Science.gov

Sample records for abiotic reductive transformation

  1. Reductive transformation of carbamazepine by abiotic and biotic processes.

    PubMed

    König, Anne; Weidauer, Cindy; Seiwert, Bettina; Reemtsma, Thorsten; Unger, Tina; Jekel, Martin

    2016-09-15

    The antiepileptic drug carbamazepine (CBZ) is ubiquitously present in the anthropogenic water cycle and is therefore of concern regarding the potable water supply. Despite of its persistent behavior in the aquatic environment, a redox dependent removal at bank filtration sites with anaerobic aquifer passage was reported repeatedly but not elucidated in detail yet. The reductive transformation of CBZ was studied, using abiotic systems (catalytic hydrogenation, electrochemistry) as well as biologically active systems (column systems, batch degradation tests). In catalytic hydrogenation CBZ is gradually hydrogenated and nine transformation products (TPs) were detected by liquid chromatography high-resolution mass spectrometry. 10,11-Dihydro-CBZ ((2H)-CBZ) was the major stable product in these abiotic, surface catalyzed reduction processes and turned out to be not a precursor of the more hydrogenated TPs. In the biotic reduction processes the formation of (2H)-CBZ alone could not explain the observed CBZ decline. There, also traces of (6H)-CBZ and (8H)-CBZ were formed by microbes under anaerobic conditions and four phase-II metabolites of reduced CBZ could be detected and tentatively identified. Thus, the spectrum of reduction products of CBZ is more diverse than previously thought. In environmental samples CBZ removal along an anaerobic soil passage was confirmed and (2H)-CBZ was determined at one of the sites.

  2. QSARS for predicting biotic and abiotic reductive transformation rate constants of halogenated hydrocarbons in anoxic sediment systems

    SciTech Connect

    Peijnenburg, W.J.G.M.; 't Hart, M.J.; den Hollander, H.A.; van de Meent, D.; Verboom, H.H.

    1991-01-01

    Quantitative structure-activity relationships (QSARs) are developed relating biotic and abiotic pseudo-first-order disappearance rate constants of halogenated hydrocarbons in anoxic sediments to a number of readily available molecular descriptors. Based upon knowledge of the underlying reaction mechanisms, four descriptors were selected: carbon halogen bond strength, the summation of the Hammett (aromatics) and Taft (aliphatics) sigma constants and the inductive constants (aromatics) of the additional substituents, carbon-carbon bond dissociation energy (aliphatics), and steric factors of the additional substituents. Comparison of the abiotic and biotic QSARs clearly showed the close similarities between both processes. By correlating the rate constants for reduction of a number of halocarbons obtained in a number of distinct sediment samples to the organic carbon content of the samples, the QSARs were made operative for predicting rates of reduction of given halocarbons in given sediment-water systems. The correlations were enhanced by taking into account the fraction of the compounds sorbed to the solid phase. (Copyright (c) 1991 Elsevier Science Publishers B.V.)

  3. The Use of Chemical Probes for the Characterization of the Predominant Abiotic Reductants in Anaerobic Sediments

    EPA Science Inventory

    Identifying the predominant chemical reductants and pathways for electron transfer in anaerobic systems is paramount to the development of environmental fate models that incorporate pathways for abiotic reductive transformations. Currently, such models do not exist. In this chapt...

  4. Environmental Selenium Transformations: Distinguishing Abiotic and Biotic Factors Influencing Se Redox Transformations

    NASA Astrophysics Data System (ADS)

    Rosenfeld, C.; Kenyon, J.; James, B. R.; Santelli, C. M.

    2014-12-01

    Worldwide, selenium (Se) is proving to be a significant environmental concern, with many anthropogenic activities (e.g. coal mining and combustion, phosphate mining and agricultural irrigation) releasing potentially hazardous concentrations into surface and subsurface ecosystems. The US EPA is currently considering aquatic Se regulations, however no guidelines exist for excess soil Se, despite its ability to act as a persistent Se source. Various abiotic and biological processes mediate Se oxidation/reduction (redox) transformations in soils, thus influencing its solubility and bioavailability. In this research we assess (1) the ability of metal-transforming fungal species to aerobically reduce Se (Se (IV and/or VI) to Se(0)), and (2) the relative contribution of biotic and abiotic pathways for aerobic Se transformation. The primary objective of this research is to determine what abiotic and biotic factors enhance or restrict Se bioavailability. Results indicate that fungal-mediated Se reduction may be quite widespread, with at least 7 out of 10 species of known Mn(II)-oxidizing fungi isolated from metal impacted environments also identified as capable of aerobically reducing Se(IV) and/or Se(VI) to Se(0). Increasing concentrations of selenite (SeO32-; Se(IV)) and selenate (SeO42-; Se(VI)) generally reduced fungal growth rates, although selenate was more likely to inhibit fungal growth than selenite. To study oxidation, Se(0) was combined with Mn(III/IV) (hydr)oxides (henceforth referred to as Mn oxides), Se-transforming fungi (Alternaria alternata), and oxalic acid to mimic Se biogeochemistry at the plant-soil interface. Increased pH in the presence of fungi (7.2 with fungi, 6.8 without fungi after 24 days) was observed. Additionally, a slight decrease in redox potential was measured for incubations without Mn oxides (236 mV with Mn oxides, 205 mV without Mn oxides after 24 days), indicating that Mn oxides may enhance Se oxidation. Elemental Se oxidation rates to

  5. Constraining the role of iron in environmental nitrogen transformations: Dual stable isotope systematics of abiotic NO2- reduction by Fe(II) and its production of N2O

    NASA Astrophysics Data System (ADS)

    Buchwald, Carolyn; Grabb, Kalina; Hansel, Colleen M.; Wankel, Scott D.

    2016-08-01

    Despite mounting evidence for biogeochemical interactions between iron and nitrogen, our understanding of their environmental importance remains limited. Here we present an investigation of abiotic nitrite (NO2-) reduction by Fe(II) or 'chemodenitrification', and its relevance to the production of nitrous oxide (N2O), specifically focusing on dual (N and O) isotope systematics under a variety of environmental conditions. We observe a range of kinetic isotope effects that are regulated by reaction rates, with faster rates at higher pH (∼8), higher concentrations of Fe(II) and in the presence of mineral surfaces. A clear non-linear relationship between rate constant and kinetic isotope effects of NO2- reduction was evident (with larger isotope effects at slower rates) and is interpreted as reflecting the dynamics of Fe(II)-N reaction intermediates. N and O isotopic composition of product N2O also suggests a complex network of parallel and/or competing pathways. Our findings suggest that NO2- reduction by Fe(II) may represent an important abiotic source of environmental N2O, especially in iron-rich environments experiencing dynamic redox variations. This study provides a multi-compound, multi-isotope framework for evaluating the environmental occurrence of abiotic NO2- reduction and N2O formation, helping future studies constrain the relative roles of abiotic and biological N2O production pathways.

  6. Reductive sequestration of pertechnetate (⁹⁹TcO₄⁻) by nano zerovalent iron (nZVI) transformed by abiotic sulfide.

    PubMed

    Fan, Dimin; Anitori, Roberto P; Tebo, Bradley M; Tratnyek, Paul G; Lezama Pacheco, Juan S; Kukkadapu, Ravi K; Engelhard, Mark H; Bowden, Mark E; Kovarik, Libor; Arey, Bruce W

    2013-05-21

    Under anoxic conditions, soluble pertechnetate (⁹⁹TcO₄⁻) can be reduced to less soluble TcO₂·nH₂O, but the oxide is highly susceptible to reoxidation. Here we investigate an alternative strategy for remediation of Tc-contaminated groundwater whereby sequestration as Tc sulfide is favored by sulfidic conditions stimulated by nano zerovalent iron (nZVI). nZVI was pre-exposed to increasing concentrations of sulfide in simulated Hanford groundwater for 24 h to mimic the onset of aquifer biotic sulfate reduction. Solid-phase characterizations of the sulfidated nZVI confirmed the formation of nanocrystalline FeS phases, but higher S/Fe ratios (>0.112) did not result in the formation of significantly more FeS. The kinetics of Tc sequestration by these materials showed faster Tc removal rates with increasing S/Fe between 0 and 0.056, but decreasing Tc removal rates with S/Fe > 0.224. The more favorable Tc removal kinetics at low S/Fe could be due to a higher affinity of TcO₄⁻ for FeS than iron oxides, and electron microscopy confirmed that the majority of the Tc was associated with FeS phases. The inhibition of Tc removal at high S/Fe appears to have been caused by excess HS(-). X-ray absorption spectroscopy revealed that as S/Fe increased, the pathway for Tc(IV) formation shifted from TcO₂·nH2₂ to Tc sulfide phases. The most substantial change of Tc speciation occurred at low S/Fe, coinciding with the rapid increase in Tc removal rate. This agreement further confirms the importance of FeS in Tc sequestration.

  7. Reductive Sequestration Of Pertechnetate (99TcO4–) By Nano Zerovalent Iron (nZVI) Transformed By Abiotic Sulfide

    SciTech Connect

    Fan, Dimin; Anitori, Roberto; Tebo, Bradley M.; Tratnyek, Paul G.; Lezama Pacheco, Juan S.; Kukkadapu, Ravi K.; Engelhard, Mark H.; Bowden, Mark E.; Kovarik, Libor; Arey, Bruce W.

    2013-04-24

    Under anoxic conditions, soluble 99TcO4– can be reduced to less soluble TcO2•nH2O, but the oxide is highly susceptible to reoxidation. Here we investigate an alternative strategy for remediation of Tc-contaminated groundwater whereby sequestration as Tc sulfide is favored by sulfidic conditions stimulated by nano zero-valent iron (nZVI). nZVI was pre-exposed to increasing concentrations of sulfide in simulated Hanford groundwater for 24 hrs to mimic the stages of aquifer sulfate reduction and onset of biotic sulfidogenesis. Solid-phase characterizations of the sulfidated nZVI confirmed the formation of nanocrystalline FeS phases, but higher S/Fe ratios (>0.112) did not result in the formation of significantly more FeS. The kinetics of Tc sequestration by these materials showed faster Tc removal rates with increasing S/Fe between S/Fe = 0–0.056, but decreasing Tc removal rates with S/Fe > 0.224. The more favorable Tc removal kinetics at low S/Fe could be due to a higher affinity of TcO4– for FeS (over iron oxides), and electron microscopy confirmed that the majority of the Tc was associated with FeS phases. The inhibition of Tc removal at high S/Fe appears to have been caused by excess HS–. X-ray absorption spectroscopy revealed that as S/Fe increased, Tc speciation shifted from TcO2•nH2O to TcS2. The most substantial change of Tc speciation occurred at low S/Fe, coinciding with the rapid increase of Tc removal rate. This agreement further confirms the importance of FeS in Tc sequestration.

  8. Constraining the role of iron in environmental nitrogen transformations. Dual stable isotope systematics of abiotic NO2- reduction by Fe(II) and its production of N2O

    SciTech Connect

    Johnston, David; Wankel, Scott David; Buchwald, Carolyn; Hansel, Colleen

    2015-09-16

    Redox reactions involving nitrogen and iron have been shown to have important implications for mobilization of priority contaminants. Thus, an understanding of the linkages between their biogeochemical cycling is critical for predicting subsurface mobilization of radionuclides such as uranium. Despite mounting evidence for biogeochemical interactions between iron and nitrogen, our understanding of their environmental importance remains limited. Here we present an investigation of abiotic nitrite (NO2-) reduction by Fe(II) or ‘chemodenitrification,’ and its relevance to the production of nitrous oxide (N2O), specifically focusing on dual (N and O) isotope systematics under a variety of environmentally relevant conditions. We observe a range of kinetic isotope effects that are regulated by reaction rates, with faster rates at higher pH (~8), higher concentrations of Fe(II) and in the presence of mineral surfaces. A clear non-linear relationship between rate constant and kinetic isotope effects of NO2- reduction was evident (with larger isotope effects at slower rates) and is interpreted as reflecting the dynamics of Fe(II)-N reaction intermediates. N and O isotopic composition of product N2O also suggests a complex network of parallel and/or competing pathways. Our findings suggest that NO2- reduction by Fe(II) may represent an important abiotic source of environmental N2O, especially in iron-rich environments experiencing dynamic redox variations. This study provides a multi-compound, multi-isotope framework for evaluating the environmental occurrence of abiotic NO2- reduction and N2O formation, helping future studies constrain the relative roles of abiotic and biological N2O production pathways.

  9. Abiotic Reductive Immobilization of U(VI) by Biogenic Mackinawite

    SciTech Connect

    Veeramani, Harish; Scheinost, Andreas; Monsegue, Niven; Qafoku, Nikolla; Kukkadapu, Ravi K.; Newville, Mathew; Lanzirotti, Anthony; Pruden, Amy; Murayama, Mitsuhiro; Hochella, Michael F.

    2013-03-01

    During subsurface bioremediation of uranium-contaminated sites, indigenous metal and sulfate-reducing bacteria may utilize a variety of electron acceptors, including ferric iron and sulfate that could lead to the formation of various biogenic minerals in-situ. Sulfides, as well as structural and adsorbed Fe(II) associated with biogenic Fe(II)-sulfide phases, can potentially catalyze abiotic U6+ reduction via direct electron transfer processes. In the present work, the propensity of biogenic mackinawite (Fe1+xS, x = 0 to 0.11) to reduce U6+ abiotically was investigated. The biogenic mackinawite produced by Shewanella putrefaciens strain CN32 was characterized by employing a suite of analytical techniques including TEM, SEM, XAS and Mössbauer analyses. Nanoscale and bulk analyses (microscopic and spectroscopic techniques, respectively) of biogenic mackinawite after exposure to U6+ indicate the formation of nanoparticulate UO2. This study suggests the relevance of Fe(II) and sulfide bearing biogenic minerals in mediating abiotic U6+ reduction, an alternative pathway in addition to direct enzymatic U6+ reduction.

  10. Abiotic reductive immobilization of U(VI) by biogenic mackinawite.

    PubMed

    Veeramani, Harish; Scheinost, Andreas C; Monsegue, Niven; Qafoku, Nikolla P; Kukkadapu, Ravi; Newville, Matt; Lanzirotti, Antonio; Pruden, Amy; Murayama, Mitsuhiro; Hochella, Michael F

    2013-03-01

    During subsurface bioremediation of uranium-contaminated sites, indigenous metal and sulfate-reducing bacteria may utilize a variety of electron acceptors, including ferric iron and sulfate that could lead to the formation of various biogenic minerals in situ. Sulfides, as well as structural and adsorbed Fe(II) associated with biogenic Fe(II)-sulfide phases, can potentially catalyze abiotic U(VI) reduction via direct electron transfer processes. In the present work, the propensity of biogenic mackinawite (Fe 1+x S, x = 0 to 0.11) to reduce U(VI) abiotically was investigated. The biogenic mackinawite produced by Shewanella putrefaciens strain CN32 was characterized by employing a suite of analytical techniques including TEM, SEM, XAS, and Mössbauer analyses. Nanoscale and bulk analyses (microscopic and spectroscopic techniques, respectively) of biogenic mackinawite after exposure to U(VI) indicate the formation of nanoparticulate UO2. This study suggests the relevance of sulfide-bearing biogenic minerals in mediating abiotic U(VI) reduction, an alternative pathway in addition to direct enzymatic U(VI) reduction. PMID:23373896

  11. Chromium Stable Isotope Fractionation During Abiotic Reduction of Hexavalent Chromium

    NASA Astrophysics Data System (ADS)

    Kitchen, J. W.; Johnson, T. M.; Bullen, T. D.

    2004-12-01

    Chromium, a common surface water and ground water contaminant, occurs as Cr(VI), which is soluble and toxic, and Cr(III), which is insoluble and less toxic. Reduction of Cr(VI) to Cr(III) is often the most important reaction controlling attenuation of Cr plumes, and Cr stable isotope (53Cr/52Cr) measurements show great promise as indicators of this reaction. Cr(VI) reduction involves a kinetic isotope effect; lighter isotopes react at greater rates and heavier isotopes become increasingly enriched in the remaining Cr(VI) with increasing extent of reduction. If the size of this effect can be constrained well, then precise estimates of reduction are possible. Cr(VI) reduction can be mediated by microbes, or may occur abiotically in the presence of Fe(II) and a variety of organic compounds. A recent study of bacterial reduction of Cr(VI) under low electron donor conditions yielded a Cr isotope fractionation factor of 1000lnα = 4.1 ± 0.2. A previous study of abiotic reduction indicated a fractionation factor of 1000lnα = 3.4 ± 0.2, but this work was limited to 3 experiments. The present study provides a more detailed look at Cr isotope fractionation induced by abiotic Cr(VI) reduction by: Fe(II); mandelic acid with alumina and goethite catalysts; and humic substances. Reduction occurred slowly, over days or weeks. The fractionation factor for the organic reductants (all at pH=4), including two surface-catalyzed mandelic acid reactions, two fulvic reactions, and one humic reaction,- was 1000lnα = 3.0 ± 0.4, with no statistically significant differences between experiments. The fractionation factors for the Fe(II) experiments were 4.7 ± 0.3, 3.7 ± 0.2, and 2.9 ± 0.2 for pH = 4, 5, and 6, respectively. Further work is necessary to better constrain this pH dependence and to determine if it occurs with the organic reductants. The overall variability in the size of the Cr isotope fractionation during Cr(VI) reduction translates into a moderate level of uncertainty

  12. Reduction/Transformation Operators

    2006-09-01

    RTOp (reduction/transformation operators) is a collection of C++ software that provides the basic mechanism for implementinig vector operations in a flexible and efficient manner. This is the main interface utilized by Thyra to allow for the specification of specific vector reduction and/or transformation operations. The RTOp package contains three different types of software. (a) a small number of interoperability interfaces. (b) support software including code for the parallel SPMD mode based on only Teuchos::Comm(and notmore » MPl directly(, and (c) a library of pre-implemented RTOp subclasses for everything from simple AXPYs and norms, to more specialized vector operations. RTOp allows an algorithm developer to implement their own RTOp subclasses in a way that is independent from any specific serial, parallel, out-of-core or other type of vector implementation. RTOp is a required package by Thyra and MOOCHO. (c)« less

  13. Anaerobic abiotic transformations of cis-1,2-dichloroethene in fractured sandstone.

    PubMed

    Darlington, Ramona; Lehmicke, Leo G; Andrachek, Richard G; Freedman, David L

    2013-02-01

    A fractured sandstone aquifer at an industrial site is contaminated with trichloroethene to depths greater than 244 m. Field data indicate that trichloroethene is undergoing reduction to cis-1,2-dichloroethene (cDCE); vinyl chloride and ethene are present at much lower concentrations. Transformation of cDCE by pathways other than reductive dechlorination (abiotic and/or biotic) is of interest. Pyrite, which has been linked to abiotic transformation of chlorinated ethenes, is present at varying levels in the sandstone. To evaluate the possible role of pyrite in transforming cDCE, microcosms were prepared with groundwater, ~40 mg L(-1) cDCE+[(14)C]cDCE, and crushed solids (pure pyrite, pyrite-rich sandstone, or typical sandstone). During 120 d of incubation, the highest level of cDCE transformation occurred with typical sandstone (11-14% (14)CO(2), 1-3% (14)C-soluble products), followed by pyrite-rich sandstone (2-4% (14)CO(2), 1% (14)C-soluble products) and even lesser amounts with pure pyrite. These results indicate pyrite is not likely the mineral involved in transforming cDCE. A separate experiment using only typical sandstone compared the rate of cDCE transformation in non-sterilized, autoclaved, and propylene-oxide sterilized treatments, with pseudo-first order rate constants of 8.7, 5.4, and 1.0 yr(-1), respectively; however, transformation stopped after several months of incubation. Autoclaving increased the volume of pores, adsorption pore diameter, and surface area in comparison to non-sterilized typical sandstone. Nevertheless, autoclaving was less disruptive than chemical sterilization. The results provide definitive experimental evidence that cDCE undergoes anaerobic abiotic and biotic transformation in typical sandstone, with formation of CO(2) and soluble products.

  14. Interactions between Biological and Abiotic Pathways in the Reduction of Chlorinated Solvents

    EPA Science Inventory

    While biologically mediated reductive dechlorination continues to be a significant focus of chlorinated solvent remediation, there has been an increased interest in abiotic reductive processes for the remediation of chlorinated solvents. In situ chemical reduction (ISCR) uses zer...

  15. Abiotic Reduction of Selenite and Antimonate Under Controlled Oxygen Conditions

    NASA Astrophysics Data System (ADS)

    Belzile, N.; Truong, H. T.; Polack, R.; Chen, Y.

    2008-12-01

    Laboratory and field studies have reported the oxidation of elemental Se to selenite or selenate or that of antimonite to antimonate but the reduction studies of the two elements, especially in absence of bacteria are more scarce. We have performed experiments on the abiotic reduction of Se(IV) and Sb(V) under controlled oxygen conditions in presence of naturally-encountered reducing agents such as Fe(II) and dissolved sulfide. In the case of selenite, the reduction by ferrous iron is barely detectable at very low concentrations of oxygen. However, at concentrations of 200 ± 50 ppmv in the controlled atmosphere glove box, more iron oxide particles were formed at a higher initial Fe(II) concentration in the system and with time. In the pellets collected after filtration, a significant amount of Se(0) was found. Our field geochemical studies on Se also showed the same phenomenon, i.e. a higher level of Se(0) in lake sediments was accompanied by a higher presence of iron oxides. In the case of antimony, the reduction of Sb(V) by dissolved sulfide was extensive and far more rapid at more acidic pH values. Half lives for Sb(V) in the presence of excess dissolved sulfide at pH values of 5 to 7 were calculated and the reaction was found to be first order with respect to all three of [Sb(V)], [dissolved sulfide] and [H+]. Metastibnite precipitated after reduction of Sb(V) in working experimental samples at buffered pH of 5 and 6. The oxidation product of dissolved sulfide was identified as elemental sulfur. This study has demonstrated the ability of dissolved sulfide to reduce Sb(V) under a variety of environmentally relevant concentrations and conditions.

  16. Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing soil minerals. 2. Green rust.

    PubMed

    Lee, Woojin; Batchelor, Bill

    2002-12-15

    Abiotic reductive dechlorination of chlorinated ethylenes by the sulfate form of green rust (GR(SO4)) was examined in batch reactors. Dechlorination kinetics were described by a modified Langmuir-Hinshelwood model. The rate constant for reductive dechlorination of chlorinated ethylenes at reactive GR(SO4) surfaces was in the range of 0.592 (+/-4.4%) to 1.59 (+/-6.3%) day(-1). The specific reductive capacity of GR(SO4) for target organics was in the range of 9.86 (+/-10.1%) to 18.0 (+/-4.3%) microM/g and sorption coefficient was in the range of 0.53 (+/-2.4%) to 1.22 (+/-4.3%) mM(-1). Surface area-normalized pseudo-first-order initial rate constants for chlorinated ethylenes by GR(SO4) were 3.4 to 8.2 times greater than those by pyrite. Chlorinated ethylenes were mainly transformed to acetylene, and no detectable amounts of chlorinated intermediates were observed. The rate constants for the reductive dechlorination of trichloroethylene (TCE) increased as pH increased (6.8 to 10.1) but were independent of solid concentration and initial TCE concentration. Magnetite and/or maghemite were produced by the oxidation of GR(SO4) by TCE. These findings are relevant to the understanding of the role of abiotic reductive dechlorination during natural attenuation in environments that contain GR(SO4).

  17. Abiotic reductive dechlorination of cis-DCE by ferrous monosulfide mackinawite.

    PubMed

    Hyun, Sung Pil; Hayes, Kim F

    2015-11-01

    Cis-1,2,-dichloroethylene (cis-DCE) is a toxic, persistent contaminant occurring mainly as a daughter product of incomplete degradation of perchloroethylene (PCE) and trichloroethylene (TCE). This paper reports on abiotic reductive dechlorination of cis-DCE by mackinawite (FeS1-x), a ferrous monosulfide, under variable geochemical conditions. To assess in situ abiotic cis-DCE dechlorination by mackinawite in the field, mackinawite suspensions prepared in a field groundwater sample collected from a cis-DCE contaminated field site were used for dechlorination experiments. The effects of geochemical variables on the dechlorination rates were monitored. A set of dechlorination experiments were also carried out in the presence of aquifer sediment from the site over a range of pH conditions to better simulate the actual field situations. The results showed that the suspensions of freshly prepared mackinawite reductively transformed cis-DCE to acetylene, whereas the conventionally prepared powder form of mackinawite had practically no reactivity with cis-DCE under the same experimental conditions. Significant cis-DCE degradation by mackinawite has not been reported prior to this study, although mackinawite has been shown to reductively transform PCE and TCE. This study suggests feasibility of using mackinawite for in situ remediation of cis-DCE-contaminated sites with high S levels such as estuaries under naturally achieved or stimulated sulfate-reducing conditions.

  18. The interactive biotic and abiotic processes of DDT transformation under dissimilatory iron-reducing conditions.

    PubMed

    Jin, Xin; Wang, Fang; Gu, Chenggang; Yang, Xinglun; Kengara, Fredrick O; Bian, Yongrong; Song, Yang; Jiang, Xin

    2015-11-01

    The objective of the study was to elucidate the biotic and abiotic processes under dissimilatory iron reducing conditions involved in reductive dechlorination and iron reduction. DDT transformation was investigated in cultures of Shewanella putrefaciens 200 with/without α-FeOOH. A modified first-order kinetics model was developed and described DDT transformation well. Both the α-FeOOH reduction rate and the dechlorination rate of DDT were positively correlated to the biomass. Addition of α-FeOOH enhanced reductive dechlorination of DDT by favoring the cell survival and generating Fe(II) which was absorbed on the surface of bacteria and iron oxide. 92% of the absorbed Fe(II) was Na-acetate (1M) extractable. However, α-FeOOH also played a negative role of competing for electrons as reflected by the dechlorination rate of DDT was inhibited when increasing the α-FeOOH from 1 g L(-1) to 5 g L(-1). DDT was measured to be toxic to S. putrefaciens 200. The metabolites DDD, DDE and DDMU were recalcitrant to S. putrefaciens 200. The results suggested that iron oxide was not the key factor to promote the dissipation of DDX (DDT and the metabolites), whereas the one-electron reduction potential (E1) of certain organochlorines is the main factor and that the E1 higher than the threshold of the reductive driving forces of DIRB probably ensures the occur of reductive dechlorination.

  19. Biotic and abiotic anaerobic transformations of trichloroethene and cis-1,2-dichloroethene in fractured sandstone.

    PubMed

    Darlington, Ramona; Lehmicke, Leo; Andrachek, Richard G; Freedman, David L

    2008-06-15

    A fractured sandstone aquifer at an industrial site in southern California is contaminated with trichloroethene (TCE) and cis-1,2-dichloroethene (cis-DCE) to depths in excess of 244 m. Field monitoring data suggest that TCE is undergoing reduction to cis-DCE and that additional attenuation is occurring. However, vinyl chloride (VC) and ethene have not been detected in significant amounts, so that if transformation is occurring, a process other than reductive dechlorination must be responsible. The objective of this study was to evaluate the occurrence of biotic and abiotic transformation processes at this site for TCE, cis-DCE, and VC. Anaerobic microcosms were constructed with site groundwater and sandstone core samples. 14C-labeled compounds were used to detect transformation products (e.g., CO2 and soluble products) that are not readily identifiable by headspace analysis. The microcosms confirmed the occurrence of biotic reduction of TCE to cis-DCE, driven by electron donor in the groundwater and/or sandstone. VC and ethene were not detected. Following incubation periods up to 22 months, the distribution of 14C indicated statistically significant transformation of [14C]TCE and [14C]cis-DCE in live microcosms, to as high as 10% 14CO2 from TCE and 20% 14CO2 from cis-DCE. In autoclaved microcosms, significant transformation of [14C]TCE and [14C]cis-DCE also occurred; although some 14CO2 accumulated, the predominant 14C product was soluble and could not be stripped by N2 from an acidic solution (referred to as nonstrippable residue, or NSR). Characterization of the NSR by high-performance liquid and ion chromatography identified glycolate, acetate, and formate as significant components. These results suggest that a combination of abiotic and biotic transformation processes is responsible for attenuation of TCE and cis-DCE in the fractured sandstone aquifer. Tracking the distribution of 14C during the microcosm study was essential for observing these phenomena.

  20. Biotic and Abiotic Transformation of a Volatile Organics Plume in a Semi-Arid Vadose Zone

    SciTech Connect

    Studer, J.E.; Singletary, M.A.; Miller, D.R.

    1999-04-08

    An evaluation of biotic and abiotic attenuation processes potentially important to chlorinated and non-chlorinated volatile organic compound (VOC) fate and transport in the 148 meter thick vadose zone beneath the Chemical Waste Landfill (CWL) was conducted. A unique feature of this evaluation is the comparison of two estimates of VOC mass present in the soil gas, pore-water, and solid phases (but not including mass as non-aqueous phase liquid [NAPL]) of the vadose zone in 1993. One estimate, 1,800 kg, was obtained from vadose zone transport modeling that incorporated molecular diffusion and volatilization to the atmosphere, but not biotic or chemical processes. The other estimate, 2,120 kg, was obtained from the sum of VOC mass physically removed during soil vapor extraction and an estimate of VOC mass remaining in the vadose zone in 1998, both adjusted to exclude NAPL mass. This comparison indicates that biogeochemical processes were at best slightly important to historical VOC plume development. Some evidence of aerobic degradation of non-chlorinated VOCs and abiotic transformation of 1,1,1-Trichloroethane was identified. Despite potentially amenable site conditions, no evidence was found of cometabolic and anaerobic transformation pathways. Relying principally on soil-gas analytical results, an upper-bound estimate of 21% mass reduction due to natural biogeochemical processes was developed. Although available information for the CWL indicates that natural attenuation processes other than volatilization to the atmosphere did not effective y enhance groundwater protection, these processes could be important in significantly reducing groundwater contamination and exposure risks at other sites. More laboratory and field research is required to improve our collective ability to characterize and exploit natural VOC attenuation processes, especially with respect to the combination of relatively thick and dry vadose zones and chlorinated VOCs.

  1. Effect of abiotic factors on the mercury reduction process by humic acids in aqueous systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mercury (Hg) in the environment can have serious toxic effects on a variety of living organisms, and is a pollutant of concern worldwide. The reduction of mercury from the toxic Hg2+ form to Hg0 is especially important. One pathway for this reduction to occur is through an abiotic process with humic...

  2. Abiotic CO2 reduction during geologic carbon sequestration facilitated by Fe(II)-bearing minerals

    NASA Astrophysics Data System (ADS)

    Nielsen, L. C.; Maher, K.; Bird, D. K.; Brown, G. E.; Thomas, B.; Johnson, N. C.; Rosenbauer, R. J.

    2012-12-01

    Redox reactions involving subsurface minerals and fluids and can lead to the abiotic generation of hydrocarbons from CO2 under certain conditions. Depleted oil reservoirs and saline aquifers targeted for geologic carbon sequestration (GCS) can contain significant quantities of minerals such as ferrous chlorite, which could facilitate the abiotic reduction of carbon dioxide to n-carboxylic acids, hydrocarbons, and amorphous carbon (C0). If such reactions occur, the injection of supercritical CO2 (scCO2) could significantly alter the oxidation state of the reservoir and cause extensive reorganization of the stable mineral assemblage via dissolution and reprecipitation reactions. Naturally occurring iron oxide minerals such as magnetite are known to catalyze CO2 reduction, resulting in the synthesis of organic compounds. Magnetite is thermodynamically stable in Fe(II) chlorite-bearing mineral assemblages typical of some reservoir formations. Thermodynamic calculations demonstrate that GCS reservoirs buffered by the chlorite-kaolinite-carbonate(siderite/magnesite)-quartz assemblage favor the reduction of CO2 to n-carboxylic acids, hydrocarbons, and C0, although the extent of abiotic CO2 reduction may be kinetically limited. To investigate the rates of abiotic CO2 reduction in the presence of magnetite, we performed batch abiotic CO2 reduction experiments using a Dickson-type rocking hydrothermal apparatus at temperatures (373 K) and pressures (100 bar) within the range of conditions relevant to GCS. Blank experiments containing CO2 and H2 were used to rule out the possibility of catalytic activity of the experimental apparatus. Reaction of brine-suspended magnetite nanoparticles with scCO2 at H2 partial pressures typical of reservoir rocks - up to 100 and 0.1 bars respectively - was used to investigate the kinetics of magnetite-catalyzed abiotic CO2 reduction. Later experiments introducing ferrous chlorite (ripidolite) were carried out to determine the potential for

  3. Linear free energy relationships for the biotic and abiotic reduction of nitroaromatic compounds.

    PubMed

    Luan, Fubo; Gorski, Christopher A; Burgos, William D

    2015-03-17

    Nitroaromatic compounds (NACs) are ubiquitous environmental contaminants that are susceptible to biological and abiotic reduction. Prior works have found that for the abiotic reduction of NACs, the logarithm of the NACs’ rate constants correlate with one-electron reduction potential values of the NACs (EH,NAC1) according to linear free energy relationships (LFERs). Here, we extend the application of LFERs to the bioreduction of NACs and to the abiotic reduction of NACs by bioreduced (and pasteurized) iron-bearing clay minerals. A linear correlation (R2=0.96) was found between the NACs’ bioreduction rate constants (kobs) and EH,NAC1 values. The LFER slope of log kobs versus EH,NAC1/(2.303RT/F) was close to one (0.97), which implied that the first electron transfer to the NAC was the rate-limiting step of bioreduction. LFERs were also established between NAC abiotic reduction rate constants by bioreduced iron-bearing clay minerals (montmorillonite SWy-2 and nontronite NAu-2). The second-order NAC reduction rate constants (k) by bioreduced SWy-2 and NAu-2 were well correlated to EH,NAC1 (R2=0.97 for both minerals), consistent with bioreduction results. However, the LFER slopes of log k versus EH,NAC1/(2.303RT/F) were significantly less than one (0.48–0.50) for both minerals, indicating that the first electron transfer to the NAC was not the rate-limiting step of abiotic reduction. Finally, we demonstrate that the rate of 4-acetylnitrobenzene reduction by bioreduced SWy-2 and NAu-2 correlated to the reduction potential of the clay (EH,clay, R2=0.95 for both minerals), indicating that the clay reduction potential also influences its reactivity.

  4. Abiotic Transformation Of Estrogens In Synthetic Municipal Wastewater: An Alternative For Treatment?

    EPA Science Inventory

    The abiotic transformation of estrogens, including estrone (E1), estradiol (E2), estriol (E3) and ethinylestradiol (EE2), in the presence of model vegetable matter was confirmed in this study. Batch experiments were performed to model the catalytic conversion of E1, E2, E3, and ...

  5. Abiotic reduction reactions of anthropogenic organic chemicals in anaerobic systems: A critical review

    NASA Astrophysics Data System (ADS)

    Macalady, Donald L.; Tratnyek, Paul G.; Grundl, Timothy J.

    1986-02-01

    This review is predicated upon the need for a detailed process-level understanding of factors influencing the reduction of anthropogenic organic chemicals in natural aquatic systems. In particular, abiotic reductions of anthropogenic organic chemicals are reviewed. The most important reductive reaction is alkyl dehalogenation (replacement of chloride with hydrogen) which occurs in organisms, sediments, sewage sludge, and reduced iron porphyrin model systems. An abiotic mechanism involving a free radical intermediate has been proposed. The abstraction of vicinal dihalides (also termed dehalogenation) is another reduction that may have an abiotic component in natural systems. Reductive dehalogenation of aryl halides has recently been reported and further study of this reaction is needed. Several other degradation reactions of organohalides that occur in anaerobic environments are mentioned, the most important of which is dehydrohalogenation. The reduction of nitro groups to amines has also been thoroughly studied. The reactions can occur abiotically, and are affected by the redox conditions of the experimental system. However, a relationship between nitro-reduction rate and measured redox potential has not been clearly established. Reductive dealkylation of the N- and O-heteroatom of hydrocarbon pollutants has been observed but not investigated in detail. Azo compounds can be reduced to their hydrazo derivatives and a thorough study of this reaction indicates that it can be caused by extracellular electron transfer agents. Quinone-hydroquinone couples are important reactive groups in humic materials and similar structures in resazurin and indigo carmine make them useful as models for environmental redox conditions. The interconversion of sulfones, sulfoxides, and sulfides is a redox process and is implicated in the degradation of several pesticides though the reactions need more study. Two reductive heterocyclic cleavage reactions are also mentioned. Finally, several

  6. CHARACTERIZING THE ABIOTIC REDUCTANTS FOR NITROAROMATIC COMPOUNDS AS A FUNCTION OF REDOX ZONATION IN ANOXIC SEDIMENTS

    EPA Science Inventory

    Reductive transformation is the dominant reaction pathway for the degradation of nitroaromatic compounds in anaerobic environments (Larson and Weber, 1994). Proposed reductants cover a spectrum ranging from reduced rninerals and organic matter to microbial enzyme systems. Transfo...

  7. Abiotic U(VI) Reduction by Sorbed Fe(II) on Natural Sediments

    SciTech Connect

    Fox, Patricia M.; Davis, James A.; Kukkadapu, Ravi K.; Singer, David M.; Bargar, John R.; Williams, Kenneth H.

    2013-09-15

    Laboratory experiments were performed as a function of aqueous Fe(II) concentration to determine the uptake and oxidation of Fe(II), and Fe(II)-mediated abiotic reduction of U(VI) by aquifer sediments from the Rifle IFRC field site in Colorado, USA. Mössbauer analysis of the sediments spiked with aqueous 57Fe(II) showed that 57Fe(II) was oxidized on the mineral surfaces to 57Fe(III) and most likely formed a nano-particulate Fe(III)-oxide or ferrihydrite-like phase. The extent of 57Fe oxidation decreased with increasing 57Fe(II) uptake, such that 100 % was oxidized at 7.3 μmol/g Fe and 52 % at 39.6 μmol/g Fe, indicating that the sediments had a finite capacity for oxidation of Fe(II). Abiotic U(VI) reduction was observed by XANES spectroscopy only when the Fe(II) uptake was greater than approximately 20 μmol/g and surface-bound Fe(II) was present. The level of U(VI) reduction increased with increasing Fe(II)- loading above this level to a maximum of 18 and 36 % U(IV) at pH 7.2 (40.7 μmol/g Fe) and 8.3 (56.1 μmol/g Fe), respectively in the presence of 400 ppm CO2. Greater U(VI) reduction was observed in CO2 free systems [up to 44 and 54 % at pH 7.2 (17.3 μmol/g Fe) and 8.3 (54.8 μmol/g Fe), respectively] compared to 400 ppm CO2 systems, presumably due to differences in aqueous U(VI) speciation. While pH affects the amount of Fe(II) uptake onto the solid phase, with greater Fe(II) uptake at higher pH, similar amounts of U(VI) reduction were observed at pH 7.2 and 8.3 for a similar Fe(II) uptake. Thus, it appears that abiotic U(VI) reduction is controlled primarily by Fe(II) concentration and aqueous U(VI) speciation. The range of Fe(II) loadings tested in this study are within the range observed in bioreduced sediments, suggesting that Fe(II)-mediated abiotic U(VI) reduction may indeed play a role in field settings.

  8. Abiotic and Microbial Interactions during Anaerobic Transformations of Fe(II) and NOX-

    PubMed Central

    Picardal, Flynn

    2012-01-01

    Microbial Fe(II) oxidation using NO3- as the terminal electron acceptor [nitrate-dependent Fe(II) oxidation, NDFO] has been studied for over 15 years. Although there are reports of autotrophic isolates and stable enrichments, many of the bacteria capable of NDFO are known organotrophic NO3--reducers that require the presence of an organic, primary substrate, e.g., acetate, for significant amounts of Fe(II) oxidation. Although the thermodynamics of Fe(II) oxidation are favorable when coupled to either NO3- or NO2- reduction, the kinetics of abiotic Fe(II) oxidation by NO3- are relatively slow except under special conditions. NDFO is typically studied in batch cultures containing millimolar concentrations of Fe(II), NO3-, and the primary substrate. In such systems, NO2- is often observed to accumulate in culture media during Fe(II) oxidation. Compared to NO3-, abiotic reactions of biogenic NO2- and Fe(II) are relatively rapid. The kinetics and reaction pathways of Fe(II) oxidation by NO2- are strongly affected by medium composition and pH, reactant concentration, and the presence of Fe(II)-sorptive surfaces, e.g., Fe(III) oxyhydroxides and cellular surfaces. In batch cultures, the combination of abiotic and microbial Fe(II) oxidation can alter product distribution and, more importantly, results in the formation of intracellular precipitates and extracellular Fe(III) oxyhydroxide encrustations that apparently limit further cell growth and Fe(II) oxidation. Unless steps are taken to minimize or account for potential abiotic reactions, results of microbial NDFO studies can be obfuscated by artifacts of the chosen experimental conditions, the use of inappropriate analytical methods, and the resulting uncertainties about the relative importance of abiotic and microbial reactions. In this manuscript, abiotic reactions of NO3- and NO2- with aqueous Fe2+, chelated Fe(II), and solid-phase Fe(II) are reviewed along with factors that can influence overall NDFO reaction rates

  9. Anomalous nitrogen isotopes in ultrahigh-pressure metamorphic rocks from the Sulu orogenic belt: Effect of abiotic nitrogen reduction during fluid-rock interaction

    NASA Astrophysics Data System (ADS)

    Li, Long; Zheng, Yong-Fei; Cartigny, Pierre; Li, Jianghanyang

    2014-10-01

    Modern nitrogen (N) fixation is primarily mediated by biological processes. However, in the early Earth where biological activity was absent or limited, abiotic N reduction in hydrothermal systems is thought to be a key process to transform atmospheric N2 and NOx to ammonium, an essential nutrient to support the emergence of life and also an N form that can be incorporated into rocks. Surprisingly, evidence for abiotic N reduction in the rock record has not been clearly identified. In this study, we reported anomalously low N isotope compositions (δN15 values as low as -15.8‰) of mica samples in ultrahigh-pressure metamorphic rocks from the Donghai area in the Sulu orogenic belt, eastern China. Compared with mica samples with typical crustal δN15 values (3-9‰) in similar metamorphic rocks from the western Dabie orogen, the 15N-depleted mica samples from the Sulu orogen are characterized by significant N enrichment (10 times higher) and extreme 18O depletion (δO18 values as low as -9‰). These features can be best explained by assimilation of N from a source characterized by extremely low δN15 values (less than ∼-16‰). The extremely low δN15 value would be produced by abiotic N reduction during reaction of a meteoric-hydrothermal fluid with crustal rocks before subduction. This observation provides a clue to the occurrence of abiotic N reduction in continental supracrustal rocks and infer that abiotic N reduction process could be a fundamental process driving the geological N cycling in early Earth.

  10. Effect of H2 and redox condition on biotic and abiotic MTBE transformation

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.; Landmeyer, J.E.

    2006-01-01

    Laboratory studies conducted with surface water sediment from a methyl tert-butyl ether (MTBE)-contaminated site in South Carolina demonstrated that, under methanogenic conditions, [U-14C] MTBE was transformed to 14C tert-butyl alcohol (TBA) with no measurable production of 14CO2. Production of TBA was not attributed to the activity of methanogenic microorganisms, however, because comparable transformation of [U-14C] MTBE to 14C-TBA also was observed in heat-sterilized controls with dissolved H2 concentrations > 5 nM. The results suggest that the transformation of MTBE to TBA may be an abiotic process that is driven by biologically produced H2 under in situ conditions. In contrast, mineralization of [U-14C] MTBE to 14CO2 was completely inhibited by heat sterilization and only observed in treatments characterized by dissolved H2 concentrations < 2 nM. These results suggest that the pathway of MTBE transformation is influenced by in situ H2 concentrations and that in situ H2 concentrations may be an useful indicator of MTBE transformation pathways in ground water systems.

  11. Abiotic reduction of trifluralin and pendimethalin by sulfides in black-carbon-amended coastal sediments.

    PubMed

    Gong, Wenwen; Liu, Xinhui; Xia, Shuhua; Liang, Baocui; Zhang, Wei

    2016-06-01

    Dinitroaniline herbicides such as trifluralin and pendimethalin are persistent bioaccumulative toxins to aquatic organisms. Thus, in-situ remediation of contaminated sediments is desired. This study investigated whether black carbons (BCs), including apple wood charcoal (BC1), rice straw biochar (BC2), and activated carbon (BC3), could facilitate abiotic reduction of trifluralin and pendimethalin by sulfides of environmentally-relevant concentrations in anoxic coastal sediments. The reduction rates of trifluralin and pendimethalin increased substantially with increasing BC dosages in the sediments. This enhancing effect was dependent on BC type with the greatest for BC3 followed by BC1 and BC2, which well correlated with their specific surface area. The pseudo-first order reduction rate constants (kobs) for BC3-amended sediment (2%) were 13- and 14 times the rate constants in the BC-free sediment. The reduction rates increased with increasing temperature from 8 to 25°C in the BC-amended sediment, following the Arrhenius relationship. Finally, through molecular modeling by density functional theory and reaction species identification from mass spectra, molecular pathways of trifluralin and pendimethalin reduction were elucidated. In contrary to the separate sequential reduction of each nitro group to amine group, both nitro groups, first reduced to nitroso, then eventually to amine groups. PMID:26905610

  12. Products of abiotic U(VI) reduction by biogenic magnetite and vivianite

    NASA Astrophysics Data System (ADS)

    Veeramani, Harish; Alessi, Daniel S.; Suvorova, Elena I.; Lezama-Pacheco, Juan S.; Stubbs, Joanne E.; Sharp, Jonathan O.; Dippon, Urs; Kappler, Andreas; Bargar, John R.; Bernier-Latmani, Rizlan

    2011-05-01

    Reductive immobilization of uranium by the stimulation of dissimilatory metal-reducing bacteria (DMRB) has been investigated as a remediation strategy for subsurface U(VI) contamination. In those environments, DMRB may utilize a variety of electron acceptors, such as ferric iron which can lead to the formation of reactive biogenic Fe(II) phases. These biogenic phases could potentially mediate abiotic U(VI) reduction. In this work, the DMRB Shewanella putrefaciens strain CN32 was used to synthesize two biogenic Fe(II)-bearing minerals: magnetite (a mixed Fe(II)-Fe(III) oxide) and vivianite (an Fe(II)-phosphate). Analysis of abiotic redox interactions between these biogenic minerals and U(VI) showed that both biogenic minerals reduced U(VI) completely. XAS analysis indicates significant differences in speciation of the reduced uranium after reaction with the two biogenic Fe(II)-bearing minerals. While biogenic magnetite favored the formation of structurally ordered, crystalline UO 2, biogenic vivianite led to the formation of a monomeric U(IV) species lacking U-U associations in the corresponding EXAFS spectrum. To investigate the role of phosphate in the formation of monomeric U(IV) such as sorbed U(IV) species complexed by mineral surfaces, versus a U(IV) mineral, uranium was reduced by biogenic magnetite that was pre-sorbed with phosphate. XAS analysis of this sample also revealed the formation of monomeric U(IV) species suggesting that the presence of phosphate hinders formation of UO 2. This work shows that U(VI) reduction products formed during in situ biostimulation can be influenced by the mineralogical and geochemical composition of the surrounding environment, as well as by the interfacial solute-solid chemistry of the solid-phase reductant.

  13. Abiotic transformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by green rusts.

    PubMed

    Larese-Casanova, Philip; Scherer, Michelle M

    2008-06-01

    The rate and extent of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) transformation was measured in the presence of carbonate and sulfate green rust suspended in solutions containing common groundwater anions. Formaldehyde (HCHO), nitrous oxide gas (N2O(g)), and ammonium (NH4+) were the major end products, accounting for about 70% of the carbon mass balance and about half of the nitrogen mass balance. Results from experiments with both 14C-RDX and LC-MS analysis indicate that the remaining carbon products are soluble and most likely small (< 50 Da). The transient appearance of 1,3-dinitro-5-nitroso-1,3,5-triazacyclohexane (MNX), 1,3-dinitroso-5-nitro-1,3,5-triazacyclohexane (DNX), and 1,3,5-trinitroso-1,3,5-triazacyclohexane (TNX) indicate that some nitro-group reduction occurred. The kinetics of RDX transformation was rapid with a half-life of less than an hour in a pH 7.0 KBr solution. Little difference in rates of RDX transformation or product distribution was observed between carbonate and sulfate green rust, and an apparent reaction order of 1.0 was measured with respect to Fe(II) in both green rusts. Phosphate anions completely inhibited RDX reduction, and carbonate and sulfate anions resulted in slower kinetics, and in some cases, an initial lag period, compared to bromide and chloride. Our results suggest that green rusts may contribute to abiotic natural attenuation of RDX in Fe-rich subsurface environments, but that it will be important to consider groundwater composition when assessing rates of attenuation.

  14. Abiotic nitrogen fixation on terrestrial planets: reduction of NO to ammonia by FeS.

    PubMed

    Summers, David P; Basa, Ranor C B; Khare, Bishun; Rodoni, David

    2012-02-01

    Understanding the abiotic fixation of nitrogen and how such fixation can be a supply of prebiotic nitrogen is critical for understanding both the planetary evolution of, and the potential origin of life on, terrestrial planets. As nitrogen is a biochemically essential element, sources of biochemically accessible nitrogen, especially reduced nitrogen, are critical to prebiotic chemistry and the origin of life. Loss of atmospheric nitrogen can result in loss of the ability to sustain liquid water on a planetary surface, which would impact planetary habitability and hydrological processes that shape the surface. It is known that NO can be photochemically converted through a chain of reactions to form nitrate and nitrite, which can be subsequently reduced to ammonia. Here, we show that NO can also be directly reduced, by FeS, to ammonia. In addition to removing nitrogen from the atmosphere, this reaction is particularly important as a source of reduced nitrogen on an early terrestrial planet. By converting NO directly to ammonia in a single step, ammonia is formed with a higher product yield (~50%) than would be possible through the formation of nitrate/nitrite and subsequent conversion to ammonia. In conjunction with the reduction of NO, there is also a catalytic disproportionation at the mineral surface that converts NO to NO₂ and N₂O. The NO₂ is then converted to ammonia, while the N₂O is released back in the gas phase, which provides an abiotic source of nitrous oxide. PMID:22283408

  15. Abiotic nitrogen fixation on terrestrial planets: reduction of NO to ammonia by FeS.

    PubMed

    Summers, David P; Basa, Ranor C B; Khare, Bishun; Rodoni, David

    2012-02-01

    Understanding the abiotic fixation of nitrogen and how such fixation can be a supply of prebiotic nitrogen is critical for understanding both the planetary evolution of, and the potential origin of life on, terrestrial planets. As nitrogen is a biochemically essential element, sources of biochemically accessible nitrogen, especially reduced nitrogen, are critical to prebiotic chemistry and the origin of life. Loss of atmospheric nitrogen can result in loss of the ability to sustain liquid water on a planetary surface, which would impact planetary habitability and hydrological processes that shape the surface. It is known that NO can be photochemically converted through a chain of reactions to form nitrate and nitrite, which can be subsequently reduced to ammonia. Here, we show that NO can also be directly reduced, by FeS, to ammonia. In addition to removing nitrogen from the atmosphere, this reaction is particularly important as a source of reduced nitrogen on an early terrestrial planet. By converting NO directly to ammonia in a single step, ammonia is formed with a higher product yield (~50%) than would be possible through the formation of nitrate/nitrite and subsequent conversion to ammonia. In conjunction with the reduction of NO, there is also a catalytic disproportionation at the mineral surface that converts NO to NO₂ and N₂O. The NO₂ is then converted to ammonia, while the N₂O is released back in the gas phase, which provides an abiotic source of nitrous oxide.

  16. Real-Time Manganese Phase Dynamics during Biological and Abiotic Manganese Oxide Reduction.

    PubMed

    Johnson, Jena E; Savalia, Pratixa; Davis, Ryan; Kocar, Benjamin D; Webb, Samuel M; Nealson, Kenneth H; Fischer, Woodward W

    2016-04-19

    Manganese oxides are often highly reactive and easily reduced, both abiotically, by a variety of inorganic chemical species, and biologically during anaerobic respiration by microbes. To evaluate the reaction mechanisms of these different reduction routes and their potential lasting products, we measured the sequence progression of microbial manganese(IV) oxide reduction mediated by chemical species (sulfide and ferrous iron) and the common metal-reducing microbe Shewanella oneidensis MR-1 under several endmember conditions, using synchrotron X-ray spectroscopic measurements complemented by X-ray diffraction and Raman spectroscopy on precipitates collected throughout the reaction. Crystalline or potentially long-lived phases produced in these experiments included manganese(II)-phosphate, manganese(II)-carbonate, and manganese(III)-oxyhydroxides. Major controls on the formation of these discrete phases were alkalinity production and solution conditions such as inorganic carbon and phosphate availability. The formation of a long-lived Mn(III) oxide appears to depend on aqueous Mn(2+) production and the relative proportion of electron donors and electron acceptors in the system. These real-time measurements identify mineralogical products during Mn(IV) oxide reduction, contribute to understanding the mechanism of various Mn(IV) oxide reduction pathways, and assist in interpreting the processes occurring actively in manganese-rich environments and recorded in the geologic record of manganese-rich strata. PMID:27018915

  17. The kinetics and QSAR of abiotic reduction of mononitro aromatic compounds catalyzed by activated carbon.

    PubMed

    Gong, Wenwen; Liu, Xinhui; Gao, Ding; Yu, Yanjun; Fu, Wenjun; Cheng, Dengmiao; Cui, Baoshan; Bai, Junhong

    2015-01-01

    The kinetics of abiotic reduction of mono-nitro aromatic compounds (mono-NACs) catalyzed by activated carbon (AC) in an anaerobic system were examined. There were 6 types of substituent groups on nitrobenzene, including methyl, chlorine, amino, carboxyl, hydroxyl and cyanogen groups, at the ortho, meta or para positions. Our results showed that reduction followed pseudo-first order reaction kinetics, and that the rate constant (logkSA) varied widely, ranging between -4.77 and -2.82, depending upon the type and position of the substituent. A quantitative structure-activity relationship (QSAR) model using 15 theoretical molecular descriptors and partial-least-squares (PLS) regression was developed for the reduction rates of mono-NACs catalyzed by AC. The cross-validated regression coefficient (Qcum(2), 0.861) and correlation coefficient (R(2), 0.898) indicated significantly high robustness of the model. The VIP (variable importance in the projection) values of energy of the lowest unoccupied molecular orbital (ELUMO) and the maximum net atomic charge on the aromatic carbon bound to the nitro group (QC(-)) were 1.15 and 1.01, respectively. These values indicated that the molecular orbital energies and the atomic net charges might play important roles in the reduction of mono-NACs catalyzed by AC in anaerobic systems.

  18. Reduction of ferrihydrite with adsorbed and coprecipitated organic matter: microbial reduction by Geobacter bremensis vs. abiotic reduction by Na-dithionite

    NASA Astrophysics Data System (ADS)

    Eusterhues, K.; Hädrich, A.; Neidhardt, J.; Küsel, K.; Keller, T. F.; Jandt, K. D.; Totsche, K. U.

