration during PRP preparation. PMID:27377748

  16. Responses of terrestrial ecosystems and carbon budgets to current and future environmental variability.

    PubMed

    Medvigy, David; Wofsy, Steven C; Munger, J William; Moorcroft, Paul R

    2010-05-01

    We assess the significance of high-frequency variability of environmental parameters (sunlight, precipitation, temperature) for the structure and function of terrestrial ecosystems under current and future climate. We examine the influence of hourly, daily, and monthly variance using the Ecosystem Demography model version 2 in conjunction with the long-term record of carbon fluxes measured at Harvard Forest. We find that fluctuations of sunlight and precipitation are strongly and nonlinearly coupled to ecosystem function, with effects that accumulate through annual and decadal timescales. Increasing variability in sunlight and precipitation leads to lower rates of carbon sequestration and favors broad-leaved deciduous trees over conifers. Temperature variability has only minor impacts by comparison. We also find that projected changes in sunlight and precipitation variability have important implications for carbon storage and ecosystem structure and composition. Based on Intergovernmental Panel on Climate Change model estimates for changes in high-frequency meteorological variability over the next 100 years, we expect that terrestrial ecosystems will be affected by changes in variability almost as much as by changes in mean climate. We conclude that terrestrial ecosystems are highly sensitive to high-frequency meteorological variability, and that accurate knowledge of the statistics of this variability is essential for realistic predictions of ecosystem structure and functioning. PMID:20404190

  17. Responses of terrestrial ecosystems and carbon budgets to current and future environmental variability

    PubMed Central

    Medvigy, David; Wofsy, Steven C.; Munger, J. William; Moorcroft, Paul R.

    2010-01-01

    We assess the significance of high-frequency variability of environmental parameters (sunlight, precipitation, temperature) for the structure and function of terrestrial ecosystems under current and future climate. We examine the influence of hourly, daily, and monthly variance using the Ecosystem Demography model version 2 in conjunction with the long-term record of carbon fluxes measured at Harvard Forest. We find that fluctuations of sunlight and precipitation are strongly and nonlinearly coupled to ecosystem function, with effects that accumulate through annual and decadal timescales. Increasing variability in sunlight and precipitation leads to lower rates of carbon sequestration and favors broad-leaved deciduous trees over conifers. Temperature variability has only minor impacts by comparison. We also find that projected changes in sunlight and precipitation variability have important implications for carbon storage and ecosystem structure and composition. Based on Intergovernmental Panel on Climate Change model estimates for changes in high-frequency meteorological variability over the next 100 years, we expect that terrestrial ecosystems will be affected by changes in variability almost as much as by changes in mean climate. We conclude that terrestrial ecosystems are highly sensitive to high-frequency meteorological variability, and that accurate knowledge of the statistics of this variability is essential for realistic predictions of ecosystem structure and functioning. PMID:20404190

  18. Addressing Human Variability in Next-Generation Human Health Risk Assessments of Environmental Chemicals

    PubMed Central

    Bois, Frederic Y.; Chiu, Weihsueh A.; Hattis, Dale; Rusyn, Ivan; Guyton, Kathryn Z.

    2012-01-01

    Background: Characterizing variability in the extent and nature of responses to environmental exposures is a critical aspect of human health risk assessment. Objective: Our goal was to explore how next-generation human health risk assessments may better characterize variability in the context of the conceptual framework for the source-to-outcome continuum. Methods: This review was informed by a National Research Council workshop titled “Biological Factors that Underlie Individual Susceptibility to Environmental Stressors and Their Implications for Decision-Making.” We considered current experimental and in silico approaches, and emerging data streams (such as genetically defined human cells lines, genetically diverse rodent models, human omic profiling, and genome-wide association studies) that are providing new types of information and models relevant for assessing interindividual variability for application to human health risk assessments of environmental chemicals. Discussion: One challenge for characterizing variability is the wide range of sources of inherent biological variability (e.g., genetic and epigenetic variants) among individuals. A second challenge is that each particular pair of health outcomes and chemical exposures involves combinations of these sources, which may be further compounded by extrinsic factors (e.g., diet, psychosocial stressors, other exogenous chemical exposures). A third challenge is that different decision contexts present distinct needs regarding the identification—and extent of characterization—of interindividual variability in the human population. Conclusions: Despite these inherent challenges, opportunities exist to incorporate evidence from emerging data streams for addressing interindividual variability in a range of decision-making contexts. PMID:23086705

  19. Relations of fish community composition to environmental variables in streams of central Nebraska, USA

    USGS Publications Warehouse

    Frenzel, S.A.; Swanson, R.B.

    1996-01-01

    Nine sites on streams in the Platte River Basin in central Nebraska were sampled as part of the US Geological Survey's National Water Quality Assessment Program during 1993-1994. A combination of canonical correspondence analysis and an index of biotic integrity determined from fish community data produced complementary evaluations of water quality conditions. Results of the canonical correspondence analysis were useful in showing which environmental variables were significant in differentiating fish communities at the nine sites. Five environmental variables were statistically significant in the analysis. Median specific conductance of water samples collected at a site accounted for the largest amount of variability in the species data. Although the percentage of the basin as cropland was not the first variable chosen in a forward selection process, it was the most strongly correlated with the first ordination axis. A rangeland- dominated site was distinguished from all others along that axis. Median orthophosphate concentration of samples collected in the year up to the time of fish sampling was most strongly correlated with the second ordination axis. The index of biotic integrity produced results that could be interpreted in terms of the relative water quality between sites. Sites draining nearly 100% cropland had the lowest scores for two individual metrics of the index of biotic integrity that were related to species tolerance. Effective monitoring of water quality could be achieved by coupling methods that address both the ecological components of fish communities and their statistical relationships to environmental factors.

  20. Relations of fish community composition to environmental variables in streams of central Nebraska, USA

    NASA Astrophysics Data System (ADS)

    Frenzel, Steven A.; Swanson, Robert B.

    1996-09-01

    Nine sites on streams in the Platte River Basin in central Nebraska were sampled as part of the US Geological Survey's National Water-Quality Assessment Program during 1993-1994. A combination of canonical correspondence analysis and an index of biotic integrity determined from fish community data produced complementary evaluations of water-quality conditions. Results of the canonical correspondence analysis were useful in showing which environmental variables were significant in differentiating fish communities at the nine sites. Five environmental variables were statistically significant in the analysis. Median specific conductance of water samples collected at a site accounted for the largest amount of variability in the species data. Although the percentage of the basin as cropland was not the first variable chosen in a forward selection process, it was the most strongly correlated with the first ordination axis. A rangeland-dominated site was distinguished from all others along that axis. Median orthophosphate concentration of samples collected in the year up to the time of fish sampling was most strongly correlated with the second ordination axis. The index of biotic integrity produced results that could be interpreted in terms of the relative water quality between sites. Sites draining nearly 100% cropland had the lowest scores for two individual metrics of the index of biotic integrity that were related to species tolerance. Effective monitoring of water quality could be achieved by coupling methods that address both the ecological components of fish communities and their statistical relationships to environmental factors.

  1. Changes in free-living bacterial community diversity reflect the magnitude of environmental variability.

    PubMed

    Ortmann, Alice C; Ortell, Natalie

    2014-01-01

    A 2-year study was undertaken to compare patterns in the diversity of free-living bacteria in a river-dominated estuary and offshore, on the shelf, to determine whether changes in the free-living bacterial community could be related to differences in environmental seasonality and variability. Although the environmental conditions inshore were significantly more variable than those on the shelf and demonstrated clear seasonal patterns, there were no significant differences in the alpha diversity of the communities based on richness, evenness, or phylogenetic diversity. Comparison of communities using Bray-Curtis similarity indicated no significant differences in the magnitude of change between sequential samples from inshore and on the shelf. Seasonal differences were detected both inshore and on the shelf. However, analysis using the weighted UniFrac distance indicated significantly lower overall change between shelf samples with no significant seasonal differences. These findings suggest different patterns of change between the two sites. Inshore, changes in the relative abundance of distantly related bacterial species reflect the larger environmental variability, while on the shelf, changes in the relative abundance of closely related bacterial species or strains may result in a more functionally stable community. Thus, the magnitude of environmental change can alter patterns of bacterial diversity in marine systems. PMID:24117806

  2. Environmental variability drives shifts in the foraging behaviour and reproductive success of an inshore seabird.

    PubMed

    Kowalczyk, Nicole D; Reina, Richard D; Preston, Tiana J; Chiaradia, André

    2015-08-01

    Marine animals forage in areas that aggregate prey to maximize their energy intake. However, these foraging 'hot spots' experience environmental variability, which can substantially alter prey availability. To survive and reproduce animals need to modify their foraging in response to these prey shifts. By monitoring their inter-annual foraging behaviours, we can understand which environmental variables affect their foraging efficiency, and can assess how they respond to environmental variability. Here, we monitored the foraging behaviour and isotopic niche of little penguins (Eudyptula minor), over 3 years (2008, 2011, and 2012) of climatic and prey variability within Port Phillip Bay, Australia. During drought (2008), penguins foraged in close proximity to the Yarra River outlet on a predominantly anchovy-based diet. In periods of heavy rainfall, when water depth in the largest tributary into the bay (Yarra River) was high, the total distance travelled, maximum distance travelled, distance to core-range, and size of core- and home-ranges of penguins increased significantly. This larger foraging range was associated with broad dietary diversity and high reproductive success. These results suggest the increased foraging range and dietary diversity of penguins were a means to maximize resource acquisition rather than a strategy to overcome local depletions in prey. Our results demonstrate the significance of the Yarra River in structuring predator-prey interactions in this enclosed bay, as well as the flexible foraging strategies of penguins in response to environmental variability. This plasticity is central to the survival of this small-ranging, resident seabird species. PMID:25894092

  3. Fish Functional Traits Correlated with Environmental Variables in a Temperate Biodiversity Hotspot

    PubMed Central

    Keck, Benjamin P.; Marion, Zachary H.; Martin, Derek J.; Kaufman, Jason C.; Harden, Carol P.; Schwartz, John S.; Strange, Richard J.

    2014-01-01

    The global biodiversity crisis has invigorated the search for generalized patterns in most disciplines within the natural sciences. Studies based on organismal functional traits attempt to broaden implications of results by identifying the response of functional traits, instead of taxonomic units, to environmental variables. Determining the functional trait responses enables more direct comparisons with, or predictions for, communities of different taxonomic composition. The North American freshwater fish fauna is both diverse and increasingly imperiled through human mediated disturbances, including climate change. The Tennessee River, USA, contains one of the most diverse assemblages of freshwater fish in North America and has more imperiled species than other rivers, but there has been no trait-based study of community structure in the system. We identified 211 localities in the upper Tennessee River that were sampled by the Tennessee Valley Authority between 2009 and 2011 and compiled fish functional traits for the observed species and environmental variables for each locality. Using fourth corner analysis, we identified significant correlations between many fish functional traits and environmental variables. Functional traits associated with an opportunistic life history strategy were correlated with localities subject to greater land use disturbance and less flow regulation, while functional traits associated with a periodic life history strategy were correlated with localities subject to regular disturbance and regulated flow. These are patterns observed at the continental scale, highlighting the generalizability of trait-based methods. Contrary to studies that found no community structure differences when considering riparian buffer zones, we found that fish functional traits were correlated with different environmental variables between analyses with buffer zones vs. entire catchment area land cover proportions. Using existing databases and fourth corner

  4. Variable filtered photographic film as a radiation detector for environmental radiation monitoring

    NASA Astrophysics Data System (ADS)

    Majid, Zafri Azran Abdul; Junet, Laila Kalidah; Hazali, Norazlanshah; Abdullah, Abdul Adam; Hanafiah, Megat Ahmad Kamal Megat

    2013-05-01

    Environmental radiation is an ionising radiation that present in the natural environment which mostly originates from cosmic rays and radionuclide agents in the environment. This may lead the population to be exposed to the radiation. Therefore, the environmental radiation needs to be observed cautiously to minimize the impact of radiation. However, there is no specific or proper monitoring device that provides an outdoor environmental radiation monitoring. Hence, a new outdoor environmental radiation monitoring device was developed. A photographic film has been chosen as a dosimeter. The purpose of this study was to prove the covered photographic film attached with variable filter can be used to develop environmental radiation monitoring device to detect the ionising radiation. The filter used was variable thickness of plastic, aluminium (Al) and lead (Pb). The result from the study showed that the mean optical density (OD) values for medium speed film are in the range 0.41 to 0.73, and for fast speed film the OD values are in the range 0.51 to 1.35. The OD values decreased when the filter was attached. This has proven that the photographic film can be used to detect radiation and fast speed film was more sensitive compared to medium speed film.

  5. Role of environmental variability in the evolution of life history strategies.

    PubMed

    Hastings, A; Caswell, H

    1979-09-01

    We reexamine the role of environmental variability in the evolution of life history strategies. We show that normally distributed deviations in the quality of the environment should lead to normally distributed deviations in the logarithm of year-to-year survival probabilities, which leads to interesting consequences for the evolution of annual and perennial strategies and reproductive effort. We also examine the effects of using differing criteria to determine the outcome of selection. Some predictions of previous theory are reversed, allowing distinctions between r and K theory and a theory based on variability. However, these distinctions require information about both the environment and the selection process not required by current theory. PMID:16592714

  6. Role of environmental variability in the evolution of life history strategies

    PubMed Central

    Hastings, Alan; Caswell, Hal

    1979-01-01

    We reexamine the role of environmental variability in the evolution of life history strategies. We show that normally distributed deviations in the quality of the environment should lead to normally distributed deviations in the logarithm of year-to-year survival probabilities, which leads to interesting consequences for the evolution of annual and perennial strategies and reproductive effort. We also examine the effects of using differing criteria to determine the outcome of selection. Some predictions of previous theory are reversed, allowing distinctions between r and K theory and a theory based on variability. However, these distinctions require information about both the environment and the selection process not required by current theory. PMID:16592714

  7. Environmental life cycle assessment of grain maize production: An analysis of factors causing variability.

    PubMed

    Boone, Lieselot; Van Linden, Veerle; De Meester, Steven; Vandecasteele, Bart; Muylle, Hilde; Roldán-Ruiz, Isabel; Nemecek, Thomas; Dewulf, Jo

    2016-05-15

    To meet the growing demand, high yielding, but environmentally sustainable agricultural plant production systems are desired. Today, life cycle assessment (LCA) is increasingly used to assess the environmental impact of these agricultural systems. However, the impact results are very diverse due to management decisions or local natural conditions. The impact of grain maize is often generalized and an average is taken. Therefore, we studied variation in production systems. Four types of drivers for variability are distinguished: policy, farm management, year-to-year weather variation and innovation. For each driver, scenarios are elaborated using ReCiPe and CEENE (Cumulative Exergy Extraction from the Natural Environment) to assess the environmental footprint. Policy limits fertilisation levels in a soil-specific way. The resource consumption is lower for non-sandy soils than for sandy soils, but entails however more eutrophication. Farm management seems to have less influence on the environmental impact when considering the CEENE only. But farm management choices such as fertiliser type have a large effect on emission-related problems (e.g. eutrophication and acidification). In contrast, year-to-year weather variation results in large differences in the environmental footprint. The difference in impact results between favourable and poor environmental conditions amounts to 19% and 17% in terms of resources and emissions respectively, and irrigation clearly is an unfavourable environmental process. The best environmental performance is obtained by innovation as plant breeding results in a steadily increasing yield over 25 years. Finally, a comparison is made between grain maize production in Flanders and a generically applied dataset, based on Swiss practices. These very different results endorse the importance of using local data to conduct LCA of plant production systems. The results of this study show decision makers and farmers how they can improve the

  8. Flexible Control of Safety Margins for Action Based on Environmental Variability

    PubMed Central

    Hadjiosif, Alkis M.

    2015-01-01

    To reduce the risk of slip, grip force (GF) control includes a safety margin above the force level ordinarily sufficient for the expected load force (LF) dynamics. The current view is that this safety margin is based on the expected LF dynamics, amounting to a static safety factor like that often used in engineering design. More efficient control could be achieved, however, if the motor system reduces the safety margin when LF variability is low and increases it when this variability is high. Here we show that this is indeed the case by demonstrating that the human motor system sizes the GF safety margin in proportion to an internal estimate of LF variability to maintain a fixed statistical confidence against slip. In contrast to current models of GF control that neglect the variability of LF dynamics, we demonstrate that GF is threefold more sensitive to the SD than the expected value of LF dynamics, in line with the maintenance of a 3-sigma confidence level. We then show that a computational model of GF control that includes a variability-driven safety margin predicts highly asymmetric GF adaptation between increases versus decreases in load. We find clear experimental evidence for this asymmetry and show that it explains previously reported differences in how rapidly GFs and manipulatory forces adapt. This model further predicts bizarre nonmonotonic shapes for GF learning curves, which are faithfully borne out in our experimental data. Our findings establish a new role for environmental variability in the control of action. PMID:26085634

  9. Environmental variables associated with immature stage habitats of culicidae collected in aboriginal villages in Pahang, Malaysia.

    PubMed

    Ali, Wan Najdah Wan Mohamad; Ahmad, Rohani; Nor, Zurainee Mohamed; Ismail, Zamree; Ibrahim, Mohd Noor; Hadi, Azahari Abdul; Hassan, Rahimi; Lim, Lee Han

    2012-11-01

    Many of the most widely spread vector-borne diseases are water related, in that the mosquito vectors concerned breed or pass part of their lifecycle in or close to water. A major reason for the study of mosquito larval ecology is to gather information on environmental variables that may determine the species of mosquitoes and the distribution of larvae in the breeding habitats. Larval surveillance studies were conducted six times between May 2008 and October 2009 in Pos Lenjang, Kuala Lipis, Pahang. Twelve environmental variables were recorded for each sampling site, and samples of mosquito larvae were collected. Larval survey studies showed that anopheline and culicine larvae were collected from 79 and 67 breeding sites, respectively. All breeding sites were classified into nine habitat groups. Culicine larvae were found in all habitat groups, suggesting that they are very versatile and highly adaptable to different types of environment. Rock pools or water pockets with clear water formed on the bank of rivers and waterfalls were the most common habitats associated with An. maculatus. Environmental variables influence the suitability of aquatic habitats for anopheline and culicine larvae, but not significantly associated with the occurrence of both larvae genera (p>0.05). This study provides information on mosquito ecology in relation to breeding habitats that will be useful in designing and implementing larval control operations. PMID:23413702

  10. Environmental vs. demographic variability in stochastic lattice predator-prey models

    NASA Astrophysics Data System (ADS)

    Tauber, Uwe C.

    2014-03-01

    In contrast to the neutral population cycles of the deterministic mean-field Lotka-Volterra rate equations, including spatial structure and stochastic noise in models for predator-prey interactions yields complex spatio-temporal structures associated with long-lived erratic population oscillations. Environmental variability in the form of quenched spatial randomness in the predation rates results in more localized activity patches. Population fluctuations in rare favorable regions in turn cause a remarkable increase in the asymptotic densities of both predators and prey. Very intriguing features are found when variable interaction rates are affixed to individual particles rather than lattice sites. Stochastic dynamics with demographic variability in conjunction with inheritable predation efficiencies generate non-trivial time evolution for the predation rate distributions, yet with overall essentially neutral optimization.

  11. Effect of environmental variables upon in-situ gamma spectrometry data

    SciTech Connect

    Sutton, C.

    1999-06-01

    The Fernald Environmental Management Project (FEMP) is a US Department of Energy site that is undergoing total remediation and closure. Fernald is a former uranium refinery which produced high quality uranium metal. Soil in the Fernald site is pervasively contaminated with uranium and secondarily with thorium and radium isotopes. In-situ gamma spectrometry is routinely utilized in soil excavation operations at Fernald to provide high quality and timely analytical data on radionuclide contaminants in soil. To understand the effect of environmental conditions upon in-situ gamma spectrometry measurements, twice daily measurements were made, weather permitting, with a tripod-mounted high purity germanium detector (HPGe) at a single field location (field quality control station) at the Fernald Environmental Management Project. Such measurements are the field analogue of a laboratory control standard. The basic concept is that measurement variations over an extended period of time at a single location can be related to environmental parameters. Trends, peaks, and troughs in data might be correlative to both long-term and short-term environmental conditions. In this paper environmental variables/ conditions refer to weather related phenomena such as soil moisture, rainfall, atmospheric humidity, and atmospheric temperature.

  12. Abiotic Methane Synthesis: Caveats and New Results

    NASA Astrophysics Data System (ADS)

    Zou, R.; Sharma, A.

    2005-12-01

    The role of mineral interaction with geochemical fluids under hydrothermal conditions has invoked models of geochemical synthesis of organic molecules at deep crustal conditions. Since Thomas Gold's (1992) hypothesis of the possibility of an abiotic organic synthesis, there have been several reports of hydrocarbon formation under high pressure and temperature conditions. Several previous experimental studies have recognized that small amounts of methane (and other light HC compounds) can be synthesized via catalysis by transition metals: Fe, Ni (Horita and Berndt, 1999 Science) and Cr (Foustavous and Seyfried, 2004 Science). In light of these pioneering experiments, an investigation of the feasibility of abiotic methane synthesis at higher pressure conditions in deep geological setting and the possible role of catalysis warrants a closer look. We conducted three sets of experiments in hydrothermal diamond anvil cell using FeO nanopowder, CaCO 3 and water at 300° - 600° C and 0.5 - 5 GPa : (a) with stainless steel gasket, (b) gold-lined gasket, and (c) gold-lined gasket with added Fe and Ni nanopowder. The reactions were monitored in-situ using micro-Raman spectroscopy with 532nm and 632nm lasers. The solids phases were characterized in-situ using synchrotron X-ray diffraction at CHESS-Cornell and quenched products with an electron microprobe. Interestingly, a variable amount of hydrocarbon was observed only in runs with stainless steel gasket and with Fe, Ni nanoparticles. Experiments with gold-lined reactors did not show any hydrocarbon formation. Added high resolution microscopy of the products and their textural relationship within the diamond cell with Raman spectroscopy data show that the hydrocarbon (methane and other light fractions) synthesis is a direct result of transition metal catalysis, rather than wustite - calcium carbonate reaction as recently reported by Scott et al (2004, PNAS). The author will further present new results highlighting abiotic

  13. The role of environmental variables on Aedes albopictus biology and chikungunya epidemiology.

    PubMed

    Waldock, Joanna; Chandra, Nastassya L; Lelieveld, Jos; Proestos, Yiannis; Michael, Edwin; Christophides, George; Parham, Paul E

    2013-07-01

    Aedes albopictus is a vector of dengue and chikungunya viruses in the field, along with around 24 additional arboviruses under laboratory conditions. As an invasive mosquito species, Ae. albopictus has been expanding in geographical range over the past 20 years, although the poleward extent of mosquito populations is limited by winter temperatures. Nonetheless, population densities depend on environmental conditions and since global climate change projections indicate increasing temperatures and altered patterns of rainfall, geographic distributions of previously tropical mosquito species may change. Although mathematical models can provide explanatory insight into observed patterns of disease prevalence in terms of epidemiological and entomological processes, understanding how environmental variables affect transmission is possible only with reliable model parameterisation, which, in turn, is obtained only through a thorough understanding of the relationship between mosquito biology and environmental variables. Thus, in order to assess the impact of climate change on mosquito population distribution and regions threatened by vector-borne disease, a detailed understanding (through a synthesis of current knowledge) of the relationship between climate, mosquito biology, and disease transmission is required, but this process has not yet been undertaken for Ae. albopictus. In this review, the impact of temperature, rainfall, and relative humidity on Ae. albopictus development and survival are considered. Existing Ae. albopictus populations across Europe are mapped with current climatic conditions, considering whether estimates of climatic cutoffs for Ae. albopictus are accurate, and suggesting that environmental thresholds must be calibrated according to the scale and resolution of climate model outputs and mosquito presence data. PMID:23916332

  14. Structural damage detection for in-service highway bridge under operational and environmental variability

    NASA Astrophysics Data System (ADS)

    Jin, Chenhao; Li, Jingcheng; Jang, Shinae; Sun, Xiaorong; Christenson, Richard

    2015-03-01

    Structural health monitoring has drawn significant attention in the past decades with numerous methodologies and applications for civil structural systems. Although many researchers have developed analytical and experimental damage detection algorithms through vibration-based methods, these methods are not widely accepted for practical structural systems because of their sensitivity to uncertain environmental and operational conditions. The primary environmental factor that influences the structural modal properties is temperature. The goal of this article is to analyze the natural frequency-temperature relationships and detect structural damage in the presence of operational and environmental variations using modal-based method. For this purpose, correlations between natural frequency and temperature are analyzed to select proper independent variables and inputs for the multiple linear regression model and neural network model. In order to capture the changes of natural frequency, confidence intervals to detect the damages for both models are generated. A long-term structural health monitoring system was installed on an in-service highway bridge located in Meriden, Connecticut to obtain vibration and environmental data. Experimental testing results show that the variability of measured natural frequencies due to temperature is captured, and the temperature-induced changes in natural frequencies have been considered prior to the establishment of the threshold in the damage warning system. This novel approach is applicable for structural health monitoring system and helpful to assess the performance of the structure for bridge management and maintenance.

  15. The role of environmental variables on Aedes albopictus biology and chikungunya epidemiology

    PubMed Central

    Waldock, Joanna; Chandra, Nastassya L; Lelieveld, Jos; Proestos, Yiannis; Michael, Edwin; Christophides, George; Parham, Paul E

    2013-01-01

    Aedes albopictus is a vector of dengue and chikungunya viruses in the field, along with around 24 additional arboviruses under laboratory conditions. As an invasive mosquito species, Ae. albopictus has been expanding in geographical range over the past 20 years, although the poleward extent of mosquito populations is limited by winter temperatures. Nonetheless, population densities depend on environmental conditions and since global climate change projections indicate increasing temperatures and altered patterns of rainfall, geographic distributions of previously tropical mosquito species may change. Although mathematical models can provide explanatory insight into observed patterns of disease prevalence in terms of epidemiological and entomological processes, understanding how environmental variables affect transmission is possible only with reliable model parameterisation, which, in turn, is obtained only through a thorough understanding of the relationship between mosquito biology and environmental variables. Thus, in order to assess the impact of climate change on mosquito population distribution and regions threatened by vector-borne disease, a detailed understanding (through a synthesis of current knowledge) of the relationship between climate, mosquito biology, and disease transmission is required, but this process has not yet been undertaken for Ae. albopictus. In this review, the impact of temperature, rainfall, and relative humidity on Ae. albopictus development and survival are considered. Existing Ae. albopictus populations across Europe are mapped with current climatic conditions, considering whether estimates of climatic cutoffs for Ae. albopictus are accurate, and suggesting that environmental thresholds must be calibrated according to the scale and resolution of climate model outputs and mosquito presence data. PMID:23916332

  16. Non-Random Variability in Functional Composition of Coral Reef Fish Communities along an Environmental Gradient.

    PubMed

    Plass-Johnson, Jeremiah G; Taylor, Marc H; Husain, Aidah A A; Teichberg, Mirta C; Ferse, Sebastian C A

    2016-01-01

    Changes in the coral reef complex can affect predator-prey relationships, resource availability and niche utilisation in the associated fish community, which may be reflected in decreased stability of the functional traits present in a community. This is because particular traits may be favoured by a changing environment, or by habitat degradation. Furthermore, other traits can be selected against because degradation can relax the association between fishes and benthic habitat. We characterised six important ecological traits for fish species occurring at seven sites across a disturbed coral reef archipelago in Indonesia, where reefs have been exposed to eutrophication and destructive fishing practices for decades. Functional diversity was assessed using two complementary indices (FRic and RaoQ) and correlated to important environmental factors (live coral cover and rugosity, representing local reef health, and distance from shore, representing a cross-shelf environmental gradient). Indices were examined for both a change in their mean, as well as temporal (short-term; hours) and spatial (cross-shelf) variability, to assess whether fish-habitat association became relaxed along with habitat degradation. Furthermore, variability in individual traits was examined to identify the traits that are most affected by habitat change. Increases in the general reef health indicators, live coral cover and rugosity (correlated with distance from the mainland), were associated with decreases in the variability of functional diversity and with community-level changes in the abundance of several traits (notably home range size, maximum length, microalgae, detritus and small invertebrate feeding and reproductive turnover). A decrease in coral cover increased variability of RaoQ while rugosity and distance both inversely affected variability of FRic; however, averages for these indices did not reveal patterns associated with the environment. These results suggest that increased

  17. Non-Random Variability in Functional Composition of Coral Reef Fish Communities along an Environmental Gradient

    PubMed Central

    Plass-Johnson, Jeremiah G.; Taylor, Marc H.; Husain, Aidah A. A.; Teichberg, Mirta C.; Ferse, Sebastian C. A.

    2016-01-01

    Changes in the coral reef complex can affect predator-prey relationships, resource availability and niche utilisation in the associated fish community, which may be reflected in decreased stability of the functional traits present in a community. This is because particular traits may be favoured by a changing environment, or by habitat degradation. Furthermore, other traits can be selected against because degradation can relax the association between fishes and benthic habitat. We characterised six important ecological traits for fish species occurring at seven sites across a disturbed coral reef archipelago in Indonesia, where reefs have been exposed to eutrophication and destructive fishing practices for decades. Functional diversity was assessed using two complementary indices (FRic and RaoQ) and correlated to important environmental factors (live coral cover and rugosity, representing local reef health, and distance from shore, representing a cross-shelf environmental gradient). Indices were examined for both a change in their mean, as well as temporal (short-term; hours) and spatial (cross-shelf) variability, to assess whether fish-habitat association became relaxed along with habitat degradation. Furthermore, variability in individual traits was examined to identify the traits that are most affected by habitat change. Increases in the general reef health indicators, live coral cover and rugosity (correlated with distance from the mainland), were associated with decreases in the variability of functional diversity and with community-level changes in the abundance of several traits (notably home range size, maximum length, microalgae, detritus and small invertebrate feeding and reproductive turnover). A decrease in coral cover increased variability of RaoQ while rugosity and distance both inversely affected variability of FRic; however, averages for these indices did not reveal patterns associated with the environment. These results suggest that increased

  18. Environmental and economic benefits of variable rate nitrogen fertilization in a nitrate vulnerable zone.

    PubMed

    Basso, Bruno; Dumont, Benjamin; Cammarano, Davide; Pezzuolo, Andrea; Marinello, Francesco; Sartori, Luigi

    2016-03-01

    Agronomic input and management practices have traditionally been applied uniformly on agricultural fields despite the presence of spatial variability of soil properties and landscape position. When spatial variability is ignored, uniform agronomic management can be both economically and environmentally inefficient. The objectives of this study were to: i) identify optimal N fertilizer rates using an integrated spatio-temporal analysis of yield and site-specific N rate response; ii) test the sensitivity of site specific N management to nitrate leaching in response to different N rates; and iii) demonstrate the environmental benefits of variable rate N fertilizer in a Nitrate Vulnerable Zone. This study was carried out on a 13.6 ha field near the Venice Lagoon, northeast Italy over four years (2005-2008). We utilized a validated crop simulation model to evaluate crop response to different N rates at specific zones in the field based on localized soil and landscape properties under rainfed conditions. The simulated rates were: 50 kg N ha(-1) applied at sowing for the entire study area and increasing fractions, ranging from 150 to 350 kg N ha(-1) applied at V6 stage. Based on the analysis of yield maps from previous harvests and soil electrical resistivity data, three management zones were defined. Two N rates were applied in each of these zones, one suggested by our simulation analysis and the other with uniform N fertilization as normally applied by the producer. N leaching was lower and net revenue was higher in the zones where variable rates of N were applied when compared to uniform N fertilization. This demonstrates the efficacy of using crop models to determine variable rates of N fertilization within a field and the application of variable rate N fertilizer to achieve higher profit and reduce nitrate leaching. PMID:26747986

  19. Tree growth variability under environmental changes - identifying underlying physiological mechanisms by stable C and O isotopes

    NASA Astrophysics Data System (ADS)

    Weigt, Rosemarie; Saurer, Matthias; Siegwolf, Rolf T. W.

    2014-05-01

    Long-term variability of tree growth is a result of changing environmental factors and physiological response mechanisms. Information about these relationships can be retrieved from tree ring width, but also from tree ring isotopes as proxies of photosynthetic rates (13C), stomatal conductance (13C, 18O), and source water (18O) used by the tree. With the interdisciplinary project iTREE, we aim to identify physiological mechanisms by relating time-series of tree ring isotopes from a network of sites to environmental factors, and compare resulting growth reponses with stand surveys and vegetation models. Linking these different scales - from individual trees to site and landscape - will contribute to reduce uncertainties in modeling large-scale variability of forest biomass production under current climate change. At a high altitude site in Switzerland (Loetschental, 2100m asl), ~400 yrs old larch (Larix dedicua) trees showed enhanced tree growth towards the end of the 20th century along with increasing CO2 concentrations and temperature, but also increasing variability between individual trees. At this temperature limited site, both environmental factors seem to act as growth drivers by increasing photosynthesis and cell growth. Because δ18O and δ13C (after correction for atmospheric CO2 increase and 13C decrease) remained rather unchanged over the past ~100 yrs, the stomatal behavior did not change according to the dual isotope model, indicating relatively constant water supply over time. At other sites throughout Central Europe, physiological responses to environmental changes may result in different carbon assimilation or allocation other than stem growth. First data of different sites and species along a temperature gradient in Central Europe show that year-to-year variability of tree ring δ13C and δ18O are positively correlated at most sites indicating pronounced responsiveness of stomatal conductance. A trend of increasing isotopic values across the past

  20. Testing the Effectiveness of Environmental Variables to Explain European Terrestrial Vertebrate Species Richness across Biogeographical Scales.

    PubMed

    Mouchet, Maud; Levers, Christian; Zupan, Laure; Kuemmerle, Tobias; Plutzar, Christoph; Erb, Karlheinz; Lavorel, Sandra; Thuiller, Wilfried; Haberl, Helmut

    2015-01-01

    We compared the effectiveness of environmental variables, and in particular of land-use indicators, to explain species richness patterns across taxonomic groups and biogeographical scales (i.e. overall pan-Europe and ecoregions within pan-Europe). Using boosted regression trees that handle non-linear relationships, we compared the relative influence (as a measure of effectiveness) of environmental variables related to climate, landscape (or habitat heterogeneity), land-use intensity or energy availability to explain European vertebrate species richness (birds, amphibians, and mammals) at the continental and ecoregion scales. We found that dominant land cover and actual evapotranspiration that relate to energy availability were the main correlates of vertebrate species richness over Europe. At the ecoregion scale, we identified four distinct groups of ecoregions where species richness was essentially associated to (i) seasonality of temperature, (ii) actual evapotranspiration and/or mean annual temperature, (iii) seasonality of precipitation, actual evapotranspiration and land cover) and (iv) and an even combination of the environmental variables. This typology of ecoregions remained valid for total vertebrate richness and the three vertebrate groups taken separately. Despite the overwhelming influence of land cover and actual evapotranspiration to explain vertebrate species richness patterns at European scale, the ranking of the main correlates of species richness varied between regions. Interestingly, landscape and land-use indicators did not stand out at the continental scale but their influence greatly increased in southern ecoregions, revealing the long-lasting human footprint on land-use-land-cover changes. Our study provides one of the first multi-scale descriptions of the variability in the ranking of correlates across several taxa. PMID:26161981

  1. Testing the Effectiveness of Environmental Variables to Explain European Terrestrial Vertebrate Species Richness across Biogeographical Scales

    PubMed Central

    Mouchet, Maud; Levers, Christian; Zupan, Laure; Kuemmerle, Tobias; Plutzar, Christoph; Erb, Karlheinz; Lavorel, Sandra; Thuiller, Wilfried; Haberl, Helmut

    2015-01-01

    We compared the effectiveness of environmental variables, and in particular of land-use indicators, to explain species richness patterns across taxonomic groups and biogeographical scales (i.e. overall pan-Europe and ecoregions within pan-Europe). Using boosted regression trees that handle non-linear relationships, we compared the relative influence (as a measure of effectiveness) of environmental variables related to climate, landscape (or habitat heterogeneity), land-use intensity or energy availability to explain European vertebrate species richness (birds, amphibians, and mammals) at the continental and ecoregion scales. We found that dominant land cover and actual evapotranspiration that relate to energy availability were the main correlates of vertebrate species richness over Europe. At the ecoregion scale, we identified four distinct groups of ecoregions where species richness was essentially associated to (i) seasonality of temperature, (ii) actual evapotranspiration and/or mean annual temperature, (iii) seasonality of precipitation, actual evapotranspiration and land cover) and (iv) and an even combination of the environmental variables. This typology of ecoregions remained valid for total vertebrate richness and the three vertebrate groups taken separately. Despite the overwhelming influence of land cover and actual evapotranspiration to explain vertebrate species richness patterns at European scale, the ranking of the main correlates of species richness varied between regions. Interestingly, landscape and land-use indicators did not stand out at the continental scale but their influence greatly increased in southern ecoregions, revealing the long-lasting human footprint on land-use–land-cover changes. Our study provides one of the first multi-scale descriptions of the variability in the ranking of correlates across several taxa. PMID:26161981

  2. The relationship between species richness and community biomass: the importance of environmental variables

    USGS Publications Warehouse

    Gough, L.; Grace, J.B.; Taylor, K.L.

    1994-01-01

    Several studies have used plant community biomass to predict species richness with varying success. In this study we examined the relationship between species richness and biomass for 36 marsh communities from two different watersheds. In addition, we measured several environmental variables and estimated the potential richness (the total number of species known to be able to occur in a community type) for each community. Above ground living and dead biomass combined was found to be weakly correlated with species richness (R2=0.02). Instead, a multiple regression model based on elevation (R2=0.47), salinity (R2=0.30), soil organic matter (R2=0.18), and biomass was able to explain 82% of the variance in species richness. It was found that environmental conditions could explain 89% of the variation in potential richness. Biomass had no relation to potential richness. When used as a predictor variable, potential richness was found to explain 72% of the variation in realized (observed) richness and biomass explained an addition 9% of the variance in realized richness. This finding suggests that realized richness in our system was controlled primarily by environmental regulation of potential richness and secondarily by biomass (as an indicator of competition). Further examination of the data revealed that when sites exposed to extreme environmental conditons were eliminated from the analysis, biomass became the primary predictor of realized richness and potential richness was of secondary importance. We conclude that community biomass has a limited capacity to predict species richness across a broad range of habitat conditions. Of particular importance is the inability of biomass to indicate the effect of environmental factors and evolutionary history on the potential species richness at a site.

  3. Estimating switchgrass productivity in the Great Plains using satellite vegetation index and site environmental variables

    USGS Publications Warehouse

    Gu, Yingxin; Wylie, Bruce K.; Howard, Daniel M.

    2015-01-01

    Switchgrass is being evaluated as a potential feedstock source for cellulosic biofuels and is being cultivated in several regions of the United States. The recent availability of switchgrass land cover maps derived from the National Agricultural Statistics Service cropland data layer for the conterminous United States provides an opportunity to assess the environmental conditions of switchgrass over large areas and across different geographic locations. The main goal of this study is to develop a data-driven multiple regression switchgrass productivity model and identify the optimal climate and environment conditions for the highly productive switchgrass in the Great Plains (GP). Environmental and climate variables used in the study include elevation, soil organic carbon, available water capacity, climate, and seasonal weather. Satellite-derived growing season averaged Normalized Difference Vegetation Index (GSN) was used as a proxy for switchgrass productivity. Multiple regression analyses indicate that there are strong correlations between site environmental variables and switchgrass productivity (r = 0.95). Sufficient precipitation and suitable temperature during the growing season (i.e., not too hot or too cold) are favorable for switchgrass growth. Elevation and soil characteristics (e.g., soil available water capacity) are also an important factor impacting switchgrass productivity. An anticipated switchgrass biomass productivity map for the entire GP based on site environmental and climate conditions and switchgrass productivity model was generated. Highly productive switchgrass areas are mainly located in the eastern part of the GP. Results from this study can help land managers and biofuel plant investors better understand the general environmental and climate conditions influencing switchgrass growth and make optimal land use decisions regarding switchgrass development in the GP.

  4. Timing and Variability of Galactose Metabolic Gene Activation Depend on the Rate of Environmental Change

    PubMed Central

    Ma, Bo; Ott, William; Josić, Krešimir; Bennett, Matthew R.

    2015-01-01

    Modulation of gene network activity allows cells to respond to changes in environmental conditions. For example, the galactose utilization network in Saccharomyces cerevisiae is activated by the presence of galactose but repressed by glucose. If both sugars are present, the yeast will first metabolize glucose, depleting it from the extracellular environment. Upon depletion of glucose, the genes encoding galactose metabolic proteins will activate. Here, we show that the rate at which glucose levels are depleted determines the timing and variability of galactose gene activation. Paradoxically, we find that Gal1p, an enzyme needed for galactose metabolism, accumulates more quickly if glucose is depleted slowly rather than taken away quickly. Furthermore, the variability of induction times in individual cells depends non-monotonically on the rate of glucose depletion and exhibits a minimum at intermediate depletion rates. Our mathematical modeling suggests that the dynamics of the metabolic transition from glucose to galactose are responsible for the variability in galactose gene activation. These findings demonstrate that environmental dynamics can determine the phenotypic outcome at both the single-cell and population levels. PMID:26200924

  5. Effect of flow rate on environmental variables and phytoplankton dynamics: results from field enclosures

    NASA Astrophysics Data System (ADS)

    Zhang, Haiping; Chen, Ruihong; Li, Feipeng; Chen, Ling

    2015-03-01

    To investigate the effects of flow rate on phytoplankton dynamics and related environment variables, a set of enclosure experiments with different flow rates were conducted in an artificial lake. We monitored nutrients, temperature, dissolved oxygen, pH, conductivity, turbidity, chlorophyll- a and phytoplankton levels. The lower biomass in all flowing enclosures showed that flow rate significantly inhibited the growth of phytoplankton. A critical flow rate occurred near 0.06 m/s, which was the lowest relative inhibitory rate. Changes in flow conditions affected algal competition for light, resulting in a dramatic shift in phytoplankton composition, from blue-green algae in still waters to green algae in flowing conditions. These findings indicate that critical flow rate can be useful in developing methods to reduce algal bloom occurrence. However, flow rate significantly enhanced the inter-relationships among environmental variables, in particular by inducing higher water turbidity and vegetative reproduction of periphyton ( Spirogyra). These changes were accompanied by a decrease in underwater light intensity, which consequently inhibited the photosynthetic intensity of phytoplankton. These results warn that a universal critical flow rate might not exist, because the effect of flow rate on phytoplankton is interlinked with many other environmental variables.

  6. Environmental Variability in the Florida Keys: Impacts on Coral Reef Resilience and Health

    NASA Astrophysics Data System (ADS)

    Soto, I. M.; Muller-Karger, F. E.

    2005-12-01

    Environmental variability contributes to both mass mortality and resilience in tropical coral reef communities. We assess variations in sea surface temperature (SST) and ocean color in the Florida Keys using satellite imagery, and provide insight into how this variability is associated with locations of resilient coral communities (those unaffected by or able to recover from major events). The project tests the hypothesis that areas with historically low environmental variability promote lower levels of coral reef resilience. Time series of SST from the Advanced Very High Resolution Radiometer (AVHRR) sensors and ocean color derived quantities (e.g., turbidity and chlorophyll) from the Sea-viewing Wide Field of View Sensor (SeaWiFS) are being constructed over the entire Florida Keys region for a period of twelve and nine years, respectively. These data will be compared with historical coral cover data derived from Landsat imagery (1984-2002). Improved understanding of the causes of coral reef decline or resilience will help protect and manage these natural treasures.

  7. Fish communities and their associations with environmental variables, lower San Joaquin River drainage, California

    USGS Publications Warehouse

    Brown, L.R.

    2000-01-01

    Twenty sites in the lower San Joaquin River drainage, California, were sampled from 1993 to 1995 to characterize fish communities and their associations with measures of water quality and habitat quality. The feasibility of developing an Index of Biotic Integrity was assessed by evaluating four fish community metrics, including percentages of native fish, omnivorous fish, fish intolerant of environmental degradation, and fish with external anomalies. Of the thirty-one taxa of fish captured during the study, only 10 taxa were native to the drainage. Multivariate analyses of percentage data identified four site groups characterized by different groups of species. The distributions of fish species were related to specific conductance, gradient, and mean depth; however, specific conductance acted as a surrogate variable for a large group of correlated variables. Two of the fish community metrics - percentage of introduced fish and percentage of intolerant fish - appeared to be responsive to environmental quality but the responses of the other two metrics - percentage of omnivorous fish and percentage of fish with anomalies - were less direct. The conclusion of the study is that fish communities are responsive to environmental conditions, including conditions associated with human-caused disturbances, particularly agriculture and water development. The results suggest that changes in water management and water quality could result in changes in species distributions. Balancing the costs and benefits of such changes poses a considerable challenge to resource managers.

  8. Spatio-temporal analysis of the relationship between WNV dissemination and environmental variables in Indianapolis, USA

    PubMed Central

    Liu, Hua; Weng, Qihao; Gaines, David

    2008-01-01

    Background This study developed a multi-temporal analysis on the relationship between West Nile Virus (WNV) dissemination and environmental variables by using an integrated approach of remote sensing, GIS, and statistical techniques. WNV mosquito cases in seven months (April-October) of the six years (2002–2007) were collected in Indianapolis, USA. Epidemic curves were plotted to identify the temporal outbreaks of WNV. Spatial-temporal analysis and k-mean cluster analysis were further applied to determine the high-risk areas. Finally, the relationship between environmental variables and WNV outbreaks were examined by using Discriminant Analysis. Results The results show that the WNV epidemic curve reached its peak in August for all years in the study area except in 2007, where the peak was reached in July. WNV dissemination started from the central longitudinal corridor of the city and spread out to the east and west. Different years and seasons had different high-risk areas, but the southwest and southeast corners show the highest risk for WNV infection due to their high percentages of agriculture and water sources. Conclusion Major environmental factors contributing to the outbreak of WNV in Indianapolis were the percentages of agriculture and water, total length of streams, and total size of wetlands. This study provides important information for urban public health prevention and management. It also contributes to the optimization of mosquito control and arrangement of future sampling efforts. PMID:19094221

  9. Assemblages of fishes and their associations with environmental variables, lower San Joaquin River drainage, California

    USGS Publications Warehouse

    Brown, Larry R.

    1998-01-01

    Twenty sites in the lower San Joaquin River drainage, California, were sampled from 1993 to 1995 to characterize fish assemblages and their associations with measures of water quality and habitat quality. In addition, four fish community metrics were assessed, including percentages of native fish, omnivorous fish, fish intolerant of environmental degradation, and fish with external anomalies. Of the 31 taxa of fish captured during the study, only 10 taxa were native to the drainage. Multivariate analyses of percentage data identified four site groups characterized by characterized by different groups of species. The distributions of fish species were related to specific conductance, gradient, and mean depth; however, specific conductance acted as a surrogate variable for a large group of correlated variables. Two of the fish community metrics--percentage of introduced fish and percentage of intolerant fish--appeared to be responsive to environmental quality but the responses of the other two metrics--percentage of omnivorous fish and percentage of fish with anomalies--were less direct. The conclusion of the study is that fish assemblages are responsive to environmental conditions, including conditions associated with human-caused disturbances, particularly agriculture and water development. The results suggest that changes in water management and water quality could result in changes in species distributions. Balancing the costs and benefits of such changes poses a considerable challenge to resource managers. different groups of species.

  10. Integrating omic approaches for abiotic stress tolerance in soybean

    PubMed Central

    Deshmukh, Rupesh; Sonah, Humira; Patil, Gunvant; Chen, Wei; Prince, Silvas; Mutava, Raymond; Vuong, Tri; Valliyodan, Babu; Nguyen, Henry T.

    2014-01-01

    Soybean production is greatly influenced by abiotic stresses imposed by environmental factors such as drought, water submergence, salt, and heavy metals. A thorough understanding of plant response to abiotic stress at the molecular level is a prerequisite for its effective management. The molecular mechanism of stress tolerance is complex and requires information at the omic level to understand it effectively. In this regard, enormous progress has been made in the omics field in the areas of genomics, transcriptomics, and proteomics. The emerging field of ionomics is also being employed for investigating abiotic stress tolerance in soybean. Omic approaches generate a huge amount of data, and adequate advancements in computational tools have been achieved for effective analysis. However, the integration of omic-scale information to address complex genetics and physiological questions is still a challenge. In this review, we have described advances in omic tools in the view of conventional and modern approaches being used to dissect abiotic stress tolerance in soybean. Emphasis was given to approaches such as quantitative trait loci (QTL) mapping, genome-wide association studies (GWAS), and genomic selection (GS). Comparative genomics and candidate gene approaches are also discussed considering identification of potential genomic loci, genes, and biochemical pathways involved in stress tolerance mechanism in soybean. This review also provides a comprehensive catalog of available online omic resources for soybean and its effective utilization. We have also addressed the significance of phenomics in the integrated approaches and recognized high-throughput multi-dimensional phenotyping as a major limiting factor for the improvement of abiotic stress tolerance in soybean. PMID:24917870

  11. Pan-Svalbard growth rate variability and environmental regulation in the Arctic bivalve Serripes groenlandicus

    NASA Astrophysics Data System (ADS)

    Carroll, Michael L.; Ambrose, William G.; Levin, Benjamin S.; Locke V, William L.; Henkes, Gregory A.; Hop, Haakon; Renaud, Paul E.

    2011-11-01

    Growth histories contained in the shells of bivalves provide continuous records of environmental and biological information over lifetimes spanning decades to centuries, thereby linking ecosystem responses to both natural and anthropogenic climatic variations over a range of scales. We examined growth rates and temporal growth patterns of 260 individuals of the circumpolar Greenland Smooth Cockle ( Serripes groenlandicus) collected between 1997 and 2009 from 11 sites around the Svalbard Archipelago. These sites encompass a range of oceanographic and environmental conditions, from strongly Atlantic-influenced conditions on the west coast to high-Arctic conditions in northeast Svalbard. Absolute growth was up to three times greater at the most strongly Atlantic-influenced locations compared to the most Arctic-influenced areas, and growth performance was highest at sites closest to the West Spitsbergen Current. We also developed growth chronologies up to 34 years in length extending back to 1974. Standardized growth indices (SGI) exhibited substantial inter-site variability, but there were also common temporal features including steadily increasing growth from the late 1980's to the mid-1990's followed by a marked shift from relatively greater to poorer growth in the mid-1990's and from 2004 to 2008. This pattern was consistent with phase-shifts in large-scale climatic drivers. Interannual variability in SGI was also related to local manifestations of the large-scale drivers, including sea temperature and sea ice extent. The temporal growth pattern at Rijpfjorden, on northeast Svalbard, was broadly representative (R = 0.81) of the entire dataset. While there were site-related differences in the specific relationships between growth and environmental parameters, the aggregated dataset indicated an overriding regional driver of bivalve growth: the Arctic Climate Regime Index (ACRI). These results demonstrate that sclerochronological proxies can be useful retrospective

  12. Environmental variability and the initiation of dispersal: turbulence strongly increases seed release

    PubMed Central

    Skarpaas, Olav; Auhl, Richard; Shea, Katriona

    2005-01-01

    Dispersal is a critical process in ecology. It is an important biological driver of, for example, invasions, metapopulation dynamics, spatial pattern formation and pathogen movement. Much is known about the effect of environmental variability, including turbulence, on dispersal of diaspores. Here, we document experimentally the strong but under-explored influence of turbulence on the initiation of dispersal. Flower heads of two thistle species (Carduus nutans and Carduus acanthoides) with ripe seeds were exposed to series of laminar and turbulent air flows of increasing velocity in a wind tunnel. Seed release increased with wind speeds for both laminar and turbulent flows for both species. However, far more seeds were released, at significantly lower wind speeds, during turbulent flows. These results strongly suggest a need for more quantitative studies of abscission in the field, as well as dispersal models that incorporate variability in the diaspore release phase. PMID:16608696

  13. Genetic diversity in pollen abiotic stress tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic diversity in reproductive abiotic stress tolerance has been investigated by cotton breeders throughout the public and private sectors. The primary focus of these studies has been the evaluation of abiotic stress responses during the development of the flower prior to anthesis. Sterility in...

  14. Genetic Diversity in Pollen Abiotic Stress Tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic diversity in reproductive abiotic stress tolerance has been investigated by cotton breeders throughout the public and private sectors. The primary focus of these studies has been the evaluation of abiotic stress responses during the development of the flower prior to anthesis. Sterility in...

  15. Statistical analysis of environmental variability within the CELSS breadboard project's biomass production chamber

    NASA Technical Reports Server (NTRS)

    Stutte, G. W.; Chetirkin, P. V.; Mackowiak, C. L.; Fortson, R. E.

    1993-01-01

    Variability in the aerial and root environments of NASA's Breadboard Project's Biomass Production Chamber (BPC) was determined. Data from two lettuce and two potato growouts were utilized. One growout of each crop was conducted prior to separating the upper and lower chambers; the other was subsequent to separation. There were little or no differences in pH, EC, or solution temperature between the upper and lower chamber or within a chamber. Variation in the aerial environment within a chamber was two to three times greater than variation between chambers for air temperature, relative humidity, and PPF. High variability in air velocity, relative to tray position, was observed. Separating the BPC had no effect on PPF, air velocity, solution temperature, pH, or EC. Separation reduced the gradient in air temperature and relative humidity between the upper and lower chambers, but increased the variability within a chamber. Variation between upper and lower chambers was within 5 percent of environmental set-points and of little or no physiological significance. In contrast, the variability within a chamber limits the capability of the BPC to generate statistically reliable data from individual tray treatments at this time.

  16. [Spatial pattern of soil fertility in Bashan tea garden: a prediction based on environmental auxiliary variables].

    PubMed

    Qin, Le-feng; Yang, Chao; Lin, Fen-fang; Yang, Ning; Zheng, Xin-yu; Xu, Hong-wei; Wang, Ke

    2010-12-01

    Taking topographic factors and NDVI as auxiliary variables, and by using regression-kriging method, the spatial variation pattern of soil fertility in Bashan tea garden in the hilly area of Fuyang City was explored. The spatial variability of the soil fertility was mainly attributed to the structural factors such as relative elevation and flat/vertical curvature. The lower the relative elevation, the worse the soil fertility was. The overall soil fertility level was relatively high, and the area with lower soil fertility only accounted for 5% of the total. By using regression-kriging method with relative elevation as auxiliary variable, the prediction accuracy of soil fertility was obviously higher than that by using ordinary kriging method, with the mean error and root mean square error being 0. 028 and 0. 108, respectively. It was suggested that the prediction method used in this paper could fully reflect the effects of environmental variables on soil fertility , improve the prediction accuracy about the spatial pattern of soil fertility, and provide scientific basis for the precise management of tea garden. PMID:21442995

  17. Environmental variables for modeling wheat yields in the southwest pampa region of Argentina.

    PubMed

    Scian, Beatriz V

    2004-05-01

    Two types of time scales--10-day intervals (D) and phenological phases (P)--were applied to environmental variables for the development of statistical regression models relating to the southwest pampa region of Argentina, with the aim of detecting the effects of weather on wheat yields for the period 1977-1999. The parameters were grouped as meteorological and processed variables and indices. The processed variables used were total soil water availability (SWA) and the ratio of actual evapotranspiration to potential evapotranspiration (alpha), obtained from a water-balance model in which the moisture anomaly index (Z) and the Palmer drought severity index (PDSI) were calculated according to Palmer's model. For these parameters it was possible to establish the times of year and the phenological phases with the best correlation to grain yield. The regression equation for meteorological variables on a 10-day scale provides one of the best fits. Using mixed parameters, the two models, D and P, give rise to a standard error of estimate of approximately 200 kg ha(-1). Truncated models perform better on a P scale than on a D scale. The use of phenological stages improved yield assessment, particularly for those years with extreme meteorological conditions. The optimum models were tested and root-mean-square errors (RMSE) of 440 kg ha(-1) and 470 kg ha(-1) were obtained for P and D scales respectively. PMID:14968354

  18. Phytoplankton community structure defined by key environmental variables in Tagus estuary, Portugal.

    PubMed

    Brogueira, Maria José; Oliveira, Maria do Rosário; Cabeçadas, Graça

    2007-12-01

    In this work, we analyze environmental (physical and chemical) and biological (phytoplankton) data obtained along Tagus estuary during three surveys, carried out in productive period (May/June/July) at ebb tide. The main objective of this study was to identify the key environmental factors affecting phytoplankton structure in the estuary. BIOENV analysis revealed that, in study period, temperature, salinity, silicate and total phosphorus were the variables that best explained the phytoplankton spatial pattern in the estuary (Spearman correlation, rho=0.803). A generalized linear model (GLM) also identified salinity, silicate and phosphate as having a high explanatory power (63%) of phytoplankton abundance. These selected nutrients appear to be consistent with the requirements of the dominant phytoplankton group, Baccilariophyceae. Apparently, phytoplankton community is adapted to fluctuations in light intensity, as suspended particulate matter did not come out as a key factor in shaping phytoplankton structure along Tagus estuary. PMID:17884159

  19. X-Ray Microanalysis in the Variable Pressure (Environmental) Scanning Electron Microscope

    PubMed Central

    Newbury, Dale E.

    2002-01-01

    Electron-excited x-ray microanalysis performed in the variable pressure and environmental scanning electron microscopes is subject to additional artifacts beyond those encountered in the conventional scanning electron microscope. Gas scattering leads to direct contributions to the spectrum from the environmental gas, as well as remote generation of x rays by electrons scattered out of the focussed beam. The analyst can exert some degree of control over these artifacts, but depending on the exact situation, spurious elements can appear at the trace (< 0.01 mass fraction), minor (0.01 mass fraction to 0.1 mass fraction), or even major (> 0.1 mass fraction) levels. Dispersed particle samples give the least compromised results, while fine scale microstructures are the most severely compromised. Procedures to optimize the situation based upon specimen preparation as well as spectral processing are described. PMID:27446754

  20. Compensating for environmental variability in the thermal inertia approach to remote sensing of soil moisture

    NASA Technical Reports Server (NTRS)

    Idso, S. B.; Jackson, R. D.; Reginato, R. J.

