Science.gov

Sample records for abiotic reductive dissolution

  1. Abiotic carbonate dissolution traps carbon in a semiarid desert

    PubMed Central

    Fa, Keyu; Liu, Zhen; Zhang, Yuqing; Qin, Shugao; Wu, Bin; Liu, Jiabin

    2016-01-01

    It is generally considered that desert ecosystems release CO2 to the atmosphere, but recent studies in drylands have shown that the soil can absorb CO2 abiotically. However, the mechanisms and exact location of abiotic carbon absorption remain unclear. Here, we used soil sterilization, 13CO2 addition, and detection methods to trace 13C in the soil of the Mu Us Desert, northern China. After 13CO2 addition, a large amount of 13CO2 was absorbed by the sterilised soil, and 13C was found enriched both in the soil gaseous phase and dissolved inorganic carbon (DIC). Further analysis indicated that about 79.45% of the total 13C absorbed by the soil was trapped in DIC, while the amount of 13C in the soil gaseous phase accounted for only 0.22% of the total absorbed 13C. However, about 20.33% of the total absorbed 13C remained undetected. Our results suggest that carbonate dissolution might occur predominately, and the soil liquid phase might trap the majority of abiotically absorbed carbon. It is possible that the trapped carbon in the soil liquid phase leaches into the groundwater; however, further studies are required to support this hypothesis. PMID:27020762

  2. Dissolution and reduction of magnetite by bacteria

    NASA Technical Reports Server (NTRS)

    Kostka, J. E.; Nealson, K. H.

    1995-01-01

    Magnetite (Fe3O4) is an iron oxide of mixed oxidation state [Fe(II), Fe(III)] that contributes largely to geomagnetism and plays a significant role in diagenesis in marine and freshwater sediments. Magnetic data are the primary evidence for ocean floor spreading and accurate interpretation of the sedimentary magnetic record depends on an understanding of the conditions under which magnetite is stable. Though chemical reduction of magnetite by dissolved sulfide is well known, biological reduction has not been considered likely based upon thermodynamic considerations. This study shows that marine and freshwater strains of the bacterium Shewanella putrefaciens are capable of the rapid dissolution and reduction of magnetite, converting millimolar amounts to soluble Fe(II)in a few days at room temperature. Conditions under which magnetite reduction is optimal (pH 5-6, 22-37 degrees C) are consistent with an enzymatic process and not with simple chemical reduction. Magnetite reduction requires viable cells and cell contact, and it appears to be coupled to electron transport and growth. In a minimal medium with formate or lactate as the electron donor, more than 10 times the amount of magnetite was reduced over no carbon controls. These data suggest that magnetite reduction is coupled to carbon metabolism in S. putrefaciens. Bacterial reduction rates of magnetite are of the same order of magnitude as those estimated for reduction by sulfide. If such remobilization of magnetite occurs in nature, it could have a major impact on sediment magnetism and diagenesis.

  3. Dissolution and reduction of magnetite by bacteria.

    PubMed

    Kostka, J E; Nealson, K H

    1995-10-01

    Magnetite (Fe3O4) is an iron oxide of mixed oxidation state [Fe(II), Fe(III)] that contributes largely to geomagnetism and plays a significant role in diagenesis in marine and freshwater sediments. Magnetic data are the primary evidence for ocean floor spreading and accurate interpretation of the sedimentary magnetic record depends on an understanding of the conditions under which magnetite is stable. Though chemical reduction of magnetite by dissolved sulfide is well known, biological reduction has not been considered likely based upon thermodynamic considerations. This study shows that marine and freshwater strains of the bacterium Shewanella putrefaciens are capable of the rapid dissolution and reduction of magnetite, converting millimolar amounts to soluble Fe(II)in a few days at room temperature. Conditions under which magnetite reduction is optimal (pH 5-6, 22-37 degrees C) are consistent with an enzymatic process and not with simple chemical reduction. Magnetite reduction requires viable cells and cell contact, and it appears to be coupled to electron transport and growth. In a minimal medium with formate or lactate as the electron donor, more than 10 times the amount of magnetite was reduced over no carbon controls. These data suggest that magnetite reduction is coupled to carbon metabolism in S. putrefaciens. Bacterial reduction rates of magnetite are of the same order of magnitude as those estimated for reduction by sulfide. If such remobilization of magnetite occurs in nature, it could have a major impact on sediment magnetism and diagenesis. PMID:11539843

  4. Abiotic CO2 reduction during geologic carbon sequestration facilitated by Fe(II)-bearing minerals

    NASA Astrophysics Data System (ADS)

    Nielsen, L. C.; Maher, K.; Bird, D. K.; Brown, G. E.; Thomas, B.; Johnson, N. C.; Rosenbauer, R. J.

    2012-12-01

    Redox reactions involving subsurface minerals and fluids and can lead to the abiotic generation of hydrocarbons from CO2 under certain conditions. Depleted oil reservoirs and saline aquifers targeted for geologic carbon sequestration (GCS) can contain significant quantities of minerals such as ferrous chlorite, which could facilitate the abiotic reduction of carbon dioxide to n-carboxylic acids, hydrocarbons, and amorphous carbon (C0). If such reactions occur, the injection of supercritical CO2 (scCO2) could significantly alter the oxidation state of the reservoir and cause extensive reorganization of the stable mineral assemblage via dissolution and reprecipitation reactions. Naturally occurring iron oxide minerals such as magnetite are known to catalyze CO2 reduction, resulting in the synthesis of organic compounds. Magnetite is thermodynamically stable in Fe(II) chlorite-bearing mineral assemblages typical of some reservoir formations. Thermodynamic calculations demonstrate that GCS reservoirs buffered by the chlorite-kaolinite-carbonate(siderite/magnesite)-quartz assemblage favor the reduction of CO2 to n-carboxylic acids, hydrocarbons, and C0, although the extent of abiotic CO2 reduction may be kinetically limited. To investigate the rates of abiotic CO2 reduction in the presence of magnetite, we performed batch abiotic CO2 reduction experiments using a Dickson-type rocking hydrothermal apparatus at temperatures (373 K) and pressures (100 bar) within the range of conditions relevant to GCS. Blank experiments containing CO2 and H2 were used to rule out the possibility of catalytic activity of the experimental apparatus. Reaction of brine-suspended magnetite nanoparticles with scCO2 at H2 partial pressures typical of reservoir rocks - up to 100 and 0.1 bars respectively - was used to investigate the kinetics of magnetite-catalyzed abiotic CO2 reduction. Later experiments introducing ferrous chlorite (ripidolite) were carried out to determine the potential for

  5. Reductive Dissolution of Goethite and Hematite by Reduced Flavins

    SciTech Connect

    Shi, Zhi; Zachara, John M.; Wang, Zheming; Shi, Liang; Fredrickson, Jim K.

    2013-10-02

    The abiotic reductive dissolution of goethite and hematite by the reduced forms of flavin mononucleotide (FMNH2) and riboflavin (RBFH2), electron transfer mediators (ETM) secreted by the dissimilatory iron-reducing bacterium Shewanella, was investigated under stringent anaerobic conditions. In contrast to the rapid redox reaction rate observed for ferrihydrite and lepidocrocite (Shi et al., 2012), the reductive dissolution of crystalline goethite and hematite was slower, with the extent of reaction limited by the thermodynamic driving force at circumneutral pH. Both the initial reaction rate and reaction extent increased with decreasing pH. On a unit surface area basis, goethite was less reactive than hematite between pH 4.0 and 7.0. AH2DS, the reduced form of the well-studied synthetic ETM anthraquinone-2,6-disulfonate (AQDS), yielded higher rates than FMNH2 under most reaction conditions, despite the fact that FMNH2 was a more effective reductant than AH2DS for ferryhydrite and lepidocrocite. Two additional model compounds, methyl viologen and benzyl viologen, were investigated under similar reaction conditions to explore the relationship between reaction rate and thermodynamic properties. Relevant kinetic data from the literature were also included in the analysis to span a broad range of half-cell potentials. Other conditions being equal, the surface area normalized initial reaction rate (ra) increased as the redox potential of the reductant became more negative. A non-linear, parabolic relationship was observed between log ra and the redox potential for eight reducants at pH 7.0, as predicted by Marcus theory for electron transfer. When pH and reductant concentration were fixed, log ra was positively correlated to the redox potential of four Fe(III) oxides over a wide pH range, following a non-linear parabolic relationship as well.

  6. Reductive dissolution of goethite and hematite by reduced flavins

    NASA Astrophysics Data System (ADS)

    Shi, Zhi; Zachara, John M.; Wang, Zheming; Shi, Liang; Fredrickson, Jim K.

    2013-11-01

    The abiotic reductive dissolution of goethite and hematite by the reduced forms of flavin mononucleotide (FMNH2) and riboflavin (RBFH2), electron shuttles secreted by the dissimilatory iron-reducing bacterium Shewanella, was investigated under stringent anaerobic conditions. At pH 7.0, the reductive dissolution rates of goethite were 3.5 μmoles m-2 h-1 by 50 μM FMNH2 and 0.27 μmoles m-2 h-1 by 50 μM RBFH2; the reductive dissolution rates of hematite were 29 μmoles m-2 h-1 by 50 μM FMNH2 and 151 μmoles m-2 h-1 by 50 μM RBFH2. The extent of reaction was limited by the thermodynamic driving force at circumneutral pH. Both the initial reaction rate and reaction extent increased with decreasing pH. On a unit surface area basis, goethite was less reactive than hematite between pH 4.0 and 7.0. AH2DS, the reduced form of the well-studied synthetic electron shuttle anthraquinone-2,6-disulfonate, yielded higher rates than FMNH2 under most reaction conditions. Two additional model compounds, methyl viologen and benzyl viologen, were investigated under similar reaction conditions to explore the relationship between reaction rate and thermodynamic properties. Relevant kinetic data from the literature were also included in the analysis to span a large range in half-cell potentials. Other conditions being equal, the surface area normalized initial reaction rate (ra) increased as the redox potential of the reductant became more negative. A non-linear relationship was observed between log ra and the redox potential for eight reductants at pH 7.0. When pH and reductant concentration were fixed, log ra was positively correlated to the redox potential of four Fe(III) oxides over a wide pH range, following a non-linear relationship as well.

  7. Abiotic Reductive Immobilization of U(VI) by Biogenic Mackinawite

    SciTech Connect

    Veeramani, Harish; Scheinost, Andreas; Monsegue, Niven; Qafoku, Nikolla; Kukkadapu, Ravi K.; Newville, Mathew; Lanzirotti, Anthony; Pruden, Amy; Murayama, Mitsuhiro; Hochella, Michael F.

    2013-03-01

    During subsurface bioremediation of uranium-contaminated sites, indigenous metal and sulfate-reducing bacteria may utilize a variety of electron acceptors, including ferric iron and sulfate that could lead to the formation of various biogenic minerals in-situ. Sulfides, as well as structural and adsorbed Fe(II) associated with biogenic Fe(II)-sulfide phases, can potentially catalyze abiotic U6+ reduction via direct electron transfer processes. In the present work, the propensity of biogenic mackinawite (Fe1+xS, x = 0 to 0.11) to reduce U6+ abiotically was investigated. The biogenic mackinawite produced by Shewanella putrefaciens strain CN32 was characterized by employing a suite of analytical techniques including TEM, SEM, XAS and Mössbauer analyses. Nanoscale and bulk analyses (microscopic and spectroscopic techniques, respectively) of biogenic mackinawite after exposure to U6+ indicate the formation of nanoparticulate UO2. This study suggests the relevance of Fe(II) and sulfide bearing biogenic minerals in mediating abiotic U6+ reduction, an alternative pathway in addition to direct enzymatic U6+ reduction.

  8. Abiotic reductive immobilization of U(VI) by biogenic mackinawite.

    PubMed

    Veeramani, Harish; Scheinost, Andreas C; Monsegue, Niven; Qafoku, Nikolla P; Kukkadapu, Ravi; Newville, Matt; Lanzirotti, Antonio; Pruden, Amy; Murayama, Mitsuhiro; Hochella, Michael F

    2013-03-01

    During subsurface bioremediation of uranium-contaminated sites, indigenous metal and sulfate-reducing bacteria may utilize a variety of electron acceptors, including ferric iron and sulfate that could lead to the formation of various biogenic minerals in situ. Sulfides, as well as structural and adsorbed Fe(II) associated with biogenic Fe(II)-sulfide phases, can potentially catalyze abiotic U(VI) reduction via direct electron transfer processes. In the present work, the propensity of biogenic mackinawite (Fe 1+x S, x = 0 to 0.11) to reduce U(VI) abiotically was investigated. The biogenic mackinawite produced by Shewanella putrefaciens strain CN32 was characterized by employing a suite of analytical techniques including TEM, SEM, XAS, and Mössbauer analyses. Nanoscale and bulk analyses (microscopic and spectroscopic techniques, respectively) of biogenic mackinawite after exposure to U(VI) indicate the formation of nanoparticulate UO2. This study suggests the relevance of sulfide-bearing biogenic minerals in mediating abiotic U(VI) reduction, an alternative pathway in addition to direct enzymatic U(VI) reduction. PMID:23373896

  9. Chromium Stable Isotope Fractionation During Abiotic Reduction of Hexavalent Chromium

    NASA Astrophysics Data System (ADS)

    Kitchen, J. W.; Johnson, T. M.; Bullen, T. D.

    2004-12-01

    Chromium, a common surface water and ground water contaminant, occurs as Cr(VI), which is soluble and toxic, and Cr(III), which is insoluble and less toxic. Reduction of Cr(VI) to Cr(III) is often the most important reaction controlling attenuation of Cr plumes, and Cr stable isotope (53Cr/52Cr) measurements show great promise as indicators of this reaction. Cr(VI) reduction involves a kinetic isotope effect; lighter isotopes react at greater rates and heavier isotopes become increasingly enriched in the remaining Cr(VI) with increasing extent of reduction. If the size of this effect can be constrained well, then precise estimates of reduction are possible. Cr(VI) reduction can be mediated by microbes, or may occur abiotically in the presence of Fe(II) and a variety of organic compounds. A recent study of bacterial reduction of Cr(VI) under low electron donor conditions yielded a Cr isotope fractionation factor of 1000lnα = 4.1 ± 0.2. A previous study of abiotic reduction indicated a fractionation factor of 1000lnα = 3.4 ± 0.2, but this work was limited to 3 experiments. The present study provides a more detailed look at Cr isotope fractionation induced by abiotic Cr(VI) reduction by: Fe(II); mandelic acid with alumina and goethite catalysts; and humic substances. Reduction occurred slowly, over days or weeks. The fractionation factor for the organic reductants (all at pH=4), including two surface-catalyzed mandelic acid reactions, two fulvic reactions, and one humic reaction,- was 1000lnα = 3.0 ± 0.4, with no statistically significant differences between experiments. The fractionation factors for the Fe(II) experiments were 4.7 ± 0.3, 3.7 ± 0.2, and 2.9 ± 0.2 for pH = 4, 5, and 6, respectively. Further work is necessary to better constrain this pH dependence and to determine if it occurs with the organic reductants. The overall variability in the size of the Cr isotope fractionation during Cr(VI) reduction translates into a moderate level of uncertainty

  10. Reductive transformation of carbamazepine by abiotic and biotic processes.

    PubMed

    König, Anne; Weidauer, Cindy; Seiwert, Bettina; Reemtsma, Thorsten; Unger, Tina; Jekel, Martin

    2016-09-15

    The antiepileptic drug carbamazepine (CBZ) is ubiquitously present in the anthropogenic water cycle and is therefore of concern regarding the potable water supply. Despite of its persistent behavior in the aquatic environment, a redox dependent removal at bank filtration sites with anaerobic aquifer passage was reported repeatedly but not elucidated in detail yet. The reductive transformation of CBZ was studied, using abiotic systems (catalytic hydrogenation, electrochemistry) as well as biologically active systems (column systems, batch degradation tests). In catalytic hydrogenation CBZ is gradually hydrogenated and nine transformation products (TPs) were detected by liquid chromatography high-resolution mass spectrometry. 10,11-Dihydro-CBZ ((2H)-CBZ) was the major stable product in these abiotic, surface catalyzed reduction processes and turned out to be not a precursor of the more hydrogenated TPs. In the biotic reduction processes the formation of (2H)-CBZ alone could not explain the observed CBZ decline. There, also traces of (6H)-CBZ and (8H)-CBZ were formed by microbes under anaerobic conditions and four phase-II metabolites of reduced CBZ could be detected and tentatively identified. Thus, the spectrum of reduction products of CBZ is more diverse than previously thought. In environmental samples CBZ removal along an anaerobic soil passage was confirmed and (2H)-CBZ was determined at one of the sites.

  11. Citrate influences microbial Fe hydroxide reduction via a dissolution-disaggregation mechanism

    NASA Astrophysics Data System (ADS)

    Braunschweig, Juliane; Klier, Christine; Schröder, Christian; Händel, Matthias; Bosch, Julian; Totsche, Kai U.; Meckenstock, Rainer U.

    2014-08-01

    abiotic dissolution kinetics revealed that colloid stabilization was most pronounced at citrate:Fe ratios of 0.1 - 0.5, whereas higher ratios led to enhanced dissolution of both colloidal and larger aggregated fractions. Mathematical simulation of the microbial reduction kinetics under consideration of partial dissolution and colloid stabilization showed that the bioaccessibility increases in the order large aggregates < stable colloids < Fe-citrate. These findings indicate that much of the organic acid driven mobilization of Fe oxy(hydr)oxides is most likely due to colloid formation and stabilization rather than solubilisation.

  12. Reduction of ferrihydrite with adsorbed and coprecipitated organic matter: microbial reduction by Geobacter bremensis vs. abiotic reduction by Na-dithionite

    NASA Astrophysics Data System (ADS)

    Eusterhues, K.; Hädrich, A.; Neidhardt, J.; Küsel, K.; Keller, T. F.; Jandt, K. D.; Totsche, K. U.

    2014-09-01

    Ferrihydrite is a widespread poorly crystalline Fe oxide which becomes easily coated by natural organic matter in the environment. This mineral-bound organic matter entirely changes the mineral surface properties and therefore the reactivity of the original mineral. Here, we investigated 2-line ferrihydrite, ferrihydrite with adsorbed organic matter, and ferrihydrite coprecipitated with organic matter for microbial and abiotic reduction of Fe(III). Ferrihydrite-organic matter associations with different organic matter loadings were reduced either by Geobacter bremensis or abiotically by Na-dithionite. Both types of experiments showed decreasing initial Fe-reduction rates and decreasing degrees of reduction with increasing amounts of mineral-bound organic matter. At similar organic matter loadings, coprecipitated ferrihydrites were more reactive than ferrihydrites with adsorbed organic matter. The difference can be explained by the smaller crystal size and poor crystallinity of such coprecipitates. At small organic matter loadings the poor crystallinity of coprecipitates led to even faster Fe-reduction rates than found for pure ferrihydrite. The amount of mineral-bound organic matter also affected the formation of secondary minerals: goethite was only found after reduction of organic matter-free ferrihydrite and siderite was only detected when ferrihydrites with relatively low amounts of mineral-bound organic matter were reduced. We conclude that direct contact of G. bremensis to the Fe oxide mineral surface was inhibited by attached organic matter. Consequently, mineral-bound organic matter shall be taken into account as a factor in slowing down reductive dissolution.

  13. Interactions between Biological and Abiotic Pathways in the Reduction of Chlorinated Solvents

    EPA Science Inventory

    While biologically mediated reductive dechlorination continues to be a significant focus of chlorinated solvent remediation, there has been an increased interest in abiotic reductive processes for the remediation of chlorinated solvents. In situ chemical reduction (ISCR) uses zer...

  14. Abiotic Reduction of Selenite and Antimonate Under Controlled Oxygen Conditions

    NASA Astrophysics Data System (ADS)

    Belzile, N.; Truong, H. T.; Polack, R.; Chen, Y.

    2008-12-01

    Laboratory and field studies have reported the oxidation of elemental Se to selenite or selenate or that of antimonite to antimonate but the reduction studies of the two elements, especially in absence of bacteria are more scarce. We have performed experiments on the abiotic reduction of Se(IV) and Sb(V) under controlled oxygen conditions in presence of naturally-encountered reducing agents such as Fe(II) and dissolved sulfide. In the case of selenite, the reduction by ferrous iron is barely detectable at very low concentrations of oxygen. However, at concentrations of 200 ± 50 ppmv in the controlled atmosphere glove box, more iron oxide particles were formed at a higher initial Fe(II) concentration in the system and with time. In the pellets collected after filtration, a significant amount of Se(0) was found. Our field geochemical studies on Se also showed the same phenomenon, i.e. a higher level of Se(0) in lake sediments was accompanied by a higher presence of iron oxides. In the case of antimony, the reduction of Sb(V) by dissolved sulfide was extensive and far more rapid at more acidic pH values. Half lives for Sb(V) in the presence of excess dissolved sulfide at pH values of 5 to 7 were calculated and the reaction was found to be first order with respect to all three of [Sb(V)], [dissolved sulfide] and [H+]. Metastibnite precipitated after reduction of Sb(V) in working experimental samples at buffered pH of 5 and 6. The oxidation product of dissolved sulfide was identified as elemental sulfur. This study has demonstrated the ability of dissolved sulfide to reduce Sb(V) under a variety of environmentally relevant concentrations and conditions.

  15. The Use of Chemical Probes for the Characterization of the Predominant Abiotic Reductants in Anaerobic Sediments

    EPA Science Inventory

    Identifying the predominant chemical reductants and pathways for electron transfer in anaerobic systems is paramount to the development of environmental fate models that incorporate pathways for abiotic reductive transformations. Currently, such models do not exist. In this chapt...

  16. Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles. Part 1. Aggregation and dissolution.

    PubMed

    Unrine, Jason M; Colman, Benjamin P; Bone, Audrey J; Gondikas, Andreas P; Matson, Cole W

    2012-07-01

    To better understand their fate and toxicity in aquatic environments, we compared the aggregation and dissolution behavior of gum arabic (GA) and polyvinylpyrrolidone (PVP) coated Ag nanoparticles (NPs) in aquatic microcosms. There were four microcosm types: surface water; water and sediment; water and aquatic plants; or water, sediment, and aquatic plants. Dissolution and aggregation behavior of AgNPs were examined using ultracentrifugation, ultrafiltration, and asymmetrical flow field flow fractionation coupled to ultraviolet-visible spectroscopy, dynamic and static laser light scattering, and inductively coupled plasma mass spectrometry. Plants released dissolved organic matter (DOM) into the water column either through active or passive processes in response to Ag exposure. This organic matter fraction readily bound Ag ions. The plant-derived DOM had the effect of stabilizing PVP-AgNPs as primary particles, but caused GA-AgNPs to be removed from the water column, likely by dissolution and binding of released Ag ions on sediment and plant surfaces. The destabilization of the GA-AgNPs also corresponded with X-ray absorption near edge spectroscopy results which suggest that 22-28% of the particulate Ag was associated with thiols and 5-14% was present as oxides. The results highlight the potential complexities of nanomaterial behavior in response to biotic and abiotic modifications in ecosystems, and may help to explain differences in toxicity of Ag observed in realistic exposure media compared to simplified laboratory exposures.

  17. Reduction of ferrihydrite with adsorbed and coprecipitated organic matter: microbial reduction by Geobacter bremensis vs. abiotic reduction by Na-dithionite

    NASA Astrophysics Data System (ADS)

    Eusterhues, K.; Hädrich, A.; Neidhardt, J.; Küsel, K.; Keller, T. F.; Jandt, K. D.; Totsche, K. U.

    2014-04-01

    Ferrihydrite (Fh) is a widespread poorly crystalline Fe oxide which becomes easily coated by natural organic matter (OM) in the environment. This mineral-bound OM entirely changes the mineral surface properties and therefore the reactivity of the original mineral. Here, we investigated the reactivity of 2-line Fh, Fh with adsorbed OM and Fh coprecipitated with OM towards microbial and abiotic reduction of Fe(III). As a surrogate for dissolved soil OM we used a water extract of a Podzol forest floor. Fh-OM associations with different OM-loadings were reduced either by Geobacter bremensis or abiotically by Na-dithionite. Both types of experiments showed decreasing initial Fe reduction rates and decreasing degrees of reduction with increasing amounts of mineral-bound OM. At similar OM-loadings, coprecipitated Fhs were more reactive than Fhs with adsorbed OM. The difference can be explained by the smaller crystal size and poor crystallinity of such coprecipitates. At small OM loadings this led to even faster Fe reduction rates than found for pure Fh. The amount of mineral-bound OM also affected the formation of secondary minerals: goethite was only found after reduction of OM-free Fh and siderite was only detected when Fhs with relatively low amounts of mineral-bound OM were reduced. We conclude that direct contact of G. bremensis to the Fe oxide mineral surface was inhibited when blocked by OM. Consequently, mineral-bound OM shall be taken into account besides Fe(II) accumulation as a further widespread mechanism to slow down reductive dissolution.

  18. Reductive dissolution and metal transport in lake coeur d alenesediments

    SciTech Connect

    Sengor, Sevinc.S.; Spycher, Nicolas.F.; Ginn, Timothy.R.; Moberly, James; Peyton, B.; Sani, Rajesh.K.

    2007-04-27

    The benthic sediments in Lake Coeur d Alene, northern Idaho,have been contaminated by metals (primarily Zn, Pb, and Cu) from decadesof upstream mining activities. As part of ongoing research on thebiogeo-chemical cycling of metals in this area, a diffusivereactive-transport model has been developed to simulate metal transportin the lake sediments. The model includes 1-D inorganic diffusivetransport coupled to a biotic reaction network with multiple terminalelectron acceptors under redox disequilibrium conditions. Here, the modelis applied to evaluate the competing effects of heavy-metal mobilizationthrough biotic reductive dissolution of Fe(III) (hydr)oxides, andimmobilization as biogenic sulfide minerals. Results indicate that therelative rates of Fe and sulfate reduction could play an important rolein metal transport through the envi-ronment, and that the formation of(bi)sulfide complexes could significantly enhance metal solubility, aswell as desorption from Fe hydroxides.

  19. The potential for metal release by reductive dissolution of weathered mine tailings

    NASA Astrophysics Data System (ADS)

    Ribeta, I.; Ptacek, C. J.; Blowes, D. W.; Jambor, J. L.

    1995-01-01

    Remediation programs proposed for decommissioned sulphide tailings may include the addition of a cover layer rich in organic-carbon material such as sewage sludge or composted municipal waste. These covers are designed to consume oxygen and prevent the oxidation of underlying sulphide minerals. The aerobic and anaerobic degradation of such organic-carbon-rich waste can release soluble organic compounds to infiltrating precipitation water. In laboratory experiments, and in natural settings, biotic and abiotic interactions between similar dissolved organic compounds and ferric-bearing secondary minerals have been observed to result in the reductive dissolution of ferric (oxy)hydroxides and the release of ferrous iron to pore waters. In weathered tailings, oxidation of sulphide minerals typically results in the formation of abundant ferric-bearing secondary precipitates near the tailings surface. These secondary precipitates may contain high concentrations of potentially toxic metals, either coprecipitated with or adsorbed onto ferric (oxy)hydroxides. Reductive dissolution reactions, resulting from the addition of the organic-carbon covers, may remobilize metals previously attenuated near the tailings surface. To assess the potential for metal release to tailings pore water by reductive dissolution reactions, a laboratory study was conducted on weathered tailings collected from the Nickel Rim mine tailings impoundment near Sudbury, Ontario, Canada. This site was selected for study because it is representative of many tailings sites. Mineralogical study indicates that sulphide minerals originally present in the vadose zone at the time of tailings deposition have been replaced by a series of secondary precipitates. The most abundant secondary minerals are goethite, gypsum and jarosite. Scanning electron microscopy, coupled with elemental analyses by X-ray energy dispersion analysis, and electron microprobe analysis indicate that trace metals including Ni, Cr and Cu are

  20. Effect of abiotic factors on the mercury reduction process by humic acids in aqueous systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mercury (Hg) in the environment can have serious toxic effects on a variety of living organisms, and is a pollutant of concern worldwide. The reduction of mercury from the toxic Hg2+ form to Hg0 is especially important. One pathway for this reduction to occur is through an abiotic process with humic...

  1. Linear free energy relationships for the biotic and abiotic reduction of nitroaromatic compounds.

    PubMed

    Luan, Fubo; Gorski, Christopher A; Burgos, William D

    2015-03-17

    Nitroaromatic compounds (NACs) are ubiquitous environmental contaminants that are susceptible to biological and abiotic reduction. Prior works have found that for the abiotic reduction of NACs, the logarithm of the NACs’ rate constants correlate with one-electron reduction potential values of the NACs (EH,NAC1) according to linear free energy relationships (LFERs). Here, we extend the application of LFERs to the bioreduction of NACs and to the abiotic reduction of NACs by bioreduced (and pasteurized) iron-bearing clay minerals. A linear correlation (R2=0.96) was found between the NACs’ bioreduction rate constants (kobs) and EH,NAC1 values. The LFER slope of log kobs versus EH,NAC1/(2.303RT/F) was close to one (0.97), which implied that the first electron transfer to the NAC was the rate-limiting step of bioreduction. LFERs were also established between NAC abiotic reduction rate constants by bioreduced iron-bearing clay minerals (montmorillonite SWy-2 and nontronite NAu-2). The second-order NAC reduction rate constants (k) by bioreduced SWy-2 and NAu-2 were well correlated to EH,NAC1 (R2=0.97 for both minerals), consistent with bioreduction results. However, the LFER slopes of log k versus EH,NAC1/(2.303RT/F) were significantly less than one (0.48–0.50) for both minerals, indicating that the first electron transfer to the NAC was not the rate-limiting step of abiotic reduction. Finally, we demonstrate that the rate of 4-acetylnitrobenzene reduction by bioreduced SWy-2 and NAu-2 correlated to the reduction potential of the clay (EH,clay, R2=0.95 for both minerals), indicating that the clay reduction potential also influences its reactivity.

  2. Abiotic reduction reactions of anthropogenic organic chemicals in anaerobic systems: A critical review

    NASA Astrophysics Data System (ADS)

    Macalady, Donald L.; Tratnyek, Paul G.; Grundl, Timothy J.

    1986-02-01

    This review is predicated upon the need for a detailed process-level understanding of factors influencing the reduction of anthropogenic organic chemicals in natural aquatic systems. In particular, abiotic reductions of anthropogenic organic chemicals are reviewed. The most important reductive reaction is alkyl dehalogenation (replacement of chloride with hydrogen) which occurs in organisms, sediments, sewage sludge, and reduced iron porphyrin model systems. An abiotic mechanism involving a free radical intermediate has been proposed. The abstraction of vicinal dihalides (also termed dehalogenation) is another reduction that may have an abiotic component in natural systems. Reductive dehalogenation of aryl halides has recently been reported and further study of this reaction is needed. Several other degradation reactions of organohalides that occur in anaerobic environments are mentioned, the most important of which is dehydrohalogenation. The reduction of nitro groups to amines has also been thoroughly studied. The reactions can occur abiotically, and are affected by the redox conditions of the experimental system. However, a relationship between nitro-reduction rate and measured redox potential has not been clearly established. Reductive dealkylation of the N- and O-heteroatom of hydrocarbon pollutants has been observed but not investigated in detail. Azo compounds can be reduced to their hydrazo derivatives and a thorough study of this reaction indicates that it can be caused by extracellular electron transfer agents. Quinone-hydroquinone couples are important reactive groups in humic materials and similar structures in resazurin and indigo carmine make them useful as models for environmental redox conditions. The interconversion of sulfones, sulfoxides, and sulfides is a redox process and is implicated in the degradation of several pesticides though the reactions need more study. Two reductive heterocyclic cleavage reactions are also mentioned. Finally, several

  3. PbO2(s, plattnerite) reductive dissolution by natural organic matter: reductant and inhibitory subfractions.

    PubMed

    Shi, Zhi; Stone, Alan T

    2009-05-15

    Natural organic matter (NOM) is a diverse collection of molecules, each possessing its own reductant, complexant, and adsorption properties. Here, we are interested in the ability of NOM to bring about the reductive dissolution of Pb(IV)O2(s). Adding the coagulants FeCl3 or Al2(SO4)3 followed by membrane filtration is one way to remove a subset of NOM molecules from surface water samples. Another is to pass water samples through a granular activated carbon (GAC) column. Results from applying these treatments to Great Dismal Swamp water (DSW) and Nequasset Bog Water (NBW) can best be explained as follows: (i) GAC column treatment is more efficient at removing the NOM fraction most responsible for reductive dissolution. (ii) Coagulation/filtration, with either coagulant, is most efficient at removing a second, inhibitory fraction. Inhibition may arise from (i) adsorption at the mineral/water interface, which blocks approach of reductant molecules and (ii) a micelle-like aggregate nature, which provides hydrophobic pockets that capture reductantmolecules, again keeping them away from the mineral/water interface. Hypotheses regarding reductant and inhibitory fractions are further evaluated using representative low-molecular-weight compounds. Substituted hydroquinones are used as mimics of the reductant fraction, and malonic acid, quinic acid, trehalose, alginic acid, and polygalacturonic acid are used as mimics of the inhibitory fraction. PMID:19544861

  4. Reductive dissolution of As(V)-Fe oxyhydroxides: an experimental insight at biogeochemical interfaces in soil

    NASA Astrophysics Data System (ADS)

    Dia, A.; Davranche, M.; Fakih, M.; Nowack, B.; Morin, G.; Gruau, G.

    2009-04-01

    Iron (III) oxides are ubiquitous components of soils, sediments, aquifers and geological materials. Trace metals associate with Fe (III) oxides as adsorbed or co-precipitated species and, consequently the biogeochemical cycles of Fe and trace metals are closely linked. Using a new monitoring tool recently developed, this study was dedicated to understand how do interplay biological and mineralogical (crystallographic and specific surface area) controls in the Fe oxyhydroxide reductive dissolution within soils and which can be the consequences on associated trace metal release. For this purpose, polymer slides covered by synthetic As-spiked ferrihydrite (As-Fh) or As-spiked lepidocrocite (As-Lp) were inserted into an organic-rich wetland soil in non conventional columns system under anaerobic conditions. This technique was developed to allow the insertion of slides into a structured soil without significant disturbance and to avoid the mechanical abrasion of oxides from slides that would occur in an equilibrium batch system under stirring. Slides were recovered after different periods of time to evaluate (i) the impact of (bio)reduction on both Fe-oxide dissolution and secondary mineral precipitation and, (ii) the subsequent effects on As mobility. XRF analyses of the slides were conducted before and after contact with the soil to determine the amount of Fe and associated As remaining on the slides. Fe(II), acetate, nitrate, sulphate and total metals of the soil solution was followed through time by ion chromatography and ICP-MS measurements. The important bacterial colonization and occurrence of biofilm evidenced by SEM analyses of the slides suggested the presence of biologically mediated processes. As previously shown elsewhere the kinetics of the suspected occurring bacterial reduction differ significantly from abiotic reduction data from literature. The important point is that conversely to what has been observed in published experimental data, the dissolution

  5. Dissolution-Driven Permeability Reduction of a Fractured Carbonate Caprock.

    PubMed

    Ellis, Brian R; Fitts, Jeffrey P; Bromhal, Grant S; McIntyre, Dustin L; Tappero, Ryan; Peters, Catherine A

    2013-04-01

    Geochemical reactions may alter the permeability of leakage pathways in caprocks, which serve a critical role in confining CO2 in geologic carbon sequestration. A caprock specimen from a carbonate formation in the Michigan sedimentary Basin was fractured and studied in a high-pressure core flow experiment. Inflowing brine was saturated with CO2 at 40°C and 10 MPa, resulting in an initial pH of 4.6, and had a calcite saturation index of -0.8. Fracture permeability decreased during the experiment, but subsequent analyses did not reveal calcite precipitation. Instead, experimental observations indicate that calcite dissolution along the fracture pathway led to mobilization of less soluble mineral particles that clogged the flow path. Analyses of core sections via electron microscopy, synchrotron-based X-ray diffraction imaging, and the first application of microbeam Ca K-edge X-ray absorption near edge structure, provided evidence that these occlusions were fragments from the host rock rather than secondary precipitates. X-ray computed tomography showed a significant loss of rock mass within preferential flow paths, suggesting that dissolution also removed critical asperities and caused mechanical closure of the fracture. The decrease in fracture permeability despite a net removal of material along the fracture pathway demonstrates a nonintuitive, inverse relationship between dissolution and permeability evolution in a fractured carbonate caprock. PMID:23633894

  6. Dissolution-Driven Permeability Reduction of a Fractured Carbonate Caprock.

    PubMed

    Ellis, Brian R; Fitts, Jeffrey P; Bromhal, Grant S; McIntyre, Dustin L; Tappero, Ryan; Peters, Catherine A

    2013-04-01

    Geochemical reactions may alter the permeability of leakage pathways in caprocks, which serve a critical role in confining CO2 in geologic carbon sequestration. A caprock specimen from a carbonate formation in the Michigan sedimentary Basin was fractured and studied in a high-pressure core flow experiment. Inflowing brine was saturated with CO2 at 40°C and 10 MPa, resulting in an initial pH of 4.6, and had a calcite saturation index of -0.8. Fracture permeability decreased during the experiment, but subsequent analyses did not reveal calcite precipitation. Instead, experimental observations indicate that calcite dissolution along the fracture pathway led to mobilization of less soluble mineral particles that clogged the flow path. Analyses of core sections via electron microscopy, synchrotron-based X-ray diffraction imaging, and the first application of microbeam Ca K-edge X-ray absorption near edge structure, provided evidence that these occlusions were fragments from the host rock rather than secondary precipitates. X-ray computed tomography showed a significant loss of rock mass within preferential flow paths, suggesting that dissolution also removed critical asperities and caused mechanical closure of the fracture. The decrease in fracture permeability despite a net removal of material along the fracture pathway demonstrates a nonintuitive, inverse relationship between dissolution and permeability evolution in a fractured carbonate caprock.

  7. Dissolution-Driven Permeability Reduction of a Fractured Carbonate Caprock

    PubMed Central

    Ellis, Brian R.; Fitts, Jeffrey P.; Bromhal, Grant S.; McIntyre, Dustin L.; Tappero, Ryan; Peters, Catherine A.

    2013-01-01

    Abstract Geochemical reactions may alter the permeability of leakage pathways in caprocks, which serve a critical role in confining CO2 in geologic carbon sequestration. A caprock specimen from a carbonate formation in the Michigan sedimentary Basin was fractured and studied in a high-pressure core flow experiment. Inflowing brine was saturated with CO2 at 40°C and 10 MPa, resulting in an initial pH of 4.6, and had a calcite saturation index of −0.8. Fracture permeability decreased during the experiment, but subsequent analyses did not reveal calcite precipitation. Instead, experimental observations indicate that calcite dissolution along the fracture pathway led to mobilization of less soluble mineral particles that clogged the flow path. Analyses of core sections via electron microscopy, synchrotron-based X-ray diffraction imaging, and the first application of microbeam Ca K-edge X-ray absorption near edge structure, provided evidence that these occlusions were fragments from the host rock rather than secondary precipitates. X-ray computed tomography showed a significant loss of rock mass within preferential flow paths, suggesting that dissolution also removed critical asperities and caused mechanical closure of the fracture. The decrease in fracture permeability despite a net removal of material along the fracture pathway demonstrates a nonintuitive, inverse relationship between dissolution and permeability evolution in a fractured carbonate caprock. PMID:23633894

  8. Dissolution-Driven Permeability Reduction of a Fractured Carbonate Caprock

    SciTech Connect

    Ellis, Brian R.; Fitts, Jeffrey P.; Bromhal, Grant S.; McIntyre, Dustin L.; Tappero, Ryan; Peters, Catherine A.

    2013-04-01

    Geochemical reactions may alter the permeability of leakage pathways in caprocks, which serve a critical role in confining CO{sub 2} in geologic carbon sequestration. A caprock specimen from a carbonate formation in the Michigan sedimentary Basin was fractured and studied in a high-pressure core flow experiment. Inflowing brine was saturated with CO{sub 2} at 40°C and 10MPa, resulting in an initial pH of 4.6, and had a calcite saturation index of -0.8. Fracture permeability decreased during the experiment, but subsequent analyses did not reveal calcite precipitation. Instead, experimental observations indicate that calcite dissolution along the fracture pathway led to mobilization of less soluble mineral particles that clogged the flow path. Analyses of core sections via electron microscopy, synchrotron-based X-ray diffraction imaging, and the first application of microbeam Ca K-edge X-ray absorption near edge structure, provided evidence that these occlusions were fragments from the host rock rather than secondary precipitates. X-ray computed tomography showed a significant loss of rock mass within preferential flow paths, suggesting that dissolution also removed critical asperities and caused mechanical closure of the fracture. The decrease in fracture permeability despite a net removal of material along the fracture pathway demonstrates a nonintuitive, inverse relationship between dissolution and permeability evolution in a fractured carbonate caprock.

  9. Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing soil minerals. 2. Green rust.

    PubMed

    Lee, Woojin; Batchelor, Bill

    2002-12-15

    Abiotic reductive dechlorination of chlorinated ethylenes by the sulfate form of green rust (GR(SO4)) was examined in batch reactors. Dechlorination kinetics were described by a modified Langmuir-Hinshelwood model. The rate constant for reductive dechlorination of chlorinated ethylenes at reactive GR(SO4) surfaces was in the range of 0.592 (+/-4.4%) to 1.59 (+/-6.3%) day(-1). The specific reductive capacity of GR(SO4) for target organics was in the range of 9.86 (+/-10.1%) to 18.0 (+/-4.3%) microM/g and sorption coefficient was in the range of 0.53 (+/-2.4%) to 1.22 (+/-4.3%) mM(-1). Surface area-normalized pseudo-first-order initial rate constants for chlorinated ethylenes by GR(SO4) were 3.4 to 8.2 times greater than those by pyrite. Chlorinated ethylenes were mainly transformed to acetylene, and no detectable amounts of chlorinated intermediates were observed. The rate constants for the reductive dechlorination of trichloroethylene (TCE) increased as pH increased (6.8 to 10.1) but were independent of solid concentration and initial TCE concentration. Magnetite and/or maghemite were produced by the oxidation of GR(SO4) by TCE. These findings are relevant to the understanding of the role of abiotic reductive dechlorination during natural attenuation in environments that contain GR(SO4).

  10. Abiotic U(VI) Reduction by Sorbed Fe(II) on Natural Sediments

    SciTech Connect

    Fox, Patricia M.; Davis, James A.; Kukkadapu, Ravi K.; Singer, David M.; Bargar, John R.; Williams, Kenneth H.

    2013-09-15

    Laboratory experiments were performed as a function of aqueous Fe(II) concentration to determine the uptake and oxidation of Fe(II), and Fe(II)-mediated abiotic reduction of U(VI) by aquifer sediments from the Rifle IFRC field site in Colorado, USA. Mössbauer analysis of the sediments spiked with aqueous 57Fe(II) showed that 57Fe(II) was oxidized on the mineral surfaces to 57Fe(III) and most likely formed a nano-particulate Fe(III)-oxide or ferrihydrite-like phase. The extent of 57Fe oxidation decreased with increasing 57Fe(II) uptake, such that 100 % was oxidized at 7.3 μmol/g Fe and 52 % at 39.6 μmol/g Fe, indicating that the sediments had a finite capacity for oxidation of Fe(II). Abiotic U(VI) reduction was observed by XANES spectroscopy only when the Fe(II) uptake was greater than approximately 20 μmol/g and surface-bound Fe(II) was present. The level of U(VI) reduction increased with increasing Fe(II)- loading above this level to a maximum of 18 and 36 % U(IV) at pH 7.2 (40.7 μmol/g Fe) and 8.3 (56.1 μmol/g Fe), respectively in the presence of 400 ppm CO2. Greater U(VI) reduction was observed in CO2 free systems [up to 44 and 54 % at pH 7.2 (17.3 μmol/g Fe) and 8.3 (54.8 μmol/g Fe), respectively] compared to 400 ppm CO2 systems, presumably due to differences in aqueous U(VI) speciation. While pH affects the amount of Fe(II) uptake onto the solid phase, with greater Fe(II) uptake at higher pH, similar amounts of U(VI) reduction were observed at pH 7.2 and 8.3 for a similar Fe(II) uptake. Thus, it appears that abiotic U(VI) reduction is controlled primarily by Fe(II) concentration and aqueous U(VI) speciation. The range of Fe(II) loadings tested in this study are within the range observed in bioreduced sediments, suggesting that Fe(II)-mediated abiotic U(VI) reduction may indeed play a role in field settings.

  11. Abiotic reductive dechlorination of cis-DCE by ferrous monosulfide mackinawite.

    PubMed

    Hyun, Sung Pil; Hayes, Kim F

    2015-11-01

    Cis-1,2,-dichloroethylene (cis-DCE) is a toxic, persistent contaminant occurring mainly as a daughter product of incomplete degradation of perchloroethylene (PCE) and trichloroethylene (TCE). This paper reports on abiotic reductive dechlorination of cis-DCE by mackinawite (FeS1-x), a ferrous monosulfide, under variable geochemical conditions. To assess in situ abiotic cis-DCE dechlorination by mackinawite in the field, mackinawite suspensions prepared in a field groundwater sample collected from a cis-DCE contaminated field site were used for dechlorination experiments. The effects of geochemical variables on the dechlorination rates were monitored. A set of dechlorination experiments were also carried out in the presence of aquifer sediment from the site over a range of pH conditions to better simulate the actual field situations. The results showed that the suspensions of freshly prepared mackinawite reductively transformed cis-DCE to acetylene, whereas the conventionally prepared powder form of mackinawite had practically no reactivity with cis-DCE under the same experimental conditions. Significant cis-DCE degradation by mackinawite has not been reported prior to this study, although mackinawite has been shown to reductively transform PCE and TCE. This study suggests feasibility of using mackinawite for in situ remediation of cis-DCE-contaminated sites with high S levels such as estuaries under naturally achieved or stimulated sulfate-reducing conditions.

  12. Microbially Induced Reductive Dissolution of Trace Element-Rich Lacustrine Iron-Oxides

    NASA Astrophysics Data System (ADS)

    Crowe, S. A.; Kulczykci, E.; O'Neill, A. H.; Roberts, J. A.; Fowle, D. A.

    2004-12-01

    Iron (oxy)hydroxides are ubiquitous components of surfacial materials and are often the dominant redox buffering solid phases in soils and sediments. As a result, the geochemical behavior of these minerals has a profound influence on the global biogeochemical cycling of trace elements, including heavy metals and arsenic (As), in addition to nutrients such as, sulfur (S), carbon (C), nitrogen (N), and phosphorus (P). Understanding the behavior of trace elements and nutrients during biological and abiotic processes that effect iron (Fe) mineral phase transformations is paramount for predicting their distribution, mobility, and bioavailability in the environment. To evaluate the impact of dissimilatory Fe-reduction (DIR) on trace element mobility we have conducted batch incubations of Fe-rich lateritic lacustrine sediments. In contrast to mid-latitude lakes where Fe (oxy)hydroxides constitute only a small fraction of the total sediment, tropical lake sediments have been known to comprise up to 40-60 wt. % Fe-oxides. Under suboxic and nonsulphidogenic conditions it is likely that DIR plays a prominent role in early diagenesis and therefore may exert control on the fate and distribution of many trace elements in this environment (e.g. Crowe et al. 2004). In batch incubations conducted in a minimal media of similar composition to typical freshwater the lacustrine Fe-oxides were reductively dissolved at a rate very similar to pure synthetic goethite of similar surface area (measured by N2-BET). This is in contrast to the slower rates previously observed for trace element substituted Fe-oxides. These slower rates have been attributed to surface passivation by secondary Al and Cr mineral precipitation. We propose that these passivation effects may be offset in minimal media incubations by enhanced microbial metabolism due the presence of nutrients (P, Co and other metals) in the lacustrine Fe-oxides. These nutrients became available with progressive reduction as the

  13. A Review of Alumina Feeding and Dissolution Factors in Aluminum Reduction Cells

    NASA Astrophysics Data System (ADS)

    Lavoie, Pascal; Taylor, Mark P.; Metson, James B.

    2016-08-01

    Modern aluminum reduction cells use point feeding technology to replenish alumina as it is consumed by the electrolytic process. The dissolution of alumina has become increasingly difficult to control as the cell sizes and electrolysis intensity have increased. The mass of alumina added per unit time is now much higher than a decade ago, and must take place within a smaller electrolyte mixing volume. In order to replenish the alumina concentration evenly, the alumina needs to be delivered, dispersed, dissolved, and distributed throughout the reduction cell. The dissolution itself follows a 4-step process that can be limited by a multitude of factors. The status of the research on each of these factors is reviewed in the present paper. Although research in laboratory cells has been conducted many times, and the impact of many factors on dissolution has been measured, published observations of alumina feeding on industrial cells are very sparse, especially regarding the dissolution dynamics in the space-time domain and the impact of the feeder hole condition. The present paper therefore presents a qualitative model of the factors governing alumina dissolution in industrial cells and offers the hypothesis that maintenance of the feeder hole condition is central to ensuring alumina dissolution and prevention of sludging.

  14. Abiotic reduction of trifluralin and pendimethalin by sulfides in black-carbon-amended coastal sediments.

    PubMed

    Gong, Wenwen; Liu, Xinhui; Xia, Shuhua; Liang, Baocui; Zhang, Wei

    2016-06-01

    Dinitroaniline herbicides such as trifluralin and pendimethalin are persistent bioaccumulative toxins to aquatic organisms. Thus, in-situ remediation of contaminated sediments is desired. This study investigated whether black carbons (BCs), including apple wood charcoal (BC1), rice straw biochar (BC2), and activated carbon (BC3), could facilitate abiotic reduction of trifluralin and pendimethalin by sulfides of environmentally-relevant concentrations in anoxic coastal sediments. The reduction rates of trifluralin and pendimethalin increased substantially with increasing BC dosages in the sediments. This enhancing effect was dependent on BC type with the greatest for BC3 followed by BC1 and BC2, which well correlated with their specific surface area. The pseudo-first order reduction rate constants (kobs) for BC3-amended sediment (2%) were 13- and 14 times the rate constants in the BC-free sediment. The reduction rates increased with increasing temperature from 8 to 25°C in the BC-amended sediment, following the Arrhenius relationship. Finally, through molecular modeling by density functional theory and reaction species identification from mass spectra, molecular pathways of trifluralin and pendimethalin reduction were elucidated. In contrary to the separate sequential reduction of each nitro group to amine group, both nitro groups, first reduced to nitroso, then eventually to amine groups. PMID:26905610

  15. Products of abiotic U(VI) reduction by biogenic magnetite and vivianite

    NASA Astrophysics Data System (ADS)

    Veeramani, Harish; Alessi, Daniel S.; Suvorova, Elena I.; Lezama-Pacheco, Juan S.; Stubbs, Joanne E.; Sharp, Jonathan O.; Dippon, Urs; Kappler, Andreas; Bargar, John R.; Bernier-Latmani, Rizlan

    2011-05-01

    Reductive immobilization of uranium by the stimulation of dissimilatory metal-reducing bacteria (DMRB) has been investigated as a remediation strategy for subsurface U(VI) contamination. In those environments, DMRB may utilize a variety of electron acceptors, such as ferric iron which can lead to the formation of reactive biogenic Fe(II) phases. These biogenic phases could potentially mediate abiotic U(VI) reduction. In this work, the DMRB Shewanella putrefaciens strain CN32 was used to synthesize two biogenic Fe(II)-bearing minerals: magnetite (a mixed Fe(II)-Fe(III) oxide) and vivianite (an Fe(II)-phosphate). Analysis of abiotic redox interactions between these biogenic minerals and U(VI) showed that both biogenic minerals reduced U(VI) completely. XAS analysis indicates significant differences in speciation of the reduced uranium after reaction with the two biogenic Fe(II)-bearing minerals. While biogenic magnetite favored the formation of structurally ordered, crystalline UO 2, biogenic vivianite led to the formation of a monomeric U(IV) species lacking U-U associations in the corresponding EXAFS spectrum. To investigate the role of phosphate in the formation of monomeric U(IV) such as sorbed U(IV) species complexed by mineral surfaces, versus a U(IV) mineral, uranium was reduced by biogenic magnetite that was pre-sorbed with phosphate. XAS analysis of this sample also revealed the formation of monomeric U(IV) species suggesting that the presence of phosphate hinders formation of UO 2. This work shows that U(VI) reduction products formed during in situ biostimulation can be influenced by the mineralogical and geochemical composition of the surrounding environment, as well as by the interfacial solute-solid chemistry of the solid-phase reductant.

  16. Transformations of mercury, iron, and sulfur during the reductive dissolution of iron oxyhydroxide by sulfide

    NASA Astrophysics Data System (ADS)

    Slowey, Aaron J.; Brown, Gordon E.

    2007-02-01

    Methylmercury can accumulate in fish to concentrations unhealthy for humans and other predatory mammals. Most sources of mercury (Hg) emit inorganic species to the environment. Therefore, ecological harm occurs when inorganic Hg is converted to methylmercury. Sulfate- and iron-reducing bacteria (SRB and FeRB) methylate Hg, but the effects of processes involving oxidized and reduced forms of sulfur and iron on the reactivity of Hg, including the propensity of inorganic Hg to be methylated, are poorly understood. Under abiotic conditions, using a laboratory flow reactor, bisulfide (HS -) was added at 40 to 250 μM h -1 to 5 g L -1 goethite (α-FeOOH) suspensions to which Hg(II) was adsorbed (30-100 nmol m -2) at pH 7.5. Dissolved Hg initially decreased from 10 3 or 10 4 nM (depending on initial conditions) to 10 -1 nM, during which the concentration of Hg(II) adsorbed to goethite decreased by 80% and metacinnabar (β-HgS (s)) formed, based on identification using Hg L III-edge extended X-ray absorption fine structure (EXAFS) spectroscopic analysis. The apparent coordination of oxygens surrounding Hg(II), measured with EXAFS spectroscopy, increased during one flow experiment, suggesting desorption of monodentate-bound Hg(II) while bidentate-bound Hg(II) persisted on the goethite surface. Further sulfidation increased dissolved Hg concentrations by one to two orders of magnitude (0.5 to 10 nM or 30 nM), suggesting that byproducts of bisulfide oxidation and Fe(III) reduction, primarily polysulfide and potentially Fe(II), enhanced the dissolution of β-HgS (s) and/or desorption of Hg(II). Rapid accumulation of Fe(II) in the solid phase (up to 40 μmol g -1) coincided with faster elevation of dissolved Hg concentrations. Fe(II) served as a proxy for elemental sulfur [S(0)], as S(0) was the dominant bisulfide oxidation product coupled to Fe(III) reduction, based on sulfur K-edge X-ray absorption near edge structure (XANES) spectroscopy. In one experiment, dissolved Hg

  17. Abiotic nitrogen fixation on terrestrial planets: reduction of NO to ammonia by FeS.

    PubMed

    Summers, David P; Basa, Ranor C B; Khare, Bishun; Rodoni, David

    2012-02-01

    Understanding the abiotic fixation of nitrogen and how such fixation can be a supply of prebiotic nitrogen is critical for understanding both the planetary evolution of, and the potential origin of life on, terrestrial planets. As nitrogen is a biochemically essential element, sources of biochemically accessible nitrogen, especially reduced nitrogen, are critical to prebiotic chemistry and the origin of life. Loss of atmospheric nitrogen can result in loss of the ability to sustain liquid water on a planetary surface, which would impact planetary habitability and hydrological processes that shape the surface. It is known that NO can be photochemically converted through a chain of reactions to form nitrate and nitrite, which can be subsequently reduced to ammonia. Here, we show that NO can also be directly reduced, by FeS, to ammonia. In addition to removing nitrogen from the atmosphere, this reaction is particularly important as a source of reduced nitrogen on an early terrestrial planet. By converting NO directly to ammonia in a single step, ammonia is formed with a higher product yield (~50%) than would be possible through the formation of nitrate/nitrite and subsequent conversion to ammonia. In conjunction with the reduction of NO, there is also a catalytic disproportionation at the mineral surface that converts NO to NO₂ and N₂O. The NO₂ is then converted to ammonia, while the N₂O is released back in the gas phase, which provides an abiotic source of nitrous oxide. PMID:22283408

  18. Abiotic nitrogen fixation on terrestrial planets: reduction of NO to ammonia by FeS.

    PubMed

    Summers, David P; Basa, Ranor C B; Khare, Bishun; Rodoni, David

    2012-02-01

    Understanding the abiotic fixation of nitrogen and how such fixation can be a supply of prebiotic nitrogen is critical for understanding both the planetary evolution of, and the potential origin of life on, terrestrial planets. As nitrogen is a biochemically essential element, sources of biochemically accessible nitrogen, especially reduced nitrogen, are critical to prebiotic chemistry and the origin of life. Loss of atmospheric nitrogen can result in loss of the ability to sustain liquid water on a planetary surface, which would impact planetary habitability and hydrological processes that shape the surface. It is known that NO can be photochemically converted through a chain of reactions to form nitrate and nitrite, which can be subsequently reduced to ammonia. Here, we show that NO can also be directly reduced, by FeS, to ammonia. In addition to removing nitrogen from the atmosphere, this reaction is particularly important as a source of reduced nitrogen on an early terrestrial planet. By converting NO directly to ammonia in a single step, ammonia is formed with a higher product yield (~50%) than would be possible through the formation of nitrate/nitrite and subsequent conversion to ammonia. In conjunction with the reduction of NO, there is also a catalytic disproportionation at the mineral surface that converts NO to NO₂ and N₂O. The NO₂ is then converted to ammonia, while the N₂O is released back in the gas phase, which provides an abiotic source of nitrous oxide.

  19. Real-Time Manganese Phase Dynamics during Biological and Abiotic Manganese Oxide Reduction.

    PubMed

    Johnson, Jena E; Savalia, Pratixa; Davis, Ryan; Kocar, Benjamin D; Webb, Samuel M; Nealson, Kenneth H; Fischer, Woodward W

    2016-04-19

    Manganese oxides are often highly reactive and easily reduced, both abiotically, by a variety of inorganic chemical species, and biologically during anaerobic respiration by microbes. To evaluate the reaction mechanisms of these different reduction routes and their potential lasting products, we measured the sequence progression of microbial manganese(IV) oxide reduction mediated by chemical species (sulfide and ferrous iron) and the common metal-reducing microbe Shewanella oneidensis MR-1 under several endmember conditions, using synchrotron X-ray spectroscopic measurements complemented by X-ray diffraction and Raman spectroscopy on precipitates collected throughout the reaction. Crystalline or potentially long-lived phases produced in these experiments included manganese(II)-phosphate, manganese(II)-carbonate, and manganese(III)-oxyhydroxides. Major controls on the formation of these discrete phases were alkalinity production and solution conditions such as inorganic carbon and phosphate availability. The formation of a long-lived Mn(III) oxide appears to depend on aqueous Mn(2+) production and the relative proportion of electron donors and electron acceptors in the system. These real-time measurements identify mineralogical products during Mn(IV) oxide reduction, contribute to understanding the mechanism of various Mn(IV) oxide reduction pathways, and assist in interpreting the processes occurring actively in manganese-rich environments and recorded in the geologic record of manganese-rich strata. PMID:27018915

  20. The kinetics and QSAR of abiotic reduction of mononitro aromatic compounds catalyzed by activated carbon.

    PubMed

    Gong, Wenwen; Liu, Xinhui; Gao, Ding; Yu, Yanjun; Fu, Wenjun; Cheng, Dengmiao; Cui, Baoshan; Bai, Junhong

    2015-01-01

    The kinetics of abiotic reduction of mono-nitro aromatic compounds (mono-NACs) catalyzed by activated carbon (AC) in an anaerobic system were examined. There were 6 types of substituent groups on nitrobenzene, including methyl, chlorine, amino, carboxyl, hydroxyl and cyanogen groups, at the ortho, meta or para positions. Our results showed that reduction followed pseudo-first order reaction kinetics, and that the rate constant (logkSA) varied widely, ranging between -4.77 and -2.82, depending upon the type and position of the substituent. A quantitative structure-activity relationship (QSAR) model using 15 theoretical molecular descriptors and partial-least-squares (PLS) regression was developed for the reduction rates of mono-NACs catalyzed by AC. The cross-validated regression coefficient (Qcum(2), 0.861) and correlation coefficient (R(2), 0.898) indicated significantly high robustness of the model. The VIP (variable importance in the projection) values of energy of the lowest unoccupied molecular orbital (ELUMO) and the maximum net atomic charge on the aromatic carbon bound to the nitro group (QC(-)) were 1.15 and 1.01, respectively. These values indicated that the molecular orbital energies and the atomic net charges might play important roles in the reduction of mono-NACs catalyzed by AC in anaerobic systems.

  1. Model-based Analysis of Mixed Uranium(VI) Reduction by Biotic and Abiotic Pathways During in Situ Bioremediation

    SciTech Connect

    Zhao, Jiao; Scheibe, Timothy D.; Mahadevan, Radhakrishnan

    2013-10-24

    Uranium bioremediation has emerged as a potential strategy of cleanup of radionuclear contamination worldwide. An integrated geochemical & microbial community model is a promising approach to predict and provide insights into the bioremediation of a complicated natural subsurface. In this study, an integrated column-scale model of uranium bioremediation was developed, taking into account long-term interactions between biotic and abiotic processes. It is also combined with a comprehensive thermodynamic analysis to track the fate and cycling of biogenic species. As compared with other bioremediation models, the model increases the resolution of the connection of microbial community to geochemistry and establishes direct quantitative correlation between overall community evolution and geochemical variation, thereby accurately predicting the community dynamics under different sedimentary conditions. The thermodynamic analysis examined a recently identified homogeneous reduction of U(VI) by Fe(II) under dynamic sedimentary conditions across time and space. It shows that the biogenic Fe(II) from Geobacter metabolism can be removed rapidly by the biogenic sulphide from sulfate reducer metabolism, hence constituting one of the reasons that make the abiotic U(VI) reduction thermodynamically infeasible in the subsurface. Further analysis indicates that much higher influent concentrations of both Fe(II) and U(VI) than normal are required to for abiotic U(VI) reduction to be thermodynamically feasible, suggesting that the abiotic reduction cannot be an alternative to the biotic reduction in the remediation of uranium contaminated groundwater.

  2. Investigation of Dissolution Parameters for PbO2 Using Waste Cellulosic Reductants

    NASA Astrophysics Data System (ADS)

    Morcali, Mehmet Hakan; Zeytuncu, Bihter

    2016-08-01

    In this study, we aimed to establish the optimum reductive leaching process with diluted acetic acid for the lead dioxide recovery from lead-acid battery paste. The effects of various reducing agents, acid concentrations, pulp densities, reaction temperatures, and leaching times on the dissolution of lead dioxide were investigated. Lead dioxide dissolution by reductive acidic media is a chemically controlled process with activation energy of 44.51 ± 1.23 kJ/mol. After leaching, lead acetate ions were precipitated with chromic acid as the lead chromate (PbCrO4) compound. Lead acetate salt was also precipitated from the leaching solution using a crystallization method. These lead compounds can potentially be used in many industries ( e.g., pigment application to detect the poisonous gas hydrogen sulfide). Our findings indicate that this process could be effective in leaching lead dioxide.

  3. Electrical conductivity as an indicator of iron reduction rates in abiotic and biotic systems

    NASA Astrophysics Data System (ADS)

    Regberg, Aaron; Singha, Kamini; Tien, Ming; Picardal, Flynn; Zheng, Quanxing; Schieber, Jurgen; Roden, Eric; Brantley, Susan L.

    2011-04-01

    Although changes in bulk electrical conductivity (σb) in aquifers have been attributed to microbial activity, σb has never been used to infer biogeochemical reaction rates quantitatively. To explore the use of electrical conductivity to measure reaction rates, we conducted iron oxide reduction experiments of increasing biological complexity. To quantify reaction rates, we propose composite reactions that incorporate the stoichiometry of five different types of reactions: redox, acid-base, sorption, dissolution/precipitation, and biosynthesis. In batch experiments and the early stages of a column experiment, such reaction stoichiometries inferred from a few chemical measurements allowed quantification of the Fe oxide reduction rate based on changes in electrical conductivity. The relationship between electrical conductivity and fluid chemistry did not hold during the latter stages of the column experiment when σb increased while fluid chemistry remained constant. Growth of an electrically conductive biofilm could possibly explain this late stage σb increase. The measured σb increase is consistent with a model proposed by analogy from percolation theory that attributes the increased conductivity to growth of biofilms with conductivity of ˜5.5 S m-1 in at least 3% of the column pore space. This work demonstrates that measurements of σb and flow rate, combined with a few direct chemical measurements, can be used to quantify biogeochemical reaction rates in controlled laboratory situations and may be able to detect the presence of biofilms. This approach may help in designing future field experiments to interpret biogeochemical reactivity from conductivity measurements.

  4. Micromodel Investigation of Transport Effect on the Kinetics of Reductive Dissolution of Hematite

    SciTech Connect

    Zhang, Changyong; Liu, Chongxuan; Shi, Zhi

    2013-03-13

    Reductive dissolution of hematite in porous media was investigated using a micromodel with realistic pore network structures that include distinctive advection domain, macro-pores and micro-pores created in silicon substrate. The micromodel pore surface was sputter deposited with a thin layer (230 nm) of hematite. The hematite in the micromodel was reduced by injecting pH-varying solutions containing a reduced form of flavin mononucleotide (FMNH2), a biogenic soluble electron transfer mediator produced by Shewanella species. The reduction kinetics was determined by measuring effluent Fe(II) concentration and by spectroscopically monitoring the hematite dissolution front in the micromodel. Batch experiment was also performed to estimate the hematite reduction rate under the well-mixed condition. The results showed a significant spatial variation in local redox reaction rate that was controlled by the coupled diffusion and reaction. The overall rate of the redox reaction in the micromodel required a three-domain numerical model to effectively describe with distinctive rate parameters in different pore domains. Results from this study demonstrated the important scaling effect when extrapolating geochemical or biogeochemical reaction rate from batch reactor to porous media and indicated a significant control of physical transport mechanisms on the reaction rate scaling.

  5. Fe(III) mineral reduction followed by partial dissolution and reactive oxygen species generation during 2,4,6-trinitrotoluene transformation by the aerobic yeast Yarrowia lipolytica.

    PubMed

    Ziganshin, Ayrat M; Ziganshina, Elvira E; Byrne, James; Gerlach, Robin; Struve, Ellen; Biktagirov, Timur; Rodionov, Alexander; Kappler, Andreas

    2015-01-01

    Understanding the factors that influence pollutant transformation in the presence of ferric (oxyhydr)oxides is crucial to the efficient application of different remediation strategies. In this study we determined the effect of goethite, hematite, magnetite and ferrihydrite on the transformation of 2,4,6-trinitrotoluene (TNT) by Yarrowia lipolytica AN-L15. The presence of ferric (oxyhydr)oxides led to a small decrease in the rate of TNT removal. In all cases, a significant release of NO2 (-) from TNT and further NO2 (-) oxidation to NO3 (-) was observed. A fraction of the released NO2 (-) was abiotically decomposed to NO and NO2, and then NO was likely oxidized abiotically to NO2 by O2. ESR analysis revealed the generation of superoxide in the culture medium; its further protonation at low pH resulted in the formation of hydroperoxyl radical. Presumably, a fraction of NO released during TNT degradation reacted with superoxide and formed peroxynitrite, which was further rearranged to NO3 (-) at the acidic pH values observed in this study. A transformation and reduction of ferric (oxyhydr)oxides followed by partial dissolution (in the range of 7-86% of the initial Fe(III)) were observed in the presence of cells and TNT. Mössbauer spectroscopy showed some minor changes for goethite, magnetite and ferrihydrite samples during their incubation with Y. lipolytica and TNT. This study shows that i) reactive oxygen and nitrogen species generated during TNT transformation by Y. lipolytica participate in the abiotic conversion of TNT and ii) the presence of iron(III) minerals leads to a minor decrease in TNT transformation. PMID:25852985

  6. Fe(III) mineral reduction followed by partial dissolution and reactive oxygen species generation during 2,4,6-trinitrotoluene transformation by the aerobic yeast Yarrowia lipolytica.

    PubMed

    Ziganshin, Ayrat M; Ziganshina, Elvira E; Byrne, James; Gerlach, Robin; Struve, Ellen; Biktagirov, Timur; Rodionov, Alexander; Kappler, Andreas

    2015-01-01

    Understanding the factors that influence pollutant transformation in the presence of ferric (oxyhydr)oxides is crucial to the efficient application of different remediation strategies. In this study we determined the effect of goethite, hematite, magnetite and ferrihydrite on the transformation of 2,4,6-trinitrotoluene (TNT) by Yarrowia lipolytica AN-L15. The presence of ferric (oxyhydr)oxides led to a small decrease in the rate of TNT removal. In all cases, a significant release of NO2 (-) from TNT and further NO2 (-) oxidation to NO3 (-) was observed. A fraction of the released NO2 (-) was abiotically decomposed to NO and NO2, and then NO was likely oxidized abiotically to NO2 by O2. ESR analysis revealed the generation of superoxide in the culture medium; its further protonation at low pH resulted in the formation of hydroperoxyl radical. Presumably, a fraction of NO released during TNT degradation reacted with superoxide and formed peroxynitrite, which was further rearranged to NO3 (-) at the acidic pH values observed in this study. A transformation and reduction of ferric (oxyhydr)oxides followed by partial dissolution (in the range of 7-86% of the initial Fe(III)) were observed in the presence of cells and TNT. Mössbauer spectroscopy showed some minor changes for goethite, magnetite and ferrihydrite samples during their incubation with Y. lipolytica and TNT. This study shows that i) reactive oxygen and nitrogen species generated during TNT transformation by Y. lipolytica participate in the abiotic conversion of TNT and ii) the presence of iron(III) minerals leads to a minor decrease in TNT transformation.

  7. Simultaneous reductive dissolution of iron oxide and oxidation of iodide in ice.

    NASA Astrophysics Data System (ADS)

    Kim, Kitae; Choi, Wonyong

    2015-04-01

    Iron is an important trace element controlling the metabolism and growth of all kinds of living species. Especially, the bio-availability of iron has been regarded as the limiting factor for primary productivity in HNLC (High Nutrients Low Chlorophyll) regions including Southern ocean. The dissolution of iron oxide provides enhanced the bio-availability of iron for phytoplankton growth. The halogen chemistry in polar regions is related to various important environmental processes such as Antarctic Ozone Depletion Event(ODE), mercury depletion, oxidative processes in atmosphere, and the formation of CCN (Cloud Condensation Nuclei). In this study, we investigated the reductive dissolution of iron oxide particles to produce Fe(II)aq and simultaneous oxidation of I- (iodide) to I3- (tri-iodide) in ice phase under UV irradiation or dark condition. The reductive generation of Fe(II)aq from iron oxides and oxidation of iodide to I3- were negligible in water but significantly accelerated in frozen solution both in the presence and absence of light. The enhanced reductive generation of Fe(II)aq and oxidative formation of I3- in ice were observed regardless of the various types of iron oxides [hematite (α-Fe2O3) maghemite (γ- Fe2O3), goethite (α-FeOOH), lepidocrocite (γ-FeOOH) and, magnetite (Fe3O4)]. We explained that the enhanced redox production of Fe(II)aq and I3- in ice is contributed to the freeze concentration of iodides, protons, and dissolved oxygen in the unfrozen solution. When the concentration of both iodides and protons were raised by 10-fold each, the formation of Fe(II)aq in water under UV irradiation was approached to those in ice. The outdoor experiments were carried out under ambient solar radiation in winter season of mid-latitude (Pohang, Korea: 36°N latitude) and also confirmed that the production of Fe(II)aq via reductive dissolution of iron oxide and I3- generation via I- oxidation were enhanced in frozen solution. These results suggest that iron

  8. Role of microbial iron reduction in the dissolution of iron hydroxysulfate minerals

    USGS Publications Warehouse

    Jones, E.J.P.; Nadeau, T.-L.; Voytek, M.A.; Landa, E.R.

    2006-01-01

    Iron-hydroxysulfate minerals can be important hosts for metals such as lead, mercury, copper, zinc, silver, chromium, arsenic, and selenium and for radionuclides such as 226Ra. These mineral-bound contaminants are considered immobilized under oxic conditions. However, when anoxic conditions develop, the activities of sulfate- or iron-reducing bacteria could result in mineral dissolution, releasing these bound contaminants. Reduction of structural sulfate in the iron-hydroxysulfate mineral jarosite by sulfate-reducing bacteria has previously been demonstrated. The primary objective of this work was to evaluate the potential for anaerobic dissolution of the iron-hydroxysulfate minerals jarosite and schwertmannite at neutral PH by iron-reducing bacteria. Mineral dissolution was tested using a long-term cultivar, Geobacter metallireducens strain GS-15, and a fresh isolate Geobacter sp. strain ENN1, previously undescribed. ENN1 was isolated from the discharge site of Shadle Mine, in the southern anthracite coalfield of Pennsylvania, where schwertmannite was the predominant iron-hydroxysulfate mineral. When jarosite from Elizabeth Mine (Vermont) was provided as the sole terminal electron acceptor, resting cells of both G. metallireducens and ENN1 were able to reduce structural Fe(III), releasing Fe+2, SO4-2, and K+ ions. A lithified jarosite sample from Utah was more resistant to microbial attack, but slow release of Fe+2 was observed. Neither bacterium released Fe+2 from poorly crystalline synthetic schwertmannite. Our results indicate that exposure of jarosite to iron-reducing conditions at neutral pH is likely to promote the mobility of hazardous constituents and should therefore be considered in evaluating waste disposal and/or reclamation options involving jarosite-bearing materials.

  9. Role of microbial iron reduction in the dissolution of iron hydroxysulfate minerals

    NASA Astrophysics Data System (ADS)

    Jones, Elizabeth J. P.; Nadeau, Tracie-Lynn; Voytek, Mary A.; Landa, Edward R.

    2006-03-01

    Iron-hydroxysulfate minerals can be important hosts for metals such as lead, mercury, copper, zinc, silver, chromium, arsenic, and selenium and for radionuclides such as 226Ra. These mineral-bound contaminants are considered immobilized under oxic conditions. However, when anoxic conditions develop, the activities of sulfate- or iron-reducing bacteria could result in mineral dissolution, releasing these bound contaminants. Reduction of structural sulfate in the iron-hydroxysulfate mineral jarosite by sulfate-reducing bacteria has previously been demonstrated. The primary objective of this work was to evaluate the potential for anaerobic dissolution of the iron-hydroxysulfate minerals jarosite and schwertmannite at neutral pH by iron-reducing bacteria. Mineral dissolution was tested using a long-term cultivar, Geobacter metallireducens strain GS-15, and a fresh isolate Geobacter sp. strain ENN1, previously undescribed. ENN1 was isolated from the discharge site of Shadle Mine, in the southern anthracite coalfield of Pennsylvania, where schwertmannite was the predominant iron-hydroxysulfate mineral. When jarosite from Elizabeth Mine (Vermont) was provided as the sole terminal electron acceptor, resting cells of both G. metallireducens and ENN1 were able to reduce structural Fe(III), releasing Fe+2, SO4-2, and K+ ions. A lithified jarosite sample from Utah was more resistant to microbial attack, but slow release of Fe+2 was observed. Neither bacterium released Fe+2 from poorly crystalline synthetic schwertmannite. Our results indicate that exposure of jarosite to iron-reducing conditions at neutral pH is likely to promote the mobility of hazardous constituents and should therefore be considered in evaluating waste disposal and/or reclamation options involving jarosite-bearing materials.

  10. Remineralization VS Reductive Dissolution Pathway of Phosphorus Cycling: a Case Study in the Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Jaisi, D. P.; Joshi, S.; Kukkadapu, R. K.; Burdige, D.; Sparks, D. L.

    2015-12-01

    Coastal hypoxia have spread exponentially worldwide due to increased anthropogenic loading of nutrients in coastal waters. Hypoxia exerts an influence on the stability of minerals and organic debris, direction of nutrient flux at the sediment-water interface, and the extent of benthic-pelagic coupling. This study aimed to address fundamental questions related to sediment phosphorus (P) dynamics in response to transient bottom water hypoxia particularly on P effluxes at the sediment-water interface and P burial (as authigenic/vivianite P) under two pathways: remineralization of organic P (coupled C-P pathway) and reductive dissolution of ferric Fe-bound P (coupled Fe-P pathway). Authigenic phosphate isotope data suggest that the regeneration of inorganic P in the sediment from organic matter degradation (remineralization) is the predominant, if not sole, pathway for authigenic P precipitation in the sediments. Interestingly, ferric Fe-bound phosphate oxygen isotopes are heavier than equilibrium. This means that the ferric Fe-bound P pool in these sediments is largely composed of particulate P from terrestrial sources composed primarily of Fe phyllosilicates plus potentially vivianite that are largely resistant against dissolution in the anoxic sediment column. These results collectively support the predominance of coupled C-P pathway of P cycling, rather than Fe-P coupling, in hypoxic environment in the Chesapeake Bay.

  11. Role of microbial iron reduction in the dissolution of iron hydroxysulfate minerals - article no. G01012

    SciTech Connect

    Jones, E.J.P.; Nadeau, T.L.; Voytek, M.A.; Landa, E.R.

    2006-03-28

    Reduction of structural sulfate in the iron-hydroxysulfate mineral jarosite by sulfate-reducing bacteria has previously been demonstrated. The primary objective of this work was to evaluate the potential for anaerobic dissolution of the iron-hydroxysulfate minerals jarosite and schwertmannite at neutral pH by iron-reducing bacteria. Mineral dissolution was tested using a long-term cultivar, Geobacter metallireducens strain GS-15, and a fresh isolate Geobacter sp. strain ENN1, previously undescribed. ENN1 was isolated from the discharge site of Shadle Mine, in the southern anthracite coalfield of Pennsylvania, where schwertmannite was the predominant iron-hydroxysulfate mineral. When jarosite from Elizabeth Mine (Vermont) was provided as the sole terminal electron acceptor, resting cells of both G. metallireducens and ENN1 were able to reduce structural Fe(III), releasing Fe{sup +2}, SO{sub 4}{sup -2}, and K{sup +} ions. A lithified jarosite sample from Utah was more resistant to microbial attack, but slow release of Fe{sup +2} was observed. Neither bacterium released Fe{sup +2} from poorly crystalline synthetic schwertmannite. Our results indicate that exposure of jarosite to iron-reducing conditions at neutral pH is likely to promote the mobility of hazardous constituents and should therefore be considered in evaluating waste disposal and/or reclamation options involving jarosite-bearing materials.