    2014-09-01

    Ferrihydrite is a widespread poorly crystalline Fe oxide which becomes easily coated by natural organic matter in the environment. This mineral-bound organic matter entirely changes the mineral surface properties and therefore the reactivity of the original mineral. Here, we investigated 2-line ferrihydrite, ferrihydrite with adsorbed organic matter, and ferrihydrite coprecipitated with organic matter for microbial and abiotic reduction of Fe(III). Ferrihydrite-organic matter associations with different organic matter loadings were reduced either by Geobacter bremensis or abiotically by Na-dithionite. Both types of experiments showed decreasing initial Fe-reduction rates and decreasing degrees of reduction with increasing amounts of mineral-bound organic matter. At similar organic matter loadings, coprecipitated ferrihydrites were more reactive than ferrihydrites with adsorbed organic matter. The difference can be explained by the smaller crystal size and poor crystallinity of such coprecipitates. At small organic matter loadings the poor crystallinity of coprecipitates led to even faster Fe-reduction rates than found for pure ferrihydrite. The amount of mineral-bound organic matter also affected the formation of secondary minerals: goethite was only found after reduction of organic matter-free ferrihydrite and siderite was only detected when ferrihydrites with relatively low amounts of mineral-bound organic matter were reduced. We conclude that direct contact of G. bremensis to the Fe oxide mineral surface was inhibited by attached organic matter. Consequently, mineral-bound organic matter shall be taken into account as a factor in slowing down reductive dissolution.

  19. Model-based Analysis of Mixed Uranium(VI) Reduction by Biotic and Abiotic Pathways During in Situ Bioremediation

    SciTech Connect

    Zhao, Jiao; Scheibe, Timothy D.; Mahadevan, Radhakrishnan

    2013-10-24

    Uranium bioremediation has emerged as a potential strategy of cleanup of radionuclear contamination worldwide. An integrated geochemical & microbial community model is a promising approach to predict and provide insights into the bioremediation of a complicated natural subsurface. In this study, an integrated column-scale model of uranium bioremediation was developed, taking into account long-term interactions between biotic and abiotic processes. It is also combined with a comprehensive thermodynamic analysis to track the fate and cycling of biogenic species. As compared with other bioremediation models, the model increases the resolution of the connection of microbial community to geochemistry and establishes direct quantitative correlation between overall community evolution and geochemical variation, thereby accurately predicting the community dynamics under different sedimentary conditions. The thermodynamic analysis examined a recently identified homogeneous reduction of U(VI) by Fe(II) under dynamic sedimentary conditions across time and space. It shows that the biogenic Fe(II) from Geobacter metabolism can be removed rapidly by the biogenic sulphide from sulfate reducer metabolism, hence constituting one of the reasons that make the abiotic U(VI) reduction thermodynamically infeasible in the subsurface. Further analysis indicates that much higher influent concentrations of both Fe(II) and U(VI) than normal are required to for abiotic U(VI) reduction to be thermodynamically feasible, suggesting that the abiotic reduction cannot be an alternative to the biotic reduction in the remediation of uranium contaminated groundwater.

  20. Technetium Reduction and Permanent Sequestration by Abiotic and Biotic Formation of Low-Solubility Sulfide Mineral Phases

    SciTech Connect

    Tratnyek, Paul G.; Tebo, Bradley M.; Fan, Dimin; Anitori, Roberto; Szecsody, Jim; Jansik, Danielle

    2015-11-14

    rapid in the presence of sulfide and nZVI, although the rate was suppressed at the higher S/Fe ratios tested. This suppression appeared to be due to the formation of Tc-containing colloids. As with the biotic experiments, pertechnetate reduced under sulfidic conditions was highly resistant to reoxidation. The microscopic morphology of abiotically-transformed nZVI particles varied significantly with those in the biotic experiment, although mackinawite was formed in both systems (as indicated by μXRD and Mössbauer spectroscopy). Preliminary XAS analysis pointed to a mixture of Tc-O and Tc-S binding in the abiotic sulfide/nZVI system, while the major reduced solids under non-sulfidic conditions were TcO2•nH2O. The presence of sediment and advective flow to the TcO4-/nZVI/sulfide system results in additional processes occurring. Although the natural Hanford sediment used has sufficient available ferrous iron to slowly reduce TcO4-, under anaerobic conditions, that rate is orders of magnitude slower than reduction by nZVI/sulfide. Batch and 1-D column experiments showed that the TcO4- reduction rate increased with the sediment surface area (with the same nZVI mass). As in batch systems, column studies showed that the presence of sulfide with TcO4- at low (2-5 mM) concentrations increased the TcO4- reduction rate and high (10-30 mM) sulfide decreased the rate. This change is attributed to the formation of sulfide precipitates on the nZVI and sediment surfaces. Injection of low and high sulfide (i.e. pretreatment) prior to TcO4-/sulfide injection also greatly decreased the TcO4- reduction rate, likely decreasing the generation of ferrous iron from the nZVI. Although the high sulfide systems have slower Tc reduction rates, 190 times more Tc mass precipitated than in the low sulfide systems and the

  1. Multiple sulfur isotopes fractionations associated with abiotic sulfur transformations in Yellowstone National Park geothermal springs

    PubMed Central

    2014-01-01

    Background The paper presents a quantification of main (hydrogen sulfide and sulfate), as well as of intermediate sulfur species (zero-valent sulfur (ZVS), thiosulfate, sulfite, thiocyanate) in the Yellowstone National Park (YNP) hydrothermal springs and pools. We combined these measurements with the measurements of quadruple sulfur isotope composition of sulfate, hydrogen sulfide and zero-valent sulfur. The main goal of this research is to understand multiple sulfur isotope fractionation in the system, which is dominated by complex, mostly abiotic, sulfur cycling. Results Water samples from six springs and pools in the Yellowstone National Park were characterized by pH, chloride to sulfate ratios, sulfide and intermediate sulfur species concentrations. Concentrations of sulfate in pools indicate either oxidation of sulfide by mixing of deep parent water with shallow oxic water, or surface oxidation of sulfide with atmospheric oxygen. Thiosulfate concentrations are low (<6 μmol L-1) in the pools with low pH due to fast disproportionation of thiosulfate. In the pools with higher pH, the concentration of thiosulfate varies, depending on different geochemical pathways of thiosulfate formation. The δ34S values of sulfate in four systems were close to those calculated using a mixing line of the model based on dilution and boiling of a deep hot parent water body. In two pools δ34S values of sulfate varied significantly from the values calculated from this model. Sulfur isotope fractionation between ZVS and hydrogen sulfide was close to zero at pH < 4. At higher pH zero-valent sulfur is slightly heavier than hydrogen sulfide due to equilibration in the rhombic sulfur–polysulfide – hydrogen sulfide system. Triple sulfur isotope (32S, 33S, 34S) fractionation patterns in waters of hydrothermal pools are more consistent with redox processes involving intermediate sulfur species than with bacterial sulfate reduction. Small but resolved differences in ∆33S among

  2. Reduction of ferrihydrite with adsorbed and coprecipitated organic matter: microbial reduction by Geobacter bremensis vs. abiotic reduction by Na-dithionite

    NASA Astrophysics Data System (ADS)

    Eusterhues, K.; Hädrich, A.; Neidhardt, J.; Küsel, K.; Keller, T. F.; Jandt, K. D.; Totsche, K. U.

    2014-04-01

    Ferrihydrite (Fh) is a widespread poorly crystalline Fe oxide which becomes easily coated by natural organic matter (OM) in the environment. This mineral-bound OM entirely changes the mineral surface properties and therefore the reactivity of the original mineral. Here, we investigated the reactivity of 2-line Fh, Fh with adsorbed OM and Fh coprecipitated with OM towards microbial and abiotic reduction of Fe(III). As a surrogate for dissolved soil OM we used a water extract of a Podzol forest floor. Fh-OM associations with different OM-loadings were reduced either by Geobacter bremensis or abiotically by Na-dithionite. Both types of experiments showed decreasing initial Fe reduction rates and decreasing degrees of reduction with increasing amounts of mineral-bound OM. At similar OM-loadings, coprecipitated Fhs were more reactive than Fhs with adsorbed OM. The difference can be explained by the smaller crystal size and poor crystallinity of such coprecipitates. At small OM loadings this led to even faster Fe reduction rates than found for pure Fh. The amount of mineral-bound OM also affected the formation of secondary minerals: goethite was only found after reduction of OM-free Fh and siderite was only detected when Fhs with relatively low amounts of mineral-bound OM were reduced. We conclude that direct contact of G. bremensis to the Fe oxide mineral surface was inhibited when blocked by OM. Consequently, mineral-bound OM shall be taken into account besides Fe(II) accumulation as a further widespread mechanism to slow down reductive dissolution.

  3. Multiple abiotic stress tolerance of the transformants yeast cells and the transgenic Arabidopsis plants expressing a novel durum wheat catalase.

    PubMed

    Feki, Kaouthar; Kamoun, Yosra; Ben Mahmoud, Rihem; Farhat-Khemakhem, Ameny; Gargouri, Ali; Brini, Faiçal

    2015-12-01

    Catalases are reactive oxygen species scavenging enzymes involved in response to abiotic and biotic stresses. In this study, we described the isolation and functional characterization of a novel catalase from durum wheat, designed TdCAT1. Molecular Phylogeny analyses showed that wheat TdCAT1 exhibited high amino acids sequence identity to other plant catalases. Sequence homology analysis showed that TdCAT1 protein contained the putative calmodulin binding domain and a putative conserved internal peroxisomal targeting signal PTS1 motif around its C-terminus. Predicted three-dimensional structural model revealed the presence of four putative distinct structural regions which are the N-terminal arm, the β-barrel, the wrapping and the α-helical domains. TdCAT1 protein had the heme pocket that was composed by five essential residues. TdCAT1 gene expression analysis showed that this gene was induced by various abiotic stresses in durum wheat. The expression of TdCAT1 in yeast cells and Arabidopsis plants conferred tolerance to several abiotic stresses. Compared with the non-transformed plants, the transgenic lines maintained their growth and accumulated more proline under stress treatments. Furthermore, the amount of H2O2 was lower in transgenic lines, which was due to the high CAT and POD activities. Taken together, these data provide the evidence for the involvement of durum wheat catalase TdCAT1 in tolerance to multiple abiotic stresses in crop plants. PMID:26555900

  4. Application of dual carbon-bromine isotope analysis for investigating abiotic transformations of tribromoneopentyl alcohol (TBNPA).

    PubMed

    Kozell, Anna; Yecheskel, Yinon; Balaban, Noa; Dror, Ishai; Halicz, Ludwik; Ronen, Zeev; Gelman, Faina

    2015-04-01

    Many of polybrominated organic compounds, used as flame retardant additives, belong to the group of persistent organic pollutants. Compound-specific isotope analysis is one of the potential analytical tools for investigating their fate in the environment. However, the isotope effects associated with transformations of brominated organic compounds are still poorly explored. In the present study, we investigated carbon and bromine isotope fractionation during degradation of tribromoneopentyl alcohol (TBNPA), one of the widely used flame retardant additives, in three different chemical processes: transformation in aqueous alkaline solution (pH 8); reductive dehalogenation by zero-valent iron nanoparticles (nZVI) in anoxic conditions; oxidative degradation by H2O2 in the presence of CuO nanoparticles (nCuO). Two-dimensional carbon-bromine isotope plots (δ(13)C/Δ(81)Br) for each reaction gave different process-dependent isotope slopes (Λ(C/Br)): 25.2 ± 2.5 for alkaline hydrolysis (pH 8); 3.8 ± 0.5 for debromination in the presence of nZVI in anoxic conditions; ∞ in the case of catalytic oxidation by H2O2 with nCuO. The obtained isotope effects for both elements were generally in agreement with the values expected for the suggested reaction mechanisms. The results of the present study support further applications of dual carbon-bromine isotope analysis as a tool for identification of reaction pathway during transformations of brominated organic compounds in the environment.

  5. Abiotic selenium redox transformations in the presence of Fe(II,III) oxides

    SciTech Connect

    Myneni, S.C.B.; Tokunaga, T.K.; Brown, G.E. Jr.

    1997-11-07

    Many suboxic sediments and soils contain an Fe(II,III) oxide called green rust. Spectroscopic evidence showed that selenium reduces from an oxidation state of +VI to 0 in the presence of green rust at rates comparable with those found in sediments. Selenium speciation was different in solid and aqueous phases. These redox reactions represent an abiotic pathway for selenium cycling in natural environments, which has previously been considered to be mediated principally by microorganisms. Similar green rust-mediated abiotic redox reactions are likely to be involved in the mobility of several other trace elements and contaminants in the environment. 27 refs., 3 figs., 2 tabs.

  6. Experimental study of abiotic and microbial Fe-mineral transformations to understand magnetic enhancement during pedogenesis

    NASA Astrophysics Data System (ADS)

    Till, Jessica; Guyodo, Yohan; Lagroix, France; Bonville, Pierre; Ona-Nguema, Georges; Menguy, Nicolas; Morin, Guillaume

    2013-04-01

    The phenomenon of magnetic enhancement in many soil types has been recognized for several years, but the question of whether the enhancement process is primarily driven by microbial activity or abiotic processes is still unresolved. We present results from an on-going interdisciplinary experimental study of possible pathways of magnetic enhancement during pedogenesis of loess-derived soils. Synthetic nanoparticle preparations of the oxyhydroxides goethite and lepidocrocite were chosen as Fe-rich precursor phases. Abiotic alteration was achieved by heating in a controlled atmosphere, under either oxidizing or reducing conditions. Heating-induced dehydration reactions in lepidocrocite produce superparamagnetic magnetite or maghemite with a characteristic nanoporous structure, while dehydration of nanogoethite produced pseudo-morphed hematite, which converts to magnetite during heating in a reducing atmosphere. The abiotic alteration experiments are compared with preliminary results from bioreduction experiments using the dissimilatory Fe-reducing bacteria Shewanella putrefaciens in both the synthetic minerals and in natural loess, soil and paleosol materials. The magnetic properties, microstructure, and morphology of the reaction products were characterized with a combination of low-temperature magnetic properties, Mössbauer spectroscopy, high-resolution TEM microscopy, and x-ray diffraction. The goal is to identify characteristic properties of the magnetic alteration products that may help elucidate the relative contributions of microbial and abiotic alteration mechanisms to the development of an "enhanced" magnetic signature during pedogenesis.

  7. Abiotic reduction of nitroaromatic compounds by aqueous iron(ll)-catechol complexes.

    PubMed

    Naka, Daisuke; Kim, Dongwook; Strathmann, Timothy J

    2006-05-01

    Complexation of iron(ll) by catechol and thiol ligands leads to the formation of aqueous species that are capable of reducing substituted nitroaromatic compounds (NACs) to the corresponding anilines. No reactions of NACs are observed in FelI-only or ligand-only solutions. In solutions containing FeII and tiron, a model catechol, rates of NAC reduction are heavily dependent on pH, ligand concentration, and ionic strength. Observed pseudo-first-order rate constants (k(obs)) for 4-chloronitrobenzene reduction vary by more than 6 orders of magnitude, and the variability is well described by the expression k(obs) = k(FeL2)(6-) [FeL2(6-)], where [FeL2(6-)] is the concentration of the 1:2 FeII-tiron complex and kFeL2(6-) is the bimolecular rate constant for 4-chloronitrobenzene reaction with this species. The high reactivity of this FeII species is attributed to the low standard one-electron reduction potential of the corresponding FeIII/FeII redox couple (EH0 = -0.509 V vs NHE). The relative reactivity of different NACs can be described by a linear free-energy relationship (LFER) with the one-electron reduction potentials of the NACs, EH1'(ArNO2). The experimentally derived slope of the LFER indicates that electron transfer is rate determining. These findings suggest that FeII-organic complexes may play an important, previously unrecognized, role in the reductive transformation of persistent organic contaminants.

  8. In planta transformation of sorghum (Sorghum bicolor (L.) Moench) using TPS1 gene for enhancing tolerance to abiotic stresses.

    PubMed

    Yellisetty, Varalaxmi; Reddy, L A; Mandapaka, Maheswari

    2015-09-01

    An in planta transformation protocol for sorghum (Sorghum bicolor (L.) Moench) using shoot apical meristem of germinating seedlings is reported in this study. Agrobacterium tumefaciens strain, LBA4404 with pCAMBIA1303 vector and construct pCAMBIA1303TPS1 were individually used for transformation. Since, the transgene is integrated into the cells of already differentiated tissues, the T 0 plants were chimeric and stable integration was observed in T1 generation. β-Glucuronidase (GUS) expression in the seedlings and spikelets of emerging cob was the first indication of transformability in T0 generation which was further confirmed by PCR analysis using hpt and TPS1 gene-specific primers. Screening on 25 mg/L hygromycin combined with PCR analysis was used for selection of transformants in the T1 generation. Transformation efficiencies ranged between 34-38% and 26-34% using pCAMBIA1303 vector and construct pCAMBIA1303TPS1, respectively. Molecular characterization of the T2 transgenics using PCR, RT-PCR and Southern blot analyses further revealed the integration, expression and inheritance of the transgene. These results indicate the feasibility of the method to generate transgenics with pCAM-BIA1303 vector and construct pCAMBIA1303TPS1. The abiotic stress tolerance of TPS1 transgenics developed in the present study was evident by the ability of the transformants to tolerate 200 mM NaCl as well as higher root growth and biomass. PMID:26440081

  9. Abiotic degradation of methyl parathion by manganese dioxide: Kinetics and transformation pathway.

    PubMed

    Liao, Xiaoping; Zhang, Caixiang; Liu, Yuan; Luo, Yinwen; Wu, Sisi; Yuan, Songhu; Zhu, Zhenli

    2016-05-01

    Methyl parathion, a widely used insecticide around the world, has aroused gradually extensive concern of researchers due to its degradation product such as methyl paraoxon, with higher toxicity for mammals and more recalcitrant. Given the ubiquity of manganese dioxide (MnO2) in soils and aquatic sediments, the abiotic degradation of methyl parathion by α-MnO2 was investigated in batch experiments. It was found that methyl parathion was decomposed up to 90% by α-MnO2 in 30 h and the removal efficiency of methyl parathion depended strongly on the loading of α-MnO2 and pH value in the solution where the reactions followed pseudo-first-order model well. The coexisting metal ions (such as Ca(2+), Mg(2+) and Mn(2+)) weakened markedly the degradation of methyl parathion by α-MnO2. However, the effect of dissolved organic matter (HA-Na) on reaction rates presented two sides: to improve hydrolysis rate but deteriorate oxidation rate of methyl parathion. Based on the degradation products identified by gas chromatography-mass spectrometer (GC/MS) and liquid chromatography high-resolution mass spectrometer (LC/HRMS), both hydrolysis and oxidation processes were proposed to be two predominant reaction mechanisms contributing to methyl parathion degradation by α-MnO2. This study provided meaningful information to elucidate the abiotic dissipation of methyl parathion by manganese oxide minerals in the environment. PMID:26891361

  10. Abiotic degradation of methyl parathion by manganese dioxide: Kinetics and transformation pathway.

    PubMed

    Liao, Xiaoping; Zhang, Caixiang; Liu, Yuan; Luo, Yinwen; Wu, Sisi; Yuan, Songhu; Zhu, Zhenli

    2016-05-01

    Methyl parathion, a widely used insecticide around the world, has aroused gradually extensive concern of researchers due to its degradation product such as methyl paraoxon, with higher toxicity for mammals and more recalcitrant. Given the ubiquity of manganese dioxide (MnO2) in soils and aquatic sediments, the abiotic degradation of methyl parathion by α-MnO2 was investigated in batch experiments. It was found that methyl parathion was decomposed up to 90% by α-MnO2 in 30 h and the removal efficiency of methyl parathion depended strongly on the loading of α-MnO2 and pH value in the solution where the reactions followed pseudo-first-order model well. The coexisting metal ions (such as Ca(2+), Mg(2+) and Mn(2+)) weakened markedly the degradation of methyl parathion by α-MnO2. However, the effect of dissolved organic matter (HA-Na) on reaction rates presented two sides: to improve hydrolysis rate but deteriorate oxidation rate of methyl parathion. Based on the degradation products identified by gas chromatography-mass spectrometer (GC/MS) and liquid chromatography high-resolution mass spectrometer (LC/HRMS), both hydrolysis and oxidation processes were proposed to be two predominant reaction mechanisms contributing to methyl parathion degradation by α-MnO2. This study provided meaningful information to elucidate the abiotic dissipation of methyl parathion by manganese oxide minerals in the environment.

  11. Characteristics and Kinetic Analysis of AQS Transformation and Microbial Goethite Reduction:Insight into "Redox mediator-Microbe-Iron oxide" Interaction Process.

    PubMed

    Zhu, Weihuang; Shi, Mengran; Yu, Dan; Liu, Chongxuan; Huang, Tinglin; Wu, Fengchang

    2016-01-01

    The characteristics and kinetics of redox transformation of a redox mediator, anthraquinone-2-sulfonate (AQS), during microbial goethite reduction by Shewanella decolorationis S12, a dissimilatory iron reduction bacterium (DIRB), were investigated to provide insights into "redox mediator-iron oxide" interaction in the presence of DIRB. Two pre-incubation reaction systems of the "strain S12- goethite" and the "strain S12-AQS" were used to investigate the dynamics of goethite reduction and AQS redox transformation. Results show that the concentrations of goethite and redox mediator, and the inoculation cell density all affect the characteristics of microbial goethite reduction, kinetic transformation between oxidized and reduced species of the redox mediator. Both abiotic and biotic reactions and their coupling regulate the kinetic process for "Quinone-Iron" interaction in the presence of DIRB. Our results provide some new insights into the characteristics and mechanisms of interaction among "quinone-DIRB- goethite" under biotic/abiotic driven.

  12. Abiotic transformation of high explosives by freshly precipitated iron minerals in aqueous FeII solutions.

    PubMed

    Boparai, Hardiljeet K; Comfort, Steve D; Satapanajaru, Tunlawit; Szecsody, Jim E; Grossl, Paul R; Shea, Patrick J

    2010-05-01

    Zerovalent iron barriers have become a viable treatment for field-scale cleanup of various ground water contaminants. While contact with the iron surface is important for contaminant destruction, the interstitial pore water within and near the iron barrier will be laden with aqueous, adsorbed and precipitated Fe(II) phases. These freshly precipitated iron minerals could play an important role in transforming high explosives (HE). Our objective was to determine the transformation of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine), and TNT (2,4,6-trinitrotoluene) by freshly precipitated iron Fe(II)/Fe(III) minerals. This was accomplished by quantifying the effects of initial Fe(II) concentration, pH, and the presence of aquifer solids (Fe(III) phases) on HE transformation rates. Results showed that at pH 8.2, freshly precipitated iron minerals transformed RDX, HMX, and TNT with reaction rates increasing with increasing Fe(II) concentrations. RDX and HMX transformations in these solutions also increased with increasing pH (5.8-8.55). By contrast, TNT transformation was not influenced by pH (6.85-8.55) except at pH values <6.35. Transformations observed via LC/MS included a variety of nitroso products (RDX, HMX) and amino degradation products (TNT). XRD analysis identified green rust and magnetite as the dominant iron solid phases that precipitated from the aqueous Fe(II) during HE treatment under anaerobic conditions. Geochemical modeling also predicted Fe(II) activity would likely be controlled by green rust and magnetite. These results illustrate the important role freshly precipitated Fe(II)/Fe(III) minerals in aqueous Fe(II) solutions play in the transformation of high explosives. PMID:20226494

  13. Abiotic transformation of high explosives by freshly precipitated iron minerals in aqueous FeII solutions.

    PubMed

    Boparai, Hardiljeet K; Comfort, Steve D; Satapanajaru, Tunlawit; Szecsody, Jim E; Grossl, Paul R; Shea, Patrick J

    2010-05-01

    Zerovalent iron barriers have become a viable treatment for field-scale cleanup of various ground water contaminants. While contact with the iron surface is important for contaminant destruction, the interstitial pore water within and near the iron barrier will be laden with aqueous, adsorbed and precipitated Fe(II) phases. These freshly precipitated iron minerals could play an important role in transforming high explosives (HE). Our objective was to determine the transformation of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine), and TNT (2,4,6-trinitrotoluene) by freshly precipitated iron Fe(II)/Fe(III) minerals. This was accomplished by quantifying the effects of initial Fe(II) concentration, pH, and the presence of aquifer solids (Fe(III) phases) on HE transformation rates. Results showed that at pH 8.2, freshly precipitated iron minerals transformed RDX, HMX, and TNT with reaction rates increasing with increasing Fe(II) concentrations. RDX and HMX transformations in these solutions also increased with increasing pH (5.8-8.55). By contrast, TNT transformation was not influenced by pH (6.85-8.55) except at pH values <6.35. Transformations observed via LC/MS included a variety of nitroso products (RDX, HMX) and amino degradation products (TNT). XRD analysis identified green rust and magnetite as the dominant iron solid phases that precipitated from the aqueous Fe(II) during HE treatment under anaerobic conditions. Geochemical modeling also predicted Fe(II) activity would likely be controlled by green rust and magnetite. These results illustrate the important role freshly precipitated Fe(II)/Fe(III) minerals in aqueous Fe(II) solutions play in the transformation of high explosives.

  14. Distribution transformer BIL reduction feasibility study

    SciTech Connect

    Baranowski, J.F.; Goedde, G.L. . Thomas A. Edison Technical Center)

    1990-01-01

    This paper summarizes an investigation into the feasibility of reducing basic insulation levels (BIL) for oil-immersed distribution transformers. A projected market makeup of popular kVA and system voltages was determined for the 5 kV to 35 kV insulation classes of pole-type and pad-mount distribution transformers. Reduced BIL design cases were used to determine the impact on the transformer's design and performance. The final results provide both industry cost and total owning cost savings.

  15. Influence of Dissolved Organic Matter and Fe (II) on the Abiotic Reduction of Pentachloronitrobenzene

    EPA Science Inventory

    Nitroaromatic pesticides (NAPs) are hydrophobic contaminants that can accumulate in sediments by the deposition of suspended solids from surface waters. Fe(II) and dissolved organic matter (DOM), present in suboxic and anoxic zones of freshwater sediments, can transform NAPs in n...

  16. ELUCIDATING THE ROLE OF ELECTRON TRANSFER MEDIATORS IN REDUCTIVE TRANSFORMATIONS IN NATURAL SEDIMENTS

    EPA Science Inventory

    To study the identity and reactivity of electron transfer mediators (ETMs) in natural sediments, the reduction kinetics of a glass bead-azo dye complex were measured in abiotic and biotic model systems, as well as in natural sediments. In abiotic model systems, the bead-dye comp...

  17. Nitrogen Assimilation, Abiotic Stress and Glucose 6-Phosphate Dehydrogenase: The Full Circle of Reductants

    PubMed Central

    Esposito, Sergio

    2016-01-01

    Glucose 6 phosphate dehydrogenase (G6PDH; EC 1.1.1.49) is well-known as the main regulatory enzyme of the oxidative pentose phosphate pathway (OPPP) in living organisms. Namely, in Planta, different G6PDH isoforms may occur, generally localized in cytosol and plastids/chloroplasts. These enzymes are differently regulated by distinct mechanisms, still far from being defined in detail. In the last decades, a pivotal function for plant G6PDHs during the assimilation of nitrogen, providing reductants for enzymes involved in nitrate reduction and ammonium assimilation, has been described. More recently, several studies have suggested a main role of G6PDH to counteract different stress conditions, among these salinity and drought, with the involvement of an ABA depending signal. In the last few years, this recognized vision has been greatly widened, due to studies clearly showing the non-conventional subcellular localization of the different G6PDHs, and the peculiar regulation of the different isoforms. The whole body of these considerations suggests a central question: how do the plant cells distribute the reductants coming from G6PDH and balance their equilibrium? This review explores the present knowledge about these mechanisms, in order to propose a scheme of distribution of reductants produced by G6PDH during nitrogen assimilation and stress. PMID:27187489

  18. Nitrogen Assimilation, Abiotic Stress and Glucose 6-Phosphate Dehydrogenase: The Full Circle of Reductants.

    PubMed

    Esposito, Sergio

    2016-01-01

    Glucose 6 phosphate dehydrogenase (G6PDH; EC 1.1.1.49) is well-known as the main regulatory enzyme of the oxidative pentose phosphate pathway (OPPP) in living organisms. Namely, in Planta, different G6PDH isoforms may occur, generally localized in cytosol and plastids/chloroplasts. These enzymes are differently regulated by distinct mechanisms, still far from being defined in detail. In the last decades, a pivotal function for plant G6PDHs during the assimilation of nitrogen, providing reductants for enzymes involved in nitrate reduction and ammonium assimilation, has been described. More recently, several studies have suggested a main role of G6PDH to counteract different stress conditions, among these salinity and drought, with the involvement of an ABA depending signal. In the last few years, this recognized vision has been greatly widened, due to studies clearly showing the non-conventional subcellular localization of the different G6PDHs, and the peculiar regulation of the different isoforms. The whole body of these considerations suggests a central question: how do the plant cells distribute the reductants coming from G6PDH and balance their equilibrium? This review explores the present knowledge about these mechanisms, in order to propose a scheme of distribution of reductants produced by G6PDH during nitrogen assimilation and stress. PMID:27187489

  19. An experimental and ab initio study on the abiotic reduction of uranyl by ferrous iron

    NASA Astrophysics Data System (ADS)

    Taylor, S. D.; Marcano, M. C.; Rosso, K. M.; Becker, U.

    2015-05-01

    It is important to understand the mechanisms controlling the removal of uranyl from solution from an environmental standpoint, particularly whether soluble Fe(II) is capable of reducing soluble U(VI) to insoluble U(IV). Experiments were performed to shed light into discrepancies of recent studies about precipitation of U-containing solids without changing oxidation states versus precipitation/reduction reactions, especially with respect to the kinetics of these reactions. To understand the atomistic mechanisms, thermodynamics, and kinetics of these redox processes, ab initio electron transfer (ET) calculations, using Marcus theory, were applied to study the reduction of U(VI)aq to U(V)aq by Fe(II)aq (the first rate-limiting ET-step). Outer-sphere (OS) and inner-sphere (IS) Fe-U complexes were modeled to represent simple species within a homogeneous environment through which ET could occur. Experiments on the chemical reduction were performed by reacting 1 mM Fe(II)aq at pH 7.2 with high (i.e., 0.16 mM) and lower (i.e., 0.02 mM) concentrations of U(VI)aq. At higher U concentration, a rapid decrease in U(VI)aq was observed within the first hour of reaction. XRD and XPS analyses of the precipitates confirmed the presence of (meta)schoepite phases, where up to ∼25% of the original U was reduced to U4+ and/or U5+-containing phases. In contrast, at 0.02 mM U, the U(VI)aq concentration remained fairly constant for the first 3 h of reaction and only then began to decrease due to slower precipitation kinetics. XPS spectra confirm the partial chemical reduction U associated with the precipitate (up to ∼30%). Thermodynamic calculations support that the reduction of U(VI)aq to U(IV)aq by Fe(II)aq is energetically unfavorable. The batch experiments in this study show U(VI) is removed from solution by precipitation and that transitioning to a heterogeneous system in turn enables the solid U phase to be partially reduced. Ab initio ET calculations revealed that OS ET is

  20. Stable Isotope Systematics of Abiotic Nitrite Reduction Coupled with Anaerobic Iron Oxidation: The Role of Reduced Clays and Fe-bearing Minerals

    NASA Astrophysics Data System (ADS)

    Grabb, K. C.; Buchwald, C.; Hansel, C. M.; Wankel, S. D.

    2014-12-01

    Under anaerobic conditions, it is widely assumed that nitrate (NO3-) and nitrite (NO2-) reduction is primarily the result of microbial respiration. However, it has also been shown that abiotic reduction of nitrate and nitrite by reduced iron (Fe(II)), whether mineral-bound or surface-associated, may also occur under certain environmentally relevant conditions. With a range of experimental conditions, we investigated the nitrogen and oxygen stable isotope systematics of abiotic nitrite reduction by Fe(II) in an effort to characterize biotic and abiotic processes in the environment. While homogenous reactions between NO2- and Fe(II) in artificial seawater showed little reduction, heterogeneous reactions involving Fe-containing minerals showed considerable nitrite loss. Specifically, rapid nitrite reduction was observed in experiments that included reduced clays (illite, Na-montmorillonite, and nontronite) and those that exhibited iron oxide formation (ferrihydrite, magnetite and/or green rust). While these iron oxides and clay minerals offer both a source of reduced iron in the mineral matrix as well as a surface for Fe(II) activation, control experiments with corundum as a non-Fe containing mineral surface showed little NO2- loss, implicating a more dominant role of structural Fe in the clays during nitrite reduction. The isotope effects for 15N and 18O (15ɛ and 18ɛ) ranged from 5 to 14‰ for 15ɛ and 5 to 17‰ for 18ɛ and were typically coupled such that 15ɛ ~ 18ɛ. Reactions below pH 7 were slower and the 18ɛ was affected by oxygen atom exchange with water. Although little data exist for comparison with the dual isotopes of microbial NO2- reduction, these data serve as a benchmark for evaluating the role of abiotic processes in N reduction, particularly in sediment systems low in organic carbon and high in iron.

  1. Electrical conductivity as an indicator of iron reduction rates in abiotic and biotic systems

    NASA Astrophysics Data System (ADS)

    Regberg, Aaron; Singha, Kamini; Tien, Ming; Picardal, Flynn; Zheng, Quanxing; Schieber, Jurgen; Roden, Eric; Brantley, Susan L.

    2011-04-01

    Although changes in bulk electrical conductivity (σb) in aquifers have been attributed to microbial activity, σb has never been used to infer biogeochemical reaction rates quantitatively. To explore the use of electrical conductivity to measure reaction rates, we conducted iron oxide reduction experiments of increasing biological complexity. To quantify reaction rates, we propose composite reactions that incorporate the stoichiometry of five different types of reactions: redox, acid-base, sorption, dissolution/precipitation, and biosynthesis. In batch experiments and the early stages of a column experiment, such reaction stoichiometries inferred from a few chemical measurements allowed quantification of the Fe oxide reduction rate based on changes in electrical conductivity. The relationship between electrical conductivity and fluid chemistry did not hold during the latter stages of the column experiment when σb increased while fluid chemistry remained constant. Growth of an electrically conductive biofilm could possibly explain this late stage σb increase. The measured σb increase is consistent with a model proposed by analogy from percolation theory that attributes the increased conductivity to growth of biofilms with conductivity of ˜5.5 S m-1 in at least 3% of the column pore space. This work demonstrates that measurements of σb and flow rate, combined with a few direct chemical measurements, can be used to quantify biogeochemical reaction rates in controlled laboratory situations and may be able to detect the presence of biofilms. This approach may help in designing future field experiments to interpret biogeochemical reactivity from conductivity measurements.

  2. The study of abiotic reduction of nitrate and nitrite in Boom Clay

    NASA Astrophysics Data System (ADS)

    Mariën, A.; Bleyen, N.; Aerts, S.; Valcke, E.

    In Belgium, Boom Clay is studied as a reference host rock for the geological disposal of high-level and intermediate-level radioactive waste. Compatibility studies at the SCK•CEN aim at investigating a perturbation of the capacity of Boom Clay to retard the migration of radionuclides to the biosphere, after disposal of Eurobitum bituminized radioactive waste in the clay ( Valcke et al., 2009; Aertsens et al., 2009; Bleyen et al., 2010). One of the geo-chemical perturbations is the possible oxidation of Boom Clay by the large amounts of nitrate that will be released by Eurobitum. A more oxidised Boom Clay could have a lower reducing capacity towards redox sensitive radionuclides, possibly enhancing their migration. As the conditions in the Boom Clay formation around a disposal gallery for Eurobitum are far from optimal for the growth of prokaryotes (limited space in the far-field, high pH in the near-field, gamma radiation by the waste during the first ∼300 years (effect limited to the primary and secondary waste package)), the impact of microbially mediated reduction of nitrate and nitrite is unclear. Therefore, batch tests are performed at the SCK•CEN to study whether nitrate and nitrite can directly oxidise the main redoxactive components of Boom Clay (dissolved organic matter, kerogen, pyrite) without the mediation of prokaryotes. In a first series of batch tests, which are reported in this paper, the activity of denitrifying and nitrate reducing prokaryotes was inhibited by the addition of NaN 3. NaN 3 revealed to be an efficient inhibitor for these prokaryotes without affecting considerably the geochemistry of Boom Clay and/or Boom Clay pore water. Neither in batch tests with the Boom Clay slurries (with NaNO 3 (0.1 and 1 M) or NaNO 2 (0.1 M)) and with Boom Clay water (with 0.05 and 0.2 M NaNO 3) a pure chemical nitrate or nitrite reduction was observed after respectively 3, 7 and 17 weeks and 1 year (Boom Clay slurries) and about 2 years (Boom Clay

  3. Aquatic photochemistry, abiotic and aerobic biodegradability of thalidomide: identification of stable transformation products by LC-UV-MS(n).

    PubMed

    Mahmoud, Waleed M M; Trautwein, Christoph; Leder, Christoph; Kümmerer, Klaus

    2013-10-01

    Thalidomide (TD), besides being notorious for its teratogenicity, was shown to have immunomodulating and anti-inflammatory activities. This is why recently TD became a promising drug for the treatment of different cancers and inflammatory diseases. Yet nothing is known about the environmental fate of TD, which therefore was assessed experimentally and by in silico prediction programs (quantitative structure activity relationship (QSAR) models) within this study. Photolytic degradation was tested with two different light sources (medium-pressure mercury lamp; xenon lamp) and aerobic biodegradability was investigated with two OECD tests (Closed Bottle test (CBT), Manometric Respirometry test (MRT)). An additional CBT was performed for TD samples after 16 min of UV-photolysis. The primary elimination of TD was monitored and the structures of its photo-, abiotic and biodegradation products were elucidated by HPLC-UV-Fluorescence-MS(n). Furthermore, elimination of dissolved organic carbon was monitored in the photolysis experiment. LC-MS revealed that new photolytic transformation products (TPs) were identified, among them two isomers of TD with the same molecular mass. These TPs were different to the products formed by biodegradation. The experimental findings were compared with the results obtained from the in silico prediction programs where e.g. a good correlation for TD biodegradation in the CBT was confirmed. Moreover, some of the identified TPs were also structurally predicted by the MetaPC software. These results demonstrate that TD and its TPs are not readily biodegradable and not fully mineralized by photochemical treatment. They may therefore pose a risk to the aquatic environment due to the pharmacological activity of TD and unknown properties of its TPs. The applied techniques within this study emphasize the importance of QSAR models as a tool for estimating environmental risk assessments.

  4. Reductive transformation of hexabromocyclododecane (HBCD) by FeS.

    PubMed

    Li, Dan; Peng, Ping'an; Yu, Zhiqiang; Huang, Weilin; Zhong, Yin

    2016-09-15

    Both iron monosulfide (FeS) and brominated flame retardants (BFRs) are widely found at relatively high levels in anoxic sediments, but little is known about the reactions of FeS with BFRs. Prior studies showed that FeS was variously reactive with chlorinated organic pollutants in many anoxic environments. It is intuitive that FeS is also reactive with BFRs under anoxic conditions. This study was initiated to test such a hypothesis by quantifying the rates of reductive transformation of tetrabromobisphenol A (TBBPA), decabrominated diphenyl ether (decaBDE) and hexabromocyclododecane (HBCD) using synthetic FeS as the reactive agent. The results showed that over 90% of HBCD was transformed by FeS within 24 h, whereas both TBBPA and decaBDE were found nonreactive within 2 days. The transformation of HBCD followed a pseudo-first-order rate kinetic and the observed rate constants were dependent on the initial concentrations of FeS and HBCD. The transformation rates of β- and γ-HBCD were significantly faster than that of α-HBCD. Analysis of bromine ion and other transformation products suggested that sequential dibromoelimination to form 1,5,9-cyclododecatriene was likely to be a dominant pathway for the reductive transformation of HBCD by FeS. Surface characterization of FeS by XPS indicated that both Fe(II) and S(-II) on the FeS surface might have contributed considerably to the transformation of HBCD. These findings imply that FeS may play an important role in natural attenuation of HBCD and that it may be used as a reactive agent for treating HBCD-contaminated sediments.

  5. Reductive transformation of hexabromocyclododecane (HBCD) by FeS.

    PubMed

    Li, Dan; Peng, Ping'an; Yu, Zhiqiang; Huang, Weilin; Zhong, Yin

    2016-09-15

    Both iron monosulfide (FeS) and brominated flame retardants (BFRs) are widely found at relatively high levels in anoxic sediments, but little is known about the reactions of FeS with BFRs. Prior studies showed that FeS was variously reactive with chlorinated organic pollutants in many anoxic environments. It is intuitive that FeS is also reactive with BFRs under anoxic conditions. This study was initiated to test such a hypothesis by quantifying the rates of reductive transformation of tetrabromobisphenol A (TBBPA), decabrominated diphenyl ether (decaBDE) and hexabromocyclododecane (HBCD) using synthetic FeS as the reactive agent. The results showed that over 90% of HBCD was transformed by FeS within 24 h, whereas both TBBPA and decaBDE were found nonreactive within 2 days. The transformation of HBCD followed a pseudo-first-order rate kinetic and the observed rate constants were dependent on the initial concentrations of FeS and HBCD. The transformation rates of β- and γ-HBCD were significantly faster than that of α-HBCD. Analysis of bromine ion and other transformation products suggested that sequential dibromoelimination to form 1,5,9-cyclododecatriene was likely to be a dominant pathway for the reductive transformation of HBCD by FeS. Surface characterization of FeS by XPS indicated that both Fe(II) and S(-II) on the FeS surface might have contributed considerably to the transformation of HBCD. These findings imply that FeS may play an important role in natural attenuation of HBCD and that it may be used as a reactive agent for treating HBCD-contaminated sediments. PMID:27262547

  6. Improvement of Polyunsaturated Fatty Acid Production in Echium acanthocarpum Transformed Hairy Root Cultures by Application of Different Abiotic Stress Conditions

    PubMed Central

    Zárate, Rafael; Cequier-Sánchez, Elena; Rodríguez, Covadonga; Dorta-Guerra, Roberto; El Jaber-Vazdekis, Nabil; Ravelo, Ángel G.

    2013-01-01

    Fatty acids are of great nutritional, therapeutic, and physiological importance, especially the polyunsaturated n-3 fatty acids, possessing larger carbon chains and abundant double bonds or their immediate precursors. A few higher plant species are able to accumulate these compounds, like those belonging to the Echium genus. Here, the novel E. acanthocarpum hairy root system, which is able to accumulate many fatty acids, including stearidonic and α-linolenic acids, was optimized for a better production. The application of abiotic stress resulted in larger yields of stearidonic and α-linolenic acids, 60 and 35%, respectively, with a decrease in linoleic acid, when grown in a nutrient medium consisting of B5 basal salts, sucrose or glucose, and, more importantly, at a temperature of 15°C. The application of osmotic stress employing sorbitol showed no positive influence on the fatty acid yields; furthermore, the combination of a lower culture temperature and glucose did not show a cumulative boosting effect on the yield, although this carbon source was similarly attractive. The abiotic stress also influenced the lipid profile of the cultures, significantly increasing the phosphatidylglycerol fraction but not the total lipid neither their biomass, proving the appropriateness of applying various abiotic stress in this culture to achieve larger yields. PMID:25937970

  7. Reductive transformation of tetrabromobisphenol A by sulfidated nano zerovalent iron.

    PubMed

    Li, Dan; Mao, Zhe; Zhong, Yin; Huang, Weilin; Wu, Yundang; Peng, Ping'an

    2016-10-15

    Recent studies showed that sulfidated nano zerovalent iron (S-nZVI) is a better alternative to non-sulfidated nano zerovalent iron (NS-nZVI) commonly used for contaminated site remediation. However, its reactivity with different halogenated pollutants such as tetrabromobisphenol A (TBBPA) remains unclear. In this study, we explored the reductive transformation of TBBPA by S-nZVI and compared it with that by NS-nZVI. The results showed that over 90% of the initial TBBPA (20 mg L(-1)) was transformed by S-nZVI within 24 h of reaction, which was 1.65 times as high as that for NS-nZVI. The TBBPA transformation by S-nZVI was well described by a pseudo-first-order kinetic model, whilst that by NS-nZVI was well fitted by a three-parameter single exponential decay model. After 11 weeks of aging, S-nZVI was still able to transform up to 56% of the initial TBBPA within 24 h of reaction; by contrast, the two-week aged NS-nZVI lost more than 95% of its original capacity to transform TBBPA. Moreover, S-nZVI showed only an approximately 20% decrease in its capacity to transform TBBPA in the seventh cycle, while NS-nZVI was no longer able to transform TBBPA in the fourth cycle. XPS analysis suggested the formation of FeS layer on S-nZVI surface and electrochemical analysis revealed an elevated electron transfer capacity of S-nZVI, which were likely responsible for the superior performances of S-nZVI in TBBPA transformation. While the transformation rate of TBBPA by S-nZVI decreased with increasing initial concentration of TBBPA, it showed an increasing trend with increasing S/Fe ratio and initial concentration of S-nZVI. The study indicated that S-nZVI has the potential to be a promising alternative to NS-nZVI for remediation of TBBPA-contaminated aquatic environments. PMID:27423531

  8. TRANSFORMATION AND MOBILIZATION OF ARSENIC ADSORBED ON GRANULAR FERRIC HYDROXIDE UNDER BIO-REDUCTIVE CONDITIONS

    EPA Science Inventory

    Biotic and abiotic reduction of arsenic (V) and iron (III) influences the partioning of arsenic (As) between the solid and aqueous phases in soils, sediments and wastes. In this study, laboratory experiments on arsenic adsorbed on granular ferric hydroxide (GFH) was performed to ...

  9. Characteristics and Kinetic Analysis of AQS Transformation and Microbial Goethite Reduction:Insight into “Redox mediator-Microbe-Iron oxide” Interaction Process

    NASA Astrophysics Data System (ADS)

    Zhu, Weihuang; Shi, Mengran; Yu, Dan; Liu, Chongxuan; Huang, Tinglin; Wu, Fengchang

    2016-03-01

    The characteristics and kinetics of redox transformation of a redox mediator, anthraquinone-2-sulfonate (AQS), during microbial goethite reduction by Shewanella decolorationis S12, a dissimilatory iron reduction bacterium (DIRB), were investigated to provide insights into “redox mediator-iron oxide” interaction in the presence of DIRB. Two pre-incubation reaction systems of the “strain S12- goethite” and the “strain S12-AQS” were used to investigate the dynamics of goethite reduction and AQS redox transformation. Results show that the concentrations of goethite and redox mediator, and the inoculation cell density all affect the characteristics of microbial goethite reduction, kinetic transformation between oxidized and reduced species of the redox mediator. Both abiotic and biotic reactions and their coupling regulate the kinetic process for “Quinone-Iron” interaction in the presence of DIRB. Our results provide some new insights into the characteristics and mechanisms of interaction among “quinone-DIRB- goethite” under biotic/abiotic driven.

  10. Abiotic transformation of high explosives by freshly precipitated iron minerals in aqueous Fe¹¹ solutions

    SciTech Connect

    Boparai, Hardiljeet K.; Comfort, Steve; Satapanajaru, Tunlawit; Szecsody, James E.; Grossl, Paul; Shea, Patrick

    2010-05-11

    Zerovalent iron barriers have become a viable treatment for field-scale cleanup of various ground water contaminants. While contact with the iron surface is important for contaminant destruction, the interstitial pore water within and near the iron barrier will be laden with aqueous, adsorbed and precipitated FeII phases. These freshly precipitated iron minerals could play an important role in transforming high explosives (HE). Our objective was to determine the transformation of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine), and TNT (2,4,6-trinitrotoluene) by freshly precipitated iron FeII/FeIII minerals. This was accomplished by quantifying the effects of initial FeII concentration, pH, and the presence of aquifer solids (FeIII phases) on HE transformation rates. Results showed that at pH 8.2, freshly precipitated iron minerals transformed RDX, HMX, and TNT with reaction rates increasing with increasing FeII concentrations. RDX and HMX transformations in these solutions also increased with increasing pH (5.8-8.55). By contrast, TNT transformation was not influenced by pH (6.85-8.55) except at pH values <6.35. Transformations observed via LC/MS included a variety of nitroso products (RDX, HMX) and amino degradation products (TNT). XRD analysis identified green rust and magnetite as the dominant iron solid phases that precipitated from the aqueous FeII during HE treatment under anaerobic conditions. Geochemical modeling also predicted FeII activity would likely be controlled by green rust and magnetite. These results illustrate the important role freshly precipitated FeII/FeIII minerals in aqueous FeII solutions play in the transformation of high explosives.

  11. Combined abiotic and biotic in-situ reduction of hexavalent chromium in groundwater using nZVI and whey: A remedial pilot test.

    PubMed

    Němeček, Jan; Pokorný, Petr; Lacinová, Lenka; Černík, Miroslav; Masopustová, Zuzana; Lhotský, Ondřej; Filipová, Alena; Cajthaml, Tomáš

    2015-12-30

    The paper describes a pilot remediation test combining two Cr(VI) geofixation methods - chemical reduction by nanoscale zero-valent iron (nZVI) and subsequent biotic reduction supported by whey. Combination of the methods exploited the advantages of both - a rapid decrease in Cr(VI) concentrations by nZVI, which prevented further spreading of the contamination and facilitated subsequent use of the cheaper biological method. Successive application of whey as an organic substrate to promote biotic reduction of Cr(VI) after application of nZVI resulted in a further and long-term decrease in the Cr(VI) contents in the groundwater. The effect of biotic reduction was observed even in a monitoring well located at a distance of 22 m from the substrate injection wells after 10 months. The results indicated a reciprocal effect of both the phases - nZVI oxidized to Fe(III) during the abiotic phase was microbially reduced back to Fe(II) and acted as a reducing agent for Cr(VI) even when the microbial density was already low due to the consumed substrate. Community analysis with pyrosequencing of the 16S rRNA genes further confirmed partial recycling of nZVI in the form of Fe(II), where the results showed that the Cr(VI) reducing process was mediated mainly by iron-reducing and sulfate-reducing bacteria. PMID:26292054

  12. Combined abiotic and biotic in-situ reduction of hexavalent chromium in groundwater using nZVI and whey: A remedial pilot test.

    PubMed

    Němeček, Jan; Pokorný, Petr; Lacinová, Lenka; Černík, Miroslav; Masopustová, Zuzana; Lhotský, Ondřej; Filipová, Alena; Cajthaml, Tomáš

    2015-12-30

    The paper describes a pilot remediation test combining two Cr(VI) geofixation methods - chemical reduction by nanoscale zero-valent iron (nZVI) and subsequent biotic reduction supported by whey. Combination of the methods exploited the advantages of both - a rapid decrease in Cr(VI) concentrations by nZVI, which prevented further spreading of the contamination and facilitated subsequent use of the cheaper biological method. Successive application of whey as an organic substrate to promote biotic reduction of Cr(VI) after application of nZVI resulted in a further and long-term decrease in the Cr(VI) contents in the groundwater. The effect of biotic reduction was observed even in a monitoring well located at a distance of 22 m from the substrate injection wells after 10 months. The results indicated a reciprocal effect of both the phases - nZVI oxidized to Fe(III) during the abiotic phase was microbially reduced back to Fe(II) and acted as a reducing agent for Cr(VI) even when the microbial density was already low due to the consumed substrate. Community analysis with pyrosequencing of the 16S rRNA genes further confirmed partial recycling of nZVI in the form of Fe(II), where the results showed that the Cr(VI) reducing process was mediated mainly by iron-reducing and sulfate-reducing bacteria.

  13. Reduction of nitrogen compounds in oceanic basement and its implications for HCN formation and abiotic organic synthesis.

    PubMed

    Holm, Nils G; Neubeck, Anna

    2009-10-22

    Hydrogen cyanide is an excellent organic reagent and is central to most of the reaction pathways leading to abiotic formation of simple organic compounds containing nitrogen, such as amino acids, purines and pyrimidines. Reduced carbon and nitrogen precursor compounds for the synthesis of HCN may be formed under off-axis hydrothermal conditions in oceanic lithosphere in the presence of native Fe and Ni and are adsorbed on authigenic layer silicates and zeolites. The native metals as well as the molecular hydrogen reducing CO2 to CO/CH4 and NO3-/NO2- to NH3/NH4+ are a result of serpentinization of mafic rocks. Oceanic plates are conveyor belts of reduced carbon and nitrogen compounds from the off-axis hydrothermal environments to the subduction zones, where compaction, dehydration, desiccation and diagenetic reactions affect the organic precursors. CO/CH4 and NH3/NH4+ in fluids distilled out of layer silicates and zeolites in the subducting plate at an early stage of subduction will react upon heating and form HCN, which is then available for further organic reactions to, for instance, carbohydrates, nucleosides or even nucleotides, under alkaline conditions in hydrated mantle rocks of the overriding plate. Convergent margins in the initial phase of subduction must, therefore, be considered the most potent sites for prebiotic reactions on Earth. This means that origin of life processes are, perhaps, only possible on planets where some kind of plate tectonics occur.

  14. Reduction of nitrogen compounds in oceanic basement and its implications for HCN formation and abiotic organic synthesis.

    PubMed

    Holm, Nils G; Neubeck, Anna

    2009-01-01

    Hydrogen cyanide is an excellent organic reagent and is central to most of the reaction pathways leading to abiotic formation of simple organic compounds containing nitrogen, such as amino acids, purines and pyrimidines. Reduced carbon and nitrogen precursor compounds for the synthesis of HCN may be formed under off-axis hydrothermal conditions in oceanic lithosphere in the presence of native Fe and Ni and are adsorbed on authigenic layer silicates and zeolites. The native metals as well as the molecular hydrogen reducing CO2 to CO/CH4 and NO3-/NO2- to NH3/NH4+ are a result of serpentinization of mafic rocks. Oceanic plates are conveyor belts of reduced carbon and nitrogen compounds from the off-axis hydrothermal environments to the subduction zones, where compaction, dehydration, desiccation and diagenetic reactions affect the organic precursors. CO/CH4 and NH3/NH4+ in fluids distilled out of layer silicates and zeolites in the subducting plate at an early stage of subduction will react upon heating and form HCN, which is then available for further organic reactions to, for instance, carbohydrates, nucleosides or even nucleotides, under alkaline conditions in hydrated mantle rocks of the overriding plate. Convergent margins in the initial phase of subduction must, therefore, be considered the most potent sites for prebiotic reactions on Earth. This means that origin of life processes are, perhaps, only possible on planets where some kind of plate tectonics occur. PMID:19849830

  15. Reduction of nitrogen compounds in oceanic basement and its implications for HCN formation and abiotic organic synthesis

    PubMed Central

    2009-01-01

    Hydrogen cyanide is an excellent organic reagent and is central to most of the reaction pathways leading to abiotic formation of simple organic compounds containing nitrogen, such as amino acids, purines and pyrimidines. Reduced carbon and nitrogen precursor compounds for the synthesis of HCN may be formed under off-axis hydrothermal conditions in oceanic lithosphere in the presence of native Fe and Ni and are adsorbed on authigenic layer silicates and zeolites. The native metals as well as the molecular hydrogen reducing CO2 to CO/CH4 and NO3-/NO2- to NH3/NH4+ are a result of serpentinization of mafic rocks. Oceanic plates are conveyor belts of reduced carbon and nitrogen compounds from the off-axis hydrothermal environments to the subduction zones, where compaction, dehydration, desiccation and diagenetic reactions affect the organic precursors. CO/CH4 and NH3/NH4+ in fluids distilled out of layer silicates and zeolites in the subducting plate at an early stage of subduction will react upon heating and form HCN, which is then available for further organic reactions to, for instance, carbohydrates, nucleosides or even nucleotides, under alkaline conditions in hydrated mantle rocks of the overriding plate. Convergent margins in the initial phase of subduction must, therefore, be considered the most potent sites for prebiotic reactions on Earth. This means that origin of life processes are, perhaps, only possible on planets where some kind of plate tectonics occur. PMID:19849830

  16. Identification of abiotic and biotic reductive dechlorination in a chlorinated ethene plume after thermal source remediation by means of isotopic and molecular biology tools.