    1976-01-01

    A procedure is developed for removing data scatter in the thermal-inertia approach to remote sensing of soil moisture which arises from environmental variability in time and space. It entails the utilization of nearby National Weather Service air temperature measurements to normalize measured diurnal surface temperature variations to what they would have been for a day of standard diurnal air temperature variation, arbitrarily assigned to be 18 C. Tests of the procedure's basic premise on a bare loam soil and a crop of alfalfa indicate it to be conceptually sound. It is possible that the technique could also be useful in other thermal-inertia applications, such as lithographic mapping.

  1. Modeling dynamic interactions and coherence between marine zooplankton and fishes linked to environmental variability

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Fogarty, Michael J.; Hare, Jonathan A.; Hsieh, Chih-hao; Glaser, Sarah M.; Ye, Hao; Deyle, Ethan; Sugihara, George

    2014-03-01

    The dynamics of marine fishes are closely related to lower trophic levels and the environment. Quantitatively understanding ecosystem dynamics linking environmental variability and prey resources to exploited fishes is crucial for ecosystem-based management of marine living resources. However, standard statistical models typically grounded in the concept of linear system may fail to capture the complexity of ecological processes. We have attempted to model ecosystem dynamics using a flexible, nonparametric class of nonlinear forecasting models. We analyzed annual time series of four environmental indices, 22 marine copepod taxa, and four ecologically and commercially important fish species during 1977 to 2009 on Georges Bank, a highly productive and intensively studied area of the northeast U.S. continental shelf ecosystem. We examined the underlying dynamic features of environmental indices and copepods, quantified the dynamic interactions and coherence with fishes, and explored the potential control mechanisms of ecosystem dynamics from a nonlinear perspective. We found: (1) the dynamics of marine copepods and environmental indices exhibiting clear nonlinearity; (2) little evidence of complex dynamics across taxonomic levels of copepods; (3) strong dynamic interactions and coherence between copepods and fishes; and (4) the bottom-up forcing of fishes and top-down control of copepods coexisting as target trophic levels vary. These findings highlight the nonlinear interactions among ecosystem components and the importance of marine zooplankton to fish populations which point to two forcing mechanisms likely interactively regulating the ecosystem dynamics on Georges Bank under a changing environment.

  2. The genetic and environmental structure of reproduction-related variables: the case of fertility and breastfeeding.

    PubMed

    Colodro-Conde, Lucía; Rijsdijk, Frühling; Ordoñana, Juan R

    2013-12-01

    Life history theory studies the evolution of traits related to reproductive fitness. Fertility and parental investment are key life history traits which, from an evolutionary standpoint, appear strongly interrelated. The aim of this work was to analyze the genetic and environmental structure and relationship of two behaviors associated with reproductive fitness: total number of offspring and mean duration of breastfeeding. A total of 1,347 women distributed in 239 monozygotic pairs, 236 dizygotic pairs, and 393 individual twins from opposite sex pairs provided information about their reproductive history. We conducted separate univariate analyses to study the sources of variance of both variables; and a bivariate analysis, with threshold liability models. The sources of variance for number of children and breastfeeding were best explained by a model including familial and unique environmental factors, being E = 0.54 (CI 95%: 0.44, 0.66) and E = 0.46 (CI 95%: 0.34, 0.61), respectively. The phenotypic correlation between number of children and breastfeeding was low but significant (r = 0.16, CI 95%: 0.07, 0.25). Familial correlation between these variables did not reach significance, but unique environmental correlation did (re = 0.20, CI 95%: 0.02, 0.37). In conclusion, results do not support the existence of a clear common structure for the number of children a woman has and the time she spends breastfeeding them, at least in modern societies. The relationship found was mainly due to unique environmental factors. More research on these and related phenotypes is needed to better understand women's reproductive decisions and how natural selection acts on the life history traits. PMID:24050145

  3. Arbuscular mycorrhizal fungal responses to abiotic stresses: A review.

    PubMed

    Lenoir, Ingrid; Fontaine, Joël; Lounès-Hadj Sahraoui, Anissa

    2016-03-01

    The majority of plants live in close collaboration with a diversity of soil organisms among which arbuscular mycorrhizal fungi (AMF) play an essential role. Mycorrhizal symbioses contribute to plant growth and plant protection against various environmental stresses. Whereas the resistance mechanisms induced in mycorrhizal plants after exposure to abiotic stresses, such as drought, salinity and pollution, are well documented, the knowledge about the stress tolerance mechanisms implemented by the AMF themselves is limited. This review provides an overview of the impacts of various abiotic stresses (pollution, salinity, drought, extreme temperatures, CO2, calcareous, acidity) on biodiversity, abundance and development of AMF and examines the morphological, biochemical and molecular mechanisms implemented by AMF to survive in the presence of these stresses. PMID:26803396

  4. Assessment of surf zone environmental variables in a southwestern Atlantic sandy beach (Monte Hermoso, Argentina).

    PubMed

    Menéndez, M Clara; Fernández Severini, Melisa D; Buzzi, Natalia S; Piccolo, M Cintia; Perillo, Gerardo M E

    2016-08-01

    The aim of this study was to investigate the temporal dynamics (monthly/tidal) of water temperature, salinity, chlorophyll-a (chlo-a), suspended particulate matter (SPM), particulate organic carbon (POC), and dissolved nutrients in the surf zone of Monte Hermoso sandy beach, Argentina. We also aimed to understand the underlying mechanisms responsible for the observed variability. Sampling was carried out approximately monthly (September 2009-November 2010), and all samples were collected in a fixed station during high and low tide. Water temperature showed a clear seasonal variability (July: 9 °C-December: 26.5 °C) and a thermal amplitude of 17.5 °C. Salinity ranged from 33 to 37, without a pronounced seasonality. SPM (10-223 mg L(-1)) and POC concentrations (399-6445 mg C m(-3)) were high in surf zone waters. Chlo-a (0.05-9.16 μg L(-1)) was low and did not evidence the occurrence of surf diatom accumulations. Dissolved nutrient concentration was quite fluctuating. None of the variables seemed to be affected by tidal stage. The results showed how fluctuating the physico-chemical and biological variables can be in this particular system. The observed variability can be related with local beach conditions but also with regional processes. The study area is highly influenced by a neighbor estuary and as a consequence, could be vulnerable to their seasonal and inter-annual dynamics. All of these characteristics must be considered for further studies and planning of the uses of natural resources and should be taken into account in any environmental monitoring program conducted in a similar beach system. PMID:27473110

  5. Implementing the distributed consensus-based estimation of environmental variables in unattended wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Contreras, Rodrigo; Restrepo, Silvia E.; Pezoa, Jorge E.

    2014-10-01

    In this paper, the prototype implementation of a scalable, distributed protocol for calculating the global average of sensed environmental variables in unattended wireless sensor networks (WSNs) is presented. The design and implementation of the protocol introduces a communication scheme for discovering the WSN topology. Such scheme uses a synchronous flooding algorithm, which was implemented over an unreliable radiogram-based wireless channel. The topology discovery protocol has been synchronized with sampling time of the WSN and must be executed before the consensus-based estimation of the global averages. An average consensus algorithm, suited for clustered WSNs with static topologies, was selected from the literature. The algorithm was properly modified so that its implementation guarantees that the convergence time is bounded and less than the sampling time of the WSN. Moreover, to implement the consensus algorithm, a reliable packet-passing protocol was designed to exchange the weighting factors among the sensor nodes. Since the amount of data exchanged in each packet is bounded by the degree of the WSN, the scalability of the protocol is guaranteed to be linear. The proposed protocol was implemented in the Sun SPOT hardware/software platform using the Java programming language. All the radio communications were implemented over the IEEE 802.15.4 standard and the sensed environmental variables corresponded to the temperature and luminosity.

  6. Mapping grass communities based on multi-temporal Landsat TM imagery and environmental variables

    NASA Astrophysics Data System (ADS)

    Zeng, Yuandi; Liu, Yanfang; Liu, Yaolin; de Leeuw, Jan

    2007-06-01

    Information on the spatial distribution of grass communities in wetland is increasingly recognized as important for effective wetland management and biological conservation. Remote sensing techniques has been proved to be an effective alternative to intensive and costly ground surveys for mapping grass community. However, the mapping accuracy of grass communities in wetland is still not preferable. The aim of this paper is to develop an effective method to map grass communities in Poyang Lake Natural Reserve. Through statistic analysis, elevation is selected as an environmental variable for its high relationship with the distribution of grass communities; NDVI stacked from images of different months was used to generate Carex community map; the image in October was used to discriminate Miscanthus and Cynodon communities. Classifications were firstly performed with maximum likelihood classifier using single date satellite image with and without elevation; then layered classifications were performed using multi-temporal satellite imagery and elevation with maximum likelihood classifier, decision tree and artificial neural network separately. The results show that environmental variables can improve the mapping accuracy; and the classification with multitemporal imagery and elevation is significantly better than that with single date image and elevation (p=0.001). Besides, maximum likelihood (a=92.71%, k=0.90) and artificial neural network (a=94.79%, k=0.93) perform significantly better than decision tree (a=86.46%, k=0.83).

  7. Methodology for Definition of Yellow Fever Priority Areas, Based on Environmental Variables and Multiple Correspondence Analyses

    PubMed Central

    Moreno, Eduardo Stramandinoli; Barata, Rita de Cássia Barradas

    2012-01-01

    Yellow fever (YF) is endemic in much of Brazil, where cases of the disease are reported every year. Since 2008, outbreaks of the disease have occurred in regions of the country where no reports had been registered for decades, which has obligated public health authorities to redefine risk areas for the disease. The aim of the present study was to propose a methodology of environmental risk analysis for defining priority municipalities for YF vaccination, using as example, the State of São Paulo, Brazil. The municipalities were divided into two groups (affected and unaffected by YF) and compared based on environmental parameters related to the disease's eco-epidemiology. Bivariate analysis was used to identify statistically significant associations between the variables and virus circulation. Multiple correspondence analysis (MCA) was used to evaluate the relationship among the variables and their contribution to the dynamics of YF in Sao Paulo. The MCA generated a factor that was able to differentiate between affected and unaffected municipalities and was used to determine risk levels. This methodology can be replicated in other regions, standardized, and adapted to each context. PMID:22802971

  8. Environmental Factors Responsible for Variability of Hepatic Vein Flow: A Doppler Assessment in Healthy Twins.

    PubMed

    Tarnoki, Adam D; Tarnoki, David L; Littvay, Levente; Garami, Zsolt; Molnar, Andrea Agnes; Berczi, Viktor; Karlinger, Kinga; Baffy, Gyorgy

    2016-02-29

    Doppler interrogation studies of the liver blood flow indicate altered hepatic vein waveforms in association with impaired hepatocellular function. However, little is known about the mechanisms responsible for variations of these parameters in the absence of disease. We aimed to investigate the contribution of heritable and environmental factors to the physiological variability of hepatic vein flow in a twin cohort. Two hundred twenty-eight healthy adult Hungarian twins (69 monozygotic, 45 same-sex dizygotic pairs) underwent Doppler sonography of the hepatic vein. Age- and sex-adjusted heritability of the highest velocity (amplitude of S wave) of hepatic vein flow was negligible. Shared environment contributed to 33% (95% CI, 16%-51%), and unshared environment was responsible for the largest portion (67%; 95% CI, 49%-84%) of the variance. Duration of sports activities was significantly (P < 0.05) related to the magnitude of hepatic vein flow, while other risk factors and lifestyle characteristics had no significant influence. The data suggest that genetic factors have little impact on the parameters of hepatic venous blood flow. The variability observed in healthy twins by the Doppler interrogation can be explained by the effect of unshared environmental components primarily related to regular physical activity. These findings underscore the importance of unique environments in physiological variations of hepatic venous blood flow. PMID:26875560

  9. Physiological and environmental regulation of interannual variability in CO2 exchange on rangelands in the western United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arid and semi-arid grazing lands (rangelands) may regularly shift between functioning as a carbon (C) sink and a C source in response to variability in precipitation and other climatic or environmental variables. We analyzed measurements of carbon dioxide (CO2) exchange from 8 native rangeland ecos...

  10. Environmental and management influences on temporal variability of near saturated soil hydraulic properties☆

    PubMed Central

    Bodner, G.; Scholl, P.; Loiskandl, W.; Kaul, H.-P.

    2013-01-01

    Structural porosity is a decisive property for soil productivity and soil environmental functions. Hydraulic properties in the structural range vary over time in response to management and environmental influences. Although this is widely recognized, there are few field studies that determine dominant driving forces underlying hydraulic property dynamics. During a three year field experiment we measured temporal variability of soil hydraulic properties by tension infiltrometry. Soil properties were characterized by hydraulic conductivity, effective macroporosity and Kosugi's lognormal pore size distribution model. Management related influences comprised three soil cover treatment (mustard and rye vs. fallow) and an initial mechanical soil disturbance with a rotary harrow. Environmental driving forces were derived from meteorological and soil moisture data. Soil hydraulic parameters varied over time by around one order of magnitude. The coefficient of variation of soil hydraulic conductivity K(h) decreased from 69.5% at saturation to 42.1% in the more unsaturated range (− 10 cm pressure head). A slight increase in the Kosugi parameter showing pore heterogeneity was observed under the rye cover crop, reflecting an enhanced structural porosity. The other hydraulic parameters were not significantly influenced by the soil cover treatments. Seedbed preparation with a rotary harrow resulted in a fourfold increase in macroporosity and hydraulic conductivity next to saturation, and homogenized the pore radius distribution. Re-consolidation after mechanical loosening lasted over 18 months until the soil returned to its initial state. The post-tillage trend of soil settlement could be approximated by an exponential decay function. Among environmental factors, wetting-drying cycles were identified as dominant driving force explaining short term hydraulic property changes within the season (r2 = 0.43 to 0.59). Our results suggested that beside considering average

  11. Influence of some environmental factors on the essential oil variability of Thymus migricus.

    PubMed

    Yavari, Alireza; Nazeri, Vahideh; Sefidkon, Fatemeh; Hassani, Mohammad Esmail

    2010-06-01

    Essential oils of the air-dried aerial parts of five populations of Thymus migricus Klokov & Desj.-Shost. collected from northwest Iran were obtained by hydrodistillation with yield of 1.1 - 3.3% (w/w). The essential oils were analyzed by a combination of GC-FID and GC-MS techniques, to check for chemical variability. According to populations, twenty-nine components, representing 97.3 - 99.3% of the total components, were identified. Oxygenated monoterpenes were the main group of constituents in all samples (65.2 - 78.5%). Thymol (46.6 - 72.5%), gamma-terpinene (6.2 - 16.7%), p-cymene (4.0 - 6.5%), n-hexadecanol (0.4 - 6.5%), geraniol (0.5 - 4.7%), limonene (0.0 - 3.5%) and carvacrol (0.5 - 3.4%) represented the major compounds. Two chemotypes were identified: thymol and thymol/linalool. In addition, canonical correlation analysis between some essential oil characters and some environmental factors revealed a significant relationship between oil components and environmental factors. The influence of environmental factors over p-cymene, gamma-terpinene, linalool and thymol was evident. Essential oil yield was fairly strongly related to the concentrations of Ca2+ and K+, percentage of organic matter, altitude, temperature, and soil texture. PMID:20614832

  12. Combination of multispectral remote sensing, variable rate technology and environmental modeling for citrus pest management.

    PubMed

    Du, Qian; Chang, Ni-Bin; Yang, Chenghai; Srilakshmi, Kanth R

    2008-01-01

    The Lower Rio Grande Valley (LRGV) of south Texas is an agriculturally rich area supporting intensive production of vegetables, fruits, grain sorghum, and cotton. Modern agricultural practices involve the combined use of irrigation with the application of large amounts of agrochemicals to maximize crop yields. Intensive agricultural activities in past decades might have caused potential contamination of soil, surface water, and groundwater due to leaching of pesticides in the vadose zone. In an effort to promote precision farming in citrus production, this paper aims at developing an airborne multispectral technique for identifying tree health problems in a citrus grove that can be combined with variable rate technology (VRT) for required pesticide application and environmental modeling for assessment of pollution prevention. An unsupervised linear unmixing method was applied to classify the image for the grove and quantify the symptom severity for appropriate infection control. The PRZM-3 model was used to estimate environmental impacts that contribute to nonpoint source pollution with and without the use of multispectral remote sensing and VRT. Research findings using site-specific environmental assessment clearly indicate that combination of remote sensing and VRT may result in benefit to the environment by reducing the nonpoint source pollution by 92.15%. Overall, this study demonstrates the potential of precision farming for citrus production in the nexus of industrial ecology and agricultural sustainability. PMID:17222960

  13. Environmental variables and levels of exhaled carbon monoxide and carboxyhemoglobin in elderly people taking exercise.

    PubMed

    Salicio, Marcos Adriano; Mana, Viviane Aparecida Martins; Fett, Waléria Christiane Rezende; Gomes, Luciano Teixeira; Botelho, Clovis

    2016-04-01

    This article aims to analyze levels of exhaled carbon monoxide, carboxyhemoglobinand cardiopulmonary variables in old people practicing exercise in external environments, and correlate them with climate and pollution factors. Temporal ecological study with118 active elderly people in the city of Cuiabá, in the state of Mato Grosso, Brazil. Data were obtained on use of medication, smoking, anthropometric measurements, spirometry, peak flow, oxygen saturation, heart rate, exhaled carbon monoxide, carboxyhemoglobin, climate, number of farm fires and pollution. Correlations were found between on the one hand environmental temperature, relative humidity of the air and number of farmers' fires, and on the other hand levels of carbon monoxide exhaled and carboxyhemoglobin (p < 0.05).There was a correlation between heart rate and changes in environmental temperature, time of exposure to the sun and relative humidity (p < 0.05). In elderly people, environmental factors influence levels of exhaled carbon monoxide, carboxyhemoglobin and heart rate. There is thus a need for these to be monitored during exercise. The use of a carbon monoxide monitor to evaluate exposure to pollutants is suggested. PMID:27076001

  14. Patterns in temporal variability of temperature, oxygen and pH along an environmental gradient in a coral reef.

    PubMed

    Guadayol, Òscar; Silbiger, Nyssa J; Donahue, Megan J; Thomas, Florence I M

    2014-01-01

    Spatial and temporal environmental variability are important drivers of ecological processes at all scales. As new tools allow the in situ exploration of individual responses to fluctuations, ecologically meaningful ways of characterizing environmental variability at organism scales are needed. We investigated the fine-scale spatial heterogeneity of high-frequency temporal variability in temperature, dissolved oxygen concentration, and pH experienced by benthic organisms in a shallow coastal coral reef. We used a spatio-temporal sampling design, consisting of 21 short-term time-series located along a reef flat-to-reef slope transect, coupled to a long-term station monitoring water column changes. Spectral analyses revealed sharp gradients in variance decomposed by frequency, as well as differences between physically-driven and biologically-reactive parameters. These results highlight the importance of environmental variance at organismal scales and present a new sampling scheme for exploring this variability in situ. PMID:24416364

  15. Biotic and abiotic controls of argentine ant invasion success at local and landscape scales

    USGS Publications Warehouse

    Menke, S.B.; Fisher, R.N.; Jetz, W.; Holway, D.A.

    2007-01-01

    Although the ecological success of introduced species hinges on biotic interactions and physical conditions, few experimental studies - especially on animals - have simultaneously investigated the relative importance of both types of factors. The lack of such research may stem from the common assumption that native and introduced species exhibit similar environmental tolerances. Here we combine experimental and spatial modeling approaches (1) to determine the relative importance of biotic and abiotic controls of Argentine ant (Linepithema humile) invasion success, (2) to examine how the importance of these factors changes with spatial scale in southern California (USA), and (3) to assess how Argentine ants differ from native ants in their environmental tolerances. A factorial field experiment that combined native ant removal with irrigation revealed that Argentine ants failed to invade any dry plots (even those lacking native ants) but readily invaded all moist plots. Native ants slowed the spread of Argentine ants into irrigated plots but did not prevent invasion. In areas without Argentine ants, native ant species showed variable responses to irrigation. At the landscape scale, Argentine ant occurrence was positively correlated with minimum winter temperature (but not precipitation), whereas native ant diversity increased with precipitation and was negatively correlated with minimum winter temperature. These results are of interest for several reasons. First, they demonstrate that fine-scale differences in the physical environment can eclipse biotic resistance from native competitors in determining community susceptibility to invasion. Second, our results illustrate surprising complexities with respect to how the abiotic factors limiting invasion can change with spatial scale, and third, how native and invasive species can differ in their responses to the physical environment. Idiosyncratic and scale-dependent processes complicate attempts to forecast where

  16. Local nutrient regimes determine site-specific environmental triggers of cyanobacterial and microcystin variability in urban lakes

    NASA Astrophysics Data System (ADS)

    Sinang, S. C.; Reichwaldt, E. S.; Ghadouani, A.

    2014-10-01

    Toxic cyanobacterial blooms in urban lakes present serious health hazards to humans and animals and require effective management strategies. In the management of toxic cyanobacteria blooms, understanding the roles of environmental factors is crucial. To date, a range of environmental factors have been proposed as potential triggers for the spatiotemporal variability of cyanobacterial biomass and microcystins in freshwater systems. However, the environmental triggers of cyanobacteria and microcystin variability remain a subject of debate due to contrasting findings. This issue has raised the question if the environmental triggers are site-specific and unique between water bodies. In this study, we investigated the site-specificity of environmental triggers for cyanobacterial bloom and cyanotoxins dynamics. Our study suggests that cyanobacterial dominance and cyanobacterial microcystin content variability were significantly correlated to phosphorus and iron concentrations. However, the correlations between phosphorus and iron with cyanobacterial biomass and microcystin variability were not consistent between lakes, thus suggesting a site specificity of these environmental factors. The discrepancies in the correlations could be explained by differences in local nutrient concentration and the cyanobacterial community in the systems. The findings of this study suggest that identification of site-specific environmental factors under unique local conditions is an important strategy to enhance positive outcomes in cyanobacterial bloom control measures.

  17. Lipid signalling in plant responses to abiotic stress.

    PubMed

    Hou, Quancan; Ufer, Guido; Bartels, Dorothea

    2016-05-01

    Lipids are one of the major components of biological membranes including the plasma membrane, which is the interface between the cell and the environment. It has become clear that membrane lipids also serve as substrates for the generation of numerous signalling lipids such as phosphatidic acid, phosphoinositides, sphingolipids, lysophospholipids, oxylipins, N-acylethanolamines, free fatty acids and others. The enzymatic production and metabolism of these signalling molecules are tightly regulated and can rapidly be activated upon abiotic stress signals. Abiotic stress like water deficit and temperature stress triggers lipid-dependent signalling cascades, which control the expression of gene clusters and activate plant adaptation processes. Signalling lipids are able to recruit protein targets transiently to the membrane and thus affect conformation and activity of intracellular proteins and metabolites. In plants, knowledge is still scarce of lipid signalling targets and their physiological consequences. This review focuses on the generation of signalling lipids and their involvement in response to abiotic stress. We describe lipid-binding proteins in the context of changing environmental conditions and compare different approaches to determine lipid-protein interactions, crucial for deciphering the signalling cascades. PMID:26510494

  18. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants

    PubMed Central

    Sah, Saroj K.; Reddy, Kambham R.; Li, Jiaxu

    2016-01-01

    Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression. PMID:27200044

  19. Autoregressive modeling with state-space embedding vectors for damage detection under operational and environmental variability

    SciTech Connect

    Farrar, Charles; Figueiredo, Eloi; Todd, Michael; Flynn, Eric

    2010-01-01

    A nonlinear time series approach is presented to detect damage in systems by using a state-space reconstruction to infer the geometrical structure of a deterministic dynamical system from observed time series response at multiple locations. The unique contribution of this approach is using a Multivariate Autoregressive (MAR) model of a baseline condition to predict the state space, where the model encodes the embedding vectors rather than scalar time series. A hypothesis test is established that the MAR model will fail to predict future response if damage is present in the test condition, and this test is investigated for robustness in the context of operational and environmental variability. The applicability of this approach is demonstrated using acceleration time series from a base-excited 3-story frame structure.

  20. The stable isotopic composition of coral skeletons: control by environmental variables

    NASA Astrophysics Data System (ADS)

    Weil, Sandra M.; Buddemeier, Robert W.; Smith, Stephen V.; Kroopnick, Peter M.

    1981-07-01

    The reef corals Pocillopora damicornis and Montipora verrucosa were cultured under various controlled temperature and light conditions. The corals were analyzed for growth rate, tissue pigment content and skeletal 13C and 18O. Coral skeletal δ 13C values varied with light dose and correlated with changes in zooxanthellar pigment. The δ 13C values of skeletal aragonite seem to be modified by oxidation of photosynthetically produced organic matter. Functionally significant relationships between coral skeletal δ 18O values and temperature have been determined. The temperature coefficients of the δ 18O values [-4.4°C (%.) -1] are similar to the first order coefficient in the equilibrium paleotemperature equation, but the δ 18O values have taxonomically consistent offsets from equilibrium. The offsets may be attributed to the coral metabolism with slight but statistically significant differences between the two genera. Environmental and metabolic variables other than temperature have little or no effect on skeletal δ 18O.

  1. Leisure time physical activity, screen time, social background, and environmental variables in adolescents.

    PubMed

    Mota, Jorge; Gomes, Helena; Almeida, Mariana; Ribeiro, José Carlos; Santos, Maria Paula

    2007-08-01

    This study analyzes the relationships between leisure time physical activity (LTPA), sedentary behaviors, socioeconomic status, and perceived environmental variables. The sample comprised 815 girls and 746 boys. In girls, non-LTPA participants reported significantly more screen time. Girls with safety concerns were more likely to be in the non-LTPA group (OR = 0.60) and those who agreed with the importance of aesthetics were more likely to be in the active-LTPA group (OR = 1.59). In girls, an increase of 1 hr of TV watching was a significant predictor of non-LTPA (OR = 0.38). LTPA for girls, but not for boys, seems to be influenced by certain modifiable factors of the built environment, as well as by time watching TV. PMID:18019587

  2. Effects of competing environmental variables and signage on route-choices in simulated everyday and emergency wayfinding situations.

    PubMed

    Vilar, Elisângela; Rebelo, Francisco; Noriega, Paulo; Duarte, Emília; Mayhorn, Christopher B

    2014-01-01

    This study examined the relative influence of environmental variables (corridor width and brightness) and signage (directional and exit signs), when presented in competition, on participants' route-choices in two situational variables (everyday vs. emergency), during indoor wayfinding in virtual environments. A virtual reality-based methodology was used. Thus, participants attempted to find a room (everyday situation) in a virtual hotel, followed by a fire-related emergency egress (emergency situation). Different behaviours were observed. In the everyday situation, for no-signs condition, participants choose mostly the wider and brighter corridors, suggesting a heavy reliance on the environmental affordances. Conversely, for signs condition, participants mostly complied with signage, suggesting a greater reliance on the signs rather than on the environmental cues. During emergency, without signage, reliance on environmental affordances seems to be affected by the intersection type. In the sign condition, the reliance on environmental affordances that started strong decreases along the egress route. PMID:24635043

  3. Environmental forcing and Southern Ocean marine predator populations: effects of climate change and variability.

    PubMed

    Trathan, P N; Forcada, J; Murphy, E J

    2007-12-29

    The Southern Ocean is a major component within the global ocean and climate system and potentially the location where the most rapid climate change is most likely to happen, particularly in the high-latitude polar regions. In these regions, even small temperature changes can potentially lead to major environmental perturbations. Climate change is likely to be regional and may be expressed in various ways, including alterations to climate and weather patterns across a variety of time-scales that include changes to the long interdecadal background signals such as the development of the El Niño-Southern Oscillation (ENSO). Oscillating climate signals such as ENSO potentially provide a unique opportunity to explore how biological communities respond to change. This approach is based on the premise that biological responses to shorter-term sub-decadal climate variability signals are potentially the best predictor of biological responses over longer time-scales. Around the Southern Ocean, marine predator populations show periodicity in breeding performance and productivity, with relationships with the environment driven by physical forcing from the ENSO region in the Pacific. Wherever examined, these relationships are congruent with mid-trophic-level processes that are also correlated with environmental variability. The short-term changes to ecosystem structure and function observed during ENSO events herald potential long-term changes that may ensue following regional climate change. For example, in the South Atlantic, failure of Antarctic krill recruitment will inevitably foreshadow recruitment failures in a range of higher trophic-level marine predators. Where predator species are not able to accommodate by switching to other prey species, population-level changes will follow. The Southern Ocean, though oceanographically interconnected, is not a single ecosystem and different areas are dominated by different food webs. Where species occupy different positions in

  4. Abiotic stress modifies the synthesis of alpha-tocopherol and beta-carotene in phytoplankton species.

    PubMed

    Häubner, Norbert; Sylvander, Peter; Vuori, Kristiina; Snoeijs, Pauline

    2014-08-01

    We performed laboratory experiments to investi-gate whether the synthesis of the antioxidants α-tocopherol (vitamin E) and β-carotene in phytoplankton depends on changes in abiotic factors. Cultures of Nodularia spumigena, Phaeodactylum tricornutum, Skeletonema costatum, Dunaliella tertiolecta, Prorocentrum cordatum, and Rhodomonas salina were incubated at different tempe-ratures, photon flux densities and salinities for 48 h. We found that abiotic stress, within natural ecological ranges, affects the synthesis of the two antioxidants in different ways in different species. In most cases antioxidant production was stimulated by increased abiotic stress. In P. tricornutum KAC 37 and D. tertiolecta SCCAP K-0591, both good producers of this compound, α-tocopherol accumulation was negatively affected by environmentally induced higher photosystem II efficiency (Fv /Fm ). On the other hand, β-carotene accumulation was positively affected by higher Fv /Fm in N. spumigena KAC 7, P. tricornutum KAC 37, D. tertiolecta SCCAP K-0591 and R. salina SCCAP K-0294. These different patterns in the synthesis of the two compounds may be explained by their different locations and functions in the cell. While α-tocopherol is heavily involved in the protection of prevention of lipid peroxidation in membranes, β-carotene performs immediate photo-oxidative protection in the antennae complex of photosystem II. Overall, our results suggest a high variability in the antioxidant pool of natural aquatic ecosystems, which can be subject to short-term temperature, photon flux density and salinity fluctuations. The antioxidant levels in natural phytoplankton communities depend on species composition, the physiological condition of the species, and their respective strategies to deal with reactive oxygen species. Since α-tocopherol and β-carotene, as well as many other nonenzymatic antioxidants, are exclusively produced by photo-synthetic organisms, and are required by higher

  5. Integrating Environmental and Socio-Economic Indicators of a Linked Catchment-Coastal System Using Variable Environmental Intensity

    NASA Astrophysics Data System (ADS)

    Dymond, John R.; Davie, Tim J. A.; Fenemor, Andrew D.; Ekanayake, Jagath C.; Knight, Ben R.; Cole, Anthony O.; de Oca Munguia, Oscar Montes; Allen, Will J.; Young, Roger G.; Basher, Les R.; Dresser, Marc; Batstone, Chris J.

    2010-09-01

    Can we develop land use policy that balances the conflicting views of stakeholders in a catchment while moving toward long term sustainability? Adaptive management provides a strategy for this whereby measures of catchment performance are compared against performance goals in order to progressively improve policy. However, the feedback loop of adaptive management is often slow and irreversible impacts may result before policy has been adapted. In contrast, integrated modelling of future land use policy provides rapid feedback and potentially improves the chance of avoiding unwanted collapse events. Replacing measures of catchment performance with modelled catchment performance has usually required the dynamic linking of many models, both biophysical and socio-economic—and this requires much effort in software development. As an alternative, we propose the use of variable environmental intensity (defined as the ratio of environmental impact over economic output) in a loose coupling of models to provide a sufficient level of integration while avoiding significant effort required for software development. This model construct was applied to the Motueka Catchment of New Zealand where several biophysical (riverine water quantity, sediment, E. coli faecal bacteria, trout numbers, nitrogen transport, marine productivity) models, a socio-economic (gross output, gross margin, job numbers) model, and an agent-based model were linked. An extreme set of land use scenarios (historic, present, and intensive) were applied to this modelling framework. Results suggest that the catchment is presently in a near optimal land use configuration that is unlikely to benefit from further intensification. This would quickly put stress on water quantity (at low flow) and water quality ( E. coli). To date, this model evaluation is based on a theoretical test that explores the logical implications of intensification at an unlikely extreme in order to assess the implications of likely growth

  6. Mini-UAV Based Sensory System for Measuring Environmental Variables in Greenhouses

    PubMed Central

    Roldán, Juan Jesús; Joossen, Guillaume; Sanz, David; del Cerro, Jaime; Barrientos, Antonio

    2015-01-01

    This paper describes the design, construction and validation of a mobile sensory platform for greenhouse monitoring. The complete system consists of a sensory system on board a small quadrotor (i.e., a four rotor mini-UAV). The goals of this system include taking measures of temperature, humidity, luminosity and CO2 concentration and plotting maps of these variables. These features could potentially allow for climate control, crop monitoring or failure detection (e.g., a break in a plastic cover). The sensors have been selected by considering the climate and plant growth models and the requirements for their integration onboard the quadrotor. The sensors layout and placement have been determined through a study of quadrotor aerodynamics and the influence of the airflows from its rotors. All components of the system have been developed, integrated and tested through a set of field experiments in a real greenhouse. The primary contributions of this paper are the validation of the quadrotor as a platform for measuring environmental variables and the determination of the optimal location of sensors on a quadrotor. PMID:25648713

  7. Mini-UAV based sensory system for measuring environmental variables in greenhouses.

    PubMed

    Roldán, Juan Jesús; Joossen, Guillaume; Sanz, David; del Cerro, Jaime; Barrientos, Antonio

    2015-01-01

    This paper describes the design, construction and validation of a mobile sensory platform for greenhouse monitoring. The complete system consists of a sensory system on board a small quadrotor (i.e., a four rotor mini-UAV). The goals of this system include taking measures of temperature, humidity, luminosity and CO2 concentration and plotting maps of these variables. These features could potentially allow for climate control, crop monitoring or failure detection (e.g., a break in a plastic cover). The sensors have been selected by considering the climate and plant growth models and the requirements for their integration onboard the quadrotor. The sensors layout and placement have been determined through a study of quadrotor aerodynamics and the influence of the airflows from its rotors. All components of the system have been developed, integrated and tested through a set of field experiments in a real greenhouse. The primary contributions of this paper are the validation of the quadrotor as a platform for measuring environmental variables and the determination of the optimal location of sensors on a quadrotor. PMID:25648713

  8. Environmental variability and biodiversity of megabenthos on the Hebrides Terrace Seamount (Northeast Atlantic).

    PubMed

    Henry, Lea-Anne; Vad, Johanne; Findlay, Helen S; Murillo, Javier; Milligan, Rosanna; Roberts, J Murray

    2014-01-01

    We present the first remotely operated vehicle investigation of megabenthic communities (1004-1695 m water depth) on the Hebrides Terrace Seamount (Northeast Atlantic). Conductivity-temperature-depth casts showed rapid light attenuation below the summit and an oceanographic regime on the flanks consistent with an internal tide, and high short-term variability in water temperature, salinity, light attenuation, aragonite and oxygen down to 1500 m deep. Minor changes in species composition (3-14%) were explained by changes in depth, substratum and oceanographic stability, whereas environmental variability explained substantially more variation in species richness (40-56%). Two peaks in species richness occurred, the first at 1300-1400 m where cooler Wyville Thomson Overflow Water (WTOW) mixes with subtropical gyre waters and the second at 1500-1600 m where WTOW mixes with subpolar mode waters. Our results suggest that internal tides, substrate heterogeneity and oceanographic interfaces may enhance biological diversity on this and adjacent seamounts in the Rockall Trough. PMID:24998523

  9. Complex Response of White Pines to Past Environmental Variability Increases Understanding of Future Vulnerability

    PubMed Central

    Iglesias, Virginia; Krause, Teresa R.; Whitlock, Cathy

    2015-01-01

    Ecological niche models predict plant responses to climate change by circumscribing species distributions within a multivariate environmental framework. Most projections based on modern bioclimatic correlations imply that high-elevation species are likely to be extirpated from their current ranges as a result of rising growing-season temperatures in the coming decades. Paleoecological data spanning the last 15,000 years from the Greater Yellowstone region describe the response of vegetation to past climate variability and suggest that white pines, a taxon of special concern in the region, have been surprisingly resilient to high summer temperature and fire activity in the past. Moreover, the fossil record suggests that winter conditions and biotic interactions have been critical limiting variables for high-elevation conifers in the past and will likely be so in the future. This long-term perspective offers insights on species responses to a broader range of climate and associated ecosystem changes than can be observed at present and should be part of resource management and conservation planning for the future. PMID:25885810

  10. Environmental variability and biodiversity of megabenthos on the Hebrides Terrace Seamount (Northeast Atlantic)

    PubMed Central

    Henry, Lea-Anne; Vad, Johanne; Findlay, Helen S.; Murillo, Javier; Milligan, Rosanna; Roberts, J. Murray

    2014-01-01

    We present the first remotely operated vehicle investigation of megabenthic communities (1004–1695 m water depth) on the Hebrides Terrace Seamount (Northeast Atlantic). Conductivity-temperature-depth casts showed rapid light attenuation below the summit and an oceanographic regime on the flanks consistent with an internal tide, and high short-term variability in water temperature, salinity, light attenuation, aragonite and oxygen down to 1500 m deep. Minor changes in species composition (3–14%) were explained by changes in depth, substratum and oceanographic stability, whereas environmental variability explained substantially more variation in species richness (40–56%). Two peaks in species richness occurred, the first at 1300–1400 m where cooler Wyville Thomson Overflow Water (WTOW) mixes with subtropical gyre waters and the second at 1500–1600 m where WTOW mixes with subpolar mode waters. Our results suggest that internal tides, substrate heterogeneity and oceanographic interfaces may enhance biological diversity on this and adjacent seamounts in the Rockall Trough. PMID:24998523

  11. Heterogeneous Multi-Robot System for Mapping Environmental Variables of Greenhouses

    PubMed Central

    Roldán, Juan Jesús; Garcia-Aunon, Pablo; Garzón, Mario; de León, Jorge; del Cerro, Jaime; Barrientos, Antonio

    2016-01-01

    The productivity of greenhouses highly depends on the environmental conditions of crops, such as temperature and humidity. The control and monitoring might need large sensor networks, and as a consequence, mobile sensory systems might be a more suitable solution. This paper describes the application of a heterogeneous robot team to monitor environmental variables of greenhouses. The multi-robot system includes both ground and aerial vehicles, looking to provide flexibility and improve performance. The multi-robot sensory system measures the temperature, humidity, luminosity and carbon dioxide concentration in the ground and at different heights. Nevertheless, these measurements can be complemented with other ones (e.g., the concentration of various gases or images of crops) without a considerable effort. Additionally, this work addresses some relevant challenges of multi-robot sensory systems, such as the mission planning and task allocation, the guidance, navigation and control of robots in greenhouses and the coordination among ground and aerial vehicles. This work has an eminently practical approach, and therefore, the system has been extensively tested both in simulations and field experiments. PMID:27376297

  12. Spatiotemporal environmental heterogeneity and the maintenance of the tailspot polymorphism in the variable platyfish (Xiphophorus variatus).

    PubMed

    Culumber, Zachary W; Tobler, Michael

    2016-02-01

    Genetic variation is critical for adaptive evolution. Despite its importance, there is still limited evidence in support of some prominent theoretical models explaining the maintenance of genetic polymorphism within populations. We examined 84 populations of Xiphophorus variatus, a livebearing fish with a genetic polymorphism associated with physiological performance, to test: (1) whether niche differentiation explains broad-scale maintenance of polymorphism, (2) whether polymorphism is maintained among populations by local adaptation and migration, or (3) whether heterogeneity in explicit environmental variables could be linked to levels of polymorphism within populations. We found no evidence of climatic niche differentiation that could generate or maintain broad geographic variation in polymorphism. Subsequently, hierarchical partitioning of genetic richness and partial mantel tests revealed that 76% of the observed genetic richness was partitioned within populations with no effect of geographic distance on polymorphism. These results strongly suggest a lack of migration-selection balance in the maintenance of polymorphism, and model selection confirmed a significant relationship between environmental heterogeneity and genetic richness within populations. Few studies have demonstrated such effects at this scale, and additional studies in other taxa should examine the generality of gene-by-environment interactions across populations to better understand the dynamics and scale of balancing selection. PMID:26748941

  13. Heterogeneous Multi-Robot System for Mapping Environmental Variables of Greenhouses.

    PubMed

    Roldán, Juan Jesús; Garcia-Aunon, Pablo; Garzón, Mario; de León, Jorge; Del Cerro, Jaime; Barrientos, Antonio

    2016-01-01

    The productivity of greenhouses highly depends on the environmental conditions of crops, such as temperature and humidity. The control and monitoring might need large sensor networks, and as a consequence, mobile sensory systems might be a more suitable solution. This paper describes the application of a heterogeneous robot team to monitor environmental variables of greenhouses. The multi-robot system includes both ground and aerial vehicles, looking to provide flexibility and improve performance. The multi-robot sensory system measures the temperature, humidity, luminosity and carbon dioxide concentration in the ground and at different heights. Nevertheless, these measurements can be complemented with other ones (e.g., the concentration of various gases or images of crops) without a considerable effort. Additionally, this work addresses some relevant challenges of multi-robot sensory systems, such as the mission planning and task allocation, the guidance, navigation and control of robots in greenhouses and the coordination among ground and aerial vehicles. This work has an eminently practical approach, and therefore, the system has been extensively tested both in simulations and field experiments. PMID:27376297

  14. Land Use and Environmental Variability Impacts on the Phenology of Arid Agro-Ecosystems

    NASA Astrophysics Data System (ADS)

    Romo-Leon, Jose Raul; van Leeuwen, Willem J. D.; Castellanos-Villegas, Alejandro

    2016-02-01

    The overexploitation of water resources in arid environments often results in abandonment of large extensions of agricultural lands, which may (1) modify phenological trends, and (2) alter the sensitivity of specific phenophases to environmental triggers. In Mexico, current governmental policies subsidize restoration efforts, to address ecological degradation caused by abandonments; however, there is a need for new approaches to assess their effectiveness. Addressing this, we explore a method to monitor and assess (1) land surface phenology trends in arid agro-ecosystems, and (2) the effect of climatic factors and restoration treatments on the phenology of abandoned agricultural fields. We used 16-day normalized difference vegetation index composites from the moderate resolution imaging spectroradiometer from 2000 to 2009 to derive seasonal phenometrics. We then derived phenoclimatic variables and land cover thematic maps, to serve as a set of independent factors that influence vegetation phenology. We conducted a multivariate analysis of variance to analyze phenological trends among land cover types, and developed multiple linear regression models to assess influential climatic factors driving phenology per land cover analyzed. Our results suggest that the start and length of the growing season had different responses to environmental factors depending on land cover type. Our analysis also suggests possible establishment of arid adapted species (from surrounding ecosystems) in abandoned fields with longer times since abandonment. Using this approach, we were able increase our understanding on how climatic factors influence phenology on degraded arid agro-ecosystems, and how this systems evolve after disturbance.

  15. Land Use and Environmental Variability Impacts on the Phenology of Arid Agro-Ecosystems.

    PubMed

    Romo-Leon, Jose Raul; van Leeuwen, Willem J D; Castellanos-Villegas, Alejandro

    2016-02-01

    The overexploitation of water resources in arid environments often results in abandonment of large extensions of agricultural lands, which may (1) modify phenological trends, and (2) alter the sensitivity of specific phenophases to environmental triggers. In Mexico, current governmental policies subsidize restoration efforts, to address ecological degradation caused by abandonments; however, there is a need for new approaches to assess their effectiveness. Addressing this, we explore a method to monitor and assess (1) land surface phenology trends in arid agro-ecosystems, and (2) the effect of climatic factors and restoration treatments on the phenology of abandoned agricultural fields. We used 16-day normalized difference vegetation index composites from the moderate resolution imaging spectroradiometer from 2000 to 2009 to derive seasonal phenometrics. We then derived phenoclimatic variables and land cover thematic maps, to serve as a set of independent factors that influence vegetation phenology. We conducted a multivariate analysis of variance to analyze phenological trends among land cover types, and developed multiple linear regression models to assess influential climatic factors driving phenology per land cover analyzed. Our results suggest that the start and length of the growing season had different responses to environmental factors depending on land cover type. Our analysis also suggests possible establishment of arid adapted species (from surrounding ecosystems) in abandoned fields with longer times since abandonment. Using this approach, we were able increase our understanding on how climatic factors influence phenology on degraded arid agro-ecosystems, and how this systems evolve after disturbance. PMID:26407556

  16. Exploring the role of environmental variables in shaping patterns of seabed biodiversity composition in regional-scale ecosystems

    PubMed Central

    Roland Pitcher, C; Lawton, Peter; Ellis, Nick; Smith, Stephen J; Incze, Lewis S; Wei, Chih-Lin; Greenlaw, Michelle E; Wolff, Nicholas H; Sameoto, Jessica A; Snelgrove, Paul V R; Cadotte, Marc

    2012-01-01

    1. Environmental variables are often used as indirect surrogates for mapping biodiversity because species survey data are scant at regional scales, especially in the marine realm. However, environmental variables are measured on arbitrary scales unlikely to have simple, direct relationships with biological patterns. Instead, biodiversity may respond nonlinearly and to interactions between environmental variables. 2. To investigate the role of the environment in driving patterns of biodiversity composition in large marine regions, we collated multiple biological survey and environmental data sets from tropical NE Australia, the deep Gulf of Mexico and the temperate Gulf of Maine. We then quantified the shape and magnitude of multispecies responses along >30 environmental gradients and the extent to which these variables predicted regional distributions. To do this, we applied a new statistical approach, Gradient Forest, an extension of Random Forest, capable of modelling nonlinear and threshold responses. 3. The regional-scale environmental variables predicted an average of 13–35% (up to 50–85% for individual species) of the variation in species abundance distributions. Important predictors differed among regions and biota and included depth, salinity, temperature, sediment composition and current stress. The shapes of responses along gradients also differed and were nonlinear, often with thresholds indicative of step changes in composition. These differing regional responses were partly due to differing environmental indicators of bioregional boundaries and, given the results to date, may indicate limited scope for extrapolating bio-physical relationships beyond the region of source data sets. 4. Synthesis and applications. Gradient Forest offers a new capability for exploring relationships between biodiversity and environmental gradients, generating new information on multispecies responses at a detail not available previously. Importantly, given the scarcity

  17. Ecosystem properties of semiarid savanna grassland in West Africa and its relationship with environmental variability.

    PubMed

    Tagesson, Torbern; Fensholt, Rasmus; Guiro, Idrissa; Rasmussen, Mads Olander; Huber, Silvia; Mbow, Cheikh; Garcia, Monica; Horion, Stéphanie; Sandholt, Inge; Holm-Rasmussen, Bo; Göttsche, Frank M; Ridler, Marc-Etienne; Olén, Niklas; Lundegard Olsen, Jørgen; Ehammer, Andrea; Madsen, Mathias; Olesen, Folke S; Ardö, Jonas

    2015-01-01

    The Dahra field site in Senegal, West Africa, was established in 2002 to monitor ecosystem properties of semiarid savanna grassland and their responses to climatic and environmental change. This article describes the environment and the ecosystem properties of the site using a unique set of in situ data. The studied variables include hydroclimatic variables, species composition, albedo, normalized difference vegetation index (NDVI), hyperspectral characteristics (350-1800 nm), surface reflectance anisotropy, brightness temperature, fraction of absorbed photosynthetic active radiation (FAPAR), biomass, vegetation water content, and land-atmosphere exchanges of carbon (NEE) and energy. The Dahra field site experiences a typical Sahelian climate and is covered by coexisting trees (~3% canopy cover) and grass species, characterizing large parts of the Sahel. This makes the site suitable for investigating relationships between ecosystem properties and hydroclimatic variables for semiarid savanna ecosystems of the region. There were strong interannual, seasonal and diurnal dynamics in NEE, with high values of ~-7.5 g C m(-2)  day(-1) during the peak of the growing season. We found neither browning nor greening NDVI trends from 2002 to 2012. Interannual variation in species composition was strongly related to rainfall distribution. NDVI and FAPAR were strongly related to species composition, especially for years dominated by the species Zornia glochidiata. This influence was not observed in interannual variation in biomass and vegetation productivity, thus challenging dryland productivity models based on remote sensing. Surface reflectance anisotropy (350-1800 nm) at the peak of the growing season varied strongly depending on wavelength and viewing angle thereby having implications for the design of remotely sensed spectral vegetation indices covering different wavelength regions. The presented time series of in situ data have great potential for dryland dynamics

  18. Interannual variability in the timing of New England shellfish toxicity and relationships to environmental forcing.

    PubMed

    Nair, Apurva; Thomas, Andrew C; Borsuk, Mark E

    2013-03-01

    Routine monitoring along the coast of the Gulf of Maine (GoM) reveals shellfish toxicity nearly every summer, but at varying times, locations, and magnitudes. The responsible toxin is known to be produced by the dinoflagellate Alexandrium fundyense, yet there is little apparent association between Alexandrium abundance and shellfish toxicity. One possibility is that toxic cells are persistent in offshore areas and variability in shellfish toxicity is caused not by changes in overall abundance, but rather by variability in transport processes. Measurements of offshore Alexandrium biomass are scarce, so we bypass cell abundance as an explanatory variable and focus instead on the relations between shellfish toxicity and concurrent metrics of GoM meteorology, hydrology, and oceanography. While this yields over two decades (1985-2005) of data representing a variety of interannual conditions, the toxicity data are gappy in spatial and temporal coverage. We address this through a combination of parametric curve fitting and hierarchical cluster analysis to reveal eight archetypical modes of seasonal toxicity timing. Groups of locations are then formed that have similar interannual patterns in these archetypes. Finally, the interannual patterns within each group are related to available environmental metrics using classification trees. Results indicate that a weak cross-shore sea surface temperature (SST) gradient in the summer is the strongest correlate of shellfish toxicity, likely by signifying a hydrological connection between offshore Alexandrium populations and near-shore shellfish beds. High cumulative downwelling wind strength early in the season is revealed as a precursor consistent with this mechanism. Although previous studies suggest that alongshore transport is important in moving Alexandrium from the eastern to western GoM, alongshore SST gradient is not an important correlate of toxicity in our study. We conclude by discussing the implications of our results

  19. Interannual variability in the timing of New England shellfish toxicity and relationships to environmental forcing

    PubMed Central

    Nair, Apurva; Thomas, Andrew C.; Borsuk, Mark E.

    2013-01-01

    Routine monitoring along the coast of the Gulf of Maine (GoM) reveals shellfish toxicity nearly every summer, but at varying times, locations, and magnitudes. The responsible toxin is known to be produced by the dinoflagellate Alexandrium fundyense, yet there is little apparent association between Alexandrium abundance and shellfish toxicity. One possibility is that toxic cells are persistent in offshore areas and variability in shellfish toxicity is caused not by changes in overall abundance, but rather by variability in transport processes. Measurements of offshore Alexandrium biomass are scarce, so we bypass cell abundance as an explanatory variable and focus instead on the relations between shellfish toxicity and concurrent metrics of GoM meteorology, hydrology, and oceanography. While this yields over two decades (1985–2005) of data representing a variety of interannual conditions, the toxicity data are gappy in spatial and temporal coverage. We address this through a combination of parametric curve fitting and hierarchical cluster analysis to reveal eight archetypical modes of seasonal toxicity timing. Groups of locations are then formed that have similar interannual patterns in these archetypes. Finally, the interannual patterns within each group are related to available environmental metrics using classification trees. Results indicate that a weak cross-shore sea surface temperature (SST) gradient in the summer is the strongest correlate of shellfish toxicity, likely by signifying a hydrological connection between offshore Alexandrium populations and near-shore shellfish beds. High cumulative downwelling wind strength early in the season is revealed as a precursor consistent with this mechanism. Although previous studies suggest that alongshore transport is important in moving Alexandrium from the eastern to western GoM, alongshore SST gradient is not an important correlate of toxicity in our study. We conclude by discussing the implications of our

  20. Metamorphosis of the invasive ascidian Ciona savignyi: environmental variables and chemical exposure.

    PubMed

    Cahill, Patrick L; Atalah, Javier; Selwood, Andrew I; Kuhajek, Jeanne M

    2016-01-01

    In this study, the effects of environmental variables on larval metamorphosis of the solitary ascidian Ciona savignyi were investigated in a laboratory setting. The progression of metamorphic changes were tracked under various temperature, photoperiod, substrate, larval density, and vessel size regimes. Metamorphosis was maximised at 18 °C, 12:12 h subdued light:dark, smooth polystyrene substrate, and 10 larvae mL(-1) in a twelve-well tissue culture plate. Eliminating the air-water interface by filling culture vessels to capacity further increased the proportion of metamorphosed larvae; 87 ± 5% of larvae completed metamorphosis within 5 days compared to 45 ± 5% in control wells. The effects of the reference antifouling compounds polygodial, portimine, oroidin, chlorothalonil, and tolylfluanid on C. savignyi were subsequently determined, highlighting (1) the sensitivity of C. savignyi metamorphosis to chemical exposure and (2) the potential to use C. savignyi larvae to screen for bioactivity in an optimised laboratory setting. The compounds were bioactive in the low ng mL(-1) to high µg mL(-1) range. Polygodial was chosen for additional investigations, where it was shown that mean reductions in the proportions of larvae reaching stage E were highly repeatable both within (repeatability = 14 ± 9%) and between (intermediate precision = 17 ± 3%) independent experiments. An environmental extract had no effect on the larvae but exposing larvae to both the extract and polygodial reduced potency relative to polygodial alone. This change in potency stresses the need for caution when working with complex samples, as is routinely implemented when isolating natural compounds from their biological source. Overall, the outcomes of this study highlight the sensitivity of C. savignyi metamorphosis to environmental variations and chemical exposure. PMID:26966668

  1. Metamorphosis of the invasive ascidian Ciona savignyi: environmental variables and chemical exposure

    PubMed Central

    Atalah, Javier; Selwood, Andrew I.; Kuhajek, Jeanne M.

    2016-01-01

    In this study, the effects of environmental variables on larval metamorphosis of the solitary ascidian Ciona savignyi were investigated in a laboratory setting. The progression of metamorphic changes were tracked under various temperature, photoperiod, substrate, larval density, and vessel size regimes. Metamorphosis was maximised at 18 °C, 12:12 h subdued light:dark, smooth polystyrene substrate, and 10 larvae mL−1 in a twelve-well tissue culture plate. Eliminating the air-water interface by filling culture vessels to capacity further increased the proportion of metamorphosed larvae; 87 ± 5% of larvae completed metamorphosis within 5 days compared to 45 ± 5% in control wells. The effects of the reference antifouling compounds polygodial, portimine, oroidin, chlorothalonil, and tolylfluanid on C. savignyi were subsequently determined, highlighting (1) the sensitivity of C. savignyi metamorphosis to chemical exposure and (2) the potential to use C. savignyi larvae to screen for bioactivity in an optimised laboratory setting. The compounds were bioactive in the low ng mL−1 to high µg mL−1 range. Polygodial was chosen for additional investigations, where it was shown that mean reductions in the proportions of larvae reaching stage E were highly repeatable both within (repeatability = 14 ± 9%) and between (intermediate precision = 17 ± 3%) independent experiments. An environmental extract had no effect on the larvae but exposing larvae to both the extract and polygodial reduced potency relative to polygodial alone. This change in potency stresses the need for caution when working with complex samples, as is routinely implemented when isolating natural compounds from their biological source. Overall, the outcomes of this study highlight the sensitivity of C. savignyi metamorphosis to environmental variations and chemical exposure. PMID:26966668

  2. Environmental variables, habitat discontinuity and life history shaping the genetic structure of Pomatoschistus marmoratus

    NASA Astrophysics Data System (ADS)

    González-Wangüemert, Mercedes; Vergara-Chen, Carlos

    2014-06-01

    Coastal lagoons are semi-isolated ecosystems exposed to wide fluctuations of environmental conditions and showing habitat fragmentation. These features may play an important role in separating species into different populations, even at small spatial scales. In this study, we evaluate the concordance between mitochondrial (previous published data) and nuclear data analyzing the genetic variability of Pomatoschistus marmoratus in five localities, inside and outside the Mar Menor coastal lagoon (SE Spain) using eight microsatellites. High genetic diversity and similar levels of allele richness were observed across all loci and localities, although significant genic and genotypic differentiation was found between populations inside and outside the lagoon. In contrast to the F ST values obtained from previous mitochondrial DNA analyses (control region), the microsatellite data exhibited significant differentiation among samples inside the Mar Menor and between lagoonal and marine samples. This pattern was corroborated using Cavalli-Sforza genetic distances. The habitat fragmentation inside the coastal lagoon and among lagoon and marine localities could be acting as a barrier to gene flow and contributing to the observed genetic structure. Our results from generalized additive models point a significant link between extreme lagoonal environmental conditions (mainly maximum salinity) and P. marmoratus genetic composition. Thereby, these environmental features could be also acting on genetic structure of coastal lagoon populations of P. marmoratus favoring their genetic divergence. The mating strategy of P. marmoratus could be also influencing our results obtained from mitochondrial and nuclear DNA. Therefore, a special consideration must be done in the selection of the DNA markers depending on the reproductive strategy of the species.