  12. Dimensionality reduction, and function approximation of poly(lactic-co-glycolic acid) micro- and nanoparticle dissolution rate.

    PubMed

    Ojha, Varun Kumar; Jackowski, Konrad; Abraham, Ajith; Snášel, Václav

    2015-01-01

    Prediction of poly(lactic-co-glycolic acid) (PLGA) micro- and nanoparticles' dissolution rates plays a significant role in pharmaceutical and medical industries. The prediction of PLGA dissolution rate is crucial for drug manufacturing. Therefore, a model that predicts the PLGA dissolution rate could be beneficial. PLGA dissolution is influenced by numerous factors (features), and counting the known features leads to a dataset with 300 features. This large number of features and high redundancy within the dataset makes the prediction task very difficult and inaccurate. In this study, dimensionality reduction techniques were applied in order to simplify the task and eliminate irrelevant and redundant features. A heterogeneous pool of several regression algorithms were independently tested and evaluated. In addition, several ensemble methods were tested in order to improve the accuracy of prediction. The empirical results revealed that the proposed evolutionary weighted ensemble method offered the lowest margin of error and significantly outperformed the individual algorithms and the other ensemble techniques.

  13. QSARS for predicting biotic and abiotic reductive transformation rate constants of halogenated hydrocarbons in anoxic sediment systems

    SciTech Connect

    Peijnenburg, W.J.G.M.; 't Hart, M.J.; den Hollander, H.A.; van de Meent, D.; Verboom, H.H.

    1991-01-01

    Quantitative structure-activity relationships (QSARs) are developed relating biotic and abiotic pseudo-first-order disappearance rate constants of halogenated hydrocarbons in anoxic sediments to a number of readily available molecular descriptors. Based upon knowledge of the underlying reaction mechanisms, four descriptors were selected: carbon halogen bond strength, the summation of the Hammett (aromatics) and Taft (aliphatics) sigma constants and the inductive constants (aromatics) of the additional substituents, carbon-carbon bond dissociation energy (aliphatics), and steric factors of the additional substituents. Comparison of the abiotic and biotic QSARs clearly showed the close similarities between both processes. By correlating the rate constants for reduction of a number of halocarbons obtained in a number of distinct sediment samples to the organic carbon content of the samples, the QSARs were made operative for predicting rates of reduction of given halocarbons in given sediment-water systems. The correlations were enhanced by taking into account the fraction of the compounds sorbed to the solid phase. (Copyright (c) 1991 Elsevier Science Publishers B.V.)

  14. Hydrous manganese oxide doped gel probe sampler for measuring in situ reductive dissolution rates. 2. Field deployment.

    PubMed

    Farnsworth, Claire E; Griffis, Sarah D; Wildman, Richard A; Hering, Janet G

    2010-01-01

    In situ rates of reductive dissolution in submerged shoreline sediments at Lake Tegel (Berlin, Germany) were measured with a novel hydrous manganese (Mn) oxide-doped gel probe sampler in concert with equilibrium gel probe and sequential extraction measurements. Rates were low in the top 8 cm, then showed a peak from 8 to 14 cm, with a maximum at 12 cm depth. This rate corresponded with a peak in dissolved porewater iron (Fe) at 11 cm depth. Below 14 cm, the reductive dissolution rate reached an intermediate steady value. Lower rates at depth corresponded with increases in operationally defined fractions of carbonate-bound and organic- and sulfide-bound Mn and Fe as detected by sequential extraction. Observed rates of reductive dissolution, which reflect a capacity for Mn reduction rather than actual rates under ambient conditions, appear to correlate with porewater chemistry and sequential extraction fractions as expected in early sediment diagenesis, and are consistent with previous measurements of in situ reductive dissolution rates. Significant downward advection in this bank filtration setting depletes the Mn and Fe oxides in the sediments and enhances the transport of dissolved Fe and Mn into the infiltrating water.

  15. Extraction of copper from an oxidized (lateritic) ore using bacterially catalysed reductive dissolution.

    PubMed

    Nancucheo, Ivan; Grail, Barry M; Hilario, Felipe; du Plessis, Chris; Johnson, D Barrie

    2014-01-01

    An oxidized lateritic ore which contained 0.8 % (by weight) copper was bioleached in pH- and temperature-controlled stirred reactors under acidic reducing conditions using pure and mixed cultures of the acidophilic chemolithotrophic bacterium Acidithiobacillus ferrooxidans. Sulfur was provided as the electron donor for the bacteria, and ferric iron present in goethite (the major ferric iron mineral present in the ore) acted as electron acceptor. Significantly more copper was leached by bacterially catalysed reductive dissolution of the laterite than in aerobic cultures or in sterile anoxic reactors, with up to 78 % of the copper present in the ore being extracted. This included copper that was leached from acid-labile minerals (chiefly copper silicates) and that which was associated with ferric iron minerals in the lateritic ore. In the anaerobic bioreactors, soluble iron in the leach liquors was present as iron (II) and copper as copper (I), but both metals were rapidly oxidized (to iron (III) and copper (II)) when the reactors were aerated. The number of bacteria added to the reactors had a critical role in dictating the rate and yield of copper solubilised from the ore. This work has provided further evidence that reductive bioprocessing, a recently described approach for extracting base metals from oxidized deposits, has the potential to greatly extend the range of metal ores that can be biomined. PMID:24687752

  16. Extraction of copper from an oxidized (lateritic) ore using bacterially catalysed reductive dissolution.

    PubMed

    Nancucheo, Ivan; Grail, Barry M; Hilario, Felipe; du Plessis, Chris; Johnson, D Barrie

    2014-01-01

    An oxidized lateritic ore which contained 0.8 % (by weight) copper was bioleached in pH- and temperature-controlled stirred reactors under acidic reducing conditions using pure and mixed cultures of the acidophilic chemolithotrophic bacterium Acidithiobacillus ferrooxidans. Sulfur was provided as the electron donor for the bacteria, and ferric iron present in goethite (the major ferric iron mineral present in the ore) acted as electron acceptor. Significantly more copper was leached by bacterially catalysed reductive dissolution of the laterite than in aerobic cultures or in sterile anoxic reactors, with up to 78 % of the copper present in the ore being extracted. This included copper that was leached from acid-labile minerals (chiefly copper silicates) and that which was associated with ferric iron minerals in the lateritic ore. In the anaerobic bioreactors, soluble iron in the leach liquors was present as iron (II) and copper as copper (I), but both metals were rapidly oxidized (to iron (III) and copper (II)) when the reactors were aerated. The number of bacteria added to the reactors had a critical role in dictating the rate and yield of copper solubilised from the ore. This work has provided further evidence that reductive bioprocessing, a recently described approach for extracting base metals from oxidized deposits, has the potential to greatly extend the range of metal ores that can be biomined.

  17. CHARACTERIZING THE ABIOTIC REDUCTANTS FOR NITROAROMATIC COMPOUNDS AS A FUNCTION OF REDOX ZONATION IN ANOXIC SEDIMENTS

    EPA Science Inventory

    Reductive transformation is the dominant reaction pathway for the degradation of nitroaromatic compounds in anaerobic environments (Larson and Weber, 1994). Proposed reductants cover a spectrum ranging from reduced rninerals and organic matter to microbial enzyme systems. Transfo...

  18. Reductive dissolution of Pu(IV) by Clostridium sp. under anaerobic conditions.

    PubMed

    Francis, Arokiasamy J; Dodge, Cleveland J; Gillow, Jeffrey B

    2008-04-01

    An anaerobic, gram positive, spore-forming bacterium Clostridium sp., common in soils and wastes, capable of reduction of Fe(III) to Fe(II), Mn(IV) to Mn(II), Tc(VII) to Tc(IV), and U(VI) to U(IV), reduced Pu(IV) to Pu(III). Addition of 242Pu (IV)-nitrate to the bacterial growth medium at pH 6.4 resulted in the precipitation of Pu as amorphous Pu(OH)4 due to hydrolysis and polymerization reactions. The Pu (1 x 10(-5) M) had no effect upon growth of the bacterium as evidenced by glucose consumption; carbon dioxide and hydrogen production; a decrease in pH of the medium from 6.4 to 3.0 due to production of acetic and butyric acids from glucose fermentation; and a change in the Eh of the culture medium from +50 to -180 mV. Commensurate with bacterial growth, Pu was rapidly solubilized as evidenced by an increase in Pu concentration in solution which passed through a 0.03 microm filtration. Selective solvent extraction of the culture by thenoyltrifluoroacetone (TTA) indicated the presence of a reduced Pu species in the soluble fraction. X-ray absorption near edge spectroscopic (XANES) analysis of Pu in the culture sample at the Pu LIII absorption edge (18.054 keV) showed a shift of -3 eV compared to a Pu(IV) standard indicating reduction of Pu(IV) to Pu(III). These results suggestthat, although Pu generally exists as insoluble Pu(IV) in the environment, under appropriate conditions, anaerobic microbial activity could affect the long-term stability and mobility of Pu by its reductive dissolution.

  19. The Role of Dimethyl Sulfoxide in the Reductive Dissolution of Iron in Marine Aerosols

    NASA Astrophysics Data System (ADS)

    Key, J. M.; Johansen, A. M.

    2003-12-01

    Very little is known about the effects of atmospheric iron (Fe) deposition from aeolian dusts into the remote oceans and the role it plays as a key nutrient for photosynthesis in marine phytoplankton in high nutrient low chlorophyll (HNLC) waters. Several in situ iron fertilization studies in HNLC regions have reported increases in chlorophyll a concentrations, nutrient and carbon uptake, and the release of various biogenic gases which have the potential to directly and indirectly impact global climate. Of particular interest in the present study is the indirect effect of dimethyl sulfoxide (DMSO) as part of a positive feedback cycle that may exist between such biogenically derived reduced sulfur compounds and crustal derived iron in the atmosphere over remote oceanic regions. To determine whether DMSO can lead to larger atmospheric concentrations of bioavailable iron in the form of Fe(II), photochemical simulation experiments were carried out using synthetic ferrihydrite (Fe5HO8ṡ4H2O) in the presence of DMSO. During these experiments DMSO oxidation products, such as methane sulfonic acid (MSA), methane sulfinic acid (MSIA), and sulfate (SO42-), were quantified by means of ion chromatography (IC), while Fe(II) was determined spectrophotometrically by complexation with ferrozine. Preliminary results suggest that current ambient DMSO levels are too low to play a significant role in the reductive dissolution of iron hydroxide in aerosol particles. However, increased DMSO levels may enhance bioavailability of iron, thus potentially closing the gap in the positive feedback cycle.

  20. Technetium Reduction and Permanent Sequestration by Abiotic and Biotic Formation of Low-Solubility Sulfide Mineral Phases

    SciTech Connect

    Tratnyek, Paul G.; Tebo, Bradley M.; Fan, Dimin; Anitori, Roberto; Szecsody, Jim; Jansik, Danielle

    2015-11-14

    One way to minimize the mobility of the TcVII oxyanion pertechnetate (TcO4-) is to effect reduction under sulfidogenic conditions (generated abiotically by Fe0 or biotically) to form TcSx, which is significantly slower to oxidize than TcIVO2. In sediment systems, TcSx and other precipitates may oxidize more slowly due to oxygen diffusion limitations to these low permeability precipitate zones. In addition, the TcO4- reduction rate may be more rapid in the presence of sediment because of additional reductive surface phases. This project aims to provide a fundamental understanding of the feasibility of immobilization of TcO4- as TcSx in the vadose zone or groundwater by application nano zero-valent iron (nZVI), and sulfide or sulfate. Biotic batch experiments have used the sulfate-reducing bacterium (SRB) Desulfotomaculum reducens. The iron sulfide mineral mackinawite was generated under these conditions, while vivianite was formed in nZVI only controls. The sulfide/bacteria-containing system consistently reduced aqueous pertechnetate rapidly (> 95% in the first hour), a rate similar to that for the sulfide-free, nZVI only system. Reduced Tc (aged for 3 months) generated in both SRB/nZVI systems was highly resistant to reoxidation. In reduced samples, Tc was found associated with solid phases containing Fe and S (D. reducens/nZVI) or Fe (nZVI only). Experiments using D. reducens without nZVI provided some additional insights. Firstly, stationary phase cultures were able to slowly reduce pertechnetate. Secondly, addition of pertechnetate at the beginning of cell growth (lag phase) resulted in a faster rate of Tc reduction, possibly indicating a direct (e.g. enzymatic) role for D. reducens in Tc reduction. Abiotic batch experiments were conducted with Na2S as the sulfide source. Pertechnetate reduction was

  1. Nitrogen Assimilation, Abiotic Stress and Glucose 6-Phosphate Dehydrogenase: The Full Circle of Reductants

    PubMed Central

    Esposito, Sergio

    2016-01-01

    Glucose 6 phosphate dehydrogenase (G6PDH; EC 1.1.1.49) is well-known as the main regulatory enzyme of the oxidative pentose phosphate pathway (OPPP) in living organisms. Namely, in Planta, different G6PDH isoforms may occur, generally localized in cytosol and plastids/chloroplasts. These enzymes are differently regulated by distinct mechanisms, still far from being defined in detail. In the last decades, a pivotal function for plant G6PDHs during the assimilation of nitrogen, providing reductants for enzymes involved in nitrate reduction and ammonium assimilation, has been described. More recently, several studies have suggested a main role of G6PDH to counteract different stress conditions, among these salinity and drought, with the involvement of an ABA depending signal. In the last few years, this recognized vision has been greatly widened, due to studies clearly showing the non-conventional subcellular localization of the different G6PDHs, and the peculiar regulation of the different isoforms. The whole body of these considerations suggests a central question: how do the plant cells distribute the reductants coming from G6PDH and balance their equilibrium? This review explores the present knowledge about these mechanisms, in order to propose a scheme of distribution of reductants produced by G6PDH during nitrogen assimilation and stress. PMID:27187489

  2. Nitrogen Assimilation, Abiotic Stress and Glucose 6-Phosphate Dehydrogenase: The Full Circle of Reductants.

    PubMed

    Esposito, Sergio

    2016-01-01

    Glucose 6 phosphate dehydrogenase (G6PDH; EC 1.1.1.49) is well-known as the main regulatory enzyme of the oxidative pentose phosphate pathway (OPPP) in living organisms. Namely, in Planta, different G6PDH isoforms may occur, generally localized in cytosol and plastids/chloroplasts. These enzymes are differently regulated by distinct mechanisms, still far from being defined in detail. In the last decades, a pivotal function for plant G6PDHs during the assimilation of nitrogen, providing reductants for enzymes involved in nitrate reduction and ammonium assimilation, has been described. More recently, several studies have suggested a main role of G6PDH to counteract different stress conditions, among these salinity and drought, with the involvement of an ABA depending signal. In the last few years, this recognized vision has been greatly widened, due to studies clearly showing the non-conventional subcellular localization of the different G6PDHs, and the peculiar regulation of the different isoforms. The whole body of these considerations suggests a central question: how do the plant cells distribute the reductants coming from G6PDH and balance their equilibrium? This review explores the present knowledge about these mechanisms, in order to propose a scheme of distribution of reductants produced by G6PDH during nitrogen assimilation and stress. PMID:27187489

  3. Abiotic reduction of nitroaromatic compounds by aqueous iron(ll)-catechol complexes.

    PubMed

    Naka, Daisuke; Kim, Dongwook; Strathmann, Timothy J

    2006-05-01

    Complexation of iron(ll) by catechol and thiol ligands leads to the formation of aqueous species that are capable of reducing substituted nitroaromatic compounds (NACs) to the corresponding anilines. No reactions of NACs are observed in FelI-only or ligand-only solutions. In solutions containing FeII and tiron, a model catechol, rates of NAC reduction are heavily dependent on pH, ligand concentration, and ionic strength. Observed pseudo-first-order rate constants (k(obs)) for 4-chloronitrobenzene reduction vary by more than 6 orders of magnitude, and the variability is well described by the expression k(obs) = k(FeL2)(6-) [FeL2(6-)], where [FeL2(6-)] is the concentration of the 1:2 FeII-tiron complex and kFeL2(6-) is the bimolecular rate constant for 4-chloronitrobenzene reaction with this species. The high reactivity of this FeII species is attributed to the low standard one-electron reduction potential of the corresponding FeIII/FeII redox couple (EH0 = -0.509 V vs NHE). The relative reactivity of different NACs can be described by a linear free-energy relationship (LFER) with the one-electron reduction potentials of the NACs, EH1'(ArNO2). The experimentally derived slope of the LFER indicates that electron transfer is rate determining. These findings suggest that FeII-organic complexes may play an important, previously unrecognized, role in the reductive transformation of persistent organic contaminants.

  4. Treatment of wastewater phosphate by reductive dissolution of iron: use of ferric oxyhydroxide media.

    PubMed

    Robertson, W D; Lombardo, P S

    2011-01-01

    In smaller wastewater treatment systems such as septic systems, there is an interest in the development of passive phosphorus (P) removal methods. This study tested fixed-bed filters containing ferric oxyhydroxide media for wastewater P removal in a laboratory column test and in a full-scale domestic septic system. In the column test, during 30 mo of dosing with domestic wastewater, reductive iron dissolution reactions delivered consistent moderate concentrations of Fe into solution (2.9 ± 1.6 mg L), and influent PO-P of 3.7 ± 1.0 mg L was attenuated to 0.09 + 0.04 mg L in the column effluent (98% removal). Phosphorus breakthrough at successive locations along the column indicated that in addition to sorption, mineral precipitation reactions probably also played an important role in the observed P attenuation. This was supported by electron microprobe analyses, which showed the presence of thick (20 μm) secondary Fe-rich coatings containing P on the primary ferric media grains. Assays of NaHCO-leachable and acid-extractable P on the column solids showed accumulation of up to 5.4 mg g acid-extractable P near the column inlet, but <5% of this amount was easily desorbable, further indicating P attenuation from processes other than sorption. Over 19 mo of operation, the domestic septic system also showed generally consistent increased Fe in the filter effluent (2.6 ± 1.7 mg L) and achieved 99% P removal to 0.03 ± 0.02 mg L when the effluent was subsequently oxidized in a sand filter. Ferric iron filters could be attractive options for P removal in smaller wastewater systems because of their passive nature.

  5. An experimental and ab initio study on the abiotic reduction of uranyl by ferrous iron

    NASA Astrophysics Data System (ADS)

    Taylor, S. D.; Marcano, M. C.; Rosso, K. M.; Becker, U.

    2015-05-01

    It is important to understand the mechanisms controlling the removal of uranyl from solution from an environmental standpoint, particularly whether soluble Fe(II) is capable of reducing soluble U(VI) to insoluble U(IV). Experiments were performed to shed light into discrepancies of recent studies about precipitation of U-containing solids without changing oxidation states versus precipitation/reduction reactions, especially with respect to the kinetics of these reactions. To understand the atomistic mechanisms, thermodynamics, and kinetics of these redox processes, ab initio electron transfer (ET) calculations, using Marcus theory, were applied to study the reduction of U(VI)aq to U(V)aq by Fe(II)aq (the first rate-limiting ET-step). Outer-sphere (OS) and inner-sphere (IS) Fe-U complexes were modeled to represent simple species within a homogeneous environment through which ET could occur. Experiments on the chemical reduction were performed by reacting 1 mM Fe(II)aq at pH 7.2 with high (i.e., 0.16 mM) and lower (i.e., 0.02 mM) concentrations of U(VI)aq. At higher U concentration, a rapid decrease in U(VI)aq was observed within the first hour of reaction. XRD and XPS analyses of the precipitates confirmed the presence of (meta)schoepite phases, where up to ∼25% of the original U was reduced to U4+ and/or U5+-containing phases. In contrast, at 0.02 mM U, the U(VI)aq concentration remained fairly constant for the first 3 h of reaction and only then began to decrease due to slower precipitation kinetics. XPS spectra confirm the partial chemical reduction U associated with the precipitate (up to ∼30%). Thermodynamic calculations support that the reduction of U(VI)aq to U(IV)aq by Fe(II)aq is energetically unfavorable. The batch experiments in this study show U(VI) is removed from solution by precipitation and that transitioning to a heterogeneous system in turn enables the solid U phase to be partially reduced. Ab initio ET calculations revealed that OS ET is

  6. Anomalous nitrogen isotopes in ultrahigh-pressure metamorphic rocks from the Sulu orogenic belt: Effect of abiotic nitrogen reduction during fluid-rock interaction

    NASA Astrophysics Data System (ADS)

    Li, Long; Zheng, Yong-Fei; Cartigny, Pierre; Li, Jianghanyang

    2014-10-01

    Modern nitrogen (N) fixation is primarily mediated by biological processes. However, in the early Earth where biological activity was absent or limited, abiotic N reduction in hydrothermal systems is thought to be a key process to transform atmospheric N2 and NOx to ammonium, an essential nutrient to support the emergence of life and also an N form that can be incorporated into rocks. Surprisingly, evidence for abiotic N reduction in the rock record has not been clearly identified. In this study, we reported anomalously low N isotope compositions (δN15 values as low as -15.8‰) of mica samples in ultrahigh-pressure metamorphic rocks from the Donghai area in the Sulu orogenic belt, eastern China. Compared with mica samples with typical crustal δN15 values (3-9‰) in similar metamorphic rocks from the western Dabie orogen, the 15N-depleted mica samples from the Sulu orogen are characterized by significant N enrichment (10 times higher) and extreme 18O depletion (δO18 values as low as -9‰). These features can be best explained by assimilation of N from a source characterized by extremely low δN15 values (less than ∼-16‰). The extremely low δN15 value would be produced by abiotic N reduction during reaction of a meteoric-hydrothermal fluid with crustal rocks before subduction. This observation provides a clue to the occurrence of abiotic N reduction in continental supracrustal rocks and infer that abiotic N reduction process could be a fundamental process driving the geological N cycling in early Earth.

  7. Stable Isotope Systematics of Abiotic Nitrite Reduction Coupled with Anaerobic Iron Oxidation: The Role of Reduced Clays and Fe-bearing Minerals

    NASA Astrophysics Data System (ADS)

    Grabb, K. C.; Buchwald, C.; Hansel, C. M.; Wankel, S. D.

    2014-12-01

    Under anaerobic conditions, it is widely assumed that nitrate (NO3-) and nitrite (NO2-) reduction is primarily the result of microbial respiration. However, it has also been shown that abiotic reduction of nitrate and nitrite by reduced iron (Fe(II)), whether mineral-bound or surface-associated, may also occur under certain environmentally relevant conditions. With a range of experimental conditions, we investigated the nitrogen and oxygen stable isotope systematics of abiotic nitrite reduction by Fe(II) in an effort to characterize biotic and abiotic processes in the environment. While homogenous reactions between NO2- and Fe(II) in artificial seawater showed little reduction, heterogeneous reactions involving Fe-containing minerals showed considerable nitrite loss. Specifically, rapid nitrite reduction was observed in experiments that included reduced clays (illite, Na-montmorillonite, and nontronite) and those that exhibited iron oxide formation (ferrihydrite, magnetite and/or green rust). While these iron oxides and clay minerals offer both a source of reduced iron in the mineral matrix as well as a surface for Fe(II) activation, control experiments with corundum as a non-Fe containing mineral surface showed little NO2- loss, implicating a more dominant role of structural Fe in the clays during nitrite reduction. The isotope effects for 15N and 18O (15ɛ and 18ɛ) ranged from 5 to 14‰ for 15ɛ and 5 to 17‰ for 18ɛ and were typically coupled such that 15ɛ ~ 18ɛ. Reactions below pH 7 were slower and the 18ɛ was affected by oxygen atom exchange with water. Although little data exist for comparison with the dual isotopes of microbial NO2- reduction, these data serve as a benchmark for evaluating the role of abiotic processes in N reduction, particularly in sediment systems low in organic carbon and high in iron.

  8. The study of abiotic reduction of nitrate and nitrite in Boom Clay

    NASA Astrophysics Data System (ADS)

    Mariën, A.; Bleyen, N.; Aerts, S.; Valcke, E.

    In Belgium, Boom Clay is studied as a reference host rock for the geological disposal of high-level and intermediate-level radioactive waste. Compatibility studies at the SCK•CEN aim at investigating a perturbation of the capacity of Boom Clay to retard the migration of radionuclides to the biosphere, after disposal of Eurobitum bituminized radioactive waste in the clay ( Valcke et al., 2009; Aertsens et al., 2009; Bleyen et al., 2010). One of the geo-chemical perturbations is the possible oxidation of Boom Clay by the large amounts of nitrate that will be released by Eurobitum. A more oxidised Boom Clay could have a lower reducing capacity towards redox sensitive radionuclides, possibly enhancing their migration. As the conditions in the Boom Clay formation around a disposal gallery for Eurobitum are far from optimal for the growth of prokaryotes (limited space in the far-field, high pH in the near-field, gamma radiation by the waste during the first ∼300 years (effect limited to the primary and secondary waste package)), the impact of microbially mediated reduction of nitrate and nitrite is unclear. Therefore, batch tests are performed at the SCK•CEN to study whether nitrate and nitrite can directly oxidise the main redoxactive components of Boom Clay (dissolved organic matter, kerogen, pyrite) without the mediation of prokaryotes. In a first series of batch tests, which are reported in this paper, the activity of denitrifying and nitrate reducing prokaryotes was inhibited by the addition of NaN 3. NaN 3 revealed to be an efficient inhibitor for these prokaryotes without affecting considerably the geochemistry of Boom Clay and/or Boom Clay pore water. Neither in batch tests with the Boom Clay slurries (with NaNO 3 (0.1 and 1 M) or NaNO 2 (0.1 M)) and with Boom Clay water (with 0.05 and 0.2 M NaNO 3) a pure chemical nitrate or nitrite reduction was observed after respectively 3, 7 and 17 weeks and 1 year (Boom Clay slurries) and about 2 years (Boom Clay

  9. Microbially enhanced dissolution and reductive dechlorination of PCE by a mixed culture: Model validation and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Chen, Mingjie; Abriola, Linda M.; Amos, Benjamin K.; Suchomel, Eric J.; Pennell, Kurt D.; Löffler, Frank E.; Christ, John A.

    2013-08-01

    Reductive dechlorination catalyzed by organohalide-respiring bacteria is often considered for remediation of non-aqueous phase liquid (NAPL) source zones due to cost savings, ease of implementation, regulatory acceptance, and sustainability. Despite knowledge of the key dechlorinators, an understanding of the processes and factors that control NAPL dissolution rates and detoxification (i.e., ethene formation) is lacking. A recent column study demonstrated a 5-fold cumulative enhancement in tetrachloroethene (PCE) dissolution and ethene formation (Amos et al., 2009). Spatial and temporal monitoring of key geochemical and microbial (i.e., Geobacter lovleyi and Dehalococcoides mccartyi strains) parameters in the column generated a data set used herein as the basis for refinement and testing of a multiphase, compositional transport model. The refined model is capable of simulating the reactive transport of multiple chemical constituents produced and consumed by organohalide-respiring bacteria and accounts for substrate limitations and competitive inhibition. Parameter estimation techniques were used to optimize the values of sensitive microbial kinetic parameters, including maximum utilization rates, biomass yield coefficients, and endogenous decay rates. Comparison and calibration of model simulations with the experimental data demonstrate that the model is able to accurately reproduce measured effluent concentrations, while delineating trends in dechlorinator growth and reductive dechlorination kinetics along the column. Sensitivity analyses performed on the optimized model parameters indicate that the rates of PCE and cis-1,2-dichloroethene (cis-DCE) transformation and Dehalococcoides growth govern bioenhanced dissolution, as long as electron donor (i.e., hydrogen flux) is not limiting. Dissolution enhancements were shown to be independent of cis-DCE accumulation; however, accumulation of cis-DCE, as well as column length and flow rate (i.e., column residence time

  10. Evidence for ligand hydrolysis and Fe(III) reduction in the dissolution of goethite by desferrioxamine-B

    NASA Astrophysics Data System (ADS)

    Simanova, Anna A.; Persson, Per; Loring, John S.

    2010-12-01

    Desferrioxamine-B (DFOB) is a bacterial trihydroxamate siderophore and probably the most studied to date. However, the manner in which DFOB adsorbs at mineral surfaces and promotes dissolution is still under discussion. Here we investigated the adsorption and dissolution reactions in the goethite-DFOB system using both in situ infrared spectroscopic and quantitative analytical methods. Experiments were carried out at a total DFOB concentration of 1 μmol/m 2, at pH 6, and in the absence of visible light. Our infrared spectroscopic results indicated that the adsorption of DFOB was nearly complete after a 4-h reaction time. In an attempt to determine the coordination mode at the goethite surface, we compared the spectrum of adsorbed DFOB after a 4-h reaction time to the spectra of model aqueous species. However, this approach proved too simplistic in the case of such a complex ligand as DFOB, and we suggest that a more detailed investigation (IR in D 2O, EXAFS of adsorbed model complexes) is needed to elucidate the structure of the adsorbed siderophore. Between a 4-h and 4-day reaction time, we observed the growth of carboxylate stretching bands at 1548 and 1404 cm -1, which are indicators of DFOB hydrolysis. Acetate, a product of DFOB hydrolysis at its terminal hydroxamate group, was quantified by ion chromatography. Its rate of formation was linear and nearly the same as the rate of Fe(III) dissolution. The larger hydrolysis product, a hydroxylamine fragment, was not detected by LC-MS. However, a signal due to the oxidized form of this fragment, a nitroso compound, was found to increase linearly with time, which is an indirect indication for Fe(III) reduction. Based on these findings, we propose that DFOB undergoes metal-enhanced hydrolysis at the mineral surface followed by the reduction of surface Fe(III). While Fe(II) was not detected in solution, this is likely because it remains adsorbed at the goethite surface or becomes buried in the goethite crystal by

  11. Recovery of Nickel and Cobalt from Laterite Tailings by Reductive Dissolution under Aerobic Conditions Using Acidithiobacillus Species.

    PubMed

    Marrero, J; Coto, O; Goldmann, S; Graupner, T; Schippers, A

    2015-06-01

    Biomining of sulfidic ores has been applied for almost five decades. However, the bioprocessing of oxide ores such as laterites lags commercially behind. Recently, the Ferredox process was proposed to treat limonitic laterite ores by means of anaerobic reductive dissolution (AnRD), which was found to be more effective than aerobic bioleaching by fungi and other bacteria. We show here that the ferric iron reduction mediated by Acidithiobacillus thiooxidans can be applied to an aerobic reductive dissolution (AeRD) of nickel laterite tailings. AeRD using a consortium of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans extracted similar amounts of nickel (53-57%) and cobalt (55-60%) in only 7 days as AnRD using Acidithiobacillus ferrooxidans. The economic and environmental advantages of AeRD for processing of laterite tailings comprise no requirement for an anoxic atmosphere, 1.8-fold less acid consumption than for AnRD, as well as nickel and cobalt recovered in a ferrous-based pregnant leach solution (PLS), facilitating the subsequent metal recovery. In addition, an aerobic acid regeneration stage is proposed. Therefore, AeRD process development can be considered as environmentally friendly for treating laterites with low operational costs and as an attractive alternative to AnRD. PMID:25923144

  12. Recovery of Nickel and Cobalt from Laterite Tailings by Reductive Dissolution under Aerobic Conditions Using Acidithiobacillus Species.

    PubMed

    Marrero, J; Coto, O; Goldmann, S; Graupner, T; Schippers, A

    2015-06-01

    Biomining of sulfidic ores has been applied for almost five decades. However, the bioprocessing of oxide ores such as laterites lags commercially behind. Recently, the Ferredox process was proposed to treat limonitic laterite ores by means of anaerobic reductive dissolution (AnRD), which was found to be more effective than aerobic bioleaching by fungi and other bacteria. We show here that the ferric iron reduction mediated by Acidithiobacillus thiooxidans can be applied to an aerobic reductive dissolution (AeRD) of nickel laterite tailings. AeRD using a consortium of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans extracted similar amounts of nickel (53-57%) and cobalt (55-60%) in only 7 days as AnRD using Acidithiobacillus ferrooxidans. The economic and environmental advantages of AeRD for processing of laterite tailings comprise no requirement for an anoxic atmosphere, 1.8-fold less acid consumption than for AnRD, as well as nickel and cobalt recovered in a ferrous-based pregnant leach solution (PLS), facilitating the subsequent metal recovery. In addition, an aerobic acid regeneration stage is proposed. Therefore, AeRD process development can be considered as environmentally friendly for treating laterites with low operational costs and as an attractive alternative to AnRD.

  13. Single-walled carbon nanotube transparent conductive films fabricated by reductive dissolution and spray coating for organic photovoltaics

    SciTech Connect

    Ostfeld, Aminy E.; Arias, Ana Claudia; Catheline, Amélie; Ligsay, Kathleen; Kim, Kee-Chan; Fogden, Siân; Chen, Zhihua; Facchetti, Antonio

    2014-12-22

    Solutions of unbundled and unbroken single-walled carbon nanotubes have been prepared using a reductive dissolution process. Transparent conductive films spray-coated from these solutions show a nearly twofold improvement in the ratio of electrical conductivity to optical absorptivity versus those deposited from conventional aqueous dispersions, due to substantial de-aggregation and sizable nanotube lengths. These transparent electrodes have been utilized to fabricate P3HT-PCBM organic solar cells achieving power conversion efficiencies up to 2.3%, comparable to those of solar cells using indium tin oxide transparent electrodes.

  14. Simultaneous Release of Fe and As during the Reductive Dissolution of Pb-As Jarosite by Shewanella putrefaciens CN32

    SciTech Connect

    Smeaton, Christina M; Walshe, Gillian E; Smith, Adrian M.L.; Hudson-Edwards, Karen A; Dubbin, William E; Wright, Kate; Beale, Andrew M; Fryer, Brian J; Weisener, Christopher G

    2012-11-05

    Jarosites are produced during metallurgical processing, on oxidized sulfide deposits, and in acid mine drainage environments. Despite the environmental relevance of jarosites, few studies have examined their biogeochemical stability. This study demonstrates the simultaneous reduction of structural Fe(III) and aqueous As(V) during the dissolution of synthetic Pb–As jarosite (PbFe3(SO4,AsO4)2(OH)6) by Shewanella putrefaciens using batch experiments under anaerobic circumneutral conditions. Fe(III) reduction occurred immediately in inoculated samples while As(V) reduction was observed after 72 h. XANES spectra showed As(III) (14.7%) in the solid phase at 168 h coincident with decreased aqueous As(V). At 336 h, XANES spectra and aqueous speciation analysis demonstrated 20.2% and 3.0% of total As was present as As(III) in the solid and aqueous phase, respectively. In contrast, 12.4% of total Fe was present as aqueous Fe(II) and was below the detection limits of XANES in the solid phase. TEM-EDS analysis at 336 h showed secondary precipitates enriched in Fe and O with minor amounts of As and Pb. Based on experimental data and thermodynamic modeling, we suggest that structural Fe(III) reduction was thermodynamically driven while aqueous As(V) reduction was triggered by detoxification induced to offset the high As(V) (328 μM) concentrations released during dissolution.

  15. Ultrasound-assisted reductive dissolution of CeO2 and PuO2 in the presence of Ti particles.

    PubMed

    Beaudoux, Xavier; Virot, Matthieu; Chave, Tony; Leturcq, Gilles; Jouan, Gauthier; Venault, Laurent; Moisy, Philippe; Nikitenko, Sergey I

    2016-06-01

    PuO2 is considered an important material for current and future nuclear fuel; however it is a very refractive compound towards dissolution. Among other techniques, its reprocessing can be performed via complexing dissolution in concentrated and boiling nitric acid containing hydrofluoric acid, or via oxidant dissolution in the presence of reagents with redox couples having high potentials such as Ce(iv)/Ce(iii), or Ag(ii)/Ag(i). Reductive dissolution can be performed under softer conditions and is considered an alternative to these methods which may suffer from several drawbacks (corrosion, effluent management, compatibility with nuclear waste disposal, etc.). In this study, a sonochemical and reductive approach is investigated for PuO2 dissolution under relatively mild conditions. At the first stage, the experiments are performed with CeO2 as an inactive surrogate for PuO2. The quantitative dissolution of both oxides can be achieved under ultrasound (20 kHz, 0.35-0.70 W mL(-1)) in 0.5 M HNO3/0.1 M [N2H5NO3]/2 M HCOOH sparged with Ar at 33-35 °C in the presence of Ti particles as a generating source of reductive species. Ultrasound enables the depassivation of the Ti surface (usually strongly passivated in nitric solutions) through acoustic cavitation which then allows further generation of the intermediate Ti(iii) reductive species. Dissolution rates and yields can be further increased with the injection of dilute fluoride aliquots (NH4F or HF) in the sonicated solution to favor Ti chemical depassivation. The rapid and complete dissolution of PuO2 under selected conditions is accompanied by Pu(iii) accumulation in solution. PMID:27145713

  16. Reductive Reactivity of Iron(III) Oxides in the East China Sea Sediments: Characterization by Selective Extraction and Kinetic Dissolution

    PubMed Central

    Chen, Liang-Jin; Zhu, Mao-Xu; Yang, Gui-Peng; Huang, Xiang-Li

    2013-01-01

    Reactive Fe(III) oxides in gravity-core sediments collected from the East China Sea inner shelf were quantified by using three selective extractions (acidic hydroxylamine, acidic oxalate, bicarbonate-citrate buffered sodium dithionite). Also the reactivity of Fe(III) oxides in the sediments was characterized by kinetic dissolution using ascorbic acid as reductant at pH 3.0 and 7.5 in combination with the reactive continuum model. Three parameters derived from the kinetic method: m0 (theoretical initial amount of ascorbate-reducible Fe(III) oxides), k′ (rate constant) and γ (heterogeneity of reactivity), enable a quantitative characterization of Fe(III) oxide reactivity in a standardized way. Amorphous Fe(III) oxides quantified by acidic hydroxylamine extraction were quickly consumed in the uppermost layer during early diagenesis but were not depleted over the upper 100 cm depth. The total amounts of amorphous and poorly crystalline Fe(III) oxides are highly available for efficient buffering of dissolved sulfide. As indicated by the m0, k′ and γ, the surface sediments always have the maximum content, reactivity and heterogeneity of reactive Fe(III) oxides, while the three parameters simultaneously downcore decrease, much more quickly in the upper layer than at depth. Albeit being within a small range (within one order of magnitude) of the initial rates among sediments at different depths, incongruent dissolution could result in huge discrepancies of the later dissolution rates due to differentiating heterogeneity, which cannot be revealed by selective extraction. A strong linear correlation of the m0 at pH 3.0 with the dithionite-extractable Fe(III) suggests that the m0 may represent Fe(III) oxide assemblages spanning amorphous and crystalline Fe(III) oxides. Maximum microbially available Fe(III) predicted by the m0 at pH 7.5 may include both amorphous and a fraction of other less reactive Fe(III) phases. PMID:24260377

  17. Reductive reactivity of iron(III) oxides in the east china sea sediments: characterization by selective extraction and kinetic dissolution.

    PubMed

    Chen, Liang-Jin; Zhu, Mao-Xu; Yang, Gui-Peng; Huang, Xiang-Li

    2013-01-01

    Reactive Fe(III) oxides in gravity-core sediments collected from the East China Sea inner shelf were quantified by using three selective extractions (acidic hydroxylamine, acidic oxalate, bicarbonate-citrate buffered sodium dithionite). Also the reactivity of Fe(III) oxides in the sediments was characterized by kinetic dissolution using ascorbic acid as reductant at pH 3.0 and 7.5 in combination with the reactive continuum model. Three parameters derived from the kinetic method: m 0 (theoretical initial amount of ascorbate-reducible Fe(III) oxides), k' (rate constant) and γ (heterogeneity of reactivity), enable a quantitative characterization of Fe(III) oxide reactivity in a standardized way. Amorphous Fe(III) oxides quantified by acidic hydroxylamine extraction were quickly consumed in the uppermost layer during early diagenesis but were not depleted over the upper 100 cm depth. The total amounts of amorphous and poorly crystalline Fe(III) oxides are highly available for efficient buffering of dissolved sulfide. As indicated by the m 0, k' and γ, the surface sediments always have the maximum content, reactivity and heterogeneity of reactive Fe(III) oxides, while the three parameters simultaneously downcore decrease, much more quickly in the upper layer than at depth. Albeit being within a small range (within one order of magnitude) of the initial rates among sediments at different depths, incongruent dissolution could result in huge discrepancies of the later dissolution rates due to differentiating heterogeneity, which cannot be revealed by selective extraction. A strong linear correlation of the m 0 at pH 3.0 with the dithionite-extractable Fe(III) suggests that the m 0 may represent Fe(III) oxide assemblages spanning amorphous and crystalline Fe(III) oxides. Maximum microbially available Fe(III) predicted by the m 0 at pH 7.5 may include both amorphous and a fraction of other less reactive Fe(III) phases.

  18. Reductive dissolution and reactive solute transport in a sewage-contaminated glacial outwash aquifer

    USGS Publications Warehouse

    Lee, R.W.; Bennett, P.C.

    1998-01-01

    Contamination of shallow ground water by sewage effluent typically contains reduced chemical species that consume dissolved oxygen, developing either a low oxygen geochemical environment or an anaerobic geochemical environment. Based on the load of reduced chemical species discharged to shallow ground water and the amounts of reactants in the aquifer matrix, it should be possible to determine chemical processes in the aquifer and compare observed results to predicted ones. At the Otis Air Base research site (Cape Cod, Massachusetts) where sewage effluent has infiltrated the shallow aquifer since 1936, bacterially mediated processes such as nitrification, denitrification, manganese reduction, and iron reduction have been observed in the contaminant plume. In specific areas of the plume, dissolved manganese and iron have increased significantly where local geochemical conditions are favorable for reduction and transport of these constituents from the aquifer matrix. Dissolved manganese and iron concentrations ranged from 0.02 to 7.3 mg/L, and 0.001 to 13.0 mg/L, respectively, for 21 samples collected from 1988 to 1989. Reduction of manganese and iron is linked to microbial oxidation of sewage carbon, producing bicarbonate and the dissolved metal ions as by-products. Calculated production and flux of CO2 through the unsaturated zone from manganese reduction in the aquifer was 0.035 g/m2/d (12% of measured CO2 flux during winter). Manganese is limited in the aquifer, however. A one-dimensional, reaction-coupled transport model developed for the mildly reducing conditions in the sewage plume nearest the source beds showed that reduction, transport, and removal of manganese from the aquifer sediments should result in iron reduction where manganese has been depleted.

  19. Kinetics of lead(IV) oxide (PbO2) reductive dissolution: role of lead(II) adsorption and surface speciation.

    PubMed

    Wang, Yin; Wu, Jiewei; Wang, Zimeng; Terenyi, Agnes; Giammar, Daniel E

    2013-01-01

    Lead(IV) oxide (PbO(2)) is a corrosion product on lead pipes used for drinking water distribution, and its dissolution can control lead release to drinking water. This study evaluated the adsorption of Pb(II) to PbO(2) and its impact on the dissolution rate of PbO(2). The dissolution rate of PbO(2) was determined as a function of pH in the absence and presence of free chlorine using continuously-stirred tank reactors. Pb(II) adsorption was examined as a function of pH and initial Pb(II) concentrations. The dissolution rate of PbO(2) increased with decreasing pH. The presence of free chlorine inhibited PbO(2) dissolution. The dissolution of PbO(2) involves a coupled reduction-detachment process, and a model was developed that accounts for the adsorption of Pb(II) from the reduction. The extent of Pb(II) adsorption to PbO(2) increased with increasing pH and Pb(II) concentrations until reaching a plateau. Adsorption was interpreted with a surface complexation model using the diffuse double-layer model and a single surface complex. The dissolution rate of PbO(2) was directly related to the distribution of the PbO(2) surface species predicted by the surface complexation model. The dissolution rate was predominantly controlled by >Pb(IV)OH(2)(+) for acidic conditions and by>Pb(IV)OH and>Pb(IV)O(-) at neutral to basic conditions.

  20. Observations of magnetite dissolution in poorly drained soils

    USGS Publications Warehouse

    Grimley, D.A.; Arruda, N.K.

    2007-01-01

    Dissolution of strongly magnetic minerals is a common and relatively rapid phenomenon in poorly drained soils of the central United States, resulting in low magnetic susceptibility (MS). Low Eh reducing conditions are primarily responsible for magnetic mineral dissolution; a process likely mediated by iron-reducing bacteria in the presence of soil organic matter. Based on transects across drainage sequences from nine sites, natural magnetic minerals (>5 ??m) extracted from surface soil consist of 54% ?? 18% magnetite, 21% ?? 11% titanomagnetite, and 17% ?? 14% ilmenite. Magnetite and titanomagnetite dissolution, assessed by scanning electron microscopy on a 0-to-3 scale, inversely correlates with surface soil MS (r = 0.53), a proxy for soil drainage at studied transects. Altered magnetite typically displays etch pits 5 ??m) include 26% ?? 18% anthropogenic fly ash that also exhibits greater dissolution in low MS soils (r = 0.38), indicating detectable alteration can occur within 150 years in low Eh soils. Laboratory induced reduction of magnetite, titanomagnetite, and magnetic fly ash, with a citrate-bicarbonate- dithionite solution, resulted in dissolution textures similar to those of in situ soil particles. Although experiments indicate that reductive dissolution of magnetite can occur abiotically under extreme conditions, bacteria likely play an important role in the natural environment. ?? 2007 Lippincott Williams & Wilkins, Inc.

  1. Combined abiotic and biotic in-situ reduction of hexavalent chromium in groundwater using nZVI and whey: A remedial pilot test.

    PubMed

    Němeček, Jan; Pokorný, Petr; Lacinová, Lenka; Černík, Miroslav; Masopustová, Zuzana; Lhotský, Ondřej; Filipová, Alena; Cajthaml, Tomáš

    2015-12-30

    The paper describes a pilot remediation test combining two Cr(VI) geofixation methods - chemical reduction by nanoscale zero-valent iron (nZVI) and subsequent biotic reduction supported by whey. Combination of the methods exploited the advantages of both - a rapid decrease in Cr(VI) concentrations by nZVI, which prevented further spreading of the contamination and facilitated subsequent use of the cheaper biological method. Successive application of whey as an organic substrate to promote biotic reduction of Cr(VI) after application of nZVI resulted in a further and long-term decrease in the Cr(VI) contents in the groundwater. The effect of biotic reduction was observed even in a monitoring well located at a distance of 22 m from the substrate injection wells after 10 months. The results indicated a reciprocal effect of both the phases - nZVI oxidized to Fe(III) during the abiotic phase was microbially reduced back to Fe(II) and acted as a reducing agent for Cr(VI) even when the microbial density was already low due to the consumed substrate. Community analysis with pyrosequencing of the 16S rRNA genes further confirmed partial recycling of nZVI in the form of Fe(II), where the results showed that the Cr(VI) reducing process was mediated mainly by iron-reducing and sulfate-reducing bacteria. PMID:26292054

  2. Combined abiotic and biotic in-situ reduction of hexavalent chromium in groundwater using nZVI and whey: A remedial pilot test.

    PubMed

    Němeček, Jan; Pokorný, Petr; Lacinová, Lenka; Černík, Miroslav; Masopustová, Zuzana; Lhotský, Ondřej; Filipová, Alena; Cajthaml, Tomáš

    2015-12-30

    The paper describes a pilot remediation test combining two Cr(VI) geofixation methods - chemical reduction by nanoscale zero-valent iron (nZVI) and subsequent biotic reduction supported by whey. Combination of the methods exploited the advantages of both - a rapid decrease in Cr(VI) concentrations by nZVI, which prevented further spreading of the contamination and facilitated subsequent use of the cheaper biological method. Successive application of whey as an organic substrate to promote biotic reduction of Cr(VI) after application of nZVI resulted in a further and long-term decrease in the Cr(VI) contents in the groundwater. The effect of biotic reduction was observed even in a monitoring well located at a distance of 22 m from the substrate injection wells after 10 months. The results indicated a reciprocal effect of both the phases - nZVI oxidized to Fe(III) during the abiotic phase was microbially reduced back to Fe(II) and acted as a reducing agent for Cr(VI) even when the microbial density was already low due to the consumed substrate. Community analysis with pyrosequencing of the 16S rRNA genes further confirmed partial recycling of nZVI in the form of Fe(II), where the results showed that the Cr(VI) reducing process was mediated mainly by iron-reducing and sulfate-reducing bacteria.

  3. Bioenhanced Dissolution of PCE from DNAPL Pools: Large Tank Experiments

    NASA Astrophysics Data System (ADS)

    Glover, K. C.; Illangasekare, T. H.; Munakata Marr, J.; Philippe, P.

    2006-12-01

    Long-term persistence of chlorinated DNAPL has driven interest in source-depletion technologies. Recent flow- cell experiments demonstrated that microbial reductive dehalogenation can significantly enhance dissolution of high saturation pools of DNAPL. Modeling of these experiments showed that bioenhanced mass transfer can be simulated by linking abiotic DNAPL dissolution with aqueous-phase biodegradation and solute transport. For many technologies, the scale of application affects DNAPL removal efficiency and downgradient mass flux. However, detailed characterization of processes at field scales rarely is possible. As described in this presentation, scale-dependency of bioenhanced mass transfer was characterized in detail by conducting dissolution experiments in large 2-D tanks packed with homogeneous or heterogeneous sand units. Biotic and abiotic dissolution experiments were conducted with DNAPL pools at a range of saturations. Key experimental results follow. (1) Mass flux from intermediate-scale sources was significantly enhanced by biological activity. Compared with results of flow-cell experiments at similar saturations and Darcy velocities, enhancement did not decline with increasing source volume. (2) Saturation transition zones at tops of pools were key zones of bioenhanced dissolution. Electron-donor advection within these zones promoted PCE degradation, lowering aqueous PCE concentrations, and enhancing dissolution gradients. (3) Biodegradation to DCE occurred in the vicinity of pools, followed by downgradient conversion to vinyl chloride and ethene. (4) Gas accumulation, associated with ethene and vinyl chloride production downstream and electron-donor consumption upstream of sources, was significant. (5) Though inoculation occurred solely within the source zone, dechlorinating microbes migrated rapidly into downgradient areas. After three months, microbe distribution was nearly uniform, regardless of porous media heterogeneity. These results suggest

  4. Reduction of nitrogen compounds in oceanic basement and its implications for HCN formation and abiotic organic synthesis.

    PubMed

    Holm, Nils G; Neubeck, Anna

    2009-10-22

    Hydrogen cyanide is an excellent organic reagent and is central to most of the reaction pathways leading to abiotic formation of simple organic compounds containing nitrogen, such as amino acids, purines and pyrimidines. Reduced carbon and nitrogen precursor compounds for the synthesis of HCN may be formed under off-axis hydrothermal conditions in oceanic lithosphere in the presence of native Fe and Ni and are adsorbed on authigenic layer silicates and zeolites. The native metals as well as the molecular hydrogen reducing CO2 to CO/CH4 and NO3-/NO2- to NH3/NH4+ are a result of serpentinization of mafic rocks. Oceanic plates are conveyor belts of reduced carbon and nitrogen compounds from the off-axis hydrothermal environments to the subduction zones, where compaction, dehydration, desiccation and diagenetic reactions affect the organic precursors. CO/CH4 and NH3/NH4+ in fluids distilled out of layer silicates and zeolites in the subducting plate at an early stage of subduction will react upon heating and form HCN, which is then available for further organic reactions to, for instance, carbohydrates, nucleosides or even nucleotides, under alkaline conditions in hydrated mantle rocks of the overriding plate. Convergent margins in the initial phase of subduction must, therefore, be considered the most potent sites for prebiotic reactions on Earth. This means that origin of life processes are, perhaps, only possible on planets where some kind of plate tectonics occur.

  5. Reduction of nitrogen compounds in oceanic basement and its implications for HCN formation and abiotic organic synthesis.

    PubMed

    Holm, Nils G; Neubeck, Anna

    2009-01-01

    Hydrogen cyanide is an excellent organic reagent and is central to most of the reaction pathways leading to abiotic formation of simple organic compounds containing nitrogen, such as amino acids, purines and pyrimidines. Reduced carbon and nitrogen precursor compounds for the synthesis of HCN may be formed under off-axis hydrothermal conditions in oceanic lithosphere in the presence of native Fe and Ni and are adsorbed on authigenic layer silicates and zeolites. The native metals as well as the molecular hydrogen reducing CO2 to CO/CH4 and NO3-/NO2- to NH3/NH4+ are a result of serpentinization of mafic rocks. Oceanic plates are conveyor belts of reduced carbon and nitrogen compounds from the off-axis hydrothermal environments to the subduction zones, where compaction, dehydration, desiccation and diagenetic reactions affect the organic precursors. CO/CH4 and NH3/NH4+ in fluids distilled out of layer silicates and zeolites in the subducting plate at an early stage of subduction will react upon heating and form HCN, which is then available for further organic reactions to, for instance, carbohydrates, nucleosides or even nucleotides, under alkaline conditions in hydrated mantle rocks of the overriding plate. Convergent margins in the initial phase of subduction must, therefore, be considered the most potent sites for prebiotic reactions on Earth. This means that origin of life processes are, perhaps, only possible on planets where some kind of plate tectonics occur. PMID:19849830

  6. Reduction of nitrogen compounds in oceanic basement and its implications for HCN formation and abiotic organic synthesis

    PubMed Central

    2009-01-01

    Hydrogen cyanide is an excellent organic reagent and is central to most of the reaction pathways leading to abiotic formation of simple organic compounds containing nitrogen, such as amino acids, purines and pyrimidines. Reduced carbon and nitrogen precursor compounds for the synthesis of HCN may be formed under off-axis hydrothermal conditions in oceanic lithosphere in the presence of native Fe and Ni and are adsorbed on authigenic layer silicates and zeolites. The native metals as well as the molecular hydrogen reducing CO2 to CO/CH4 and NO3-/NO2- to NH3/NH4+ are a result of serpentinization of mafic rocks. Oceanic plates are conveyor belts of reduced carbon and nitrogen compounds from the off-axis hydrothermal environments to the subduction zones, where compaction, dehydration, desiccation and diagenetic reactions affect the organic precursors. CO/CH4 and NH3/NH4+ in fluids distilled out of layer silicates and zeolites in the subducting plate at an early stage of subduction will react upon heating and form HCN, which is then available for further organic reactions to, for instance, carbohydrates, nucleosides or even nucleotides, under alkaline conditions in hydrated mantle rocks of the overriding plate. Convergent margins in the initial phase of subduction must, therefore, be considered the most potent sites for prebiotic reactions on Earth. This means that origin of life processes are, perhaps, only possible on planets where some kind of plate tectonics occur. PMID:19849830

  7. Identification of abiotic and biotic reductive dechlorination in a chlorinated ethene plume after thermal source remediation by means of isotopic and molecular biology tools.

    PubMed

    Badin, Alice; Broholm, Mette M; Jacobsen, Carsten S; Palau, Jordi; Dennis, Philip; Hunkeler, Daniel

    2016-09-01

    Thermal tetrachloroethene (PCE) remediation by steam injection in a sandy aquifer led to the release of dissolved organic carbon (DOC) from aquifer sediments resulting in more reduced redox conditions, accelerated PCE biodegradation, and changes in microbial populations. These changes were documented by comparing data collected prior to the remediation event and eight years later. Based on the premise that dual C-Cl isotope slopes reflect ongoing degradation pathways, the slopes associated with PCE and TCE suggest the predominance of biotic reductive dechlorination near the source area. PCE was the predominant chlorinated ethene near the source area prior to thermal treatment. After thermal treatment, cDCE became predominant. The biotic contribution to these changes was supported by the presence of Dehalococcoides sp. DNA (Dhc) and Dhc targeted rRNA close to the source area. In contrast, dual C-Cl isotope analysis together with the almost absent VC (13)C depletion in comparison to cDCE (13)C depletion suggested that cDCE was subject to abiotic degradation due to the presence of pyrite, possible surface-bound iron (II) or reduced iron sulphides in the downgradient part of the plume. This interpretation is supported by the relative lack of Dhc in the downgradient part of the plume. The results of this study show that thermal remediation can enhance the biodegradation of chlorinated ethenes, and that this effect can be traced to the mobilisation of DOC due to steam injection. This, in turn, results in more reduced redox conditions which favor active reductive dechlorination and/or may lead to a series of redox reactions which may consecutively trigger biotically induced abiotic degradation. Finally, this study illustrates the valuable complementary application of compound-specific isotopic analysis combined with molecular biology tools to evaluate which biogeochemical processes are taking place in an aquifer contaminated with chlorinated ethenes. PMID:27318432

  8. Identification of abiotic and biotic reductive dechlorination in a chlorinated ethene plume after thermal source remediation by means of isotopic and molecular biology tools.

    PubMed

    Badin, Alice; Broholm, Mette M; Jacobsen, Carsten S; Palau, Jordi; Dennis, Philip; Hunkeler, Daniel

    2016-09-01

    Thermal tetrachloroethene (PCE) remediation by steam injection in a sandy aquifer led to the release of dissolved organic carbon (DOC) from aquifer sediments resulting in more reduced redox conditions, accelerated PCE biodegradation, and changes in microbial populations. These changes were documented by comparing data collected prior to the remediation event and eight years later. Based on the premise that dual C-Cl isotope slopes reflect ongoing degradation pathways, the slopes associated with PCE and TCE suggest the predominance of biotic reductive dechlorination near the source area. PCE was the predominant chlorinated ethene near the source area prior to thermal treatment. After thermal treatment, cDCE became predominant. The biotic contribution to these changes was supported by the presence of Dehalococcoides sp. DNA (Dhc) and Dhc targeted rRNA close to the source area. In contrast, dual C-Cl isotope analysis together with the almost absent VC (13)C depletion in comparison to cDCE (13)C depletion suggested that cDCE was subject to abiotic degradation due to the presence of pyrite, possible surface-bound iron (II) or reduced iron sulphides in the downgradient part of the plume. This interpretation is supported by the relative lack of Dhc in the downgradient part of the plume. The results of this study show that thermal remediation can enhance the biodegradation of chlorinated ethenes, and that this effect can be traced to the mobilisation of DOC due to steam injection. This, in turn, results in more reduced redox conditions which favor active reductive dechlorination and/or may lead to a series of redox reactions which may consecutively trigger biotically induced abiotic degradation. Finally, this study illustrates the valuable complementary application of compound-specific isotopic analysis combined with molecular biology tools to evaluate which biogeochemical processes are taking place in an aquifer contaminated with chlorinated ethenes.

  9. Identification of abiotic and biotic reductive dechlorination in a chlorinated ethene plume after thermal source remediation by means of isotopic and molecular biology tools

    NASA Astrophysics Data System (ADS)

    Badin, Alice; Broholm, Mette M.; Jacobsen, Carsten S.; Palau, Jordi; Dennis, Philip; Hunkeler, Daniel

    2016-09-01

    Thermal tetrachloroethene (PCE) remediation by steam injection in a sandy aquifer led to the release of dissolved organic carbon (DOC) from aquifer sediments resulting in more reduced redox conditions, accelerated PCE biodegradation, and changes in microbial populations. These changes were documented by comparing data collected prior to the remediation event and eight years later. Based on the premise that dual C-Cl isotope slopes reflect ongoing degradation pathways, the slopes associated with PCE and TCE suggest the predominance of biotic reductive dechlorination near the source area. PCE was the predominant chlorinated ethene near the source area prior to thermal treatment. After thermal treatment, cDCE became predominant. The biotic contribution to these changes was supported by the presence of Dehalococcoides sp. DNA (Dhc) and Dhc targeted rRNA close to the source area. In contrast, dual C-Cl isotope analysis together with the almost absent VC 13C depletion in comparison to cDCE 13C depletion suggested that cDCE was subject to abiotic degradation due to the presence of pyrite, possible surface-bound iron (II) or reduced iron sulphides in the downgradient part of the plume. This interpretation is supported by the relative lack of Dhc in the downgradient part of the plume. The results of this study show that thermal remediation can enhance the biodegradation of chlorinated ethenes, and that this effect can be traced to the mobilisation of DOC due to steam injection. This, in turn, results in more reduced redox conditions which favor active reductive dechlorination and/or may lead to a series of redox reactions which may consecutively trigger biotically induced abiotic degradation. Finally, this study illustrates the valuable complementary application of compound-specific isotopic analysis combined with molecular biology tools to evaluate which biogeochemical processes are taking place in an aquifer contaminated with chlorinated ethenes.

  10. Potential Role of Nitrite for Abiotic Fe(II) Oxidation and Cell Encrustation during Nitrate Reduction by Denitrifying Bacteria

    PubMed Central

    Klueglein, Nicole; Zeitvogel, Fabian; Stierhof, York-Dieter; Floetenmeyer, Matthias; Konhauser, Kurt O.; Obst, Martin

    2014-01-01

    Microorganisms have been observed to oxidize Fe(II) at neutral pH under anoxic and microoxic conditions. While most of the mixotrophic nitrate-reducing Fe(II)-oxidizing bacteria become encrusted with Fe(III)-rich minerals, photoautotrophic and microaerophilic Fe(II) oxidizers avoid cell encrustation. The Fe(II) oxidation mechanisms and the reasons for encrustation remain largely unresolved. Here we used cultivation-based methods and electron microscopy to compare two previously described nitrate-reducing Fe(II) oxidizers ( Acidovorax sp. strain BoFeN1 and Pseudogulbenkiania sp. strain 2002) and two heterotrophic nitrate reducers (Paracoccus denitrificans ATCC 19367 and P. denitrificans Pd 1222). All four strains oxidized ∼8 mM Fe(II) within 5 days in the presence of 5 mM acetate and accumulated nitrite (maximum concentrations of 0.8 to 1.0 mM) in the culture media. Iron(III) minerals, mainly goethite, formed and precipitated extracellularly in close proximity to the cell surface. Interestingly, mineral formation was also observed within the periplasm and cytoplasm; intracellular mineralization is expected to be physiologically disadvantageous, yet acetate consumption continued to be observed even at an advanced stage of Fe(II) oxidation. Extracellular polymeric substances (EPS) were detected by lectin staining with fluorescence microscopy, particularly in the presence of Fe(II), suggesting that EPS production is a response to Fe(II) toxicity or a strategy to decrease encrustation. Based on the data presented here, we propose a nitrite-driven, indirect mechanism of cell encrustation whereby nitrite forms during heterotrophic denitrification and abiotically oxidizes Fe(II). This work adds to the known assemblage of Fe(II)-oxidizing bacteria in nature and complicates our ability to delineate microbial Fe(II) oxidation in ancient microbes preserved as fossils in the geological record. PMID:24271182

  11. Constraining the role of iron in environmental nitrogen transformations: Dual stable isotope systematics of abiotic NO2- reduction by Fe(II) and its production of N2O

    NASA Astrophysics Data System (ADS)

    Buchwald, Carolyn; Grabb, Kalina; Hansel, Colleen M.; Wankel, Scott D.

    2016-08-01

    Despite mounting evidence for biogeochemical interactions between iron and nitrogen, our understanding of their environmental importance remains limited. Here we present an investigation of abiotic nitrite (NO2-) reduction by Fe(II) or 'chemodenitrification', and its relevance to the production of nitrous oxide (N2O), specifically focusing on dual (N and O) isotope systematics under a variety of environmental conditions. We observe a range of kinetic isotope effects that are regulated by reaction rates, with faster rates at higher pH (∼8), higher concentrations of Fe(II) and in the presence of mineral surfaces. A clear non-linear relationship between rate constant and kinetic isotope effects of NO2- reduction was evident (with larger isotope effects at slower rates) and is interpreted as reflecting the dynamics of Fe(II)-N reaction intermediates. N and O isotopic composition of product N2O also suggests a complex network of parallel and/or competing pathways. Our findings suggest that NO2- reduction by Fe(II) may represent an important abiotic source of environmental N2O, especially in iron-rich environments experiencing dynamic redox variations. This study provides a multi-compound, multi-isotope framework for evaluating the environmental occurrence of abiotic NO2- reduction and N2O formation, helping future studies constrain the relative roles of abiotic and biological N2O production pathways.

  12. A kinetic pressure effect on the experimental abiotic reduction of aqueous CO2 to methane from 1 to 3.5 kbar at 300 °C

    NASA Astrophysics Data System (ADS)

    Lazar, Codi; Cody, George D.; Davis, Jeffrey M.

    2015-02-01

    Aqueous abiotic methane concentrations in a range of geologic settings are below levels expected for equilibrium with coexisting CO2 and H2, indicating that kinetics can control the speciation of reduced carbon-bearing fluids. Previous studies have suggested that mineral catalysts or gas-phase reactions may increase the rate of methanogenesis. Here, we report on experiments that indicate pressure can also accelerate aqueous reduction of CO2 to CH4. Four series of cold-seal hydrothermal experiments were performed from 1 to 3.5 kbar at 300 °C for two weeks and analyzed using gas chromatography/mass spectrometry. The starting fluids were 10-20-μL solutions of 70-mmolal 13C-labeled formic acid (H13COOH) contained in welded gold capsules. Increasing pressure (P) resulted in a systematic, reproducible log-linear increase in 13CH4 yields. The pressure effect could be quantified the log-linear slope, Δlog[13CH4]/ΔP (log mmolal per kbar). The mean slope was 0.66 ± 0.05 (±1s.e.), indicating that 13CH4 yields increased by an average factor of 40-50 over a P range of 2.5 kbar. Pressure-independent variations in [13CH4] were observed as scatter about the log-linear regressions and as variations in the y-intercepts of the regressions. These variations were attributed to trace amounts of catalytic Fe along the inner capsule wall that remained despite cleaning the Au capsules in nitric acid prior to each experimental series. The mechanism for the pressure-dependent effect was interpreted to result from one or more of the following three processes: reduction of a metastable reaction intermediate such as methanol, formation of Fe-carbonyl complexes in the fluid, and/or heterogeneous catalysis by Fe. The results suggest that pressure may influence aqueous abiotic CH4 yields in certain geological environments, particularly when the relative effects of other kinetic factors such as temperature are diminished, e.g., in cool forearcs or other settings with a steep geothermal

  13. The effect of microbial glucose metabolism on bytownite feldspar dissolution rates between 5 and 35 C

    SciTech Connect

    Welch, S.A.; Ullman, W.J.

    1999-10-01

    The rate of Si release from dissolving bytownite feldspar in abiotic batch reactors increased as temperatures increased from 5 to 35 C. Metabolically inert subsurface bacteria (bacteria in solution with no organic substrate) had no apparent effect on dissolution rates over this temperature range. When glucose was added to the microbial cultures, the bacteria responded by producing gluconic acid, which catalyzed the dissolution reaction by both proton- and ligand-promoted mechanisms. The metabolic production, excretion, and consumption of gluconic acid in the course of glucose oxidation, and therefore, the degree of microbial enhancement of mineral dissolution, depend on temperature. There was little accumulation of gluconic acid and therefore, no significant enhancement of mineral dissolution rates at 35 C compared to the abiotic controls. At 20 C, gluconate accumulated in the experimental solutions only at the beginning of the experiment and led to a twofold increase in dissolved Si release compared to the controls, primarily by the ligand-promoted dissolution mechanism. There was significant accumulation of gluconic acid in the 5 C experiment, which is reflected in a significant reduction in pH, leading to 20-fold increase in Si release, primarily attributable to the proton-promoted dissolution mechanism. These results indicate that bacteria and microbial metabolism can affect mineral dissolution rates in organic-rich, nutrient-poor environments; the impact of microbial metabolism on aluminum silicate dissolution rates may be greater at lower rather than at higher temperatures due to the metabolic accumulation of dissolution-enhancing protons and ligands in solution.

  14. Final Report for "Toward Quantifying Kinetics of Biotic and Abiotic Metal Reduction with Electrical Geophysical Methods" DE-FG02-08ER64520

    SciTech Connect

    Singha, Kamini; Brantley, Susan

    2012-06-07

    Although changes in the bulk electrical conductivity in aquifers have been attributed to microbial activity, electrical conductivity has never been used to infer biogeochemical reaction rates quantitatively. To explore the use of electrical conductivity to measure reaction rates, we conducted iron oxide reduction experiments of increasing biological complexity. To quantify reaction rates, we proposed composite reactions that incorporated the stiochiometry of five different types of reactions: redox, acid-based, sorption, dissolution/precipitation, and biosynthesis. In batch and column experiments, such reaction stiochiometries inferred from a few chemical measurements allowed quantification of the Fe-oxide reduction rate based on changes in electrical conductivity. The relationship between electrical conductivity and fluid chemistry did not hold during the latter stages of the column experiment when electrical conductivity increased while fluid chemistry remained constant. Growth of an electrically conductive biofilm could explain this late stage electrical conductivity increase. This work demonstrates that measurements of electrical conductivity and flow rate, combined with a few direct chemical measurements, can be used to quantify biogeochemical reaction rates in controlled laboratory situations and may be able to detect the presence of biofilms.

  15. Constraining the role of iron in environmental nitrogen transformations. Dual stable isotope systematics of abiotic NO2- reduction by Fe(II) and its production of N2O

    SciTech Connect

    Johnston, David; Wankel, Scott David; Buchwald, Carolyn; Hansel, Colleen

    2015-09-16

    Redox reactions involving nitrogen and iron have been shown to have important implications for mobilization of priority contaminants. Thus, an understanding of the linkages between their biogeochemical cycling is critical for predicting subsurface mobilization of radionuclides such as uranium. Despite mounting evidence for biogeochemical interactions between iron and nitrogen, our understanding of their environmental importance remains limited. Here we present an investigation of abiotic nitrite (NO2-) reduction by Fe(II) or ‘chemodenitrification,’ and its relevance to the production of nitrous oxide (N2O), specifically focusing on dual (N and O) isotope systematics under a variety of environmentally relevant conditions. We observe a range of kinetic isotope effects that are regulated by reaction rates, with faster rates at higher pH (~8), higher concentrations of Fe(II) and in the presence of mineral surfaces. A clear non-linear relationship between rate constant and kinetic isotope effects of NO2- reduction was evident (with larger isotope effects at slower rates) and is interpreted as reflecting the dynamics of Fe(II)-N reaction intermediates. N and O isotopic composition of product N2O also suggests a complex network of parallel and/or competing pathways. Our findings suggest that NO2- reduction by Fe(II) may represent an important abiotic source of environmental N2O, especially in iron-rich environments experiencing dynamic redox variations. This study provides a multi-compound, multi-isotope framework for evaluating the environmental occurrence of abiotic NO2- reduction and N2O formation, helping future studies constrain the relative roles of abiotic and biological N2O production pathways.

  16. DOWNSTREAM IMPACTS OF SLUDGE MASS REDUCTION VIA ALUMINUM DISSOLUTION ON DWPF PROCESSING OF SAVANNAH RIVER SITE HIGH LEVEL WASTE - 9382

    SciTech Connect

    Pareizs, J; Cj Bannochie, C; Michael Hay, M; Daniel McCabe, D

    2009-01-14

    The SRS sludge that was to become a major fraction of Sludge Batch 5 (SB5) for the Defense Waste Processing Facility (DWPF) contained a large fraction of H-Modified PUREX (HM) sludge, containing a large fraction of aluminum compounds that could adversely impact the processing and increase the vitrified waste volume. It is beneficial to reduce the non-radioactive fraction of the sludge to minimize the number of glass waste canisters that must be sent to a Federal Repository. Removal of aluminum compounds, such as boehmite and gibbsite, from sludge can be performed with the addition of NaOH solution and heating the sludge for several days. Preparation of SB5 involved adding sodium hydroxide directly to the waste tank and heating the contents to a moderate temperature through slurry pump operation to remove a fraction of this aluminum. The Savannah River National Laboratory (SRNL) was tasked with demonstrating this process on actual tank waste sludge in our Shielded Cells Facility. This paper evaluates some of the impacts of aluminum dissolution on sludge washing and DWPF processing by comparing sludge processing with and without aluminum dissolution. It was necessary to demonstrate these steps to ensure that the aluminum removal process would not adversely impact the chemical and physical properties of the sludge which could result in slower processing or process upsets in the DWPF.

  17. The effect of microbial glucose metabolism on bytownite feldspar dissolution rates between 5° and 35°C

    NASA Astrophysics Data System (ADS)

    Welch, S. A.; Ullman, W. J.

    1999-10-01

    The rate of Si release from dissolving bytownite feldspar in abiotic batch reactors increased as temperatures increased from 5° to 35°C. Metabolically inert subsurface bacteria (bacteria in solution with no organic substrate) had no apparent effect on dissolution rates over this temperature range. When glucose was added to the microbial cultures, the bacteria responded by producing gluconic acid, which catalyzed the dissolution reaction by both proton- and ligand-promoted mechanisms. The metabolic production, excretion, and consumption of gluconic acid in the course of glucose oxidation, and therefore, the degree of microbial enhancement of mineral dissolution, depend on temperature. There was little accumulation of gluconic acid and therefore, no significant enhancement of mineral dissolution rates at 35°C compared to the abiotic controls. At 20°C, gluconate accumulated in the experimental solutions only at the beginning of the experiment and led to a twofold increase in dissolved Si release compared to the controls, primarily by the ligand-promoted dissolution mechanism. There was significant accumulation of gluconic acid in the 5°C experiment, which is reflected in a significant reduction in pH, leading to 20-fold increase in Si release, primarily attributable to the proton-promoted dissolution mechanism. These results indicate that bacteria and microbial metabolism can affect mineral dissolution rates in organic-rich, nutrient-poor environments; the impact of microbial metabolism on aluminum silicate dissolution rates may be greater at lower rather than at higher temperatures due to the metabolic accumulation of dissolution-enhancing protons and ligands in solution.

  18. Effect of iron oxide reductive dissolution on the transformation and immobilization of arsenic in soils: New insights from X-ray photoelectron and X-ray absorption spectroscopy.

    PubMed

    Fan, Jian-Xin; Wang, Yu-Jun; Liu, Cun; Wang, Li-Hua; Yang, Ke; Zhou, Dong-Mei; Li, Wei; Sparks, Donald L

    2014-08-30

    The geochemical behavior and speciation of arsenic (As) in paddy soils is strongly controlled by soil redox conditions and the sequestration by soil iron oxyhydroxides. Hence, the effects of iron oxide reductive dissolution on the adsorption, transformation and precipitation of As(III) and As(V) in soils were investigated using batch experiments and synchrotron based techniques to gain a deeper understanding at both macroscopic and microscopic scales. The results of batch sorption experiments revealed that the sorption capacity of As(V) on anoxic soil was much higher than that on control soil. Synchrotron based X-ray fluorescence (μ-XRF) mapping studies indicated that As was heterogeneously distributed and was mainly associated with iron in the soil. X-ray absorption near edge structure (XANES), micro-X-ray absorption near edge structure (μ-XANES) and X-ray photoelectron spectroscopy (XPS) analyses revealed that the primary speciation of As in the soil is As(V). These results further suggested that, when As(V) was introduced into the anoxic soil, the rapid coprecipitation of As(V) with ferric/ferrous ion prevented its reduction to As(III), and was the main mechanism controlling the immobilization of As. This research could improve the current understanding of soil As chemistry in paddy and wetland soils. PMID:25064258

  19. Chromium(VI) reduction kinetics by zero-valent iron in moderately hard water with humic acid: iron dissolution and humic acid adsorption.

    PubMed

    Liu, Tongzhou; Tsang, Daniel C W; Lo, Irene M C

    2008-03-15

    In zerovalent iron treatment systems, the presence of multiple solution components may impose combined effects that differ from corresponding individual effects. The copresence of humic acid and hardness (Ca2+/Mg2+) was found to influence Cr(VI) reduction by Feo and iron dissolution in a way different from their respective presence in batch kinetics experiments with synthetic groundwater at initial pH 6 and 9.5. Cr(VI) reduction rate constants (k(obs)) were slightly inhibited by humic acid adsorption on iron filings (decreases of 7-9% and 10-12% in the presence of humic acid alone and together with hardness, respectively). The total amount of dissolved Fe steadily increased to 25 mg L(-1) in the presence of humic acid alone because the formation of soluble Fe-humate complexes appeared to suppress iron precipitation. Substantial amounts of soluble and colloidal Fe-humate complexes in groundwater may arouse aesthetic and safety concerns in groundwater use. In contrast, the coexistence of humic acid and Ca2+/Mg2+ significantly promoted aggregation of humic acid and metal hydrolyzed species, as indicated by XPS and TEM analyses, which remained nondissolved (>0.45 microm) in solution. These metal-humate aggregates may impose long-term impacts on PRBs in subsurface settings.

  20. Evaluation of premeability-porosity relationships linked to mineral dissolution-precipitation using global implicit approach with a reduction scheme and operator splitting approach

    NASA Astrophysics Data System (ADS)

    Zolfaghari, R.; Shao, H.; Kolditz, O.

    2013-12-01

    Numerical simulation of reactive transport processes is essential in long term behavior assessment of hazardous materials. To simulate reactive transport processes global implicit approach (GIA) and operator splitting approach are commonly used. GIA has been getting more attentions due to advances in computational power and the lack of numerical accuracy and efficacy of operator splitting methods for simulating long term processes over the past few years. We have investigated the Efficiency and accuracy of these methods in handling slow reacting-processes in long term scenarios. GIA with reduction scheme proposed by Kräutel et al. (2010) and sequential non-iterative approach (SNIA) approach have been implemented into OpenGeoSys (OGS6) to solve reactive transport problems. The new reduction scheme in GIA uses a reformulation to reduce the number of coupled nonlinear partial differential equations by decoupling of equations and elimination of unknowns. The new reformulation divides components and species of the chemical system into decoupled linear reaction invariant components and coupled nonlinear reaction variant ones. A local chemical solver is used to handle the chemical problem in GIA and SNIA approaches. Equilibrium/ kinetic mineral reaction is treated as a complementarity problem in the local problem. In this context, a series of benchmarks have been adopted to assess the performance of GIA with reduction scheme and SNIA. The benchmarks objective is to simulate mineral dissolution-precipitation induced porosity changes and the resulting effects on the solute migration. The Carman-Kozeny relationship is used to describe changes in permeability as a function of porosity. The results produced by three codes of OGS6, OGS-PHREEQC and MIN3P have been compared and evaluated based on the benchmarks for the numerical accuracy and efficacy.