    PubMed

    Badin, Alice; Broholm, Mette M; Jacobsen, Carsten S; Palau, Jordi; Dennis, Philip; Hunkeler, Daniel

    2016-09-01

    Thermal tetrachloroethene (PCE) remediation by steam injection in a sandy aquifer led to the release of dissolved organic carbon (DOC) from aquifer sediments resulting in more reduced redox conditions, accelerated PCE biodegradation, and changes in microbial populations. These changes were documented by comparing data collected prior to the remediation event and eight years later. Based on the premise that dual C-Cl isotope slopes reflect ongoing degradation pathways, the slopes associated with PCE and TCE suggest the predominance of biotic reductive dechlorination near the source area. PCE was the predominant chlorinated ethene near the source area prior to thermal treatment. After thermal treatment, cDCE became predominant. The biotic contribution to these changes was supported by the presence of Dehalococcoides sp. DNA (Dhc) and Dhc targeted rRNA close to the source area. In contrast, dual C-Cl isotope analysis together with the almost absent VC (13)C depletion in comparison to cDCE (13)C depletion suggested that cDCE was subject to abiotic degradation due to the presence of pyrite, possible surface-bound iron (II) or reduced iron sulphides in the downgradient part of the plume. This interpretation is supported by the relative lack of Dhc in the downgradient part of the plume. The results of this study show that thermal remediation can enhance the biodegradation of chlorinated ethenes, and that this effect can be traced to the mobilisation of DOC due to steam injection. This, in turn, results in more reduced redox conditions which favor active reductive dechlorination and/or may lead to a series of redox reactions which may consecutively trigger biotically induced abiotic degradation. Finally, this study illustrates the valuable complementary application of compound-specific isotopic analysis combined with molecular biology tools to evaluate which biogeochemical processes are taking place in an aquifer contaminated with chlorinated ethenes. PMID:27318432

  17. Identification of abiotic and biotic reductive dechlorination in a chlorinated ethene plume after thermal source remediation by means of isotopic and molecular biology tools.

    PubMed

    Badin, Alice; Broholm, Mette M; Jacobsen, Carsten S; Palau, Jordi; Dennis, Philip; Hunkeler, Daniel

    2016-09-01

    Thermal tetrachloroethene (PCE) remediation by steam injection in a sandy aquifer led to the release of dissolved organic carbon (DOC) from aquifer sediments resulting in more reduced redox conditions, accelerated PCE biodegradation, and changes in microbial populations. These changes were documented by comparing data collected prior to the remediation event and eight years later. Based on the premise that dual C-Cl isotope slopes reflect ongoing degradation pathways, the slopes associated with PCE and TCE suggest the predominance of biotic reductive dechlorination near the source area. PCE was the predominant chlorinated ethene near the source area prior to thermal treatment. After thermal treatment, cDCE became predominant. The biotic contribution to these changes was supported by the presence of Dehalococcoides sp. DNA (Dhc) and Dhc targeted rRNA close to the source area. In contrast, dual C-Cl isotope analysis together with the almost absent VC (13)C depletion in comparison to cDCE (13)C depletion suggested that cDCE was subject to abiotic degradation due to the presence of pyrite, possible surface-bound iron (II) or reduced iron sulphides in the downgradient part of the plume. This interpretation is supported by the relative lack of Dhc in the downgradient part of the plume. The results of this study show that thermal remediation can enhance the biodegradation of chlorinated ethenes, and that this effect can be traced to the mobilisation of DOC due to steam injection. This, in turn, results in more reduced redox conditions which favor active reductive dechlorination and/or may lead to a series of redox reactions which may consecutively trigger biotically induced abiotic degradation. Finally, this study illustrates the valuable complementary application of compound-specific isotopic analysis combined with molecular biology tools to evaluate which biogeochemical processes are taking place in an aquifer contaminated with chlorinated ethenes.

  18. Identification of abiotic and biotic reductive dechlorination in a chlorinated ethene plume after thermal source remediation by means of isotopic and molecular biology tools

    NASA Astrophysics Data System (ADS)

    Badin, Alice; Broholm, Mette M.; Jacobsen, Carsten S.; Palau, Jordi; Dennis, Philip; Hunkeler, Daniel

    2016-09-01

    Thermal tetrachloroethene (PCE) remediation by steam injection in a sandy aquifer led to the release of dissolved organic carbon (DOC) from aquifer sediments resulting in more reduced redox conditions, accelerated PCE biodegradation, and changes in microbial populations. These changes were documented by comparing data collected prior to the remediation event and eight years later. Based on the premise that dual C-Cl isotope slopes reflect ongoing degradation pathways, the slopes associated with PCE and TCE suggest the predominance of biotic reductive dechlorination near the source area. PCE was the predominant chlorinated ethene near the source area prior to thermal treatment. After thermal treatment, cDCE became predominant. The biotic contribution to these changes was supported by the presence of Dehalococcoides sp. DNA (Dhc) and Dhc targeted rRNA close to the source area. In contrast, dual C-Cl isotope analysis together with the almost absent VC 13C depletion in comparison to cDCE 13C depletion suggested that cDCE was subject to abiotic degradation due to the presence of pyrite, possible surface-bound iron (II) or reduced iron sulphides in the downgradient part of the plume. This interpretation is supported by the relative lack of Dhc in the downgradient part of the plume. The results of this study show that thermal remediation can enhance the biodegradation of chlorinated ethenes, and that this effect can be traced to the mobilisation of DOC due to steam injection. This, in turn, results in more reduced redox conditions which favor active reductive dechlorination and/or may lead to a series of redox reactions which may consecutively trigger biotically induced abiotic degradation. Finally, this study illustrates the valuable complementary application of compound-specific isotopic analysis combined with molecular biology tools to evaluate which biogeochemical processes are taking place in an aquifer contaminated with chlorinated ethenes.

  19. Assessment of the abiotic transformation of 17β-estradiol in the presence of vegetable matter--II: the role of molecular oxygen.

    PubMed

    Marfil-Vega, Ruth; Suidan, Makram T; Mills, Marc A

    2012-04-01

    This study characterizes the effect of oxygen in the abiotic transformation of estrogens when they are contacted with a surrogate of the vegetable wastes found in sewage. 17β-Estradiol (E2) and 17β-(14)C(4)-estradiol ((14)C-E2) were utilized as model compounds. Batch experiments were run under both oxic and anoxic conditions. In order to accomplish an accurate mass balance of the target estrogen, two analyses were performed simultaneously: first, radioactivity counting, and second, quantitation of E2 and (14)C-E2, as well as their transformation product estrone and (14)C(4)-estrone, by Liquid Chromatography tandem Mass Spectrometry. Under oxic conditions, the total concentration of (14)C-E2 was found to decrease by 78% in 72 h (15% and 7% remained in the liquid and solid phases, respectively). Conversely, when the estrogens were contacted with the synthetic influent under anoxic conditions, E2 was quantitatively recovered after 72 h (70% and 22% in aqueous and solid matrices, correspondingly). These results suggest that when the concentration of dissolved oxygen is null or limited, catalysis through an oxidative coupling mechanism is halted. Moreover, it was confirmed that the catalytic reaction occurred solely in the presence of the solid phase of the model vegetable matter. PMID:22245058

  20. Potential Role of Nitrite for Abiotic Fe(II) Oxidation and Cell Encrustation during Nitrate Reduction by Denitrifying Bacteria

    PubMed Central

    Klueglein, Nicole; Zeitvogel, Fabian; Stierhof, York-Dieter; Floetenmeyer, Matthias; Konhauser, Kurt O.; Obst, Martin

    2014-01-01

    Microorganisms have been observed to oxidize Fe(II) at neutral pH under anoxic and microoxic conditions. While most of the mixotrophic nitrate-reducing Fe(II)-oxidizing bacteria become encrusted with Fe(III)-rich minerals, photoautotrophic and microaerophilic Fe(II) oxidizers avoid cell encrustation. The Fe(II) oxidation mechanisms and the reasons for encrustation remain largely unresolved. Here we used cultivation-based methods and electron microscopy to compare two previously described nitrate-reducing Fe(II) oxidizers ( Acidovorax sp. strain BoFeN1 and Pseudogulbenkiania sp. strain 2002) and two heterotrophic nitrate reducers (Paracoccus denitrificans ATCC 19367 and P. denitrificans Pd 1222). All four strains oxidized ∼8 mM Fe(II) within 5 days in the presence of 5 mM acetate and accumulated nitrite (maximum concentrations of 0.8 to 1.0 mM) in the culture media. Iron(III) minerals, mainly goethite, formed and precipitated extracellularly in close proximity to the cell surface. Interestingly, mineral formation was also observed within the periplasm and cytoplasm; intracellular mineralization is expected to be physiologically disadvantageous, yet acetate consumption continued to be observed even at an advanced stage of Fe(II) oxidation. Extracellular polymeric substances (EPS) were detected by lectin staining with fluorescence microscopy, particularly in the presence of Fe(II), suggesting that EPS production is a response to Fe(II) toxicity or a strategy to decrease encrustation. Based on the data presented here, we propose a nitrite-driven, indirect mechanism of cell encrustation whereby nitrite forms during heterotrophic denitrification and abiotically oxidizes Fe(II). This work adds to the known assemblage of Fe(II)-oxidizing bacteria in nature and complicates our ability to delineate microbial Fe(II) oxidation in ancient microbes preserved as fossils in the geological record. PMID:24271182

  1. ENVIRONMENTAL CHARACTERISTICS AFFECTING REDUCTIVE TRANSFORMATION OF ORGANIC POLLUTANTS IN ANOXIC SEDIMENTS

    EPA Science Inventory

    Reductive transformations are important processes for determining the fate of organic pollutants in anoxic environments. These processes are most often microbially mediated by both direct and indirect means. For example, specific bacteria transform organic pollutants directly as ...

  2. Fe(III) mineral reduction followed by partial dissolution and reactive oxygen species generation during 2,4,6-trinitrotoluene transformation by the aerobic yeast Yarrowia lipolytica.

    PubMed

    Ziganshin, Ayrat M; Ziganshina, Elvira E; Byrne, James; Gerlach, Robin; Struve, Ellen; Biktagirov, Timur; Rodionov, Alexander; Kappler, Andreas

    2015-01-01

    Understanding the factors that influence pollutant transformation in the presence of ferric (oxyhydr)oxides is crucial to the efficient application of different remediation strategies. In this study we determined the effect of goethite, hematite, magnetite and ferrihydrite on the transformation of 2,4,6-trinitrotoluene (TNT) by Yarrowia lipolytica AN-L15. The presence of ferric (oxyhydr)oxides led to a small decrease in the rate of TNT removal. In all cases, a significant release of NO2 (-) from TNT and further NO2 (-) oxidation to NO3 (-) was observed. A fraction of the released NO2 (-) was abiotically decomposed to NO and NO2, and then NO was likely oxidized abiotically to NO2 by O2. ESR analysis revealed the generation of superoxide in the culture medium; its further protonation at low pH resulted in the formation of hydroperoxyl radical. Presumably, a fraction of NO released during TNT degradation reacted with superoxide and formed peroxynitrite, which was further rearranged to NO3 (-) at the acidic pH values observed in this study. A transformation and reduction of ferric (oxyhydr)oxides followed by partial dissolution (in the range of 7-86% of the initial Fe(III)) were observed in the presence of cells and TNT. Mössbauer spectroscopy showed some minor changes for goethite, magnetite and ferrihydrite samples during their incubation with Y. lipolytica and TNT. This study shows that i) reactive oxygen and nitrogen species generated during TNT transformation by Y. lipolytica participate in the abiotic conversion of TNT and ii) the presence of iron(III) minerals leads to a minor decrease in TNT transformation. PMID:25852985

  3. Fe(III) mineral reduction followed by partial dissolution and reactive oxygen species generation during 2,4,6-trinitrotoluene transformation by the aerobic yeast Yarrowia lipolytica.

    PubMed

    Ziganshin, Ayrat M; Ziganshina, Elvira E; Byrne, James; Gerlach, Robin; Struve, Ellen; Biktagirov, Timur; Rodionov, Alexander; Kappler, Andreas

    2015-01-01

    Understanding the factors that influence pollutant transformation in the presence of ferric (oxyhydr)oxides is crucial to the efficient application of different remediation strategies. In this study we determined the effect of goethite, hematite, magnetite and ferrihydrite on the transformation of 2,4,6-trinitrotoluene (TNT) by Yarrowia lipolytica AN-L15. The presence of ferric (oxyhydr)oxides led to a small decrease in the rate of TNT removal. In all cases, a significant release of NO2 (-) from TNT and further NO2 (-) oxidation to NO3 (-) was observed. A fraction of the released NO2 (-) was abiotically decomposed to NO and NO2, and then NO was likely oxidized abiotically to NO2 by O2. ESR analysis revealed the generation of superoxide in the culture medium; its further protonation at low pH resulted in the formation of hydroperoxyl radical. Presumably, a fraction of NO released during TNT degradation reacted with superoxide and formed peroxynitrite, which was further rearranged to NO3 (-) at the acidic pH values observed in this study. A transformation and reduction of ferric (oxyhydr)oxides followed by partial dissolution (in the range of 7-86% of the initial Fe(III)) were observed in the presence of cells and TNT. Mössbauer spectroscopy showed some minor changes for goethite, magnetite and ferrihydrite samples during their incubation with Y. lipolytica and TNT. This study shows that i) reactive oxygen and nitrogen species generated during TNT transformation by Y. lipolytica participate in the abiotic conversion of TNT and ii) the presence of iron(III) minerals leads to a minor decrease in TNT transformation.

  4. Noise reduction from magnetic resonance images using nonseperable transforms

    NASA Astrophysics Data System (ADS)

    Nezhadarya, Ehsan; Shamsollahi, Mohammad Bagher

    2006-03-01

    Multi-scale transforms have got a lot of applications in image processing, in recent years. Wavelet transform is a powerful multiscale transform for denoising noisy signals and images, but the usual two-dimensional separable wavelets are sub-optimal. These separable wavelet transforms can successfully identify zero dimensional singularities in images, but can weakly identify one dimensional singularities such as edges, curves and lines. In this sense, non-separable transforms such as Ridgelet and Curvelet transforms are proposed by Candes and Donoho. The coefficients produced by these non-separable transforms have shown to be sparser than wavelet coefficients. This fact results in better denoising capabilities than wavelet transform. These new non-separable transforms can identify direction in lines and curves, because of special structure of their basis elements. Basically, Magnetic Resonance images are probable to have Rician noise. In some special cases, this kind of noise can be supposed to be white Gaussian noise. In this paper, a new method for denoising MR images is proposed. This method is based on Monoscale Ridgelet transform. It is shown that this two transform can successfully denoise MR images embedded in white Gaussian noise. The results are better in comparison with usual wavelet denoising methods, based on both visual perception and signal-to-noise ratio.

  5. A kinetic pressure effect on the experimental abiotic reduction of aqueous CO2 to methane from 1 to 3.5 kbar at 300 °C

    NASA Astrophysics Data System (ADS)

    Lazar, Codi; Cody, George D.; Davis, Jeffrey M.

    2015-02-01

    Aqueous abiotic methane concentrations in a range of geologic settings are below levels expected for equilibrium with coexisting CO2 and H2, indicating that kinetics can control the speciation of reduced carbon-bearing fluids. Previous studies have suggested that mineral catalysts or gas-phase reactions may increase the rate of methanogenesis. Here, we report on experiments that indicate pressure can also accelerate aqueous reduction of CO2 to CH4. Four series of cold-seal hydrothermal experiments were performed from 1 to 3.5 kbar at 300 °C for two weeks and analyzed using gas chromatography/mass spectrometry. The starting fluids were 10-20-μL solutions of 70-mmolal 13C-labeled formic acid (H13COOH) contained in welded gold capsules. Increasing pressure (P) resulted in a systematic, reproducible log-linear increase in 13CH4 yields. The pressure effect could be quantified the log-linear slope, Δlog[13CH4]/ΔP (log mmolal per kbar). The mean slope was 0.66 ± 0.05 (±1s.e.), indicating that 13CH4 yields increased by an average factor of 40-50 over a P range of 2.5 kbar. Pressure-independent variations in [13CH4] were observed as scatter about the log-linear regressions and as variations in the y-intercepts of the regressions. These variations were attributed to trace amounts of catalytic Fe along the inner capsule wall that remained despite cleaning the Au capsules in nitric acid prior to each experimental series. The mechanism for the pressure-dependent effect was interpreted to result from one or more of the following three processes: reduction of a metastable reaction intermediate such as methanol, formation of Fe-carbonyl complexes in the fluid, and/or heterogeneous catalysis by Fe. The results suggest that pressure may influence aqueous abiotic CH4 yields in certain geological environments, particularly when the relative effects of other kinetic factors such as temperature are diminished, e.g., in cool forearcs or other settings with a steep geothermal

  6. Noise reduction combining time-frequency epsilon-filter and M-transform.

    PubMed

    Abe, Tomomi; Matsumoto, Mitsuharu; Hashimoto, Shuji

    2008-08-01

    This paper introduces noise reduction combining time-frequency epsilon-filter (TF epsilon-filter) and time-frequency M-transform (TF M-transform). Musical noise is an offensive noise generated due to noise reduction in the time-frequency domain such as spectral subtraction and TF epsilon-filter. It has a deleterious effect on speech recognition. To solve the problem, M-transform is introduced. M-transform is a linear transform based on M-sequence. The method combining the time-domain epsilon-filter (TD epsilon-filter) and time-domain M-transform (TD M-transform) can reduce not only white noise but also impulse noise. Musical noise is isolated in the time-frequency domain, which is similar to impulse noise in the time domain. On these prospects, this paper aims to reduce musical noise by improving M-transform for the time-frequency domain. Noise reduction by using TD M-transform and the TD epsilon-filter is first explained to clarify its features. Then, an improved method applying M-transform to the time-frequency domain, namely TF M-transform, is described. Noise reduction combining the TF epsilon-filter and TF M-transform is also proposed. The proposed method can reduce not only high-level nonstationary noise but also musical noise. Experimental results are also given to demonstrate the performance of the proposed method.

  7. Microstructure and Phase Transformation of a Sinter Bearing Low Ti During Reduction

    NASA Astrophysics Data System (ADS)

    Zhang, Jianliang; Zhang, Yapeng; Li, Kejiang; Wang, Yaozu; Liu, Zhengjian; Wang, Guangwei

    2016-10-01

    To discuss the reduction behaviors and the transformation mechanism of the Fe containing phases and slag phases of low Ti-bearing sinter (LTS), reduction experiments of the LTS were conducted. The reduction of the LTS was divided into four stages based on the reduction rate, deformation quantity of LTS particle column, phase changes, and microstructural changes. The reduction process could be explained with quasi unreacted core model as three stratifications with different phases and microstructures were observed clearly in the medium-temperature reducing stage. For the reduction of Ti-SFCA, a middle phase of the reduction was found and the phase was surrounded by metallic iron. According to the composites of the reduced Ti-SFCA, the middle phase was a solid solution and difficult to be reduced which consisted mainly of brownmillerite-perovskite and monocalcium silicate. The phase transformation and microstructure changes were mutual coupling in the complicated reduction process of the LTS.

  8. Biochar-mediated reductive transformation of nitro herbicides and explosives.

    PubMed

    Oh, Seok-Young; Son, Jong-Gil; Chiu, Pei C

    2013-03-01

    Biochar, a subset of black carbon produced via pyrolysis of biomass, has received much attention in recent years due to its potential to address many important issues, from energy and climate to agriculture and environmental quality. Biochar is known to influence the fate and transport of organic contaminants, although its role has been generally assumed to be as an adsorbent. In this study, the authors investigated the ability of biochar to catalyze the reductive reactions of nitro herbicides and explosives. Two biochars, derived from poultry litter and wastewater biosolids, were found to promote the reductive removal of the dinitro herbicides pendimethalin and trifluralin and the explosives 2,4-dinitrotoluene and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by dithiothreitol. Parallel experiments using another black carbon material, graphite powder or granular activated carbon, in place of a biochar resulted in comparable rate enhancement to show reduction products, such as 2,4-diaminotoluene and formaldehyde. A cyclization product of trifluralin and reduction products of dinitrotoluene and RDX were detected only when biochar and dithiothreitol were both present, supporting the ability of biochar to promote redox reactions. Three possible catalysts, including graphene moieties, surface functional groups, and redox-active metals, in biochar may be responsible for the biochar-mediated reactions. The environmental significance, implications, and applications of this previously unrecognized role of biochar are discussed. PMID:23334991

  9. Particle field holography data reduction by Fourier transform analysis

    NASA Technical Reports Server (NTRS)

    Hess, Cecil F.; Trolinger, James D.

    1987-01-01

    The size distribution of a particle field hologram is obtained with a Fourier transformation of the Fraunhofer diffraction pattern of the reconstructed hologram. Off-axis absorption holograms of particle fields with known characteristics were obtained and analyzed with a commercially available instrument. The mean particle size of the reconstructed hologram was measured with an error of + or - 5 percent, while the distribution broadening was estimated within + or - 15 percent. Small sections of a pulsed laser hologram of a synthetic fuel spray were analyzed with this method thus yielding a spatially resolved size distribution. The method yields fast and accurate automated analysis of particle field holograms.

  10. Mineral transformations associated with goethite reduction by Methanosarcina barkeri

    USGS Publications Warehouse

    Liu, D.; Wang, Hongfang; Dong, H.; Qiu, X.; Dong, X.; Cravotta, C.A.

    2011-01-01

    To investigate the interaction between methanogens and iron-containing minerals in anoxic environments, we conducted batch culture experiments with Methanosarcina barkeri in a phosphate-buffered basal medium (PBBM) to bioreduce structural Fe(III) in goethite with hydrogen as the sole substrate. Fe(II) and methane concentrations were monitored over the course of the bioreduction experiments with wet chemistry and gas chromatography, respectively. Subsequent mineralogical changes were characterized with X-ray diffraction (XRD) and scanning electron microscopy (SEM). In the presence of an electron shuttle anthraquinone-2,6-disulfonate (AQDS), 30% Fe(III) in goethite (weight basis) was reduced to Fe(II). In contrast, only 2% Fe(III) (weight basis) was bioreduced in the absence of AQDS. Most of the bioproduced Fe(II) was incorporated into secondary minerals including dufr??nite and vivianite. Our data implied a dufr??nite-vivianite transformation mechanism where a metastable dufr??nite transformed to a more stable vivianite over extended time in anaerobic conditions. Methanogenesis was greatly inhibited by bioreduction of goethite Fe(III). These results have important implications for the methane flux associated with Fe(III) bioreduction and ferrous iron mineral precipitation in anaerobic soils and sediments. ?? 2011 Elsevier B.V.

  11. Reductive transformation of p-nitrotoluene by a new iron-fly ash packing.

    PubMed

    Yu, Baizhen; Jin, Ruofei; Liu, Guangfei; Zhou, Jiti

    2015-11-01

    A new iron-fly ash packing was studied for reductive transformation of p-nitrotoluene. The packing was made of iron, fly ash and kaolin with the mass ratio of 36:7:2. A reactor was designed to investigate the long-term performance of the packing. The results showed that the reduction of p-nitrotoluene increased with decreasing pH, because the reduction potential of reaction increased with the concentration of H(+). The pH was one of the key factors impacting the reductive transformation of p-nitrotoluene. Comparing iron-activated carbon packing with the new iron-fly ash packing, the reduction efficiencies were respectively 76.61% and 75.36% after 20days. The reduction efficiency for both was around 50% at 40days. It was evident that these two kinds of packing had no significant difference in their capability for p-nitrotoluene reductive transformation. Compared with iron-activated carbon, the new iron-fly ash packing had obvious advantages in terms of manufacturing costs and environmental pollution degradation. This study showed that the new iron-fly ash packing had good performance in reductive transformation of nitrotoluene compounds. PMID:26574085

  12. Reductions in transformer losses achieved by staggering lamination layers

    NASA Astrophysics Data System (ADS)

    Albir, R. S.; Moses, A. J.

    1989-05-01

    The total loss of identical 3-phase, 3-limb, mitred and staggered cores assembled from 0.3 mm thick, conventional high permeability and laser scribed grain oriented silicon iron have been compared. The croes built from conventional material produced the best improvements when staggered and these were chosen to carry out further investigation to examine the effect of the stacking number and the T-joint design on the power loss of the cores. The power loss generally increased as the stagger length was increased, but an optimum stagger length range was determined at which the power loss was lowest. The percentage improvement in the power loss due to the introduction of the staggered technique is dependent upon the orientation of the material and the T-joint design. The best loss reduction compared to a mitred core of the same rating was around 5% using a core assembled from conventional material.

  13. Reductive transformation of bound trinitrophenyl residues and free TNT during a bioremediation process analyzed by immunoassay

    SciTech Connect

    Achtnich, C.; Pfortner, P.; Weller, M.G.; Niessner, R.; Lenke, H.; Knackmuss, H.J.

    1999-10-01

    To follow the fate of bound metabolites of TNT in soil, a synthetic trinitrophenyl residue covalently linked to humic acids was used as model compound. A selective monoclonal antibody was able to detect chemical changes of the nitro groups of the bound residues. The general possibility of reductive transformations of nitro groups of bound molecules and the reduction rates should be determined. In comparison to the reduction of free TNT and its metabolites, the reductive transformation of the bound trinitrophenyl residue was delayed, and the transformation rate was considerably slower. Trinitrophenyl residues also could be detected by the immunoassay in humic acids extracted from TNT contaminated soil. The reductive transformation of these trinitrophenyl residues started after the reduction of free TNT. At the end of the treatment, small amounts of these residues were still detectable indicating that some of these structures were not completely reduced during the process. From present results one can conclude that the further reduction of nitro groups of bound metabolites requires a prolonged anaerobic treatment. Not only the monitoring of free nitroaromatic compounds is recommended during the bioremediation process but also the measurement of bound residues to determine the optimal conditions and duration of the treatment.

  14. Nanostructural transformations during the reduction of hollow and porous nickel oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Medford, John A.; Johnston-Peck, Aaron C.; Tracy, Joseph B.

    2012-12-01

    Size-dependent nanostructural transformations occurring during the H2-mediated reduction of hollow and porous NiO nanoparticles were investigated for controlled nanoparticle sizes of ~10 to 100 nm. Transmission electron microscopy reveals that the location and number of reduction sites strongly depend on the nanoparticle size and structure.Size-dependent nanostructural transformations occurring during the H2-mediated reduction of hollow and porous NiO nanoparticles were investigated for controlled nanoparticle sizes of ~10 to 100 nm. Transmission electron microscopy reveals that the location and number of reduction sites strongly depend on the nanoparticle size and structure. Electronic supplementary information (ESI) available: Additional TEM images, SAED, and HRTEM images without color overlays. See DOI: 10.1039/c2nr33005a

  15. A generalized Hirota-Satsuma coupled KdV system: Darboux transformations and reductions

    NASA Astrophysics Data System (ADS)

    Xue, Lingling; Liu, Q. P.; Wang, Dengshan

    2016-08-01

    A Darboux transformation is constructed for the generalized Hirota-Satsuma coupled KdV system and the result is compared with the recent work of Geng and his collaborators [X. G. Geng et al., Phys. Rev. E 79, 056602 (2009) and X. G. Geng and G. L. He, J. Math. Phys. 51, 033514 (2010)]. It is shown that our Darboux transformation may be applied to three interesting reductions of the general system. In addition, the iteration of this Darboux transformation is worked out, and some solutions to the associated systems are obtained.

  16. CT image noise reduction using rotational-invariant feature in Stockwell transform

    NASA Astrophysics Data System (ADS)

    Su, Jian; Li, Zhoubo; Yu, Lifeng; Warner, Joshua; Blezek, Daniel; Erickson, Bradley

    2014-03-01

    Iterative reconstruction and other noise reduction methods have been employed in CT to improve image quality and to reduce radiation dose. The non-local means (NLM) filter emerges as a popular choice for image-based noise reduction in CT. However, the original NLM method cannot incorporate similar structures if they are in a rotational format, resulting in ineffective denoising in some locations of the image and non-uniform noise reduction across the image. We have developed a novel rotational-invariant image texture feature derived from the multiresolutional Stockwell-transform (ST), and applied it to CT image noise reduction so that similar structures can be identified and fully utilized even when they are in different orientations. We performed a computer simulation study in CT to demonstrate better efficiency in terms of utilizing redundant information in the image and more uniform noise reduction achieved by ST than by NLM.

  17. Numerical Modeling of Arsenic Mobility during Reductive Iron-Mineral Transformations.

    PubMed

    Rawson, Joey; Prommer, Henning; Siade, Adam; Carr, Jackson; Berg, Michael; Davis, James A; Fendorf, Scott

    2016-03-01

    Millions of individuals worldwide are chronically exposed to hazardous concentrations of arsenic from contaminated drinking water. Despite massive efforts toward understanding the extent and underlying geochemical processes of the problem, numerical modeling and reliable predictions of future arsenic behavior remain a significant challenge. One of the key knowledge gaps concerns a refined understanding of the mechanisms that underlie arsenic mobilization, particularly under the onset of anaerobic conditions, and the quantification of the factors that affect this process. In this study, we focus on the development and testing of appropriate conceptual and numerical model approaches to represent and quantify the reductive dissolution of iron oxides, the concomitant release of sorbed arsenic, and the role of iron-mineral transformations. The initial model development in this study was guided by data and hypothesized processes from a previously reported,1 well-controlled column experiment in which arsenic desorption from ferrihydrite coated sands by variable loads of organic carbon was investigated. Using the measured data as constraints, we provide a quantitative interpretation of the processes controlling arsenic mobility during the microbial reductive transformation of iron oxides. Our analysis suggests that the observed arsenic behavior is primarily controlled by a combination of reductive dissolution of ferrihydrite, arsenic incorporation into or co-precipitation with freshly transformed iron minerals, and partial arsenic redox transformations. PMID:26835553

  18. Numerical Modeling of Arsenic Mobility during Reductive Iron-Mineral Transformations.

    PubMed

    Rawson, Joey; Prommer, Henning; Siade, Adam; Carr, Jackson; Berg, Michael; Davis, James A; Fendorf, Scott

    2016-03-01

    Millions of individuals worldwide are chronically exposed to hazardous concentrations of arsenic from contaminated drinking water. Despite massive efforts toward understanding the extent and underlying geochemical processes of the problem, numerical modeling and reliable predictions of future arsenic behavior remain a significant challenge. One of the key knowledge gaps concerns a refined understanding of the mechanisms that underlie arsenic mobilization, particularly under the onset of anaerobic conditions, and the quantification of the factors that affect this process. In this study, we focus on the development and testing of appropriate conceptual and numerical model approaches to represent and quantify the reductive dissolution of iron oxides, the concomitant release of sorbed arsenic, and the role of iron-mineral transformations. The initial model development in this study was guided by data and hypothesized processes from a previously reported,1 well-controlled column experiment in which arsenic desorption from ferrihydrite coated sands by variable loads of organic carbon was investigated. Using the measured data as constraints, we provide a quantitative interpretation of the processes controlling arsenic mobility during the microbial reductive transformation of iron oxides. Our analysis suggests that the observed arsenic behavior is primarily controlled by a combination of reductive dissolution of ferrihydrite, arsenic incorporation into or co-precipitation with freshly transformed iron minerals, and partial arsenic redox transformations.

  19. Automatic variance reduction for Monte Carlo simulations via the local importance function transform

    SciTech Connect

    Turner, S.A.

    1996-02-01

    The author derives a transformed transport problem that can be solved theoretically by analog Monte Carlo with zero variance. However, the Monte Carlo simulation of this transformed problem cannot be implemented in practice, so he develops a method for approximating it. The approximation to the zero variance method consists of replacing the continuous adjoint transport solution in the transformed transport problem by a piecewise continuous approximation containing local biasing parameters obtained from a deterministic calculation. He uses the transport and collision processes of the transformed problem to bias distance-to-collision and selection of post-collision energy groups and trajectories in a traditional Monte Carlo simulation of ``real`` particles. He refers to the resulting variance reduction method as the Local Importance Function Transform (LIFI) method. He demonstrates the efficiency of the LIFT method for several 3-D, linearly anisotropic scattering, one-group, and multigroup problems. In these problems the LIFT method is shown to be more efficient than the AVATAR scheme, which is one of the best variance reduction techniques currently available in a state-of-the-art Monte Carlo code. For most of the problems considered, the LIFT method produces higher figures of merit than AVATAR, even when the LIFT method is used as a ``black box``. There are some problems that cause trouble for most variance reduction techniques, and the LIFT method is no exception. For example, the author demonstrates that problems with voids, or low density regions, can cause a reduction in the efficiency of the LIFT method. However, the LIFT method still performs better than survival biasing and AVATAR in these difficult cases.

  20. Modeling of the structure-specific kinetics of abiotic, dark reduction of Hg(II) complexed by O/N and S functional groups in humic acids while accounting for time-dependent structural rearrangement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Redox transformations involving electron transfer from natural organic matter (NOM) are important for the mercury (Hg) biogeochemical cycle. In the water column light drives the reduction of Hg(II) to Hg(0), whereas in soils and sediments dark reduction of Hg(II) is of greater importance. The object...

  1. Some families of generating functions and associated hypergeometric transformation and reduction formulas

    NASA Astrophysics Data System (ADS)

    Srivastava, H. M.

    2016-07-01

    Summation, transformation and reduction formulas for various families of hypergeometric functions in one, two and more variables are potentially useful in many diverse areas of applications. The main object of this paper is to derive several substantially more general results on this subject than those considered recently by Neethu et al. [7] in connection with Bailey's transformation involving the Gauss hypergeometrc function 2 F 1 (see [1]). The methodology used here is based essentially on some families of hypergeometric generating functions. Relevant connections of the results presented in this paper with those in the earlier works are also pointed out.

  2. Radar cross-section reduction based on an iterative fast Fourier transform optimized metasurface

    NASA Astrophysics Data System (ADS)

    Song, Yi-Chuan; Ding, Jun; Guo, Chen-Jiang; Ren, Yu-Hui; Zhang, Jia-Kai

    2016-07-01

    A novel polarization insensitive metasurface with over 25 dB monostatic radar cross-section (RCS) reduction is introduced. The proposed metasurface is comprised of carefully arranged unit cells with spatially varied dimension, which enables approximate uniform diffusion of incoming electromagnetic (EM) energy and reduces the threat from bistatic radar system. An iterative fast Fourier transform (FFT) method for conventional antenna array pattern synthesis is innovatively applied to find the best unit cell geometry parameter arrangement. Finally, a metasurface sample is fabricated and tested to validate RCS reduction behavior predicted by full wave simulation software Ansys HFSSTM and marvelous agreement is observed.

  3. MICROBIAL TRANSFORMATIONS OF TRU AND MIXED WASTES: ACTINIDE SPECIATION AND WASTE VOLUME REDUCTION

    SciTech Connect

    Francis, A.J.; Dodge, C.J.

    2006-06-01

    The overall goals of this research project are to determine the mechanism of microbial dissolution and stabilization of actinides in Department of Energy’s (DOE) TRU wastes, contaminated sludges, soils, and sediments. This includes (i) investigations on the fundamental aspects of microbially catalyzed radionuclide and metal transformations (oxidation/reduction reactions, dissolution, precipitation, chelation); (ii) understanding of the microbiological processes that control speciation and alter the chemical forms of complex inorganic/organic contaminant mixtures; and (iii) development of new and improved microbially catalyzed processes resulting in immobilization of metals and radionuclides in the waste with concomitant waste volume reduction.

  4. MICROBIAL TRANSFORMATIONS OF TRU AND MIXED WASTES: ACTINIDE SPECIATION AND WASTE VOLUME REDUCTION.

    SciTech Connect

    FRANCIS, A.J.; DODGE, C.J.

    2006-11-16

    The overall goals of this research project are to determine the mechanism of microbial dissolution and stabilization of actinides in Department of Energy's (DOE) TRU wastes, contaminated sludges, soils, and sediments. This includes (1) investigations on the fundamental aspects of microbially catalyzed radionuclide and metal transformations (oxidation/reduction reactions, dissolution, precipitation, chelation); (2) understanding of the microbiological processes that control speciation and alter the chemical forms of complex inorganic/organic contaminant mixtures; and (3) development of new and improved microbially catalyzed processes resulting in immobilization of metals and radionuclides in the waste with concomitant waste volume reduction.

  5. MICROBIAL TRANSFORMATIONS OF TRU AND MIXED WASTES: ACTINIDE SPECIATION AND WASTE VOLUME REDUCTION

    SciTech Connect

    Francis, A.J.; Dodge, C.J.

    2006-06-01

    The overall goals of this research project are to determine the mechanism of microbial dissolution and stabilization of actinides in Department of Energy's (DOE) TRU wastes, contaminated sludges, soils, and sediments. This includes (1) investigations on the fundamental aspects of microbially catalyzed radionuclide and metal transformations (oxidation/reduction reactions, dissolution, precipitation, chelation); (2) understanding of the microbiological processes that control speciation and alter the chemical forms of complex inorganic/organic contaminant mixtures; and (3) development of new and improved microbially catalyzed processes resulting in immobilization of metals and radionuclides in the waste with concomitant waste volume reduction.

  6. Improvement of the performances of the genetic algorithms by using an adaptive search space reduction and the transformation

    NASA Astrophysics Data System (ADS)

    Yousfi, L.; Mansouri, N.

    2008-06-01

    The aim of this paper is the identification of the parameters in systems modeled by nonlinear differential equations. The proposed method is based on Genetic algorithms with domain's reduction and transformation strategies. The studied problems are successively solved using transformation technique, domain's reduction and a combination of the two strategies. The results obtained, using all these methods are comparables. The good results obtained by transformation seem to be related to the great degree of diversity that the mechanism introduces in population.

  7. Reductive transformation of methyl parathion by the cyanobacterium Anabaena sp. strain PCC7120.

    PubMed

    Barton, J W; Kuritz, T; O'Connor, L E; Ma, C Y; Maskarinec, M P; Davison, B H

    2004-08-01

    Organophosphorus compounds are toxic chemicals that are applied worldwide as household pesticides and for crop protection, and they are stockpiled for chemical warfare. As a result, they are routinely detected in air and water. Methods and routes of biodegradation of these compounds are being sought. We report that under aerobic, photosynthetic conditions, the cyanobacterium Anabaena sp. transformed methyl parathion first to o,o-dimethyl o-p-nitrosophenyl thiophosphate and then to o,o-dimethyl o-p-aminophenyl thiophosphate by reducing the nitro group. The process of methyl parathion transformation occurred in the light, but not in the dark. Methyl parathion was toxic to cyanobacteria in the dark but did not affect their viability in the light. Methyl parathion transformation was not affected by mutations in the genes involved in nitrate reduction in cyanobacteria. PMID:14758519

  8. Shewanella oneidensis MR-1-Induced Fe(III) Reduction Facilitates Roxarsone Transformation.

    PubMed

    Chen, Guowei; Ke, Zhengchen; Liang, Tengfang; Liu, Li; Wang, Gang

    2016-01-01

    Although microbial activity and associated iron (oxy)hydroxides are known in general to affect the environmental dynamics of 4-hydroxy-3-nitrobenzenearsonic acid (roxarsone), the mechanistic understanding of the underlying biophysico-chemical processes remains unclear due to limited experimental information. We studied how Shewanella oneidensis MR-1 -a widely distributed metal-reducing bacterium, in the presence of dissolved Fe(III), affects roxarsone transformations and biogeochemical cycling in a model aqueous system. The results showed that the MR-1 strain was able to anaerobically use roxarsone as a terminal electron acceptor and to convert it to a single product, 3-amino-4-hydroxybenzene arsonic acid (AHBAA). The presence of Fe(III) stimulated roxarsone transformation via MR-1-induced Fe(III) reduction, whereby the resulting Fe(II) acted as an efficient reductant for roxarsone transformation. In addition, the subsequent secondary Fe(III)/Fe(II) mineralization created conditions for adsorption of organoarsenic compounds to the yielded precipitates and thereby led to arsenic immobilization. The study provided direct evidence of Shewanella oneidensis MR-1-induced direct and Fe(II)-associated roxarsone transformation. Quantitative estimations revealed a candidate mechanism for the early-stage environmental dynamics of roxarsone in nature, which is essential for understanding the environmental dynamics of roxarsone and successful risk assessment. PMID:27100323

  9. Shewanella oneidensis MR-1-Induced Fe(III) Reduction Facilitates Roxarsone Transformation

    PubMed Central

    Chen, Guowei; Ke, Zhengchen; Liang, Tengfang; Liu, Li; Wang, Gang

    2016-01-01

    Although microbial activity and associated iron (oxy)hydroxides are known in general to affect the environmental dynamics of 4-hydroxy-3-nitrobenzenearsonic acid (roxarsone), the mechanistic understanding of the underlying biophysico-chemical processes remains unclear due to limited experimental information. We studied how Shewanella oneidensis MR-1 –a widely distributed metal-reducing bacterium, in the presence of dissolved Fe(III), affects roxarsone transformations and biogeochemical cycling in a model aqueous system. The results showed that the MR-1 strain was able to anaerobically use roxarsone as a terminal electron acceptor and to convert it to a single product, 3-amino-4-hydroxybenzene arsonic acid (AHBAA). The presence of Fe(III) stimulated roxarsone transformation via MR-1-induced Fe(III) reduction, whereby the resulting Fe(II) acted as an efficient reductant for roxarsone transformation. In addition, the subsequent secondary Fe(III)/Fe(II) mineralization created conditions for adsorption of organoarsenic compounds to the yielded precipitates and thereby led to arsenic immobilization. The study provided direct evidence of Shewanella oneidensis MR-1-induced direct and Fe(II)-associated roxarsone transformation. Quantitative estimations revealed a candidate mechanism for the early-stage environmental dynamics of roxarsone in nature, which is essential for understanding the environmental dynamics of roxarsone and successful risk assessment. PMID:27100323

  10. Transformation products of submicron-sized aluminum-substituted magnetite: Color and reductant solubility

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, D. W.; Lauer, H. V., Jr.

    1991-01-01

    Magnetite, when present as fine particles, is soluble in acid ammonium oxalate (pH equals 3). However, the commonly used extractant for free iron oxides (i.e., citrate dithionite-bicarbonate (CDB) is not very effective in dissolving magnetite in soils and geologic materials. Upon oxidation, magnetite transforms to maghemite; at elevated temperatures, maghemite inverts to hematite. This transformation causes a change in color from black to red and may affect the reductant solubility as well. The objectives here were to examine the color and reflectance spectral characteristics of products during the transformation of magnetite to maghemite to hematite and to study the effect of Al-substitution in magnetite on the above process. Reductant solubility of Al-substituted magnetite, maghemite, and hematite was also studied. In summary, the transformation of magnetite to maghemite was accompanied by a change in color from black to red because of the oxidation of Fe2(+) to Fe3(+). The phase change maghemite to hematite had a relatively minor effect on the color and the reflectance spectra.

  11. Reductive transformation of iron and sulfur in schwertmannite-rich accumulations associated with acidified coastal lowlands

    NASA Astrophysics Data System (ADS)

    Burton, Edward D.; Bush, Richard T.; Sullivan, Leigh A.; Mitchell, David R. G.

    2007-09-01

    We examined the transformations of Fe and S associated with schwertmannite (Fe 8O 8(OH) 6SO 4) reduction in acidified coastal lowlands. This was achieved by conducting a 91 day diffusive-flux column experiment, which involved waterlogging of natural schwertmannite- and organic-rich soil material. This experiment was complemented by short-term batch experiments utilizing synthetic schwertmannite. Waterlogging readily induced bacterial reduction of schwertmannite-derived Fe(III), producing abundant pore-water Fe II, SO 4 and alkalinity. Production of alkalinity increased pH from pH 3.4 to pH ˜6.5 within the initial 14 days, facilitating the precipitation of siderite (FeCO 3). Interactions between schwertmannite and Fe II at pH ˜6.5 were found, for the first time, to catalyse the transformation of schwertmannite to goethite (αFeOOH). Thermodynamic calculations indicate that this Fe II-catalysed transformation shifted the biogeochemical regime from an initial dominance of Fe(III)-reduction to a subsequent co-occurrence of both Fe(III)- and SO 4-reduction. This lead firstly to the formation of elemental S via H 2S oxidation by goethite, and later also to formation of nanoparticulate mackinawite (FeS) via H 2S precipitation with Fe II. Pyrite (FeS 2) was a quantitatively insignificant product of reductive Fe and S mineralization. This study provides important new insights into Fe and S geochemistry in settings where schwertmannite is subjected to reducing conditions.

  12. Kinetics and mechanism of propachlor reductive transformation through nucleophilic substitution by dithionite.

    PubMed

    Liu, C S; Shih, K; Wei, L; Wang, F; Li, F B

    2011-11-01

    Chloroacetanilide herbicides are extensively used in the control of weeds and have widely resulted in nonpoint contamination of groundwater and soil resources. In the attempt to achieve better remediation for herbicide-contaminated resources, we investigated the reductive transformation of propachlor through nucleophilic substitution by dithionite (S(2)O(4)(2-)). Results showed that propachlor underwent rapid dechlorination in the presence of dithionite. The reaction was of second-order kinetics and strongly influenced by pH and temperature. At pH 7.0 and temperature 308K, the rate constant of propachlor dechlorination was estimated at 123.4±0.7M(-1)h(-1). Within the pH range tested (3.0-9.5), higher pH promoted the ionization of dithionite, resulting in a more active nucleophilic reagent of S(2)O(4)(2-) to enhance the propachlor transformation rate. Similarly, higher reaction temperature overcame the activation barrier of steric hindrance in propachlor structure and accelerated the excitation of dithionite, in which higher rate constants of propachlor reductive dechlorination were obtained. Dechlorination was found to be the first and necessary step of propachlor nucleophilic substitution by dithionite. Sulfur nucleophile substituted compounds, including propachlor dithionite, propachlor ethanesulfonic acid (ESA), and hydroxyl propachlor, were identified as the dechlorination products of propachlor, indicating bimolecular nucleophilic substitution (S(N)2) as the mechanism for propachlor transformation initiated by dithionite.

  13. A local'' exponential transform method for global variance reduction in Monte Carlo transport problems

    SciTech Connect

    Baker, R.S. ); Larsen, E.W. . Dept. of Nuclear Engineering)

    1992-01-01

    Numerous variance reduction techniques, such as splitting/Russian roulette, weight windows, and the exponential transform exist for improving the efficiency of Monte Carlo transport calculations. Typically, however, these methods, while reducing the variance in the problem area of interest tend to increase the variance in other, presumably less important, regions. As such, these methods tend to be not as effective in Monte Carlo calculations which require the minimization of the variance everywhere. Recently, Local'' Exponential Transform (LET) methods have been developed as a means of approximating the zero-variance solution. A numerical solution to the adjoint diffusion equation is used, along with an exponential representation of the adjoint flux in each cell, to determine local'' biasing parameters. These parameters are then used to bias the forward Monte Carlo transport calculation in a manner similar to the conventional exponential transform, but such that the transform parameters are now local in space and energy, not global. Results have shown that the Local Exponential Transform often offers a significant improvement over conventional geometry splitting/Russian roulette with weight windows. Since the biasing parameters for the Local Exponential Transform were determined from a low-order solution to the adjoint transport problem, the LET has been applied in problems where it was desirable to minimize the variance in a detector region. The purpose of this paper is to show that by basing the LET method upon a low-order solution to the forward transport problem, one can instead obtain biasing parameters which will minimize the maximum variance in a Monte Carlo transport calculation.

  14. A ``local`` exponential transform method for global variance reduction in Monte Carlo transport problems

    SciTech Connect

    Baker, R.S.; Larsen, E.W.

    1992-08-01

    Numerous variance reduction techniques, such as splitting/Russian roulette, weight windows, and the exponential transform exist for improving the efficiency of Monte Carlo transport calculations. Typically, however, these methods, while reducing the variance in the problem area of interest tend to increase the variance in other, presumably less important, regions. As such, these methods tend to be not as effective in Monte Carlo calculations which require the minimization of the variance everywhere. Recently, ``Local`` Exponential Transform (LET) methods have been developed as a means of approximating the zero-variance solution. A numerical solution to the adjoint diffusion equation is used, along with an exponential representation of the adjoint flux in each cell, to determine ``local`` biasing parameters. These parameters are then used to bias the forward Monte Carlo transport calculation in a manner similar to the conventional exponential transform, but such that the transform parameters are now local in space and energy, not global. Results have shown that the Local Exponential Transform often offers a significant improvement over conventional geometry splitting/Russian roulette with weight windows. Since the biasing parameters for the Local Exponential Transform were determined from a low-order solution to the adjoint transport problem, the LET has been applied in problems where it was desirable to minimize the variance in a detector region. The purpose of this paper is to show that by basing the LET method upon a low-order solution to the forward transport problem, one can instead obtain biasing parameters which will minimize the maximum variance in a Monte Carlo transport calculation.

  15. Damage Detection on Sudden Stiffness Reduction Based on Discrete Wavelet Transform

    PubMed Central

    Chen, Bo; Chen, Zhi-wei; Wang, Gan-jun; Xie, Wei-ping

    2014-01-01

    The sudden stiffness reduction in a structure may cause the signal discontinuity in the acceleration responses close to the damage location at the damage time instant. To this end, the damage detection on sudden stiffness reduction of building structures has been actively investigated in this study. The signal discontinuity of the structural acceleration responses of an example building is extracted based on the discrete wavelet transform. It is proved that the variation of the first level detail coefficients of the wavelet transform at damage instant is linearly proportional to the magnitude of the stiffness reduction. A new damage index is proposed and implemented to detect the damage time instant, location, and severity of a structure due to a sudden change of structural stiffness. Numerical simulation using a five-story shear building under different types of excitation is carried out to assess the effectiveness and reliability of the proposed damage index for the building at different damage levels. The sensitivity of the damage index to the intensity and frequency range of measurement noise is also investigated. The made observations demonstrate that the proposed damage index can accurately identify the sudden damage events if the noise intensity is limited. PMID:24991647

  16. Damage detection on sudden stiffness reduction based on discrete wavelet transform.

    PubMed

    Chen, Bo; Chen, Zhi-wei; Wang, Gan-jun; Xie, Wei-ping

    2014-01-01

    The sudden stiffness reduction in a structure may cause the signal discontinuity in the acceleration responses close to the damage location at the damage time instant. To this end, the damage detection on sudden stiffness reduction of building structures has been actively investigated in this study. The signal discontinuity of the structural acceleration responses of an example building is extracted based on the discrete wavelet transform. It is proved that the variation of the first level detail coefficients of the wavelet transform at damage instant is linearly proportional to the magnitude of the stiffness reduction. A new damage index is proposed and implemented to detect the damage time instant, location, and severity of a structure due to a sudden change of structural stiffness. Numerical simulation using a five-story shear building under different types of excitation is carried out to assess the effectiveness and reliability of the proposed damage index for the building at different damage levels. The sensitivity of the damage index to the intensity and frequency range of measurement noise is also investigated. The made observations demonstrate that the proposed damage index can accurately identify the sudden damage events if the noise intensity is limited.

  17. Damage detection on sudden stiffness reduction based on discrete wavelet transform.

    PubMed

    Chen, Bo; Chen, Zhi-wei; Wang, Gan-jun; Xie, Wei-ping

    2014-01-01

    The sudden stiffness reduction in a structure may cause the signal discontinuity in the acceleration responses close to the damage location at the damage time instant. To this end, the damage detection on sudden stiffness reduction of building structures has been actively investigated in this study. The signal discontinuity of the structural acceleration responses of an example building is extracted based on the discrete wavelet transform. It is proved that the variation of the first level detail coefficients of the wavelet transform at damage instant is linearly proportional to the magnitude of the stiffness reduction. A new damage index is proposed and implemented to detect the damage time instant, location, and severity of a structure due to a sudden change of structural stiffness. Numerical simulation using a five-story shear building under different types of excitation is carried out to assess the effectiveness and reliability of the proposed damage index for the building at different damage levels. The sensitivity of the damage index to the intensity and frequency range of measurement noise is also investigated. The made observations demonstrate that the proposed damage index can accurately identify the sudden damage events if the noise intensity is limited. PMID:24991647

  18. Multiadaptive Bionic Wavelet Transform: Application to ECG Denoising and Baseline Wandering Reduction

    NASA Astrophysics Data System (ADS)

    Sayadi, Omid; Shamsollahi, Mohammad B.

    2007-12-01

    We present a new modified wavelet transform, called the multiadaptive bionic wavelet transform (MABWT), that can be applied to ECG signals in order to remove noise from them under a wide range of variations for noise. By using the definition of bionic wavelet transform and adaptively determining both the center frequency of each scale together with the[InlineEquation not available: see fulltext.]-function, the problem of desired signal decomposition is solved. Applying a new proposed thresholding rule works successfully in denoising the ECG. Moreover by using the multiadaptation scheme, lowpass noisy interference effects on the baseline of ECG will be removed as a direct task. The method was extensively clinically tested with real and simulated ECG signals which showed high performance of noise reduction, comparable to those of wavelet transform (WT). Quantitative evaluation of the proposed algorithm shows that the average SNR improvement of MABWT is 1.82 dB more than the WT-based results, for the best case. Also the procedure has largely proved advantageous over wavelet-based methods for baseline wandering cancellation, including both DC components and baseline drifts.

  19. Digital gray-level transformation for the reduction of redundant shadows in rotational panoramic radiography.

    PubMed

    Hayakawa, Y; Wakoh, M; Yamamoto, K; Ueno, H; Kuroyanagi, K

    1990-08-01

    In rotational panoramic radiography, the tomographic motion in combination with a slit scanning method make an image layer wide. But some objects outside the image layer are hard to blur and they result to redundant shadows. The gray-level transformation, as one form of digital image processing for the reduction of these redundant shadows, was evaluated. Two methods, the gamma transformation and the histogram flattening method, were examined. A drum scanner was used as the image scanner. The panoramic image on the x-ray film was turned into an 8 bit digital image on the image memory, which had the size of a 512 x 480 matrix. In rotational panoramic radiography, there are low density and contrast regions where redundant shadows of the cervical vertebrae and the mandibular ramus are superimposed on the tomographic image. The histogram of the gray-level was suppressed for the lower gray-levels. The stretching of this gray-level distribution was effective in the reducing redundant shadows. When processed by gamma transformation, the smaller gamma coefficient below 1.0 clarified the tomographic image, and when processed by the histogram flattening method, the setting of the level (L) value around 64-128 effectively reduced the redundant shadows. However, the effectiveness of both gray-level transformations was greatest in restricted cases in which the area where redundant shadows were superimposed on the tomographic image was comparatively large.

  20. Genotoxic and carcinogenic products arising from reductive transformations of the azo dye, Disperse Yellow 7.

    PubMed

    Balakrishnan, Vimal K; Shirin, Salma; Aman, Ahmed M; de Solla, Shane R; Mathieu-Denoncourt, Justine; Langlois, Valerie S

    2016-03-01

    Selected aromatic azo and benzidine based dyes are priority compounds under the Government of Canada's Chemical Management Plan (CMP) for environmental risk assessments. Organic compounds undergo chemical and biological transformations when they interact with environmental matrices and biotic species; identifying the transformation products is thus a critical component of the risk assessment process. Here, we used zero valent iron (ZVI) to initiate the reduction of the diazo compound dye Disperse Yellow 7 (DY 7). Using state-of-the-art accurate mass Liquid Chromatography-Quadrupole Time of Flight-Mass Spectroscopy (LC-QToF-MS), four transformation products were conclusively identified, while a fifth product was tentatively ascertained. The conclusively established transformation products included p-phenylenediamine (p-PDA, a known genotoxin), 4-aminoazobenzene (4-AAB, a category 2 carcinogen) and 4-aminobiphenyl (4-ABP, a category 1 human carcinogen). 4-ABP is thought to form via a benzidine rearrangement; this is the first report of DY 7 undergoing a benzidine rearrangement. Given the importance of reduction processes in the metabolism of organic contaminants by aquatic species, we used LC-MS/MS to analyze sediment samples that had been generated previously upon exposure of Western clawed frogs (Silurana tropicalis) to DY 7 (at exposure levels where cellular stress was observed in S. tropicalis). We found p-PDA, 4-AAB, and 4-ABP were present in all exposures, but not in any of the sediment controls, demonstrating that upon release of DY 7 to the aquatic environment, sediment dwelling organisms will metabolize DY 7 to generate known (and suspected) human carcinogens, including through a previously unreported in vivo benzidine rearrangement to produce 4-ABP.