  3. Influence of Environmental Variables on Gambierdiscus spp. (Dinophyceae) Growth and Distribution

    PubMed Central

    Xu, Yixiao; Richlen, Mindy L.; Liefer, Justin D.; Robertson, Alison; Kulis, David; Smith, Tyler B.; Parsons, Michael L.; Anderson, Donald M.

    2016-01-01

    Benthic dinoflagellates in the genus Gambierdiscus produce the ciguatoxin precursors responsible for the occurrence of ciguatera toxicity. The prevalence of ciguatera toxins in fish has been linked to the presence and distribution of toxin-producing species in coral reef ecosystems, which is largely determined by the presence of suitable benthic habitat and environmental conditions favorable for growth. Here using single factor experiments, we examined the effects of salinity, irradiance, and temperature on growth of 17 strains of Gambierdiscus representing eight species/phylotypes (G. belizeanus, G. caribaeus, G. carolinianus, G. carpenteri, G. pacificus, G. silvae, Gambierdiscus sp. type 4–5), most of which were established from either Marakei Island, Republic of Kiribati, or St. Thomas, United States Virgin Island (USVI). Comparable to prior studies, growth rates fell within the range of 0–0.48 divisions day-1. In the salinity and temperature studies, Gambierdiscus responded in a near Gaussian, non-linear manner typical for such studies, with optimal and suboptimal growth occurring in the range of salinities of 25 and 45 and 21.0 and 32.5°C. In the irradiance experiment, no mortality was observed; however, growth rates at 55μmol photons · m-2 · s-1 were lower than those at 110–400μmol photons · m-2 · s-1. At the extremes of the environmental conditions tested, growth rates were highly variable, evidenced by large coefficients of variability. However, significant differences in intraspecific growth rates were typically found only at optimal or near-optimal growth conditions. Polynomial regression analyses showed that maximum growth occurred at salinity and temperature levels of 30.1–38.5 and 23.8–29.2°C, respectively. Gambierdiscus growth patterns varied among species, and within individual species: G. belizeanus, G. caribaeus, G. carpenteri, and G. pacificus generally exhibited a wider range of tolerance to environmental conditions, which may

  4. Influence of Environmental Variables on Gambierdiscus spp. (Dinophyceae) Growth and Distribution.

    PubMed

    Xu, Yixiao; Richlen, Mindy L; Liefer, Justin D; Robertson, Alison; Kulis, David; Smith, Tyler B; Parsons, Michael L; Anderson, Donald M

    2016-01-01

    Benthic dinoflagellates in the genus Gambierdiscus produce the ciguatoxin precursors responsible for the occurrence of ciguatera toxicity. The prevalence of ciguatera toxins in fish has been linked to the presence and distribution of toxin-producing species in coral reef ecosystems, which is largely determined by the presence of suitable benthic habitat and environmental conditions favorable for growth. Here using single factor experiments, we examined the effects of salinity, irradiance, and temperature on growth of 17 strains of Gambierdiscus representing eight species/phylotypes (G. belizeanus, G. caribaeus, G. carolinianus, G. carpenteri, G. pacificus, G. silvae, Gambierdiscus sp. type 4-5), most of which were established from either Marakei Island, Republic of Kiribati, or St. Thomas, United States Virgin Island (USVI). Comparable to prior studies, growth rates fell within the range of 0-0.48 divisions day-1. In the salinity and temperature studies, Gambierdiscus responded in a near Gaussian, non-linear manner typical for such studies, with optimal and suboptimal growth occurring in the range of salinities of 25 and 45 and 21.0 and 32.5°C. In the irradiance experiment, no mortality was observed; however, growth rates at 55μmol photons · m-2 · s-1 were lower than those at 110-400μmol photons · m-2 · s-1. At the extremes of the environmental conditions tested, growth rates were highly variable, evidenced by large coefficients of variability. However, significant differences in intraspecific growth rates were typically found only at optimal or near-optimal growth conditions. Polynomial regression analyses showed that maximum growth occurred at salinity and temperature levels of 30.1-38.5 and 23.8-29.2°C, respectively. Gambierdiscus growth patterns varied among species, and within individual species: G. belizeanus, G. caribaeus, G. carpenteri, and G. pacificus generally exhibited a wider range of tolerance to environmental conditions, which may explain

  5. Linking environmental variability to village-scale malaria transmission using a simple immunity model

    PubMed Central

    2013-01-01

    Background Individuals continuously exposed to malaria gradually acquire immunity that protects from severe disease and high levels of parasitization. Acquired immunity has been incorporated into numerous models of malaria transmission of varying levels of complexity (e.g. Bull World Health Organ 50:347, 1974; Am J Trop Med Hyg 75:19, 2006; Math Biosci 90:385–396, 1988). Most such models require prescribing inputs of mosquito biting rates or other entomological or epidemiological information. Here, we present a model with a novel structure that uses environmental controls of mosquito population dynamics to simulate the mosquito biting rates, malaria prevalence as well as variability in protective immunity of the population. Methods A simple model of acquired immunity to malaria is presented and tested within the framework of the Hydrology, Entomology and Malaria Transmission Simulator (HYDREMATS), a coupled hydrology and agent-based entomology model. The combined model uses environmental data including rainfall, temperature, and topography to simulate malaria prevalence and level of acquired immunity in the human population. The model is used to demonstrate the effect of acquired immunity on malaria prevalence in two Niger villages that are hydrologically and entomologically very different. Simulations are conducted for the year 2006 and compared to malaria prevalence observations collected from the two villages. Results Blood smear samples from children show no clear difference in malaria prevalence between the two villages despite pronounced differences in observed mosquito abundance. The similarity in prevalence is attributed to the moderating effect of acquired immunity, which depends on prior exposure to the parasite through infectious bites - and thus the hydrologically determined mosquito abundance. Modelling the level of acquired immunity can affect village vulnerability to climatic anomalies. Conclusions The model presented has a novel structure

  6. Understanding the context of healthcare utilization: assessing environmental and provider-related variables in the behavioral model of utilization.

    PubMed Central

    Phillips, K A; Morrison, K R; Andersen, R; Aday, L A

    1998-01-01

    OBJECTIVE: The behavioral model of utilization, developed by Andersen, Aday, and others, is one of the most frequently used frameworks for analyzing the factors that are associated with patient utilization of healthcare services. However, the use of the model for examining the context within which utilization occurs-the role of the environment and provider-related factors-has been largely neglected. OBJECTIVE: To conduct a systematic review and analysis to determine if studies of medical care utilization that have used the behavioral model during the last 20 years have included environmental and provider-related variables and the methods used to analyze these variables. We discuss barriers to the use of these contextual variables and potential solutions. DATA SOURCES: The Social Science Citation Index and Science Citation Index. We included all articles from 1975-1995 that cited any of three key articles on the behavioral model, that included all articles that were empirical analyses and studies of formal medical care utilization, and articles that specifically stated their use of the behavioral model (n = 139). STUDY DESIGN: Design was a systematic literature review. DATA ANALYSIS: We used a structured review process to code articles on whether they included contextual variables: (1) environmental variables (characteristics of the healthcare delivery system, external environment, and community-level enabling factors); and (2) provider-related variables (patient factors that may be influenced by providers and provider characteristics that interact with patient characteristics to influence utilization). We also examined the methods used in studies that included contextual variables. PRINCIPAL FINDINGS: Forty-five percent of the studies included environmental variables and 51 percent included provider-related variables. Few studies examined specific measures of the healthcare system or provider characteristics or used methods other than simple regression analysis

  7. Back to the Future -Precipitation Extremes, Climate Variability, Environmental Planning and Adaptation

    NASA Astrophysics Data System (ADS)

    Barros, A. P.

    2008-12-01

    uncertainty and separating climatic variability and change from model error. Nonstationarity and persistence at multiple scales confound the problem. From an economics perspective, the unprecedented success of environmental control and "conservation" in the 20th century, present another yet challenge in terms of social expectations and human development, including the right to sustainable (high) quality of life. In this presentation, we illustrate these challenges by considering first the estimation of Probable Maximum Precipitation, an engineering design criterion typically used in dam design, and examine how it varies spatially across the continental US according to physiographic region and as a function of climate regime. Second, we explore the spatial and temporal scales that link climate variability to macroscale environmental planning, and the notion of place-based adaptive riskgrade analysis.

  8. Relative importance of dynamic and static environmental variables as predictors of amphibian diversity patterns

    NASA Astrophysics Data System (ADS)

    Gómez-Rodríguez, Carola; Díaz-Paniagua, Carmen; Bustamante, Javier; Serrano, Laura; Portheault, Alexandre

    2010-11-01

    In this study, we evaluated whether static approaches, such as including only habitat characteristics that do not change over time, are adequate for the assessment of diversity-habitat relationships. We assessed the contribution of habitat characteristics that change over time to the spatial pattern of diversity (variation in species richness and in assemblage composition) in comparison to those characteristics that do not change. We have also provided an integral analysis to evaluate the role of the hydroperiod in structuring amphibian assemblages at any diversity level, including variation in species richness, variation in assemblage composition (i.e., nested pattern or species turnover) and variation in beta diversity. We monitored 19 amphibian assemblages from 2003 to 2006 in a highly fluctuating ecosystem, the temporary ponds in Doñana National Park. Both sets of habitat variables (temporally fixed and temporally variable) were necessary to develop a realistic understanding of amphibian diversity patterns, both when considering data collected in particular years or over several years. We found that environmental attributes that are irrelevant for pond species richness (alpha diversity) might be responsible for the variation in assemblage composition among ponds (beta diversity) and, hence, contribute to species diversity in the entire study area (gamma diversity). Therefore, we illustrate the need for an integral analysis of diversity in order not to disregard any relevant habitat factor. Alternatively, the relevance of the hydroperiod was not constant across time and was negligible in the wet year, while, in the dry year, we observed a strong nested pattern along the hydroperiod gradient and small differences in species predominance among assemblages. Therefore, our results show two conservation priorities in the study area: the preservation of ponds along the wide hydroperiod gradient; and a particular concern for the preservation of ponds with a long

  9. The importance of environmental variability and management control error to optimal harvest policies

    USGS Publications Warehouse

    Hunter, C.M.; Runge, M.C.

    2004-01-01

    State-dependent strategies (SDSs) are the most general form of harvest policy because they allow the harvest rate to depend, without constraint, on the state of the system. State-dependent strategies that provide an optimal harvest rate for any system state can be calculated, and stochasticity can be appropriately accommodated in this optimization. Stochasticity poses 2 challenges to harvest policies: (1) the population will never be at the equilibrium state; and (2) stochasticity induces uncertainty about future states. We investigated the effects of 2 types of stochasticity, environmental variability and management control error, on SDS harvest policies for a white-tailed deer (Odocoileus virginianus) model, and contrasted these with a harvest policy based on maximum sustainable yield (MSY). Increasing stochasticity resulted in more conservative SDSs; that is, higher population densities were required to support the same harvest rate, but these effects were generally small. As stochastic effects increased, SDSs performed much better than MSY. Both deterministic and stochastic SDSs maintained maximum mean annual harvest yield (AHY) and optimal equilibrium population size (Neq) in a stochastic environment, whereas an MSY policy could not. We suggest 3 rules of thumb for harvest management of long-lived vertebrates in stochastic systems: (1) an SDS is advantageous over an MSY policy, (2) using an SDS rather than an MSY is more important than whether a deterministic or stochastic SDS is used, and (3) for SDSs, rankings of the variability in management outcomes (e.g., harvest yield) resulting from parameter stochasticity can be predicted by rankings of the deterministic elasticities.

  10. Unveiling variability and uncertainty for better science and decisions on cancer risks from environmental chemicals.

    PubMed

    Bogen, Kenneth T

    2014-10-01

    The National Research Council 2009 "Silver Book" panel report included a recommendation that the U.S. Environmental Protection Agency (EPA) should increase all of its chemical carcinogen (CC) potency estimates by ∼7-fold to adjust for a purported median-vs.-mean bias that I recently argued does not exist (Bogen KT. "Does EPA underestimate cancer risks by ignoring susceptibility differences?," Risk Analysis, 2014; 34(10):1780-1784). In this issue of the journal, my argument is critiqued for having flaws concerning: (1) intent, bias, and conservatism of EPA estimates of CC potency; (2) bias in potency estimates derived from epidemiology; and (3) human-animal CC-potency correlation. However, my argument remains valid, for the following reasons. (1) EPA's default approach to estimating CC risks has correctly focused on bounding average (not median) individual risk under a genotoxic mode-of-action (MOA) assumption, although pragmatically the approach leaves both inter-individual variability in CC-susceptibility, and widely varying CC-specific magnitudes of fundamental MOA uncertainty, unquantified. (2) CC risk estimates based on large epidemiology studies are not systematically biased downward due to limited sampling from broad, lognormal susceptibility distributions. (3) A good, quantitative correlation is exhibited between upper-bounds on CC-specific potency estimated from human vs. animal studies (n = 24, r = 0.88, p = 2 × 10(-8)). It is concluded that protective upper-bound estimates of individual CC risk that account for heterogeneity in susceptibility, as well as risk comparisons informed by best predictions of average-individual and population risk that address CC-specific MOA uncertainty, should each be used as separate, complimentary tools to improve regulatory decisions concerning low-level, environmental CC exposures. PMID:25407123

  11. Distribution of microbial populations and their relationship with environmental variables in the North Yellow Sea, China

    NASA Astrophysics Data System (ADS)

    Bai, Xiaoge; Wang, Min; Liang, Yantao; Zhang, Zhifeng; Wang, Fang; Jiang, Xuejiao

    2012-03-01

    In order to understand the large-scale spatial distribution characteristics of picoplankton, nanophytoplankton and virioplankton and their relationship with environmental variables in coastal and offshore waters, flow cytometry (FCM) was used to analyze microbial abundance of samples collected in summer from four depths at 36 stations in the North Yellow Sea (NYS). The data revealed spatial heterogeneity in microbial populations in the offshore and near-shore waters of the NYS during the summer. For the surface layer, picoeukaryotes were abundant in the near-shore waters, Synechococcus was abundant in the offshore areas, and bacterial and viral abundances were high in the near-shore waters around the Liaodong peninsula. In the near-shore waters, no significant vertical variation of picophytoplankton (0.2-2μm) abundance was found. However, the nanophytoplankton abundance was higher in the upper layers (from the surface to 10 m depth) than in the bottom layer. For the offshore waters, both pico- and nanophytoplankton (2-20μm) abundance decreased sharply with depth in the North Yellow Sea Cold Water Mass (NYSCWM). But, for the vertical distribution of virus and bacteria abundance, no significant variation was observed in both near-shore and offshore waters. Autotrophic microbes were more sensitive to environmental change than heterotrophic microbes and viruses. Viruses showed a positive correlation with bacterial abundance, suggesting that the bacteriophage might be prominent for virioplankton (about 0.45μm) in summer in the NYS and that viral abundance might play an important role in microbial loop functions.

  12. Distribution and fate of synthetic musks in the Songhua River, Northeastern China: influence of environmental variables.

    PubMed

    Lu, Binyu; Feng, Yujie; Gao, Peng; Zhang, Zhaohan; Lin, Nan

    2015-06-01

    Contamination levels and spatial and temporal distributions of six typical synthetic musks (SMs) in water and sediment of the Songhua River in Northeastern China were investigated. Experimental data for 72 water and 52 sediment samples collected at 29 sampling sites over 12 months spanning 2011-2012 showed that the Songhua River had been contaminated to different degrees at various sites separately from the river's source. The polycyclic musks 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-(g)-2-benzopyran (HHCB) (Galaxolide) and 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene (AHTN) (Tonalide) were found most frequently and at the highest levels. Concentrations of HHCB were <2-37 ng/L in water and <0.5-17.5 ng/g dry weight (dw) in sediment. AHTN was <1-8 ng/L in water and <0.5-5.7 ng/g dw in sediment. Statistical relationships between SM concentrations and four environmental variables (temperature, illumination, runoff, and population density) in the Songhua River Basin were formulated. Concentration levels varied proportionately with the size of the city along the river, while the distribution patterns showed clear seasonal variations. HHCB/AHTN ratios mirrored the transfer and transmitting process of SMs. Concentrations of target compounds were correlated with each other, suggesting similar exposure sources. Environmental risk assessment of SMs presented seasonal variations and provided baseline information on SM exposure in the Songhua River Basin. PMID:25874412

  13. Identification of Arabidopsis Candidate Genes in Response to Biotic and Abiotic Stresses Using Comparative Microarrays

    PubMed Central

    Sham, Arjun; Moustafa, Khaled; Al-Ameri, Salma; Al-Azzawi, Ahmed; Iratni, Rabah; AbuQamar, Synan

    2015-01-01

    Plants have evolved with intricate mechanisms to cope with multiple environmental stresses. To adapt with biotic and abiotic stresses, plant responses involve changes at the cellular and molecular levels. The current study was designed to investigate the effects of combinations of different environmental stresses on the transcriptome level of Arabidopsis genome using public microarray databases. We investigated the role of cyclopentenones in mediating plant responses to environmental stress through TGA (TGACG motif-binding factor) transcription factor, independently from jasmonic acid. Candidate genes were identified by comparing plants inoculated with Botrytis cinerea or treated with heat, salt or osmotic stress with non-inoculated or non-treated tissues. About 2.5% heat-, 19% salinity- and 41% osmotic stress-induced genes were commonly upregulated by B. cinerea-treatment; and 7.6%, 19% and 48% of genes were commonly downregulated by B. cinerea-treatment, respectively. Our results indicate that plant responses to biotic and abiotic stresses are mediated by several common regulatory genes. Comparisons between transcriptome data from Arabidopsis stressed-plants support our hypothesis that some molecular and biological processes involved in biotic and abiotic stress response are conserved. Thirteen of the common regulated genes to abiotic and biotic stresses were studied in detail to determine their role in plant resistance to B. cinerea. Moreover, a T-DNA insertion mutant of the Responsive to Dehydration gene (rd20), encoding for a member of the caleosin (lipid surface protein) family, showed an enhanced sensitivity to B. cinerea infection and drought. Overall, the overlapping of plant responses to abiotic and biotic stresses, coupled with the sensitivity of the rd20 mutant, may provide new interesting programs for increased plant resistance to multiple environmental stresses, and ultimately increases its chances to survive. Future research directions towards a

  14. Identification of Arabidopsis candidate genes in response to biotic and abiotic stresses using comparative microarrays.

    PubMed

    Sham, Arjun; Moustafa, Khaled; Al-Ameri, Salma; Al-Azzawi, Ahmed; Iratni, Rabah; AbuQamar, Synan

    2015-01-01

    Plants have evolved with intricate mechanisms to cope with multiple environmental stresses. To adapt with biotic and abiotic stresses, plant responses involve changes at the cellular and molecular levels. The current study was designed to investigate the effects of combinations of different environmental stresses on the transcriptome level of Arabidopsis genome using public microarray databases. We investigated the role of cyclopentenones in mediating plant responses to environmental stress through TGA (TGACG motif-binding factor) transcription factor, independently from jasmonic acid. Candidate genes were identified by comparing plants inoculated with Botrytis cinerea or treated with heat, salt or osmotic stress with non-inoculated or non-treated tissues. About 2.5% heat-, 19% salinity- and 41% osmotic stress-induced genes were commonly upregulated by B. cinerea-treatment; and 7.6%, 19% and 48% of genes were commonly downregulated by B. cinerea-treatment, respectively. Our results indicate that plant responses to biotic and abiotic stresses are mediated by several common regulatory genes. Comparisons between transcriptome data from Arabidopsis stressed-plants support our hypothesis that some molecular and biological processes involved in biotic and abiotic stress response are conserved. Thirteen of the common regulated genes to abiotic and biotic stresses were studied in detail to determine their role in plant resistance to B. cinerea. Moreover, a T-DNA insertion mutant of the Responsive to Dehydration gene (rd20), encoding for a member of the caleosin (lipid surface protein) family, showed an enhanced sensitivity to B. cinerea infection and drought. Overall, the overlapping of plant responses to abiotic and biotic stresses, coupled with the sensitivity of the rd20 mutant, may provide new interesting programs for increased plant resistance to multiple environmental stresses, and ultimately increases its chances to survive. Future research directions towards a

  15. Effects of abiotic stressors on lutein production in the green microalga Dunaliella salina

    PubMed Central

    2014-01-01

    Background Recent years have witnessed a rising trend in exploring microalgae for valuable carotenoid products as the demand for lutein and many other carotenoids in global markets has increased significantly. In green microalgae lutein is a major carotenoid protecting cellular components from damage incurred by reactive oxygen species under stress conditions. In this study, we investigated the effects of abiotic stressors on lutein accumulation in a strain of the marine microalga D. salina which had been selected for growth under stress conditions of combined blue and red lights by adaptive laboratory evolution. Results Nitrate concentration, salinity and light quality were selected as three representative influencing factors and their impact on lutein production in batch cultures of D. salina was evaluated using response surface analysis. D. salina was found to be more tolerant to hyper-osmotic stress than to hypo-osmotic stress which caused serious cell damage and death in a high proportion of cells while hyper-osmotic stress increased the average cell size of D. salina only slightly. Two models were developed to explain how lutein productivity depends on the stress factors and for predicting the optimal conditions for lutein productivity. Among the three stress variables for lutein production, stronger interactions were found between nitrate concentration and salinity than between light quality and the other two. The predicted optimal conditions for lutein production were close to the original conditions used for adaptive evolution of D. salina. This suggests that the conditions imposed during adaptive evolution may have selected for the growth optima arrived at. Conclusions This study shows that systematic evaluation of the relationship between abiotic environmental stresses and lutein biosynthesis can help to decipher the key parameters in obtaining high levels of lutein productivity in D. salina. This study may benefit future stress-driven adaptive

  16. Variable g- Mars environmental chamber: a small window of the martian environment for life science investigations

    NASA Astrophysics Data System (ADS)

    Sgambati, Antonella; Slenzka, Klaus; Schmeyers, Bernd; Di Capua, Massimiliano; Harting, Benjamin

    Human exploration and permanent settlement on the Martian surface is the one of the most attractive and ambitious endeavors mankind has ever faced. As technology and research progress, solutions and information that were before unavailable are slowly making the dream become everyday more feasible. In the past years a huge amount of knowledge was gathered by the Mars Exploration Rovers Spirit and Opportunity and now, even more insight is being gathered through the latest rover of the family, Curiosity. In this work, data from the various missions will be used to define and reproduce on Earth the characteristic Martian atmospheric conditions. A small Mars environmental chamber has been designed and built with the objective of studying the effects of the Martian environment on biological systems. The Variable gravity Mars Environmental Chamber (VgMEC) will allow researchers to replicate atmospheric pressure, gas composition, temperature and UVA/B exposure typical of the equatorial regions of Mars. By exposing biological systems to a controllable set of stressor it will be possible to identify both multi and single stressor effects on the system of interest. While several Mars environment simulation facilities exist, due to their size and mass, all are confined to floor-fixed laboratory settings. The VgMEC is an OHB funded project that wishes to bring together the scientific community and the industry. Collaborations will be enabled by granting low cost access to cutting-edge instrumentation and services. Developed at OHB System AG, VgMEC has been designed from the ground up to be a 28L, compact and lightweight test volume capable of being integrated in existing centrifuges (such as the ESA-ESTEC LCD), gimbal systems and parabolic flight aircraft. The VgMEC support systems were designed to accommodate continuous operations of virtually unlimited duration through the adoption of solutions such as: hot swappable gas/liquid consumables bottles, low power requirements, an

  17. Ecohydrological responses of dense canopies to environmental variability: 1. Interplay between vertical structure and photosynthetic pathway

    NASA Astrophysics Data System (ADS)

    Drewry, D. T.; Kumar, P.; Long, S.; Bernacchi, C.; Liang, X.-Z.; Sivapalan, M.

    2010-12-01

    Vegetation acclimation to changing climate, in particular elevated atmospheric concentrations of carbon dioxide (CO2), has been observed to include modifications to the biochemical and ecophysiological functioning of leaves and the structural components of the canopy. These responses have the potential to significantly modify plant carbon uptake and surface energy partitioning, and have been attributed with large-scale changes in surface hydrology over recent decades. While the aggregated effects of vegetation acclimation can be pronounced, they often result from subtle changes in canopy properties that require the resolution of physical, biochemical and ecophysiological processes through the canopy for accurate estimation. In this paper, the first of two, a multilayer canopy-soil-root system model developed to capture the emergent vegetation responses to environmental change is presented. The model incorporates both C3 and C4 photosynthetic pathways, and resolves the vertical radiation, thermal, and environmental regimes within the canopy. The tight coupling between leaf ecophysiological functioning and energy balance determines vegetation responses to climate states and perturbations, which are modulated by soil moisture states through the depth of the root system. The model is validated for three growing seasons each for soybean (C3) and maize (C4) using eddy-covariance fluxes of CO2, latent, and sensible heat collected at the Bondville (Illinois) Ameriflux tower site. The data set provides an opportunity to examine the role of important environmental drivers and model skill in capturing variability in canopy-atmosphere exchange. Vertical variation in radiative states and scalar fluxes over a mean diurnal cycle are examined to understand the role of canopy structure on the patterns of absorbed radiation and scalar flux magnitudes and the consequent differences in sunlit and shaded source/sink locations through the canopies. An analysis is made of the impact of

  18. Remote Sensing-Driven Climatic/Environmental Variables for Modelling Malaria Transmission in Sub-Saharan Africa.

    PubMed

    Ebhuoma, Osadolor; Gebreslasie, Michael

    2016-01-01

    Malaria is a serious public health threat in Sub-Saharan Africa (SSA), and its transmission risk varies geographically. Modelling its geographic characteristics is essential for identifying the spatial and temporal risk of malaria transmission. Remote sensing (RS) has been serving as an important tool in providing and assessing a variety of potential climatic/environmental malaria transmission variables in diverse areas. This review focuses on the utilization of RS-driven climatic/environmental variables in determining malaria transmission in SSA. A systematic search on Google Scholar and the Institute for Scientific Information (ISI) Web of Knowledge(SM) databases (PubMed, Web of Science and ScienceDirect) was carried out. We identified thirty-five peer-reviewed articles that studied the relationship between remotely-sensed climatic variable(s) and malaria epidemiological data in the SSA sub-regions. The relationship between malaria disease and different climatic/environmental proxies was examined using different statistical methods. Across the SSA sub-region, the normalized difference vegetation index (NDVI) derived from either the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) or Moderate-resolution Imaging Spectrometer (MODIS) satellite sensors was most frequently returned as a statistically-significant variable to model both spatial and temporal malaria transmission. Furthermore, generalized linear models (linear regression, logistic regression and Poisson regression) were the most frequently-employed methods of statistical analysis in determining malaria transmission predictors in East, Southern and West Africa. By contrast, multivariate analysis was used in Central Africa. We stress that the utilization of RS in determining reliable malaria transmission predictors and climatic/environmental monitoring variables would require a tailored approach that will have cognizance of the geographical

  19. Remote Sensing-Driven Climatic/Environmental Variables for Modelling Malaria Transmission in Sub-Saharan Africa

    PubMed Central

    Ebhuoma, Osadolor; Gebreslasie, Michael

    2016-01-01

    Malaria is a serious public health threat in Sub-Saharan Africa (SSA), and its transmission risk varies geographically. Modelling its geographic characteristics is essential for identifying the spatial and temporal risk of malaria transmission. Remote sensing (RS) has been serving as an important tool in providing and assessing a variety of potential climatic/environmental malaria transmission variables in diverse areas. This review focuses on the utilization of RS-driven climatic/environmental variables in determining malaria transmission in SSA. A systematic search on Google Scholar and the Institute for Scientific Information (ISI) Web of KnowledgeSM databases (PubMed, Web of Science and ScienceDirect) was carried out. We identified thirty-five peer-reviewed articles that studied the relationship between remotely-sensed climatic variable(s) and malaria epidemiological data in the SSA sub-regions. The relationship between malaria disease and different climatic/environmental proxies was examined using different statistical methods. Across the SSA sub-region, the normalized difference vegetation index (NDVI) derived from either the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) or Moderate-resolution Imaging Spectrometer (MODIS) satellite sensors was most frequently returned as a statistically-significant variable to model both spatial and temporal malaria transmission. Furthermore, generalized linear models (linear regression, logistic regression and Poisson regression) were the most frequently-employed methods of statistical analysis in determining malaria transmission predictors in East, Southern and West Africa. By contrast, multivariate analysis was used in Central Africa. We stress that the utilization of RS in determining reliable malaria transmission predictors and climatic/environmental monitoring variables would require a tailored approach that will have cognizance of the geographical

  20. Relationships among environmental variables and distribution of tree species at high elevation in the Olympic Mountains

    USGS Publications Warehouse

    Woodward, Andrea

    1998-01-01

    Relationships among environmental variables and occurrence of tree species were investigated at Hurricane Ridge in Olympic National Park, Washington, USA. A transect consisting of three plots was established down one north-and one south-facing slope in stands representing the typical elevational sequence of tree species. Tree species included subalpine fir (Abies lasiocarpa), Douglas-fir (Pseudotsuga menziesii), mountain hemlock (Tsuga mertensiana), and Pacific silver fir (Abies amabilis). Air and soil temperature, precipitation, and soil moisture were measured during three growing seasons. Snowmelt patterns, soil carbon and moisture release curves were also determined. The plots represented a wide range in soil water potential, a major determinant of tree species distribution (range of minimum values = -1.1 to -8.0 MPa for Pacific silver fir and Douglas-fir plots, respectively). Precipitation intercepted at plots depended on topographic location, storm direction and storm type. Differences in soil moisture among plots was related to soil properties, while annual differences at each plot were most often related to early season precipitation. Changes in climate due to a doubling of atmospheric CO2 will likely shift tree species distributions within, but not among aspects. Change will be buffered by innate tolerance of adult trees and the inertia of soil properties.

  1. Hydraulic fracturing water use variability in the United States and potential environmental implications

    PubMed Central

    Varela, Brian A.; Haines, Seth S.; Engle, Mark A.

    2015-01-01

    Abstract Until now, up‐to‐date, comprehensive, spatial, national‐scale data on hydraulic fracturing water volumes have been lacking. Water volumes used (injected) to hydraulically fracture over 263,859 oil and gas wells drilled between 2000 and 2014 were compiled and used to create the first U.S. map of hydraulic fracturing water use. Although median annual volumes of 15,275 m3 and 19,425 m3 of water per well was used to hydraulically fracture individual horizontal oil and gas wells, respectively, in 2014, about 42% of wells were actually either vertical or directional, which required less than 2600 m3 water per well. The highest average hydraulic fracturing water usage (10,000−36,620 m3 per well) in watersheds across the United States generally correlated with shale‐gas areas (versus coalbed methane, tight oil, or tight gas) where the greatest proportion of hydraulically fractured wells were horizontally drilled, reflecting that the natural reservoir properties influence water use. This analysis also demonstrates that many oil and gas resources within a given basin are developed using a mix of horizontal, vertical, and some directional wells, explaining why large volume hydraulic fracturing water usage is not widespread. This spatial variability in hydraulic fracturing water use relates to the potential for environmental impacts such as water availability, water quality, wastewater disposal, and possible wastewater injection‐induced earthquakes. PMID:26937056

  2. Hydraulic fracturing water use variability in the United States and potential environmental implications

    NASA Astrophysics Data System (ADS)

    Gallegos, Tanya J.; Varela, Brian A.; Haines, Seth S.; Engle, Mark A.

    2015-07-01

    Until now, up-to-date, comprehensive, spatial, national-scale data on hydraulic fracturing water volumes have been lacking. Water volumes used (injected) to hydraulically fracture over 263,859 oil and gas wells drilled between 2000 and 2014 were compiled and used to create the first U.S. map of hydraulic fracturing water use. Although median annual volumes of 15,275 m3 and 19,425 m3 of water per well was used to hydraulically fracture individual horizontal oil and gas wells, respectively, in 2014, about 42% of wells were actually either vertical or directional, which required less than 2600 m3 water per well. The highest average hydraulic fracturing water usage (10,000-36,620 m3 per well) in watersheds across the United States generally correlated with shale-gas areas (versus coalbed methane, tight oil, or tight gas) where the greatest proportion of hydraulically fractured wells were horizontally drilled, reflecting that the natural reservoir properties influence water use. This analysis also demonstrates that many oil and gas resources within a given basin are developed using a mix of horizontal, vertical, and some directional wells, explaining why large volume hydraulic fracturing water usage is not widespread. This spatial variability in hydraulic fracturing water use relates to the potential for environmental impacts such as water availability, water quality, wastewater disposal, and possible wastewater injection-induced earthquakes.

  3. Hydraulic fracturing water use variability in the United States and potential environmental implications

    USGS Publications Warehouse

    Gallegos, Tanya J.; Varela, Brian A.; Haines, Seth S.; Engle, Mark A.

    2015-01-01

    Until now, up-to-date, comprehensive, spatial, national-scale data on hydraulic fracturing water volumes have been lacking. Water volumes used (injected) to hydraulically fracture over 263,859 oil and gas wells drilled between 2000 and 2014 were compiled and used to create the first U.S. map of hydraulic fracturing water use. Although median annual volumes of 15,275 m3 and 19,425 m3 of water per well was used to hydraulically fracture individual horizontal oil and gas wells, respectively, in 2014, about 42% of wells were actually either vertical or directional, which required less than 2600 m3 water per well. The highest average hydraulic fracturing water usage (10,000−36,620 m3 per well) in watersheds across the United States generally correlated with shale-gas areas (versus coalbed methane, tight oil, or tight gas) where the greatest proportion of hydraulically fractured wells were horizontally drilled, reflecting that the natural reservoir properties influence water use. This analysis also demonstrates that many oil and gas resources within a given basin are developed using a mix of horizontal, vertical, and some directional wells, explaining why large volume hydraulic fracturing water usage is not widespread. This spatial variability in hydraulic fracturing water use relates to the potential for environmental impacts such as water availability, water quality, wastewater disposal, and possible wastewater injection-induced earthquakes.

  4. Variable-Speed Induction Motor Drives for Aircraft Environmental Control Compressors

    NASA Technical Reports Server (NTRS)

    Mildice, J. W.; Hansen, I. G.; Schreiner, K. E.; Roth, M. E.

    1996-01-01

    New, more-efficient designs for aircraft jet engines are not capable of supplying the large quantities of bleed air necessary to provide pressurization and air conditioning for the environmental control systems (ECS) of the next generation of large passenger aircraft. System analysis and engineering have determined that electrically-driven ECS can help to maintain the improved fuel efficiencies; and electronic controllers and induction motors are now being developed in a NASA/NPD SBIR Program to drive both types of ECS compressors. Previous variable-speed induction motor/controller system developments and publications have primarily focused on field-oriented control, with large transient reserve power, for maximum acceleration and optimum response in actuator and robotics systems. The application area addressed herein is characterized by slowly-changing inputs and outputs, small reserve power capability for acceleration, and optimization for maximum efficiency. This paper therefore focuses on the differences between this case and the optimum response case, and shows the development of this new motor/controller approach. It starts with the creation of a new set of controller requirements. In response to those requirements, new control algorithms are being developed and implemented in an embedded computer, which is integrated into the motor controller closed loop. Buffered logic outputs are used to drive the power switches in a resonant-technology, power processor/motor-controller, at switching/resonant frequencies high enough to support efficient high-frequency induction motor operation at speeds up to 50,000-RPA

  5. Linking operation parameters and environmental variables to population dynamics of Mycolata in a membrane bioreactor.

    PubMed

    Maza-Márquez, P; Gómez-Silván, C; Gómez, M A; González-López, J; Martínez-Toledo, M V; Rodelas, B

    2015-03-01

    The community structure and population dynamics of Mycolata were monitored in a full-scale membrane bioreactor during four experimental phases under changing operating and environmental conditions, by means of temperature-gradient gel electrophoresis of partial 16S-rRNA genes amplified from community DNA and RNA templates (total and active populations). Non-metric multidimensional scaling and BIO-ENV analyses demonstrated that population dynamics were mostly explained (30-32%) by changes in the input of nutrients in the influent water and the accumulation of biomass in the bioreactors, while the influence of hydraulic and solid retention times, temperature and F/M ratio was minor. Significant correlations were observed between particular Mycolata phylotypes and one or more variables, contributing information for the prediction of their abundance and activity under changing conditions. Fingerprinting and multivariate analyses demonstrated that two foaming episodes, recorded at temperatures <20°C, were connected to the increase of the relative abundance of Mycolata unrelated to Gordonia amarae. PMID:25621724

  6. Accounting for environmental variability, modeling errors, and parameter estimation uncertainties in structural identification

    NASA Astrophysics Data System (ADS)

    Behmanesh, Iman; Moaveni, Babak

    2016-07-01

    This paper presents a Hierarchical Bayesian model updating framework to account for the effects of ambient temperature and excitation amplitude. The proposed approach is applied for model calibration, response prediction and damage identification of a footbridge under changing environmental/ambient conditions. The concrete Young's modulus of the footbridge deck is the considered updating structural parameter with its mean and variance modeled as functions of temperature and excitation amplitude. The identified modal parameters over 27 months of continuous monitoring of the footbridge are used to calibrate the updating parameters. One of the objectives of this study is to show that by increasing the levels of information in the updating process, the posterior variation of the updating structural parameter (concrete Young's modulus) is reduced. To this end, the calibration is performed at three information levels using (1) the identified modal parameters, (2) modal parameters and ambient temperatures, and (3) modal parameters, ambient temperatures, and excitation amplitudes. The calibrated model is then validated by comparing the model-predicted natural frequencies and those identified from measured data after deliberate change to the structural mass. It is shown that accounting for modeling error uncertainties is crucial for reliable response prediction, and accounting only the estimated variability of the updating structural parameter is not sufficient for accurate response predictions. Finally, the calibrated model is used for damage identification of the footbridge.

  7. Abiotic Versus Biotic Weathering Of Olivine As Possible Biosignatures

    NASA Technical Reports Server (NTRS)

    Longazo, Teresa G.; Wentworth, Susan J.; Clemett, Simon J.; Southam, Gordon; McKay, David S.

    2001-01-01

    ranged from tens to a few microns with textures that remained relatively sharp and were crystallographically controlled. These results were comparable to that observed in the "naturally" weathered comparison/reference grains. Chemical analysis by EDS indicates these textures correlated with the relative loss of Mg and Fe cations by diffusional processes. In contrast the biotic results indicated changes in the etching patterns on the scale of hundreds of nm, which are neither sharp nor crystallographically controlled (nanoetching). Organisms, organic debris and/or extracellular polymeric substances (biofilm) were often in close proximity or direct contact with the nanoetching. While there are many poorly constrained variables in natural weathering experiments to contend with, such as the time scale, the chemistry of the fluids and degree of biologic participation, some preliminary observations can be made: (1) certain distinct surface textures appear correlated with the specific processes giving rise to these textures; (2) the process of diffusing cations can produce many similar styles of surface textural changes; and (3) the main difference between abiotic and biotically produced weathering is the scale (microns versus nanometers) and the style (crystallographically versus noncrystallographically controlled) of the textural features. Further investigation into nanosize scale surface textures should attempt to quantify both textures and chemical changes of the role of microorganisms in the weathering of silicates. Additional experiments addressing nanoscale textures of shock features for comparison with the current data set.

  8. Influence of abiotic stress signals on secondary metabolites in plants

    PubMed Central

    Ramakrishna, Akula; Ravishankar, Gokare Aswathanarayana

    2011-01-01

    Plant secondary metabolites are unique sources for pharmaceuticals, food additives, flavors, and industrially important biochemicals. Accumulation of such metabolites often occurs in plants subjected to stresses including various elicitors or signal molecules. Secondary metabolites play a major role in the adaptation of plants to the environment and in overcoming stress conditions. Environmental factors viz. temperature, humidity, light intensity, the supply of water, minerals, and CO2 influence the growth of a plant and secondary metabolite production. Drought, high salinity, and freezing temperatures are environmental conditions that cause adverse effects on the growth of plants and the productivity of crops. Plant cell culture technologies have been effective tools for both studying and producing plant secondary metabolites under in vitro conditions and for plant improvement. This brief review summarizes the influence of different abiotic factors include salt, drought, light, heavy metals, frost etc. on secondary metabolites in plants. The focus of the present review is the influence of abiotic factors on secondary metabolite production and some of important plant pharmaceuticals. Also, we describe the results of in vitro cultures and production of some important secondary metabolites obtained in our laboratory. PMID:22041989

  9. Abiotic factors influence plant storage lipid accumulation and composition.

    PubMed

    Singer, Stacy D; Zou, Jitao; Weselake, Randall J

    2016-02-01

    The demand for plant-derived oils has increased substantially over the last decade, and is sure to keep growing. While there has been a surge in research efforts to produce plants with improved oil content and quality, in most cases the enhancements have been small. To add further complexity to this situation, substantial differences in seed oil traits among years and field locations have indicated that plant lipid biosynthesis is also influenced to a large extent by multiple environmental factors such as temperature, drought, light availability and soil nutrients. On the molecular and biochemical levels, the expression and/or activities of fatty acid desaturases, as well as diacylglycerol acyltransferase 1, have been found to be affected by abiotic factors, suggesting that they play a role in the lipid content and compositional changes seen under abiotic stress conditions. Unfortunately, while only a very small number of strategies have been developed as of yet to minimize these environmental effects on the production of storage lipids, it is clear that this feat will be of the utmost importance for developing superior oil crops with the capability to perform in a consistent manner in field conditions in the future. PMID:26795146

  10. Genotype to Phenotype Maps: Multiple Input Abiotic Signals Combine to Produce Growth Effects via Attenuating Signaling Interactions in Maize

    PubMed Central

    Makumburage, G. Buddhika; Richbourg, H. Lee; LaTorre, Kalindi D.; Capps, Andrew; Chen, Cuixen; Stapleton, Ann E.

    2013-01-01

    The complexity of allele interactions constrains crop improvement and the prediction of disease susceptibility. Additive allele effects are the foundation for selection in animal and plant breeding, and complex genetic and environmental interactions contribute to inefficient detection of desirable loci. Manipulation and modeling of other sources of variation, such as environmental variables, have the potential to improve our prediction of phenotype from genotype. As an example of our approach to analysis of the network linking environmental input to alleles, we mapped the genetic architecture of single and combined abiotic stress responses in two maize mapping populations and compared the observed genetic architecture patterns to simple theoretical predictions. Comparisons of single and combined stress effects on growth and biomass traits exhibit patterns of allele effects that suggest attenuating interactions among physiological signaling steps in drought and ultraviolet radiation stress responses. The presence of attenuating interactions implies that shared QTL found in sets of environments could be used to group environment types and identify underlying environmental similarities, and that patterns of stress-dependent genetic architecture should be studied as a way to prioritize prebreeding populations. A better understanding of whole-plant interactor pathways and genetic architecture of multiple-input environmental signaling has the potential to improve the prediction of genomic value in plant breeding and crop modeling. PMID:24142926

  11. Biotic and abiotic drivers of phenotypic plasticity of wing dimorphism in Sclerodermus pupariae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wing phenotype polymorphism is commonly observed in insects, yet little is known about the influence of environmental cues on the development or expression of the alternative phenotypes. Here, we examined the effects of biotic and abiotic factors including temperature, photoperiod, light intensity,...

  12. Near-global freshwater-specific environmental variables for biodiversity analyses in 1 km resolution

    PubMed Central

    Domisch, Sami; Amatulli, Giuseppe; Jetz, Walter

    2015-01-01

    The lack of freshwater-specific environmental information at sufficiently fine spatial grain hampers broad-scale analyses in aquatic biology, biogeography, conservation, and ecology. Here we present a near-global, spatially continuous, and freshwater-specific set of environmental variables in a standardized 1 km grid. We delineate the sub-catchment for each grid cell along the HydroSHEDS river network and summarize the upstream climate, topography, land cover, surface geology and soil to each grid cell using various metrics (average, minimum, maximum, range, sum, inverse distance-weighted average and sum). All variables were subsequently averaged across single lakes and reservoirs of the Global lakes and Wetlands Database that are connected to the river network. Monthly climate variables were summarized into 19 long-term climatic variables following the ‘bioclim’ framework. This new set of variables provides a basis for spatial ecological and biodiversity analyses in freshwater ecosystems at near global extent, yet fine spatial grain. To facilitate the generation of freshwater variables for custom study areas and spatial grains, we provide the ‘r.stream.watersheds’ and ‘r.stream.variables’ add-ons for the GRASS GIS software. PMID:26647296

  13. Associations among fish assemblage structure and environmental variables in Willamette Basin streams, Oregon

    USGS Publications Warehouse

    Waite, I.R.; Carpenter, K.D.

    2000-01-01

    As part of the U.S. Geological Survey's National Water-Quality Assessment Program, fish were collected from 24 selected stream sites in the Willamette Basin during 1993-1995 to determine the composition of the fish assemblages and their relation to the chemical and physical environment. Variance in fish relative abundance was greater among all sites than among spatially distinct reaches within a site (spatial variation) or among multiple sampled years at a site (temporal variation). Therefore, data from a single reach in an individual year was considered to be a reliable estimator of the fish assemblage structure at a site when the data were normalized by percent relative abundance. Multivariate classification and ordination were used to examine patterns in environmental variables and fish relative abundance over differing spatial scales (among versus within ecoregions). Across all ecoregions (all sites), fish assemblages were primarily structured along environmental gradients of water temperature and stream gradient (coldwater, high-gradient forested sites versus warmwater, low-gradient Willamette Valley sites); this pattern superseded patterns that were ecoregion specific. Water temperature, dissolved oxygen, and physical habitat (e.g., riparian canopy and percent riffles) were associated with patterns of fish assemblages across all ecoregions; however, pesticide and total phosphorus concentrations were more important than physical habitat within the Willamette Valley ecoregion. Consideration of stream site stratification (e.g., stream size, ecoregion, and stream gradient), identification of fish to species level (particularly the sculpin family), and detailed measurement of habitat, diurnal dissolved oxygen, and water temperature were critical in evaluating the composition of fish assemblages in relation to land use. In general, these low-gradient valley streams typical of other agricultural regions had poor riparian systems and showed increases in water

  14. Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging

    PubMed Central

    Hossain, Mohammad A.; Bhattacharjee, Soumen; Armin, Saed-Moucheshi; Qian, Pingping; Xin, Wang; Li, Hong-Yu; Burritt, David J.; Fujita, Masayuki; Tran, Lam-Son P.

    2015-01-01

    Plants are constantly challenged by various abiotic stresses that negatively affect growth and productivity worldwide. During the course of their evolution, plants have developed sophisticated mechanisms to recognize external signals allowing them to respond appropriately to environmental conditions, although the degree of adjustability or tolerance to specific stresses differs from species to species. Overproduction of reactive oxygen species (ROS; hydrogen peroxide, H2O2; superoxide, O2⋅-; hydroxyl radical, OH⋅ and singlet oxygen, 1O2) is enhanced under abiotic and/or biotic stresses, which can cause oxidative damage to plant macromolecules and cell structures, leading to inhibition of plant growth and development, or to death. Among the various ROS, freely diffusible and relatively long-lived H2O2 acts as a central player in stress signal transduction pathways. These pathways can then activate multiple acclamatory responses that reinforce resistance to various abiotic and biotic stressors. To utilize H2O2 as a signaling molecule, non-toxic levels must be maintained in a delicate balancing act between H2O2 production and scavenging. Several recent studies have demonstrated that the H2O2-priming can enhance abiotic stress tolerance by modulating ROS detoxification and by regulating multiple stress-responsive pathways and gene expression. Despite the importance of the H2O2-priming, little is known about how this process improves the tolerance of plants to stress. Understanding the mechanisms of H2O2-priming-induced abiotic stress tolerance will be valuable for identifying biotechnological strategies to improve abiotic stress tolerance in crop plants. This review is an overview of our current knowledge of the possible mechanisms associated with H2O2-induced abiotic oxidative stress tolerance in plants, with special reference to antioxidant metabolism. PMID:26136756

  15. Associations of benthic macroinvertebrate assemblages with environmental variables in the upper Clear Creek watershed, California

    USGS Publications Warehouse

    Brown, Larry R.; May, Jason T.; Wulff, Marissa

    2012-01-01

    Benthic macroinvertebrates are integral components of stream ecosystems and are often used to assess the ecological integrity of streams. We sampled streams in the upper Clear Creek drainage in the Klamath—Siskiyou Ecoregion of northwestern California in fall 2004 (17 sites) and 2005 (original 17 plus 4 new sites) with the objectives of documenting the benthic macroinvertebrate assemblages supported by the streams in the area, determining how those assemblages respond to environmental variables, assessing the biological condition of the streams using a benthic index of biotic integrity (IBI), and understanding the assemblages in the context of biodiversity of the ecoregion. We collected both reach-wide (RW) and targeted-riffle (TR) macroinvertebrate samples at each site. The macroinvertebrate assemblages were diverse, with over 150 genera collected for each sampling protocol. The macroinvertebrate assemblages appeared to be most responsive to a general habitat gradient based on stream size, gradient, flow, and dominance of riffles. A second important habitat gradient was based on elevation and dominance of riffles. A gradient in water quality based on concentrations of dissolved ions and metals was also important. Models based on these 3 gradients had Spearman's rank correlations with macroinvertebrate taxonomic composition of 0.60 and 0.50 for the TR and RW samples, respectively. The majority (>50%) of the sites were in good or very good biological condition based on IBI scores. The diversity of macroinvertebrate assemblages is associated with the diversity of habitats available in the Klamath—Siskiyou Ecoregion. Maintaining the aquatic habitats in good condition is important in itself but is also vital to maintaining biodiversity in this diverse and unique ecoregion.

  16. Environmental Variables Shaping the Ecological Niche of Thaumarchaeota in Soil: Direct and Indirect Causal Effects

    PubMed Central

    Hong, Jin-Kyung; Cho, Jae-Chang

    2015-01-01

    To find environmental variables (EVs) shaping the ecological niche of the archaeal phylum Thaumarchaeota in terrestrial environments, we determined the abundance of Thaumarchaeota in various soil samples using real-time PCR targeting thaumarchaeotal 16S rRNA gene sequences. We employed our previously developed primer, THAUM-494, which had greater coverage for Thaumarchaeota and lower tolerance to nonthaumarchaeotal taxa than previous Thaumarchaeota-directed primers. The relative abundance estimates (RVs) of Thaumarchaeota (RTHAUM), Archaea (RARCH), and Bacteria (RBACT) were subjected to a series of statistical analyses. Redundancy analysis (RDA) showed a significant (p < 0.05) canonical relationship between RVs and EVs. Negative causal relationships between RTHAUM and nutrient level–related EVs were observed in an RDA biplot. These negative relationships were further confirmed by correlation and regression analyses. Total nitrogen content (TN) appeared to be the EV that affected RTHAUM most strongly, and total carbon content (TC), which reflected the content of organic matter (OM), appeared to be the EV that affected it least. However, in the path analysis, a path model indicated that TN might be a mediator EV that could be controlled directly by the OM. Additionally, another path model implied that water content (WC) might also indirectly affect RTHAUM by controlling ammonium nitrogen (NH4+-N) level through ammonification. Thus, although most directly affected by NH4+-N, RTHAUM could be ultimately determined by OM content, suggesting that Thaumarchaeota could prefer low-OM or low-WC conditions, because either of these EVs could subsequently result in low levels of NH4+-N in soil. PMID:26241328

  17. Endophytic fungi: resource for gibberellins and crop abiotic stress resistance.

    PubMed

    Khan, Abdul Latif; Hussain, Javid; Al-Harrasi, Ahmed; Al-Rawahi, Ahmed; Lee, In-Jung

    2015-03-01

    The beneficial effects of endophytes on plant growth are important for agricultural ecosystems because they reduce the need for fertilizers and decrease soil and water pollution while compensating for environmental perturbations. Endophytic fungi are a novel source of bioactive secondary metabolites; moreover, recently they have been found to produce physiologically active gibberellins as well. The symbiosis of gibberellins producing endophytic fungi with crops can be a promising strategy to overcome the adverse effects of abiotic stresses. The association of such endophytes has not only increased plant biomass but also ameliorated plant-growth during extreme environmental conditions. Endophytic fungi represent a trove of unexplored biodiversity and a frequently overlooked component of crop ecology. The present review describes the role of gibberellins producing endophytic fungi, suggests putative mechanisms involved in plant endophyte stress interactions and discusses future prospects in this field. PMID:23984800

  18. Characterizing Variability and Uncertainty in Exposure Assessments Improves links to Environmental Decision-Making

    EPA Science Inventory

    Environmental Decisions often rely upon observational data or model estimates. For instance, the evaluation of human health or ecological risks often includes information on pollutant emission rates, environmental concentrations, exposures, and exposure/dose-response data. Whet...

  19. The Impact of Affective Constraints on Shaping Environmental Literacy: Model Testing Using Mediator and Moderator Variables

    ERIC Educational Resources Information Center

    Öztürk, Nilay; Teksöz, Gaye

    2016-01-01

    The aims of this study were; first to investigate the mediating effects of pre-service teachers' (PTs) attitude toward environment on the relationship between their environmental concern and environmental responsibility, and second, to explore the moderating effect of gender on the relationships between; PTs' environmental concern and…

  20. ABIOTIC ORGANIC REACTIONS AT MINERAL SURFACES

    EPA Science Inventory

    Abiotic organic reactions, such as hydrolysis, elimination, substitution, redox, and polymerization reactions, can be influenced by surfaces of clay and primary minerals, and of metal oxides. This influence is due to adsorption of the reactants to surface Lewis and Bronsted sites...

  1. Abiotic Bromination of Soil Organic Matter.

    PubMed

    Leri, Alessandra C; Ravel, Bruce

    2015-11-17

    Biogeochemical transformations of plant-derived soil organic matter (SOM) involve complex abiotic and microbially mediated reactions. One such reaction is halogenation, which occurs naturally in the soil environment and has been associated with enzymatic activity of decomposer organisms. Building on a recent finding that naturally produced organobromine is ubiquitous in SOM, we hypothesized that inorganic bromide could be subject to abiotic oxidations resulting in bromination of SOM. Through lab-based degradation treatments of plant material and soil humus, we have shown that abiotic bromination of particulate organic matter occurs in the presence of a range of inorganic oxidants, including hydrogen peroxide and assorted forms of ferric iron, producing both aliphatic and aromatic forms of organobromine. Bromination of oak and pine litter is limited primarily by bromide concentration. Fresh plant material is more susceptible to bromination than decayed litter and soil humus, due to a labile pool of mainly aliphatic compounds that break down during early stages of SOM formation. As the first evidence of abiotic bromination of particulate SOM, this study identifies a mechanistic source of the natural organobromine in humic substances and the soil organic horizon. Formation of organobromine through oxidative treatments of plant material also provides insights into the relative stability of aromatic and aliphatic components of SOM. PMID:26468620

  2. Early subtropical forest growth is driven by community mean trait values and functional diversity rather than the abiotic environment

    PubMed Central

    Kröber, Wenzel; Li, Ying; Härdtle, Werner; Ma, Keping; Schmid, Bernhard; Schmidt, Karsten; Scholten, Thomas; Seidler, Gunnar; von Oheimb, Goddert; Welk, Erik; Wirth, Christian; Bruelheide, Helge

    2015-01-01

    While functional diversity (FD) has been shown to be positively related to a number of ecosystem functions including biomass production, it may have a much less pronounced effect than that of environmental factors or species-specific properties. Leaf and wood traits can be considered particularly relevant to tree growth, as they reflect a trade-off between resources invested into growth and persistence. Our study focussed on the degree to which early forest growth was driven by FD, the environment (11 variables characterizing abiotic habitat conditions), and community-weighted mean (CWM) values of species traits in the context of a large-scale tree diversity experiment (BEF-China). Growth rates of trees with respect to crown diameter were aggregated across 231 plots (hosting between one and 23 tree species) and related to environmental variables, FD, and CWM, the latter two of which were based on 41 plant functional traits. The effects of each of the three predictor groups were analyzed separately by mixed model optimization and jointly by variance partitioning. Numerous single traits predicted plot-level tree growth, both in the models based on CWMs and FD, but none of the environmental variables was able to predict tree growth. In the best models, environment and FD explained only 4 and 31% of variation in crown growth rates, respectively, while CWM trait values explained 42%. In total, the best models accounted for 51% of crown growth. The marginal role of the selected environmental variables was unexpected, given the high topographic heterogeneity and large size of the experiment, as was the significant impact of FD, demonstrating that positive diversity effects already occur during the early stages in tree plantations. PMID:26380685

  3. A survey of abiotic stress tolerance variability in cotton germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The High Plains of Texas grows about 20% of the cotton fiber produced in the United States. The Ogallala Aquifer is the major water source of irrigation for agricultural production but is declining and future water availability will be significantly reduced. Water-deficit stress has a significant i...

  4. Large-scale Environmental Variables and Transition to Deep Convection in Cloud Resolving Model Simulations: A Vector Representation

    SciTech Connect

    Hagos, Samson M.; Leung, Lai-Yung R.

    2012-11-01

    Cloud resolving model simulations and vector analysis are used to develop a quantitative method of assessing regional variations in the relationships between various large-scale environmental variables and the transition to deep convection. Results of the CRM simulations from three tropical regions are used to cluster environmental conditions under which transition to deep convection does and does not take place. Projections of the large-scale environmental variables on the difference between these two clusters are used to quantify the roles of these variables in the transition to deep convection. While the transition to deep convection is most sensitive to moisture and vertical velocity perturbations, the details of the profiles of the anomalies vary from region to region. In comparison, the transition to deep convection is found to be much less sensitive to temperature anomalies over all three regions. The vector formulation presented in this study represents a simple general framework for quantifying various aspects of how the transition to deep convection is sensitive to environmental conditions.

  5. Linking the lytic and lysogenic bacteriophage cycles to environmental conditions, host physiology and their variability in coastal lagoons.