  1. Dissolution-and-reduction CVD synthesis of few-layer graphene on ultra-thin nickel film lifted off for mode-locking fiber lasers

    PubMed Central

    Peng, Kaung-Jay; Lin, Yung-Hsiang; Wu, Chung-Lun; Lin, Sheng-Fong; Yang, Chun-Yu; Lin, Shih-Meng; Tsai, Din-Ping; Lin, Gong-Ru

    2015-01-01

    The in-situ dissolution-and-reduction CVD synthesized few-layer graphene on ultra-thin nickel catalyst film is demonstrated at temperature as low as 550 °C, which can be employed to form transmission-type or reflection-type saturable absorber (SA) for mode-locking the erbium-doped fiber lasers (EDFLs). With transmission-type graphene SA, the EDFL shortens its pulsewidth from 483 to 441 fs and broadens its spectral linewidth from 4.2 to 6.1 nm with enlarging the pumping current from 200 to 900 mA. In contrast, the reflection-type SA only compresses the pulsewidth from 875 to 796 fs with corresponding spectral linewidth broadened from 2.2 to 3.3 nm. The reflection-type graphene mode-locker increases twice of its equivalent layer number to cause more insertion loss than the transmission-type one. Nevertheless, the reflection-type based saturable absorber system can generate stabilized soliton-like pulse easier than that of transmission-type system, because the nonlinearity induced self-amplitude modulation depth is simultaneously enlarged when passing through the graphene twice under the retro-reflector design. PMID:26328535

  2. Self potential observations during DNAPL dissolution

    NASA Astrophysics Data System (ADS)

    Ntarlagiannis, D.; Slater, L.; Kulessa, B.; Russell, C.; Kalin, R.; Ferguson, A.; Graber, J.

    2006-05-01

    Dense non aqueous phase liquids (DNAPLs) are a major environmental problem and are considered to be long term heavy contaminant sources in the subsurface. Accurate monitoring of DNAPL breakdown is required to monitor remediation efforts. We aim to evaluate the efficiency of geophysical methods to monitor DNAPL remediation. Toward this goal we performed self potential (SP) measurements on laboratory columns packed with DNAPL contaminated sand undergoing (a) biodegradation, and (b) abiotic DNAPL dissolution. Geochemical monitoring showed higher concentration of dissolved DNAPL byproducts in the abiotic columns; the use of HgCl2 as a biocide probably increased the rates of DNAPL dissolution in the abiotic columns. The concentration of DNAPL byproducts is significantly lower in the biotic columns due to microbial activity since DNAPL degrading bacteria within the column consume the breakdown products. SP responses are significantly higher (~ 90 mV) in the abiotic columns; in the microbial active columns SP values remain steady with a value ~ 10 mV. High SP signals (up to 110 mV) are associated with DNAPL byproduct concentration gradients within the abiotic columns and exhibit a temporal behavior that mimics total organic carbon concentrations. Although microbial activity in organic rich contaminated areas has been associated with strong negative SP anomalies our results show that positive SP anomalies can also be generated in contaminated areas in the absence of any microbial activity. We discuss a possible SP source mechanism and the implications in geophysical monitoring of DNAPL remedial processes.

  3. Biotic and Abiotic Reduction and Solubilization of Pu(IV)O2•xH2O(am) as Affected by Anthraquinone-2,6-disulfonate (AQDS) and Ethylenediaminetetraacetate (EDTA)

    SciTech Connect

    Plymale, Andrew E.; Bailey, Vanessa L.; Fredrickson, Jim K.; Heald, Steve M.; Buck, Edgar C.; Shi, Liang; Wang, Zheming; Resch, Charles T.; Moore, Dean A.; Bolton, Harvey

    2012-01-24

    In the presence of hydrogen (H{sub 2}), the synthetic chelating agent ethylenediaminetetraacetate (EDTA), and the electron shuttle anthraquinone-2,6-disulfonate (AQDS), the dissimilatory metal-reducing bacteria (DMRB) Shewanella oneidensis and Geobacter sulfurreducens both reductively solubilized 100% of added 0.5 mM plutonium (IV) hydrous oxide (Pu(IV)O{sub 2} {lg_bullet} xH{sub 2}O{sub (am)}) in {approx}24 h at pH 7 in a non-complexing buffer. In the absence of AQDS, bioreduction was much slower ({approx}22 days) and less extensive ({approx}83-94%). In the absence of DMRB but under comparable conditions, 89% (without AQDS) to 98% (with AQDS) of added 0.5 mM PuO{sub 2} {lg_bullet} xH{sub 2}O{sub (am)} was reductively solubilized over 418 days. Under comparable conditions but in the absence of EDTA, <0.001% of the 0.5 mM PuO{sub 2} {lg_bullet} xH{sub 2}O{sub (am)} was solubilized, with or without bacteria. However, Pu(aq) increased by as much as an order of magnitude in some EDTA-free treatments, both biotic and abiotic, and increases in solubility were associated with the production of both Pu(OH)3(am) and Pu(III)(aq). Incubation with DMRB in the absence of EDTA increased the polymeric and crystalline content of the PuO{sub 2} {lg_bullet} xH{sub 2}O{sub (am)} and also decreased Pu solubility in 6-N HCl. Results from an in vitro assay demonstrated electron transfer to PuO{sub 2} {lg_bullet} xH{sub 2}O{sub (am)} from the S. oneidensis outer-membrane c-type cytochrome MtrC, and EDTA increased the oxidation of MtrC by PuO{sub 2} {lg_bullet} xH{sub 2}O{sub (am)}. Our results suggest that PuO{sub 2} {lg_bullet} xH{sub 2}O{sub (am)} biotic and abiotic reduction and solubilization may be important in anoxic, reducing environments, especially where complexing ligands and electron shuttling compounds are present.

  4. Effects of Bacillus subtilis endospore surface reactivity on the rate of forsterite dissolution

    NASA Astrophysics Data System (ADS)

    Harrold, Z.; Gorman-Lewis, D.

    2013-12-01

    . Additional analyses including Mg concentrations, microprobe and BET analyses support mineral dissolution rate calculations and stoichiometry considerations. All experimental assays containing endospores show increased forsterite dissolution rates relative to abiotic controls. Forsterite dissolution rates increased by approximately one order of magnitude in dialysis bound, biotic experiments relative to abiotic assays. Homogenous biotic assays exhibited a more complex dissolution rate profile that changes over time. All microbially mediated forsterite dissolution rates returned to abiotic control rates after 10 to 15 days of incubation. This shift in dissolution rate likely corresponds to maximum endospore surface adsorption capacity. The Bacillus subtilis endospore surface serves as a first-order proxy for studying the effect of metabolizing microbe surfaces on silicate dissolution rates. Comparisons with published abiotic, microbial, and organic acid mediated forsterite dissolution rates will provide insight on the importance of bacterial surfaces in primary mineral dissolution processes.

  5. Formulations for iron oxides dissolution

    DOEpatents

    Horwitz, Earl P.; Chiarizia, Renato

    1992-01-01

    A mixture of a di- or polyphosphonic acid and a reductant wherein each is present in a sufficient amount to provide a synergistic effect with respect to the dissolution of metal oxides and optionally containing corrosion inhibitors and pH adjusting agents.

  6. Reductive sequestration of pertechnetate (⁹⁹TcO₄⁻) by nano zerovalent iron (nZVI) transformed by abiotic sulfide.

    PubMed

    Fan, Dimin; Anitori, Roberto P; Tebo, Bradley M; Tratnyek, Paul G; Lezama Pacheco, Juan S; Kukkadapu, Ravi K; Engelhard, Mark H; Bowden, Mark E; Kovarik, Libor; Arey, Bruce W

    2013-05-21

    Under anoxic conditions, soluble pertechnetate (⁹⁹TcO₄⁻) can be reduced to less soluble TcO₂·nH₂O, but the oxide is highly susceptible to reoxidation. Here we investigate an alternative strategy for remediation of Tc-contaminated groundwater whereby sequestration as Tc sulfide is favored by sulfidic conditions stimulated by nano zerovalent iron (nZVI). nZVI was pre-exposed to increasing concentrations of sulfide in simulated Hanford groundwater for 24 h to mimic the onset of aquifer biotic sulfate reduction. Solid-phase characterizations of the sulfidated nZVI confirmed the formation of nanocrystalline FeS phases, but higher S/Fe ratios (>0.112) did not result in the formation of significantly more FeS. The kinetics of Tc sequestration by these materials showed faster Tc removal rates with increasing S/Fe between 0 and 0.056, but decreasing Tc removal rates with S/Fe > 0.224. The more favorable Tc removal kinetics at low S/Fe could be due to a higher affinity of TcO₄⁻ for FeS than iron oxides, and electron microscopy confirmed that the majority of the Tc was associated with FeS phases. The inhibition of Tc removal at high S/Fe appears to have been caused by excess HS(-). X-ray absorption spectroscopy revealed that as S/Fe increased, the pathway for Tc(IV) formation shifted from TcO₂·nH2₂ to Tc sulfide phases. The most substantial change of Tc speciation occurred at low S/Fe, coinciding with the rapid increase in Tc removal rate. This agreement further confirms the importance of FeS in Tc sequestration.

  7. Reductive Sequestration Of Pertechnetate (99TcO4–) By Nano Zerovalent Iron (nZVI) Transformed By Abiotic Sulfide

    SciTech Connect

    Fan, Dimin; Anitori, Roberto; Tebo, Bradley M.; Tratnyek, Paul G.; Lezama Pacheco, Juan S.; Kukkadapu, Ravi K.; Engelhard, Mark H.; Bowden, Mark E.; Kovarik, Libor; Arey, Bruce W.

    2013-04-24

    Under anoxic conditions, soluble 99TcO4– can be reduced to less soluble TcO2•nH2O, but the oxide is highly susceptible to reoxidation. Here we investigate an alternative strategy for remediation of Tc-contaminated groundwater whereby sequestration as Tc sulfide is favored by sulfidic conditions stimulated by nano zero-valent iron (nZVI). nZVI was pre-exposed to increasing concentrations of sulfide in simulated Hanford groundwater for 24 hrs to mimic the stages of aquifer sulfate reduction and onset of biotic sulfidogenesis. Solid-phase characterizations of the sulfidated nZVI confirmed the formation of nanocrystalline FeS phases, but higher S/Fe ratios (>0.112) did not result in the formation of significantly more FeS. The kinetics of Tc sequestration by these materials showed faster Tc removal rates with increasing S/Fe between S/Fe = 0–0.056, but decreasing Tc removal rates with S/Fe > 0.224. The more favorable Tc removal kinetics at low S/Fe could be due to a higher affinity of TcO4– for FeS (over iron oxides), and electron microscopy confirmed that the majority of the Tc was associated with FeS phases. The inhibition of Tc removal at high S/Fe appears to have been caused by excess HS–. X-ray absorption spectroscopy revealed that as S/Fe increased, Tc speciation shifted from TcO2•nH2O to TcS2. The most substantial change of Tc speciation occurred at low S/Fe, coinciding with the rapid increase of Tc removal rate. This agreement further confirms the importance of FeS in Tc sequestration.

  8. Nanosizing of drugs: Effect on dissolution rate

    PubMed Central

    Dizaj, S. Maleki; Vazifehasl, Zh.; Salatin, S.; Adibkia, Kh.; Javadzadeh, Y.

    2015-01-01

    The solubility, bioavailability and dissolution rate of drugs are important parameters for achieving in vivo efficiency. The bioavailability of orally administered drugs depends on their ability to be absorbed via gastrointestinal tract. For drugs belonging to Class II of pharmaceutical classification, the absorption process is limited by drug dissolution rate in gastrointestinal media. Therefore, enhancement of the dissolution rate of these drugs will present improved bioavailability. So far several techniques such as physical and chemical modifications, changing in crystal habits, solid dispersion, complexation, solubilization and liquisolid method have been used to enhance the dissolution rate of poorly water soluble drugs. It seems that improvement of the solubility properties ofpoorly water soluble drugscan translate to an increase in their bioavailability. Nowadays nanotechnology offers various approaches in the area of dissolution enhancement of low aqueous soluble drugs. Nanosizing of drugs in the form of nanoparticles, nanocrystals or nanosuspensions not requiring expensive facilities and equipment or complicated processes may be applied as simple methods to increase the dissolution rate of poorly water soluble drugs. In this article, we attempted to review the effects of nanosizing on improving the dissolution rate of poorly aqueous soluble drugs. According to the reviewed literature, by reduction of drug particle size into nanometer size the total effective surface area is increased and thereby dissolution rate would be enhanced. Additionally, reduction of particle size leads to reduction of the diffusion layer thickness surrounding the drug particles resulting in the increment of the concentration gradient. Each of these process leads to improved bioavailability. PMID:26487886

  9. Abiotic origin of biopolymers

    NASA Technical Reports Server (NTRS)

    Oro, J.; Stephen-Sherwood, E.

    1976-01-01

    A variety of methods have been investigated in different laboratories for the polymerization of amino acids and nucleotides under abiotic conditions. They include (1) thermal polymerization; (2) direct polymerization of certain amino acid nitriles, amides, or esters; (3) polymerization using polyphosphate esters; (4) polymerization under aqueous or drying conditions at moderate temperatures using a variety of simple catalysts or condensing agents like cyanamide, dicyandiamide, or imidazole; and (5) polymerization under similar mild conditions but employing activated monomers or abiotically synthesized high-energy compounds such as adenosine 5'-triphosphate (ATP). The role and significance of these methods for the synthesis of oligopeptides and oligonucleotides under possible primitive-earth conditions is evaluated. It is concluded that the more recent approach involving chemical processes similar to those used by contemporary living organisms appears to offer a reasonable solution to the prebiotic synthesis of these biopolymers.

  10. INFLUENCE OF PH AND OXIDATION-REDUCTION POTENTIAL (EH) ON THE DISSOLUTION OF MERCURY-CONTAINING MINE WASTES FROM THE SULFUR BANK MERCURY MINE

    EPA Science Inventory

    This study was undertaken as a part of developing treatment alternatives for waste materials, primarily waste rock and roaster tailings, from sites contaminated with mercury (Hg) mining wastes. Leaching profiles of waste rock over a range of different pH and oxidation-reduction (...

  11. Confounding Impacts of Iron Reduction on Arsenic Retention

    SciTech Connect

    Tufano, K.J.; Fendorf, S.

    2009-05-26

    A transition from oxidizing to reducing conditions has long been implicated to increase aqueous As concentrations, for which reductive dissolution of iron (hydr)oxides is commonly implicated as the primary culprit. Confounding our understanding of processes controlling As retention, however, is that reductive transformation of ferrihydrite has recently been shown to promote As retention rather than release. To resolve the role iron phases have in regulating arsenic concentrations, here we examine As desorption from ferrihydrite-coated sands presorbed with As(lll); experiments were performed at circumneutral pH under Fe-reducing conditions with the dissimilatory iron reducing bacterium Shewanella putrefaciens strain CN-32 over extended time periods. We reveal that with the initial phase of iron reduction, ferrihydrite undergoes transformation to secondary phases and increases As(lll) retention (relative to abiotic controls). However, with increased reaction time, cessation of the phase transitions and ensuing reductive dissolution result in prolonged release of As(III) to the aqueous phase. Our results suggest that As(lll) retention during iron reduction is temporally dependent on secondary precipitation of iron phases; during transformation to secondary phases, particularly magnetite, As(lll) retention is enhanced even relative to oxidized systems. However, conditions that retard secondary transformation (more stable iron oxides or limited iron reducing bacterial activity), or prolonged anaerobiosis, will lead to both the dissolution of ferric (hydr)oxides and release of As(lll) to the aqueous phase.

  12. Modeling NAPL dissolution fingering with upscaled mass transfer rate coefficients

    NASA Astrophysics Data System (ADS)

    Imhoff, Paul T.; Farthing, Matthew W.; Miller, Cass T.

    2003-10-01

    The dissolution of nonaqueous phase liquids (NAPLs) at residual saturation in porous media has sometimes resulted in the development of preferential dissolution pathways or NAPL dissolution fingers. While NAPL dissolution fingering may be modeled using numerical simulators with fine discretization, this approach is computational intensive. We derived an expression for an upscaled mass transfer rate coefficient that accounts for the growth of dissolution fingers within porous media contaminated uniformly with residual NAPL. This expression was closely related to the lengthening of the dissolution front. Data from physical experiments and numerical simulations in two dimensions were used to examine the growth of the dissolution front and the corresponding upscaled mass transfer rate coefficient. Using this upscaled mass transfer rate coefficient, the time when dissolution fingering results in a reduction in the overall mass transfer rate and thus controls the rate of NAPL dissolution was determined. This crossover time is a convenient parameter for assessing the influence of dissolution fingering on NAPL removal. For the physical experiments and numerical simulations analyzed in this study, the crossover time to dissolution fingering control always occurred before the dissolution front had moved 14 cm within NAPL-contaminated porous media, which is small compared to the scale of typical systems of concern. To verify the utility of this approach, data from a three-dimensional physical experiment were predicted reasonably well using an upscaled mass transfer rate coefficient that was determined independently from this experiment.

  13. Continuous plutonium dissolution apparatus

    DOEpatents

    Meyer, F.G.; Tesitor, C.N.

    1974-02-26

    This invention is concerned with continuous dissolution of metals such as plutonium. A high normality acid mixture is fed into a boiler vessel, vaporized, and subsequently condensed as a low normality acid mixture. The mixture is then conveyed to a dissolution vessel and contacted with the plutonium metal to dissolve the plutonium in the dissolution vessel, reacting therewith forming plutonium nitrate. The reaction products are then conveyed to the mixing vessel and maintained soluble by the high normality acid, with separation and removal of the desired constituent. (Official Gazette)

  14. Abiotic self-replication.

    PubMed

    Meyer, Adam J; Ellefson, Jared W; Ellington, Andrew D

    2012-12-18

    functions (including the replication of nucleic acids) to more competent protein enzymes would complete the journey from an abiotic world to the molecular biology we see today. PMID:22891822

  15. Abiotic self-replication.

    PubMed

    Meyer, Adam J; Ellefson, Jared W; Ellington, Andrew D

    2012-12-18

    functions (including the replication of nucleic acids) to more competent protein enzymes would complete the journey from an abiotic world to the molecular biology we see today.

  16. Thermodynamic Versus Surface Area Control of Microbial Fe(III) Oxide Reduction Kinetics

    NASA Astrophysics Data System (ADS)

    Roden, E. E.

    2003-12-01

    Recent experimental studies of synthetic and natural Fe(III) oxide reduction permit development of conceptual and quantitative models of enzymatic Fe(III) oxide reduction at circumneutral pH that can be compared to and contrasted with established models of abiotic mineral dissolution. The findings collectively support a model for controls on enzymatic reduction that differs fundamentally from those applied to abiotic reductive dissolution as a result of two basic phenomena: (1) the relatively minor influence of oxide mineralogical and thermodynamic properties on surface area-normalized rates of enzymatic reduction compared to abiotic reductive dissolution; and (2) the major limitation which sorption and/or surface precipitation of biogenic Fe(II) on residual oxide and Fe(III)-reducing bacterial cell surfaces poses to enzymatic electron transfer in the presence of excess electron donor. Parallel studies with two major Fe(III)-reducing bacteria genera (Shewanella and Geobacter) lead to common conclusions regarding the importance of these phenomena in regulating the rate and long-term extent of Fe(III) oxide reduction. Although the extent to which these phenomena can be traced to underlying kinetic vs. thermodynamic effects cannot be resolved with current information, models in which rates of enzymatic reduction are limited kinetically by the abundance of "available" oxide surface sites (as controlled by oxide surface area and the abundance of surface-bound Fe(II)) provide an adequate macroscopic description of controls on the initial rate and long-term extent of oxide reduction. In some instances, thermodynamic limitation posed by the accumulation of aqueous reaction end-products (i.e. Fe(II) and alkalinity) must also be invoked to explain observed long-term patterns of reduction. In addition, the abundance of Fe(III)-reducing microorganisms plays an important role in governing rates of reduction and needs to be considered in models of Fe(III) reduction in nonsteady

  17. Dissolution of Platinum in the Operational Range of Fuel Cells

    PubMed Central

    Keeley, Gareth P.; Geiger, Simon; Zeradjanin, Aleksandar R.; Hodnik, Nejc; Kulyk, Nadiia

    2015-01-01

    Abstract One of the most important practical issues in low‐temperature fuel‐cell catalyst degradation is platinum dissolution. According to the literature, it initiates at 0.6–0.9 VRHE, whereas previous time‐ and potential‐resolved inductively coupled plasma mass spectrometry (ICP–MS) experiments, however, revealed dissolution onset at only 1.05 VRHE. In this manuscript, the apparent discrepancy is addressed by investigating bulk and nanoparticulated catalysts. It is shown that, given enough time for accumulation, traces of platinum can be detected at potentials as low as 0.85 VRHE. At these low potentials, anodic dissolution is the dominant process, whereas, at more positive potentials, more platinum dissolves during the oxide reduction after accumulation. Interestingly, the potential and time dissolution dependence is similar for both types of electrode. Dissolution processes are discussed with relevance to fuel‐cell operation and plausible dissolution mechanisms are considered. PMID:27525206

  18. ROS Regulation During Abiotic Stress Responses in Crop Plants

    PubMed Central

    You, Jun; Chan, Zhulong

    2015-01-01

    Abiotic stresses such as drought, cold, salt and heat cause reduction of plant growth and loss of crop yield worldwide. Reactive oxygen species (ROS) including hydrogen peroxide (H2O2), superoxide anions (O2•-), hydroxyl radical (OH•) and singlet oxygen (1O2) are by-products of physiological metabolisms, and are precisely controlled by enzymatic and non-enzymatic antioxidant defense systems. ROS are significantly accumulated under abiotic stress conditions, which cause oxidative damage and eventually resulting in cell death. Recently, ROS have been also recognized as key players in the complex signaling network of plants stress responses. The involvement of ROS in signal transduction implies that there must be coordinated function of regulation networks to maintain ROS at non-toxic levels in a delicate balancing act between ROS production, involving ROS generating enzymes and the unavoidable production of ROS during basic cellular metabolism, and ROS-scavenging pathways. Increasing evidence showed that ROS play crucial roles in abiotic stress responses of crop plants for the activation of stress-response and defense pathways. More importantly, manipulating ROS levels provides an opportunity to enhance stress tolerances of crop plants under a variety of unfavorable environmental conditions. This review presents an overview of current knowledge about homeostasis regulation of ROS in crop plants. In particular, we summarize the essential proteins that are involved in abiotic stress tolerance of crop plants through ROS regulation. Finally, the challenges toward the improvement of abiotic stress tolerance through ROS regulation in crops are discussed. PMID:26697045

  19. Abiotic Dissolved Organic Matter-Mineral Interaction in the Karstic Floridan Aquifer

    NASA Astrophysics Data System (ADS)

    Jin, J.; Zimmerman, A.

    2007-12-01

    Dissolved organic matter (DOM)-mineral interaction (e.g. adsorption, desorption, mineral dissolution) in groundwater is a significant factor controlling geochemical, environmental and microbial processes and may be helpful in efforts to track groundwater sources or contaminant fate. Despite its importance, the dynamics and consequences of these abiotic interactions remain poorly understood, largely due to the inaccessibility and heterogeneity of the subsurface, as well as the chemical complexity of DOM. This study models the OM-mineral interactions that takes place in the Floridan aquifer through laboratory adsorption-desorption experiments using DOM (groundwater, river water, soil extracts) and carbonate minerals (calcite, dolomite) collected in north Florida. High performance liquid chromatography-size exclusion chromatography (HPLC-SEC) and UV-fluorescence excitation-emission matrix (EEM) spectrophotometry was used to examine the organic compound types exhibiting preferential affinity for carbonate minerals. Our results show that the DOM-carbonate adsorption/desorption isotherms are well described by the Freundlich model. Freundlich exponents (average value: 0.6488) less than one indicated a filling of adsorption sites. Minerals from Ocala tend to have higher adsorption affinity as well as adsorption capacity than those from Suwannee River Basin; however, both were found to have mineral dissolution. Two fluorescent signals, indicative of a fulvic-like (at excitation wavelength 295-310 nm, emission 400-420 nm) and a protein-like (275/345nm) moiety, were detected in DOM. A reduction in the fulvic-like peak intensity occurred following carbonate adsorption while the protein-like peaks remain almost unchanged indicating the preferential adsorption of fulvic acids. HPLC-SEC results (DOM properties as a function of molecular weight) will be discussed. The chemical properties of DOM in environmental groundwater samples will also be presented and evaluated in light of

  20. Calcination/dissolution residue treatment

    SciTech Connect

    Knight, R.C.; Creed, R.F.; Patello, G.K.; Hollenberg, G.W.; Buehler, M.F.; O`Rourke, S.M.; Visnapuu, A.; McLaughlin, D.F.

    1994-09-01

    Currently, high-level wastes are stored underground in steel-lined tanks at the Hanford site. Current plans call for the chemical pretreatment of these wastes before their immobilization in stable glass waste forms. One candidate pretreatment approach, calcination/dissolution, performs an alkaline fusion of the waste and creates a high-level/low-level partition based on the aqueous solubilities of the components of the product calcine. Literature and laboratory studies were conducted with the goal of finding a residue treatment technology that would decrease the quantity of high-level waste glass required following calcination/dissolution waste processing. Four elements, Fe, Ni, Bi, and U, postulated to be present in the high-level residue fraction were identified as being key to the quantity of high-level glass formed. Laboratory tests of the candidate technologies with simulant high-level residues showed reductive roasting followed by carbonyl volatilization to be successful in removing Fe, Ni, and Bi. Subsequent bench-scale tests on residues from calcination/dissolution processing of genuine Hanford Site tank waste showed Fe was separated with radioelement decontamination factors of 70 to 1,000 times with respect to total alpha activity. Thermodynamic analyses of the calcination of five typical Hanford Site tank waste compositions also were performed. The analyses showed sodium hydroxide to be the sole molten component in the waste calcine and emphasized the requirement for waste blending if fluid calcines are to be achieved. Other calcine phases identified in the thermodynamic analysis indicate the significant thermal reconstitution accomplished in calcination.

  1. Unemployment and marital dissolution.

    PubMed

    Jensen, P; Smith, N

    1990-01-01

    "This paper analyses the effects of unemployment on the probability of marital dissolution. Based on panel data for a sample of Danish married couples, we estimate a dynamic model for the probability of marital dissolution where we take into account the possible effects of unemployment for both spouses. We also control for other factors such as education, age, presence of children, place of residence, health and economic factors. The empirical results show that unemployment seems to be an important factor behind marital instability. However, only unemployment of the husband has an effect, and this effect is immediate." PMID:12283481

  2. Breeding for abiotic stresses for sustainable agriculture.

    PubMed

    Witcombe, J R; Hollington, P A; Howarth, C J; Reader, S; Steele, K A

    2008-02-27

    Using cereal crops as examples, we review the breeding for tolerance to the abiotic stresses of low nitrogen, drought, salinity and aluminium toxicity. All are already important abiotic stress factors that cause large and widespread yield reductions. Drought will increase in importance with climate change, the area of irrigated land that is salinized continues to increase, and the cost of inorganic N is set to rise. There is good potential for directly breeding for adaptation to low N while retaining an ability to respond to high N conditions. Breeding for drought and salinity tolerance have proven to be difficult, and the complex mechanisms of tolerance are reviewed. Marker-assisted selection for component traits of drought in rice and pearl millet and salinity tolerance in wheat has produced some positive results and the pyramiding of stable quantitative trait locuses controlling component traits may provide a solution. New genomic technologies promise to make progress for breeding tolerance to these two stresses through a more fundamental understanding of underlying processes and identification of the genes responsible. In wheat, there is a great potential of breeding genetic resistance for salinity and aluminium tolerance through the contributions of wild relatives.

  3. Mergers, Annexations, Dissolutions

    ERIC Educational Resources Information Center

    Russo, Alexander

    2006-01-01

    Consolidations come in all shapes and sizes, including mergers, annexations and dissolutions. They do not all take place under state mandate, however. A handful of districts consolidate every year in some states like Illinois that have large numbers of small districts, many of them dual districts that serve K-8 or 9-12 in the same geographic area.…

  4. HEPA filter dissolution process

    DOEpatents

    Brewer, K.N.; Murphy, J.A.

    1994-02-22

    A process is described for dissolution of spent high efficiency particulate air (HEPA) filters and then combining the complexed filter solution with other radioactive wastes prior to calcining the mixed and blended waste feed. The process is an alternate to a prior method of acid leaching the spent filters which is an inefficient method of treating spent HEPA filters for disposal. 4 figures.

  5. Hepa filter dissolution process

    DOEpatents

    Brewer, Ken N.; Murphy, James A.

    1994-01-01

    A process for dissolution of spent high efficiency particulate air (HEPA) filters and then combining the complexed filter solution with other radioactive wastes prior to calcining the mixed and blended waste feed. The process is an alternate to a prior method of acid leaching the spent filters which is an inefficient method of treating spent HEPA filters for disposal.

  6. Modeling of the structure-specific kinetics of abiotic, dark reduction of Hg(II) complexed by O/N and S functional groups in humic acids while accounting for time-dependent structural rearrangement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Redox transformations involving electron transfer from natural organic matter (NOM) are important for the mercury (Hg) biogeochemical cycle. In the water column light drives the reduction of Hg(II) to Hg(0), whereas in soils and sediments dark reduction of Hg(II) is of greater importance. The object...

  7. Oxidative Dissolution of UO2 in a Simulated Groundwater Containing Synthetic Nanocrystalline Mackinawite

    SciTech Connect

    Bi, Yuqiang; Hyun, Sung Pil; Kukkadapu, Ravi K.; Hayes, Kim F.

    2013-02-01

    The long-term success of in situ reductive immobilization of uranium (U) depends on the stability of U(IV) precipitates (e.g., uraninite) under oxic conditions. Field and laboratory studies have implicated iron sulfide minerals as redox buffers or oxidant scavengers that may slow oxidation of reduced U(VI) solid phases by oxygen and Fe(III). Yet, the inhibition mechanism(s) and reaction rates of uraninite (UO2) oxidative dissolution by oxic species such as oxygen in FeS-bearing systems remain largely unresolved. To address this knowledge gap, abiotic batch experiments were conducted with synthetic UO2 in the presence and absence of synthetic mackinawite (FeS) under simulated groundwater conditions of pH = 7, PO2 = 0.02 atm, and PCO2 = 0.05 atm (equivalent to total dissolved carbonate of 0.01 M). The kinetic profiles of dissolved uranium indicate that FeS inhibited UO2 dissolution for 51 hr by effectively scavenging oxygen and keeping dissolved oxygen (DO) low. During this time period, oxidation of structural Fe(II) and S(-II) of FeS were found to control the DO levels, leading to the formation of iron oxyhydroxides and elemental sulfur, respectively, as verified by X-ray diffraction (XRD), Mössbauer and X-ray absorption spectroscopy (XAS). After FeS was depleted due to oxidation, DO levels increased and UO2 oxidative dissolution occurred at an initial rate of rm = 1.2 ± 0.4 ×10-8 mol•g-1•s-1, higher than rm = 5.4 ± 0.3 ×10-9 mol•g-1•s-1 in the control experiment where FeS was absent. Soluble U(VI) products were adsorbed by iron oxyhydroxides (i.e. nanogoethite and ferrihydrite) formed from FeS oxidation, which facilitated the detachment of U(VI) surface complexes and more rapid dissolution of UO2. XAS analysis confirmed the adsorption of U(VI) species, and also showed that U(VI) was not significantly incorporated into iron oxyhydroxide structure. This work reveals that both the oxygen scavenging by FeS and the adsorption of U(VI) to FeS oxidation

  8. DISSOLUTION OF FISSILE MATERIALS CONTAINING TANTALUM METAL

    SciTech Connect

    Rudisill, T; Mark Crowder, M; Michael Bronikowski, M

    2007-05-29

    of fluoride by the Pu. The fluoride became unavailable to catalyze the dissolution of PuO{sub 2} as it formed on the surface of the metal. The mass of Pu dissolved is equivalent to the dissolution of 343 g of Pu in the HB-Line dissolvers. In the initial experiment with 0.175 M KF in the solution, we achieved complete dissolution of the Pu in 6 h. The mass of Pu dissolved scales to the dissolution of 358 g of Pu in the HB-Line dissolvers. The second experiment using 0.175 M KF was terminated after approximately 6 h following the dissolution of 92.7% of the Pu in the sample; however, dissolution of additional Pu was severely limited due to the slow dissolution rate observed beyond approximately 4 h. A small amount of PuO{sub 2} was also produced in the solution. The slow rate of dissolution was attributed to the diminishing surface area of the Pu and a reduction in the fluoride activity due to complexation with Pu. Given time (>4 h), the Pu metal may have dissolved using the original solution or a significant portion may have oxidized to PuO{sub 2}. If the metal oxidized to PuO{sub 2}, we expect little of the material would have dissolved due to the fluoride complexation and the low HNO{sub 3} concentration. The mass of Pu dissolved in the second experiment scales to the dissolution of 309 g of Pu in the HB-Line dissolvers. Based on the data from the Pu/Ta dissolution experiments we recommend the use of 4 M HNO{sub 3} containing 0.175 M KF for the dissolution of 300 g of Pu metal in the 15 L HB-Line dissolver. A dissolution temperature of nominally 95 C should allow for essentially complete dissolution of the metal in 6 h. Although the H{sub 2} concentration in the offgas from the experiments was at or below the detection limit of the gas chromatograph (GC) used in these experiments, small concentrations (<3 vol %) of H{sub 2} are typically produced in the offgas during Pu metal dissolutions. Therefore, appropriate controls must be established to address the small H

  9. Effect of dechlorinating bacteria on the longevity and composition of PCE-containing nonaqueous phase liquids under equilibrium dissolution conditions

    SciTech Connect

    Carr, C.S.; Garg, S.; Hughes, J.B.

    2000-03-15

    The influence of dechlorinating microorganisms on PCE and its reduced end products in the presence of a PCE-containing nonaqueous phase liquid (NAPL) was investigated. Experiments were conducted in continuous-flow stirred-tank reactors (CFSTRs) containing a mixed PCE dechlorinating culture and a model NAPL consisting of PCE and tridecane. Comparisons between biotic and abiotic CFSTRs demonstrated that dechlorination resulted in a factor of 14 increase in PCE removal rates from the NAPL. The formation of dechlorination daughter products trichloroethene and cis-dichloroethene were observed, and cis-dichloroethene was not dechlorinated further. Partitioning of daughter products between phases caused temporal changes in the chlorinated ethenes distribution within the NAPL. The combined effects of dissolution and dechlorination on the removal of chlorinated ethenes from the NAPL were described using a mathematical model that approximated dechlorination as a pseudo-first-order process. Pseudo-first-order dechlorination rate coefficients for PCE and TCE were determined and were 0.18 and 0.27 h{sup {minus}1}, respectively. It was determined that total chlorinated ethenes removal from the NAPL would be achieved in 13 days in biotic CFSTRs, as compared to 77 days in the abiotic CFSTRs--corresponding to an 83% reduction in longevity of the chlorinated ethenes component of the NAPL.

  10. Comparison of dissolution under oxic acid drainage conditions for eight sedimentary and hydrothermal pyrite samples

    NASA Astrophysics Data System (ADS)

    Liu, Ran; Wolfe, Amy L.; Dzombak, David A.; Stewart, Brian W.; Capo, Rosemary C.

    2008-11-01

    The abiotic oxidative dissolution behaviors of eight natural pyrite samples, five sedimentary and three hydrothermal, from various geological environments were compared under oxic conditions at pH 3 and 6 in a highly controlled batch reactor dissolution system. The three sedimentary pyrite samples associated with coal had greater specific surface areas and also exhibited greater apparent dissolution rates and extent than the other two sedimentary and three hydrothermal samples under both pH conditions. However, after normalizing for surface area, the dissolution rate constants for the different pyrite samples were similar; the greatest difference was between the two non-coal sedimentary pyrite samples. Pyrite morphology and the presence of trace metals could contribute to the differences in dissolution behavior as reflected in the normalized dissolution rates. The sulfur:iron ratio observed in the aqueous solution at pH 3 increased with time, but was always less than 2.0 (predicted from the stoichiometry of dissolution) for all the pyrite samples during the 24-h experimental duration. This can be explained by the disproportionation dissociation of thiosulfate, an initial product of pyrite dissolution, to elemental sulfur and sulfate which does not occur in a 1:1 ratio. The results of this work indicate the importance of extracting and using the specific pyrite(s) relevant to particular mining areas in order to understand pyrite dissolution rates and the influence of environmental conditions on those rates.

  11. Determinants of marriage dissolution

    NASA Astrophysics Data System (ADS)

    Rahim, Mohd Amirul Rafiq Abu; Shafie, Siti Aishah Mohd; Hadi, Az'lina Abdul; Razali, Nornadiah Mohd; Azid @ Maarof, Nur Niswah Naslina

    2015-10-01

    Nowadays, the number of divorce cases among Muslim couples is very worrisome whereby the total cases reported in 2013 increased by half of the total cases reported in the previous year. The questions on the true key factors of dissolution of marriage continue to arise. Thus, the objective of this study is to reveal the factors that contribute to the dissolution of marriage. A total of 181 cases and ten potential determinants were included in this study. The potential determinants considered were age at marriage of husband and wife, educational level of husband and wife, employment status of husband and wife, income of husband and wife, the number of children and the presence at a counseling session. Logistic regression analysis was used to analyze the data. The findings revealed that four determinants, namely the income of husband and wife, number of children and the presence at a counselling session were significant in predicting the likelihood of divorce among Muslim couples.

  12. Syntrophic Effects in a Subsurface Clostridial Consortium on Fe(III)-(Oxyhydr)oxide Reduction and Secondary Mineralization

    SciTech Connect

    Shah, Madhavi; Lin, Chu-Ching; Kukkadapu, Ravi K.; Engelhard, Mark H.; Zhao, Xiuhong; Wang, Yangping; Barkay, Tamar; Yee, Nathan

    2013-07-09

    In this study, we cultivated from subsurface sediments an anaerobic Clostridia 25 consortium that was composed of a fermentative Fe-reducer Clostridium species (designated as 26 strain FGH) and a novel sulfate-reducing bacterium belonging to the Clostridia family 27 Vellionellaceae (designated as strain RU4). In pure culture, Clostridium sp. strain FGH mediated 28 the reductive dissolution/transformation of iron oxides during growth on peptone. When 29 Clostridium sp. FGH was grown with strain RU4 on peptone, the rates of iron oxide reduction 30 were significantly higher. Iron reduction by the consortium was mediated by multiple 31 mechanisms, including biotic reduction by Clostridium sp. FGH and biotic/abiotic reactions 32 involving biogenic sulfide by strain RU4. The Clostridium sp. FGH produced hydrogen during 33 fermentation, and the presence of hydrogen inhibited growth and iron reduction activity. The 34 sulfate-reducing partner strain RU4 was stimulated by the presence of H2 gas and generated 35 reactive sulfide which promoted the chemical reduction of the iron oxides. Characterization of 36 Fe(II) mineral products showed the formation of magnetite during ferrihydrite reduction, and 37 the precipitation of iron sulfides during goethite and hematite reduction. The results suggest an 38 important pathway for iron reduction and secondary mineralization by fermentative sulfate-39 reducing microbial consortia is through syntrophy-driven biotic/abiotic reactions with biogenic 40 sulfide.

  13. Solubility limits on radionuclide dissolution

    SciTech Connect

    Kerrisk, J.F.

    1984-12-31

    This paper examines the effects of solubility in limiting dissolution rates of a number of important radionuclides from spent fuel and high-level waste. Two simple dissolution models were used for calculations that would be characteristics of a Yucca Mountain repository. A saturation-limited dissolution model, in which the water flowing through the repository is assumed to be saturated with each waste element, is very conservative in that it overestimates dissolution rates. A diffusion-limited dissolution model, in which element-dissolution rates are limited by diffusion of waste elements into water flowing past the waste, is more realistic, but it is subject to some uncertainty at this time. Dissolution rates of some elements (Pu, Am, Sn, Th, Zr, Sm) are always limited by solubility. Dissolution rates of other elements (Cs, Tc, Np, Sr, C, I) are never solubility limited; their release would be limited by dissolution of the bulk waste form. Still other elements (U, Cm, Ni, Ra) show solubility-limited dissolution under some conditions. 9 references, 3 tables.

  14. Plutonium dissolution process

    DOEpatents

    Vest, M.A.; Fink, S.D.; Karraker, D.G.; Moore, E.N.; Holcomb, H.P.

    1994-01-01

    A two-step process for dissolving Pu metal is disclosed in which two steps can be carried out sequentially or simultaneously. Pu metal is exposed to a first mixture of 1.0-1.67 M sulfamic acid and 0.0025-0.1 M fluoride, the mixture having been heated to 45-70 C. The mixture will dissolve a first portion of the Pu metal but leave a portion of the Pu in an oxide residue. Then, a mineral acid and additional fluoride are added to dissolve the residue. Alternatively, nitric acid between 0.05 and 0.067 M is added to the first mixture to dissolve the residue as it is produced. Hydrogen released during the dissolution is diluted with nitrogen.

  15. Plutonium dissolution process

    DOEpatents

    Vest, Michael A.; Fink, Samuel D.; Karraker, David G.; Moore, Edwin N.; Holcomb, H. Perry

    1996-01-01

    A two-step process for dissolving plutonium metal, which two steps can be carried out sequentially or simultaneously. Plutonium metal is exposed to a first mixture containing approximately 1.0M-1.67M sulfamic acid and 0.0025M-0.1M fluoride, the mixture having been heated to a temperature between 45.degree. C. and 70.degree. C. The mixture will dissolve a first portion of the plutonium metal but leave a portion of the plutonium in an oxide residue. Then, a mineral acid and additional fluoride are added to dissolve the residue. Alteratively, nitric acid in a concentration between approximately 0.05M and 0.067M is added to the first mixture to dissolve the residue as it is produced. Hydrogen released during the dissolution process is diluted with nitrogen.

  16. Abiotic Versus Biotic Weathering Of Olivine As Possible Biosignatures

    NASA Technical Reports Server (NTRS)

    Longazo, Teresa G.; Wentworth, Susan J.; Clemett, Simon J.; Southam, Gordon; McKay, David S.

    2001-01-01

    We are investigating the weathering of silicate minerals by both purely inorganic, and biologically mediated processes using field-emission scanning electron microscopy (FESEM) and energy dispersive x-ray spectroscopy (EDS). By resolving surface textures and chemical compositions of weathered surfaces at the sub-micron scale we hope to be able to distinguish abiotic from biotic weathering processes and so establish a new biosignature applicable to the study of astromaterials including but not limited to the Martian meteorites. Sterilized olivine grains (San Carlos, Arizona) no more than 1-2 mm in their longest dimension were optically assayed to be uniform in color and free of inclusions were selected as weathering subjects. Prior to all experiments surface morphologies and Fe/Mg ratios were determined for each grain using FE-SEM and EDS. Experiments were divided into two categories abiotic and biotic and were compared with "naturally" weathered samples. For the preliminary experiments, two trials (open and closed to the ambient laboratory environment) were performed under abiotic conditions, and three trials under biotic conditions (control, day 1 and day 2). The open system abiotic trials used sterile grains heated at 98 C and 200 C for both 24 and 48 hours in 1L double distilled de-ionized water. The closed system abiotic trials were conducted under the same conditions but in a sealed two layer steel/Teflon "bomb" apparatus. The biotic trials used sterile grains mounted in a flow-through device attached to a wellhead on the Columbia River aquifer. Several discolored, altered, grains were selected to document "natural" weathering surface textures for comparison with the experimental samples. Preliminary results indicate there are qualitative differences in weathered surface textures among all the designed experiments. The olivine grains in abiotic trials displayed etching, pitting, denticulate margins, dissolution and clay formation. The scale of the features

  17. In situ dissolution analysis using coherent anti-Stokes Raman scattering (CARS) and hyperspectral CARS microscopy.

    PubMed

    Fussell, Andrew; Garbacik, Erik; Offerhaus, Herman; Kleinebudde, Peter; Strachan, Clare

    2013-11-01

    The solid-state form of an active pharmaceutical ingredient (API) in an oral dosage form plays an important role in determining the dissolution rate of the API. As the solid-state form can change during dissolution, there is a need to monitor the oral dosage form during dissolution testing. Coherent anti-Stokes Raman scattering (CARS) microscopy provides rapid, spectrally selective imaging to monitor the oral dosage form during dissolution. In this study, in situ CARS microscopy was combined with inline UV absorption spectroscopy to monitor the solid-state change in oral dosage forms containing theophylline anhydrate undergoing dissolution and to correlate the solid-state change with a change in dissolution rate. The results from in situ CARS microscopy showed that theophylline anhydrate converted to theophylline monohydrate during dissolution resulting in a reduction in the dissolution rate. The addition of methyl cellulose to the dissolution medium was found to delay the theophylline monohydrate growth and changed the morphology of the monohydrate. The net effect was an increased dissolution rate for theophylline anhydrate. Our results show that in situ CARS microscopy combined with inline UV absorption spectroscopy is capable of monitoring oral dosage forms undergoing dissolution and correlating changes in solid-state form with changes in dissolution rate. PMID:23994672

  18. Enhanced dissolution of TCE in NAPL by TCE-degrading bacteria in wetland soils.

    PubMed

    Lee, Sangjin

    2007-06-25

    The influence of trichloroethene (TCE) dechlorinating mixed cultures in dissolution of TCE in nonaqueous phase liquid (NAPL) via biodegradation was observed. Experiments were conducted in batch reactor system with and without marsh soils under 10 and 20 degrees C for 2 months. The dissolution phenomenon in biotic reactors containing mixed cultures was showed temporal increases compared to abiotic reactors treated with biocide. Effective NAPL-water transfer rate (K(m)) calculated in this study showed more than four times higher in biotic reactors than that in abiotic reactors. The results might be attributed to the biologically enhanced dissolution process via dechlorination in reactors. Temperature would be a factor to determine the dissolution rate by controlling bacterial activity. The TCE dechlorination occurred even in an interface of TCE-NAPL that demonstrated no previous TCE biodegradation, suggesting that microbes may be useful in developing source-zone bioremediation system. In conclusion, dechlorinating mixed culture could enhance dissolution in NAPL that may be useful in the application of source zone bioremediation.

  19. Mechanical clot dissolution: new concept.

    PubMed

    Bildsoe, M C; Moradian, G P; Hunter, D W; Castaneda-Zuniga, W R; Amplatz, K

    1989-04-01

    The authors present preliminary data on in vitro mechanical clot dissolution by means of a catheter with a tiny high-speed propeller enclosed in a special housing. Preweighed human blood clots were subjected to the catheter in a test tube with saline at various propeller speeds and durations of application. After filtration of the resultant slurry, the clot residue was weighed and examined histologically. Clot dissolution was found to be related to both the duration and speed of propeller rotation. No fibrin residue was seen after dissolution, although potential embolic material, composed of clumps of cellular debris as large as 208 microns in longest dimension, was found. Mechanical clot dissolution could possibly be used in any natural or synthetic blood vessel in which there is acute or subacute thrombosis, with fewer complications and lower cost than obtained with traditional methods.

  20. Alunite dissolution rates: Dissolution mechanisms and implications for Mars

    NASA Astrophysics Data System (ADS)

    Miller, J. L.; Elwood Madden, A. S.; Phillips-Lander, C. M.; Pritchett, B. N.; Elwood Madden, M. E.

    2016-01-01

    Alunite (KAl3(SO4)2(OH)6) is a hydrated aluminous sulfate mineral associated with acidic, oxidizing aqueous environments on Earth. Additionally, orbiting spacecraft and rovers on Mars have reported spectral data that indicate a range of mono- and polyhydrated sulfate phases and hydroxysulfate phases, suggesting such conditions also existed on Mars in the past. This study examines alunite dissolution rates in aqueous systems with varying pH, temperature, and solution chemistry conditions. Alunite dissolution rates in dilute solutions are 2-3 orders of magnitude slower than jarosite dissolution rates measured under analogous conditions. Similar to jarosite, alunite dissolution rates vary as a function of activity of H+ and OH- following the rate law log r (mol m-2 s-1) = -0.133(±0.02)pH - 10.65(±0.07) at pH < 5 and log r = 0.194(±0.04)pH - 12.53(±0.26) at pH > 5. However, minimum alunite dissolution rates are shifted to higher pH (5-5.5), likely due to differences in Fe and Al speciation. Alunite and jarosite rates converge in saturated NaCl and CaCl2 brines as the activity of water decreases, suggesting that differences in water exchange rates with Fe3+ and Al3+ control dissolution rates in dilute solutions, while metal-Cl- complexation occurs at similar rates within the brines. Particle lifetimes based on measured dissolution rates in dilute solutions show that alunite particles are expected to be preserved two orders of magnitude longer than jarosite particles over a range of pH and temperature conditions. In particular, alunite is more likely to be preserved in neutral to moderately alkaline systems compared to jarosite, which is expected to be preserved in more acidic conditions. Alunite dissolution produced amorphous Al-rich alteration products at moderate to high pH. Unlike jarosite, alunite dissolution does not show a clear trend as a function of temperature; alunite dissolution rates do not increase with increasing temperature, likely due to lower

  1. One-dimensional model for biogeochemical interactions and permeability reduction in soils during leachate permeation

    NASA Astrophysics Data System (ADS)

    Singhal, Naresh; Islam, Jahangir

    2008-02-01

    This paper uses the findings from a column study to develop a reactive model for exploring the interactions occurring in leachate-contaminated soils. The changes occurring in the concentrations of acetic acid, sulphate, suspended and attached biomass, Fe(II), Mn(II), calcium, carbonate ions, and pH in the column are assessed. The mathematical model considers geochemical equilibrium, kinetic biodegradation, precipitation-dissolution reactions, bacterial and substrate transport, and permeability reduction arising from bacterial growth and gas production. A two-step sequential operator splitting method is used to solve the coupled transport and biogeochemical reaction equations. The model gives satisfactory fits to experimental data and the simulations show that the transport of metals in soil is controlled by multiple competing biotic and abiotic reactions. These findings suggest that bioaccumulation and gas formation, compared to chemical precipitation, have a larger influence on hydraulic conductivity reduction.

  2. One-dimensional model for biogeochemical interactions and permeability reduction in soils during leachate permeation.

    PubMed

    Singhal, Naresh; Islam, Jahangir

    2008-02-19

    This paper uses the findings from a column study to develop a reactive model for exploring the interactions occurring in leachate-contaminated soils. The changes occurring in the concentrations of acetic acid, sulphate, suspended and attached biomass, Fe(II), Mn(II), calcium, carbonate ions, and pH in the column are assessed. The mathematical model considers geochemical equilibrium, kinetic biodegradation, precipitation-dissolution reactions, bacterial and substrate transport, and permeability reduction arising from bacterial growth and gas production. A two-step sequential operator splitting method is used to solve the coupled transport and biogeochemical reaction equations. The model gives satisfactory fits to experimental data and the simulations show that the transport of metals in soil is controlled by multiple competing biotic and abiotic reactions. These findings suggest that bioaccumulation and gas formation, compared to chemical precipitation, have a larger influence on hydraulic conductivity reduction.

  3. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants

    PubMed Central

    Khan, M. Iqbal R.; Fatma, Mehar; Per, Tasir S.; Anjum, Naser A.; Khan, Nafees A.

    2015-01-01

    Abiotic stresses (such as metals/metalloids, salinity, ozone, UV-B radiation, extreme temperatures, and drought) are among the most challenging threats to agricultural system and economic yield of crop plants. These stresses (in isolation and/or combination) induce numerous adverse effects in plants, impair biochemical/physiological and molecular processes, and eventually cause severe reductions in plant growth, development and overall productivity. Phytohormones have been recognized as a strong tool for sustainably alleviating adverse effects of abiotic stresses in crop plants. In particular, the significance of salicylic acid (SA) has been increasingly recognized in improved plant abiotic stress-tolerance via SA-mediated control of major plant-metabolic processes. However, the basic biochemical/physiological and molecular mechanisms that potentially underpin SA-induced plant-tolerance to major abiotic stresses remain least discussed. Based on recent reports, this paper: (a) overviews historical background and biosynthesis of SA under both optimal and stressful environments in plants; (b) critically appraises the role of SA in plants exposed to major abiotic stresses; (c) cross-talks potential mechanisms potentially governing SA-induced plant abiotic stress-tolerance; and finally (d) briefly highlights major aspects so far unexplored in the current context. PMID:26175738

  4. ABIOTIC REDUCTION AND DETOXIFICATION OF CHROMATE PRESENT IN SOILS

    EPA Science Inventory

    Theoretical and experimental research has supported the assertion that Cr(III) species are the most stable, immobile, and nontoxic forms of chromium and that they may form rapidly when adequate reducing agents are introduced in an oxidized soil environment. The objective of this ...

  5. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution.

    PubMed

    Yamaguchi, N; Nakamura, T; Dong, D; Takahashi, Y; Amachi, S; Makino, T

    2011-05-01

    Arsenic (As) is highly mobilized when paddy soil is flooded, causing increased uptake of As by rice. We investigated factors controlling soil-to-solution partitioning of As under anaerobic conditions. Changes in As and iron (Fe) speciation due to flooded incubation of two paddy soils (soils A and B) were investigated by HPLC/ICP-MS and XANES. The flooded incubation resulted in a decrease in Eh, a rise in pH, and an increase in the As(III) fraction in the soil solid phase up to 80% of the total As in the soils. The solution-to-soil ratio of As(III) and As(V) (R(L/S)) increased with pH due to the flooded incubation. The R(L/S) for As(III) was higher than that for As(V), indicating that As(III) was more readily released from soil to solution than was As(V). Despite the small differences in As concentrations between the two soils, the amount of As dissolved by anaerobic incubation was lower in soil A. With the development of anaerobic conditions, Fe(II) remained in the soil solid phase as the secondary mineral siderite, and a smaller amount of Fe was dissolved from soil A than from soil B. The dissolution of Fe minerals rather than redox reaction of As(V) to As(III) explained the different dissolution amounts of As in the two paddy soils. Anaerobic incubation for 30 d after the incomplete suppression of microbial activity caused a drop in Eh. However, this decline in Eh did not induce the transformation of As(V) to As(III) in either the soil solid or solution phases, and the dissolution of As was limited. Microbial activity was necessary for the reductive reaction of As(V) to As(III) even when Eh reached the condition necessary for the dominance of As(III). Ratios of released As to Fe from the soils were decreased with incubation time during both anaerobic incubation and abiotic dissolution by sodium ascorbate, suggesting that a larger amount of As was associated with an easily soluble fraction of Fe (hydr) oxide in amorphous phase and/or smaller particles. PMID

  6. Ferrihydrite dissolution by pyridine-2,6-bis(monothiocarboxylic acid) and hydrolysis products

    NASA Astrophysics Data System (ADS)

    Dhungana, Suraj; Anthony, Charles R.; Hersman, Larry E.

    2007-12-01

    Pyridine-2,6-bis(monothiocarboxylate) (pdtc), a metabolic product of microorganisms, including Pseudomonas putida and Pseudomonas stutzeri was investigated for its ability of dissolve Fe(III)(hydr)oxides at pH 7.5. Concentration dependent dissolution of ferrihydrite under anaerobic environment showed saturation of the dissolution rate at the higher concentration of pdtc. The surface controlled ferrihydrite dissolution rate was determined to be 1.2 × 10 -6 mol m -2 h -1. Anaerobic dissolution of ferrihydrite by pyridine-2,6-dicarboxylic acid or dipicolinic acid (dpa), a hydrolysis product of pdtc, was investigated to study the mechanism(s) involved in the pdtc facilitated ferrihydrite dissolution. These studies suggest that pdtc dissolved ferrihydrite using a reduction step, where dpa chelates the Fe reduced by a second hydrolysis product, H 2S. Dpa facilitated dissolution of ferrihydrite showed very small increase in the Fe dissolution when the concentration of external reductant, ascorbate, was doubled, suggesting the surface dynamics being dominated by the interactions between dpa and ferrihydrite. Greater than stoichiometric amounts of Fe were mobilized during dpa dissolution of ferrihydrite assisted by ascorbate and cysteine. This is attributed to the catalytic dissolution of Fe(III)(hydr)oxides by the in situ generated Fe(II) in the presence of a complex former, dpa.

  7. DEMONSTRATION BULLETIN: METAL-ENHANCED ABIOTIC DEGRADATION TECHNOLOGY - ENVIROMETAL TECHNOLOGIES, INC.

    EPA Science Inventory

    EnviroMetal Technologies, Inc. (ETI), of Guelph, ON, Canada, has developed the metal-enhanced abiotic degradation technology to treat halogenated volatile organic compounds (VOC) in water. A reactive, zero-valent, granular iron medium causes reductive dehalogenation of VOCs yield...

  8. Dissolution test acceptance sampling plans.

    PubMed

    Tsong, Y; Hammerstrom, T; Lin, K; Ong, T E

    1995-07-01

    The U.S. Pharmacopeia (USP) general monograph provides a standard for dissolution compliance with the requirements as stated in the individual USP monograph for a tablet or capsule dosage form. The acceptance rules recommended by USP have important roles in the quality control process. The USP rules and their modifications are often used as an industrial lot release sampling plan, where a lot is accepted when the tablets or capsules sampled are accepted as proof of compliance with the requirement. In this paper, the operating characteristics of the USP acceptance rules are reviewed and compared to a selected modification. The operating characteristics curves show that the USP acceptance rules are sensitive to the true mean dissolution and do not reject a lot or batch that has a large percentage of tablets that dissolve with less than the dissolution specification.

  9. Biological controls on dissolution of diatom frustules during their descent to the deep ocean: Lessons learned from controlled laboratory experiments

    NASA Astrophysics Data System (ADS)

    Passow, Uta; French, Megan A.; Robert, Maya

    2011-12-01

    The majority of opal produced by diatoms dissolves during their sedimentation to the seafloor, but spatial and temporal variability of dissolution rates are large. Controlled laboratory experiments using live phytoplankton or phyto-detritus may help identify the different processes, including those that are biologically mediated or physico-chemically driven, that impact the dissolution of frustules and the aforementioned variability. Results of eight bSiO 2 dissolution experiments, seven of which were conducted at low temperatures (<6 °C) are presented within the context of earlier similar studies, and different phases of dissolution dynamics characterized. TEP concentration, aggregation and the physiological status of the diatoms determined the period during which diatoms may maintain the protective membrane that surrounds their frustule and effectively reduces or completely inhibits (lag period) dissolution for some time. Once diatoms loose the capability to maintain their protective membrane, bacterial activity compromises it. Physico-chemical dissolution, which depends on frustule structure and abiotic environmental conditions, begins once the protective membrane is damaged. The ability of diatoms to maintain their membrane, the bacterial composition and activity governing its degradation, and the physico-chemical dissolution dynamics of exposed frustules are all impacted by temperature. In our experiments instantaneous dissolution rates were not dependant on bSiO 2 concentration at low temperatures, although such a relationship was observed under otherwise identical conditions at 15 °C, implying that biotic factors rather than physico-chemical processes initially dominated dissolution at polar temperatures. Since inhibition of bSiO 2 dissolution at low temperatures was inhibited to a greater extent than organic matter degradation, we postulate that it was not reduced bacterial activity but the enhanced ability of diatoms to maintain their membrane and thus

  10. The Effect of Microbial Glucose Metabolism on Bytownite Feldspar Dissolution Rates Between 5{sup o} and 35{sup o}C

    SciTech Connect

    Welch, S. A.; Ullman, W. J.

    1999-04-29

    The rate of Si release from dissolving bytownite feldspar in abiotic batch reactors increased as temperatures increased from 5 to 35 C. Metabolically inert subsurface bacteria (bacteria in solution with no organic substrate) had no apparent effect on dissolution rates over this temperature range. When glucose was added to the microbial cultures, the bacteria responded by producing gluconic acid, which catalyzed the dissolution reaction by both proton- and ligand-promoted mechanisms. The metabolic production, excretion, and consumption of gluconic acid in the course of glucose oxidation, and therefore, the degree of microbial enhancement of mineral dissolution, depend on temperature.

  11. Glycinebetaine and abiotic stress tolerance in plants

    PubMed Central

    Giri, Jitender

    2011-01-01

    The accumulation of osmolytes like glycinebetaine (GB) in cell is known to protect organisms against abiotic stresses via osmoregulation or osmoprotection. Transgenic plants engineered to produce GB accumulate very low concentration of GB, which might not be sufficient for osmoregulation. Therefore, other roles of GB like cellular macromolecule protection and ROS detoxification have been suggested as mechanisms responsible for abiotic stress tolerance in transgenic plants. In addition, GB influences expression of several endogenous genes in transgenic plants. The new insights gained about the mechanism of stress tolerance in GB accumulating transgenic plants are discussed. PMID:22057338

  12. Principles of Calcite Dissolution in Human and Artificial Otoconia

    PubMed Central

    Walther, Leif Erik; Blödow, Alexander; Buder, Jana; Kniep, Rüdiger

    2014-01-01

    Human otoconia provide mechanical stimuli to deflect hair cells of the vestibular sensory epithelium for purposes of detecting linear acceleration and head tilts. During lifetime, the volume and number of otoconia are gradually reduced. In a process of degeneration morphological changes occur. Structural changes in human otoconia are assumed to cause vertigo and balance disorders such as benign paroxysmal positional vertigo (BPPV). The aim of this study was to investigate the main principles of morphological changes in human otoconia in dissolution experiments by exposure to hydrochloric acid, EDTA, demineralized water and completely purified water respectively. For comparison reasons artificial (biomimetic) otoconia (calcite gelatin nanocomposits) and natural calcite were used. Morphological changes were detected in time steps by the use of environmental scanning electron microscopy (ESEM). Under in vitro conditions three main dissolution mechanisms were identified as causing characteristic morphological changes of the specimen under consideration: pH drops in the acidic range, complex formation with calcium ions and changes of ion concentrations in the vicinity of otoconia. Shifts in pH cause a more uniform reduction of otoconia size (isotropic dissolution) whereas complexation reactions and changes of the ionic concentrations within the surrounding medium bring about preferred attacks at specific areas (anisotropic dissolution) of human and artificial otoconia. Owing to successive reduction of material, all the dissolution mechanisms finally produce fragments and remnants of otoconia. It can be assumed that the organic component of otoconia is not significantly attacked under the given conditions. Artificial otoconia serve as a suitable model system mimicking chemical attacks on biogenic specimens. The underlying principles of calcite dissolution under in vitro conditions may play a role in otoconia degeneration processes such as BPPV. PMID:25048115

  13. Pathways for abiotic organic synthesis at submarine hydrothermal fields

    PubMed Central

    McDermott, Jill M.; Seewald, Jeffrey S.; German, Christopher R.; Sylva, Sean P.

    2015-01-01

    Arguments for an abiotic origin of low-molecular weight organic compounds in deep-sea hot springs are compelling owing to implications for the sustenance of deep biosphere microbial communities and their potential role in the origin of life. Theory predicts that warm H2-rich fluids, like those emanating from serpentinizing hydrothermal systems, create a favorable thermodynamic drive for the abiotic generation of organic compounds from inorganic precursors. Here, we constrain two distinct reaction pathways for abiotic organic synthesis in the natural environment at the Von Damm hydrothermal field and delineate spatially where inorganic carbon is converted into bioavailable reduced carbon. We reveal that carbon transformation reactions in a single system can progress over hours, days, and up to thousands of years. Previous studies have suggested that CH4 and higher hydrocarbons in ultramafic hydrothermal systems were dependent on H2 generation during active serpentinization. Rather, our results indicate that CH4 found in vent fluids is formed in H2-rich fluid inclusions, and higher n-alkanes may likely be derived from the same source. This finding implies that, in contrast with current paradigms, these compounds may form independently of actively circulating serpentinizing fluids in ultramafic-influenced systems. Conversely, widespread production of formate by ΣCO2 reduction at Von Damm occurs rapidly during shallow subsurface mixing of the same fluids, which may support anaerobic methanogenesis. Our finding of abiogenic formate in deep-sea hot springs has significant implications for microbial life strategies in the present-day deep biosphere as well as early life on Earth and beyond. PMID:26056279

  14. Pathways for abiotic organic synthesis at submarine hydrothermal fields.

    PubMed

    McDermott, Jill M; Seewald, Jeffrey S; German, Christopher R; Sylva, Sean P

    2015-06-23

    Arguments for an abiotic origin of low-molecular weight organic compounds in deep-sea hot springs are compelling owing to implications for the sustenance of deep biosphere microbial communities and their potential role in the origin of life. Theory predicts that warm H2-rich fluids, like those emanating from serpentinizing hydrothermal systems, create a favorable thermodynamic drive for the abiotic generation of organic compounds from inorganic precursors. Here, we constrain two distinct reaction pathways for abiotic organic synthesis in the natural environment at the Von Damm hydrothermal field and delineate spatially where inorganic carbon is converted into bioavailable reduced carbon. We reveal that carbon transformation reactions in a single system can progress over hours, days, and up to thousands of years. Previous studies have suggested that CH4 and higher hydrocarbons in ultramafic hydrothermal systems were dependent on H2 generation during active serpentinization. Rather, our results indicate that CH4 found in vent fluids is formed in H2-rich fluid inclusions, and higher n-alkanes may likely be derived from the same source. This finding implies that, in contrast with current paradigms, these compounds may form independently of actively circulating serpentinizing fluids in ultramafic-influenced systems. Conversely, widespread production of formate by ΣCO2 reduction at Von Damm occurs rapidly during shallow subsurface mixing of the same fluids, which may support anaerobic methanogenesis. Our finding of abiogenic formate in deep-sea hot springs has significant implications for microbial life strategies in the present-day deep biosphere as well as early life on Earth and beyond. PMID:26056279

  15. Pathways for abiotic organic synthesis at submarine hydrothermal fields.

    PubMed

    McDermott, Jill M; Seewald, Jeffrey S; German, Christopher R; Sylva, Sean P

    2015-06-23

    Arguments for an abiotic origin of low-molecular weight organic compounds in deep-sea hot springs are compelling owing to implications for the sustenance of deep biosphere microbial communities and their potential role in the origin of life. Theory predicts that warm H2-rich fluids, like those emanating from serpentinizing hydrothermal systems, create a favorable thermodynamic drive for the abiotic generation of organic compounds from inorganic precursors. Here, we constrain two distinct reaction pathways for abiotic organic synthesis in the natural environment at the Von Damm hydrothermal field and delineate spatially where inorganic carbon is converted into bioavailable reduced carbon. We reveal that carbon transformation reactions in a single system can progress over hours, days, and up to thousands of years. Previous studies have suggested that CH4 and higher hydrocarbons in ultramafic hydrothermal systems were dependent on H2 generation during active serpentinization. Rather, our results indicate that CH4 found in vent fluids is formed in H2-rich fluid inclusions, and higher n-alkanes may likely be derived from the same source. This finding implies that, in contrast with current paradigms, these compounds may form independently of actively circulating serpentinizing fluids in ultramafic-influenced systems. Conversely, widespread production of formate by ΣCO2 reduction at Von Damm occurs rapidly during shallow subsurface mixing of the same fluids, which may support anaerobic methanogenesis. Our finding of abiogenic formate in deep-sea hot springs has significant implications for microbial life strategies in the present-day deep biosphere as well as early life on Earth and beyond.

  16. Marital dissolution: an economic analysis.

    PubMed

    Hunter, K A

    1984-01-01

    A longitudinal analysis of factors affecting marital dissolution in the United States is presented using data from the Coleman-Rossi Retrospective Life History. Factors considered include labor force participation of both spouses, wage growth, size of family unit, age at marriage, and educational status. The study is based on the economic analysis approach developed by Gary S. Becker and others.

  17. Stoichiometry of smectite dissolution reaction

    NASA Astrophysics Data System (ADS)

    Metz, Volker; Amram, Keren; Ganor, Jiwchar

    2005-04-01

    The dissolution stoichiometry of smectite-rich bentonites SAz-1, STx-1 and SWy-1 was studied at 50°C and pH 2 and 3 using flow-through reactors. In addition to smectite, these samples contain considerable amounts of silica phases (quartz, cristobalite and/or amorphous silica). As a result, the molar Al/Si ratios of the bulk samples are significantly lower than those of the pure smectite. Smectite dissolution was highly incongruent during the first few hundred to few thousand hours of the experiments. Release rates of Si, Mg, Ca and Na underwent a distinct transition from an initial period of rapid release to significantly lower release rate at steady state. A reversed trend was observed for release of Al, which gradually increased from very low starting release rate to higher release rate at steady state. At steady state the ratio of released Al to released Si was found to be constant and independent of the experimental conditions. We suggest that this ratio represents the Al/Si ratio of the smectite itself, and it is not influenced by the presence of accessory phases in the sample. The rapid release of calcium, sodium and magnesium from the interlayer sites is explained by ion-exchange reactions, whereas the fast release of silicon is explained by dissolution of amorphous silica. We interpret the initial slow release of Al as the result of inhibition of smectite dissolution due to coating or cementation of the smectite aggregates by amorphous silica. As the silica is dissolved, the aggregates fall apart and more smectite surfaces are exposed, resulting in an increase in the smectite dissolution rate. Thereafter, the system approaches steady state, in which the major tetrahedral and octahedral cations of smectite are released congruently.

  18. In vitro dissolution methodology, mini-Gastrointestinal Simulator (mGIS), predicts better in vivo dissolution of a weak base drug, dasatinib.

    PubMed

    Tsume, Yasuhiro; Takeuchi, Susumu; Matsui, Kazuki; Amidon, Gregory E; Amidon, Gordon L

    2015-08-30

    USP apparatus I and II are gold standard methodologies for determining the in vitro dissolution profiles of test drugs. However, it is difficult to use in vitro dissolution results to predict in vivo dissolution, particularly the pH-dependent solubility of weak acid and base drugs, because the USP apparatus contains one vessel with a fixed pH for the test drug, limiting insight into in vivo drug dissolution of weak acid and weak base drugs. This discrepancy underscores the need to develop new in vitro dissolution methodology that better predicts in vivo response to assure the therapeutic efficacy and safety of oral drug products. Thus, the development of the in vivo predictive dissolution (IPD) methodology is necessitated. The major goals of in vitro dissolution are to ensure the performance of oral drug products and the support of drug formulation design, including bioequivalence (BE). Orally administered anticancer drugs, such as dasatinib and erlotinib (tyrosine kinase inhibitors), are used to treat various types of cancer. These drugs are weak bases that exhibit pH-dependent and high solubility in the acidic stomach and low solubility in the small intestine (>pH 6.0). Therefore, these drugs supersaturate and/or precipitate when they move from the stomach to the small intestine. Also of importance, gastric acidity for cancer patients may be altered with aging (reduction of gastric fluid secretion) and/or co-administration of acid-reducing agents. These may result in changes to the dissolution profiles of weak base and the reduction of drug absorption and efficacy. In vitro dissolution methodologies that assess the impact of these physiological changes in the GI condition are expected to better predict in vivo dissolution of oral medications for patients and, hence, better assess efficacy, toxicity and safety concerns. The objective of this present study is to determine the initial conditions for a mini-Gastrointestinal Simulator (mGIS) to assess in vivo

  19. The relationship between dissolution, gas oversaturation and outgassing of solutions determined by Broadband Acoustic Resonance Dissolution Spectroscopy (BARDS).

    PubMed

    Fitzpatrick, Dara; Evans-Hurson, Rachel; Krüse, Jacob; Vos, Bastiaan; McSweeney, Seán; Casaubieilh, Pierre; O'Gorman, Eadaoin

    2013-09-01

    The addition of a solute to a solvent is known to reduce the solubility of dissolved gases in solution which leads to gas oversaturation and outgassing of the solvent. The importance of the processes involved have received relatively little attention due to a limited capacity to elucidate their effects in real time. Broadband Acoustic Resonance Dissolution Spectroscopy (BARDS) is a recently introduced acoustic approach which can monitor changes in the compressibility of a solvent due to outgassing. BARDS spectra show that a time dependent and quantitative reduction in gas oversaturation, following the dissolution of a simple salt, takes place over several hours. It is shown how vigorous agitation quickly equilibrates a solution, post dissolution, by removing gas oversaturation consistently. The level of oversaturation can be elucidated by further dissolving a marker compound into a solution consecutively. BARDS spectra indicate that the dissolution of a compound produces a consistent and quantifiable oversaturation of a solvent and a consistent and quantifiable outgassing. Low frequency sonication in an immersion bath is also shown to play no significant role in removing gas oversaturation post dissolution.

  20. Abiotic Bromination of Soil Organic Matter.

    PubMed

    Leri, Alessandra C; Ravel, Bruce

    2015-11-17

    Biogeochemical transformations of plant-derived soil organic matter (SOM) involve complex abiotic and microbially mediated reactions. One such reaction is halogenation, which occurs naturally in the soil environment and has been associated with enzymatic activity of decomposer organisms. Building on a recent finding that naturally produced organobromine is ubiquitous in SOM, we hypothesized that inorganic bromide could be subject to abiotic oxidations resulting in bromination of SOM. Through lab-based degradation treatments of plant material and soil humus, we have shown that abiotic bromination of particulate organic matter occurs in the presence of a range of inorganic oxidants, including hydrogen peroxide and assorted forms of ferric iron, producing both aliphatic and aromatic forms of organobromine. Bromination of oak and pine litter is limited primarily by bromide concentration. Fresh plant material is more susceptible to bromination than decayed litter and soil humus, due to a labile pool of mainly aliphatic compounds that break down during early stages of SOM formation. As the first evidence of abiotic bromination of particulate SOM, this study identifies a mechanistic source of the natural organobromine in humic substances and the soil organic horizon. Formation of organobromine through oxidative treatments of plant material also provides insights into the relative stability of aromatic and aliphatic components of SOM.

  1. Enzymatic activity in the presence of surfactants commonly used in dissolution media, Part 1: Pepsin

    PubMed Central

    Guzman, Maria L; Marques, Margareth R; Olivera ME, Maria E; Stippler, Erika S

    2016-01-01

    The United States Pharmacopeia (USP) General Chapters Dissolution 〈711〉 and Disintegration and Dissolution of Dietary Supplements 〈2040〉 allows the use of enzymes in dissolution media when gelatin capsules do not conform to dissolution specifications due to cross linking. Possible interactions between enzymes and surfactants when used together in dissolution media could result in loss of the enzymatic activity. Pepsin is an enzyme commonly used in dissolution media, and in this work, the activity of pepsin was determined in the presence of different surfactants as usually found in case of dissolution tests of certain gelatin capsule formulations. Pepsin enzymatic activity was determined according to the Ninth Edition of the Food Chemicals Codex (FCC) 9 method, in dissolution conditions: simulated gastric fluid, 37 °C and 50 rpm. Sodium dodecyl sulfate (SDS), cetyltrimethyl ammonium bromide (CTAB), polysorbate 80 (Tween 80) and octoxynol 9 (Triton X100) in concentrations above and below their critical micellar concentrations were selected. Results showed a significant reduction in the activity of pepsin at all the concentrations of SDS assayed. On the contrary, CTAB, Tween 80, and Triton X100 did not alter the enzymatic activity at of pepsin any of the concentration assayed. This data demonstrates a rational selection of the surfactant to be used when pepsin is required in dissolution test. PMID:27047734

  2. Controls by saturation state on etch pit formation during calcite dissolution

    NASA Astrophysics Data System (ADS)

    Teng, H. Henry

    2004-01-01

    Dissolution experiments were conducted on {101¯4} cleavage faces of calcite at various under-saturations to determine how the saturation state controls etch pit formation. Experimental observations were made by using in situ fluid cell Atomic Force Microscopy. Three dissolution modes were observed. When the saturation index Ω > 0.541, no etch pit formation was seen and dissolution primarily occurred at existing steps. When Ω decreased to Ω c = 0.541-0.410, the first visible pits appeared and continuous reduction in saturation state slowly increased the pit density on terraces while dissolution simultaneously proceeded at step edges. Finally, when the saturation state fell below Ω max = ˜0.007, a precipitous increase in pit density took place that sharply contrasted to the ordered fashion of pit formation observed at saturation conditions above this level. These observations are interpreted to be two-dimensional and unassisted pit formation at Ω < ˜0.007, defect- and step-assisted dissolution in between Ω = 0.541 and 0.007, and existing step-induced dissolution for Ω > 0.541. The values of Ω c are in good agreement with the dislocation theory's predicted critical under-saturations for pit formation at line dislocations. The occurrence of Ω max is not directly predicted but is a logical consequence of dissolution thermodynamics. These findings suggest that (1) dissolution near and far from equilibrium (i.e., Ω > Ω c, Ω < Ω max) is not controlled by dislocations, therefore (2) dislocation density should significantly impact dissolution rate only in the saturation range of Ω max < Ω < Ω c; (3) dissolution kinetics and chemical affinity of dissolution reactions should have a non-linear relationship: at sufficiently close to equilibrium, when dislocations cannot open up to form etch pits, the dissolution kinetics will be limited by the number of existing steps; at far from equilibrium, when pits are able to form in defect-free regions, the dissolution

  3. Bacterially enhanced dissolution of meta-autunite

    SciTech Connect

    Smeaton, C.M.; Weisener, C.G.; Burns, P.C.; Fryer, B.J.; Fowle, D.A.

    2008-12-15

    The release of U from the mineral meta-autunite {l_brace}Ca[(UO{sub 2})(PO{sub 2})](H{sub 2}O){sub 6}{r_brace} was evaluated using spectroscopy, aqueous geochemistry, and electron microscopy in a minimal media with the dissimilatory metal-reducing bacterium Shewanella putrefaciens 200R. The onset of anaerobic conditions resulted in the rapid release of U and phosphate to solution followed by the reprecipitation of meta-autinite. Spectroscopy measurements (XANES) indicated that the U was not released via reduction during the bacterial incubations, but instead dissolution was promoted by uptake and immobilization of P by the bacterial cells. Our results suggest that U(VI) in 'refractory' P mineral phases may be mobilized from U mill tailings and/or U disposal sites and that the nutrient status (P) of the geologic setting may be a predictor for the lability of U in these environments.

  4. Influence of abiotic factors on the antimicrobial activity of chitosan.

    PubMed

    Tavaria, Freni K; Costa, Eduardo M; Gens, Eduardo J; Malcata, Francisco Xavier; Pintado, Manuela E

    2013-12-01

    In an effort to bypass the adverse secondary effects attributed to the traditional therapeutic approaches used to treat skin disorders (such as atopic dermatitis), alternative antimicrobials have recently been suggested. One such antimicrobial is chitosan, owing to the already proved biological properties associated with its use. However, the influence of abiotic factors on such activities warrants evaluation. This research effort assessed the antimicrobial activity of chitosan upon skin microorganisms (Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli) in vitro when subject to a combination of different abiotic factors such as pH, ionic strength, organic acids and free fatty acids. Free fatty acids, ionic strength and pH significantly affected chitosan's capability of reducing the viable numbers of S. aureus. This antimicrobial action was potentiated in the presence of palmitic acid and a lower ionic strength (0.2% NaCl), while a higher ionic strength (0.4% NaCl) favored chitosan's action upon the reduction of viable numbers of S. epidermidis and E. coli. Although further studies are needed, these preliminary results advocate that chitosan can in the future be potentially considered as an antimicrobial of choice when handling symptoms associated with atopic dermatitis.