  1. Genotoxic and carcinogenic products arising from reductive transformations of the azo dye, Disperse Yellow 7.

    PubMed

    Balakrishnan, Vimal K; Shirin, Salma; Aman, Ahmed M; de Solla, Shane R; Mathieu-Denoncourt, Justine; Langlois, Valerie S

    2016-03-01

    Selected aromatic azo and benzidine based dyes are priority compounds under the Government of Canada's Chemical Management Plan (CMP) for environmental risk assessments. Organic compounds undergo chemical and biological transformations when they interact with environmental matrices and biotic species; identifying the transformation products is thus a critical component of the risk assessment process. Here, we used zero valent iron (ZVI) to initiate the reduction of the diazo compound dye Disperse Yellow 7 (DY 7). Using state-of-the-art accurate mass Liquid Chromatography-Quadrupole Time of Flight-Mass Spectroscopy (LC-QToF-MS), four transformation products were conclusively identified, while a fifth product was tentatively ascertained. The conclusively established transformation products included p-phenylenediamine (p-PDA, a known genotoxin), 4-aminoazobenzene (4-AAB, a category 2 carcinogen) and 4-aminobiphenyl (4-ABP, a category 1 human carcinogen). 4-ABP is thought to form via a benzidine rearrangement; this is the first report of DY 7 undergoing a benzidine rearrangement. Given the importance of reduction processes in the metabolism of organic contaminants by aquatic species, we used LC-MS/MS to analyze sediment samples that had been generated previously upon exposure of Western clawed frogs (Silurana tropicalis) to DY 7 (at exposure levels where cellular stress was observed in S. tropicalis). We found p-PDA, 4-AAB, and 4-ABP were present in all exposures, but not in any of the sediment controls, demonstrating that upon release of DY 7 to the aquatic environment, sediment dwelling organisms will metabolize DY 7 to generate known (and suspected) human carcinogens, including through a previously unreported in vivo benzidine rearrangement to produce 4-ABP. PMID:26735719

  2. Powerline interference reduction in ECG signals using empirical wavelet transform and adaptive filtering.

    PubMed

    Singh, Omkar; Sunkaria, Ramesh Kumar

    2015-01-01

    Separating an information-bearing signal from the background noise is a general problem in signal processing. In a clinical environment during acquisition of an electrocardiogram (ECG) signal, The ECG signal is corrupted by various noise sources such as powerline interference (PLI), baseline wander and muscle artifacts. This paper presents novel methods for reduction of powerline interference in ECG signals using empirical wavelet transform (EWT) and adaptive filtering. The proposed methods are compared with the empirical mode decomposition (EMD) based PLI cancellation methods. A total of six methods for PLI reduction based on EMD and EWT are analysed and their results are presented in this paper. The EWT-based de-noising methods have less computational complexity and are more efficient as compared with the EMD-based de-noising methods. PMID:25412942

  3. Transformative Reduction of Transportation Greenhouse Gas Emissions. Opportunities for Change in Technologies and Systems

    SciTech Connect

    Vimmerstedt, Laura; Brown, Austin; Newes, Emily; Markel, Tony; Schroeder, Alex; Zhang, Yimin; Chipman, Peter; Johnson, Shawn

    2015-04-30

    The transportation sector is changing, influenced by concurrent, ongoing, dynamic trends that could dramatically affect the future energy landscape, including effects on the potential for greenhouse gas emissions reductions. Battery cost reductions and improved performance coupled with a growing number of electric vehicle model offerings are enabling greater battery electric vehicle market penetration, and advances in fuel cell technology and decreases in hydrogen production costs are leading to initial fuel cell vehicle offerings. Radically more efficient vehicles based on both conventional and new drivetrain technologies reduce greenhouse gas emissions per vehicle-mile. Net impacts also depend on the energy sources used for propulsion, and these are changing with increased use of renewable energy and unconventional fossil fuel resources. Connected and automated vehicles are emerging for personal and freight transportation systems and could increase use of low- or non-emitting technologies and systems; however, the net effects of automation on greenhouse gas emissions are uncertain. The longstanding trend of an annual increase in transportation demand has reversed for personal vehicle miles traveled in recent years, demonstrating the possibility of lower-travel future scenarios. Finally, advanced biofuel pathways have continued to develop, highlighting low-carbon and in some cases carbon-negative fuel pathways. We discuss the potential for transformative reductions in petroleum use and greenhouse gas emissions through these emerging transportation-sector technologies and trends and present a Clean Transportation Sector Initiative scenario for such reductions, which are summarized in Table ES-1.

  4. Linear dimensionality reduction applied to scale invariant feature transformation and speeded up robust feature descriptors

    NASA Astrophysics Data System (ADS)

    Valenzuela, Ricardo Eugenio González; Schwartz, William Robson; Pedrini, Helio

    2014-05-01

    Robust local descriptors usually consist of high-dimensional feature vectors to describe distinctive characteristics of images. The high dimensionality of a feature vector incurs considerable costs in terms of computational time and storage. It also results in the curse of dimensionality that affects the performance of several tasks that use feature vectors, such as matching, retrieval, and classification of images. To address these problems, it is possible to employ some dimensionality reduction techniques, leading frequently to information lost and, consequently, accuracy reduction. This work aims at applying linear dimensionality reduction to the scale invariant feature transformation and speeded up robust feature descriptors. The objective is to demonstrate that even risking the decrease of the accuracy of the feature vectors, it results in a satisfactory trade-off between computational time and storage requirements. We perform linear dimensionality reduction through random projections, principal component analysis, linear discriminant analysis, and partial least squares in order to create lower dimensional feature vectors. These new reduced descriptors lead us to less computational time and memory storage requirements, even improving accuracy in some cases. We evaluate reduced feature vectors in a matching application, as well as their distinctiveness in image retrieval. Finally, we assess the computational time and storage requirements by comparing the original and the reduced feature vectors.

  5. Biotic and Abiotic Reduction and Solubilization of Pu(IV)O2•xH2O(am) as Affected by Anthraquinone-2,6-disulfonate (AQDS) and Ethylenediaminetetraacetate (EDTA)

    SciTech Connect

    Plymale, Andrew E.; Bailey, Vanessa L.; Fredrickson, Jim K.; Heald, Steve M.; Buck, Edgar C.; Shi, Liang; Wang, Zheming; Resch, Charles T.; Moore, Dean A.; Bolton, Harvey

    2012-01-24

    In the presence of hydrogen (H{sub 2}), the synthetic chelating agent ethylenediaminetetraacetate (EDTA), and the electron shuttle anthraquinone-2,6-disulfonate (AQDS), the dissimilatory metal-reducing bacteria (DMRB) Shewanella oneidensis and Geobacter sulfurreducens both reductively solubilized 100% of added 0.5 mM plutonium (IV) hydrous oxide (Pu(IV)O{sub 2} {lg_bullet} xH{sub 2}O{sub (am)}) in {approx}24 h at pH 7 in a non-complexing buffer. In the absence of AQDS, bioreduction was much slower ({approx}22 days) and less extensive ({approx}83-94%). In the absence of DMRB but under comparable conditions, 89% (without AQDS) to 98% (with AQDS) of added 0.5 mM PuO{sub 2} {lg_bullet} xH{sub 2}O{sub (am)} was reductively solubilized over 418 days. Under comparable conditions but in the absence of EDTA, <0.001% of the 0.5 mM PuO{sub 2} {lg_bullet} xH{sub 2}O{sub (am)} was solubilized, with or without bacteria. However, Pu(aq) increased by as much as an order of magnitude in some EDTA-free treatments, both biotic and abiotic, and increases in solubility were associated with the production of both Pu(OH)3(am) and Pu(III)(aq). Incubation with DMRB in the absence of EDTA increased the polymeric and crystalline content of the PuO{sub 2} {lg_bullet} xH{sub 2}O{sub (am)} and also decreased Pu solubility in 6-N HCl. Results from an in vitro assay demonstrated electron transfer to PuO{sub 2} {lg_bullet} xH{sub 2}O{sub (am)} from the S. oneidensis outer-membrane c-type cytochrome MtrC, and EDTA increased the oxidation of MtrC by PuO{sub 2} {lg_bullet} xH{sub 2}O{sub (am)}. Our results suggest that PuO{sub 2} {lg_bullet} xH{sub 2}O{sub (am)} biotic and abiotic reduction and solubilization may be important in anoxic, reducing environments, especially where complexing ligands and electron shuttling compounds are present.

  6. Metallocoenzyme-mediated reductive transformation of carbon tetrachloride in titanium (III) citrate aqueous solution

    SciTech Connect

    Chiu, P.C.; Reinhard, M.

    1995-03-01

    Transformation pathways for carbon tetrachloride (CCl{sub 4}) catalyzed by hematin or vitamin B{sub 12} in aqueous titanium(III) citrate solution are proposed. The reaction of CCl{sub 4} with B{sub 12} was zero order in CCl{sub 4} and first order in B{sub 12}, and the rate constant was measured from pH 7.3 to pH 10.3. The proposed rate-limiting step is the reduction of the stable trichloromethylcobalamin (CCl{sub 3}-Cbl) intermediate by titanium(III) citrate at alkaline pH and the sterically induced CCl{sub 3}-Cbl decomposition at neutral pH. The reaction kinetics can be described by a modified Michaelis-Menten model in the saturated regime. With hematin, only the pseudo-first-order rate constant was determined due to the significant deactivation of the coenzyme. The turnover number of hematin (molecules of CCl{sub 4} transformed/molecule of hematin deactivated) was 27 at pH 8.0 and 42 at pH 9.9. Vitamin B{sub 12} was a more stable and more effective catalyst (on a molar basis) than hematin with respect to CCl{sub 4}. Chloroform (CHCl{sub 3}) was the primary product in titanium(III) citrate solution, and the yield was a function of pH, Ti(III) concentration, and organic content regardless of whether a coenzyme was present or which coenzyme was used. Although B{sub 12} and hematin can both enhance the CCl{sub 4} transformation rate, they have little effect on the CHCl{sub 3} yield. Titanium(III) citrate, on the other hand, controls not only the transformation rate but also CHCl{sub 3} formation. 77 refs., 10 figs.

  7. Final Report for "Toward Quantifying Kinetics of Biotic and Abiotic Metal Reduction with Electrical Geophysical Methods" DE-FG02-08ER64520

    SciTech Connect

    Singha, Kamini; Brantley, Susan

    2012-06-07

    Although changes in the bulk electrical conductivity in aquifers have been attributed to microbial activity, electrical conductivity has never been used to infer biogeochemical reaction rates quantitatively. To explore the use of electrical conductivity to measure reaction rates, we conducted iron oxide reduction experiments of increasing biological complexity. To quantify reaction rates, we proposed composite reactions that incorporated the stiochiometry of five different types of reactions: redox, acid-based, sorption, dissolution/precipitation, and biosynthesis. In batch and column experiments, such reaction stiochiometries inferred from a few chemical measurements allowed quantification of the Fe-oxide reduction rate based on changes in electrical conductivity. The relationship between electrical conductivity and fluid chemistry did not hold during the latter stages of the column experiment when electrical conductivity increased while fluid chemistry remained constant. Growth of an electrically conductive biofilm could explain this late stage electrical conductivity increase. This work demonstrates that measurements of electrical conductivity and flow rate, combined with a few direct chemical measurements, can be used to quantify biogeochemical reaction rates in controlled laboratory situations and may be able to detect the presence of biofilms.

  8. Method for simulating dose reduction in digital mammography using the Anscombe transformation

    PubMed Central

    Borges, Lucas R.; de Oliveira, Helder C. R.; Nunes, Polyana F.; Bakic, Predrag R.; Maidment, Andrew D. A.; Vieira, Marcelo A. C.

    2016-01-01

    Purpose: This work proposes an accurate method for simulating dose reduction in digital mammography starting from a clinical image acquired with a standard dose. Methods: The method developed in this work consists of scaling a mammogram acquired at the standard radiation dose and adding signal-dependent noise. The algorithm accounts for specific issues relevant in digital mammography images, such as anisotropic noise, spatial variations in pixel gain, and the effect of dose reduction on the detective quantum efficiency. The scaling process takes into account the linearity of the system and the offset of the detector elements. The inserted noise is obtained by acquiring images of a flat-field phantom at the standard radiation dose and at the simulated dose. Using the Anscombe transformation, a relationship is created between the calculated noise mask and the scaled image, resulting in a clinical mammogram with the same noise and gray level characteristics as an image acquired at the lower-radiation dose. Results: The performance of the proposed algorithm was validated using real images acquired with an anthropomorphic breast phantom at four different doses, with five exposures for each dose and 256 nonoverlapping ROIs extracted from each image and with uniform images. The authors simulated lower-dose images and compared these with the real images. The authors evaluated the similarity between the normalized noise power spectrum (NNPS) and power spectrum (PS) of simulated images and real images acquired with the same dose. The maximum relative error was less than 2.5% for every ROI. The added noise was also evaluated by measuring the local variance in the real and simulated images. The relative average error for the local variance was smaller than 1%. Conclusions: A new method is proposed for simulating dose reduction in clinical mammograms. In this method, the dependency between image noise and image signal is addressed using a novel application of the Anscombe

  9. Transformation by design: nursing workforce innovation and reduction strategies in turbulent times of change.

    PubMed

    Palazzo, Mary O

    2015-01-01

    The evolution of care delivery from an acute care and inpatient standard to the outpatient setting and health promotion model is generating the need for innovative workforce and infrastructure adjustments to meet the new paradigm of population health management. Successful transformation of the nursing workforce necessitates a positive style of thinking that addresses rational concerns during times of difficult transition. Nurse leaders are called to recognize and appreciate the strengths of the nursing workforce by involving them in the course of change through collaboration, planning, and discussion. One unique way to plan and develop new care delivery models is to adopt the framework used in health facility planning and design for new services, units, or hospitals. This framework is flexible and can be adjusted easily to meet the objectives of a small nursing workforce innovation project or expanded to encompass the needs of a large-scale hospital transformation. Structured questioning further helps the team to identify barriers to care and allows for the development of new concepts that are objective and in accord with evidence-based practice and data. This article explores the advantages and disadvantages of implementing innovative workforce redesign and workforce reduction strategies.

  10. Transformation by design: nursing workforce innovation and reduction strategies in turbulent times of change.

    PubMed

    Palazzo, Mary O

    2015-01-01

    The evolution of care delivery from an acute care and inpatient standard to the outpatient setting and health promotion model is generating the need for innovative workforce and infrastructure adjustments to meet the new paradigm of population health management. Successful transformation of the nursing workforce necessitates a positive style of thinking that addresses rational concerns during times of difficult transition. Nurse leaders are called to recognize and appreciate the strengths of the nursing workforce by involving them in the course of change through collaboration, planning, and discussion. One unique way to plan and develop new care delivery models is to adopt the framework used in health facility planning and design for new services, units, or hospitals. This framework is flexible and can be adjusted easily to meet the objectives of a small nursing workforce innovation project or expanded to encompass the needs of a large-scale hospital transformation. Structured questioning further helps the team to identify barriers to care and allows for the development of new concepts that are objective and in accord with evidence-based practice and data. This article explores the advantages and disadvantages of implementing innovative workforce redesign and workforce reduction strategies. PMID:25714955

  11. Reductive transformation of 2,4-dichlorophenoxyacetic acid by nanoscale and microscale Fe3O4 particles.

    PubMed

    Si, You B; Fang, Guo D; Zhou, Jing; Zhou, Dong M

    2010-04-01

    Reductive transformation of 2,4-dichlorophenoxyacetic acid (2,4-D) by nanoscale and microscale Fe(3)O(4) was investigated and compared. Disappearance of the parent species and formation of reaction intermediates and products were kinetically analyzed. Results suggest that the transformation of 2,4-D followed a primary pathway of its complete reduction to phenol and a secondary pathway of sequential reductive hydrogenolysis to 2,4-dichlorophenol (2,4-DCP), chlorophenol (2-CP, 4-CP) and phenol. About 65% of 2,4-D with initial concentration of 50 micro M was transformed within 48 h in the presence of 300 mg L(-1) nanoscale Fe(3)O(4), and the reaction rates increased with increasing dosage of nanoscale Fe(3)O(4). The decomposition of 2,4-D proceeded rapidly at optimum pH 3.0. Chloride was identified as a reduction product for 2,4-D in the magnetite-water system. Reductive transformation of 2,4-D by microscale Fe(3)O(4) was slower than that by nanoscale Fe(3)O(4). The reactions apparently followed pseudo-first-order kinetics with respect to the 2,4-D transformation. The degradation rate of 2,4-D decreased with the increase of initial 2,4-D concentration. In addition, anions had a significant adverse impact on the degradation efficiency of 2,4-D.

  12. Transformations of mercury, iron, and sulfur during the reductive dissolution of iron oxyhydroxide by sulfide

    NASA Astrophysics Data System (ADS)

    Slowey, Aaron J.; Brown, Gordon E.

    2007-02-01

    Methylmercury can accumulate in fish to concentrations unhealthy for humans and other predatory mammals. Most sources of mercury (Hg) emit inorganic species to the environment. Therefore, ecological harm occurs when inorganic Hg is converted to methylmercury. Sulfate- and iron-reducing bacteria (SRB and FeRB) methylate Hg, but the effects of processes involving oxidized and reduced forms of sulfur and iron on the reactivity of Hg, including the propensity of inorganic Hg to be methylated, are poorly understood. Under abiotic conditions, using a laboratory flow reactor, bisulfide (HS -) was added at 40 to 250 μM h -1 to 5 g L -1 goethite (α-FeOOH) suspensions to which Hg(II) was adsorbed (30-100 nmol m -2) at pH 7.5. Dissolved Hg initially decreased from 10 3 or 10 4 nM (depending on initial conditions) to 10 -1 nM, during which the concentration of Hg(II) adsorbed to goethite decreased by 80% and metacinnabar (β-HgS (s)) formed, based on identification using Hg L III-edge extended X-ray absorption fine structure (EXAFS) spectroscopic analysis. The apparent coordination of oxygens surrounding Hg(II), measured with EXAFS spectroscopy, increased during one flow experiment, suggesting desorption of monodentate-bound Hg(II) while bidentate-bound Hg(II) persisted on the goethite surface. Further sulfidation increased dissolved Hg concentrations by one to two orders of magnitude (0.5 to 10 nM or 30 nM), suggesting that byproducts of bisulfide oxidation and Fe(III) reduction, primarily polysulfide and potentially Fe(II), enhanced the dissolution of β-HgS (s) and/or desorption of Hg(II). Rapid accumulation of Fe(II) in the solid phase (up to 40 μmol g -1) coincided with faster elevation of dissolved Hg concentrations. Fe(II) served as a proxy for elemental sulfur [S(0)], as S(0) was the dominant bisulfide oxidation product coupled to Fe(III) reduction, based on sulfur K-edge X-ray absorption near edge structure (XANES) spectroscopy. In one experiment, dissolved Hg

  13. Pathways for abiotic organic synthesis at submarine hydrothermal fields

    PubMed Central

    McDermott, Jill M.; Seewald, Jeffrey S.; German, Christopher R.; Sylva, Sean P.

    2015-01-01

    Arguments for an abiotic origin of low-molecular weight organic compounds in deep-sea hot springs are compelling owing to implications for the sustenance of deep biosphere microbial communities and their potential role in the origin of life. Theory predicts that warm H2-rich fluids, like those emanating from serpentinizing hydrothermal systems, create a favorable thermodynamic drive for the abiotic generation of organic compounds from inorganic precursors. Here, we constrain two distinct reaction pathways for abiotic organic synthesis in the natural environment at the Von Damm hydrothermal field and delineate spatially where inorganic carbon is converted into bioavailable reduced carbon. We reveal that carbon transformation reactions in a single system can progress over hours, days, and up to thousands of years. Previous studies have suggested that CH4 and higher hydrocarbons in ultramafic hydrothermal systems were dependent on H2 generation during active serpentinization. Rather, our results indicate that CH4 found in vent fluids is formed in H2-rich fluid inclusions, and higher n-alkanes may likely be derived from the same source. This finding implies that, in contrast with current paradigms, these compounds may form independently of actively circulating serpentinizing fluids in ultramafic-influenced systems. Conversely, widespread production of formate by ΣCO2 reduction at Von Damm occurs rapidly during shallow subsurface mixing of the same fluids, which may support anaerobic methanogenesis. Our finding of abiogenic formate in deep-sea hot springs has significant implications for microbial life strategies in the present-day deep biosphere as well as early life on Earth and beyond. PMID:26056279

  14. Pathways for abiotic organic synthesis at submarine hydrothermal fields.

    PubMed

    McDermott, Jill M; Seewald, Jeffrey S; German, Christopher R; Sylva, Sean P

    2015-06-23

    Arguments for an abiotic origin of low-molecular weight organic compounds in deep-sea hot springs are compelling owing to implications for the sustenance of deep biosphere microbial communities and their potential role in the origin of life. Theory predicts that warm H2-rich fluids, like those emanating from serpentinizing hydrothermal systems, create a favorable thermodynamic drive for the abiotic generation of organic compounds from inorganic precursors. Here, we constrain two distinct reaction pathways for abiotic organic synthesis in the natural environment at the Von Damm hydrothermal field and delineate spatially where inorganic carbon is converted into bioavailable reduced carbon. We reveal that carbon transformation reactions in a single system can progress over hours, days, and up to thousands of years. Previous studies have suggested that CH4 and higher hydrocarbons in ultramafic hydrothermal systems were dependent on H2 generation during active serpentinization. Rather, our results indicate that CH4 found in vent fluids is formed in H2-rich fluid inclusions, and higher n-alkanes may likely be derived from the same source. This finding implies that, in contrast with current paradigms, these compounds may form independently of actively circulating serpentinizing fluids in ultramafic-influenced systems. Conversely, widespread production of formate by ΣCO2 reduction at Von Damm occurs rapidly during shallow subsurface mixing of the same fluids, which may support anaerobic methanogenesis. Our finding of abiogenic formate in deep-sea hot springs has significant implications for microbial life strategies in the present-day deep biosphere as well as early life on Earth and beyond. PMID:26056279

  15. Pathways for abiotic organic synthesis at submarine hydrothermal fields.

    PubMed

    McDermott, Jill M; Seewald, Jeffrey S; German, Christopher R; Sylva, Sean P

    2015-06-23

    Arguments for an abiotic origin of low-molecular weight organic compounds in deep-sea hot springs are compelling owing to implications for the sustenance of deep biosphere microbial communities and their potential role in the origin of life. Theory predicts that warm H2-rich fluids, like those emanating from serpentinizing hydrothermal systems, create a favorable thermodynamic drive for the abiotic generation of organic compounds from inorganic precursors. Here, we constrain two distinct reaction pathways for abiotic organic synthesis in the natural environment at the Von Damm hydrothermal field and delineate spatially where inorganic carbon is converted into bioavailable reduced carbon. We reveal that carbon transformation reactions in a single system can progress over hours, days, and up to thousands of years. Previous studies have suggested that CH4 and higher hydrocarbons in ultramafic hydrothermal systems were dependent on H2 generation during active serpentinization. Rather, our results indicate that CH4 found in vent fluids is formed in H2-rich fluid inclusions, and higher n-alkanes may likely be derived from the same source. This finding implies that, in contrast with current paradigms, these compounds may form independently of actively circulating serpentinizing fluids in ultramafic-influenced systems. Conversely, widespread production of formate by ΣCO2 reduction at Von Damm occurs rapidly during shallow subsurface mixing of the same fluids, which may support anaerobic methanogenesis. Our finding of abiogenic formate in deep-sea hot springs has significant implications for microbial life strategies in the present-day deep biosphere as well as early life on Earth and beyond.

  16. Aggregate-scale heterogeneity in iron (hydr)oxide reductive transformations

    SciTech Connect

    Tufano, K.J.; Benner, S.G.; Mayer, K.U.; Marcus, M.A.; Nico, P.S.; Fendorf, S.

    2009-06-15

    There is growing awareness of the complexity of potential reaction pathways and the associated solid-phase transformations during the reduction of Fe (hydr)oxides, especially ferrihydrite. An important observation in static and advective-dominated systems is that microbially produced Fe(II) accelerates Ostwald ripening of ferrihydrite, thus promoting the formation of thermodynamically more stable ferric phases (lepidocrocite and goethite) and, at higher Fe(II) surface loadings, the precipitation of magnetite; high Fe(II) levels can also lead to green rust formation, and with high carbonate levels siderite may also be formed. This study expands this emerging conceptual model to a diffusion-dominated system that mimics an idealized micropore of a ferrihydrite-coated soil aggregate undergoing reduction. Using a novel diffusion cell, coupled with micro-x-ray fluorescence and absorption spectroscopies, we determined that diffusion-controlled gradients in Fe{sup 2+}{sub (aq)} result in a complex array of spatially distributed secondary mineral phases. At the diffusive pore entrance, where Fe{sup 2+} concentrations are highest, green rust and magnetite are the dominant secondary Fe (hydr)oxides (30 mol% Fe each). At intermediate distances from the inlet, green rust is not observed and the proportion of magnetite decreases from approximately 30 to <10%. Across this same transect, the proportion of goethite increases from undetectable up to >50%. At greater distances from the advective-diffusive boundary, goethite is the dominant phase, comprising between 40 and 95% of the Fe. In the presence of magnetite, lepidocrocite forms as a transient-intermediate phase during ferrihydrite-to-goethite conversion; in the absence of magnetite, conversion to goethite is more limited. These experimental observations, coupled with results of reactive transport modeling, confirm the conceptual model and illustrate the potential importance of diffusion-generated concentration gradients in

  17. Von mises- and crocco-type hydrodynamical transformations: Order reduction of nonlinear equations, construction of Bäcklund transformations and of new integrable equations

    NASA Astrophysics Data System (ADS)

    Fedotov, I. A.; Polyanin, A. D.

    2011-09-01

    Broad classes of nonlinear equations of mathematical physics are described that admit order reduction by applying the von Mises transformation (with the unknown function used as a new independent variable and with a suitable partial derivative used as a new dependent variable) and by applying the Crocco transformation (with the first and second partial derivatives used as new independent and dependent variables, respectively). Associated Bäcklund transformations are constructed that connect evolution equations of general form (their special cases include Burgers, Korteweg-de Vries, and Harry Dym type equations and many other nonlinear equations of mathematical physics). Transformations are indicated that reduce the order of hydrodynamic-type equations of higher orders. The generalized Calogero equation and a number of other new integrable nonlinear equations, reducible to linear equations, are considered.

  18. Abiotic origin of biopolymers

    NASA Technical Reports Server (NTRS)

    Oro, J.; Stephen-Sherwood, E.

    1976-01-01

    A variety of methods have been investigated in different laboratories for the polymerization of amino acids and nucleotides under abiotic conditions. They include (1) thermal polymerization; (2) direct polymerization of certain amino acid nitriles, amides, or esters; (3) polymerization using polyphosphate esters; (4) polymerization under aqueous or drying conditions at moderate temperatures using a variety of simple catalysts or condensing agents like cyanamide, dicyandiamide, or imidazole; and (5) polymerization under similar mild conditions but employing activated monomers or abiotically synthesized high-energy compounds such as adenosine 5'-triphosphate (ATP). The role and significance of these methods for the synthesis of oligopeptides and oligonucleotides under possible primitive-earth conditions is evaluated. It is concluded that the more recent approach involving chemical processes similar to those used by contemporary living organisms appears to offer a reasonable solution to the prebiotic synthesis of these biopolymers.

  19. Summary of transformation equations and equations of motion used in free flight and wind tunnel data reduction and analysis

    NASA Technical Reports Server (NTRS)

    Gainer, T. G.; Hoffman, S.

    1972-01-01

    Basic formulations for developing coordinate transformations and motion equations used with free-flight and wind-tunnel data reduction are presented. The general forms presented include axes transformations that enable transfer back and forth between any of the five axes systems that are encountered in aerodynamic analysis. Equations of motion are presented that enable calculation of motions anywhere in the vicinity of the earth. A bibliography of publications on methods of analyzing flight data is included.

  20. A Novel Medical Freehand Sketch 3D Model Retrieval Method by Dimensionality Reduction and Feature Vector Transformation

    PubMed Central

    Jing, Zhang; Sheng, Kang Bao

    2016-01-01

    To assist physicians to quickly find the required 3D model from the mass medical model, we propose a novel retrieval method, called DRFVT, which combines the characteristics of dimensionality reduction (DR) and feature vector transformation (FVT) method. The DR method reduces the dimensionality of feature vector; only the top M low frequency Discrete Fourier Transform coefficients are retained. The FVT method does the transformation of the original feature vector and generates a new feature vector to solve the problem of noise sensitivity. The experiment results demonstrate that the DRFVT method achieves more effective and efficient retrieval results than other proposed methods. PMID:27293478

  1. Abiotic Bromination of Soil Organic Matter.

    PubMed

    Leri, Alessandra C; Ravel, Bruce

    2015-11-17

    Biogeochemical transformations of plant-derived soil organic matter (SOM) involve complex abiotic and microbially mediated reactions. One such reaction is halogenation, which occurs naturally in the soil environment and has been associated with enzymatic activity of decomposer organisms. Building on a recent finding that naturally produced organobromine is ubiquitous in SOM, we hypothesized that inorganic bromide could be subject to abiotic oxidations resulting in bromination of SOM. Through lab-based degradation treatments of plant material and soil humus, we have shown that abiotic bromination of particulate organic matter occurs in the presence of a range of inorganic oxidants, including hydrogen peroxide and assorted forms of ferric iron, producing both aliphatic and aromatic forms of organobromine. Bromination of oak and pine litter is limited primarily by bromide concentration. Fresh plant material is more susceptible to bromination than decayed litter and soil humus, due to a labile pool of mainly aliphatic compounds that break down during early stages of SOM formation. As the first evidence of abiotic bromination of particulate SOM, this study identifies a mechanistic source of the natural organobromine in humic substances and the soil organic horizon. Formation of organobromine through oxidative treatments of plant material also provides insights into the relative stability of aromatic and aliphatic components of SOM.

  2. ORBS: A data reduction software for the imaging Fourier transform spectrometers SpIOMM and SITELLE

    NASA Astrophysics Data System (ADS)

    Martin, T.; Drissen, L.; Joncas, G.

    2012-09-01

    SpIOMM (Spectromètre-Imageur de l'Observatoire du Mont Mégantic) is still the only operational astronomical Imaging Fourier Transform Spectrometer (IFTS) capable of obtaining the visible spectrum of every source of light in a field of view of 12 arc-minutes. Even if it has been designed to work with both outputs of the Michelson interferometer, up to now only one output has been used. Here we present ORBS (Outils de Réduction Binoculaire pour SpIOMM/SITELLE), the reduction software we designed in order to take advantage of the two output data. ORBS will also be used to reduce the data of SITELLE (Spectromètre-Imageur pour l' Étude en Long et en Large des raies d' Émissions) { the direct successor of SpIOMM, which will be in operation at the Canada-France- Hawaii Telescope (CFHT) in early 2013. SITELLE will deliver larger data cubes than SpIOMM (up to 2 cubes of 34 Go each). We thus have made a strong effort in optimizing its performance efficiency in terms of speed and memory usage in order to ensure the best compliance with the quality characteristics discussed with the CFHT team. As a result ORBS is now capable of reducing 68 Go of data in less than 20 hours using only 5 Go of random-access memory (RAM).

  3. EFFECT OF REDOX ZONATION ON THE REDUCTIVE TRANSFORMATION OF P-CYANONITROBENZENE IN A LABORATORY SEDIMENT COLUMN

    EPA Science Inventory

    The reductive transformation of a model compound, p-cyanonitrobenzene (pCNB), was investigated in a laboratory sediment column that had been characterized with respect to redox zonation. Characterization of the redox zones was assessed by measurement of the solution phase concent...

  4. Final report - Reduction of mercury in saturated subsurface sediments and its potential to mobilize mercury in its elemental form

    SciTech Connect

    Bakray, Tamar

    2013-06-13

    The goal of our project was to investigate Hg(II) reduction in the deep subsurface. We focused on microbial and abiotic pathways of reduction and explored how it affected the toxicity and mobility of Hg in this unique environment. The project’s tasks included: 1. Examining the role of mer activities in the reduction of Hg(II) in denitrifying enrichment cultures; 2. Investigating the biotic/abiotic reduction of Hg(II) under iron reducing conditions; 3. Examining Hg(II) redox transformations under anaerobic conditions in subsurface sediments from DOE sites.

  5. Abiotic immobilization/detoxification of recalcitrant organics

    SciTech Connect

    Whelan, G. ); Sims, R.C. )

    1990-11-01

    In contrast to many remedial techniques that simply transfer hazardous wastes from one part of the environment to another (e.g., off-site landfilling), in situ restoration may offer a safe and cost-effective solution through transformation (to less hazardous products) or destruction of recalcitrant organics. Currently, the US Environmental Protection Agency and US Department of Energy are encouraging research that addresses the development of innovative alternatives for hazardous-waste control. One such alternative is biotic and abiotic immobilization and detoxification of polynuclear aromatic hydrocarbons (PNAs) as associated with the soil humification process. This paper discusses (1) the possibility of using abiotic catalysis (with manganese dioxide) to polymerize organic substances; (2) aspects associated with the thermodynamics and kinetics of the process, and (3) a simple model upon which analyses may be based. 36 refs., 7 figs., 3 tabs.

  6. TRANSFORMATION

    SciTech Connect

    LACKS,S.A.

    2003-10-09

    Transformation, which alters the genetic makeup of an individual, is a concept that intrigues the human imagination. In Streptococcus pneumoniae such transformation was first demonstrated. Perhaps our fascination with genetics derived from our ancestors observing their own progeny, with its retention and assortment of parental traits, but such interest must have been accelerated after the dawn of agriculture. It was in pea plants that Gregor Mendel in the late 1800s examined inherited traits and found them to be determined by physical elements, or genes, passed from parents to progeny. In our day, the material basis of these genetic determinants was revealed to be DNA by the lowly bacteria, in particular, the pneumococcus. For this species, transformation by free DNA is a sexual process that enables cells to sport new combinations of genes and traits. Genetic transformation of the type found in S. pneumoniae occurs naturally in many species of bacteria (70), but, initially only a few other transformable species were found, namely, Haemophilus influenzae, Neisseria meningitides, Neisseria gonorrheae, and Bacillus subtilis (96). Natural transformation, which requires a set of genes evolved for the purpose, contrasts with artificial transformation, which is accomplished by shocking cells either electrically, as in electroporation, or by ionic and temperature shifts. Although such artificial treatments can introduce very small amounts of DNA into virtually any type of cell, the amounts introduced by natural transformation are a million-fold greater, and S. pneumoniae can take up as much as 10% of its cellular DNA content (40).

  7. Microbial Transformation of TRU and Mixed Wastes: Actinide Speciation and Waste Volume Reduction

    SciTech Connect

    Halada, Gary P.

    2004-12-01

    I. To characterize the biodegradation of cellulosic materials using Fourier Transform Infrared (FTIR) Spectroscopy. II. To develop an electrochemical/spectroscopic methodology to characterize TRU waste microbial transformation III. To develop molecular models of TRU complexes in order to understand microbial transformation In all cases, objectives are designed to compliment the efforts from other team members, and will be periodically coordinated through the lead P.I. at Brookhaven National Laboratory (BNL), A.J. Francis.

  8. Elucidating the Role of Electron Shuttles in Reductive Transformations in Anaerobic Sediments

    EPA Science Inventory

    Model studies have demonstrated that electron shuttles (ES) such as dissolved organic matter (DOM) can participate in the reduction of organic contaminants; however, much uncertainty exists concerning the significance of this solution phase pathway for contaminant reduction in na...

  9. TRANSFORMER

    DOEpatents

    Baker, W.R.

    1959-08-25

    Transformers of a type adapted for use with extreme high power vacuum tubes where current requirements may be of the order of 2,000 to 200,000 amperes are described. The transformer casing has the form of a re-entrant section being extended through an opening in one end of the cylinder to form a coaxial terminal arrangement. A toroidal multi-turn primary winding is disposed within the casing in coaxial relationship therein. In a second embodiment, means are provided for forming the casing as a multi-turn secondary. The transformer is characterized by minimized resistance heating, minimized external magnetic flux, and an economical construction.

  10. Effect of migration and transformation of iron on the endogenous reduction of H2S in anaerobic landfill.

    PubMed

    Long, Yu-Yang; Du, Yao; Fang, Yuan; Xu, Jing; He, Yan-Ni; Shen, Dong-Sheng

    2016-07-01

    Hydrogen sulfide (H2S) is a major odor in landfill gas and needs urgent treatment. In this study, the effect of migration and transformation of iron on the endogenous reduction of H2S was investigated in two simulated landfills. The results showed that the H2S emission concentration from the landfill cover of conventional anaerobic landfill (CL) and anaerobic landfill with leachate recirculation (RL) could reach 19.4mgm(-3) and 24.1mgm(-3), respectively. However, the migration and transformation of iron in anaerobic landfill with different operational modes results in different endogenous reduction mechanism for H2S. The proportion of precipitation-reduction mechanism and oxidation-reduction mechanism in CL was 73.3% and 26.3%, respectively. But for RL, the function of oxidation was enhanced, and the sulfide content was reduced 23.1% compared with CL. The iron in landfill with leachate recirculation revealed good endogenous reduction effect on H2S control after a period of time landfilling. PMID:26584556

  11. Human pulmonary acinar aplasia: reduction of transforming growth factor-beta ligands and receptors.

    PubMed

    Chen, M F; Gray, K D; Prentice, M A; Mariano, J M; Jakowlew, S B

    1999-07-01

    Pulmonary hypoplasia has been found in the human neonatal autopsy population and has been attributed to an alteration in epithelial-mesenchymal interactions during development of the lung. Pulmonary acinar aplasia is a very rare and severe form of pulmonary hypoplasia. The transforming growth factor-betas (TGF-beta) are multifunctional regulatory peptides that are secreted by a variety of normal and malignant cells and are expressed in developing organs including the lung; their tissue distribution patterns have possible significance for signaling roles in many epithelial-mesenchymal interactions. Here, we report our examination of TGF-beta in the lungs of a term female infant diagnosed with pulmonary acinar aplasia whose autopsy revealed extremely hypoplastic lungs with complete absence of alveolar ducts and alveoli. Immunohistochemical and in situ hybridization analyses were used to localize and measure the proteins and mRNA, respectively, for TGF-beta1, TGF-beta2, TGF-beta3, and TGF-beta type I and type II receptors (TGF-beta RI and RII) in formalin-fixed and paraffin-embedded sections of these hypoplastic lungs and normal lungs. Immunostaining for TGF-beta1, TGF-beta2, and TGF-beta RI and RII was significantly lower in the bronchial epithelium and muscle of the hypoplastic lungs than in normal lungs, whereas no difference was detected in staining for other proteins including Clara cell 10-kD protein, adrenomedullin, hepatocyte growth factor/scatter factor, and hepatocyte growth factor receptor/Met in the hypoplastic and normal lungs or in the liver and kidneys of this infant compared with normal liver and kidney. In addition, in situ hybridization showed that TGF-beta1 and TGF-beta RI transcripts were considerably reduced in the bronchial epithelium of the hypoplastic lung compared with normal lung. These results show that there is a selective reduction of TGF-beta in pulmonary acinar aplasia and suggest that the signaling action of TGF-beta in epithelial

  12. Thermodynamics of Manganese Oxides at Bulk and Nanoscale: Phase Formation, Transformation, Oxidation-Reduction, and Hydration

    NASA Astrophysics Data System (ADS)

    Birkner, Nancy R.

    spinel Mn3O4) for smaller particle size and in the presence of surface hydration. Chemisorption of water onto anhydrous nanophase Mn2O 3 surfaces promotes rapidly reversible redox phase changes at room temperature as confirmed by calorimetry, X-ray diffraction, and titration for manganese average oxidation state. Water adsorption microcalorimetry (in situ) at room temperature measured the strongly exothermic integral enthalpy of water adsorption (-103.5 kJ/mol) and monitored the energetics of the redox phase transformation. Hydration-driven redox transformation of anhydrous nanophase Mn(III) 2O3, (high surface enthalpy of anhydrous surfaces 1.77 +/- 0.10 J/m2) to Mn(II,III)3O4 (lower surface enthalpy 0.96 +/- 0.08 J/m2) occurred during the first few doses of water vapor. Surface reduction of nanoparticle bixbyite (Mn 2O3) to hausmannite (Mn3O4) occurs under conditions where no such reactions are seen or expected on grounds of bulk thermodynamics in coarse-grained materials. Layered structure manganese oxides contain alkali or alkaline earth cations and water, are generally fine-grained, and have considerable thermodynamic stability. The surface enthalpies (SE) of layered and tunnel structure complex manganese oxides are significantly lower than those of the binary manganese oxide phases. The SE for hydrous surfaces and overall manganese average oxidation state (AOS) (value in parentheses) are: cryptomelane 0.77 +/- 0.10 J/m 2 (3.78), sodium birnessite 0.69 +/- 0.13 J/m2 (3.56), potassium birnessite 0.55 +/- 0.11 J/m2 (3.52), and calcium birnessite 0.41 +/- 0.11 J/m2 (3.50). Surface enthalpies of hydrous surfaces of the calcium manganese oxide nanosheets are: deltaCa 0.39MnO2.3nH2O 0.75 +/- 0.10 J/m2 (3.89) and deltaCa0.43MnO2.3nH2O 0.57 +/- 0.12 J/m2 (3.68). The surface enthalpy of the complex manganese oxides appears to decrease with decreasing manganese average oxidation state, that is, with greater mixed valence manganese (Mn 3+/4+). Low surface energy suggests loose

  13. Noise reduction of FBG sensor signal by using a wavelet transform

    NASA Astrophysics Data System (ADS)

    Cho, Yo-Han; Song, Minho

    2011-05-01

    We constructed a FBG (fiber Bragg grating) sensor system based on a fiber-optic Sagnac interferometer. A fiber-optic laser source is used as a strong light source to attain high signal-to-noise ratio. However the unstable output power and coherence noises of the fiber laser made it hard to separate the FBG signals from the interference signals of the fiber coils. To reduce noises and extract FBG sensor signals, we used a Gaussian curve-fitting and a wavelet transform. The wavelet transform is a useful tool for analyzing and denoising output signals. The feasibility of the wavelet transform denoising process is presented with the preliminary experimental results, which showed much better accuracy than the case with only the Gaussian curve-fitting algorithm.

  14. Coupled biotic-abiotic oxidation of organic matter by biogenic MnO_{2}

    NASA Astrophysics Data System (ADS)

    Gonzalez, Julia; Peña, Jasquelin

    2016-04-01

    Some reactive soil minerals are strongly implicated in stabilising organic matter. However, others can play an active role in the oxidation of organic molecules. In natural systems, layer-type manganese oxide minerals (MnO2) typically occur as biomineral assemblages consisting of mineral particles and microbial biomass. Both the mineral and biological fractions of the assemblage can be powerful oxidants of organic C. The biological compartment relies on a set of enzymes to drive oxidative transformations of reduced C-substrates, whereas MnO2 minerals are strong, less specific abiotic oxidants that are assumed to rely on interfacial interactions between C-substrates and the mineral surface. This project aims to understand the coupling between microbial C mineralization and abiotic C oxidation mediated by MnO2 in bacterial-MnO2 assemblages. Specifically, under conditions of high C turnover, microbial respiration can significantly alter local pH, dissolved oxygen and pool of available reductants, which may modify rates and mechanism of C oxidation by biotic and abiotic components. We first investigated changes in the solution chemistry of Pseudomonas putida suspensions exposed to varying concentrations of glucose, chosen to represent readily bioavailable substrates in soils. Glucose concentrations tested ranged between 0 and 5.5mM and changes in pH, dissolved oxygen and dissolved organic and inorganic carbon were tracked over 48h. We then combined literature review and wet-chemical experiments to compile the pH dependence of rates of organic substrate oxidation by MnO2, including glucose. Our results demonstrate a strong pH dependence for these abiotic reactions. In assemblages of P. putida - MnO2, kinetic limitations for abiotic C oxidation by MnO2 are overcome by changes in biogeochemical conditions that result from bacterial C metabolism. When extrapolated to a soil solution confronted to an input of fresh dissolved organic matter, bacterial C metabolism of the

  15. Combining discrete cosine transform with clipping for PAPR reduction in intensity-modulated OFDM systems

    NASA Astrophysics Data System (ADS)

    Wang, Zhong-peng; Chen, Shou-fa; Zhou, Yang; Chen, Ming; Tang, Jin; Chen, Lin

    2014-09-01

    In this paper, the peak-to-average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) signal is reduced by combining the discrete cosine transform (DCT) with clipping in optical intensity-modulated direct-detection (IM/DD) OFDM systems. First, the data are transformed into new modified data by DCT. Second, the proposed scheme utilizes the clipping technique to further reduce the PAPR of OFDM signal. We experimentally demonstrate that the optical OFDM transmission system with this proposed scheme can achieve significant performance improvement in terms of PAPR and bit error rate (BER) compared with the original optical OFDM systems.

  16. SERDP ER-1376 Enhancement of In Situ Bioremediation of Energetic Compounds by Coupled Abiotic/Biotic Processes:Final Report for 2004 - 2006

    SciTech Connect

    Szecsody, James E.; Comfort, Steve; Fredrickson, Herbert L.; Boparai, Hardiljeet K.; Devary, Brooks J.; Thompson, Karen T.; Phillips, Jerry L.; Crocker, Fiona H.; Girvin, Donald C.; Resch, Charles T.; Shea, Patrick; Fischer, Ashley E.; Durkin, Lisa M.

    2007-08-07

    This project was initiated by SERDP to quantify processes and determine the effectiveness of abiotic/biotic mineralization of energetics (RDX, HMX, TNT) in aquifer sediments by combinations of biostimulation (carbon, trace nutrient additions) and chemical reduction of sediment to create a reducing environment. Initially it was hypothesized that a balance of chemical reduction of sediment and biostimulation would increase the RDX, HMX, and TNT mineralization rate significantly (by a combination of abiotic and biotic processes) so that this abiotic/biotic treatment may be a more efficient for remediation than biotic treatment alone in some cases. Because both abiotic and biotic processes are involved in energetic mineralization in sediments, it was further hypothesized that consideration for both abiotic reduction and microbial growth was need to optimize the sediment system for the most rapid mineralization rate. Results show that there are separate optimal abiotic/biostimulation aquifer sediment treatments for RDX/HMX and for TNT. Optimal sediment treatment for RDX and HMX (which have chemical similarities and similar degradation pathways) is mainly chemical reduction of sediment, which increased the RDX/HMX mineralization rate 100 to150 times (relative to untreated sediment), with additional carbon or trace nutrient addition, which increased the RDX/HMX mineralization rate an additional 3 to 4 times. In contrast, the optimal aquifer sediment treatment for TNT involves mainly biostimulation (glucose addition), which stimulates a TNT/glucose cometabolic degradation pathway (6.8 times more rapid than untreated sediment), degrading TNT to amino-intermediates that irreversibly sorb (i.e., end product is not CO2). The TNT mass migration risk is minimized by these transformation reactions, as the triaminotoluene and 2,4- and 2,6-diaminonitrotoluene products that irreversibly sorb are no longer mobile in the subsurface environment. These transformation rates are increased

  17. The radon transform for data reduction, line detection, and artificial neural network preprocessing

    SciTech Connect

    Fitch, J.P.

    1990-05-07

    Initial investigations indicate that the Radon transform can be utilized to reduce two-dimensional image data into substantially smaller feature vectors for detecting line patterns. Rather than traditional spatial-domain texture analysis type algorithms, we propose the use of crude angle of arrival estimates to extract information about nearly co-linear waveforms. 4 refs., 12 figs.

  18. ENANTIOSELECTIVE REDUCTIVE TRANSFORMATION OF CHIRAL POLYCHLORINATED BIPHENYLS IN LAKE SEDIMENT MICROCOSMS

    EPA Science Inventory

    The transformation rates and enantiomeric ratios of two chiral poylchlorinated biphenyls (PCBs), 2,2',3,4',5',6-hexachlorobiphenyl (2,2',3,4',5',6-HCB) and 2,2',3,3',4,4',5,6-octachlorobiphenyl (2,2',3,3',4,4',5,6-OCB), were determined in anaerobic lake sediment microcosms (25oC)...

  19. Reduction and coding of synthetic aperture radar data with Fourier transforms

    NASA Technical Reports Server (NTRS)

    Tilley, David G.

    1995-01-01

    Recently, aboard the Space Radar Laboratory (SRL), the two roles of Fourier Transforms for ocean image synthesis and surface wave analysis have been implemented with a dedicated radar processor to significantly reduce Synthetic Aperture Radar (SAR) ocean data before transmission to the ground. The object was to archive the SAR image spectrum, rather than the SAR image itself, to reduce data volume and capture the essential descriptors of the surface wave field. SAR signal data are usually sampled and coded in the time domain for transmission to the ground where Fourier Transforms are applied both to individual radar pulses and to long sequences of radar pulses to form two-dimensional images. High resolution images of the ocean often contain no striking features and subtle image modulations by wind generated surface waves are only apparent when large ocean regions are studied, with Fourier transforms, to reveal periodic patterns created by wind stress over the surface wave field. Major ocean currents and atmospheric instability in coastal environments are apparent as large scale modulations of SAR imagery. This paper explores the possibility of computing complex Fourier spectrum codes representing SAR images, transmitting the coded spectra to Earth for data archives and creating scenes of surface wave signatures and air-sea interactions via inverse Fourier transformations with ground station processors.

  20. The effects of flow rate and concentration on nitrobenzene removal in abiotic and biotic zero-valent iron columns.

    PubMed

    Yin, Weizhao; Wu, Jinhua; Huang, Weilin; Li, Yongtao; Jiang, Gangbiao

    2016-08-01

    This study investigated the effects of varying nitrobenzene (NB) loadings via increasing flow rate or influent NB concentration mode on the removal efficiency in zero-valent iron (ZVI) columns sterilized (abiotic) or preloaded with acclimated microorganisms (biotic). It was shown that physical sequestration via adsorption/co-precipitation and reductive transformation of NB to aniline (AN) were the two major mechanisms for the NB removal in both abiotic and biotic ZVI columns. The NB removal efficiency decreased in both columns as the flow rate increased from 0.25 to 1.0mLmin(-1) whereas the AN recovery increased accordingly, with relatively high AN recovery observed at the flow rate of 1.0mLmin(-1). At the constant flow rate of 0.5mLmin(-1), increasing influent NB concentration from 80 to 400μmolL(-1) resulted in decreasing of the overall NB removal efficiency from 79.5 to 48.6% in the abiotic column and from 85.6 to 62.5% in the biotic column. The results also showed that the sequestration capacity and chemical reduction capacity were respectively 72% and 157.6% higher in the biotic column than in the abiotic column at the same tested hydraulic conditions and NB loadings. The optimal flow rates and influent NB concentrations were at 0.5mLmin(-1) and 80μmolL(-1) for the abiotic column and 2.0mLmin-1 and 240μmolL(-1) for the biotic column, respectively. This study indicated that microorganisms not only enhanced overall reduction of NB, but also facilitated NB sequestration within the porous media and that the optimal loading conditions for overall removal, sequestration, and reduction of NB may be different. Optimal operation conditions should be found for preferred sequestration or transformation (or both) of the target contaminants to meet different goals of groundwater remediation with the ZVI-PRB systems.

  1. The effects of flow rate and concentration on nitrobenzene removal in abiotic and biotic zero-valent iron columns.

    PubMed

    Yin, Weizhao; Wu, Jinhua; Huang, Weilin; Li, Yongtao; Jiang, Gangbiao

    2016-08-01

    This study investigated the effects of varying nitrobenzene (NB) loadings via increasing flow rate or influent NB concentration mode on the removal efficiency in zero-valent iron (ZVI) columns sterilized (abiotic) or preloaded with acclimated microorganisms (biotic). It was shown that physical sequestration via adsorption/co-precipitation and reductive transformation of NB to aniline (AN) were the two major mechanisms for the NB removal in both abiotic and biotic ZVI columns. The NB removal efficiency decreased in both columns as the flow rate increased from 0.25 to 1.0mLmin(-1) whereas the AN recovery increased accordingly, with relatively high AN recovery observed at the flow rate of 1.0mLmin(-1). At the constant flow rate of 0.5mLmin(-1), increasing influent NB concentration from 80 to 400μmolL(-1) resulted in decreasing of the overall NB removal efficiency from 79.5 to 48.6% in the abiotic column and from 85.6 to 62.5% in the biotic column. The results also showed that the sequestration capacity and chemical reduction capacity were respectively 72% and 157.6% higher in the biotic column than in the abiotic column at the same tested hydraulic conditions and NB loadings. The optimal flow rates and influent NB concentrations were at 0.5mLmin(-1) and 80μmolL(-1) for the abiotic column and 2.0mLmin-1 and 240μmolL(-1) for the biotic column, respectively. This study indicated that microorganisms not only enhanced overall reduction of NB, but also facilitated NB sequestration within the porous media and that the optimal loading conditions for overall removal, sequestration, and reduction of NB may be different. Optimal operation conditions should be found for preferred sequestration or transformation (or both) of the target contaminants to meet different goals of groundwater remediation with the ZVI-PRB systems. PMID:27093118

  2. Abiotic self-replication.

    PubMed

    Meyer, Adam J; Ellefson, Jared W; Ellington, Andrew D

    2012-12-18

    functions (including the replication of nucleic acids) to more competent protein enzymes would complete the journey from an abiotic world to the molecular biology we see today. PMID:22891822

  3. Abiotic self-replication.

    PubMed

    Meyer, Adam J; Ellefson, Jared W; Ellington, Andrew D

    2012-12-18

    functions (including the replication of nucleic acids) to more competent protein enzymes would complete the journey from an abiotic world to the molecular biology we see today.

  4. Wavelet-transform-based time-frequency domain reflectometry for reduction of blind spot

    NASA Astrophysics Data System (ADS)

    Lee, Sin Ho; Park, Jin Bae; Choi, Yoon Ho

    2012-06-01

    In this paper, wavelet-transform-based time-frequency domain reflectometry (WTFDR) is proposed to reduce the blind spot in reflectometry. TFDR has a blind spot problem when the time delay between the reference signal and the reflected signal is short enough compared with the time duration of the reference signal. To solve the blind spot problem, the wavelet transform (WT) is used because the WT has linearity. Using the characteristics of the WT, the overlapped reference signal at the measured signal can be separated and the blind spot is reduced by obtaining the difference of the wavelet coefficients for the reference and reflected signals. In the proposed method, the complex wavelet is utilized as a mother wavelet because the reference signal in WTFDR has a complex form. Finally, the computer simulations and the real experiments are carried out to confirm the effectiveness and accuracy of the proposed method.

  5. Contributions of Fe Minerals to Abiotic Dechlorination

    EPA Science Inventory

    Most applications of enhanced in situ bioremediation are based on biological reductive dechlorination. Anaerobic metabolism can also produce reactive minerals that allow for in situ biogeochemical transformation of chlorinated organic contaminants such as PCE, TCE, and cis-DCE. ...

  6. The Reduction Of Motion Artifacts In Digital Subtraction Angiography By Geometrical Image Transformation

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, J. Michael; Pickens, David R.; Mandava, Venkateswara R.; Grefenstette, John J.