    PubMed

    Maurice, C F; Bouvier, C; de Wit, R; Bouvier, T

    2013-09-01

    Changes in environmental conditions and prokaryote physiology can strongly affect the dynamics of both the lysogenic and lytic bacteriophage replication cycles in aquatic systems. However, it remains unclear whether it is the nature, amplitude or frequency of these changes that alter the phage replication cycles. We performed an annual survey of three Mediterranean lagoons with contrasting levels of chlorophyll a concentration and salinity to explore how these cues and their variability influence either replication cycle. The lytic cycle was always detected and showed seasonal patterns, whereas the lysogenic cycle was often undetected and highly variable. The lytic cycle was influenced by environmental and prokaryotic physiological cues, increasing with concentrations of dissolved organic carbon, chlorophyll a, and the proportion of respiring cells, and decreasing with the proportion of damaged cells. In contrast, lysogeny was not explained by the magnitude of any environmental or physiological parameter, but increased with the amplitude of change in prokaryote physiology. Our study suggests that both cycles are regulated by distinct factors: the lytic cycle is dependent on environmental parameters and host physiology, while lysogeny is dependent on the variability of prokaryote physiology. This could lead to the contrasting patterns observed between both cycles in aquatic systems. PMID:23581698

  6. Ubiquitination pathway as a target to develop abiotic stress tolerance in rice

    PubMed Central

    Dametto, Andressa; Buffon, Giseli; Dos Reis Blasi, Édina Aparecida; Sperotto, Raul Antonio

    2015-01-01

    Abiotic stresses may result in significant losses in rice grain productivity. Protein regulation by the ubiquitin/proteasome system has been studied as a target mechanism to optimize adaptation and survival strategies of plants to different environmental stresses. This article aimed at highlighting recent discoveries about the roles ubiquitination may play in the exposure of rice plants to different abiotic stresses, enabling the development of modified plants tolerant to stress. Responses provided by the ubiquitination process include the regulation of the stomatal opening, phytohormones levels, protein stabilization, cell membrane integrity, meristematic cell maintenance, as well as the regulation of reactive oxygen species and heavy metals levels. It is noticeable that ubiquitination is a potential means for developing abiotic stress tolerant plants, being an excellent alternative to rice (and other cultures) improvement programs. PMID:26236935

  7. Coupled Abiotic-Biotic Degradation of Bisphenol A

    NASA Astrophysics Data System (ADS)

    Im, J.; Prevatte, C.; Campagna, S. R.; Loeffler, F.

    2014-12-01

    Bisphenol A (BPA) is a ubiquitous environmental contaminant with weak estrogenic activity. BPA is readily biodegradable with oxygen available, but is recalcitrant to microbial degradation under anoxic conditions. However, BPA is susceptible to abiotic transformation under anoxic conditions. To better understand the fate of BPA in anoxic environments, the kinetics of BPA transformation by manganese oxide (d-MnO2) were investigated. BPA was rapidly transformed by MnO2 with a pseudo-first-order rate constant of 0.413 min-1. NMR and LC-MS analyses identified 4-hydroxycumyl alcohol (HCA) as a major intermediate. Up to 64% of the initial amount of BPA was recovered as HCA within 5 min, but the conversion efficiency decreased with time, suggesting that HCA was further degraded by MnO2. Further experiments confirmed that HCA was also susceptible to transformation by MnO2, albeit at 5-fold lower rates than BPA transformation. Mass balance approaches suggested that HCA was the major BPA transformation intermediate, but other compounds may also be formed. The abiotic transformation of BPA by MnO2 was affected by pH, and 10-fold higher transformation rates were observed at pH 4.5 than at pH 10. Compared to BPA, HCA has a lower octanol-water partitioning coefficient (Log Kow) of 0.76 vs 2.76 for BPA and a higher aqueous solubility of 2.65 g L-1 vs 0.31 g L-1 for BPA, suggesting higher mobility of HCA in the environment. Microcosms established with freshwater sediment materials collected from four geographically distinct locations and amended with HCA demonstrated rapid HCA biodegradation under oxic, but not under anoxic conditions. These findings suggest that BPA is not inert under anoxic conditions and abiotic reactions with MnO2 generate HCA, which has increased mobility and is susceptible to aerobic degradation. Therefore, coupled abiotic-biotic processes can affect the fate and longevity of BPA in terrestrial environments.

  8. Reductive transformation of carbamazepine by abiotic and biotic processes.

    PubMed

    König, Anne; Weidauer, Cindy; Seiwert, Bettina; Reemtsma, Thorsten; Unger, Tina; Jekel, Martin

    2016-09-15

    The antiepileptic drug carbamazepine (CBZ) is ubiquitously present in the anthropogenic water cycle and is therefore of concern regarding the potable water supply. Despite of its persistent behavior in the aquatic environment, a redox dependent removal at bank filtration sites with anaerobic aquifer passage was reported repeatedly but not elucidated in detail yet. The reductive transformation of CBZ was studied, using abiotic systems (catalytic hydrogenation, electrochemistry) as well as biologically active systems (column systems, batch degradation tests). In catalytic hydrogenation CBZ is gradually hydrogenated and nine transformation products (TPs) were detected by liquid chromatography high-resolution mass spectrometry. 10,11-Dihydro-CBZ ((2H)-CBZ) was the major stable product in these abiotic, surface catalyzed reduction processes and turned out to be not a precursor of the more hydrogenated TPs. In the biotic reduction processes the formation of (2H)-CBZ alone could not explain the observed CBZ decline. There, also traces of (6H)-CBZ and (8H)-CBZ were formed by microbes under anaerobic conditions and four phase-II metabolites of reduced CBZ could be detected and tentatively identified. Thus, the spectrum of reduction products of CBZ is more diverse than previously thought. In environmental samples CBZ removal along an anaerobic soil passage was confirmed and (2H)-CBZ was determined at one of the sites. PMID:27267475

  9. The Relationship Between Environmental Variables and Response of Cotton to Nematicides

    PubMed Central

    Wheeler, T. A.; Lawrence, K. S.; Porter, D. O.; Keeling, W.; Mullinix, B. G.

    2013-01-01

    Nematicide/irrigation rate trials were conducted in Texas (TX) in 2009 and 2010 in cotton grown at three irrigation rates, where irrigation rate (base (B), B - 33%, B + 33%) was the main plot and treatment (untreated check, aldicarb, and nematicide seed treatment (NST) and NST + aldicarb) were the subplots. Aldicarb improved cotton lint yield with the base (medium) irrigation rate over the untreated check, but not at the B - 33% and B + 33% irrigation rates. In a second evaluation, 20 tests conducted over 7 yr at the same field in TX and 12 tests conducted over 6 yr at the same field in Alabama (AL) were examined for impact of environmental variables (EV) on the response to NST (containing thiodicarb or abamectin), aldicarb, a nontreated check (CK), insecticide seed treatment (TX only), and a combination of NST + aldicarb + oxamyl (NST/A/O, AL only) on root galls (TX only), early season nematode eggs (AL only), and yield (both sites). Galls/root system were lower with aldicarb-treated plots, than for the CK- or NST-treated plots. As water (irrigation plus rain) in May increased, galls/root system increased for CK or insecticide-only-treated plots, and decreased for NST- and aldicarb-treated plots, suggesting efficacy of nematicides was strongly improved by adequate soil moisture. Nematode reproduction was not affected by EV in either location, though yield was negatively affected by root-knot nematode eggs in AL at 60 d. Yield in both AL and TX was negatively related to temperature parameters and positively related to water parameters. With the addition of EV in TX, chemical treatments went from not significantly different in the absence of EV to aldicarb-treated plots having higher yields than nonnematicide-treated plots in the presence of EV. In AL, NST/A/O-treated plots yielded similar to aldicarb and better than CK or NST in the absence of EV and had significantly higher yields than all other treatments in the presence of most EV. PMID:23589654

  10. Environmental variables controlling nitric oxide :emissions from agricultural soils in the southeast united states

    NASA Astrophysics Data System (ADS)

    Sullivan, Lee J.; Moore, Thomas C.; Aneja, Viney P.; Robarge, Wayne P.; Pierce, Thomas E.; Geron, Chris; Gay, Bruce

    Fluxes of nitric oxide (NO) were measured during the summer of 1994 (12 July to 11 August) in the Upper Coastal Plain of North Carolina in a continuing effort to characterize NO emissions from intensively managed agricultural soils in the southeastern United States. Previous work during a similar time of year on the same soil type was characterized by severe moisture stress conditions. The summer of 1994 provided a more diverse weather pattern and as a result represented a set of measurements more typical of soil temperature and soil moisture relationships for the southeastern United States. In order to ascertain NO flux response to fertilization and crop type, measurements were made on fields with three distinct fertilizer practices and crop types, namely corn, cotton, and soybean. Average NO fluxes were 21.9 ± 18.6, 4.3 ± 3.7, and 2.1 ± 0.9 ng N m -2 s -1, respectively, for corn, cotton, and soybean. NO flux increased exponentially with soil temperature when soil water content was not limiting [> 30% Water Filled Pore Space (%WFPS)]. During conditions when soil water content was limiting, NO flux was inhibited and had no relationship with soil temperature. Above a value of 30% WFPS, increasing soil water content had no effect on NO emissions (the upper limit of %WFPS could not be estimated due to a lack of data in this regime). Below 30% WFPS, increasing soil moisture increased NO production and lower soil moistures led to decreased NO flux. Increased nitrogen fertilization rates led to higher NO fluxes. However, differences in physiological growth stages between crops confound extractable nitrogen values as decomposing root biomass in the mature corn crop added an undetermined amount of available nitrogen to the soil. Interactions between soil water content, fertilizer application, and soil temperature make it very difficult to predict day-to-day variations of NO flux from our data. There appears to be no simple relation between NO flux and the environmental

  11. Focusing on Environmental Biofilms With Variable-Pressure Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Joubert, L.; Wolfaardt, G. M.; Du Plessis, K.

    2006-12-01

    Since the term biofilm has been coined almost 30 years ago, visualization has formed an integral part of investigations on microbial attachment. Electron microscopic (EM) biofilm studies, however, have been limited by the hydrated extracellular matrix which loses structural integrity with conventional preparative techniques, and under required high-vacuum conditions, resulting in a loss of information on spatial relationships and distribution of biofilm microbes. Recent advances in EM technology enable the application of Variable Pressure Scanning Electron Microscopy (VP SEM) to biofilms, allowing low vacuum and hydrated chamber atmosphere during visualization. Environmental biofilm samples can be viewed in situ, unfixed and fully hydrated, with application of gold-sputter-coating only, to increase image resolution. As the impact of microbial biofilms can be both hazardous and beneficial to man and his environment, recognition of biofilms as a natural form of microbial existence is needed to fully assess the potential role of microbial communities on technology. The integration of multiple techniques to elucidate biofilm processes has become imperative for unraveling complex phenotypic adaptations of this microbial lifestyle. We applied VP SEM as integrative technique with traditional and novel analytical techniques to (1)localize lignocellulosic microbial consortia applied for producing alternative bio-energy sources in the mining wastewater industry, (2) characterize and visualize wetland microbial communities in the treatment of winery wastewater, and (3)determine the impact of recombinant technology on yeast biofilm behavior. Visualization of microbial attachment to a lignocellulose substrate, and degradation of exposed plant tissue, gave insight into fiber degradation and volatile fatty acid production for biological sulphate removal from mining wastewater. Also, the 3D-architecture of complex biofilms developing in constructed wetlands was correlated with

  12. Ecological Sexual Dimorphism and Environmental Variability within a Community of Antarctic Penguins (Genus Pygoscelis)

    PubMed Central

    Gorman, Kristen B.; Williams, Tony D.; Fraser, William R.

    2014-01-01

    Background Sexual segregation in vertebrate foraging niche is often associated with sexual size dimorphism (SSD), i.e., ecological sexual dimorphism. Although foraging behavior of male and female seabirds can vary markedly, differences in isotopic (carbon, δ13C and nitrogen, δ15N) foraging niche are generally more pronounced within sexually dimorphic species and during phases when competition for food is greater. We examined ecological sexual dimorphism among sympatric nesting Pygoscelis penguins asking whether environmental variability is associated with differences in male and female pre-breeding foraging niche. We predicted that all Pygoscelis species would forage sex-specifically, and that higher quality winter habitat, i.e., higher or lower sea ice coverage for a given species, would be associated with a more similar foraging niche among the sexes. Results P2/P8 primers reliably amplified DNA of all species. On average, male Pygoscelis penguins are structurally larger than female conspecifics. However, chinstrap penguins were more sexually dimorphic in culmen and flipper features than Adélie and gentoo penguins. Adélies and gentoos were more sexually dimorphic in body mass than chinstraps. Only male and female chinstraps and gentoos occupied separate δ15N foraging niches. Strong year effects in δ15N signatures were documented for all three species, however, only for Adélies, did yearly variation in δ15N signatures tightly correlate with winter sea ice conditions. There was no evidence that variation in sex-specific foraging niche interacted with yearly winter habitat quality. Conclusion Chinstraps were most sexually size dimorphic followed by gentoos and Adélies. Pre-breeding sex-specific foraging niche was associated with overall SSD indices across species; male chinstrap and gentoo penguins were enriched in δ15N relative to females. Our results highlight previously unknown trophic pathways that link Pygoscelis penguins with variation in Southern

  13. Local nutrient regimes determine site-specific environmental triggers of cyanobacterial and microcystin variability in urban lakes

    NASA Astrophysics Data System (ADS)

    Sinang, S. C.; Reichwaldt, E. S.; Ghadouani, A.

    2015-05-01

    Toxic cyanobacterial blooms in urban lakes present serious health hazards to humans and animals and require effective management strategies. Managing such blooms requires a sufficient understanding of the controlling environmental factors. A range of them has been proposed in the literature as potential triggers for cyanobacterial biomass development and cyanotoxin (e.g. microcystin) production in freshwater systems. However, the environmental triggers of cyanobacteria and microcystin variability remain a subject of debate due to contrasting findings. This issue has raised the question of whether the relevance of environmental triggers may depend on site-specific combinations of environmental factors. In this study, we investigated the site-specificity of environmental triggers for cyanobacterial bloom and microcystin dynamics in three urban lakes in Western Australia. Our study suggests that cyanobacterial biomass, cyanobacterial dominance and cyanobacterial microcystin content variability were significantly correlated to phosphorus and iron concentrations. However, the correlations were different between lakes, thus suggesting a site-specific effect of these environmental factors. The discrepancies in the correlations could be explained by differences in local nutrient concentration. For instance, we found no correlation between cyanobacterial fraction and total phosphorous (TP) in the lake with the highest TP concentration, while correlations were significant and negative in the other two lakes. In addition, our study indicates that the difference of the correlation between total iron (TFe) and the cyanobacterial fraction between lakes might have been a consequence of differences in the cyanobacterial community structure, specifically the presence or absence of nitrogen-fixing species. In conclusion, our study suggests that identification of significant environmental factors under site-specific conditions is an important strategy to enhance successful outcomes

  14. Cross-tolerance to biotic and abiotic stresses in plants: a focus on resistance to aphid infestation.

    PubMed

    Foyer, Christine H; Rasool, Brwa; Davey, Jack W; Hancock, Robert D

    2016-03-01

    Plants co-evolved with an enormous variety of microbial pathogens and insect herbivores under daily and seasonal variations in abiotic environmental conditions. Hence, plant cells display a high capacity to respond to diverse stresses through a flexible and finely balanced response network that involves components such as reduction-oxidation (redox) signalling pathways, stress hormones and growth regulators, as well as calcium and protein kinase cascades. Biotic and abiotic stress responses use common signals, pathways and triggers leading to cross-tolerance phenomena, whereby exposure to one type of stress can activate plant responses that facilitate tolerance to several different types of stress. While the acclimation mechanisms and adaptive responses that facilitate responses to single biotic and abiotic stresses have been extensively characterized, relatively little information is available on the dynamic aspects of combined biotic/abiotic stress response. In this review, we consider how the abiotic environment influences plant responses to attack by phloem-feeding aphids. Unravelling the signalling cascades that underpin cross-tolerance to biotic and abiotic stresses will allow the identification of new targets for increasing environmental resilience in crops. PMID:26936830

  15. Economic and Environmental Benefits of Canopy Sensing for Variable-Rate Nitrogen Corn Fertilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen (N) available to support corn production can be highly variable within fields. Canopy reflectance sensing for assessing crop N health has been proposed as a technology on which to base top-dress variable-rate N application. The objective of this research in Missouri and Nebraska was to eval...

  16. AN ENVIRONMENTAL ASSESSMENT OF SENSOR-BASED VARIABLE-RATE NITROGEN MANAGEMENT IN CORN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to address the problem of nitrate contamination of surface and ground waters, various methods have been used to try to account for spatial variability of N within agricultural fields. One approach to account for this variability and thereby reduce nitrate pollution is in-season site-specif...

  17. Phenology Analysis of Forest Vegetation to Environmental Variables during - and Post-Monsoon Seasons in Western Himalayan Region of India

    NASA Astrophysics Data System (ADS)

    Khare, S.; Latifi, H.; Ghosh, K.

    2016-06-01

    To assess the phenological changes in Moist Deciduous Forest (MDF) of western Himalayan region of India, we carried out NDVI time series analysis from 2013 to 2015 using Landsat 8 OLI data. We used the vegetation index differencing method to calculate the change in NDVI (NDVIchange) during pre and post monsoon seasons and these changes were used to assess the phenological behaviour of MDF by taking the effect of a set of environmental variables into account. To understand the effect of environmental variables on change in phenology, we designed a linear regression analysis with sample-based NDVIchange values as the response variable and elevation aspect, and Land Surface Temperature (LST) as explanatory variables. The Landsat-8 derived phenology transition stages were validated by calculating the phenology variation from Nov 2008 to April 2009 using Landsat-7 which has the same spatial resolution as Landsat-8. The Landsat-7 derived NDVI trajectories were plotted in accordance with MODIS derived phenology stages (from Nov 2008 to April 2009) of MDF. Results indicate that the Landsat -8 derived NDVI trajectories describing the phenology variation of MDF during spring, monsoon autumn and winter seasons agreed closely with Landsat-7 and MODIS derived phenology transition from Nov 2008 to April 2009. Furthermore, statistical analysis showed statistically significant correlations (p < 0.05) amongst the environmental variables and the NDVIchange between full greenness and maximum frequency stage of Onset of Greenness (OG) activity.. The major change in NDVI was observed in medium (600 to 650 m) and maximum (650 to 750 m) elevation areas. The change in LST showed also to be highly influential. The results of this study can be used for large scale monitoring of difficult-to-reach mountainous forests, with additional implications in biodiversity assessment. By means of a sufficient amount of available cloud-free imagery, detailed phenological trends across mountainous

  18. Forecasting Large-Scale Habitat Suitability of European Bustards under Climate Change: The Role of Environmental and Geographic Variables.

    PubMed

    Estrada, Alba; Delgado, M Paula; Arroyo, Beatriz; Traba, Juan; Morales, Manuel B

    2016-01-01

    We modelled the distribution of two vulnerable steppe birds, Otis tarda and Tetrax tetrax, in the Western Palearctic and projected their suitability up to the year 2080. We performed two types of models for each species: one that included environmental and geographic variables (space-included model) and a second one that only included environmental variables (space-excluded model). Our assumption was that ignoring geographic variables in the modelling procedure may result in inaccurate forecasting of species distributions. On the other hand, the inclusion of geographic variables may generate an artificial constraint on future projections. Our results show that space-included models performed better than space-excluded models. While distribution of suitable areas for T. tetrax in the future was approximately the same as at present in the space-included model, the space-excluded model predicted a pronounced geographic change of suitable areas for this species. In the case of O. tarda, the space-included model showed that many areas of current presence shifted to low or medium suitability in the future, whereas a northward expansion of intermediate suitable areas was predicted by the space-excluded one. According to the best models, current distribution of these species can restrict future distribution, probably due to dispersal constraints and site fidelity. Species ranges would be expected to shift gradually over the studied time period and, therefore, we consider it unlikely that most of the current distribution of these species in southern Europe will disappear in less than one hundred years. Therefore, populations currently occupying suitable areas should be a priority for conservation policies. Our results also show that climate-only models may have low explanatory power, and could benefit from adjustments using information on other environmental variables and biological traits; if the latter are not available, including the geographic predictor may improve the

  19. Forecasting Large-Scale Habitat Suitability of European Bustards under Climate Change: The Role of Environmental and Geographic Variables

    PubMed Central

    Estrada, Alba; Delgado, M. Paula; Arroyo, Beatriz; Traba, Juan; Morales, Manuel B.

    2016-01-01

    We modelled the distribution of two vulnerable steppe birds, Otis tarda and Tetrax tetrax, in the Western Palearctic and projected their suitability up to the year 2080. We performed two types of models for each species: one that included environmental and geographic variables (space-included model) and a second one that only included environmental variables (space-excluded model). Our assumption was that ignoring geographic variables in the modelling procedure may result in inaccurate forecasting of species distributions. On the other hand, the inclusion of geographic variables may generate an artificial constraint on future projections. Our results show that space-included models performed better than space-excluded models. While distribution of suitable areas for T. tetrax in the future was approximately the same as at present in the space-included model, the space-excluded model predicted a pronounced geographic change of suitable areas for this species. In the case of O. tarda, the space-included model showed that many areas of current presence shifted to low or medium suitability in the future, whereas a northward expansion of intermediate suitable areas was predicted by the space-excluded one. According to the best models, current distribution of these species can restrict future distribution, probably due to dispersal constraints and site fidelity. Species ranges would be expected to shift gradually over the studied time period and, therefore, we consider it unlikely that most of the current distribution of these species in southern Europe will disappear in less than one hundred years. Therefore, populations currently occupying suitable areas should be a priority for conservation policies. Our results also show that climate-only models may have low explanatory power, and could benefit from adjustments using information on other environmental variables and biological traits; if the latter are not available, including the geographic predictor may improve the

  20. Jensen's Inequality and the Impact of Short-Term Environmental Variability on Long-Term Population Growth Rates.

    PubMed

    Pickett, Evan J; Thomson, David L; Li, Teng A; Xing, Shuang

    2015-01-01

    It is well established in theory that short-term environmental fluctuations could affect the long-term growth rates of wildlife populations, but this theory has rarely been tested and there remains little empirical evidence that the effect is actually important in practice. Here we develop models to quantify the effects of daily, seasonal, and yearly temperature fluctuations on the average population growth rates, and we apply them to long-term data on the endangered Black-faced Spoonbill (Platalea minor); an endothermic species whose population growth rates follow a concave relationship with temperature. We demonstrate for the first time that the current levels of temperature variability, particularly seasonal variability, are already large enough to substantially reduce long-term population growth rates. As the climate changes, our results highlight the importance of considering the ecological effects of climate variability and not just average conditions. PMID:26352857

  1. Impact of Environmental and Disturbance Variables on Avian Community Structure along a Gradient of Urbanization in Jamshedpur, India.

    PubMed

    Verma, Sushant Kumar; Murmu, Thakur Das

    2015-01-01

    Gradient pattern analysis was used to investigate the impact of environmental and disturbance variables on species richness, species diversity, abundance and seasonal variation of birds in and around Jamshedpur, which is one of the fastest growing cities of India. It was observed that avian community structure is highly influenced by the vegetation habitat variables, food availability and human-related disturbance variables. A total of 61 species belonging to 33 families were recorded from the suburban area. 55 species belonging to 32 families were observed in nearby wildland habitat consisting of natural vegetation whereas only 26 species belonging to 18 families were observed in urban area. Results indicated that the suburban habitat had more complex bird community structure in terms of higher species richness, higher species diversity and higher evenness in comparison to urban and wildland habitat. Bird species richness and diversity varied across seasons. Maximum species richness and diversity was observed during spring season in all type of habitat. Most of the birds observed in urban areas were found to belong to either rare or irregular category on the basis of their abundance. The observed pattern of avian community structure is due to combined effect of both environmental and human related disturbance variables. PMID:26218583

  2. Impact of Environmental and Disturbance Variables on Avian Community Structure along a Gradient of Urbanization in Jamshedpur, India

    PubMed Central

    Verma, Sushant Kumar; Murmu, Thakur Das

    2015-01-01

    Gradient pattern analysis was used to investigate the impact of environmental and disturbance variables on species richness, species diversity, abundance and seasonal variation of birds in and around Jamshedpur, which is one of the fastest growing cities of India. It was observed that avian community structure is highly influenced by the vegetation habitat variables, food availability and human-related disturbance variables. A total of 61 species belonging to 33 families were recorded from the suburban area. 55 species belonging to 32 families were observed in nearby wildland habitat consisting of natural vegetation whereas only 26 species belonging to 18 families were observed in urban area. Results indicated that the suburban habitat had more complex bird community structure in terms of higher species richness, higher species diversity and higher evenness in comparison to urban and wildland habitat. Bird species richness and diversity varied across seasons. Maximum species richness and diversity was observed during spring season in all type of habitat. Most of the birds observed in urban areas were found to belong to either rare or irregular category on the basis of their abundance. The observed pattern of avian community structure is due to combined effect of both environmental and human related disturbance variables. PMID:26218583

  3. ANNUAL REPORT FOR ENVIRONMENTAL MANAGEMENT SCIENCE PROGRAM PROJECT NUMBER 86598 COUPLED FLOW AND REACTIVITY IN VARIABLY SATURATED POROUS MEDIA

    SciTech Connect

    Palmer, Carl D.; Mattson, Earl D.; Smith, Robert W.

    2003-06-13

    Improved models of contaminant migration in heterogeneous, variably saturated porous media are required to better define the long-term stewardship requirements for U.S. Department of Energy (DOE) lands and to assist in the design of effective vadose zone barriers to contaminant migrations. The objective of our three-year project is to meet the DOE need by developing new experimental approaches to describe adsorption and transport of contaminants in heterogeneous, variably saturated media (i.e., the vadose zone). The research specifically addresses the behavior of strontium, a high priority DOE contaminant. However, the key benefit of this research is improved conceptual models of how all contaminants migrate through heterogeneous, variably-saturated, porous media. Research activities are driven by the hypothesis that the reactivity of variably saturated porous media is dependent on the moisture content of the medium and can be represented by a relatively simple function applicable over a range of scales, contaminants, and media. A key and novel aspect of our research is the use of the 2-meter radius geocentrifuge capabilities at the Idaho National Engineering and Environmental Laboratory (INEEL) to conduct unsaturated reactive transport experiments (Figure 1). The experimental approach using the geocentrifuge provides data in a much shorter time period than conventional methods allowing us to complete more experiments and explore a wider range of moisture contents. The vadose zone research being done in this project will demonstrate the utility of environmental geocentrifuge experimental approaches and their applicability to DOE's vadose research needs.

  4. Reactive oxygen species in abiotic stress signaling.

    PubMed

    Jaspers, Pinja; Kangasjärvi, Jaakko

    2010-04-01

    Reactive oxygen species (ROS) are known to accumulate during abiotic stresses, and different cellular compartments respond to them by distinctive profiles of ROS formation. In contrast to earlier views, it is becoming increasingly evident that even during stress, ROS production is not necessarily a symptom of cellular dysfunction but might represent a necessary signal in adjusting the cellular machinery to the altered conditions. ROS can modulate many signal transduction pathways, such as mitogen-activated protein kinase cascades, and ultimately influence the activity of transcription factors. However, the picture of ROS-mediated signaling is still fragmentary and the issues of ROS perception as well as the signaling specificity remain open. Here, we review some of the recent advances in plant abiotic stress signaling with emphasis on processes known to be affected heavily by ROS. PMID:20028478

  5. Mercury bioaccumulation in an estuarine predator: Biotic factors, abiotic factors, and assessments of fish health.

    PubMed

    Smylie, Meredith S; McDonough, Christopher J; Reed, Lou Ann; Shervette, Virginia R

    2016-07-01

    Estuarine wetlands are major contributors to mercury (Hg) transformation into its more toxic form, methylmercury (MeHg). Although these complex habitats are important, estuarine Hg bioaccumulation is not well understood. The longnose gar Lepisosteus osseus (L. 1758), an estuarine predator in the eastern United States, was selected to examine Hg processes due to its abundance, estuarine residence, and top predator status. This study examined variability in Hg concentrations within longnose gar muscle tissue spatially and temporally, the influence of biological factors, potential maternal transfer, and potential negative health effects on these fish. Smaller, immature fish had the highest Hg concentrations and were predominantly located in low salinity waters. Sex and diet were also important factors and Hg levels peaked in the spring. Although maternal transfer occurred in small amounts, the potential negative health effects to young gar remain unknown. Fish health as measured by fecundity and growth rate appeared to be relatively unaffected by Hg at concentrations in the present study (less than 1.3 ppm wet weight). The analysis of biotic and abiotic factors relative to tissue Hg concentrations in a single estuarine fish species provided valuable insight in Hg bioaccumulation, biomagnification, and elimination. Insights such as these can improve public health policy and environmental management decisions related to Hg pollution. PMID:27086072

  6. Unraveling the role of fungal symbionts in plant abiotic stress tolerance

    PubMed Central

    Singh, Lamabam Peter

    2011-01-01

    Fungal symbionts have been found to be associated with every plant studied in the natural ecosystem, where they colonize and reside entirely or partially in the internal tissues of their host plant. Fungal endophytes can express/form a range of different lifestyle/relationships with different host including symbiotic, mutualistic, commensalistic and parasitic in response to host genotype and environmental factors. In mutualistic association fungal endophyte can enhance growth, increase reproductive success and confer biotic and abiotic stress tolerance to its host plant. Since abiotic stress such as, drought, high soil salinity, heat, cold, oxidative stress and heavy metal toxicity is the common adverse environmental conditions that affect and limit crop productivity worldwide. It may be a promising alternative strategy to exploit fungal endophytes to overcome the limitations to crop production brought by abiotic stress. There is an increasing interest in developing the potential biotechnological applications of fungal endophytes for improving plant stress tolerance and sustainable production of food crops. Here we have described the fungal symbioses, fungal symbionts and their role in abiotic stress tolerance. A putative mechanism of stress tolerance by symbionts has also been covered. PMID:21512319

  7. Temporal dynamics of biotic and abiotic drivers of litter decomposition.

    PubMed

    García-Palacios, Pablo; Shaw, E Ashley; Wall, Diana H; Hättenschwiler, Stephan

    2016-05-01

    Climate, litter quality and decomposers drive litter decomposition. However, little is known about whether their relative contribution changes at different decomposition stages. To fill this gap, we evaluated the relative importance of leaf litter polyphenols, decomposer communities and soil moisture for litter C and N loss at different stages throughout the decomposition process. Although both microbial and nematode communities regulated litter C and N loss in the early decomposition stages, soil moisture and legacy effects of initial differences in litter quality played a major role in the late stages of the process. Our results provide strong evidence for substantial shifts in how biotic and abiotic factors control litter C and N dynamics during decomposition. Taking into account such temporal dynamics will increase the predictive power of decomposition models that are currently limited by a single-pool approach applying control variables uniformly to the entire decay process. PMID:26947573

  8. DETERMINANTS OF TEMPORAL VARIABILITY IN NHEXAS-MARYLAND ENVIRONMENTAL CONCENTRATIONS, EXPOSURES, AND BIOMARKERS

    EPA Science Inventory

    The longitudinal NHEXAS-Maryland study measured metals, PAHs, and pesticides in several media to capture temporal variability. Questionnaires were concurrently administered to identify factors that influenced changes in contaminant levels over time. We constructed mixed-effects...

  9. Bayesian data fusion for spatial prediction of categorical variables in environmental sciences

    SciTech Connect

    Gengler, Sarah Bogaert, Patrick

    2014-12-05

    First developed to predict continuous variables, Bayesian Maximum Entropy (BME) has become a complete framework in the context of space-time prediction since it has been extended to predict categorical variables and mixed random fields. This method proposes solutions to combine several sources of data whatever the nature of the information. However, the various attempts that were made for adapting the BME methodology to categorical variables and mixed random fields faced some limitations, as a high computational burden. The main objective of this paper is to overcome this limitation by generalizing the Bayesian Data Fusion (BDF) theoretical framework to categorical variables, which is somehow a simplification of the BME method through the convenient conditional independence hypothesis. The BDF methodology for categorical variables is first described and then applied to a practical case study: the estimation of soil drainage classes using a soil map and point observations in the sandy area of Flanders around the city of Mechelen (Belgium). The BDF approach is compared to BME along with more classical approaches, as Indicator CoKringing (ICK) and logistic regression. Estimators are compared using various indicators, namely the Percentage of Correctly Classified locations (PCC) and the Average Highest Probability (AHP). Although BDF methodology for categorical variables is somehow a simplification of BME approach, both methods lead to similar results and have strong advantages compared to ICK and logistic regression.

  10. Biotic and Abiotic Degradation of CL-20 and RDX in Soils

    SciTech Connect

    Crocker, Fiona H.; Thompson, Karen T.; Szecsody, Jim E.; Fredrickson, Herbert L.

    2005-11-01

    The caged cyclic nitramine 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) is a new explosive that has the potential to replace existing military explosives, but little is known about its environmental toxicity, transport, and fate. We quantified and compared the aerobic environmental fate of CL-20 to the widely used cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in surface and subsurface soil microcosms. Soil-free controls and biologically mediated processes. Both abiotic and biological processes significantly degraded CL-20 in all soils examined. Apparent abiotic, first-order degradation rates (k) for CL-20 were not significantly different between soil-free controls (0.018 < k < 0.030 d-1) and biologically attenuated soil controls (0.003 abiotic degradation rates of RDX were generally slower (0 < k < 0.032 d-1) than abiotic CL-20 degradation rates. In biologically active soil microcosms amended with glucose aerobic RDX degradation rates varied between 0.010 and 0.474 d-1. Biodegradation was a key factor in determining the environmental fate of RDX, while a combination of biotic and abiotic processes was important with CL-20. Our data suggest that CL-20 should be less recalcitrant than RDX in aerobic soils.

  11. RELATIONSHIPS BETWEEN ENVIRONMENTAL VARIABLES AND BENTHIC DIATOM ASSEMBLAGES IN CALIFORNIA CENTRAL VALLEY STREAMS (USA)

    EPA Science Inventory

    Streams and rivers in the California Central Valley Ecoregion have been substantially modified by human activities. This study examines distributional patterns of benthic diatom assemblages in relation to environmental characteristics in streams and rivers of this region. Benthic...

  12. Modeling Geographic and Demographic Variability in Residential Concentrations of Environmental Tobacco Smoke Using National Data Sets

    EPA Science Inventory

    Despite substantial attention toward environmental tobacco smoke (ETS) exposure, previous studies have not provided adequate information to apply broadly within community-scale risk assessments. We aim to estimate residential concentrations of particulate matter (PM) from ETS in ...

  13. Kinetics of Abiotic Uranium(VI) Reduction by Sulfide

    NASA Astrophysics Data System (ADS)

    Hyun, S.; Davis, J. A.; Hayes, K. F.

    2010-12-01

    Uranium(VI) reduction is an important process affecting the radionuclide’s fate under sulfate reducing conditions. In this work, kinetics of abiotic U(VI) reduction by dissolved sulfide was studied using a batch reactor. The effects of solution pH, dissolved carbonate, Ca(II), U(VI), and S(-II) concentration on the reduction kinetics were tested. The ranges of these experimental variables were designed to cover the variation in groundwater chemistry observed at the Old Rifle uranium mill tailings site (Colorado, USA). Dissolved U concentration was monitored as a function of time using inductively coupled plasma-mass spectrometry to measure the rate of U(VI) reduction. Solid phase reduction products were identified using X-ray diffraction, transmission electron microscopy, and X-ray absorption spectroscopy. The results showed that changes in the experimental variables significantly affected U(VI) reduction kinetics by dissolved sulfide. U(VI) reduction occurred under circumneutral pH while no reduction was observed under alkaline conditions. The reduction rate was slowed by increased dissolved carbonate concentration. One solid phase reduction product was identified as nanoscale uraninite (UO2+x(s)). Thermodynamic modeling showed that the dissolved U(VI) aqueous species changed as a function of solution conditions correlated with the change in the reduction rate. These results show that U(VI) aqueous speciation is important in determining abiotic U(VI) reduction kinetics by dissolved sulfide. This study also illustrates the potential importance of dissolved sulfide in field-scale modeling of U reactive transport, and is expected to contribute to the understanding of long-term effects of biostimulation on U transport at the Rifle site.

  14. Effects of `Environmental Chemistry' Elective Course Via Technology-Embedded Scientific Inquiry Model on Some Variables

    NASA Astrophysics Data System (ADS)

    Çalik, Muammer; Özsevgeç, Tuncay; Ebenezer, Jazlin; Artun, Hüseyin; Küçük, Zeynel

    2014-06-01

    The purpose of this study is to examine the effects of `environmental chemistry' elective course via Technology-Embedded Scientific Inquiry (TESI) model on senior science student teachers' (SSSTs) conceptions of environmental chemistry concepts/issues, attitudes toward chemistry, and technological pedagogical content knowledge (TPACK) levels. Within one group pre-test-post-test design, the study was conducted with 117 SSSTs (68 females and 49 males—aged 21-23 years) enrolled in an `environmental chemistry' elective course in the spring semester of 2011-2012 academic-years. Instruments for data collection comprised of Environmental Chemistry Conceptual Understanding Questionnaire, TPACK survey, and Chemistry Attitudes and Experiences Questionnaire. Significant increases in the SSSTs' conceptions of environmental chemistry concepts/issues, attitudes toward chemistry, and TPACK levels are attributed to the SSSTs learning how to use the innovative technologies in the contexts of the `environmental chemistry' elective course and teaching practicum. The study implies that the TESI model may serve a useful purpose in experimental science courses that use the innovative technologies. However, to generalize feasibility of the TESI model, it should be evaluated with SSSTs in diverse learning contexts.

  15. Within-Otolith Variability in Chemical Fingerprints: Implications for Sampling Designs and Possible Environmental Interpretation

    PubMed Central

    Di Franco, Antonio; Bulleri, Fabio; Pennetta, Antonio; De Benedetto, Giuseppe; Clarke, K. Robert; Guidetti, Paolo

    2014-01-01

    Largely used as a natural biological tag in studies of dispersal/connectivity of fish, otolith elemental fingerprinting is usually analyzed by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). LA-ICP-MS produces an elemental fingerprint at a discrete time-point in the life of a fish and can generate data on within-otolith variability of that fingerprint. The presence of within-otolith variability has been previously acknowledged but not incorporated into experimental designs on the presumed, but untested, grounds of both its negligibility compared to among-otolith variability and of spatial autocorrelation among multiple ablations within an otolith. Here, using a hierarchical sampling design of spatial variation at multiple scales in otolith chemical fingerprints for two Mediterranean coastal fishes, we explore: 1) whether multiple ablations within an otolith can be used as independent replicates for significance tests among otoliths, and 2) the implications of incorporating within-otolith variability when assessing spatial variability in otolith chemistry at a hierarchy of spatial scales (different fish, from different sites, at different locations on the Apulian Adriatic coast). We find that multiple ablations along the same daily rings do not necessarily exhibit spatial dependency within the otolith and can be used to estimate residual variability in a hierarchical sampling design. Inclusion of within-otolith measurements reveals that individuals at the same site can show significant variability in elemental uptake. Within-otolith variability examined across the spatial hierarchy identifies differences between the two fish species investigated, and this finding leads to discussion of the potential for within-otolith variability to be used as a marker for fish exposure to stressful conditions. We also demonstrate that a ‘cost’-optimal allocation of sampling effort should typically include some level of within-otolith replication in the

  16. Field lysimeters for the study of fate and transport of explosive chemicals in soils under variable environmental conditions

    NASA Astrophysics Data System (ADS)

    Molina, Gloria M.; Padilla, Ingrid; Pando, Miguel; Pérez, Diego D.

    2006-05-01

    Landmines and other buried explosive devices pose in an immense threat in many places of the world, requiring large efforts on detection and neutralization of these objects. Many of the available detection techniques require the presence of chemicals near the soil-atmospheric surface. The presence of explosive related chemicals (ERCs) near this surface and their relation to the location of landmines, however, depends on the source characteristics and on fate and transport processes that affect their movement in soils. Fate and transport processes of ERC is soils may be interrelated with each other and are influenced by chemical characteristics and interrelated soil and environmental factors. Accurate detection of ERCs near the soil surface must, therefore, take into the variability of ERC concentration distributions near the soil surface as affected by fate and transport processes controlled interrelated environmental factors. To effectively predict the concentration distributions of ERCs in soils and near soil surfaces, it is necessary to have good understanding of parameters values that control these processes. To address this need, field lysimeters have been designed and developed at the University of Puerto Rico, Mayaguez .This paper presents the design of two field lysimeter used to study the fate and transport behavior of ERC in the field subjected to varying uncontrolled subtropical environmental conditions in two different soils. Both lysimeters incorporate pressure and concentration sampling ports, thermocouples, and a drainage system. Hydrus-2D was used to simulate soil moisture and drainage in the lysimeter for average environmental conditions in the study for the two soils used. The field lysimeters allow collection and monitoring of spatial and temporal ERC concentrations under variable, uncontrolled environmental conditions.

  17. Environmental variables and definitive host distribution: a habitat suitability modelling for endohelminth parasites in the marine realm

    PubMed Central

    Kuhn, Thomas; Cunze, Sarah; Kochmann, Judith; Klimpel, Sven

    2016-01-01

    Marine nematodes of the genus Anisakis are common parasites of a wide range of aquatic organisms. Public interest is primarily based on their importance as zoonotic agents of the human Anisakiasis, a severe infection of the gastro-intestinal tract as result of consuming live larvae in insufficiently cooked fish dishes. The diverse nature of external impacts unequally influencing larval and adult stages of marine endohelminth parasites requires the consideration of both abiotic and biotic factors. Whereas abiotic factors are generally more relevant for early life stages and might also be linked to intermediate hosts, definitive hosts are indispensable for a parasite’s reproduction. In order to better understand the uneven occurrence of parasites in fish species, we here use the maximum entropy approach (Maxent) to model the habitat suitability for nine Anisakis species accounting for abiotic parameters as well as biotic data (definitive hosts). The modelled habitat suitability reflects the observed distribution quite well for all Anisakis species, however, in some cases, habitat suitability exceeded the known geographical distribution, suggesting a wider distribution than presently recorded. We suggest that integrative modelling combining abiotic and biotic parameters is a valid approach for habitat suitability assessments of Anisakis, and potentially other marine parasite species. PMID:27507328

  18. Environmental variables and definitive host distribution: a habitat suitability modelling for endohelminth parasites in the marine realm.

    PubMed

    Kuhn, Thomas; Cunze, Sarah; Kochmann, Judith; Klimpel, Sven

    2016-01-01

    Marine nematodes of the genus Anisakis are common parasites of a wide range of aquatic organisms. Public interest is primarily based on their importance as zoonotic agents of the human Anisakiasis, a severe infection of the gastro-intestinal tract as result of consuming live larvae in insufficiently cooked fish dishes. The diverse nature of external impacts unequally influencing larval and adult stages of marine endohelminth parasites requires the consideration of both abiotic and biotic factors. Whereas abiotic factors are generally more relevant for early life stages and might also be linked to intermediate hosts, definitive hosts are indispensable for a parasite's reproduction. In order to better understand the uneven occurrence of parasites in fish species, we here use the maximum entropy approach (Maxent) to model the habitat suitability for nine Anisakis species accounting for abiotic parameters as well as biotic data (definitive hosts). The modelled habitat suitability reflects the observed distribution quite well for all Anisakis species, however, in some cases, habitat suitability exceeded the known geographical distribution, suggesting a wider distribution than presently recorded. We suggest that integrative modelling combining abiotic and biotic parameters is a valid approach for habitat suitability assessments of Anisakis, and potentially other marine parasite species. PMID:27507328

  19. Environmental variables and definitive host distribution: a habitat suitability modelling for endohelminth parasites in the marine realm

    NASA Astrophysics Data System (ADS)

    Kuhn, Thomas; Cunze, Sarah; Kochmann, Judith; Klimpel, Sven

    2016-08-01

    Marine nematodes of the genus Anisakis are common parasites of a wide range of aquatic organisms. Public interest is primarily based on their importance as zoonotic agents of the human Anisakiasis, a severe infection of the gastro-intestinal tract as result of consuming live larvae in insufficiently cooked fish dishes. The diverse nature of external impacts unequally influencing larval and adult stages of marine endohelminth parasites requires the consideration of both abiotic and biotic factors. Whereas abiotic factors are generally more relevant for early life stages and might also be linked to intermediate hosts, definitive hosts are indispensable for a parasite’s reproduction. In order to better understand the uneven occurrence of parasites in fish species, we here use the maximum entropy approach (Maxent) to model the habitat suitability for nine Anisakis species accounting for abiotic parameters as well as biotic data (definitive hosts). The modelled habitat suitability reflects the observed distribution quite well for all Anisakis species, however, in some cases, habitat suitability exceeded the known geographical distribution, suggesting a wider distribution than presently recorded. We suggest that integrative modelling combining abiotic and biotic parameters is a valid approach for habitat suitability assessments of Anisakis, and potentially other marine parasite species.

  20. Examine the potential of spatial downscaling of TRMM precipitation with environmental variables: An evaluation for the Ohio River Basin

    NASA Astrophysics Data System (ADS)

    Yoon, Y.; Beighley, E., II

    2014-12-01

    Accurately quantifying precipitation in both space and time is a central challenge in hydrologic modelling. Data products from the Tropical Rainfall Measuring Mission (TRMM) are commonly used as precipitation forcings in many models. TRMM provides 3-hr precipitation estimates at a near-global scale (-50◦ S to 50◦N) with a 0.25 degree spatial resolution. However, when applied in regional scale hydrologic models, the spatial resolution of the TRMM is often too coarse limiting our ability to simulate relevant hydrologic processes.This study focuses on addressing the science question: can we improve the spatial resolution of the TRMM using statistical downscaling with environmental variables derived from finer scale remote sensing data? The goal is to downscale the TRMM resolution from 0.25 degrees (25 km) to 0.05 degrees (about 5 km). In our approach, we first identify environmental variables (i.e., vegetation cover, topography, and temperature) that are related to the formation of or result from precipitation by exploring their statistical relationships with TRMM precipitation at varying temporal scales (i.e., daily, monthly, and yearly) using an analysis of variance in multiple regression. The MODIS vegetation index, MODIS leaf area index, and SPOT vegetation are examined as a proxy for vegetation. To represent the topography, the Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) is used. MODIS land surface temperature are used for temperature. Second, we characterize a residual component, which cannot be explained by the statistical relationship between precipitation and environmental variables, to improve the accuracy of the downscaling results. For example, recent studies have shown that approximately 30-40% of the variability in annual precipitation cannot be explained by vegetation and elevation characteristics. According for this unexplained variability in statistical downscaling methods is a significant challenge. Here, we use a data

  1. Relationships between ecosystem metabolism, benthic macroinvertebrate densities, and environmental variables in a sub-arctic Alaskan river

    USGS Publications Warehouse

    Benson, Emily R.; Wipfli, Mark S.; Clapcott, Joanne E.; Hughes, Nicholas F.

    2013-01-01

    Relationships between environmental variables, ecosystem metabolism, and benthos are not well understood in sub-arctic ecosystems. The goal of this study was to investigate environmental drivers of river ecosystem metabolism and macroinvertebrate density in a sub-arctic river. We estimated primary production and respiration rates, sampled benthic macroinvertebrates, and monitored light intensity, discharge rate, and nutrient concentrations in the Chena River, interior Alaska, over two summers. We employed Random Forests models to identify predictor variables for metabolism rates and benthic macroinvertebrate density and biomass, and calculated Spearman correlations between in-stream nutrient levels and metabolism rates. Models indicated that discharge and length of time between high water events were the most important factors measured for predicting metabolism rates. Discharge was the most important variable for predicting benthic macroinvertebrate density and biomass. Primary production rate peaked at intermediate discharge, respiration rate was lowest at the greatest time since last high water event, and benthic macroinvertebrate density was lowest at high discharge rates. The ratio of dissolved inorganic nitrogen to soluble reactive phosphorus ranged from 27:1 to 172:1. We found that discharge plays a key role in regulating stream ecosystem metabolism, but that low phosphorous levels also likely limit primary production in this sub-arctic stream.

  2. A multi-model approach to evaluate the role of environmental variability and fishing pressure in sardine fisheries

    NASA Astrophysics Data System (ADS)

    Leitão, F.; Alms, V.; Erzini, K.

    2014-11-01

    Understanding the fluctuations in population abundance is a central question in fisheries. Sardine fisheries is of great importance to Portugal and is data-rich and of primary concern to fisheries managers. In Portugal, sub-stocks of Sardina pilchardus (sardine) are found in different regions: the Northwest (IXaCN), Southwest (IXaCS) and the South coast (IXaS-Algarve). Each of these sardine sub-stocks is affected differently by a unique set of climate and ocean conditions, mainly during larval development and recruitment, which will consequently affect sardine fisheries in the short term. Taking this hypothesis into consideration we examined the effects of hydrographic (river discharge), sea surface temperature, wind driven phenomena, upwelling, climatic (North Atlantic Oscillation) and fisheries variables (fishing effort) on S. pilchardus catch rates (landings per unit effort, LPUE, as a proxy for sardine biomass). A 20-year time series (1989-2009) was used, for the different subdivisions of the Portuguese coast (sardine sub-stocks). For the purpose of this analysis a multi-model approach was used, applying different time series models for data fitting (Dynamic Factor Analysis, Generalised Least Squares), forecasting (Autoregressive Integrated Moving Average), as well as Surplus Production stock assessment models. The different models were evaluated, compared and the most important variables explaining changes in LPUE were identified. The type of relationship between catch rates of sardine and environmental variables varied across regional scales due to region-specific recruitment responses. Seasonality plays an important role in sardine variability within the three study regions. In IXaCN autumn (season with minimum spawning activity, larvae and egg concentrations) SST, northerly wind and wind magnitude were negatively related with LPUE. In IXaCS none of the explanatory variables tested was clearly related with LPUE. In IXaS-Algarve (South Portugal) both spring

  3. Prediction of benthic community structure from environmental variables in a soft-sediment tidal basin (North Sea)

    NASA Astrophysics Data System (ADS)

    Puls, W.; van Bernem, K.-H.; Eppel, D.; Kapitza, H.; Pleskachevsky, A.; Riethmüller, R.; Vaessen, B.

    2012-09-01

    The relationship between benthos data and environmental data in 308 samples collected from the intertidal zone of the Hörnum tidal basin (German Wadden Sea) was analyzed. The environmental variables were current velocity, wave action, emersion time (all of which were obtained from a 2-year simulation with a numerical model) and four sediment grain-size parameters. A grouping of sample stations into five benthos clusters showed a large-scale (>1 km) zoning of benthic assemblages on the tidal flats. The zoning varied with the distance from the shore. Three sample applications were examined to test the predictability of the benthic community structure based on environmental variables. In each application, the dataset was spatially partitioned into a training set and a test set. Predictions of benthic community structure in the test sets were attempted using a multinomial logistic regression model. Applying hydrodynamic predictors, the model performed significantly better than it did when sediment predictors were applied. The accuracy of model predictions, given by Cohen's kappa, varied between 0.14 and 0.49. The model results were consistent with independently attained evidence of the important role of physical factors in Wadden Sea tidal flat ecology.

  4. The value of crossdating to retain high-frequency variability, climate signals, and extreme events in environmental proxies.

    PubMed

    Black, Bryan A; Griffin, Daniel; van der Sleen, Peter; Wanamaker, Alan D; Speer, James H; Frank, David C; Stahle, David W; Pederson, Neil; Copenheaver, Carolyn A; Trouet, Valerie; Griffin, Shelly; Gillanders, Bronwyn M

    2016-07-01

    High-resolution biogenic and geologic proxies in which one increment or layer is formed per year are crucial to describing natural ranges of environmental variability in Earth's physical and biological systems. However, dating controls are necessary to ensure temporal precision and accuracy; simple counts cannot ensure that all layers are placed correctly in time. Originally developed for tree-ring data, crossdating is the only such procedure that ensures all increments have been assigned the correct calendar year of formation. Here, we use growth-increment data from two tree species, two marine bivalve species, and a marine fish species to illustrate sensitivity of environmental signals to modest dating error rates. When falsely added or missed increments are induced at one and five percent rates, errors propagate back through time and eliminate high-frequency variability, climate signals, and evidence of extreme events while incorrectly dating and distorting major disturbances or other low-frequency processes. Our consecutive Monte Carlo experiments show that inaccuracies begin to accumulate in as little as two decades and can remove all but decadal-scale processes after as little as two centuries. Real-world scenarios may have even greater consequence in the absence of crossdating. Given this sensitivity to signal loss, the fundamental tenets of crossdating must be applied to fully resolve environmental signals, a point we underscore as the frontiers of growth-increment analysis continue to expand into tropical, freshwater, and marine environments. PMID:26910504

  5. Stability of Intercellular Exchange of Biochemical Substances Affected by Variability of Environmental Parameters

    NASA Astrophysics Data System (ADS)

    Mihailović, Dragutin T.; Budinčević, Mirko; Balaž, Igor; Mihailović, Anja

    Communication between cells is realized by exchange of biochemical substances. Due to internal organization of living systems and variability of external parameters, the exchange is heavily influenced by perturbations of various parameters at almost all stages of the process. Since communication is one of essential processes for functioning of living systems it is of interest to investigate conditions for its stability. Using previously developed simplified model of bacterial communication in a form of coupled difference logistic equations we investigate stability of exchange of signaling molecules under variability of internal and external parameters.

  6. Novel NAC Transcription Factor TaNAC67 Confers Enhanced Multi-Abiotic Stress Tolerances in Arabidopsis

    PubMed Central

    Mao, Xinguo; Chen, Shuangshuang; Li, Ang; Zhai, Chaochao; Jing, Ruilian

    2014-01-01

    Abiotic stresses are major environmental factors that affect agricultural productivity worldwide. NAC transcription factors play pivotal roles in abiotic stress signaling in plants. As a staple crop, wheat production is severely constrained by abiotic stresses whereas only a few NAC transcription factors have been characterized functionally. To promote the application of NAC genes in wheat improvement by biotechnology, a novel NAC gene designated TaNAC67 was characterized in common wheat. To determine its role, transgenic Arabidopsis overexpressing TaNAC67-GFP controlled by the CaMV-35S promoter was generated and subjected to various abiotic stresses for morphological and physiological assays. Gene expression showed that TaNAC67 was involved in response to drought, salt, cold and ABA treatments. Localization assays revealed that TaNAC67 localized in the nucleus. Morphological analysis indicated the transgenics had enhanced tolerances to drought, salt and freezing stresses, simultaneously supported by enhanced expression of multiple abiotic stress responsive genes and improved physiological traits, including strengthened cell membrane stability, retention of higher chlorophyll contents and Na+ efflux rates, improved photosynthetic potential, and enhanced water retention capability. Overexpression of TaNAC67 resulted in pronounced enhanced tolerances to drought, salt and freezing stresses, therefore it has potential for utilization in transgenic breeding to improve abiotic stress tolerance in crops. PMID:24427285

  7. Autophagy, a Conserved Mechanism for Protein Degradation, Responds to Heat, and Other Abiotic Stresses in Capsicum annuum L.

    PubMed Central

    Zhai, Yufei; Guo, Meng; Wang, Hu; Lu, Jinping; Liu, Jinhong; Zhang, Chong; Gong, Zhenhui; Lu, Minghui

    2016-01-01

    Abiotic stresses negatively affect plants growth and development by inducing protein denaturation, and autophagy degrades the damaged proteins to alleviate their toxicity, however, little is known about the involvement of autophagy in pepper (Capsicum annuum L.) tolerances to abiotic stresses. In this study, we identified autophagy-related gene (ATG) members in the whole genome of pepper by HMM method and analyzed their expression profiles in response to heat and other abiotic stresses by quantitative real-time PCR. The results showed that the CaATG contained 15 core ATG members including 29 ATG proteins with their respective conserved functional domains, involving the whole process of autophagy. Under normal environmental condition, the expression of CaATG genes showed tissue- and developmental stage-specific patterns, while under abiotic stresses of salt, drought, heat, cold and carbohydrate starvation, the accumulation of autophagosome punctate increased and the expression level of CaATG genes changed with stress type-dependent pattern, which indicates the linkage of autophagy in pepper response to abiotic stresses. After treated with heat stress, both the number of up-regulated CaATG genes and the increment of autophagosome punctate were higher in pepper thermotolerant line R9 than those in thermosensitive line B6, implying an association of autophagy with heat tolerance. In addition, CaATG6 was predicted to interact with CaHSP90 family members. Our study suggests that autophagy is connected to pepper tolerances to heat and other abiotic stresses. PMID:26904087

  8. Will Variable-Rate Nitrogen Fertilization Using Corn Canopy Reflectance Sensing Deliver Environmental Benefits?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Within-field variability of corn N need calls for development of site-specific fertilizer application strategies. One approach many are investigating is in-season canopy reflectance sensing. Justification for this strategy partly rests with the premise that it will improve N use and in turn reduce N...

  9. Omics for aquatic ecotoxicology: Control of extraneous variability to enhance the analysis of environmental effects

    EPA Science Inventory

    There are multiple sources of biological and technical variation in a typical ecotoxicology study that may not be revealed by traditional endpoints but that become apparent in an omics dataset. As researchers increasingly apply omics technologies to environmental studies, it will...

  10. Estimating juniper cover from NAIP imagery and evaluating relationships between potential cover and environmental variables

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Juniper management is constrained by limited tools to estimate juniper cover and potential cover at stand closure across landscapes. We evaluated if remotely sensed imagery (NAIP) could be used to estimate juniper cover and if environmental characteristic could be used to determine potential junipe...