  5. Influence of abiotic factors on the antimicrobial activity of chitosan.

    PubMed

    Tavaria, Freni K; Costa, Eduardo M; Gens, Eduardo J; Malcata, Francisco Xavier; Pintado, Manuela E

    2013-12-01

    In an effort to bypass the adverse secondary effects attributed to the traditional therapeutic approaches used to treat skin disorders (such as atopic dermatitis), alternative antimicrobials have recently been suggested. One such antimicrobial is chitosan, owing to the already proved biological properties associated with its use. However, the influence of abiotic factors on such activities warrants evaluation. This research effort assessed the antimicrobial activity of chitosan upon skin microorganisms (Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli) in vitro when subject to a combination of different abiotic factors such as pH, ionic strength, organic acids and free fatty acids. Free fatty acids, ionic strength and pH significantly affected chitosan's capability of reducing the viable numbers of S. aureus. This antimicrobial action was potentiated in the presence of palmitic acid and a lower ionic strength (0.2% NaCl), while a higher ionic strength (0.4% NaCl) favored chitosan's action upon the reduction of viable numbers of S. epidermidis and E. coli. Although further studies are needed, these preliminary results advocate that chitosan can in the future be potentially considered as an antimicrobial of choice when handling symptoms associated with atopic dermatitis. PMID:24330167

  6. Chemical Reactivity Probes for Assessing Abiotic Natural Attenuation by Reducing Iron Minerals.

    PubMed

    Fan, Dimin; Bradley, Miranda J; Hinkle, Adrian W; Johnson, Richard L; Tratnyek, Paul G

    2016-02-16

    Increasing recognition that abiotic natural attenuation (NA) of chlorinated solvents can be important has created demand for improved methods to characterize the redox properties of the aquifer materials that are responsible for abiotic NA. This study explores one promising approach: using chemical reactivity probes (CRPs) to characterize the thermodynamic and kinetic aspects of contaminant reduction by reducing iron minerals. Assays of thermodynamic CRPs were developed to determine the reduction potentials (ECRP) of suspended minerals by spectrophotometric determination of equilibrium CRP speciation and calculations using the Nernst equation. ECRP varied as expected with mineral type, mineral loading, and Fe(II) concentration. Comparison of ECRP with reduction potentials measured potentiometrically using a Pt electrode (EPt) showed that ECRP was 100-150 mV more negative than EPt. When EPt was measured with small additions of CRPs, the systematic difference between EPt and ECRP was eliminated, suggesting that these CRPs are effective mediators of electron transfer between mineral and electrode surfaces. Model contaminants (4-chloronitrobenzene, 2-chloroacetophenone, and carbon tetrachloride) were used as kinetic CRPs. The reduction rate constants of kinetic CRPs correlated well with the ECRP for mineral suspensions. Using the rate constants compiled from literature for contaminants and relative mineral reduction potentials based on ECRP measurements, qualitatively consistent trends were obtained, suggesting that CRP-based assays may be useful for estimating abiotic NA rates of contaminants in groundwater.

  7. Comparison on Response and Dissolution Rates Between Ursodeoxycholic Acid Alone or in Combination With Chenodeoxycholic Acid for Gallstone Dissolution According to Stone Density on CT Scan

    PubMed Central

    Lee, Jae Min; Hyun, Jong Jin; Choi, In Young; Yeom, Suk Keu; Kim, Seung Young; Jung, Sung Woo; Jung, Young Kul; Koo, Ja Seol; Yim, Hyung Joon; Lee, Hong Sik; Lee, Sang Woo; Kim, Chang Duck

    2015-01-01

    Abstract Medical dissolution of gallstone is usually performed on radiolucent gallstones in a functioning gallbladder. However, absence of visible gallstone on plain abdominal x-ray does not always preclude calcification. This study aims to compare the response and dissolution rates between ursodeoxycholic acid (UDCA) alone or in combination with chenodeoxycholic acid (CDCA) according to stone density on computed tomography (CT) scan. A total of 126 patients underwent dissolution therapy with either UDCA alone or combination of CDCA and UDCA (CNU) from December 2010 to March 2014 at Korea University Ansan Hospital. In the end, 81 patients (CNU group = 44, UDCA group = 37) completed dissolution therapy for 6 months. Dissolution rate (percentage reduction in the gallstone volume) and response to therapy (complete dissolution or partial dissolution defined as reduction in stone volume of >50%) were compared between the 2 groups. Dissolution and response rates of sludge was also compared between the 2 groups. The overall response rate was 50.6% (CNU group 43.2% vs UDCA group 59.5%, P = 0.14), and the overall dissolution rate was 48.34% (CNU group 41.5% vs UDCA group 56.5%, P = 0.13). When analyzed according to stone density, response rate was 33.3%, 87.1%, 30.0%, and 6.2% for hypodense, isodense, hyperdense, and calcified stones, respectively. Response rate (85.7% vs 88.2%, P = 0.83) and dissolution rate (81.01% vs 85.38%, P = 0.17) of isodense stones were similar between CNU and UDCA group. When only sludge was considered, the overall response rate was 87.5% (CNU group 71.4% vs UDCA group 94.1%, P = 0.19), and the overall dissolution rate was 85.42% (CNU group 67.9% vs UDCA group 92.7%, P = 0.23). Patients with isodense gallstones and sludge showed much better response to dissolution therapy with CNU and UDCA showing comparable efficacy. Therefore, CT scan should be performed before medication therapy if stone dissolution is intended

  8. Dissolution patterns on caramel blocks

    NASA Astrophysics Data System (ADS)

    Cohen, Caroline; Derr, Julien; Berhanu, Michael; Courrech Du Pont, Sylvain

    2015-11-01

    We investigate erosion by dissolution processes. We perform laboratory experiments on hard caramel bodies, which dissolve on a short timescale, compared to geological material such as limestone. We put a block of caramel, tilted from the horizontal, in a water tank without flow. The dissolution syrup, which is denser than pure water, sinks and the flow detaching from the surface creates patterns underneath the caramel block. These patterns result from the coupled dynamics of the flow detaching and the eroding surface and are reminiscent of scallops observed in the walls of phreatic cave passages. We investigate the mechanisms of formation of these structures and their evolution depending on several parameters such as the fluid density or the flow velocity. We finally parallel the formation of patterns on melting iceberg.

  9. Marital Dissolution Among Interracial Couples.

    PubMed

    Zhang, Yuanting; Van Hook, Jennifer

    2009-02-01

    Increases in interracial marriage have been interpreted as reflecting reduced social distance among racial and ethnic groups, but little is known about the stability of interracial marriages. Using six panels of Survey of Income and Program Participation (N = 23,139 married couples), we found that interracial marriages are less stable than endogamous marriages, but these findings did not hold up consistently. After controlling for couple characteristics, the risk of divorce or separation among interracial couples was similar to the more-divorce-prone origin group. Although marital dissolution was found to be strongly associated with race/ethnicity, the results failed to provide evidence that interracial marriage is associated with an elevated risk of marital dissolution.

  10. Potential Abiotic Functions of Root Exudates in Rhizosphere Cycling of Soil Organic Matter

    NASA Astrophysics Data System (ADS)

    Pett-Ridge, J.; Keiluweit, M.; Bougoure, J.; Kleber, M.; Nico, P. S.

    2012-12-01

    Carbon cycling in the rhizosphere is a nexus of biophysical interactions between plant roots, microorganisms and the soil organo-mineral matrix. Plant roots are the primary source of C in mineral horizons and can significantly accelerate the rate of soil organic matter mineralization in rhizosphere soils. While a portion of this acceleration results from stimulation of microbial enzymatic capacities (the 'priming effect') - abiotic responses also play a significant role in rhizosphere cycling of soil organic matter (SOM). For example, exudate-stimulated mobilization and dissolution of metal species may release previously complexed SOM, or could affect Fe mobility via redox changes associated with microbially-driven O2 depletion. We have investigated the abiotic response of rhizosphere microenvironments, using additions of several 13C-enriched low molecular weight (LMW) root exudates and 13C-plant detritus to controlled microcosms. We hypothesized that certain abiotic effects are triggered by specific exudate compounds and that the magnitude of the effect depends on the soil physiochemical properties. Using a combination of microsensor measurements, solid-phase extractions, X-ray and IR spectroscopy, we measured how root exudates differ in their potential to create reducing microenvironments, alter metal chemisty and mineralogy, and influence the availability of SOM in the rhizosphere. High resolution X-ray microscopy (STXM) and secondary ion mass spectrometry (NanoSIMS) analyses illustrate the physical fate of the added isotope tracers in both pore water and on mineral surfaces. Our results suggest that certain root exudates facilitate abiotic reactions that increase the pool of bioavailable SOM and stimulate its microbial decomposition in the rhizosphere. In particular, the contrasting ecological functions of LMW organic acids and simple sugars in facilitating SOM breakdown in the rhizosphere will be discussed.

  11. Mass exchange during simultaneous grinding and dissolution

    SciTech Connect

    Aksel'rud, G.A.; Semenishin, E.M.; Kopyt, S.Ya.; Trotskii, V.I.

    1988-03-20

    Extraction of ore components of interest has a number of disadvantages, one of which being low efficiency. Combining the grinding and dissolution steps in one apparatus makes the process more efficient. Adoption of this technology, however, requires theoretical and mathematical studies. This paper reports the kinetics of simultaneous grinding and dissolution of copper-containing minerals. Simultaneous grinding and dissolution accelerated several fold the mass transfer of components of interest in the interaction of malachite and azurite with sulfuric acid solutions. The complete dissolution time was determined by adding the experimental rates of dissolution and abrasion.

  12. Abiotic immobilization/detoxification of recalcitrant organics

    SciTech Connect

    Whelan, G. ); Sims, R.C. )

    1990-11-01

    In contrast to many remedial techniques that simply transfer hazardous wastes from one part of the environment to another (e.g., off-site landfilling), in situ restoration may offer a safe and cost-effective solution through transformation (to less hazardous products) or destruction of recalcitrant organics. Currently, the US Environmental Protection Agency and US Department of Energy are encouraging research that addresses the development of innovative alternatives for hazardous-waste control. One such alternative is biotic and abiotic immobilization and detoxification of polynuclear aromatic hydrocarbons (PNAs) as associated with the soil humification process. This paper discusses (1) the possibility of using abiotic catalysis (with manganese dioxide) to polymerize organic substances; (2) aspects associated with the thermodynamics and kinetics of the process, and (3) a simple model upon which analyses may be based. 36 refs., 7 figs., 3 tabs.

  13. Optimizing dissolution dynamic nuclear polarization

    NASA Astrophysics Data System (ADS)

    Bornet, Aurélien; Jannin, Sami

    2016-03-01

    This article is a short review of some of our recent developments in dissolution dynamic nuclear polarization (d-DNP). We present the basic principles of d-DNP, and motivate our choice to step away from conventional approaches. We then introduce a modified d-DNP recipe that can be summed up as follows: Using broad line polarizing agents to efficiently polarize 1H spins. Increasing the magnetic field to 6.7 T and above. Applying microwave frequency modulation. Applying 1H-13C cross polarization. Transferring hyperpolarized solution through a magnetic tunnel.

  14. DISSOLUTION OF NEPTUNIUM OXIDE RESIDUES

    SciTech Connect

    Kyser, E

    2009-01-12

    This report describes the development of a dissolution flowsheet for neptunium (Np) oxide (NpO{sub 2}) residues (i.e., various NpO{sub 2} sources, HB-Line glovebox sweepings, and Savannah River National Laboratory (SRNL) thermogravimetric analysis samples). Samples of each type of materials proposed for processing were dissolved in a closed laboratory apparatus and the rate and total quantity of off-gas were measured. Samples of the off-gas were also analyzed. The quantity and type of solids remaining (when visible) were determined after post-dissolution filtration of the solution. Recommended conditions for dissolution of the NpO{sub 2} residues are: Solution Matrix and Loading: {approx}50 g Np/L (750 g Np in 15 L of dissolver solution), using 8 M nitric acid (HNO{sub 3}), 0.025 M potassium fluoride (KF) at greater than 100 C for at least 3 hours. Off-gas: Analysis of the off-gas indicated nitric oxide (NO), nitrogen dioxide (NO{sub 2}) and nitrous oxide (N{sub 2}O) as the only identified components. No hydrogen (H{sub 2}) was detected. The molar ratio of off-gas produced per mole of Np dissolved ranged from 0.25 to 0.4 moles of gas per mole of Np dissolved. A peak off-gas rate of {approx}0.1 scfm/kg bulk oxide was observed. Residual Solids: Pure NpO{sub 2} dissolved with little or no residue with the proposed flowsheet but the NpCo and both sweepings samples left visible solid residue after dissolution. For the NpCo and Part II Sweepings samples the residue amounted to {approx}1% of the initial material, but for the Part I Sweepings sample, the residue amounted to {approx}8 % of the initial material. These residues contained primarily aluminum (Al) and silicon (Si) compounds that did not completely dissolve under the flowsheet conditions. The residues from both sweepings samples contained minor amounts of plutonium (Pu) particles. Overall, the undissolved Np and Pu particles in the residues were a very small fraction of the total solids.

  15. Cross-tolerance to biotic and abiotic stresses in plants: a focus on resistance to aphid infestation.

    PubMed

    Foyer, Christine H; Rasool, Brwa; Davey, Jack W; Hancock, Robert D

    2016-03-01

    Plants co-evolved with an enormous variety of microbial pathogens and insect herbivores under daily and seasonal variations in abiotic environmental conditions. Hence, plant cells display a high capacity to respond to diverse stresses through a flexible and finely balanced response network that involves components such as reduction-oxidation (redox) signalling pathways, stress hormones and growth regulators, as well as calcium and protein kinase cascades. Biotic and abiotic stress responses use common signals, pathways and triggers leading to cross-tolerance phenomena, whereby exposure to one type of stress can activate plant responses that facilitate tolerance to several different types of stress. While the acclimation mechanisms and adaptive responses that facilitate responses to single biotic and abiotic stresses have been extensively characterized, relatively little information is available on the dynamic aspects of combined biotic/abiotic stress response. In this review, we consider how the abiotic environment influences plant responses to attack by phloem-feeding aphids. Unravelling the signalling cascades that underpin cross-tolerance to biotic and abiotic stresses will allow the identification of new targets for increasing environmental resilience in crops.

  16. Cross-tolerance to biotic and abiotic stresses in plants: a focus on resistance to aphid infestation.

    PubMed

    Foyer, Christine H; Rasool, Brwa; Davey, Jack W; Hancock, Robert D

    2016-03-01

    Plants co-evolved with an enormous variety of microbial pathogens and insect herbivores under daily and seasonal variations in abiotic environmental conditions. Hence, plant cells display a high capacity to respond to diverse stresses through a flexible and finely balanced response network that involves components such as reduction-oxidation (redox) signalling pathways, stress hormones and growth regulators, as well as calcium and protein kinase cascades. Biotic and abiotic stress responses use common signals, pathways and triggers leading to cross-tolerance phenomena, whereby exposure to one type of stress can activate plant responses that facilitate tolerance to several different types of stress. While the acclimation mechanisms and adaptive responses that facilitate responses to single biotic and abiotic stresses have been extensively characterized, relatively little information is available on the dynamic aspects of combined biotic/abiotic stress response. In this review, we consider how the abiotic environment influences plant responses to attack by phloem-feeding aphids. Unravelling the signalling cascades that underpin cross-tolerance to biotic and abiotic stresses will allow the identification of new targets for increasing environmental resilience in crops. PMID:26936830

  17. Anaerobic microbial dissolution of transition and heavy metal oxides

    SciTech Connect

    Francis, A.J.; Dodge, C.J.

    1988-04-01

    An anaerobic N-fixing Clostridium sp. with an acetic, butyric, and lactic acid fermentation pattern, isolated from coal-cleaning waste, solubilized Fe/sub 2/O/sub 3/ and MnO/sub 2/ by direct enzymatic reduction; CdO, CuO, PbO, and ZnO were solubilized by indirect action due to the production of metabolites and the lowering of the pH of the growth medium. Extracellular heat-labile components of the cell-free spent medium obtained from cultures without oxide solubilized a significant amount of Fe/sub 2/O/sub 3/; however, direct contact with the bacterial cells resulted in the complete dissolution of the oxide. Under identical conditions, the cell-free spent medium solubilized only a small amount of MnO/sub 2/, whereas 2.3 ..mu..mol of the oxide was solubilized by direct bacterial contact. Reduction of Fe/sub 2/O/sub 3/ and MnO/sub 2/ by Clostridium sp. proceeds at different rates and, possibly, by different enzymatic systems. Fe(III) and Mn(IV) oxides appear to be used as sinks for excess electrons generated from glucose fermentation. Dialysis bag experiments with Co/sub 2/O/sub 3/ indicate that there is a slight dissolution of Co followed by precipitation or biosorption. Although Mn/sub 2/O/sub 3/, Ni/sub 2/O/sub 3/, and PbO/sub 2/ may undergo reductive dissolution from a higher to a lower oxidation state, dissolution by direct or indirect action was not observed. Also, Cr/sub 2/O/sub 3/ and NiO were not solubilized by direct or indirect action. Significant amounts of solubilized Cd, Cu, and Pb were immobilized by the bacterial biomass, and the addition of Cu/sup 2 +/ inhibited the growth of the bacterium.

  18. Effect of bacteria and dissolved organics on mineral dissolution kinetics:

    NASA Astrophysics Data System (ADS)

    Pokrovsky, Oleg; Shirokova, Liudmila; Benezeth, Pascale; Zabelina, Svetlana

    2010-05-01

    Quantification of the effect of microorganisms and associated organic ligands on mineral dissolution rate is one among the last remaining challenges in modeling of water-rock interactions under earth surface and subsurface environments. This is especially true for deep underground settings within the context of CO2 capture, sequestration and storage. First, elevated CO2 pressures create numerous experimental difficulties for performing robust flow-through experiments at a given saturation state. Second, reactivity of main rock-forming minerals in abiotic systems at pCO2 >> 1 atm and circumneutral pH is still poorly constrained. And third, most of microbial habitats of the subsurface biosphere are not suitable for routine culturing in the laboratory, many of them are anaerobic and even strictly anaerobic, and many bacteria and archae cultures can live only in the consortium of microorganisms which is very hard to maintain at a controlled and stable biomass concentration. For experimental modeling of bio-mineral interactions in the laboratory, two other main conceptual challenges exist. Typical concentration of dissolved organic carbon that serves as a main nutrient for heterotrophic bacteria in underground waters rarely exceeds 3-5 mg/L. Typical concentration of DOC in nutrient media used for bacteria culturing is between 100 and 10,000 mg/L. Therefore, performing mineral-bacteria interactions in the laboratory under environmentally-sound conditions requires significant dilution of the nutrient media or the use of flow-through reactors. Concerning the effect of organic ligands and bacterial excudates on rock-forming mineral dissolution, at the present time, mostly empirical (phenomenological) approach can be used. Indeed, the pioneering studies of Stumm and co-workers have established a firm basis for modeling the catalyzing and inhibiting effects of ligands on metal oxide dissolution rate. This approach, very efficient for studying the interaction of organic and

  19. Microbial dissolution of calcite at T = 28 °C and ambient pCO 2

    NASA Astrophysics Data System (ADS)

    Jacobson, Andrew D.; Wu, Lingling

    2009-04-01

    This study used batch reactors to quantify the mechanisms and rates of calcite dissolution in the presence and absence of a single heterotrophic bacterial species ( Burkholderia fungorum). Experiments were conducted at T = 28°C and ambient pCO 2 over time periods spanning either 21 or 35 days. Bacteria were supplied with minimal growth media containing either glucose or lactate as a C source, NH 4+ as an N source, and H 2PO 4- as a P source. Combining stoichiometric equations for microbial growth with an equilibrium mass-balance model of the H 2O-CO 2-CaCO 3 system demonstrates that B. fungorum affected calcite dissolution by modifying pH and alkalinity during utilization of ionic N and C species. Uptake of NH 4+ decreased pH and alkalinity, whereas utilization of lactate, a negatively charged organic anion, increased pH and alkalinity. Calcite in biotic glucose-bearing reactors dissolved by simultaneous reaction with H 2CO 3 generated by dissolution of atmospheric CO 2 (H 2CO 3 + CaCO 3 → Ca 2+ + 2HCO 3-) and H + released during NH 4+ uptake (H + + CaCO 3 → Ca 2+ + HCO 3-). Reaction with H 2CO 3 and H + supplied ˜45% and 55% of the total Ca 2+ and ˜60% and 40% of the total HCO 3-, respectively. The net rate of microbial calcite dissolution in the presence of glucose and NH 4+ was ˜2-fold higher than that observed for abiotic control experiments where calcite dissolved only by reaction with H 2CO 3. In lactate bearing reactors, most H + generated by NH 4+ uptake reacted with HCO 3- produced by lactate oxidation to yield CO 2 and H 2O. Hence, calcite in biotic lactate-bearing reactors dissolved by reaction with H 2CO 3 at a net rate equivalent to that calculated for abiotic control experiments. This study suggests that conventional carbonate equilibria models can satisfactorily predict the bulk fluid chemistry resulting from microbe-calcite interactions, provided that the ionic forms and extent of utilization of N and C sources can be constrained. Because

  20. Fractal patterns from chemical dissolution

    NASA Astrophysics Data System (ADS)

    Daccord, Gérard; Lenormand, Roland

    1987-01-01

    The highly ramified patterns1,2 produced by the flow of a reactive fluid through a soluble porous medium have never been quantitatively described. The theoretical understanding of this phenomenon is limited to very simple conditions (such as the flow of a liquid through a; capillary3) due to the complexity of the coupling between the chemical reaction and the fluid flow. We show here that the dissolution patterns (DP) obtained experimentally by injecting water through pure plaster are fractal, for different geometries of the samples. In two dimensions, these DP are remarkably'similar to patterns associated with diffusion-limited aggregation4-6 (DLA), that is, dielectric breakdown7, viscous fingering8,9 and diffusion-limited polymerization10. In three dimensions, we compare them with DLA clusters grown in the same boundary conditions and find a good qualitative and quantitative similarity. These results should be of interest in different areas where chemical dissolution of porous media by a flowing fluid occurs, for example, in nature (the formation of caves) and in industry (in the oil industry where acids are routinely injected into oil reservoirs).

  1. Oxylipins and plant abiotic stress resistance.

    PubMed

    Savchenko, T V; Zastrijnaja, O M; Klimov, V V

    2014-04-01

    Oxylipins are signaling molecules formed enzymatically or spontaneously from unsaturated fatty acids in all aerobic organisms. Oxylipins regulate growth, development, and responses to environmental stimuli of organisms. The oxylipin biosynthesis pathway in plants includes a few parallel branches named after first enzyme of the corresponding branch as allene oxide synthase, hydroperoxide lyase, divinyl ether synthase, peroxygenase, epoxy alcohol synthase, and others in which various biologically active metabolites are produced. Oxylipins can be formed non-enzymatically as a result of oxygenation of fatty acids by free radicals and reactive oxygen species. Spontaneously formed oxylipins are called phytoprostanes. The role of oxylipins in biotic stress responses has been described in many published works. The role of oxylipins in plant adaptation to abiotic stress conditions is less studied; there is also obvious lack of available data compilation and analysis in this area of research. In this work we analyze data on oxylipins functions in plant adaptation to abiotic stress conditions, such as wounding, suboptimal light and temperature, dehydration and osmotic stress, and effects of ozone and heavy metals. Modern research articles elucidating the molecular mechanisms of oxylipins action by the methods of biochemistry, molecular biology, and genetics are reviewed here. Data on the role of oxylipins in stress signal transduction, stress-inducible gene expression regulation, and interaction of these metabolites with other signal transduction pathways in cells are described. In this review the general oxylipin-mediated mechanisms that help plants to adjust to a broad spectrum of stress factors are considered, followed by analysis of more specific responses regulated by oxylipins only under certain stress conditions. New approaches to improvement of plant resistance to abiotic stresses based on the induction of oxylipin-mediated processes are discussed.

  2. Formation of Intermediate Carbon Phases in Hydrothermal Abiotic Organic Synthesis

    NASA Astrophysics Data System (ADS)

    Fu, Q.; Foustoukos, D. I.; Seyfried, W. E.

    2005-12-01

    With high dissolved concentrations of methane and other hydrocarbon species revealed at the Rainbow and Logatchev vent systems on the Mid-Atlantic Ridge, it is essential to better understand reaction pathways of abiotic organic synthesis in hydrothermal systems. Thus, we performed a hydrothermal carbon reduction experiment with 13C labeled carbon source at temperature and pressure conditions that approximate those inferred for ultramafic-hosted hydrothermal systems. Pentlandite, a common alteration mineral phase in subseafloor reaction zones, acted as a potential catalyst. Surface analysis techniques (XPS and ToF-SIMS) were used to characterize intermediate carbon species within this process. Time series dissolved H2 and H2S concentrations indicated thermodynamic equilibrium. Dissolved H2 and H2S concentrations of 13 and 2 mmol/kg, respectively, are approximately equivalent to measured values in Rainbow and Logatchev hydrothermal systems. Isotopically pure 13C methane and other alkane species (C2H6 and C3H8) were observed throughout the experiment, and attained steady state conditions. XPS analysis on mineral product surface indicated carbon enrichment on mineral surface following reaction. The majority of surface carbon involves species containing C-C or C-H bonds, such as alkyl or methylene groups. Alcohol and carboxyl groups in fewer amounts were also observed. ToF-SIMS analysis, which can offer isotope identification with high mass resolution, showed that most of these carbon species were 13C-labeled. Unlike gas phase Fischer-Tropsch synthesis, no carbide was observed on mineral product surface during the experiment. Therefore, a reaction pathway is proposed for formation of dissolved linear alkane species in hydrothermal abiotic organic synthesis, where oxygen-bearing organic compounds are expected to form in aqueous products by way of alcohol and carboxyl groups on mineral catalyst surface.

  3. Dissolution of cinnabar (HgS) in the presence of natural organic matter

    USGS Publications Warehouse

    Waples, J.S.; Nagy, K.L.; Aiken, G.R.; Ryan, J.N.

    2005-01-01

    Cinnabar (HgS) dissolution rates were measured in the presence of 12 different natural dissolved organic matter (DOM) isolates including humic, fulvic, and hydrophobic acid fractions. Initial dissolution rates varied by 1.3 orders of magnitude, from 2.31 ?? 10-13 to 7.16 ?? 10-12 mol Hg (mg C)-1 m-2 s-1. Rates correlate positively with three DOM characteristics: specific ultraviolet absorbance (R2 = 0.88), aromaticity (R2 = 0.80), and molecular weight (R2 = 0.76). Three experimental observations demonstrate that dissolution was controlled by the interaction of DOM with the cinnabar surface: (1) linear rates of Hg release with time, (2) significantly reduced rates when DOM was physically separated from the surface by dialysis membranes, and (3) rates that approached constant values at a specific ratio of DOM concentration to cinnabar surface area, suggesting a maximum surface coverage by dissolution-reactive DOM. Dissolution rates for the hydrophobic acid fractions correlate negatively with sorbed DOM concentrations, indicating the presence of a DOM component that reduced the surface area of cinnabar that can be dissolved. When two hydrophobic acid isolates that enhanced dissolution to different extents were mixed equally, a 20% reduction in rate occurred compared to the rate with the more dissolution-enhancing isolate alone. Rates in the presence of the more dissolution-enhancing isolate were reduced by as much as 60% when cinnabar was prereacted with the isolate that enhanced dissolution to a lesser extent. The data, taken together, imply that the property of DOM that enhances cinnabar dissolution is distinct from the property that causes it to sorb irreversibly to the cinnabar surface. Copyright ?? 2005 Elsevier Ltd.

  4. A Role for Antibiotics in Mineral Dissolution and Biofilm Physiology

    NASA Astrophysics Data System (ADS)

    Newman, D. K.

    2002-12-01

    Respiration by bacteria is remarkable due to their ability to use a variety of compounds, including insoluble minerals, as terminal electron acceptors. How bacteria solve the problem of breathing something that is solid is poorly understood, but recent evidence points to the role of redox active natural products in shuttling electrons between microbes and minerals. Given the ubiquity of these substances in natural waters and soils, we must now revisit previous conclusions about whether direct contact between microbes and minerals is necessary to promote reductive mineral dissolution. To explore the degree to which extracellular electron transfer catalyzes important biogeochemical processes, we are studying the types of molecules that function as electron shuttles, including redox active antibiotics. I will discuss my laboratory's current understanding of how interspecies exchange of these molecules promotes mineral dissolution, as well as our emerging hypotheses regarding their function in biofilms.

  5. Economic incentives for additional critical experimentation applicable to fuel dissolution

    SciTech Connect

    Mincey, J.F.; Primm, R.T. III; Waltz, W.R.

    1981-01-01

    Fuel dissolution operations involving soluble absorbers for criticality control are among the most difficult to establish economical subcritical limits. The paucity of applicable experimental data can significantly hinder a precise determination of a bias in the method chosen for calculation of the required soluble absorber concentration. Resorting to overly conservative bias estimates can result in excessive concentrations of soluble absorbers. Such conservatism can be costly, especially if soluble absorbers are used in a throw-away fashion. An economic scoping study is presented which demonstrates that additional critical experimentation will likely lead to reductions in the soluble absorber (i.e., gadolinium) purchase costs for dissolution operations. The results indicate that anticipated savings maybe more than enough to pay for the experimental costs.

  6. Multiple abiotic stress responsive rice cyclophilin

    PubMed Central

    Trivedi, Dipesh Kumar; Ansari, Mohammad Wahid; Tuteja, Narendra

    2013-01-01

    Cyclophilins (CYP), a member of immunophillin group of proteins, are more often conserved in all genera including plants. Here, we report on the identification of a new cyclophilin gene OsCYP-25 (LOC_Os09 g39780) from rice which found to be upregulated in response to various abiotic stresses viz., salinity, cold, heat and drought. It has an ORF of 540 bp, encoding a protein of 179 amino acids, consisting of PPIase domain, which is highly conserved. The OsCYP-25 promoter analysis revealed that different cis-regulatory elements (e.g., MYBCORE, MYC, CBFHV, GT1GMSCAM4, DRECRTCOREAT, CCAATBOX1, WRKY71OS and WBOXATNPR1) are involved to mediate OsCYP-25 response under stress. We have also predicted interacting partners by STRING software. In interactome, protein partners includes WD domain containing protein, the 60S ribosome subunit biogenesis protein, the ribosomal protein L10, the DEAD-box helicase, the EIF-2α, YT521-B protein, the 60S ribosomal protein and the PPR repeat domain containing protein. The in silico analysis showed that OsCYP-25 interacts with different proteins involved in cell growth, differentiation, ribosome biogenesis, RNA metabolism, RNA editing, gene expression, signal transduction or stress response. These findings suggest that OsCYP-25 might perform an important function in mediating wide range of cellular response under multiple abiotic stresses. PMID:24265852

  7. DISSOLUTION OF LANTHANUM FLUORIDE PRECIPITATES

    DOEpatents

    Fries, B.A.

    1959-11-10

    A plutonium separatory ore concentration procedure involving the use of a fluoride type of carrier is presented. An improvement is given in the derivation step in the process for plutonium recovery by carrier precipitation of plutonium values from solution with a lanthanum fluoride carrier precipitate and subsequent derivation from the resulting plutonium bearing carrier precipitate of an aqueous acidic plutonium-containing solution. The carrier precipitate is contacted with a concentrated aqueous solution of potassium carbonate to effect dissolution therein of at least a part of the precipitate, including the plutonium values. Any remaining precipitate is separated from the resulting solution and dissolves in an aqueous solution containing at least 20% by weight of potassium carbonate. The reacting solutions are combined, and an alkali metal hydroxide added to a concentration of at least 2N to precipitate lanthanum hydroxide concomitantly carrying plutonium values.

  8. 25 CFR 11.606 - Dissolution proceedings.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... marriage may initiate dissolution proceedings. (b) If a proceeding is commenced by one of the parties, the... proceeding for dissolution of marriage or legal separation shall allege that the marriage is irretrievably... under the jurisdiction of the court of each party; (2) The date of the marriage and the place at...

  9. CALCIUM CARBONATE DISSOLUTION RATE IN LIMESTONE CONTACTORS

    EPA Science Inventory

    The rate of carbonate mineral dissolution from limestone was studied using a rotating disk apparatus and samples of limestone of varied composition. The purpose of this study was to determine the effect of limestone composition on the kinetics of carbonate mineral dissolution. Th...

  10. Stirring effect on kaolinite dissolution rate

    NASA Astrophysics Data System (ADS)

    Metz, Volker; Ganor, Jiwchar

    2001-10-01

    Experiments were carried out measuring kaolinite dissolution rates using stirred and nonstirred flow-through reactors at pHs 2 to 4 and temperatures of 25°C, 50°C, and 70°C. The results show an increase of kaolinite dissolution rate with increasing stirring speed. The stirring effect is reversible, i.e., as the stirring slows down the dissolution rate decreases. The effect of stirring speed on kaolinite dissolution rate is higher at 25°C than at 50°C and 70°C and at pH 4 than at pHs 2 and 3. It is suggested that fine kaolinite particles are formed as a result of stirring-induced spalling or abrasion of kaolinite. These very fine particles have an increased ratio of reactive surface area to specific surface area, which results in enhancement of kaolinite dissolution rate. A balance between production and dissolution of the fine particles explains both the reversibility and the temperature and pH dependence of the stirring effect. Since the stirring effect on kaolinite dissolution rate varies with temperature and pH, measurement of kinetic parameters such as activation energy may be influenced by stirring. Therefore, standard use of nonagitated reaction vessels for kinetic experiments of mineral dissolution and precipitation is recommended, at least for slow reactions that are surface controlled.

  11. Thermal dissolution of solid fossil fuels

    SciTech Connect

    E.G. Gorlov

    2007-10-15

    The use of oil shales and coals in the processes of thermal dissolution is considered. It is shown that thermal dissolution is a mode of liquefaction of solid fossil fuels and can be used both independently and in combination with liquefaction of coals and processing of heavy petroleum residues.

  12. 25 CFR 11.606 - Dissolution proceedings.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... marriage may initiate dissolution proceedings. (b) If a proceeding is commenced by one of the parties, the... proceeding for dissolution of marriage or legal separation shall allege that the marriage is irretrievably... under the jurisdiction of the court of each party; (2) The date of the marriage and the place at...

  13. 25 CFR 11.606 - Dissolution proceedings.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... marriage may initiate dissolution proceedings. (b) If a proceeding is commenced by one of the parties, the... proceeding for dissolution of marriage or legal separation shall allege that the marriage is irretrievably... under the jurisdiction of the court of each party; (2) The date of the marriage and the place at...

  14. 25 CFR 11.606 - Dissolution proceedings.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... marriage may initiate dissolution proceedings. (b) If a proceeding is commenced by one of the parties, the... proceeding for dissolution of marriage or legal separation shall allege that the marriage is irretrievably... under the jurisdiction of the court of each party; (2) The date of the marriage and the place at...

  15. 25 CFR 11.606 - Dissolution proceedings.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... marriage may initiate dissolution proceedings. (b) If a proceeding is commenced by one of the parties, the... proceeding for dissolution of marriage or legal separation shall allege that the marriage is irretrievably... under the jurisdiction of the court of each party; (2) The date of the marriage and the place at...

  16. Microbial- and thiosulfate-mediated dissolution of mercury sulfide minerals and transformation to gaseous mercury

    PubMed Central

    Vázquez-Rodríguez, Adiari I.; Hansel, Colleen M.; Zhang, Tong; Lamborg, Carl H.; Santelli, Cara M.; Webb, Samuel M.; Brooks, Scott C.

    2015-01-01

    Mercury (Hg) is a toxic heavy metal that poses significant environmental and human health risks. Soils and sediments, where Hg can exist as the Hg sulfide mineral metacinnabar (β-HgS), represent major Hg reservoirs in aquatic environments. Metacinnabar has historically been considered a sink for Hg in all but severely acidic environments, and thus disregarded as a potential source of Hg back to aqueous or gaseous pools. Here, we conducted a combination of field and laboratory incubations to identify the potential for metacinnabar as a source of dissolved Hg within near neutral pH environments and the underpinning (a)biotic mechanisms at play. We show that the abundant and widespread sulfur-oxidizing bacteria of the genus Thiobacillus extensively colonized metacinnabar chips incubated within aerobic, near neutral pH creek sediments. Laboratory incubations of axenic Thiobacillus thioparus cultures led to the release of metacinnabar-hosted Hg(II) and subsequent volatilization to Hg(0). This dissolution and volatilization was greatly enhanced in the presence of thiosulfate, which served a dual role by enhancing HgS dissolution through Hg complexation and providing an additional metabolic substrate for Thiobacillus. These findings reveal a new coupled abiotic-biotic pathway for the transformation of metacinnabar-bound Hg(II) to Hg(0), while expanding the sulfide substrates available for neutrophilic chemosynthetic bacteria to Hg-laden sulfides. They also point to mineral-hosted Hg as an underappreciated source of gaseous elemental Hg to the environment. PMID:26157421

  17. Mineralogical and isotopic record of biotic and abiotic diagenesis of the Callovian-Oxfordian clayey formation of Bure (France)

    NASA Astrophysics Data System (ADS)

    Lerouge, C.; Grangeon, S.; Gaucher, E. C.; Tournassat, C.; Agrinier, P.; Guerrot, C.; Widory, D.; Fléhoc, C.; Wille, G.; Ramboz, C.; Vinsot, A.; Buschaert, S.

    2011-05-01

    The Callovian-Oxfordian (COx) clayey unit is being studied in the Eastern part of the Paris Basin at depths between 400 and 500 m depth to assess of its suitability for nuclear waste disposal. The present study combines new mineralogical and isotopic data to describe the sedimentary history of the COx unit. Petrologic study provided evidence of the following diagenetic mineral sequence: (1) framboidal pyrite and micritic calcite, (2) iron-rich euhedral carbonates (ankerite, sideroplesite) and glauconite (3) limpid calcite and dolomite and celestite infilling residual porosity in bioclasts and cracks, (4) chalcedony, (5) quartz/calcite. Pyrite in bioturbations shows a wide range of δ 34S (-38‰ to +34.5‰), providing evidence of bacterial sulphate reduction processes in changing sedimentation conditions. The most negative values (-38‰ to -22‰), measured in the lower part of the COx unit indicate precipitation of pyrite in a marine environment with a continuous sulphate supply. The most positive pyrite δ 34S values (-14‰ up to +34.5‰) in the upper part of the COx unit indicate pyrite precipitation in a closed system. Celestite δ 34S values reflect the last evolutionary stage of the system when bacterial activity ended; however its deposition cannot be possible without sulphate supply due to carbonate bioclast dissolution. The 87Sr/ 86Sr ratio of celestite (0.706872-0.707040) is consistent with deposition from Jurassic marine-derived waters. Carbon and oxygen isotopic compositions of bulk calcite and dolomite are consistent with marine carbonates. Siderite, only present in the maximum clay zone, has chemical composition and δ 18O consistent with a marine environment. Its δ 13C is however lower than those of marine carbonates, suggesting a contribution of 13C-depleted carbon from degradation of organic matter. δ 18O values of diagenetic chalcedony range between +27‰ and +31‰, suggesting precipitation from marine-derived pore waters. Late calcite

  18. SERDP ER-1421 Abiotic and Biotic Mechanisms Controlling In Situ Remediation of NDMA: Final Report

    SciTech Connect

    Szecsody, James E.; McKinley, James P.; Crocker, Fiona H.; Breshears, Andrew T.; Devary, Brooks J.; Fredrickson, Herbert L.; Thompson, Karen T.

    2009-09-30

    This laboratory-scale project was initiated to investigate in situ abiotic/biotic mineralization of NDMA. Under iron-reducing conditions, aquifer sediments showed rapid abiotic NDMA degradation to dimethylamine (DMA), nitrate, formate, and finally, CO2. These are the first reported experiments of abiotic NDMA mineralization. The NDMA reactivity of these different iron phases showed that adsorbed ferrous iron was the dominant reactive phase that promoted NDMA reduction, and other ferrous phases present (siderite, iron sulfide, magnetite, structural ferrous iron in 2:1 clays) did not promote NDMA degradation. In contrast, oxic sediments that were biostimulated with propane promoted biomineralization of NDMA by a cometabolic monooxygenase enzyme process. Other monooxygenase enzyme processes were not stimulated with methane or toluene additions, and acetylene addition did not block mineralization. Although NDMA mineralization extent was the highest in oxic, biostimulated sediments (30 to 82%, compared to 10 to 26% for abiotic mineralization in reduced sediments), large 1-D column studies (high sediment/water ratio of aquifers) showed 5.6 times higher NDMA mineralization rates in reduced sediment (half-life 410 ± 147 h) than oxic biomineralization (half life 2293 ± 1866 h). Sequential reduced/oxic biostimulated sediment mineralization (half-life 3180 ± 1094 h) was also inefficient compared to reduced sediment. These promising laboratory-scale results for NDMA mineralization should be investigated at field scale. Future studies of NDMA remediation should focus on the comparison of this in situ abiotic NDMA mineralization (iron-reducing environments) to ex situ biomineralization, which has been shown successful in other studies.

  19. Characterization of Thin Film Dissolution in Water with in Situ Monitoring of Film Thickness Using Reflectometry.

    PubMed

    Yersak, Alexander S; Lewis, Ryan J; Tran, Jenny; Lee, Yung C

    2016-07-13

    Reflectometry was implemented as an in situ thickness measurement technique for rapid characterization of the dissolution dynamics of thin film protective barriers in elevated water temperatures above 100 °C. Using this technique, multiple types of coatings were simultaneously evaluated in days rather than years. This technique enabled the uninterrupted characterization of dissolution rates for different coating deposition temperatures, postdeposition annealing conditions, and locations on the coating surfaces. Atomic layer deposition (ALD) SiO2 and wet thermally grown SiO2 (wtg-SiO2) thin films were demonstrated to be dissolution-predictable barriers for the protection of metals such as copper. A ∼49% reduction in dissolution rate was achieved for ALD SiO2 films by increasing the deposition temperatures from 150 to 300 °C. ALD SiO2 deposited at 300 °C and followed by annealing in an inert N2 environment at 1065 °C resulted in a further ∼51% reduction in dissolution rate compared with the nonannealed sample. ALD SiO2 dissolution rates were thus lowered to values of wtg-SiO2 in water by the combination of increasing the deposition temperature and postdeposition annealing. Thin metal films, such as copper, without a SiO2 barrier corroded at an expected ∼1-2 nm/day rate when immersed in room temperature water. This measurement technique can be applied to any optically transparent coating. PMID:27308723

  20. Dissolution enthalpies of cellulose in ionic liquids.

    PubMed

    Parviainen, Helena; Parviainen, Arno; Virtanen, Tommi; Kilpeläinen, Ilkka; Ahvenainen, Patrik; Serimaa, Ritva; Grönqvist, Stina; Maloney, Thaddeus; Maunu, Sirkka Liisa

    2014-11-26

    In this work, interactions between cellulose and ionic liquids were studied calorimetrically and by optical microscopy. Two novel ionic liquids (1,5-Diazabicyclo[4.3.0]non-5-enium propionate and N-methyl-1,5-diazabicyclo[4.3.0]non-5-enium dimethyl phosphate) and 1-ethyl-3-methylimidazolium acetate-water mixtures were used as solvents. Optical microscopy served in finding the extent of dissolution and identifying the dissolution pattern of the cellulose sample. Calorimetric studies identified a peak relating to dissolution of cellulose in solvent. The transition did, however, not indicate complete dissolution, but rather dissolution inside fibre or fibrils. This method was used to study differences between four cellulose samples with different pretreatment or origins.

  1. Dissolution enthalpies of cellulose in ionic liquids.

    PubMed

    Parviainen, Helena; Parviainen, Arno; Virtanen, Tommi; Kilpeläinen, Ilkka; Ahvenainen, Patrik; Serimaa, Ritva; Grönqvist, Stina; Maloney, Thaddeus; Maunu, Sirkka Liisa

    2014-11-26

    In this work, interactions between cellulose and ionic liquids were studied calorimetrically and by optical microscopy. Two novel ionic liquids (1,5-Diazabicyclo[4.3.0]non-5-enium propionate and N-methyl-1,5-diazabicyclo[4.3.0]non-5-enium dimethyl phosphate) and 1-ethyl-3-methylimidazolium acetate-water mixtures were used as solvents. Optical microscopy served in finding the extent of dissolution and identifying the dissolution pattern of the cellulose sample. Calorimetric studies identified a peak relating to dissolution of cellulose in solvent. The transition did, however, not indicate complete dissolution, but rather dissolution inside fibre or fibrils. This method was used to study differences between four cellulose samples with different pretreatment or origins. PMID:25256460

  2. Stable carbon isotope analysis to distinguish biotic and abiotic degradation of 1,1,1-trichloroethane in groundwater sediments.

    PubMed

    Broholm, Mette M; Hunkeler, Daniel; Tuxen, Nina; Jeannottat, Simon; Scheutz, Charlotte

    2014-08-01

    The fate and treatability of 1,1,1-TCA by natural and enhanced reductive dechlorination was studied in laboratory microcosms. The study shows that compound-specific isotope analysis (CSIA) identified an alternative 1,1,1-TCA degradation pathway that cannot be explained by assuming biotic reductive dechlorination. In all biotic microcosms 1,1,1-TCA was degraded with no apparent increase in the biotic degradation product 1,1-DCA. 1,1,1-TCA degradation was documented by a clear enrichment in (13)C in all biotic microcosms, but not in the abiotic control, which suggests biotic or biotically mediated degradation. Biotic degradation by reductive dechlorination of 1,1-DCA to CA only occurred in bioaugmented microcosms and in donor stimulated microcosms with low initial 1,1,1-TCA or after significant decrease in 1,1,1-TCA concentration (after∼day 200). Hence, the primary degradation pathway for 1,1,1-TCA does not appear to be reductive dechlorination via 1,1-DCA. In the biotic microcosms, the degradation of 1,1,1-TCA occurred under iron and sulfate reducing conditions. Biotic reduction of iron and sulfate likely resulted in formation of FeS, which can abiotically degrade 1,1,1-TCA. Hence, abiotic degradation of 1,1,1-TCA mediated by biotic FeS formation constitute an explanation for the observed 1,1,1-TCA degradation. This is supported by a high 1,1,1-TCA (13)C enrichment factor consistent with abiotic degradation in biotic microcosms. 1,1-DCA carbon isotope field data suggest that this abiotic degradation of 1,1,1-TCA is a relevant process also at the field site. PMID:24559936

  3. Stable carbon isotope analysis to distinguish biotic and abiotic degradation of 1,1,1-trichloroethane in groundwater sediments.

    PubMed

    Broholm, Mette M; Hunkeler, Daniel; Tuxen, Nina; Jeannottat, Simon; Scheutz, Charlotte

    2014-08-01

    The fate and treatability of 1,1,1-TCA by natural and enhanced reductive dechlorination was studied in laboratory microcosms. The study shows that compound-specific isotope analysis (CSIA) identified an alternative 1,1,1-TCA degradation pathway that cannot be explained by assuming biotic reductive dechlorination. In all biotic microcosms 1,1,1-TCA was degraded with no apparent increase in the biotic degradation product 1,1-DCA. 1,1,1-TCA degradation was documented by a clear enrichment in (13)C in all biotic microcosms, but not in the abiotic control, which suggests biotic or biotically mediated degradation. Biotic degradation by reductive dechlorination of 1,1-DCA to CA only occurred in bioaugmented microcosms and in donor stimulated microcosms with low initial 1,1,1-TCA or after significant decrease in 1,1,1-TCA concentration (after∼day 200). Hence, the primary degradation pathway for 1,1,1-TCA does not appear to be reductive dechlorination via 1,1-DCA. In the biotic microcosms, the degradation of 1,1,1-TCA occurred under iron and sulfate reducing conditions. Biotic reduction of iron and sulfate likely resulted in formation of FeS, which can abiotically degrade 1,1,1-TCA. Hence, abiotic degradation of 1,1,1-TCA mediated by biotic FeS formation constitute an explanation for the observed 1,1,1-TCA degradation. This is supported by a high 1,1,1-TCA (13)C enrichment factor consistent with abiotic degradation in biotic microcosms. 1,1-DCA carbon isotope field data suggest that this abiotic degradation of 1,1,1-TCA is a relevant process also at the field site.

  4. Abiotic Methane Synthesis: Caveats and New Results

    NASA Astrophysics Data System (ADS)

    Zou, R.; Sharma, A.

    2005-12-01

    The role of mineral interaction with geochemical fluids under hydrothermal conditions has invoked models of geochemical synthesis of organic molecules at deep crustal conditions. Since Thomas Gold's (1992) hypothesis of the possibility of an abiotic organic synthesis, there have been several reports of hydrocarbon formation under high pressure and temperature conditions. Several previous experimental studies have recognized that small amounts of methane (and other light HC compounds) can be synthesized via catalysis by transition metals: Fe, Ni (Horita and Berndt, 1999 Science) and Cr (Foustavous and Seyfried, 2004 Science). In light of these pioneering experiments, an investigation of the feasibility of abiotic methane synthesis at higher pressure conditions in deep geological setting and the possible role of catalysis warrants a closer look. We conducted three sets of experiments in hydrothermal diamond anvil cell using FeO nanopowder, CaCO 3 and water at 300° - 600° C and 0.5 - 5 GPa : (a) with stainless steel gasket, (b) gold-lined gasket, and (c) gold-lined gasket with added Fe and Ni nanopowder. The reactions were monitored in-situ using micro-Raman spectroscopy with 532nm and 632nm lasers. The solids phases were characterized in-situ using synchrotron X-ray diffraction at CHESS-Cornell and quenched products with an electron microprobe. Interestingly, a variable amount of hydrocarbon was observed only in runs with stainless steel gasket and with Fe, Ni nanoparticles. Experiments with gold-lined reactors did not show any hydrocarbon formation. Added high resolution microscopy of the products and their textural relationship within the diamond cell with Raman spectroscopy data show that the hydrocarbon (methane and other light fractions) synthesis is a direct result of transition metal catalysis, rather than wustite - calcium carbonate reaction as recently reported by Scott et al (2004, PNAS). The author will further present new results highlighting abiotic

  5. The abiotic litter decomposition in the drylands

    NASA Astrophysics Data System (ADS)

    Lee, H.; Throop, H.; Rahn, T. A.

    2009-12-01

    The decomposition of litter is an important ecosystem function that controls carbon and nutrient cycling, which is well understood from the relationship between temperature and moisture. However, the decomposition in the arid and semiarid environments (hereafter drylands) is relatively poorly predicted due to several abiotic factors such as the effect of ultraviolet radiation and physical mixing of fallen litter with soil. The relative magnitude of these abiotic factors to ecosystem scale litter decomposition is still in debate. Here, we examine the effect of two major abiotic factors in the drylands litter decomposition by conducting a controlled laboratory study using plant litter and soil collected from Sonoran and Chihuahuan desert areas. The first part of the experiment focused on the effect of soil-litter mixing. We established a complete block design of three levels of soil and litter mixing (no mixing, light soil-litter mixing, and complete soil-litter mixing) in combination with three levels of soil moisture (1%, 2%, and 6% volumetric water content) using 2g of two most dominant species litter, grass and mesquite, and 50g of air-dried soils in 500ml mason jar and incubated them under 25C. We measured CO2 fluxes from these soil-litter incubations and harvested the soil and litter at 0, 1, 2, 4, 8, and 16 weeks and analyzed them of carbon and nitrogen content as well as the actual mass loss in the litter. The second part of the experiment focused on the effect of ultraviolet radiation. We established short-term litter incubation on a quartz chamber and used different temperature, moisture, and minerals to find the mechanism of photodegradation of litter. We measured CO2 fluxes from the litter incubation under ultraviolet radiation and also measured 13CO2 from these emissions. We were able to detect changes in the rate of carbon mineralization as a result of our treatments in the first week of soil-litter mixing experiment. The carbon mineralization rate was

  6. Generation of RNA in abiotic conditions.

    NASA Astrophysics Data System (ADS)

    di Mauro, Ernesto

    Generation of RNA in abiotic conditions. Ernesto Di Mauro Dipartimento di Genetica Bi-ologia Molecolare, Universit` "Sapienza" Roma, Italy. a At least four conditions must be satisfied for the spontaneous generation of (pre)-genetic poly-mers: 1) availability of precursors that are activated enough to spontaneously polymerize. Preliminary studies showed that (a) nucleic bases and acyclonucleosides can be synthesized from formamide H2NCOH by simply heating with prebiotically available mineral catalysts [last reviewed in (1)], and that b) nucleic bases can be phosphorylated in every possible posi-tion [2'; 3'; 5'; cyclic 2',3'; cyclic 3',5' (2)]. The higher stability of the cyclic forms allows their accumulation. 2) A polymerization mechanism. A reaction showing the formation of RNA polymers starting from prebiotically plausible precursors (3',5' cyclic GMP and 3', 5'cyclic AMP) was recently reported (3). Polymerization in these conditions is thermodynamically up-hill and an equilibrium is attained that limits the maximum length of the polymer produced to about 40 nucleotides for polyG and 100 nucleotides for polyA. 3) Ligation of the synthesized oligomers. If this type of reaction could occur according to a terminal-joining mechanism and could generate canonical 3',5' phosphodiester bonds, exponential growth would be obtained of the generated oligomers. This type of reaction has been reported (4) , limited to homogeneous polyA sequences and leading to the production of polyA dimers and tetramers. What is still missing are: 4) mechanisms that provide the proof of principle for the generation of sequence complexity. We will show evidence for two mechanisms providing this proof of principle for simple complementary sequences. Namely: abiotic sequence complementary-driven terminal ligation and sequence-complementary terminal growth. In conclusion: all the steps leading to the generation of RNA in abiotic conditions are satisfied. (1) R Saladino, C Crestini, F

  7. The dissolution mechanism of cathodic active materials of spent Zn-Mn batteries in HCl.

    PubMed

    Li, Yunqing; Xi, Guoxi

    2005-12-01

    The cathodic active materials of spent Zn-Mn batteries are complicated. The majority materials that they contain are Mn(OH)(2), Mn(2)O(4), lambda-Mn(2)O(2), ZnMn(2)O(4), Zn(NH(3))(2)Cl(2), [Zn(OH)(2)](4).ZnCl(2), etc. Dissolving these kinds of materials is important to the environmental pollution control and materials recycle. In present paper we investigated the dissolution mechanism of the cathodic active materials in HCl by testing the factors that can influence the dissolution procedure, including temperature, time, and the concentration of HCl and H(2)O(2). Our results showed that both neutralization and oxidation-reduction reactions occurred in the dissolution process, and that H(2)O(2) had a great effect on the dissolution efficiency.

  8. MICROSCALE METABOLIC, REDOX AND ABIOTIC REACTIONS IN HANFORD 300 AREA SUBSURFACE SEDIMENTS

    SciTech Connect

    Beyenal, Haluk; McLEan, Jeff; Majors, Paul; Fredrickson, Jim

    2013-11-14

    The Hanford 300 Area is a unique site due to periodic hydrologic influence of river water resulting in changes in groundwater elevation and flow direction. This area is also highly subject to uranium remobilization, the source of which is currently believed to be the region at the base of the vadose zone that is subject to period saturation due to the changes in the water levels in the Columbia River. We found that microbial processes and redox and abiotic reactions which operate at the microscale were critical to understanding factors controlling the macroscopic fate and transport of contaminants in the subsurface. The combined laboratory and field research showed how microscale conditions control uranium mobility and how biotic, abiotic and redox reactions relate to each other. Our findings extended the current knowledge to examine U(VI) reduction and immobilization using natural 300 Area communities as well as selected model organisms on redox-sensitive and redox-insensitive minerals. Using innovative techniques developed specifically to probe biogeochemical processes at the microscale, our research expanded our current understanding of the roles played by mineral surfaces, bacterial competition, and local biotic, abiotic and redox reaction rates on the reduction and immobilization of uranium.

  9. Biological and abiotic dechlorination of highly chlorinated dioxins in biphasic microcosms

    SciTech Connect

    Barkovskii, A.; Adriaens, P.

    1995-12-31

    A novel experimental approach to help increase the rates and extent of reductive dechlorination of polychlorinated dibenzo-p-dioxins (PCDD) is presented. Biphasic microcosms emulsions containing eluted microorganisms derived from historically contaminated Passaic River (New Jersey) sediments, and 4% (v/v) of decane, were spiked with mg/L of octaCDD. The microcosms were amended separately with three polyphenolic compounds--catechol, resorcinol, and 3,4-dihydroxybenzoate--to help improve electron transfer during reductive dechlorination. Abiotic controls containing phenolic compounds only, and pasteurized cells were monitored along with the active microcosms. Lesser-chlorinated congeners were observed in all treatments, including killed cells, indicating the potential not only for biological and abiotic, but also biogenic dechlorination mechanisms. After 3 months of incubation, tetraCDD isomers were produced in biological incubations only, and up to 30% of the spiked octaCDD was removed. Polyphenolic compounds first appear to transiently complex with the dioxins prior to further dechlorination, and did not increase the dechlorination rates over unamended cells. Whereas the 2,3,7,8-/1,4,6,9-substitution ratio of heptachlorinated congeners increased in all treatments, 2,3,7,8-substituted hexaCDDs congeners were identified mainly in active cell incubations. Further isomer-specific analysis may thus enable distinction between abiotic and biotic dechlorination processes in anaerobic sediments.

  10. Dissolution study of nanocrystal powders of a poorly soluble drug by UV imaging and channel flow methods.

    PubMed

    Sarnes, Annika; Østergaard, Jesper; Jensen, Sabrine Smedegaard; Aaltonen, Jaakko; Rantanen, Jukka; Hirvonen, Jouni; Peltonen, Leena

    2013-11-20

    Application of drug nanocrystals provides advantageous options for the pharmaceutical formulation development of poorly soluble drugs. The objective of this study was to investigate the dissolution behavior improving effects of differently sized nanocrystals of a poorly soluble model drug, indomethacin. Nanocrystal suspensions were prepared using a top-down wet milling technique with three stabilizers: poloxamer F68, poloxamer F127 and polysorbate 80. The dissolution of the differently sized indomethacin nanocrystals were investigated using a channel flow dissolution method and by UV imaging. Unmilled bulk indomethacin and physical mixtures were used as references. According to both the dissolution methods, the dissolution properties of indomethacin were improved by the particle size reduction. UV imaging was used for the first time as a dissolution testing method for fast dissolving nanoscale material. The technique provided new information about the concentration of the dissolved drug next to the sample surface; with the smallest nanocrystals (580 nm) the indomethacin concentration next to the particle surface exceeded five-fold the thermodynamic saturated indomethacin solution concentration. Thus the solubility improvement itself, not only the increased surface area for dissolution, may have an important role in the higher dissolution rates of nanocrystal formulations. Poloxamer F68 was the most optimal stabilizer in the preparation of the indomethacin nanocrystal suspensions and in the solubility and dissolution enhancement as well.

  11. Cell wall remodeling under abiotic stress

    PubMed Central

    Tenhaken, Raimund

    2015-01-01

    Plants exposed to abiotic stress respond to unfavorable conditions on multiple levels. One challenge under drought stress is to reduce shoot growth while maintaining root growth, a process requiring differential cell wall synthesis and remodeling. Key players in this process are the formation of reactive oxygen species (ROS) and peroxidases, which initially cross-link phenolic compounds and glycoproteins of the cell walls causing stiffening. The function of ROS shifts after having converted all the peroxidase substrates in the cell wall. If ROS-levels remain high during prolonged stress, OH°-radicals are formed which lead to polymer cleavage. In concert with xyloglucan modifying enzymes and expansins, the resulting cell wall loosening allows further growth of stressed organs. PMID:25709610

  12. In-life pteropod shell dissolution as an indicator of past ocean carbonate saturation

    NASA Astrophysics Data System (ADS)

    Wall-Palmer, Deborah; Smart, Christopher W.; Hart, Malcolm B.

    2013-12-01

    Recent concern over the effects of ocean acidification upon calcifying organisms has highlighted the aragonitic shelled thecosomatous pteropods as being at a high risk. Both in-situ and laboratory studies have shown that an increased dissolved CO2 concentration, leading to decreased water pH and low carbonate concentration, causes reduced calcification rates and enhanced dissolution in the shells of living pteropods. In fossil records unaffected by post-depositional dissolution, this in-life shell dissolution can be detected. Here we present the first evidence of variations of in-life pteropod shell dissolution due to variations in surface water carbonate concentration during the Late Pleistocene by analysing the surface layer of pteropod shells in marine sediment cores from the Caribbean Sea and Indian Ocean. In-life shell dissolution was determined by applying the Limacina Dissolution Index (LDX) to the sub-tropical pteropod Limacina inflata. Average shell size information shows that high in-life dissolution is accompanied by smaller shell sizes in L. inflata, which may indicate a reduction in calcification rate. Comparison of the LDX profile to Late Pleistocene Vostok atmospheric CO2 concentrations, shows that in-life pteropod dissolution is closely associated to variations in past ocean carbonate saturation. This study confirms the findings of laboratory studies, showing enhanced shell dissolution and reduced calcification in living pteropods when surface ocean carbonate concentrations were lower. Results also demonstrate that oceanic pH levels that were less acidic and changing less rapidly than those predicted for the 21st Century, negatively affected pteropods during the Late Pleistocene.

  13. Hydrogen production from the dissolution of nano zero valent iron and its effect on anaerobic digestion.

    PubMed

    Huang, Yu-Xi; Guo, Jialiang; Zhang, Chunyang; Hu, Zhiqiang

    2016-01-01

    Nano zero valent iron (NZVI) has shown inhibition on methanogenesis in anaerobic digestion due to its reductive decomposition of cell membrane. The inhibition was accompanied by the accumulation of hydrogen gas due to rapid NZVI dissolution. It is not clear whether and how rapid hydrogen release from NZVI dissolution directly affects anaerobic digestion. In this study, the hydrogen release kinetics from NZVI (average size = 55 ± 11 nm) dissolution in deionized water under anaerobic conditions was first evaluated. The first-order NZVI dissolution rate constant was 2.62 ± 0.26 h(-1) with its half-life of 0.26 ± 0.03 h. Two sets of anaerobic digestion experiments (i.e., in the presence of glucose or without any substrate but at different anaerobic sludge concentrations) were performed to study the impact of H2 release from rapid NZVI dissolution, in which H2 was generated in a separate water bottle containing NZVI (i.e., ex situ H2 or externally supplied from NZVI dissolution) before hydrogen gas was introduced to anaerobic digestion. The results showed that the H2 partial pressure in the headspace of the digestion bottle reached as high as 0.27 atm due to rapid NZVI dissolution, resulting in temporary inhibition of methane production. Nevertheless, the 5-d cumulative methane volume in the group with ex situ H2 production due to NZVI dissolution was actually higher than that of control, suggesting NZVI inhibition on methanogenesis is solely due to the reductive decomposition of cell membrane after direct contact with NZVI. PMID:26521217

  14. Hydrogen production from the dissolution of nano zero valent iron and its effect on anaerobic digestion.

    PubMed

    Huang, Yu-Xi; Guo, Jialiang; Zhang, Chunyang; Hu, Zhiqiang

    2016-01-01

    Nano zero valent iron (NZVI) has shown inhibition on methanogenesis in anaerobic digestion due to its reductive decomposition of cell membrane. The inhibition was accompanied by the accumulation of hydrogen gas due to rapid NZVI dissolution. It is not clear whether and how rapid hydrogen release from NZVI dissolution directly affects anaerobic digestion. In this study, the hydrogen release kinetics from NZVI (average size = 55 ± 11 nm) dissolution in deionized water under anaerobic conditions was first evaluated. The first-order NZVI dissolution rate constant was 2.62 ± 0.26 h(-1) with its half-life of 0.26 ± 0.03 h. Two sets of anaerobic digestion experiments (i.e., in the presence of glucose or without any substrate but at different anaerobic sludge concentrations) were performed to study the impact of H2 release from rapid NZVI dissolution, in which H2 was generated in a separate water bottle containing NZVI (i.e., ex situ H2 or externally supplied from NZVI dissolution) before hydrogen gas was introduced to anaerobic digestion. The results showed that the H2 partial pressure in the headspace of the digestion bottle reached as high as 0.27 atm due to rapid NZVI dissolution, resulting in temporary inhibition of methane production. Nevertheless, the 5-d cumulative methane volume in the group with ex situ H2 production due to NZVI dissolution was actually higher than that of control, suggesting NZVI inhibition on methanogenesis is solely due to the reductive decomposition of cell membrane after direct contact with NZVI.

  15. Synthetic coprecipitates of exopolysaccharides and ferrihydrite. Part II: Siderophore-promoted dissolution

    NASA Astrophysics Data System (ADS)

    Mikutta, Christian; Kretzschmar, Ruben

    2008-02-01

    Ferrihydrite (Fh) coprecipitated with exopolymers of plants and microbes may differ in its geochemical reactivity from its abiotic counterpart. We synthesized Fh in the presence and absence of acid polysaccharides (polygalacturonic acid (PGA), alginate, xanthan) and characterized the physical and structural properties of the precipitates formed [Mikutta C., Mikutta R., Bonneville S., Wagner F., Voegelin A., Christl I. and Kretzschmar R. (2008) Synthetic coprecipitates of exopolysaccharides and ferrihydrite. Part I: Characterization. Geochim. Cosmochim. Acta]. In this paper, we focus on the reactivity of PGA and alginate coprecipitates and pure Fh, and studied their interaction with the microbial siderophore desferrioxamine B (DFOB) in the presence and absence of low molecular weight organic (LMWO) acid anions (malate, citrate). Batch adsorption and dissolution experiments were performed in the dark at pH 7 in 10 mM NaClO 4 background electrolyte. In the dissolution experiments, different modes of ligand addition were applied (single, simultaneous, stepwise). With an estimated Langmuir sorption maximum of 15 mmol/mol Fe, a PGA coprecipitate with 11% C org sorbed about four times as much DFOB as pure Fh, and the amount of DFOB sorbed was ˜4-fold larger than estimated from the sum of DFOB sorption to pure Fh and PGA alone. The apparent initial dissolution rates, Rapp-initial, and pseudo-first order rate coefficients, k, of the coprecipitates exceeded those of pure Fh by up to two orders of magnitude. Citrate and malate exerted a strong synergistic effect on the DFOB-promoted dissolution of pure Fh, whereas synergistic effects of both anions were absent or negligible for the coprecipitates. Rapp-initial of the citrate and DFOB-promoted dissolution of PGA coprecipitates increased with increasing molar C/Fe ratio of the coprecipitates, independent of the charge of the LMWO ligand. Our results indicate that polyuronates stabilize Fh particles sterically and /or

  16. Carbon Isotope Fractionation In Biotic Vs. Abiotic Anaerobic Conditions

    NASA Astrophysics Data System (ADS)

    Gebrehiwet, T. A.

    2005-12-01

    Dissimilatory metal reducing bacteria (DMRB) are thought to play an important role in the biogeochemical cycling of Fe, and nutrient elements such as C and P, in the anaerobic subsurface. The consumption of organic carbon sources (including contaminants) by these bacteria can significantly fractionate substrate C isotopes, however the effects of solution composition, electron acceptor, or electron donor on C isotopic fractionation by DMRB is at present poorly quantified. We have conducted experiments to compare the effects of bicarbonate (δ13C = -3‰) and phosphate buffers on carbon isotope fractionation by Shewanella putrefaciens strain 200R. The effects of dissolved carbonate and phosphate on δ13C values of dissolved inorganic C evolved during microbial reduction of ferric citrate (δ 13Cinitial = -25‰) were examined using sodium lactate (δ13Cinitial = -25‰) as electron donor under strict anaerobic conditions at neutral pH and 30°C, under dark and (fluorescent) light conditions. Our results suggest that bicarbonate may enhance the rate of Fe(III) reduction by S. putrefaciens, in comparison with media containing phosphate buffer but no added bicarbonate. Compared with phosphate buffered experiments, the presence of dissolved bicarbonate also resulted in a greater degree of C isotopic fractionation (ɛ=2-3‰ and ɛ=5-7‰, respectively). The effect of light on microbial Fe(III) reduction was negligible, however sterile controls showed a minor but significant quantity of carbon dioxide production in liquid media, most likely from photochemical decomposition of citrate. The abiotic experiments also showed measurable carbon isotope fractionation between the carbon dioxide produced and the organic carbon substrate which will be discussed.

  17. ABIOTIC IN SITU TECHNOLOGIES FOR GROUNDWATER REMEDIATION CONFERENCE: PROCEEDINGS

    EPA Science Inventory

    The USEPA conference on Abiotic In Situ Technologies for Groundwater Remediation was held in Dallas, TX, 8/31-9/2/99. The goal of the meeting was to disseminate current information on abiotic in situ groundwater treatment echnologies. Although much information is being provided a...

  18. The Stable Isotope Fractionation of Abiotic Reactions: A Benchmark in the Detection of Life

    NASA Technical Reports Server (NTRS)

    Summers, David P.

    2003-01-01

    mil to as low as -60 % (potentially comparable to that which accompanies the biosynthesis of organic matter). We need to understand what kind of fractionations are observed with reactions under the non-reducing or mildly reducing conditions now thought to be present on the early Earth. While nitrogen is receiving increased attention as a tool for these kinds of analyses, almost nothing is known about the isotope fractionation that one would expect for abiotic sources of fixed/reduced nitrogen. This project will measure the fixation from a series of abiotic reactions that may have been present on the early Earth (and other terrestrial planets) and produced organic material that could have ended up in the rock record. The work will look at a number of reactions, under a non- reducing, or mildly reducing, atmosphere, covering sources of prebiotic organic C & N from shock heating, to photochemistry, to hydrothermal reactions. Some reactions that we plan to study are; Shock heating of a non-reducing atmosphere to produce CO and NO (in collaboration with Chris McKay), formation of formaldehyde (and related compounds) from COY the formation of ammonia from nitrogen oxides (ultimately from NO) by ferrous iron reduction, and the hydrothermal synthesis of compounds including the hydrocarboxylation/hydrocarbonylation reaction (in collaboration with George Cody), reactions of oxalate to form hydrocarbons and other oxygenated compounds and the formation of lipids from oxalic/formic acid (in collaboration with Tom McCollom), and reactions of carbon monoxide & carbon dioxide with N2, ammonia or nitritehitrate to form hydrogen cyanide, nitriles, ammonia/amines and nitrous

  19. Improved abiotic stress tolerance of bermudagrass by exogenous small molecules.

    PubMed

    Chan, Zhulong; Shi, Haitao

    2015-01-01

    As a widely used warm-season turfgrass in landscapes and golf courses, bermudagrass encounters multiple abiotic stresses during the growth and development. Physiology analysis indicated that abiotic stresses induced the accumulation of ROS and decline of photosynthesis, resulting in increased cell damage and inhibited growth. Proteomic and metabolomic approaches showed that antioxidant enzymes and osmoprotectant contents (sugar, sucrose, dehydrin, proline) were extensively changed under abiotic stress conditions. Exogenous application of small molecules, such as ABA, NO, CaCl2, H2S, polyamine and melatonin, could effectively alleviate damages caused by multiple abiotic stresses, including drought, salt, heat and cold. Based on high through-put RNA seq analysis, genes involved in ROS, transcription factors, hormones, and carbohydrate metabolisms were largely enriched. The data indicated that small molecules induced the accumulation of osmoprotectants and antioxidants, kept cell membrane integrity, increased photosynthesis and kept ion homeostasis, which protected bermudagrass from damages caused by abiotic stresses. PMID:25757363

  20. Abiotic stresses induce different localizations of anthocyanins in Arabidopsis

    PubMed Central

    Kovinich, Nik; Kayanja, Gilbert; Chanoca, Alexandra; Otegui, Marisa S; Grotewold, Erich

    2015-01-01

    Anthocyanins are induced in plants in response to abiotic stresses such as drought, high salinity, excess light, and cold, where they often correlate with enhanced stress tolerance. Numerous roles have been proposed for anthocyanins induced during abiotic stresses including functioning as ROS scavengers, photoprotectants, and stress signals. We have recently found different profiles of anthocyanins in Arabidopsis (Arabidopsis thaliana) plants exposed to different abiotic stresses, suggesting that not all anthocyanins have the same function. Here, we discuss these findings in the context of other studies and show that anthocyanins induced in Arabidopsis in response to various abiotic stresses have different localizations at the organ and tissue levels. These studies provide a basis to clarify the role of particular anthocyanin species during abiotic stress. PMID:26179363

  1. Identification and prediction of abiotic stress responsive transcription factors involved in abiotic stress signaling in soybean.

    PubMed

    Tran, Lam-Son Phan; Mochida, Keiichi

    2010-03-01

    Abiotic stresses such as extreme temperature, drought, high salinity, cold and waterlogging often result in significant losses to the yields of economically important crops such as soybean (Glycine max L.). Transcription factors (TFs) which bind to DNA through specific cis-regulatory sequences either activate or repress gene transcription have been reported to act as control switches in stress signaling. Recent completion of the soybean genomic sequence has open wide opportunities for large-scale identification and annotations of regulatory TFs in soybean for functional studies. Within the soybean genome, we identified 5,035 TF models which grouped into 61 families. Detailed annotations of soybean TF genes can be accessed at SoybeanTFDB (soybeantfdb.psc.riken.jp). Moreover, we have reported a new idea of high throughput prediction and selection of abiotic stress responsive TFs based on the existence of known stress responsive cis-element(s) located in the promoter regions of respective TFs and GO annotations. We, therefore, have provided a basic platform for the genome-wide analysis of regulatory mechanisms underlying abiotic stress responses and a reliable tool for prediction and selection of stress responsive TFs for further functional studies and genetic engineering.

  2. Chemical dissolution of sulfide minerals

    USGS Publications Warehouse

    Chao, T.T.; Sanzolone, R.F.

    1977-01-01

    Chemical dissolution treatments involving the use of aqua regia, 4 N HNO3, H2O2-ascorbic acid, oxalic acid, KClO3+HCl, and KClO3+HCl followed by 4 N HNO3 were applied to specimens of nine common sulfide minerals (galena, chalcopyrite, cinnabar, molybdenite, orpiment, pyrite, stibnite, sphalerite, and tetrahedrite) mixed individually with a clay loam soil. The resultant decrease in the total sulfur content of the mixture, as determined by using the Leco induction furnace, was used to evaluate the effectiveness of each chemical treatment. A combination of KClO3+HCl followed by 4 N HNO3 boiling gently for 20 min has been shown to be very effective in dissolving all the sulfide minerals. This treatment is recommended to dissolve metals residing in sulfide minerals admixed with secondary weathering products, as one step in a fractionation scheme whereby metals in soluble and adsorbed forms, and those associated with organic materials and secondary oxides, are first removed by other chemical extractants.

  3. Dissolution and corrosion inhibition of copper, zinc, and their alloys

    SciTech Connect

    Jinturkar, P.; Guan, Y.C.; Han, K.N.

    1998-02-01

    The corrosion behavior of copper, zinc, and their alloys in sulfuric acid (H{sub 2}SO{sub 4}) solutions with oxygen and ferric ions (Fe{sup 3+}) was studied using a potentiostat. Oxygen and Fe{sup 3+} ions were shown to play an important role in corrosion of copper and copper-zinc alloys. Cathodic reduction of oxygen mainly was controlled by chemical reaction, and that of Fe{sup 3+} ions was controlled by diffusion. The overall cathodic process was the summation of the reduction of oxygen and Fe{sup 3+} ions. Corrosion of zinc was controlled mainly by reduction of water. Corrosion inhibition using benzotriazole (BTAH) also was investigated in aerated and deaerated solutions. BTAH was found to be a useful inhibitor, and the inhibition layer was shown to be stable and persistent. Morphology of the surface of copper, zinc, and brasses after corrosion in the presence and absence of BTAH was examined by scanning electron microscopy. BTAH formed a protective layer on the surface, thereby inhibiting corrosion. Solution analysis of the dissolution of brasses showed that zinc dissolved preferentially in the initial stages, followed by simultaneous dissolution of copper and zinc.

  4. Distinct iron isotopic signatures and supply from marine sediment dissolution.

    PubMed

    Homoky, William B; John, Seth G; Conway, Tim M; Mills, Rachel A

    2013-01-01

    Oceanic iron inputs must be traced and quantified to learn how they affect primary productivity and climate. Chemical reduction of iron in continental margin sediments provides a substantial dissolved flux to the oceans, which is isotopically lighter than the crust, and so may be distinguished in seawater from other sources, such as wind-blown dust. However, heavy iron isotopes measured in seawater have recently led to the proposition of another source of dissolved iron from 'non-reductive' dissolution of continental margins. Here we present the first pore water iron isotope data from a passive-tectonic and semi-arid ocean margin (South Africa), which reveals a smaller and isotopically heavier flux of dissolved iron to seawater than active-tectonic and dysoxic continental margins. These data provide in situ evidence of non-reductive iron dissolution from a continental margin, and further show that geological and hydro-climatic factors may affect the amount and isotopic composition of iron entering the ocean.

  5. Microbial extracellular polysaccharides and plagioclase dissolution

    NASA Astrophysics Data System (ADS)

    Welch, S. A.; Barker, W. W.; Banfield, J. F.