    1988-06-01

    In the diagnosis of arteriosclerosis, radio-opaque dye is injected into the interior of the arteries to make them visible. Because of its increased contrast sensitivity, digital subtraction angiography has the potential for providing diagnostic images of arteries with reduced dye volumes. In the conventional technique, a mask image, acquired before the introduction of the dye, is subtracted from the contrast image, acquired after the dye is introduced, to produce a difference image in which only the dye in the arteries is visible. The usefulness of this technique has been severely limited by the image degradation caused by patient motion during image acquisition. This motion produces artifacts in the difference image that obscure the arteries. One technique for dealing with this problem is to reduce the degradation by means of image registration. The registration is carried out by means of a geometrical transformation of the mask image before subtraction so that it is in registration with the contrast image. This paper describes our technique for determining an optimal transformation. We employ a one-to-one elastic mapping and the Jacobian of that mapping to produce a geometrical image transformation. We choose a parameterized class of such mappings and use a heuristic search algorithm to optimize the parameters to minimize the severity of the motion artifacts. To increase the speed of the optimization process we use a statistical image comparison technique that provides a quick approximate evaluation of each image transformation. We present the experimental results of the application of our registration system to mask-contrast pairs, for images acquired from a specially designed phantom (described in a companion paper), and for clinical images.

  7. THE REDUCTIVE TRANSFORMATION OF PERCHLORATE IN A FRESH WATER SEDIMENT: LABORATORY BATCH STUDIES

    EPA Science Inventory

    Perchlorate is widely used as a propellant in solid rocket fuel, and has recently been found in ground, surface, and drinking water, in many cases above the interim action level of 18 ppb. Perchlorate is recalcitrant to chemical reduction, however, studies of perchlorate in pure ...

  8. THE REDUCTIVE TRANSFORMATION OF PERCHLORATE IN A FRESH WATER SEDIMENT: LABORATORY BATCH STUDIES.

    EPA Science Inventory

    Perchlorate is widely used as a propellant in solid rocket fuel, and has recently been found in ground, surface, and drinking water, in many cases above the interim action level of 18 ppb. Perchlorate is recalcitrant to chemical reduction, however, studies of perchlorate in pure ...

  9. Bias reduction for Satellite Based Precipitation Estimates using statistical transformations in Guiana Shield

    NASA Astrophysics Data System (ADS)

    Ringard, Justine; Becker, Melanie; Seyler, Frederique; Linguet, Laurent

    2016-04-01

    Currently satellite-based precipitation estimates exhibit considerable biases, and there have been many efforts to reduce these biases by merging surface gauge measurements with satellite-based estimates. In Guiana Shield all products exhibited better performances during the dry season (August- December). All products greatly overestimate very low intensities (<4 mm) and underestimate very high intensities (>50 mm). Moreover the responses of each product are different according to hydro climatic regimes. The aim of this study is to correct spatially the bias of precipitation, and compare various correction methods to define the best methods depending on the rainfall characteristic correcting (intensity, frequency). Four satellites products are used: Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) research product (3B42V7) and real time product (3B42RT), the Precipitation Estimation from Remotely-Sensed Information using Artificial Neural Network (PERSIANN) and the NOAA Climate Prediction Center (CPC) Morphing technique (CMORPH), for six hydro climatic regimes between 2001 and 2012. Several statistical transformations are used to correct the bias. Statistical transformations attempt to find a function h that maps a simulated variable Ps such that its new distribution equals the distribution of the observed variable Po. The first is the use of a distribution derived transformations which is a mixture of the Bernoulli and the Gamma distribution, where the Bernoulli distribution is used to model the probability of precipitation occurrence and the Gamma distribution used to model precipitation intensities. The second a quantile-quantile relation using parametric transformation, and the last one is a common approach using the empirical CDF of observed and modelled values instead of assuming parametric distributions. For each correction 30% of both, simulated and observed data sets, are used to calibrate and the other part used to

  10. Microbial Reductive Transformation of Phyllosilicate Fe(III) and U(VI) in Fluvial Subsurface Sediments

    SciTech Connect

    Lee, Ji-Hoon; Fredrickson, Jim K.; Kukkadapu, Ravi K.; Boyanov, Maxim I.; Kemner, Kenneth M.; Lin, Xueju; Kennedy, David W.; Bjornstad, Bruce N.; Konopka, Allan; Moore, Dean A.; Resch, Charles T.; Phillips, Jerry L.

    2012-03-14

    The microbial reduction of Fe(III) and U(VI) were investigated in shallow aquifer sediments collected from subsurface Pleistocene flood deposits near the Hanford Reach of the Columbia River in Washington State. Increases in 0.5 N HCl-extractable Fe(II) were observed in incubated sediments and 57Fe Mössbauer spectroscopy revealed that Fe(III) associated with phyllosilicates and pyroxene was reduced to Fe(II). Aqueous uranium(VI) concentrations decreased in incubated Hanford sediments with the rate and extent being greater in sediment amended with organic carbon. X-ray absorption spectroscopy of bioreduced sediments indicated that 67-77% of the U signal was U(VI), probably as an adsorbed species associated with a new or modified reactive mineral phase. Phylotypes within the Deltaproteobacteria were more common in Hanford sediments incubated with U(VI) than without and in U(VI)-free incubations, members of the Clostridiales were dominant with sulfate-reducing phylotypes more common in the sulfate-amended sediments. These results demonstrate the potential for anaerobic reduction phyllosilicate Fe(III) and sulfate in Hanford unconfined aquifer sediments and biotransformations involving reduction and adsorption leading to decreased aqueous U concentrations.

  11. Formation of active sites for oxygen reduction reactions by transformation of nitrogen functionalities in nitrogen-doped carbon nanotubes.

    PubMed

    Sharifi, Tiva; Hu, Guangzhi; Jia, Xueen; Wågberg, Thomas

    2012-10-23

    Heat treating nitrogen-doped multiwalled carbon nanotubes containing up to six different types of nitrogen functionalities transforms particular nitrogen functionalities into other types which are more catalytically active toward oxygen reduction reactions (ORR). In the first stage, the unstable pyrrolic functionalities transform into pyridinic functionalities followed by an immediate transition into quaternary center and valley nitrogen functionalities. By measuring the electrocatalytic oxidation reduction current for the different samples, we achieve information on the catalytic activity connected to each type of nitrogen functionality. Through this, we conclude that quaternary nitrogen valley sites, N-Q(valley), are the most active sites for ORR in N-CNTs. The number of electrons transferred in the ORR is determined from ring disk electrode and rotating ring disk electrode measurements. Our measurements indicate that the ORR processes proceed by a direct four-electron pathway for the N-Q(valley) and the pyridinic sites while it proceeds by an indirect two-electron pathway via hydrogen peroxide at the N-Q(center) sites. Our study gives both insights on the mechanism of ORR on different nitrogen functionalities in nitrogen-doped carbon nanostructures and it proposes how to treat samples to maximize the catalytic efficiency of such samples.

  12. Microbial Transformations of TRU and Mixed Wastes: Actinide Speciation and Waste Volume Reduction

    SciTech Connect

    Halada, Gary P.

    2005-06-01

    Cellosic samples were prepared 1/29/92 at BNL from various sources, including white and brown paper towel, and Kimwipes. The mixed cellulosics were cut into 1 cm x 1 cm squares and transferred to glass serum bottles and various treatments were conducted: unamended (U) samples were filled with nitrogen-purged brine from G-Seep (4.1 M Na+ and 5.1 Cl- with minor amounts of Mg, K, and Ca and 0.3 M sulfate (Brush, 1990)); unamended/inoculated (UI) samples were filled with bacteria-containing surface lake water, sediment, and halite from the underground at the WIPP site; amended/inoculated (AI) samples were inoculated in this fashion and amended with nutrients; and amended/inoculated/excess nitrate (AINO3) samples were inoculated with excess nitrate in the form of KNO3 (5 g L-1 (49.5 mM)). Further information on sample preparation is available. All samples were analyzed by Fourier transform infrared spectroscopy (FTIR) at SBU to identify any transformations in cellulosic material which may have occurred during treatment and storage.

  13. Effect of liming on sulfate transformation and sulfur gas emissions in degraded vegetable soil treated by reductive soil disinfestation.

    PubMed

    Meng, Tianzhu; Zhu, Tongbin; Zhang, Jinbo; Cai, Zucong

    2015-10-01

    Reductive soil disinfestation (RSD), namely amending organic materials and mulching or flooding to create strong reductive status, has been widely applied to improve degraded soils. However, there is little information available about sulfate (SO4(2-)) transformation and sulfur (S) gas emissions during RSD treatment to degraded vegetable soils, in which S is generally accumulated. To investigate the effects of liming on SO4(2-) transformation and S gas emissions, two SO4(2-)-accumulated vegetable soils (denoted as S1 and S2) were treated by RSD, and RSD plus lime, denoted as RSD0 and RSD1, respectively. The results showed that RSD0 treatment reduced soil SO4(2-) by 51% and 61% in S1 and S2, respectively. The disappeared SO4(2-) was mainly transformed into the undissolved form. During RSD treatment, hydrogen sulfide (H2S), carbonyl sulfide (COS), and dimethyl sulfide (DMS) were detected, but the total S gas emission accounted for <0.006% of total S in both soils. Compared to RSD0, lime addition stimulated the conversion of SO4(2-) into undissolved form, reduced soil SO4(2-) by 81% in S1 and 84% in S2 and reduced total S gas emissions by 32% in S1 and 57% in S2, respectively. In addition to H2S, COS and DMS, the emissions of carbon disulfide, methyl mercaptan, and dimethyl disulfide were also detected in RSD1 treatment. The results indicated that RSD was an effective method to remove SO4(2-), liming stimulates the conversion of dissolved SO4(2-) into undissolved form, probably due to the precipitation with calcium.

  14. Aggregate-scale spatial heterogeneity in reductive transformation of ferrihydrite resulting from coupled biogeochemical and physical processes

    NASA Astrophysics Data System (ADS)

    Pallud, C.; Masue-Slowey, Y.; Fendorf, S.

    2010-05-01

    Iron (hydr)oxides are ubiquitous in soils and sediments and play a dominant role in the geochemistry of surface and subsurface environments. Their fate depends on local environmental conditions, which in structured soils may vary significantly over short distances due to mass-transfer limitations on solute delivery and metabolite removal. In the present study, artificial soil aggregates were used to investigate the coupling of physical and biogeochemical processes affecting the spatial distribution of iron (Fe) phases resulting from reductive transformation of ferrihydrite. Spherical aggregates made of ferrihydrite-coated sand were inoculated with the dissimilatory Fe-reducing bacterium Shewanella putrefaciens strain CN-32, and placed into a flow reactor, the reaction cell simulates a diffusion-dominated soil aggregate surrounded by an advective flow domain. The spatial and temporal evolution of secondary mineralization products resulting from dissimilatory Fe reduction of ferrihydrite were followed within the aggregates in response to a range of flow rates and lactate concentrations. Strong radial variations in the distribution of secondary phases were observed owing to diffusively controlled delivery of lactate and efflux of Fe(II) and bicarbonate. In the aggregate cortex, only limited formation of secondary Fe phases were observed over 30 d of reaction, despite high rates of ferrihydrite reduction. Under all flow conditions tested, ferrihydrite transformation was limited in the cortex (70-85 mol.% Fe remained as ferrihydrite) because metabolites such as Fe(II) and bicarbonate were efficiently removed in outflow solutes. In contrast, within the inner fractions of the aggregate, limited mass-transfer results in metabolite (Fe(II) and bicarbonate) build-up and the consummate transformation of ferrihydrite - only 15-40 mol.% Fe remained as ferrihydrite after 30 d of reaction. Goethite/lepidocrocite, and minor amounts of magnetite, formed in the aggregate mid

  15. Composting duck excreta enriched wood shavings: C and N transformations and bacterial pathogen reductions.

    PubMed

    Lafond, Stéphanie; Paré, Théophile; Dinel, Henri; Schnitzer, Morris; Chambers, James R; Jaouich, Alfred

    2002-03-01

    Composting of agricultural and domestic wastes is used increasingly to reduce weight, volume, and odor; destroy animal and plant pathogens; and improve the quality of end-products to be used as soil amendments and growth substrates. The objective of this study was to investigate the transformation of C and N and the survival of bacterial populations and pathogenic bacteria during in-vessel composting of duck excreta enriched wood shavings. Two feedstocks, collected on different dates, were composted (C1 and C2) in an enclosed hall system equipped with an electromechanical turner. Temperature was continuously recorded, whereas moisture content and bacterial counts were determined twice a week. Data showed that, although the N content of C2 was only half of that of C1, both materials were fully biostabilized at the end of the composting period as indicated by extractable lipid ratios. In the compost with the low C/N ratio (C1), all bacterial populations were eliminated, whereas fecal streptococci, total coliforms, and gram-negative bacteria were still present in C2 at the end of the composting period. Our results emphasize that the composting of manures and other organic wastes needs to be properly managed to stabilize C and N and to eliminate or reduce bacterial populations. PMID:11990371

  16. ROS Regulation During Abiotic Stress Responses in Crop Plants

    PubMed Central

    You, Jun; Chan, Zhulong

    2015-01-01

    Abiotic stresses such as drought, cold, salt and heat cause reduction of plant growth and loss of crop yield worldwide. Reactive oxygen species (ROS) including hydrogen peroxide (H2O2), superoxide anions (O2•-), hydroxyl radical (OH•) and singlet oxygen (1O2) are by-products of physiological metabolisms, and are precisely controlled by enzymatic and non-enzymatic antioxidant defense systems. ROS are significantly accumulated under abiotic stress conditions, which cause oxidative damage and eventually resulting in cell death. Recently, ROS have been also recognized as key players in the complex signaling network of plants stress responses. The involvement of ROS in signal transduction implies that there must be coordinated function of regulation networks to maintain ROS at non-toxic levels in a delicate balancing act between ROS production, involving ROS generating enzymes and the unavoidable production of ROS during basic cellular metabolism, and ROS-scavenging pathways. Increasing evidence showed that ROS play crucial roles in abiotic stress responses of crop plants for the activation of stress-response and defense pathways. More importantly, manipulating ROS levels provides an opportunity to enhance stress tolerances of crop plants under a variety of unfavorable environmental conditions. This review presents an overview of current knowledge about homeostasis regulation of ROS in crop plants. In particular, we summarize the essential proteins that are involved in abiotic stress tolerance of crop plants through ROS regulation. Finally, the challenges toward the improvement of abiotic stress tolerance through ROS regulation in crops are discussed. PMID:26697045

  17. Breeding for abiotic stresses for sustainable agriculture.

    PubMed

    Witcombe, J R; Hollington, P A; Howarth, C J; Reader, S; Steele, K A

    2008-02-27

    Using cereal crops as examples, we review the breeding for tolerance to the abiotic stresses of low nitrogen, drought, salinity and aluminium toxicity. All are already important abiotic stress factors that cause large and widespread yield reductions. Drought will increase in importance with climate change, the area of irrigated land that is salinized continues to increase, and the cost of inorganic N is set to rise. There is good potential for directly breeding for adaptation to low N while retaining an ability to respond to high N conditions. Breeding for drought and salinity tolerance have proven to be difficult, and the complex mechanisms of tolerance are reviewed. Marker-assisted selection for component traits of drought in rice and pearl millet and salinity tolerance in wheat has produced some positive results and the pyramiding of stable quantitative trait locuses controlling component traits may provide a solution. New genomic technologies promise to make progress for breeding tolerance to these two stresses through a more fundamental understanding of underlying processes and identification of the genes responsible. In wheat, there is a great potential of breeding genetic resistance for salinity and aluminium tolerance through the contributions of wild relatives.

  18. Reduction of blocking artifact based on edge information in discrete cosine transform-coded images

    NASA Astrophysics Data System (ADS)

    Kwon, Goo-Rak; Lama, Ramesh Kumar; Pyun, Jae-Young; Lee, Sang-Woong

    2011-09-01

    We propose new method for the reduction of blocking artifacts present in low bit-rate coded images. This algorithm performs the deblocking operation in two modes that are determined by the number of edge pixels around the block boundary. The number of edge pixels is calculated by applying the Roberts edge filter. An appropriate filtering operation is performed for each mode in both the horizontal and vertical directions. First, when the mode is associated with a smooth region, a strong filtering operation is applied because flat regions are more sensitive to the human visual system. In the second mode, an adaptive low-pass filter that is based on pixel behavior around the block boundaries is applied. This filter reduces the blocking artifact without introducing undesired blurring effects, while the original image edge is preserved. Although the proposed approach is simple and operates in the spatial domain, experimental results show that it improves both the subjective and objective qualities of the coded image with various features.

  19. Insights into the photochemical transformation of iodine in aqueous systems: humic acid photosensitized reduction of iodate.

    PubMed

    Saunders, Russell W; Kumar, Ravi; MacDonald, Samantha M; Plane, John M C

    2012-11-01

    Marine aerosol is highly enriched in iodine, mostly in the form of iodate (IO(3)(-)) ions, compared to its relative abundance in seawater. This paper describes a laboratory study of the photochemical reduction of IO(3)(-) in the presence of humic acid. Spectroscopic analysis showed that ~20% of IO(3)(-) was converted to "free" iodide (I(-)) ions and this fraction remained constant as a function of time. Direct detection of an organically fixed fraction (i.e., ∼ 80%) was not possible, but a number of test reactions with surrogate organic compounds containing functional groups identified in humic acid structures indicate that efficient substitution of iodine occurs at aromatic 1,2 diol sites. These iodinated humic acids are stable with respect to photolysis at near-UV/visible wavelengths and are likely to account for a significant proportion of the soluble iodine-containing organic material occurring within aerosols. In the lower atmosphere, oxidation of I(-) to I(2) in marine aerosol occurs mostly through the uptake of O(3), with H(2)O(2) playing a very minor role. A model of iodine chemistry in the open ocean tropical boundary layer, which incorporates these experimental results, is able to account for the observed enrichment of iodine in marine aerosol.

  20. The effect of ammonium chloride and urea application on soil bacterial communities closely related to the reductive transformation of pentachlorophenol.

    PubMed

    Yu, Huan-Yun; Wang, Yong-kui; Chen, Peng-cheng; Li, Fang-bai; Chen, Man-jia; Hu, Min

    2014-05-15

    Pentachlorophenol (PCP) is widely distributed in the soil, and nitrogen fertilizer is extensively used in agricultural production. However, studies on the fate of organic contaminants as affected by nitrogen fertilizer application have been rare and superficial. The present study aimed to examine the effect of ammonium chloride (NH4Cl) and urea (CO(NH2)2) application on the reductive transformation of PCP in a paddy soil. The study showed that the addition of low concentrations of NH4Cl/CO(NH2)2 enhanced the transformation of PCP, while the addition of high concentrations of NH4Cl/CO(NH2)2 had the opposite effect. The variations in the abundance of soil microbes in response to NH4Cl/CO(NH2)2 addition showed that both NH4Cl and CO(NH2)2 had inhibitory effects on the growth of dissimilatory iron-reducing bacteria (DIRB) of the genus Comamonas. In contrast, for the genus Shewanella, low concentrations of NH4Cl inhibited growth, and high concentrations of NH4Cl enhanced growth, whereas all concentrations of CO(NH2)2 showed enhancement effects. In addition, consistent patterns of variation were found between the abundances of dechlorinating bacteria in the genus Dehalobacter and PCP transformation rates under NH4Cl/CO(NH2)2 addition. In conclusion, nitrogen application produced variations in the structure of the soil microbial community, especially in the abundance of dissimilatory iron-reducing bacteria and dechlorinating bacteria, which, in turn, affected PCP dechlorination.

  1. INVESTIGATION OF THE TRANSFORMATION OF URANIUM UNDER IRON-REDUCING CONDITIONS: REDUCTION OF UVI BY BIOGENIC FEII/FEIII HYDROXIDE (GREEN RUST)

    SciTech Connect

    O'Loughlin, Edward J.; Scherer, Michelle M.; Kemner, Kenneth M.

    2006-12-31

    The recent identification of green rusts (GRs) as products of the reduction of FeIII oxyhydroxides by dissimilatory iron-reducing bacteria, coupled with the ability of synthetic (GR) to reduce UVI species to insoluble UO2, suggests that biogenic green rusts (BioGRs) may play an important role in the speciation (and thus mobility) of U in FeIII-reducing environments. The objective of our research was to examine the potential for BioGR to affect the speciation of U under FeIII-reducing conditions. To meet this objective, we designed and executed a hypothesis-driven experimental program to identify key factors leading to the formation of BioGRs as products of dissimilatory FeIII reduction, to determine the key factors controlling the reduction of UVI to UIV by GRs, and to identify the resulting U-bearing mineral phases. The results of this research significantly increase our understanding of the coupling of biotic and abiotic processes with respect to the speciation of U in iron-reducing environments. In particular, the reduction of UVI to UIV by BioGR with the subsequent formation of U-bearing mineral phases may be effective for immobilizing U in suboxic subsurface environments. This information has direct applications to contaminant transport modeling and bioremediation engineering for natural or enhanced in situ remediation of subsurface contamination.

  2. Predominance of biotic over abiotic formation of halogenated hydrocarbons in hypersaline sediments in Western Australia.

    PubMed

    Ruecker, A; Weigold, P; Behrens, S; Jochmann, M; Laaks, J; Kappler, A

    2014-08-19

    Volatile halogenated organic compounds (VOX) contribute to ozone depletion and global warming. There is evidence of natural VOX formation in many environments ranging from forest soils to salt lakes. Laboratory studies have suggested that VOX formation can be chemically stimulated by reactive Fe species while field studies have provided evidence for direct biological (enzymatic) VOX formation. However, the relative contribution of abiotic and biotic processes to global VOX budgets is still unclear. The goals of this study were to quantify VOX release from sediments from a hypersaline lake in Western Australia (Lake Strawbridge) and to distinguish between the relative contributions of biotic and abiotic VOX formation in microbially active and sterilized microcosms. Our experiments demonstrated that the release of organochlorines from Lake Strawbridge sediments was mainly biotic. Among the organochlorines detected were monochlorinated, e.g., chloromethane (CH3Cl), and higher chlorinated VOX compounds such as trichloromethane (CHCl3). Amendment of sediments with either Fe(III) oxyhydroxide (ferrihydrite) or a mixture of lactate/acetate or both ferrihydrite and lactate/acetate did not stimulate VOX formation. This suggests that although microbial Fe(III) reduction took place, there was no stimulation of VOX formation via Fe redox transformations or the formation of reactive Fe species under our experimental conditions.

  3. Predominance of biotic over abiotic formation of halogenated hydrocarbons in hypersaline sediments in Western Australia.

    PubMed

    Ruecker, A; Weigold, P; Behrens, S; Jochmann, M; Laaks, J; Kappler, A

    2014-08-19

    Volatile halogenated organic compounds (VOX) contribute to ozone depletion and global warming. There is evidence of natural VOX formation in many environments ranging from forest soils to salt lakes. Laboratory studies have suggested that VOX formation can be chemically stimulated by reactive Fe species while field studies have provided evidence for direct biological (enzymatic) VOX formation. However, the relative contribution of abiotic and biotic processes to global VOX budgets is still unclear. The goals of this study were to quantify VOX release from sediments from a hypersaline lake in Western Australia (Lake Strawbridge) and to distinguish between the relative contributions of biotic and abiotic VOX formation in microbially active and sterilized microcosms. Our experiments demonstrated that the release of organochlorines from Lake Strawbridge sediments was mainly biotic. Among the organochlorines detected were monochlorinated, e.g., chloromethane (CH3Cl), and higher chlorinated VOX compounds such as trichloromethane (CHCl3). Amendment of sediments with either Fe(III) oxyhydroxide (ferrihydrite) or a mixture of lactate/acetate or both ferrihydrite and lactate/acetate did not stimulate VOX formation. This suggests that although microbial Fe(III) reduction took place, there was no stimulation of VOX formation via Fe redox transformations or the formation of reactive Fe species under our experimental conditions. PMID:25073729

  4. Carbon and chlorine isotope analysis to identify abiotic degradation pathways of 1,1,1-trichloroethane.

    PubMed

    Palau, Jordi; Shouakar-Stash, Orfan; Hunkeler, Daniel

    2014-12-16

    This study investigates dual C-Cl isotope fractionation during 1,1,1-TCA transformation by heat-activated persulfate (PS), hydrolysis/dehydrohalogenation (HY/DH) and Fe(0). Compound-specific chlorine isotope analysis of 1,1,1-TCA was performed for the first time, and transformation-associated isotope fractionation ε bulk C and ε bulk Cl values were -4.0 ± 0.2‰ and no chlorine isotope fractionation with PS, -1.6 ± 0.2‰ and -4.7 ± 0.1‰ for HY/DH, -7.8 ± 0.4‰ and -5.2 ± 0.2‰ with Fe(0). Distinctly different dual isotope slopes (Δδ13C/Δδ37Cl): ∞ with PS, 0.33 ± 0.04 for HY/DH and 1.5 ± 0.1 with Fe(0) highlight the potential of this approach to identify abiotic degradation pathways of 1,1,1-TCA in the field. The trend observed with PS agreed with a C-H bond oxidation mechanism in the first reaction step. For HY/DH and Fe(0) pathways, different slopes were obtained although both pathways involve cleavage of a C-Cl bond in their initial reaction step. In contrast to the expected larger primary carbon isotope effects relative to chlorine for C-Cl bond cleavage, ε bulk C < ε bulk Cl was observed for HY/DH and in a similar range for reduction by Fe(0), suggesting the contribution of secondary chlorine isotope effects. Therefore, different magnitude of secondary chlorine isotope effects could at least be partly responsible for the distinct slopes between HY/DH and Fe(0) pathways. Following this dual isotope approach, abiotic transformation processes can unambiguously be identified and quantified.

  5. Investigation of the Transformation of Uranium under Iron-Reducing Conditions: Reduction of UVI by Biogenic FeII/FeIII Hydroxide (Green Rust)

    SciTech Connect

    Edward O’Loughlin; Michelle Scherer; Kenneth Kemner; Shelly Kelly

    2004-03-17

    The research we are proposing addresses fundamental aspects of the effects of coupled biotic and abiotic processes on U speciation in subsurface environments where Fe redox cycling is significant. The long-term objective of this research is to evaluate whether reduction of U{sup VI} by biogenic GRs is a significant immobilization mechanism in subsurface environments. Our preliminary experiments have shown that biogenic GRs can reduce U{sup VI} to U{sup IV}; however, little is known about how biogeochemical conditions (such as pH, U concentration, carbonate concentration, and the presence of cocontaminants) and GR composition affect the rate and products of U{sup VI} reduction by GRs. It is also unclear which biogeochemical conditions favor formation of GR over other non-reactive Fe-bearing biomineralization products from the reduction of Fe{sup III} by DIRB. To address these issues, the following objectives are proposed: (1) Identify the geochemical conditions that favor the formation of biogenic GRs from the reduction of Fe{sup III} oxyhydroxides by DIRB (e.g., Shewanella and Geobacter species). (2) Characterize the chemical composition of biogenic GRs (e.g., Fe{sup II}:Fe{sup III} ratios and interlayer anions) and the effects of compositional variability on the rate and extent of U{sup VI} reduction. (3) Evaluate the effects of variations in geochemical conditions--particularly pH, U concentration, carbonate concentration, the presence of organic ligands, and the presence of reducible co-contaminants--both on the kinetics of U{sup VI} reduction by biogenic GR and on the composition of U-bearing mineral phases. Particular attention will be given to examining geochemical conditions relevant to conditions at DOE field sites. (4) Determine the potential for coupling the reduction of Fe{sup III} by DIRB to the reduction of U{sup VI} via biogenic Fe{sup II} species (including biogenic GRs). The objectives outlined above will be achieved by testing the following

  6. Biotic and abiotic mercury methylation and demethylation in sediments

    SciTech Connect

    Zhang, L.; Planas, D. )

    1994-05-01

    Inorganic mercury (Hg(II)) methylation and methylmercury (MeHg) demethylation may occur in the water column, sediment-water interface and subsurficial sediment of aquatic ecosystems. These transformations involve mainly microbial mechanisms, although abiotic methylation may play a more important role in the water compartment. The relative importance of biotic versus abiotic mechanisms of methylation has not been determined however, and abiotic demethylation remains unknown. Little quantitative information is available on the role of bacterial activity in mercury transformations. It has been reported that at least 16 genera of aerobic and anaerobic microorganisms are able to methylate HG(II), and that a greater number are able to demethylate MeHg. Nevertheless, not all populations of these species are capable of methyl- and demethyl-transformations. The actual concentration of MeHg in the aquatic environment is regulated by the relative production and decomposition rates. This, in turn, depends on the availability of Hg(II), MeHg, and bacteria as well as on the physico-chemical properties of the sample. The objective of this study was to compare mercury methylation and demethylation rates in sediment samples with and without active bacterial populations. We therefore performed experiments to follow bacterial evolution during the course of Hg(II) methylation and MeHg demethylation in sediment slurries containing both sterile and non-sterile sediments.

  7. Coupled Abiotic-Biotic Degradation of Bisphenol A

    NASA Astrophysics Data System (ADS)

    Im, J.; Prevatte, C.; Campagna, S. R.; Loeffler, F.

    2014-12-01

    Bisphenol A (BPA) is a ubiquitous environmental contaminant with weak estrogenic activity. BPA is readily biodegradable with oxygen available, but is recalcitrant to microbial degradation under anoxic conditions. However, BPA is susceptible to abiotic transformation under anoxic conditions. To better understand the fate of BPA in anoxic environments, the kinetics of BPA transformation by manganese oxide (d-MnO2) were investigated. BPA was rapidly transformed by MnO2 with a pseudo-first-order rate constant of 0.413 min-1. NMR and LC-MS analyses identified 4-hydroxycumyl alcohol (HCA) as a major intermediate. Up to 64% of the initial amount of BPA was recovered as HCA within 5 min, but the conversion efficiency decreased with time, suggesting that HCA was further degraded by MnO2. Further experiments confirmed that HCA was also susceptible to transformation by MnO2, albeit at 5-fold lower rates than BPA transformation. Mass balance approaches suggested that HCA was the major BPA transformation intermediate, but other compounds may also be formed. The abiotic transformation of BPA by MnO2 was affected by pH, and 10-fold higher transformation rates were observed at pH 4.5 than at pH 10. Compared to BPA, HCA has a lower octanol-water partitioning coefficient (Log Kow) of 0.76 vs 2.76 for BPA and a higher aqueous solubility of 2.65 g L-1 vs 0.31 g L-1 for BPA, suggesting higher mobility of HCA in the environment. Microcosms established with freshwater sediment materials collected from four geographically distinct locations and amended with HCA demonstrated rapid HCA biodegradation under oxic, but not under anoxic conditions. These findings suggest that BPA is not inert under anoxic conditions and abiotic reactions with MnO2 generate HCA, which has increased mobility and is susceptible to aerobic degradation. Therefore, coupled abiotic-biotic processes can affect the fate and longevity of BPA in terrestrial environments.

  8. Noise reduction of nuclear magnetic resonance (NMR) transversal data using improved wavelet transform and exponentially weighted moving average (EWMA)

    NASA Astrophysics Data System (ADS)

    Ge, Xinmin; Fan, Yiren; Li, Jiangtao; Wang, Yang; Deng, Shaogui

    2015-02-01

    NMR logging and core NMR signals acts as an effective way of pore structure evaluation and fluid discrimination, but it is greatly contaminated by noise for samples with low magnetic resonance intensity. Transversal relaxation time (T2) spectrum obtained by inversion of decay signals intrigued by Carr-Purcell-Meiboom-Gill (CPMG) sequence may deviate from the truth if the signal-to-noise ratio (SNR) is imperfect. A method of combing the improved wavelet thresholding with the EWMA is proposed for noise reduction of decay data. The wavelet basis function and decomposition level are optimized in consideration of information entropy and white noise estimation firstly. Then a hybrid threshold function is developed to avoid drawbacks of hard and soft threshold functions. To achieve the best thresholding values of different levels, a nonlinear objective function based on SNR and mean square error (MSE) is constructed, transforming the problem to a task of finding optimal solutions. Particle swarm optimization (PSO) is used to ensure the stability and global convergence. EWMA is carried out to eliminate unwanted peaks and sawtooths of the wavelet denoised signal. With validations of numerical simulations and experiments, it is demonstrated that the proposed approach can reduce the noise of T2 decay data perfectly.

  9. Reductive dechlorination pathways of tetrachloroethylene and trichloroethylene and subsequent transformation of their dechlorination products by mackinawite (FeS) in the presence of metals.

    PubMed

    Jeong, Hoon Y; Kim, Haekyung; Hayes, Kim F

    2007-11-15

    Because of frequent co-occurrence of metals with chlorinated organic pollutants, Fe(II), Co(II), Ni(II), and Hg(II) were evaluated for their impact on the dechlorination pathways of PCE and TCE and the subsequent transformation of the initial dechlorination products by FeS. PCE transforms to acetylene via beta-elimination, TCE via hydrogenolysis, and 1,1-DCE via alpha-elimination, while TCE transforms to acetylene via beta-elimination and cis-DCE and 1,1-DCE via hydrogenolysis. Acetylene subsequently transforms in FeS batches, but little transformation of cis-DCE and 1,1-DCE was observed. Branching ratio calculations indicate that the added metals decrease the reductive transformation of PCE and TCE via beta-elimination relative to hydrogenolysis, resulting in a higher production of the toxic DCE byproducts. Nonetheless, acetylene is generally the dominant product. Production of highly water-soluble compound(s) is suspected as a significant source for incomplete mass recoveries. In the transformation of PCE and TCE, the formation of unidentified product(s) is most significant in Co(II)-added FeS batches. Although nearly complete mass recoveries were observed in the other FeS batches, the subsequent transformation of acetylene would lead to the formation of unidentified product(s) over long time periods.

  10. Abiotic dealkylation and hydrolysis of atrazine by birnessite.

    PubMed

    Shin, Jin Y; Cheney, Marcos A

    2005-06-01

    Atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) and its degradation products are important contaminants of world water systems and have effects on aquatic life. These effects are modulated by the degradation of atrazine, which depends, in part, on its reactivity with soil minerals. We have studied the degradation reaction of atrazine on synthetic birnessite (delta-MnO2) in the aqueous phase using a batch reactor and a developed high-performance liquid chromatography method. The reaction was studied in the absence of light at 25 degrees C and between pH 2.3 to pH 8.3. The reaction rates increased with decreasing pH and increasing delta-MnO2 loading, and they did not follow simple first-order kinetics. The major products are hydroxylated and mono- and didealkylatrazine. Ammeline and cyanuric acid also were detected. The half-life (t 1/2) for the degradation of atrazine was approximately 16.8 d and independent of oxygen. Manganese(II) evolution was a minor product. The mechanism of dealkylation involved proton transfer to Mn(IV)-stabilized oxo and imido bonds, with no net oxidation and reduction. Oxidation was a secondary reaction. The proposed abiotic pathway for the transformation of atrazine on delta-MnO2 was identical to the reported biotic pathway. Thus, delta-MnO2, a common soil component, facilitated the efficient N-dealkylation and hydrolysis of the herbicide atrazine at 25 degrees C, possibly via a nonoxidative mechanisms. The N-dealkylation has been attributed strictly to a biological process in soils.

  11. Uranium isotopes fingerprint biotic reduction

    SciTech Connect

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J.; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-04-20

    Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U), i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. In addition, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.

  12. Uranium isotopes fingerprint biotic reduction

    DOE PAGES

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J.; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-04-20

    Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U),more » i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. In addition, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.« less

  13. Uranium isotopes fingerprint biotic reduction.

    PubMed

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-05-01

    Knowledge of paleo-redox conditions in the Earth's history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U), i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth's crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. Additionally, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.

  14. Uranium isotopes fingerprint biotic reduction

    PubMed Central

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J.; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-01-01

    Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U), i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. Additionally, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium. PMID:25902522

  15. Transformation products of antibiotic and cytostatic drugs in the aquatic cycle that result from effluent treatment and abiotic/biotic reactions in the environment: an increasing challenge calling for higher emphasis on measures at the beginning of the pipe.

    PubMed

    Haddad, Tarek; Baginska, Ewelina; Kümmerer, Klaus

    2015-04-01

    Pharmaceuticals may undergo transformation into new products during almost all possible processes along their life-cycle. This could either take place in the natural water environment and/or during water treatment processes. Numerous studies that address the issue of such transformation products (TPs) have been published, describing selected aspects of TPs in the environment and their formation within effluent and water treatment processes. In order to exemplify the number and quality of information published on TPs, we selected 21 active pharmaceutical ingredients from the groups of antibiotics and antineoplastics, and assessed the knowledge about their TPs that has been published until the end of May 2012. The goal of this work was to demonstrate, that the quality of data on pharmaceutical TPs greatly differs in terms of the availability of chemical structures for each TP, rather than to provide an exhaustive database of available TPs. The aim was to point out the challenge going along with so many TPs formed under different treatment and environmental conditions. An extensive review in the form of a table showing the existing data on 158 TPs for 15 compounds, out of 21 investigated, was presented. Numerous TPs are the result of different treatments and environmental processes. However, also numerous different TPs may be formed within only one type of treatment, applied under sometimes even very similar treatment conditions and treatments times. In general, the growing number of elucidated TPs is rationalized by ineffective removal treatments. Our results demonstrate a severe risk of drowning in much unrelated and non-assessable data, both from a scientific and from a technical treatment-related point of view. Therefore, limiting the input of pharmaceuticals into effluents as well as improving their (bio) degradability and elimination behavior, instead of only relying on advanced effluent treatments, is urgently needed. Solutions that focus on this "beginning of

  16. Transformation products of antibiotic and cytostatic drugs in the aquatic cycle that result from effluent treatment and abiotic/biotic reactions in the environment: an increasing challenge calling for higher emphasis on measures at the beginning of the pipe.

    PubMed

    Haddad, Tarek; Baginska, Ewelina; Kümmerer, Klaus

    2015-04-01

    Pharmaceuticals may undergo transformation into new products during almost all possible processes along their life-cycle. This could either take place in the natural water environment and/or during water treatment processes. Numerous studies that address the issue of such transformation products (TPs) have been published, describing selected aspects of TPs in the environment and their formation within effluent and water treatment processes. In order to exemplify the number and quality of information published on TPs, we selected 21 active pharmaceutical ingredients from the groups of antibiotics and antineoplastics, and assessed the knowledge about their TPs that has been published until the end of May 2012. The goal of this work was to demonstrate, that the quality of data on pharmaceutical TPs greatly differs in terms of the availability of chemical structures for each TP, rather than to provide an exhaustive database of available TPs. The aim was to point out the challenge going along with so many TPs formed under different treatment and environmental conditions. An extensive review in the form of a table showing the existing data on 158 TPs for 15 compounds, out of 21 investigated, was presented. Numerous TPs are the result of different treatments and environmental processes. However, also numerous different TPs may be formed within only one type of treatment, applied under sometimes even very similar treatment conditions and treatments times. In general, the growing number of elucidated TPs is rationalized by ineffective removal treatments. Our results demonstrate a severe risk of drowning in much unrelated and non-assessable data, both from a scientific and from a technical treatment-related point of view. Therefore, limiting the input of pharmaceuticals into effluents as well as improving their (bio) degradability and elimination behavior, instead of only relying on advanced effluent treatments, is urgently needed. Solutions that focus on this "beginning of

  17. Arsenic Mobilization Is Enhanced by Thermal Transformation of Schwertmannite.

    PubMed

    Johnston, Scott G; Burton, Edward D; Moon, Ellen M

    2016-08-01

    Fires in iron-rich seasonal wetlands can thermally transform Fe(III) minerals and alter their crystallinity. However, the fate of As associated with thermally transformed Fe(III) minerals is unclear, as are the consequences for As mobilization during subsequent reflooding and reductive cycles. Here, we subject As(V)-coprecipitated schwertmannite to thermal transformation (200, 400, 600 and 800 °C) followed by biotic reductive incubation (150 d) and examine aqueous- and solid-phase speciation of As, Fe and S. Heating to >400 °C caused transformation of schwertmannite to a nanocrystalline hematite with greater surface area and smaller particle size. Higher temperatures also caused the initially structurally incorporated As to become progressively more exchangeable, increasing surface-complexed As (AsEx) by up to 60-fold, thereby triggering enhanced As mobilization during incubation (∼70-fold in the 800 °C treatment). Although more As was mobilized in biotic treatments than controls (∼3-20×), in both cases it was directly proportional to initial AsEx and mainly due to abiotic desorption. Higher transformation temperatures also drove divergent pathways of Fe and S biomineralization and led to more As(V) and SO4 reduction relative to Fe(III) reduction. This study reveals thermal transformation of schwertmannite can greatly increase As mobility and has major consequences for As/Fe/S speciation under reducing conditions. Further research is warranted to unravel the wider implications for water quality in natural wetlands.

  18. Arsenic Mobilization Is Enhanced by Thermal Transformation of Schwertmannite.

    PubMed

    Johnston, Scott G; Burton, Edward D; Moon, Ellen M

    2016-08-01

    Fires in iron-rich seasonal wetlands can thermally transform Fe(III) minerals and alter their crystallinity. However, the fate of As associated with thermally transformed Fe(III) minerals is unclear, as are the consequences for As mobilization during subsequent reflooding and reductive cycles. Here, we subject As(V)-coprecipitated schwertmannite to thermal transformation (200, 400, 600 and 800 °C) followed by biotic reductive incubation (150 d) and examine aqueous- and solid-phase speciation of As, Fe and S. Heating to >400 °C caused transformation of schwertmannite to a nanocrystalline hematite with greater surface area and smaller particle size. Higher temperatures also caused the initially structurally incorporated As to become progressively more exchangeable, increasing surface-complexed As (AsEx) by up to 60-fold, thereby triggering enhanced As mobilization during incubation (∼70-fold in the 800 °C treatment). Although more As was mobilized in biotic treatments than controls (∼3-20×), in both cases it was directly proportional to initial AsEx and mainly due to abiotic desorption. Higher transformation temperatures also drove divergent pathways of Fe and S biomineralization and led to more As(V) and SO4 reduction relative to Fe(III) reduction. This study reveals thermal transformation of schwertmannite can greatly increase As mobility and has major consequences for As/Fe/S speciation under reducing conditions. Further research is warranted to unravel the wider implications for water quality in natural wetlands. PMID:27403840

  19. Using biotechnology and genomics to improve biotic and abiotic stress in apple

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic sequencing, molecular biology, and transformation technologies are providing valuable tools to better understand the complexity of how plants develop, function, and respond to biotic and abiotic stress. These approaches should complement but not replace a solid understanding of whole plant ...

  20. Artificial Neural Identification and LMI Transformation for Model Reduction-Based Control of the Buck Switch-Mode Regulator

    NASA Astrophysics Data System (ADS)

    Al-Rabadi, Anas N.

    2009-10-01

    This research introduces a new method of intelligent control for the control of the Buck converter using newly developed small signal model of the pulse width modulation (PWM) switch. The new method uses supervised neural network to estimate certain parameters of the transformed system matrix [Ã]. Then, a numerical algorithm used in robust control called linear matrix inequality (LMI) optimization technique is used to determine the permutation matrix [P] so that a complete system transformation {[B˜], [C˜], [Ẽ]} is possible. The transformed model is then reduced using the method of singular perturbation, and state feedback control is applied to enhance system performance. The experimental results show that the new control methodology simplifies the model in the Buck converter and thus uses a simpler controller that produces the desired system response for performance enhancement.

  1. ESTIMATION OF MICROBIAL REDUCTIVE TRANSFORMATION RATES FOR CHLORINATED BENZENES AND PHENOLS USING A QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIP APPROACH

    EPA Science Inventory

    A set of literature data was used to derive several quantitative structure-activity relationships (QSARs) to predict the rate constants for the microbial reductive dehalogenation of chlorinated aromatics. Dechlorination rate constants for 25 chloroaromatics were corrected for th...

  2. FRACTIONATION OF STABLE CARBON ISOTOPES DURING ABIOTIC TRANSFORMATION OF TCE

    EPA Science Inventory

    At a Superfund Site in Minnesota, ground water is contaminated with trichloroethylene (TCE) with the contaminant plume stretching over five miles long. The ground water is iron and manganese reducing, and the complete absence of dichloroethylene, vinyl chloride, and ethene in th...

  3. Thioarsenate transformation by filamentous microbial mats thriving in an alkaline, sulfidic hot spring.

    PubMed

    Härtig, Cornelia; Cornelia, Härtig; Planer-Friedrich, Britta; Britta, Planer-Friedrich

    2012-04-17

    Thioarsenates dominate arsenic speciation in sulfidic geothermal waters, yet little is known about their fate in the environment. At Conch Spring, an alkaline hot spring in Yellowstone National Park, trithioarsenate transforms to arsenate under increasingly oxidizing conditions along the drainage channel, accompanied by an initial increase, then decrease of monothioarsenate and arsenite. On-site incubation tests were conducted using sterile-filtered water with and without addition of filamentous microbial mats from the drainage channel to distinguish the role of abiotic and biotic processes for arsenic species transformation. Abiotically, trithioarsenate was desulfidized to arsenate coupled to sulfide oxidation. Monothioarsenate, however, was inert. Biotic incubations proved that the intermediate accumulation of arsenite in the drainage channel is microbially catalyzed. In the presence of sulfide, microbially enhanced sulfide oxidation coupled to reduction of arsenate to arsenite could simply enhance abiotic desulfidation of trithioarsenate and potentially also monothioarsenate. However, we were also able to show, in sulfide-free medium, direct microbial transformation of monothioarsenate to arsenate. Some arsenite formed intermediately, which was subsequently also microbially oxidized to arsenate. This study is the first evidence for microbially mediated thioarsenate species transformation by (hyper)thermophilic prokaryotes. PMID:22380721

  4. Thioarsenate transformation by filamentous microbial mats thriving in an alkaline, sulfidic hot spring.

    PubMed

    Härtig, Cornelia; Cornelia, Härtig; Planer-Friedrich, Britta; Britta, Planer-Friedrich

    2012-04-17

    Thioarsenates dominate arsenic speciation in sulfidic geothermal waters, yet little is known about their fate in the environment. At Conch Spring, an alkaline hot spring in Yellowstone National Park, trithioarsenate transforms to arsenate under increasingly oxidizing conditions along the drainage channel, accompanied by an initial increase, then decrease of monothioarsenate and arsenite. On-site incubation tests were conducted using sterile-filtered water with and without addition of filamentous microbial mats from the drainage channel to distinguish the role of abiotic and biotic processes for arsenic species transformation. Abiotically, trithioarsenate was desulfidized to arsenate coupled to sulfide oxidation. Monothioarsenate, however, was inert. Biotic incubations proved that the intermediate accumulation of arsenite in the drainage channel is microbially catalyzed. In the presence of sulfide, microbially enhanced sulfide oxidation coupled to reduction of arsenate to arsenite could simply enhance abiotic desulfidation of trithioarsenate and potentially also monothioarsenate. However, we were also able to show, in sulfide-free medium, direct microbial transformation of monothioarsenate to arsenate. Some arsenite formed intermediately, which was subsequently also microbially oxidized to arsenate. This study is the first evidence for microbially mediated thioarsenate species transformation by (hyper)thermophilic prokaryotes.

  5. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants

    PubMed Central

    Khan, M. Iqbal R.; Fatma, Mehar; Per, Tasir S.; Anjum, Naser A.; Khan, Nafees A.

    2015-01-01

    Abiotic stresses (such as metals/metalloids, salinity, ozone, UV-B radiation, extreme temperatures, and drought) are among the most challenging threats to agricultural system and economic yield of crop plants. These stresses (in isolation and/or combination) induce numerous adverse effects in plants, impair biochemical/physiological and molecular processes, and eventually cause severe reductions in plant growth, development and overall productivity. Phytohormones have been recognized as a strong tool for sustainably alleviating adverse effects of abiotic stresses in crop plants. In particular, the significance of salicylic acid (SA) has been increasingly recognized in improved plant abiotic stress-tolerance via SA-mediated control of major plant-metabolic processes. However, the basic biochemical/physiological and molecular mechanisms that potentially underpin SA-induced plant-tolerance to major abiotic stresses remain least discussed. Based on recent reports, this paper: (a) overviews historical background and biosynthesis of SA under both optimal and stressful environments in plants; (b) critically appraises the role of SA in plants exposed to major abiotic stresses; (c) cross-talks potential mechanisms potentially governing SA-induced plant abiotic stress-tolerance; and finally (d) briefly highlights major aspects so far unexplored in the current context. PMID:26175738

  6. ABIOTIC REDUCTION AND DETOXIFICATION OF CHROMATE PRESENT IN SOILS

    EPA Science Inventory

    Theoretical and experimental research has supported the assertion that Cr(III) species are the most stable, immobile, and nontoxic forms of chromium and that they may form rapidly when adequate reducing agents are introduced in an oxidized soil environment. The objective of this ...

  7. Reduction of power loss in a three-phase transformer core by using Y-45° type T-joint

    NASA Astrophysics Data System (ADS)

    Basak, A.

    1980-04-01

    In a scale model of three-phase transformer cores, a novel type of T-joint configuration, referred to as the Y-45° T-joint, has been investigated. The overall power loss in this core has been found to be 9% lower than that in a core with the common 45-90° T-joint at a core flux density of 1.5 T.

  8. Suberoylanilide hydroxamic acid (SAHA) inhibits EGF-induced cell transformation via reduction of cyclin D1 mRNA stability

    SciTech Connect

    Zhang, Jingjie; Ouyang, Weiming; Li, Jingxia; Zhang, Dongyun; Yu, Yonghui; Wang, York; Li, Xuejun; Huang, Chuanshu

    2012-09-01

    Suberoylanilide hydroxamic acid (SAHA) inhibiting cancer cell growth has been associated with its downregulation of cyclin D1 protein expression at transcription level or translation level. Here, we have demonstrated that SAHA inhibited EGF-induced Cl41 cell transformation via the decrease of cyclin D1 mRNA stability and induction of G0/G1 growth arrest. We found that SAHA treatment resulted in the dramatic inhibition of EGF-induced cell transformation, cyclin D1 protein expression and induction of G0/G1 growth arrest. Further studies showed that SAHA downregulation of cyclin D1 was only observed with endogenous cyclin D1, but not with reconstitutionally expressed cyclin D1 in the same cells, excluding the possibility of SAHA regulating cyclin D1 at level of protein degradation. Moreover, SAHA inhibited EGF-induced cyclin d1 mRNA level, whereas it did not show any inhibitory effect on cyclin D1 promoter-driven luciferase reporter activity under the same experimental conditions, suggesting that SAHA may decrease cyclin D1 mRNA stability. This notion was supported by the results that treatment of cells with SAHA decreased the half-life of cyclin D1 mRNA from 6.95 h to 2.57 h. Consistent with downregulation of cyclin D1 mRNA stability, SAHA treatment also attenuated HuR expression, which has been well-characterized as a positive regulator of cyclin D1 mRNA stability. Thus, our study identifies a novel mechanism responsible for SAHA inhibiting cell transformation via decreasing cyclin D1 mRNA stability and induction of G0/G1 growth arrest in Cl41 cells. -- Highlights: ► SAHA inhibits cell transformation in Cl41 cells. ► SAHA suppresses Cyclin D1 protein expression. ► SAHA decreases cyclin D1 mRNA stability.

  9. Low-Temperature Pseudomorphic Transformation of Ordered Hierarchical Macro-mesoporous SiO 2 /C Nanocomposite to SiC via Magnesiothermic Reduction

    SciTech Connect

    Shi, Yifeng; Zhang, Fan; Hu, Yong-Sheng; Sun, Xiaohong; Zhang, Yichi; Lee, Hyung Ik; Chen, Liquan; Stucky, Galen D.

    2010-04-01

    A magnesiothermic reduction synthesis approach is reported for direct conversion of SiO₂/C composite nanostructures to corresponding SiC materials without losing their nanostructure morphologies. Crystalline SiC materials can be obtained by this approach at a temperature as low as 600 °C, only approximately half of that applied in the generally used carbothermal reduction and preceramic polymer pyrolysis methods. An ordered hierarchical macro-mesoporous SiC material was synthesized for the first time as a demonstration. This pseudomorphic transformation can be regarded as a general synthesis method for different kinds of SiC nanostructures, and it can also be readily extended to other metal carbide materials as well as TiC.

  10. A Pollutant Transformation Laboratory Exercise for Environmental Chemistry: The Reduction of Nitrobenzenes by Anaerobic Solutions of Humic Acid

    ERIC Educational Resources Information Center

    Dunnivant, Frank M.; Reynolds, Mark-Cody

    2007-01-01

    The laboratory experiment, which acts as a capstone, integrated lecture-laboratory exercise involving solution preparation, pH buffers, [E[subscript]H] (reduction potential) buffers, organic reaction mechanisms, reaction kinetics, and instrumental analysis is presented. The students completing the lecture and laboratory exercises could gain a…

  11. Confounding Impacts of Iron Reduction on Arsenic Retention

    SciTech Connect

    Tufano, K.J.; Fendorf, S.

    2009-05-26

    A transition from oxidizing to reducing conditions has long been implicated to increase aqueous As concentrations, for which reductive dissolution of iron (hydr)oxides is commonly implicated as the primary culprit. Confounding our understanding of processes controlling As retention, however, is that reductive transformation of ferrihydrite has recently been shown to promote As retention rather than release. To resolve the role iron phases have in regulating arsenic concentrations, here we examine As desorption from ferrihydrite-coated sands presorbed with As(lll); experiments were performed at circumneutral pH under Fe-reducing conditions with the dissimilatory iron reducing bacterium Shewanella putrefaciens strain CN-32 over extended time periods. We reveal that with the initial phase of iron reduction, ferrihydrite undergoes transformation to secondary phases and increases As(lll) retention (relative to abiotic controls). However, with increased reaction time, cessation of the phase transitions and ensuing reductive dissolution result in prolonged release of As(III) to the aqueous phase. Our results suggest that As(lll) retention during iron reduction is temporally dependent on secondary precipitation of iron phases; during transformation to secondary phases, particularly magnetite, As(lll) retention is enhanced even relative to oxidized systems. However, conditions that retard secondary transformation (more stable iron oxides or limited iron reducing bacterial activity), or prolonged anaerobiosis, will lead to both the dissolution of ferric (hydr)oxides and release of As(lll) to the aqueous phase.

  12. Sediment mediated reduction and sorption of 2,4,6-trinitrotoluene and resulting reaction products

    SciTech Connect

    Elovitz, M.S.; Weber, E.J.

    1995-12-01

    The reductive transformation of 2,4,6-trinitrotoluene (TNT) to aromatic amines and the consequent fate of these products in sediment-water systems were studied. Pathway elucidation and mass balance analyses of the reduction of TNT in oxic and anoxic sediment-water systems indicated that the fate of TNT was highly dependent on the redox status of the system. Reduction of TNT to aminodinitrotoluene and subsequently to diaminonitrotoluene products appeared to have both biotic and abiotic components. Reduction was rapid under anoxic, methanogenic conditions, but was significantly slower under oxic conditions. Subsequent sorption of the diaminonitrotoluene products was rapid under oxic conditions and resulted in nearly complete, irreversible retention by the sediment phase. In contrast, under anoxic conditions, the rapidly formed diaminonitrotoluene compounds displayed little affinity for the sediment phase. Instead, the diaminonitrotoluenes were further transformed to products that also showed little capacity for sorption.

  13. DEMONSTRATION BULLETIN: METAL-ENHANCED ABIOTIC DEGRADATION TECHNOLOGY - ENVIROMETAL TECHNOLOGIES, INC.

    EPA Science Inventory

    EnviroMetal Technologies, Inc. (ETI), of Guelph, ON, Canada, has developed the metal-enhanced abiotic degradation technology to treat halogenated volatile organic compounds (VOC) in water. A reactive, zero-valent, granular iron medium causes reductive dehalogenation of VOCs yield...