  11. Relative Linkages of Canopy-Level CO2 Fluxes with the Climatic and Environmental Variables for US Deciduous Forests

    NASA Astrophysics Data System (ADS)

    Ishtiaq, Khandker S.; Abdul-Aziz, Omar I.

    2015-04-01

    We used a simple, systematic data-analytics approach to determine the relative linkages of different climate and environmental variables with the canopy-level, half-hourly CO2 fluxes of US deciduous forests. Multivariate pattern recognition techniques of principal component and factor analyses were utilized to classify and group climatic, environmental, and ecological variables based on their similarity as drivers, examining their interrelation patterns at different sites. Explanatory partial least squares regression models were developed to estimate the relative linkages of CO2 fluxes with the climatic and environmental variables. Three biophysical process components adequately described the system-data variances. The `radiation-energy' component had the strongest linkage with CO2 fluxes, whereas the `aerodynamic' and `temperature-hydrology' components were low to moderately linked with the carbon fluxes. On average, the `radiation-energy' component showed 5 and 8 times stronger carbon flux linkages than that of the `temperature-hydrology' and `aerodynamic' components, respectively. The similarity of observed patterns among different study sites (representing gradients in climate, canopy heights and soil-formations) indicates that the findings are potentially transferable to other deciduous forests. The similarities also highlight the scope of developing parsimonious data-driven models to predict the potential sequestration of ecosystem carbon under a changing climate and environment. The presented data-analytics provides an objective, empirical foundation to obtain crucial mechanistic insights; complementing process-based model building with a warranted complexity. Model efficiency and accuracy ( R 2 = 0.55-0.81; ratio of root-mean-square error to the observed standard deviations, RSR = 0.44-0.67) reiterate the usefulness of multivariate analytics models for gap-filling of instantaneous flux data.

  12. Relative linkages of canopy-level CO₂ fluxes with the climatic and environmental variables for US deciduous forests.

    PubMed

    Ishtiaq, Khandker S; Abdul-Aziz, Omar I

    2015-04-01

    We used a simple, systematic data-analytics approach to determine the relative linkages of different climate and environmental variables with the canopy-level, half-hourly CO2 fluxes of US deciduous forests. Multivariate pattern recognition techniques of principal component and factor analyses were utilized to classify and group climatic, environmental, and ecological variables based on their similarity as drivers, examining their interrelation patterns at different sites. Explanatory partial least squares regression models were developed to estimate the relative linkages of CO2 fluxes with the climatic and environmental variables. Three biophysical process components adequately described the system-data variances. The 'radiation-energy' component had the strongest linkage with CO2 fluxes, whereas the 'aerodynamic' and 'temperature-hydrology' components were low to moderately linked with the carbon fluxes. On average, the 'radiation-energy' component showed 5 and 8 times stronger carbon flux linkages than that of the 'temperature-hydrology' and 'aerodynamic' components, respectively. The similarity of observed patterns among different study sites (representing gradients in climate, canopy heights and soil-formations) indicates that the findings are potentially transferable to other deciduous forests. The similarities also highlight the scope of developing parsimonious data-driven models to predict the potential sequestration of ecosystem carbon under a changing climate and environment. The presented data-analytics provides an objective, empirical foundation to obtain crucial mechanistic insights; complementing process-based model building with a warranted complexity. Model efficiency and accuracy (R(2) = 0.55-0.81; ratio of root-mean-square error to the observed standard deviations, RSR = 0.44-0.67) reiterate the usefulness of multivariate analytics models for gap-filling of instantaneous flux data. PMID:25566833

  13. Prediction of space sickness in astronauts from preflight fluid, electrolyte, and cardiovascular variables and Weightless Environmental Training Facility (WETF) training

    NASA Technical Reports Server (NTRS)

    Simanonok, K.; Mosely, E.; Charles, J.

    1992-01-01

    Nine preflight variables related to fluid, electrolyte, and cardiovascular status from 64 first-time Shuttle crewmembers were differentially weighted by discrimination analysis to predict the incidence and severity of each crewmember's space sickness as rated by NASA flight surgeons. The nine variables are serum uric acid, red cell count, environmental temperature at the launch site, serum phosphate, urine osmolality, serum thyroxine, sitting systolic blood pressure, calculated blood volume, and serum chloride. Using two methods of cross-validation on the original samples (jackknife and a stratefied random subsample), these variables enable the prediction of space sickness incidence (NONE or SICK) with 80 percent sickness and space severity (NONE, MILD, MODERATE, of SEVERE) with 59 percent success by one method of cross-validation and 67 percent by another method. Addition of a tenth variable, hours spent in the Weightlessness Environment Training Facility (WETF) did not improve the prediction of space sickness incidences but did improve the prediction of space sickness severity to 66 percent success by the first method of cross-validation of original samples and to 71 percent by the second method. Results to date suggest the presence of predisposing physiologic factors to space sickness that implicate fluid shift etiology. The data also suggest that prior exposure to fluid shift during WETF training may produce some circulatory pre-adaption to fluid shifts in weightlessness that results in a reduction of space sickness severity.

  14. ANNUAL REPORT FOR ENVIRONMENTAL MANAGEMENT SCIENCE PROGRAM PROJECT NUMBER 86598 COUPLED FLOW AND REACTIVITY IN VARIABLY SATURATED POROUS MEDIA

    SciTech Connect

    Palmer, Carl D.; Mattson, Earl D.; Smith, Robert W.

    2003-06-15

    Improved models of contaminant migration in heterogeneous, variably saturated porous media are required to better define the long-term stewardship requirements for U.S. Department of Energy (DOE) lands and to assist in the design of effective vadose-zone barriers to contaminant migrations. The objective of our three-year project is to meet the DOE need by developing new experimental approaches to describe adsorption and transport of contaminants in heterogeneous, variably saturated media (i.e., the vadose zone). The research specifically addresses the behavior of strontium, a high priority DOE contaminant. However, the key benefit of this research is improved conceptual models of how all contaminants migrate through heterogeneous, variably-saturated, porous media. Research activities are driven by the hypothesis that the reactivity of variably saturated porous media is dependent on the moisture content of the medium and can be represented by a relatively simple function applicable over a range of scales, contaminants, and media. A key and novel aspect of our research is the use of the 2-meter radius geocentrifuge capabilities at the Idaho National Laboratory (INL) to conduct unsaturated reactive transport experiments (Figure 1). The experimental approach using the geocentrifuge provides data in a much shorter time period than conventional methods allowing us to complete more experiments and explore a wider range of moisture contents. The vadose zone research being done in this project will demonstrate the utility of environmental geocentrifuge experimental approaches and their applicability to DOE’s vadose research needs.

  15. Distribution and relative abundance of humpback whales in relation to environmental variables in coastal British Columbia and adjacent waters

    NASA Astrophysics Data System (ADS)

    Dalla Rosa, Luciano; Ford, John K. B.; Trites, Andrew W.

    2012-03-01

    Humpback whales are common in feeding areas off British Columbia (BC) from spring to fall, and are widely distributed along the coast. Climate change and the increase in population size of North Pacific humpback whales may lead to increased anthropogenic impact and require a better understanding of species-habitat relationships. We investigated the distribution and relative abundance of humpback whales in relation to environmental variables and processes in BC waters using GIS and generalized additive models (GAMs). Six non-systematic cetacean surveys were conducted between 2004 and 2006. Whale encounter rates and environmental variables (oceanographic and remote sensing data) were recorded along transects divided into 4 km segments. A combined 3-year model and individual year models (two surveys each) were fitted with the mgcv R package. Model selection was based primarily on GCV scores. The explained deviance of our models ranged from 39% for the 3-year model to 76% for the 2004 model. Humpback whales were strongly associated with latitude and bathymetric features, including depth, slope and distance to the 100-m isobath. Distance to sea-surface-temperature fronts and salinity (climatology) were also constantly selected by the models. The shapes of smooth functions estimated for variables based on chlorophyll concentration or net primary productivity with different temporal resolutions and time lags were not consistent, even though higher numbers of whales seemed to be associated with higher primary productivity for some models. These and other selected explanatory variables may reflect areas of higher biological productivity that favor top predators. Our study confirms the presence of at least three important regions for humpback whales along the BC coast: south Dixon Entrance, middle and southwestern Hecate Strait and the area between La Perouse Bank and the southern edge of Juan de Fuca Canyon.

  16. ANNUAL REPORT FOR ENVIRONMENTAL MANAGEMENT SCIENCE PROGRAM PROJECT NUMBER 86598 COUPLED FLOW AND REACTIVITY IN VARIABLY SATURATED POROUS MEDIA

    SciTech Connect

    Palmer, Carl D.; Mattson, Earl D.; Smith, Robert W.

    2003-06-01

    Improved models of contaminant migration in heterogeneous, variably saturated porous media are required to better define the long-term stewardship requirements for U.S. Department of Energy (DOE) lands and to assist in the design of effective vadose zone barriers to contaminant migrations. The objective of our three-year project is to meet the DOE need by developing new experimental approaches to describe adsorption and transport of contaminants in heterogeneous, variably saturated media (i.e., the vadose zone). The research specifically addresses the behavior of strontium, a high priority DOE contaminant. However, the key benefit of this research is improved conceptual models of how all contaminants migrate through heterogeneous, variably-saturated, porous media. Research activities are driven by the hypothesis that the reactivity of variably saturated porous media is dependent on the moisture content of the medium and can be represented by a relatively simple function applicable over a range of scales, contaminants, and media. A key and novel aspect of our research is the use of the 2-meter radius geocentrifuge capabilities at the Idaho National Engineering and Environmental Laboratory (INEEL) to conduct unsaturated reactive transport experiments (Figure 1). The experimental approach using the geocentrifuge provides data in a much shorter time period than conventional methods allowing us to complete more experiments and explore a wider range of moisture contents. The vadose zone research being done in this project will demonstrate the utility of environmental geocentrifuge experimental approaches and their applicability to DOE's vadose research needs. This report summarizes our progress as of June 2003 in the first year of a three-year project.

  17. Linking bovine tuberculosis on cattle farms to white-tailed deer and environmental variables using Bayesian hierarchical analysis.

    PubMed

    Walter, W David; Smith, Rick; Vanderklok, Mike; VerCauteren, Kurt C

    2014-01-01

    Bovine tuberculosis is a bacterial disease caused by Mycobacterium bovis in livestock and wildlife with hosts that include Eurasian badgers (Meles meles), brushtail possum (Trichosurus vulpecula), and white-tailed deer (Odocoileus virginianus). Risk-assessment efforts in Michigan have been initiated on farms to minimize interactions of cattle with wildlife hosts but research on M. bovis on cattle farms has not investigated the spatial context of disease epidemiology. To incorporate spatially explicit data, initial likelihood of infection probabilities for cattle farms tested for M. bovis, prevalence of M. bovis in white-tailed deer, deer density, and environmental variables for each farm were modeled in a Bayesian hierarchical framework. We used geo-referenced locations of 762 cattle farms that have been tested for M. bovis, white-tailed deer prevalence, and several environmental variables that may lead to long-term survival and viability of M. bovis on farms and surrounding habitats (i.e., soil type, habitat type). Bayesian hierarchical analyses identified deer prevalence and proportion of sandy soil within our sampling grid as the most supported model. Analysis of cattle farms tested for M. bovis identified that for every 1% increase in sandy soil resulted in an increase in odds of infection by 4%. Our analysis revealed that the influence of prevalence of M. bovis in white-tailed deer was still a concern even after considerable efforts to prevent cattle interactions with white-tailed deer through on-farm mitigation and reduction in the deer population. Cattle farms test positive for M. bovis annually in our study area suggesting that the potential for an environmental source either on farms or in the surrounding landscape may contributing to new or re-infections with M. bovis. Our research provides an initial assessment of potential environmental factors that could be incorporated into additional modeling efforts as more knowledge of deer herd factors and cattle

  18. Linking Bovine Tuberculosis on Cattle Farms to White-Tailed Deer and Environmental Variables Using Bayesian Hierarchical Analysis

    PubMed Central

    Walter, W. David; Smith, Rick; Vanderklok, Mike; VerCauteren, Kurt C.

    2014-01-01

    Bovine tuberculosis is a bacterial disease caused by Mycobacterium bovis in livestock and wildlife with hosts that include Eurasian badgers (Meles meles), brushtail possum (Trichosurus vulpecula), and white-tailed deer (Odocoileus virginianus). Risk-assessment efforts in Michigan have been initiated on farms to minimize interactions of cattle with wildlife hosts but research on M. bovis on cattle farms has not investigated the spatial context of disease epidemiology. To incorporate spatially explicit data, initial likelihood of infection probabilities for cattle farms tested for M. bovis, prevalence of M. bovis in white-tailed deer, deer density, and environmental variables for each farm were modeled in a Bayesian hierarchical framework. We used geo-referenced locations of 762 cattle farms that have been tested for M. bovis, white-tailed deer prevalence, and several environmental variables that may lead to long-term survival and viability of M. bovis on farms and surrounding habitats (i.e., soil type, habitat type). Bayesian hierarchical analyses identified deer prevalence and proportion of sandy soil within our sampling grid as the most supported model. Analysis of cattle farms tested for M. bovis identified that for every 1% increase in sandy soil resulted in an increase in odds of infection by 4%. Our analysis revealed that the influence of prevalence of M. bovis in white-tailed deer was still a concern even after considerable efforts to prevent cattle interactions with white-tailed deer through on-farm mitigation and reduction in the deer population. Cattle farms test positive for M. bovis annually in our study area suggesting that the potential for an environmental source either on farms or in the surrounding landscape may contributing to new or re-infections with M. bovis. Our research provides an initial assessment of potential environmental factors that could be incorporated into additional modeling efforts as more knowledge of deer herd factors and cattle

  19. Mesozooplankton assemblages and their relationship with environmental variables: a study case in a disturbed bay (Beagle Channel, Argentina).

    PubMed

    Biancalana, Florencia; Dutto, M Sofía; Berasategui, Anabela A; Kopprio, Germán; Hoffmeyer, Mónica S

    2014-12-01

    This study focused on the seasonal and spatial analysis of the mesozooplankton community in a human-impacted subantarctic bay in Argentina and aimed to detect assemblages associated with environmental variability. Mesozooplankton samples and environmental data were obtained in the Ushuaia Bay (UB) seasonally, from August 2004 to June 2005, and spatially, from coastal (more polluted), middle (less influenced) and open sea water (free polluted) sampling stations. Remarkable seasonal changes on the mesozooplankton community were observed. Nitrogenated nutrients, chlorophyll a, salinity and temperature were the prevailing environmental conditions likely associated with the different mesozooplankton assemblages found in the bay. The copepods Eurytemora americana, Acartia tonsa, Podon leuckarti and Nematoda were particularly observed on the northwest coast of the bay, characterized by the highest level of urban pollution, eutrophicated by sewage and freshwater inputs from the Encerrada Bay which is connected to it. The stations situated in the northeast area, mostly influenced by freshwater input from rivers and glacier melting, showed low mesozooplankton abundances and an important contribution of adventitious plankton. The copepods Ctenocalanus citer, Clausocalanus brevipes and Drepanopus forcipatus were mostly observed at the stations located near the Beagle Channel, characterized by open sea and free polluted waters. Our findings suggest that the variations observed in the mesozooplankton assemblages in the UB seem to be modulated by environmental variables associated with the anthropogenic influence, clearly detected on the coast of the bay. Certain opportunistic species such as A. tonsa and E. americana could be postulated as potential bioindicators of water quality in subantarctic coastal ecosystems. PMID:25204897

  20. Optimized MPPT algorithm for boost converters taking into account the environmental variables

    NASA Astrophysics Data System (ADS)

    Petit, Pierre; Sawicki, Jean-Paul; Saint-Eve, Frédéric; Maufay, Fabrice; Aillerie, Michel

    2016-07-01

    This paper presents a study on the specific behavior of the Boost DC-DC converters generally used for powering conversion of PV panels connected to a HVDC (High Voltage Direct Current) Bus. It follows some works pointing out that converter MPPT (Maximum Power Point Tracker) is severely perturbed by output voltage variations due to physical dependency of parameters as the input voltage, the output voltage and the duty cycle of the PWM switching control of the MPPT. As a direct consequence many converters connected together on a same load perturb each other because of the output voltage variations induced by fluctuations on the HVDC bus essentially due to a not insignificant bus impedance. In this paper we show that it is possible to include an internal computed variable in charge to compensate local and external variations to take into account the environment variables.

  1. Abiotic Formation of Methyl Halides in the Terrestrial Environment

    NASA Astrophysics Data System (ADS)

    Keppler, F.

    2011-12-01

    Methyl chloride and methyl bromide are the most abundant chlorine and bromine containing organic compounds in the atmosphere. Since both compounds have relatively long tropospheric lifetimes they can effectively transport halogen atoms from the Earth's surface, where they are released, to the stratosphere and following photolytic oxidation form reactive halogen gases that lead to the chemical destruction of ozone. Methyl chloride and methyl bromide account for more than 20% of the ozone-depleting halogens delivered to the stratosphere and are predicted to grow in importance as the chlorine contribution to the stratosphere from anthropogenic CFCs decline. Today methyl chloride and methyl bromide originate mainly from natural sources with only a minor fraction considered to be of anthropogenic origin. However, until as recently as 2000 most of the methyl chloride and methyl bromide input to the atmosphere was considered to originate from the oceans, but investigations in recent years have clearly demonstrated that terrestrial sources such as biomass burning, wood-rotting fungi, coastal salt marshes, tropical vegetation and organic matter degradation must dominate the atmospheric budgets of these trace gases. However, many uncertainties still exist regarding strengths of both sources and sinks, as well as the mechanisms of formation of these naturally occurring halogenated gases. A better understanding of the atmospheric budget of both methyl chloride and methyl bromide is therefore required for reliable prediction of future ozone depletion. Biotic and abiotic methylation processes of chloride and bromide ion are considered to be the dominant pathways of formation of these methyl halides in nature. In this presentation I will focus on abiotic formation processes in the terrestrial environment and the potential parameters that control their emissions. Recent advances in our understanding of the abiotic formation pathway of methyl halides will be discussed. This will

  2. Evolution and Adaptation of Wild Emmer Wheat Populations to Biotic and Abiotic Stresses.

    PubMed

    Huang, Lin; Raats, Dina; Sela, Hanan; Klymiuk, Valentina; Lidzbarsky, Gabriel; Feng, Lihua; Krugman, Tamar; Fahima, Tzion

    2016-08-01

    The genetic bottlenecks associated with plant domestication and subsequent selection in man-made agroecosystems have limited the genetic diversity of modern crops and increased their vulnerability to environmental stresses. Wild emmer wheat, the tetraploid progenitor of domesticated wheat, distributed along a wide range of ecogeographical conditions in the Fertile Crescent, has valuable "left behind" adaptive diversity to multiple diseases and environmental stresses. The biotic and abiotic stress responses are conferred by series of genes and quantitative trait loci (QTLs) that control complex resistance pathways. The study of genetic diversity, genomic organization, expression profiles, protein structure and function of biotic and abiotic stress-resistance genes, and QTLs could shed light on the evolutionary history and adaptation mechanisms of wild emmer populations for their natural habitats. The continuous evolution and adaptation of wild emmer to the changing environment provide novel solutions that can contribute to safeguarding food for the rapidly growing human population. PMID:27296141

  3. Biofilm formation and persistence on abiotic surfaces in the context of food and medical environments.

    PubMed

    Abdallah, Marwan; Benoliel, Corinne; Drider, Djamel; Dhulster, Pascal; Chihib, Nour-Eddine

    2014-07-01

    The biofilm formation on abiotic surfaces in food and medical sectors constitutes a great public health concerns. In fact, biofilms present a persistent source for pathogens, such as Pseudomonas aeruginosa and Staphylococcus aureus, which lead to severe infections such as foodborne and nosocomial infections. Such biofilms are also a source of material deterioration and failure. The environmental conditions, commonly met in food and medical area, seem also to enhance the biofilm formation and their resistance to disinfectant agents. In this regard, this review highlights the effect of environmental conditions on bacterial adhesion and biofilm formation on abiotic surfaces in the context of food and medical environment. It also describes the current and emergent strategies used to study the biofilm formation and its eradication. The mechanisms of biofilm resistance to commercialized disinfectants are also discussed, since this phenomenon remains unclear to date. PMID:24744186

  4. An Examination of the Demographic and Environmental Variables Correlated with Lyme Disease Emergence in Virginia.

    PubMed

    Seukep, Sara E; Kolivras, Korine N; Hong, Yili; Li, Jie; Prisley, Stephen P; Campbell, James B; Gaines, David N; Dymond, Randel L

    2015-12-01

    Lyme disease is the United States' most significant vector-borne illness. Virginia, on the southern edge of the disease's currently expanding range, has experienced an increase in Lyme disease both spatially and temporally, with steadily increasing rates over the past decade and disease spread from the northern to the southwestern part of the state. This study used a Geographic Information System and a spatial Poisson regression model to examine correlations between demographic and land cover variables, and human Lyme disease from 2006 to 2010 in Virginia. Analysis indicated that herbaceous land cover is positively correlated with Lyme disease incidence rates. Areas with greater interspersion between herbaceous and forested land were also positively correlated with incidence rates. In addition, income and age were positively correlated with incidence rates. Levels of development, interspersion of herbaceous and developed land, and population density were negatively correlated with incidence rates. Abundance of forest fragments less than 2 hectares in area was not significantly correlated. Our results support some findings of previous studies on ecological variables and Lyme disease in endemic areas, but other results have not been found in previous studies, highlighting the potential contribution of new variables as Lyme disease continues to emerge southward. PMID:26163019

  5. Unveiling the Redox Control of Plant Reproductive Development during Abiotic Stress

    PubMed Central

    Zinta, Gaurav; Khan, Asif; AbdElgawad, Hamada; Verma, Vipasha; Srivastava, Ashish Kumar

    2016-01-01

    Plants being sessile in nature are often challenged to various abiotic stresses including temperature fluctuations, water supply, salinity, and nutrient availability. Exposure of plants to such environmental perturbations result in the formation of reactive oxygen species (ROS) in cells. To scavenge ROS, enzymatic and molecular antioxidants are produced at a cellular level. ROS act as a signaling entity at lower concentrations maintaining normal growth and development, but if their levels increase beyond certain threshold, they produce toxic effects in plants. Some developmental stages, such as development of reproductive organs are more sensitive to abiotic stress than other stages of growth. As success of plant reproductive development is directly correlated with grain yield, stresses coinciding with reproductive phase results in the higher yield losses. In this article, we summarize the redox control of plant reproductive development, and elaborate how redox homeostasis is compromised during abiotic stress exposure. We highlight why more emphasis should be given to understand redox control of plant reproductive organ development during abiotic stress exposure96to engineer crops with better crop yield. We specifically discuss the role of ROS as a signaling molecule and its cross-talk with other signaling molecules such as hormones and sugars. PMID:27379102

  6. Unveiling the Redox Control of Plant Reproductive Development during Abiotic Stress.

    PubMed

    Zinta, Gaurav; Khan, Asif; AbdElgawad, Hamada; Verma, Vipasha; Srivastava, Ashish Kumar

    2016-01-01

    Plants being sessile in nature are often challenged to various abiotic stresses including temperature fluctuations, water supply, salinity, and nutrient availability. Exposure of plants to such environmental perturbations result in the formation of reactive oxygen species (ROS) in cells. To scavenge ROS, enzymatic and molecular antioxidants are produced at a cellular level. ROS act as a signaling entity at lower concentrations maintaining normal growth and development, but if their levels increase beyond certain threshold, they produce toxic effects in plants. Some developmental stages, such as development of reproductive organs are more sensitive to abiotic stress than other stages of growth. As success of plant reproductive development is directly correlated with grain yield, stresses coinciding with reproductive phase results in the higher yield losses. In this article, we summarize the redox control of plant reproductive development, and elaborate how redox homeostasis is compromised during abiotic stress exposure. We highlight why more emphasis should be given to understand redox control of plant reproductive organ development during abiotic stress exposure96to engineer crops with better crop yield. We specifically discuss the role of ROS as a signaling molecule and its cross-talk with other signaling molecules such as hormones and sugars. PMID:27379102

  7. On the origins of human laterality: environmental and hereditary variables in a sample of children.

    PubMed

    Gallo, P G; Angioletti, E; Viviani, F

    2000-06-01

    On the basis of operationally defined handedness data from 1,348 subjects of both sexes and of ages 10 to 15 years, laterality was compared with prehistorical data of handprints found in caves. It was hypothesized that the greater production of left handprints found in caves in comparison with current data should be ascribed to a nonestablished deviation of lefthanders towards righthandedness as environmental pressures in the distant past were lower. PMID:10883784

  8. The estimation of soil parameters using observations on crop biophysical variables and the crop model STICS improve the predictions of agro environmental variables.

    NASA Astrophysics Data System (ADS)

    Varella, H.-V.

    2009-04-01

    Dynamic crop models are very useful to predict the behavior of crops in their environment and are widely used in a lot of agro-environmental work. These models have many parameters and their spatial application require a good knowledge of these parameters, especially of the soil parameters. These parameters can be estimated from soil analysis at different points but this is very costly and requires a lot of experimental work. Nevertheless, observations on crops provided by new techniques like remote sensing or yield monitoring, is a possibility for estimating soil parameters through the inversion of crop models. In this work, the STICS crop model is studied for the wheat and the sugar beet and it includes more than 200 parameters. After a previous work based on a large experimental database for calibrate parameters related to the characteristics of the crop, a global sensitivity analysis of the observed variables (leaf area index LAI and absorbed nitrogen QN provided by remote sensing data, and yield at harvest provided by yield monitoring) to the soil parameters is made, in order to determine which of them have to be estimated. This study was made in different climatic and agronomic conditions and it reveals that 7 soil parameters (4 related to the water and 3 related to the nitrogen) have a clearly influence on the variance of the observed variables and have to be therefore estimated. For estimating these 7 soil parameters, a Bayesian data assimilation method is chosen (because of available prior information on these parameters) named Importance Sampling by using observations, on wheat and sugar beet crop, of LAI and QN at various dates and yield at harvest acquired on different climatic and agronomic conditions. The quality of parameter estimation is then determined by comparing the result of parameter estimation with only prior information and the result with the posterior information provided by the Bayesian data assimilation method. The result of the

  9. Characterization of Chlorinated Aliphatic Hydrocarbons and Environmental Variables in a Shallow Groundwater in Shanghai Using Kriging Interpolation and Multifactorial Analysis.

    PubMed

    Lu, Qiang; Luo, Qi Shi; Li, Hui; Liu, Yong Di; Gu, Ji Dong; Lin, Kuang Fei; Fei Lin, Kuang

    2015-01-01

    CAHs, as a cleaning solvent, widely contaminated shallow groundwater with the development of manufacturing in China's Yangtze River Delta. This study focused on the distribution of CAHs, and correlations between CAHs and environmental variables in a shallow groundwater in Shanghai, using kriging interpolation and multifactorial analysis. The results showed that the overall CAHs plume area (above DIV) was approximately 9,000 m(2) and located in the 2-4 m underground, DNAPL was accumulated at an area of approximately 1,400 m(2) and located in the 6-8m sandy silt layer on the top of the muddy silty clay. Heatmap of PPC for CAHs and environmental variables showed that the correlation between "Fe(2+)" and most CAHs such as "1,1,1-TCA", "1,1-DCA", "1,1-DCE" and "%TCA" were significantly positive (p<0.001), but "%CA" and/or "%VC" was not, and "Cl-" was significantly positive correlated with "1,1-DCA" and "1,1-DCE" (p<0.001). The PCA demonstrated that the relative proportions of CAHs in groundwater were mostly controlled by the sources and the natural attenuation. In conclusion, the combination of geographical and chemometrics was helpful to establishing an aerial perspective of CAHs and identifying reasons for the accumulation of toxic dechlorination intermediates, and could become a useful tool for characterizing contaminated sites in general. PMID:26565796

  10. Characterization of Chlorinated Aliphatic Hydrocarbons and Environmental Variables in a Shallow Groundwater in Shanghai Using Kriging Interpolation and Multifactorial Analysis

    PubMed Central

    Lu, Qiang; Luo, Qi Shi; Li, Hui; Liu, Yong Di; Gu, Ji Dong; Fei Lin, Kuang

    2015-01-01

    CAHs, as a cleaning solvent, widely contaminated shallow groundwater with the development of manufacturing in China's Yangtze River Delta. This study focused on the distribution of CAHs, and correlations between CAHs and environmental variables in a shallow groundwater in Shanghai, using kriging interpolation and multifactorial analysis. The results showed that the overall CAHs plume area (above DIV) was approximately 9,000 m2 and located in the 2–4 m underground, DNAPL was accumulated at an area of approximately 1,400 m2 and located in the 6-8m sandy silt layer on the top of the muddy silty clay. Heatmap of PPC for CAHs and environmental variables showed that the correlation between “Fe2+” and most CAHs such as “1,1,1-TCA”, “1,1-DCA”, “1,1-DCE” and “%TCA” were significantly positive (p<0.001), but “%CA” and/or “%VC” was not, and “Cl-” was significantly positive correlated with “1,1-DCA” and “1,1-DCE” (p<0.001). The PCA demonstrated that the relative proportions of CAHs in groundwater were mostly controlled by the sources and the natural attenuation. In conclusion, the combination of geographical and chemometrics was helpful to establishing an aerial perspective of CAHs and identifying reasons for the accumulation of toxic dechlorination intermediates, and could become a useful tool for characterizing contaminated sites in general. PMID:26565796

  11. Multi-scale responses of scattering layers to environmental variability in Monterey Bay, California

    NASA Astrophysics Data System (ADS)

    Urmy, Samuel S.; Horne, John K.

    2016-07-01

    A 38 kHz upward-facing echosounder was deployed on the seafloor at a depth of 875 m in Monterey Bay, CA, USA (36° 42.748‧N, 122° 11.214‧W) from 27 February 2009 to 18 August 2010. This 18-month record of acoustic backscatter was compared to oceanographic time series from a nearby data buoy to investigate the responses of animals in sound-scattering layers to oceanic variability at seasonal and sub-seasonal time scales. Pelagic animals, as measured by acoustic backscatter, moved higher in the water column and decreased in abundance during spring upwelling, attributed to avoidance of a shoaling oxycline and advection offshore. Seasonal changes were most evident in a non-migrating scattering layer near 500 m depth that disappeared in spring and reappeared in summer, building to a seasonal maximum in fall. At sub-seasonal time scales, similar responses were observed after individual upwelling events, though they were much weaker than the seasonal relationship. Correlations of acoustic backscatter with oceanographic variability also differed with depth. Backscatter in the upper water column decreased immediately following upwelling, then increased approximately 20 days later. Similar correlations existed deeper in the water column, but at increasing lags, suggesting that near-surface productivity propagated down the water column at 10-15 m d-1, consistent with sinking speeds of marine snow measured in Monterey Bay. Sub-seasonal variability in backscatter was best correlated with sea-surface height, suggesting that passive physical transport was most important at these time scales.

  12. Short-term environmental variability in cold-water coral habitat at Viosca Knoll, Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Davies, Andrew J.; Duineveld, Gerard C. A.; van Weering, Tjeerd C. E.; Mienis, Furu; Quattrini, Andrea M.; Seim, Harvey E.; Bane, John M.; Ross, Steve W.

    2010-02-01

    The Lophelia pertusa community at Viosca Knoll (VK826) is the most extensive found to date in the Gulf of Mexico. As part of a multi-disciplinary study, the physical setting of this area was described using benthic landers, CTD transects and remotely operated vehicle observations. The site was broadly characterised into three main habitats: (1) dense coral cover that resembles biogenic reef complexes, (2) areas of sediment, and (3) authigenic carbonate blocks with sparse coral and chemosynthetic communities. The coral communities were dominated by L. pertusa but also contained numerous solitary coral species. Over areas that contained L. pertusa, the environmental conditions recorded were similar to those associated with communities in the north-eastern Atlantic, with temperature (8.5-10.6 °C) and salinity (˜35) falling within the known species niche for L. pertusa. However, dissolved oxygen concentrations (2.7-2.8 ml l -1) and density ( σ Θ, 27.1-27.2 kg m -3) were lower and mass fluxes from sediment trap data appeared much higher (4002-4192 mg m -2 d -1). Yet, this species still appears to thrive in this region, suggesting that L. pertusa may not be as limited by lower dissolved oxygen concentrations as previously thought. The VK826 site experienced sustained eastward water flow of 10-30 cm s -1 over the 5-day measurement period but was also subjected to significant short-term variability in current velocity and direction. In addition, two processes were observed that caused variability in salinity and temperature; the first was consistent with internal waves that caused temperature variations of 0.8 °C over 5-11 h periods. The second was high-frequency variability (20-30 min periods) in temperature recorded only at the ALBEX site. A further pattern observed over the coral habitat was the presence of a 24 h diel vertical migration of zooplankton that may form part of a food chain that eventually reaches the corals. The majority of detailed studies concerning

  13. The Baltic Sea: Geophysical and geochemical properties of Holocene sediment sequences as indicators of past environmental variability

    NASA Astrophysics Data System (ADS)

    Lenz, Conny; Reinholdsson, Maja; Zillén, Lovisa; Conley, Daniel J.; Snowball, Ian

    2010-05-01

    The Baltic Sea has undergone large environmental changes since the retreat of the Weischselian Ice-sheet. In the Late Glacial Period and the early Holocene these changes were most likely caused by natural environmental changes (i.e. changes in the morphology and depths of the Baltic basin and the sills). In more recent time anthropogenic impacts have become more important as a possible and likely cause for changes. During the whole Holocene period climate variability played an important role. However, the relative importance between humans and nature is largely unknown. Here we present the results of a combined geophysical and geochemical study on selected sediment sequences from the Baltic Sea within the two BONUS (Baltic Organisations Network For Funding Science) funded projects HYPER (HYPoxia mitigation for Baltic Sea Ecosystem Restoration) and Baltic GAS (GAS storage and effects of climate change and eutrophication). The over-all aim of these projects is to understand large-scale Baltic Sea ecosystem responses to environmental, climate and anthropogenic forcing. During two Baltic Sea research cruises in 2009 long sediment cores from 8 different locations were recovered. We present preliminary results from one site (LL19) located in the north central Baltic Proper at 169 m water depth. The Littorina Sea sediment record (i.e. the last c. 8000 years) is characterised by alternating periods of homogenised sediments (indicative of oxic conditions) and laminated sediments (indicative of hypoxic/anoxic conditions). Mineral magnetic properties illustrate clear changes between laminated and non-laminated sections of the core. The concentration of ferrimagnetic minerals, as revealed by initial magnetic susceptibility (χ) and saturation isothermal remanent magnetization (SIRM) is variable. The laminated sections in particular show high concentrations and to reveal the origin of the ferrimagnetic signal additional magnetic properties were measured, specifically the

  14. Influence of PAHs among other coastal environmental variables on total and PAH-degrading bacterial communities.

    PubMed

    Sauret, Caroline; Tedetti, Marc; Guigue, Catherine; Dumas, Chloé; Lami, Raphaël; Pujo-Pay, Mireille; Conan, Pascal; Goutx, Madeleine; Ghiglione, Jean-François

    2016-03-01

    We evaluated the relative impact of anthropogenic polycyclic aromatic hydrocarbons (PAHs) among biogeochemical variables on total, metabolically active, and PAH bacterial communities in summer and winter in surface microlayer (SML) and subsurface seawaters (SSW) across short transects along the NW Mediterranean coast from three harbors, one wastewater effluent, and one nearshore observatory reference site. At both seasons, significant correlations were found between dissolved total PAH concentrations and PAH-degrading bacteria that formed a gradient from the shore to nearshore waters. Accumulation of PAH degraders was particularly high in the SML, where PAHs accumulated. Harbors and wastewater outfalls influenced drastically and in a different way the total and active bacterial community structure, but they only impacted the communities from the nearshore zone (<2 km from the shore). By using direct multivariate statistical analysis, we confirmed the significant effect of PAH concentrations on the spatial and temporal dynamic of total and active communities in this area, but this effect was putted in perspective by the importance of other biogeochemical variables. PMID:26122564

  15. High frequency variability of environmental drivers determining benthic community dynamics in headwater streams.

    PubMed

    Snell, M A; Barker, P A; Surridge, B W J; Large, A R G; Jonczyk, J; Benskin, C McW H; Reaney, S; Perks, M T; Owen, G J; Cleasby, W; Deasy, C; Burke, S; Haygarth, P M

    2014-07-01

    Headwater streams are an important feature of the landscape, with their diversity in structure and associated ecological function providing a potential natural buffer against downstream nutrient export. Phytobenthic communities, dominated in many headwaters by diatoms, must respond to physical and chemical parameters that can vary in magnitude within hours, whereas the ecological regeneration times are much longer. How diatom communities develop in the fluctuating, dynamic environments characteristic of headwaters is poorly understood. Deployment of near-continuous monitoring technology in sub-catchments of the River Eden, NW England, provides the opportunity for measurement of temporal variability in stream discharge and nutrient resource supply to benthic communities, as represented by monthly diatom samples collected over two years. Our data suggest that the diatom communities and the derived Trophic Diatom Index, best reflect stream discharge conditions over the preceding 18-21 days and Total Phosphorus concentrations over a wider antecedent window of 7-21 days. This is one of the first quantitative assessments of long-term diatom community development in response to continuously-measured stream nutrient concentration and discharge fluctuations. The data reveal the sensitivity of these headwater communities to mean conditions prior to sampling, with flow as the dominant variable. With sufficient understanding of the role of antecedent conditions, these methods can be used to inform interpretation of monitoring data, including those collected under the European Water Framework Directive and related mitigation efforts. PMID:24647601

  16. Sinking jelly-carbon unveils potential environmental variability along a continental margin.

    PubMed

    Lebrato, Mario; Molinero, Juan-Carlos; Cartes, Joan E; Lloris, Domingo; Mélin, Frédéric; Beni-Casadella, Laia

    2013-01-01

    Particulate matter export fuels benthic ecosystems in continental margins and the deep sea, removing carbon from the upper ocean. Gelatinous zooplankton biomass provides a fast carbon vector that has been poorly studied. Observational data of a large-scale benthic trawling survey from 1994 to 2005 provided a unique opportunity to quantify jelly-carbon along an entire continental margin in the Mediterranean Sea and to assess potential links with biological and physical variables. Biomass depositions were sampled in shelves, slopes and canyons with peaks above 1000 carcasses per trawl, translating to standing stock values between 0.3 and 1.4 mg C m(2) after trawling and integrating between 30,000 and 175,000 m(2) of seabed. The benthopelagic jelly-carbon spatial distribution from the shelf to the canyons may be explained by atmospheric forcing related with NAO events and dense shelf water cascading, which are both known from the open Mediterranean. Over the decadal scale, we show that the jelly-carbon depositions temporal variability paralleled hydroclimate modifications, and that the enhanced jelly-carbon deposits are connected to a temperature-driven system where chlorophyll plays a minor role. Our results highlight the importance of gelatinous groups as indicators of large-scale ecosystem change, where jelly-carbon depositions play an important role in carbon and energy transport to benthic systems. PMID:24367499

  17. Sinking Jelly-Carbon Unveils Potential Environmental Variability along a Continental Margin

    PubMed Central

    Lebrato, Mario; Molinero, Juan-Carlos; Cartes, Joan E.; Lloris, Domingo; Mélin, Frédéric; Beni-Casadella, Laia

    2013-01-01

    Particulate matter export fuels benthic ecosystems in continental margins and the deep sea, removing carbon from the upper ocean. Gelatinous zooplankton biomass provides a fast carbon vector that has been poorly studied. Observational data of a large-scale benthic trawling survey from 1994 to 2005 provided a unique opportunity to quantify jelly-carbon along an entire continental margin in the Mediterranean Sea and to assess potential links with biological and physical variables. Biomass depositions were sampled in shelves, slopes and canyons with peaks above 1000 carcasses per trawl, translating to standing stock values between 0.3 and 1.4 mg C m2 after trawling and integrating between 30,000 and 175,000 m2 of seabed. The benthopelagic jelly-carbon spatial distribution from the shelf to the canyons may be explained by atmospheric forcing related with NAO events and dense shelf water cascading, which are both known from the open Mediterranean. Over the decadal scale, we show that the jelly-carbon depositions temporal variability paralleled hydroclimate modifications, and that the enhanced jelly-carbon deposits are connected to a temperature-driven system where chlorophyll plays a minor role. Our results highlight the importance of gelatinous groups as indicators of large-scale ecosystem change, where jelly-carbon depositions play an important role in carbon and energy transport to benthic systems. PMID:24367499

  18. Potential bud bank responses to apical meristem damage and environmental variables: matching or complementing axillary meristems?

    PubMed

    Klimešová, Jitka; Malíková, Lenka; Rosenthal, Jonathan; Šmilauer, Petr

    2014-01-01

    Soil nutrients, dormant axillary meristem availability, and competition can influence plant tolerance to damage. However, the role of potential bud banks (adventitious meristems initiated only after injury) is not known. Examining Central European field populations of 22 species of short-lived monocarpic herbs exposed to various sources of damage, we hypothesized that: (1) with increasing injury severity, the number of axillary branches would decrease, due to axillary meristem limitation, whereas the number of adventitious shoots (typically induced by severe injury) would increase; (2) favorable environmental conditions would allow intact plants to branch more, resulting in stronger axillary meristem limitation than in unfavorable conditions; and (3) consequently, adventitious sprouting would be better enabled in favorable than unfavorable conditions. We found strong support for the first hypothesis, only limited support for the second, and none for the third. Our results imply that whereas soil nutrients and competition marginally influence plant tolerance to damage, potential bud banks enable plants to overcome meristem limitation from severe damage, and therefore better tolerate it. All the significant effects were found in intraspecific comparisons, whereas interspecific differences were not found. Monocarpic plants with potential bud banks therefore represent a distinct strategy occupying a narrow environmental niche. The disturbance regime typical for this niche remains to be examined, as do the costs associated with the banks of adventitious and axillary reserve meristems. PMID:24516587

  19. Effects of individual quality, reproductive success and environmental variability on survival of a long-lived seabird.

    PubMed

    Lescroël, Amélie; Dugger, Katie M; Ballard, Grant; Ainley, David G

    2009-07-01

    1. Heterogeneity in individual quality (i.e. individuals having different performance levels that are consistent throughout life) can drive the demography of iteroparous species, but quality in the context of environmental variability has rarely been evaluated. 2. We investigated the demographic responses of a long-lived seabird, the Adélie penguin (Pygoscelis adeliae), to contrasting environmental conditions as a function of reproductive success, breeding quality (BQ) and experience. A continuous index of BQ (BQI) was developed to reflect an individual's ability, relative to others, to produce viable offspring. 3. First, we assessed the relative importance of costs of reproduction vs. heterogeneity in quality by comparing survival and reproductive probabilities among deferred, successful and unsuccessful breeders under 'demanding' conditions using multistate capture-mark-recapture modelling. Then, we quantified the influence of BQI on adult survival among experienced breeders vs. the whole study population under both 'normal' and 'demanding' conditions. 4. Higher survival rates were exhibited by successful (74-76%) compared to unsuccessful breeders (64%); the former also more frequently reproduced successfully at year t + 1. 5. From 1997 to 2006, adult survival ranged from 64-79%, with BQI accounting for 91% of variability in the entire study population, but only 17% in experienced breeders. The weakened relationship between BQI and survival in experienced breeders supports the theory that selection during the first reproductive event accounts for a more homogeneous pool of experienced breeders. 6. No significant effect of environmental covariates on survival was evident, suggesting that what appeared to be demanding conditions were within the range that could be buffered by this species. 7. For the first time in seabirds, a quadratic relationship between adult survival and BQI showed that adult survival is shaped by both heterogeneity in quality and reproductive

  20. Dynamic regulation of partner abundance mediates response of reef coral symbioses to environmental change.

    PubMed

    Cunning, R; Vaughan, N; Gillette, P; Capo, T R; Matté, J L; Baker, A C

    2015-05-01

    Regulating partner abunclance may allow symmotic organisms to mediate interaction outcomes, facilitating adaptive responses to environmental change. To explore the capacity for-adaptive regulation in an ecologically important endosymbiosis, we studied the population dynamics of symbiotic algae in reef-building corals under different abiotic contexts. We found high natural variability in symbiont abundance in corals across reefs, but this variability converged to different symbiont-specific abundances when colonies were maintained under constant conditions. When conditions changed seasonally, symbiont abundance readjusted to new equilibria. We explain these patterns using an a priori model of symbiotic costs and benefits to the coral host, which shows that the observed changes in symbiont abundance are consistent with the maximization of interaction benefit under different environmental conditions. These results indicate that, while regulating symbiont abundance helps hosts sustain maximum benefit in a dynamic environment, spatiotemporal variation in abiotic factors creates a broad range of symbiont abundances (and interaction outcomes) among corals that may account for observed natural variability in performance (e.g., growth rate) and stress tolerance (e.g., bleaching susceptibility). This cost or benefit framework provides a new perspective on the dynamic regulation of reef coral symbioses and illustrates that the dependence of interaction outcomes on biotic and abiotic contexts may be important in understanding how diverse mutualisms respond to environmental change. PMID:26236853

  1. The contribution of genetic and environmental factors to quantitative variability of erythrocyte membrane proteins in primary hypotension.

    PubMed

    Ivanov, V P; Polonikov, A V; Solodilova, M A

    2005-01-01

    Our previous studies have shown that, compared with healthy individuals, patients with primary arterial hypotension (PAH) have significant quantitative changes in erythrocyte membrane proteins. The purpose of the present study was to evaluate the contribution made by genetic and environmental factors to quantitative variation of erythrocyte membrane proteins in PAH. We studied 109 hypotensive patients, 124 normotensive subjects, 222 of their first-degree relatives and 24 twin pairs by sodium dodecyl sulphate (SDS) polyacrylamide gel electrophoresis. The decomposition of total phenotypic variance of erythrocyte membrane proteins to genetic and environmental components was performed on the basis of correlations among first-degree relatives by the least squares method. The genetic dominance and shared environmental factors were found to influence the variability of cytoskeletal membrane proteins whose contents were changed in PAH. Furthermore, variations in alpha-spectrin, actin and anion exchanger in hypotensives were substantially influenced by major gene and maternal effects. Ankyrin 2.1 and actin content was under the control of common underlying genes. Variations in membrane-associated glutathione-S-transferase and tropomyosin were predominantly affected by polygenes. These findings suggest that the putative major genes with pleiotropic effects appear to be involved in the control of quantitative disorders of erythrocyte membrane proteins in primary hypotension. PMID:15638825

  2. Regional precipitation variability in East Asia related to climate and environmental factors during 1979-2012

    NASA Astrophysics Data System (ADS)

    Deng, Yinyin; Gao, Tao; Gao, Huiwang; Yao, Xiaohong; Xie, Lian

    2014-07-01

    This paper studies the inter-annual precipitation variations in different regions of East Asia from oceans to interior areas in China during 1979 - 2012. The results computed by Empirical Orthogonal Functions (EOF) demonstrate that the annual precipitation changes are mainly related to the El Niño-Southern Oscillation, East Asian summer monsoon and aerosols. We also found that the increased Sea surface temperature (SST) could explain the precipitation changes over the Northwest Pacific in the dry season (Oct. - May) and the East China Sea and the South China Sea in the rainy season (Jun. - Sep.). The precipitation changes over the ocean unexplained by SST were likely due to the water vapor transport dominated by dynamic factors. With the increased SST, the moisture transported from oceans to interior land was likely redistributed and caused the complicated regional variability of precipitation. Moreover, the impacts of aerosols on cloud and precipitation varied with different pollution levels and different seasons.

  3. Regional precipitation variability in East Asia related to climate and environmental factors during 1979-2012.

    PubMed

    Deng, Yinyin; Gao, Tao; Gao, Huiwang; Yao, Xiaohong; Xie, Lian

    2014-01-01

    This paper studies the inter-annual precipitation variations in different regions of East Asia from oceans to interior areas in China during 1979 - 2012. The results computed by Empirical Orthogonal Functions (EOF) demonstrate that the annual precipitation changes are mainly related to the El Niño-Southern Oscillation, East Asian summer monsoon and aerosols. We also found that the increased Sea surface temperature (SST) could explain the precipitation changes over the Northwest Pacific in the dry season (Oct. - May) and the East China Sea and the South China Sea in the rainy season (Jun. - Sep.). The precipitation changes over the ocean unexplained by SST were likely due to the water vapor transport dominated by dynamic factors. With the increased SST, the moisture transported from oceans to interior land was likely redistributed and caused the complicated regional variability of precipitation. Moreover, the impacts of aerosols on cloud and precipitation varied with different pollution levels and different seasons. PMID:25033387

  4. Environmental Variability, Bowhead Whale Distributions, and Inupiat Subsistence Whaling in the Coastal Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Ashjian, C. J.; Campbell, R. G.; George, J. C.; Moore, S. E.; Okkonen, S. R.; Sherr, B. F.; Sherr, E. B.

    2006-12-01

    The annual migration of bowhead whales (Balaena mysticetus) past Barrow, Alaska has provided subsistence hunting opportunities to Native whalers for centuries. Bowheads regularly feed along the Arctic coast near Barrow in autumn, presumably to utilize recurrent aggregations of their zooplankton prey (e.g., copepods, euphausiids). Oceanographic field-sampling on the narrow continental shelf near Barrow and in Elson Lagoon was conducted during mid-August to mid-September of 2005 and 2006 to describe the different water mass types and plankton communities, to identify exchange of water and material between the shelf and lagoon and offshore, and to identify biological and physical mechanisms of plankton aggregation. High spatial resolution profiles of temperature, salinity, fluorescence, optical backscatter, and C-DOM were collected using an Acrobat undulating towed vehicle in the lagoon and across the shelf from near-shore to the ~150 m isobath. Discrete sampling for nutrients, chlorophyll a, and phytoplankton, and microzooplankton and mesozooplankton abundance and composition was conducted in distinct water types and across frontal boundaries identified from the high-resolution data. The distributions of bowhead whales were documented using aerial surveys. Inter-annual and shorter-term (days to weeks) variability in the distribution of water masses and intrinsic biological properties was observed. Distinct hydrographic and biological-chemical regions were located across the shelf that may contribute to the formation of bowhead whale prey aggregations. The lagoon system is an important interface between the ocean and land and may be critical to the formation of nearshore bowhead whale prey aggregations. Results from the field sampling will be coupled to biological-physical modeling and retrospective analyses to understand the response of this complex environment-whale-human system to climate variability.

  5. Optimal Environmental Performance of Water-cooled Chiller System with All Variable Speed Configurations

    NASA Astrophysics Data System (ADS)

    Yu, Fu Wing; Chan, Kwok Tai

    This study investigates how the environmental performance of water-cooled chiller systems can be optimized by applying load-based speed control to all the system components. New chiller and cooling tower models were developed using a transient systems simulation program called TRNSYS 15 in order to assess the electricity and water consumption of a chiller plant operating for a building cooling load profile. The chiller model was calibrated using manufacturer's performance data and used to analyze the coefficient of performance when the design and control of chiller components are changed. The NTU-effectiveness approach was used for the cooling tower model to consider the heat transfer effectiveness at various air-to-water flow ratios and to identify the makeup water rate. Applying load-based speed control to the cooling tower fans and pumps could save an annual plant operating cost by around 15% relative to an equivalent system with constant speed configurations.

  6. Optimization of mechanical oil spill recovery equipment under variable environmental conditions

    NASA Astrophysics Data System (ADS)

    Broje, Viktoria A.

    Oil spills in marine environments may cause significant damage to marine and coastal ecosystems if not recovered quickly and efficiently. Although mechanical recovery is the most commonly used oil spill response technique, it can be very time consuming and expensive when employed at a large scale due, to its low recovery rates. The goal of this work was to optimize mechanical oil spill recovery for various environmental conditions by analyzing the recovery process and identifying parameters with the most significant impact on the recovery efficiency. As a result of this work, laboratory equipment and procedures tailored to the study of oil spill recovery at small scale were developed. A number of materials and surface patterns that can increase the adhesion skimmer recovery efficiency up to three times were identified and tested in a full scale oil spill recovery study.

  7. MicroRNAs As Potential Targets for Abiotic Stress Tolerance in Plants

    PubMed Central

    Shriram, Varsha; Kumar, Vinay; Devarumath, Rachayya M.; Khare, Tushar S.; Wani, Shabir H.

    2016-01-01

    The microRNAs (miRNAs) are small (20–24 nt) sized, non-coding, single stranded riboregulator RNAs abundant in higher organisms. Recent findings have established that plants assign miRNAs as critical post-transcriptional regulators of gene expression in sequence-specific manner to respond to numerous abiotic stresses they face during their growth cycle. These small RNAs regulate gene expression via translational inhibition. Usually, stress induced miRNAs downregulate their target mRNAs, whereas, their downregulation leads to accumulation and function of positive regulators. In the past decade, investigations were mainly aimed to identify plant miRNAs, responsive to individual or multiple environmental factors, profiling their expression patterns and recognizing their roles in stress responses and tolerance. Altered expressions of miRNAs implicated in plant growth and development have been reported in several plant species subjected to abiotic stress conditions such as drought, salinity, extreme temperatures, nutrient deprivation, and heavy metals. These findings indicate that miRNAs may hold the key as potential targets for genetic manipulations to engineer abiotic stress tolerance in crop plants. This review is aimed to provide recent updates on plant miRNAs, their biogenesis and functions, target prediction and identification, computational tools and databases available for plant miRNAs, and their roles in abiotic stress-responses and adaptive mechanisms in major crop plants. Besides, the recent case studies for overexpressing the selected miRNAs for miRNA-mediated enhanced abiotic stress tolerance of transgenic plants have been discussed. PMID:27379117

  8. Multifaceted roles of aquaporins as molecular conduits in plant responses to abiotic stresses.

    PubMed

    Srivastava, Ashish Kumar; Penna, Suprasanna; Nguyen, Dong Van; Tran, Lam-Son Phan

    2016-01-01

    Abiotic stress has become a challenge to food security due to occurrences of climate change and environmental degradation. Plants initiate molecular, cellular and physiological changes to respond and adapt to various types of abiotic stress. Understanding of plant response mechanisms will aid in strategies aimed at improving stress tolerance in crop plants. One of the most common and early symptoms associated with these stresses is the disturbance in plant-water homeostasis, which is regulated by a group of proteins called "aquaporins". Aquaporins constitute a small family of proteins which are classified further on the basis of their localization, such as plasma membrane intrinsic proteins, tonoplast intrinsic proteins, nodulin26-like intrinsic proteins (initially identified in symbiosomes of legumes but also found in the plasma membrane and endoplasmic reticulum), small basic intrinsic proteins localized in ER (endoplasmic reticulum) and X intrinsic proteins present in plasma membrane. Apart from water, aquaporins are also known to transport CO2, H2O2, urea, ammonia, silicic acid, arsenite and wide range of small uncharged solutes. Besides, aquaporins also function to modulate abiotic stress-induced signaling. Such kind of versatile functions has made aquaporins a suitable candidate for development of transgenic plants with increased tolerance toward different abiotic stress. Toward this endeavor, the present review describes the versatile functions of aquaporins in water uptake, nutrient balancing, long-distance signal transfer, nutrient/heavy metal acquisition and seed development. Various functional genomic studies showing the potential of specific aquaporin isoforms for enhancing plant abiotic stress tolerance are summarized and future research directions are given to design stress-tolerant crops. PMID:25430890

  9. MicroRNAs As Potential Targets for Abiotic Stress Tolerance in Plants.

    PubMed

    Shriram, Varsha; Kumar, Vinay; Devarumath, Rachayya M; Khare, Tushar S; Wani, Shabir H

    2016-01-01

    The microRNAs (miRNAs) are small (20-24 nt) sized, non-coding, single stranded riboregulator RNAs abundant in higher organisms. Recent findings have established that plants assign miRNAs as critical post-transcriptional regulators of gene expression in sequence-specific manner to respond to numerous abiotic stresses they face during their growth cycle. These small RNAs regulate gene expression via translational inhibition. Usually, stress induced miRNAs downregulate their target mRNAs, whereas, their downregulation leads to accumulation and function of positive regulators. In the past decade, investigations were mainly aimed to identify plant miRNAs, responsive to individual or multiple environmental factors, profiling their expression patterns and recognizing their roles in stress responses and tolerance. Altered expressions of miRNAs implicated in plant growth and development have been reported in several plant species subjected to abiotic stress conditions such as drought, salinity, extreme temperatures, nutrient deprivation, and heavy metals. These findings indicate that miRNAs may hold the key as potential targets for genetic manipulations to engineer abiotic stress tolerance in crop plants. This review is aimed to provide recent updates on plant miRNAs, their biogenesis and functions, target prediction and identification, computational tools and databases available for plant miRNAs, and their roles in abiotic stress-responses and adaptive mechanisms in major crop plants. Besides, the recent case studies for overexpressing the selected miRNAs for miRNA-mediated enhanced abiotic stress tolerance of transgenic plants have been discussed. PMID:27379117

  10. The ecophysiology of sulfur isotope fractionation by sulfate reducing bacteria in response to variable environmental conditions

    NASA Astrophysics Data System (ADS)

    Leavitt, W.; Bradley, A. S.; Johnston, D. T.; Pereira, I. A. C.; Venceslau, S.; Wallace, C.