    1999-05-01

    Bytownite feldspar was dissolved in batch reactors in solutions of starch (glucose polymer), gum xanthan (glucose, mannose, glucuronic acid), pectin (poly-galacturonic acid), and four alginates (mannuronic and guluronic acid) with a range of molecular weights (low, medium, high and uncharacterized) to evaluate the effect of extracellular microbial polymers on mineral dissolution rates. Solutions were analyzed for dissolved Si and Al as an indicator of feldspar dissolution. At neutral pH, feldspar dissolution was inhibited by five of the acid polysaccharides, gum xanthan, pectin, alginate low, alginate medium, alginate high, compared to an organic-free control. An uncharacterized alginate substantially enhanced both Si and Al release from the feldspar. Starch, a neutral polysaccharide, had no apparent effect. Under mildly acidic conditions, initial pH ≈ 4, all of the polymers enhanced feldspar dissolution compared to the inorganic controls. Si release from feldspar in starch solution exceeded the control by a factor of three. Pectin and gum xanthan increased feldspar dissolution by a factor of 10, and the alginates enhanced feldspar dissolution by a factor of 50 to 100. Si and Al concentrations increased with time, even though solutions were supersaturated with respect to several possible secondary phases. Under acidic conditions, initial pH ≈ 3, below the pK a of the carboxylic acid groups, dissolution rates increased, but the relative increase due to the polysaccharides is lower, approximately a factor of two to ten. Microbial extracellular polymers play a complex role in mineral weathering. Polymers appear to inhibit dissolution under some conditions, possibly by irreversibly binding to the mineral surfaces. The extracellular polysaccharides can also enhance dissolution by providing protons and complexing with ions in solution.

  6. In silico dissolution rates of pharmaceutical ingredients

    NASA Astrophysics Data System (ADS)

    Dogan, Berna; Schneider, Julian; Reuter, Karsten

    2016-10-01

    The correlation between in vitro dissolution rates and the efficiency of drug formulations establishes an opportunity for accelerated drug development. Using in silico methods to predict the dissolution rates bears the prospect of further efficiency gains by avoiding the actual synthesis of candidate formulations. Here, we present a computational protocol that achieves such prediction for molecular crystals at low undersaturation. The protocol exploits the classic spiral dissolution model to minimize the number of material parameters that require explicit molecular simulations. Comparison to available data for acetylsalicylic acid and alpha lactose monohydrate indicates a tunable accuracy within one order of magnitude.

  7. Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow

    NASA Astrophysics Data System (ADS)

    Hansel, Colleen M.; Benner, Shawn G.; Neiss, Jim; Dohnalkova, Alice; Kukkadapu, Ravi K.; Fendorf, Scott

    2003-08-01

    Iron (hydr)oxides not only serve as potent sorbents and repositories for nutrients and contaminants but also provide a terminal electron acceptor for microbial respiration. The microbial reduction of Fe (hydr)oxides and the subsequent secondary solid-phase transformations will, therefore, have a profound influence on the biogeochemical cycling of Fe as well as associated metals. Here we elucidate the pathways and mechanisms of secondary mineralization during dissimilatory iron reduction by a common iron-reducing bacterium, Shewanella putrefaciens (strain CN32), of 2-line ferrihydrite under advective flow conditions. Secondary mineralization of ferrihydrite occurs via a coupled, biotic-abiotic pathway primarily resulting in the production of magnetite and goethite with minor amounts of green rust. Operating mineralization pathways are driven by competing abiotic reactions of bacterially generated ferrous iron with the ferrihydrite surface. Subsequent to the initial sorption of ferrous iron on ferrihydrite, goethite (via dissolution/reprecipitation) and/or magnetite (via solid-state conversion) precipitation ensues resulting in the spatial coupling of both goethite and magnetite with the ferrihydrite surface. The distribution of goethite and magnetite within the column is dictated, in large part, by flow-induced ferrous Fe profiles. While goethite precipitation occurs over a large Fe(II) concentration range, magnetite accumulation is only observed at concentrations exceeding 0.3 mmol/L (equivalent to 0.5 mmol Fe[II]/g ferrihydrite) following 16 d of reaction. Consequently, transport-regulated ferrous Fe profiles result in a progression of magnetite levels downgradient within the column. Declining microbial reduction over time results in lower Fe(II) concentrations and a subsequent shift in magnetite precipitation mechanisms from nucleation to crystal growth. While the initial precipitation rate of goethite exceeds that of magnetite, continued growth is inhibited by

  8. EVALUATION OF LOW TEMPERATURE ALUMINUM DISSOLUTION IN TANK 51

    SciTech Connect

    Pike, J

    2008-09-04

    Tank 41 that was stored and sampled in Tank 49 was determined to be supersaturated relative to aluminum. Supersaturation in Tank 49 is not a risk to LTAD. However, storing and processing of this supernate carries a risk of solids precipitation, primarily in the form of gibbsite or boehmite. Blending with the supernate in Tank 11 neither increases nor decreases this risk. LTAD was initiated as an opportunity to substantially mitigate the planned increase in canister production and DWPF lifecycle after the realization of more sludge solids stored in the HLW tanks. As determined from the preliminary evaluation of LTAD, the direct benefit of the decanted liquid stored in Tank 11 represents 45 canisters at 34% waste loading with potential indirect benefits for much larger reductions. Application of an aluminum dissolution process to the remaining high aluminum content sludge will potentially reduce the planned canister production by several hundred canisters at 34%-38% waste loading.

  9. FY 1999 Saltcake Dissolution Workshop

    SciTech Connect

    Beahm, E.C.

    2001-02-12

    During the FY 1998 Saltcake Dissolution Workshop, participants identified nine tasks to be performed prior to the FY 1999 workshop. Discussions during the workshop indicated that significant progress was made in each area. The workshop focused on the strengths and weaknesses of the Environmental Simulation Program (ESP). In addition, the ESP predictions for the Tank SY-101 remediation and the ESP validation efforts were evaluated. Finally, the need for a broader user base was identified. At the request of the Tank Waste Remediation System (TWRS), the ESP model was successfully utilized to predict the effects of Hanford tank farm operations such as waste transfers and water dilutions. The ESP model was originally developed to predict the compositions of solutions from off gas scrubbers. Therefore, the original database for the ESP model was designed for use with solutions with low ionic strengths. However, the Hanford tanks contain waste with very high ionic strengths. TWRS and Tank Focus Area (TFA) staff members have measured the solubilities of key components at high ionic strengths. The results from these studies were used to develop the Hanford database for the ESP model so the model could more accurately predict the compositions of Hanford waste streams with high ionic streams. The OLI Corporation, which developed the ESP model, has now incorporated most of the Hanford database into its standard ESP database. Another deficiency of the ESP model involves the lack of detailed documentation. Most new users of the ESP model normally encounter several obstacles. Therefore, TWRS management has proposed the development of an ESP user guide based on the experiences of TWRS and TFA researchers. The objective of the user guide is to make the ESP model more user friendly for the Hanford process engineers. The saltcake dissolution experiments at Hanford and the SOLGAS calculations at Oak Ridge are critically in the validation of the ESP model. Due to the high costs

  10. Predicting dissolution via hydrodynamics: salicylic acid tablets in flow through cell dissolution.

    PubMed

    Cammarn, S R; Sakr, A

    2000-05-25

    A model was established for the dissolution of non-disintegrating salicylic acid tablets as a function of hydrodynamic conditions in the Flow Through Cell system (USP Apparatus 4). The approach was to model the dissolution rate of the material as a function of the Reynold's number, the dimensionless engineering term that describes the degree of turbulence. The dissolution rate of USP calibrator salicylic acid tablets was measured as a function of tablet size, orientation within the cell, dissolution media flow rate, and cell size. All of these variables were found to have an effect on dissolution rate, consistent with theory. An equation to predict this dissolution was established as: N(SH)=-21.1+12.6xN(RE)(0.5), R(2)=0.99; 10

  11. [Phytobezoar dissolution with Coca-Cola].

    PubMed

    Martínez de Juan, F; Martínez-Lapiedra, C; Picazo, V

    2006-05-01

    The treatment of phytobezoar is empiric. The various therapeutic choices include dietary modifications, prokinetic drugs, gastric lavage, enzymatic dissolution, endoscopic treatment, and surgery. We present two cases of phytobezoar with successful outcome after Coca-Cola administration.

  12. Dissolution and Separation of Aluminum and Aluminosilicates

    SciTech Connect

    McFarlane, Joanna; Benker, Dennis; DePaoli, David W.; Felker, Leslie Kevin; Mattus, Catherine H.

    2015-12-19

    The selection of an aluminum alloy for target irradiation affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the dissolver, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. Aluminosilicate dissolution presents challenges in a number of different areas, metals extraction from minerals, flyash treatment, and separations from aluminum alloys. We present experimental work that attempts to maximize dissolution of aluminum metal, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as a function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. Our data have been compared with published calculations of aluminum phase diagrams. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.

  13. Dissolution and Separation of Aluminum and Aluminosilicates

    DOE PAGES

    McFarlane, Joanna; Benker, Dennis; DePaoli, David W.; Felker, Leslie Kevin; Mattus, Catherine H.

    2015-12-19

    The selection of an aluminum alloy for target irradiation affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the dissolver, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. Aluminosilicate dissolution presents challenges in a number of different areas, metals extraction from minerals, flyash treatment, and separations from aluminum alloys. We present experimental work that attempts to maximize dissolution of aluminum metal, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as amore » function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. Our data have been compared with published calculations of aluminum phase diagrams. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.« less

  14. [Dissolution study of the gentin tablets].

    PubMed

    Tsagareishvili, N T; Bakuridze, A D; Kurdiani, N G; Murtazashvili, T Zh

    2006-04-01

    To establish individual dissolution test for the tablets gentin, which have a marked influence on the secretory function of the stomach (increase the free acidity of the gastric juice and stimulate enzymoproduction function of the stomach), and gastroprotective functioning, the conditions for the test realization were studied and specified, using apparatus "Rotating Basket" (Dissolution test, apparatus 1, p.1791, USP XXIII, 1995). For the quantification of the active ingredients in buffer solutions chromatospectrophotometric method was used. The same conditions were used for the accomplishment of the dissolution test using apparatus "Rotating Paddle" (Dissolution test, apparatus 2, p.1791, USP XXIII, 1995). Metrologic characteristics were compared for the evaluation of the reproducibility of the results. Obtained data showed better reproducibility of the results for the apparatus "Rotating Paddle" compare to the apparatus "Rotating Basket". Estimated conditions are useful for the routine control of the tablets "Gentin" in the case of manufacturing.

  15. Nylon Dissolution in Nitric Acid Solutions

    SciTech Connect

    KESSINGER, GLENF.

    2004-06-16

    H Area Operations is planning to process Pu-contaminated uranium scrap in support of de-inventory efforts. Nylon bags will be used to hold materials to be dissolved in H-Canyon. Based on this set of twelve nylon dissolutions, it is concluded that (when other variables are held constant): increased acid concentration results in increased dissolution rates; increased acid concentration results in a lower dissolution onset temperature; little, if any, H plus is consumed during the depolymerization process; and 2.0-3.0 M HNO3, with 0.025 M KF and 2 g/L B, is satisfactory for the dissolution of nylon bag materials to be used during H-Canyon processing.

  16. A Social Psychological Perspective on Marital Dissolution

    ERIC Educational Resources Information Center

    Levinger, George

    1976-01-01

    The hypothetical constructs of attraction and barrier forces, as well as contrasting alternative attractions are used to organize the research literature on the determinants of marital stability and dissolution. (Author/AM)

  17. Dissolution rates of prehnite, epidote, and albite

    SciTech Connect

    Rosemary, N.M. )

    1991-11-01

    Dissolution rates of prehnite and epidote in aqueous solutions were measured in the temperature range 25 to 90C, and as a function of pH. The dissolution rate of albite was measured at pH 1.4 at temperatures between 25 and 90C. Batch experiments using low ionic strength pH buffers in constant temperature water batch or ovens provided data on cumulative element release as a function of time. Steady state Si, Ca, Na, and Al release data obtained from these experiments were used to obtain limiting dissolution rates, where the term limiting rate denotes dissolution of a bulk mineral under conditions where it is far from equilibrium with the fluid. At 90C and at pH 1.4 to 6, prehnite and epidote dissolution rates decrease and are proportional to approximately {minus}0.3 pH for prehnite and {minus}0.2 pH for epidote. Above pH 6, prehnite dissolution becomes pH independent, by epidote dissolution increases with rates that are proportional to between +0.3 and +0.6 pH. Prehnite and epidote dissolution is linear and stoichiometric at low pH. At pH greater than 7, both minerals initially display preferential release of Si and Al relative to Ca; however, with increasing reaction dissolution becomes stoichiometric. This suggests that a Ca-enriched layer forms but reaches a steady state thickness which does not impede subsequent linear stoichiometric release. At pH 1.4, the limiting dissolution rate for albite is linear and stoichiometric. At pH 1.4, the activation energies are 18.12 {plus minus} 0.81 kcal mol{sup {minus}1} for prehnite, 19.76 {plus minus} 1.2 kcal mol{sup {minus}1} for epidote and 17.07 {plus minus} 1.6 kcal mol{sup {minus}1} for albite. At pH 6.5, the activation energy for prehnite dissolution is 20.73 {plus minus} 3.2 kcal mol{sup {minus}1}.

  18. Regulation of Photosynthesis during Abiotic Stress-Induced Photoinhibition.

    PubMed

    Gururani, Mayank Anand; Venkatesh, Jelli; Tran, Lam Son Phan

    2015-09-01

    Plants as sessile organisms are continuously exposed to abiotic stress conditions that impose numerous detrimental effects and cause tremendous loss of yield. Abiotic stresses, including high sunlight, confer serious damage on the photosynthetic machinery of plants. Photosystem II (PSII) is one of the most susceptible components of the photosynthetic machinery that bears the brunt of abiotic stress. In addition to the generation of reactive oxygen species (ROS) by abiotic stress, ROS can also result from the absorption of excessive sunlight by the light-harvesting complex. ROS can damage the photosynthetic apparatus, particularly PSII, resulting in photoinhibition due to an imbalance in the photosynthetic redox signaling pathways and the inhibition of PSII repair. Designing plants with improved abiotic stress tolerance will require a comprehensive understanding of ROS signaling and the regulatory functions of various components, including protein kinases, transcription factors, and phytohormones, in the responses of photosynthetic machinery to abiotic stress. Bioenergetics approaches, such as chlorophyll a transient kinetics analysis, have facilitated our understanding of plant vitality and the assessment of PSII efficiency under adverse environmental conditions. This review discusses the current understanding and indicates potential areas of further studies on the regulation of the photosynthetic machinery under abiotic stress.

  19. Abiotic and biotic factors influencing the mobility of arsenic in groundwater of a through-flow island in the Okavango Delta, Botswana

    NASA Astrophysics Data System (ADS)

    Mladenov, Natalie; Wolski, Piotr; Hettiarachchi, Ganga M.; Murray-Hudson, Michael; Enriquez, Hersy; Damaraju, Sivaramakrishna; Galkaduwa, Madhubhashini B.; McKnight, Diane M.; Masamba, Wellington

    2014-10-01

    The Okavango Delta of Botswana is a large arid-zone wetland comprising 20,000 km2 of permanent and seasonal floodplains and over 100,000 islands. It has been shown that island groundwater can have very high dissolved arsenic (As) concentration, but the abiotic and biotic controls on As mobility are not well understood in this setting. At New Island, an island located in the seasonal swamp, dissolved As concentration increased from below detection limits in the surface water to 180 μg/L in groundwater, present as As(III) species. We investigated the relative importance of hydrologic, geochemical, and geomicrobial processes, as well as influences of recent extreme flooding events, in mobilizing and sequestering As in the shallow groundwater system under this island. Our results suggest that evapotranspiration and through-flow conditions control the location of the high arsenic zone. A combination of processes is hypothesized to control elevated As in the concentration zone of New Island: high evapotranspiration rates concentrate As and other solutes, more alkaline pH leads to desorption of arsenic or dissolution of arsenic sulfides, and formation of thioarsenic complexes acts to keep arsenic in solution. Evidence from X-ray absorption near-edge structure spectroscopy (XANES) and sulfate reducing bacteria (SRB) measurements further suggests that SRBs influence arsenic sequestration as orpiment (As2S3). Although dissolved organic matter (DOM) was not significantly correlated to dissolved As in the groundwater, our results suggest that DOM may serve as an electron donor for sulfate reduction or other microbial reactions that influence redox state and As mobility. These results have important implications for water management in the region and in other large wetland environments. The processes evaluated in this study are also relevant for arsenic removal in subsurface constructed wetland systems that may exhibit rapidly changing processes over small spatial scales.

  20. [In vitro dissolution rate of Liuwei Wuling tablet based on biological potency and integrated dissolution].

    PubMed

    Zheng, Juan; Cheng, Ling; Shen, Cheng-ying; Li, Juan-juan; Qiu, Ling; Shen, Gang; Han, Jin; Yuan, Hai-long

    2015-11-01

    To explore the feasibility of chemical and biological method in evaluation of the in vitro dissolution rate of Liuwei Wuling tablet (LWT), this experiment investigated the inhibitory effect of LWT dissolving solutions on LX-2 hepatic stellate cells in 0.1% SDS dissolution medium in different dissolving periods. From these results, the cumulative dissolution rate of LWT was obtained based on the cell inhibitory rate. The dissolution rates of deoxyschizandrin, phillyrin, and Specnuezhenide were determined by HPLC method. A novel approach of self-defined weighting coefficient had been created to establish the integrated dissolution rate model. Then f2 similar factor method was used to evaluate the relevance of these two methods. The results showed that f2 values for deoxyschizandrin, phillyrin, Specnuezhenide, and the integrated dissolution were 61, 43, 61 and 75 respectively, indicating that the dissolution of multi-component integration could fully reflect the biological potency of the whole recipe. The dissolution evaluation method for multicomponent integration based on biological activity is expected to be one of the effective means for in vitro dissolution test of LWT. PMID:27097413

  1. The abiotic degradation of soil organic matter to oxalic acid

    NASA Astrophysics Data System (ADS)

    Studenroth, Sabine; Huber, Stefan; Schöler, H. F.

    2010-05-01

    The abiotic degradation of soil organic matter to volatile organic compounds was studied intensely over the last years (Keppler et al., 2000; Huber et al., 2009). It was shown that soil organic matter is oxidised due to the presence of iron (III), hydrogen peroxide and chloride and thereby produces diverse alkyl halides, which are emitted into the atmosphere. The formation of polar halogenated compounds like chlorinated acetic acids which are relevant toxic environmental substances was also found in soils and sediments (Kilian et al., 2002). The investigation of the formation of other polar halogenated and non-halogenated compounds like diverse mono- and dicarboxylic acids is going to attain more and more importance. Due to its high acidity oxalic acid might have impacts on the environment e.g., nutrient leaching, plant diseases and negative influence on microbial growth. In this study, the abiotic formation of oxalic acid in soil is examined. For a better understanding of natural degradation processes mechanistic studies were conducted using the model compound catechol as representative for structural elements of the humic substances and its reaction with iron (III) and hydrogen peroxide. Iron is one of the most abundant elements on earth and hydrogen peroxide is produced by bacteria or through incomplete reduction of oxygen. To find suitable parameters for an optimal reaction and a qualitative and quantitative analysis method the following reaction parameters are varied: concentration of iron (III) and hydrogen peroxide, time dependence, pH-value and influence of chloride. Analysis of oxalic acid was performed employing an ion chromatograph equipped with a conductivity detector. The time dependent reaction shows a relatively fast formation of oxalic acid, the optimum yield is achieved after 60 minutes. Compared to the concentration of catechol an excess of hydrogen peroxide as well as a low concentration of iron (III) are required. In absence of chloride the

  2. Abiotic and Microbial Interactions during Anaerobic Transformations of Fe(II) and NOX-

    PubMed Central

    Picardal, Flynn

    2012-01-01

    Microbial Fe(II) oxidation using NO3- as the terminal electron acceptor [nitrate-dependent Fe(II) oxidation, NDFO] has been studied for over 15 years. Although there are reports of autotrophic isolates and stable enrichments, many of the bacteria capable of NDFO are known organotrophic NO3--reducers that require the presence of an organic, primary substrate, e.g., acetate, for significant amounts of Fe(II) oxidation. Although the thermodynamics of Fe(II) oxidation are favorable when coupled to either NO3- or NO2- reduction, the kinetics of abiotic Fe(II) oxidation by NO3- are relatively slow except under special conditions. NDFO is typically studied in batch cultures containing millimolar concentrations of Fe(II), NO3-, and the primary substrate. In such systems, NO2- is often observed to accumulate in culture media during Fe(II) oxidation. Compared to NO3-, abiotic reactions of biogenic NO2- and Fe(II) are relatively rapid. The kinetics and reaction pathways of Fe(II) oxidation by NO2- are strongly affected by medium composition and pH, reactant concentration, and the presence of Fe(II)-sorptive surfaces, e.g., Fe(III) oxyhydroxides and cellular surfaces. In batch cultures, the combination of abiotic and microbial Fe(II) oxidation can alter product distribution and, more importantly, results in the formation of intracellular precipitates and extracellular Fe(III) oxyhydroxide encrustations that apparently limit further cell growth and Fe(II) oxidation. Unless steps are taken to minimize or account for potential abiotic reactions, results of microbial NDFO studies can be obfuscated by artifacts of the chosen experimental conditions, the use of inappropriate analytical methods, and the resulting uncertainties about the relative importance of abiotic and microbial reactions. In this manuscript, abiotic reactions of NO3- and NO2- with aqueous Fe2+, chelated Fe(II), and solid-phase Fe(II) are reviewed along with factors that can influence overall NDFO reaction rates

  3. Coupled biotic-abiotic oxidation of organic matter by biogenic MnO_{2}

    NASA Astrophysics Data System (ADS)

    Gonzalez, Julia; Peña, Jasquelin

    2016-04-01

    Some reactive soil minerals are strongly implicated in stabilising organic matter. However, others can play an active role in the oxidation of organic molecules. In natural systems, layer-type manganese oxide minerals (MnO2) typically occur as biomineral assemblages consisting of mineral particles and microbial biomass. Both the mineral and biological fractions of the assemblage can be powerful oxidants of organic C. The biological compartment relies on a set of enzymes to drive oxidative transformations of reduced C-substrates, whereas MnO2 minerals are strong, less specific abiotic oxidants that are assumed to rely on interfacial interactions between C-substrates and the mineral surface. This project aims to understand the coupling between microbial C mineralization and abiotic C oxidation mediated by MnO2 in bacterial-MnO2 assemblages. Specifically, under conditions of high C turnover, microbial respiration can significantly alter local pH, dissolved oxygen and pool of available reductants, which may modify rates and mechanism of C oxidation by biotic and abiotic components. We first investigated changes in the solution chemistry of Pseudomonas putida suspensions exposed to varying concentrations of glucose, chosen to represent readily bioavailable substrates in soils. Glucose concentrations tested ranged between 0 and 5.5mM and changes in pH, dissolved oxygen and dissolved organic and inorganic carbon were tracked over 48h. We then combined literature review and wet-chemical experiments to compile the pH dependence of rates of organic substrate oxidation by MnO2, including glucose. Our results demonstrate a strong pH dependence for these abiotic reactions. In assemblages of P. putida - MnO2, kinetic limitations for abiotic C oxidation by MnO2 are overcome by changes in biogeochemical conditions that result from bacterial C metabolism. When extrapolated to a soil solution confronted to an input of fresh dissolved organic matter, bacterial C metabolism of the

  4. Polyamines and abiotic stress tolerance in plants.

    PubMed

    Gill, Sarvajeet Singh; Tuteja, Narendra

    2010-01-01

    Environmental stresses including climate change, especially global warming, are severely affecting plant growth and productivity worldwide. It has been estimated that two-thirds of the yield potential of major crops are routinely lost due to the unfavorable environmental factors. On the other hand, the world population is estimated to reach about 10 billion by 2050, which will witness serious food shortages. Therefore, crops with enhanced vigour and high tolerance to various environmental factors should be developed to feed the increasing world population. Maintaining crop yields under adverse environmental stresses is probably the major challenge facing modern agriculture where polyamines can play important role. Polyamines (PAs)(putrescine, spermidine and spermine) are group of phytohormone-like aliphatic amine natural compounds with aliphatic nitrogen structure and present in almost all living organisms including plants. Evidences showed that polyamines are involved in many physiological processes, such as cell growth and development and respond to stress tolerance to various environmental factors. In many cases the relationship of plant stress tolerance was noted with the production of conjugated and bound polyamines as well as stimulation of polyamine oxidation. Therefore, genetic manipulation of crop plants with genes encoding enzymes of polyamine biosynthetic pathways may provide better stress tolerance to crop plants. Furthermore, the exogenous application of PAs is also another option for increasing the stress tolerance potential in plants. Here, we have described the synthesis and role of various polyamines in abiotic stress tolerance in plants.

  5. Polyamines and abiotic stress tolerance in plants

    PubMed Central

    Gill, Sarvajeet Singh

    2010-01-01

    Environmental stresses including climate change, especially global warming, are severely affecting plant growth and productivity worldwide. It has been estimated that two-thirds of the yield potential of major crops are routinely lost due to the unfavorable environmental factors. On the other hand, the world population is estimated to reach about 10 billion by 2050, which will witness serious food shortages. Therefore, crops with enhanced vigour and high tolerance to various environmental factors should be developed to feed the increasing world population. Maintaining crop yields under adverse environmental stresses is probably the major challenge facing modern agriculture where polyamines can play important role. Polyamines (PAs)(putrescine, spermidine and spermine) are group of phytohormone-like aliphatic amine natural compounds with aliphatic nitrogen structure and present in almost all living organisms including plants. Evidences showed that polyamines are involved in many physiological processes, such as cell growth and development and respond to stress tolerance to various environmental factors. In many cases the relationship of plant stress tolerance was noted with the production of conjugated and bound polyamines as well as stimulation of polyamine oxidation. Therefore, genetic manipulation of crop plants with genes encoding enzymes of polyamine biosynthetic pathways may provide better stress tolerance to crop plants. Furthermore, the exogenous application of PAs is also another option for increasing the stress tolerance potential in plants. Here, we have described the synthesis and role of various polyamines in abiotic stress tolerance in plants. PMID:20592804

  6. Phenotyping for abiotic stress tolerance in maize.

    PubMed

    Masuka, Benhilda; Araus, Jose Luis; Das, Biswanath; Sonder, Kai; Cairns, Jill E

    2012-04-01

    The ability to quickly develop germplasm having tolerance to several complex polygenic inherited abiotic and biotic stresses combined is critical to the resilience of cropping systems in the face of climate change. Molecular breeding offers the tools to accelerate cereal breeding; however, suitable phenotyping protocols are essential to ensure that the much-anticipated benefits of molecular breeding can be realized. To facilitate the full potential of molecular tools, greater emphasis needs to be given to reducing the within-experimental site variability, application of stress and characterization of the environment and appropriate phenotyping tools. Yield is a function of many processes throughout the plant cycle, and thus integrative traits that encompass crop performance over time or organization level (i.e. canopy level) will provide a better alternative to instantaneous measurements which provide only a snapshot of a given plant process. Many new phenotyping tools based on remote sensing are now available including non-destructive measurements of growth-related parameters based on spectral reflectance and infrared thermometry to estimate plant water status. Here we describe key field phenotyping protocols for maize with emphasis on tolerance to drought and low nitrogen.

  7. Abiotic uptake of gases by organic soils

    NASA Astrophysics Data System (ADS)

    Smagin, A. V.

    2007-12-01

    Methodological and experimental studies of the abiotic uptake of gaseous substances by organic soils were performed. The static adsorption method of closed vessels for assessing the interaction of gases with the solid and liquid soil phases and the dynamic method of determining the sorption isotherms of gases by soils were analyzed. The theoretical substantiation of the methods and their practical implementations on the basis of a PGA-7 portable gas analyzer (Russia) were considered. Good agreement between the equilibrium sorption isotherms of the gases and the Langmuir model was revealed; for the real ranges of natural gas concentrations, this model can be reduced to the linear Henry equation. The limit values of the gas sorption (Langmuir monolayer capacity) are typical for dry samples; they vary from 670 4000 g/m3 for methane and oxygen to 20 000 25 000 g/m3 for carbon dioxide. The linear distribution coefficients of gases between the solid and gas phases of organic soils (Henry constants) are 8 18 units for poorly sorbed gases (O2, CH4) and 40 60 units for CO2. The kinetics of the chemicophysical uptake of gases by the soil studied is linear in character and obeys the relaxation kinetic model of the first order with the corresponding relaxation constants, which vary from 1 h -1 in wet samples to 10 h -1 in dry samples.

  8. Chemical Priming of Plants Against Multiple Abiotic Stresses: Mission Possible?

    PubMed

    Savvides, Andreas; Ali, Shawkat; Tester, Mark; Fotopoulos, Vasileios

    2016-04-01

    Crop plants are subjected to multiple abiotic stresses during their lifespan that greatly reduce productivity and threaten global food security. Recent research suggests that plants can be primed by chemical compounds to better tolerate different abiotic stresses. Chemical priming is a promising field in plant stress physiology and crop stress management. We review here promising chemical agents such as sodium nitroprusside, hydrogen peroxide, sodium hydrosulfide, melatonin, and polyamines that can potentially confer enhanced tolerance when plants are exposed to multiple abiotic stresses. The challenges and opportunities of chemical priming are addressed, with the aim to boost future research towards effective application in crop stress management.

  9. Recent Molecular Advances on Downstream Plant Responses to Abiotic Stress

    PubMed Central

    dos Reis, Sávio Pinho; Lima, Aline Medeiros; de Souza, Cláudia Regina Batista

    2012-01-01

    Abiotic stresses such as extremes of temperature and pH, high salinity and drought, comprise some of the major factors causing extensive losses to crop production worldwide. Understanding how plants respond and adapt at cellular and molecular levels to continuous environmental changes is a pre-requisite for the generation of resistant or tolerant plants to abiotic stresses. In this review we aimed to present the recent advances on mechanisms of downstream plant responses to abiotic stresses and the use of stress-related genes in the development of genetically engineered crops. PMID:22942725

  10. HB-Line Dissolution of Glovebox Floor Sweepings

    SciTech Connect

    Gray, J.H.

    1998-02-01

    fluoride mole ratio for another one to three hours.Generation of hydrogen caused by the dissolution of calcium metal should also not be a concern.No hydrogen was detected in the laboratory off-gas stream and insignificant metals of any kind are present in glovebox floor sweepings. Glovebox floor sweepings are generated at Savannah River in FB-Line during preparation of the feed material used in the metal producing bomb reduction process. It is usually after precipitation and during drying or conversion of plutonium fluoride to a PuF{sub 4}-PuO{sub 2} mixture at 500{degree}C, that spil occur which can contaminate the converted cake with varying amounts of MgO sand or other glovebox materials. This contaminated converted cake mixture of PuF{sub 4} and PuO{sub 2} is packaged and stored in the vault fo eventual recovery of the plutonium.In the past, most recovery operations in HB-Line have dealt with PuO{sub 2} as the only plutonium compound present in the material to be dissolved. However,since the plutonium in FB-Line glovebox floor sweepings is a mixture of plutonium fluoride (PuF{sub 4}) and plutonium oxide (PuO{sub 2}), the standar HB-Line dissolving flowsheet is not directly suitable for complete dissolution.This is because it is difficult to completely dissolve PuO{sub 2} when the fluoride is complexed with aluminum and it is difficult to completely dissolve PuF{sub 4} unless sufficient aluminum is present to complex free fluoride. These observations were previously confirmed during the initial flowsheet development work for dissolving sand, slag, and crucible materials in F-Canyon dissolvers.

  11. Evaluating the role of re-adsorption of dissolved Hg2+ during cinnabar dissolution using isotope tracer technique

    DOE PAGES

    Jiang, Ping; Li, Yanbin; Liu, Guangliang; Yang, Guidi; Lagos, Leonel; Yin, Yongguang; Gu, Baohua; Jiang, Guibin; Cai, Yong

    2016-06-02

    Cinnabar dissolution is an important factor controlling mercury (Hg) cycling. Recent studies have suggested the co-occurrence of re-adsorption of the released Hg during the course of cinnabar dissolution. However, there is a lack of feasible techniques that can quantitatively assess the amount of Hg re-adsorbed on cinnabar when investigating cinnabar dissolution. In this study, a new method, based on isotope tracing and dilution techniques, was developed to study the role of Hg re-adsorption in cinnabar dissolution. The developed method includes two key components: (1) accurate measurement of both released and spiked Hg in aqueous phase and (2) estimation of re-adsorbedmore » Hg on cinnabar surface via the reduction in spiked 202Hg2+. By adopting the developed method, it was found that the released Hg for trials purged with oxygen could reach several hundred g L–1, while no significant cinnabar dissolution was detected under anaerobic condition. Cinnabar dissolution rate when considering Hg re-adsorption was approximately 2 times the value calculated solely with the Hg detected in the aqueous phase. Lastly, these results suggest that ignoring the Hg re-adsorption process can significantly underestimate the importance of cinnabar dissolution, highlighting the necessity of applying the developed method in future cinnabar dissolution studies.« less

  12. Evaluating the role of re-adsorption of dissolved Hg(2+) during cinnabar dissolution using isotope tracer technique.

    PubMed

    Jiang, Ping; Li, Yanbin; Liu, Guangliang; Yang, Guidi; Lagos, Leonel; Yin, Yongguang; Gu, Baohua; Jiang, Guibin; Cai, Yong

    2016-11-01

    Cinnabar dissolution is an important factor controlling mercury (Hg) cycling. Recent studies have suggested the co-occurrence of re-adsorption of the released Hg during the course of cinnabar dissolution. However, there is a lack of feasible techniques that can quantitatively assess the amount of Hg re-adsorbed on cinnabar when investigating cinnabar dissolution. In this study, a new method, based on isotope tracing and dilution techniques, was developed to study the role of Hg re-adsorption in cinnabar dissolution. The developed method includes two key components: (1) accurate measurement of both released and spiked Hg in aqueous phase and (2) estimation of re-adsorbed Hg on cinnabar surface via the reduction in spiked (202)Hg(2+). By adopting the developed method, it was found that the released Hg for trials purged with oxygen could reach several hundred μgL(-1), while no significant cinnabar dissolution was detected under anaerobic condition. Cinnabar dissolution rate when considering Hg re-adsorption was approximately 2 times the value calculated solely with the Hg detected in the aqueous phase. These results suggest that ignoring the Hg re-adsorption process can significantly underestimate the importance of cinnabar dissolution, highlighting the necessity of applying the developed method in future cinnabar dissolution studies.

  13. Evaluating the role of re-adsorption of dissolved Hg(2+) during cinnabar dissolution using isotope tracer technique.

    PubMed

    Jiang, Ping; Li, Yanbin; Liu, Guangliang; Yang, Guidi; Lagos, Leonel; Yin, Yongguang; Gu, Baohua; Jiang, Guibin; Cai, Yong

    2016-11-01

    Cinnabar dissolution is an important factor controlling mercury (Hg) cycling. Recent studies have suggested the co-occurrence of re-adsorption of the released Hg during the course of cinnabar dissolution. However, there is a lack of feasible techniques that can quantitatively assess the amount of Hg re-adsorbed on cinnabar when investigating cinnabar dissolution. In this study, a new method, based on isotope tracing and dilution techniques, was developed to study the role of Hg re-adsorption in cinnabar dissolution. The developed method includes two key components: (1) accurate measurement of both released and spiked Hg in aqueous phase and (2) estimation of re-adsorbed Hg on cinnabar surface via the reduction in spiked (202)Hg(2+). By adopting the developed method, it was found that the released Hg for trials purged with oxygen could reach several hundred μgL(-1), while no significant cinnabar dissolution was detected under anaerobic condition. Cinnabar dissolution rate when considering Hg re-adsorption was approximately 2 times the value calculated solely with the Hg detected in the aqueous phase. These results suggest that ignoring the Hg re-adsorption process can significantly underestimate the importance of cinnabar dissolution, highlighting the necessity of applying the developed method in future cinnabar dissolution studies. PMID:27322904

  14. Modeling of Pilot-Scale Salt-cake Dissolution

    SciTech Connect

    Toghiani, R.K.; Smith, L.T.; Lindner, J.S.; Tachiev, G.I.; Yaari, G.

    2006-07-01

    Large portions of the high-level waste present at the Hanford Site and Savannah River Site are comprised of porous salts with associated interstitial liquors. Various processes have been proposed wherein the aqueous phase is removed followed by dissolution of the salt with further mixing or blending of the resulting stream in a receiver tank. This leads to a large reduction in the radioactivity for the dissolved salt-cake; however, the interstitial retrieval process is hindered by capillary forces within the salt-cake pores and large aqueous phase fractions may remain. Thus, the interim stabilized or low-curie salt processes may have less separation effectiveness than desired. In addition, based on the initial extent of pretreatment of the waste, the salt-cake may be either unsaturated or hydraulically saturated. Different interactions are expected based on the contact of the diluent with the salt and/or on mixing the diluent with the salt and some fraction of interstitial liquid. The initial approximation is that the dissolution is governed by the associated thermodynamics of the system. This may be correct assuming sufficient time for contact between the salt and diluent has occurred. Pilot-scale simulant salt-cake dissolution experiments have been conducted by the Applied Research Center (ARC) at Florida International University. As part of a companion program, these experiments have been modeled at the Diagnostic Instrumentation and Analysis Laboratory (DIAL, Mississippi State University) using the Environmental Simulation Program (ESP, OLI Systems, Inc.). Hanford simulant compositions were examined under unsaturated and saturated conditions. To account for channeling that occurred during the unsaturated experiment, additional operations were required for the process flowsheet. Direct modeling of the saturated bed was possible without this consideration. The results have impacts on the salt-cake retrieval process. First, depending on the extent of interstitial

  15. Biogenic silica dissolution in sediments of the Southern Ocean. II. Kinetics

    NASA Astrophysics Data System (ADS)

    Van Cappellen, Philippe; Qiu, Linqing

    The dissolution kinetics of biogenic silica in surface sediments collected during the ANTARES I cruise were measured in stirred flow-through reactors. The rate data exhibit a distinctly non-linear dependence on the degree of undersaturation. Near equilibrium, the rates of silica dissolution and precipitation define a single linear trend, i.e. the kinetics are symmetric about the equilibrium point. When the dissolved silica concentration drops below a critical level, however, the dissolution rate rises exponentially with increasing undersaturation. Hence, the data disagree with the linear rate law generally used to describe the dissolution kinetics of biogenic silica. It is hypothesized that the kinetic transition from the linear to the exponential regime represents the onset of localized dissolution centered on surface defects, e.g. small pores and crevices, or compositional defects. The effects of temperature and pH confirm that the critical process controlling the overall dissolution kinetics is the hydrolysis of bridging SiOSi bonds at the solid-solution interface. The rate measurements indicate that the reactivity of biogenic silica decreases substantially with depth in the sediment. The decrease in reactivity is explained by a progressive reduction of the defect density of the silica surfaces, through dissolution and reprecipitation of silica. It does not appear to result from the preferential dissolution of a more reactive fraction of biogenic debris deposited from the water column. Surface areas obtained by the N 2-BET method or concentrations of extractable biogenic silica do not provide satisfactory proxies for the reactive surface area of silica in the sediments. However, a positive correlation was observed between the surface reactivity and the exchangeable Co 2+ adsorption capacity of biogenic silica. Specific kinetic effects on silica dissolution of the aluminum content of the silica surfaces or organic matter coatings were not observed. Both the

  16. Olivine Weathering: Abiotic Versus Biotic Processes as Possible Biosignatures

    NASA Technical Reports Server (NTRS)

    Longazo, T. G.; Wentworth, S. J.; McKay, D. S.; Southam, G.; Clemett, S. J.

    2001-01-01

    A preliminary study to determine how abiotic versus biotic processes affect the weathering of olivine crystals. Perhaps the differences between these weathering processes could be used as biosignatures. Additional information is contained in the original extended abstract.

  17. Circadian regulation of abiotic stress tolerance in plants.

    PubMed

    Grundy, Jack; Stoker, Claire; Carré, Isabelle A

    2015-01-01

    Extremes of temperatures, drought and salinity cause widespread crop losses throughout the world and impose severe limitations on the amount of land that can be used for agricultural purposes. Hence, there is an urgent need to develop crops that perform better under such abiotic stress conditions. Here, we discuss intriguing, recent evidence that circadian clock contributes to plants' ability to tolerate different types of environmental stress, and to acclimate to them. The clock controls expression of a large fraction of abiotic stress-responsive genes, as well as biosynthesis and signaling downstream of stress response hormones. Conversely, abiotic stress results in altered expression and differential splicing of the clock genes, leading to altered oscillations of downstream stress-response pathways. We propose a range of mechanisms by which this intimate coupling between the circadian clock and environmental stress-response pathways may contribute to plant growth and survival under abiotic stress.

  18. Roles of melatonin in abiotic stress resistance in plants.

    PubMed

    Zhang, Na; Sun, Qianqian; Zhang, Haijun; Cao, Yunyun; Weeda, Sarah; Ren, Shuxin; Guo, Yang-Dong

    2015-02-01

    In recent years melatonin has emerged as a research highlight in plant studies. Melatonin has different functions in many aspects of plant growth and development. The most frequently mentioned functions of melatonin are related to abiotic stresses such as drought, radiation, extreme temperature, and chemical stresses. This review mainly focuses on the regulatory effects of melatonin when plants face harsh environmental conditions. Evidence indicates that environmental stress can increase the level of endogenous melatonin in plants. Overexpression of the melatonin biosynthetic genes elevates melatonin levels in transgenic plants. The transgenic plants show enhanced tolerance to abiotic stresses. Exogenously applied melatonin can also improve the ability of plants to tolerate abiotic stresses. The mechanisms by which melatonin alleviates abiotic stresses are discussed.

  19. Circadian regulation of abiotic stress tolerance in plants

    PubMed Central

    Grundy, Jack; Stoker, Claire; Carré, Isabelle A.

    2015-01-01

    Extremes of temperatures, drought and salinity cause widespread crop losses throughout the world and impose severe limitations on the amount of land that can be used for agricultural purposes. Hence, there is an urgent need to develop crops that perform better under such abiotic stress conditions. Here, we discuss intriguing, recent evidence that circadian clock contributes to plants’ ability to tolerate different types of environmental stress, and to acclimate to them. The clock controls expression of a large fraction of abiotic stress-responsive genes, as well as biosynthesis and signaling downstream of stress response hormones. Conversely, abiotic stress results in altered expression and differential splicing of the clock genes, leading to altered oscillations of downstream stress-response pathways. We propose a range of mechanisms by which this intimate coupling between the circadian clock and environmental stress-response pathways may contribute to plant growth and survival under abiotic stress. PMID:26379680

  20. Contributions of Fe Minerals to Abiotic Dechlorination

    EPA Science Inventory

    Most applications of enhanced in situ bioremediation are based on biological reductive dechlorination. Anaerobic metabolism can also produce reactive minerals that allow for in situ biogeochemical transformation of chlorinated organic contaminants such as PCE, TCE, and cis-DCE. ...

  1. Comparison of biotic and abiotic treatment approaches for co-mingled perchlorate, nitrate, and nitramine explosives in groundwater

    NASA Astrophysics Data System (ADS)

    Schaefer, C. E.; Fuller, M. E.; Condee, C. W.; Lowey, J. M.; Hatzinger, P. B.

    2007-01-01

    Biological and abiotic approaches for treating co-mingled perchlorate, nitrate, and nitramine explosives in groundwater were compared in microcosm and column studies. In microcosms, microscale zero-valent iron (mZVI), nanoscale zero-valent iron (nZVI), and nickel catalyzed the reduction of RDX and HMX from initial concentrations of 9 and 1 mg/L, respectively, to below detection (0.02 mg/L), within 2 h. The mZVI and nZVI also degraded nitrate (3 mg/L) to below 0.4 mg/L, but none of the metal catalysts were observed to appreciably reduce perchlorate (˜ 5 mg/L) in microcosms. Perchlorate losses were observed after approximately 2 months in columns of aquifer solids treated with mZVI, but this decline appears to be the result of biodegradation rather than abiotic reduction. An emulsified vegetable oil substrate was observed to effectively promote the biological reduction of nitrate, RDX and perchlorate in microcosms, and all four target contaminants in the flow-through columns. Nitrate and perchlorate were biodegraded most rapidly, followed by RDX and then HMX, although the rates of biological reduction for the nitramine explosives were appreciably slower than observed for mZVI or nickel. A model was developed to compare contaminant degradation mechanisms and rates between the biotic and abiotic treatments.

  2. Comparison of biotic and abiotic treatment approaches for co-mingled perchlorate, nitrate, and nitramine explosives in groundwater.

    PubMed

    Schaefer, C E; Fuller, M E; Condee, C W; Lowey, J M; Hatzinger, P B

    2007-01-30

    Biological and abiotic approaches for treating co-mingled perchlorate, nitrate, and nitramine explosives in groundwater were compared in microcosm and column studies. In microcosms, microscale zero-valent iron (mZVI), nanoscale zero-valent iron (nZVI), and nickel catalyzed the reduction of RDX and HMX from initial concentrations of 9 and 1 mg/L, respectively, to below detection (0.02 mg/L), within 2 h. The mZVI and nZVI also degraded nitrate (3 mg/L) to below 0.4 mg/L, but none of the metal catalysts were observed to appreciably reduce perchlorate ( approximately 5 mg/L) in microcosms. Perchlorate losses were observed after approximately 2 months in columns of aquifer solids treated with mZVI, but this decline appears to be the result of biodegradation rather than abiotic reduction. An emulsified vegetable oil substrate was observed to effectively promote the biological reduction of nitrate, RDX and perchlorate in microcosms, and all four target contaminants in the flow-through columns. Nitrate and perchlorate were biodegraded most rapidly, followed by RDX and then HMX, although the rates of biological reduction for the nitramine explosives were appreciably slower than observed for mZVI or nickel. A model was developed to compare contaminant degradation mechanisms and rates between the biotic and abiotic treatments. PMID:17055109

  3. Function of S-nitrosoglutathione reductase (GSNOR) in plant development and under biotic/abiotic stress

    PubMed Central

    Leterrier, Marina; Chaki, Mounira; Airaki, Morad; Valderrama, Raquel; Palma, José M; Barroso, Juan B

    2011-01-01

    During the last decade, it was established that the class III alcohol dehydrogenase (ADH3) enzyme, also known as glutathione-dependent formaldehyde dehydrogenase (FALDH; EC 1.2.1.1), catalyzes the NADH-dependent reduction of S-nitrosoglutathione (GSNO) and therefore was also designated as GSNO reductase. This finding has opened new aspects in the metabolism of nitric oxide (NO) and NO-derived molecules where GSNO is a key component. In this article, current knowledge of the involvement and potential function of this enzyme during plant development and under biotic/abiotic stress is briefly reviewed. PMID:21543898

  4. Detection of Abiotic Methane in Terrestrial Continental Hydrothermal Systems: Implications for Methane on Mars

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Niles, Paul B.; Gibson, Everett K., Jr.; Romanek, Christopher S.; Zhang, Chuanlun L.; Bissada, Kadry K.

    2008-01-01

    The recent detection of methane in the Martian atmosphere and the possibility that its origin could be attributed to biological activity, have highlighted the importance of understanding the mechanisms of methane formation and its usefulness as a biomarker. Much debate has centered on the source of the methane in hydrothermal fluids, whether it is formed biologically by microorganisms, diagenetically through the decomposition of sedimentary organic matter, or inorganically via reduction of CO2 at high temperatures. Ongoing research has now shown that much of the methane present in sea-floor hydrothermal systems is probably formed through inorganic CO2 reduction processes at very high temperatures (greater than 400 C). Experimental results have indicated that methane might form inorganically at temperatures lower still, however these results remain controversial. Currently, methane in continental hydrothermal systems is thought to be formed mainly through the breakdown of sedimentary organic matter and carbon isotope equilibrium between CO2 and CH4 is thought to be rarely present if at all. Based on isotopic measurements of CO2 and CH4 in two continental hydrothermal systems, we suggest that carbon isotope equilibration exists at temperatures as low as 155 C. This would indicate that methane is forming through abiotic CO2 reduction at lower temperatures than previously thought and could bolster arguments for an abiotic origin of the methane detected in the martian atmosphere.

  5. I Situ Laser Interferometry and Fluorescence Quenching Measurements of Poly(methyl Methacrylate) Thin Film Dissolution.

    NASA Astrophysics Data System (ADS)

    Wang, Fei

    The dissolution mechanisms of poly(methyl methacrylate) (PMMA) thin films in selected organic solvents was investigated. The dissolution was monitored using an in situ laser interferometry and fluorescence quenching (LIFQ) technique. Phenanthrene -labeled PMMA (Phe-PMMA) was used as a probe. Solutions of PMMA in toluene were spin-coated onto sapphire substrate to form films approximately 1 μm thick. The LIFQ results show that for PMMA film dissolution the transition layer thickness increases until the dissolution reaches its steady state. Then this final transition layer thickness (FTL) does not change until solvent vanguard molecules reach the surface of the substrate. Thermal history effects on PMMA film dissolution were examined. The dissolution rate decreases with increasing baking temperature and reaches a constant value for annealing at 150^circC. The results show that the thermal history has negligible effect on the factor of reduction f obtained from interferometry measurements. Fluorescence quenching measurements, by contrast, suggest that transition layer thickness decreases with increasing baking temperature. This suggests that the fluorescence quenching part of the LIFQ experiment is sensitive to the Fickian precursor portion of the solvent concentration profile in the film. The dissolution of PMMA films in acetone, 2-butanone, and 2-pentanone was studied. The results show that the dissolution rate decreases significantly with increasing solvent molecular size. Significant differences are found for FTL values calculated from LIFQ experiments and those calculated from f obtained by laser interferometry. Values of f are essentially identical in three solvents used. The effect of non-solvent on PMMA dissolution was studied by using 2-propanol and 2-butanone mixtures as solvents. The dissolution rate decreases with increasing non-solvent content. This indicates a strong thermodynamic effect, especially at high concentration of non-solvent. Molecular weight

  6. Can the dissolution rates of individual minerals be used to describe whole rock dissolution?

    NASA Astrophysics Data System (ADS)

    Critelli, Teresa; Marini, Luigi; Schott, Jacques; Mavromatis, Vasileios; Apollaro, Carmine; Rinder, Thomas; De Rosa, Rosanna; Oelkers, Eric H.

    2014-05-01

    There have been an exhaustive number of laboratory studies determining the dissolution rates of individual minerals, but few have focused on the dissolution rates of minerals in multi-mineralic rocks. As a result, geochemical modeling of the temporal evolution of water-rock interaction is generally based on the assumption that the dissolution rate of minerals within a rock is equal to that measured in the laboratory on individual minerals. To verify this hypothesis, we have determined experimentally the dissolution rates of a well characterized metabasalt rock (Apollaro et al., 2011; Bloise et al., 2012) from the Mt. Reventino area (Southern Italy) at 25°C in mixed flow reactors. From these experiments and rock modal analysis we have deduced the dissolution rates of the minerals present in the rock (actinolite, albite, chlorite, epidote, and phengite). The major observation of this effort include: (i) only small differences in the dissolution rates of the individual minerals were observed; these rates are close to the whole-rock dissolution rate and (ii) the dissolution rates of albite and chlorite are in close agreement with laboratory rates obtained from individual mineral dissolution experiments, whereas those of actinolite, phengite, and epidote are not consistent with those reported in literature by 1-2 orders of magnitude. These results demonstrate that the dissolution rate of a given mineral in a multi-phase rock can be affected by the presence of the other minerals. Rock dissolution kinetics are likely constrained by the dissolution rates of the more abundant, lesser reactive mineral or minerals in the rock. These unreactive minerals can prevent the dissolution of the more rapidly dissolving mineral grains by keeping them out of contact with the aqueous phase. This implies that the overall weathering rate of rocks cannot be modelled from the measured dissolution rates of its individual minerals. If confirmed through further studies, this conclusion may

  7. Visualizing nanoparticle dissolution by imaging mass spectrometry.

    PubMed

    Szakal, Christopher; Ugelow, Melissa S; Gorham, Justin M; Konicek, Andrew R; Holbrook, R David

    2014-04-01

    We demonstrate the ability to visualize nanoparticle dissolution while simultaneously providing chemical signatures that differentiate between citrate-capped silver nanoparticles (AgNPs), AgNPs forced into dissolution via exposure to UV radiation, silver nitrate (AgNO3), and AgNO3/citrate deposited from aqueous solutions and suspensions. We utilize recently developed inkjet printing (IJP) protocols to deposit the different solutions/suspensions as NP aggregates and soluble species, which separate onto surfaces in situ, and collect mass spectral imaging data via time-of-flight secondary ion mass spectrometry (TOF-SIMS). Resulting 2D Ag(+) chemical images provide the ability to distinguish between the different Ag-containing starting materials and, when coupled with mass spectral peak ratios, provide information-rich data sets for quick and reproducible visualization of NP-based aqueous constituents. When compared to other measurements aimed at studying NP dissolution, the IJP-TOF-SIMS approach offers valuable information that can potentially help in understanding the complex equilibria in NP-containing solutions and suspensions, including NP dissolution kinetics and extent of overall dissolution. PMID:24611464

  8. Dissolution of Fe(III)(hydr)oxides by an Aerobic Bacterium

    SciTech Connect

    Maurice, P.

    2004-12-13

    This project investigated the effects of an aerobic Pseudomonas mendocina bacterium on the dissolution of Fe(III)(hydr)oxides. The research is important because metals and radionuclides that adsorb to Fe(III)(hydr)oxides could potentially be remobilized by dissolving bacteria. We showed that P. mendocina is capable of dissolving Fe-bearing minerals by a variety of mechanisms, including production of siderophores, pH changes, and formation of reductants. The production of siderophores by P. mendocina was quantified under a variety of growth conditions. Finally, we demonstrated that microbial siderophores may adsorb to and enhance dissolution of clay minerals.

  9. Role of bacterial siderophores in dissolution of hornblende

    NASA Astrophysics Data System (ADS)

    Liermann, Laura J.; Kalinowski, Birgitta E.; Brantley, Susan L.; Ferry, James G.

    2000-02-01

    Hornblende, a common mineral in granitic soils, may act as a source for a variety of metals needed by bacterial species for enzyme function (e.g., Fe, Zn, Mn, Cu, Co, Mo, V, Ni). A species of the bacterial genus Streptomyces was cultured from an Adirondack soil and isolated because of its ability to grow robustly in low Fe medium with hornblende present. Studies with unbuffered culture medium, to discover whether Streptomyces sp. cultures affected solution pH, showed a decrease of 2.0 pH units in 21 d, then an increase of 3.0 pH units at 56 d. Cells that adhered to the hornblende surface at 56 days were difficult to remove, presumably because of mycelial growth deep into pits and cracks. Decreases and increases in pH may have been due to production of organic acids and ammonia respectively. Increases in pH could also have been related to release of components during death of organisms. In a buffered medium, Streptomyces sp. increased the initial Fe release rate from hornblende approximately fivefold over that of an abiotic control. A catechol derivative, produced by the Streptomyces sp. and characterized by chromatography and mass spectrometry, is presumed to cause this Fe release enhancement. Hornblende dissolution was also analyzed in the presence of a commercially available hydroxamate siderophore, desferrioxamine mesylate (DFAM). DFAM is the methane sulfonate form of one of many siderophores known to be a product of streptomycetes. The rate of Fe release obtained when incubating the hornblende with 24 μm of DFAM was similar to the rate observed in the presence of the Streptomyces sp. isolate. Higher concentrations of DFAM increased the dissolution rate nonlinearly, described by the rate equation R = (7.6 × 10 -13)C 0.47, where R is the release rate of Fe (mol/m 2s), and C is the concentration (mol/l) of DFAM. The DFAM also increased release of Al and Si from hornblende into solution; however, these release rates were not increased by addition of the

  10. Effect of medium permeability anisotropy on the morphological evolution of two non-uniformities in a geochemical dissolution system

    NASA Astrophysics Data System (ADS)

    Lai, Keng-Hsin; Chen, Jui-Sheng; Liu, Chen-Wuing; Hsu, Shao-Yiu; Steefel, Carl

    2016-02-01

    The morphological evolutions of chemical dissolution fronts have attracted increasing interest in the field of the geological sciences and in industrial applications. Extensive research based on numerical simulations has been conducted to understand how various mechanisms and processes influence the morphological evolution of chemical dissolution fronts within geological media. Most researchers in previous studies have assumed the medium permeability to be isotropic for developing numerical models, despite isotropic geological media being uncommon in the real world. This study investigates the effect of medium permeability anisotropy on the morphological evolutions of two non-uniformities with higher permeability in a geochemical dissolution system. A series of numerical simulations are performed to evaluate the effect of medium permeability anisotropy on the morphological evolution of a chemical dissolution front. The simulation results indicate that the patterns of the dissolution reaction front are substantially affected by medium permeability anisotropy. An increase in the permeability anisotropy ratio, which is defined as the ratio of the permeability in the transverse direction to that in the longitudinal direction, enhances the dominance of the flow-focusing effect over the stabilizing or merging effect induced by diffusion/dispersion mechanism. Therefore, an increase in the permeability anisotropy ratio can increase the fingering length of the dissolution front or cause the dissolution front to have a more unstable pattern. By contrast, a reduction in the permeability anisotropy ratio will weaken the flow-focusing effect, thereby reducing the fingering length of the dissolution front or changing the front morphology such that it has a more stable status. The effect of the permeability anisotropy ratio on the morphological evolution tends to decrease when the Zhao number (negative dimensionless upstream pressure gradient) of the system increases. The

  11. Tracing Abiotic Redox Reaction Pathways From Changes in Loess Magnetism

    NASA Astrophysics Data System (ADS)

    Lagroix, F.; Guyodo, Y. J.

    2009-12-01

    Loess magnetism has thrived over the last thirty years and has produced valuable paleoclimate records and provided many insights into past climate on continental surfaces. One major hurdle remaining is the quantification of loess magnetism to climate or environment connection(s). Previous studies by others have revealed a relationship in top soils developing over loess in China, the Russian Steppe and the Midwest US between the enhanced magnetism, with respect to the underlying parent loess, and present day rainfall. However from one area to another the relationship differs and therefore whether the relationship observed in for the topsoil at a given site holds for the underlying paleosols is uncertain and difficult to verify. Our efforts are focused here on tracing the abiotic redox reaction pathways of natural samples of parent loess and of its overlying topsoil and underlying paleosol from changes in their magnetic behavior at low-temperature. By forcing the natural samples to their limits, i.e., most oxidized and most reduced states, under controlled laboratory conditions, our goal is to determine the range of alteration and its impact on the bulk magnetic properties. Moreover, by cycling from one end-member state to the other, the pathway of alteration is traced and whether this pathway is reversible or hysteretic is revealed. Our approach is voluntarily simplistic, involving a limited number of variables. Experiments are all conducted at 250°C and in air for oxidizing experiments or a mixture of carbon monoxide (20 %) and carbon dioxide (80 %) for reduction experiments. Starting sample type is the only variable that changes introducing increasing complexity as we go from the parent loess to the paleosol to the topsoil samples with, for example, increasing amounts of organic matter and clays.

  12. Abiotic dealkylation and hydrolysis of atrazine by birnessite.

    PubMed

    Shin, Jin Y; Cheney, Marcos A

    2005-06-01

    Atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) and its degradation products are important contaminants of world water systems and have effects on aquatic life. These effects are modulated by the degradation of atrazine, which depends, in part, on its reactivity with soil minerals. We have studied the degradation reaction of atrazine on synthetic birnessite (delta-MnO2) in the aqueous phase using a batch reactor and a developed high-performance liquid chromatography method. The reaction was studied in the absence of light at 25 degrees C and between pH 2.3 to pH 8.3. The reaction rates increased with decreasing pH and increasing delta-MnO2 loading, and they did not follow simple first-order kinetics. The major products are hydroxylated and mono- and didealkylatrazine. Ammeline and cyanuric acid also were detected. The half-life (t 1/2) for the degradation of atrazine was approximately 16.8 d and independent of oxygen. Manganese(II) evolution was a minor product. The mechanism of dealkylation involved proton transfer to Mn(IV)-stabilized oxo and imido bonds, with no net oxidation and reduction. Oxidation was a secondary reaction. The proposed abiotic pathway for the transformation of atrazine on delta-MnO2 was identical to the reported biotic pathway. Thus, delta-MnO2, a common soil component, facilitated the efficient N-dealkylation and hydrolysis of the herbicide atrazine at 25 degrees C, possibly via a nonoxidative mechanisms. The N-dealkylation has been attributed strictly to a biological process in soils.

  13. Formation and dissolution of bacterial colonies

    NASA Astrophysics Data System (ADS)

    Weber, Christoph A.; Lin, Yen Ting; Biais, Nicolas; Zaburdaev, Vasily

    2015-09-01

    Many organisms form colonies for a transient period of time to withstand environmental pressure. Bacterial biofilms are a prototypical example of such behavior. Despite significant interest across disciplines, physical mechanisms governing the formation and dissolution of bacterial colonies are still poorly understood. Starting from a kinetic description of motile and interacting cells we derive a hydrodynamic equation for their density on a surface, where most of the kinetic coefficients are estimated from experimental data for N. gonorrhoeae bacteria. We use it to describe the formation of multiple colonies with sizes consistent with experimental observations. Finally, we show how the changes in the cell-to-cell interactions lead to the dissolution of the bacterial colonies. The successful application of kinetic theory to a complex far from equilibrium system such as formation and dissolution of living bacterial colonies potentially paves the way for the physical quantification of the initial stages of biofilm formation.

  14. Formation and dissolution of bacterial colonies.

    PubMed

    Weber, Christoph A; Lin, Yen Ting; Biais, Nicolas; Zaburdaev, Vasily

    2015-09-01

    Many organisms form colonies for a transient period of time to withstand environmental pressure. Bacterial biofilms are a prototypical example of such behavior. Despite significant interest across disciplines, physical mechanisms governing the formation and dissolution of bacterial colonies are still poorly understood. Starting from a kinetic description of motile and interacting cells we derive a hydrodynamic equation for their density on a surface, where most of the kinetic coefficients are estimated from experimental data for N. gonorrhoeae bacteria. We use it to describe the formation of multiple colonies with sizes consistent with experimental observations. Finally, we show how the changes in the cell-to-cell interactions lead to the dissolution of the bacterial colonies. The successful application of kinetic theory to a complex far from equilibrium system such as formation and dissolution of living bacterial colonies potentially paves the way for the physical quantification of the initial stages of biofilm formation.

  15. Criticality safety in high explosives dissolution

    SciTech Connect

    Troyer, S.D.

    1997-06-01

    In 1992, an incident occurred at the Pantex Plant in which the cladding around a fissile material component (pit) cracked during dismantlement of the high explosives portion of a nuclear weapon. Although the event did not result in any significant contamination or personnel exposures, concerns about the incident led to the conclusion that the current dismantlement process was unacceptable. Options considered for redesign, dissolution tooling design considerations, dissolution tooling design features, and the analysis of the new dissolution tooling are summarized. The final tooling design developed incorporated a number of safety features and provides a simple, self-contained, low-maintenance method of high explosives removal for nuclear explosive dismantlement. Analyses demonstrate that the tooling design will remain subcritical under normal, abnormal, and credible accident scenarios. 1 fig.

  16. Formation and dissolution of bacterial colonies.

    PubMed

    Weber, Christoph A; Lin, Yen Ting; Biais, Nicolas; Zaburdaev, Vasily

    2015-09-01

    Many organisms form colonies for a transient period of time to withstand environmental pressure. Bacterial biofilms are a prototypical example of such behavior. Despite significant interest across disciplines, physical mechanisms governing the formation and dissolution of bacterial colonies are still poorly understood. Starting from a kinetic description of motile and interacting cells we derive a hydrodynamic equation for their density on a surface, where most of the kinetic coefficients are estimated from experimental data for N. gonorrhoeae bacteria. We use it to describe the formation of multiple colonies with sizes consistent with experimental observations. Finally, we show how the changes in the cell-to-cell interactions lead to the dissolution of the bacterial colonies. The successful application of kinetic theory to a complex far from equilibrium system such as formation and dissolution of living bacterial colonies potentially paves the way for the physical quantification of the initial stages of biofilm formation. PMID:26465495

  17. DISSOLUTION OF IRRADIATED MURR FUEL ASSEMBLIES

    SciTech Connect

    Kyser, E.

    2010-06-17

    A literature survey on the dissolution of spent nuclear fuel from the University of Missouri Research Reactor (MURR) has been performed. This survey encompassed both internal and external literature sources for the dissolution of aluminum-clad uranium alloy fuels. The most limiting aspect of dissolution in the current facility configuration involves issues related to the control of the flammability of the off-gas from this process. The primary conclusion of this work is that based on past dissolution of this fuel in H-Canyon, four bundles of this fuel (initial charge) may be safely dissolved in a nitric acid flowsheet catalyzed with 0.002 M mercuric nitrate using a 40 scfm purge to control off-gas flammability. The initial charge may be followed by a second charge of up to five bundles to the same dissolver batch depending on volume and concentration constraints. The safety of this flowsheet relies on composite lower flammability limits (LFL) estimated from prior literature, pilot-scale work on the dissolution of site fuels, and the proposed processing flowsheet. Equipment modifications or improved LFL data offer the potential for improved processing rates. The fuel charging sequence, as well as the acid and catalyst concentrations, will control the dissolution rate during the initial portion of the cycle. These parameters directly impact the hydrogen and off-gas generation and, along with the purge flowrate determine the number of bundles that may be charged. The calculation approach within provides Engineering a means to determine optimal charging patterns. Downstream processing of this material should be similar to that of recent processing of site fuels requiring only minor adjustments of the existing flowsheet parameters.

  18. Do organic ligands affect calcite dissolution rates?

    NASA Astrophysics Data System (ADS)

    Oelkers, Eric H.; Golubev, Sergey V.; Pokrovsky, Oleg S.; Bénézeth, Pascale

    2011-04-01

    Steady state Iceland-spar calcite dissolution rates were measured at 25 °C in aqueous solutions containing 0.1 M NaCl and up to 0.05 M dissolved bicarbonate at pH from 7.9 to 9.1 in the presence of 13 distinct dissolved organic ligands in mixed-flow reactors. The organic ligands considered in this study include those most likely to be present in either (1) aquifers at the conditions pertinent to CO 2 sequestration or (2) soil/early diagenetic environments: acetate, phthalate, citrate, EDTA 4-, succinate, D-glucosaminate, L-glutamate, D-gluconate, 2,4-dihydroxybenzoate, 3,4-dihydroxybenzoate, fumarate, malonate, and gallate. Results show that the presence of <0.05 mol/kg of these organic anions changes calcite dissolution rates by less than a factor of 2.5 with the exception of citrate and EDTA 4-. The presence of 0.05 mol/kg citrate and EDTA 4- increases calcite dissolution rates by as much as a factor of 35 and 500, respectively, compared to rates in organic anion-free solutions. Further calcite dissolution experiments were performed in the presence of organic polymers similar to bacterial exudates, cell exopolysaccharides, and analogs of microbial cell envelopes: alginate, lichen extract, humic acid, pectin, and gum xanthan. In no case did the presence of <100 ppm of these organics change calcite dissolution rates by more than a factor of 2.5. Results obtained in this study suggest that the presence of aqueous organic anions negligibly affects calcite forward dissolution rates in most natural environments. Some effect on calcite reactivity may be observed, however, by the presence of organic anions if they change substantially the chemical affinity of the fluid with respect to calcite.

  19. Microbial dissolution of silicate materials. Final report

    SciTech Connect

    Schwartzman, D.

    1996-03-26

    The objective of this research was to better understand the role of selected thermophilic bacteria in the colonization and dissolution of silicate minerals, with potential applications to the HDR Project. The demonstration of enhanced dissolution from microbial effects is critically dependent on providing a mineral bait within a media deficient in the critical nutrient found in the mineral (e.g., Fe). Reproducible experimental conditions in batch experiments require agitation to expose mineral powders, as well as nearly similar initial conditions for both inoculated cultures and controls. It is difficult, but not impossible to ensure reproducible conditions with microbes favoring filamentous growth habits.

  20. Saltcake dissolution FY 1998 status report

    SciTech Connect

    HERTING, D.L.

    1999-05-18

    A laboratory scouting study was completed on the dissolution characteristics of Hanford waste from three single-shell waste tanks: 241-BY-102, 241-BY-106, and 241-B-106. Gross dissolution behavior (percent undissolved solids as a function of dilution) is explained in terms of characteristics of individual salts in the waste. The percentage of the sodium inventory retrievable from the tanks by dissolving saltcake at reasonable dilution levels is estimated at 86% of the total sodium for tank BY-102, 98% for BY-106, and 79% for B-106.

  1. Anaerobic abiotic transformations of cis-1,2-dichloroethene in fractured sandstone.

    PubMed

    Darlington, Ramona; Lehmicke, Leo G; Andrachek, Richard G; Freedman, David L

    2013-02-01

    A fractured sandstone aquifer at an industrial site is contaminated with trichloroethene to depths greater than 244 m. Field data indicate that trichloroethene is undergoing reduction to cis-1,2-dichloroethene (cDCE); vinyl chloride and ethene are present at much lower concentrations. Transformation of cDCE by pathways other than reductive dechlorination (abiotic and/or biotic) is of interest. Pyrite, which has been linked to abiotic transformation of chlorinated ethenes, is present at varying levels in the sandstone. To evaluate the possible role of pyrite in transforming cDCE, microcosms were prepared with groundwater, ~40 mg L(-1) cDCE+[(14)C]cDCE, and crushed solids (pure pyrite, pyrite-rich sandstone, or typical sandstone). During 120 d of incubation, the highest level of cDCE transformation occurred with typical sandstone (11-14% (14)CO(2), 1-3% (14)C-soluble products), followed by pyrite-rich sandstone (2-4% (14)CO(2), 1% (14)C-soluble products) and even lesser amounts with pure pyrite. These results indicate pyrite is not likely the mineral involved in transforming cDCE. A separate experiment using only typical sandstone compared the rate of cDCE transformation in non-sterilized, autoclaved, and propylene-oxide sterilized treatments, with pseudo-first order rate constants of 8.7, 5.4, and 1.0 yr(-1), respectively; however, transformation stopped after several months of incubation. Autoclaving increased the volume of pores, adsorption pore diameter, and surface area in comparison to non-sterilized typical sandstone. Nevertheless, autoclaving was less disruptive than chemical sterilization. The results provide definitive experimental evidence that cDCE undergoes anaerobic abiotic and biotic transformation in typical sandstone, with formation of CO(2) and soluble products.

  2. Comparison of three preservation techniques for slowing dissolution of calcareous nannofossils in organic rich sediments

    USGS Publications Warehouse

    Seefelt, Ellen L.; Self-Trail, Jean; Schultz, Arthur P.

    2015-01-01

    In an attempt to halt or reduce dissolution of calcareous nannofossils in organic and/or pyrite-rich sediments, three different methods of short-term storage preservation were tested for efficacy: vacuum packing, argon gas replacement, and buffered water. Abundance counts of calcareous nannofossil assemblages over a six month period showed that none of the three preservation methods were consistently effective in reducing assemblage loss due to dissolution. In most cases, the control slides made at the drill site had more abundant calcareous nannofossil assemblages than those slides made from sediments stored via vacuum packing, argon gas replacement, or buffered water. Thin section and XRD analyses showed that in most cases, <1% pyrite was needed to drive the oxidation-reduction reaction that resulted in dissolution, even in carbonate-rich sediments.

  3. Polyamines and abiotic stress in plants: a complex relationship1

    PubMed Central

    Minocha, Rakesh; Majumdar, Rajtilak; Minocha, Subhash C.

    2014-01-01

    The physiological relationship between abiotic stress in plants and polyamines was reported more than 40 years ago. Ever since there has been a debate as to whether increased polyamines protect plants against abiotic stress (e.g., due to their ability to deal with oxidative radicals) or cause damage to them (perhaps due to hydrogen peroxide produced by their catabolism). The observation that cellular polyamines are typically elevated in plants under both short-term as well as long-term abiotic stress conditions is consistent with the possibility of their dual effects, i.e., being protectors from as well as perpetrators of stress damage to the cells. The observed increase in tolerance of plants to abiotic stress when their cellular contents are elevated by either exogenous treatment with polyamines or through genetic engineering with genes encoding polyamine biosynthetic enzymes is indicative of a protective role for them. However, through their catabolic production of hydrogen peroxide and acrolein, both strong oxidizers, they can potentially be the cause of cellular harm during stress. In fact, somewhat enigmatic but strong positive relationship between abiotic stress and foliar polyamines has been proposed as a potential biochemical marker of persistent environmental stress in forest trees in which phenotypic symptoms of stress are not yet visible. Such markers may help forewarn forest managers to undertake amelioration strategies before the appearance of visual symptoms of stress and damage at which stage it is often too late for implementing strategies for stress remediation and reversal of damage. This review provides a comprehensive and critical evaluation of the published literature on interactions between abiotic stress and polyamines in plants, and examines the experimental strategies used to understand the functional significance of this relationship with the aim of improving plant productivity, especially under conditions of abiotic stress. PMID:24847338

  4. The interactive biotic and abiotic processes of DDT transformation under dissimilatory iron-reducing conditions.

    PubMed

    Jin, Xin; Wang, Fang; Gu, Chenggang; Yang, Xinglun; Kengara, Fredrick O; Bian, Yongrong; Song, Yang; Jiang, Xin

    2015-11-01

    The objective of the study was to elucidate the biotic and abiotic processes under dissimilatory iron reducing conditions involved in reductive dechlorination and iron reduction. DDT transformation was investigated in cultures of Shewanella putrefaciens 200 with/without α-FeOOH. A modified first-order kinetics model was developed and described DDT transformation well. Both the α-FeOOH reduction rate and the dechlorination rate of DDT were positively correlated to the biomass. Addition of α-FeOOH enhanced reductive dechlorination of DDT by favoring the cell survival and generating Fe(II) which was absorbed on the surface of bacteria and iron oxide. 92% of the absorbed Fe(II) was Na-acetate (1M) extractable. However, α-FeOOH also played a negative role of competing for electrons as reflected by the dechlorination rate of DDT was inhibited when increasing the α-FeOOH from 1 g L(-1) to 5 g L(-1). DDT was measured to be toxic to S. putrefaciens 200. The metabolites DDD, DDE and DDMU were recalcitrant to S. putrefaciens 200. The results suggested that iron oxide was not the key factor to promote the dissipation of DDX (DDT and the metabolites), whereas the one-electron reduction potential (E1) of certain organochlorines is the main factor and that the E1 higher than the threshold of the reductive driving forces of DIRB probably ensures the occur of reductive dechlorination.

  5. Exploring biotic vs. abiotic controls on syngenetic carbonate and clay mineral precipitation

    NASA Astrophysics Data System (ADS)

    Nascimento, Gabriela S.; McKenzie, Judith A.; Martinez Ruiz, Francisca; Bontognali, Tomaso R. R.; Vasconcelos, Crisogono

    2016-04-01

    A possible syngenetic relationship between carbonate and clay mineral precipitation has been reported for sedimentary rocks deposited in both lacustrine and marine sedimentary environments throughout the geological record. In particular, the mineral dolomite is often found associated with Mg-rich clays, such as stevensite. It is notable that this carbonate/clay association has been recorded in numerous samples taken from modern dolomite precipitating environments; for example, the Coorong lakes, South Australia, coastal sabkhas, Abu Dhabi, UAE and coastal hypersaline lagoons (Lagoa Vermelha and Brejo do Espinho) east of Rio de Janeiro, Brazil. An HRTEM study of samples from these three locations indicates a possible physical/chemical association between the Ca-dolomite and Mg-rich clays, demonstrating a probable co-precipitation. To test this hypothesis, we have conducted a series of biotic and abiotic laboratory experiments. If this syngenesis actually occurs in nature, what, if any, are the biogeochemical processes controlling these precipitation reactions? Our experiments were designed to determine the extent of the biotic versus abiotic component influencing the mineral precipitation and, in the case of a biotic influence, to understand the mechanism through which microorganisms might mediate the formation of clay minerals. The experiments were carried out in the Geomicrobiology Laboratory of ETH Zürich using cultures of living microbes and artificial organic compounds that simulate functional groups present in natural biofilms formed under both aerobic and anaerobic conditions. In addition, pure inorganic experiments were designed to understand possible physico-chemical conditions for diagenetic processes that could induce dissolution of Mg-carbonates and precipitation of Mg-rich clays. Our results show a remarkable biotic influence during the formation of clay minerals. Specifically, extracellular polymeric substances (EPS), released by microbes in their

  6. Nontronite dissolution rates and implications for Mars

    NASA Astrophysics Data System (ADS)

    Gainey, S. R.; Hausrath, E. M.; Hurowitz, J. A.; Milliken, R. E.