  14. A PAPR reduction technique using Hadamard transform combined with clipping and filtering based on DCT/IDCT for IM/DD optical OFDM systems

    NASA Astrophysics Data System (ADS)

    Mangone, Fall; He, Jing; Tang, Jin; Xiao, Jiangnan; Chen, Ming; Li, Fan; Chen, Lin

    2014-08-01

    In Intensity Modulator/Direct Detection (IM/DD) optical OFDM systems, the high peak-to-power average ratio (PAPR) will cause signal impairments through the nonlinearity of modulator and fiber. In this paper, a joint PAPR reduction technique based on Hadamard transformation and clipping and filtering using DCT/IDCT transform has been proposed for mitigating the impairments in IM/DD optical OFDM system. We then experimentally evaluated the effect of PAPR reduction on the bit error rate (BER) performance and the results show the effectiveness of the proposed technique. At a bit error rate (BER) of 1 × 10-3, the receiver sensitivity of the proposed 2.5 Gb/s IM/DD optical OFDM system after 100-km standard single-mode fiber transmission has been improved by 0.8 dB, 1.3 dB and 3.1 dB for a launch power of 6.4 dBm, 8 dBm and 10 dBm respectively when compared with the classical system.

  15. Pathway of FeEDTA transformation and its impact on performance of NOx removal in a chemical absorption-biological reduction integrated process.

    PubMed

    Li, Wei; Zhao, Jingkai; Zhang, Lei; Xia, Yinfeng; Liu, Nan; Li, Sujing; Zhang, Shihan

    2016-01-01

    A novel chemical absorption-biological reduction (CABR) integrated process, employing ferrous ethylenediaminetetraacetate (Fe(II)EDTA) as a solvent, is deemed as a potential option for NOx removal from the flue gas. Previous work showed that the Fe(II)EDTA concentration was critical for the NOx removal in the CABR process. In this work, the pathway of FeEDTA (Fe(III)/Fe(II)-EDTA) transformation was investigated to assess its impact on the NOx removal in a biofilter. Experimental results revealed that the FeEDTA transformation involved iron precipitation and EDTA degradation. X-ray photoelectron spectroscopy analysis confirmed the iron was precipitated in the form of Fe(OH)3. The iron mass balance analysis showed 44.2% of the added iron was precipitated. The EDTA degradation facilitated the iron precipitation. Besides chemical oxidation, EDTA biodegradation occurred in the biofilter. The addition of extra EDTA helped recover the iron from the precipitation. The transformation of FeEDTA did not retard the NO removal. In addition, EDTA rather than the iron concentration determined the NO removal efficiency.

  16. Pathway of FeEDTA transformation and its impact on performance of NOx removal in a chemical absorption-biological reduction integrated process

    PubMed Central

    Li, Wei; Zhao, Jingkai; Zhang, Lei; Xia, Yinfeng; Liu, Nan; Li, Sujing; Zhang, Shihan

    2016-01-01

    A novel chemical absorption-biological reduction (CABR) integrated process, employing ferrous ethylenediaminetetraacetate (Fe(II)EDTA) as a solvent, is deemed as a potential option for NOx removal from the flue gas. Previous work showed that the Fe(II)EDTA concentration was critical for the NOx removal in the CABR process. In this work, the pathway of FeEDTA (Fe(III)/Fe(II)-EDTA) transformation was investigated to assess its impact on the NOx removal in a biofilter. Experimental results revealed that the FeEDTA transformation involved iron precipitation and EDTA degradation. X-ray photoelectron spectroscopy analysis confirmed the iron was precipitated in the form of Fe(OH)3. The iron mass balance analysis showed 44.2% of the added iron was precipitated. The EDTA degradation facilitated the iron precipitation. Besides chemical oxidation, EDTA biodegradation occurred in the biofilter. The addition of extra EDTA helped recover the iron from the precipitation. The transformation of FeEDTA did not retard the NO removal. In addition, EDTA rather than the iron concentration determined the NO removal efficiency. PMID:26743930

  17. Glycinebetaine and abiotic stress tolerance in plants

    PubMed Central

    Giri, Jitender

    2011-01-01

    The accumulation of osmolytes like glycinebetaine (GB) in cell is known to protect organisms against abiotic stresses via osmoregulation or osmoprotection. Transgenic plants engineered to produce GB accumulate very low concentration of GB, which might not be sufficient for osmoregulation. Therefore, other roles of GB like cellular macromolecule protection and ROS detoxification have been suggested as mechanisms responsible for abiotic stress tolerance in transgenic plants. In addition, GB influences expression of several endogenous genes in transgenic plants. The new insights gained about the mechanism of stress tolerance in GB accumulating transgenic plants are discussed. PMID:22057338

  18. Abiotic ammonification and gross ammonium photoproduction in the upwelling system off central Chile (36° S)

    NASA Astrophysics Data System (ADS)

    Rain-Franco, A.; Muñoz, C.; Fernandez, C.

    2012-12-01

    We investigated the production of ammonium via photodegradation of dissolved organic matter (DOM) in the coastal upwelling system off central Chile (36° S). Photoammonification experiments were carried out using exudates obtained from representative diatom species (Chaetoceros muelleri and Thalassiosira minuscule) and natural marine DOM under simulated solar radiation conditions. Additionally, we evaluated the use of photoproduced ammonium by natural microbial communities and separated ammonium oxidizing archaea and bacteria by using GC-7 as an inhibitor of the archaeal community. We found photoammonification operating at two levels: via the transformation of DOM by UV radiation (abiotic ammonification) and via the simultaneous occurrence of abiotic phototransformation and biological remineralization of DOM into NH4+ (referred as gross photoproduction of NH4+). The maximum rates of abiotic ammonification reached 0.057 μmol L-1 h-1, whereas maximum rates of gross photoproduction reached 0.746 μmol L-1 h-1. Our results also suggest that ammonium oxidizing archaea could dominate the biotic remineralization induced by photodegradation of organic matter and consequently play an important role in the local N cycle. Abiotic ammonium photoproduction in coastal upwelling systems could support between 7 and 50% of the spring-summer phytoplankton NH4+ demand. Surprisingly, gross ammonium photoproduction (remineralization induced by abiotic ammonification) might support 50 to 180% of spring-summer phytoplankton NH4+ assimilation.

  19. Oxidative and reductive transformations of arsenic by photosynthetic microbial communities from hot springs on Pahoa Island, Mono Lake, California

    NASA Astrophysics Data System (ADS)

    Kulp, T. R.; Hoeft, S. E.; Miller, L. G.; Culbertson, C. W.; Baesman, S. M.; Oremland, R. S.

    2007-12-01

    The shoreline of Pahoa Island in hypersaline Mono Lake in California is characterized by numerous volcanogenic hot springs that display a wide range of temperatures between 30 and 85 degrees C. A variety of distinctive photosynthetic microbial mats are evident in these hot springs and their spatial distribution appears to be a function of water temperature. The suboxic hydrothermal waters of these seeps typically contain ~100 uM dissolved arsenic, which is rapidly oxidized from arsenite [As(III)] to arsenate [As(V)] as the springs flow over these microbial communities. We conducted experiments with anaerobic cultures of red or green photosynthetic bacteria from these hot springs, which we amended with radio-labeled 73As(III) or 73As(V) and incubated at 42 degrees C to measure arsenite oxidation and arsenate reduction activity. In order to assess the potential for As(III) to serve as an electron donor during anoxygenic photosynthesis, As(III) oxidation incubations were conducted under both light and dark conditions. Both light and dark incubations of these thermophiles rapidly oxidized amendments of 100 uM As(III) within 7 hours of incubation, however no significant difference was observed in the rate of As(III) oxidation for light compared to dark samples. Arsenate reduction was also observed in both light and dark anaerobic cultures after 48 hours incubation. In all cases, As oxidation or reduction activity was eliminated by autoclaving. These results suggest that biological As(III) oxidation by these bacteria is primarily a mechanism of detoxification or chemoautotrophy, however the potential significance of As(III) as a photosynthetic electron acceptor will be discussed.

  20. Structural analysis of an intact monoclonal antibody by online electrochemical reduction of disulfide bonds and Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Nicolardi, Simone; Deelder, André M; Palmblad, Magnus; van der Burgt, Yuri E M

    2014-06-01

    Structural confirmation and quality control of recombinant monoclonal antibodies (mAbs) by top-down mass spectrometry is still challenging due to the size of the proteins, disulfide content, and post-translational modifications such as glycosylation. In this study we have applied electrochemistry (EC) to overcome disulfide bridge complexity in top-down analysis of mAbs. To this end, an electrochemical cell was coupled directly to an electrospray ionization (ESI) source and a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer (MS) equipped with a 15 T magnet. By performing online EC-assisted reduction of interchain disulfide bonds in an intact mAb, the released light chains could be selected for tandem mass spectrometry (MS/MS) analysis without interference from heavy-chain fragments. Moreover, the acquisition of full MS scans under denaturing conditions allowed profiling of all abundant mAb glycoforms. Ultrahigh-resolution FTICR-MS measurements provided fully resolved isotopic distributions of intact mAb and enabled the identification of the most abundant adducts and other interfering species. Furthermore, it was found that reduction of interchain disulfide bonds occurs in the ESI source dependent on capillary voltage and solvent composition. This phenomenon was systematically evaluated and compared with the results obtained from reduction in the electrochemical cell.

  1. Influence of abiotic factors on the antimicrobial activity of chitosan.

    PubMed

    Tavaria, Freni K; Costa, Eduardo M; Gens, Eduardo J; Malcata, Francisco Xavier; Pintado, Manuela E

    2013-12-01

    In an effort to bypass the adverse secondary effects attributed to the traditional therapeutic approaches used to treat skin disorders (such as atopic dermatitis), alternative antimicrobials have recently been suggested. One such antimicrobial is chitosan, owing to the already proved biological properties associated with its use. However, the influence of abiotic factors on such activities warrants evaluation. This research effort assessed the antimicrobial activity of chitosan upon skin microorganisms (Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli) in vitro when subject to a combination of different abiotic factors such as pH, ionic strength, organic acids and free fatty acids. Free fatty acids, ionic strength and pH significantly affected chitosan's capability of reducing the viable numbers of S. aureus. This antimicrobial action was potentiated in the presence of palmitic acid and a lower ionic strength (0.2% NaCl), while a higher ionic strength (0.4% NaCl) favored chitosan's action upon the reduction of viable numbers of S. epidermidis and E. coli. Although further studies are needed, these preliminary results advocate that chitosan can in the future be potentially considered as an antimicrobial of choice when handling symptoms associated with atopic dermatitis.

  2. Influence of abiotic factors on the antimicrobial activity of chitosan.

    PubMed

    Tavaria, Freni K; Costa, Eduardo M; Gens, Eduardo J; Malcata, Francisco Xavier; Pintado, Manuela E

    2013-12-01

    In an effort to bypass the adverse secondary effects attributed to the traditional therapeutic approaches used to treat skin disorders (such as atopic dermatitis), alternative antimicrobials have recently been suggested. One such antimicrobial is chitosan, owing to the already proved biological properties associated with its use. However, the influence of abiotic factors on such activities warrants evaluation. This research effort assessed the antimicrobial activity of chitosan upon skin microorganisms (Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli) in vitro when subject to a combination of different abiotic factors such as pH, ionic strength, organic acids and free fatty acids. Free fatty acids, ionic strength and pH significantly affected chitosan's capability of reducing the viable numbers of S. aureus. This antimicrobial action was potentiated in the presence of palmitic acid and a lower ionic strength (0.2% NaCl), while a higher ionic strength (0.4% NaCl) favored chitosan's action upon the reduction of viable numbers of S. epidermidis and E. coli. Although further studies are needed, these preliminary results advocate that chitosan can in the future be potentially considered as an antimicrobial of choice when handling symptoms associated with atopic dermatitis. PMID:24330167

  3. Isotope pattern evaluation for the reduction of elemental compositions assigned to high-resolution mass spectral data from electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Stoll, Norbert; Schmidt, Enrico; Thurow, Kerstin

    2006-12-01

    The number of possible chemical formulae assigned to an accurate determined mass was significantly reduced by comparing spectral and theoretical isotope patterns based on mass measurement obtained with an ultrahigh-resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometer (ESI-FTICR-MS) at high field intensity (7 T). Reduction is performed by rating congruency between experimental and theoretical pattern intensity and mass, and filtering out compositions with insufficient user-definable results. The methods used for isotope pattern simulation, peak searching, and comparison will be briefly described and evaluated on molecule ion signals of 25 compounds (300-1000 Da) applying a mass accuracy of +/-5 ppm, a set of eight elements with constant constraints (C0-200H0-1000N0-15O0-15S0-2Cl0-2Br0-2Ru0-1), natural isotope abundances and experimental resolution (full width at half maximum).

  4. Syntrophic Effects in a Subsurface Clostridial Consortium on Fe(III)-(Oxyhydr)oxide Reduction and Secondary Mineralization

    SciTech Connect

    Shah, Madhavi; Lin, Chu-Ching; Kukkadapu, Ravi K.; Engelhard, Mark H.; Zhao, Xiuhong; Wang, Yangping; Barkay, Tamar; Yee, Nathan

    2013-07-09

    In this study, we cultivated from subsurface sediments an anaerobic Clostridia 25 consortium that was composed of a fermentative Fe-reducer Clostridium species (designated as 26 strain FGH) and a novel sulfate-reducing bacterium belonging to the Clostridia family 27 Vellionellaceae (designated as strain RU4). In pure culture, Clostridium sp. strain FGH mediated 28 the reductive dissolution/transformation of iron oxides during growth on peptone. When 29 Clostridium sp. FGH was grown with strain RU4 on peptone, the rates of iron oxide reduction 30 were significantly higher. Iron reduction by the consortium was mediated by multiple 31 mechanisms, including biotic reduction by Clostridium sp. FGH and biotic/abiotic reactions 32 involving biogenic sulfide by strain RU4. The Clostridium sp. FGH produced hydrogen during 33 fermentation, and the presence of hydrogen inhibited growth and iron reduction activity. The 34 sulfate-reducing partner strain RU4 was stimulated by the presence of H2 gas and generated 35 reactive sulfide which promoted the chemical reduction of the iron oxides. Characterization of 36 Fe(II) mineral products showed the formation of magnetite during ferrihydrite reduction, and 37 the precipitation of iron sulfides during goethite and hematite reduction. The results suggest an 38 important pathway for iron reduction and secondary mineralization by fermentative sulfate-39 reducing microbial consortia is through syntrophy-driven biotic/abiotic reactions with biogenic 40 sulfide.

  5. Reductive Transformation of p-chloronitrobenzene in the upflow anaerobic sludge blanket reactor coupled with microbial electrolysis cell: performance and microbial community.

    PubMed

    Xu, Xiangyang; Shao, Junjie; Li, Mengyan; Gao, Kaituo; Jin, Jie; Zhu, Liang

    2016-10-01

    A microbial electrolysis cell (MEC) combined with an upflow anaerobic sludge blanket (UASB) reactor was operated to degrade p-chloronitrobenzenes (p-ClNB) effectively. The results indicated that p-ClNB was transformed to p-chloroaniline (p-ClAn) and then reduced via dechlorination pathways. In the MEC-UASB coupled system, p-ClNB, p-ClAn removal efficiency and dechlorination efficiency reached 99.63±0.37%, 40.39±9.26% and 32.16±8.12%, respectively, which was significantly improved in comparison with the control UASB system. In addition, the coupled system could maintain appropriate pH and promote anaerobic sludge granulation to exert a positive effect on reductive transformation of p-ClNB. PCR-DGGE experiment and 454 pyrophosphate sequencing analysis indicated that applied voltage would significantly influence the succession of microbial community and promote oriented enrichment of the functional bacteria, which could be the underlying reasons for the improved performance. This study demonstrated that MEC-UASB coupled system had a promising application prospect to remove the recalcitrant pollutants effectively. PMID:27455127

  6. Reductive Transformation of p-chloronitrobenzene in the upflow anaerobic sludge blanket reactor coupled with microbial electrolysis cell: performance and microbial community.

    PubMed

    Xu, Xiangyang; Shao, Junjie; Li, Mengyan; Gao, Kaituo; Jin, Jie; Zhu, Liang

    2016-10-01

    A microbial electrolysis cell (MEC) combined with an upflow anaerobic sludge blanket (UASB) reactor was operated to degrade p-chloronitrobenzenes (p-ClNB) effectively. The results indicated that p-ClNB was transformed to p-chloroaniline (p-ClAn) and then reduced via dechlorination pathways. In the MEC-UASB coupled system, p-ClNB, p-ClAn removal efficiency and dechlorination efficiency reached 99.63±0.37%, 40.39±9.26% and 32.16±8.12%, respectively, which was significantly improved in comparison with the control UASB system. In addition, the coupled system could maintain appropriate pH and promote anaerobic sludge granulation to exert a positive effect on reductive transformation of p-ClNB. PCR-DGGE experiment and 454 pyrophosphate sequencing analysis indicated that applied voltage would significantly influence the succession of microbial community and promote oriented enrichment of the functional bacteria, which could be the underlying reasons for the improved performance. This study demonstrated that MEC-UASB coupled system had a promising application prospect to remove the recalcitrant pollutants effectively.

  7. Transformation and composition evolution of nanoscale zero valent iron (nZVI) synthesized by borohydride reduction in static water.

    PubMed

    Liu, Airong; Liu, Jing; Zhang, Wei-Xian

    2015-01-01

    The reactivity of nanoscale zero valent iron (nZVI) toward targeted contaminants is affected by the initial nZVI composition and the iron oxides formed during the aging process in aquatic systems. In this paper, the aging effects of nZVI, prepared using a borohydride reduction method in static water over a period of 90 days (d), are investigated. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy are used to characterize the corrosion products of nZVI. Results show that both the structures and the compositions of the corrosion products change with the process of aging. The products of nZVI aged for 5 d in static water media are mainly magnetite (Fe3O4) and maghemite (γ-Fe2O3), accompanied by lepidocrocite (γ-FeOOH). For products aged 10 d, XRD data show the formation of ferrihydrite and lepidocrocite. When aged up to 90 d, the products are mainly γ-FeOOH mixed with small amounts of Fe3O4 and γ-Fe2O3. Transmission electronic microscopy (TEM) images show that the core-shell structure forms into a hollow spherical shape after 30 d of aging in aquatic media. The results indicate first that iron ions in the Fe(0) core diffuse outwardly toward the shell, and hollowed-out iron oxide shells emerge. Then, the iron oxide shell collapses and becomes a flaky, acicular-shaped structure. The type and the crystal phase of second iron oxide minerals are vastly different at various aging times. This study helps to explain the patterns of occurrence of specific iron oxides in different natural conditions.

  8. Chemical Reactivity Probes for Assessing Abiotic Natural Attenuation by Reducing Iron Minerals.

    PubMed

    Fan, Dimin; Bradley, Miranda J; Hinkle, Adrian W; Johnson, Richard L; Tratnyek, Paul G

    2016-02-16

    Increasing recognition that abiotic natural attenuation (NA) of chlorinated solvents can be important has created demand for improved methods to characterize the redox properties of the aquifer materials that are responsible for abiotic NA. This study explores one promising approach: using chemical reactivity probes (CRPs) to characterize the thermodynamic and kinetic aspects of contaminant reduction by reducing iron minerals. Assays of thermodynamic CRPs were developed to determine the reduction potentials (ECRP) of suspended minerals by spectrophotometric determination of equilibrium CRP speciation and calculations using the Nernst equation. ECRP varied as expected with mineral type, mineral loading, and Fe(II) concentration. Comparison of ECRP with reduction potentials measured potentiometrically using a Pt electrode (EPt) showed that ECRP was 100-150 mV more negative than EPt. When EPt was measured with small additions of CRPs, the systematic difference between EPt and ECRP was eliminated, suggesting that these CRPs are effective mediators of electron transfer between mineral and electrode surfaces. Model contaminants (4-chloronitrobenzene, 2-chloroacetophenone, and carbon tetrachloride) were used as kinetic CRPs. The reduction rate constants of kinetic CRPs correlated well with the ECRP for mineral suspensions. Using the rate constants compiled from literature for contaminants and relative mineral reduction potentials based on ECRP measurements, qualitatively consistent trends were obtained, suggesting that CRP-based assays may be useful for estimating abiotic NA rates of contaminants in groundwater.

  9. Mechanisms of hydroxyl radical production from abiotic oxidation of pyrite under acidic conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Yuan, Songhu; Liao, Peng

    2016-01-01

    Hydroxyl radicals (radOH) produced from pyrite oxidation by O2 have been recognized, but mechanisms regarding the production under anoxic and oxic conditions are not well understood. In this study, the mechanisms of radOH production from pyrite oxidation under anoxic and oxic conditions were explored using benzoic acid (BA) as an radOH probe. Batch experiments were conducted at pH 2.6 to explore radOH production under anoxic and oxic conditions. The cumulative radOH concentrations produced under anoxic and oxic conditions increased linearly to 7.5 and 52.2 μM, respectively within 10 h at 10 g/L pyrite. Under anoxic conditions, radOH was produced from the oxidation of H2O on the sulfur-deficient sites on pyrite surface, showing an increased production with the increase of pyrite surface exposure due to oxidation. Under oxic conditions, the formation of radOH proceeds predominantly via the two-electron reduction of O2 on pyrite surface along with a minor contribution from the oxidation of H2O on surface sulfur-defects and the reactions of Fe2+/sulfur intermediates with O2. For both O2 reduction and H2O oxidation on the surface sulfur-defects, H2O2 was the predominant intermediate, which subsequently transformed to radOH through Fenton mechanism. The radOH produced had a significant impact on the transformation of contaminants in the environment. Anoxic pyrite suspensions oxidized 13.9% As(III) (C0 = 6.67 μM) and 17.6% sulfanilamide (C0 = 2.91 μM) within 10 h at pH 2.6 and 10 g/L pyrite, while oxic pyrite suspensions improved the oxidation percentages to 55.4% for As(III) and 51.9% for sulfanilamide. The ratios of anoxic to oxic oxidation are consistent with the relative contribution of surface sulfur-defects to radOH production. However, Fe2+ produced from pyrite oxidation competed with the contaminants for radOH, which is of particular significance with the increase of time in a static environment. We conclude that radOH can be produced from abiotic oxidation of

  10. Effect of iron oxide reductive dissolution on the transformation and immobilization of arsenic in soils: New insights from X-ray photoelectron and X-ray absorption spectroscopy.

    PubMed

    Fan, Jian-Xin; Wang, Yu-Jun; Liu, Cun; Wang, Li-Hua; Yang, Ke; Zhou, Dong-Mei; Li, Wei; Sparks, Donald L

    2014-08-30

    The geochemical behavior and speciation of arsenic (As) in paddy soils is strongly controlled by soil redox conditions and the sequestration by soil iron oxyhydroxides. Hence, the effects of iron oxide reductive dissolution on the adsorption, transformation and precipitation of As(III) and As(V) in soils were investigated using batch experiments and synchrotron based techniques to gain a deeper understanding at both macroscopic and microscopic scales. The results of batch sorption experiments revealed that the sorption capacity of As(V) on anoxic soil was much higher than that on control soil. Synchrotron based X-ray fluorescence (μ-XRF) mapping studies indicated that As was heterogeneously distributed and was mainly associated with iron in the soil. X-ray absorption near edge structure (XANES), micro-X-ray absorption near edge structure (μ-XANES) and X-ray photoelectron spectroscopy (XPS) analyses revealed that the primary speciation of As in the soil is As(V). These results further suggested that, when As(V) was introduced into the anoxic soil, the rapid coprecipitation of As(V) with ferric/ferrous ion prevented its reduction to As(III), and was the main mechanism controlling the immobilization of As. This research could improve the current understanding of soil As chemistry in paddy and wetland soils. PMID:25064258

  11. Biochar-Facilitated Microbial Reduction of Hematite.

    PubMed

    Xu, Shengnan; Adhikari, Dinesh; Huang, Rixiang; Zhang, Hua; Tang, Yuanzhi; Roden, Eric; Yang, Yu

    2016-03-01

    As an important component of soil organic matter (SOM), the transformation of pyrogenic carbon plays a critical role in the biogeochemical cycles of carbon and other redox-active elements such as iron (Fe). Herein, we studied the influences of wheat straw-derived biochars on the microbial reduction of 100 mM of hematite by the dissimilatory metal reducing bacteria Shewanella oneidensis MR-1 under anoxic conditions. The long-term microbial reduction extent and initial reduction rate of hematite were accelerated by more than 2-fold in the presence of 10 mg L(-1) biochar. Soluble leachate from 10 mg L(-1) biochar enhanced Fe(III) reduction to a similar degree. Microbially prereduced biochar leachate abiotically reduced hematite, consistent with the apparent electron shuttling capacity of biochar leachate. Electron paramagnetic resonance (EPR) analysis suggested that biochar leachate-associated semiquinone functional groups were likely involved in the redox reactions. In addition to electron shuttling effects, biochar particles sorbed 0.5-1.5 mM biogenic Fe(II) and thereby increased the long-term extent of hematite reduction by 1.4-1.7 fold. Our results suggest that Fe redox cycling may be strongly impacted by pyrogenic carbon in soils with relatively high content of indigenous pyrogenic carbon or substantial application of biochar. PMID:26836650

  12. Reduction of jarosite by Shewanella oneidensis MR-1 and secondary mineralization

    NASA Astrophysics Data System (ADS)

    Bingjie, Ouyang; Xiancai, Lu; Huan, Liu; Juan, Li; Tingting, Zhu; Xiangyu, Zhu; Jianjun, Lu; Rucheng, Wang

    2014-01-01

    Jarosite is a common mineral in a variety of environments formed by the oxidation of iron sulfide normally accompanying with the generation of acid mine drainage (AMD) in mining areas or acid rock drainages (ARD) in many localities. Decomposition of jarosite by dissimilatory iron reducing bacteria (DIRB) influences the mobility of many heavy metals generally accommodated in natural jarosite. This study examined the anaerobic reduction of synthesized jarosite by Shewanella oneidensis strain MR-1, a typical facultative bacteria. The release of ferrous and ferric ion, as well as sulfate and potassium, in the inoculated experimental group lasting 80 days is much higher than that in abiotic control groups. The detection of bicarbonate and acetate in experimental solution further confirms the mechanism of microbial reduction of jarosite, in which lactate acts as the electron donor. The produced ferrous iron stimulates the subsequent secondary mineralization, leading to precipitation and transformation of various iron-containing minerals. Green rust and goethite are the intermediate minerals of the microbial reduction process under anoxic conditions, and the end products include magnetite and siderite. In aerobic environments, goethite, magnetite and siderite were also detected, but the contents were relatively lower. While in abiotic experiments, only goethite has been detected as a product. Thus, the microbial reduction and subsequent mineral transformation can remarkably influence the geochemical cycling of iron and sulfur in supergene environments, as well as the mobility of heavy metals commonly accommodated in jarosite.

  13. Oxidation of Black Carbon by Biotic and Abiotic Processes

    SciTech Connect

    Cheng, Chih-hsin; Lehmann, Johannes C.; Thies, Janice E.; Burton, Sarah D.; Engelhard, Mark H.

    2006-11-01

    The objectives of this study were to quantify the relative importance of either biotic or abiotic oxidation of biomass-derived black carbon (BC) and to characterize the surface properties and charge characteristics of oxidized particulate BC. We incubated BC and BC-soil mixtures at two different temperatures (30 C and 70 C) with and without microbial inoculation, nutrient additions, or manure amendments for four months. Abiotic processes were more important for oxidation of BC than biotic processes during this short-term incubation, as inoculation with microorganisms did not change any of the measured parameters. Black C incubated at both 30 C and 70 C without microbial activity showed dramatic decreases in pH (in water) from 5.4 to 5.2 and 3.4, as well as increases in cation exchange capacity (CEC at pH 7) by 53% and 538% and in oxygen (O) contents by 4% and 38%, respectively. Boehm titration and Fourier transform infrared (FTIR) spectroscopy suggested that the formation of carboxylic functional groups was the reason for the enhanced CEC during oxidation. The analyses of BC surface properties by X-ray photoelectron spectroscopy (XPS) indicated that the oxidation of BC particles initiated on the surface. Incubation at 30 C only enhanced oxidation on particle surfaces, while oxidation during incubation at 70 C penetrated into the interior of particles. Such short-term oxidation of BC has great significance for the stability of BC in soils as well as for its effects on soil fertility and biogeochemistry.

  14. Cross-tolerance to biotic and abiotic stresses in plants: a focus on resistance to aphid infestation.

    PubMed

    Foyer, Christine H; Rasool, Brwa; Davey, Jack W; Hancock, Robert D

    2016-03-01

    Plants co-evolved with an enormous variety of microbial pathogens and insect herbivores under daily and seasonal variations in abiotic environmental conditions. Hence, plant cells display a high capacity to respond to diverse stresses through a flexible and finely balanced response network that involves components such as reduction-oxidation (redox) signalling pathways, stress hormones and growth regulators, as well as calcium and protein kinase cascades. Biotic and abiotic stress responses use common signals, pathways and triggers leading to cross-tolerance phenomena, whereby exposure to one type of stress can activate plant responses that facilitate tolerance to several different types of stress. While the acclimation mechanisms and adaptive responses that facilitate responses to single biotic and abiotic stresses have been extensively characterized, relatively little information is available on the dynamic aspects of combined biotic/abiotic stress response. In this review, we consider how the abiotic environment influences plant responses to attack by phloem-feeding aphids. Unravelling the signalling cascades that underpin cross-tolerance to biotic and abiotic stresses will allow the identification of new targets for increasing environmental resilience in crops.

  15. Cross-tolerance to biotic and abiotic stresses in plants: a focus on resistance to aphid infestation.

    PubMed

    Foyer, Christine H; Rasool, Brwa; Davey, Jack W; Hancock, Robert D

    2016-03-01

    Plants co-evolved with an enormous variety of microbial pathogens and insect herbivores under daily and seasonal variations in abiotic environmental conditions. Hence, plant cells display a high capacity to respond to diverse stresses through a flexible and finely balanced response network that involves components such as reduction-oxidation (redox) signalling pathways, stress hormones and growth regulators, as well as calcium and protein kinase cascades. Biotic and abiotic stress responses use common signals, pathways and triggers leading to cross-tolerance phenomena, whereby exposure to one type of stress can activate plant responses that facilitate tolerance to several different types of stress. While the acclimation mechanisms and adaptive responses that facilitate responses to single biotic and abiotic stresses have been extensively characterized, relatively little information is available on the dynamic aspects of combined biotic/abiotic stress response. In this review, we consider how the abiotic environment influences plant responses to attack by phloem-feeding aphids. Unravelling the signalling cascades that underpin cross-tolerance to biotic and abiotic stresses will allow the identification of new targets for increasing environmental resilience in crops. PMID:26936830

  16. (Bio)transformation of 2,4-dinitroanisole (DNAN) in soils.

    PubMed

    Olivares, Christopher I; Abrell, Leif; Khatiwada, Raju; Chorover, Jon; Sierra-Alvarez, Reyes; Field, Jim A

    2016-03-01

    Recent studies have begun to assess the environmental fate and toxicity of 2,4-dinitroanisole (DNAN), an insensitive munition compound of interest to defense agencies. Aerobic and anaerobic DNAN biotransformation in soils was evaluated in this study. Under aerobic conditions, there was little evidence of transformation; most observed removal was attributed to adsorption and subsequent slow chemical reactions. Under anaerobic conditions, DNAN was reductively (bio)transformed and the rate of the transformation was positively correlated with soil organic carbon (OC) up to a threshold of 2.07% OC. H2 addition enhanced the nitroreduction rate compared to endogenous treatments lacking H2. Heat-killed treatments provided rates similar to the endogenous treatment, suggesting that abiotic factors play a role in DNAN reduction. Ten (bio)transformation products were detected by high-resolution mass spectrometry. The proposed transformation pathway involves reduction of DNAN to aromatic amines, with putative reactive nitroso-intermediates coupling with the amines to form azo dimers. Secondary reactions include N-alkyl substitution, O-demethylation (sometimes followed by dehydroxylation), and removal of an N-containing group. Globally, our results suggest that the main reaction DNAN undergoes in anaerobic soils is nitroreduction to 2-methoxy-5-nitroaniline (MENA) and 2,4-diaminoanisole (DAAN), followed by anaerobic coupling reactions yielding azo-dimers. The dimers were subsequently subject to further (bio)transformations.

  17. Direct Transformation from Graphitic C3N4 to Nitrogen-Doped Graphene: An Efficient Metal-Free Electrocatalyst for Oxygen Reduction Reaction.

    PubMed

    Li, Jiajie; Zhang, Yumin; Zhang, Xinghong; Han, Jiecai; Wang, Yi; Gu, Lin; Zhang, Zhihua; Wang, Xianjie; Jian, Jikang; Xu, Ping; Song, Bo

    2015-09-01

    Carbon-based nanomaterials provide an attractive perspective to replace precious Pt-based electrocatalysts for oxygen reduction reaction (ORR) to enhance the practical applications of fuel cells. Herein, we demonstrate a one-pot direct transformation from graphitic-phase C3N4 (g-C3N4) to nitrogen-doped graphene. g-C3N4, containing only C and N elements, acts as a self-sacrificing template to construct the framework of nitrogen-doped graphene. The relative contents of graphitic and pyridinic-N can be well-tuned by the controlled annealing process. The resulting nitrogen-doped graphene materials show excellent electrocatalytic activity toward ORR, and much enhanced durability and tolerance to methanol in contrast to the conventional Pt/C electrocatalyst in alkaline medium. It is determined that a higher content of N does not necessarily lead to enhanced electrocatalytic activity; rather, at a relatively low N content and a high ratio of graphitic-N/pyridinic-N, the nitrogen-doped graphene obtained by annealing at 900 °C (NGA900) provides the most promising activity for ORR. This study may provide further useful insights on the nature of ORR catalysis of carbon-based materials.

  18. Oxylipins and plant abiotic stress resistance.

    PubMed

    Savchenko, T V; Zastrijnaja, O M; Klimov, V V

    2014-04-01

    Oxylipins are signaling molecules formed enzymatically or spontaneously from unsaturated fatty acids in all aerobic organisms. Oxylipins regulate growth, development, and responses to environmental stimuli of organisms. The oxylipin biosynthesis pathway in plants includes a few parallel branches named after first enzyme of the corresponding branch as allene oxide synthase, hydroperoxide lyase, divinyl ether synthase, peroxygenase, epoxy alcohol synthase, and others in which various biologically active metabolites are produced. Oxylipins can be formed non-enzymatically as a result of oxygenation of fatty acids by free radicals and reactive oxygen species. Spontaneously formed oxylipins are called phytoprostanes. The role of oxylipins in biotic stress responses has been described in many published works. The role of oxylipins in plant adaptation to abiotic stress conditions is less studied; there is also obvious lack of available data compilation and analysis in this area of research. In this work we analyze data on oxylipins functions in plant adaptation to abiotic stress conditions, such as wounding, suboptimal light and temperature, dehydration and osmotic stress, and effects of ozone and heavy metals. Modern research articles elucidating the molecular mechanisms of oxylipins action by the methods of biochemistry, molecular biology, and genetics are reviewed here. Data on the role of oxylipins in stress signal transduction, stress-inducible gene expression regulation, and interaction of these metabolites with other signal transduction pathways in cells are described. In this review the general oxylipin-mediated mechanisms that help plants to adjust to a broad spectrum of stress factors are considered, followed by analysis of more specific responses regulated by oxylipins only under certain stress conditions. New approaches to improvement of plant resistance to abiotic stresses based on the induction of oxylipin-mediated processes are discussed.

  19. Formation of Intermediate Carbon Phases in Hydrothermal Abiotic Organic Synthesis

    NASA Astrophysics Data System (ADS)

    Fu, Q.; Foustoukos, D. I.; Seyfried, W. E.

    2005-12-01

    With high dissolved concentrations of methane and other hydrocarbon species revealed at the Rainbow and Logatchev vent systems on the Mid-Atlantic Ridge, it is essential to better understand reaction pathways of abiotic organic synthesis in hydrothermal systems. Thus, we performed a hydrothermal carbon reduction experiment with 13C labeled carbon source at temperature and pressure conditions that approximate those inferred for ultramafic-hosted hydrothermal systems. Pentlandite, a common alteration mineral phase in subseafloor reaction zones, acted as a potential catalyst. Surface analysis techniques (XPS and ToF-SIMS) were used to characterize intermediate carbon species within this process. Time series dissolved H2 and H2S concentrations indicated thermodynamic equilibrium. Dissolved H2 and H2S concentrations of 13 and 2 mmol/kg, respectively, are approximately equivalent to measured values in Rainbow and Logatchev hydrothermal systems. Isotopically pure 13C methane and other alkane species (C2H6 and C3H8) were observed throughout the experiment, and attained steady state conditions. XPS analysis on mineral product surface indicated carbon enrichment on mineral surface following reaction. The majority of surface carbon involves species containing C-C or C-H bonds, such as alkyl or methylene groups. Alcohol and carboxyl groups in fewer amounts were also observed. ToF-SIMS analysis, which can offer isotope identification with high mass resolution, showed that most of these carbon species were 13C-labeled. Unlike gas phase Fischer-Tropsch synthesis, no carbide was observed on mineral product surface during the experiment. Therefore, a reaction pathway is proposed for formation of dissolved linear alkane species in hydrothermal abiotic organic synthesis, where oxygen-bearing organic compounds are expected to form in aqueous products by way of alcohol and carboxyl groups on mineral catalyst surface.

  20. Multiple abiotic stress responsive rice cyclophilin

    PubMed Central

    Trivedi, Dipesh Kumar; Ansari, Mohammad Wahid; Tuteja, Narendra

    2013-01-01

    Cyclophilins (CYP), a member of immunophillin group of proteins, are more often conserved in all genera including plants. Here, we report on the identification of a new cyclophilin gene OsCYP-25 (LOC_Os09 g39780) from rice which found to be upregulated in response to various abiotic stresses viz., salinity, cold, heat and drought. It has an ORF of 540 bp, encoding a protein of 179 amino acids, consisting of PPIase domain, which is highly conserved. The OsCYP-25 promoter analysis revealed that different cis-regulatory elements (e.g., MYBCORE, MYC, CBFHV, GT1GMSCAM4, DRECRTCOREAT, CCAATBOX1, WRKY71OS and WBOXATNPR1) are involved to mediate OsCYP-25 response under stress. We have also predicted interacting partners by STRING software. In interactome, protein partners includes WD domain containing protein, the 60S ribosome subunit biogenesis protein, the ribosomal protein L10, the DEAD-box helicase, the EIF-2α, YT521-B protein, the 60S ribosomal protein and the PPR repeat domain containing protein. The in silico analysis showed that OsCYP-25 interacts with different proteins involved in cell growth, differentiation, ribosome biogenesis, RNA metabolism, RNA editing, gene expression, signal transduction or stress response. These findings suggest that OsCYP-25 might perform an important function in mediating wide range of cellular response under multiple abiotic stresses. PMID:24265852

  1. Multiple abiotic stress tolerance in Vigna mungo is altered by overexpression of ALDRXV4 gene via reactive carbonyl detoxification.

    PubMed

    Singh, Preeti; Kumar, Deepak; Sarin, Neera Bhalla

    2016-06-01

    Vigna mungo (blackgram) is an important leguminous pulse crop, which is grown for its protein rich edible seeds. Drought and salinity are the major abiotic stresses which adversely affect the growth and productivity of crop plants including blackgram. The ALDRXV4 belongs to the aldo-keto reductase superfamily of enzymes that catalyze the reduction of carbonyl metabolites in the cells and plays an important role in the osmoprotection and detoxification of the reactive carbonyl species. In the present study, we developed transgenic plants of V. mungo using Agrobacterium mediated transformation. The transgene integration was confirmed by Southern blot analysis whereas the expression was confirmed by RT-PCR, Western blot and enzyme activity. The T1 generation transgenic plants displayed improved tolerance to various environmental stresses, including drought, salt, methyl viologen and H2O2 induced oxidative stress. The increased aldose reductase activity, higher sorbitol content and less accumulation of the toxic metabolite, methylglyoxal in the transgenic lines under non-stress and stress (drought and salinity) conditions resulted in increased protection through maintenance of better photosynthetic efficiency, higher relative water content and less photooxidative damage. The accumulation of reactive oxygen species was remarkably decreased in the transgenic lines as compared with the wild type plants. This study of engineering multiple stress tolerance in blackgram, is the first report to date and this strategy for trait improvement is proposed to provide a novel germplasm for blackgram production on marginal lands. PMID:26956699

  2. Multiple abiotic stress tolerance in Vigna mungo is altered by overexpression of ALDRXV4 gene via reactive carbonyl detoxification.

    PubMed

    Singh, Preeti; Kumar, Deepak; Sarin, Neera Bhalla

    2016-06-01

    Vigna mungo (blackgram) is an important leguminous pulse crop, which is grown for its protein rich edible seeds. Drought and salinity are the major abiotic stresses which adversely affect the growth and productivity of crop plants including blackgram. The ALDRXV4 belongs to the aldo-keto reductase superfamily of enzymes that catalyze the reduction of carbonyl metabolites in the cells and plays an important role in the osmoprotection and detoxification of the reactive carbonyl species. In the present study, we developed transgenic plants of V. mungo using Agrobacterium mediated transformation. The transgene integration was confirmed by Southern blot analysis whereas the expression was confirmed by RT-PCR, Western blot and enzyme activity. The T1 generation transgenic plants displayed improved tolerance to various environmental stresses, including drought, salt, methyl viologen and H2O2 induced oxidative stress. The increased aldose reductase activity, higher sorbitol content and less accumulation of the toxic metabolite, methylglyoxal in the transgenic lines under non-stress and stress (drought and salinity) conditions resulted in increased protection through maintenance of better photosynthetic efficiency, higher relative water content and less photooxidative damage. The accumulation of reactive oxygen species was remarkably decreased in the transgenic lines as compared with the wild type plants. This study of engineering multiple stress tolerance in blackgram, is the first report to date and this strategy for trait improvement is proposed to provide a novel germplasm for blackgram production on marginal lands.

  3. SERDP ER-1421 Abiotic and Biotic Mechanisms Controlling In Situ Remediation of NDMA: Final Report

    SciTech Connect

    Szecsody, James E.; McKinley, James P.; Crocker, Fiona H.; Breshears, Andrew T.; Devary, Brooks J.; Fredrickson, Herbert L.; Thompson, Karen T.

    2009-09-30

    This laboratory-scale project was initiated to investigate in situ abiotic/biotic mineralization of NDMA. Under iron-reducing conditions, aquifer sediments showed rapid abiotic NDMA degradation to dimethylamine (DMA), nitrate, formate, and finally, CO2. These are the first reported experiments of abiotic NDMA mineralization. The NDMA reactivity of these different iron phases showed that adsorbed ferrous iron was the dominant reactive phase that promoted NDMA reduction, and other ferrous phases present (siderite, iron sulfide, magnetite, structural ferrous iron in 2:1 clays) did not promote NDMA degradation. In contrast, oxic sediments that were biostimulated with propane promoted biomineralization of NDMA by a cometabolic monooxygenase enzyme process. Other monooxygenase enzyme processes were not stimulated with methane or toluene additions, and acetylene addition did not block mineralization. Although NDMA mineralization extent was the highest in oxic, biostimulated sediments (30 to 82%, compared to 10 to 26% for abiotic mineralization in reduced sediments), large 1-D column studies (high sediment/water ratio of aquifers) showed 5.6 times higher NDMA mineralization rates in reduced sediment (half-life 410 ± 147 h) than oxic biomineralization (half life 2293 ± 1866 h). Sequential reduced/oxic biostimulated sediment mineralization (half-life 3180 ± 1094 h) was also inefficient compared to reduced sediment. These promising laboratory-scale results for NDMA mineralization should be investigated at field scale. Future studies of NDMA remediation should focus on the comparison of this in situ abiotic NDMA mineralization (iron-reducing environments) to ex situ biomineralization, which has been shown successful in other studies.

  4. Sulfidogenesis Controls on Ferrihydrite Transformation and Repartitioning of Sorbed Arsenic

    NASA Astrophysics Data System (ADS)

    Kocar, B. D.; Fendorf, S.

    2007-12-01

    Iron (hydr)oxides are ubiquitous sorbents of arsenic (As) that undergo reductive dissolution and transformation upon reaction with dissolved sulfide. Here, we examine diverging pathways of solid phase iron (Fe) transformation during sulfate reduction in the presence of varying As loadings. Columns initially containing As(V)- ferrihydrite coated sand, inoculated with the sulfate reducing bacteria Desulfovibrio vulgaris (Hildenborough), were eluted with artificial groundwater containing sulfate and lactate. Additionally, abiotic batch reaction experiments were conducted to examine Fe secondary products rapidly formed during sulfidization of As-loaded ferrihydrite. Rapid and consistent sulfate reduction coupled with lactate oxidation is observed within column solids possessing low As(V) surface coverage (10% of the adsorption maximum). Column experiments illustrated that at high As(V) surface coverage (50% of the adsorption maximum), sulfate reduction and lactate oxidation are initially slow but gradually increase over time, and all As(V) is reduced to As(III) by the end of experimentation. The dominant Fe solid-phase transformation products at low As coverage include amorphous FeS within the zone of sulfate reduction (near the inlet of the column) and magnetite downstream where Fe(II)aq concentrations exceed 1 mM. Arsenic(V) is reduced to As(III) and displaced from the zone of sulfidogenesis and Fe(III)s depletion. At higher As coverage, green rust carbonate, as opposed to magnetite, is a dominant Fe solid phase product. Independent of loading, As is strongly associated with magnetite and residual ferrihydrite, while being excluded from green rust and iron sulfide. Abiotic batch reactor experiments illustrate that As is readily released from ferrihydrite during sulfidization, and that low As loadings yield initial Fe secondary products of lepidocrocite and FeS, while high loadings inhibit rapid secondary Fe mineral formation. Our observations illustrate that

  5. Stable carbon isotope analysis to distinguish biotic and abiotic degradation of 1,1,1-trichloroethane in groundwater sediments.

    PubMed

    Broholm, Mette M; Hunkeler, Daniel; Tuxen, Nina; Jeannottat, Simon; Scheutz, Charlotte

    2014-08-01

    The fate and treatability of 1,1,1-TCA by natural and enhanced reductive dechlorination was studied in laboratory microcosms. The study shows that compound-specific isotope analysis (CSIA) identified an alternative 1,1,1-TCA degradation pathway that cannot be explained by assuming biotic reductive dechlorination. In all biotic microcosms 1,1,1-TCA was degraded with no apparent increase in the biotic degradation product 1,1-DCA. 1,1,1-TCA degradation was documented by a clear enrichment in (13)C in all biotic microcosms, but not in the abiotic control, which suggests biotic or biotically mediated degradation. Biotic degradation by reductive dechlorination of 1,1-DCA to CA only occurred in bioaugmented microcosms and in donor stimulated microcosms with low initial 1,1,1-TCA or after significant decrease in 1,1,1-TCA concentration (after∼day 200). Hence, the primary degradation pathway for 1,1,1-TCA does not appear to be reductive dechlorination via 1,1-DCA. In the biotic microcosms, the degradation of 1,1,1-TCA occurred under iron and sulfate reducing conditions. Biotic reduction of iron and sulfate likely resulted in formation of FeS, which can abiotically degrade 1,1,1-TCA. Hence, abiotic degradation of 1,1,1-TCA mediated by biotic FeS formation constitute an explanation for the observed 1,1,1-TCA degradation. This is supported by a high 1,1,1-TCA (13)C enrichment factor consistent with abiotic degradation in biotic microcosms. 1,1-DCA carbon isotope field data suggest that this abiotic degradation of 1,1,1-TCA is a relevant process also at the field site. PMID:24559936

  6. Stable carbon isotope analysis to distinguish biotic and abiotic degradation of 1,1,1-trichloroethane in groundwater sediments.

    PubMed

    Broholm, Mette M; Hunkeler, Daniel; Tuxen, Nina; Jeannottat, Simon; Scheutz, Charlotte

    2014-08-01

    The fate and treatability of 1,1,1-TCA by natural and enhanced reductive dechlorination was studied in laboratory microcosms. The study shows that compound-specific isotope analysis (CSIA) identified an alternative 1,1,1-TCA degradation pathway that cannot be explained by assuming biotic reductive dechlorination. In all biotic microcosms 1,1,1-TCA was degraded with no apparent increase in the biotic degradation product 1,1-DCA. 1,1,1-TCA degradation was documented by a clear enrichment in (13)C in all biotic microcosms, but not in the abiotic control, which suggests biotic or biotically mediated degradation. Biotic degradation by reductive dechlorination of 1,1-DCA to CA only occurred in bioaugmented microcosms and in donor stimulated microcosms with low initial 1,1,1-TCA or after significant decrease in 1,1,1-TCA concentration (after∼day 200). Hence, the primary degradation pathway for 1,1,1-TCA does not appear to be reductive dechlorination via 1,1-DCA. In the biotic microcosms, the degradation of 1,1,1-TCA occurred under iron and sulfate reducing conditions. Biotic reduction of iron and sulfate likely resulted in formation of FeS, which can abiotically degrade 1,1,1-TCA. Hence, abiotic degradation of 1,1,1-TCA mediated by biotic FeS formation constitute an explanation for the observed 1,1,1-TCA degradation. This is supported by a high 1,1,1-TCA (13)C enrichment factor consistent with abiotic degradation in biotic microcosms. 1,1-DCA carbon isotope field data suggest that this abiotic degradation of 1,1,1-TCA is a relevant process also at the field site.

  7. Abiotic Methane Synthesis: Caveats and New Results

    NASA Astrophysics Data System (ADS)

    Zou, R.; Sharma, A.

    2005-12-01

    The role of mineral interaction with geochemical fluids under hydrothermal conditions has invoked models of geochemical synthesis of organic molecules at deep crustal conditions. Since Thomas Gold's (1992) hypothesis of the possibility of an abiotic organic synthesis, there have been several reports of hydrocarbon formation under high pressure and temperature conditions. Several previous experimental studies have recognized that small amounts of methane (and other light HC compounds) can be synthesized via catalysis by transition metals: Fe, Ni (Horita and Berndt, 1999 Science) and Cr (Foustavous and Seyfried, 2004 Science). In light of these pioneering experiments, an investigation of the feasibility of abiotic methane synthesis at higher pressure conditions in deep geological setting and the possible role of catalysis warrants a closer look. We conducted three sets of experiments in hydrothermal diamond anvil cell using FeO nanopowder, CaCO 3 and water at 300° - 600° C and 0.5 - 5 GPa : (a) with stainless steel gasket, (b) gold-lined gasket, and (c) gold-lined gasket with added Fe and Ni nanopowder. The reactions were monitored in-situ using micro-Raman spectroscopy with 532nm and 632nm lasers. The solids phases were characterized in-situ using synchrotron X-ray diffraction at CHESS-Cornell and quenched products with an electron microprobe. Interestingly, a variable amount of hydrocarbon was observed only in runs with stainless steel gasket and with Fe, Ni nanoparticles. Experiments with gold-lined reactors did not show any hydrocarbon formation. Added high resolution microscopy of the products and their textural relationship within the diamond cell with Raman spectroscopy data show that the hydrocarbon (methane and other light fractions) synthesis is a direct result of transition metal catalysis, rather than wustite - calcium carbonate reaction as recently reported by Scott et al (2004, PNAS). The author will further present new results highlighting abiotic

  8. The abiotic litter decomposition in the drylands

    NASA Astrophysics Data System (ADS)

    Lee, H.; Throop, H.; Rahn, T. A.

    2009-12-01

    The decomposition of litter is an important ecosystem function that controls carbon and nutrient cycling, which is well understood from the relationship between temperature and moisture. However, the decomposition in the arid and semiarid environments (hereafter drylands) is relatively poorly predicted due to several abiotic factors such as the effect of ultraviolet radiation and physical mixing of fallen litter with soil. The relative magnitude of these abiotic factors to ecosystem scale litter decomposition is still in debate. Here, we examine the effect of two major abiotic factors in the drylands litter decomposition by conducting a controlled laboratory study using plant litter and soil collected from Sonoran and Chihuahuan desert areas. The first part of the experiment focused on the effect of soil-litter mixing. We established a complete block design of three levels of soil and litter mixing (no mixing, light soil-litter mixing, and complete soil-litter mixing) in combination with three levels of soil moisture (1%, 2%, and 6% volumetric water content) using 2g of two most dominant species litter, grass and mesquite, and 50g of air-dried soils in 500ml mason jar and incubated them under 25C. We measured CO2 fluxes from these soil-litter incubations and harvested the soil and litter at 0, 1, 2, 4, 8, and 16 weeks and analyzed them of carbon and nitrogen content as well as the actual mass loss in the litter. The second part of the experiment focused on the effect of ultraviolet radiation. We established short-term litter incubation on a quartz chamber and used different temperature, moisture, and minerals to find the mechanism of photodegradation of litter. We measured CO2 fluxes from the litter incubation under ultraviolet radiation and also measured 13CO2 from these emissions. We were able to detect changes in the rate of carbon mineralization as a result of our treatments in the first week of soil-litter mixing experiment. The carbon mineralization rate was

  9. Generation of RNA in abiotic conditions.

    NASA Astrophysics Data System (ADS)

    di Mauro, Ernesto

    Generation of RNA in abiotic conditions. Ernesto Di Mauro Dipartimento di Genetica Bi-ologia Molecolare, Universit` "Sapienza" Roma, Italy. a At least four conditions must be satisfied for the spontaneous generation of (pre)-genetic poly-mers: 1) availability of precursors that are activated enough to spontaneously polymerize. Preliminary studies showed that (a) nucleic bases and acyclonucleosides can be synthesized from formamide H2NCOH by simply heating with prebiotically available mineral catalysts [last reviewed in (1)], and that b) nucleic bases can be phosphorylated in every possible posi-tion [2'; 3'; 5'; cyclic 2',3'; cyclic 3',5' (2)]. The higher stability of the cyclic forms allows their accumulation. 2) A polymerization mechanism. A reaction showing the formation of RNA polymers starting from prebiotically plausible precursors (3',5' cyclic GMP and 3', 5'cyclic AMP) was recently reported (3). Polymerization in these conditions is thermodynamically up-hill and an equilibrium is attained that limits the maximum length of the polymer produced to about 40 nucleotides for polyG and 100 nucleotides for polyA. 3) Ligation of the synthesized oligomers. If this type of reaction could occur according to a terminal-joining mechanism and could generate canonical 3',5' phosphodiester bonds, exponential growth would be obtained of the generated oligomers. This type of reaction has been reported (4) , limited to homogeneous polyA sequences and leading to the production of polyA dimers and tetramers. What is still missing are: 4) mechanisms that provide the proof of principle for the generation of sequence complexity. We will show evidence for two mechanisms providing this proof of principle for simple complementary sequences. Namely: abiotic sequence complementary-driven terminal ligation and sequence-complementary terminal growth. In conclusion: all the steps leading to the generation of RNA in abiotic conditions are satisfied. (1) R Saladino, C Crestini, F

  10. MICROSCALE METABOLIC, REDOX AND ABIOTIC REACTIONS IN HANFORD 300 AREA SUBSURFACE SEDIMENTS

    SciTech Connect

    Beyenal, Haluk; McLEan, Jeff; Majors, Paul; Fredrickson, Jim

    2013-11-14

    The Hanford 300 Area is a unique site due to periodic hydrologic influence of river water resulting in changes in groundwater elevation and flow direction. This area is also highly subject to uranium remobilization, the source of which is currently believed to be the region at the base of the vadose zone that is subject to period saturation due to the changes in the water levels in the Columbia River. We found that microbial processes and redox and abiotic reactions which operate at the microscale were critical to understanding factors controlling the macroscopic fate and transport of contaminants in the subsurface. The combined laboratory and field research showed how microscale conditions control uranium mobility and how biotic, abiotic and redox reactions relate to each other. Our findings extended the current knowledge to examine U(VI) reduction and immobilization using natural 300 Area communities as well as selected model organisms on redox-sensitive and redox-insensitive minerals. Using innovative techniques developed specifically to probe biogeochemical processes at the microscale, our research expanded our current understanding of the roles played by mineral surfaces, bacterial competition, and local biotic, abiotic and redox reaction rates on the reduction and immobilization of uranium.