    2014-12-01

    Microbial sulfate reducers (MSR) drive the Earth's biogeochemical sulfur cycle. At the heart of this energy metabolism is a cascade of redox transformations coupling organic carbon and/or hydrogen oxidation to the dissimilatory reduction of sulfate to sulfide. The sulfide produced is depleted in the heavier isotopes of sulfur relative to sulfate. The magnitude of discrimination (fractionation) depends on: i) the cell-specific sulfate reduction rate (csSRR, Kaplan & Rittenberg (1964) Can. J. Microbio.; Chambers et al. (1975) Can. J. Microbio; Sim et al. (2011) GCA; Leavitt et al. (2013) PNAS), ii) the ambient sulfate concentration (Harrison & Thode (1958) Research; Habicht et al. (2002) Science; Bradley et al. in review), iii) both sulfate and electron donor availability, or iv) an intrinsic physiological limitation (e.g. cellular division rate). When neither sulfate nor electron donor limits csSRR a more complex function relates the magnitude of isotope fractionation to cell physiology and environmental conditions. In recent and on-going work we have examined the importance of enzyme-specific fractionation factors, as well as the influence of electron donor or electron acceptor availability under carefully controlled culture conditions (e.g. Leavitt et al. (2013) PNAS). In light of recent advances in MSR genetics and biochemistry we utilize well-characterized mutant strains, along with a continuous-culture methodology (Leavitt et al. (2013) PNAS) to further probe the fractionation capacity of this metabolism under controlled physiological conditions. We present our latest findings on the magnitude of S and D/H isotope fractionation in both wild type and mutant strains. We will discuss these in light of recent theoretical advances (Wing & Halevy (2014) PNAS), examining the mode and relevance of MSR isotope fractionation in the laboratory to modern and ancient environmental settings, particularly anoxic marine sediments.

  11. Micronuclei in neonates and children: effects of environmental, genetic, demographic and disease variables

    PubMed Central

    Holland, Nina; Fucic, Alexandra; Merlo, Domenico Franco; Sram, Radim; Kirsch-Volders, Micheline

    2011-01-01

    Children may be more susceptible to the effects of the environmental exposure and medical treatments than adults; however, limited information is available about the differences in genotoxic effects in children by age, sex and health status. Micronucleus (MN) assay is a well established method of monitoring genotoxicity, and this approach is thoroughly validated for adult lymphocytes by the Human Micronucleus Biomonitoring project (HUMN.org). Similar international undertaking is in progress for exfoliated buccal cells. Most of the MN studies in children are focused on analyses of lymphocytes but in the recent years, more investigators are interested in using exfoliated cells from the oral cavity and other cell types that can be collected non-invasively, which is particularly important in paediatric cohorts. The baseline MN frequency is relatively low in newborns and its assessment requires large cohorts and cell sample counts. Available results are mostly consistent in conclusion that environmental pollutants and radiation exposures lead to the increase in the MN frequency in children. Effects of medical treatments are less clear, and more studies are needed to optimise the doses and minimise genotoxicity without compromising therapy outcomes. Despite the recent progress in MN assay in children, more studies are warranted to establish the relationship between MN in lymphocytes and exfoliated cells, to clarify sex, age and genotype differences in baseline MN levels and the changes in response to genotoxicants. One of the most important types of MN studies in children are prospective cohorts that will help to clarify the predictive value of MN and other cytome end points for cancer and other chronic diseases of childhood and adulthood. Emerging ‘omic’ and other novel molecular technologies may shed light on the molecular mechanisms and biological pathways associated with the MN levels in children. PMID:21164182

  12. FATE OF FENTHION IN SALT-MARSH ENVIRONMENTS: 1. FACTORS AFFECTING BIOTIC AND ABIOTIC DEGRADATION RATES IN WATER AND SEDIMENT

    EPA Science Inventory

    Fenthion (Baytex), an organophosphate insecticide, is frequently applied to salt-marsh environments to control mosquitoes. hake-flask tests were used to study rates of abiotic and biotic degradation of fenthion and the environmental parameters that affect these rates. Water or wa...

  13. Effects of biotic and abiotic factors on phenotypic partitioning of wing morphology and development in Sclerodermus pupariae (hymenoptera: bethylidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wing phenotype polymorphism is commonly observed in insects, yet little is known about the influence of environmental cues on the development or expression of the alternative phenotypes. Here, we examined the effects of biotic and abiotic factors including temperature, photoperiod, light intensity,...

  14. Understanding molecular mechanism of higher plant plasticity under abiotic stress.

    PubMed

    Shao, Hong-Bo; Guo, Qing-Jie; Chu, Li-Ye; Zhao, Xi-Ning; Su, Zhong-Liang; Hu, Ya-Chen; Cheng, Jiang-Feng

    2007-01-15

    Higher plants play the most important role in keeping a stable environment on the earth, which regulate global circumstances in many ways in terms of different levels (molecular, individual, community, and so on), but the nature of the mechanism is gene expression and control temporally and spatially at the molecular level. In persistently changing environment, there are many adverse stress conditions such as cold, drought, salinity and UV-B (280-320 mm), which influence plant growth and crop production greatly. Plants differ from animals in many aspects, but the important may be that plants are more easily influenced by environment than animals. Plants have a series of fine mechanisms for responding to environmental changes, which has been established during their long-period evolution and artificial domestication. These mechanisms are involved in many aspects of anatomy, physiology, biochemistry, genetics, development, evolution and molecular biology, in which the adaptive machinery related to molecular biology is the most important. The elucidation of it will extremely and purposefully promote the sustainable utilization of plant resources and make the best use of its current potential under different scales. This molecular mechanism at least include environmental signal recognition (input), signal transduction (many cascade biochemical reactions are involved in this process), signal output, signal responses and phenotype realization, which is a multi-dimensional network system and contain many levels of gene expression and regulation. We will focus on the molecular adaptive machinery of higher plant plasticity under abiotic stresses. PMID:16914294

  15. Soluble sugars—Metabolism, sensing and abiotic stress

    PubMed Central

    Rosa, Mariana; Prado, Carolina; Podazza, Griselda; Interdonato, Roque; González, Juan A; Hilal, Mirna

    2009-01-01

    Plants are autotrophic and photosynthetic organisms that both produce and consume sugars. Soluble sugars are highly sensitive to environmental stresses, which act on the supply of carbohydrates from source organs to sink ones. Sucrose and hexoses both play dual functions in gene regulation as exemplified by the upregulation of growth-related genes and downregulation of stress-related genes. Although coordinately regulated by sugars, these growth- and stress-related genes are upregulated or downregulated through HXK-dependent and/or HXK-independent pathways. Sucrose-non-fermenting-1- (SNF1-) related protein pathway, analogue to the protein kinase (SNF-) yeast-signalling pathway, seems also involved in sugar sensing and transduction in plants. However, even if plants share with yeast some elements involved in sugar sensing, several aspects of sugar perception are likely to be peculiar to higher plants. In this paper, we have reviewed recent evidences how plants sense and respond to environmental factors through sugar-sensing mechanisms. However, we think that forward and reverse genetic analysis in combination with expression profiling must be continued to uncover many signalling components, and a full biochemical characterization of the signalling complexes will be required to determine specificity and cross-talk in abiotic stress signalling pathways. PMID:19816104

  16. Generation of RNA in abiotic conditions.

    NASA Astrophysics Data System (ADS)

    di Mauro, Ernesto

    Generation of RNA in abiotic conditions. Ernesto Di Mauro Dipartimento di Genetica Bi-ologia Molecolare, Universit` "Sapienza" Roma, Italy. a At least four conditions must be satisfied for the spontaneous generation of (pre)-genetic poly-mers: 1) availability of precursors that are activated enough to spontaneously polymerize. Preliminary studies showed that (a) nucleic bases and acyclonucleosides can be synthesized from formamide H2NCOH by simply heating with prebiotically available mineral catalysts [last reviewed in (1)], and that b) nucleic bases can be phosphorylated in every possible posi-tion [2'; 3'; 5'; cyclic 2',3'; cyclic 3',5' (2)]. The higher stability of the cyclic forms allows their accumulation. 2) A polymerization mechanism. A reaction showing the formation of RNA polymers starting from prebiotically plausible precursors (3',5' cyclic GMP and 3', 5'cyclic AMP) was recently reported (3). Polymerization in these conditions is thermodynamically up-hill and an equilibrium is attained that limits the maximum length of the polymer produced to about 40 nucleotides for polyG and 100 nucleotides for polyA. 3) Ligation of the synthesized oligomers. If this type of reaction could occur according to a terminal-joining mechanism and could generate canonical 3',5' phosphodiester bonds, exponential growth would be obtained of the generated oligomers. This type of reaction has been reported (4) , limited to homogeneous polyA sequences and leading to the production of polyA dimers and tetramers. What is still missing are: 4) mechanisms that provide the proof of principle for the generation of sequence complexity. We will show evidence for two mechanisms providing this proof of principle for simple complementary sequences. Namely: abiotic sequence complementary-driven terminal ligation and sequence-complementary terminal growth. In conclusion: all the steps leading to the generation of RNA in abiotic conditions are satisfied. (1) R Saladino, C Crestini, F

  17. Effects of environmental variables on between-year variation of Ulva growth and biomass in a eutrophic brackish lake

    NASA Astrophysics Data System (ADS)

    Malta, Erik-jan; Verschuure, Jacobus M.

    1997-12-01

    Biomass development, growth rate, tissue composition and habitat characteristics of macroalgal blooms were monitored in the eutrophic Veerse Meer (the Netherlands) in 1992 and in 1994 to determine seasonal and between-year variabilities and their relation with environmental factors. In both years, the blooms were dominated by Ulva species (more than 95% of total macroalgal biomass). In 1992, the maximum biomass was 602 g DW m -2, in 1994 the maximum biomass was only 282 g DW m -2. Growth rates (μ), measured in cages, were high at the beginning of May 1992, but quickly dropped to values between 0.05 and 0.10 day -1. In 1994, high growth rates were observed for 1 week in early May only. Water nitrogen concentrations (DIN) and tissue nitrogen levels in Ulva spp. were higher in 1994 than in 1992. No overall difference was found in irradiance between 1992 and 1994 at the beginning of the growing season, but irradiance levels were much higher in 1992. The results of a stepwise multiple regression analysis indicate that in 1992 the part of variation in growth rate that could be explained by regression was due to water DIN. In 1994, water phosphorus concentration and light were the variables explaining this part of the variation in growth rate. It is concluded that macroalgal biomass development in the Veerse Meer shows high variability, both within one season and between years. Although positive correlations were shown between tissue nitrogen levels and DIN, differences in DIN could not explain between-year variability. In a eutrophic lagoon, incident irradiance levels are probably more important in regulating maximum macroalgal yield than DIN.

  18. Trait-Based Community Assembly along an Elevational Gradient in Subalpine Forests: Quantifying the Roles of Environmental Factors in Inter- and Intraspecific Variability.

    PubMed

    Luo, Ya-Huang; Liu, Jie; Tan, Shao-Lin; Cadotte, Marc William; Wang, Yue-Hua; Xu, Kun; Li, De-Zhu; Gao, Lian-Ming

    2016-01-01

    Understanding how communities respond to environmental variation is a central goal in ecology. Plant communities respond to environmental gradients via intraspecific and/or interspecific variation in plant functional traits. However, the relative contribution of these two responses to environmental factors remains poorly tested. We measured six functional traits (height, leaf thickness, specific leaf area (SLA), leaf carbon concentration (LCC), leaf nitrogen concentration (LNC) and leaf phosphorus concentration (LPC)) for 55 tree species occurring at five elevations across a 1200 m elevational gradient of subalpine forests in Yulong Mountain, Southwest China. We examined the relative contribution of interspecific and intraspecific traits variability based on community weighted mean trait values and functional diversity, and tested how different components of trait variation respond to different environmental axes (climate and soil variables). Species turnover explained the largest amount of variation in leaf morphological traits (leaf thickness and SLA) across the elevational gradient. However, intraspecific variability explained a large amount of variation (49.3%-76.3%) in three other traits (height, LNC and LPC) despite high levels of species turnover. The detection of limiting similarity in community assembly was improved when accounting for both intraspecific and interspecific variability. Different components of trait variation respond to different environmental axes, especially soil water content and climatic variables. Our results indicate that intraspecific variation is critical for understanding community assembly and evaluating community response to environmental change. PMID:27191402

  19. Trait-Based Community Assembly along an Elevational Gradient in Subalpine Forests: Quantifying the Roles of Environmental Factors in Inter- and Intraspecific Variability

    PubMed Central

    Luo, Ya-Huang; Liu, Jie; Tan, Shao-Lin; Cadotte, Marc William; Wang, Yue-Hua; Xu, Kun; Li, De-Zhu; Gao, Lian-Ming

    2016-01-01

    Understanding how communities respond to environmental variation is a central goal in ecology. Plant communities respond to environmental gradients via intraspecific and/or interspecific variation in plant functional traits. However, the relative contribution of these two responses to environmental factors remains poorly tested. We measured six functional traits (height, leaf thickness, specific leaf area (SLA), leaf carbon concentration (LCC), leaf nitrogen concentration (LNC) and leaf phosphorus concentration (LPC)) for 55 tree species occurring at five elevations across a 1200 m elevational gradient of subalpine forests in Yulong Mountain, Southwest China. We examined the relative contribution of interspecific and intraspecific traits variability based on community weighted mean trait values and functional diversity, and tested how different components of trait variation respond to different environmental axes (climate and soil variables). Species turnover explained the largest amount of variation in leaf morphological traits (leaf thickness and SLA) across the elevational gradient. However, intraspecific variability explained a large amount of variation (49.3%–76.3%) in three other traits (height, LNC and LPC) despite high levels of species turnover. The detection of limiting similarity in community assembly was improved when accounting for both intraspecific and interspecific variability. Different components of trait variation respond to different environmental axes, especially soil water content and climatic variables. Our results indicate that intraspecific variation is critical for understanding community assembly and evaluating community response to environmental change. PMID:27191402

  20. Reconstruction of Centennial and Millennial-scale Climate and Environmental Variability during the Holocene in the Central Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Rolland, N.; Porinchu, D.; MacDonald, G.; Moser, K.

    2007-12-01

    The Arctic and sub-Arctic regions are experiencing dramatic changes in surface temperature, sea-ice extent, glacial melt, river discharge, soil carbon storage and snow cover. According to the IPCC high latitude regions are expected to warm between 4°C and 7°C over the next 100 years. The magnitude of warming and the rate at which it occurs will dwarf any previous warming episodes experienced by latitude regions over the last 11,000 years. It is critical that we improve our understanding of how the Arctic and sub-Arctic regions responded to past periods of warming, especially in light of the changes these regions will be experiencing over the next 100 years. One of the lines of evidence increasingly utilized in multi-proxy paleolimnological research is the Chironomidae (Insecta: Diptera). Also known as non-biting midge flies, chironomids are ubiquitous, frequently the most abundant insects found in freshwater ecosystems and very sensitive to environmental conditions. This research uses Chironomidae to quantitatively characterize climate and environmental conditions of the continental interior of Arctic Canada during the Holocene. Spanning four major vegetation zones (boreal forest, forest-tundra, birch tundra and herb tundra), the surface samples of 80 lakes recovered from the central Canadian Arctic were used to assess the relationship of 22 environmental variables with the chironomid distribution. Redundancy analysis (RDA) identified four variables, total Kjeldahl nitrogen (TKN), pH, summer surface water temperature (SSWT) and depth, which best explain the variance in the distribution of chironomids within these ecoregions. In order to provide new quantitative estimates of SSWT, a 1-component weighted average partial least square (WA-PLS) model was developed (r2jack = 0.76, RMSEP = 1.42°C) and applied downcore in two low arctic continental Nunavut lakes located approximately 50 km and 200 km north of modern treeline. This robust midge-inferred temperature

  1. Environmental and management impacts on temporal variability of soil hydraulic properties

    NASA Astrophysics Data System (ADS)

    Bodner, G.; Scholl, P.; Loiskandl, W.; Kaul, H.-P.

    2012-04-01

    Soil hydraulic properties underlie temporal changes caused by different natural and management factors. Rainfall intensity, wet-dry cycles, freeze-thaw cycles, tillage and plant effects are potential drivers of the temporal variability. For agricultural purposes it is important to determine the possibility of targeted influence via management. In no-till systems e.g. root induced soil loosening (biopores) is essential to counteract natural soil densification by settling. The present work studies two years of temporal evolution of soil hydraulic properties in a no-till crop rotation (durum wheat-field pea) with two cover crops (mustard and rye) having different root systems (taproot vs. fibrous roots) as well as a bare soil control. Soil hydraulic properties such as near-saturated hydraulic conductivity, flow weighted pore radius, pore number and macroporosity are derived from measurements using a tension infiltrometer. The temporal dynamics are then analysed in terms of potential driving forces. Our results revealed significant temporal changes of hydraulic conductivity. When approaching saturation, spatial variability tended to dominate over the temporal evolution. Changes in near-saturated hydraulic conductivity were mainly a result of changing pore number, while the flow weighted mean pore radius showed less temporal dynamic in the no-till system. Macroporosity in the measured range of 0 to -10 cm pressure head ranged from 1.99e-4 to 8.96e-6 m3m-3. The different plant coverage revealed only minor influences on the observed system dynamics. Mustard increased slightly the flow weighted mean pore radius, being 0.090 mm in mustard compared to 0.085 mm in bare soil and 0.084 mm in rye. Still pore radius changes were of minor importance for the overall temporal dynamics. Rainfall was detected as major driving force of the temporal evolution of structural soil hydraulic properties at the site. Soil hydraulic conductivity in the slightly unsaturated range (-7 cm to -10

  2. Genetic Dissection of Abiotic Stress Tolerance in Sorghum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sorghum, the fifth most important cereal crop in the world is a highly versatile crop and an excellent model species due to its overall tolerance to a number of abiotic stress conditions. To gain a better understanding of the physiological and genetic basis of abiotic stress tolerance in sorghum w...

  3. Darwinian Dynamics of Intratumoral Heterogeneity: Not Solely Random Mutations but Also Variable Environmental Selection Forces.

    PubMed

    Lloyd, Mark C; Cunningham, Jessica J; Bui, Marilyn M; Gillies, Robert J; Brown, Joel S; Gatenby, Robert A

    2016-06-01

    Spatial heterogeneity in tumors is generally thought to result from branching clonal evolution driven by random mutations that accumulate during tumor development. However, this concept rests on the implicit assumption that cancer cells never evolve to a fitness maximum because they can always acquire mutations that increase proliferative capacity. In this study, we investigated the validity of this assumption. Using evolutionary game theory, we demonstrate that local cancer cell populations will rapidly converge to the fittest phenotype given a stable environment. In such settings, cellular spatial heterogeneity in a tumor will be largely governed by regional variations in environmental conditions, for example, alterations in blood flow. Model simulations specifically predict a common spatial pattern in which cancer cells at the tumor-host interface exhibit invasion-promoting, rapidly proliferating phenotypic properties, whereas cells in the tumor core maximize their population density by promoting supportive tissue infrastructures, for example, to promote angiogenesis. We tested model predictions through detailed quantitative image analysis of phenotypic spatial distribution in histologic sections of 10 patients with stage 2 invasive breast cancers. CAIX, GLUT1, and Ki67 were upregulated in the tumor edge, consistent with an acid-producing invasive, proliferative phenotype. Cells in the tumor core were 20% denser than the edge, exhibiting upregulation of CAXII, HIF-1α, and cleaved caspase-3, consistent with a more static and less proliferative phenotype. Similarly, vascularity was consistently lower in the tumor center compared with the tumor edges. Lymphocytic immune responses to tumor antigens also trended to higher level in the tumor edge, although this effect did not reach statistical significance. Like invasive species in nature, cancer cells at the leading edge of the tumor possess a different phenotype from cells in the tumor core. Our results suggest

  4. Cell wall remodeling under abiotic stress

    PubMed Central

    Tenhaken, Raimund

    2015-01-01

    Plants exposed to abiotic stress respond to unfavorable conditions on multiple levels. One challenge under drought stress is to reduce shoot growth while maintaining root growth, a process requiring differential cell wall synthesis and remodeling. Key players in this process are the formation of reactive oxygen species (ROS) and peroxidases, which initially cross-link phenolic compounds and glycoproteins of the cell walls causing stiffening. The function of ROS shifts after having converted all the peroxidase substrates in the cell wall. If ROS-levels remain high during prolonged stress, OH°-radicals are formed which lead to polymer cleavage. In concert with xyloglucan modifying enzymes and expansins, the resulting cell wall loosening allows further growth of stressed organs. PMID:25709610

  5. Regional precipitation variability in East Asia related to climate and environmental factors during 1979-2012

    PubMed Central

    Deng, Yinyin; Gao, Tao; Gao, Huiwang; Yao, Xiaohong; Xie, Lian

    2014-01-01

    This paper studies the inter-annual precipitation variations in different regions of East Asia from oceans to interior areas in China during 1979 – 2012. The results computed by Empirical Orthogonal Functions (EOF) demonstrate that the annual precipitation changes are mainly related to the El Niño-Southern Oscillation, East Asian summer monsoon and aerosols. We also found that the increased Sea surface temperature (SST) could explain the precipitation changes over the Northwest Pacific in the dry season (Oct. – May) and the East China Sea and the South China Sea in the rainy season (Jun. – Sep.). The precipitation changes over the ocean unexplained by SST were likely due to the water vapor transport dominated by dynamic factors. With the increased SST, the moisture transported from oceans to interior land was likely redistributed and caused the complicated regional variability of precipitation. Moreover, the impacts of aerosols on cloud and precipitation varied with different pollution levels and different seasons. PMID:25033387

  6. Environmental enrichment and cafeteria diet attenuate the response to chronic variable stress in rats.

    PubMed

    Zeeni, N; Bassil, M; Fromentin, G; Chaumontet, C; Darcel, N; Tome, D; Daher, C F

    2015-02-01

    Exposure to an enriched environment (EE) or the intake of a highly palatable diet may reduce the response to chronic stress in rodents. To further explore the relationships between EE, dietary intake and stress, male Sprague-Dawley rats were fed one of two diets for 5 weeks: high carbohydrate (HC) or "cafeteria" (CAF) (Standard HC plus a choice of highly palatable cafeteria foods: chocolate, biscuits, and peanut butter). In addition, they were either housed in empty cages or cages with EE. After the first two weeks, half of the animals from each group were stressed daily using a chronic variable stress (CVS) paradigm, while the other half were kept undisturbed. Rats were sacrificed at the end of the 5-week period. The effects of stress, enrichment and dietary intake on animal adiposity, serum lipids, and stress hormones were analyzed. Results showed an increase in intra-abdominal fat associated with the CAF diet and an increase in body weight gain associated with both the CAF diet and EE. Furthermore, the increase in ACTH associated with CVS was attenuated in the presence of EE and the CAF diet independently while the stress-induced increase in corticosterone was reduced by the combination of EE and CAF feeding. The present study provides evidence that the availability of a positive environment combined to a highly palatable diet increases resilience to the effects of CVS in rats. These results highlight the important place of palatable food and supportive environments in reducing central stress responses. PMID:25446213

  7. Optical system design with variable working distance for monitoring of environmental contamination in infrared region

    NASA Astrophysics Data System (ADS)

    Romanova, G. E.; Zaitceva, A. S.

    2016-04-01

    The project is dedicated to a research and development of a compact optical system for an identification of dangerous substances in a surrounding environment using a spectrum of scattered laser radiation. There is a whole class of tasks for diagnostics of environments and substances which are solved by mobile systems on distances of 0.5 - 10 m from the object. The key feature of an optical system in this case is having the highest functionality, to meet this demands it should be able to work on variable distances and provide the minimal light spot. The purpose of the work is a research of the best possible initial system parameters and its components, designing of an optical system with minimum possible number of elements providing acceptable quality of the image in the required dimensions. An image quality criterion for such systems is the size of the light spot, which defines an operation speed of the system. Using the beam diameter and allowable system dimensions as initial parameters of the two components system, relations were found which helps to define optimal component parameters for future design. To provide the possibility of working on various distances the thickness between the components can be varied. An example of a two component system consisted of three lenses with spherical surfaces is presented. The system works with a laser with the wavelength of 0.785 μm and provides the light spot less than 2.3 mm for all working distances within the range of 2 - 5 m.

  8. Linking bovine tuberculosis on cattle farms to white-tailed deer and environmental variables using Bayesian hierarchical analysis

    USGS Publications Warehouse

    Walter, William D.; Smith, Rick; Vanderklok, Mike; VerCauterren, Kurt C.

    2014-01-01

    Bovine tuberculosis is a bacterial disease caused by Mycobacterium bovis in livestock and wildlife with hosts that include Eurasian badgers (Meles meles), brushtail possum (Trichosurus vulpecula), and white-tailed deer (Odocoileus virginianus). Risk-assessment efforts in Michigan have been initiated on farms to minimize interactions of cattle with wildlife hosts but research onM. bovis on cattle farms has not investigated the spatial context of disease epidemiology. To incorporate spatially explicit data, initial likelihood of infection probabilities for cattle farms tested for M. bovis, prevalence of M. bovis in white-tailed deer, deer density, and environmental variables for each farm were modeled in a Bayesian hierarchical framework. We used geo-referenced locations of 762 cattle farms that have been tested for M. bovis, white-tailed deer prevalence, and several environmental variables that may lead to long-term survival and viability of M. bovis on farms and surrounding habitats (i.e., soil type, habitat type). Bayesian hierarchical analyses identified deer prevalence and proportion of sandy soil within our sampling grid as the most supported model. Analysis of cattle farms tested for M. bovisidentified that for every 1% increase in sandy soil resulted in an increase in odds of infection by 4%. Our analysis revealed that the influence of prevalence of M. bovis in white-tailed deer was still a concern even after considerable efforts to prevent cattle interactions with white-tailed deer through on-farm mitigation and reduction in the deer population. Cattle farms test positive for M. bovis annually in our study area suggesting that the potential for an environmental source either on farms or in the surrounding landscape may contributing to new or re-infections with M. bovis. Our research provides an initial assessment of potential environmental factors that could be incorporated into additional modeling efforts as more knowledge of deer herd

  9. [Environmental pollution, climate variability and climate change: a review of health impacts on the Peruvian population].

    PubMed

    Gonzales, Gustavo F; Zevallos, Alisson; Gonzales-Castañeda, Cynthia; Nuñez, Denisse; Gastañaga, Carmen; Cabezas, César; Naeher, Luke; Levy, Karen; Steenland, Kyle

    2014-01-01

    This article is a review of the pollution of water, air and the effect of climate change on the health of the Peruvian population. A major air pollutant is particulate matter less than 2.5 μ (PM 2.5). In Lima, 2,300 premature deaths annually are attributable to this pollutant. Another problem is household air pollution by using stoves burning biomass fuels, where excessive indoor exposure to PM 2.5 inside the household is responsible for approximately 3,000 annual premature deaths among adults, with another unknown number of deaths among children due to respiratory infections. Water pollution is caused by sewage discharges into rivers, minerals (arsenic) from various sources, and failure of water treatment plants. In Peru, climate change may impact the frequency and severity of El Niño Southern Oscillation (ENSO), which has been associated with an increase in cases of diseases such as cholera, malaria and dengue. Climate change increases the temperature and can extend the areas affected by vector-borne diseases, have impact on the availability of water and contamination of the air. In conclusion, Peru is going through a transition of environmental risk factors, where traditional and modern risks coexist and infectious and chronic problems remain, some of which are associated with problems of pollution of water and air. PMID:25418656

  10. Mechanisms of phytoplankton adaptation to environmental variability in a shelf ecosystem

    NASA Astrophysics Data System (ADS)

    Barlow, R.; Lamont, T.; Britz, K.; Sessions, H.

    2013-11-01

    Phytoplankton absorption, pigments and active fluorescence were investigated at five focus sites in a shelf region during summer and winter to elucidate the adaptation of communities to changing environmental conditions. We determined that the availability of nutrients and changing irradiance were the key drivers of phytoplankton growth and photoacclimation in an ecosystem influenced by a warm western boundary current. Diatoms dominated the communities in the winter, while mixed diatom-flagellate populations generally prevailed in summer. Prokaryotes were dominant in the surface layer at one site where warm water flowed onto the shelf. Diatom and flagellate communities were associated with cooler, lower salinity water and prokaryotes with warm, higher salinity water. Populations appeared not be nutrient stressed and actively drew down silicates and nitrates, with nitrates being rapidly utilized resulting in low ambient nitrate levels in the upper water column. The phytoplankton acclimated to changing irradiance conditions by increasing the quantum yield of photochemistry with decreasing irradiance and adjusting the absorption of light by accessory pigments. Prokaryote dominated communities had high chlorophyll-specific absorption coefficients, and a high proportion of spectral absorption by chlorophyll a and photoprotective carotenoids. Diatoms had low chlorophyll-specific absorption and elevated absorption by photosynthetic carotenoids and chlorophyll c. Although flagellate-dominated communities had intermediate chlorophyll-specific absorption, their proportion of absorption by photosynthetic carotenoids and chlorophyll c was similar to the diatoms.

  11. Predicting the distribution of canine leishmaniasis in western Europe based on environmental variables.

    PubMed

    Franco, Ana O; Davies, Clive R; Mylne, Adrian; Dedet, Jean-Pierre; Gállego, Montserrat; Ballart, Cristina; Gramiccia, Marina; Gradoni, Luigi; Molina, Ricardo; Gálvez, Rosa; Morillas-Márquez, Francisco; Barón-López, Sergio; Pires, Carlos Alves; Afonso, Maria Odete; Ready, Paul D; Cox, Jonathan

    2011-12-01

    The domestic dog is the reservoir host of Leishmania infantum, the causative agent of zoonotic visceral leishmaniasis endemic in Mediterranean Europe. Targeted control requires predictive risk maps of canine leishmaniasis (CanL), which are now explored. We databased 2187 published and unpublished surveys of CanL in southern Europe. A total of 947 western surveys met inclusion criteria for analysis, including serological identification of infection (504, 369 dogs tested 1971-2006). Seroprevalence was 23 2% overall (median 10%). Logistic regression models within a GIS framework identified the main environmental predictors of CanL seroprevalence in Portugal, Spain, France and Italy, or in France alone. A 10-fold cross-validation approach determined model capacity to predict point-values of seroprevalence and the correct seroprevalence class (<5%, 5-20%, >20%). Both the four-country and France-only models performed reasonably well for predicting correctly the <5% and >20% seroprevalence classes (AUC >0 70). However, the France-only model performed much better for France than the four-country model. The four-country model adequately predicted regions of CanL emergence in northern Italy (<5% seroprevalence). Both models poorly predicted intermediate point seroprevalences (5-20%) within regional foci, because surveys were biased towards known rural foci and Mediterranean bioclimates. Our recommendations for standardizing surveys would permit higher-resolution risk mapping. PMID:21914251

  12. Regional Genetic Structure and Environmental Variables Influence our Conservation Approach for Feather Heads (Ptilotus macrocephalus).

    PubMed

    Ahrens, Collin W; James, Elizabeth A

    2016-05-01

    Continued alterations to the Australian environment compromise the long-term viability of many plant species. We investigate the population genetics of Ptilotus macrocephalus, a perennial herb that occurs in 2 nationally endangered communities on the Victorian Volcanic Plain Bioregion (VVP), Australia, to answer key questions regarding regional differentiation and to guide conservation strategies. We evaluate genetic structure and diversity within and among 17 P. macrocephalus populations from 3 regions of southeastern Australia using 17 microsatellite markers developed de novo. Genetic structure was present in P. macrocephalus between the 3 regions but not at the population level. Environmental factors, namely temperature and precipitation, significantly explained differentiation between the North region and the other 2 regions indicating isolation by environment. Within regions, genetic structure currently shows a high level of gene flow and genetic variation. Our results suggest that within-region gene flow does not reflect current habitat fragmentation in southeastern Australia whereas temperature and precipitation are likely to be responsible for the differentiation detected among regions. Climate change may severely impact P. macrocephalus on the VVP and test its evolutionary resilience. We suggest taking a proactive conservation approach to improve long-term viability by sourcing material for restoration to assist gene flow to the VVP region to promote an increased adaptive capacity. PMID:26865733

  13. Quality of environmental impact statements and variability of scrutiny by reviewers

    SciTech Connect

    Peterson, Kaja

    2010-04-15

    Adequate provision of information is essential for decision making. This paper provides the results of the quality assessment of Environmental Impact Statements (EIS), documents prescribed by EIA Directive (337/85/EEC). The assessment was completed by several categories of reviewers in Estonia, which has been an EU member state since 2004. The quality assessment of EIS was based on the EC Guidance on EIS Review (2001). Firstly, the quality assessment of 50 randomly selected EIS was carried out by a single reviewer. Secondly, the individual grading among 24 independent reviewers of a single EIS was tested. Thirdly, a comparison of the results of 15 individual and 5 group assessments of the same EIS was conducted. The results from the quality assessment of the selected EIS demonstrate a satisfactory level of information provided for decision making; 68% of the sample EIS were positively graded. However, more than half of the 50 EIS were graded as 'just satisfactory'. Comparison between the individual and group assessment of the same EIS demonstrates that the group assessment is more critical than the individual assessment. This possibly results from a wider technical expertise and balancing of subjective values and perspectives among group members. Arguably, the current practice of EIA competent authorities assessing the quality of EIS with individuals could be revised. We discuss the effect of the group assessment on expanding the narrow technical expertise and the subjectivity of a single expert.

  14. A Wearable Patch to Enable Long-Term Monitoring of Environmental, Activity and Hemodynamics Variables.

    PubMed

    Etemadi, Mozziyar; Inan, Omer T; Heller, J Alex; Hersek, Sinan; Klein, Liviu; Roy, Shuvo

    2016-04-01

    We present a low power multi-modal patch designed for measuring activity, altitude (based on high-resolution barometric pressure), a single-lead electrocardiogram, and a tri-axial seismocardiogram (SCG). Enabled by a novel embedded systems design methodology, this patch offers a powerful means of monitoring the physiology for both patients with chronic cardiovascular diseases, and the general population interested in personal health and fitness measures. Specifically, to the best of our knowledge, this patch represents the first demonstration of combined activity, environmental context, and hemodynamics monitoring, all on the same hardware, capable of operating for longer than 48 hours at a time with continuous recording. The three-channels of SCG and one-lead ECG are all sampled at 500 Hz with high signal-to-noise ratio, the pressure sensor is sampled at 10 Hz, and all signals are stored to a microSD card with an average current consumption of less than 2 mA from a 3.7 V coin cell (LIR2450) battery. In addition to electronic characterization, proof-of-concept exercise recovery studies were performed with this patch, suggesting the ability to discriminate between hemodynamic and electrophysiology response to light, moderate, and heavy exercise. PMID:25974943

  15. Abiotic Organic Chemistry in Hydrothermal Systems.

    NASA Astrophysics Data System (ADS)

    Simoneit, B. R.; Rushdi, A. I.

    2004-12-01

    Abiotic organic chemistry in hydrothermal systems is of interest to biologists, geochemists and oceanographers. This chemistry consists of thermal alteration of organic matter and minor prebiotic synthesis of organic compounds. Thermal alteration has been extensively documented to yield petroleum and heavy bitumen products from contemporary organic detritus. Carbon dioxide, carbon monoxide, ammonia and sulfur species have been used as precursors in prebiotic synthesis experiments to organic compounds. These inorganic species are common components of hot spring gases and marine hydrothermal systems. It is of interest to further test their reactivities in reductive aqueous thermolysis. We have synthesized organic compounds (lipids) in aqueous solutions of oxalic acid, and with carbon disulfide or ammonium bicarbonate at temperatures from 175-400° C. The synthetic lipids from oxalic acid solutions consisted of n-alkanols, n-alkanoic acids, n-alkyl formates, n-alkanones, n-alkenes and n-alkanes, typically to C30 with no carbon number preferences. The products from CS2 in acidic aqueous solutions yielded cyclic thioalkanes, alkyl polysulfides, and thioesters with other numerous minor compounds. The synthesis products from oxalic acid and ammonium bicarbonate solutions were homologous series of n-alkyl amides, n-alkyl amines, n-alkanes and n-alkanoic acids, also to C30 with no carbon number predominance. Condensation (dehydration) reactions also occur under elevated temperatures in aqueous medium as tested by model reactions to form amide, ester and nitrile bonds. It is concluded that the abiotic formation of aliphatic lipids, condensation products (amides, esters, nitriles, and CS2 derivatives (alkyl polysulfides, cyclic polysulfides) is possible under hydrothermal conditions and warrants further studies.

  16. Distribution of vascular epiphytes along a tropical elevational gradient: disentangling abiotic and biotic determinants.

    PubMed

    Ding, Yi; Liu, Guangfu; Zang, Runguo; Zhang, Jian; Lu, Xinghui; Huang, Jihong

    2016-01-01

    Epiphytic vascular plants are common species in humid tropical forests. Epiphytes are influenced by abiotic and biotic variables, but little is known about the relative importance of direct and indirect effects on epiphyte distribution. We surveyed 70 transects (10 m × 50 m) along an elevation gradient (180 m-1521 m) and sampled all vascular epiphytes and trees in a typical tropical forest on Hainan Island, south China. The direct and indirect effects of abiotic factors (climatic and edaphic) and tree community characteristics on epiphytes species diversity were examined. The abundance and richness of vascular epiphytes generally showed a unimodal curve with elevation and reached maximum value at ca. 1300 m. The species composition in transects from high elevation (above 1200 m) showed a more similar assemblage. Climate explained the most variation in epiphytes species diversity followed by tree community characteristics and soil features. Overall, climate (relative humidity) and tree community characteristics (tree size represented by basal area) had the strongest direct effects on epiphyte diversity while soil variables (soil water content and available phosphorus) mainly had indirect effects. Our study suggests that air humidity is the most important abiotic while stand basal area is the most important biotic determinants of epiphyte diversity along the tropical elevational gradient. PMID:26796667

  17. Distribution of vascular epiphytes along a tropical elevational gradient: disentangling abiotic and biotic determinants

    PubMed Central

    Ding, Yi; Liu, Guangfu; Zang, Runguo; Zhang, Jian; Lu, Xinghui; Huang, Jihong

    2016-01-01

    Epiphytic vascular plants are common species in humid tropical forests. Epiphytes are influenced by abiotic and biotic variables, but little is known about the relative importance of direct and indirect effects on epiphyte distribution. We surveyed 70 transects (10 m × 50 m) along an elevation gradient (180 m–1521 m) and sampled all vascular epiphytes and trees in a typical tropical forest on Hainan Island, south China. The direct and indirect effects of abiotic factors (climatic and edaphic) and tree community characteristics on epiphytes species diversity were examined. The abundance and richness of vascular epiphytes generally showed a unimodal curve with elevation and reached maximum value at ca. 1300 m. The species composition in transects from high elevation (above 1200 m) showed a more similar assemblage. Climate explained the most variation in epiphytes species diversity followed by tree community characteristics and soil features. Overall, climate (relative humidity) and tree community characteristics (tree size represented by basal area) had the strongest direct effects on epiphyte diversity while soil variables (soil water content and available phosphorus) mainly had indirect effects. Our study suggests that air humidity is the most important abiotic while stand basal area is the most important biotic determinants of epiphyte diversity along the tropical elevational gradient. PMID:26796667

  18. Improved abiotic stress tolerance of bermudagrass by exogenous small molecules.

    PubMed

    Chan, Zhulong; Shi, Haitao

    2015-01-01

    As a widely used warm-season turfgrass in landscapes and golf courses, bermudagrass encounters multiple abiotic stresses during the growth and development. Physiology analysis indicated that abiotic stresses induced the accumulation of ROS and decline of photosynthesis, resulting in increased cell damage and inhibited growth. Proteomic and metabolomic approaches showed that antioxidant enzymes and osmoprotectant contents (sugar, sucrose, dehydrin, proline) were extensively changed under abiotic stress conditions. Exogenous application of small molecules, such as ABA, NO, CaCl2, H2S, polyamine and melatonin, could effectively alleviate damages caused by multiple abiotic stresses, including drought, salt, heat and cold. Based on high through-put RNA seq analysis, genes involved in ROS, transcription factors, hormones, and carbohydrate metabolisms were largely enriched. The data indicated that small molecules induced the accumulation of osmoprotectants and antioxidants, kept cell membrane integrity, increased photosynthesis and kept ion homeostasis, which protected bermudagrass from damages caused by abiotic stresses. PMID:25757363

  19. Environmental responses of the Northeast Antarctic Peninsula to the Holocene climate variability

    NASA Astrophysics Data System (ADS)

    Barbara, Loïc.; Crosta, Xavier; Leventer, Amy; Schmidt, Sabine; Etourneau, Johan; Domack, Eugene; Massé, Guillaume

    2016-01-01

    In this study, we present a unique high-resolution Holocene record of oceanographic and climatic change based on analyses of diatom assemblages combined with biomarker data from a sediment core collected from the Vega Drift, eastern Antarctic Peninsula (EAP). These data add to the climate framework already established by high-resolution marine sedimentary records from the Palmer Deep, western Antarctic Peninsula (WAP). Heavy sea ice conditions and reduced primary productivity were observed prior to 7.4 ka B.P. in relation with the proximity of the glacial ice melt and calving. Subsequent Holocene oceanographic conditions were controlled by the interactions between the Westerlies-Antarctic Circumpolar Current (ACC)-Weddell Gyre dynamics. A warm period characterized by short seasonal sea ice duration associated with a southern shift of both ACC and Westerlies field persisted until 5 ka B.P. This warm episode was then followed by climate deterioration during the middle-to-late Holocene (5 to 1.9 ka B.P.) with a gradual increase in annual sea ice duration triggered by the expansion of the Weddell Gyre and a strong oceanic connection from the EAP to the WAP. Increase of benthic diatom species during this period was indicative of more summer/autumn storms, which was consistent with changes in synoptic atmospheric circulation and the establishment of low- to high-latitude teleconnections. Finally, the multicentennial scale variability of the Weddell Gyre intensity and storm frequency during the late Holocene appeared to be associated with the increased El Niño-Southern Oscillation frequency.

  20. Responses of coastal ecosystems to environmental variability in emerging countries from the Americas

    NASA Astrophysics Data System (ADS)

    Muniz, Pablo; Calliari, Danilo; Giménez, Luis; Defeo, Omar

    2015-12-01

    Coastal ecosystems supply critical ecological services and benefits to human society (Barbier et al., 2011). Nearly 38% of the global monetary value of annual ecosystem services arises from estuaries, seagrass and algal beds, coral reefs and shelf ecosystems (Costanza et al., 1997). However, these ecosystems are being increasingly affected by multiple drivers acting simultaneously at several spatial and temporal scales (Lotze et al., 2006; Hoegh-Guldberg and Bruno, 2010). Climate change (temperature increase, sea level rise, ocean acidification), human activities (e.g. land use/cover change, pollution, overexploitation, translocation of species), and extreme natural events (storms, floods, droughts) are the most important drivers degrading the resilience of coastal systems. Such factors operate on individual level processes, leading organisms away from their niches (Steinberg, 2013) or modifying rates and phenology (Giménez, 2011; Mackas et al., 2012, Deutsch et al., 2015). All of these influence ecosystem level processes, causing changes in species composition, diversity losses and deterioration of ecosystem functions (Worm et al., 2006; Defeo et al., 2009; Doney et al., 2011; Dornelas et al., 2014). The rate of change in habitats, species distributions and whole ecosystems has accelerated over the past decades as shown, for example, in the increase in the frequency of events of coastal hypoxia (Diaz and Rosenberg, 2008,Vaquer-Sunyer and Duarte, 2008), extensive translocation of species by global shipping (Seebens et al., 2013), and in ecosystem regime shifts (Möllmann et al., 2015 and references therein). Some coastal areas have been transformed into novel ecosystems with physical and biological characteristics outside their natural range of variability (Cloern et al., 2015) while others are likely to become sink areas, limiting the migration of marine species away from warming habitats (Burrows et al., 2014).

  1. Foraging movements of great frigatebirds from Aldabra Island: Relationship with environmental variables and interactions with fisheries

    NASA Astrophysics Data System (ADS)

    Weimerskirch, Henri; Corre, Matthieu Le; Kai, Emilie Tew; Marsac, Francis

    2010-07-01

    Great Frigatebirds ( Fregata minor) are large tropical seabirds that rely primarily on sub-surface predators such as tunas or cetaceans to capture their prey. We studied the foraging movements of 14 Great Frigatebirds breeding on Aldabra Island (9.4°S, 46.4°E), the largest colony in the Indian Ocean. This colony is located at more than 500 km from the main fishing grounds of a very important industrial purse-seine fishery targeting surface-dwelling tunas. Despite their slow flight speeds (16 km h -1), frigatebirds are able to forage at more than 1000 km from the colonies when breeding, using 2500-4750 km long foraging loops over oceanic waters. All trips were directed to the north of the island up to the equator. Foraging bouts, indicated by reduced flight speeds, were rare and located throughout the trips. Foraging spots tended to be more frequent on higher surface chlorophyll concentration and in association with some cyclonic vortices. However, mesoscale activity is relatively weak between Aldabra and the equator and the chlorophyll variability is mostly the result of wind-mixing processes during the southwest monsoon. These results suggest that frigatebirds forage for widely distributed resources to the north of Aldabra. The northernmost foraging bouts were located in the vicinity of the purse-seine fishing grounds, but without a significant overlap between frigatebirds and tuna fleets. The results of the study are compared with those from another population at Europa Island (22.3°S, 40.3°E) where birds were foraging on predictable features, the edge of cyclonic eddies that are marked in the Mozambique Channel. We discuss the consequences of the reliance of populations on contrasted oceanographic conditions on foraging strategies and on the evolution of life histories in these long-lived animals in a changing climate, as well as the possible effects of overfishing on frigatebird populations.

  2. Developmental models for estimating ecological responses to environmental variability: structural, parametric, and experimental issues.

    PubMed

    Moore, Julia L; Remais, Justin V

    2014-03-01

    Developmental models that account for the metabolic effect of temperature variability on poikilotherms, such as degree-day models, have been widely used to study organism emergence, range and development, particularly in agricultural and vector-borne disease contexts. Though simple and easy to use, structural and parametric issues can influence the outputs of such models, often substantially. Because the underlying assumptions and limitations of these models have rarely been considered, this paper reviews the structural, parametric, and experimental issues that arise when using degree-day models, including the implications of particular structural or parametric choices, as well as assumptions that underlie commonly used models. Linear and non-linear developmental functions are compared, as are common methods used to incorporate temperature thresholds and calculate daily degree-days. Substantial differences in predicted emergence time arose when using linear versus non-linear developmental functions to model the emergence time in a model organism. The optimal method for calculating degree-days depends upon where key temperature threshold parameters fall relative to the daily minimum and maximum temperatures, as well as the shape of the daily temperature curve. No method is shown to be universally superior, though one commonly used method, the daily average method, consistently provides accurate results. The sensitivity of model projections to these methodological issues highlights the need to make structural and parametric selections based on a careful consideration of the specific biological response of the organism under study, and the specific temperature conditions of the geographic regions of interest. When degree-day model limitations are considered and model assumptions met, the models can be a powerful tool for studying temperature-dependent development. PMID:24443079

  3. A comparison of persistence-time estimation for discrete and continuous stochastic population models that include demographic and environmental variability.

    PubMed

    Allen, Edward J; Allen, Linda J S; Schurz, Henri

    2005-07-01

    A discrete-time Markov chain model, a continuous-time Markov chain model, and a stochastic differential equation model are compared for a population experiencing demographic and environmental variability. It is assumed that the environment produces random changes in the per capita birth and death rates, which are independent from the inherent random (demographic) variations in the number of births and deaths for any time interval. An existence and uniqueness result is proved for the stochastic differential equation system. Similarities between the models are demonstrated analytically and computational results are provided to show that estimated persistence times for the three stochastic models are generally in good agreement when the models satisfy certain consistency conditions. PMID:15946709

  4. Covariance of bacterioplankton composition and environmental variables in a temperate delta system

    USGS Publications Warehouse

    Stepanauskas, R.; Moran, M.A.; Bergamaschi, B.A.; Hollibaugh, J.T.

    2003-01-01

    We examined seasonal and spatial variation in bacterioplankton composition in the Sacramento-San Joaquin River Delta (CA) using terminal restriction fragment length polymorphism (T-RFLP) analysis. Cloned 16S rRNA genes from this system were used for putative identification of taxa dominating the T-RFLP profiles. Both cloning and T-RFLP analysis indicated that Actinobacteria, Verrucomicrobia, Cytophaga-Flavobacterium and Proteobacteria were the most abundant bacterioplankton groups in the Delta. Despite the broad variety of sampled habitats (deep water channels, lakes, marshes, agricultural drains, freshwater and brackish areas), and the spatial and temporal differences in hydrology, temperature and water chemistry among the sampling campaigns, T-RFLP electropherograms from all samples were similar, indicating that the same bacterioplankton phylotypes dominated in the various habitats of the Delta throughout the year. However, principal component analysis (PCA) and partial least-squares regression (PLS) of T-RFLP profiles revealed consistent grouping of samples on a seasonal, but not a spatial, basis. ??-Proteobacteria related to Ralstonia, Actinobacteria related to Microthrix, and ??-Proteobacteria identical to the environmental Clone LD12 had the highest relative abundance in summer/fall T-RFLP profiles and were associated with low river flow, high pH, and a number of optical and chemical characteristics of dissolved organic carbon (DOC) indicative of an increased proportion of phytoplankton-produced organic material as opposed to allochthonous, terrestrially derived organic material. On the other hand, Geobacter-related ??-Proteobacteria showed a relative increase in abundance in T-RFLP analysis during winter/spring, and probably were washed out from watershed soils or sediment. Various phylotypes associated with the same phylogenetic division, based on tentative identification of T-RFLP fragments, exhibited diverse seasonal patterns, suggesting that ecological

  5. Geochemical variables as plausible aetiological cofactors in the incidence of some common environmental diseases in Africa

    NASA Astrophysics Data System (ADS)

    Davies, T. C.

    2013-03-01

    Over the last two decades, there has been a rapid growth in research in the field of medical geology around the world, and we continue to encounter “new” and important correlations between certain environmental health conditions and factors related to our interactions with geological materials and processes. A review of the possible role of geochemical factors such as the circulation of Mg, Se and F and the physico-chemical composition of volcanic soil particles, on the aetiology of some common diseases in Africa, is presented. Such studies till now, have tended to emphasise only the deleterious health impacts due to geoenvironmental factors. This is justifiable, since a proper understanding of the negative health impacts has contributed significantly towards improvement in diagnosis and therapy. But there are also beneficial effects accrued from judiciously exploiting geological materials and processes, exemplified in this review, by the several important medical applications of African clays, the therapeutic gains associated with hot springs, and balneology of peat deposits. The criticality of the “optimal range” of intake for the nutrient elements Mg, Se and F in metabolic processes is also emphasised, and illustrations given of illnesses such as cardiovascular disorders and various cancers (all major causes of mortality in Africa) that can possibly occur on either side of this range. It is hoped that this review would help generate ideas for the formulation of experimental studies that take into account the role of the geochemical environment, in an attempt to establish precisely the obscure aetiology of some of the diseases treated, and uncover new pathways in their pathogenesis.

  6. The wheat transcription factor, TabHLH39, improves tolerance to multiple abiotic stressors in transgenic plants.

    PubMed

    Zhai, Yiqian; Zhang, Lichao; Xia, Chuan; Fu, Silu; Zhao, Guangyao; Jia, Jizeng; Kong, Xiuying

    2016-05-13

    Although bHLH transcription factors play important roles regulating plant development and abiotic stress response and tolerance, few functional studies have been performed in wheat. In this study, we isolated and characterized a bHLH gene, TabHLH39, from wheat. The TabHLH39 gene is located on wheat chromosome 5DL, and the protein localized to the nucleus and activated transcription. TabHLH39 showed variable expression in roots, stems, leaves, glumes, pistils and stamens and was induced by polyethylene glycol, salt and cold treatments. Further analysis revealed that TabHLH39 overexpression in Arabidopsis significantly enhanced tolerance to drought, salt and freezing stress during the seedling stage, which was also demonstrated by enhanced abiotic stress-response gene expression and changes to several physiological indices. Therefore, TabHLH39 has potential in transgenic breeding applications to improve abiotic stress tolerance in crops. PMID:27091431

  7. A Focus on Natural Variation for Abiotic Constraints Response in the Model Species Arabidopsis thaliana

    PubMed Central

    Lefebvre, Valérie; Kiani, Seifollah Poormohammad; Durand-Tardif, Mylène

    2009-01-01

    Plants are particularly subject to environmental stress, as they cannot move from unfavourable surroundings. As a consequence they have to react in situ. In any case, plants have to sense the stress, then the signal has to be transduced to engage the appropriate response. Stress response is effected by regulating genes, by turning on molecular mechanisms to protect the whole organism and its components and/or to repair damage. Reactions vary depending on the type of stress and its intensity, but some are commonly turned on because some responses to different abiotic stresses are shared. In addition, there are multiple ways for plants to respond to environmental stress, depending on the species and life strategy, but also multiple ways within a species depending on plant variety or ecotype. It is regularly accepted that populations of a single species originating from diverse geographic origins and/or that have been subjected to different selective pressure, have evolved retaining the best alleles for completing their life cycle. Therefore, the study of natural variation in response to abiotic stress, can help unravel key genes and alleles for plants to cope with their unfavourable physical and chemical surroundings. This review is focusing on Arabidopsis thaliana which has been largely adopted by the global scientific community as a model organism. Also, tools and data that facilitate investigation of natural variation and abiotic stress encountered in the wild are set out. Characterization of accessions, QTLs detection and cloning of alleles responsible for variation are presented. PMID:20111677

  8. Environmental Variability and Fluctuation of Coccidioidomycosis (Valley Fever) In California: Based on a New Framework Involving Fungal Life Cycle

    NASA Astrophysics Data System (ADS)

    Jia, S.; Okin, G. S.; Shafir, S. C.

    2013-12-01

    Coccidioidomycosis (valley fever), caused by inhalation of spores from pathogenic fungus includingCoccidiodes immitis (C. immitis) and Coccidioides posadasii (C. posadasii), is a disease endemic to arid regions in the southwest US, as well as parts of Central and South America. With a projected increase of drought in this region, an improved understanding of environmental factors behind the outbreaks of coccidioidomycosis will enable the prediction of coccidioidomycosis in a changing climate regime. Previous research shows the infections correlate with climate conditions including precipitation, temperature, and dust. However, most studies focus only on the environmental conditions of fungus growth, which is the first stage in the fungal life cycle. In contrast, we extend the analysis to the following two stages in the life cycle, arthrospore formation and dispersal, to form a better model to predict the disease outbreaks. Besides climate conditions, we use relative spectral mixture analysis (RSMA) based on MODIS MOD43 nadir BRDF adjusted reflectance (NBAR) data to derive the relative dynamics of green vegetation, non-photosynthetic vegetation and bare soil coverage as better indicators of soil moisture, which is important for arthospore formation and dispersal. After detecting the hotspots of disease outbreaks, we correlate seasonal incidence from 2000 to 2010 with the environmental variables zero to eight seasons before to obtain candidates for stepwise regression. Regression result shows a seasonal difference in the leading explanatory variables. Such difference indicates the different seasonal main influential process from fungal life cycle. C. immitis (fungus responsible for coccidioidomycosis outbreaks in California) growth explains outbreaks in winter and fall better than other two stages in the life cycle, while arthospore formation is more responsible for spring and summer outbreaks. As the driest season, summer has the largest area related with arthospore

  9. Environmental variability drives rapid and dramatic changes in nutrient limitation of tropical macroalgae with different ecological strategies

    NASA Astrophysics Data System (ADS)

    Clausing, Rachel J.; Fong, Peggy

    2016-06-01

    Nitrogen (N) or phosphorus (P) limits primary productivity in nearly every ecosystem worldwide, yet how limitation changes over time, particularly in connection to variation in environmental drivers, remains understudied. We evaluated temporal and species-specific variability in the relative importance of N and P limitation among tropical macroalgae in two-factor experiments conducted twice after rains and twice after dry conditions to explore potential linkages to environmental drivers. We studied three common macroalgal species with varying ecological strategies: a fast-growing opportunist, Dictyota bartayresiana; and two calcifying species likely to be slower growing, Galaxaura fasciculata and Padina boryana. On the scale of days to weeks, nutrient responses ranged among and within species from no limitation to increases in growth by 20 and 40 % over controls in 3 d with N and P addition, respectively. After light rain or dry conditions, Dictyota grew rapidly (up to ~60 % in 3 d) with little indication of nutrient limitation, while Padina and Galaxaura shifted between N, P, or no limitation. All species grew slowly or lost mass after a large storm, presumably due to unfavorable conditions on the reef prior to the experiment that limited nutrient uptake. Padina and Galaxaura both became nutrient limited 3 d post-storm, while Dictyota did not. These results suggest that differing capabilities for nutrient uptake and storage dictate the influence of nutrient history and thus drive nutrient responses and, in doing so, may allow species with differing ecological strategies to coexist in a fluctuating environment. Moreover, the great variability in species' responses indicates that patterns of nutrient limitation are more complex than previously recognized, and generalizations about N versus P limitation of a given system may not convey the inherent complexity in governing conditions and processes.

  10. Fish assemblages and environmental variables associated with hard-rock mining in the Coeur d'Alene River basin, Idaho

    USGS Publications Warehouse

    Maret, Terry R.; MacCoy, Dorene E.