    2014-02-01

    The Fe-rich smectite nontronite M+1.05[Si6.98Al1.02][Al0.29Fe3.68Mg0.04]O20(OH)4 has been detected using orbital data at multiple locations in ancient terrains on Mars, including Mawrth Vallis, Nilli Fossae, north of the Syrtis Major volcanic plateau, Terra Meridiani, and the landing site of the Mars Science Laboratory (MSL), Gale Crater. Given the antiquity of these sites (>3.0 Ga), it is likely that nontronite has been exposed to the martian environment for long periods of time and therefore provides an integrated record of processes in near surface environments including pedogenesis and diagenesis. In particular, nontronite detected at Mawrth Vallis is overlain by montmorillonite and kaolinite, and it has been previously suggested that this mineralogical sequence may be the result of surface weathering. In order to better understand clay mineral weathering on Mars, we measured dissolution rates of nontronite in column reactors at solution pH values of 0.9, 1.7, and 3.0, and two flow rates (0.16 ml/h and 0.32 ml/h). Solution chemistry indicates stoichiometric dissolution at pH = 0.9 and non-stoichiometric dissolution at pH = 1.7 and 3.0. Mineral dissolution rates based on elemental release rates at pH = 1.7 and 3.0 of Ca, Si and Fe follow the order interlayer > tetrahedral > octahedral sites, respectively. The behavior of all experiments suggests far from equilibrium conditions, with the exception of the experiment performed at pH 3.0 and flow rate 0.16 ml/h. A pH-dependent dissolution rate law was calculated through Si release from experiments that showed no dependence on saturation (far from equilibrium conditions) under both flow rates and is r = 10-12.06 (±0.123) · 10-0.297 (±0.058)·pH where r has the units mol mineral m-2 s-1. When compared to dissolution rates from the literature, our results indicate that nontronite dissolution is significantly slower than dissolution of the primary phases present in basalt under acidic conditions, suggesting that once

  7. Abiotic Stresses Downregulate Key Genes Involved in Nitrogen Uptake and Assimilation in Brassica juncea L.

    PubMed

    Goel, Parul; Singh, Anil Kumar

    2015-01-01

    Abiotic stresses such as salinity, drought and extreme temperatures affect nitrogen (N) uptake and assimilation in plants. However, little is known about the regulation of N pathway genes at transcriptional level under abiotic stress conditions in Brassica juncea. In the present work, genes encoding nitrate transporters (NRT), ammonium transporters (AMT), nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT), glutamate dehydrogenase (GDH), asparagines synthetase (ASN) were cloned from Brassica juncea L. var. Varuna. The deduced protein sequences were analyzed to predict their subcellular localization, which confirmed localization of all the proteins in their respective cellular organelles. The protein sequences were also subjected to conserved domain identification, which confirmed presence of characteristic domains in all the proteins, indicating their putative functions. Moreover, expression of these genes was studied after 1h and 24h of salt (150 mM NaCl), osmotic (250 mM Mannitol), cold (4°C) and heat (42°C) stresses. Most of the genes encoding nitrate transporters and enzymes responsible for N assimilation and remobilization were found to be downregulated under abiotic stresses. The expression of BjAMT1.2, BjAMT2, BjGS1.1, BjGDH1 and BjASN2 was downregulated after 1hr, while expression of BjNRT1.1, BjNRT2.1, BjNiR1, BjAMT2, BjGDH1 and BjASN2 was downregulated after 24h of all the stress treatments. However, expression of BjNRT1.1, BjNRT1.5 and BjGDH2 was upregulated after 1h of all stress treatments, while no gene was found to be upregulated after 24h of stress treatments, commonly. These observations indicate that expression of most of the genes is adversely affected under abiotic stress conditions, particularly under prolonged stress exposure (24h), which may be one of the reasons of reduction in plant growth and development under abiotic stresses. PMID:26605918

  8. Abiotic Stresses Downregulate Key Genes Involved in Nitrogen Uptake and Assimilation in Brassica juncea L.

    PubMed

    Goel, Parul; Singh, Anil Kumar

    2015-01-01

    Abiotic stresses such as salinity, drought and extreme temperatures affect nitrogen (N) uptake and assimilation in plants. However, little is known about the regulation of N pathway genes at transcriptional level under abiotic stress conditions in Brassica juncea. In the present work, genes encoding nitrate transporters (NRT), ammonium transporters (AMT), nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT), glutamate dehydrogenase (GDH), asparagines synthetase (ASN) were cloned from Brassica juncea L. var. Varuna. The deduced protein sequences were analyzed to predict their subcellular localization, which confirmed localization of all the proteins in their respective cellular organelles. The protein sequences were also subjected to conserved domain identification, which confirmed presence of characteristic domains in all the proteins, indicating their putative functions. Moreover, expression of these genes was studied after 1h and 24h of salt (150 mM NaCl), osmotic (250 mM Mannitol), cold (4°C) and heat (42°C) stresses. Most of the genes encoding nitrate transporters and enzymes responsible for N assimilation and remobilization were found to be downregulated under abiotic stresses. The expression of BjAMT1.2, BjAMT2, BjGS1.1, BjGDH1 and BjASN2 was downregulated after 1hr, while expression of BjNRT1.1, BjNRT2.1, BjNiR1, BjAMT2, BjGDH1 and BjASN2 was downregulated after 24h of all the stress treatments. However, expression of BjNRT1.1, BjNRT1.5 and BjGDH2 was upregulated after 1h of all stress treatments, while no gene was found to be upregulated after 24h of stress treatments, commonly. These observations indicate that expression of most of the genes is adversely affected under abiotic stress conditions, particularly under prolonged stress exposure (24h), which may be one of the reasons of reduction in plant growth and development under abiotic stresses.

  9. Microbial- and thiosulfate-mediated dissolution of mercury sulfide minerals and transformation to gaseous mercury

    SciTech Connect

    Vázquez-Rodríguez, Adiari I.; Hansel, Colleen M.; Zhang, Tong; Lamborg, Carl H.; Santelli, Cara M.; Webb, Samuel M.; Brooks, Scott C.

    2015-06-23

    Mercury (Hg) is a toxic heavy metal that poses significant environmental and human health risks. Soils and sediments, where Hg can exist as the Hg sulfide mineral metacinnabar (β-HgS), represent major Hg reservoirs in aquatic environments. Metacinnabar has historically been considered a sink for Hg in all but severely acidic environments, and thus disregarded as a potential source of Hg back to aqueous or gaseous pools. In this study, we conducted a combination of field and laboratory incubations to identify the potential for metacinnabar as a source of dissolved Hg within near neutral pH environments and the underpinning (a)biotic mechanisms at play. We show that the abundant and widespread sulfur-oxidizing bacteria of the genus Thiobacillus extensively colonized metacinnabar chips incubated within aerobic, near neutral pH creek sediments. Laboratory incubations of axenic Thiobacillus thioparus cultures led to the release of metacinnabar-hosted Hg(II) and subsequent volatilization to Hg(0). This dissolution and volatilization was greatly enhanced in the presence of thiosulfate, which served a dual role by enhancing HgS dissolution through Hg complexation and providing an additional metabolic substrate for Thiobacillus. These findings reveal a new coupled abiotic-biotic pathway for the transformation of metacinnabar-bound Hg(II) to Hg(0), while expanding the sulfide substrates available for neutrophilic chemosynthetic bacteria to Hg-laden sulfides. Lastly, they also point to mineral-hosted Hg as an underappreciated source of gaseous elemental Hg to the environment.

  10. Microbial- and thiosulfate-mediated dissolution of mercury sulfide minerals and transformation to gaseous mercury

    DOE PAGES

    Vázquez-Rodríguez, Adiari I.; Hansel, Colleen M.; Zhang, Tong; Lamborg, Carl H.; Santelli, Cara M.; Webb, Samuel M.; Brooks, Scott C.

    2015-06-23

    Mercury (Hg) is a toxic heavy metal that poses significant environmental and human health risks. Soils and sediments, where Hg can exist as the Hg sulfide mineral metacinnabar (β-HgS), represent major Hg reservoirs in aquatic environments. Metacinnabar has historically been considered a sink for Hg in all but severely acidic environments, and thus disregarded as a potential source of Hg back to aqueous or gaseous pools. In this study, we conducted a combination of field and laboratory incubations to identify the potential for metacinnabar as a source of dissolved Hg within near neutral pH environments and the underpinning (a)biotic mechanismsmore » at play. We show that the abundant and widespread sulfur-oxidizing bacteria of the genus Thiobacillus extensively colonized metacinnabar chips incubated within aerobic, near neutral pH creek sediments. Laboratory incubations of axenic Thiobacillus thioparus cultures led to the release of metacinnabar-hosted Hg(II) and subsequent volatilization to Hg(0). This dissolution and volatilization was greatly enhanced in the presence of thiosulfate, which served a dual role by enhancing HgS dissolution through Hg complexation and providing an additional metabolic substrate for Thiobacillus. These findings reveal a new coupled abiotic-biotic pathway for the transformation of metacinnabar-bound Hg(II) to Hg(0), while expanding the sulfide substrates available for neutrophilic chemosynthetic bacteria to Hg-laden sulfides. Lastly, they also point to mineral-hosted Hg as an underappreciated source of gaseous elemental Hg to the environment.« less

  11. The role of background electrolytes on the kinetics and mechanism of calcite dissolution

    NASA Astrophysics Data System (ADS)

    Ruiz-Agudo, E.; Kowacz, M.; Putnis, C. V.; Putnis, A.

    2010-02-01

    The influence of background electrolytes on the mechanism and kinetics of calcite dissolution was investigated using in situ Atomic Force Microscopy (AFM). Experiments were carried out far from equilibrium by passing alkali halide salt (NaCl, NaF, NaI, KCl and LiCl) solutions over calcite cleavage surfaces. This AFM study shows that all the electrolytes tested enhance the calcite dissolution rate. The effect and its magnitude is determined by the nature and concentration of the electrolyte solution. Changes in morphology of dissolution etch pits and dissolution rates are interpreted in terms of modification in water structure dynamics (i.e. in the activation energy barrier of breaking water-water interactions), as well as solute and surface hydration induced by the presence of different ions in solution. At low ionic strength, stabilization of water hydration shells of calcium ions by non-paired electrolytes leads to a reduction in the calcite dissolution rate compared to pure water. At high ionic strength, salts with a common anion yield similar dissolution rates, increasing in the order Cl - < I - < F - for salts with a common cation due to an increasing mobility of water around the calcium ion. Changes in etch pit morphology observed in the presence of F - and Li + are explained by stabilization of etch pit edges bonded by like-charged ions and ion incorporation, respectively. As previously reported and confirmed here for the case of F -, highly hydrated ions increased the etch pit nucleation density on calcite surfaces compared to pure water. This may be related to a reduction in the energy barrier for etch pit nucleation due to disruption of the surface hydration layer.

  12. Use of Silicate Minerals for pH Control during Reductive Dechlorination of Chloroethenes in Batch Cultures of Different Microbial Consortia

    PubMed Central

    Lacroix, Elsa; Brovelli, Alessandro; Barry, D. A.

    2014-01-01

    In chloroethene-contaminated sites undergoing in situ bioremediation, groundwater acidification is a frequent problem in the source zone, and buffering strategies have to be implemented to maintain the pH in the neutral range. An alternative to conventional soluble buffers is silicate mineral particles as a long-term source of alkalinity. In previous studies, the buffering potentials of these minerals have been evaluated based on abiotic dissolution tests and geochemical modeling. In the present study, the buffering potentials of four silicate minerals (andradite, diopside, fayalite, and forsterite) were tested in batch cultures amended with tetrachloroethene (PCE) and inoculated with different organohalide-respiring consortia. Another objective of this study was to determine the influence of pH on the different steps of PCE dechlorination. The consortia showed significant differences in sensitivities toward acidic pH for the different dechlorination steps. Molecular analysis indicated that Dehalococcoides spp. that were present in all consortia were the most pH-sensitive organohalide-respiring guild members compared to Sulfurospirillum spp. and Dehalobacter spp. In batch cultures with silicate mineral particles as pH-buffering agents, all four minerals tested were able to maintain the pH in the appropriate range for reductive dechlorination of chloroethenes. However, complete dechlorination to ethene was observed only with forsterite, diopside, and fayalite. Dissolution of andradite increased the redox potential and did not allow dechlorination. With forsterite, diopside, and fayalite, dechlorination to ethene was observed but at much lower rates for the last two dechlorination steps than with the positive control. This indicated an inhibition effect of silicate minerals and/or their dissolution products on reductive dechlorination of cis-dichloroethene and vinyl chloride. Hence, despite the proven pH-buffering potential of silicate minerals, compatibility with

  13. Effects of Reductive Biomineralization of Ferric Hydroxides on Sustained Microbial Metabolism and Contaminant Sequestration

    NASA Astrophysics Data System (ADS)

    Hansel, C. M.; Benner, S. G.; Nico, P. S.; Fendorf, S.

    2002-12-01

    Iron (hydr)oxides not only serve as potent sorbents and repositories for contaminants but also provide a terminal electron acceptor for microbial respiration. The microbial reduction of Fe (hydr)oxides and subsequent secondary solid-phase transformations will, therefore, have a profound influence on the biogeochemical cycling of Fe and associated metals. Here we elucidate the pathways and mechanisms of secondary mineralization during dissimilatory iron reduction of 2-line ferrihydrite under advective flow conditions. Solids were characterized using a host of spectroscopic and microscopic techniques to quantitatively determine the mineral components and microbial-mineral interactions. Secondary mineralization of ferrihydrite occurs via a coupled, biotic-abiotic pathway resulting in the production of primarily magnetite and goethite. Operating mineralization pathways are dictated by competing abiotic reactions of bacterially-generated ferrous iron with the ferrihydrite surface. The distribution of goethite and magnetite within the column is dictated, in large part, by flow-induced ferrous Fe profiles. While goethite precipitation ensues over a large Fe(II) concentration range, magnetite accumulation is only observed at concentrations exceeding 0.3 mM over a 9 d reaction period thus leading to a progression of magnetite levels downgradient within the column. While goethite's precipitation rate exceeds that of magnetite allowing for its initial precipitation, continued growth is inhibited by magnetite nucleation, most likely a result of lower Fe(III) activity. The operating secondary mineralization pathways following reductive dissolution of ferrihydrite at a given pH will therefore be governed by Fe(II) concentration, which drives mineral precipitation kinetics and selection of competing mineral pathways. The ultimate Fe mineral phase assemblage and distribution will have profound consequences on the reduction and sequestration of contaminants. For instance

  14. Optical microscopy as a comparative analytical technique for single-particle dissolution studies.

    PubMed

    Svanbäck, Sami; Ehlers, Henrik; Yliruusi, Jouko

    2014-07-20

    Novel, simple and cost effective methods are needed to replace advanced chemical analytical techniques, in small-scale dissolution studies. Optical microscopy of individual particles could provide such a method. The aim of the present work was to investigate and verify the applicability of optical microscopy as an analytical technique for drug dissolution studies. The evaluation was performed by comparing image and chemical analysis data of individual dissolving particles. It was shown that the data obtained by image analysis and UV-spectrophotometry produced practically identical dissolution curves, with average similarity and difference factors above 82 and below 4, respectively. The relative standard deviation for image analysis data, of the studied particle size range, varied between 1.9% and 3.8%. Consequently, it is proposed that image analysis can be used, on its own, as a viable analytical technique in single-particle dissolution studies. The possibility for significant reductions in sample preparation, operational cost, time and substance consumption gives optical detection a clear advantage over chemical analytical methods. Thus, image analysis could be an ideal and universal analytical technique for rapid small-scale dissolution studies.

  15. Microbial exudate promoted dissolution and transformation of chromium containing minerals

    NASA Astrophysics Data System (ADS)

    Saad, E. M.; Sun, J.; Tang, Y.

    2015-12-01

    Because of its utility in many industrial processes, chromium has become the second most common metal contaminant in the United States. The two most common oxidation states of chromium in nature are Cr(III), which is highly immobile, and Cr(VI), which is highly mobile and toxic. In both natural and engineered environments, the most common remediation of Cr(VI) is through reduction, which results in chromium sequestration in the low solubility mixed Cr(III)-Fe(III) (oxy)hydroxide phases. Consequently, the stability of these minerals must be examined to assess the fate of chromium in the subsurface. We examined the dissolution of mixed Cr(III)-Fe(III) (oxy)hydroxides in the presence of common microbial exudates, including the siderophore desferrioxamine B (DFOB; a common organic ligand secreted by most microbes with high affinity for ferric iron and other trivalent metal ions) and oxalate (a common organic acid produced by microbes). The solids exhibited incongruent dissolution with preferential leaching of Fe from the solid phase. Over time, this leads to a more Cr rich mineral, which is known to be more soluble than the corresponding mixed mineral phase. We are currently investigating the structure of the reacted mineral phases and soluble Cr(III) species, as well as the potential oxidation and remobilization of the soluble Cr species. Results from this study will provide insights regarding the long term transport and fate of chromium in the natural environment in the presence of microbial activities.

  16. ELUCIDATING THE ROLE OF ELECTRON TRANSFER MEDIATORS IN REDUCTIVE TRANSFORMATIONS IN NATURAL SEDIMENTS

    EPA Science Inventory

    To study the identity and reactivity of electron transfer mediators (ETMs) in natural sediments, the reduction kinetics of a glass bead-azo dye complex were measured in abiotic and biotic model systems, as well as in natural sediments. In abiotic model systems, the bead-dye comp...

  17. Plant cell organelle proteomics in response to abiotic stress.

    PubMed

    Hossain, Zahed; Nouri, Mohammad-Zaman; Komatsu, Setsuko

    2012-01-01

    Proteomics is one of the finest molecular techniques extensively being used for the study of protein profiling of a given plant species experiencing stressed conditions. Plants respond to a stress by alteration in the pattern of protein expression, either by up-regulating of the existing protein pool or by the synthesizing novel proteins primarily associated with plants antioxidative defense mechanism. Improved protein extraction protocols and advance techniques for identification of novel proteins have been standardized in different plant species at both cellular and whole plant level for better understanding of abiotic stress sensing and intracellular stress signal transduction mechanisms. In contrast, an in-depth proteome study of subcellular organelles could generate much detail information about the intrinsic mechanism of stress response as it correlates the possible relationship between the protein abundance and plant stress tolerance. Although a wealth of reviews devoted to plant proteomics are available, review articles dedicated to plant cell organelle proteins response under abiotic stress are very scanty. In the present review, an attempt has been made to summarize all significant contributions related to abiotic stresses and their impacts on organelle proteomes for better understanding of plants abiotic stress tolerance mechanism at protein level. This review will not only provide new insights into the plants stress response mechanisms, which are necessary for future development of genetically engineered stress tolerant crop plants for the benefit of humankind, but will also highlight the importance of studying changes in protein abundance within the cell organelles in response to abiotic stress.

  18. Bioenhancement of NAPL pool dissolution: experimental evaluation

    NASA Astrophysics Data System (ADS)

    Seagren, Eric A.; Rittmann, Bruce E.; Valocchi, Albert J.

    2002-03-01

    Experiments were conducted to quantify nonaqueous phase liquid (NAPL) pool dissolution and its enhancement by in situ biodegradation. The experiments were performed using square cross-section, glass-bead packed column reactors with a small pool of a toluene-in-dodecane mixture (toluene mole fraction, Xtol≈0.02 or 0.09). Experimental quasi-steady-state toluene dissolution fluxes were determined using a 14C-carbon mass-balance approach during water flushing with and without biodegradation. The experiments demonstrated a statistically significant bioenhancement of the toluene dissolution flux of up to roughly twofold at average pore water velocities of approximately 0.1 and 1 m/day when the toluene mole fraction was low (≈0.02); however, little or no bioenhancement was observed with the higher mole fraction (≈0.09). Although it cannot be determined conclusively, the weight of evidence based on biomass measurements and model analyses suggests that the reduced bioenhancement for the high mole fraction was due to higher dissolved toluene concentrations, which may have caused toxicity effects. Importantly, even though NAPL dissolution was not bioenhanced in every case, the biodegradation reduced toluene concentrations to low levels in the reactor effluents.

  19. Dilution physics modeling: Dissolution/precipitation chemistry

    SciTech Connect

    Onishi, Y.; Reid, H.C.; Trent, D.S.

    1995-09-01

    This report documents progress made to date on integrating dilution/precipitation chemistry and new physical models into the TEMPEST thermal-hydraulics computer code. Implementation of dissolution/precipitation chemistry models is necessary for predicting nonhomogeneous, time-dependent, physical/chemical behavior of tank wastes with and without a variety of possible engineered remediation and mitigation activities. Such behavior includes chemical reactions, gas retention, solids resuspension, solids dissolution and generation, solids settling/rising, and convective motion of physical and chemical species. Thus this model development is important from the standpoint of predicting the consequences of various engineered activities, such as mitigation by dilution, retrieval, or pretreatment, that can affect safe operations. The integration of a dissolution/precipitation chemistry module allows the various phase species concentrations to enter into the physical calculations that affect the TEMPEST hydrodynamic flow calculations. The yield strength model of non-Newtonian sludge correlates yield to a power function of solids concentration. Likewise, shear stress is concentration-dependent, and the dissolution/precipitation chemistry calculations develop the species concentration evolution that produces fluid flow resistance changes. Dilution of waste with pure water, molar concentrations of sodium hydroxide, and other chemical streams can be analyzed for the reactive species changes and hydrodynamic flow characteristics.

  20. 12 CFR 546.4 - Voluntary dissolution.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... accounts or in exchange for that association's payment of all the association's outstanding obligations and... 12 Banks and Banking 5 2011-01-01 2011-01-01 false Voluntary dissolution. 546.4 Section 546.4 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY FEDERAL MUTUAL...

  1. Dissolution Treatment of Depleted Uranium Waste

    SciTech Connect

    Gates-Anderson, D D; Laue, C A; Fitch, T E

    2004-02-09

    Researchers at LLNL have developed a 3-stage process that converts pyrophoric depleted uranium metal turnings to a solidified final product that can be transported to and buried at a permitted land disposal site. The three process stages are: (1) pretreatment; (2) dissolution; and (3) solidification. Each stage was developed following extensive experimentation. This report presents the results of their experimental studies.

  2. 25 CFR 11.605 - Dissolution.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... dissolution of marriage if: (1) The court finds that the marriage is irretrievably broken, if the finding is... affecting the attitude of one or both of the parties towards the marriage; (2) The court finds that either..., or provided for child custody, the support of any child entitled to support, the maintenance...

  3. Dissolution enhancement of chlorzoxazone using cogrinding technique

    PubMed Central

    Raval, Mihir K.; Patel, Jaydeep M.; Parikh, Rajesh K.; Sheth, Navin R.

    2015-01-01

    Purpose: The aim of the present work was to improve rate of dissolution and processing parameters of BCS class II drug, chlorzoxazone using cogrinding technique in the presence of different excipients as a carrier. Materials and Methods: The drug was coground with various carriers like polyethylene glycol (PEG 4000), hydroxypropyl methylcellulose (HPMC) E50LV, polyvinylpyrrolidone (PVP)K30, Kaolin and Neusilin US2 using ball mill, where only PEG 4000 improved dissolution rate of drug by bringing amorphization in 1:3 ratio. The coground mixture after 3 and 6 h was evaluated for various analytical, physicochemical and mechanical parameters. Results: The analysis showed conversion of Chlorzoxazone from its crystalline to amorphization form upon grinding with PEG 4000. Coground mixture as well as its directly compressed tablet showed 2.5-fold increment in the dissolution rate compared with pure drug. Directly compressible tablets prepared from pure drug required a large quantity of microcrystalline cellulose (MCC) during compression. The coground mixture and formulation was found stable in nature even after storage (40°C/75% relative humidity). Conclusions: Cogrinding can be successfully utilized to improve the rate of dissolution of poorly water soluble drugs and hence bioavailability. PMID:26682195

  4. On the dissolution of iridium by aluminum.

    SciTech Connect

    Hewson, John C.

    2009-08-01

    The potential for liquid aluminum to dissolve an iridium solid is examined. Substantial uncertainties exist in material properties, and the available data for the iridium solubility and iridium diffusivity are discussed. The dissolution rate is expressed in terms of the regression velocity of the solid iridium when exposed to the solvent (aluminum). The temperature has the strongest influence in the dissolution rate. This dependence comes primarily from the solubility of iridium in aluminum and secondarily from the temperature dependence of the diffusion coefficient. This dissolution mass flux is geometry dependent and results are provided for simplified geometries at constant temperatures. For situations where there is negligible convective flow, simple time-dependent diffusion solutions are provided. Correlations for mass transfer are also given for natural convection and forced convection. These estimates suggest that dissolution of iridium can be significant for temperatures well below the melting temperature of iridium, but the uncertainties in actual rates are large because of uncertainties in the physical parameters and in the details of the relevant geometries.

  5. Efavirenz Dissolution Enhancement I: Co-Micronization

    PubMed Central

    da Costa, Maíra Assis; Seiceira, Rafael Cardoso; Rodrigues, Carlos Rangel; Hoffmeister, Cristiane Rodrigues Drago; Cabral, Lucio Mendes; Rocha, Helvécio Vinícius Antunes

    2012-01-01

    AIDS constitutes one of the most serious infectious diseases, representing a major public health priority. Efavirenz (EFV), one of the most widely used drugs for this pathology, belongs to the Class II of the Biopharmaceutics Classification System for drugs with very poor water solubility. To improve EFV’s dissolution profile, changes can be made to the physical properties of the drug that do not lead to any accompanying molecular modifications. Therefore, the study objective was to develop and characterize systems with efavirenz able to improve its dissolution, which were co-processed with sodium lauryl sulfate (SLS) and polyvinylpyrrolidone (PVP). The technique used was co-micronization. Three different drug:excipient ratios were tested for each of the two carriers. The drug dispersion dissolution results showed significant improvement for all the co-processed samples in comparison to non-processed material and corresponding physical mixtures. The dissolution profiles obtained for dispersion with co-micronized SLS samples proved superior to those of co-micronized PVP, with the proportion (1:0.25) proving the optimal mixture. The improvements may be explained by the hypothesis that formation of a hydrophilic layer on the surface of the micronized drug increases the wettability of the system formed, corroborated by characterization results indicating no loss of crystallinity and an absence of interaction at the molecular level. PMID:24300394

  6. 25 CFR 11.605 - Dissolution.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... dissolution of marriage if: (1) The court finds that the marriage is irretrievably broken, if the finding is... affecting the attitude of one or both of the parties towards the marriage; (2) The court finds that either... of marriage, the Court of Indian Offenses shall grant the decree in that form unless the other...

  7. 25 CFR 11.605 - Dissolution.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... dissolution of marriage if: (1) The court finds that the marriage is irretrievably broken, if the finding is... affecting the attitude of one or both of the parties towards the marriage; (2) The court finds that either... of marriage, the Court of Indian Offenses shall grant the decree in that form unless the other...

  8. 25 CFR 11.605 - Dissolution.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... dissolution of marriage if: (1) The court finds that the marriage is irretrievably broken, if the finding is... affecting the attitude of one or both of the parties towards the marriage; (2) The court finds that either... of marriage, the Court of Indian Offenses shall grant the decree in that form unless the other...

  9. 25 CFR 11.605 - Dissolution.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... dissolution of marriage if: (1) The court finds that the marriage is irretrievably broken, if the finding is... affecting the attitude of one or both of the parties towards the marriage; (2) The court finds that either... of marriage, the Court of Indian Offenses shall grant the decree in that form unless the other...

  10. Time-Related Determinants of Marital Dissolution.

    ERIC Educational Resources Information Center

    Heaton, Tim B.

    1991-01-01

    Examined temporal dimensions (timing of prior events, historical time, duration dependence, selectivity) and their impact on marital dissolution in multivariate continuous time model using data from June 1985 Current Population Survey. Results indicated that marital stability decreased over time, increased over marital duration, increased with age…

  11. Natural remobilization of multicomponent DNAPL pools due to dissolution.

    PubMed

    Roy, J W; Smith, J E; Gillham, R W

    2002-12-01

    Mixtures of dense nonaqueous phase liquids (DNAPLs) trapped in the subsurface can act as long-term sources of contamination by dissolving into flowing groundwater. If the components have different solubilities then dissolution will alter the composition of the remaining DNAPL. We theorized that a multicomponent DNAPL pool may become mobile due to the natural dissolution process. In this study, we focused on two scenarios: (1) a DNAPL losing light component(s), with the potential for downward migration; and (2) a DNAPL losing dense component(s), with the potential for upward migration following transformation into a less dense than water nonaqueous phase liquid (LNAPL). We considered three binary mixtures of common groundwater contaminants: benzene and tetrachloroethylene (PCE), PCE and dichloromethane (DCM), and DCM and toluene. A number of physical properties that control the retention and transport of DNAPL in porous media were measured for the mixtures, namely: density, interfacial tension, effective solubility, and viscosity. All properties except density exhibited nonlinear relationships with changing molar ratio of the DNAPL. To illustrate the potential for natural remobilization, we modelled the following two primary mechanisms: the reduction in pool height as mass is lost by dissolution, and the changes in fluid properties with changing molar ratio of the DNAPL. The first mechanism always reduces the capillary pressure in the pool, while the second mechanism may increase the capillary pressure or alter the direction of the driving force. The difference between the rate of change of each determines whether the potential for remobilization increases or decreases. Static conditions and horizontal layering were assumed along with a one-dimensional, compositional modelling approach. Our results indicated that for initial benzene/PCE ratios greater than 25:75, the change in density was sufficiently faster than the decline in pool height to promote DNAPL

  12. Effect of background electrolytes on gypsum dissolution

    NASA Astrophysics Data System (ADS)

    Burgos-Cara, Alejandro; Putnis, Christine; Ruiz-Agudo, Encarnacion

    2015-04-01

    Knowledge of the dissolution behaviour of gypsum (CaSO4· 2H2O) in aqueous solutions is of primary importance in many natural and technological processes (Pachon-Rodriguez and Colombani, 2007), including the weathering of rocks and gypsum karst formations, deformation of gypsum-bearing rocks, the quality of drinking water, amelioration of soil acidity, scale formation in the oil and gas industry or measurement of water motion in oceanography. Specific ions in aqueous solutions can play important but very different roles on mineral dissolution. For example, the dissolution rates and the morphology of dissolution features may be considerably modified by the presence of the foreign ions in the solution, which adsorb at the surface and hinder the detachment of the ions building the crystal. Dissolution processes in the aqueous environment are closely related to the rearrangement of water molecules around solute ions and the interaction between the solvent molecules themselves. The rearrangement of water molecules with respect to solute species has been recognized as the main kinetic barrier for crystal dissolution in many systems (Davis, 2000; De Yoreo and Dove 2004; Wasylenki et al. 2005). Current research suggest that the control that electrolytes exert on water structure is limited to the local environment surrounding the ions and is not related to long-range electric fields emanating from the ions but results from effects associated with the hydration shell(s) of the ions (Collins et al. 2007) and the ions' capacity to break or structure water (i.e. chaotropic and kosmotropic ions, respectively). These effects will ultimately affect the kinetics of crystal dissolution, and could be correlated with the water affinity of the respective background ions following a trend known as the lyotropic or Hofmeister series (Kunz et al. 2004; Dove and Craven, 2005). In situ macroscopic and Atomic Force Microscopy (AFM) flow-through dissolution experiments were conducted at a

  13. Contribution of acetic acid to the hydrolysis of lignocellulosic biomass under abiotic conditions.

    PubMed

    Trzcinski, Antoine P; Stuckey, David C

    2015-06-01

    Acetic acid was used in abiotic experiments to adjust the solution pH and investigate its influence on the chemical hydrolysis of the Organic Fraction of Municipal Solid Waste (OFMSW). Soluble chemical oxygen demand (SCOD) was used to measure the hydrolysis under oxidative conditions (positive oxidation-reduction potential values), and pH 4 allowed for 20% (±2%) of the COD added to be solubilized, whereas only 12% (±1%) was solubilized at pH7. Under reducing conditions (negative oxidation-reduction potential values) and pH 4, 32.3% (±3%) of the OFMSW was solubilized which shows that acidogenesis at pH 4 during the anaerobic digestion of solid waste can result in chemical hydrolysis. In comparison, bacterial hydrolysis resulted in 54% (±6%) solubilization.

  14. Abiotic systems for the catalytic treatment of solvent-contaminated water

    SciTech Connect

    Betterton, E.A.; Arnold, R.G.; Liu, Zhijie; Hollan, N.

    1996-12-31

    Three abiotic systems are described that catalyze the reductive dehalogenation of heavily halogenated environmental pollutants, including carbon tetrachloride, trichloroethene, and perchloroethene. These systems include (a) an electrolytic reactor in which the potential on the working electrode (cathode) is fixed by using a potentiostat, (b) a light-driven system consisting of a semiconductor and (covalently attached) macrocycle that can accept light transmitted via an optical fiber, and a light-driven, two-solvent (isopropanol/acetone) system that promotes dehalogenation reactions via an unknown mechanism. Each is capable of accelerating reductive dehalogenation reactions to very high rates under laboratory conditions. Typically, millimolar concentrations of aqueous-phase targets can be dehalogenated in minutes to hours. The description of each system includes the elements of reaction mechanism (to the extent known), typical kinetic data, and a discussion of the feasibility of applying this technology for the in situ destruction of hazardous compounds. 14 refs., 11 figs., 2 tabs.

  15. Current perspectives in proteomic analysis of abiotic stress in Grapevines

    PubMed Central

    George, Iniga S.; Haynes, Paul A.

    2014-01-01

    Grapes are an important crop plant which forms the basis of a globally important industry. Grape and wine production is particularly vulnerable to environmental and climatic fluctuations, which makes it essential for us to develop a greater understanding of the molecular level responses of grape plants to various abiotic stresses. The completion of the initial grape genome sequence in 2007 has led to a significant increase in research on grapes using proteomics approaches. In this article, we discuss some of the current research on abiotic stress in grapevines, in the context of abiotic stress research in other plant species. We also highlight some of the current limitations in grapevine proteomics and identify areas with promising scope for potential future research. PMID:25538720

  16. Integrated metabolomics for abiotic stress responses in plants.

    PubMed

    Nakabayashi, Ryo; Saito, Kazuki

    2015-04-01

    Plants are considered to biosynthesize specialized (traditionally called secondary) metabolites to adapt to environmental stresses such as biotic and abiotic stresses. The majority of specialized metabolites induced by abiotic stress characteristically exhibit antioxidative activity in vitro, but their function in vivo is largely yet to be experimentally confirmed. In this review, we highlight recent advances in the identification of the role of abiotic stress-responsive specialized metabolites with an emphasis on flavonoids. Integrated 'omics' analysis, centered on metabolomics with a series of plant resources differing in their flavonoid accumulation, showed experimentally that flavonoids play a major role in antioxidation in vivo. In addition, the results also suggest the role of flavonoids in the vacuole. To obtain more in-depth insights, chemical and biological challenges need to be addressed for the identification of unknown specialized metabolites and their in vivo functions.

  17. Environmental Selenium Transformations: Distinguishing Abiotic and Biotic Factors Influencing Se Redox Transformations

    NASA Astrophysics Data System (ADS)

    Rosenfeld, C.; Kenyon, J.; James, B. R.; Santelli, C. M.

    2014-12-01

    Worldwide, selenium (Se) is proving to be a significant environmental concern, with many anthropogenic activities (e.g. coal mining and combustion, phosphate mining and agricultural irrigation) releasing potentially hazardous concentrations into surface and subsurface ecosystems. The US EPA is currently considering aquatic Se regulations, however no guidelines exist for excess soil Se, despite its ability to act as a persistent Se source. Various abiotic and biological processes mediate Se oxidation/reduction (redox) transformations in soils, thus influencing its solubility and bioavailability. In this research we assess (1) the ability of metal-transforming fungal species to aerobically reduce Se (Se (IV and/or VI) to Se(0)), and (2) the relative contribution of biotic and abiotic pathways for aerobic Se transformation. The primary objective of this research is to determine what abiotic and biotic factors enhance or restrict Se bioavailability. Results indicate that fungal-mediated Se reduction may be quite widespread, with at least 7 out of 10 species of known Mn(II)-oxidizing fungi isolated from metal impacted environments also identified as capable of aerobically reducing Se(IV) and/or Se(VI) to Se(0). Increasing concentrations of selenite (SeO32-; Se(IV)) and selenate (SeO42-; Se(VI)) generally reduced fungal growth rates, although selenate was more likely to inhibit fungal growth than selenite. To study oxidation, Se(0) was combined with Mn(III/IV) (hydr)oxides (henceforth referred to as Mn oxides), Se-transforming fungi (Alternaria alternata), and oxalic acid to mimic Se biogeochemistry at the plant-soil interface. Increased pH in the presence of fungi (7.2 with fungi, 6.8 without fungi after 24 days) was observed. Additionally, a slight decrease in redox potential was measured for incubations without Mn oxides (236 mV with Mn oxides, 205 mV without Mn oxides after 24 days), indicating that Mn oxides may enhance Se oxidation. Elemental Se oxidation rates to

  18. The efficient long-term inhibition of forsterite dissolution by common soil bacteria and fungi at Earth surface conditions

    NASA Astrophysics Data System (ADS)

    Oelkers, Eric H.; Benning, Liane G.; Lutz, Stefanie; Mavromatis, Vasileios; Pearce, Christopher R.; Plümper, Oliver

    2015-11-01

    San Carlos forsterite was dissolved in initially pure H2O in a batch reactor in contact with the atmosphere for 5 years. The reactive fluid aqueous pH remained relatively stable at pH 6.7 throughout the experiment. Aqueous Mg concentration maximized after approximately 2 years time at 3 × 10-5 mol/kg, whereas aqueous Si concentrations increased continuously with time, reaching 2 × 10-5 mol/kg after 5 years. Element release rates closely matched those determined on this same forsterite sample during short-term abiotic open system experiments for the first 10 days, then slowed substantially such that the Mg and Si release rates are approximately an order of magnitude slower than that calculated from the short-term abiotic experiments. Post-experiment analysis reveals that secondary hematite, a substantial biotic community, and minor amorphous silica formed on the dissolving forsterite during the experiment. The biotic community included bacteria, dominated by Rhizobiales (Alphaproteobacteria), and fungi, dominated by Trichocomaceae, that grew in a carbon and nutrient-limited media on the dissolving forsterite. The Mg isotope composition of the reactive fluid was near constant after 2 years but 0.25‰ heavier in δ26Mg than the dissolving forsterite. Together these results suggest long-term forsterite dissolution in natural Earth surface systems maybe substantially slower than that estimated from short-term abiotic experiments due to the growth of biotic communities on their surfaces.

  19. In vitro Dissolution Studies on Solid Dispersions of Mefenamic Acid

    PubMed Central

    Rao, K. R. S. Sambasiva; Nagabhushanam, M V; Chowdary, K. P. R.

    2011-01-01

    Solid dispersions of mefanamic acid with a water-soluble polymer polyvinyl pyrrolidine and a super disintegrant, primojel were prepared by common solvent and solvent evaporation methods employing methanol as the solvent. The dissolution rate and dissolution efficiency of the prepared solid dispersions were evaluated in comparison to the corresponding pure drug. Solid dispersions of mefenamic acid showed a marked enhancement in dissolution rate and dissolution efficiency. At 1:4 ratio of mefenamic acid-primojel a 2.61 fold increase in the dissolution rate of mefenamic acid was observed with solid dispersion. The solid dispersions in combined carriers gave much higher rates of dissolution than super disintegrants alone. Mefanamic acid-primojel-polyvinyl pyrrolidine (1:3.2:0.8) solid dispersion gave a 4.11 fold increase in the dissolution rate of mefenamic acid. Super disintegrants alone or in combination with polyvinyl pyrrolidine could be used to enhance the dissolution rate of mefenamic acid. PMID:22303074

  20. NAC transcription factors in plant abiotic stress responses.

    PubMed

    Nakashima, Kazuo; Takasaki, Hironori; Mizoi, Junya; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2012-02-01

    Abiotic stresses such as drought and high salinity adversely affect the growth and productivity of plants, including crops. The development of stress-tolerant crops will be greatly advantageous for modern agriculture in areas that are prone to such stresses. In recent years, several advances have been made towards identifying potential stress related genes which are capable of increasing the tolerance of plants to abiotic stress. NAC proteins are plant-specific transcription factors and more than 100 NAC genes have been identified in Arabidopsis and rice to date. Phylogenetic analyses indicate that the six major groups were already established at least in an ancient moss lineage. NAC transcription factors have a variety of important functions not only in plant development but also in abiotic stress responses. Stress-inducible NAC genes have been shown to be involved in abiotic stress tolerance. Transgenic Arabidopsis and rice plants overexpressing stress-responsive NAC (SNAC) genes have exhibited improved drought tolerance. These studies indicate that SNAC factors have important roles for the control of abiotic stress tolerance and that their overexpression can improve stress tolerance via biotechnological approaches. Although these transcription factors can bind to the same core NAC recognition sequence, recent studies have demonstrated that the effects of NAC factors for growth are different. Moreover, the NAC proteins are capable of functioning as homo- or hetero-dimer forms. Thus, SNAC factors can be useful for improving stress tolerance in transgenic plants, although the mechanism for mediating the stress tolerance of these homologous factors is complex in plants. Recent studies also suggest that crosstalk may exist between stress responses and plant growth. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.

  1. Weathering-associated bacteria from the Damma glacier forefield: physiological capabilities and impact on granite dissolution.

    PubMed

    Frey, Beat; Rieder, Stefan R; Brunner, Ivano; Plötze, Michael; Koetzsch, Stefan; Lapanje, Ales; Brandl, Helmut; Furrer, Gerhard

    2010-07-01

    Several bacterial strains isolated from granitic rock material in front of the Damma glacier (Central Swiss Alps) were shown (i) to grow in the presence of granite powder and a glucose-NH(4)Cl minimal medium without additional macro- or micronutrients and (ii) to produce weathering-associated agents. In particular, four bacterial isolates (one isolate each of Arthrobacter sp., Janthinobacterium sp., Leifsonia sp., and Polaromonas sp.) were weathering associated. In comparison to what was observed in abiotic experiments, the presence of these strains caused a significant increase of granite dissolution (as measured by the release of Fe, Ca, K, Mg, and Mn). These most promising weathering-associated bacterial species exhibited four main features rendering them more efficient in mineral dissolution than the other investigated isolates: (i) a major part of their bacterial cells was attached to the granite surfaces and not suspended in solution, (ii) they secreted the largest amounts of oxalic acid, (iii) they lowered the pH of the solution, and (iv) they formed significant amounts of HCN. As far as we know, this is the first report showing that the combined action of oxalic acid and HCN appears to be associated with enhanced elemental release from granite, in particular of Fe. This suggests that extensive microbial colonization of the granite surfaces could play a crucial role in the initial soil formation in previously glaciated mountain areas.

  2. Dissolution Kinetics of Biogenic Magnesian Calcites

    NASA Astrophysics Data System (ADS)

    Thompson, R.; Guidry, M.; Mackenzie, F. T.; De Carlo, E. H.

    2014-12-01

    Ocean acidification (OA) is a serious concern for the health of calcifying ecosystems in the near future. During the past century, surface ocean pH has decreased by ~0.1 pH units, and is expected to decrease further by 0.3-0.4 pH units by the end of this century. The process of OA will likely result in both decreased calcification rates and increased rates of carbonate mineral dissolution, particularly involving the magnesian calcite (Mg-calcite) calcifiers found in shallow-water reef and other carbonate environments. Many Mg-calcite compositions are the most soluble of the carbonate phases commonly found in reef environments (often comprising much of the cementation and structure within a reef), and are therefore potentially the most susceptible to dissolution processes associated with OA. However, the dissolution kinetics of these phases is poorly known, limiting our ability to understand their behavior in nature. Laboratory experiments designed to investigate the mechanisms and dissolution rates of biogenic Mg-calcite mineral phases in distilled water and seawater over a range of CO2 and T conditions were conducted employing both batch and fluidized-bed reactor systems and using a variety of cleaned and annealed biogenic Mg-calcite phases. Our initial results have shown that the dissolution rate at 298 K and a pCO2 of ~350 ppm of the crustose coralline alga Amphiroa rigida (~20 mol% MgCO3) in seawater undersaturated with respect to this phase is 3.6 μmol g-1 hr-1, nearly 50% greater than that under similar conditions for aragonite. This rate and the derived experimental rate law are consistent with the preliminary findings of Walter and Morse (1985). Additional kinetic (and also solubility) data will be presented for the following species: Chiton tuberculatus (~0-4 mol% MgCO3); Echinometra mathei and/or Lytechinus variegatus (~8-12 mol% MgCO3); Homotrema rubrum (12-16 mol% MgCO3); and Lithothamnion sp. (~18-24 mol% MgCO3). Quantification of the rates of

  3. Impact of birnessite on arsenic and iron speciation during microbial reduction of arsenic-bearing ferrihydrite.

    PubMed

    Ehlert, Katrin; Mikutta, Christian; Kretzschmar, Ruben

    2014-10-01

    Elevated solution concentrations of As in anoxic natural systems are usually accompanied by microbially mediated As(V), Mn(III/IV), and Fe(III) reduction. The microbially mediated reductive dissolution of Fe(III)-(oxyhydr)oxides mainly liberates sorbed As(V) which is subsequently reduced to As(III). Manganese oxides have been shown to rapidly oxidize As(III) and Fe(II) under oxic conditions, but their net effect on the microbially mediated reductive release of As and Fe is still poorly understood. Here, we investigated the microbial reduction of As(V)-bearing ferrihydrite (molar As/Fe: 0.05; Fe tot: 32.1 mM) by Shewanella sp. ANA-3 (10(8) cells/mL) in the presence of different concentrations of birnessite (Mn tot: 0, 0.9, 3.1 mM) at circumneutral pH over 397 h using wet-chemical analyses and X-ray absorption spectroscopy. Additional abiotic experiments were performed to explore the reactivity of birnessite toward As(III) and Fe(II) in the presence of Mn(II), Fe(II), ferrihydrite, or deactivated bacterial cells. Compared to the birnessite-free control, the highest birnessite concentration resulted in 78% less Fe and 47% less As reduction at the end of the biotic experiment. The abiotic oxidation of As(III) by birnessite (k initial = 0.68 ± 0.31/h) was inhibited by Mn(II) and ferrihydrite, and lowered by Fe(II) and bacterial cell material. In contrast, the oxidation of Fe(II) by birnessite proceeded equally fast under all conditions (k initial = 493 ± 2/h) and was significantly faster than the oxidation of As(III). We conclude that in the presence of birnessite, microbially produced Fe(II) is rapidly reoxidized and precipitates as As-sequestering ferrihydrite. Our findings imply that the ability of Mn-oxides to oxidize As(III) in water-logged soils and sediments is limited by the formation of ferrihydrite and surface passivation processes.

  4. RELATIVE DISSOLUTION RATES OF RADIOACTIVE MATERIALS USED AT AWE.

    PubMed

    Miller, T J; Bingham, D; Cockerill, R; Waldren, S; Moth, N

    2016-09-01

    A simple in vitro dissolution test was used to provide a semi-quantitative comparison of the relative dissolution rates of samples of radioactive materials used at Atomic Weapons Establishment in a lung fluid surrogate (Ringer's solution). A wide range of dissolution rates were observed for aged legacy actinides, freshly produced actinide alloys and actinides from waste management operations.

  5. Examining Two Types of Best Friendship Dissolution during Early Adolescence

    ERIC Educational Resources Information Center

    Bowker, Julie C.

    2011-01-01

    This study examined young adolescents' experiences with best friendship dissolution. Participants were 77 sixth-grade students (M age = 11.63 years, SD = 0.36; 11.00-12.69 age range) who reported on past experiences with (1) "complete dissolutions" (when friendship ties are completely severed), and (2) "downgrade dissolutions" (when the best…

  6. Ego-Dissolution and Psychedelics: Validation of the Ego-Dissolution Inventory (EDI)

    PubMed Central

    Nour, Matthew M.; Evans, Lisa; Nutt, David; Carhart-Harris, Robin L.

    2016-01-01

    Aims: The experience of a compromised sense of “self”, termed ego-dissolution, is a key feature of the psychedelic experience. This study aimed to validate the Ego-Dissolution Inventory (EDI), a new 8-item self-report scale designed to measure ego-dissolution. Additionally, we aimed to investigate the specificity of the relationship between psychedelics and ego-dissolution. Method: Sixteen items relating to altered ego-consciousness were included in an internet questionnaire; eight relating to the experience of ego-dissolution (comprising the EDI), and eight relating to the antithetical experience of increased self-assuredness, termed ego-inflation. Items were rated using a visual analog scale. Participants answered the questionnaire for experiences with classical psychedelic drugs, cocaine and/or alcohol. They also answered the seven questions from the Mystical Experiences Questionnaire (MEQ) relating to the experience of unity with one’s surroundings. Results: Six hundred and ninety-one participants completed the questionnaire, providing data for 1828 drug experiences (1043 psychedelics, 377 cocaine, 408 alcohol). Exploratory factor analysis demonstrated that the eight EDI items loaded exclusively onto a single common factor, which was orthogonal to a second factor comprised of the items relating to ego-inflation (rho = −0.110), demonstrating discriminant validity. The EDI correlated strongly with the MEQ-derived measure of unitive experience (rho = 0.735), demonstrating convergent validity. EDI internal consistency was excellent (Cronbach’s alpha 0.93). Three analyses confirmed the specificity of ego-dissolution for experiences occasioned by psychedelic drugs. Firstly, EDI score correlated with drug-dose for psychedelic drugs (rho = 0.371), but not for cocaine (rho = 0.115) or alcohol (rho = −0.055). Secondly, the linear regression line relating the subjective intensity of the experience to ego-dissolution was significantly steeper for psychedelics

  7. Evaluating reaction pathways of hydrothermal abiotic organic synthesis at elevated temperatures and pressures using carbon isotopes

    NASA Astrophysics Data System (ADS)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.

    2015-04-01

    Experiments were performed to better understand the role of environmental factors on reaction pathways and corresponding carbon isotope fractionations during abiotic hydrothermal synthesis of organic compounds using piston cylinder apparatus at 750 °C and 5.5 kbars. Chemical compositions of experimental products and corresponding carbon isotopic values were obtained by a Pyrolysis-GC-MS-IRMS system. Alkanes (methane and ethane), straight-chain saturated alcohols (ethanol and n-butanol) and monocarboxylic acids (formic and acetic acids) were generated with ethanol being the only organic compound with higher δ13C than CO2. CO was not detected in experimental products owing to the favorable water-gas shift reaction under high water pressure conditions. The pattern of δ13C values of CO2, carboxylic acids and alkanes are consistent with their equilibrium isotope relationships: CO2 > carboxylic acids > alkanes, but the magnitude of the fractionation among them is higher than predicted isotope equilibrium values. In particular, the isotopic fractionation between CO2 and CH4 remained constant at ∼31‰, indicating a kinetic effect during CO2 reduction processes. No "isotope reversal" of δ13C values for alkanes or carboxylic acids was observed, which indicates a different reaction pathway than what is typically observed during Fischer-Tropsch synthesis under gas phase conditions. Under constraints imposed in experiments, the anomalous 13C isotope enrichment in ethanol suggests that hydroxymethylene is the organic intermediate, and that the generation of other organic compounds enriched in 12C were facilitated by subsequent Rayleigh fractionation of hydroxymethylene reacting with H2 and/or H2O. Carbon isotope fractionation data obtained in this study are instrumental in assessing the controlling factors on abiotic formation of organic compounds in hydrothermal systems. Knowledge on how environmental conditions affect reaction pathways of abiotic synthesis of organic

  8. A proposed abiotic reaction scheme for hydroxylamine and monochloramine under chloramination relevant drinking water conditions.

    PubMed

    Wahman, David G; Speitel, Gerald E; Machavaram, Madhav V

    2014-09-01

    Drinking water monochloramine (NH2Cl) use may promote ammonia-oxidizing bacteria (AOB). AOB use (i) ammonia monooxygenase for biological ammonia (NH3) oxidation to hydroxylamine (NH2OH) and (ii) hydroxylamine oxidoreductase for NH2OH oxidation to nitrite. NH2Cl and NH2OH may react, providing AOB potential benefits and detriments. The NH2Cl/NH2OH reaction would benefit AOB by removing the disinfectant (NH2Cl) and releasing their growth substrate (NH3), but the NH2Cl/NH2OH reaction would also provide a possible additional inactivation mechanism besides direct NH2Cl reaction with cells. Because biological NH2OH oxidation supplies the electrons required for biological NH3 oxidation, the NH2Cl/NH2OH reaction provides a direct mechanism for NH2Cl to inhibit NH3 oxidation, starving the cell of reductant by preventing biological NH2OH oxidation. To investigate possible NH2Cl/NH2OH reaction implications on AOB, an understanding of the underlying abiotic reaction is first required. The present study conducted a detailed literature review and proposed an abiotic NH2Cl/NH2OH reaction scheme (RS) for chloramination relevant drinking water conditions (μM concentrations, air saturation, and pH 7-9). Next, RS literature based kinetics and end-products were evaluated experimentally between pHs 7.7 and 8.3, representing (i) the pH range for future experiments with AOB and (ii) mid-range pHs typically found in chloraminated drinking water. In addition, a (15)N stable isotope experiment was conducted to verify nitrous oxide and nitrogen gas production and their nitrogen source. Finally, the RS was slightly refined using the experimental data and an AQUASIM implemented kinetic model. A chloraminated drinking water relevant RS is proposed and provides the abiotic reaction foundation for future AOB biotic experiments.

  9. Impact of iron chelators on short-term dissolution of basaltic glass

    NASA Astrophysics Data System (ADS)

    Perez, Anne; Rossano, Stéphanie; Trcera, Nicolas; Verney-Carron, Aurélie; Huguenot, David; van Hullebusch, Eric D.; Catillon, Gilles; Razafitianamaharavo, Angelina; Guyot, François

    2015-08-01

    Although microorganisms seem to play an important role in the alteration processes of basaltic glasses in solution, the elementary mechanisms involved remain unclear in particular with regard to the role of organic ligands excreted by the cells. Two glasses, one with Fe and one without Fe were synthesized to model basaltic glass compositions. Fe in the glass was mostly Fe(III) for enhancing interaction with siderophores, yet with small but significant amounts of Fe(II) (between 10% and 30% of iron). The prepared samples were submitted to abiotic alteration experiments in buffered (pH 6.4) diluted solutions of metal-specific ligands, namely oxalic acid (OA, 10 mM), desferrioxamine (DFA, 1 mM) or 2,2‧-bipyridyl (BPI, 1 mM). Element release from the glass into the solution after short term alteration (maximum 1 week) was measured by ICP-OES, and normalized mass losses and relative release ratios (with respect to Si) were evaluated for each element in each experimental condition. The presence of organic ligands had a significant effect on the dissolution of both glasses. Trivalent metals chelators (OA, DFA) impacted on the release of Fe3+ and Al3+, and thus on the global dissolution of both glasses, enhancing all release rates and dissolution stoichiometry (release rates were increased up to 7 times for Al or Fe). As expected, the mostly divalent metal chelator BPI interacted preferentially with Ca2+, Mg2+ and Fe2+. This study thus allows to highlight the central roles of iron and aluminium in interaction with some organic ligands in the alteration processes of basaltic glasses. It thus provides a step toward understanding the biological contribution of this fundamental geological process.

  10. Precipitation and Dissolution of Uranyl Phosphates in a Microfluidic Pore Structure

    NASA Astrophysics Data System (ADS)

    Werth, C. J.; Fanizza, M.; Strathmann, T.; Finneran, K.; Oostrom, M.; Zhang, C.; Wietsma, T. W.; Hess, N. J.

    2011-12-01

    The abiotic precipitation of uranium (U(VI)) was evaluated in a microfluidic pore structure (i.e. micromodel) to assess the efficacy of using a phosphate amendment to immobilize uranium in groundwater and mitigate the risk of this contaminant to potential down-gradient receptor sites. U(VI) was mixed transverse to the direction of flow with hydrogen phosphate (HPO42-), in the presence or absence of calcium (Ca2+) or sulfate (SO42-), in order to identify precipitation rates, the morphology and types of minerals formed, and the stability of these minerals to dissolution with and without bicarbonate (HCO3-) present. Raman backscattering spectroscopy and micro X-ray diffraction (μ-XRD) results both showed that the only mineral precipitated was chernikovite (also known as hydrogen uranyl phosphate; UO2HPO4), even though the formation of other minerals were thermodynamically favored depending on the experimental conditions. Precipitation and dissolution rates varied with influent conditions. Relative to when only U(VI) and HPO42- were present, precipitation rates were 2.3 times slower when SO42- was present, and 1.4 times faster when Ca2+ was present. These rates were inversely related to the size of crystals formed during precipitation. Dissolution rates for chernikovite increased with increasing HCO3- concentrations, consistent with formation of uranyl carbonate complexes in aqueous solution, and they were the fastest for chernikovite formed in the presence of SO42-, and slowest for the chernikovite formed in the presence of Ca2+. These rates are related to the ratios of mineral-water interfacial area to mineral volume. Fluorescent tracer studies and laser confocal microscopy images showed that densely aggregated precipitates blocked pores and reduced permeability. The results suggest that changes in the solute conditions evaluated affect precipitation rates, crystal morphology, and crystal stability, but not mineral type.

  11. Mg-calcite dissolution in carbonate sediments: role in ocean acidification

    NASA Astrophysics Data System (ADS)

    Drupp, P. S.; De Carlo, E. H.; Mackenzie, F. T.

    2014-12-01

    An array of porewater wells at two locations on Hawaiian reefs have been utilized to obtain interstitial pore fluid from various depths in permeable sandy sediments. The total alkalinity (AT) and pH (total scale) were measured for each sample (depths 0, 2, 4, 6, 8, 12, 16, 20, 30, 40, and 60 cm) as well as calcium, magnesium, and strontium concentrations. Ca2+ and Mg2+ concentrations co-vary and appear to be directly related to AT and pH. The ratio of the change in calcium and magnesium (ΔCa, ΔMg) between the overlying water column and the porewater indicates that an 18 mol % Mg-calcite phase is dissolving within the sediment column. This could represent the dissolution of coralline algae such as Porolithon or Lithothamnion both of which produce ~18% Mg-calcite skeletons and are present on Hawaiian reefs. The small changes in Mg concentrations from dissolution/precipitation of high Mg-calcites is typically difficult to measure against the high background matrix of seawater and to our knowledge these data represent some of the first magnesium concentrations measured in permeable sediments. Saturation state (Ω) for Mg-calcites was calculated using both sets of stoichiometric solubility products (K) widely accepted in the literature. Depending on the K used, most of the porewater was undersaturated with respect to the high Mg calcites (>12%). Saturation states were determined using an ion activity product (IAP) calculated from the measured values of calcium and magnesium. This produces a more accurate Ω than assuming calcium and magnesium concentrations based on salinity, as is typically done in surface waters. As surface water becomes more corrosive to carbonate minerals due to enhanced ocean acidification through the next century, it is expected that dissolution of both biogenic high Mg-calcites and abiotic Mg-calcite cements will increase, potentially destabilizing reef framework and altering the biogeochemical cycling of carbon in these environments.

  12. The Dissolution of an Interfween Miscible Liquids

    NASA Technical Reports Server (NTRS)

    Vlad, D.H.; Maher, J.V.

    1999-01-01

    The disappearance of the surface tension of the interface of a binary mixture, measured using the dynamic surface light scattering technique, is slower for a binary mixture of higher density contrast. A comparison with a naive diffusion model, expected to provide a lower limit for the speed of dissolution in the absence of gravity shows that the interfacial surface tension disappears much slower than even by diffusion with the effect becoming much more pronounced when density contrast between the liquid phases is increased. Thus, the factor most likely to be responsible for this anomalously slow dissolution is gravity. A mechanism could be based on the competition between diffusive relaxation and sedimentation at the dissolving interface.

  13. A morpholinium ionic liquid for cellulose dissolution.

    PubMed

    Raut, Dilip G; Sundman, Ola; Su, Weiqing; Virtanen, Pasi; Sugano, Yasuhito; Kordas, Krisztian; Mikkola, Jyri-Pekka

    2015-10-01

    A series of substituted morpholinium ionic salts and allyl ammonium acetates were prepared. Amongst those, N-allyl-N-methylmorpholinium acetate ([AMMorp][OAc]) was found to dissolve cellulose readily without any pre-processing of native cellulose. At 120°C, [AMMorp][OAc] could dissolve 30 wt%, 28 wt% and 25 wt% of cellulose with degree of polymerization (DPn) - 789, 1644 and 2082 respectively, in 20 min. Importantly, SEC analysis indicated that no discernible changes occurred in terms of the degree of polymerization of the different celluloses after regeneration. Furthermore, when comparing the cellulose dissolution capability of these newly synthesized ionic liquids, it is evident that the combination of all three constituents - the morpholinium cation, the existence of an allyl group and choosing the acetate anion are essential for efficient cellulose dissolution. The structure and morphology of the regenerated cellulosic materials were characterized by SEM, XRD, TGA, CP/MAS (13)C NMR and FTIR, respectively. PMID:26076596

  14. Uranium-Molybdenum Dissolution Flowsheet Studies

    SciTech Connect

    Pierce, R. A.

    2007-03-01

    The Super Kukla (SK) Prompt Burst Reactor operated at the Nevada Test Site from 1964 to 1978. The SK material is a uranium-molybdenum (U-Mo) alloy material of 90% U/10% Mo by weight at approximately 20% 235U enrichment. H-Canyon Engineering (HCE) requested that the Savannah River National Lab (SRNL) define a flowsheet for safely and efficiently dissolving the SK material. The objective is to dissolve the material in nitric acid (HNO3) in the H-Canyon dissolvers to a U concentration of 15-20 g/L (3-4 g/L 235U) without the formation of precipitates or the generation of a flammable gas mixture. Testing with SK material validated the applicability of dissolution and solubility data reported in the literature for various U and U-Mo metals. Based on the data, the SK material can be dissolved in boiling 3.0-6.0 M HNO3 to a U concentration of 15-20 g/L and a corresponding Mo concentration of 1.7-2.2 g/L. The optimum flowsheet will use 4.0-5.0 M HNO3 for the starting acid. Any nickel (Ni) cladding associated with the material will dissolve readily. After dissolution is complete, traditional solvent extraction flowsheets can be used to recover and purify the U. Dissolution rates for the SK material are consistent with those reported in the literature and are adequate for H-Canyon processing. When the SK material dissolved at 70-100 o C in 1-6 M HNO3, the reaction bubbled vigorously and released nitrogen oxide (NO) and nitrogen dioxide (NO2) gas. Gas generation tests in 1 M and 2 M HNO3 at 100 o C generated less than 0.1 volume percent hydrogen (H2) gas. It is known that higher HNO3 concentrations are less favorable for H2 production. All tests at 70-100 o C produced sufficient gas to mix the solutions without external agitation. At room temperature in 5 M HNO3, the U-Mo dissolved slowly and the U-laden solution sank to the bottom of the dissolution vessel because of its greater density. The effect of the density difference insures that the SK material cannot dissolve and

  15. A morpholinium ionic liquid for cellulose dissolution.

    PubMed

    Raut, Dilip G; Sundman, Ola; Su, Weiqing; Virtanen, Pasi; Sugano, Yasuhito; Kordas, Krisztian; Mikkola, Jyri-Pekka

    2015-10-01

    A series of substituted morpholinium ionic salts and allyl ammonium acetates were prepared. Amongst those, N-allyl-N-methylmorpholinium acetate ([AMMorp][OAc]) was found to dissolve cellulose readily without any pre-processing of native cellulose. At 120°C, [AMMorp][OAc] could dissolve 30 wt%, 28 wt% and 25 wt% of cellulose with degree of polymerization (DPn) - 789, 1644 and 2082 respectively, in 20 min. Importantly, SEC analysis indicated that no discernible changes occurred in terms of the degree of polymerization of the different celluloses after regeneration. Furthermore, when comparing the cellulose dissolution capability of these newly synthesized ionic liquids, it is evident that the combination of all three constituents - the morpholinium cation, the existence of an allyl group and choosing the acetate anion are essential for efficient cellulose dissolution. The structure and morphology of the regenerated cellulosic materials were characterized by SEM, XRD, TGA, CP/MAS (13)C NMR and FTIR, respectively.

  16. Dissolution of lead paint in aqueous solutions

    SciTech Connect

    Barnes, G.L.; Davis, A.P.

    1996-07-01

    An analysis of the rate and extent of lead leaching from a lead-based paint was completed. At low-solution pH, dissolution was rapid and approached 80% of the total lead. Residual lead can be estimated based on the predicted solubility of lead carbonate and basic lead carbonate. Release of lead from the paint was slower than that from pure basic lead carbonate due to inhibition by the paint matrix. Although the dissolved concentration of lead in solution at neutral/high pH was low, the paint binder was apparently destroyed at these pH values, releasing colloidal lead pigment particles. The presence of ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA) enhanced both the rate and degree of lead dissolution, while benzoic acid had a minimal effect.

  17. The effects of flow rate and concentration on nitrobenzene removal in abiotic and biotic zero-valent iron columns.

    PubMed

    Yin, Weizhao; Wu, Jinhua; Huang, Weilin; Li, Yongtao; Jiang, Gangbiao

    2016-08-01

    This study investigated the effects of varying nitrobenzene (NB) loadings via increasing flow rate or influent NB concentration mode on the removal efficiency in zero-valent iron (ZVI) columns sterilized (abiotic) or preloaded with acclimated microorganisms (biotic). It was shown that physical sequestration via adsorption/co-precipitation and reductive transformation of NB to aniline (AN) were the two major mechanisms for the NB removal in both abiotic and biotic ZVI columns. The NB removal efficiency decreased in both columns as the flow rate increased from 0.25 to 1.0mLmin(-1) whereas the AN recovery increased accordingly, with relatively high AN recovery observed at the flow rate of 1.0mLmin(-1). At the constant flow rate of 0.5mLmin(-1), increasing influent NB concentration from 80 to 400μmolL(-1) resulted in decreasing of the overall NB removal efficiency from 79.5 to 48.6% in the abiotic column and from 85.6 to 62.5% in the biotic column. The results also showed that the sequestration capacity and chemical reduction capacity were respectively 72% and 157.6% higher in the biotic column than in the abiotic column at the same tested hydraulic conditions and NB loadings. The optimal flow rates and influent NB concentrations were at 0.5mLmin(-1) and 80μmolL(-1) for the abiotic column and 2.0mLmin-1 and 240μmolL(-1) for the biotic column, respectively. This study indicated that microorganisms not only enhanced overall reduction of NB, but also facilitated NB sequestration within the porous media and that the optimal loading conditions for overall removal, sequestration, and reduction of NB may be different. Optimal operation conditions should be found for preferred sequestration or transformation (or both) of the target contaminants to meet different goals of groundwater remediation with the ZVI-PRB systems.

  18. The effects of flow rate and concentration on nitrobenzene removal in abiotic and biotic zero-valent iron columns.

    PubMed

    Yin, Weizhao; Wu, Jinhua; Huang, Weilin; Li, Yongtao; Jiang, Gangbiao

    2016-08-01

    This study investigated the effects of varying nitrobenzene (NB) loadings via increasing flow rate or influent NB concentration mode on the removal efficiency in zero-valent iron (ZVI) columns sterilized (abiotic) or preloaded with acclimated microorganisms (biotic). It was shown that physical sequestration via adsorption/co-precipitation and reductive transformation of NB to aniline (AN) were the two major mechanisms for the NB removal in both abiotic and biotic ZVI columns. The NB removal efficiency decreased in both columns as the flow rate increased from 0.25 to 1.0mLmin(-1) whereas the AN recovery increased accordingly, with relatively high AN recovery observed at the flow rate of 1.0mLmin(-1). At the constant flow rate of 0.5mLmin(-1), increasing influent NB concentration from 80 to 400μmolL(-1) resulted in decreasing of the overall NB removal efficiency from 79.5 to 48.6% in the abiotic column and from 85.6 to 62.5% in the biotic column. The results also showed that the sequestration capacity and chemical reduction capacity were respectively 72% and 157.6% higher in the biotic column than in the abiotic column at the same tested hydraulic conditions and NB loadings. The optimal flow rates and influent NB concentrations were at 0.5mLmin(-1) and 80μmolL(-1) for the abiotic column and 2.0mLmin-1 and 240μmolL(-1) for the biotic column, respectively. This study indicated that microorganisms not only enhanced overall reduction of NB, but also facilitated NB sequestration within the porous media and that the optimal loading conditions for overall removal, sequestration, and reduction of NB may be different. Optimal operation conditions should be found for preferred sequestration or transformation (or both) of the target contaminants to meet different goals of groundwater remediation with the ZVI-PRB systems. PMID:27093118

  19. Saltcake Dissolution FY 2000 Status Report

    SciTech Connect

    HERTING, D.L.

    2000-09-27

    Laboratory tests were completed on the dissolution characteristics of Hanford saltcake waste from single-shell waste tanks 241-TX- 113, 241-BY-102, 241-BY-106, 241-A-101, and 241-S-102 (henceforth referred to as TX-113, BY-102, BY-106, A-101, and S-102, respectively). This work was funded by the Tanks Focus Area (EM-50) under Technical Task Plan Number RL0-8-WT-41, ''PHMC Pretreatment--Saltcake Dissolution''. The tests performed on saltcake from tank TX-113 were similar in scope to those completed in previous years on waste from tanks BY-102, BY-106, B-106, A-101, and S-102 (Herting 1998, 1999). In addition to the ''standard'' dissolution tests, new types of tests were performed this year related to feed stability and radionuclide distribution. The River Protection Project (RPP) is tasked with retrieving waste from double-shell and single-shell tanks to provide feed for vitrification. The RPP organization needs chemical and physical data to evaluate technologies for retrieving the waste. Little significant laboratory testing has been done to evaluate in-tank dissolution parameters for the various types of saltcake wastes that exist in single-shell tanks. A computer modeling program known as the Environmental Simulation Program (ESP), produced by OLI Systems, Inc of Morris Plains, New Jersey, is being used by the RPP organization to predict solubilities during dilution and retrieval of all tank waste types. Data from this task are provided to ESP users to support evaluation, refinement, and validation of the ESP model.

  20. Calcite dissolution in two deep eutrophic lakes

    SciTech Connect

    Ramisch, F.; Dittrich, M.; Mattenberger, C.; Wehrli, B.; Wueest, A.

    1999-10-01

    The calcium cycle, in particular carbonate dissolution, was analyzed in two deep eutrophic lakes, Lago di Lugano (288 m maximum depth) and Sempachersee (87 m) located in Switzerland. A box model approach was used to calculate calcite dissolution in the water column and at the sediment-water interface based on various lake monitoring data such as sediment traps, sediment cores, water and pore-water interface based on various lake monitoring data such as sediment traps, sediment cores, water and pore-water analysis. A model for stationary conditions allowing the calculation of calcite dissolution in the water column for a given particle size distribution was developed. The relative values of the simulated flux were consistent with sediment trap observations. The best fit of the dissolution rate constant of sinking calcite in Lago di Lugano was on the same order of magnitude (3 {center{underscore}dot} 10{sup {minus}10} kg{sup 1/3} s{sup {minus}1}) as published laboratory values for this surface controlled process. Both lakes show a similar specific calcite precipitation rate of 170 g Ca m{sup {minus}2} a{sup {minus}1}. The diffusive flux across the sediment-water interface amounts to about 15 and 10% of total calcite precipitation in Sempachersee and Lago di Lugano, respectively. However, 61% of the precipitated calcite is dissolved in the water column of Lago di Lugano compared to only 13% in Sempachersee. These results point towards the importance of grain size distributions and settling times in stratified deep waters as the two most important factors determining calcite retention in sediments of hard water lakes.

  1. Growth and dissolution kinetics of tetragonal lysozyme

    NASA Technical Reports Server (NTRS)

    Monaco, L. A.; Rosenberger, F.

    1993-01-01

    The growth and dissolution kinetics of lysozyme in a 25 ml solution bridge inside a closed growth cell was investigated. It was found that, under all growth conditions, the growth habit forming (110) and (101) faces grew through layer spreading with different growth rate dependence on supersaturation/temperature. On the other hand, (100) faces which formed only at low temperatures underwent a thermal roughening transition around 12 C.

  2. DISSOLUTION OF ZIRCONIUM AND ALLOYS THEREFOR

    DOEpatents

    Swanson, J.L.

    1961-07-11

    The dissolution of zirconium cladding in a water solution of ammonium fluoride and ammonium nitrate is described. The method finds particular utility in processing spent fuel elements for nuclear reactors. The zirconium cladding is first dissolved in a water solution of ammonium fluoride and ammonium nitrate; insoluble uranium and plutonium fiuorides formed by attack of the solvent on the fuel materiai of the fuel element are then separated from the solution, and the fuel materiai is dissolved in another solution.

  3. Dissolution of ordered precipitates under ion irradiation

    SciTech Connect

    Camus, E.; Bourdeau, F.; Abromeit, C.; Wanderka, N.; Wollenberger, H.

    1995-09-01

    The stability of the ordered {gamma}{prime} precipitates under 300-keV Ni{sup +} irradiation was investigated between room temperature and 623 K. The two competing mechanisms of destabilization by cascade producing irradiation, i.e. disordering and dissolution of the {gamma}{prime} precipitates in Nimonic PE16 alloy, has been studied separately by electron microscopy and field-ion microscopy with atom probe. At high temperatures, the precipitates are stable. At intermediate temperatures, the precipitates dissolve by ballistic mixing into the matrix, but the interface is restored by the radiation-enhanced atomic jumps. The order in the precipitates remains stable. At low temperatures, the precipitates are dissolved by atomic mixing. The dissolution proceeds in a diffusional manner with a diffusion coefficient normalized by the displacement rate D/K = 0.75 nm{sup 2}dpa{sup {minus}1}. The precipitates become disordered by a fluence of 0.1 dpa, whereas precipitate dissolution needs much higher fluences.

  4. Coamorphous repaglinide-saccharin with enhanced dissolution.

    PubMed

    Gao, Yuan; Liao, Jiao; Qi, Xuan; Zhang, Jianjun

    2013-06-25

    Recently, coamorphous systems composed of two drugs or a drug and a small molecule excipient, gained interests due to their ability in overcoming limitations associated with solid dispersions. In this study, coamorphous form of repaglinide (REP), a BCS class II anti-diabetic drug with low aqueous solubility and high permeability was achieved with saccharin (SAC) by solution crystallization and characterized. An accurate and precise HPLC method was established for the simultaneous determination of REP and SAC. Coamorphous REP-SAC with 1:1 stoichiometry had unique thermal behavior, obvious FTIR shifts and the absence of sharp diffraction peak, suggesting the formation of a coamorphous material and interaction of REP with SAC through hydrogen bonds formed between REP's secondary amine and SAC's carbonyl group. Coamorphous REP-SAC showed great improvement in solubility and dissolution under sink conditions in various media. In addition, it was conformed in supersaturated dissolution of coamorphous REP-SAC in distilled water that the coamorphous material had remarkably longer time length for REP to be remained at a supersaturated concentration and had better metastable solubility. This coamorphous system provides a feasible way to process drugs with low solubility into substances with enhanced dissolution and stabilized amorphous state that could be conducive to greater bioavailability than the crystalline drug.

  5. Recent Advances in Polyamine Metabolism and Abiotic Stress Tolerance

    PubMed Central

    Rangan, Parimalan; Subramani, Rajkumar; Singh, Amit Kumar

    2014-01-01

    Global warming is an alarming problem in agriculture and its effect on yield loss has been estimated to be five per cent for every degree centigrade rise in temperature. Plants exhibit multiple mechanisms like optimizing signaling pathway, involvement of secondary messengers, production of biomolecules specifically in response to stress, modulation of various metabolic networks in accordance with stress, and so forth, in order to overcome abiotic stress factors. Many structural genes and networks of pathway were identified and reported in plant systems for abiotic stress tolerance. One such crucial metabolic pathway that is involved in normal physiological function and also gets modulated during stress to impart tolerance is polyamine metabolic pathway. Besides the role of structural genes, it is also important to know the mechanism by which these structural genes are regulated during stress. Present review highlights polyamine biosynthesis, catabolism, and its role in abiotic stress tolerance with special reference to plant systems. Additionally, a system based approach is discussed as a potential strategy to dissect the existing variation in crop species in unraveling the interacting regulatory components/genetic determinants related to PAs mediated abiotic stress tolerance. PMID:25136565

  6. Recent advances in polyamine metabolism and abiotic stress tolerance.

    PubMed

    Rangan, Parimalan; Subramani, Rajkumar; Kumar, Rajesh; Singh, Amit Kumar; Singh, Rakesh

    2014-01-01

    Global warming is an alarming problem in agriculture and its effect on yield loss has been estimated to be five per cent for every degree centigrade rise in temperature. Plants exhibit multiple mechanisms like optimizing signaling pathway, involvement of secondary messengers, production of biomolecules specifically in response to stress, modulation of various metabolic networks in accordance with stress, and so forth, in order to overcome abiotic stress factors. Many structural genes and networks of pathway were identified and reported in plant systems for abiotic stress tolerance. One such crucial metabolic pathway that is involved in normal physiological function and also gets modulated during stress to impart tolerance is polyamine metabolic pathway. Besides the role of structural genes, it is also important to know the mechanism by which these structural genes are regulated during stress. Present review highlights polyamine biosynthesis, catabolism, and its role in abiotic stress tolerance with special reference to plant systems. Additionally, a system based approach is discussed as a potential strategy to dissect the existing variation in crop species in unraveling the interacting regulatory components/genetic determinants related to PAs mediated abiotic stress tolerance.

  7. ABIOTIC DEGRADATION OF TRICHLOROETHYLENE UNDER THERMAL REMEDIATION CONDITIONS

    EPA Science Inventory

    The degradation of TCE (C2HCl3) to carbon dioxide (CO2) and chloride (Cl-) has been reported to occur during thermal remediation of subsurface environments. The overall goal of this study was to evaluate abiotic degradation of TCE at el...

  8. Recent advances in polyamine metabolism and abiotic stress tolerance.

    PubMed

    Rangan, Parimalan; Subramani, Rajkumar; Kumar, Rajesh; Singh, Amit Kumar; Singh, Rakesh

    2014-01-01

    Global warming is an alarming problem in agriculture and its effect on yield loss has been estimated to be five per cent for every degree centigrade rise in temperature. Plants exhibit multiple mechanisms like optimizing signaling pathway, involvement of secondary messengers, production of biomolecules specifically in response to stress, modulation of various metabolic networks in accordance with stress, and so forth, in order to overcome abiotic stress factors. Many structural genes and networks of pathway were identified and reported in plant systems for abiotic stress tolerance. One such crucial metabolic pathway that is involved in normal physiological function and also gets modulated during stress to impart tolerance is polyamine metabolic pathway. Besides the role of structural genes, it is also important to know the mechanism by which these structural genes are regulated during stress. Present review highlights polyamine biosynthesis, catabolism, and its role in abiotic stress tolerance with special reference to plant systems. Additionally, a system based approach is discussed as a potential strategy to dissect the existing variation in crop species in unraveling the interacting regulatory components/genetic determinants related to PAs mediated abiotic stress tolerance. PMID:25136565

  9. Perchloric acid dissolution of graphite and pyrolytic carbon.

    PubMed

    Buzzelli, G; Mosen, A W

    1977-06-01

    Three procedures are described for the wet oxidation, with perchloric acid, of nuclear graphite, pyrocarbon-coated fuel particles, and other carbonaceous materials used in high-temperature gas-cooled nuclear reactors (HTGRs). The first procedure is for dissolution of graphite and pyrolytic carbon, the second for dissolution of milligram quantities of HTGR fuel particles, and the last for dissolution of more easily oxidized carbonaceous materials such as charcoal. These procedures were developed primarily for the dissolution of irradiated materials before fission-product or burn-up analyses, but they are also used for dissolution of unirradiated materials.

  10. The oxidative dissolution of arsenopyrite (FeAsS) and enargite (Cu 3AsS 4) by Leptospirillum ferrooxidans

    NASA Astrophysics Data System (ADS)

    Corkhill, C. L.; Wincott, P. L.; Lloyd, J. R.; Vaughan, D. J.