  11. Biological and abiotic dechlorination of highly chlorinated dioxins in biphasic microcosms

    SciTech Connect

    Barkovskii, A.; Adriaens, P.

    1995-12-31

    A novel experimental approach to help increase the rates and extent of reductive dechlorination of polychlorinated dibenzo-p-dioxins (PCDD) is presented. Biphasic microcosms emulsions containing eluted microorganisms derived from historically contaminated Passaic River (New Jersey) sediments, and 4% (v/v) of decane, were spiked with mg/L of octaCDD. The microcosms were amended separately with three polyphenolic compounds--catechol, resorcinol, and 3,4-dihydroxybenzoate--to help improve electron transfer during reductive dechlorination. Abiotic controls containing phenolic compounds only, and pasteurized cells were monitored along with the active microcosms. Lesser-chlorinated congeners were observed in all treatments, including killed cells, indicating the potential not only for biological and abiotic, but also biogenic dechlorination mechanisms. After 3 months of incubation, tetraCDD isomers were produced in biological incubations only, and up to 30% of the spiked octaCDD was removed. Polyphenolic compounds first appear to transiently complex with the dioxins prior to further dechlorination, and did not increase the dechlorination rates over unamended cells. Whereas the 2,3,7,8-/1,4,6,9-substitution ratio of heptachlorinated congeners increased in all treatments, 2,3,7,8-substituted hexaCDDs congeners were identified mainly in active cell incubations. Further isomer-specific analysis may thus enable distinction between abiotic and biotic dechlorination processes in anaerobic sediments.

  12. Cell wall remodeling under abiotic stress

    PubMed Central

    Tenhaken, Raimund

    2015-01-01

    Plants exposed to abiotic stress respond to unfavorable conditions on multiple levels. One challenge under drought stress is to reduce shoot growth while maintaining root growth, a process requiring differential cell wall synthesis and remodeling. Key players in this process are the formation of reactive oxygen species (ROS) and peroxidases, which initially cross-link phenolic compounds and glycoproteins of the cell walls causing stiffening. The function of ROS shifts after having converted all the peroxidase substrates in the cell wall. If ROS-levels remain high during prolonged stress, OH°-radicals are formed which lead to polymer cleavage. In concert with xyloglucan modifying enzymes and expansins, the resulting cell wall loosening allows further growth of stressed organs. PMID:25709610

  13. Comparative study of biogenic and abiotic iron-containing materials

    NASA Astrophysics Data System (ADS)

    Cherkezova-Zheleva, Z.; Shopska, M.; Paneva, D.; Kovacheva, D.; Kadinov, G.; Mitov, I.

    2016-12-01

    Series of iron-based biogenic materials prepared by cultivation of Leptothrix group of bacteria in different feeding media ( Sphaerotilus-Leptothrix group of bacteria isolation medium, Adler, Lieske and silicon-iron-glucose-peptone) were studied. Control samples were obtained in the same conditions and procedures but the nutrition media were not infected with bacteria, i.e. they were sterile. Room and low temperature Mössbauer spectroscopy, powder X-ray diffraction (XRD), and infrared spectroscopy (IRS) were used to reveal the composition and physicochemical properties of biomass and respective control samples. Comparative analysis showed differences in their composition and dispersity of present phases. Sample composition included different ratio of nanodimensional iron oxyhydroxide and oxide phases. Relaxation phenomena such as superparamagnetism or collective magnetic excitation behaviour were registered for some of them. The experimental data showed that the biogenic materials were enriched in oxyhydroxides of high dispersion. Catalytic behaviour of a selected biomass and abiotic material were studied in the reaction of CO oxidation. In situ diffuse-reflectance (DR) IRS was used to monitor the phase transformations in the biomass and CO conversion.

  14. Carbon Isotope Fractionation In Biotic Vs. Abiotic Anaerobic Conditions

    NASA Astrophysics Data System (ADS)

    Gebrehiwet, T. A.

    2005-12-01

    Dissimilatory metal reducing bacteria (DMRB) are thought to play an important role in the biogeochemical cycling of Fe, and nutrient elements such as C and P, in the anaerobic subsurface. The consumption of organic carbon sources (including contaminants) by these bacteria can significantly fractionate substrate C isotopes, however the effects of solution composition, electron acceptor, or electron donor on C isotopic fractionation by DMRB is at present poorly quantified. We have conducted experiments to compare the effects of bicarbonate (δ13C = -3‰) and phosphate buffers on carbon isotope fractionation by Shewanella putrefaciens strain 200R. The effects of dissolved carbonate and phosphate on δ13C values of dissolved inorganic C evolved during microbial reduction of ferric citrate (δ 13Cinitial = -25‰) were examined using sodium lactate (δ13Cinitial = -25‰) as electron donor under strict anaerobic conditions at neutral pH and 30°C, under dark and (fluorescent) light conditions. Our results suggest that bicarbonate may enhance the rate of Fe(III) reduction by S. putrefaciens, in comparison with media containing phosphate buffer but no added bicarbonate. Compared with phosphate buffered experiments, the presence of dissolved bicarbonate also resulted in a greater degree of C isotopic fractionation (ɛ=2-3‰ and ɛ=5-7‰, respectively). The effect of light on microbial Fe(III) reduction was negligible, however sterile controls showed a minor but significant quantity of carbon dioxide production in liquid media, most likely from photochemical decomposition of citrate. The abiotic experiments also showed measurable carbon isotope fractionation between the carbon dioxide produced and the organic carbon substrate which will be discussed.

  15. ABIOTIC IN SITU TECHNOLOGIES FOR GROUNDWATER REMEDIATION CONFERENCE: PROCEEDINGS

    EPA Science Inventory

    The USEPA conference on Abiotic In Situ Technologies for Groundwater Remediation was held in Dallas, TX, 8/31-9/2/99. The goal of the meeting was to disseminate current information on abiotic in situ groundwater treatment echnologies. Although much information is being provided a...

  16. The Stable Isotope Fractionation of Abiotic Reactions: A Benchmark in the Detection of Life

    NASA Technical Reports Server (NTRS)

    Summers, David P.

    2003-01-01

    mil to as low as -60 % (potentially comparable to that which accompanies the biosynthesis of organic matter). We need to understand what kind of fractionations are observed with reactions under the non-reducing or mildly reducing conditions now thought to be present on the early Earth. While nitrogen is receiving increased attention as a tool for these kinds of analyses, almost nothing is known about the isotope fractionation that one would expect for abiotic sources of fixed/reduced nitrogen. This project will measure the fixation from a series of abiotic reactions that may have been present on the early Earth (and other terrestrial planets) and produced organic material that could have ended up in the rock record. The work will look at a number of reactions, under a non- reducing, or mildly reducing, atmosphere, covering sources of prebiotic organic C & N from shock heating, to photochemistry, to hydrothermal reactions. Some reactions that we plan to study are; Shock heating of a non-reducing atmosphere to produce CO and NO (in collaboration with Chris McKay), formation of formaldehyde (and related compounds) from COY the formation of ammonia from nitrogen oxides (ultimately from NO) by ferrous iron reduction, and the hydrothermal synthesis of compounds including the hydrocarboxylation/hydrocarbonylation reaction (in collaboration with George Cody), reactions of oxalate to form hydrocarbons and other oxygenated compounds and the formation of lipids from oxalic/formic acid (in collaboration with Tom McCollom), and reactions of carbon monoxide & carbon dioxide with N2, ammonia or nitritehitrate to form hydrogen cyanide, nitriles, ammonia/amines and nitrous

  17. Improved abiotic stress tolerance of bermudagrass by exogenous small molecules.

    PubMed

    Chan, Zhulong; Shi, Haitao

    2015-01-01

    As a widely used warm-season turfgrass in landscapes and golf courses, bermudagrass encounters multiple abiotic stresses during the growth and development. Physiology analysis indicated that abiotic stresses induced the accumulation of ROS and decline of photosynthesis, resulting in increased cell damage and inhibited growth. Proteomic and metabolomic approaches showed that antioxidant enzymes and osmoprotectant contents (sugar, sucrose, dehydrin, proline) were extensively changed under abiotic stress conditions. Exogenous application of small molecules, such as ABA, NO, CaCl2, H2S, polyamine and melatonin, could effectively alleviate damages caused by multiple abiotic stresses, including drought, salt, heat and cold. Based on high through-put RNA seq analysis, genes involved in ROS, transcription factors, hormones, and carbohydrate metabolisms were largely enriched. The data indicated that small molecules induced the accumulation of osmoprotectants and antioxidants, kept cell membrane integrity, increased photosynthesis and kept ion homeostasis, which protected bermudagrass from damages caused by abiotic stresses. PMID:25757363

  18. Abiotic stresses induce different localizations of anthocyanins in Arabidopsis

    PubMed Central

    Kovinich, Nik; Kayanja, Gilbert; Chanoca, Alexandra; Otegui, Marisa S; Grotewold, Erich

    2015-01-01

    Anthocyanins are induced in plants in response to abiotic stresses such as drought, high salinity, excess light, and cold, where they often correlate with enhanced stress tolerance. Numerous roles have been proposed for anthocyanins induced during abiotic stresses including functioning as ROS scavengers, photoprotectants, and stress signals. We have recently found different profiles of anthocyanins in Arabidopsis (Arabidopsis thaliana) plants exposed to different abiotic stresses, suggesting that not all anthocyanins have the same function. Here, we discuss these findings in the context of other studies and show that anthocyanins induced in Arabidopsis in response to various abiotic stresses have different localizations at the organ and tissue levels. These studies provide a basis to clarify the role of particular anthocyanin species during abiotic stress. PMID:26179363

  19. Identification and prediction of abiotic stress responsive transcription factors involved in abiotic stress signaling in soybean.

    PubMed

    Tran, Lam-Son Phan; Mochida, Keiichi

    2010-03-01

    Abiotic stresses such as extreme temperature, drought, high salinity, cold and waterlogging often result in significant losses to the yields of economically important crops such as soybean (Glycine max L.). Transcription factors (TFs) which bind to DNA through specific cis-regulatory sequences either activate or repress gene transcription have been reported to act as control switches in stress signaling. Recent completion of the soybean genomic sequence has open wide opportunities for large-scale identification and annotations of regulatory TFs in soybean for functional studies. Within the soybean genome, we identified 5,035 TF models which grouped into 61 families. Detailed annotations of soybean TF genes can be accessed at SoybeanTFDB (soybeantfdb.psc.riken.jp). Moreover, we have reported a new idea of high throughput prediction and selection of abiotic stress responsive TFs based on the existence of known stress responsive cis-element(s) located in the promoter regions of respective TFs and GO annotations. We, therefore, have provided a basic platform for the genome-wide analysis of regulatory mechanisms underlying abiotic stress responses and a reliable tool for prediction and selection of stress responsive TFs for further functional studies and genetic engineering.

  20. Transformation of nitroaromatic pesticides under sulfate-reducing condition (SRC)

    SciTech Connect

    Gui, L.; Bouwer, E.J.

    1996-10-01

    Nitroaromatic pesticides are widely used and have been detected in various environments. Little is known about their fate under SRC where H{sub 2}S levels are elevated due to microbial activity. Nitroaromatics are highly susceptible to biotic and abiotic transformation under SRC. The objectives of this research were to evaluate the importance of biotic and abiotic transformation processes and to determine factors affecting transformation rates under SRC. Trifluralin, dicloran, PCNB, and dinoseb were examined. Biotic and abiotic transformation of PCNB and trifluralin occurred rapidly, while dicloran could only be biotically transformed. Dinoseb transformation was affected by bacterial growth conditions (the presence of co-substrates and yeast extract) for biotic transformation and the availability of H{sub 2}S and trace metals for abiotic transformation. Trace metals served as electron mediators. All pesticide transformations followed pseudo-first order kinetics. The initial transformation step appeared to be nitroreduction. This information provides ways to manipulate environmental conditions to enhance anaerobic remediation of nitroaromatic pesticides.

  1. Regulation of Photosynthesis during Abiotic Stress-Induced Photoinhibition.

    PubMed

    Gururani, Mayank Anand; Venkatesh, Jelli; Tran, Lam Son Phan

    2015-09-01

    Plants as sessile organisms are continuously exposed to abiotic stress conditions that impose numerous detrimental effects and cause tremendous loss of yield. Abiotic stresses, including high sunlight, confer serious damage on the photosynthetic machinery of plants. Photosystem II (PSII) is one of the most susceptible components of the photosynthetic machinery that bears the brunt of abiotic stress. In addition to the generation of reactive oxygen species (ROS) by abiotic stress, ROS can also result from the absorption of excessive sunlight by the light-harvesting complex. ROS can damage the photosynthetic apparatus, particularly PSII, resulting in photoinhibition due to an imbalance in the photosynthetic redox signaling pathways and the inhibition of PSII repair. Designing plants with improved abiotic stress tolerance will require a comprehensive understanding of ROS signaling and the regulatory functions of various components, including protein kinases, transcription factors, and phytohormones, in the responses of photosynthetic machinery to abiotic stress. Bioenergetics approaches, such as chlorophyll a transient kinetics analysis, have facilitated our understanding of plant vitality and the assessment of PSII efficiency under adverse environmental conditions. This review discusses the current understanding and indicates potential areas of further studies on the regulation of the photosynthetic machinery under abiotic stress.

  2. Improved tolerance to various abiotic stresses in transgenic sweet potato (Ipomoea batatas) expressing spinach betaine aldehyde dehydrogenase.

    PubMed

    Fan, Weijuan; Zhang, Min; Zhang, Hongxia; Zhang, Peng

    2012-01-01

    Abiotic stresses are critical delimiters for the increased productivity and cultivation expansion of sweet potato (Ipomoea batatas), a root crop with worldwide importance. The increased production of glycine betaine (GB) improves plant tolerance to various abiotic stresses without strong phenotypic changes, providing a feasible approach to improve stable yield production under unfavorable conditions. The gene encoding betaine aldehyde dehydrogenase (BADH) is involved in the biosynthesis of GB in plants, and the accumulation of GB by the heterologous overexpression of BADH improves abiotic stress tolerance in plants. This study is to improve sweet potato, a GB accumulator, resistant to multiple abiotic stresses by promoted GB biosynthesis. A chloroplastic BADH gene from Spinacia oleracea (SoBADH) was introduced into the sweet potato cultivar Sushu-2 via Agrobacterium-mediated transformation. The overexpression of SoBADH in the transgenic sweet potato improved tolerance to various abiotic stresses, including salt, oxidative stress, and low temperature. The increased BADH activity and GB accumulation in the transgenic plant lines under normal and multiple environmental stresses resulted in increased protection against cell damage through the maintenance of cell membrane integrity, stronger photosynthetic activity, reduced reactive oxygen species (ROS) production, and induction or activation of ROS scavenging by the increased activity of free radical-scavenging enzymes. The increased proline accumulation and systemic upregulation of many ROS-scavenging genes in stress-treated transgenic plants also indicated that GB accumulation might stimulate the ROS-scavenging system and proline biosynthesis via an integrative mechanism. This study demonstrates that the enhancement of GB biosynthesis in sweet potato is an effective and feasible approach to improve its tolerance to multiple abiotic stresses without causing phenotypic defects. This strategy for trait improvement in

  3. Improved Tolerance to Various Abiotic Stresses in Transgenic Sweet Potato (Ipomoea batatas) Expressing Spinach Betaine Aldehyde Dehydrogenase

    PubMed Central

    Fan, Weijuan; Zhang, Min; Zhang, Hongxia; Zhang, Peng

    2012-01-01

    Abiotic stresses are critical delimiters for the increased productivity and cultivation expansion of sweet potato (Ipomoea batatas), a root crop with worldwide importance. The increased production of glycine betaine (GB) improves plant tolerance to various abiotic stresses without strong phenotypic changes, providing a feasible approach to improve stable yield production under unfavorable conditions. The gene encoding betaine aldehyde dehydrogenase (BADH) is involved in the biosynthesis of GB in plants, and the accumulation of GB by the heterologous overexpression of BADH improves abiotic stress tolerance in plants. This study is to improve sweet potato, a GB accumulator, resistant to multiple abiotic stresses by promoted GB biosynthesis. A chloroplastic BADH gene from Spinacia oleracea (SoBADH) was introduced into the sweet potato cultivar Sushu-2 via Agrobacterium-mediated transformation. The overexpression of SoBADH in the transgenic sweet potato improved tolerance to various abiotic stresses, including salt, oxidative stress, and low temperature. The increased BADH activity and GB accumulation in the transgenic plant lines under normal and multiple environmental stresses resulted in increased protection against cell damage through the maintenance of cell membrane integrity, stronger photosynthetic activity, reduced reactive oxygen species (ROS) production, and induction or activation of ROS scavenging by the increased activity of free radical-scavenging enzymes. The increased proline accumulation and systemic upregulation of many ROS-scavenging genes in stress-treated transgenic plants also indicated that GB accumulation might stimulate the ROS-scavenging system and proline biosynthesis via an integrative mechanism. This study demonstrates that the enhancement of GB biosynthesis in sweet potato is an effective and feasible approach to improve its tolerance to multiple abiotic stresses without causing phenotypic defects. This strategy for trait improvement in

  4. The abiotic degradation of soil organic matter to oxalic acid

    NASA Astrophysics Data System (ADS)

    Studenroth, Sabine; Huber, Stefan; Schöler, H. F.

    2010-05-01

    The abiotic degradation of soil organic matter to volatile organic compounds was studied intensely over the last years (Keppler et al., 2000; Huber et al., 2009). It was shown that soil organic matter is oxidised due to the presence of iron (III), hydrogen peroxide and chloride and thereby produces diverse alkyl halides, which are emitted into the atmosphere. The formation of polar halogenated compounds like chlorinated acetic acids which are relevant toxic environmental substances was also found in soils and sediments (Kilian et al., 2002). The investigation of the formation of other polar halogenated and non-halogenated compounds like diverse mono- and dicarboxylic acids is going to attain more and more importance. Due to its high acidity oxalic acid might have impacts on the environment e.g., nutrient leaching, plant diseases and negative influence on microbial growth. In this study, the abiotic formation of oxalic acid in soil is examined. For a better understanding of natural degradation processes mechanistic studies were conducted using the model compound catechol as representative for structural elements of the humic substances and its reaction with iron (III) and hydrogen peroxide. Iron is one of the most abundant elements on earth and hydrogen peroxide is produced by bacteria or through incomplete reduction of oxygen. To find suitable parameters for an optimal reaction and a qualitative and quantitative analysis method the following reaction parameters are varied: concentration of iron (III) and hydrogen peroxide, time dependence, pH-value and influence of chloride. Analysis of oxalic acid was performed employing an ion chromatograph equipped with a conductivity detector. The time dependent reaction shows a relatively fast formation of oxalic acid, the optimum yield is achieved after 60 minutes. Compared to the concentration of catechol an excess of hydrogen peroxide as well as a low concentration of iron (III) are required. In absence of chloride the

  5. Polyamines and abiotic stress tolerance in plants.

    PubMed

    Gill, Sarvajeet Singh; Tuteja, Narendra

    2010-01-01

    Environmental stresses including climate change, especially global warming, are severely affecting plant growth and productivity worldwide. It has been estimated that two-thirds of the yield potential of major crops are routinely lost due to the unfavorable environmental factors. On the other hand, the world population is estimated to reach about 10 billion by 2050, which will witness serious food shortages. Therefore, crops with enhanced vigour and high tolerance to various environmental factors should be developed to feed the increasing world population. Maintaining crop yields under adverse environmental stresses is probably the major challenge facing modern agriculture where polyamines can play important role. Polyamines (PAs)(putrescine, spermidine and spermine) are group of phytohormone-like aliphatic amine natural compounds with aliphatic nitrogen structure and present in almost all living organisms including plants. Evidences showed that polyamines are involved in many physiological processes, such as cell growth and development and respond to stress tolerance to various environmental factors. In many cases the relationship of plant stress tolerance was noted with the production of conjugated and bound polyamines as well as stimulation of polyamine oxidation. Therefore, genetic manipulation of crop plants with genes encoding enzymes of polyamine biosynthetic pathways may provide better stress tolerance to crop plants. Furthermore, the exogenous application of PAs is also another option for increasing the stress tolerance potential in plants. Here, we have described the synthesis and role of various polyamines in abiotic stress tolerance in plants.

  6. Polyamines and abiotic stress tolerance in plants

    PubMed Central

    Gill, Sarvajeet Singh

    2010-01-01

    Environmental stresses including climate change, especially global warming, are severely affecting plant growth and productivity worldwide. It has been estimated that two-thirds of the yield potential of major crops are routinely lost due to the unfavorable environmental factors. On the other hand, the world population is estimated to reach about 10 billion by 2050, which will witness serious food shortages. Therefore, crops with enhanced vigour and high tolerance to various environmental factors should be developed to feed the increasing world population. Maintaining crop yields under adverse environmental stresses is probably the major challenge facing modern agriculture where polyamines can play important role. Polyamines (PAs)(putrescine, spermidine and spermine) are group of phytohormone-like aliphatic amine natural compounds with aliphatic nitrogen structure and present in almost all living organisms including plants. Evidences showed that polyamines are involved in many physiological processes, such as cell growth and development and respond to stress tolerance to various environmental factors. In many cases the relationship of plant stress tolerance was noted with the production of conjugated and bound polyamines as well as stimulation of polyamine oxidation. Therefore, genetic manipulation of crop plants with genes encoding enzymes of polyamine biosynthetic pathways may provide better stress tolerance to crop plants. Furthermore, the exogenous application of PAs is also another option for increasing the stress tolerance potential in plants. Here, we have described the synthesis and role of various polyamines in abiotic stress tolerance in plants. PMID:20592804

  7. Phenotyping for abiotic stress tolerance in maize.

    PubMed

    Masuka, Benhilda; Araus, Jose Luis; Das, Biswanath; Sonder, Kai; Cairns, Jill E

    2012-04-01

    The ability to quickly develop germplasm having tolerance to several complex polygenic inherited abiotic and biotic stresses combined is critical to the resilience of cropping systems in the face of climate change. Molecular breeding offers the tools to accelerate cereal breeding; however, suitable phenotyping protocols are essential to ensure that the much-anticipated benefits of molecular breeding can be realized. To facilitate the full potential of molecular tools, greater emphasis needs to be given to reducing the within-experimental site variability, application of stress and characterization of the environment and appropriate phenotyping tools. Yield is a function of many processes throughout the plant cycle, and thus integrative traits that encompass crop performance over time or organization level (i.e. canopy level) will provide a better alternative to instantaneous measurements which provide only a snapshot of a given plant process. Many new phenotyping tools based on remote sensing are now available including non-destructive measurements of growth-related parameters based on spectral reflectance and infrared thermometry to estimate plant water status. Here we describe key field phenotyping protocols for maize with emphasis on tolerance to drought and low nitrogen.

  8. Abiotic uptake of gases by organic soils

    NASA Astrophysics Data System (ADS)

    Smagin, A. V.

    2007-12-01

    Methodological and experimental studies of the abiotic uptake of gaseous substances by organic soils were performed. The static adsorption method of closed vessels for assessing the interaction of gases with the solid and liquid soil phases and the dynamic method of determining the sorption isotherms of gases by soils were analyzed. The theoretical substantiation of the methods and their practical implementations on the basis of a PGA-7 portable gas analyzer (Russia) were considered. Good agreement between the equilibrium sorption isotherms of the gases and the Langmuir model was revealed; for the real ranges of natural gas concentrations, this model can be reduced to the linear Henry equation. The limit values of the gas sorption (Langmuir monolayer capacity) are typical for dry samples; they vary from 670 4000 g/m3 for methane and oxygen to 20 000 25 000 g/m3 for carbon dioxide. The linear distribution coefficients of gases between the solid and gas phases of organic soils (Henry constants) are 8 18 units for poorly sorbed gases (O2, CH4) and 40 60 units for CO2. The kinetics of the chemicophysical uptake of gases by the soil studied is linear in character and obeys the relaxation kinetic model of the first order with the corresponding relaxation constants, which vary from 1 h -1 in wet samples to 10 h -1 in dry samples.

  9. Chemical Priming of Plants Against Multiple Abiotic Stresses: Mission Possible?

    PubMed

    Savvides, Andreas; Ali, Shawkat; Tester, Mark; Fotopoulos, Vasileios

    2016-04-01

    Crop plants are subjected to multiple abiotic stresses during their lifespan that greatly reduce productivity and threaten global food security. Recent research suggests that plants can be primed by chemical compounds to better tolerate different abiotic stresses. Chemical priming is a promising field in plant stress physiology and crop stress management. We review here promising chemical agents such as sodium nitroprusside, hydrogen peroxide, sodium hydrosulfide, melatonin, and polyamines that can potentially confer enhanced tolerance when plants are exposed to multiple abiotic stresses. The challenges and opportunities of chemical priming are addressed, with the aim to boost future research towards effective application in crop stress management.

  10. Recent Molecular Advances on Downstream Plant Responses to Abiotic Stress

    PubMed Central

    dos Reis, Sávio Pinho; Lima, Aline Medeiros; de Souza, Cláudia Regina Batista

    2012-01-01

    Abiotic stresses such as extremes of temperature and pH, high salinity and drought, comprise some of the major factors causing extensive losses to crop production worldwide. Understanding how plants respond and adapt at cellular and molecular levels to continuous environmental changes is a pre-requisite for the generation of resistant or tolerant plants to abiotic stresses. In this review we aimed to present the recent advances on mechanisms of downstream plant responses to abiotic stresses and the use of stress-related genes in the development of genetically engineered crops. PMID:22942725

  11. Chemical behavior of phthalates under abiotic conditions in landfills.

    PubMed

    Huang, Jingyu; Nkrumah, Philip N; Li, Yi; Appiah-Sefah, Gloria

    2013-01-01

    The phthalates comprise a family of phthalic acid esters that are used primarily as plasticizers in polymeric materials to impart flexibility during the manufacturing process and to the end product. It is estimated that the annual worldwide production of phthalate esters exceeds five million tons. Plasticizers are one of the most prominent classes of chemicals, but unfortunately, they possess endocrine-disrupting chemical properties. As endocrine-disrupting chemicals, plasticizers have produced adverse developmental and reproductive effects in mammalian animal models.Phthalates are easily transported into the environment during manufacture, disposal,and leaching from plastic materials, because they are not covalently bound to the plastics of which they are a component. Because of their fugitive nature and widespread use, the phthalates are commonly detected in air, water, sediment/soil, and biota, including human tissue. Large amounts of phthalic acid esters are often leached from the plastics that are dumped at municipal landfills.Phthalate esters undergo chemical changes when released into the environment.The primary processes by which they are transformed include hydrolysis, photolysis,and biodegradation. It is noteworthy that all of these degradation processes are greatly influenced by the local physical and chemical conditions. Hence, in the present review, we have sought to ascertain from the literature how the phthalate esters undergo transformation when they are released into lower landfill layers.Within the upper landfill layers, biodegradation prevails as the major degradation mechanism by which the phthalates are dissipated. Generally, biodegradation pathways for the phthalates consist of primary biodegradation from phthalate diesters to phthalate monoesters, then to phthalic acid, and ultimately biodegradation of phthalic acid to form C02 and/or CH4• We have noted that the phthalate esters are also degraded through abiotic means,which proceeds via

  12. Comparisons between abiotic nitration and biotransformation reactions of phenolic micropollutants in activated sludge.

    PubMed

    Jewell, Kevin S; Wick, Arne; Ternes, Thomas A

    2014-01-01

    The transformation of selected phenolic substances was investigated during biological wastewater treatment. A main emphasis was put on the relevance of abiotic processes leading to toxic nitrophenolic transformation products (TPs). Due to their environmental relevance, the antiseptic ortho-phenylphenol (OPP), the plastics additive bisphenol A (BPA) and the psychoactive drug dextrorphan have been studied. Batch experiments confirmed that nitro- and nitroso-phenolic TPs can be formed under acidic conditions when nitrite is present. HNO2, N2O3 and NO and NO2 radicals are likely involved in the abiotic process. It was found that the process was promoted by the freezing of water samples, since this can lead to an unexpected pH drop. However, under conditions present at wastewater treatment plants (neutral pH, low nitrite concentrations), the formation of appreciable concentrations is rather unlikely through this process, since HNO2 concentrations are extremely low and NO and NO2 radicals will also react with other wastewater constituents. Thus, the transformation of phenolic substances such as OPP and BPA is mainly caused by biotic transformation. In addition to hydroxylation as a common reaction under aerobic conditions, the formation of sulfate conjugates was detected with the original compounds as well as with nitrophenolic TPs. Therefore, even when nitro-phenolic substances are formed it is likely that they are further transformed to sulfate conjugates. In raw wastewater and WWTP effluent nitrated BPA and NO2-dextrorphan were not detected. Only nitro-OPP was found in the influent of a WWTP with 2.3 ng/L, but it was not identified in the WWTP effluents. The concentrations of dextrorphan increased slightly during WWTP passage, possibly due to the cleavage of the glucuronide-conjugate, its human metabolite form, or demethylation of the prodrug dextromethorphan. PMID:24238259

  13. Comparisons between abiotic nitration and biotransformation reactions of phenolic micropollutants in activated sludge.

    PubMed

    Jewell, Kevin S; Wick, Arne; Ternes, Thomas A

    2014-01-01

    The transformation of selected phenolic substances was investigated during biological wastewater treatment. A main emphasis was put on the relevance of abiotic processes leading to toxic nitrophenolic transformation products (TPs). Due to their environmental relevance, the antiseptic ortho-phenylphenol (OPP), the plastics additive bisphenol A (BPA) and the psychoactive drug dextrorphan have been studied. Batch experiments confirmed that nitro- and nitroso-phenolic TPs can be formed under acidic conditions when nitrite is present. HNO2, N2O3 and NO and NO2 radicals are likely involved in the abiotic process. It was found that the process was promoted by the freezing of water samples, since this can lead to an unexpected pH drop. However, under conditions present at wastewater treatment plants (neutral pH, low nitrite concentrations), the formation of appreciable concentrations is rather unlikely through this process, since HNO2 concentrations are extremely low and NO and NO2 radicals will also react with other wastewater constituents. Thus, the transformation of phenolic substances such as OPP and BPA is mainly caused by biotic transformation. In addition to hydroxylation as a common reaction under aerobic conditions, the formation of sulfate conjugates was detected with the original compounds as well as with nitrophenolic TPs. Therefore, even when nitro-phenolic substances are formed it is likely that they are further transformed to sulfate conjugates. In raw wastewater and WWTP effluent nitrated BPA and NO2-dextrorphan were not detected. Only nitro-OPP was found in the influent of a WWTP with 2.3 ng/L, but it was not identified in the WWTP effluents. The concentrations of dextrorphan increased slightly during WWTP passage, possibly due to the cleavage of the glucuronide-conjugate, its human metabolite form, or demethylation of the prodrug dextromethorphan.

  14. Olivine Weathering: Abiotic Versus Biotic Processes as Possible Biosignatures

    NASA Technical Reports Server (NTRS)

    Longazo, T. G.; Wentworth, S. J.; McKay, D. S.; Southam, G.; Clemett, S. J.

    2001-01-01

    A preliminary study to determine how abiotic versus biotic processes affect the weathering of olivine crystals. Perhaps the differences between these weathering processes could be used as biosignatures. Additional information is contained in the original extended abstract.

  15. Circadian regulation of abiotic stress tolerance in plants.

    PubMed

    Grundy, Jack; Stoker, Claire; Carré, Isabelle A

    2015-01-01

    Extremes of temperatures, drought and salinity cause widespread crop losses throughout the world and impose severe limitations on the amount of land that can be used for agricultural purposes. Hence, there is an urgent need to develop crops that perform better under such abiotic stress conditions. Here, we discuss intriguing, recent evidence that circadian clock contributes to plants' ability to tolerate different types of environmental stress, and to acclimate to them. The clock controls expression of a large fraction of abiotic stress-responsive genes, as well as biosynthesis and signaling downstream of stress response hormones. Conversely, abiotic stress results in altered expression and differential splicing of the clock genes, leading to altered oscillations of downstream stress-response pathways. We propose a range of mechanisms by which this intimate coupling between the circadian clock and environmental stress-response pathways may contribute to plant growth and survival under abiotic stress.

  16. Roles of melatonin in abiotic stress resistance in plants.

    PubMed

    Zhang, Na; Sun, Qianqian; Zhang, Haijun; Cao, Yunyun; Weeda, Sarah; Ren, Shuxin; Guo, Yang-Dong

    2015-02-01

    In recent years melatonin has emerged as a research highlight in plant studies. Melatonin has different functions in many aspects of plant growth and development. The most frequently mentioned functions of melatonin are related to abiotic stresses such as drought, radiation, extreme temperature, and chemical stresses. This review mainly focuses on the regulatory effects of melatonin when plants face harsh environmental conditions. Evidence indicates that environmental stress can increase the level of endogenous melatonin in plants. Overexpression of the melatonin biosynthetic genes elevates melatonin levels in transgenic plants. The transgenic plants show enhanced tolerance to abiotic stresses. Exogenously applied melatonin can also improve the ability of plants to tolerate abiotic stresses. The mechanisms by which melatonin alleviates abiotic stresses are discussed.

  17. Circadian regulation of abiotic stress tolerance in plants

    PubMed Central

    Grundy, Jack; Stoker, Claire; Carré, Isabelle A.

    2015-01-01

    Extremes of temperatures, drought and salinity cause widespread crop losses throughout the world and impose severe limitations on the amount of land that can be used for agricultural purposes. Hence, there is an urgent need to develop crops that perform better under such abiotic stress conditions. Here, we discuss intriguing, recent evidence that circadian clock contributes to plants’ ability to tolerate different types of environmental stress, and to acclimate to them. The clock controls expression of a large fraction of abiotic stress-responsive genes, as well as biosynthesis and signaling downstream of stress response hormones. Conversely, abiotic stress results in altered expression and differential splicing of the clock genes, leading to altered oscillations of downstream stress-response pathways. We propose a range of mechanisms by which this intimate coupling between the circadian clock and environmental stress-response pathways may contribute to plant growth and survival under abiotic stress. PMID:26379680

  18. Comparison of biotic and abiotic treatment approaches for co-mingled perchlorate, nitrate, and nitramine explosives in groundwater

    NASA Astrophysics Data System (ADS)

    Schaefer, C. E.; Fuller, M. E.; Condee, C. W.; Lowey, J. M.; Hatzinger, P. B.

    2007-01-01

    Biological and abiotic approaches for treating co-mingled perchlorate, nitrate, and nitramine explosives in groundwater were compared in microcosm and column studies. In microcosms, microscale zero-valent iron (mZVI), nanoscale zero-valent iron (nZVI), and nickel catalyzed the reduction of RDX and HMX from initial concentrations of 9 and 1 mg/L, respectively, to below detection (0.02 mg/L), within 2 h. The mZVI and nZVI also degraded nitrate (3 mg/L) to below 0.4 mg/L, but none of the metal catalysts were observed to appreciably reduce perchlorate (˜ 5 mg/L) in microcosms. Perchlorate losses were observed after approximately 2 months in columns of aquifer solids treated with mZVI, but this decline appears to be the result of biodegradation rather than abiotic reduction. An emulsified vegetable oil substrate was observed to effectively promote the biological reduction of nitrate, RDX and perchlorate in microcosms, and all four target contaminants in the flow-through columns. Nitrate and perchlorate were biodegraded most rapidly, followed by RDX and then HMX, although the rates of biological reduction for the nitramine explosives were appreciably slower than observed for mZVI or nickel. A model was developed to compare contaminant degradation mechanisms and rates between the biotic and abiotic treatments.

  19. Comparison of biotic and abiotic treatment approaches for co-mingled perchlorate, nitrate, and nitramine explosives in groundwater.

    PubMed

    Schaefer, C E; Fuller, M E; Condee, C W; Lowey, J M; Hatzinger, P B

    2007-01-30

    Biological and abiotic approaches for treating co-mingled perchlorate, nitrate, and nitramine explosives in groundwater were compared in microcosm and column studies. In microcosms, microscale zero-valent iron (mZVI), nanoscale zero-valent iron (nZVI), and nickel catalyzed the reduction of RDX and HMX from initial concentrations of 9 and 1 mg/L, respectively, to below detection (0.02 mg/L), within 2 h. The mZVI and nZVI also degraded nitrate (3 mg/L) to below 0.4 mg/L, but none of the metal catalysts were observed to appreciably reduce perchlorate ( approximately 5 mg/L) in microcosms. Perchlorate losses were observed after approximately 2 months in columns of aquifer solids treated with mZVI, but this decline appears to be the result of biodegradation rather than abiotic reduction. An emulsified vegetable oil substrate was observed to effectively promote the biological reduction of nitrate, RDX and perchlorate in microcosms, and all four target contaminants in the flow-through columns. Nitrate and perchlorate were biodegraded most rapidly, followed by RDX and then HMX, although the rates of biological reduction for the nitramine explosives were appreciably slower than observed for mZVI or nickel. A model was developed to compare contaminant degradation mechanisms and rates between the biotic and abiotic treatments. PMID:17055109

  20. Abiotic production of iodine molecules in irradiated ice

    NASA Astrophysics Data System (ADS)

    Choi, Wonyong; Kim, Kitae; Yabushita, Akihiro

    2015-04-01

    Reactive halogen species play an important role in Earth's environmental systems. Iodine compounds are related to ozone depletion event (ODE) during Antarctic spring, formation of CCN (cloud condensation nuclei), and controlling the atmospheric oxidizing capacity. However, the processes and mechanisms for abiotic formation of iodine compounds in polar region are still unclear. Although the chemical reactions taking place in ice are greatly different from those in aquatic environment, reaction processes of halogens in frozen condition have rarely studied compared to those in water. In this study, we investigated iodide oxidation to form triiodide (I3-) in ice phase under UV irradiation ( λ > 300 nm) and dark condition. The production of I3- through iodide oxidation, which is negligible in aqueous solution, was significantly accelerated in ice phase even in the absence of UV irradiation. The following release of gaseous iodine molecule (I2) to the atmosphere was also monitored by cavity ring-down spectroscopy (CRDS). We speculate that the markedly enhanced iodide oxidation in polycrystalline ice is due to the freeze concentration of iodides, protons, and dissolved oxygen in the ice crystal grain boundaries. The experiments conducted under ambient solar radiation of the Antarctic region (King George Island, 62°13'S 58°47'W, sea level) also confirmed that the generation of I3- via iodide oxidation process is enhanced when iodide is trapped in ice. The observed intrinsic oxidative transformation of iodide to generate I3-(aq) and I2(g) in frozen environment suggests a previously unknown pathway for the substantial release of reactive iodine species to the atmosphere.

  1. Function of S-nitrosoglutathione reductase (GSNOR) in plant development and under biotic/abiotic stress

    PubMed Central

    Leterrier, Marina; Chaki, Mounira; Airaki, Morad; Valderrama, Raquel; Palma, José M; Barroso, Juan B

    2011-01-01

    During the last decade, it was established that the class III alcohol dehydrogenase (ADH3) enzyme, also known as glutathione-dependent formaldehyde dehydrogenase (FALDH; EC 1.2.1.1), catalyzes the NADH-dependent reduction of S-nitrosoglutathione (GSNO) and therefore was also designated as GSNO reductase. This finding has opened new aspects in the metabolism of nitric oxide (NO) and NO-derived molecules where GSNO is a key component. In this article, current knowledge of the involvement and potential function of this enzyme during plant development and under biotic/abiotic stress is briefly reviewed. PMID:21543898

  2. Detection of Abiotic Methane in Terrestrial Continental Hydrothermal Systems: Implications for Methane on Mars

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Niles, Paul B.; Gibson, Everett K., Jr.; Romanek, Christopher S.; Zhang, Chuanlun L.; Bissada, Kadry K.

    2008-01-01

    The recent detection of methane in the Martian atmosphere and the possibility that its origin could be attributed to biological activity, have highlighted the importance of understanding the mechanisms of methane formation and its usefulness as a biomarker. Much debate has centered on the source of the methane in hydrothermal fluids, whether it is formed biologically by microorganisms, diagenetically through the decomposition of sedimentary organic matter, or inorganically via reduction of CO2 at high temperatures. Ongoing research has now shown that much of the methane present in sea-floor hydrothermal systems is probably formed through inorganic CO2 reduction processes at very high temperatures (greater than 400 C). Experimental results have indicated that methane might form inorganically at temperatures lower still, however these results remain controversial. Currently, methane in continental hydrothermal systems is thought to be formed mainly through the breakdown of sedimentary organic matter and carbon isotope equilibrium between CO2 and CH4 is thought to be rarely present if at all. Based on isotopic measurements of CO2 and CH4 in two continental hydrothermal systems, we suggest that carbon isotope equilibration exists at temperatures as low as 155 C. This would indicate that methane is forming through abiotic CO2 reduction at lower temperatures than previously thought and could bolster arguments for an abiotic origin of the methane detected in the martian atmosphere.

  3. Tracing Abiotic Redox Reaction Pathways From Changes in Loess Magnetism

    NASA Astrophysics Data System (ADS)

    Lagroix, F.; Guyodo, Y. J.

    2009-12-01

    Loess magnetism has thrived over the last thirty years and has produced valuable paleoclimate records and provided many insights into past climate on continental surfaces. One major hurdle remaining is the quantification of loess magnetism to climate or environment connection(s). Previous studies by others have revealed a relationship in top soils developing over loess in China, the Russian Steppe and the Midwest US between the enhanced magnetism, with respect to the underlying parent loess, and present day rainfall. However from one area to another the relationship differs and therefore whether the relationship observed in for the topsoil at a given site holds for the underlying paleosols is uncertain and difficult to verify. Our efforts are focused here on tracing the abiotic redox reaction pathways of natural samples of parent loess and of its overlying topsoil and underlying paleosol from changes in their magnetic behavior at low-temperature. By forcing the natural samples to their limits, i.e., most oxidized and most reduced states, under controlled laboratory conditions, our goal is to determine the range of alteration and its impact on the bulk magnetic properties. Moreover, by cycling from one end-member state to the other, the pathway of alteration is traced and whether this pathway is reversible or hysteretic is revealed. Our approach is voluntarily simplistic, involving a limited number of variables. Experiments are all conducted at 250°C and in air for oxidizing experiments or a mixture of carbon monoxide (20 %) and carbon dioxide (80 %) for reduction experiments. Starting sample type is the only variable that changes introducing increasing complexity as we go from the parent loess to the paleosol to the topsoil samples with, for example, increasing amounts of organic matter and clays.

  4. Microbial ecology and transformations associated with munitions contaminated soils

    SciTech Connect

    Martin, J.L.; Li, Z.; Kokjohn, T.A.; Shea, P.J.; Comfort, S.D.

    1994-12-31

    Many acres of soil at the former Nebraska Ordnance Plant (NOP) are contaminated with TNT and other munitions residues. In some areas, solid phase TNT is present and controls the concentration of the soil solution. Native microbial populations in uncontaminated soils similar to those at the NOP site were severely reduced when solid phase TNT was allowed to control the soil solution TNT concentration. However, examination of NOP soil revealed an active population of Pseudomonas sp. A single species that could utilize TNT as a sole C source was isolated from the contaminated soil and tentatively identified as Pseudomonas corrugata through the BIOLOG system. Subsequent growth and characterization experiments indicate that the Pseudomonad metabolizes TNT while in the exponential phase of growth in medium containing glucose as a sole N source. Low TNT mineralization rates (measured by CO{sub 2} evolution) in soil and media using the various isolates suggest reduced availability due to sorption and incorporation of transformation intermediates into the organic matrix and microbial biomass. Pretreatment of TNT by acid-metal catalyzed reduction resulted in an initially higher rate of mineralization following addition to TNT-contaminated soil. Observations indicate more rapid microbial utilization of the 2,4,6-triaminotoluene (TAT) reduction product and its spontaneous decay product, methylphloroglucinol (2,4,6-trihydroxytoluene), than TNT. Abiotic pretreatment may be useful in enhancing microbial transformation and detoxification of TNT in highly contaminated soils.

  5. Polyamines and abiotic stress in plants: a complex relationship1

    PubMed Central

    Minocha, Rakesh; Majumdar, Rajtilak; Minocha, Subhash C.

    2014-01-01

    The physiological relationship between abiotic stress in plants and polyamines was reported more than 40 years ago. Ever since there has been a debate as to whether increased polyamines protect plants against abiotic stress (e.g., due to their ability to deal with oxidative radicals) or cause damage to them (perhaps due to hydrogen peroxide produced by their catabolism). The observation that cellular polyamines are typically elevated in plants under both short-term as well as long-term abiotic stress conditions is consistent with the possibility of their dual effects, i.e., being protectors from as well as perpetrators of stress damage to the cells. The observed increase in tolerance of plants to abiotic stress when their cellular contents are elevated by either exogenous treatment with polyamines or through genetic engineering with genes encoding polyamine biosynthetic enzymes is indicative of a protective role for them. However, through their catabolic production of hydrogen peroxide and acrolein, both strong oxidizers, they can potentially be the cause of cellular harm during stress. In fact, somewhat enigmatic but strong positive relationship between abiotic stress and foliar polyamines has been proposed as a potential biochemical marker of persistent environmental stress in forest trees in which phenotypic symptoms of stress are not yet visible. Such markers may help forewarn forest managers to undertake amelioration strategies before the appearance of visual symptoms of stress and damage at which stage it is often too late for implementing strategies for stress remediation and reversal of damage. This review provides a comprehensive and critical evaluation of the published literature on interactions between abiotic stress and polyamines in plants, and examines the experimental strategies used to understand the functional significance of this relationship with the aim of improving plant productivity, especially under conditions of abiotic stress. PMID:24847338

  6. Abiotic Stresses Downregulate Key Genes Involved in Nitrogen Uptake and Assimilation in Brassica juncea L.

    PubMed

    Goel, Parul; Singh, Anil Kumar

    2015-01-01

    Abiotic stresses such as salinity, drought and extreme temperatures affect nitrogen (N) uptake and assimilation in plants. However, little is known about the regulation of N pathway genes at transcriptional level under abiotic stress conditions in Brassica juncea. In the present work, genes encoding nitrate transporters (NRT), ammonium transporters (AMT), nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT), glutamate dehydrogenase (GDH), asparagines synthetase (ASN) were cloned from Brassica juncea L. var. Varuna. The deduced protein sequences were analyzed to predict their subcellular localization, which confirmed localization of all the proteins in their respective cellular organelles. The protein sequences were also subjected to conserved domain identification, which confirmed presence of characteristic domains in all the proteins, indicating their putative functions. Moreover, expression of these genes was studied after 1h and 24h of salt (150 mM NaCl), osmotic (250 mM Mannitol), cold (4°C) and heat (42°C) stresses. Most of the genes encoding nitrate transporters and enzymes responsible for N assimilation and remobilization were found to be downregulated under abiotic stresses. The expression of BjAMT1.2, BjAMT2, BjGS1.1, BjGDH1 and BjASN2 was downregulated after 1hr, while expression of BjNRT1.1, BjNRT2.1, BjNiR1, BjAMT2, BjGDH1 and BjASN2 was downregulated after 24h of all the stress treatments. However, expression of BjNRT1.1, BjNRT1.5 and BjGDH2 was upregulated after 1h of all stress treatments, while no gene was found to be upregulated after 24h of stress treatments, commonly. These observations indicate that expression of most of the genes is adversely affected under abiotic stress conditions, particularly under prolonged stress exposure (24h), which may be one of the reasons of reduction in plant growth and development under abiotic stresses. PMID:26605918

  7. Abiotic Stresses Downregulate Key Genes Involved in Nitrogen Uptake and Assimilation in Brassica juncea L.

    PubMed

    Goel, Parul; Singh, Anil Kumar

    2015-01-01

    Abiotic stresses such as salinity, drought and extreme temperatures affect nitrogen (N) uptake and assimilation in plants. However, little is known about the regulation of N pathway genes at transcriptional level under abiotic stress conditions in Brassica juncea. In the present work, genes encoding nitrate transporters (NRT), ammonium transporters (AMT), nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT), glutamate dehydrogenase (GDH), asparagines synthetase (ASN) were cloned from Brassica juncea L. var. Varuna. The deduced protein sequences were analyzed to predict their subcellular localization, which confirmed localization of all the proteins in their respective cellular organelles. The protein sequences were also subjected to conserved domain identification, which confirmed presence of characteristic domains in all the proteins, indicating their putative functions. Moreover, expression of these genes was studied after 1h and 24h of salt (150 mM NaCl), osmotic (250 mM Mannitol), cold (4°C) and heat (42°C) stresses. Most of the genes encoding nitrate transporters and enzymes responsible for N assimilation and remobilization were found to be downregulated under abiotic stresses. The expression of BjAMT1.2, BjAMT2, BjGS1.1, BjGDH1 and BjASN2 was downregulated after 1hr, while expression of BjNRT1.1, BjNRT2.1, BjNiR1, BjAMT2, BjGDH1 and BjASN2 was downregulated after 24h of all the stress treatments. However, expression of BjNRT1.1, BjNRT1.5 and BjGDH2 was upregulated after 1h of all stress treatments, while no gene was found to be upregulated after 24h of stress treatments, commonly. These observations indicate that expression of most of the genes is adversely affected under abiotic stress conditions, particularly under prolonged stress exposure (24h), which may be one of the reasons of reduction in plant growth and development under abiotic stresses.

  8. Dual-tree complex wavelet transform and SVD based acoustic noise reduction and its application in leak detection for natural gas pipeline

    NASA Astrophysics Data System (ADS)

    Yu, Xuchao; Liang, Wei; Zhang, Laibin; Jin, Hao; Qiu, Jingwei

    2016-05-01

    During the last decades, leak detection for natural gas pipeline has become one of the paramount concerns of pipeline operators and researchers across the globe. However, acoustic wave method has been proved to be an effective way to identify and localize leakage for gas pipeline. Considering the fact that noises inevitably exist in the acoustic signals collected, noise reduction should be enforced on the signals for subsequent data mining and analysis. Thus, an integrated acoustic noise reduction method based on DTCWT and SVD is proposed in this study. The method is put forward based on the idea that noise reduction strategy should match the characteristics of the noisy signal. According to previous studies, it is known that the energy of acoustic signals collected under leaking condition is mainly concentrated in low-frequency portion (0-100 Hz). And ultralow-frequency component (0-5 Hz), which is taken as the characteristic frequency band in this study, can propagate a relatively longer distance and be captured by sensors. Therefore, in order to filter the noises and to reserve the characteristic frequency band, DTCWT is taken as the core to conduct multilevel decomposition and refining for acoustic signals and SVD is employed to eliminate noises in non-characteristic bands. Both simulation and field experiments show that DTCWT-SVD is an excellent method for acoustic noise reduction. At the end of this study, application in leakage localization shows that it becomes much easier and a little more accurate to estimate the location of leak hole after noise reduction by DTCWT-SVD.

  9. Biochar-Facilitated Reduction of Crystalline Fe(III) in Hematite

    NASA Astrophysics Data System (ADS)

    Xu, S.; Yang, Y.; Roden, E. E.; Tang, Y.; Huang, R.; Adhikari, D.

    2015-12-01

    Pyrogenic organic matter is a significant component of soil organic matter, the transformation of which may play a crucial role in the coupled redox cycles of carbon and iron. However, scant information is available for the role of pyrogenic carbon in the redox cycle of iron. Herein, we studied the influences of wheat straw-derived biochar on the microbial reduction of hematite by Shewanella oneidensis MR-1. In the presence of 10 mg/L biochar, microbial reduction of hematite was substantially accelerated by 41% to 142%. Reduction of hematite was enhanced to similar degrees by aqueous biochar with the concentration of 1-3 mg C/L. Importance of the aqueous biochar was also supported by the response of enhancement of Fe reduction to the dose of biochar particles, closely linked to the change in aqueous biochar concentration rather than the amount of total biochar particles. Microbiologically pre-reduced biochar reduced hematite abiotically, demonstrating the electron shuttling capacity of aqueous biochar for hematite reduction. On the other side, biochar particles sorbed Fe(II) and consequently decreased the accumulation of Fe(II) in solution to facilitate the reduction of hematite further. We reported for the first time the biochar-facilitated microbial reduction of crystalline Fe(III), through electron shuttling processes mediated by aqueous biochar and complexation of Fe(II) by biochar particles. Such impacted redox cycles of Fe would be important for the soil environment with relatively high content of indigenous pyrogenic carbon or substantial application of biochar.

  10. Plant cell organelle proteomics in response to abiotic stress.

    PubMed

    Hossain, Zahed; Nouri, Mohammad-Zaman; Komatsu, Setsuko

    2012-01-01

    Proteomics is one of the finest molecular techniques extensively being used for the study of protein profiling of a given plant species experiencing stressed conditions. Plants respond to a stress by alteration in the pattern of protein expression, either by up-regulating of the existing protein pool or by the synthesizing novel proteins primarily associated with plants antioxidative defense mechanism. Improved protein extraction protocols and advance techniques for identification of novel proteins have been standardized in different plant species at both cellular and whole plant level for better understanding of abiotic stress sensing and intracellular stress signal transduction mechanisms. In contrast, an in-depth proteome study of subcellular organelles could generate much detail information about the intrinsic mechanism of stress response as it correlates the possible relationship between the protein abundance and plant stress tolerance. Although a wealth of reviews devoted to plant proteomics are available, review articles dedicated to plant cell organelle proteins response under abiotic stress are very scanty. In the present review, an attempt has been made to summarize all significant contributions related to abiotic stresses and their impacts on organelle proteomes for better understanding of plants abiotic stress tolerance mechanism at protein level. This review will not only provide new insights into the plants stress response mechanisms, which are necessary for future development of genetically engineered stress tolerant crop plants for the benefit of humankind, but will also highlight the importance of studying changes in protein abundance within the cell organelles in response to abiotic stress.

  11. Insight into the mechanism of selective catalytic reduction of NO(x) by propene over the Cu/Ti(0.7)Zr(0.3)O2 catalyst by Fourier transform infrared spectroscopy and density functional theory calculations.

    PubMed

    Liu, Jie; Li, Xinyong; Zhao, Qidong; Hao, Ce; Zhang, Dongke

    2013-05-01

    The mechanism of selective catalytic reduction of NOx by propene (C3H6-SCR) over the Cu/Ti0.7Zr0.3O2 catalyst was studied by in situ Fourier transform infrared (FTIR) spectroscopy and density functional theory (DFT) calculations. Especially, the formation and transformation of cyanide (-CN species) during the reaction was discussed. According to FTIR results, the excellent performance of the Cu/Ti0.7Zr0.3O2 catalyst in C3H6-SCR was attributed to the coexistence of two parallel pathways to produce N2 by the isocyanate (-NCO species) and -CN species intermediates. Besides the hydrolysis of the -NCO species, the reaction between the -CN species and nitrates and/or NO2 was also a crucial pathway for the NO reduction. On the basis of the DFT calculations on the energy of possible intermediates and transition states at the B3LYP/6-311 G (d, p) level of theory, the reaction channel of -CN species in the SCR reaction was identified and the role of -CN species as a crucial intermediate to generate N2 was also confirmed from the thermodynamics view. In combination of the FTIR and DFT results, a modified mechanism with two parallel pathways to produce N2 by the reaction of -NCO and -CN species over the Cu/Ti0.7Zr0.3O2 catalyst was proposed.