    2002-01-01

    As part of the U.S. Geological Survey's National Water Quality Assessment Program, fish assemblages, environmental variables, and associated mine densities were evaluated at 18 test and reference sites during the summer of 2000 in the Coeur d'Alene and St. Regis river basins in Idaho and Montana. Multimetric and multivariate analyses were used to examine patterns in fish assemblages and the associated environmental variables representing a gradient of mining intensity. The concentrations of cadmium (Cd), lead (Pb), and zinc (Zn) in water and streambed sediment found at test sites in watersheds where production mine densities were at least 0.2 mines/km2 (in a 500-m stream buffer) were significantly higher than the concentrations found at reference sites. Many of these metal concentrations exceeded Ambient Water Quality Criteria (AWQC) and the Canadian Probable Effect Level guidelines for streambed sediment. Regression analysis identified significant relationships between the production mine densities and the sum of Cd, Pb, and Zn concentrations in water and streambed sediment (r2 = 0.69 and 0.66, respectively; P < 0.01). Zinc was identified as the primary metal contaminant in both water and streambed sediment. Eighteen fish species in the families Salmonidae, Cottidae, Cyprinidae, Catostomidae, Centrarchidae, and Ictaluridae were collected. Principal components analysis of 11 fish metrics identified two distinct groups of sites corresponding to the reference and test sites, predominantly on the basis of the inverse relationship between percent cottids and percent salmonids (r = -0.64; P < 0.05). Streams located downstream from the areas of intensive hard-rock mining in the Coeur d'Alene River basin contained fewer native fish and lower abundances as a result of metal enrichment, not physical habitat degradation. Typically, salmonids were the predominant species at test sites where Zn concentrations exceeded the acute AWQC. Cottids were absent at these sites, which

  11. [Community structure of sponges (Porifera) in three reefs at Morrocoy National Park, Venezuela and its correspondence with some environmental variables].

    PubMed

    Romero, Marco A; Villamizar, Estrella; Malaver, Nora

    2013-09-01

    Sponges have an important ecological role in coral reef ecosystems. However, when compared to other benthic Phyla, it has been little researched. This research was focused in the variability of the community structure of sponges in three locations at Morrocoy National Park (Cayo Sombrero, Playa Mero and Punta Brava) exposed to different environmental conditions (transparency and currents intensity) and affected in different degree of severity by a mass mortality event in 1996. A total of 15 transects (10 m long and 1 m wide) were evaluated in three strata (between 3 and 15 m depth) in each site, where all the individuals were counted by species. Relative abundance by species, diversity and evenness were calculated. Locations showed differences respect turbidity, wave and current intensity. 27 species were found in Morrocoy; Cayo Sombrero (23), Playa Mero (18) and Punta Brava (15). Agelas sceptrum, Amphimedon erina and Niphates erecta were the most common in first location; Niphates erecta and Dysidea etheria in Playa Mero and Dysidea etheria, Niphates erecta and Amphimedon erina in Punta Brava. The species composition showed statistical differences between all three locations; Cayo Sombrero resulted the most diverse and even, followed by Playa Mero and Punta Brava. According to Sorensen Similarity Index results, Cayo Sombrero and Playa Mero were more similar, while Punta Brava resulted the most different. The variability in environmental conditions and the differential mass mortality effects of 1996 in all three reefs, were probably the main causes of the differences between their sponge communities. Nevertheless, we cannot conclude about the weight of these factors. PMID:24027920

  12. Tissue specific and abiotic stress regulated transcription of histidine kinases in plants is also influenced by diurnal rhythm.

    PubMed

    Singh, Anupama; Kushwaha, Hemant R; Soni, Praveen; Gupta, Himanshu; Singla-Pareek, Sneh L; Pareek, Ashwani

    2015-01-01

    Two-component system (TCS) is one of the key signal sensing machinery which enables species to sense environmental stimuli. It essentially comprises of three major components, sensory histidine kinase proteins (HKs), histidine phosphotransfer proteins (Hpts), and response regulator proteins (RRs). The members of the TCS family have already been identified in Arabidopsis and rice but the knowledge about their functional indulgence during various abiotic stress conditions remains meager. Current study is an attempt to carry out comprehensive analysis of the expression of TCS members in response to various abiotic stress conditions and in various plant tissues in Arabidopsis and rice using MPSS and publicly available microarray data. The analysis suggests that despite having almost similar number of genes, rice expresses higher number of TCS members during various abiotic stress conditions than Arabidopsis. We found that the TCS machinery is regulated by not only various abiotic stresses, but also by the tissue specificity. Analysis of expression of some representative members of TCS gene family showed their regulation by the diurnal cycle in rice seedlings, thus bringing-in another level of their transcriptional control. Thus, we report a highly complex and tight regulatory network of TCS members, as influenced by the tissue, abiotic stress signal, and diurnal rhythm. The insights on the comparative expression analysis presented in this study may provide crucial leads toward dissection of diverse role(s) of the various TCS family members in Arabidopsis and rice. PMID:26442025

  13. Tissue specific and abiotic stress regulated transcription of histidine kinases in plants is also influenced by diurnal rhythm

    PubMed Central

    Singh, Anupama; Kushwaha, Hemant R.; Soni, Praveen; Gupta, Himanshu; Singla-Pareek, Sneh L.; Pareek, Ashwani

    2015-01-01

    Two-component system (TCS) is one of the key signal sensing machinery which enables species to sense environmental stimuli. It essentially comprises of three major components, sensory histidine kinase proteins (HKs), histidine phosphotransfer proteins (Hpts), and response regulator proteins (RRs). The members of the TCS family have already been identified in Arabidopsis and rice but the knowledge about their functional indulgence during various abiotic stress conditions remains meager. Current study is an attempt to carry out comprehensive analysis of the expression of TCS members in response to various abiotic stress conditions and in various plant tissues in Arabidopsis and rice using MPSS and publicly available microarray data. The analysis suggests that despite having almost similar number of genes, rice expresses higher number of TCS members during various abiotic stress conditions than Arabidopsis. We found that the TCS machinery is regulated by not only various abiotic stresses, but also by the tissue specificity. Analysis of expression of some representative members of TCS gene family showed their regulation by the diurnal cycle in rice seedlings, thus bringing-in another level of their transcriptional control. Thus, we report a highly complex and tight regulatory network of TCS members, as influenced by the tissue, abiotic stress signal, and diurnal rhythm. The insights on the comparative expression analysis presented in this study may provide crucial leads toward dissection of diverse role(s) of the various TCS family members in Arabidopsis and rice. PMID:26442025

  14. Functional ecology of saltglands in shorebirds: Flexible responses to variable environmental conditions

    USGS Publications Warehouse

    Gutierrez, J.S.; Dietz, M.W.; Masero, J.A.; Gill, R.E.; Dekinga, Anne; Battley, Phil F.; Sanchez-Guzman, J. M.; Piersma, Theunis

    2012-01-01

    Birds of marine environments have specialized glands to excrete salt, the saltglands. Located on the skull between the eyes, the size of these organs is expected to reflect their demand, which will vary with water turnover rates as a function of environmental (heat load, salinity of prey and drinking water) and organismal (energy demand, physiological state) factors. On the basis of inter- and intraspecific comparisons of saltgland mass (m sg) in 29 species of shorebird (suborder Charadrii) from saline, fresh and mixed water habitats, we assessed the relative roles of organism and environment in determining measured m sg species. The allometric exponent, scaling dry m sg to shorebird total body mass (m b), was significantly higher for coastal marine species (0??88, N=19) than for nonmarine species (0??43, N=14). Within the marine species, those ingesting bivalves intact had significantly higher m sg than species eating soft-bodied invertebrates, indicating that seawater contained within the shells added to the salt load. In red knots (Calidris canutus), dry m sg varied with monthly averaged ambient temperature in a U-shaped way, with the lowest mass at 12??5??C. This probably reflects increased energy demand for thermoregulation at low temperatures and elevated respiratory water loss at high temperatures. In fuelling bar-tailed godwits (Limosa lapponica), dry m sg was positively correlated with intestine mass, an indicator of relative food intake rates. These findings suggest once more that saltgland masses vary within species (and presumably individuals) in relation to salt load, that is a function of energy turnover (thermoregulation and fuelling) and evaporative water needs. Our results support the notion that m sg is strongly influenced by habitat salinity, and also by factors influencing salt load and demand for osmotically free water including ambient temperature, prey type and energy intake rates. Saltglands are evidently highly flexible organs. The small

  15. [Dynamics of sap flow density in stems of typical desert shrub Calligonum mongolicum and its responses to environmental variables].

    PubMed

    Xu, Shi-qin; Ji, Xi-bin; Jin, Bo-wen

    2016-02-01

    Independent measurements of stem sap flow in stems of Calligonum mongolicum and environmental variables using commercial sap flow gauges and a micrometeorological monitoring system, respectively, were made to simulate the variation of sap flow density in the middle range of Hexi Corridor, Northwest China during June to September, 2014. The results showed that the diurnal process of sap flow density in C. mongolicum showed a broad unimodal change, and the maximum sap flow density reached about 30 minutes after the maximum of photosynthetically active radiation (PAR) , while about 120 minutes before the maximum of temperature and vapor pressure deficit (VPD). During the studying period, sap flow density closely related with atmosphere evapor-transpiration demand, and mainly affected by PAR, temperature and VPD. The model was developed which directly linked the sap flow density with climatic variables, and good correlation between measured and simulated sap flow density was observed in different climate conditions. The accuracy of simulation was significantly improved if the time-lag effect was taken into consideration, while this model underestimated low and nighttime sap flow densities, which was probably caused by plant physiological characteristics. PMID:27396104

  16. Relation of desert pupfish abundance to selected environmental variables in natural and manmade habitats in the Salton Sea basin

    USGS Publications Warehouse

    Martin, B.A.; Saiki, M.K.

    2005-01-01

    We assessed the relation between abundance of desert pupfish, Cyprinodon macularius, and selected biological and physicochemical variables in natural and manmade habitats within the Salton Sea Basin. Field sampling in a natural tributary, Salt Creek, and three agricultural drains captured eight species including pupfish (1.1% of the total catch), the only native species encountered. According to Bray-Curtis resemblance functions, fish species assemblages differed mostly between Salt Creek and the drains (i.e., the three drains had relatively similar species assemblages). Pupfish numbers and environmental variables varied among sites and sample periods. Canonical correlation showed that pupfish abundance was positively correlated with abundance of western mosquitofish, Gambusia affinis, and negatively correlated with abundance of porthole livebearers, Poeciliopsis gracilis, tilapias (Sarotherodon mossambica and Tilapia zillii), longjaw mudsuckers, Gillichthys mirabilis, and mollies (Poecilia latipinnaandPoecilia mexicana). In addition, pupfish abundance was positively correlated with cover, pH, and salinity, and negatively correlated with sediment factor (a measure of sediment grain size) and dissolved oxygen. Pupfish abundance was generally highest in habitats where water quality extremes (especially high pH and salinity, and low dissolved oxygen) seemingly limited the occurrence of nonnative fishes. This study also documented evidence of predation by mudsuckers on pupfish. These findings support the contention of many resource managers that pupfish populations are adversely influenced by ecological interactions with nonnative fishes. ?? Springer 2005.

  17. [Association of sardine fishery, Sardinella aurita (Teleostei: Clupeidae) and environmental variability of the coastal upwelling ecosystem of Nueva Esparta, Venezuela].

    PubMed

    Gonzźlez, Leo W; Euán, Jorge; Eslava, Nora; Suniaga, Jesús

    2007-03-01

    The present research is an analysis of Spanish sardine fishing (Sardinella aurita) associated with some climatic and meteorologic parameters of the ecosystem from El Morro Nueva Esparta, Venezuela. The catch and environmental data from the area were taken in the period 1996-2000. Catch data as a function of wind speed, sea surface temperature, air temperature and rain were analyzed by means of simple lineal regression and multiple models. We found a positive correlation of catch with wind speed, and a negative correlation with sea surface temperature, air temperature, and rain. The multiple regression model with intercept had a poor fit, therefore, we made a model without intercept, which improve greatly the fit. A selection of the variables using the forward procedure verified that the independent variables "wind speed" and "air temperature" have a significant relation with catch (p < 0.001) at real time. This method suggests that sea surface temperature and rain have little influence on the catch, and suggests a major availability of resources in the months with low air temperature and the highest wind speed (January-June). Rev. PMID:18457137

  18. Assessing the risk for dengue fever based on socioeconomic and environmental variables in a geographical information system environment.

    PubMed

    Khormi, Hassan M; Kumar, Lalit

    2012-05-01

    An important option in preventing the spread of dengue fever (DF) is to control and monitor its vector (Aedes aegypti) as well as to locate and destroy suitable mosquito breeding environments. The aim of the present study was to use a combination of environmental and socioeconomic variables to model areas at risk of DF. These variables include clinically confirmed DF cases, mosquito counts, population density in inhabited areas, total populations per district, water access, neighbourhood quality and the spatio-temporal risk of DF based on the average, weekly frequency of DF incidence. Out of 111 districts investigated, 17 (15%), covering a total area of 121 km2, were identified as of high risk, 25 (22%), covering 133 km2, were identified as of medium risk, 18 (16%), covering 180 km2, were identified as of low risk and 51 (46%), covering 726 km2, were identified as of very low risk. The resultant model shows that most areas at risk of DF were concentrated in the central part of Jeddah county, Saudi Arabia. The methods used can be implemented as routine procedures for control and prevention. A concerted intervention in the medium- and high-risk level districts identified in this study could be highly effective in reducing transmission of DF in the area as a whole. PMID:22639119

  19. Human and Bovine Viruses and Bacteria at Three Great Lakes Beaches: Environmental Variable Associations and Health Risk.

    PubMed

    Corsi, Steven R; Borchardt, Mark A; Carvin, Rebecca B; Burch, Tucker R; Spencer, Susan K; Lutz, Michelle A; McDermott, Colleen M; Busse, Kimberly M; Kleinheinz, Gregory T; Feng, Xiaoping; Zhu, Jun

    2016-01-19

    Waterborne pathogens were measured at three beaches in Lake Michigan, environmental factors for predicting pathogen concentrations were identified, and the risk of swimmer infection and illness was estimated. Waterborne pathogens were detected in 96% of samples collected at three Lake Michigan beaches in summer, 2010. Samples were quantified for 22 pathogens in four microbial categories (human viruses, bovine viruses, protozoa, and pathogenic bacteria). All beaches had detections of human and bovine viruses and pathogenic bacteria indicating influence of multiple contamination sources at these beaches. Occurrence ranged from 40 to 87% for human viruses, 65-87% for pathogenic bacteria, and 13-35% for bovine viruses. Enterovirus, adenovirus A, Salmonella spp., Campylobacter jejuni, bovine polyomavirus, and bovine rotavirus A were present most frequently. Variables selected in multiple regression models used to explore environmental factors that influence pathogens included wave direction, cloud cover, currents, and water temperature. Quantitative Microbial Risk Assessment was done for C. jejuni, Salmonella spp., and enteroviruses to estimate risk of infection and illness. Median infection risks for one-time swimming events were approximately 2 × 10(-5), 8 × 10(-6), and 3 × 10(-7) [corrected] for C. jejuni, Salmonella spp., and enteroviruses, respectively. Results highlight the importance of investigating multiple pathogens within multiple categories to avoid underestimating the prevalence and risk of waterborne pathogens. PMID:26720156

  20. Human and bovine viruses and bacteria at three Great Lakes beaches: Environmental variable associations and health risk

    USGS Publications Warehouse

    Corsi, Steven R.; Borchardt, Mark A.; Carvin, Rebecca B.; Burch, Tucker R; Spencer, Susan K.; Lutz, Michelle A.; McDermott, Colleen M.; Busse, Kimberly M.; Kleinheinz, Gregory; Feng, Xiaoping; Zhu, Jun

    2016-01-01

    Waterborne pathogens were measured at three beaches in Lake Michigan, environmental factors for predicting pathogen concentrations were identified, and the risk of swimmer infection and illness was estimated. Waterborne pathogens were detected in 96% of samples collected at three Lake Michigan beaches in summer, 2010. Samples were quantified for 22 pathogens in four microbial categories (human viruses, bovine viruses, protozoa, and pathogenic bacteria). All beaches had detections of human and bovine viruses and pathogenic bacteria indicating influence of multiple contamination sources at these beaches. Occurrence ranged from 40 to 87% for human viruses, 65–87% for pathogenic bacteria, and 13–35% for bovine viruses. Enterovirus, adenovirus A, Salmonella spp., Campylobacter jejuni, bovine polyomavirus, and bovine rotavirus A were present most frequently. Variables selected in multiple regression models used to explore environmental factors that influence pathogens included wave direction, cloud cover, currents, and water temperature. Quantitative Microbial Risk Assessment was done for C. jejuni, Salmonella spp., and enteroviruses to estimate risk of infection and illness. Median infection risks for one-time swimming events were approximately 3 × 10–5, 7 × 10–9, and 3 × 10–7 for C. jejuni, Salmonella spp., and enteroviruses, respectively. Results highlight the importance of investigating multiple pathogens within multiple categories to avoid underestimating the prevalence and risk of waterborne pathogens.

  1. Person-Specific Non-shared Environmental Influences in Intra-individual Variability: A Preliminary Case of Daily School Feelings in Monozygotic Twins.

    PubMed

    Zheng, Yao; Molenaar, Peter C M; Arden, Rosalind; Asbury, Kathryn; Almeida, David M

    2016-09-01

    Most behavioural genetic studies focus on genetic and environmental influences on inter-individual phenotypic differences at the population level. The growing collection of intensive longitudinal data in social and behavioural science offers a unique opportunity to examine genetic and environmental influences on intra-individual phenotypic variability at the individual level. The current study introduces a novel idiographic approach and one novel method to investigate genetic and environmental influences on intra-individual variability by a simple empirical demonstration. Person-specific non-shared environmental influences on intra-individual variability of daily school feelings were estimated using time series data from twenty-one pairs of monozygotic twins (age = 10 years, 16 female pairs) over two consecutive weeks. Results showed substantial inter-individual heterogeneity in person-specific non-shared environmental influences. The current study represents a first step in investigating environmental influences on intra-individual variability with an idiographic approach, and provides implications for future behavioural genetic studies to examine developmental processes from a microscopic angle. PMID:27040685

  2. Survival in macaroni penguins and the relative importance of different drivers: individual traits, predation pressure and environmental variability.

    PubMed

    Horswill, Catharine; Matthiopoulos, Jason; Green, Jonathan A; Meredith, Michael P; Forcada, Jaume; Peat, Helen; Preston, Mark; Trathan, Phil N; Ratcliffe, Norman

    2014-09-01

    Understanding the demographic response of free-living animal populations to different drivers is the first step towards reliable prediction of population trends. Penguins have exhibited dramatic declines in population size, and many studies have linked this to bottom-up processes altering the abundance of prey species. The effects of individual traits have been considered to a lesser extent, and top-down regulation through predation has been largely overlooked due to the difficulties in empirically measuring this at sea where it usually occurs. For 10 years (2003-2012), macaroni penguins (Eudyptes chrysolophus) were marked with subcutaneous electronic transponder tags and re-encountered using an automated gateway system fitted at the entrance to the colony. We used multistate mark-recapture modelling to identify the different drivers influencing survival rates and a sensitivity analysis to assess their relative importance across different life stages. Survival rates were low and variable during the fledging year (mean = 0·33), increasing to much higher levels from age 1 onwards (mean = 0·89). We show that survival of macaroni penguins is driven by a combination of individual quality, top-down predation pressure and bottom-up environmental forces. The relative importance of these covariates was age specific. During the fledging year, survival rates were most sensitive to top-down predation pressure, followed by individual fledging mass, and finally bottom-up environmental effects. In contrast, birds older than 1 year showed a similar response to bottom-up environmental effects and top-down predation pressure. We infer from our results that macaroni penguins will most likely be negatively impacted by an increase in the local population size of giant petrels. Furthermore, this population is, at least in the short term, likely to be positively influenced by local warming. More broadly, our results highlight the importance of considering multiple causal effects across

  3. Ecohydrological responses of dense canopies to environmental variability: 2. Role of acclimation under elevated CO2

    NASA Astrophysics Data System (ADS)

    Drewry, D. T.; Kumar, P.; Long, S.; Bernacchi, C.; Liang, X.-Z.; Sivapalan, M.

    2010-12-01

    The ability to accurately predict land-atmosphere exchange of mass, energy, and momentum over the coming century requires the consideration of plant biochemical, ecophysiological, and structural acclimation to modifications of the ambient environment. Amongst the most important environmental changes experienced by terrestrial vegetation over the last century has been the increase in ambient carbon dioxide (CO2) concentrations, with a projected doubling in CO2 from preindustrial levels by the middle of this century. This change in atmospheric composition has been demonstrated to significantly alter a variety of leaf and plant properties across a range of species, with the potential to modify land-atmosphere interactions and their associated feedbacks. Free Air Carbon Enrichment (FACE) technology has provided significant insight into the functioning of vegetation in natural conditions under elevated CO2, but remains limited in its ability to quantify the exchange of CO2, water vapor, and energy at the canopy scale. This paper addresses the roles of ecophysiological, biochemical, and structural plant acclimation on canopy-scale exchange of CO2, water vapor, and energy through the application of a multilayer canopy-root-soil model (MLCan) capable of resolving changes induced by elevated CO2 through the canopy and soil systems. Previous validation of MLCan flux estimates were made for soybean and maize in the companion paper using a record of six growing seasons of eddy covariance data from the Bondville Ameriflux site. Observations of leaf-level photosynthesis, stomatal conductance, and surface temperature collected at the SoyFACE experimental facility in central Illinois provide a basis for examining the ability of MLCan to capture vegetation responses to an enriched CO2 environment. Simulations of control (370 [ppm]) and elevated (550 [ppm]) CO2 environments allow for an examination of the vertical variation and canopy-scale responses of vegetation states and fluxes

  4. Wheat proteomics: proteome modulation and abiotic stress acclimation

    PubMed Central

    Komatsu, Setsuko; Kamal, Abu H. M.; Hossain, Zahed

    2014-01-01

    Cellular mechanisms of stress sensing and signaling represent the initial plant responses to adverse conditions. The development of high-throughput “Omics” techniques has initiated a new era of the study of plant molecular strategies for adapting to environmental changes. However, the elucidation of stress adaptation mechanisms in plants requires the accurate isolation and characterization of stress-responsive proteins. Because the functional part of the genome, namely the proteins and their post-translational modifications, are critical for plant stress responses, proteomic studies provide comprehensive information about the fine-tuning of cellular pathways that primarily involved in stress mitigation. This review summarizes the major proteomic findings related to alterations in the wheat proteomic profile in response to abiotic stresses. Moreover, the strengths and weaknesses of different sample preparation techniques, including subcellular protein extraction protocols, are discussed in detail. The continued development of proteomic approaches in combination with rapidly evolving bioinformatics tools and interactive databases will facilitate understanding of the plant mechanisms underlying stress tolerance. PMID:25538718

  5. Chemical Priming of Plants Against Multiple Abiotic Stresses: Mission Possible?

    PubMed

    Savvides, Andreas; Ali, Shawkat; Tester, Mark; Fotopoulos, Vasileios

    2016-04-01

    Crop plants are subjected to multiple abiotic stresses during their lifespan that greatly reduce productivity and threaten global food security. Recent research suggests that plants can be primed by chemical compounds to better tolerate different abiotic stresses. Chemical priming is a promising field in plant stress physiology and crop stress management. We review here promising chemical agents such as sodium nitroprusside, hydrogen peroxide, sodium hydrosulfide, melatonin, and polyamines that can potentially confer enhanced tolerance when plants are exposed to multiple abiotic stresses. The challenges and opportunities of chemical priming are addressed, with the aim to boost future research towards effective application in crop stress management. PMID:26704665

  6. Abiotic uptake of gases by organic soils

    NASA Astrophysics Data System (ADS)

    Smagin, A. V.

    2007-12-01

    Methodological and experimental studies of the abiotic uptake of gaseous substances by organic soils were performed. The static adsorption method of closed vessels for assessing the interaction of gases with the solid and liquid soil phases and the dynamic method of determining the sorption isotherms of gases by soils were analyzed. The theoretical substantiation of the methods and their practical implementations on the basis of a PGA-7 portable gas analyzer (Russia) were considered. Good agreement between the equilibrium sorption isotherms of the gases and the Langmuir model was revealed; for the real ranges of natural gas concentrations, this model can be reduced to the linear Henry equation. The limit values of the gas sorption (Langmuir monolayer capacity) are typical for dry samples; they vary from 670 4000 g/m3 for methane and oxygen to 20 000 25 000 g/m3 for carbon dioxide. The linear distribution coefficients of gases between the solid and gas phases of organic soils (Henry constants) are 8 18 units for poorly sorbed gases (O2, CH4) and 40 60 units for CO2. The kinetics of the chemicophysical uptake of gases by the soil studied is linear in character and obeys the relaxation kinetic model of the first order with the corresponding relaxation constants, which vary from 1 h -1 in wet samples to 10 h -1 in dry samples.

  7. The abiotic degradation of soil organic matter to oxalic acid

    NASA Astrophysics Data System (ADS)

    Studenroth, Sabine; Huber, Stefan; Schöler, H. F.

    2010-05-01

    The abiotic degradation of soil organic matter to volatile organic compounds was studied intensely over the last years (Keppler et al., 2000; Huber et al., 2009). It was shown that soil organic matter is oxidised due to the presence of iron (III), hydrogen peroxide and chloride and thereby produces diverse alkyl halides, which are emitted into the atmosphere. The formation of polar halogenated compounds like chlorinated acetic acids which are relevant toxic environmental substances was also found in soils and sediments (Kilian et al., 2002). The investigation of the formation of other polar halogenated and non-halogenated compounds like diverse mono- and dicarboxylic acids is going to attain more and more importance. Due to its high acidity oxalic acid might have impacts on the environment e.g., nutrient leaching, plant diseases and negative influence on microbial growth. In this study, the abiotic formation of oxalic acid in soil is examined. For a better understanding of natural degradation processes mechanistic studies were conducted using the model compound catechol as representative for structural elements of the humic substances and its reaction with iron (III) and hydrogen peroxide. Iron is one of the most abundant elements on earth and hydrogen peroxide is produced by bacteria or through incomplete reduction of oxygen. To find suitable parameters for an optimal reaction and a qualitative and quantitative analysis method the following reaction parameters are varied: concentration of iron (III) and hydrogen peroxide, time dependence, pH-value and influence of chloride. Analysis of oxalic acid was performed employing an ion chromatograph equipped with a conductivity detector. The time dependent reaction shows a relatively fast formation of oxalic acid, the optimum yield is achieved after 60 minutes. Compared to the concentration of catechol an excess of hydrogen peroxide as well as a low concentration of iron (III) are required. In absence of chloride the

  8. Relative Importance of Biotic and Abiotic Forces on the Composition and Dynamics of a Soft-Sediment Intertidal Community

    PubMed Central

    Barbeau, Myriam A.

    2016-01-01

    Top-down, bottom-up, middle-out and abiotic factors are usually viewed as main forces structuring biological communities, although assessment of their relative importance, in a single study, is rarely done. We quantified, using multivariate methods, associations between abiotic and biotic (top-down, bottom-up and middle-out) variables and infaunal population/community variation on intertidal mudflats in the Bay of Fundy, Canada, over two years. Our analysis indicated that spatial structural factors like site and plot accounted for most of the community and population variation. Although we observed a significant relationship between the community/populations and the biotic and abiotic variables, most were of minor importance relative to the structural factors. We suggest that community and population structure were relatively uncoupled from the structuring influences of biotic and abiotic factors in this system because of high concentrations of resources that sustain high densities of infauna and limit exploitative competition. Furthermore, we hypothesize that the infaunal community primarily reflects stochastic spatial events, namely a “first come, first served” process. PMID:26790098

  9. Influence of Variable Environmental Conditions on Presence and Concentration of Energetic Chemicals Near Soil Surface in the Vadoze Zone

    NASA Astrophysics Data System (ADS)

    Anaya, A. A.; Padilla, I. Y.

    2008-12-01

    Many explosive-related compounds (ERCs) are found near the soil-atmospheric surface in sites containing buried explosive devices, such as landmines and unexploded ordnance, detonation-residual, and munitions residues from explosive manufacturing facilities. Accurate assessment of the fate and transport processes is essential for predicting their movement to the surface, groundwater, or any other important environmental compartment. The transport processes controlling the direction and magnitude of the movement, and chemical and physical processes controlling the fate of the chemicals vary with environmental conditions. This research addresses the effect of variable rainfall, evaporation, temperature, and solar radiation on fate and transport of 2,4,6-Trinitrotoluene (TNT), 2,4-Dinitrotoluene (DNT), and other related chemicals in partially saturated soil. Experiments have been conducted in a laboratory-scale 3D SoilBed placed inside an environmental chamber equipped with rainfall and solar radiation simulators, and temperature control settings. The SoilBed was packed with a sandy soil. Experiments have been conducted by burying a TNT/DNT source, simulating a landmine, and applying different rainfall and light radiation cycles while monitoring DNT, TNT, and other related ERCs solute concentrations temporally and spatially within the SoilBed. Experiments include different source characteristics, rainfall intensities, temperatures, and radiation cycles to evaluate their effect on the detection and movement of ERC in soils in both aqueous and vapor phases. Temporal and spatial data has been analyzed comparatively and quantitatively. Comparative analysis was developed using surfer®- and voxler®-generated images and 3D visualization models applying spatial interpolation and masking methods. Single and multi-variable statistical analysis has been employed to determine the most important factors affecting the fate, transport and detection of ERC near soil

  10. High-frequency analysis of the complex linkage between soil CO(2) fluxes, photosynthesis and environmental variables.

    PubMed

    Martin, Jonathan G; Phillips, Claire L; Schmidt, Andres; Irvine, James; Law, Beverly E

    2012-01-01

    High-frequency soil CO(2) flux data are valuable for providing new insights into the processes of soil CO(2) production. A record of hourly soil CO(2) fluxes from a semi-arid ponderosa pine stand was spatially and temporally deconstructed in attempts to determine if variation could be explained by logical drivers using (i) CO(2) production depths, (ii) relationships and lags between fluxes and soil temperatures, or (iii) the role of canopy assimilation in soil CO(2) flux variation. Relationships between temperature and soil fluxes were difficult to establish at the hourly scale because diel cycles of soil fluxes varied seasonally, with the peak of flux rates occurring later in the day as soil water content decreased. Using a simple heat transport/gas diffusion model to estimate the time and depth of CO(2) flux production, we determined that the variation in diel soil CO(2) flux patterns could not be explained by changes in diffusion rates or production from deeper soil profiles. We tested for the effect of gross ecosystem productivity (GEP) by minimizing soil flux covariance with temperature and moisture using only data from discrete bins of environmental conditions (±1 °C soil temperature at multiple depths, precipitation-free periods and stable soil moisture). Gross ecosystem productivity was identified as a possible driver of variability at the hourly scale during the growing season, with multiple lags between ~5, 15 and 23 days. Additionally, the chamber-specific lags between GEP and soil CO(2) fluxes appeared to relate to combined path length for carbon flow (top of tree to chamber center). In this sparse and heterogeneous forested system, the potential link between CO(2) assimilation and soil CO(2) flux may be quite variable both temporally and spatially. For model applications, it is important to note that soil CO(2) fluxes are influenced by many biophysical factors, which may confound or obscure relationships with logical environmental drivers and act at

  11. NAC transcription factors in plant multiple abiotic stress responses: progress and prospects

    PubMed Central

    Shao, Hongbo; Wang, Hongyan; Tang, Xiaoli

    2015-01-01

    Abiotic stresses adversely affect plant growth and agricultural productivity. According to the current climate prediction models, crop plants will face a greater number of environmental stresses, which are likely to occur simultaneously in the future. So it is very urgent to breed broad-spectrum tolerant crops in order to meet an increasing demand for food productivity due to global population increase. As one of the largest families of transcription factors (TFs) in plants, NAC TFs play vital roles in regulating plant growth and development processes including abiotic stress responses. Lots of studies indicated that many stress-responsive NAC TFs had been used to improve stress tolerance in crop plants by genetic engineering. In this review, the recent progress in NAC TFs was summarized, and the potential utilization of NAC TFs in breeding abiotic stress tolerant transgenic crops was also be discussed. In view of the complexity of field conditions and the specificity in multiple stress responses, we suggest that the NAC TFs commonly induced by multiple stresses should be promising candidates to produce plants with enhanced multiple stress tolerance. Furthermore, the field evaluation of transgenic crops harboring NAC genes, as well as the suitable promoters for minimizing the negative effects caused by over-expressing some NAC genes, should be considered. PMID:26579152

  12. Recent Advances in Utilizing Transcription Factors to Improve Plant Abiotic Stress Tolerance by Transgenic Technology

    PubMed Central

    Wang, Hongyan; Wang, Honglei; Shao, Hongbo; Tang, Xiaoli

    2016-01-01

    Agricultural production and quality are adversely affected by various abiotic stresses worldwide and this will be exacerbated by the deterioration of global climate. To feed a growing world population, it is very urgent to breed stress-tolerant crops with higher yields and improved qualities against multiple environmental stresses. Since conventional breeding approaches had marginal success due to the complexity of stress tolerance traits, the transgenic approach is now being popularly used to breed stress-tolerant crops. So identifying and characterizing the critical genes involved in plant stress responses is an essential prerequisite for engineering stress-tolerant crops. Far beyond the manipulation of single functional gene, engineering certain regulatory genes has emerged as an effective strategy now for controlling the expression of many stress-responsive genes. Transcription factors (TFs) are good candidates for genetic engineering to breed stress-tolerant crop because of their role as master regulators of many stress-responsive genes. Many TFs belonging to families AP2/EREBP, MYB, WRKY, NAC, bZIP have been found to be involved in various abiotic stresses and some TF genes have also been engineered to improve stress tolerance in model and crop plants. In this review, we take five large families of TFs as examples and review the recent progress of TFs involved in plant abiotic stress responses and their potential utilization to improve multiple stress tolerance of crops in the field conditions. PMID:26904044

  13. Olivine Weathering: Abiotic Versus Biotic Processes as Possible Biosignatures

    NASA Technical Reports Server (NTRS)

    Longazo, T. G.; Wentworth, S. J.; McKay, D. S.; Southam, G.; Clemett, S. J.

    2001-01-01

    A preliminary study to determine how abiotic versus biotic processes affect the weathering of olivine crystals. Perhaps the differences between these weathering processes could be used as biosignatures. Additional information is contained in the original extended abstract.

  14. The intraspecific variability of short- and long-term carbon allocation, turnover and fluxes under different environmental conditions

    NASA Astrophysics Data System (ADS)

    Wegener, Frederik; Beyschlag, Wolfram; Werner, Christiane

    2014-05-01

    allocation to different tissues and respiration. The results give valuable new information to understand the total plant C balance and to characterize its intraspecific variability due to environmental factors.

  15. Survival in macaroni penguins and the relative importance of different drivers: individual traits, predation pressure and environmental variability

    PubMed Central

    Horswill, Catharine; Matthiopoulos, Jason; Green, Jonathan A; Meredith, Michael P; Forcada, Jaume; Peat, Helen; Preston, Mark; Trathan, Phil N; Ratcliffe, Norman

    2014-01-01

    Understanding the demographic response of free-living animal populations to different drivers is the first step towards reliable prediction of population trends. Penguins have exhibited dramatic declines in population size, and many studies have linked this to bottom-up processes altering the abundance of prey species. The effects of individual traits have been considered to a lesser extent, and top-down regulation through predation has been largely overlooked due to the difficulties in empirically measuring this at sea where it usually occurs. For 10 years (2003–2012), macaroni penguins (Eudyptes chrysolophus) were marked with subcutaneous electronic transponder tags and re-encountered using an automated gateway system fitted at the entrance to the colony. We used multistate mark–recapture modelling to identify the different drivers influencing survival rates and a sensitivity analysis to assess their relative importance across different life stages. Survival rates were low and variable during the fledging year (mean = 0·33), increasing to much higher levels from age 1 onwards (mean = 0·89). We show that survival of macaroni penguins is driven by a combination of individual quality, top-down predation pressure and bottom-up environmental forces. The relative importance of these covariates was age specific. During the fledging year, survival rates were most sensitive to top-down predation pressure, followed by individual fledging mass, and finally bottom-up environmental effects. In contrast, birds older than 1 year showed a similar response to bottom-up environmental effects and top-down predation pressure. We infer from our results that macaroni penguins will most likely be negatively impacted by an increase in the local population size of giant petrels. Furthermore, this population is, at least in the short term, likely to be positively influenced by local warming. More broadly, our results highlight the importance of considering multiple causal

  16. Paleolimnological reconstruction of environmental variability during the Late Pleistocene and Holocene in the south-east Baltic region

    NASA Astrophysics Data System (ADS)

    Kublitskiy, Iurii; Subetto, Dmitriy; Druzhinina, Olga; Kulkova, Marianna; Arslanov, Khikmatula

    2016-04-01

    The main goal of our research is the high-resolution reconstruction of environmental and climatic changes in SE Baltic region since the Last Glacial Maximum by palaeolimnological data. The 6 objects - lakes and peat-bogs, were studied since 2009 in the Kaliningrad region, Russian Federation. According to palaeolimnological studies of bottom sediments of the Kamyshovoe Lake (N 54°22,6`; E22°42,8`, 189 m a.s.l.), located in the Vishtynets Highland, the south-east part of Kaliningrad district, the environmental and climatic changes after the late glacial have been reconstructed. At that moment the radiocarbon and loss-on-ignition (LOI) data, geochemistry and diatom analysis for the whole sediment core, and pollen analyze for the bottom part of the core have been completed. According to the pollen data the Alleröd interstadial starts at 13 200 cal. yrs BP and is marked by the rising of birch and pine pollen. The transition to the Younger Dryas around 12 700 cal. yrs BP corresponds with the development of patches of shrublands in which light-demanding species, such as juniper, flourished and communities of steppe herbs. The late Preboreal is marked by the appearance of Populus and an increase of the role of grasses in the vegetation cover 11 300-11 100 cal. yrs BP (Druzinina et al., 2015). The Holocene climatic zones have been identified by LOI and geochemistry analyses. The Boreal period started about 10 200 cal. yrs BP, Atlantic around 9100 cal. yrs BP, Subboreal 5800 cal. yrs BP, and Subatlantic 3200 cal. yrs BP (Kublitskiy et al., 2015). During the conference the new palaeolimnological data of environmental variability during the late Pleistocene and Holocene in SE Baltic region will be presented. Acknowledgements The investigations have been granted by the Russian Fund for Basic Research (12-05-33013, 13-05-41457, 15-35-50721). References Druzhinina, O., Subetto, D., Stančikaitė, M., Vaikutienė, G., Kublitsky, J., Arslanov, Kh., 2015. Sediment record from the

  17. Dissemination of antibiotic resistance genes in representative broiler feedlots environments: identification of indicator ARGs and correlations with environmental variables.

    PubMed

    He, Liang-Ying; Liu, You-Sheng; Su, Hao-Chang; Zhao, Jian-Liang; Liu, Shuang-Shuang; Chen, Jun; Liu, Wang-Rong; Ying, Guang-Guo

    2014-11-18

    fexA, fexB, cfr, sul1, tetW, tetO, tetS: R = 0.52-0.71) and some environmental parameters (e.g., TOC, TN, TP, NH3-N with fexA, fexB, cfr, sul1, tetW, tetO, tetQ, tetS: R = 0.53-0.87) (p < 0.01). Further redundancy analysis demonstrated that the distribution and transportation of ARGs from the boiler feedlots to the receiving environments were correlated with environmental variables. The findings highlight the contribution of some chemicals such as antibiotics and metals to the development of ARGs in broiler feedlots environments; and the observed ARG dissemination mechanism in the broiler feedlots facilitates the development of effective mitigation measures. PMID:25338275

  18. Multi-scale approach to the environmental factors effects on spatio-temporal variability of Chironomus salinarius (Diptera: Chironomidae) in a French coastal lagoon

    NASA Astrophysics Data System (ADS)

    Cartier, V.; Claret, C.; Garnier, R.; Fayolle, S.; Franquet, E.

    2010-03-01

    The complexity of the relationships between environmental factors and organisms can be revealed by sampling designs which consider the contribution to variability of different temporal and spatial scales, compared to total variability. From a management perspective, a multi-scale approach can lead to time-saving. Identifying environmental patterns that help maintain patchy distribution is fundamental in studying coastal lagoons, transition zones between continental and marine waters characterised by great environmental variability on spatial and temporal scales. They often present organic enrichment inducing decreased species richness and increased densities of opportunist species like C hironomus salinarius, a common species that tends to swarm and thus constitutes a nuisance for human populations. This species is dominant in the Bolmon lagoon, a French Mediterranean coastal lagoon under eutrophication. Our objective was to quantify variability due to both spatial and temporal scales and identify the contribution of different environmental factors to this variability. The population of C. salinarius was sampled from June 2007 to June 2008 every two months at 12 sites located in two areas of the Bolmon lagoon, at two different depths, with three sites per area-depth combination. Environmental factors (temperature, dissolved oxygen both in sediment and under water surface, sediment organic matter content and grain size) and microbial activities (i.e. hydrolase activities) were also considered as explanatory factors of chironomid densities and distribution. ANOVA analysis reveals significant spatial differences regarding the distribution of chironomid larvae for the area and the depth scales and their interaction. The spatial effect is also revealed for dissolved oxygen (water), salinity and fine particles (area scale), and for water column depth. All factors but water column depth show a temporal effect. Spearman's correlations highlight the seasonal effect

  19. Improved Tolerance to Various Abiotic Stresses in Transgenic Sweet Potato (Ipomoea batatas) Expressing Spinach Betaine Aldehyde Dehydrogenase

    PubMed Central

    Fan, Weijuan; Zhang, Min; Zhang, Hongxia; Zhang, Peng

    2012-01-01

    Abiotic stresses are critical delimiters for the increased productivity and cultivation expansion of sweet potato (Ipomoea batatas), a root crop with worldwide importance. The increased production of glycine betaine (GB) improves plant tolerance to various abiotic stresses without strong phenotypic changes, providing a feasible approach to improve stable yield production under unfavorable conditions. The gene encoding betaine aldehyde dehydrogenase (BADH) is involved in the biosynthesis of GB in plants, and the accumulation of GB by the heterologous overexpression of BADH improves abiotic stress tolerance in plants. This study is to improve sweet potato, a GB accumulator, resistant to multiple abiotic stresses by promoted GB biosynthesis. A chloroplastic BADH gene from Spinacia oleracea (SoBADH) was introduced into the sweet potato cultivar Sushu-2 via Agrobacterium-mediated transformation. The overexpression of SoBADH in the transgenic sweet potato improved tolerance to various abiotic stresses, including salt, oxidative stress, and low temperature. The increased BADH activity and GB accumulation in the transgenic plant lines under normal and multiple environmental stresses resulted in increased protection against cell damage through the maintenance of cell membrane integrity, stronger photosynthetic activity, reduced reactive oxygen species (ROS) production, and induction or activation of ROS scavenging by the increased activity of free radical-scavenging enzymes. The increased proline accumulation and systemic upregulation of many ROS-scavenging genes in stress-treated transgenic plants also indicated that GB accumulation might stimulate the ROS-scavenging system and proline biosynthesis via an integrative mechanism. This study demonstrates that the enhancement of GB biosynthesis in sweet potato is an effective and feasible approach to improve its tolerance to multiple abiotic stresses without causing phenotypic defects. This strategy for trait improvement in

  20. Biological Networks Underlying Abiotic Stress Tolerance in Temperate Crops—A Proteomic Perspective

    PubMed Central

    Kosová, Klára; Vítámvás, Pavel; Urban, Milan Oldřich; Klíma, Miroslav; Roy, Amitava; Prášil, Ilja Tom

    2015-01-01

    Abiotic stress factors, especially low temperatures, drought, and salinity, represent the major constraints limiting agricultural production in temperate climate. Under the conditions of global climate change, the risk of damaging effects of abiotic stresses on crop production increases. Plant stress response represents an active process aimed at an establishment of novel homeostasis under altered environmental conditions. Proteins play a crucial role in plant stress response since they are directly involved in shaping the final phenotype. In the review, results of proteomic studies focused on stress response of major crops grown in temperate climate including cereals: common wheat (Triticum aestivum), durum wheat (Triticum durum), barley (Hordeum vulgare), maize (Zea mays); leguminous plants: alfalfa (Medicago sativa), soybean (Glycine max), common bean (Phaseolus vulgaris), pea (Pisum sativum); oilseed rape (Brassica napus); potato (Solanum tuberosum); tobacco (Nicotiana tabaccum); tomato (Lycopersicon esculentum); and others, to a wide range of abiotic stresses (cold, drought, salinity, heat, imbalances in mineral nutrition and heavy metals) are summarized. The dynamics of changes in various protein functional groups including signaling and regulatory proteins, transcription factors, proteins involved in protein metabolism, amino acid metabolism, metabolism of several stress-related compounds, proteins with chaperone and protective functions as well as structural proteins (cell wall components, cytoskeleton) are briefly overviewed. Attention is paid to the differences found between differentially tolerant genotypes. In addition, proteomic studies aimed at proteomic investigation of multiple stress factors are discussed. In conclusion, contribution of proteomic studies to understanding the complexity of crop response to abiotic stresses as well as possibilities to identify and utilize protein markers in crop breeding processes are discussed. PMID:26340626

  1. Biological Networks Underlying Abiotic Stress Tolerance in Temperate Crops--A Proteomic Perspective.

    PubMed

    Kosová, Klára; Vítámvás, Pavel; Urban, Milan Oldřich; Klíma, Miroslav; Roy, Amitava; Prášil, Ilja Tom

    2015-01-01

    Abiotic stress factors, especially low temperatures, drought, and salinity, represent the major constraints limiting agricultural production in temperate climate. Under the conditions of global climate change, the risk of damaging effects of abiotic stresses on crop production increases. Plant stress response represents an active process aimed at an establishment of novel homeostasis under altered environmental conditions. Proteins play a crucial role in plant stress response since they are directly involved in shaping the final phenotype. In the review, results of proteomic studies focused on stress response of major crops grown in temperate climate including cereals: common wheat (Triticum aestivum), durum wheat (Triticum durum), barley (Hordeum vulgare), maize (Zea mays); leguminous plants: alfalfa (Medicago sativa), soybean (Glycine max), common bean (Phaseolus vulgaris), pea (Pisum sativum); oilseed rape (Brassica napus); potato (Solanum tuberosum); tobacco (Nicotiana tabaccum); tomato (Lycopersicon esculentum); and others, to a wide range of abiotic stresses (cold, drought, salinity, heat, imbalances in mineral nutrition and heavy metals) are summarized. The dynamics of changes in various protein functional groups including signaling and regulatory proteins, transcription factors, proteins involved in protein metabolism, amino acid metabolism, metabolism of several stress-related compounds, proteins with chaperone and protective functions as well as structural proteins (cell wall components, cytoskeleton) are briefly overviewed. Attention is paid to the differences found between differentially tolerant genotypes. In addition, proteomic studies aimed at proteomic investigation of multiple stress factors are discussed. In conclusion, contribution of proteomic studies to understanding the complexity of crop response to abiotic stresses as well as possibilities to identify and utilize protein markers in crop breeding processes are discussed. PMID:26340626

  2. Cytosine Methylation Alteration in Natural Populations of Leymus chinensis Induced by Multiple Abiotic Stresses

    PubMed Central

    Yu, Yingjie; Yang, Xuejiao; Wang, Huaying; Shi, Fengxue; Liu, Ying; Liu, Jushan; Li, Linfeng; Wang, Deli; Liu, Bao

    2013-01-01

    Background Human activity has a profound effect on the global environment and caused frequent occurrence of climatic fluctuations. To survive, plants need to adapt to the changing environmental conditions through altering their morphological and physiological traits. One known mechanism for phenotypic innovation to be achieved is environment-induced rapid yet inheritable epigenetic changes. Therefore, the use of molecular techniques to address the epigenetic mechanisms underpinning stress adaptation in plants is an important and challenging topic in biological research. In this study, we investigated the impact of warming, nitrogen (N) addition, and warming+nitrogen (N) addition stresses on the cytosine methylation status of Leymus chinensis Tzvel. at the population level by using the amplified fragment length polymorphism (AFLP), methylation-sensitive amplified polymorphism (MSAP) and retrotransposon based sequence-specific amplification polymorphism (SSAP) techniques. Methodology/Principal Findings Our results showed that, although the percentages of cytosine methylation changes in SSAP are significantly higher than those in MSAP, all the treatment groups showed similar alteration patterns of hypermethylation and hypomethylation. It meant that the abiotic stresses have induced the alterations in cytosine methylation patterns, and the levels of cytosine methylation changes around the transposable element are higher than the other genomic regions. In addition, the identification and analysis of differentially methylated loci (DML) indicated that the abiotic stresses have also caused targeted methylation changes at specific loci and these DML might have contributed to the capability of plants in adaptation to the abiotic stresses. Conclusions/Significance Our results demonstrated that abiotic stresses related to global warming and nitrogen deposition readily evoke alterations of cytosine methylation, and which may provide a molecular basis for rapid adaptation by

  3. Abiotic stress responses in plants: roles of calmodulin-regulated proteins

    PubMed Central

    Virdi, Amardeep S.; Singh, Supreet; Singh, Prabhjeet

    2015-01-01

    Intracellular changes in calcium ions (Ca2+) in response to different biotic and abiotic stimuli are detected by various sensor proteins in the plant cell. Calmodulin (CaM) is one of the most extensively studied Ca2+-sensing proteins and has been shown to be involved in transduction of Ca2+ signals. After interacting with Ca2+, CaM undergoes conformational change and influences the activities of a diverse range of CaM-binding proteins. A number of CaM-binding proteins have also been implicated in stress responses in plants, highlighting the central role played by CaM in adaptation to adverse environmental conditions. Stress adaptation in plants is a highly complex and multigenic response. Identification and characterization of CaM-modulated proteins in relation to different abiotic stresses could, therefore, prove to be essential for a deeper understanding of the molecular mechanisms involved in abiotic stress tolerance in plants. Various studies have revealed involvement of CaM in regulation of metal ions uptake, generation of reactive oxygen species and modulation of transcription factors such as CAMTA3, GTL1, and WRKY39. Activities of several kinases and phosphatases have also been shown to be modulated by CaM, thus providing further versatility to stress-associated signal transduction pathways. The results obtained from contemporary studies are consistent with the proposed role of CaM as an integrator of different stress signaling pathways, which allows plants to maintain homeostasis between different cellular processes. In this review, we have attempted to present the current state of understanding of the role of CaM in modulating different stress-regulated proteins and its implications in augmenting abiotic stress tolerance in plants. PMID:26528296

  4. Modeling the spatial distribution of Chagas disease vectors using environmental variables and people´s knowledge

    PubMed Central

    2013-01-01

    Background Chagas disease is caused by the protozoan Trypanosoma cruzi, which is transmitted to mammal hosts by triatomine insect vectors. The goal of this study was to model the spatial distribution of triatomine species in an endemic area. Methods Vector’s locations were obtained with a rural householders’ survey. This information was combined with environmental data obtained from remote sensors, land use maps and topographic SRTM data, using the machine learning algorithm Random Forests to model species distribution. We analysed the combination of variables on three scales: 10 km, 5 km and 2.5 km cell size grids. Results The best estimation, explaining 46.2% of the triatomines spatial distribution, was obtained for 5 km of spatial resolution. Presence probability distribution increases from central Chile towards the north, tending to cover the central-coastal region and avoiding areas of the Andes range. Conclusions The methodology presented here was useful to model the distribution of triatomines in an endemic area; it is best explained using 5 km of spatial resolution, and their presence increases in the northern part of the study area. This study’s methodology can be replicated in other countries with Chagas disease or other vectorial transmitted diseases, and be used to locate high risk areas and to optimize resource allocation, for prevention and control of vectorial diseases. PMID:23724993

  5. Environmental drivers of variability in the movement ecology of turkey vultures (Cathartes aura) in North and South America.

    PubMed

    Dodge, Somayeh; Bohrer, Gil; Bildstein, Keith; Davidson, Sarah C; Weinzierl, Rolf; Bechard, Marc J; Barber, David; Kays, Roland; Brandes, David; Han, Jiawei; Wikelski, Martin

    2014-01-01

    Variation is key to the adaptability of species and their ability to survive changes to the Earth's climate and habitats. Plasticity in movement strategies allows a species to better track spatial dynamics of habitat quality. We describe the mechanisms that shape the movement of a long-distance migrant bird (turkey vulture, Cathartes aura) across two continents using satellite tracking coupled with remote-sensing science. Using nearly 10 years of data from 24 satellite-tracked vultures in four distinct populations, we describe an enormous amount of variation in their movement patterns. We related vulture movement to environmental conditions and found important correlations explaining how far they need to move to find food (indexed by the Normalized Difference Vegetation Index) and how fast they can move based on the prevalence of thermals and temperature. We conclude that the extensive variability in the movement ecology of turkey vultures, facilitated by their energetically efficient thermal soaring, suggests that this species is likely to do well across periods of modest climate change. The large scale and sample sizes needed for such analysis in a widespread migrant emphasizes the need for integrated and collaborative efforts to obtain tracking data and for policies, tools and open datasets to encourage such collaborations and data sharing. PMID:24733950

  6. Environmental drivers of variability in the movement ecology of turkey vultures (Cathartes aura) in North and South America

    PubMed Central

    Dodge, Somayeh; Bohrer, Gil; Bildstein, Keith; Davidson, Sarah C.; Weinzierl, Rolf; Bechard, Marc J.; Barber, David; Kays, Roland; Brandes, David; Han, Jiawei; Wikelski, Martin

    2014-01-01

    Variation is key to the adaptability of species and their ability to survive changes to the Earth's climate and habitats. Plasticity in movement strategies allows a species to better track spatial dynamics of habitat quality. We describe the mechanisms that shape the movement of a long-distance migrant bird (turkey vulture, Cathartes aura) across two continents using satellite tracking coupled with remote-sensing science. Using nearly 10 years of data from 24 satellite-tracked vultures in four distinct populations, we describe an enormous amount of variation in their movement patterns. We related vulture movement to environmental conditions and found important correlations explaining how far they need to move to find food (indexed by the Normalized Difference Vegetation Index) and how fast they can move based on the prevalence of thermals and temperature. We conclude that the extensive variability in the movement ecology of turkey vultures, facilitated by their energetically efficient thermal soaring, suggests that this species is likely to do well across periods of modest climate change. The large scale and sample sizes needed for such analysis in a widespread migrant emphasizes the need for integrated and collaborative efforts to obtain tracking data and for policies, tools and open datasets to encourage such collaborations and data sharing. PMID:24733950

  7. Environmental factors regulating the recruitment of walleye Sander vitreus and white bass Morone chrysops in irrigation reservoirs

    USGS Publications Warehouse

    DeBoer, Jason A.; Pope, Kevin L.; Koupal, Keith D.

    2013-01-01

    Understanding the environmental factors that regulate fish recruitment is essential for effective management of fisheries. Generally, first-year survival, and therefore recruitment, is inherently less consistent in systems with high intra- and interannual variability. Irrigation reservoirs display sporadic patterns of annual drawdown, which can pose a substantial challenge to recruitment of fishes. We developed species-specific models using an 18-year data set compiled from state and federal agencies to investigate variables that regulate the recruitment of walleye Sander vitreus and white bass Morone chrysops in irrigation reservoirs in south-west Nebraska, USA. The candidate model set for walleye included only abiotic variables (water-level elevation, minimum daily air temperature during winter prior to hatching, annual precipitation, spring warming rate and May reservoir discharge), and the candidate model set for white bass included primarily biotic variables (catch per unit effort (CPUE) of black crappie Pomoxis nigromaculatus, CPUE of age-0 walleye, CPUE of bluegill Lepomis macrochirus and CPUE of age-3 and older white bass), each of which had a greater relative importance than the single abiotic variable (minimum daily air temperature during winter after hatching). Our findings improve the understanding of the recruitment of fishes in irrigation reservoirs and the relative roles of abiotic and biotic factors.

  8. Silencing of omega-5 gliadins in transgenic wheat eliminates a major source of environmental variability and improves dough mixing properties of flour

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background The end-use quality of wheat flour varies as a result of the growth conditions of the plant. Among the wheat gluten proteins, the omega-5 gliadins have been identified as a major source of environmental variability, increasing in proportion in grain from plants that receive fertilizer or ...

  9. A Study of Underprepared Students at One Community College: Assessing the Impact of Student and Institutional Input, Environmental, and Output Variables on Student Success. ASHE Annual Meeting Paper.

    ERIC Educational Resources Information Center

    Long, Patricia N.; Amey, Marilyn J.

    This study identified input, environmental, and output variables accounting for differences between successful and unsuccessful groups of underprepared students at Johnson County Community College (Kansas). The study applied an adaptation of Alexander Astin's input-environment-output model of assessing student and institutional effectiveness.…

  10. Measurements of CO2 and H2O fluxes of crop plants are essential to understand the impacts of environmental variables on crop productivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measurements of CO2 and H2O fluxes of crop plants are essential to understand the impacts of environmental variables on crop productivity. A portable, CETA (Canopy Evapo-Transpiration and Assimilation) chamber system was built and evaluated at Big Spring, TX. This chamber system is an open or flow...

  11. Sap flow characteristics and their response to environmental variables in a desert riparian forest along lower Heihe River Basin, Northwest China.

    PubMed

    Li, Wei; Yu, TengFei; Li, XiaoYan; Zhao, ChunYan

    2015-10-01

    Hysteresis, related to tree sap flow and associated environmental variables, plays a critical ecological role in the comprehensive understanding of forest water use dynamics. Nevertheless, only limited researches related to this unique ecological phenomenon have been conducted to date in desert riparian forests under extreme arid regions. Populus euphratica Oliv sap flow velocity (VS) was measured during the 2012 growing season using the heat ratio method, at the same time as environmental variables, such as photosynthetically active radiation (PAR), vapor pressure deficit (VPD), and leaf water potential. We found clockwise patterns of hysteresis between VS and VPD but anticlockwise patterns between VS and PAR. Pronounced hysteretic VS lag time, a function of PAR and VPD, was approximately 1.0~1.5 and -0.5 h, respectively. Hysteresis was primarily caused by the biophysical declining in canopy conductance. Sigmoid response of VS to synthetic meteorological variables was enhanced by approximately 56 % after hysteresis calibration to sunny days. Consequently, hysteresis can be seen as a protection mechanism for plants to avoid the overlapping of peak VS and environmental variables. Furthermore, the consistent presence of hysteresis suggested that estimating of plant water use in large temporal and spatial models may require certain provisions to different VS responses to variables between morning and afternoon and between seasons. PMID:27624743

  12. Abiotic transformation of carbon tetrachloride at mineral surfaces. Final report, September 1990-September 1993

    SciTech Connect

    Kriegman-King, M.; Reinhard, M.