    2008-12-01

    Arsenopyrite (FeAsS) and enargite (Cu 3AsS 4) fractured in a nitrogen atmosphere were characterised after acidic (pH 1.8), oxidative dissolution in both the presence and absence of the acidophilic microorganism Leptospirillum ferrooxidans. Dissolution was monitored through analysis of the coexisting aqueous solution using inductively coupled plasma atomic emission spectroscopy and coupled ion chromatography-inductively coupled plasma mass spectrometry, and chemical changes at the mineral surface observed using X-ray photoelectron spectroscopy and environmental scanning electron microscopy (ESEM). Biologically mediated oxidation of arsenopyrite and enargite (2.5 g in 25 ml) was seen to proceed to a greater extent than abiotic oxidation, although arsenopyrite oxidation was significantly greater than enargite oxidation. These dissolution reactions were associated with the release of ˜917 and ˜180 ppm of arsenic into solution. The formation of Fe(III)-oxyhydroxides, ferric sulphate and arsenate was observed for arsenopyrite, thiosulphate and an unknown arsenic oxide for enargite. ESEM revealed an extensive coating of an extracellular polymeric substance associated with the L. ferrooxidans cells on the arsenopyrite surface and bacterial leach pits suggest a direct biological oxidation mechanism, although a combination of indirect and direct bioleaching cannot be ruled out. Although the relative oxidation rates of enargite were greater in the presence of L. ferrooxidans, cells were not in contact with the surface suggesting an indirect biological oxidation mechanism. Cells of L. ferrooxidans appear able to withstand several hundreds of ppm of As(III) and As(V).

  11. Abiotic ozone and oxygen in atmospheres similar to prebiotic Earth

    SciTech Connect

    Domagal-Goldman, Shawn D.; Segura, Antígona; Claire, Mark W.; Robinson, Tyler D.; Meadows, Victoria S.

    2014-09-10

    The search for life on planets outside our solar system will use spectroscopic identification of atmospheric biosignatures. The most robust remotely detectable potential biosignature is considered to be the detection of oxygen (O{sub 2}) or ozone (O{sub 3}) simultaneous to methane (CH{sub 4}) at levels indicating fluxes from the planetary surface in excess of those that could be produced abiotically. Here we use an altitude-dependent photochemical model with the enhanced lower boundary conditions necessary to carefully explore abiotic O{sub 2} and O{sub 3} production on lifeless planets with a wide variety of volcanic gas fluxes and stellar energy distributions. On some of these worlds, we predict limited O{sub 2} and O{sub 3} buildup, caused by fast chemical production of these gases. This results in detectable abiotic O{sub 3} and CH{sub 4} features in the UV-visible, but no detectable abiotic O{sub 2} features. Thus, simultaneous detection of O{sub 3} and CH{sub 4} by a UV-visible mission is not a strong biosignature without proper contextual information. Discrimination between biological and abiotic sources of O{sub 2} and O{sub 3} is possible through analysis of the stellar and atmospheric context—particularly redox state and O atom inventory—of the planet in question. Specifically, understanding the spectral characteristics of the star and obtaining a broad wavelength range for planetary spectra should allow more robust identification of false positives for life. This highlights the importance of wide spectral coverage for future exoplanet characterization missions. Specifically, discrimination between true and false positives may require spectral observations that extend into infrared wavelengths and provide contextual information on the planet's atmospheric chemistry.

  12. Integrating omic approaches for abiotic stress tolerance in soybean

    PubMed Central

    Deshmukh, Rupesh; Sonah, Humira; Patil, Gunvant; Chen, Wei; Prince, Silvas; Mutava, Raymond; Vuong, Tri; Valliyodan, Babu; Nguyen, Henry T.

    2014-01-01

    Soybean production is greatly influenced by abiotic stresses imposed by environmental factors such as drought, water submergence, salt, and heavy metals. A thorough understanding of plant response to abiotic stress at the molecular level is a prerequisite for its effective management. The molecular mechanism of stress tolerance is complex and requires information at the omic level to understand it effectively. In this regard, enormous progress has been made in the omics field in the areas of genomics, transcriptomics, and proteomics. The emerging field of ionomics is also being employed for investigating abiotic stress tolerance in soybean. Omic approaches generate a huge amount of data, and adequate advancements in computational tools have been achieved for effective analysis. However, the integration of omic-scale information to address complex genetics and physiological questions is still a challenge. In this review, we have described advances in omic tools in the view of conventional and modern approaches being used to dissect abiotic stress tolerance in soybean. Emphasis was given to approaches such as quantitative trait loci (QTL) mapping, genome-wide association studies (GWAS), and genomic selection (GS). Comparative genomics and candidate gene approaches are also discussed considering identification of potential genomic loci, genes, and biochemical pathways involved in stress tolerance mechanism in soybean. This review also provides a comprehensive catalog of available online omic resources for soybean and its effective utilization. We have also addressed the significance of phenomics in the integrated approaches and recognized high-throughput multi-dimensional phenotyping as a major limiting factor for the improvement of abiotic stress tolerance in soybean. PMID:24917870

  13. Reactive oxygen species signaling in plants under abiotic stress.

    PubMed

    Choudhury, Shuvasish; Panda, Piyalee; Sahoo, Lingaraj; Panda, Sanjib Kumar

    2013-04-01

    Abiotic stresses like heavy metals, drought, salt, low temperature, etc. are the major factors that limit crop productivity and yield. These stresses are associated with production of certain deleterious chemical entities called reactive oxygen species (ROS), which include hydrogen peroxide (H₂O₂), superoxide radical (O₂(-)), hydroxyl radical (OH(-)), etc. ROS are capable of inducing cellular damage by degradation of proteins, inactivation of enzymes, alterations in the gene and interfere in various pathways of metabolic importance. Our understanding on ROS in response to abiotic stress is revolutionized with the advancements in plant molecular biology, where the basic understanding on chemical behavior of ROS is better understood. Understanding the molecular mechanisms involved in ROS generation and its potential role during abiotic stress is important to identify means by which plant growth and metabolism can be regulated under acute stress conditions. ROS mediated oxidative stress, which is the key to understand stress related toxicity have been widely studied in many plants and the results in those studies clearly revealed that oxidative stress is the main symptom of toxicity. Plants have their own antioxidant defense mechanisms to encounter ROS that is of enzymic and non-enzymic nature . Coordinated activities of these antioxidants regulate ROS detoxification and reduces oxidative load in plants. Though ROS are always regarded to impart negative impact on plants, some reports consider them to be important in regulating key cellular functions; however, such reports in plant are limited. Molecular approaches to understand ROS metabolism and signaling have opened new avenues to comprehend its critical role in abiotic stress. ROS also acts as secondary messenger that signals key cellular functions like cell proliferation, apoptosis and necrosis. In higher eukaryotes, ROS signaling is not fully understood. In this review we summarize our understanding on ROS

  14. Theoretical Analysis of Drug Dissolution: I. Solubility and Intrinsic Dissolution Rate.

    PubMed

    Shekunov, Boris; Montgomery, Eda Ross

    2016-09-01

    The first-principles approach presented in this work combines surface kinetics and convective diffusion modeling applied to compounds with pH-dependent solubility and in different dissolution media. This analysis is based on experimental data available for approximately 100 compounds of pharmaceutical interest. Overall, there is a linear relationship between the drug solubility and intrinsic dissolution rate expressed through the total kinetic coefficient of dissolution and dimensionless numbers defining the mass transfer regime. The contribution of surface kinetics appears to be significant constituting on average ∼20% resistance to the dissolution flux in the compendial rotating disk apparatus at 100 rpm. The surface kinetics contribution becomes more dominant under conditions of fast laminar or turbulent flows or in cases when the surface kinetic coefficient may decrease as a function of solution composition or pH. Limitations of the well-known convective diffusion equation for rotating disk by Levich are examined using direct computational modeling with simultaneous dissociation and acid-base reactions in which intrinsic dissolution rate is strongly dependent on pH profile and solution ionic strength. It is shown that concept of diffusion boundary layer does not strictly apply for reacting/interacting species and that thin-film diffusion models cannot be used quantitatively in general case. PMID:26906172

  15. Predominance of biotic over abiotic formation of halogenated hydrocarbons in hypersaline sediments in Western Australia.

    PubMed

    Ruecker, A; Weigold, P; Behrens, S; Jochmann, M; Laaks, J; Kappler, A

    2014-08-19

    Volatile halogenated organic compounds (VOX) contribute to ozone depletion and global warming. There is evidence of natural VOX formation in many environments ranging from forest soils to salt lakes. Laboratory studies have suggested that VOX formation can be chemically stimulated by reactive Fe species while field studies have provided evidence for direct biological (enzymatic) VOX formation. However, the relative contribution of abiotic and biotic processes to global VOX budgets is still unclear. The goals of this study were to quantify VOX release from sediments from a hypersaline lake in Western Australia (Lake Strawbridge) and to distinguish between the relative contributions of biotic and abiotic VOX formation in microbially active and sterilized microcosms. Our experiments demonstrated that the release of organochlorines from Lake Strawbridge sediments was mainly biotic. Among the organochlorines detected were monochlorinated, e.g., chloromethane (CH3Cl), and higher chlorinated VOX compounds such as trichloromethane (CHCl3). Amendment of sediments with either Fe(III) oxyhydroxide (ferrihydrite) or a mixture of lactate/acetate or both ferrihydrite and lactate/acetate did not stimulate VOX formation. This suggests that although microbial Fe(III) reduction took place, there was no stimulation of VOX formation via Fe redox transformations or the formation of reactive Fe species under our experimental conditions.

  16. Microbiological and abiotic processes in modelling longer-term marine corrosion of steel.

    PubMed

    Melchers, Robert E

    2014-06-01

    Longer term exposure of mild steel in natural (biotic) waters progresses as a bimodal function of time, both for corrosion mass loss and for pit depth. Recent test results, however, found this also for immersion in clean fresh, almost pure and triply distilled waters. This shows chlorides or microbiological activity is not essential for the electrochemical processes producing bimodal behaviour. It is proposed that the first mode is aerobic corrosion that eventually produces a non-homogeneous corroded surface and rust coverage sufficient to allow formation of anoxic niches. Within these, aggressive autocatalytic reduction then occurs under anoxic abiotic conditions, caused by sulfide species originating from the MnS inclusions typical in steels. This is consistent with Wranglen's model for abiotic anoxic crevice and pitting corrosion without external aggressive ions. In biotic conditions, metabolites from anaerobic bacterial activity within and near the anoxic niches provides additional (sulfide) species to contribute to the severity of corrosion. Limited observational evidence that supports this hypothesis is given but further investigation is required to determine all contributor(s) to the cathodic current for the electrochemical reaction. The results are important for estimating the contribution of microbiological corrosion in infrastructure applications. PMID:24067447

  17. Microbiological and abiotic processes in modelling longer-term marine corrosion of steel.

    PubMed

    Melchers, Robert E

    2014-06-01

    Longer term exposure of mild steel in natural (biotic) waters progresses as a bimodal function of time, both for corrosion mass loss and for pit depth. Recent test results, however, found this also for immersion in clean fresh, almost pure and triply distilled waters. This shows chlorides or microbiological activity is not essential for the electrochemical processes producing bimodal behaviour. It is proposed that the first mode is aerobic corrosion that eventually produces a non-homogeneous corroded surface and rust coverage sufficient to allow formation of anoxic niches. Within these, aggressive autocatalytic reduction then occurs under anoxic abiotic conditions, caused by sulfide species originating from the MnS inclusions typical in steels. This is consistent with Wranglen's model for abiotic anoxic crevice and pitting corrosion without external aggressive ions. In biotic conditions, metabolites from anaerobic bacterial activity within and near the anoxic niches provides additional (sulfide) species to contribute to the severity of corrosion. Limited observational evidence that supports this hypothesis is given but further investigation is required to determine all contributor(s) to the cathodic current for the electrochemical reaction. The results are important for estimating the contribution of microbiological corrosion in infrastructure applications.

  18. Predominance of biotic over abiotic formation of halogenated hydrocarbons in hypersaline sediments in Western Australia.

    PubMed

    Ruecker, A; Weigold, P; Behrens, S; Jochmann, M; Laaks, J; Kappler, A

    2014-08-19

    Volatile halogenated organic compounds (VOX) contribute to ozone depletion and global warming. There is evidence of natural VOX formation in many environments ranging from forest soils to salt lakes. Laboratory studies have suggested that VOX formation can be chemically stimulated by reactive Fe species while field studies have provided evidence for direct biological (enzymatic) VOX formation. However, the relative contribution of abiotic and biotic processes to global VOX budgets is still unclear. The goals of this study were to quantify VOX release from sediments from a hypersaline lake in Western Australia (Lake Strawbridge) and to distinguish between the relative contributions of biotic and abiotic VOX formation in microbially active and sterilized microcosms. Our experiments demonstrated that the release of organochlorines from Lake Strawbridge sediments was mainly biotic. Among the organochlorines detected were monochlorinated, e.g., chloromethane (CH3Cl), and higher chlorinated VOX compounds such as trichloromethane (CHCl3). Amendment of sediments with either Fe(III) oxyhydroxide (ferrihydrite) or a mixture of lactate/acetate or both ferrihydrite and lactate/acetate did not stimulate VOX formation. This suggests that although microbial Fe(III) reduction took place, there was no stimulation of VOX formation via Fe redox transformations or the formation of reactive Fe species under our experimental conditions. PMID:25073729

  19. Mineral dissolution kinetics at the pore scale

    SciTech Connect

    Li, L.; Steefel, C.I.; Yang, L.

    2007-05-24

    Mineral dissolution rates in the field have been reported to be orders of magnitude slower than those measured in the laboratory, an unresolved discrepancy that severely limits our ability to develop scientifically defensible predictive or even interpretive models for many geochemical processes in the earth and environmental sciences. One suggestion links this discrepancy to the role of physical and chemical heterogeneities typically found in subsurface soils and aquifers in producing scale-dependent rates where concentration gradients develop. In this paper, we examine the possibility that scale-dependent mineral dissolution rates can develop even at the single pore and fracture scale, the smallest and most fundamental building block of porous media. To do so, we develop two models to analyze mineral dissolution kinetics at the single pore scale: (1) a Poiseuille Flow model that applies laboratory-measured dissolution kinetics at the pore or fracture wall and couples this to a rigorous treatment of both advective and diffusive transport, and (2) a Well-Mixed Reactor model that assumes complete mixing within the pore, while maintaining the same reactive surface area, average flow rate, and geometry as the Poiseuille Flow model. For a fracture, a 1D Plug Flow Reactor model is considered in addition to quantify the effects of longitudinal versus transverse mixing. The comparison of averaged dissolution rates under various conditions of flow, pore size, and fracture length from the three models is used as a means to quantify the extent to which concentration gradients at the single pore and fracture scale can develop and render rates scale-dependent. Three important minerals that dissolve at widely different rates, calcite, plagioclase, and iron hydroxide, are considered. The modeling indicates that rate discrepancies arise primarily where concentration gradients develop due to comparable rates of reaction and advective transport, and incomplete mixing via molecular

  20. The dynamics of household dissolution and change in socio-economic position: A survival model in a rural South Africa

    PubMed Central

    Sartorius, Kurt; Sartorius, Benn KD; Collinson, Mark A; Tollman, Stephen M

    2014-01-01

    This paper investigates household dissolution and changes in asset wealth (socio-economic position) in a rural South African community containing settled refugees. Survival analysis applied to a longitudinal dataset indicated that the covariates increasing the risk of forced household dissolution were a reduction in socio-economic position (asset wealth), adult deaths and the permanent outmigration of more than 40% of the household. Conversely, the risk of dissolution was reduced by bigger households, state grants and older household heads. Significant spatial clusters of former refugee villages also showed a higher risk of dissolution after 20 years of permanent residence. A discussion of the dynamics of dissolution showed how an outflow/inflow of household assets (socio-economic position) was precipitated by each of the selected covariates. The paper shows how an understanding of the dynamics of forced household dissolution, combined with the use of geo-spatial mapping, can inform inter-disciplinary policy in a rural community. PMID:25937697

  1. Dissolution of glass wool, rock wool and alkaline earth silicate wool: morphological and chemical changes in fibers.

    PubMed

    Campopiano, Antonella; Cannizzaro, Annapaola; Angelosanto, Federica; Astolfi, Maria Luisa; Ramires, Deborah; Olori, Angelo; Canepari, Silvia; Iavicoli, Sergio

    2014-10-01

    The behavior of alkaline earth silicate (AES) wool and of other biosoluble wools in saline solution simulating physiological fluids was compared with that of a traditional wool belonging to synthetic vitreous fibers. Morphological and size changes of fibers were studied by scanning electron microscopy (SEM). The elements extracted from fibers were analyzed by inductively coupled plasma atomic emission spectrometry. SEM analysis showed a larger reduction of length-weighted geometric mean fiber diameter at 4.5 pH than at 7.4 pH. At the 7.4 pH, AES wool showed a higher dissolution rate and a dissolution time less than a few days. Their dissolution was highly non-congruent with rapid leaching of calcium. Unlike rock wool, glass wool dissolved more rapidly at physiological pH than at acid pH. Dissolution of AES and biosoluble rock wool is accompanied by a noticeable change in morphology while by no change for glass wool. Biosoluble rock wool developed a leached surface with porous honeycomb structure. SEM analysis showed the dissolution for glass wool is mainly due to breakage transverse of fiber at pH 7.4. AES dissolution constant (Kdis) was the highest at pH 7.4, while at pH 4.5 only biosoluble rockwool 1 showed a higher Kdis.

  2. Kinetic dissolution of carbonates and Mn oxides in acidic water: Measurement of in situ field rates and reactive transport modeling

    USGS Publications Warehouse

    Brown, J.G.; Glynn, P.D.

    2003-01-01

    The kinetics of carbonate and Mn oxide dissolution under acidic conditions were examined through the in situ exposure of pure phase samples to acidic ground water in Pinal Creek Basin, Arizona. The average long-term calculated in situ dissolution rates for calcite and dolomite were 1.65??10-7 and 3.64??10-10 mmol/(cm2 s), respectively, which were about 3 orders of magnitude slower than rates derived in laboratory experiments by other investigators. Application of both in situ and lab-derived calcite and dolomite dissolution rates to equilibrium reactive transport simulations of a column experiment did not improve the fit to measured outflow chemistry: at the spatial and temporal scales of the column experiment, the use of an equilibrium model adequately simulated carbonate dissolution in the column. Pyrolusite (MnO2) exposed to acidic ground water for 595 days increased slightly in weight despite thermodynamic conditions that favored dissolution. This result might be related to a recent finding by another investigator that the reductive dissolution of pyrolusite is accompanied by the precipitation of a mixed Mn-Fe oxide species. In PHREEQC reactive transport simulations, the incorporation of Mn kinetics improved the fit between observed and simulated behavior at the column and field scales, although the column-fitted rate for Mn-oxide dissolution was about 4 orders of magnitude greater than the field-fitted rate. Remaining differences between observed and simulated contaminant transport trends at the Pinal Creek site were likely related to factors other than the Mn oxide dissolution rate, such as the concentration of Fe oxide surface sites available for adsorption, the effects of competition among dissolved species for available surface sites, or reactions not included in the model.

  3. Mechanisms of plant-plant interactions: concealment from herbivores is more important than abiotic-stress mediation in an African savannah.

    PubMed

    Louthan, Allison M; Doak, Daniel F; Goheen, Jacob R; Palmer, Todd M; Pringle, Robert M

    2014-04-01

    Recent work on facilitative plant-plant interactions has emphasized the importance of neighbours' amelioration of abiotic stress, but the facilitative effects of neighbours in reducing plant apparency to herbivores have received less attention. Whereas theory on stress reduction predicts that competition should be more important in less stressful conditions, with facilitation becoming more important in harsh environments, apparency theory suggests that facilitation should be greater in the presence of herbivores, where it is disadvantageous to be conspicuous regardless of abiotic stress level. We tested the relative strength of neighbours' stress reduction versus apparency reduction on survival, growth, reproduction and lifetime fitness of Hibiscus meyeri, a common forb in central Kenya, using neighbour removals conducted inside and outside large-herbivore exclosures replicated in arid and mesic sites. In the absence of herbivores, neighbours competed with H. meyeri in mesic areas and facilitated H. meyeri in arid areas, as predicted by stress-reduction mechanisms. By contrast, neighbours facilitated H. meyeri in the presence of herbivory, regardless of aridity level, consistent with plant apparency. Our results show that the facilitative effects arising from plant apparency are stronger than the effects arising from abiotic stress reduction in this system, suggesting that plant-apparency effects may be particularly important in systems with extant large-herbivore communities.

  4. Preparation and Characterization of Liquisolid Compacts for Improved Dissolution of Telmisartan

    PubMed Central

    Narra, Nataraj; Rama Rao, Tadikonda

    2014-01-01

    The objective of the present work was to obtain pH independent and improved dissolution profile for a poorly soluble drug, telmisartan using liquisolid compacts. Liquisolid compacts were prepared using Transcutol HP as vehicle, Avicel PH102 as carrier, and Aerosil 200 as a coating material. The formulations were evaluated for drug excipient interactions, change in crystallinity of drug, flow properties, and general quality control tests of tablets using Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), X-ray diffraction (XRD), angle of repose, and various pharmacopoeial tests. In vitro dissolution studies were performed at three pH conditions (1.2, 4.5 and 7.4). Stability studies were performed at 40°C and 75% RH for three months. The formulation was found to comply with Indian pharmacopoeial limits for tablets. FTIR studies confirmed no interaction between drug and excipients. XRD and DSC studies indicate change/reduction in crystallinity of drug. Dissolution media were selected based on the solubility studies. The optimized formulation showed pH independent release profile with significant improvement (P < 0.005) in dissolution compared to plain drug and conventional marketed formulation. No significant difference was seen in the tablet properties, and drug release profile after storage for 3 months. PMID:25371826

  5. Abiotic Nitrous Oxide Production in Natural and Artificial Seawater

    NASA Astrophysics Data System (ADS)

    Ochoa, H.; Stanton, C. L.; Cavazos, A. R.; Ostrom, N. E.; Glass, J. B.

    2014-12-01

    The ocean contributes approximately one third of global sources of nitrous oxide (N2O) to the atmosphere. While nitrification is thought to be the dominant pathway for marine N2O production, mechanisms remain unresolved. Previous studies have carried the implicit assumption that marine N2O originates directly from enzymatic sources. However, abiotic production of N2O is possible via chemical reactions between nitrogenous intermediates and redox active trace metals in seawater. In this study, we investigated N2O production and isotopic composition in treatments with and without added hydroxylamine (NH2OH) and nitric oxide (NO), intermediates in microbial oxidation of ammonia to nitrite, and Fe(III). Addition of substrates to sterile artificial seawater was compared with filtered and unfiltered seawater from Sapelo Island, coastal Georgia, USA. N2O production was observed immediately after addition of Fe(III) in the presence of NH2OH at pH 8 in sterile artificial seawater. Highest N2O production was observed in the presence of Fe(III), NO, and NH2OH. The isotopomer site preference of abiotically produced N2O was consistent with previous studies (31 ± 2 ‰). Higher abiotic N2O production was observed in sterile artificial seawater (salinity: 35 ppt) than filtered Sapelo Island seawater (salinity: 25 ppt) whereas diluted sterile artificial seawater (18 ppt) showed lowest N2O production, suggesting that higher salinity promotes enhanced abiotic N2O production. Addition of Fe(III) to unfiltered Sapelo Island seawater stimulated N2O production. The presence of ammonia-oxidizing archaea (AOA), which lack known N2O producing enzymes, in Sapelo Island seawater was confirmed by successful amplification of the archaeal amoA gene, whereas ammonia-oxidizing bacteria (AOB), which contain N2O-producing enzymes were undetected. Given the few Fe-containing proteins present in AOA, it is likely that Fe(III) addition promoted N2O production via an abiotic vs. enzymatic N2O mechanism

  6. Processing of LEU targets for {sup 99}Mo production: Dissolution of U{sub 3}Si{sub 2} targets by alkaline hydrogen peroxide

    SciTech Connect

    Buchholz, B.A.; Vandegrift, G.F.

    1995-09-01

    Low-enriched uranium silicide targets designed to recover fission product {sup 99}Mo were dissolved in alkaline hydrogen peroxide (H{sub 2}O{sub 2} plus NaOH) at about 90C. Sintering of matrix aluminum powder during irradiation and heat treatment retarded aluminum dissolution and prevented silicide particle dispersion. Gas evolved during dissolution is suspected to adhere to particles and block hydroxide ion contact with aluminum. Reduction of base concentrations from 5M to O.lM NaOH yielded similar silicide dissolution and peroxide destruction rates, simplifying later processing. Future work in particle dispersion enhancement, {sup 99}Mo separation, and waste disposal is also discussed.

  7. Systematic review of forsterite dissolution rate data

    NASA Astrophysics Data System (ADS)

    Rimstidt, J. Donald; Brantley, Susan L.; Olsen, Amanda A.

    2012-12-01

    This paper demonstrates a method for systematic analysis of published mineral dissolution rate data using forsterite dissolution as an example. The steps of the method are: (1) identify the data sources, (2) select the data, (3) tabulate the data, (4) analyze the data to produce a model, and (5) report the results. This method allows for a combination of critical selection of data, based on expert knowledge of theoretical expectations and experimental pitfalls, and meta-analysis of the data using statistical methods. Application of this method to all currently available forsterite dissolution rates (0 < pH < 14, and 0 < T < 150 °C) normalized to geometric surface area produced the following rate equations: For pH < 5.6 and 0° < T < 150 °C, based on 519 data logr=6.05(0.22)-0.46(0.02)pH-3683.0(63.6)1/T(R2=0.88) For pH > 5.6 and 0° < T < 150 °C, based on 125 data logr=4.07(0.38)-0.256(0.023)pH-3465(139)1/T(R2=0.92) The R2 values show that ˜10% of the variance in r is not explained by variation in 1/T and pH. Although the experimental error for rate measurements should be ± ˜30%, the observed error associated with the log r values is ˜0.5 log units (±300% relative error). The unexplained variance and the large error associated with the reported rates likely arises from the assumption that the rates are directly proportional to the mineral surface area (geometric or BET) when the rate is actually controlled by the concentration and relative reactivity of surface sites, which may be a function of duration of reaction. Related to these surface area terms are other likely sources of error that include composition and preparation of mineral starting material. Similar rate equations were produced from BET surface area normalized rates. Comparison of rate models based on geometric and BET normalized rates offers no support for choosing one normalization method over the other. However, practical considerations support the use of geometric surface area normalization

  8. Dissolution of wood in ionic liquids.

    PubMed

    Kilpeläinen, Ilkka; Xie, Haibo; King, Alistair; Granstrom, Mari; Heikkinen, Sami; Argyropoulos, Dimitris S

    2007-10-31

    The present paper demonstrates that both hardwoods and softwoods are readily soluble in various imidazolium-based ionic liquids (ILs) under gentle conditions. More specifically, a variety of ionic liquids can only partially dissolve wood chips, whereas ionic liquids such as 1-butyl-3-methylimidazolium chloride and 1-allyl-3-methylimidazolium chloride have good solvating power for Norway spruce sawdust and Norway spruce and Southern pine thermomechanical pulp (TMP) fibers. Despite the fact that the obtained solutions were not fully clear, these ionic liquids provided solutions which permitted the complete acetylation of the wood. Alternatively, transparent amber solutions of wood could be obtained when the dissolution of the same lignocellulosic samples was attempted in 1-benzyl-3-methylimidazolium chloride. This realization was based on a designed augmented interaction of the aromatic character of the cation of the ionic liquid with the lignin in the wood. After dissolution, wood can be regenerated as an amorphous mixture of its original components. The cellulose of the regenerated wood can be efficiently digested to glucose by a cellulase enzymatic hydrolysis treatment. Furthermore, completely acetylated wood was found to be readily soluble in chloroform, allowing, for the first time, detailed proton nuclear magnetic resonance (NMR) spectra and NMR diffusion measurements to be made. It was thus demonstrated that the dissolution of wood in ionic liquids now offers a variety of new possibilities for its structural and macromolecular characterization, without the prior isolation of its individual components. Furthermore, considering the relatively wide solubility and compatibility of ionic liquids with many organic or inorganic functional chemicals or polymers, it is envisaged that this research could create a variety of new strategies for converting abundant woody biomass to valuable biofuels, chemicals, and novel functional composite biomaterials.

  9. Saltcake Dissolution FY 2002 Status Report

    SciTech Connect

    HERTING, D.L.

    2002-09-26

    Laboratory tests were completed on the dissolution characteristics of Hanford saltcake waste from single-shell waste tanks 241-B-109 and 241-SX-101 (henceforth referred to as B-109 and SX-101). The River Protection Project (RPP) is tasked with retrieving waste from double-shell and single-shell tanks to provide feed for vitrification. The RPP organization needs chemical and physical data to evaluate technologies for retrieving the waste. Little relevant laboratory testing has been done to evaluate in-tank dissolution parameters for the various types of saltcake wastes that exist in single-shell tanks. A computer modeling program known as the Environmental Simulation Program (ESP), produced by OLI Systems, Inc. of Morris Plains, New Jersey, is being used by the RPP organization to predict solubilities during dilution and retrieval of all tank waste types. Data from this task are provided to ESP users to support evaluation, refinement, and validation of the ESP model. Cascade (or ''stepwise'') dissolution tests were performed on composite saltcake samples from both tanks. The purpose of these tests is to evaluate the solid/liquid phase distribution of chemicals and radionuclides during tank waste retrieval operations. Solid phase identification tests were also performed on saltcake from both tanks. Weight percent (wt%) dilution is defined in this report as 100 times the weight of diluent (water or 2 M NaOH solution) divided by the weight of undiluted saltcake composite sample. A 50% dilution, for example, would be 50 g of H{sub 2}O (or 50 g of 2 M NaOH) added to 100 g of undiluted composite sample. Volume percent (Vol%) dilution is defined as 100 times the volume of diluent divided by the calculated volume of undiluted sample. Weight percent dilutions are measured directly by weighing the undiluted sample and diluent. Volume percent dilutions are estimated from the known volume of diluent and calculated volume of undiluted sample.

  10. New mixing system in dissolution isoperibol microcalorimeter

    NASA Astrophysics Data System (ADS)

    Moreno-Piraján, Juan Carlos; Giraldo-Gutierréz, Liliana

    2007-04-01

    In order to determine dissolution enthalpies of small amounts of easily or slightly soluble solids, a new cell for batch isoperibolic microcalorimetry was developed at the Universities of the Andes and the National of Colombia. An innovative mixing system for avoiding error due to the common effect of the brittle point breakage has been designed for this cell. The cell has a capacity of 40ml and the sample holder can bear solid samples between 10.0 and 30.0mg. The high stability of the base line allows solution experiments to be extended over several hours. All measurements reported were conducted at 298.15K using water as solvent.

  11. New mixing system in dissolution isoperibol microcalorimeter.

    PubMed

    Moreno-Piraján, Juan Carlos; Giraldo-Gutierréz, Liliana

    2007-04-01

    In order to determine dissolution enthalpies of small amounts of easily or slightly soluble solids, a new cell for batch isoperibolic microcalorimetry was developed at the Universities of the Andes and the National of Colombia. An innovative mixing system for avoiding error due to the common effect of the brittle point breakage has been designed for this cell. The cell has a capacity of 40 ml and the sample holder can bear solid samples between 10.0 and 30.0 mg. The high stability of the base line allows solution experiments to be extended over several hours. All measurements reported were conducted at 298.15 K using water as solvent.

  12. Match quality, new information, and marital dissolution.

    PubMed

    Weiss, Y; Willis, R J

    1997-01-01

    "This article investigates the role of surprises in marital dissolution [in the United States]. Surprises consists of changes in the predicted earning capacity of either spouse. Data from the National Longitudinal Study of the High School Class of 1972 is used. We find that an unexpected increase in the husband's earning capacity reduces the divorce hazard, while an unexpected increase in the wife's earning capacity raises the divorce hazard. Couples sort into marriage according to characteristics that are likely to enhance the stability of the marriage. The divorce hazard is initially increasing with the duration of marriage, and the presence of children and high levels of property stabilizes the marriage."

  13. SERDP ER-1376 Enhancement of In Situ Bioremediation of Energetic Compounds by Coupled Abiotic/Biotic Processes:Final Report for 2004 - 2006

    SciTech Connect

    Szecsody, James E.; Comfort, Steve; Fredrickson, Herbert L.; Boparai, Hardiljeet K.; Devary, Brooks J.; Thompson, Karen T.; Phillips, Jerry L.; Crocker, Fiona H.; Girvin, Donald C.; Resch, Charles T.; Shea, Patrick; Fischer, Ashley E.; Durkin, Lisa M.

    2007-08-07

    This project was initiated by SERDP to quantify processes and determine the effectiveness of abiotic/biotic mineralization of energetics (RDX, HMX, TNT) in aquifer sediments by combinations of biostimulation (carbon, trace nutrient additions) and chemical reduction of sediment to create a reducing environment. Initially it was hypothesized that a balance of chemical reduction of sediment and biostimulation would increase the RDX, HMX, and TNT mineralization rate significantly (by a combination of abiotic and biotic processes) so that this abiotic/biotic treatment may be a more efficient for remediation than biotic treatment alone in some cases. Because both abiotic and biotic processes are involved in energetic mineralization in sediments, it was further hypothesized that consideration for both abiotic reduction and microbial growth was need to optimize the sediment system for the most rapid mineralization rate. Results show that there are separate optimal abiotic/biostimulation aquifer sediment treatments for RDX/HMX and for TNT. Optimal sediment treatment for RDX and HMX (which have chemical similarities and similar degradation pathways) is mainly chemical reduction of sediment, which increased the RDX/HMX mineralization rate 100 to150 times (relative to untreated sediment), with additional carbon or trace nutrient addition, which increased the RDX/HMX mineralization rate an additional 3 to 4 times. In contrast, the optimal aquifer sediment treatment for TNT involves mainly biostimulation (glucose addition), which stimulates a TNT/glucose cometabolic degradation pathway (6.8 times more rapid than untreated sediment), degrading TNT to amino-intermediates that irreversibly sorb (i.e., end product is not CO2). The TNT mass migration risk is minimized by these transformation reactions, as the triaminotoluene and 2,4- and 2,6-diaminonitrotoluene products that irreversibly sorb are no longer mobile in the subsurface environment. These transformation rates are increased

  14. Hormone balance and abiotic stress tolerance in crop plants.

    PubMed

    Peleg, Zvi; Blumwald, Eduardo

    2011-06-01

    Plant hormones play central roles in the ability of plants to adapt to changing environments, by mediating growth, development, nutrient allocation, and source/sink transitions. Although ABA is the most studied stress-responsive hormone, the role of cytokinins, brassinosteroids, and auxins during environmental stress is emerging. Recent evidence indicated that plant hormones are involved in multiple processes. Cross-talk between the different plant hormones results in synergetic or antagonic interactions that play crucial roles in response of plants to abiotic stress. The characterization of the molecular mechanisms regulating hormone synthesis, signaling, and action are facilitating the modification of hormone biosynthetic pathways for the generation of transgenic crop plants with enhanced abiotic stress tolerance.

  15. Arbuscular mycorrhizal fungal responses to abiotic stresses: A review.

    PubMed

    Lenoir, Ingrid; Fontaine, Joël; Lounès-Hadj Sahraoui, Anissa

    2016-03-01

    The majority of plants live in close collaboration with a diversity of soil organisms among which arbuscular mycorrhizal fungi (AMF) play an essential role. Mycorrhizal symbioses contribute to plant growth and plant protection against various environmental stresses. Whereas the resistance mechanisms induced in mycorrhizal plants after exposure to abiotic stresses, such as drought, salinity and pollution, are well documented, the knowledge about the stress tolerance mechanisms implemented by the AMF themselves is limited. This review provides an overview of the impacts of various abiotic stresses (pollution, salinity, drought, extreme temperatures, CO2, calcareous, acidity) on biodiversity, abundance and development of AMF and examines the morphological, biochemical and molecular mechanisms implemented by AMF to survive in the presence of these stresses. PMID:26803396

  16. Molecular approaches to improve rice abiotic stress tolerance.

    PubMed

    Mizoi, Junya; Yamaguchi-Shinozaki, Kazuko

    2013-01-01

    Abiotic stress is a major factor limiting productivity of rice crops in large areas of the world. Because plants cannot avoid abiotic stress by moving, they have acquired various mechanisms for stress tolerance in the course of their evolution. Enhancing or introducing such mechanisms in rice is one effective way to develop stress-tolerant cultivars. Based on physiological studies on stress responses, recent progress in plant molecular biology has enabled discovery of many genes involved in stress tolerance. These genes include regulatory genes, which regulate stress response (e.g., transcription factors and protein kinases), and functional genes, which protect the cell (e.g., enzymes for generating protective metabolites and proteins). Both kinds of genes are used to increase stress tolerance in rice. In addition, several quantitative trait loci (QTLs) associated with higher stress tolerance have been cloned, contributing to the discovery of significantly important genes for stress tolerance.

  17. Demonstration of significant abiotic iron isotope fractionation in nature

    USGS Publications Warehouse

    Bullen, T.D.; White, A.F.; Childs, C.W.; Vivit, D.V.; Schultz, M.S.

    2001-01-01

    Field and laboratory studies reveal that the mineral ferrihydrite, formed as a result of abiotic oxidation of aqueous ferrous to ferric Fe, contains Fe that is isotopically heavy relative to coexisting aqueous Fe. Because the electron transfer step of the oxidation process at pH >5 is essentially irreversible and should favor the lighter Fe isotopes in the ferric iron product, this result suggests that relatively heavy Fe isotopes are preferentially partitioned into the readily oxidized Fe(II)(OH)x(aq) species or their transition complexes prior to oxidation. The apparent Fe isotope fractionation factor, ??ferrihydrite-water, depends primarily on the relative abundances of the Fe(II)(aq) species. This study demonstrates that abiotic processes can fractionate the Fe isotopes to the same extent as biotic processes, and thus Fe isotopes on their own do not provide an effective biosignature.

  18. Abiotic racemization kinetics of amino acids in marine sediments.

    PubMed

    Steen, Andrew D; Jørgensen, Bo Barker; Lomstein, Bente Aa

    2013-01-01

    The ratios of d- versus l-amino acids can be used to infer the sources and composition of sedimentary organic matter. Such inferences, however, rely on knowing the rates at which amino acids in sedimentary organic matter racemize abiotically between the d- and the l-forms. Based on a heating experiment, we report kinetic parameters for racemization of aspartic acid, glutamic acid, serine, and alanine in bulk sediment from Aarhus Bay, Denmark, taken from the surface, 30 cm, and 340 cm depth below seafloor. Extrapolation to a typical cold deep sea sediment temperature of 3°C suggests racemization rate constants of 0.50×10(-5)-11×10(-5) yr(-1). These results can be used in conjunction with measurements of sediment age to predict the ratio of d:l amino acids due solely to abiotic racemization of the source material, deviations from which can indicate the abundance and turnover of active microbial populations.

  19. Genomics Approaches for Crop Improvement against Abiotic Stress

    PubMed Central

    Akpınar, Bala Anı; Lucas, Stuart J.; Budak, Hikmet

    2013-01-01

    As sessile organisms, plants are inevitably exposed to one or a combination of stress factors every now and then throughout their growth and development. Stress responses vary considerably even in the same plant species; stress-susceptible genotypes are at one extreme, and stress-tolerant ones are at the other. Elucidation of the stress responses of crop plants is of extreme relevance, considering the central role of crops in food and biofuel production. Crop improvement has been a traditional issue to increase yields and enhance stress tolerance; however, crop improvement against abiotic stresses has been particularly compelling, given the complex nature of these stresses. As traditional strategies for crop improvement approach their limits, the era of genomics research has arisen with new and promising perspectives in breeding improved varieties against abiotic stresses. PMID:23844392

  20. An abiotic analogue of the nuclear pore complex hydrogel.

    PubMed

    Bird, Sean P; Baker, Lane A

    2011-09-12

    We describe an abiotic hydrogel that mimics selectivity of the nuclear pore complex. Copolymerization of peptide tetramers (phenylalanine-serine-phenylalanine-glycine, FSFG) with acrylamide results in hydrophobic interactions significant enough to allow the formation of freestanding hydrogel structures. Incorporation of FSFG motifs also renders the hydrogels selective. Selective binding of importins and nuclear transport receptor-cargo complexes is qualitatively demonstrated and compared with polyacrylamide, hydrogels prepared from a control peptide, and hydrogels prepared from the nuclear pore complex protein Nsp1. These abiotic hydrogels will enable further studies of the unique transport mechanisms of the nuclear pore complex and provide an interesting paradigm for the future development of synthetic platforms for separations and selective interfaces.

  1. Progress and challenges for abiotic stress proteomics of crop plants.

    PubMed

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar

    2013-06-01

    Plants are continually challenged to recognize and respond to adverse changes in their environment to avoid detrimental effects on growth and development. Understanding the mechanisms that crop plants employ to resist and tolerate abiotic stress is of considerable interest for designing agriculture breeding strategies to ensure sustainable productivity. The application of proteomics technologies to advance our knowledge in crop plant abiotic stress tolerance has increased dramatically in the past few years as evidenced by the large amount of publications in this area. This is attributed to advances in various technology platforms associated with MS-based techniques as well as the accessibility of proteomics units to a wider plant research community. This review summarizes the work which has been reported for major crop plants and evaluates the findings in context of the approaches that are widely employed with the aim to encourage broadening the strategies used to increase coverage of the proteome. PMID:23512887

  2. Abiotic mediation of a mutualism drives herbivore abundance.

    PubMed

    Mooney, Emily H; Phillips, Joseph S; Tillberg, Chadwick V; Sandrow, Cheryl; Nelson, Annika S; Mooney, Kailen A

    2016-01-01

    Species abundance is typically determined by the abiotic environment, but the extent to which such effects occur through the mediation of biotic interactions, including mutualisms, is unknown. We explored how light environment (open meadow vs. shaded understory) mediates the abundance and ant tending of the aphid Aphis helianthi feeding on the herb Ligusticum porteri. Yearly surveys consistently found aphids to be more than 17-fold more abundant on open meadow plants than on shaded understory plants. Manipulations demonstrated that this abundance pattern was not due to the direct effects of light environment on aphid performance, or indirectly through host plant quality or the effects of predators. Instead, open meadows had higher ant abundance and per capita rates of aphid tending and, accordingly, ants increased aphid population growth in meadow but not understory environments. The abiotic environment thus drives the abundance of this herbivore exclusively through the mediation of a protection mutualism.

  3. Progress and challenges for abiotic stress proteomics of crop plants.

    PubMed

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar

    2013-06-01

    Plants are continually challenged to recognize and respond to adverse changes in their environment to avoid detrimental effects on growth and development. Understanding the mechanisms that crop plants employ to resist and tolerate abiotic stress is of considerable interest for designing agriculture breeding strategies to ensure sustainable productivity. The application of proteomics technologies to advance our knowledge in crop plant abiotic stress tolerance has increased dramatically in the past few years as evidenced by the large amount of publications in this area. This is attributed to advances in various technology platforms associated with MS-based techniques as well as the accessibility of proteomics units to a wider plant research community. This review summarizes the work which has been reported for major crop plants and evaluates the findings in context of the approaches that are widely employed with the aim to encourage broadening the strategies used to increase coverage of the proteome.

  4. Investigation on Microbial Dissolution of Uranium (VI) from Autunite Mineral - 13421

    SciTech Connect

    Sepulveda, Paola; Katsenovich, Yelena; Lagos, Leonel

    2013-07-01

    Precipitating autunite minerals by polyphosphate injection was identified as a feasible remediation strategy for sequestering uranium in contaminated groundwater and soil in situ at the Hanford Site. Autunite stability under vadose and saturated zone environmental conditions can help to determine the long-term effectiveness of this remediation strategy. The Arthrobacter bacteria are one of the most common groups in soils and are found in large numbers in Hanford soil as well as other subsurface environments contaminated with radionuclides. Ubiquitous in subsurface microbial communities, these bacteria can play a significant role in the dissolution of minerals and the formation of secondary minerals. The main objective of this investigation was to study the bacterial interactions under oxidizing conditions with uranium (VI); study the potential role of bicarbonate, which is an integral complexing ligand for U(VI) and a major ion in groundwater compositions; and present data from autunite dissolution experiments using Arthrobacter strain G968, a less U(VI)-tolerant strain. Sterile 100 mL glass mixed reactors served as the major bioreactor for initial experimentation. These autunite-containing bioreactors were injected with bacterial cells after the autunite equilibrated with the media solution amended with 0 mM, 3 mM 5 mM and 10 mM concentrations of bicarbonate. G968 Arthrobacter cells in the amount of 10{sup 6} cells/mL were injected into the reactors after 27 days, giving time for the autunite to reach steady state. Abiotic non-carbonate controls were kept without bacterial inoculation to provide a control for the biotic samples. Samples of the solution were analyzed for dissolved U(VI) by means of kinetic phosphorescence analyzer KPA-11 (Chemcheck Instruments, Richland, WA). Analysis showed that as [HCO{sub 3}{sup -}] increases, a diminishing trend on the effect of bacteria on autunite leaching is observed. Viability of cells was conducted after 24 hours of cell

  5. Siderophore-Mediated Iron Dissolution from Nontronites Is Controlled by Mineral Cristallochemistry.

    PubMed

    Parrello, Damien; Zegeye, Asfaw; Mustin, Christian; Billard, Patrick

    2016-01-01

    Bacteria living in oxic environments experience iron deficiency due to limited solubility and slow dissolution kinetics of iron-bearing minerals. To cope with iron deprivation, aerobic bacteria have evolved various strategies, including release of siderophores or other organic acids that scavenge external Fe(III) and deliver it to the cells. This research investigated the role of siderophores produced by Pseudomonas aeruginosa in the acquisition of Fe(III) from two iron-bearing colloidal nontronites (NAu-1 and NAu-2), comparing differences in bioavailability related with site occupancy and distribution of Fe(III) in the two lattices. To avoid both the direct contact of the mineral colloids with the bacterial cells and the uncontrolled particle aggregation, nontronite suspensions were homogenously dispersed in a porous silica gel before the dissolution experiments. A multiparametric approach coupling UV-vis spectroscopy and spectral decomposition algorithm was implemented to monitor simultaneously the solubilisation of Fe and the production of pyoverdine in microplate-based batch experiments. Both nontronites released Fe in a particle concentration-dependent manner when incubated with the wild-type P. aeruginosa strain, however iron released from NAu-2 was substantially greater than from NAu-1. The profile of organic acids produced in both cases was similar and may not account for the difference in the iron dissolution efficiency. In contrast, a pyoverdine-deficient mutant was unable to mobilize Fe(III) from either nontronite, whereas iron dissolution occurred in abiotic experiments conducted with purified pyoverdine. Overall, our data provide evidence that P. aeruginosa indirectly mobilize Fe from nontronites primarily through the production of pyoverdine. The structural Fe present on the edges of NAu-2 rather than NAu-1 particles appears to be more bio-accessible, indicating that the distribution of Fe, in the tetrahedron and/or in the octahedron sites, governs

  6. Siderophore-Mediated Iron Dissolution from Nontronites Is Controlled by Mineral Cristallochemistry

    PubMed Central

    Parrello, Damien; Zegeye, Asfaw; Mustin, Christian; Billard, Patrick

    2016-01-01

    Bacteria living in oxic environments experience iron deficiency due to limited solubility and slow dissolution kinetics of iron-bearing minerals. To cope with iron deprivation, aerobic bacteria have evolved various strategies, including release of siderophores or other organic acids that scavenge external Fe(III) and deliver it to the cells. This research investigated the role of siderophores produced by Pseudomonas aeruginosa in the acquisition of Fe(III) from two iron-bearing colloidal nontronites (NAu-1 and NAu-2), comparing differences in bioavailability related with site occupancy and distribution of Fe(III) in the two lattices. To avoid both the direct contact of the mineral colloids with the bacterial cells and the uncontrolled particle aggregation, nontronite suspensions were homogenously dispersed in a porous silica gel before the dissolution experiments. A multiparametric approach coupling UV-vis spectroscopy and spectral decomposition algorithm was implemented to monitor simultaneously the solubilisation of Fe and the production of pyoverdine in microplate-based batch experiments. Both nontronites released Fe in a particle concentration-dependent manner when incubated with the wild-type P. aeruginosa strain, however iron released from NAu-2 was substantially greater than from NAu-1. The profile of organic acids produced in both cases was similar and may not account for the difference in the iron dissolution efficiency. In contrast, a pyoverdine-deficient mutant was unable to mobilize Fe(III) from either nontronite, whereas iron dissolution occurred in abiotic experiments conducted with purified pyoverdine. Overall, our data provide evidence that P. aeruginosa indirectly mobilize Fe from nontronites primarily through the production of pyoverdine. The structural Fe present on the edges of NAu-2 rather than NAu-1 particles appears to be more bio-accessible, indicating that the distribution of Fe, in the tetrahedron and/or in the octahedron sites, governs

  7. Abiotic Formation of Hydrocarbons Under Hydrothermal Conditions: Constraints from Chemical and Isotope Data

    SciTech Connect

    Fu, Q.; Lollar, Barbara Sherwood; Horita, Juske; Lacrampe-Couloume, Georges; Seyfried, W. E.

    2007-01-01

    To understand reaction pathways and isotope systematics during mineral-catalyzed abiotic synthesis of hydrocarbons under hydrothermal conditions, experiments involving magnetite and CO{sub 2} and H{sub 2}-bearing aqueous fluids were conducted at 400 C and 500 bars. A robust technique for sample storage and transfer from experimental apparatus to stable isotope mass spectrometer provides a methodology for integration of both carbon and hydrogen isotope characterization of reactants and products generated during abiogenic synthesis experiments. Experiments were performed with and without pretreatment of magnetite to remove background carbon associated with the mineral catalyst. Prior to experiments, the abundance and carbon isotope composition of all carbon-bearing components were determined. Time-series samples of the fluid from all experiments indicated significant concentrations of dissolved CO and C{sub 1}-C{sub 3} hydrocarbons and relatively large changes in dissolved CO{sub 2} and H{sub 2} concentrations, consistent with formation of additional hydrocarbon components beyond C{sub 3}. The existence of relatively high dissolved alkanes in the experiment involving non-pretreated magnetite in particular, suggests a complex catalytic process, likely involving reinforcing effects of mineral-derived carbon with newly synthesized hydrocarbons at the magnetite surface. Similar reactions may be important mechanisms for carbon reduction in chemically complex natural hydrothermal systems. In spite of evidence supporting abiotic hydrocarbon formation in all experiments, an 'isotopic reversal' trend was not observed for {sup 13}C values of dissolved alkanes with increasing carbon number. This may relate to the specific mechanism of carbon reduction and hydrocarbon chain growth under hydrothermal conditions at elevated temperatures and pressures. Over time, significant {sup 13}C depletion in CH{sub 4} suggests either depolymerization reactions occurring in addition to

  8. Energy harvesting by implantable abiotically catalyzed glucose fuel cells

    NASA Astrophysics Data System (ADS)

    Kerzenmacher, S.; Ducrée, J.; Zengerle, R.; von Stetten, F.

    Implantable glucose fuel cells are a promising approach to realize an autonomous energy supply for medical implants that solely relies on the electrochemical reaction of oxygen and glucose. Key advantage over conventional batteries is the abundant availability of both reactants in body fluids, rendering the need for regular replacement or external recharging mechanisms obsolete. Implantable glucose fuel cells, based on abiotic catalysts such as noble metals and activated carbon, have already been developed as power supply for cardiac pacemakers in the late-1960s. Whereas, in vitro and preliminary in vivo studies demonstrated their long-term stability, the performance of these fuel cells is limited to the μW-range. Consequently, no further developments have been reported since high-capacity lithium iodine batteries for cardiac pacemakers became available in the mid-1970s. In recent years research has been focused on enzymatically catalyzed glucose fuel cells. They offer higher power densities than their abiotically catalyzed counterparts, but the limited enzyme stability impedes long-term application. In this context, the trend towards increasingly energy-efficient low power MEMS (micro-electro-mechanical systems) implants has revived the interest in abiotic catalysts as a long-term stable alternative. This review covers the state-of-the-art in implantable abiotically catalyzed glucose fuel cells and their development since the 1960s. Different embodiment concepts are presented and the historical achievements of academic and industrial research groups are critically reviewed. Special regard is given to the applicability of the concept as sustainable micro-power generator for implantable devices.

  9. Changes in biotic and abiotic processes following mangrove clearing

    NASA Astrophysics Data System (ADS)

    Granek, Elise; Ruttenberg, Benjamin I.

    2008-12-01

    Mangrove forests, important tropical coastal habitats, are in decline worldwide primarily due to removal by humans. Changes to mangrove systems can alter ecosystem properties through direct effects on abiotic factors such as temperature, light and nutrient supply or through changes in biotic factors such as primary productivity or species composition. Despite the importance of mangroves as transitional habitats between land and sea, little research has examined changes that occur when they are cleared. We examined changes in a number of biotic and abiotic factors following the anthropogenic removal of red mangroves ( Rhizophora mangle) in the Panamanian Caribbean, including algal biomass, algal diversity, algal grazing rates, light penetration, temperature, sedimentation rates and sediment organic content. In this first study examining multiple ecosystem-level effects of mangrove disturbance, we found that areas cleared of mangroves had higher algal biomass and richness than intact mangrove areas. This increase in algal biomass and richness was likely due to changes in abiotic factors (e.g. light intensity, temperature), but not biotic factors (fish herbivory). Additionally the algal and cyanobacterial genera dominating mangrove-cleared areas were rare in intact mangroves and included a number of genera that compete with coral for space on reefs. Interestingly, sedimentation rates did not differ between intact and cleared areas, but the sediments that accumulated in intact mangroves had higher organic content. These findings are the first to demonstrate that anthropogenic clearing of mangroves changes multiple biotic and abiotic processes in mangrove forests and that some of these changes may influence adjacent habitats such as coral reefs and seagrass beds. Additional research is needed to further explore the community and ecosystem-level effects of mangrove clearing and their influence on adjacent habitats, but it is clear that mangrove conservation is an

  10. Polyamines in response to abiotic stress tolerance through transgenic approaches

    PubMed Central

    Pathak, Malabika Roy; Teixeira da Silva, Jaime A; Wani, Shabir H

    2014-01-01

    The distribution, growth, development and productivity of crop plants are greatly affected by various abiotic stresses. Worldwide, sustainable crop productivity is facing major challenges caused by abiotic stresses by reducing the potential yield in crop plants by as much as 70%. Plants can generally adapt to one or more environmental stresses to some extent. Physiological and molecular studies at transcriptional, translational, and transgenic plant levels have shown the pronounced involvement of naturally occurring plant polyamines (PAs), in controlling, conferring, and modulating abiotic stress tolerance in plants. PAs are small, low molecular weight, non-protein polycations at physiological pH, that are present in all living organisms, and that have strong binding capacity to negatively charged DNA, RNA, and different protein molecules. They play an important role in plant growth and development by controlling the cell cycle, acting as cell signaling molecules in modulating plant tolerance to a variety of abiotic stresses. The commonly known PAs, putrescine, spermidine, and spermine tend to accumulate together accompanied by an increase in the activities of their biosynthetic enzymes under a range of environmental stresses. PAs help plants to combat stresses either directly or by mediating a signal transduction pathway, as shown by molecular cloning and expression studies of PA biosynthesis-related genes, knowledge of the functions of PAs, as demonstrated by developmental studies, and through the analysis of transgenic plants carrying PA genes. This review highlights how PAs in higher plants act during environmental stress and how transgenic strategies have improved our understanding of the molecular mechanisms at play. PMID:24710064

  11. Wheat EST resources for functional genomics of abiotic stress

    PubMed Central

    Houde, Mario; Belcaid, Mahdi; Ouellet, François; Danyluk, Jean; Monroy, Antonio F; Dryanova, Ani; Gulick, Patrick; Bergeron, Anne; Laroche, André; Links, Matthew G; MacCarthy, Luke; Crosby, William L; Sarhan, Fathey

    2006-01-01

    Background Wheat is an excellent species to study freezing tolerance and other abiotic stresses. However, the sequence of the wheat genome has not been completely characterized due to its complexity and large size. To circumvent this obstacle and identify genes involved in cold acclimation and associated stresses, a large scale EST sequencing approach was undertaken by the Functional Genomics of Abiotic Stress (FGAS) project. Results We generated 73,521 quality-filtered ESTs from eleven cDNA libraries constructed from wheat plants exposed to various abiotic stresses and at different developmental stages. In addition, 196,041 ESTs for which tracefiles were available from the National Science Foundation wheat EST sequencing program and DuPont were also quality-filtered and used in the analysis. Clustering of the combined ESTs with d2_cluster and TGICL yielded a few large clusters containing several thousand ESTs that were refractory to routine clustering techniques. To resolve this problem, the sequence proximity and "bridges" were identified by an e-value distance graph to manually break clusters into smaller groups. Assembly of the resolved ESTs generated a 75,488 unique sequence set (31,580 contigs and 43,908 singletons/singlets). Digital expression analyses indicated that the FGAS dataset is enriched in stress-regulated genes compared to the other public datasets. Over 43% of the unique sequence set was annotated and classified into functional categories according to Gene Ontology. Conclusion We have annotated 29,556 different sequences, an almost 5-fold increase in annotated sequences compared to the available wheat public databases. Digital expression analysis combined with gene annotation helped in the identification of several pathways associated with abiotic stress. The genomic resources and knowledge developed by this project will contribute to a better understanding of the different mechanisms that govern stress tolerance in wheat and other cereals. PMID

  12. Dissolution of Uranium Oxides Under Alkaline Oxidizing Conditions

    SciTech Connect

    Smith, Steven C.; Peper, Shane M.; Douglas, Matthew; Ziegelgruber, Kate L.; Finn, Erin C.

    2009-11-01

    Bench scale experiments were conducted to determine the dissolution characteristics of uranium oxide powders (UO2, U3O8, and UO3) in aqueous peroxide-carbonate solutions. Experimental parameters included H2O2 concentration, carbonate counter cation (NH4+, Na+, K+, and Rb+), and pH. Results indicate the dissolution rate of UO2 in 1 M (NH4)2CO3 increases linearly with peroxide concentration ranging from 0.05 – 2 M. The three uranium oxide powders exhibited different dissolution patterns however, UO3 exhibited prompt complete dissolution. Carbonate counter cation affected the dissolution kinetics. There is minimal impact of solution pH, over the range 8.8 to 10.6, on initial dissolution rate.

  13. Dissolution rate of griseofulvin in bile salt solutions.

    PubMed

    de Smidt, J H; Offringa, J C; Crommelin, D J

    1991-04-01

    Bile salts increase the apparent solubility of lipophilic poorly water-soluble drugs like griseofulvin. In this study, the dissolution kinetics of griseofulvin in solutions of bile salts (sodium taurocholate and sodium cholate) were investigated. A rotating disk apparatus was chosen to monitor dissolution kinetics; it well-defined hydrodynamic conditions allowed for analysis of the behavior of bile salt micelles under different conditions. Griseofulvin solubility and dissolution rate increased with increasing bile salt concentration in the dissolution medium. The enhancement of the dissolution rate was not linearly related to the solubility increase, as diffusional transport of the solubilized drug proved to be less efficient than transport of the unsolubilized ("free") drug. The dissolution process proved to be controlled by convective diffusion. An analysis of the data with the phase separation model provided results for the micellar diffusion coefficient comparable with literature data obtained with different techniques. PMID:1865343

  14. Abiotic Deposition of Fe Complexes onto Leptothrix Sheaths

    PubMed Central

    Kunoh, Tatsuki; Hashimoto, Hideki; McFarlane, Ian R.; Hayashi, Naoaki; Suzuki, Tomoko; Taketa, Eisuke; Tamura, Katsunori; Takano, Mikio; El-Naggar, Mohamed Y.; Kunoh, Hitoshi; Takada, Jun

    2016-01-01

    Bacteria classified in species of the genus Leptothrix produce extracellular, microtubular, Fe-encrusted sheaths. The encrustation has been previously linked to bacterial Fe oxidases, which oxidize Fe(II) to Fe(III) and/or active groups of bacterial exopolymers within sheaths to attract and bind aqueous-phase inorganics. When L. cholodnii SP-6 cells were cultured in media amended with high Fe(II) concentrations, Fe(III) precipitates visibly formed immediately after addition of Fe(II) to the medium, suggesting prompt abiotic oxidation of Fe(II) to Fe(III). Intriguingly, these precipitates were deposited onto the sheath surface of bacterial cells as the population was actively growing. When Fe(III) was added to the medium, similar precipitates formed in the medium first and were abiotically deposited onto the sheath surfaces. The precipitates in the Fe(II) medium were composed of assemblies of globular, amorphous particles (ca. 50 nm diameter), while those in the Fe(III) medium were composed of large, aggregated particles (≥3 µm diameter) with a similar amorphous structure. These precipitates also adhered to cell-free sheaths. We thus concluded that direct abiotic deposition of Fe complexes onto the sheath surface occurs independently of cellular activity in liquid media containing Fe salts, although it remains unclear how this deposition is associated with the previously proposed mechanisms (oxidation enzyme- and/or active group of organic components-involved) of Fe encrustation of the Leptothrix sheaths. PMID:27271677

  15. Cell Wall Metabolism in Response to Abiotic Stress.

    PubMed

    Le Gall, Hyacinthe; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-01-01

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions. PMID:27135320

  16. Titania may produce abiotic oxygen atmospheres on habitable exoplanets

    PubMed Central

    Narita, Norio; Enomoto, Takafumi; Masaoka, Shigeyuki; Kusakabe, Nobuhiko

    2015-01-01

    The search for habitable exoplanets in the Universe is actively ongoing in the field of astronomy. The biggest future milestone is to determine whether life exists on such habitable exoplanets. In that context, oxygen in the atmosphere has been considered strong evidence for the presence of photosynthetic organisms. In this paper, we show that a previously unconsidered photochemical mechanism by titanium (IV) oxide (titania) can produce abiotic oxygen from liquid water under near ultraviolet (NUV) lights on the surface of exoplanets. Titania works as a photocatalyst to dissociate liquid water in this process. This mechanism offers a different source of a possibility of abiotic oxygen in atmospheres of exoplanets from previously considered photodissociation of water vapor in upper atmospheres by extreme ultraviolet (XUV) light. Our order-of-magnitude estimation shows that possible amounts of oxygen produced by this abiotic mechanism can be comparable with or even more than that in the atmosphere of the current Earth, depending on the amount of active surface area for this mechanism. We conclude that titania may act as a potential source of false signs of life on habitable exoplanets. PMID:26354078

  17. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants

    PubMed Central

    Sah, Saroj K.; Reddy, Kambham R.; Li, Jiaxu

    2016-01-01

    Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression. PMID:27200044

  18. Titania may produce abiotic oxygen atmospheres on habitable exoplanets

    NASA Astrophysics Data System (ADS)

    Narita, Norio; Enomoto, Takafumi; Masaoka, Shigeyuki; Kusakabe, Nobuhiko

    2015-12-01

    The search for habitable exoplanets in the Universe is actively ongoing in the field of astronomy. The biggest future milestone is to determine whether life exists on such habitable exoplanets. In that context, oxygen in the atmosphere has been considered strong evidence for the presence of photosynthetic organisms. In this paper, we show that a previously unconsidered photochemical mechanism by titanium (IV) oxide (titania) can produce abiotic oxygen from liquid water under near ultraviolet (NUV) lights on the surface of exoplanets. Titania works as a photocatalyst to dissociate liquid water in this process. This mechanism offers a different source of a possibility of abiotic oxygen in atmospheres of exoplanets from previously considered photodissociation of water vapor in upper atmospheres by extreme ultraviolet (XUV) light. Our order-of-magnitude estimation shows that possible amounts of oxygen produced by this abiotic mechanism can be comparable with or even more than that in the atmosphere of the current Earth, depending on the amount of active surface area for this mechanism. We conclude that titania may act as a potential source of false signs of life on habitable exoplanets.Reference:Narita N. et al.,Scientific Reports 5, Article number: 13977 (2015)http://www.nature.com/articles/srep13977

  19. Titania may produce abiotic oxygen atmospheres on habitable exoplanets

    NASA Astrophysics Data System (ADS)

    Narita, Norio; Enomoto, Takafumi; Masaoka, Shigeyuki; Kusakabe, Nobuhiko

    2015-09-01

    The search for habitable exoplanets in the Universe is actively ongoing in the field of astronomy. The biggest future milestone is to determine whether life exists on such habitable exoplanets. In that context, oxygen in the atmosphere has been considered strong evidence for the presence of photosynthetic organisms. In this paper, we show that a previously unconsidered photochemical mechanism by titanium (IV) oxide (titania) can produce abiotic oxygen from liquid water under near ultraviolet (NUV) lights on the surface of exoplanets. Titania works as a photocatalyst to dissociate liquid water in this process. This mechanism offers a different source of a possibility of abiotic oxygen in atmospheres of exoplanets from previously considered photodissociation of water vapor in upper atmospheres by extreme ultraviolet (XUV) light. Our order-of-magnitude estimation shows that possible amounts of oxygen produced by this abiotic mechanism can be comparable with or even more than that in the atmosphere of the current Earth, depending on the amount of active surface area for this mechanism. We conclude that titania may act as a potential source of false signs of life on habitable exoplanets.

  20. Titania may produce abiotic oxygen atmospheres on habitable exoplanets.

    PubMed

    Narita, Norio; Enomoto, Takafumi; Masaoka, Shigeyuki; Kusakabe, Nobuhiko

    2015-09-10

    The search for habitable exoplanets in the Universe is actively ongoing in the field of astronomy. The biggest future milestone is to determine whether life exists on such habitable exoplanets. In that context, oxygen in the atmosphere has been considered strong evidence for the presence of photosynthetic organisms. In this paper, we show that a previously unconsidered photochemical mechanism by titanium (IV) oxide (titania) can produce abiotic oxygen from liquid water under near ultraviolet (NUV) lights on the surface of exoplanets. Titania works as a photocatalyst to dissociate liquid water in this process. This mechanism offers a different source of a possibility of abiotic oxygen in atmospheres of exoplanets from previously considered photodissociation of water vapor in upper atmospheres by extreme ultraviolet (XUV) light. Our order-of-magnitude estimation shows that possible amounts of oxygen produced by this abiotic mechanism can be comparable with or even more than that in the atmosphere of the current Earth, depending on the amount of active surface area for this mechanism. We conclude that titania may act as a potential source of false signs of life on habitable exoplanets.

  1. Biotic and abiotic mercury methylation and demethylation in sediments

    SciTech Connect

    Zhang, L.; Planas, D. )

    1994-05-01

    Inorganic mercury (Hg(II)) methylation and methylmercury (MeHg) demethylation may occur in the water column, sediment-water interface and subsurficial sediment of aquatic ecosystems. These transformations involve mainly microbial mechanisms, although abiotic methylation may play a more important role in the water compartment. The relative importance of biotic versus abiotic mechanisms of methylation has not been determined however, and abiotic demethylation remains unknown. Little quantitative information is available on the role of bacterial activity in mercury transformations. It has been reported that at least 16 genera of aerobic and anaerobic microorganisms are able to methylate HG(II), and that a greater number are able to demethylate MeHg. Nevertheless, not all populations of these species are capable of methyl- and demethyl-transformations. The actual concentration of MeHg in the aquatic environment is regulated by the relative production and decomposition rates. This, in turn, depends on the availability of Hg(II), MeHg, and bacteria as well as on the physico-chemical properties of the sample. The objective of this study was to compare mercury methylation and demethylation rates in sediment samples with and without active bacterial populations. We therefore performed experiments to follow bacterial evolution during the course of Hg(II) methylation and MeHg demethylation in sediment slurries containing both sterile and non-sterile sediments.

  2. Cell Wall Metabolism in Response to Abiotic Stress

    PubMed Central

    Gall, Hyacinthe Le; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-01-01

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions. PMID:27135320

  3. Abiotic Deposition of Fe Complexes onto Leptothrix Sheaths.

    PubMed

    Kunoh, Tatsuki; Hashimoto, Hideki; McFarlane, Ian R; Hayashi, Naoaki; Suzuki, Tomoko; Taketa, Eisuke; Tamura, Katsunori; Takano, Mikio; El-Naggar, Mohamed Y; Kunoh, Hitoshi; Takada, Jun

    2016-01-01

    Bacteria classified in species of the genus Leptothrix produce extracellular, microtubular, Fe-encrusted sheaths. The encrustation has been previously linked to bacterial Fe oxidases, which oxidize Fe(II) to Fe(III) and/or active groups of bacterial exopolymers within sheaths to attract and bind aqueous-phase inorganics. When L. cholodnii SP-6 cells were cultured in media amended with high Fe(II) concentrations, Fe(III) precipitates visibly formed immediately after addition of Fe(II) to the medium, suggesting prompt abiotic oxidation of Fe(II) to Fe(III). Intriguingly, these precipitates were deposited onto the sheath surface of bacterial cells as the population was actively growing. When Fe(III) was added to the medium, similar precipitates formed in the medium first and were abiotically deposited onto the sheath surfaces. The precipitates in the Fe(II) medium were composed of assemblies of globular, amorphous particles (ca. 50 nm diameter), while those in the Fe(III) medium were composed of large, aggregated particles (≥3 µm diameter) with a similar amorphous structure. These precipitates also adhered to cell-free sheaths. We thus concluded that direct abiotic deposition of Fe complexes onto the sheath surface occurs independently of cellular activity in liquid media containing Fe salts, although it remains unclear how this deposition is associated with the previously proposed mechanisms (oxidation enzyme- and/or active group of organic components-involved) of Fe encrustation of the Leptothrix sheaths. PMID:27271677

  4. Titania may produce abiotic oxygen atmospheres on habitable exoplanets.

    PubMed

    Narita, Norio; Enomoto, Takafumi; Masaoka, Shigeyuki; Kusakabe, Nobuhiko

    2015-01-01

    The search for habitable exoplanets in the Universe is actively ongoing in the field of astronomy. The biggest future milestone is to determine whether life exists on such habitable exoplanets. In that context, oxygen in the atmosphere has been considered strong evidence for the presence of photosynthetic organisms. In this paper, we show that a previously unconsidered photochemical mechanism by titanium (IV) oxide (titania) can produce abiotic oxygen from liquid water under near ultraviolet (NUV) lights on the surface of exoplanets. Titania works as a photocatalyst to dissociate liquid water in this process. This mechanism offers a different source of a possibility of abiotic oxygen in atmospheres of exoplanets from previously considered photodissociation of water vapor in upper atmospheres by extreme ultraviolet (XUV) light. Our order-of-magnitude estimation shows that possible amounts of oxygen produced by this abiotic mechanism can be comparable with or even more than that in the atmosphere of the current Earth, depending on the amount of active surface area for this mechanism. We conclude that titania may act as a potential source of false signs of life on habitable exoplanets. PMID:26354078

  5. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants.

    PubMed

    Sah, Saroj K; Reddy, Kambham R; Li, Jiaxu

    2016-01-01

    Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression. PMID:27200044

  6. Cell Wall Metabolism in Response to Abiotic Stress.

    PubMed

    Le Gall, Hyacinthe; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-02-16

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions.

  7. Buffering children from marital conflict and dissolution.

    PubMed

    Katz, L F; Gottman, J M

    1997-06-01

    Examined several protective mechanisms that may reduce deleterious correlates of marital conflict and marital dissolution in young children. One set of potential buffers focused on parent-child interaction: parental warmth, parental scaffolding/praise, and inhibition of parental rejection. As a second set of potential buffers, each parent was interviewed about their "meta-emotion philosophy"--that is, their feelings about their own emotions, and their attitudes and responses to their children's anger and sadness. The third set of potential buffers concerned intraindividual characteristics of the child, including the child's intelligence and regulatory physiology (basal vagal tone and vagal suppression). Fifty-six families with a preschool child were studied at two time points: when the children were 5 years old (Time 1) and again when the children were 8 years old (Time 2). At Time 1, naturalistic observations of marital and parent-child interaction were conducted and assessment of child regulatory physiology was obtained through measures of basal vagal tone and suppression of vagal tone. Parents were also interviewed individually about their feelings about their own and their children's emotions, and children's intelligence was assessed. At Time 2, assessment of child outcomes were obtained, including observations of peer interaction, mother ratings of behavior problems and mother and teacher ratings of peer aggression, mother ratings of child physical illness, and measures of achievement. Results indicated that all Time 1 buffering factors protected children in face of marital conflict and dissolution. PMID:9169376

  8. Bench Scale Saltcake Dissolution Test Report

    SciTech Connect

    BECHTOLD, D.B.; PACQUET, E.A.

    2000-12-06

    A potential scenario for retrieving saltcake from single shell tanks is the ''Rainbird{reg_sign} sprinkler'' method. Water is distributed evenly across the surface of the saltcake and allowed to percolate by gravity through the waste. The salt dissolves in the water, forming a saturated solution. The saturated liquid is removed by a saltwell pump situated near the bottom of the tank. By this method, there is never a large inventory of liquid in the tank that could pose a threat of leakage. There are many variables or factors that can influence the hydrodynamics of this retrieval process. They include saltcake porosity; saltwell pumping rate; salt dissolution chemistry; factors that could promote flow channeling (e.g. tank walls, dry wells, inclusions or discontinuities in the saltcake); method of water distribution; plug formation due to crystal formations or accumulation of insoluble solids. A brief literature search indicates that very little experimental data exist on these aspects of saltcake dissolution (Wiersma 1996, 1997). The tests reported here were planned (Herting, 2000) to provide preliminary data and information for planning future, scaled-up tests of the sprinkler method.

  9. Buffering children from marital conflict and dissolution.

    PubMed

    Katz, L F; Gottman, J M

    1997-06-01

    Examined several protective mechanisms that may reduce deleterious correlates of marital conflict and marital dissolution in young children. One set of potential buffers focused on parent-child interaction: parental warmth, parental scaffolding/praise, and inhibition of parental rejection. As a second set of potential buffers, each parent was interviewed about their "meta-emotion philosophy"--that is, their feelings about their own emotions, and their attitudes and responses to their children's anger and sadness. The third set of potential buffers concerned intraindividual characteristics of the child, including the child's intelligence and regulatory physiology (basal vagal tone and vagal suppression). Fifty-six families with a preschool child were studied at two time points: when the children were 5 years old (Time 1) and again when the children were 8 years old (Time 2). At Time 1, naturalistic observations of marital and parent-child interaction were conducted and assessment of child regulatory physiology was obtained through measures of basal vagal tone and suppression of vagal tone. Parents were also interviewed individually about their feelings about their own and their children's emotions, and children's intelligence was assessed. At Time 2, assessment of child outcomes were obtained, including observations of peer interaction, mother ratings of behavior problems and mother and teacher ratings of peer aggression, mother ratings of child physical illness, and measures of achievement. Results indicated that all Time 1 buffering factors protected children in face of marital conflict and dissolution.

  10. Quartz crystal microbalance thin-film dissolution rate monitor

    NASA Astrophysics Data System (ADS)

    Hinsberg, William D.; Kanazawa, Kay K.

    1989-03-01

    We describe the details of construction and operation of an instrument useful for the characterization of dissolution kinetics of thin films. This device, based on a quartz crystal microbalance operating in contact with a liquid, avoids the limitations associated with the use of optical, electrical, and mechanical dissolution rate measurement techniques. The QCM rate monitor has general application to the measurement of the kinetics of dissolution of transparent and opaque thin films such as dielectrics, metals, and polymeric resists.

  11. On the dissolution properties of GaAs in Ga

    NASA Technical Reports Server (NTRS)

    Davidson, M. C.; Moynahan, A. H.

    1977-01-01

    The dissolution of GaAs in Ga was studied to determine the nature and cause of faceting effects. Ga was allowed to dissolve single crystalline faces under isothermal conditions. Of the crystalline planes with low number indices, only the (100) surface showed a direct correlation of dissolution sites to dislocations. The type of dissolution experienced depended on temperature, and there were three distinct types of behavior.

  12. Dissolution of beryllium in artificial lung alveolar macrophage phagolysosomal fluid.

    PubMed

    Stefaniak, Aleksandr B; Virji, M Abbas; Day, Gregory A

    2011-05-01

    Dissolution of a lung burden of poorly soluble beryllium particles is hypothesized to be necessary for development of chronic beryllium lung disease (CBD) in humans. As such, particle dissolution rate must be sufficient to activate the lung immune response and dissolution lifetime sufficient to maintain chronic inflammation for months to years to support development of disease. The purpose of this research was to investigate the hypothesis that poorly soluble beryllium compounds release ions via dissolution in lung fluid. Dissolution kinetics of 17 poorly soluble particulate beryllium materials that span extraction through ceramics machining (ores, hydroxide, metal, copper-beryllium [CuBe] fume, oxides) and three CuBe alloy reference materials (chips, solid block) were measured over 31 d using artificial lung alveolar macrophage phagolysosomal fluid (pH 4.5). Differences in beryllium-containing particle physicochemical properties translated into differences in dissolution rates and lifetimes in artificial phagolysosomal fluid. Among all materials, dissolution rate constant values ranged from 10(-5) to 10(-10)gcm(-2)d(-1) and half-times ranged from tens to thousands of days. The presence of magnesium trisilicate in some beryllium oxide materials may have slowed dissolution rates. Materials associated with elevated prevalence of CBD had faster beryllium dissolution rates [10(-7)-10(-8)gcm(-2)d(-1)] than materials not associated with elevated prevalence (p<0.05).

  13. The dissolution behavior of scorodite in acidic environments

    NASA Astrophysics Data System (ADS)

    Pande, Preeti

    2001-11-01

    The safe disposal of arsenic-containing waste has been a difficult problem for the mining and metallurgical industry. One of the solutions to the arsenic problem is the precipitation of scorodite, an arsenic-containing mineral. Scorodite is reported to be relatively stable over a wide range of pH, and therefore may be a preferred disposal option. The effect of organic complexing agents on scorodite stability, however, is largely unknown. The present study is a phenomenological investigation into the dissolution kinetics of scorodite in the presence of oxalic acid under varying conditions of pH, oxalic acid concentration and temperature. The effect of scorodite particle size was also investigated. The morphological changes accompanying the dissolution process were examined by SEM and TEM analyses. Dissolution curves were divided into a linear induction period and a post-induction period. Activation energies were determined. Complete dissolution data were fit to the Prout-Tompkins/Austin-Rickett model. Dissolution data are indicative of auto-accelerated processes. The rapid increase in dissolution rate following the induction period is believed to be associated with an increase in the effective surface area. Pitting was observed on the surface of scorodite in the early stages of dissolution. In the later stages of dissolution, these pits were observed to grow and coalesce, in many cases resulting in the formation of dissolution holes.

  14. Dissolution rate measurements for resist processing in supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Pham, Victor Q.; Weibel, Gina L.; Rao, Nagesh G.; Ober, Christopher K.

    2002-07-01

    A dissolution rate monitor (DRM) was successfully constructed to study the behavior of thin photoresist films undergoing the dissolution process in supercritical carbon dioxide (SCCO2). The DRM is based on the principles of interferometry but requires special modifications to the processing vessel to allow for the passage of transmitted and reflected He-Ne laser light. Dissolution rates obtained agree well with independent profilometric measurements of film thickness loss. We found that for block and random copolymers of THPMA-F7MA, dissolution rates vary with film thickness, slowing down considerably towards the silicon surface. This behavior was also observed in TBMA-F7MA random copolymers.

  15. Platinum recycling going green via induced surface potential alteration enabling fast and efficient dissolution

    PubMed Central

    Hodnik, Nejc; Baldizzone, Claudio; Polymeros, George; Geiger, Simon; Grote, Jan-Philipp; Cherevko, Serhiy; Mingers, Andrea; Zeradjanin, Aleksandar; Mayrhofer, Karl J. J.

    2016-01-01

    The recycling of precious metals, for example, platinum, is an essential aspect of sustainability for the modern industry and energy sectors. However, due to its resistance to corrosion, platinum-leaching techniques rely on high reagent consumption and hazardous processes, for example, boiling aqua regia; a mixture of concentrated nitric and hydrochloric acid. Here we demonstrate that complete dissolution of metallic platinum can be achieved by induced surface potential alteration, an ‘electrode-less' process utilizing alternatively oxidative and reductive gases. This concept for platinum recycling exploits the so-called transient dissolution mechanism, triggered by a repetitive change in platinum surface oxidation state, without using any external electric current or electrodes. The effective performance in non-toxic low-concentrated acid and at room temperature is a strong benefit of this approach, potentially rendering recycling of industrial catalysts, including but not limited to platinum-based systems, more sustainable. PMID:27767178

  16. Preparation, characterization and dissolution of passive oxide film on the 400 series stainless steel surfaces

    NASA Astrophysics Data System (ADS)

    Sathyaseelan, V. S.; Rufus, A. L.; Chandramohan, P.; Subramanian, H.; Velmurugan, S.

    2015-12-01

    Full system decontamination of Primary Heat Transport (PHT) system of Pressurised Heavy Water Reactors (PHWRs) resulted in low decontamination factors (DF) on stainless steel (SS) surfaces. Hence, studies were carried out with 403 SS and 410 SS that are the material of construction of "End-Fitting body" and "End-Fitting Liner tubes". Three formulations were evaluated for the dissolution of passive films formed over these alloys viz., i) Two-step process consisting of oxidation and reduction reactions, ii) Dilute Chemical Decontamination (DCD) and iii) High Temperature Process. The two-step and high temperature processes could dissolve the oxide completely while the DCD process could remove only 60%. Various techniques like XRD, Raman spectroscopy and SEM-EDX were used for assessing the dissolution process. The two-step process is time consuming, laborious while the high temperature process is less time consuming and is recommended for SS decontamination.

  17. Method for improving dissolution efficiency in gas-absorption and liquid extraction processes. [Patent application

    DOEpatents

    Kanak, B.E.; Stephenson, M.J.

    1980-01-11

    A method is described for improving dissolution efficiency in processes in which a feed fluid is introduced to a zone where it is contacted with a liquid solvent for preferentially removing a component of the feed and where part of the solvent so contacted undergoes transfer into the feed fluid to saturate the same. It has been found that such transfer significantly impairs dissolution efficiency. In accordance with the invention, an amount of the above-mentioned solvent is added to the feed fluid being introduced to the contact zone, the solvent being added in an amount sufficient to effect reduction or elimination of the above-mentioned transfer. Preferably, the solvent is added to the feed fluid in an amount saturating or supersaturating the feed fluid under the conditions prevailing in the contact zone.

  18. Method for improving dissolution efficiency in gas-absorption and liquid extraction processes

    DOEpatents

    Kanak, Brant E.; Stephenson, Michael J.

    1981-01-01

    This invention is a method for improving dissolution efficiency in processes in which a feed fluid is introduced to a zone where it is contacted with a liquid solvent for preferentially removing a component of the feed and where part of the solvent so contacted undergoes transfer into the feed fluid to saturate the same. It has been found that such transfer significantly impairs dissolution efficiency. In accordance with the invention, an amount of the above-mentioned solvent is added to the feed fluid being introduced to the contact zone, the solvent being added in an amount sufficient to effect reduction or elimination of the above-mentioned transfer. Preferably, the solvent is added to the feed fluid in an amount saturating or supersaturating the feed fluid under the conditions prevailing in the contact zone.

  19. K Basin sludge dissolution engineering study

    SciTech Connect

    Westra, A.G.

    1998-08-28

    The purpose of this engineering study is to investigate the available technology related to dissolution of the K Basin sludge in nitric acid. The conclusion of this study along with laboratory and hot cell tests with actual sludge samples will provide the basis for beginning conceptual design of the sludge dissolver. The K Basin sludge contains uranium oxides, fragments of metallic U, and some U hydride as well as ferric oxyhydroxide, aluminum oxides and hydroxides, windblown sand that infiltrated the basin enclosure, ion exchange resin, and miscellaneous materials. The decision has been made to dispose of this sludge separate from the fuel elements stored in the basins. The sludge will be conditioned so that it meets Tank Waste Remediation System waste acceptance criteria and can be sent to one of the underground storage tanks. Sludge conditioning will be done by dissolving the fuel constituents in nitric acid, separating the insoluble material, adding neutron absorbers for criticality safety, and then reacting the solution with caustic to co-precipitate the uranium and plutonium. There will be five distinct feed streams to the sludge conditioning process two from the K East (KE) Basin and three from the K West (KW) Basin. The composition of the floor and pit sludges which contain more iron oxides and sand than uranium is much different than the canister sludges which are composed of mostly uranium oxides. The sludge conditioning equipment will be designed to process all of the sludge streams, but some of the operating parameters will be adjusted as necessary to handle the different sludge stream compositions. The volume of chemical additions and the amount of undissolved solids will be much different for floor and pit sludge than for canister sludge. Dissolution of uranium metal and uranium dioxide has been studied quite thoroughly and much information is available. Both uranium metal and uranium dioxide have been dissolved on a large scale in nuclear fuel

  20. Dissolution and compaction instabilities in geomaterials

    NASA Astrophysics Data System (ADS)

    Stefanou, I.; Sulem, J.; de Sauvage, J.

    2014-12-01

    Compaction bands play an important role in reservoir engineering and geological storage. Their presence in geological formations may also provide useful information on various geological processes. Several mechanisms can be involved at different scales and may be responsible for compaction band instabilities [1]. Compaction bands can be seen as a particular instability of the governing mathematical system leading to localization of deformation [2-4]. In a saturated porous rock, the progressive mechanical damage of the solid skeleton during compaction, results in the increase of the interface area of the reactants and consequently in the acceleration of the dissolution rate of the solid phase [2,5]. Thus, the solid skeleton is degraded more rapidly (mass removal because of dissolution), the overall mechanical properties of the system diminish (contraction of the elastic domain - chemical softening), deformations increase and the solid skeleton is further damaged (intergranular fractures, debonding, breakage of the porous network etc.). The stability of this positive feedback process is investigated analytically through linear stability analysis by considering the strong chemo-poro-mechanical coupling due to chemical dissolution. The post bifurcation behavior is then studied analytically and numerically revealing the compaction band thickness and periodicity. The effect of various parameters is studied as for instance the influence of the hydraulic diffusivity on the compaction band thickness. [1] P. Baud, S. Vinciguerra, C. David, A. Cavallo, E. Walker and T. Reuschlé (2009), Pure Appl. Geophys., 166(5-7), 869-898 [2] I. Stefanou and J. Sulem (2014), JGR: Solid Earth, 119(2), 880-899. doi:10.1002/2013JB010342I [3] J.W. Rudnicki and J.R. Rice (1975), Journal of the Mechanics and Physics of Solids 23(6),: 371-394 [4] K.A. Issen and J.W. Rudnicki (2000), JGR, 105(B9), 21529. doi:10.1029/2000JB900185 [5] R. Nova, R. Castellanza and C. Tamagnini (2003), International

  1. Dolomite Dissolution in Alkaline Cementious Media

    NASA Astrophysics Data System (ADS)

    Mittermayr, Florian; Klammer, Dietmar; Köhler, Stephan; Dietzel, Martin

    2010-05-01

    Chemical alteration of concrete has gained much attention over the past years as many cases of deterioration due to sulphate attack, thaumasite formation (TSA) or alkali silica reactions (ASR) have been reported in various constructions (Schmidt et al, 2009). Much less is known about the so called alkali carbonate reaction (ACR). It is believed that dolomite aggregates can react with the alkalis from the cement, dissolve and form calcite and brucite (Katayama, 2004). Due to very low solubility of dolomite in alkaline solutions this reaction seems doubtful. In this study we are trying to gain new insides about the conditions that can lead to the dissolution of dolomite in concrete. Therefore we investigated concrete samples from Austrian tunnels that show partially dissolved dolomite aggregates. Petrological analysis such as microprobe, SEM and Raman spectroscopy as well as a hydrochemical analysis of interstitial solutions and ground water and modelling with PhreeqC (Parkhurst and Appelo, 1999) are carried out. In addition a series of batch experiments is set up. Modelling approaches by PhreeqC show a thermodynamically possibility in the alkaline range when additional Ca2+ in solution causes dolomite to become more and more undersaturated as calcite gets supersaturated. Interacting ground water is enriched in Ca2+and saturated with respect to gypsum as marine evaporites are found in situ rocks. Furthermore it is more likely that Portlandite (Ca(OH)2) plays a more important role than Na and K in the cement. Portlandite acts as an additional Ca2+ source and is much more abundant than the alkalies. Some interstitial solutions are dominated mainly by Na+ and SO42- and reach concentrations up to 30 g/l TDS. It is believed that solutions can even reach thenardite saturation as efflorescences are found on the tunnel walls. In consequence dolomite solubility increases with increasing ionic strength. pH > 11 further accelerate the process of dedolomitization by the removal

  2. Dissolution of Technetium(IV) Oxide by Natural and Synthetic Organic Ligands Under both Reducing and Oxidizing Conditions

    SciTech Connect

    Gu, Baohua; Dong, W.; Liang, Liyuan; Wall, Nathalie

    2011-01-01

    Technetium-99 (Tc) in nuclear waste is a significant environmental concern due to its long half-life and high mobility in the subsurface. Reductive precipitation of Tc(IV) oxides [TcO2(s)] is an effective means of immobilizing Tc, thereby impeding its migration in groundwater. However, TcO2(s) is subject to dissolution by oxidants and/or complexing agents. In this study we ascertain the effects of a synthetic organic ligand, ethylenediaminetetraacetate (EDTA), and two natural humic isolates on the dissolution and solubility of Tc(IV) oxides. Pure synthetic TcO2(s) (0.23 mM) was used in batch experiments to determine dissolution kinetics at pH ~6 under both reducing and oxidizing conditions. All organic ligands were found to enhance the dissolution of Tc(IV) oxides, increasing their solubility from ~10-8 M (without ligands) to 4 10-7 M under strictly anoxic conditions. Reduced Tc(IV) was also found to re-oxidize rapidly under oxic conditions, with an observed oxidative dissolution rate approximately an order of magnitude higher than that of ligand-promoted dissolution under reducing conditions. Significantly, oxidative dissolution was inhibited by EDTA but enhanced by humic acid compared with experiments without any complexing agents. The redox functional properties of humics, capable of facilitating intra-molecular electron transfer, may account for this increased oxidation rate under oxic conditions. Our results highlight the importance of complex interactions for the stability and mobility of Tc, and thus for the long-term fate of Tc in contaminated environments.

  3. Dissolution test for silymarin tablets and capsules.

    PubMed

    Campodónico, A; Collado, E; Ricci, R; Pappa, H; Segall, A; Pizzorno, M T

    2001-01-01

    Silybine (SBN), isosilybine (ISBN), silycristine (SCN), silydianine (SDN), and taxifoline (TXF) are the main active flavonoids commonly found in the dried fruits of Silybum marianum, Gaertner (Compositae). Concentrations of these compounds, except TXF, are usually expressed together as silymarin content. This paper describes a simple dissolution test developed to estimate silymarin (Sl) in pharmaceutical formulations. Five commercial products were tested using this new method (including tablets, sugar tablets, and capsules): two from Argentina, one from Brazil, one from Spain, and one from Italy. Results demonstrated that, provided the dosage form disintegrates, amounts dissolved range from 50 to 90% of the labeled value. Products were analyzed by high performance liquid chromatography (HPLC) and UV spectrophotometry.

  4. Dissolution of bulk specimens of silicon nitride

    NASA Technical Reports Server (NTRS)

    Davis, W. F.; Merkle, E. J.

    1981-01-01

    An accurate chemical characterization of silicon nitride has become important in connection with current efforts to incorporate components of this material into advanced heat engines. However, there are problems concerning a chemical analysis of bulk silicon nitride. Current analytical methods require the pulverization of bulk specimens. A pulverization procedure making use of grinding media, on the other hand, will introduce contaminants. A description is given of a dissolution procedure which overcomes these difficulties. It has been found that up to at least 0.6 g solid pieces of various samples of hot pressed and reaction bonded silicon nitride can be decomposed in a mixture of 3 mL hydrofluoric acid and 1 mL nitric acid overnight at 150 C in a Parr bomb. High-purity silicon nitride is completely soluble in nitric acid after treatment in the bomb. Following decomposition, silicon and hydrofluoric acid are volatilized and insoluble fluorides are converted to a soluble form.

  5. Uranium Metal Analysis via Selective Dissolution

    SciTech Connect

    Delegard, Calvin H.; Sinkov, Sergey I.; Schmidt, Andrew J.; Chenault, Jeffrey W.

    2008-09-10

    Uranium metal, which is present in sludge held in the Hanford Site K West Basin, can create hazardous hydrogen atmospheres during sludge handling, immobilization, or subsequent transport and storage operations by its oxidation/corrosion in water. A thorough knowledge of the uranium metal concentration in sludge therefore is essential to successful sludge management and waste process design. The goal of this work was to establish a rapid routine analytical method to determine uranium metal concentrations as low as 0.03 wt% in sludge even in the presence of up to 1000-fold higher total uranium concentrations (i.e., up to 30 wt% and more uranium) for samples to be taken during the upcoming sludge characterization campaign and in future analyses for sludge handling and processing. This report describes the experiments and results obtained in developing the selective dissolution technique to determine uranium metal concentration in K Basin sludge.

  6. Helium enrichment during convective carbon dioxide dissolution

    NASA Astrophysics Data System (ADS)

    Larson, T.; Hesse, M. A.

    2013-12-01

    Motivated by observed variations of the CO2/He ratios in natural carbon dioxide (CO2) reservoirs, such as the Bravo Dome field in northeastern New Mexico, we have performed laboratory experiments equilibrating gas mixtures containing Helium (He) and CO2 with water, at close to ambient conditions in a closed system. The experimental design allows for continuous measurement of headspace pressure as well as timed interval measurements of the CO2/He ratios and the δ13C value of CO2 in the headspace. Results from three dissolution experiments are reported: 1) pure Helium system, 2) 98% CO2 + 2% Nitrogen system, and 3) 97% CO2 and 3% Helium. Final equilibrated experimental results are compared to theoretical results obtained using Henry's Law relationships. The evolution of the amount of dissolved CO2 computed from gas pressure and gas compositions are in good agreement with Henry's Law relationships. For example, the CO2 + N2 system was initially pressurized with pure CO2 to 1323 mbar and after six days it equilibrated to a measured headspace pressure of 596 mbar. This compares very well with a calculated equilibrium headspace pressure of 592 mbar for this system. The CO2 + He system was pressurized to 1398 mbar CO2 and after six days equilibrated to a measured headspace pressure of 397 mbar. This measured pressure is slightly higher than the predicted equilibrated headspace pressure of 341 mbar, indicating a possible leak in the system during this particular experiment. In both experiments the initial pH of the water was 9.3 and the final equilibrated pH was 5.4. The δ13C value of equilibrated headspace CO2 was within 0.25‰ of its starting δ13C value, demonstrating insignificant carbon isotope fractionation at low pH. Measured Helium/ CO2 ratios throughout the CO2+Helium experiment preserve a non-linear trend of increasing He/ CO2 ratios through time that correlate very well with the measured pressure drop from CO2 dissolution. This indicates that gas composition

  7. Dissolution of Arsenic Minerals Mediated by Dissimilatory Arsenate Reducing Bacteria: Estimation of the Physiological Potential for Arsenic Mobilization

    PubMed Central

    Lukasz, Drewniak; Liwia, Rajpert; Aleksandra, Mantur; Aleksandra, Sklodowska

    2014-01-01

    The aim of this study was characterization of the isolated dissimilatory arsenate reducing bacteria in the context of their potential for arsenic removal from primary arsenic minerals through reductive dissolution. Four strains, Shewanella sp. OM1, Pseudomonas sp. OM2, Aeromonas sp. OM4, and Serratia sp. OM17, capable of anaerobic growth with As (V) reduction, were isolated from microbial mats from an ancient gold mine. All of the isolated strains: (i) produced siderophores that promote dissolution of minerals, (ii) were resistant to dissolved arsenic compounds, (iii) were able to use the dissolved arsenates as the terminal electron acceptor, and (iii) were able to use copper minerals containing arsenic minerals (e.g., enargite) as a respiratory substrate. Based on the results obtained in this study, we postulate that arsenic can be released from some As-bearing polymetallic minerals (such as copper ore concentrates or middlings) under reductive conditions by dissimilatory arsenate reducers in indirect processes. PMID:24724102

  8. Dissolution of arsenic minerals mediated by dissimilatory arsenate reducing bacteria: estimation of the physiological potential for arsenic mobilization.

    PubMed

    Lukasz, Drewniak; Liwia, Rajpert; Aleksandra, Mantur; Aleksandra, Sklodowska

    2014-01-01

    The aim of this study was characterization of the isolated dissimilatory arsenate reducing bacteria in the context of their potential for arsenic removal from primary arsenic minerals through reductive dissolution. Four strains, Shewanella sp. OM1, Pseudomonas sp. OM2, Aeromonas sp. OM4, and Serratia sp. OM17, capable of anaerobic growth with As (V) reduction, were isolated from microbial mats from an ancient gold mine. All of the isolated strains: (i) produced siderophores that promote dissolution of minerals, (ii) were resistant to dissolved arsenic compounds, (iii) were able to use the dissolved arsenates as the terminal electron acceptor, and (iii) were able to use copper minerals containing arsenic minerals (e.g., enargite) as a respiratory substrate. Based on the results obtained in this study, we postulate that arsenic can be released from some As-bearing polymetallic minerals (such as copper ore concentrates or middlings) under reductive conditions by dissimilatory arsenate reducers in indirect processes.

  9. Glass dissolution rate measurement and calculation revisited

    NASA Astrophysics Data System (ADS)

    Fournier, Maxime; Ull, Aurélien; Nicoleau, Elodie; Inagaki, Yaohiro; Odorico, Michaël; Frugier, Pierre; Gin, Stéphane

    2016-08-01

    Aqueous dissolution rate measurements of nuclear glasses are a key step in the long-term behavior study of such waste forms. These rates are routinely normalized to the glass surface area in contact with solution, and experiments are very often carried out using crushed materials. Various methods have been implemented to determine the surface area of such glass powders, leading to differing values, with the notion of the reactive surface area of crushed glass remaining vague. In this study, around forty initial dissolution rate measurements were conducted following static and flow rate (SPFT, MCFT) measurement protocols at 90 °C, pH 10. The international reference glass (ISG), in the forms of powders with different particle sizes and polished monoliths, and soda-lime glass beads were examined. Although crushed glass grains clearly cannot be assimilated with spheres, it is when using the samples geometric surface (Sgeo) that the rates measured on powders are closest to those found for monoliths. Overestimation of the reactive surface when using the BET model (SBET) may be due to small physical features at the atomic scale-contributing to BET surface area but not to AFM surface area. Such features are very small compared with the thickness of water ingress in glass (a few hundred nanometers) and should not be considered in rate calculations. With a SBET/Sgeo ratio of 2.5 ± 0.2 for ISG powders, it is shown here that rates measured on powders and normalized to Sgeo should be divided by 1.3 and rates normalized to SBET should be multiplied by 1.9 in order to be compared with rates measured on a monolith. The use of glass beads indicates that the geometric surface gives a good estimation of glass reactive surface if sample geometry can be precisely described. Although data clearly shows the repeatability of measurements, results must be given with a high uncertainty of approximately ±25%.

  10. Stressed out symbiotes: hypotheses for the influence of abiotic stress on arbuscular mycorrhizal fungi.

    PubMed

    Millar, Niall S; Bennett, Alison E

    2016-11-01

    Abiotic stress is a widespread threat to both plant and soil communities. Arbuscular mycorrhizal (AM) fungi can alleviate effects of abiotic stress by improving host plant stress tolerance, but the direct effects of abiotic stress on AM fungi are less well understood. We propose two hypotheses predicting how AM fungi will respond to abiotic stress. The stress exclusion hypothesis predicts that AM fungal abundance and diversity will decrease with persistent abiotic stress. The mycorrhizal stress adaptation hypothesis predicts that AM fungi will evolve in response to abiotic stress to maintain their fitness. We conclude that abiotic stress can have effects on AM fungi independent of the effects on the host plant. AM fungal communities will change in composition in response to abiotic stress, which may mean the loss of important individual species. This could alter feedbacks to the plant community and beyond. AM fungi will adapt to abiotic stress independent of their host plant. The adaptation of AM fungi to abiotic stress should allow the maintenance of the plant-AM fungal mutualism in the face of changing climates.

  11. Development and application of a screening model for evaluating bioenhanced dissolution in DNAPL source zones.

    PubMed

    Phelan, Thomas J; Abriola, Linda M; Gibson, Jenny L; Smits, Kathleen M; Christ, John A

    2015-12-01

    In-situ bioremediation, a widely applied treatment technology for source zones contaminated with dense non-aqueous phase liquids (DNAPLs), has proven economical and reasonably efficient for long-term management of contaminated sites. Successful application of this remedial technology, however, requires an understanding of the complex interaction of transport, mass transfer, and biotransformation processes. The bioenhancement factor, which represents the ratio of DNAPL mass transfer under microbially active conditions to that which would occur under abiotic conditions, is commonly used to quantify the effectiveness of a particular bioremediation remedy. To date, little research has been directed towards the development and validation of methods to predict bioenhancement factors under conditions representative of real sites. This work extends an existing, first-order, bioenhancement factor expression to systems with zero-order and Monod kinetics, representative of many source-zone scenarios. The utility of this model for predicting the bioenhancement factor for previously published laboratory and field experiments is evaluated. This evaluation demonstrates the applicability of these simple bioenhancement factors for preliminary experimental design and analysis, and for assessment of dissolution enhancement in ganglia-contaminated source zones. For ease of application, a set of nomographs is presented that graphically depicts the dependence of bioenhancement factor on physicochemical properties. Application of these nomographs is illustrated using data from a well-documented field site. Results suggest that this approach can successfully capture field-scale, as well as column-scale, behavior. Sensitivity analyses reveal that bioenhanced dissolution will critically depend on in-situ biomass concentrations. PMID:26484479

  12. Development and application of a screening model for evaluating bioenhanced dissolution in DNAPL source zones

    NASA Astrophysics Data System (ADS)

    Phelan, Thomas J.; Abriola, Linda M.; Gibson, Jenny L.; Smits, Kathleen M.; Christ, John A.

    2015-12-01

    In-situ bioremediation, a widely applied treatment technology for source zones contaminated with dense non-aqueous phase liquids (DNAPLs), has proven economical and reasonably efficient for long-term management of contaminated sites. Successful application of this remedial technology, however, requires an understanding of the complex interaction of transport, mass transfer, and biotransformation processes. The bioenhancement factor, which represents the ratio of DNAPL mass transfer under microbially active conditions to that which would occur under abiotic conditions, is commonly used to quantify the effectiveness of a particular bioremediation remedy. To date, little research has been directed towards the development and validation of methods to predict bioenhancement factors under conditions representative of real sites. This work extends an existing, first-order, bioenhancement factor expression to systems with zero-order and Monod kinetics, representative of many source-zone scenarios. The utility of this model for predicting the bioenhancement factor for previously published laboratory and field experiments is evaluated. This evaluation demonstrates the applicability of these simple bioenhancement factors for preliminary experimental design and analysis, and for assessment of dissolution enhancement in ganglia-contaminated source zones. For ease of application, a set of nomographs is presented that graphically depicts the dependence of bioenhancement factor on physicochemical properties. Application of these nomographs is illustrated using data from a well-documented field site. Results suggest that this approach can successfully capture field-scale, as well as column-scale, behavior. Sensitivity analyses reveal that bioenhanced dissolution will critically depend on in-situ biomass concentrations.

  13. Influence of Dissolved Organic Matter and Fe (II) on the Abiotic Reduction of Pentachloronitrobenzene

    EPA Science Inventory

    Nitroaromatic pesticides (NAPs) are hydrophobic contaminants that can accumulate in sediments by the deposition of suspended solids from surface waters. Fe(II) and dissolved organic matter (DOM), present in suboxic and anoxic zones of freshwater sediments, can transform NAPs in n...

  14. Dissolution mechanism of soda-lime silicate glass and of PNL 76-68 in the presence of dissolved Mg

    SciTech Connect

    Sang, J.C.; Guo, Y.; Barkatt, A.; Adel-Hadadi, M.A.; Marbury, G.S.; Barkatt, A.

    1994-12-31

    Leaching studies were performed on powdered PNL 76-68 glass in de-ionized water in the presence of Mg solute. The results showed that the presence of Mg in the leachant greatly reduced the rate of glass dissolution. The equation Q = kt{sup {alpha}} was used to express the experimental data. In the absence of Mg, {alpha} was about 1, i.e., the amount of glass dissolved was linear with time. In the presence of Mg, {alpha} was close to 0.5, i.e. the extracted amount was proportional to the square root of time. Therefore, the reduction of the dissolution rate of PNL 76-68 glass in the presence of Mg solute could be explained as a result of a change in the glass dissolution mechanism. Comparative leaching studies on bulk soda-lime silicate glass in a sodium borate buffered system (pH 8.1) showed the same results. The presence of Mg in the leachant reduced the rate of glass dissolution. In the absence of Mg, {alpha} was about 1, while in the presence of Mg, {alpha} was 0.5. This change in {alpha} was not caused by changes in pH, and it represents a real change in the glass dissolution mechanism.

  15. DISSOLUTION AND COMPATIBILITY STUDY OF BINARY AND TERNARY INTERACTIVE MIXTURES OF INDOMETHACIN: COMPARISON WITH COMMERCIALLY AVAILABLE CAPSULES.

    PubMed

    Maswadeh, Hamzah M

    2016-01-01

    The main objective of this work was to use Weibull distribution function and Baker-Lonsdale models to study the dissolution kinetics of prepared binary and ternary interactive mixtures containing indomethacin in comparison with three commercially available capsules of indomethacin, namely, Rothacin®, Indomin® and Indylon®. Differential scanning calorimetry (DSC) in conjunction with cloud point method was used to study the compatibility of indomethacin with polyvinylpyrrolidone (PVP) and lactose and to provide an explanation(s) for the insignificant increase in dissolution rate observed in the ternary interactive mixture as well as for the reduction in the dissolution rate observed from the binary system in our previous study. Results showed that the Weibull distribution function equation was the best fit to the dissolution data for all formulations used in this study. DSC curves showed that the decrease in dissolution rate from the binary and ternary interactive mixtures was due to incompatibility of indomethacin with PVP. Also DSC curves showed that lactose was compatible with indomethacin and that lactose was used as excipient in two commercial products (Rothacin® and Indylon®). Results from the cloud point method showed that the addition of indomethacin to 1% PVP solution containing ammonium sulfate (with cloud point at 76°C) reduces the cloud point of PVP indicating that there is an interaction between indomethacin and PVP, while the cloud point of 1% PVP containing ammonium sulfate was not affected by the addition of lactose. PMID:27476292

  16. Influence of rapeseed phospholipids on ibuprofen dissolution from solid dispersions.

    PubMed

    Sosada, M; Gorecki, M; Pasker, B

    2006-08-01

    The dissolution profiles of ibuprofen (IB) from solid dispersions prepared by the solvent evaporation method, containing the rapeseed lecithin ethanol soluble fraction (LESF) or rapeseed phosphatidylcholine (RPC) have been determined. The effect of incorporation of PEG 4,000 or PEG 8,000 in the solid dispersions on the controlled-release of IB was also investigated. Dissolution studies conducted in double-distilled water using the paddle dissolution apparatus showed that the initial dissolution rate (IDR) within the first 5 min and the maximum percent of dissolved IB of IB/LESF were double of those of IB/RPC (both in ratio 4:1 w/w). The low amounts of LESF markedly increased dissolution of IB. Increasing of LESF concentration from 0 to 10 and 20% in solid dispersions produced 60 and 100% improvement of IB maximum dissolution level respectively, to compare with that of IB alone. PEG 4,000 caused the slightly decreasing in IB dissolution rate, while PEG 8,000 markedly improved the dissolution of IB in examined conditions.

  17. Successful topical dissolution of cholesterol gallbladder stones using ethyl propionate.

    PubMed

    Hofmann, A F; Amelsberg, A; Esch, O; Schteingart, C D; Lyche, K; Jinich, H; Vansonnenberg, E; D'Agostino, H B

    1997-06-01

    Topical dissolution of cholesterol gallbladder stones using methyl tert-butyl ether (MTBE) is useful in symptomatic patients judged too ill for surgery. Previous studies showed that ethyl propionate (EP), a C5 ester, dissolves cholesterol gallstones rapidly in vitro, but differs from MTBE in being eliminated so rapidly by the liver that blood levels remain undetectable. Our aim was to test EP as a topical dissolution agent for cholesterol gallbladder stones. Five high-risk patients underwent topical dissolution of gallbladder stones by EP. In three patients, the solvent was instilled via a cholecystostomy tube placed previously to treat acute cholecystitis; in two patients, a percutaneous transhepatic catheter was placed in the gallbladder electively. Gallstone dissolution was assessed by chromatography, by gravimetry, and by catheter cholecystography. Total dissolution of gallstones was obtained in four patients after 6-10 hr of lavage; in the fifth patient, partial gallstone dissolution facilitated basketing of the stones. In two patients, cholesterol dissolution was measured and averaged 30 mg/min. Side effects were limited to one episode of transient hypotension and pain at the infusion site; no patient developed somnolence or nausea. Gallstone elimination was associated with relief of symptoms. EP is an acceptable alternative to MTBE for topical dissolution of cholesterol gallbladder stones in high-risk patients. The lower volatility and rapid hepatic extraction of EP suggest that it may be preferable to MTBE in this investigational procedure.

  18. 10 CFR 960.4-2-6 - Dissolution.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Dissolution. 960.4-2-6 Section 960.4-2-6 Energy DEPARTMENT OF ENERGY GENERAL GUIDELINES FOR THE PRELIMINARY SCREENING OF POTENTIAL SITES FOR A NUCLEAR WASTE REPOSITORY Postclosure Guidelines § 960.4-2-6 Dissolution. (a) Qualifying condition. The site shall...

  19. Dissolution Profile of Nimesulide from Pharmaceutical Preparations for Oral Use.

    PubMed

    Tubić, Biljana; Uzunović, Alija; Pilipović, Saša; Gagić, Žarko

    2016-01-01

    Nimesulide belongs to the group of semi-selective COX-2 inhibitors, widely used in solid oral formulations. In the present work the influence of surfactants among other drug excipients, as well as particle size of the active substance and the effects of medium pH on the dissolution rate of nimesulide from solid pharmaceutical forms. For that purpose, four different preparations containing 100 mg nimesulide per tablet and available in the market of Bosnia and Herzegovina (labeled here as A, B, C and D) were studied. The test for the assessment of dissolution profiles of the formulations was performed in surfactant-free dissolution medium pH 7.5. The dissolution profiles were compared by calculating difference (f1), and similarity (f2) factors. The increasing dissolution medium pH value from 7.5 to 7.75 resulted in a significant increase of nimesulide dissolution rate from the examined formulations. Also, the results showed that particle size affects to a great extent the dissolution rate and the best results were achieved with micronized nimesulide. The presence of the surfactants among the other excipients expressed a negligible effect on the dissolution profile.

  20. Setting dissolution specifications for modified-release dosage forms.

    PubMed

    Piscitelli, D A; Young, D

    1997-01-01

    Dissolution specifications are used for quality assurance and may also serve as a surrogate for in vivo bioavailability. These limits can guide formulation development and eliminate the need for bioavailability studies for scale up and post approval changes. Several methods for setting dissolution specifications have been reviewed in this chapter. A summary of the advantages and disadvantages for each method can be found in Table 1. When choosing a method for setting dissolution specifications, it is important to 1) have a discriminating dissolution system, 2) incorporate in vivo data, 3) include intersubject variability, and 4) predict plasma concentration-time profiles. Predicting plasma concentration curves allows one to see how the change in formulation or dissolution limits perform in vivo. Dissolution specifications should be set so that all formulations that have dissolution profiles within the limits of the specifications are bioequivalent. This can be assured if the boundaries are tested for bioequivalence. Minimally, the formulations that have dissolution profiles within the limits of the specifications should be bioequivalent to the pivotal batch. A population prediction of the plasma concentration-time profiles for the upper and lower limit would incorporate the true intersubject variability for the formulation. PMID:9269491

  1. 20 CFR 404.1219 - Dissolution of political subdivision.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false Dissolution of political subdivision. 404.1219 Section 404.1219 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL OLD-AGE, SURVIVORS AND... Agreements Is Obtained and Continues § 404.1219 Dissolution of political subdivision. If a...

  2. 20 CFR 404.1219 - Dissolution of political subdivision.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false Dissolution of political subdivision. 404.1219 Section 404.1219 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL OLD-AGE, SURVIVORS AND... Agreements Is Obtained and Continues § 404.1219 Dissolution of political subdivision. If a...

  3. 20 CFR 404.1219 - Dissolution of political subdivision.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 2 2013-04-01 2013-04-01 false Dissolution of political subdivision. 404.1219 Section 404.1219 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL OLD-AGE, SURVIVORS AND... Agreements Is Obtained and Continues § 404.1219 Dissolution of political subdivision. If a...

  4. 20 CFR 404.1219 - Dissolution of political subdivision.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Dissolution of political subdivision. 404.1219 Section 404.1219 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL OLD-AGE, SURVIVORS AND... Agreements Is Obtained and Continues § 404.1219 Dissolution of political subdivision. If a...

  5. 20 CFR 404.1219 - Dissolution of political subdivision.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Dissolution of political subdivision. 404.1219 Section 404.1219 Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL OLD-AGE, SURVIVORS AND... Agreements Is Obtained and Continues § 404.1219 Dissolution of political subdivision. If a...

  6. Thermal dissolution of maize starches in aqueous medium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starches are not soluble in neutral water at room temperature. However, if they are heated in a closed container beyond the boiling point of water, they eventually dissolve. The dissolution temperature depends on the type of starch. The dissolution process was monitored in real time by measuring ...

  7. 21 CFR 343.90 - Dissolution and drug release testing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...-COUNTER HUMAN USE Testing Procedures § 343.90 Dissolution and drug release testing. (a) (b) Aspirin capsules. Aspirin capsules must meet the dissolution standard for aspirin capsules as contained in the United States Pharmacopeia (USP) 23 at page 132. (c) Aspirin delayed-release capsules and aspirin...

  8. 21 CFR 343.90 - Dissolution and drug release testing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...-COUNTER HUMAN USE Testing Procedures § 343.90 Dissolution and drug release testing. (a) (b) Aspirin capsules. Aspirin capsules must meet the dissolution standard for aspirin capsules as contained in the United States Pharmacopeia (USP) 23 at page 132. (c) Aspirin delayed-release capsules and aspirin...

  9. 21 CFR 343.90 - Dissolution and drug release testing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...-COUNTER HUMAN USE Testing Procedures § 343.90 Dissolution and drug release testing. (a) (b) Aspirin capsules. Aspirin capsules must meet the dissolution standard for aspirin capsules as contained in the United States Pharmacopeia (USP) 23 at page 132. (c) Aspirin delayed-release capsules and aspirin...

  10. 21 CFR 343.90 - Dissolution and drug release testing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...-COUNTER HUMAN USE Testing Procedures § 343.90 Dissolution and drug release testing. (a) (b) Aspirin capsules. Aspirin capsules must meet the dissolution standard for aspirin capsules as contained in the United States Pharmacopeia (USP) 23 at page 132. (c) Aspirin delayed-release capsules and aspirin...

  11. 21 CFR 343.90 - Dissolution and drug release testing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...-COUNTER HUMAN USE Testing Procedures § 343.90 Dissolution and drug release testing. (a) (b) Aspirin capsules. Aspirin capsules must meet the dissolution standard for aspirin capsules as contained in the United States Pharmacopeia (USP) 23 at page 132. (c) Aspirin delayed-release capsules and aspirin...

  12. Uranium isotopes fingerprint biotic reduction

    SciTech Connect

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J.; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-04-20

    Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U), i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. In addition, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.

  13. Uranium isotopes fingerprint biotic reduction

    DOE PAGES

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J.; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-04-20

    Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U),more » i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. In addition, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.« less

  14. Uranium isotopes fingerprint biotic reduction.

    PubMed

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-05-01

    Knowledge of paleo-redox conditions in the Earth's history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U), i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth's crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. Additionally, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.

  15. Uranium isotopes fingerprint biotic reduction

    PubMed Central

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J.; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-01-01

    Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U), i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. Additionally, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium. PMID:25902522

  16. Wetting effects versus ion pairs diffusivity: interactions of anionic surfactants with highly soluble cationic drugs and its impact on tablet dissolution.

    PubMed

    Desai, Divyakant; Wong, Benjamin; Huang, Yande; Ye, Qingmei; Guo, Hang; Huang, Ming; Timmins, Peter

    2015-07-01

    A study was conducted to develop a mechanistic understanding of dissolution of a highly soluble cationic drug, metformin hydrochloride, under the influence of anionic surfactants, sodium alkyl sulfates. The surfactants did not influence the saturated solubility of the drug, but reduced the surface tension of the dissolution media as the alkyl chain length increased. Their influence on tablet wetting based on the contact angles did not show any trend. The dissolution of 850 mg metformin hydrochloride tablets in 0.1 N HCl and pH 4.5 acetate buffer with 0.01% (w/v) sodium n-octyl sulfate (C8), sodium n-decyl sulfate (C10), or sodium n-tetradecyl sulfate (C14) was similar to the control, but was enhanced by sodium lauryl sulfate (C12). At 0.1% (w/v) concentration, the dissolution was not enhanced by C12 because the reduction in surface tension was counterbalanced by an increase in hydrophobic ion pairs that showed slower diffusivity by nuclear magnetic resonance. At 0.1% (w/v), metformin also formed an insoluble salt (1:2 molar ratios) with C10 (pH 1.2), C12, and C14 (pH 1.2 and 4.5) but not with C8. Three competing factors influenced the drug dissolution by surfactants: reduction in surface tension of the dissolution media, ion pairs with low diffusivity, and formation of an insoluble salt. PMID:26017286

  17. Aluminum Target Dissolution in Support of the Pu-238 Program

    SciTech Connect

    McFarlane, Joanna; Benker, Dennis; DePaoli, David W; Felker, Leslie Kevin; Mattus, Catherine H

    2014-09-01

    Selection of an aluminum alloy for target cladding affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the caustic dissolution step, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. We present a study to maximize dissolution of aluminum metal alloy, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as a function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. These data have been compared with published calculations of aluminum phase diagrams. Temperature logging during the transients has been investigated as a means to generate kinetic and mass transport data on the dissolution process. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.

  18. Convective dissolution of carbon dioxide in saline aquifers

    NASA Astrophysics Data System (ADS)

    Neufeld, Jerome A.; Hesse, Marc A.; Riaz, Amir; Hallworth, Mark A.; Tchelepi, Hamdi A.; Huppert, Herbert E.

    2010-11-01

    Geological carbon dioxide (CO2) storage is a means of reducing anthropogenic emissions. Dissolution of CO2 into the brine, resulting in stable stratification, increases storage security. The dissolution rate is determined by convection in the brine driven by the increase of brine density with CO2 saturation. We present a new analogue fluid system that reproduces the convective behaviour of CO2-enriched brine. Laboratory experiments and high-resolution numerical simulations show that the convective flux scales with the Rayleigh number to the 4/5 power, in contrast with a classical linear relationship. A scaling argument for the convective flux incorporating lateral diffusion from downwelling plumes explains this nonlinear relationship for the convective flux, provides a physical picture of high Rayleigh number convection in a porous medium, and predicts the CO2 dissolution rates in CO2 accumulations. These estimates of the dissolution rate show that convective dissolution can play an important role in enhancing storage security.

  19. Carbon and chlorine isotope analysis to identify abiotic degradation pathways of 1,1,1-trichloroethane.

    PubMed

    Palau, Jordi; Shouakar-Stash, Orfan; Hunkeler, Daniel

    2014-12-16

    This study investigates dual C-Cl isotope fractionation during 1,1,1-TCA transformation by heat-activated persulfate (PS), hydrolysis/dehydrohalogenation (HY/DH) and Fe(0). Compound-specific chlorine isotope analysis of 1,1,1-TCA was performed for the first time, and transformation-associated isotope fractionation ε bulk C and ε bulk Cl values were -4.0 ± 0.2‰ and no chlorine isotope fractionation with PS, -1.6 ± 0.2‰ and -4.7 ± 0.1‰ for HY/DH, -7.8 ± 0.4‰ and -5.2 ± 0.2‰ with Fe(0). Distinctly different dual isotope slopes (Δδ13C/Δδ37Cl): ∞ with PS, 0.33 ± 0.04 for HY/DH and 1.5 ± 0.1 with Fe(0) highlight the potential of this approach to identify abiotic degradation pathways of 1,1,1-TCA in the field. The trend observed with PS agreed with a C-H bond oxidation mechanism in the first reaction step. For HY/DH and Fe(0) pathways, different slopes were obtained although both pathways involve cleavage of a C-Cl bond in their initial reaction step. In contrast to the expected larger primary carbon isotope effects relative to chlorine for C-Cl bond cleavage, ε bulk C < ε bulk Cl was observed for HY/DH and in a similar range for reduction by Fe(0), suggesting the contribution of secondary chlorine isotope effects. Therefore, different magnitude of secondary chlorine isotope effects could at least be partly responsible for the distinct slopes between HY/DH and Fe(0) pathways. Following this dual isotope approach, abiotic transformation processes can unambiguously be identified and quantified.

  20. Biotic and Abiotic Transformation of a Volatile Organics Plume in a Semi-Arid Vadose Zone

    SciTech Connect

    Studer, J.E.; Singletary, M.A.; Miller, D.R.

    1999-04-08

    An evaluation of biotic and abiotic attenuation processes potentially important to chlorinated and non-chlorinated volatile organic compound (VOC) fate and transport in the 148 meter thick vadose zone beneath the Chemical Waste Landfill (CWL) was conducted. A unique feature of this evaluation is the comparison of two estimates of VOC mass present in the soil gas, pore-water, and solid phases (but not including mass as non-aqueous phase liquid [NAPL]) of the vadose zone in 1993. One estimate, 1,800 kg, was obtained from vadose zone transport modeling that incorporated molecular diffusion and volatilization to the atmosphere, but not biotic or chemical processes. The other estimate, 2,120 kg, was obtained from the sum of VOC mass physically removed during soil vapor extraction and an estimate of VOC mass remaining in the vadose zone in 1998, both adjusted to exclude NAPL mass. This comparison indicates that biogeochemical processes were at best slightly important to historical VOC plume development. Some evidence of aerobic degradation of non-chlorinated VOCs and abiotic transformation of 1,1,1-Trichloroethane was identified. Despite potentially amenable site conditions, no evidence was found of cometabolic and anaerobic transformation pathways. Relying principally on soil-gas analytical results, an upper-bound estimate of 21% mass reduction due to natural biogeochemical processes was developed. Although available information for the CWL indicates that natural attenuation processes other than volatilization to the atmosphere did not effective y enhance groundwater protection, these processes could be important in significantly reducing groundwater contamination and exposure risks at other sites. More laboratory and field research is required to improve our collective ability to characterize and exploit natural VOC attenuation processes, especially with respect to the combination of relatively thick and dry vadose zones and chlorinated VOCs.

  1. Model Comparison for Abiotic versus Biotic Pollen Dispersal.

    PubMed

    Foster, Erich L; Chan, David M; Dyer, Rodney J

    2016-10-01

    An agent-based model with a correlated random walk is used to explore pollination within a forest. For abiotic dispersal, say via the wind, we use a purely random walk where there is no correlation between consecutive steps and for biotic dispersal, say via insect, we use a moderate or highly correlated random walk. In particular, we examine the differences in a number of biological measurement between a purely random walk and a correlated random walk in terms of gene dispersal in low and high plant densities. PMID:27550704

  2. Model Comparison for Abiotic versus Biotic Pollen Dispersal.

    PubMed

    Foster, Erich L; Chan, David M; Dyer, Rodney J

    2016-10-01

    An agent-based model with a correlated random walk is used to explore pollination within a forest. For abiotic dispersal, say via the wind, we use a purely random walk where there is no correlation between consecutive steps and for biotic dispersal, say via insect, we use a moderate or highly correlated random walk. In particular, we examine the differences in a number of biological measurement between a purely random walk and a correlated random walk in terms of gene dispersal in low and high plant densities.

  3. Coupled Abiotic-Biotic Degradation of Bisphenol A

    NASA Astrophysics Data System (ADS)

    Im, J.; Prevatte, C.; Campagna, S. R.; Loeffler, F.

    2014-12-01

    Bisphenol A (BPA) is a ubiquitous environmental contaminant with weak estrogenic activity. BPA is readily biodegradable with oxygen available, but is recalcitrant to microbial degradation under anoxic conditions. However, BPA is susceptible to abiotic transformation under anoxic conditions. To better understand the fate of BPA in anoxic environments, the kinetics of BPA transformation by manganese oxide (d-MnO2) were investigated. BPA was rapidly transformed by MnO2 with a pseudo-first-order rate constant of 0.413 min-1. NMR and LC-MS analyses identified 4-hydroxycumyl alcohol (HCA) as a major intermediate. Up to 64% of the initial amount of BPA was recovered as HCA within 5 min, but the conversion efficiency decreased with time, suggesting that HCA was further degraded by MnO2. Further experiments confirmed that HCA was also susceptible to transformation by MnO2, albeit at 5-fold lower rates than BPA transformation. Mass balance approaches suggested that HCA was the major BPA transformation intermediate, but other compounds may also be formed. The abiotic transformation of BPA by MnO2 was affected by pH, and 10-fold higher transformation rates were observed at pH 4.5 than at pH 10. Compared to BPA, HCA has a lower octanol-water partitioning coefficient (Log Kow) of 0.76 vs 2.76 for BPA and a higher aqueous solubility of 2.65 g L-1 vs 0.31 g L-1 for BPA, suggesting higher mobility of HCA in the environment. Microcosms established with freshwater sediment materials collected from four geographically distinct locations and amended with HCA demonstrated rapid HCA biodegradation under oxic, but not under anoxic conditions. These findings suggest that BPA is not inert under anoxic conditions and abiotic reactions with MnO2 generate HCA, which has increased mobility and is susceptible to aerobic degradation. Therefore, coupled abiotic-biotic processes can affect the fate and longevity of BPA in terrestrial environments.

  4. May Cyclic Nucleotides Be a Source for Abiotic RNA Synthesis?

    NASA Astrophysics Data System (ADS)

    Costanzo, Giovanna; Pino, Samanta; Botta, Giorgia; Saladino, Raffaele; di Mauro, Ernesto

    2011-12-01

    Nucleic bases are obtained by heating formamide in the presence of various catalysts. Formamide chemistry also allows the formation of acyclonucleosides and the phosphorylation of nucleosides in every possible position, also affording 2',3' and 3',5' cyclic forms. We have reported that 3',5' cyclic GMP and 3',5' cyclic AMP polymerize in abiotic conditions yielding short oligonucleotides. The characterization of this reaction is being pursued, several of its parameters have been determined and experimental caveats are reported. The yield of non-enzymatic polymerization of cyclic purine nucleotides is very low. Polymerization is strongly enhanced by the presence of base-complementary RNA sequences.

  5. Reductive leaching of low-grade manganese ore with pre-processed cornstalk

    NASA Astrophysics Data System (ADS)

    Yi, Ai-fei; Wu, Meng-ni; Liu, Peng-wei; Feng, Ya-li; Li, Hao-ran

    2015-12-01

    Cornstalk is usually directly used as a reductant in reductive leaching manganese. However, low utilization of cornstalk makes low manganese dissolution ratio. In the research, pretreatment for cornstalk was proposed to improve manganese dissolution ratio. Cornstalk was preprocessed by a heated sulfuric acid solution (1.2 M of sulfuric acid concentration) for 10 min at 80°C. Thereafter, both the pretreated solution and the residue were used as a reductant for manganese leaching. This method not only exhibited superior activity for hydrolyzing cornstalk but also enhanced manganese dissolution. These effects were attributed to an increase in the amount of reductive sugars resulting from lignin hydrolysis. Through acid pretreatment for cornstalk, the manganese dissolution ratio was improved from 50.14% to 83.46%. The present work demonstrates for the first time the effective acid pretreatment of cornstalk to provide a cost-effective reductant for manganese leaching.

  6. Biotic and abiotic anaerobic transformations of trichloroethene and cis-1,2-dichloroethene in fractured sandstone.

    PubMed

    Darlington, Ramona; Lehmicke, Leo; Andrachek, Richard G; Freedman, David L

    2008-06-15

    A fractured sandstone aquifer at an industrial site in southern California is contaminated with trichloroethene (TCE) and cis-1,2-dichloroethene (cis-DCE) to depths in excess of 244 m. Field monitoring data suggest that TCE is undergoing reduction to cis-DCE and that additional attenuation is occurring. However, vinyl chloride (VC) and ethene have not been detected in significant amounts, so that if transformation is occurring, a process other than reductive dechlorination must be responsible. The objective of this study was to evaluate the occurrence of biotic and abiotic transformation processes at this site for TCE, cis-DCE, and VC. Anaerobic microcosms were constructed with site groundwater and sandstone core samples. 14C-labeled compounds were used to detect transformation products (e.g., CO2 and soluble products) that are not readily identifiable by headspace analysis. The microcosms confirmed the occurrence of biotic reduction of TCE to cis-DCE, driven by electron donor in the groundwater and/or sandstone. VC and ethene were not detected. Following incubation periods up to 22 months, the distribution of 14C indicated statistically significant transformation of [14C]TCE and [14C]cis-DCE in live microcosms, to as high as 10% 14CO2 from TCE and 20% 14CO2 from cis-DCE. In autoclaved microcosms, significant transformation of [14C]TCE and [14C]cis-DCE also occurred; although some 14CO2 accumulated, the predominant 14C product was soluble and could not be stripped by N2 from an acidic solution (referred to as nonstrippable residue, or NSR). Characterization of the NSR by high-performance liquid and ion chromatography identified glycolate, acetate, and formate as significant components. These results suggest that a combination of abiotic and biotic transformation processes is responsible for attenuation of TCE and cis-DCE in the fractured sandstone aquifer. Tracking the distribution of 14C during the microcosm study was essential for observing these phenomena.

  7. Electrochemical dissolution of copper sulfides using a fluidized bed electrochemical reactor

    SciTech Connect

    Felker, D.L.

    1984-12-01

    A 2-stage process for the separation and recovery of the Cu, Fe and S from chalcopyrite (CuFeS/sub 2/) was investigated. The overall process dissolves and separates the Cu and Fe in CuFeS/sub 2/ into a Fe rich electrolyte and a Cu rich electrolyte. The S in CuFeS/sub 2/ reacts to form H/sub 2/S and S/sup 0/. A model was developed to explain the results of the chalcopyrite reduction experiments, based on the assumptions that the rate of chalcopyrite reduction is controlled by the H/sup +/ content at the reacting surface/electrolyte interface and the H/sup +/ content at the interface is controlled by the diffusion of H/sup +/ through the porous chalcopyrite reduction product layer. The model is in general agreement with the experimental results. Production of Cu (I) during the dissolution of the chalcopyrite reduction product layer occured only when using a 4 M HCl anolyte. The amount of Cu (I) produced fell sharply when the total cell current exceeded 19.5 A. Complete oxidation of the copper sulfide layer was easily accomplished. Oxidation of the chalcopyrite reduction product layer was possible in 4 M HC1O/sub 4/, 2 M H/sub 2/SO/sub 4/ and 2.7 M H/sub 3/PO/sub 4/, except that Cu (II) was the only dissolution product and dissolution of the copper sulfide was replaced by O/sub 2/ evolution when the solid phase stoichiometry reached CuS. Addition of Cl/sup -/ to the electrolyte prevented the production of O/sub 2/ and caused the CuS to react, forming Cu (II) and S/sup 0/. The presence of Cl/sup -/ also caused the evolution of Cl/sub 2/. The chalcopyrite reduction product layer produced in 4 M HCl was identified as Cu/sub 1.8/S. The rate of chalcopyrite reduction was severely limited by the thickness of the Cu/sub 1.8/S product layer. Removal of the chalcopyrite reduction product layer using

  8. Carbonate ions and arsenic dissolution by groundwater

    USGS Publications Warehouse

    Kim, M.-J.; Nriagu, J.; Haack, S.

    2000-01-01

    solutions. The effects of pH and redox conditions on As dissolution were examined. Results showed that As was not leached significantly out of the Marshall Sandstone samples after 3 d using either deionized water or groundwater, but As was leached efficiently by sodium bicarbonate, potassium bicarbonate, and ferric chloride solutions. The leaching rate with sodium bicarbonate was about 25% higher than that with potassium bicarbonate. The data indicated that bicarbonate ion was involved primarily in As dissolution and that hydroxyl radical ion did not affect As dissolution to any significant degree. The amount of As leached was dependent upon the sodium bicarbonate concentration, increasing with reaction time for each concentration. Significant As leaching was found in the extreme pH ranges of <1.9 and 8.0-10.4. The resulting arseno-carbonate complexes formed were stable in groundwater.

  9. Small RNAs in Plant Responses to Abiotic Stresses: Regulatory Roles and Study Methods

    PubMed Central

    Ku, Yee-Shan; Wong, Johanna Wing-Hang; Mui, Zeta; Liu, Xuan; Hui, Jerome Ho-Lam; Chan, Ting-Fung; Lam, Hon-Ming

    2015-01-01

    To survive under abiotic stresses in the environment, plants trigger a reprogramming of gene expression, by transcriptional regulation or translational regulation, to turn on protective mechanisms. The current focus of research on how plants cope with abiotic stresses has transitioned from transcriptomic analyses to small RNA investigations. In this review, we have summarized and evaluated the current methodologies used in the identification and validation of small RNAs and their targets, in the context of plant responses to abiotic stresses. PMID:26501263

  10. Instabilities in geomaterials induced by dissolution

    NASA Astrophysics Data System (ADS)

    Stefanou, I.; Sulem, J.

    2015-12-01

    Deformation bands play an important role in reservoir engineering, geological storage, underwater landslides and slow geological procedures. Various mechanisms can be involved at different scales and may be responsible for deformation bands. Mechanical and chemical degradation of the grain skeleton is a softening factor that can lead to compaction, shear or even dilation band formation [1]-[3]. The present study is twofold. On one hand it focuses on the mathematical modeling of chemically induced strain localization instabilities in porous rocks and on the other hand it explores the conditions for their creation [4], [5]. In a saturated porous rock, the progressive mechanical damage of the solid skeleton during deformation, results in the increase of the interface area of the reactants and consequently in the acceleration of the dissolution rate of the solid phase [6]. Under the presence of dissolving fluids the solid skeleton is degraded more rapidly (mass removal because of dissolution), the overall mechanical properties of the system diminish (contraction of the elastic domain - chemical softening), deformations increase and the solid skeleton is further damaged (intergranular fractures, debonding, breakage of the porous network etc.). Based on a micromechanical model, the conditions for deformation band triggering are investigated analytically. The heterogeneity of the microstructure in terms of chemical reactivity of the constituents of the REV is taken into account resulting in a characteristic internal length of the system. The post bifurcation behavior is finally studied both analytically and numerically revealing the thickness of the localized zone. References[1] I. Stefanou and J. Sulem, DOI: 10.1002/2013JB010342 [2] M. Cha and J. C. Santamarina, DOI: 10.1680/geot.14P.115 [3] M. D. Ingraham, K. A. Issen, and D. J. Holcomb, DOI: 10.1007/s11440-013-0275-y [4] K. A. Issen and J. W. Rudnicki, DOI: 10.1029/2000JB900185 [5] J. W. Rudnicki and J. R. Rice, DOI

  11. Calcium-Mediated Abiotic Stress Signaling in Roots.

    PubMed

    Wilkins, Katie A; Matthus, Elsa; Swarbreck, Stéphanie M; Davies, Julia M

    2016-01-01

    Roots are subjected to a range of abiotic stresses as they forage for water and nutrients. Cytosolic free calcium is a common second messenger in the signaling of abiotic stress. In addition, roots take up calcium both as a nutrient and to stimulate exocytosis in growth. For calcium to fulfill its multiple roles must require strict spatio-temporal regulation of its uptake and efflux across the plasma membrane, its buffering in the cytosol and its sequestration or release from internal stores. This prompts the question of how specificity of signaling output can be achieved against the background of calcium's other uses. Threats to agriculture such as salinity, water availability and hypoxia are signaled through calcium. Nutrient deficiency is also emerging as a stress that is signaled through cytosolic free calcium, with progress in potassium, nitrate and boron deficiency signaling now being made. Heavy metals have the capacity to trigger or modulate root calcium signaling depending on their dose and their capacity to catalyze production of hydroxyl radicals. Mechanical stress and cold stress can both trigger an increase in root cytosolic free calcium, with the possibility of membrane deformation playing a part in initiating the calcium signal. This review addresses progress in identifying the calcium transporting proteins (particularly channels such as annexins and cyclic nucleotide-gated channels) that effect stress-induced calcium increases in roots and explores links to reactive oxygen species, lipid signaling, and the unfolded protein response. PMID:27621742

  12. Geochemistry: biosignatures and abiotic constraints on early life.

    PubMed

    Lollar, Barbara Sherwood; McCollom, Thomas M

    2006-12-14

    Ueno et al. contend that methane found in fluid inclusions within hydrothermally precipitated quartz in the Dresser Formation of western Australia (which is roughly 3.5 Gyr old) provides evidence for microbial methanogenesis in the early Archaean era. The authors discount alternative origins for this methane, suggesting that the range of delta(13)C(CH(4)) values that they record (-56 to -36 per thousand) is attributable to mixing between a primary microbial end-member with a delta(13)C(CH(4)) value of less than -56 per thousand and a mature thermogenic gas enriched in (13)C (about -36 per thousand). However, abiotic methane produced experimentally and in other Precambrian greenstone settings has (13)C-depleted delta(13)C(CH(4)) values, as well as Delta(13)C(CO(2)-CH(4)) relationships that encompass the range measured for the inclusions by Ueno et al. - which suggests that an alternative, abiotic origin for the methane is equally plausible. The conclusions of Ueno et al. about the timing of the onset of microbial methanogenesis might not therefore be justified. PMID:17167427

  13. Abiotic stress and control of grain number in cereals.

    PubMed

    Dolferus, Rudy; Ji, Xuemei; Richards, Richard A

    2011-10-01

    Grain number is the only yield component that is directly associated with increased grain yield in important cereal crops like wheat. Historical yield studies show that increases in grain yield are always accompanied by an increase in grain number. Adverse weather conditions can cause severe fluctuations in grain yield and substantial yield losses in cereal crops. The problem is global and despite its impact on world food production breeding and selection approaches have only met with limited success. A specific period during early reproductive development, the young microspore stage of pollen development, is extremely vulnerable to abiotic stress in self-fertilising cereals (wheat, rice, barley, sorghum). A better understanding of the physiological and molecular processes that lead to stress-induced pollen abortion may provide us with the key to finding solutions for maintaining grain number under abiotic stress conditions. Due to the complexity of the problem, stress-proofing our main cereal crops will be a challenging task and will require joint input from different research disciplines.

  14. Influence of abiotic stress signals on secondary metabolites in plants

    PubMed Central

    Ramakrishna, Akula; Ravishankar, Gokare Aswathanarayana

    2011-01-01

    Plant secondary metabolites are unique sources for pharmaceuticals, food additives, flavors, and industrially important biochemicals. Accumulation of such metabolites often occurs in plants subjected to stresses including various elicitors or signal molecules. Secondary metabolites play a major role in the adaptation of plants to the environment and in overcoming stress conditions. Environmental factors viz. temperature, humidity, light intensity, the supply of water, minerals, and CO2 influence the growth of a plant and secondary metabolite production. Drought, high salinity, and freezing temperatures are environmental conditions that cause adverse effects on the growth of plants and the productivity of crops. Plant cell culture technologies have been effective tools for both studying and producing plant secondary metabolites under in vitro conditions and for plant improvement. This brief review summarizes the influence of different abiotic factors include salt, drought, light, heavy metals, frost etc. on secondary metabolites in plants. The focus of the present review is the influence of abiotic factors on secondary metabolite production and some of important plant pharmaceuticals. Also, we describe the results of in vitro cultures and production of some important secondary metabolites obtained in our laboratory. PMID:22041989

  15. Calcium-Mediated Abiotic Stress Signaling in Roots

    PubMed Central

    Wilkins, Katie A.; Matthus, Elsa; Swarbreck, Stéphanie M.; Davies, Julia M.

    2016-01-01

    Roots are subjected to a range of abiotic stresses as they forage for water and nutrients. Cytosolic free calcium is a common second messenger in the signaling of abiotic stress. In addition, roots take up calcium both as a nutrient and to stimulate exocytosis in growth. For calcium to fulfill its multiple roles must require strict spatio-temporal regulation of its uptake and efflux across the plasma membrane, its buffering in the cytosol and its sequestration or release from internal stores. This prompts the question of how specificity of signaling output can be achieved against the background of calcium’s other uses. Threats to agriculture such as salinity, water availability and hypoxia are signaled through calcium. Nutrient deficiency is also emerging as a stress that is signaled through cytosolic free calcium, with progress in potassium, nitrate and boron deficiency signaling now being made. Heavy metals have the capacity to trigger or modulate root calcium signaling depending on their dose and their capacity to catalyze production of hydroxyl radicals. Mechanical stress and cold stress can both trigger an increase in root cytosolic free calcium, with the possibility of membrane deformation playing a part in initiating the calcium signal. This review addresses progress in identifying the calcium transporting proteins (particularly channels such as annexins and cyclic nucleotide-gated channels) that effect stress-induced calcium increases in roots and explores links to reactive oxygen species, lipid signaling, and the unfolded protein response. PMID:27621742

  16. Calcium-Mediated Abiotic Stress Signaling in Roots

    PubMed Central

    Wilkins, Katie A.; Matthus, Elsa; Swarbreck, Stéphanie M.; Davies, Julia M.

    2016-01-01

    Roots are subjected to a range of abiotic stresses as they forage for water and nutrients. Cytosolic free calcium is a common second messenger in the signaling of abiotic stress. In addition, roots take up calcium both as a nutrient and to stimulate exocytosis in growth. For calcium to fulfill its multiple roles must require strict spatio-temporal regulation of its uptake and efflux across the plasma membrane, its buffering in the cytosol and its sequestration or release from internal stores. This prompts the question of how specificity of signaling output can be achieved against the background of calcium’s other uses. Threats to agriculture such as salinity, water availability and hypoxia are signaled through calcium. Nutrient deficiency is also emerging as a stress that is signaled through cytosolic free calcium, with progress in potassium, nitrate and boron deficiency signaling now being made. Heavy metals have the capacity to trigger or modulate root calcium signaling depending on their dose and their capacity to catalyze production of hydroxyl radicals. Mechanical stress and cold stress can both trigger an increase in root cytosolic free calcium, with the possibility of membrane deformation playing a part in initiating the calcium signal. This review addresses progress in identifying the calcium transporting proteins (particularly channels such as annexins and cyclic nucleotide-gated channels) that effect stress-induced calcium increases in roots and explores links to reactive oxygen species, lipid signaling, and the unfolded protein response.

  17. Influence of abiotic stress signals on secondary metabolites in plants.

    PubMed

    Ramakrishna, Akula; Ravishankar, Gokare Aswathanarayana

    2011-11-01

    Plant secondary metabolites are unique sources for pharmaceuticals, food additives, flavors, and industrially important biochemicals. Accumulation of such metabolites often occurs in plants subjected to stresses including various elicitors or signal molecules. Secondary metabolites play a major role in the adaptation of plants to the environment and in overcoming stress conditions. Environmental factors viz. temperature, humidity, light intensity, the supply of water, minerals, and CO2 influence the growth of a plant and secondary metabolite production. Drought, high salinity, and freezing temperatures are environmental conditions that cause adverse effects on the growth of plants and the productivity of crops. Plant cell culture technologies have been effective tools for both studying and producing plant secondary metabolites under in vitro conditions and for plant improvement. This brief review summarizes the influence of different abiotic factors include salt, drought, light, heavy metals, frost etc. on secondary metabolites in plants. The focus of the present review is the influence of abiotic factors on secondary metabolite production and some of important plant pharmaceuticals. Also, we describe the results of in vitro cultures and production of some important secondary metabolites obtained in our laboratory.

  18. Geochemistry: biosignatures and abiotic constraints on early life.

    PubMed

    Lollar, Barbara Sherwood; McCollom, Thomas M

    2006-12-14

    Ueno et al. contend that methane found in fluid inclusions within hydrothermally precipitated quartz in the Dresser Formation of western Australia (which is roughly 3.5 Gyr old) provides evidence for microbial methanogenesis in the early Archaean era. The authors discount alternative origins for this methane, suggesting that the range of delta(13)C(CH(4)) values that they record (-56 to -36 per thousand) is attributable to mixing between a primary microbial end-member with a delta(13)C(CH(4)) value of less than -56 per thousand and a mature thermogenic gas enriched in (13)C (about -36 per thousand). However, abiotic methane produced experimentally and in other Precambrian greenstone settings has (13)C-depleted delta(13)C(CH(4)) values, as well as Delta(13)C(CO(2)-CH(4)) relationships that encompass the range measured for the inclusions by Ueno et al. - which suggests that an alternative, abiotic origin for the methane is equally plausible. The conclusions of Ueno et al. about the timing of the onset of microbial methanogenesis might not therefore be justified.

  19. Hexagonal Lyotropic Liquid Crystal from Simple "Abiotic" Foldamers.

    PubMed

    Chen, Yu; Zhao, Zhiqiang; Bian, Zheng; Jin, Rizhe; Kang, Chuanqing; Qiu, Xuepeng; Guo, Haiquan; Du, Zhijun; Gao, Lianxun

    2016-08-01

    The motivation of foldamer chemistry is to identify novel building blocks that have the potential to imitate natural species. Peptides and peptide mimetics can form stable helical conformations and further self-assemble into diverse aggregates in water, where it is difficult to isolate a single helix. In contrast, most "abiotic" foldamers may fold into helical structures in solution, but are difficult to assemble into tertiary ones. It remains a challenge to obtain "abiotic" species similar to peptides. In this paper, a novel foldamer scaffold, in which p-phenyleneethynylene units are linked by chiral carbon atoms, was designed and prepared. In very dilute solutions, these oligomers were random coils. The hexamer and octamers could form a hexagonal lyotropic liquid crystal (LC) in CH2Cl2 when the concentrations reached the critical values. The microscopic observations indicated that they could assemble into the nanofibers in the LC. Interestingly, after some LC phases were diluted at room temperature, the nanofibers could be preserved. The good stabilities of the assemblies are possibly attributed to a more compact backbone and more rigid side chains. PMID:27547649

  20. Weathering-Associated Bacteria from the Damma Glacier Forefield: Physiological Capabilities and Impact on Granite Dissolution

    PubMed Central

    Frey, Beat; Rieder, Stefan R.; Brunner, Ivano; Plötze, Michael; Koetzsch, Stefan; Lapanje, Ales; Brandl, Helmut; Furrer, Gerhard

    2010-01-01

    Several bacterial strains isolated from granitic rock material in front of the Damma glacier (Central Swiss Alps) were shown (i) to grow in the presence of granite powder and a glucose-NH4Cl minimal medium without additional macro- or micronutrients and (ii) to produce weathering-associated agents. In particular, four bacterial isolates (one isolate each of Arthrobacter sp., Janthinobacterium sp., Leifsonia sp., and Polaromonas sp.) were weathering associated. In comparison to what was observed in abiotic experiments, the presence of these strains caused a significant increase of granite dissolution (as measured by the release of Fe, Ca, K, Mg, and Mn). These most promising weathering-associated bacterial species exhibited four main features rendering them more efficient in mineral dissolution than the other investigated isolates: (i) a major part of their bacterial cells was attached to the granite surfaces and not suspended in solution, (ii) they secreted the largest amounts of oxalic acid, (iii) they lowered the pH of the solution, and (iv) they formed significant amounts of HCN. As far as we know, this is the first report showing that the combined action of oxalic acid and HCN appears to be associated with enhanced elemental release from granite, in particular of Fe. This suggests that extensive microbial colonization of the granite surfaces could play a crucial role in the initial soil formation in previously glaciated mountain areas. PMID:20525872

  1. Tissue dissolution and modifications in dentin composition by different sodium hypochlorite concentrations

    PubMed Central

    TARTARI, Talita; BACHMANN, Luciano; MALIZA, Amanda Garcia Alves; ANDRADE, Flaviana Bombarda; DUARTE, Marco Antonio Hungaro; BRAMANTE, Clovis Monteiro

    2016-01-01

    ABSTRACT Sodium hypochlorite (NaOCl) remains the most used irrigation solution during root canal preparation because of characteristics such as wide-spectrum antimicrobial activity and organic tissue dissolution capacity. However, these solutions can alter dentin composition and there is no consensus on the optimal concentration of NaOCl to be used. Objectives To determine the organic matter dissolution and changes in dentin chemical composition promoted by different concentrations of NaOCl over time. Material and Methods: Fragments of bovine muscle tissue were weighed before and after 5, 10, and 15 min of immersion in the groups (n=10): G1- 0.9% saline solution; G2- 1% NaOCl; G3- 2.5% NaOCl; and G4- 5% NaOCl. Bovine dentin fragments were subjected to the same irrigants and absorption spectra were collected by Attenuated Total Reflectance of Fourier Transform Infrared Spectroscopy (ATR-FTIR) before and after 0,5, 1, 2, 3, 5, 8, and 10 min of immersion in the solutions. The ratios of the amide III/phosphate and carbonate/phosphate absorption bands were determined. The tissue dissolution and carbonate/phosphate ratios were submitted to the two-way analysis of variance (ANOVA) with Tukey’s multiple-comparison test (α<0.05) and to the one-way analysis of variance with Tukey’s (α<0.05). The amide III/phosphate ratio was analyzed by Friedman test (α<0.05) and the Kruskal-Wallis test with Dunn’s post-hoc (α<0.05). Results The increase in NaOCl concentration and contact time intensified the dissolution of organic matter and dentin collagen with reduction in the amide III/phosphate ratio. Significant differences between all groups (p<0.05) were observed in the dissolution of organic matter at 10 min and in the amide III/phosphate ratio between the saline solution and 5% NaOCl at 5 min. The carbonate/phosphate ratio decreased significantly in G2, G3, and G4 after 0,5 min of immersion (p<0.05), but more alterations did not occur in the subsequent periods (p>0

  2. Transformation/dissolution examination of antimony and antimony compounds with speciation of the transformation/dissolution solutions.

    PubMed

    Skeaff, James M; Beaudoin, Robert; Wang, Ruiping; Joyce, Barry

    2013-01-01

    Speciation is held to be a key factor in controlling the ecotoxicity of metals in solution. Using the United Nations transformation/dissolution protocol (T/DP) for metals and sparingly soluble metal compounds, we have examined the transformation/dissolution (T/D) characteristics in terms of the concentrations of total dissolved Sb at pH 6 and 8.5 in 1, 10, and 100 mg/L loadings over 7 d as well as the concentrations of Sb(III) and Sb(V) at the 1 mg/L loadings over 28 d, of sodium hexahydroxoantimonate (NaSb(OH)(6)), antimony metal (Sb), antimony trioxide (Sb(2) O(3)), antimony sulfide (Sb(2) S(3)), sodium antimonate (NaSbO(3)), antimony tris(ethylene glycolate) (Sb(2) (C(2) H(4) O(2) )(3)), antimony trichloride (SbCl(3)), antimony triacetate (Sb(CH(3) COO)(3)), and antimony pentoxide (Sb(2) O(5) ). We also measured the concentrations of the dissolved Sb(III) and Sb(V) species at the 1 mg/L loadings. Because of complexing, the trivalent organic Sb compounds exhibited little or no oxidation of Sb(III) to Sb(V). However, oxidation of Sb(III) to Sb(V) was evident for the trivalent inorganic Sb compounds. Conversely, with pentavalent Sb compounds, there was no reduction of Sb(V) to Sb(III). Based on the percentage of Sb in the compound dissolved or metal reacted at 28 d and 1 mg/L loadings, the solubility rankings at pH 6 are NaSb(OH)(6)  > Sb(CH(3) COO)(3)  > Sb metal > Sb(2) (C(2) H(4) O(2))(3)  > Sb(2) S(3)  > Sb(2) O(3)  > NaSbO(3)  ≈ SbCl(3)  > Sb(2) O(5). For pH 8.5 the order is NaSb(OH)(6)  > Sb(CH(3) COO)(3)  > Sb metal > Sb(2) (C(2) H(4) O(2) )(3)  > SbCl(3)  > Sb(2) O(3)  > Sb(2) S(3)  > NaSbO(3)  > Sb(2) O(5) . We provide worked examples of how the T/D data have been used to derive hazard classification proposals for Sb metal and these selected compounds for submission to the European Chemicals Agency under the Registration, Evaluation, Authorization and Restriction of CHemicals (REACH

  3. Dissolution enhancement of fenofibrate by micronization, cogrinding and spray-drying: comparison with commercial preparations.

    PubMed

    Vogt, Markus; Kunath, Klaus; Dressman, Jennifer B

    2008-02-01

    Several techniques were compared for improving the dissolution of fenofibrate, a poorly soluble drug. Particle size reduction was realized by jet milling (micronization; cogrinding with lactose, polyvinylpyrrolidone or sodium lauryl sulphate) and by media milling using a bead mill (nanosizing) with subsequent spray-drying. Solid state characterization by X-ray diffraction and Differential Scanning Calorimetry verified the maintenance of the crystalline state of the drug after dry milling and its conversion to the amorphous state during spray-drying. Micronization of fenofibrate enhanced its dissolution rate in biorelevant media (8.2% in 30min) compared to crude material (1.3% in 30min). Coground mixtures of the drug increased the dissolution rate further (up to 20% in 30min). Supersaturated solutions were generated by nanosizing combined with spray-drying, this process converted fenofibrate to the amorphous state. Fenofibrate drug products commercially available on the German and French markets dissolved similarly to crude or micronized fenofibrate, but significantly slower than the coground or spray-dried fenofibrate mixtures. The results suggest that cogrinding and spray-drying are powerful techniques for the preparation of rapidly dissolving formulations of fenofibrate, and could potentially lead to improvements in the bioavailability of oral fenofibrate products. PMID:17574403

  4. Effect of Phosphate, Fluoride, and Nitrate on Gibbsite Dissolution Rate and Solubility

    SciTech Connect

    Herting, Daniel L.

    2014-01-29

    Laboratory tests have been completed with simulated tank waste samples to investigate the effects of phosphate, fluoride, and nitrate on the dissolution rate and equilibrium solubility of gibbsite in sodium hydroxide solution at 22 and 40{degrees}C. Results are compared to relevant literature data and to computer model predictions. The presence of sodium nitrate (3 M) caused a reduction in the rate of gibbsite dissolution in NaOH, but a modest increase in the equilibrium solubility of aluminum. The increase in solubility was not as large, though, as the increase predicted by the computer model. The presence of phosphate, either as sodium phosphate or sodium fluoride phosphate, had a negligible effect on the rate of gibbsite dissolution, but caused a slight increase in aluminum solubility. The magnitude of the increased solubility, relative to the increase caused by sodium nitrate, suggests that the increase is due to ionic strength (or water activity) effects, rather than being associated with the specific ion involved. The computer model predicted that phosphate would cause a slight decrease in aluminum solubility, suggesting some Al-PO4 interaction. No evidence was found of such an interaction.

  5. Characteristics and electrochemical mechanisms of a nanosilver solution formed by anodic dissolution with high DC voltage

    NASA Astrophysics Data System (ADS)

    Hung, Nguyen Duc; Thuy, Nguyen Minh; Nhi Tru, Nguyen

    2013-08-01

    Nanosilver solution, prepared by anodic dissolution with high DC voltage in doubly distilled water, is free of undesirable chemicals and forms a highly pure product which is suitable for different applications, especially in the medical and pharmaceutical fields. In this study high DC voltage electrolysis was implemented to form nanosilver solutions with varying electrode diameters, anode-cathode distances, and electrolysis duration. The process was monitored while the cell was in operation, and the characteristics of the resulting solution were analysed afterwards. Cell reactions included: colour changes in the solution bulk due to the reduction of silver ions forming nanoparticles, anodic dissolution of silver, intense gas evolution at both electrodes, and chemical reactions in the solution causing nanosilver formation. UV-Vis characteristics, particle size distribution, transmission electron microscopy (TEM) images, solution concentrations, conductivities, and ζ-potentials were all found to depend on the electrode's distances, temperature, electrolysis duration, and current density. Nanosilver preparation can thus be considered a combination of electrochemical reactions (such as silver dissolution at anode and water decomposition to generate hydrogen and oxygen), and chemical reactions between the electrolytic products from the solution bulk.

  6. Oxidative dissolution of biogenic uraninite in groundwater at Old Rifle, CO

    USGS Publications Warehouse

    Campbell, Kate M.; Veeramani, Harish; Ulrich, Kai-Uwe; Blue, Lisa Y.; Giammar, Dianiel E.; Bernier-Latmani, Rizlan; Stubbs, Joanne E.; Suvorova, Elena; Yabusaki, Steve; Lezama-Pacheco, J