    1994-02-01

    The report addresses the ability of natural mineral surfaces to abiotically transform halogenated organic compounds in subsurface environments. The research focuses on carbon tetrachloride (CC14) as the halogenated organic and biotite, vermiculite, and pyrite as the mineral surfaces. The CCl4 transformation rates and products were quantified under different environmental conditions. The disappearance of CCl4 was significantly faster in the presence of mineral surfaces than in homogeneous solution. In systems containing the sheet silicates and HS-, the rate of reaction was dependent on the temperature, hydrogen sulfide ion concentration, surface concentration, and Fe(II) content in the minerals.

  13. Pareto-optimal solutions for environmental flow schemes incorporating the intra-annual and interannual variability of the natural flow regime

    NASA Astrophysics Data System (ADS)

    Shiau, Jenq-Tzong; Wu, Fu-Chun

    2007-06-01

    The temporal variations of natural flows are essential elements for preserving the ecological health of a river which are addressed in this paper by the environmental flow schemes that incorporate the intra-annual and interannual variability of the natural flow regime. We present an optimization framework to find the Pareto-optimal solutions for various flow schemes. The proposed framework integrates (1) the range of variability approach for evaluating the hydrologic alterations; (2) the standardized precipitation index approach for establishing the variation criteria for the wet, normal, and dry years; (3) a weir operation model for simulating the system of flows; and (4) a multiobjective optimization genetic algorithm for search of the Pareto-optimal solutions. The proposed framework is applied to the Kaoping diversion weir in Taiwan. The results reveal that the time-varying schemes incorporating the intra-annual variability in the environmental flow prescriptions promote the ecosystem and human needs fitness. Incorporation of the interannual flow variability using different criteria established for three types of water year further promotes both fitnesses. The merit of incorporating the interannual variability may be superimposed on that of incorporating only the intra-annual flow variability. The Pareto-optimal solutions searched with a limited range of flows replicate satisfactorily those obtained with a full search range. The limited-range Pareto front may be used as a surrogate of the full-range one if feasible prescriptions are to be found among the regular flows.

  14. Prediction Model for Prevalence and Incidence of Advanced Age-Related Macular Degeneration Based on Genetic, Demographic, and Environmental Variables

    PubMed Central

    Seddon, Johanna M.; Reynolds, Robyn; Maller, Julian; Fagerness, Jesen A.; Daly, Mark J.; Rosner, Bernard

    2013-01-01

    Purpose The joint effects of genetic, ocular, and environmental variables were evaluated and predictive models for prevalence and incidence of AMD were assessed. Methods Participants in the multicenter Age-Related Eye Disease Study (AREDS) were included in a prospective evaluation of 1446 individuals, of which 279 progressed to advanced AMD (geographic atrophy or neovascular disease) and 1167 did not progress during 6.3 years of follow-up. For prevalent AMD, 509 advanced cases were compared with 222 controls. Covariates for the incidence analysis included age, sex, education, smoking, body mass index (BMI), baseline AMD grade, and the AREDS vitamin–mineral treatment assignment. DNA specimens were evaluated for six variants in five genes related to AMD. Unconditional logistic regression analyses were performed for prevalent and incident advanced AMD. An algorithm was developed and receiver operating characteristic curves and C statistics were calculated to assess the predictive ability of risk scores to discriminate progressors from nonprogressors. Results All genetic polymorphisms were independently related to prevalence of advanced AMD, controlling for genetic factors, smoking, BMI, and AREDS treatment. Multivariate odds ratios (ORs) were 3.5 (95% confidence interval [CI], 1.7–7.1) for CFH Y402H; 3.7 (95% CI, 1.6 – 8.4) for CFH rs1410996; 25.4 (95% CI, 8.6 –75.1) for LOC387715 A69S (ARMS2); 0.3 (95% CI, 0.1– 0.7) for C2 E318D; 0.3 (95% CI, 0.1– 0.5) for CFB; and 3.6 (95% CI, 1.4 –9.4) for C3 R102G, comparing the homozygous risk/protective genotypes to the referent genotypes. For incident AMD, all these variants except CFB were significantly related to progression to advanced AMD, after controlling for baseline AMD grade and other factors, with ORs from 1.8 to 4.0 for presence of two risk alleles and 0.4 for the protective allele. An interaction was seen between CFH402H and treatment, after controlling for all genotypes. Smoking was independently

  15. Mycobacterium ulcerans dynamics in aquatic ecosystems are driven by a complex interplay of abiotic and biotic factors

    PubMed Central

    Garchitorena, Andrés; Guégan, Jean-François; Léger, Lucas; Eyangoh, Sara; Marsollier, Laurent; Roche, Benjamin

    2015-01-01

    Host–parasite interactions are often embedded within complex host communities and can be influenced by a variety of environmental factors, such as seasonal variations in climate or abiotic conditions in water and soil, which confounds our understanding of the main drivers of many multi-host pathogens. Here, we take advantage of a combination of large environmental data sets on Mycobacterium ulcerans (MU), an environmentally persistent microorganism associated to freshwater ecosystems and present in a large variety of aquatic hosts, to characterize abiotic and biotic factors driving the dynamics of this pathogen in two regions of Cameroon. We find that MU dynamics are largely driven by seasonal climatic factors and certain physico-chemical conditions in stagnant and slow-flowing ecosystems, with an important role of pH as limiting factor. Furthermore, water conditions can modify the effect of abundance and diversity of aquatic organisms on MU dynamics, which suggests a different contribution of two MU transmission routes for aquatic hosts (trophic vs environmental transmission) depending on local abiotic factors. DOI: http://dx.doi.org/10.7554/eLife.07616.001 PMID:26216042

  16. Effects of environmental and physiological variables on the accumulated concentrations of trace metals in the New Zealand cockle Austrovenus stutchburyi.

    PubMed

    Marsden, Islay D; Smith, Brian D; Rainbow, Phillip S

    2014-02-01

    We examined potential causes of variation in trace element accumulation in an estuarine bivalve Austrovenus stutchburyi from two estuarine systems in South Island, New Zealand which differed in their metal contamination and salinity regimes. Concentrations of Ag, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Ti, V and Zn were measured (ICP-OES) in whole body tissues of bivalves collected from 10 sites, seston collected at high tide (a potential food resource) and in the sediment at the sites. All 13 elements showed a relationship between log bioaccumulated trace element concentration (mgkg(-1) dry weight tissue) and log shell length (mm), either in the whole data set or at least one site (ANCOVA). Growth rates of cockles varied significantly amongst sites. Accumulated soft tissue concentrations of Ag, As, Co and Cr increased with age of cockle, those of Pb and Zn decreased, with no clear age-related trend for the remaining metals (ANCOVA). Shell length was generally a good proxy for age when allowing for any size effect in metal accumulation by the cockle. There was no consistent pattern between the estuarine systems, probably reflecting unidentified contaminant inputs. Following depuration, tissue concentrations decreased significantly for some elements (Fe, Mn, Ti and V), indicating high concentrations of these metals in the gut contents. Trace element concentrations in the seston generally did not correlate with the bivalve tissue concentrations. There were few (Spearman's Rank) correlations between environmental variables at the time of sampling and cockle tissue trace element concentrations. The main sources of variation in bioaccumulated trace metal concentrations in the whole tissues of the cockle are location, shell length and age. PMID:24144937

  17. Wind-chill-equivalent temperatures: regarding the impact due to the variability of the environmental convective heat transfer coefficient.

    PubMed

    Shitzer, Avraham

    2006-03-01

    The wind-chill index (WCI), developed in Antarctica in the 1940s and recently updated by the weather services in the USA and Canada, expresses the enhancement of heat loss in cold climates from exposed body parts, e.g., face, due to wind. The index provides a simple and practical means for assessing the thermal effects of wind on humans outdoors. It is also used for indicating weather conditions that may pose adverse risks of freezing at subfreezing environmental temperatures. Values of the WCI depend on a number of parameters, i.e, temperatures, physical properties of the air, wind speed, etc., and on insolation and evaporation. This paper focuses on the effects of various empirical correlations used in the literature for calculating the convective heat transfer coefficients between humans and their environment. Insolation and evaporation are not included in the presentation. Large differences in calculated values among these correlations are demonstrated and quantified. Steady-state wind-chill-equivalent temperatures (WCETs) are estimated by a simple, one-dimensional heat-conducting hollow-cylindrical model using these empirical correlations. Partial comparison of these values with the published "new" WCETs is presented. The variability of the estimated WCETs, due to different correlations employed to calculate them, is clearly demonstrated. The results of this study clearly suggest the need for establishing a "gold standard" for estimating convective heat exchange between exposed body elements and the cold and windy environment. This should be done prior to the introduction and adoption of further modifications to WCETs and indices. Correlations to estimate the convective heat transfer coefficients between exposed body parts of humans in windy and cold environments influence the WCETs and need to be standardized. PMID:16397760

  18. Wind-chill-equivalent temperatures: regarding the impact due to the variability of the environmental convective heat transfer coefficient

    NASA Astrophysics Data System (ADS)

    Shitzer, Avraham

    2006-03-01

    The wind-chill index (WCI), developed in Antarctica in the 1940s and recently updated by the weather services in the USA and Canada, expresses the enhancement of heat loss in cold climates from exposed body parts, e.g., face, due to wind. The index provides a simple and practical means for assessing the thermal effects of wind on humans outdoors. It is also used for indicating weather conditions that may pose adverse risks of freezing at subfreezing environmental temperatures. Values of the WCI depend on a number of parameters, i.e, temperatures, physical properties of the air, wind speed, etc., and on insolation and evaporation. This paper focuses on the effects of various empirical correlations used in the literature for calculating the convective heat transfer coefficients between humans and their environment. Insolation and evaporation are not included in the presentation. Large differences in calculated values among these correlations are demonstrated and quantified. Steady-state wind-chill-equivalent temperatures (WCETs) are estimated by a simple, one-dimensional heat-conducting hollow-cylindrical model using these empirical correlations. Partial comparison of these values with the published “new” WCETs is presented. The variability of the estimated WCETs, due to different correlations employed to calculate them, is clearly demonstrated. The results of this study clearly suggest the need for establishing a “gold standard” for estimating convective heat exchange between exposed body elements and the cold and windy environment. This should be done prior to the introduction and adoption of further modifications to WCETs and indices. Correlations to estimate the convective heat transfer coefficients between exposed body parts of humans in windy and cold environments influence the WCETs and need to be standardized.

  19. Utilization of combined remote sensing techniques to detect environmental variables influencing malaria vector densities in rural West Africa

    PubMed Central

    2012-01-01

    Introduction The use of remote sensing has found its way into the field of epidemiology within the last decades. With the increased sensor resolution of recent and future satellites new possibilities emerge for high resolution risk modeling and risk mapping. Methods A SPOT 5 satellite image, taken during the rainy season 2009 was used for calculating indices by combining the image's spectral bands. Besides the widely used Normalized Difference Vegetation Index (NDVI) other indices were tested for significant correlation against field observations. Multiple steps, including the detection of surface water, its breeding appropriateness for Anopheles and modeling of vector imagines abundance, were performed. Data collection on larvae, adult vectors and geographic parameters in the field, was amended by using remote sensing techniques to gather data on altitude (Digital Elevation Model = DEM), precipitation (Tropical Rainfall Measurement Mission = TRMM), land surface temperatures (LST). Results The DEM derived altitude as well as indices calculations combining the satellite's spectral bands (NDTI = Normalized Difference Turbidity Index, NDWI Mac Feeters = Normalized Difference Water Index) turned out to be reliable indicators for surface water in the local geographic setting. While Anopheles larvae abundance in habitats is driven by multiple, interconnected factors - amongst which the NDVI - and precipitation events, the presence of vector imagines was found to be correlated negatively to remotely sensed LST and positively to the cumulated amount of rainfall in the preceding 15 days and to the Normalized Difference Pond Index (NDPI) within the 500 m buffer zone around capture points. Conclusions Remotely sensed geographical and meteorological factors, including precipitations, temperature, as well as vegetation, humidity and land cover indicators could be used as explanatory variables for surface water presence, larval development and imagines densities. This modeling

  20. Abiotic production of iodine molecules in irradiated ice

    NASA Astrophysics Data System (ADS)

    Choi, Wonyong; Kim, Kitae; Yabushita, Akihiro

    2015-04-01

    Reactive halogen species play an important role in Earth's environmental systems. Iodine compounds are related to ozone depletion event (ODE) during Antarctic spring, formation of CCN (cloud condensation nuclei), and controlling the atmospheric oxidizing capacity. However, the processes and mechanisms for abiotic formation of iodine compounds in polar region are still unclear. Although the chemical reactions taking place in ice are greatly different from those in aquatic environment, reaction processes of halogens in frozen condition have rarely studied compared to those in water. In this study, we investigated iodide oxidation to form triiodide (I3-) in ice phase under UV irradiation ( λ > 300 nm) and dark condition. The production of I3- through iodide oxidation, which is negligible in aqueous solution, was significantly accelerated in ice phase even in the absence of UV irradiation. The following release of gaseous iodine molecule (I2) to the atmosphere was also monitored by cavity ring-down spectroscopy (CRDS). We speculate that the markedly enhanced iodide oxidation in polycrystalline ice is due to the freeze concentration of iodides, protons, and dissolved oxygen in the ice crystal grain boundaries. The experiments conducted under ambient solar radiation of the Antarctic region (King George Island, 62°13'S 58°47'W, sea level) also confirmed that the generation of I3- via iodide oxidation process is enhanced when iodide is trapped in ice. The observed intrinsic oxidative transformation of iodide to generate I3-(aq) and I2(g) in frozen environment suggests a previously unknown pathway for the substantial release of reactive iodine species to the atmosphere.

  1. Past occurrences of hypoxia in the Baltic Sea and the role of climate variability, environmental change and human impact

    NASA Astrophysics Data System (ADS)

    Zillén, Lovisa; Conley, Daniel J.; Andrén, Thomas; Andrén, Elinor; Björck, Svante

    2008-12-01

    The hypoxic zone in the Baltic Sea has increased in area about four times since 1960 and widespread oxygen deficiency has severely reduced macro benthic communities below the halocline in the Baltic Proper and the Gulf of Finland, which in turn has affected food chain dynamics, fish habitats and fisheries in the entire Baltic Sea. The cause of increased hypoxia is believed to be enhanced eutrophication through increased anthropogenic input of nutrients, such as nitrogen and phosphorus. However, the spatial variability of hypoxia on long time-scales is poorly known: and so are the driving mechanisms. We review the occurrence of hypoxia in modern time (last c. 50 years), modern historical time (AD 1950-1800) and during the more distant past (the last c. 10 000 years) and explore the role of climate variability, environmental change and human impact. We present a compilation of proxy records of hypoxia (laminated sediments) based on long sediment cores from the Baltic Sea. The cumulated results show that the deeper depressions of the Baltic Sea have experienced intermittent hypoxia during most of the Holocene and that regular laminations started to form c. 8500-7800 cal. yr BP ago, in association with the formation of a permanent halocline at the transition between the Early Littorina Sea and the Littorina Sea s. str. Laminated sediments were deposited during three main periods (i.e. between c. 8000-4000, 2000-800 cal. yr BP and subsequent to AD 1800) which overlap the Holocene Thermal Maximum (c. 9000-5000 cal. yr BP), the Medieval Warm Period (c. AD 750-1200) and the modern historical period (AD 1800 to present) and coincide with intervals of high surface salinity (at least during the Littorina s. str.) and high total organic carbon content. This study implies that there may be a correlation between climate variability in the past and the state of the marine environment, where milder and dryer periods with less freshwater run-off correspond to increased salinities

  2. Coupling microbial catabolic actions with abiotic redox processes: a new recipe for persistent organic pollutant (POP) removal.

    PubMed

    Jeon, Jong-Rok; Murugesan, Kumarasamy; Nam, In-Hyun; Chang, Yoon-Seok

    2013-01-01

    The continuous release of toxic persistent organic pollutants (POPs) into the environment has raised a need for effective cleanup methods. The tremendous natural diversity of microbial catabolic mechanisms suggests that catabolic routes may be applied to the remediation of POP-contaminated fields. A large number of the recalcitrant xenobiotics have been shown to be removable via the natural catabolic mechanisms of microbes, and detailed biochemical studies of the catabolic methods, together with the development of sophisticated genetic engineering, have led to the use of synthetic microbes for the bioremediation of POPs. However, the steric effects of substituted halogen moieties, microbe toxicity, and the low bioavailability of POPs still deteriorate the efficiency of removal strategies based on natural and synthetic catabolic mechanisms. Recently, abiotic redox processes that induce rapid reductive dehalogenation, hydroxyl radical-based oxidation, or electron shuttling have been reasonably coupled with microbial catabolic actions, thereby compensating for the drawbacks of biotic processes in POP removal. In this review, we first compare the pros and cons of individual methodologies (i.e., the natural and synthetic catabolism of microbes and the abiotic processes involving zero-valent irons, advanced oxidation processes, and small organic stimulants) for POP removal. We then highlight recent trends in coupling the biotic-abiotic methodologies and discuss how the processes are both feasible and superior to individual methodologies for POP cleanup. Cost-effective and environmentally sustainable abiotic redox actions could enhance the microbial bioremediation potential for POPs. PMID:23153459

  3. Mechanical Stress Induces Biotic and Abiotic Stress Responses via a Novel cis-Element

    PubMed Central

    Walley, Justin W; Coughlan, Sean; Hudson, Matthew E; Covington, Michael F; Kaspi, Roy; Banu, Gopalan; Harmer, Stacey L; Dehesh, Katayoon

    2007-01-01

    Plants are continuously exposed to a myriad of abiotic and biotic stresses. However, the molecular mechanisms by which these stress signals are perceived and transduced are poorly understood. To begin to identify primary stress signal transduction components, we have focused on genes that respond rapidly (within 5 min) to stress signals. Because it has been hypothesized that detection of physical stress is a mechanism common to mounting a response against a broad range of environmental stresses, we have utilized mechanical wounding as the stress stimulus and performed whole genome microarray analysis of Arabidopsis thaliana leaf tissue. This led to the identification of a number of rapid wound responsive (RWR) genes. Comparison of RWR genes with published abiotic and biotic stress microarray datasets demonstrates a large overlap across a wide range of environmental stresses. Interestingly, RWR genes also exhibit a striking level and pattern of circadian regulation, with induced and repressed genes displaying antiphasic rhythms. Using bioinformatic analysis, we identified a novel motif overrepresented in the promoters of RWR genes, herein designated as the Rapid Stress Response Element (RSRE). We demonstrate in transgenic plants that multimerized RSREs are sufficient to confer a rapid response to both biotic and abiotic stresses in vivo, thereby establishing the functional involvement of this motif in primary transcriptional stress responses. Collectively, our data provide evidence for a novel cis-element that is distributed across the promoters of an array of diverse stress-responsive genes, poised to respond immediately and coordinately to stress signals. This structure suggests that plants may have a transcriptional network resembling the general stress signaling pathway in yeast and that the RSRE element may provide the key to this coordinate regulation. PMID:17953483

  4. Evaluating reaction pathways of hydrothermal abiotic organic synthesis at elevated temperatures and pressures using carbon isotopes

    NASA Astrophysics Data System (ADS)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.

    2015-04-01

    Experiments were performed to better understand the role of environmental factors on reaction pathways and corresponding carbon isotope fractionations during abiotic hydrothermal synthesis of organic compounds using piston cylinder apparatus at 750 °C and 5.5 kbars. Chemical compositions of experimental products and corresponding carbon isotopic values were obtained by a Pyrolysis-GC-MS-IRMS system. Alkanes (methane and ethane), straight-chain saturated alcohols (ethanol and n-butanol) and monocarboxylic acids (formic and acetic acids) were generated with ethanol being the only organic compound with higher δ13C than CO2. CO was not detected in experimental products owing to the favorable water-gas shift reaction under high water pressure conditions. The pattern of δ13C values of CO2, carboxylic acids and alkanes are consistent with their equilibrium isotope relationships: CO2 > carboxylic acids > alkanes, but the magnitude of the fractionation among them is higher than predicted isotope equilibrium values. In particular, the isotopic fractionation between CO2 and CH4 remained constant at ∼31‰, indicating a kinetic effect during CO2 reduction processes. No "isotope reversal" of δ13C values for alkanes or carboxylic acids was observed, which indicates a different reaction pathway than what is typically observed during Fischer-Tropsch synthesis under gas phase conditions. Under constraints imposed in experiments, the anomalous 13C isotope enrichment in ethanol suggests that hydroxymethylene is the organic intermediate, and that the generation of other organic compounds enriched in 12C were facilitated by subsequent Rayleigh fractionation of hydroxymethylene reacting with H2 and/or H2O. Carbon isotope fractionation data obtained in this study are instrumental in assessing the controlling factors on abiotic formation of organic compounds in hydrothermal systems. Knowledge on how environmental conditions affect reaction pathways of abiotic synthesis of organic

  5. Determining the Environmental Factors Underlying the Spatial Variability of Insect Appearance Phenology for the Honey Bee, Apis mellifera, and the Small White, Pieris rapae

    PubMed Central

    Gordo, Oscar; Sanz, Juan José; Lobo, Jorge M.

    2010-01-01

    The spatial patterns of the variability of the appearance dates of the honey bee Apis mellifera L. (Hymenoptera: Apidea) and the small white Pieris rapae (L.) (Lepidoptera: Pieridae) were investigated in Spain. A database of more than 7,000 records of the dates of the first spring sightings of each species in more than 700 localities from 1952–2004 was used. Phenological data were related to spatial, topographical, climate, land use, and vegetation productivity explanatory variables by means of multiple regression models in order to search for the environmental mechanisms underlying the observable phenological variability. Temperature and altitudinal spatial gradients accounted for most of the spatial variability in the phenology of the studied species, while vegetation productivity and land use had low relevance. In both species, the first individuals were recorded at those sites with warmer springs and dry summers, at low altitudes, and not covered with dry farming (i.e., cereal crops). The identity and magnitude of the effect of the variables were almost identical for both species and closely mirrored spatial temperature gradients. The best explanatory models accounted for up to half of the variability of appearance dates. Residuals did not show a spatial autocorrelation, meaning that no other spatially structured variable at our working resolution could have improved the results. Differences in the spatial patterns of phenology with regard to other taxa, such as arrival dates of migratory birds, suggest that spatial constraints may play an essential role in the phenological matching between trophic levels. PMID:20578955

  6. Genetic parameters related to environmental variability of weight traits in a selection experiment for weight gain in mice; signs of correlated canalised response

    PubMed Central

    Ibáñez-Escriche, Noelia; Moreno, Almudena; Nieto, Blanca; Piqueras, Pepa; Salgado, Concepción; Gutiérrez, Juan Pablo

    2008-01-01

    Data from an experimental mice population selected from 18 generations to increase weight gain were used to estimate the genetic parameters associated with environmental variability. The analysis involved three traits: weight at 21 days, weight at 42 days and weight gain between 21 and 42 days. A dataset of 5273 records for males was studied. Data were analysed using Bayesian procedures by comparing the Deviance Information Criterion (DIC) value of two different models: one assuming homogeneous environmental variances and another assuming them as heterogeneous. The model assuming heterogeneity was better in all cases and also showed higher additive genetic variances and lower common environmental variances. The heterogeneity of residual variance was associated with systematic and additive genetic effects thus making reduction by selection possible. Genetic correlations between the additive genetic effects on mean and environmental variance of the traits analysed were always negative, ranging from -0.19 to -0.38. An increase in the heritability of the traits was found when considering the genetic determination of the environmental variability. A suggested correlated canalised response was found in terms of coefficient of variation but it could be insufficient to compensate for the scale effect associated with an increase of the mean. PMID:18400150

  7. Environmental variability in a transitional Mediterranean system (Oliveri-Tindari, Italy): Focusing on the response of microbial activities and prokaryotic abundance

    NASA Astrophysics Data System (ADS)

    Caruso, Gabriella; Azzaro, Filippo; Azzaro, Maurizio; Decembrini, Franco; La Ferla, Rosabruna; Maimone, Giovanna; De Pasquale, Francesca; Monticelli, Luis Salvador; Zaccone, Renata; Zappalà, Giuseppe; Leonardi, Marcella

    2013-12-01

    The response of both microbial activities and prokaryotic abundances to environmental variability was studied in a transitional Mediterranean system (Oliveri-Tindari, Italy) during two yearly surveys (1997-'98 and 2005-'06). The total enzymatic (leucine aminopeptidase, β-glucosidase, alkaline phosphatase) and respiratory activity rates as well as of the abundances of total prokaryotes, culturable heterotrophic bacteria, faecal coliforms and enterococci were measured in surface waters of four brackish ponds, together with temperature, salinity, dissolved oxygen, pH, inorganic nutrients, chlorophyll-a and particulate organic carbon and particulate nitrogen determinations. The seasonal and interannual patterns of microbial parameters were investigated in relation to environmental variations.

  8. Diverse roles of jasmonates and ethylene in abiotic stress tolerance.

    PubMed

    Kazan, Kemal

    2015-04-01

    Jasmonates (JAs) and ethylene (ET), often acting cooperatively, play essential roles in regulating plant defense against pests and pathogens. Recent research reviewed here has revealed mechanistic new insights into the mode of action of these hormones in plant abiotic stress tolerance. During cold stress, JAs and ET differentially regulate the C-repeat binding factor (CBF) pathway. Major JA and ET signaling hubs such as JAZ proteins, CTR1, MYC2, components of the mediator complex, EIN2, EIN3, and several members of the AP2/ERF transcription factor gene family all have complex regulatory roles during abiotic stress adaptation. Better understanding the roles of these phytohormones in plant abiotic stress tolerance will contribute to the development of crop plants tolerant to a wide range of stressful environments. PMID:25731753

  9. Climate variability and socio-environmental changes in the northern Aegean (NE Mediterranean) during the last 1500 years

    NASA Astrophysics Data System (ADS)

    Gogou, Alexandra; Triantaphyllou, Maria; Xoplaki, Elena; Izdebski, Adam; Parinos, Constantine; Dimiza, Margarita; Bouloubassi, Ioanna; Luterbacher, Juerg; Kouli, Katerina; Martrat, Belen; Toreti, Andrea; Fleitmann, Dominik; Rousakis, Gregory; Kaberi, Helen; Athanasiou, Maria; Lykousis, Vasilios

    2016-03-01

    We provide new evidence on sea surface temperature (SST) variations and paleoceanographic/paleoenvironmental changes over the past 1500 years for the north Aegean Sea (NE Mediterranean). The reconstructions are based on multiproxy analyses, obtained from the high resolution (decadal to multi-decadal) marine record M2 retrieved from the Athos basin. Reconstructed SSTs show an increase from ca. 850 to 950 AD and from ca. 1100 to 1300 AD. A cooling phase of almost 1.5 °C is observed from ca. 1600 AD to 1700 AD. This seems to have been the starting point of a continuous SST warming trend until the end of the reconstructed period, interrupted by two prominent cooling events at 1832 ± 15 AD and 1995 ± 1 AD. Application of an adaptive Kernel smoothing suggests that the current warming in the reconstructed SSTs of the north Aegean might be unprecedented in the context of the past 1500 years. Internal variability in atmospheric/oceanic circulations systems as well as external forcing as solar radiation and volcanic activity could have affected temperature variations in the north Aegean Sea over the past 1500 years. The marked temperature drop of approximately ∼2 °C at 1832 ± 15 yr AD could be related to the 1809 ΑD 'unknown' and the 1815 AD Tambora volcanic eruptions. Paleoenvironmental proxy-indices of the M2 record show enhanced riverine/continental inputs in the northern Aegean after ca. 1450 AD. The paleoclimatic evidence derived from the M2 record is combined with a socio-environmental study of the history of the north Aegean region. We show that the cultivation of temperature-sensitive crops, i.e. walnut, vine and olive, co-occurred with stable and warmer temperatures, while its end coincided with a significant episode of cooler temperatures. Periods of agricultural growth in Macedonia coincide with periods of warmer and more stable SSTs, but further exploration is required in order to identify the causal links behind the observed phenomena. The Black Death

  10. Climate variability and socio-environmental changes in the northern Aegean (NE Mediterranean) during the last 1500 years

    NASA Astrophysics Data System (ADS)

    Gogou, Alexandra; Triantaphyllou, Maria; Xoplaki, Elena; Izdebski, Adam; Parinos, Constantine; Dimiza, Margarita; Bouloubassi, Ioanna; Luterbacher, Juerg; Kouli, Katerina; Martrat, Belen; Toreti, Andrea; Fleitmann, Dominik; Rousakis, Gregory; Kaberi, Helen; Athanasiou, Maria; Lykousis, Vasilios

    2016-04-01

    We provide new evidence on sea surface temperature (SST) variations and paleoceanographic/paleoenvironmental changes over the past 1500 years for the north Aegean Sea (NE Mediterranean). The reconstructions are based on multiproxy analyses, obtained from the high resolution (decadal to multi-decadal) marine record M2 retrieved from the Athos basin. Reconstructed SSTs show an increase from ca. 850 to 950 AD and from ca. 1100 to 1300 AD. A cooling phase of almost 1.5 °C is observed from ca. 1600 AD to 1700 AD. This seems to have been the starting point of a continuous SST warming trend until the end of the reconstructed period, interrupted by two prominent cooling events at 1832 ± 15 AD and 1995 ± 2 AD. Application of an adaptive Kernel smoothing suggests that the current warming in the reconstructed SSTs of the north Aegean might be unprecedented in the context of the past 1500 years. Internal variability in atmospheric/oceanic circulations systems as well as external forcing as solar radiation and volcanic activity could have affected temperature variations in the north Aegean Sea over the past 1500 years. The marked temperature drop of approximately ~2°C at 1832 ± 15 yr AD could be related to the 1809 ΑD 'unknown' and the 1815 AD Tambora volcanic eruptions. Paleoenvironmental proxy-indices of the M2 record show enhanced riverine/continental inputs in the northern Aegean after ca. 1450 AD. The palaeoclimatic evidence derived from M2 record is combined with a socio-environmental study of the history of the north Aegean region. We show that the cultivation of temperature-sensitive crops, i.e. walnut, vine and olive, co-occurred with stable and warmer temperatures, while its end coincided with a significant episode of cooler temperatures. Periods of agricultural growth in Macedonia coincide with periods of warmer and more stable SSTs, but further exploration is required in order to identify the causal links behind the observed phenomena. The Black Death likely

  11. Monthly variation in crustacean assemblage (decapod and stomatopod) and its relationships with environmental variables in Laizhou Bay, China

    NASA Astrophysics Data System (ADS)

    Wu, Qiang; Wang, Jun; Zhang, Bo; Chen, Ruisheng; Jin, Xianshi

    2016-04-01

    In this study, we investigated the community structure of crustaceans (decapod and stomatopod) inhabiting the sandy mud bottoms of Laizhou Bay (northeastern China) monthly from May 2011 to April 2012. Investigation was stopped from December 2011 to February 2012 because of the extreme weather and sea ice. A total of 205,057 specimens belonging to 31 species (shrimp, 15; crab, 15; and stomatopod, 1) were collected in 148 hauls. From 2011 to 2012, Oratosquilla oratoria was the dominant biomass species (47.80%), followed by Charybdis japonica (15.49%), Alpheus japonicas (12.61%), Portunus trituberculatus (6.46%), and Crangon spp. (4.19%). Crangon spp. was the most dominant species by individual (32.55%). O. oratoria was the most-frequently encountered species (81.76%), followed by Palaemon gravieri (70.95%), C. japonica (65.54%), A. japonicas (62.16%), and P. trituberculatus (54.73%). The biomass density increased from August to September 2011 and decreased from March 2012 to April 2012. The dynamics of the ecological indices evolve in a similar manner, with high values of diversity and evenness and rich species from May to June 2011 and low values from September to October 2011. O. oratoria, C. japonica, and P. trituberculatus differed by biomass data between groups I (samples obtained from September to October 2011) and II (samples in other months). These species contributed more than 70% to the similarity of the crustacean community structure. Furthermore, the subsets of environmental variables that best matched the crustacean-assemblage structure were as follows: water depth (WD) in summer (June to August); sea surface temperature (SST), dissolved oxygen (DO), and WD in autumn (September to November); and DO, salinity, and WD in spring (March to May). The calculated correlation coefficients and significance level were higher in the period of July to August 2011 than in other months. Comparing 2011 to 2012 with 1982 to 1983, the species composition remained stable

  12. On the use of abiotic surrogates to describe marine benthic biodiversity

    NASA Astrophysics Data System (ADS)

    McArthur, M. A.; Brooke, B. P.; Przeslawski, R.; Ryan, D. A.; Lucieer, V. L.; Nichol, S.; McCallum, A. W.; Mellin, C.; Cresswell, I. D.; Radke, L. C.

    2010-06-01

    A growing need to manage marine biodiversity sustainably at local, regional and global scales cannot be met by applying existing biological data. Abiotic surrogates of biodiversity are thus increasingly valuable in filling the gaps in our knowledge of biodiversity patterns, especially identification of hotspots, habitats needed by endangered or commercially valuable species and systems or processes important to the sustained provision of ecosystem services. This review examines the use of abiotic variables as surrogates for patterns in benthic biodiversity with particular regard to how variables are tied to processes affecting species richness and how easily those variables can be measured at scales relevant to resource management decisions. Direct gradient variables such as salinity, oxygen concentration and temperature can be strong predictive variables for larger systems, although local stability of water quality may prevent usefulness of these factors at fine spatial scales. Biological productivity has complex relationships with benthic biodiversity and although the development of local and regional models cannot accurately predict outside the range of their biological sampling, remote sensing may provide useful information. Indeed, interpolated values are available for much of the world's seas, and these are continually being refined by the collection of remote sensing and field data. Sediment variables often exhibit complex relationships with benthic biodiversity. The strength of the relationship between any one sediment variable and biodiversity may depend on the state of another sediment variable in that system. Percentage mud, percentage gravel, rugosity and compaction hold the strongest independent predictive power. Rugosity and the difference between gravel and finer sediments can be established using acoustic methods, but to quantify grain size and measure compaction, a sample is necessary. Pure spatial variables such as latitude, longitude and depth

  13. Seasonal and temporal dynamics of macrophytic assemblages and abiotic parameters of coastal lagoons in Western Greece (Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Christia, Chrysoula; Papastergiadou, Eva

    2014-05-01

    Coastal lagoons are considered naturally stressed systems that experience frequent environmental disturbances and fluctuations and they are usually considered as physically controlled ecosystems. Coastal lagoons of Western Greece are representative of four different lagoon types covering a wide range of physiographical and hydrological characteristics. The seasonal differences in the physico-chemical parameters monitored from 2005 to 2007 were reduced in lagoon types (II and III) which characterized by better seawater communication when compared with the chocked lagoon types (Type I and IV). The latter types showed lower salinity values and high nutrient concentrations especially during the wet period. The macrophytic assemblages of coastal lagoons are typically dominated by few genera with great environmental plasticity and salinity competition, among other structuring abiotic variables. The implementation of DCA analysis revealed five distinct macrophytic assemblages in which dominant species were the angiosperms Zostera noltii, Ruppia cirrhosa, Cymodocea nodosa, Potamogeton pectinatus, the charophytes Lamprothamnium papulosum and Chara hispida f. corfuensis, as well as species preferring more marine conditions such as Acanthophora nayadiformis and Cystoseira barbata. The lagoon type IV differs from all other distinguished lagoon types due to the dominance of the species Potamogeton pectinatus and the charophyte Chara hispida f. corfuensis. Regarding the macrophytic assemblages and the univariate variables, important differences were recorded between lagoon types. Chocked lagoons showed low number of species and Shannon diversity index comparing with restricted lagoon types (Types II and III). The multiple linear regression analysis showed that transparency, pH, nitrates, alkalinity and Chl-a could affect the values of the above variables. A decline of angiosperms was referred on a worldwide scale and recorded also in coastal lagoons of Western Greece. A gradual

  14. Human and bovine viruses in the Milwaukee river watershed: hydrologically relevant representation and relations with environmental variables

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To examine the occurrence, hydrologic variability, and seasonal variability of human and bovine viruses in surface water, three stream locations were monitored in the Milwaukee River watershed in Wisconsin, USA, from February 2007 through June 2008. Monitoring sites included an urban subwatershed, ...

  15. Benthic macroinvertebrate assemblages and their relations with environmental variables in the Sacramento and San Joaquin River drainages, California, 1993-1997

    USGS Publications Warehouse

    Brown, Larry R.; May, Jason T.

    2000-01-01

    Data were collected in the San Joaquin and Sacramento river drainages to evaluate associations between macroinvertebrate assemblages and environmental variables as part of the National Water-Quality Assessment Program of the U.S. Geological Survey. Samples were collected at 53 sites from 1993 to 1995 in the San Joaquin River drainage and in 1996 and 1997 in the Sacramento River drainage. Macroinvertebrates were collected from riffles or from large woody debris (snags) when riffles were absent. Macroinvertebrate taxa were aggregated to the family (or higher) level of taxonomic organization, resulting in 81 taxa for analyses. Only the 50 most common taxa were used for two-way indicator species analysis (TWINSPAN) and canonical correspondence analysis. TWINSPAN analysis defined four groups of riffle samples and four groups of snag samples based on macroinvertebrate assemblages. Analysis of variance identified differences in environmental and biotic characteristics of the groups. These results combined with the results of canonical correspondence analysis indicated that patterns in riffle sample assemblage structure were highly correlated with a gradient in physical and chemical conditions associated with elevation. The results also suggested that flow regulation associated with large storage reservoirs has negative effects on the total number of taxa and density of macroinvertebrates below foothill dams. Analysis of the snag samples showed that, although elevation remained a significant variable, mean dominant substrate size, gradient, specific conductance, water temperature, percentage of the basin in agricultural land use, and percentage of the basin in combined agricultural and urban land uses were more important factors in explaining assemblage structure. Macroinvertebrate assemblages on snags may be useful in family level bioassessments of environmental conditions in valley floor habitats. In the Sierra Nevada and its foothills, the strong influence of elevation

  16. Transcriptome Analysis Reveals Crosstalk of Responsive Genes to Multiple Abiotic Stresses in Cotton (Gossypium hirsutum L.)

    PubMed Central

    Zhu, Ya-Na; Shi, Dong-Qiao; Ruan, Meng-Bin; Zhang, Li-Li; Meng, Zhao-Hong; Liu, Jie; Yang, Wei-Cai

    2013-01-01

    Abiotic stress is a major environmental factor that limits cotton growth and yield, moreover, this problem has become more and more serious recently, as multiple stresses often occur simultaneously due to the global climate change and environmental pollution. In this study, we sought to identify genes involved in diverse stresses including abscisic acid (ABA), cold, drought, salinity and alkalinity by comparative microarray analysis. Our result showed that 5790, 3067, 5608, 778 and 6148 transcripts, were differentially expressed in cotton seedlings under treatment of ABA (1μM ABA), cold (4°C), drought (200mM mannitol), salinity (200mM NaCl) and alkalinity (pH=11) respectively. Among the induced or suppressed genes, 126 transcripts were shared by all of the five kinds of abiotic stresses, with 64 up-regulated and 62 down-regulated. These common members are grouped as stress signal transduction, transcription factors (TFs), stress response/defense proteins, metabolism, transport facilitation, as well as cell wall/structure, according to the function annotation. We also noticed that large proportion of significant differentially expressed genes specifically regulated in response to different stress. Nine of the common transcripts of multiple stresses were selected for further validation with quantitative real time RT-PCR (qRT-PCR). Furthermore, several well characterized TF families, for example, WRKY, MYB, NAC, AP2/ERF and zinc finger were shown to be involved in different stresses. As an original report using comparative microarray to analyze transcriptome of cotton under five abiotic stresses, valuable information about functional genes and related pathways of anti-stress, and/or stress tolerance in cotton seedlings was unveiled in our result. Besides this, some important common factors were focused for detailed identification and characterization. According to our analysis, it suggested that there was crosstalk of responsive genes or pathways to multiple abiotic

  17. Mosquito Larvae in Tires from Mississippi, United States: The Efficacy of Abiotic and Biotic Parameters in Predicting Spatial and Temporal Patterns of Mosquito Populations and Communities

    PubMed Central

    Yee, Donald A.; Abuzeineh, Alisa A.; Ezeakacha, Nnaemeka F.; Schelble, Stephanie S.; Glasgow, William C.; Flanagan, Stephen D.; Skiff, Jeffrey J.; Reeves, Ashton; Kuehn, Kevin

    2015-01-01

    Container systems, including discarded vehicle tires, which support populations of mosquitoes, have been of interest for understanding the variables that produce biting adults that serve as both nuisances and as public health threats. We sampled tires in six sites at three times in 2012 across the state of Mississippi to understand the biotic and abiotic variables responsible for explaining patterns of larvae of common species, species richness, and total abundance of mosquitoes. From 498 tires sampled, we collected >58,000 immatures representing 16 species, with the most common species including Aedes albopictus (Skuse), Culex quinquefasciatus (L.), Orthopodomyia signifera (Coquillett), Aedes triseriatus (Say), Toxorhynchites rutilus septentrionalis (Coquillett), and Culex territans (Walker) accounting for ∼97% of all larvae. We also documented 32 new county records for resident species and recent arrivals in the state, including Aedes japonicus japonicus (Theobald) and Culex coronator (Dyar & Knab). Cluster analysis, which was used to associate sites and time periods based on similar mosquito composition, did reveal patterns across the state; however, there also were more general patterns between species and genera and environmental factors. Broadly, Aedes was often associated with factors related to detritus, whereas Culex was frequently associated with habitat variables (e.g., tire size and water volume) and microorganisms. Some Culex did lack factors connecting variation in early and late instars, suggesting differences between environmental determinants of oviposition and survival. General patterns between the tire environment and mosquito larvae do appear to exist, especially at the generic level, and point to inherent differences between genera that may aid in predicting vector locations and populations. PMID:26334813

  18. Mosquito Larvae in Tires from Mississippi, United States: The Efficacy of Abiotic and Biotic Parameters in Predicting Spatial and Temporal Patterns of Mosquito Populations and Communities.

    PubMed

    Yee, Donald A; Abuzeineh, Alisa A; Ezeakacha, Nnaemeka F; Schelble, Stephanie S; Glasgow, William C; Flanagan, Stephen D; Skiff, Jeffrey J; Reeves, Ashton; Kuehn, Kevin

    2015-05-01

    Container systems, including discarded vehicle tires, which support populations of mosquitoes, have been of interest for understanding the variables that produce biting adults that serve as both nuisances and as public health threats. We sampled tires in six sites at three times in 2012 across the state of Mississippi to understand the biotic and abiotic variables responsible for explaining patterns of larvae of common species, species richness, and total abundance of mosquitoes. From 498 tires sampled, we collected >58,000 immatures representing 16 species, with the most common species including Aedes albopictus (Skuse), Culex quinquefasciatus (L.), Orthopodomyia signifera (Coquillett), Aedes triseriatus (Say), Toxorhynchites rutilus septentrionalis (Coquillett), and Culex territans (Walker) accounting for ∼97% of all larvae. We also documented 32 new county records for resident species and recent arrivals in the state, including Aedes japonicus japonicus (Theobald) and Culex coronator (Dyar & Knab). Cluster analysis, which was used to associate sites and time periods based on similar mosquito composition, did reveal patterns across the state; however, there also were more general patterns between species and genera and environmental factors. Broadly, Aedes was often associated with factors related to detritus, whereas Culex was frequently associated with habitat variables (e.g., tire size and water volume) and microorganisms. Some Culex did lack factors connecting variation in early and late instars, suggesting differences between environmental determinants of oviposition and survival. General patterns between the tire environment and mosquito larvae do appear to exist, especially at the generic level, and point to inherent differences between genera that may aid in predicting vector locations and populations. PMID:26334813

  19. Effects of '"Environmental Chemistry" Elective Course via Technology-Embedded Scientific Inquiry Model on Some Variables

    ERIC Educational Resources Information Center

    Çalik, Muammer; Özsevgeç, Tuncay; Ebenezer, Jazlin; Artun, Hüseyin; Küçük, Zeynel

    2014-01-01

    The purpose of this study is to examine the effects of "environmental chemistry" elective course via Technology-Embedded Scientific Inquiry (TESI) model on senior science student teachers' (SSSTs) conceptions of environmental chemistry concepts/issues, attitudes toward chemistry, and technological pedagogical content knowledge…

  20. Impact of change in climate and policy from 1988 to 2007 on environmental and microbial variables at the time series station Boknis Eck, Baltic Sea

    NASA Astrophysics Data System (ADS)

    Hoppe, H.-G.; Giesenhagen, H. C.; Koppe, R.; Hansen, H.-P.; Gocke, K.

    2013-07-01

    Phytoplankton and bacteria are sensitive indicators of environmental change. The temporal development of these key organisms was monitored from 1988 to the end of 2007 at the time series station Boknis Eck in the western Baltic Sea. This period was characterized by the adaption of the Baltic Sea ecosystem to changes in the environmental conditions caused by the conversion of the political system in the southern and eastern border states, accompanied by the general effects of global climate change. Measured variables were chlorophyll, primary production, bacteria number, -biomass and -production, glucose turnover rate, macro-nutrients, pH, temperature and salinity. Negative trends with time were recorded for chlorophyll, bacteria number, bacterial biomass and bacterial production, nitrate, ammonia, phosphate, silicate, oxygen and salinity while temperature, pH, and the ratio between bacteria numbers and chlorophyll increased. Strongest reductions with time occurred for the annual maximum values, e.g. for chlorophyll during the spring bloom or for nitrate during winter, while the annual minimum values remained more stable. In deep water above sediment the negative trends of oxygen, nitrate, phosphate and bacterial variables as well as the positive trend of temperature were similar to those in the surface while the trends of salinity, ammonia and silicate were opposite to those in the surface. Decreasing oxygen, even in the surface layer, was of particular interest because it suggested enhanced recycling of nutrients from the deep hypoxic zones to the surface by vertical mixing. The long-term seasonal patterns of all variables correlated positively with temperature, except chlorophyll and salinity. Salinity correlated negatively with all bacterial variables (as well as precipitation) and positively with chlorophyll. Surprisingly, bacterial variables did not correlate with chlorophyll, which may be inherent with the time lag between the peaks of phytoplankton and

  1. Structure of trophic and mutualistic networks across broad environmental gradients

    PubMed Central

    Welti, Ellen A R; Joern, Anthony

    2015-01-01

    This study aims to understand how inherent ecological network structures of nestedness and modularity vary over large geographic scales with implications for community stability. Bipartite networks from previous research from 68 locations globally were analyzed. Using a meta-analysis approach, we examine relationships between the structure of 22 trophic and 46 mutualistic bipartite networks in response to extensive gradients of temperature and precipitation. Network structures varied significantly across temperature gradients. Trophic networks showed decreasing modularity with increasing variation in temperature within years. Nestedness of mutualistic networks decreased with increasing temperature variability between years. Mean annual precipitation and variability of precipitation were not found to have significant influence on the structure of either trophic or mutualistic networks. By examining changes in ecological networks across large-scale abiotic gradients, this study identifies temperature variability as a potential environmental mediator of community stability. Understanding these relationships contributes to our ability to predict responses of biodiversity to climate change at the community level. PMID:25691960

  2. Transposable Elements Contribute to Activation of Maize Genes in Response to Abiotic Stress

    PubMed Central

    Makarevitch, Irina; Waters, Amanda J.; West, Patrick T.; Stitzer, Michelle; Hirsch, Candice N.; Ross-Ibarra, Jeffrey; Springer, Nathan M.

    2015-01-01

    Transposable elements (TEs) account for a large portion of the genome in many eukaryotic species. Despite their reputation as “junk” DNA or genomic parasites deleterious for the host, TEs have complex interactions with host genes and the potential to contribute to regulatory variation in gene expression. It has been hypothesized that TEs and genes they insert near may be transcriptionally activated in response to stress conditions. The maize genome, with many different types of TEs interspersed with genes, provides an ideal system to study the genome-wide influence of TEs on gene regulation. To analyze the magnitude of the TE effect on gene expression response to environmental changes, we profiled gene and TE transcript levels in maize seedlings exposed to a number of abiotic stresses. Many genes exhibit up- or down-regulation in response to these stress conditions. The analysis of TE families inserted within upstream regions of up-regulated genes revealed that between four and nine different TE families are associated with up-regulated gene expression in each of these stress conditions, affecting up to 20% of the genes up-regulated in response to abiotic stress, and as many as 33% of genes that are only expressed in response to stress. Expression of many of these same TE families also responds to the same stress conditions. The analysis of the stress-induced transcripts and proximity of the transposon to the gene suggests that these TEs may provide local enhancer activities that stimulate stress-responsive gene expression. Our data on allelic variation for insertions of several of these TEs show strong correlation between the presence of TE insertions and stress-responsive up-regulation of gene expression. Our findings suggest that TEs provide an important source of allelic regulatory variation in gene response to abiotic stress in maize. PMID:25569788

  3. miR408 is involved in abiotic stress responses in Arabidopsis.

    PubMed

    Ma, Chao; Burd, Shaul; Lers, Amnon

    2015-10-01

    MicroRNAs (miRNAs) are small RNAs that regulate the expression of target genes post-transcriptionally; they are known to play major roles in development and responses to abiotic stress. miR408 is a highly conserved miRNA in plants that responds to the availability of copper and targets genes encoding copper-containing proteins. It was recently recognized to be an important component of the HY5-SPL7 gene network that mediates a coordinated response to light and copper, illustrating its central role in the response of plants to the environment. Expression of miR408 is significantly affected by a variety of developmental and ‏environmental conditions; however, its biological function is ‏unknown. Involvement of miR408 in the abiotic stress response was investigated in Arabidopsis. Expression of miR408, as well as its target genes, was investigated in response to salinity, cold, oxidative stress, drought and osmotic stress. Analyses of transgenic plants with modulated miR408 expression revealed that higher miR408 expression leads to improved tolerance to salinity, cold and oxidative stress, but enhanced sensitivity to drought and osmotic stress. Cellular antioxidant capacity was enhanced in plants with elevated miR408 expression, as manifested by reduced levels of reactive oxygen species and induced expression of genes associated with antioxidative functions, including Cu/Zn superoxide dismutases (CSD1 and CSD2) and glutathione-S-transferase (GST-U25), as well as auxiliary genes: the copper chaperone CCS1 and the redox stress-associated gene SAP12. Overall, the results demonstrate significant involvement of miR408 in abiotic stress responses, emphasizing the central function of miR408 in plant survival. PMID:26312768

  4. Diverse expression pattern of wheat transcription factors against abiotic stresses in wheat species.

    PubMed

    Baloglu, Mehmet Cengiz; Inal, Behcet; Kavas, Musa; Unver, Turgay

    2014-10-15

    Abiotic stress including drought and salinity affects quality and yield of wheat varieties used for the production of both bread and pasta flour. bZIP, MBF1, WRKY, MYB and NAC transcription factor (TF) genes are the largest transcriptional regulators which are involved in growth, development, physiological processes, and biotic/abiotic stress responses in plants. Identification of expression profiling of these TFs plays a crucial role to understand the response of different wheat species against severe environmental changes. In the current study, expression analysis of TaWLIP19 (wheat version of bZIP), TaMBF1, TaWRKY10, TaMYB33 and TaNAC69 genes was examined under drought and salinity stress conditions in Triticum aestivum cv. (Yuregir-89), Triticum turgidum cv. (Kiziltan-91), and Triticum monococcum (Siyez). After drought stress application, all five selected genes in Kiziltan-91 were induced. However, TaMBF1 and TaWLIP19 were the only downregulated genes in Yuregir-89 and Siyez, respectively. Except TaMYB33 in Siyez, expression level of the remaining genes increased under salt stress condition in all Triticum species. For determination of drought response to selected TF members, publicly available RNA-seq data were also analyzed in this study. TaMBF1, TaWLIP19 and TaNAC69 transcripts were detected through in silico analysis. This comprehensive gene expression analysis provides valuable information for understanding the roles of these TFs under abiotic stresses in modern wheat cultivars and ancient einkorn wheat. In addition, selected TFs might be used for determination of drought or salinity-tolerant and susceptible cultivars for molecular breeding studies. PMID:25130909

  5. Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants.

    PubMed

    Chinnusamy, Viswanathan; Schumaker, Karen; Zhu, Jian-Kang

    2004-01-01

    The perception of abiotic stresses and signal transduction to switch on adaptive responses are critical steps in determining the survival and reproduction of plants exposed to adverse environments. Plants have stress-specific adaptive responses as well as responses which protect the plants from more than one environmental stress. There are multiple stress perception and signalling pathways, some of which are specific, but others may cross-talk at various steps. Recently, progress has been made in identifying components of signalling pathways involved in salt, drought and cold stresses. Genetic analysis has defined the Salt-Overly-Sensitive (SOS) pathway, in which a salt stress-induced calcium signal is probably sensed by the calcium-binding protein SOS3 which then activates the protein kinase SOS2. The SOS3-SOS2 kinase complex regulates the expression and activity of ion transporters such as SOS1 to re-establish cellular ionic homeostasis under salinity. The ICE1 (Inducer of CBF Expression 1)-CBF (C-Repeat Binding Protein) pathway is critical for the regulation of the cold-responsive transcriptome and acquired freezing tolerance, although at present the signalling events that activate the ICE1 transcription factor during cold stress are not known. Both ABA-dependent and -independent signalling pathways appear to be involved in osmotic stress tolerance. Components of mitogen-activated protein kinase (MAPK) cascades may act as converging points of multiple abiotic as well as biotic stress signalling pathways. Forward and reverse genetic analysis in combination with expression profiling will continue to uncover many signalling components, and biochemical characterization of the signalling complexes will be required to determine specificity and cross-talk in abiotic stress signalling pathways. PMID:14673035

  6. Compatible Solute Engineering in Plants for Abiotic Stress Tolerance - Role of Glycine Betaine

    PubMed Central

    Wani, Shabir Hussain; Singh, Naorem Brajendra; Haribhushan, Athokpam; Mir, Javed Iqbal

    2013-01-01

    Abiotic stresses collectively are responsible for crop losses worldwide. Among these, drought and salinity are the most destructive. Different strategies have been proposed for management of these stresses. Being a complex trait, conventional breeding approaches have resulted in less success. Biotechnology has emerged as an additional and novel tool for deciphering the mechanism behind these stresses. The role of compatible solutes in abiotic stress tolerance has been studied extensively. Osmotic adjustment, at the physiological level, is an adaptive mechanism involved in drought or salinity tolerance, which permits the maintenance of turgor under conditions of water deficit, as it can counteract the effects of a rapid decline in leaf water potential. Increasing evidence from a series of in vivo and in vitro studies of the physiology, biochemistry, genetics, and molecular biology of plants suggest strongly that Glycine Betaine (GB) performs an important function in plants subjected to environmental stresses. It plays an adaptive role in mediating osmotic adjustment and protecting the sub-cellular structures in stressed plants, protection of the transcriptional and translational machineries and intervention as a molecular chaperone in the refolding of enzymes. Many important crops like rice do not accumulate glycinebetaine under stress conditions. Both the exogenous application of GB and the genetically engineered biosynthesis of GB in such crops is a promising strategy to increase stress tolerance. In this review we will discuss the importance of GB for abiotic stress tolerance in plants. Further, strategies like exogenic application and transgenic development of plants accumulating GB will be also be discussed. Work done on exogenic application and genetically engineered biosynthesis of GB will be listed and its advantages and limitations will be described. PMID:24179438

  7. ABIOTIC DEGRADATION OF TRICHLOROETHYLENE UNDER THERMAL REMEDIATION CONDITIONS

    EPA Science Inventory

    The degradation of TCE (C2HCl3) to carbon dioxide (CO2) and chloride (Cl-) has been reported to occur during thermal remediation of subsurface environments. The overall goal of this study was to evaluate abiotic degradation of TCE at el...

  8. ABIOTIC REDUCTION OF NITRO AROMATIC PESTICIDES IN ANAEROBIC LABORATORY SYSTEMS

    EPA Science Inventory

    Rapid abiotic reduction of nitro aromatic pesticides occurs in homogeneous solutions of quinone redox couples, which were selected to model the redox-labile functianal groups in natural organic matter. he kinetics of methyl parathion disappearance are first order in methyl parath...

  9. Recent advances in polyamine metabolism and abiotic stress tolerance.

    PubMed

    Rangan, Parimalan; Subramani, Rajkumar; Kumar, Rajesh; Singh, Amit Kumar; Singh, Rakesh

    2014-01-01

    Global warming is an alarming problem in agriculture and its effect on yield loss has been estimated to be five per cent for every degree centigrade rise in temperature. Plants exhibit multiple mechanisms like optimizing signaling pathway, involvement of secondary messengers, production of biomolecules specifically in response to stress, modulation of various metabolic networks in accordance with stress, and so forth, in order to overcome abiotic stress factors. Many structural genes and networks of pathway were identified and reported in plant systems for abiotic stress tolerance. One such crucial metabolic pathway that is involved in normal physiological function and also gets modulated during stress to impart tolerance is polyamine metabolic pathway. Besides the role of structural genes, it is also important to know the mechanism by which these structural genes are regulated during stress. Present review highlights polyamine biosynthesis, catabolism, and its role in abiotic stress tolerance with special reference to plant systems. Additionally, a system based approach is discussed as a potential strategy to dissect the existing variation in crop species in unraveling the interacting regulatory components/genetic determinants related to PAs mediated abiotic stress tolerance. PMID:25136565

  10. Genetic Diversity In Abiotic Stress Tolerances Among Wheat Species