  12. Raman Scattering in La0.2Sr0.8FeO3-δ thin film: annealing-induced reduction and phase transformation

    NASA Astrophysics Data System (ADS)

    Islam, Mohammad; Xie, Yujun; Scafetta, Mark; May, Steven; Spanier, Jonathan

    2015-03-01

    Raman scattering in thin film La0.2Sr0.8FeO3-δ on MgO(001) collected at 300 K following different stages of annealing at selected temperatures (300 K transformation. The interpretation is further supported by carrier transport measurements under identical conditions showing orders of magnitude increase in the resistivity induced by oxygen loss. After prolonged annealing in air, evolution of the spectrum is consistent with the appearance of a topotactic transformation of the crystal structure from that of the rhombohedral ABO3 perovskites to that of Brownmillerite-like structure consisting of octahedrally and tetrahedrally coordinated Fe atoms. We acknowledge the ONR (N00014-11-1-0664), the Drexel Centralized Research Facilities, the Army Research Office DURIP program, the Department of Education (GAANN-RETAIN, Award No. P200A100117), and Leszek Wielunski at Rutgers University.

  13. Contribution of acetic acid to the hydrolysis of lignocellulosic biomass under abiotic conditions.

    PubMed

    Trzcinski, Antoine P; Stuckey, David C

    2015-06-01

    Acetic acid was used in abiotic experiments to adjust the solution pH and investigate its influence on the chemical hydrolysis of the Organic Fraction of Municipal Solid Waste (OFMSW). Soluble chemical oxygen demand (SCOD) was used to measure the hydrolysis under oxidative conditions (positive oxidation-reduction potential values), and pH 4 allowed for 20% (±2%) of the COD added to be solubilized, whereas only 12% (±1%) was solubilized at pH7. Under reducing conditions (negative oxidation-reduction potential values) and pH 4, 32.3% (±3%) of the OFMSW was solubilized which shows that acidogenesis at pH 4 during the anaerobic digestion of solid waste can result in chemical hydrolysis. In comparison, bacterial hydrolysis resulted in 54% (±6%) solubilization.

  14. Abiotic systems for the catalytic treatment of solvent-contaminated water

    SciTech Connect

    Betterton, E.A.; Arnold, R.G.; Liu, Zhijie; Hollan, N.

    1996-12-31

    Three abiotic systems are described that catalyze the reductive dehalogenation of heavily halogenated environmental pollutants, including carbon tetrachloride, trichloroethene, and perchloroethene. These systems include (a) an electrolytic reactor in which the potential on the working electrode (cathode) is fixed by using a potentiostat, (b) a light-driven system consisting of a semiconductor and (covalently attached) macrocycle that can accept light transmitted via an optical fiber, and a light-driven, two-solvent (isopropanol/acetone) system that promotes dehalogenation reactions via an unknown mechanism. Each is capable of accelerating reductive dehalogenation reactions to very high rates under laboratory conditions. Typically, millimolar concentrations of aqueous-phase targets can be dehalogenated in minutes to hours. The description of each system includes the elements of reaction mechanism (to the extent known), typical kinetic data, and a discussion of the feasibility of applying this technology for the in situ destruction of hazardous compounds. 14 refs., 11 figs., 2 tabs.

  15. Current perspectives in proteomic analysis of abiotic stress in Grapevines

    PubMed Central

    George, Iniga S.; Haynes, Paul A.

    2014-01-01

    Grapes are an important crop plant which forms the basis of a globally important industry. Grape and wine production is particularly vulnerable to environmental and climatic fluctuations, which makes it essential for us to develop a greater understanding of the molecular level responses of grape plants to various abiotic stresses. The completion of the initial grape genome sequence in 2007 has led to a significant increase in research on grapes using proteomics approaches. In this article, we discuss some of the current research on abiotic stress in grapevines, in the context of abiotic stress research in other plant species. We also highlight some of the current limitations in grapevine proteomics and identify areas with promising scope for potential future research. PMID:25538720

  16. Integrated metabolomics for abiotic stress responses in plants.

    PubMed

    Nakabayashi, Ryo; Saito, Kazuki

    2015-04-01

    Plants are considered to biosynthesize specialized (traditionally called secondary) metabolites to adapt to environmental stresses such as biotic and abiotic stresses. The majority of specialized metabolites induced by abiotic stress characteristically exhibit antioxidative activity in vitro, but their function in vivo is largely yet to be experimentally confirmed. In this review, we highlight recent advances in the identification of the role of abiotic stress-responsive specialized metabolites with an emphasis on flavonoids. Integrated 'omics' analysis, centered on metabolomics with a series of plant resources differing in their flavonoid accumulation, showed experimentally that flavonoids play a major role in antioxidation in vivo. In addition, the results also suggest the role of flavonoids in the vacuole. To obtain more in-depth insights, chemical and biological challenges need to be addressed for the identification of unknown specialized metabolites and their in vivo functions.

  17. NAC transcription factors in plant abiotic stress responses.

    PubMed

    Nakashima, Kazuo; Takasaki, Hironori; Mizoi, Junya; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2012-02-01

    Abiotic stresses such as drought and high salinity adversely affect the growth and productivity of plants, including crops. The development of stress-tolerant crops will be greatly advantageous for modern agriculture in areas that are prone to such stresses. In recent years, several advances have been made towards identifying potential stress related genes which are capable of increasing the tolerance of plants to abiotic stress. NAC proteins are plant-specific transcription factors and more than 100 NAC genes have been identified in Arabidopsis and rice to date. Phylogenetic analyses indicate that the six major groups were already established at least in an ancient moss lineage. NAC transcription factors have a variety of important functions not only in plant development but also in abiotic stress responses. Stress-inducible NAC genes have been shown to be involved in abiotic stress tolerance. Transgenic Arabidopsis and rice plants overexpressing stress-responsive NAC (SNAC) genes have exhibited improved drought tolerance. These studies indicate that SNAC factors have important roles for the control of abiotic stress tolerance and that their overexpression can improve stress tolerance via biotechnological approaches. Although these transcription factors can bind to the same core NAC recognition sequence, recent studies have demonstrated that the effects of NAC factors for growth are different. Moreover, the NAC proteins are capable of functioning as homo- or hetero-dimer forms. Thus, SNAC factors can be useful for improving stress tolerance in transgenic plants, although the mechanism for mediating the stress tolerance of these homologous factors is complex in plants. Recent studies also suggest that crosstalk may exist between stress responses and plant growth. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.

  18. The role of black carbon as a catalyst for environmental redox transformation.

    PubMed

    Oh, Seok-Young; Son, Jong-Gil; Lim, Ock-Taeck; Chiu, Pei C

    2012-01-01

    Black carbon (BC) is an important class of geosorbents that control the fate and transport of organic pollutants in soil and sediment. We previously demonstrated a new role of BC as an electron transfer mediator in the abiotic reduction of nitroaromatic and nitramine compounds by Oh and Chiu (Environ Sci Technol 43:6983-6988, 2009). We proposed that BC can catalyze the reduction of nitro compounds because it contains microscopic graphitic (graphene) domains, which facilitate both sorption and electron transfer. In this study, we assessed the ability of different types of BC--graphite, activated carbon, and diesel soot--to mediate the reduction of 2,4-dinitrotoluene (DNT) and 2,4-dibromophenol (DBP) by H(2)S. All three types of BC enhanced DNT and DBP reduction. H(2)S supported BC-mediated reduction, as was observed previously with a thiol reductant. The results suggest that BC may influence the fate of organic pollutants in reducing subsurface environments through redox transformation in addition to sorption. PMID:21847549

  19. Arsenic(V) Reduction in Relation to Iron(III) Transformation and Molecular Characterization of the Structural and Functional Microbial Community in Sediments of a Basin-Fill Aquifer in Northern Utah

    PubMed Central

    Mirza, Babur S.; Muruganandam, Subathra; Meng, Xianyu; Sorensen, Darwin L.; Dupont, R. Ryan

    2014-01-01

    Basin-fill aquifers of the Southwestern United States are associated with elevated concentrations of arsenic (As) in groundwater. Many private domestic wells in the Cache Valley Basin, UT, have As concentrations in excess of the U.S. EPA drinking water limit. Thirteen sediment cores were collected from the center of the valley at the depth of the shallow groundwater and were sectioned into layers based on redoxmorphic features. Three of the layers, two from redox transition zones and one from a depletion zone, were used to establish microcosms. Microcosms were treated with groundwater (GW) or groundwater plus glucose (GW+G) to investigate the extent of As reduction in relation to iron (Fe) transformation and characterize the microbial community structure and function by sequencing 16S rRNA and arsenate dissimilatory reductase (arrA) genes. Under the carbon-limited conditions of the GW treatment, As reduction was independent of Fe reduction, despite the abundance of sequences related to Geobacter and Shewanella, genera that include a variety of dissimilatory iron-reducing bacteria. The addition of glucose, an electron donor and carbon source, caused substantial shifts toward domination of the bacterial community by Clostridium-related organisms, and As reduction was correlated with Fe reduction for the sediments from the redox transition zone. The arrA gene sequencing from microcosms at day 54 of incubation showed the presence of 14 unique phylotypes, none of which were related to any previously described arrA gene sequence, suggesting a unique community of dissimilatory arsenate-respiring bacteria in the Cache Valley Basin. PMID:24632255

  20. Arsenic(V) reduction in relation to Iron(III) transformation and molecular characterization of the structural and functional microbial community in sediments of a basin-fill aquifer in Northern Utah.

    PubMed

    Mirza, Babur S; Muruganandam, Subathra; Meng, Xianyu; Sorensen, Darwin L; Dupont, R Ryan; McLean, Joan E

    2014-05-01

    Basin-fill aquifers of the Southwestern United States are associated with elevated concentrations of arsenic (As) in groundwater. Many private domestic wells in the Cache Valley Basin, UT, have As concentrations in excess of the U.S. EPA drinking water limit. Thirteen sediment cores were collected from the center of the valley at the depth of the shallow groundwater and were sectioned into layers based on redoxmorphic features. Three of the layers, two from redox transition zones and one from a depletion zone, were used to establish microcosms. Microcosms were treated with groundwater (GW) or groundwater plus glucose (GW+G) to investigate the extent of As reduction in relation to iron (Fe) transformation and characterize the microbial community structure and function by sequencing 16S rRNA and arsenate dissimilatory reductase (arrA) genes. Under the carbon-limited conditions of the GW treatment, As reduction was independent of Fe reduction, despite the abundance of sequences related to Geobacter and Shewanella, genera that include a variety of dissimilatory iron-reducing bacteria. The addition of glucose, an electron donor and carbon source, caused substantial shifts toward domination of the bacterial community by Clostridium-related organisms, and As reduction was correlated with Fe reduction for the sediments from the redox transition zone. The arrA gene sequencing from microcosms at day 54 of incubation showed the presence of 14 unique phylotypes, none of which were related to any previously described arrA gene sequence, suggesting a unique community of dissimilatory arsenate-respiring bacteria in the Cache Valley Basin.

  1. Raman scattering in La1-xSrxFeO3-δ thin films: annealing-induced reduction and phase transformation.

    PubMed

    Islam, Mohammad A; Xie, Yujun; Scafetta, Mark D; May, Steven J; Spanier, Jonathan E

    2015-04-22

    Raman scattering in thin film La0.2Sr0.8FeO3-δ on MgO(0 0 1) collected at 300 K after different stages of annealing at selected temperatures T (300 K < T < 543 K, to 10 h) and analysis reveal changes in spectral characteristics due to a loss of oxygen, onset of oxygen vacancy-induced disorder, and activation of Raman-inactive modes that are attributed to symmetry lowering. The interpretation is further supported by carrier transport measurements under identical conditions showing orders of magnitude increase in the resistivity induced by oxygen loss. After prolonged annealing in air, evolution of the spectrum signals the appearance of a possible topotactic transformation of the crystal structure from that of the rhombohedral ABO3 perovskites to that of Brownmillerite-like structure consisting of octahedrally and tetrahedrally coordinated Fe atoms.

  2. Raman scattering in La1-xSrxFeO3-δ thin films: annealing-induced reduction and phase transformation.

    PubMed

    Islam, Mohammad A; Xie, Yujun; Scafetta, Mark D; May, Steven J; Spanier, Jonathan E

    2015-04-22

    Raman scattering in thin film La0.2Sr0.8FeO3-δ on MgO(0 0 1) collected at 300 K after different stages of annealing at selected temperatures T (300 K < T < 543 K, to 10 h) and analysis reveal changes in spectral characteristics due to a loss of oxygen, onset of oxygen vacancy-induced disorder, and activation of Raman-inactive modes that are attributed to symmetry lowering. The interpretation is further supported by carrier transport measurements under identical conditions showing orders of magnitude increase in the resistivity induced by oxygen loss. After prolonged annealing in air, evolution of the spectrum signals the appearance of a possible topotactic transformation of the crystal structure from that of the rhombohedral ABO3 perovskites to that of Brownmillerite-like structure consisting of octahedrally and tetrahedrally coordinated Fe atoms. PMID:25812551

  3. Transgenic alfalfa plants expressing the sweetpotato Orange gene exhibit enhanced abiotic stress tolerance.

    PubMed

    Wang, Zhi; Ke, Qingbo; Kim, Myoung Duck; Kim, Sun Ha; Ji, Chang Yoon; Jeong, Jae Cheol; Lee, Haeng-Soon; Park, Woo Sung; Ahn, Mi-Jeong; Li, Hongbing; Xu, Bingcheng; Deng, Xiping; Lee, Sang-Hoon; Lim, Yong Pyo; Kwak, Sang-Soo

    2015-01-01

    Alfalfa (Medicago sativa L.), a perennial forage crop with high nutritional content, is widely distributed in various environments worldwide. We recently demonstrated that the sweetpotato Orange gene (IbOr) is involved in increasing carotenoid accumulation and enhancing resistance to multiple abiotic stresses. In this study, in an effort to improve the nutritional quality and environmental stress tolerance of alfalfa, we transferred the IbOr gene into alfalfa (cv. Xinjiang Daye) under the control of an oxidative stress-inducible peroxidase (SWPA2) promoter through Agrobacterium tumefaciens-mediated transformation. Among the 11 transgenic alfalfa lines (referred to as SOR plants), three lines (SOR2, SOR3, and SOR8) selected based on their IbOr transcript levels were examined for their tolerance to methyl viologen (MV)-induced oxidative stress in a leaf disc assay. The SOR plants exhibited less damage in response to MV-mediated oxidative stress and salt stress than non-transgenic plants. The SOR plants also exhibited enhanced tolerance to drought stress, along with higher total carotenoid levels. The results suggest that SOR alfalfa plants would be useful as forage crops with improved nutritional value and increased tolerance to multiple abiotic stresses, which would enhance the development of sustainable agriculture on marginal lands.

  4. Evaluating reaction pathways of hydrothermal abiotic organic synthesis at elevated temperatures and pressures using carbon isotopes

    NASA Astrophysics Data System (ADS)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.

    2015-04-01

    Experiments were performed to better understand the role of environmental factors on reaction pathways and corresponding carbon isotope fractionations during abiotic hydrothermal synthesis of organic compounds using piston cylinder apparatus at 750 °C and 5.5 kbars. Chemical compositions of experimental products and corresponding carbon isotopic values were obtained by a Pyrolysis-GC-MS-IRMS system. Alkanes (methane and ethane), straight-chain saturated alcohols (ethanol and n-butanol) and monocarboxylic acids (formic and acetic acids) were generated with ethanol being the only organic compound with higher δ13C than CO2. CO was not detected in experimental products owing to the favorable water-gas shift reaction under high water pressure conditions. The pattern of δ13C values of CO2, carboxylic acids and alkanes are consistent with their equilibrium isotope relationships: CO2 > carboxylic acids > alkanes, but the magnitude of the fractionation among them is higher than predicted isotope equilibrium values. In particular, the isotopic fractionation between CO2 and CH4 remained constant at ∼31‰, indicating a kinetic effect during CO2 reduction processes. No "isotope reversal" of δ13C values for alkanes or carboxylic acids was observed, which indicates a different reaction pathway than what is typically observed during Fischer-Tropsch synthesis under gas phase conditions. Under constraints imposed in experiments, the anomalous 13C isotope enrichment in ethanol suggests that hydroxymethylene is the organic intermediate, and that the generation of other organic compounds enriched in 12C were facilitated by subsequent Rayleigh fractionation of hydroxymethylene reacting with H2 and/or H2O. Carbon isotope fractionation data obtained in this study are instrumental in assessing the controlling factors on abiotic formation of organic compounds in hydrothermal systems. Knowledge on how environmental conditions affect reaction pathways of abiotic synthesis of organic

  5. A proposed abiotic reaction scheme for hydroxylamine and monochloramine under chloramination relevant drinking water conditions.

    PubMed

    Wahman, David G; Speitel, Gerald E; Machavaram, Madhav V

    2014-09-01

    Drinking water monochloramine (NH2Cl) use may promote ammonia-oxidizing bacteria (AOB). AOB use (i) ammonia monooxygenase for biological ammonia (NH3) oxidation to hydroxylamine (NH2OH) and (ii) hydroxylamine oxidoreductase for NH2OH oxidation to nitrite. NH2Cl and NH2OH may react, providing AOB potential benefits and detriments. The NH2Cl/NH2OH reaction would benefit AOB by removing the disinfectant (NH2Cl) and releasing their growth substrate (NH3), but the NH2Cl/NH2OH reaction would also provide a possible additional inactivation mechanism besides direct NH2Cl reaction with cells. Because biological NH2OH oxidation supplies the electrons required for biological NH3 oxidation, the NH2Cl/NH2OH reaction provides a direct mechanism for NH2Cl to inhibit NH3 oxidation, starving the cell of reductant by preventing biological NH2OH oxidation. To investigate possible NH2Cl/NH2OH reaction implications on AOB, an understanding of the underlying abiotic reaction is first required. The present study conducted a detailed literature review and proposed an abiotic NH2Cl/NH2OH reaction scheme (RS) for chloramination relevant drinking water conditions (μM concentrations, air saturation, and pH 7-9). Next, RS literature based kinetics and end-products were evaluated experimentally between pHs 7.7 and 8.3, representing (i) the pH range for future experiments with AOB and (ii) mid-range pHs typically found in chloraminated drinking water. In addition, a (15)N stable isotope experiment was conducted to verify nitrous oxide and nitrogen gas production and their nitrogen source. Finally, the RS was slightly refined using the experimental data and an AQUASIM implemented kinetic model. A chloraminated drinking water relevant RS is proposed and provides the abiotic reaction foundation for future AOB biotic experiments.

  6. Recent Advances in Polyamine Metabolism and Abiotic Stress Tolerance

    PubMed Central

    Rangan, Parimalan; Subramani, Rajkumar; Singh, Amit Kumar

    2014-01-01

    Global warming is an alarming problem in agriculture and its effect on yield loss has been estimated to be five per cent for every degree centigrade rise in temperature. Plants exhibit multiple mechanisms like optimizing signaling pathway, involvement of secondary messengers, production of biomolecules specifically in response to stress, modulation of various metabolic networks in accordance with stress, and so forth, in order to overcome abiotic stress factors. Many structural genes and networks of pathway were identified and reported in plant systems for abiotic stress tolerance. One such crucial metabolic pathway that is involved in normal physiological function and also gets modulated during stress to impart tolerance is polyamine metabolic pathway. Besides the role of structural genes, it is also important to know the mechanism by which these structural genes are regulated during stress. Present review highlights polyamine biosynthesis, catabolism, and its role in abiotic stress tolerance with special reference to plant systems. Additionally, a system based approach is discussed as a potential strategy to dissect the existing variation in crop species in unraveling the interacting regulatory components/genetic determinants related to PAs mediated abiotic stress tolerance. PMID:25136565

  7. Recent advances in polyamine metabolism and abiotic stress tolerance.

    PubMed

    Rangan, Parimalan; Subramani, Rajkumar; Kumar, Rajesh; Singh, Amit Kumar; Singh, Rakesh

    2014-01-01

    Global warming is an alarming problem in agriculture and its effect on yield loss has been estimated to be five per cent for every degree centigrade rise in temperature. Plants exhibit multiple mechanisms like optimizing signaling pathway, involvement of secondary messengers, production of biomolecules specifically in response to stress, modulation of various metabolic networks in accordance with stress, and so forth, in order to overcome abiotic stress factors. Many structural genes and networks of pathway were identified and reported in plant systems for abiotic stress tolerance. One such crucial metabolic pathway that is involved in normal physiological function and also gets modulated during stress to impart tolerance is polyamine metabolic pathway. Besides the role of structural genes, it is also important to know the mechanism by which these structural genes are regulated during stress. Present review highlights polyamine biosynthesis, catabolism, and its role in abiotic stress tolerance with special reference to plant systems. Additionally, a system based approach is discussed as a potential strategy to dissect the existing variation in crop species in unraveling the interacting regulatory components/genetic determinants related to PAs mediated abiotic stress tolerance.

  8. ABIOTIC DEGRADATION OF TRICHLOROETHYLENE UNDER THERMAL REMEDIATION CONDITIONS

    EPA Science Inventory

    The degradation of TCE (C2HCl3) to carbon dioxide (CO2) and chloride (Cl-) has been reported to occur during thermal remediation of subsurface environments. The overall goal of this study was to evaluate abiotic degradation of TCE at el...

  9. Recent advances in polyamine metabolism and abiotic stress tolerance.

    PubMed

    Rangan, Parimalan; Subramani, Rajkumar; Kumar, Rajesh; Singh, Amit Kumar; Singh, Rakesh

    2014-01-01

    Global warming is an alarming problem in agriculture and its effect on yield loss has been estimated to be five per cent for every degree centigrade rise in temperature. Plants exhibit multiple mechanisms like optimizing signaling pathway, involvement of secondary messengers, production of biomolecules specifically in response to stress, modulation of various metabolic networks in accordance with stress, and so forth, in order to overcome abiotic stress factors. Many structural genes and networks of pathway were identified and reported in plant systems for abiotic stress tolerance. One such crucial metabolic pathway that is involved in normal physiological function and also gets modulated during stress to impart tolerance is polyamine metabolic pathway. Besides the role of structural genes, it is also important to know the mechanism by which these structural genes are regulated during stress. Present review highlights polyamine biosynthesis, catabolism, and its role in abiotic stress tolerance with special reference to plant systems. Additionally, a system based approach is discussed as a potential strategy to dissect the existing variation in crop species in unraveling the interacting regulatory components/genetic determinants related to PAs mediated abiotic stress tolerance. PMID:25136565

  10. Abiotic effects on effluent dissolved organic nitrogen along an estuarine transect.

    PubMed

    Funkey, Carolina P; Latour, Robert J; Bronk, Deborah A

    2015-03-01

    Biological nutrient removal is a process commonly used in water resource recovery facilities to reduce dissolved inorganic nitrogen (DIN) concentrations in effluent; this process is less effective at removing all of the effluent dissolved organic nitrogen (EDON). The goal of this study was to investigate the fate of EDON after it undergoes the disinfection process and enters receiving waters. The authors quantified the abiotic effects of effluent exposure to sunlight, increased salinity, and a combination of the two factors. Effluent dissolved organic nitrogen showed significant breakdown during the disinfection process (UV and chlorine) and when exposed to sunlight and increasing salinity. Approximately 7% of the EDON was transformed to DIN and dissolved primary amines after exposure to 9 hours of sunlight and a salinity increase from 0 to 33. The production of DIN and primary amines should be taken into account when considering sources of labile nitrogen to aquatic ecosystems.

  11. Abiotic ozone and oxygen in atmospheres similar to prebiotic Earth

    SciTech Connect

    Domagal-Goldman, Shawn D.; Segura, Antígona; Claire, Mark W.; Robinson, Tyler D.; Meadows, Victoria S.

    2014-09-10

    The search for life on planets outside our solar system will use spectroscopic identification of atmospheric biosignatures. The most robust remotely detectable potential biosignature is considered to be the detection of oxygen (O{sub 2}) or ozone (O{sub 3}) simultaneous to methane (CH{sub 4}) at levels indicating fluxes from the planetary surface in excess of those that could be produced abiotically. Here we use an altitude-dependent photochemical model with the enhanced lower boundary conditions necessary to carefully explore abiotic O{sub 2} and O{sub 3} production on lifeless planets with a wide variety of volcanic gas fluxes and stellar energy distributions. On some of these worlds, we predict limited O{sub 2} and O{sub 3} buildup, caused by fast chemical production of these gases. This results in detectable abiotic O{sub 3} and CH{sub 4} features in the UV-visible, but no detectable abiotic O{sub 2} features. Thus, simultaneous detection of O{sub 3} and CH{sub 4} by a UV-visible mission is not a strong biosignature without proper contextual information. Discrimination between biological and abiotic sources of O{sub 2} and O{sub 3} is possible through analysis of the stellar and atmospheric context—particularly redox state and O atom inventory—of the planet in question. Specifically, understanding the spectral characteristics of the star and obtaining a broad wavelength range for planetary spectra should allow more robust identification of false positives for life. This highlights the importance of wide spectral coverage for future exoplanet characterization missions. Specifically, discrimination between true and false positives may require spectral observations that extend into infrared wavelengths and provide contextual information on the planet's atmospheric chemistry.

  12. Integrating omic approaches for abiotic stress tolerance in soybean

    PubMed Central

    Deshmukh, Rupesh; Sonah, Humira; Patil, Gunvant; Chen, Wei; Prince, Silvas; Mutava, Raymond; Vuong, Tri; Valliyodan, Babu; Nguyen, Henry T.

    2014-01-01

    Soybean production is greatly influenced by abiotic stresses imposed by environmental factors such as drought, water submergence, salt, and heavy metals. A thorough understanding of plant response to abiotic stress at the molecular level is a prerequisite for its effective management. The molecular mechanism of stress tolerance is complex and requires information at the omic level to understand it effectively. In this regard, enormous progress has been made in the omics field in the areas of genomics, transcriptomics, and proteomics. The emerging field of ionomics is also being employed for investigating abiotic stress tolerance in soybean. Omic approaches generate a huge amount of data, and adequate advancements in computational tools have been achieved for effective analysis. However, the integration of omic-scale information to address complex genetics and physiological questions is still a challenge. In this review, we have described advances in omic tools in the view of conventional and modern approaches being used to dissect abiotic stress tolerance in soybean. Emphasis was given to approaches such as quantitative trait loci (QTL) mapping, genome-wide association studies (GWAS), and genomic selection (GS). Comparative genomics and candidate gene approaches are also discussed considering identification of potential genomic loci, genes, and biochemical pathways involved in stress tolerance mechanism in soybean. This review also provides a comprehensive catalog of available online omic resources for soybean and its effective utilization. We have also addressed the significance of phenomics in the integrated approaches and recognized high-throughput multi-dimensional phenotyping as a major limiting factor for the improvement of abiotic stress tolerance in soybean. PMID:24917870

  13. Reactive oxygen species signaling in plants under abiotic stress.

    PubMed

    Choudhury, Shuvasish; Panda, Piyalee; Sahoo, Lingaraj; Panda, Sanjib Kumar

    2013-04-01

    Abiotic stresses like heavy metals, drought, salt, low temperature, etc. are the major factors that limit crop productivity and yield. These stresses are associated with production of certain deleterious chemical entities called reactive oxygen species (ROS), which include hydrogen peroxide (H₂O₂), superoxide radical (O₂(-)), hydroxyl radical (OH(-)), etc. ROS are capable of inducing cellular damage by degradation of proteins, inactivation of enzymes, alterations in the gene and interfere in various pathways of metabolic importance. Our understanding on ROS in response to abiotic stress is revolutionized with the advancements in plant molecular biology, where the basic understanding on chemical behavior of ROS is better understood. Understanding the molecular mechanisms involved in ROS generation and its potential role during abiotic stress is important to identify means by which plant growth and metabolism can be regulated under acute stress conditions. ROS mediated oxidative stress, which is the key to understand stress related toxicity have been widely studied in many plants and the results in those studies clearly revealed that oxidative stress is the main symptom of toxicity. Plants have their own antioxidant defense mechanisms to encounter ROS that is of enzymic and non-enzymic nature . Coordinated activities of these antioxidants regulate ROS detoxification and reduces oxidative load in plants. Though ROS are always regarded to impart negative impact on plants, some reports consider them to be important in regulating key cellular functions; however, such reports in plant are limited. Molecular approaches to understand ROS metabolism and signaling have opened new avenues to comprehend its critical role in abiotic stress. ROS also acts as secondary messenger that signals key cellular functions like cell proliferation, apoptosis and necrosis. In higher eukaryotes, ROS signaling is not fully understood. In this review we summarize our understanding on ROS

  14. Microbiological and abiotic processes in modelling longer-term marine corrosion of steel.

    PubMed

    Melchers, Robert E

    2014-06-01

    Longer term exposure of mild steel in natural (biotic) waters progresses as a bimodal function of time, both for corrosion mass loss and for pit depth. Recent test results, however, found this also for immersion in clean fresh, almost pure and triply distilled waters. This shows chlorides or microbiological activity is not essential for the electrochemical processes producing bimodal behaviour. It is proposed that the first mode is aerobic corrosion that eventually produces a non-homogeneous corroded surface and rust coverage sufficient to allow formation of anoxic niches. Within these, aggressive autocatalytic reduction then occurs under anoxic abiotic conditions, caused by sulfide species originating from the MnS inclusions typical in steels. This is consistent with Wranglen's model for abiotic anoxic crevice and pitting corrosion without external aggressive ions. In biotic conditions, metabolites from anaerobic bacterial activity within and near the anoxic niches provides additional (sulfide) species to contribute to the severity of corrosion. Limited observational evidence that supports this hypothesis is given but further investigation is required to determine all contributor(s) to the cathodic current for the electrochemical reaction. The results are important for estimating the contribution of microbiological corrosion in infrastructure applications. PMID:24067447

  15. Microbiological and abiotic processes in modelling longer-term marine corrosion of steel.

    PubMed

    Melchers, Robert E

    2014-06-01

    Longer term exposure of mild steel in natural (biotic) waters progresses as a bimodal function of time, both for corrosion mass loss and for pit depth. Recent test results, however, found this also for immersion in clean fresh, almost pure and triply distilled waters. This shows chlorides or microbiological activity is not essential for the electrochemical processes producing bimodal behaviour. It is proposed that the first mode is aerobic corrosion that eventually produces a non-homogeneous corroded surface and rust coverage sufficient to allow formation of anoxic niches. Within these, aggressive autocatalytic reduction then occurs under anoxic abiotic conditions, caused by sulfide species originating from the MnS inclusions typical in steels. This is consistent with Wranglen's model for abiotic anoxic crevice and pitting corrosion without external aggressive ions. In biotic conditions, metabolites from anaerobic bacterial activity within and near the anoxic niches provides additional (sulfide) species to contribute to the severity of corrosion. Limited observational evidence that supports this hypothesis is given but further investigation is required to determine all contributor(s) to the cathodic current for the electrochemical reaction. The results are important for estimating the contribution of microbiological corrosion in infrastructure applications.

  16. A Mn-54 Radiotracer Study of Mn Isotope Solid-Liquid Exchange during Reductive Transformation of Vernadite (δ-MnO₂) by Aqueous Mn(II)

    SciTech Connect

    Elzinga, Evert J.; Kustka, Adam B.

    2015-04-09

    We employed Mn-54 radiotracers to characterize the extent and dynamics of Mn atom exchange between aqueous Mn(II) and vernadite (δ-Mn(IV)O2) at pH 7.5 under anoxic conditions. Exchange of Mn atoms between the solid and liquid phase is rapid, reaching dynamic equilibrium in 2–4 days. We propose that during the initial stages of reaction, Mn atom exchange occurs through consecutive comproportionation-disproportionation reactions where interfacial electron transfer from adsorbed Mn(II) to lattice Mn(IV) generates labile Mn(III) cations that rapidly disproportionate to reform aqueous Mn(II) and solid-phase Mn(IV). Following nucleation of Mn(III)OOH phases, additional exchange likely occurs through electron transfer from aqueous Mn(II) to solid-phase Mn(III). Our results provide evidence for the fast and extensive production of transient Mn(III) species at the vernadite surface upon contact of this substrate with dissolved Mn(II). We further show that HEPES buffer is a reductant of lattice Mn(IV) in the vernadite structure in our experiments. The methods and results presented here introduce application of Mn-54 tracers as a facile tool to further investigate the formation kinetics of labile Mn(III) surface species and their impacts on Mn-oxide structure and reactivity over a range of environmentally relevant geochemical conditions.

  17. Chemical and physical transformations of mercury in the ocean: a review

    NASA Astrophysics Data System (ADS)

    Batrakova, N.; Travnikov, O.; Rozovskaya, O.

    2014-12-01

    Mercury is well known as a dangerous neurotoxin enriched in the environment by human activities. It disperses over the globe, cycling between different environmental media. The ocean plays an important role in the global mercury cycle, acting both as a dispersion medium and as an exposure pathway. In this paper, we review the current knowledge on the major physical and chemical transformations of mercury in the ocean. This review describes the mechanisms and provides a compilation of available rate constants for the major processes in seawater, including oxidation and reduction reactions under light and dark conditions, biotic and abiotic methylation/demethylation, and adsorption by particles. These data could be useful for the development of transport models describing processes undergone by mercury in the ocean.

  18. Formation of pristane from α-tocopherol under simulated anoxic sedimentary conditions: A combination of biotic and abiotic degradative processes

    NASA Astrophysics Data System (ADS)

    Rontani, Jean-François; Nassiry, Mina; Michotey, Valérie; Guasco, Sophie; Bonin, Patricia

    2010-01-01

    Incubation of intact and oxidized α-tocopherol (vitamin E) in anaerobic sediment slurries allowed us to demonstrate that, as previously suggested by Goossens et al. (1984), the degradation of α-tocopherol in anoxic sediments results in the formation of pristane. The conversion of α-tocopherol to this isoprenoid alkane involves a combination of biotic and abiotic degradative processes, i.e. the anaerobic biodegradation (which seems to be mainly induced by denitrifying bacteria) of trimeric structures resulting from the abiotic oxidation of α-tocopherol. On the basis of the results obtained, it is proposed that in the marine environment most of the α-tocopherol present in phytoplanktonic cells should be quickly degraded within the water column and the oxic zone of sediments by way of aerobic biodegradation, photo- and autoxidation processes. Abiotic transformation of this compound mainly results in the production of trimeric oxidation products, sufficiently stable to be incorporated into anoxic sediments and whose subsequent anaerobic bacterial degradation affords pristane. These results confirm that the ratio pristane to phytane cannot be used as an indicator of the oxicity of the environment of deposition; in contrast, they support the use of PFI (Pristane Formation Index) as a proxy for the state of diagenesis of sedimentary organic matter.

  19. Reductive Dechlorination of Carbon Tetrachloride by Tetrachloroethene and Trichloroethene Respiring Anaerobic Mixed Cultures

    NASA Astrophysics Data System (ADS)

    Vickstrom, K. E.; Azizian, M.; Semprini, L.

    2015-12-01

    Carbon tetrachloride (CT) is a toxic and recalcitrant groundwater contaminant with the potential to form a broad range of transformation products. Of the possible biochemical pathways through which CT can be degraded, reductive dehalogenation to less chlorinated compounds and mineralization to carbon dioxide (CO2) appear to be the most frequently utilized pathways by anaerobic organisms. Results will be presented from batch experiments of CT degradation by the Evanite (EV), Victoria Strain (VS) and Point Mugu (PM) anaerobic dechlorinating cultures. The cultures are grown in chemostats and are capable of transforming tetrachloroethene (PCE) or trichloroethene (TCE) to ethene by halorespiration via reductive dehalogenase enzymes. For the batch CT transformation tests, the cells along with supernatant were harvested from chemostats fed PCE or TCE, but never CT. The batch reactors were initially fed 0.0085 mM CT and an excess of formate (EV and VS) or lactate (PM) as electron donor. Transformation of CT was 100% with about 20% converted to chloroform (CF) and undetected products. Multiple additions of CT showed a slowing of pseudo first-order CT transformation rates across all cultures. Batch reactors were then established and fed 0.085 mM CT with an excess of electron donor in order to better quantify the reductive pathway. CT was transformed to CF and dichloromethane (DCM), with trace amounts of chloromethane (CM) detected. Between 60-90% of the mass added to the system was accounted for, showing that the majority of the carbon tetrachloride present is being reductively dehalogenated. Results from batch reactors that were poisoned using sodium azide, and from reactors not provided electron donor will be presented to distinguish between biotic and abiotic reactions. Furthermore, results from reactors prepared with acetylene (a potent, reversible inhibitor of reductive dehalogenases (1)) will be presented as a means of identifying the enzymes involved in the

  20. Chloroplast transformation.

    PubMed

    Lu, Xiao-Mei; Yin, Wei-Bo; Hu, Zan-Min

    2006-01-01

    In this chapter we briefly review the developmental history and current research status of chloroplast transformation and introduce the merits of chloroplast transformation as compared with the nuclear genome transformation. Furthermore, according to the chloroplast transformation achieved in oilseed rape (Brassica napus), we introduce the preparation of explants, transformation methods, system selection, identification methods of the transplastomic plants, and experimental results. The technical points, the bottleneck, and the further research directions of the chloroplast transformation are discussed in the notes.

  1. Nonlinear transient simulation of transformers

    SciTech Connect

    Pierrat, L.; Tran-Quoc, T. |; Montmeat, A.

    1995-12-31

    In this paper, a nonlinear model of transformer which takes into account both the saturation and the hysteresis is proposed. In order to simulate transient phenomena in transformers, a system of equations is presented. The digital simulation of the energization and de-energization of a three-phase distribution transformer is studied. Ferroresonant phenomena in iron core transformers supplied through capacitive links are presented. Finally, the influence of MOV arresters on overvoltage reduction is investigated.

  2. Mechanisms of plant-plant interactions: concealment from herbivores is more important than abiotic-stress mediation in an African savannah.

    PubMed

    Louthan, Allison M; Doak, Daniel F; Goheen, Jacob R; Palmer, Todd M; Pringle, Robert M

    2014-04-01

    Recent work on facilitative plant-plant interactions has emphasized the importance of neighbours' amelioration of abiotic stress, but the facilitative effects of neighbours in reducing plant apparency to herbivores have received less attention. Whereas theory on stress reduction predicts that competition should be more important in less stressful conditions, with facilitation becoming more important in harsh environments, apparency theory suggests that facilitation should be greater in the presence of herbivores, where it is disadvantageous to be conspicuous regardless of abiotic stress level. We tested the relative strength of neighbours' stress reduction versus apparency reduction on survival, growth, reproduction and lifetime fitness of Hibiscus meyeri, a common forb in central Kenya, using neighbour removals conducted inside and outside large-herbivore exclosures replicated in arid and mesic sites. In the absence of herbivores, neighbours competed with H. meyeri in mesic areas and facilitated H. meyeri in arid areas, as predicted by stress-reduction mechanisms. By contrast, neighbours facilitated H. meyeri in the presence of herbivory, regardless of aridity level, consistent with plant apparency. Our results show that the facilitative effects arising from plant apparency are stronger than the effects arising from abiotic stress reduction in this system, suggesting that plant-apparency effects may be particularly important in systems with extant large-herbivore communities.

  3. O2 and H2O2 transformation steps for the oxygen reduction reaction catalyzed by graphitic nitrogen-doped carbon nanotubes in acidic electrolyte from first principles calculations.

    PubMed

    Li, Yuhang; Zhong, Guoyu; Yu, Hao; Wang, Hongjuan; Peng, Feng

    2015-09-14

    It is highly challenging but extremely desirable to develop carbon catalysts with high oxygen reduction reaction (ORR) activity and stability in acidic medium for commercial application. In this paper, based on density functional theory (DFT) calculations with long range interaction correction and solvation effects, the elementary transformations of all the probable intermediates in the ORR and the hydrogen peroxide reduction reaction (HPRR) over graphitic nitrogen-doped carbon nanotubes (NCNTs) in acidic medium were evaluated, and it was found that all the rate determining steps are related to the bonding hydroxyl group because of the strong interaction between the hydroxyl group and carbon. Thus, it is hard for the direct four-electron ORR and the two-electron HPRR to proceed. Together with hydrogen peroxide disproportionation (HPD), a mixed mechanism for the ORR in acidic electrolyte was proposed, where the two-electron and three-electron ORRs and HPD dominate the electrode reaction. The experimental result for the ORR catalyzed by NCNTs in acidic electrolyte also well illustrated the rationality of the theoretical calculations. This study not only gives new insights into the effect of graphitic nitrogen doping on the ORR catalyzed by carbon, but also provides a guide to design carbon catalysts with high ORR activity in acidic electrolyte.

  4. Abiotic Nitrous Oxide Production in Natural and Artificial Seawater

    NASA Astrophysics Data System (ADS)

    Ochoa, H.; Stanton, C. L.; Cavazos, A. R.; Ostrom, N. E.; Glass, J. B.

    2014-12-01

    The ocean contributes approximately one third of global sources of nitrous oxide (N2O) to the atmosphere. While nitrification is thought to be the dominant pathway for marine N2O production, mechanisms remain unresolved. Previous studies have carried the implicit assumption that marine N2O originates directly from enzymatic sources. However, abiotic production of N2O is possible via chemical reactions between nitrogenous intermediates and redox active trace metals in seawater. In this study, we investigated N2O production and isotopic composition in treatments with and without added hydroxylamine (NH2OH) and nitric oxide (NO), intermediates in microbial oxidation of ammonia to nitrite, and Fe(III). Addition of substrates to sterile artificial seawater was compared with filtered and unfiltered seawater from Sapelo Island, coastal Georgia, USA. N2O production was observed immediately after addition of Fe(III) in the presence of NH2OH at pH 8 in sterile artificial seawater. Highest N2O production was observed in the presence of Fe(III), NO, and NH2OH. The isotopomer site preference of abiotically produced N2O was consistent with previous studies (31 ± 2 ‰). Higher abiotic N2O production was observed in sterile artificial seawater (salinity: 35 ppt) than filtered Sapelo Island seawater (salinity: 25 ppt) whereas diluted sterile artificial seawater (18 ppt) showed lowest N2O production, suggesting that higher salinity promotes enhanced abiotic N2O production. Addition of Fe(III) to unfiltered Sapelo Island seawater stimulated N2O production. The presence of ammonia-oxidizing archaea (AOA), which lack known N2O producing enzymes, in Sapelo Island seawater was confirmed by successful amplification of the archaeal amoA gene, whereas ammonia-oxidizing bacteria (AOB), which contain N2O-producing enzymes were undetected. Given the few Fe-containing proteins present in AOA, it is likely that Fe(III) addition promoted N2O production via an abiotic vs. enzymatic N2O mechanism

  5. Reduction of 2,4,6-trinitrotoluene by Clostridium acetobutylicum through hydroxylamino-nitrotoluene intermediates

    SciTech Connect

    Hughes, J.B.; Wang, C.Y.; Bhadra, R.; Richardson, A.; Bennett, G.N.; Rudolph, F.B.

    1998-03-01

    Studies were conducted to isolate and identify intermediates of 2,4,6-trinitrotoluene (TNT) transformation by Clostridium acetobutylicum and to quantify their concentrations in active whole cell cultures. Only two intermediates of TNT reduction were detected in cell cultures and were identified as 4-hydroxylamino-2,6-dinitrotoluene and 2,4-dihydroxylamino-6-nitrotoluene. Structures were confirmed with {sup 1}H-NMR, {sup 13}C-NMR, and desorption chemical ionization mass spectroscopy. When cells were suspended in a non-growth saline medium, both hydroxylamine forms accumulated. In media capable of supporting cell growth, the 2,4-dihydroxylamino-6-nitrotoluene accumulated with concentrations of 4-hydroxylamino-2,6-dinitrotoluene remaining near detection limits. Studies using purified 2,4-dihydroxylamino-6-nitrotoluene confirmed that its biotransformation rate in active cultures greatly exceeded abiotic decomposition in aqueous medium.

  6. Reductive dechlorination of Tri- and tetrachloroethylenes depends on transition from aerobic to anaerobic conditions.

    PubMed Central

    Kästner, M

    1991-01-01

    Aerobic enrichment cultures from contaminated groundwaters dechlorinated trichloroethylene (TCE) (14.6 mg/liter; 111 mumol/liter) and tetrachloroethylene (PCE) (16.2 mg/liter; 98 mumol/liter) reductively within 4 days after the transition from aerobic to anaerobic conditions. The transformation products were equimolar amounts of cis-1,2-dichloroethylene and traces of 1,1-dichloroethylene. No other chlorinated product and no methane were detected. The change was accompanied by the release of sulfide, which caused a decrease in the redox potential from 0 to -150 mV. In sterile control experiments, sulfide led to the abiotic formation of traces of 1,1-dichloroethylene without cis-1,2-dichloroethylene production. The reductive dechlorination of PCE via TCE depended on these specific transition conditions after consumption of the electron acceptor oxygen or nitrate. Repeated feeding of TCE or PCE to cultures after the change to anaerobic conditions yielded no further dechlorination. Only aerobic subcultures with an air/liquid ratio of 1:4 maintained dechlorination activities; anaerobic subcultures showed no transformation. Bacteria from noncontaminated sites showed no reduction under the same conditions. PMID:1892393

  7. Hormone balance and abiotic stress tolerance in crop plants.

    PubMed

    Peleg, Zvi; Blumwald, Eduardo

    2011-06-01

    Plant hormones play central roles in the ability of plants to adapt to changing environments, by mediating growth, development, nutrient allocation, and source/sink transitions. Although ABA is the most studied stress-responsive hormone, the role of cytokinins, brassinosteroids, and auxins during environmental stress is emerging. Recent evidence indicated that plant hormones are involved in multiple processes. Cross-talk between the different plant hormones results in synergetic or antagonic interactions that play crucial roles in response of plants to abiotic stress. The characterization of the molecular mechanisms regulating hormone synthesis, signaling, and action are facilitating the modification of hormone biosynthetic pathways for the generation of transgenic crop plants with enhanced abiotic stress tolerance.

  8. Arbuscular mycorrhizal fungal responses to abiotic stresses: A review.

    PubMed

    Lenoir, Ingrid; Fontaine, Joël; Lounès-Hadj Sahraoui, Anissa

    2016-03-01

    The majority of plants live in close collaboration with a diversity of soil organisms among which arbuscular mycorrhizal fungi (AMF) play an essential role. Mycorrhizal symbioses contribute to plant growth and plant protection against various environmental stresses. Whereas the resistance mechanisms induced in mycorrhizal plants after exposure to abiotic stresses, such as drought, salinity and pollution, are well documented, the knowledge about the stress tolerance mechanisms implemented by the AMF themselves is limited. This review provides an overview of the impacts of various abiotic stresses (pollution, salinity, drought, extreme temperatures, CO2, calcareous, acidity) on biodiversity, abundance and development of AMF and examines the morphological, biochemical and molecular mechanisms implemented by AMF to survive in the presence of these stresses. PMID:26803396

  9. Molecular approaches to improve rice abiotic stress tolerance.

    PubMed

    Mizoi, Junya; Yamaguchi-Shinozaki, Kazuko

    2013-01-01

    Abiotic stress is a major factor limiting productivity of rice crops in large areas of the world. Because plants cannot avoid abiotic stress by moving, they have acquired various mechanisms for stress tolerance in the course of their evolution. Enhancing or introducing such mechanisms in rice is one effective way to develop stress-tolerant cultivars. Based on physiological studies on stress responses, recent progress in plant molecular biology has enabled discovery of many genes involved in stress tolerance. These genes include regulatory genes, which regulate stress response (e.g., transcription factors and protein kinases), and functional genes, which protect the cell (e.g., enzymes for generating protective metabolites and proteins). Both kinds of genes are used to increase stress tolerance in rice. In addition, several quantitative trait loci (QTLs) associated with higher stress tolerance have been cloned, contributing to the discovery of significantly important genes for stress tolerance.

  10. Demonstration of significant abiotic iron isotope fractionation in nature

    USGS Publications Warehouse

    Bullen, T.D.; White, A.F.; Childs, C.W.; Vivit, D.V.; Schultz, M.S.

    2001-01-01

    Field and laboratory studies reveal that the mineral ferrihydrite, formed as a result of abiotic oxidation of aqueous ferrous to ferric Fe, contains Fe that is isotopically heavy relative to coexisting aqueous Fe. Because the electron transfer step of the oxidation process at pH >5 is essentially irreversible and should favor the lighter Fe isotopes in the ferric iron product, this result suggests that relatively heavy Fe isotopes are preferentially partitioned into the readily oxidized Fe(II)(OH)x(aq) species or their transition complexes prior to oxidation. The apparent Fe isotope fractionation factor, ??ferrihydrite-water, depends primarily on the relative abundances of the Fe(II)(aq) species. This study demonstrates that abiotic processes can fractionate the Fe isotopes to the same extent as biotic processes, and thus Fe isotopes on their own do not provide an effective biosignature.

  11. Abiotic racemization kinetics of amino acids in marine sediments.

    PubMed

    Steen, Andrew D; Jørgensen, Bo Barker; Lomstein, Bente Aa

    2013-01-01

    The ratios of d- versus l-amino acids can be used to infer the sources and composition of sedimentary organic matter. Such inferences, however, rely on knowing the rates at which amino acids in sedimentary organic matter racemize abiotically between the d- and the l-forms. Based on a heating experiment, we report kinetic parameters for racemization of aspartic acid, glutamic acid, serine, and alanine in bulk sediment from Aarhus Bay, Denmark, taken from the surface, 30 cm, and 340 cm depth below seafloor. Extrapolation to a typical cold deep sea sediment temperature of 3°C suggests racemization rate constants of 0.50×10(-5)-11×10(-5) yr(-1). These results can be used in conjunction with measurements of sediment age to predict the ratio of d:l amino acids due solely to abiotic racemization of the source material, deviations from which can indicate the abundance and turnover of active microbial populations.

  12. Genomics Approaches for Crop Improvement against Abiotic Stress

    PubMed Central

    Akpınar, Bala Anı; Lucas, Stuart J.; Budak, Hikmet

    2013-01-01

    As sessile organisms, plants are inevitably exposed to one or a combination of stress factors every now and then throughout their growth and development. Stress responses vary considerably even in the same plant species; stress-susceptible genotypes are at one extreme, and stress-tolerant ones are at the other. Elucidation of the stress responses of crop plants is of extreme relevance, considering the central role of crops in food and biofuel production. Crop improvement has been a traditional issue to increase yields and enhance stress tolerance; however, crop improvement against abiotic stresses has been particularly compelling, given the complex nature of these stresses. As traditional strategies for crop improvement approach their limits, the era of genomics research has arisen with new and promising perspectives in breeding improved varieties against abiotic stresses. PMID:23844392

  13. An abiotic analogue of the nuclear pore complex hydrogel.

    PubMed

    Bird, Sean P; Baker, Lane A

    2011-09-12

    We describe an abiotic hydrogel that mimics selectivity of the nuclear pore complex. Copolymerization of peptide tetramers (phenylalanine-serine-phenylalanine-glycine, FSFG) with acrylamide results in hydrophobic interactions significant enough to allow the formation of freestanding hydrogel structures. Incorporation of FSFG motifs also renders the hydrogels selective. Selective binding of importins and nuclear transport receptor-cargo complexes is qualitatively demonstrated and compared with polyacrylamide, hydrogels prepared from a control peptide, and hydrogels prepared from the nuclear pore complex protein Nsp1. These abiotic hydrogels will enable further studies of the unique transport mechanisms of the nuclear pore complex and provide an interesting paradigm for the future development of synthetic platforms for separations and selective interfaces.

  14. Progress and challenges for abiotic stress proteomics of crop plants.

    PubMed

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar

    2013-06-01

    Plants are continually challenged to recognize and respond to adverse changes in their environment to avoid detrimental effects on growth and development. Understanding the mechanisms that crop plants employ to resist and tolerate abiotic stress is of considerable interest for designing agriculture breeding strategies to ensure sustainable productivity. The application of proteomics technologies to advance our knowledge in crop plant abiotic stress tolerance has increased dramatically in the past few years as evidenced by the large amount of publications in this area. This is attributed to advances in various technology platforms associated with MS-based techniques as well as the accessibility of proteomics units to a wider plant research community. This review summarizes the work which has been reported for major crop plants and evaluates the findings in context of the approaches that are widely employed with the aim to encourage broadening the strategies used to increase coverage of the proteome. PMID:23512887

  15. Abiotic mediation of a mutualism drives herbivore abundance.

    PubMed

    Mooney, Emily H; Phillips, Joseph S; Tillberg, Chadwick V; Sandrow, Cheryl; Nelson, Annika S; Mooney, Kailen A

    2016-01-01

    Species abundance is typically determined by the abiotic environment, but the extent to which such effects occur through the mediation of biotic interactions, including mutualisms, is unknown. We explored how light environment (open meadow vs. shaded understory) mediates the abundance and ant tending of the aphid Aphis helianthi feeding on the herb Ligusticum porteri. Yearly surveys consistently found aphids to be more than 17-fold more abundant on open meadow plants than on shaded understory plants. Manipulations demonstrated that this abundance pattern was not due to the direct effects of light environment on aphid performance, or indirectly through host plant quality or the effects of predators. Instead, open meadows had higher ant abundance and per capita rates of aphid tending and, accordingly, ants increased aphid population growth in meadow but not understory environments. The abiotic environment thus drives the abundance of this herbivore exclusively through the mediation of a protection mutualism.

  16. Progress and challenges for abiotic stress proteomics of crop plants.

    PubMed

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar

    2013-06-01

    Plants are continually challenged to recognize and respond to adverse changes in their environment to avoid detrimental effects on growth and development. Understanding the mechanisms that crop plants employ to resist and tolerate abiotic stress is of considerable interest for designing agriculture breeding strategies to ensure sustainable productivity. The application of proteomics technologies to advance our knowledge in crop plant abiotic stress tolerance has increased dramatically in the past few years as evidenced by the large amount of publications in this area. This is attributed to advances in various technology platforms associated with MS-based techniques as well as the accessibility of proteomics units to a wider plant research community. This review summarizes the work which has been reported for major crop plants and evaluates the findings in context of the approaches that are widely employed with the aim to encourage broadening the strategies used to increase coverage of the proteome.

  17. Abiotic Formation of Hydrocarbons Under Hydrothermal Conditions: Constraints from Chemical and Isotope Data

    SciTech Connect

    Fu, Q.; Lollar, Barbara Sherwood; Horita, Juske; Lacrampe-Couloume, Georges; Seyfried, W. E.

    2007-01-01

    To understand reaction pathways and isotope systematics during mineral-catalyzed abiotic synthesis of hydrocarbons under hydrothermal conditions, experiments involving magnetite and CO{sub 2} and H{sub 2}-bearing aqueous fluids were conducted at 400 C and 500 bars. A robust technique for sample storage and transfer from experimental apparatus to stable isotope mass spectrometer provides a methodology for integration of both carbon and hydrogen isotope characterization of reactants and products generated during abiogenic synthesis experiments. Experiments were performed with and without pretreatment of magnetite to remove background carbon associated with the mineral catalyst. Prior to experiments, the abundance and carbon isotope composition of all carbon-bearing components were determined. Time-series samples of the fluid from all experiments indicated significant concentrations of dissolved CO and C{sub 1}-C{sub 3} hydrocarbons and relatively large changes in dissolved CO{sub 2} and H{sub 2} concentrations, consistent with formation of additional hydrocarbon components beyond C{sub 3}. The existence of relatively high dissolved alkanes in the experiment involving non-pretreated magnetite in particular, suggests a complex catalytic process, likely involving reinforcing effects of mineral-derived carbon with newly synthesized hydrocarbons at the magnetite surface. Similar reactions may be important mechanisms for carbon reduction in chemically complex natural hydrothermal systems. In spite of evidence supporting abiotic hydrocarbon formation in all experiments, an 'isotopic reversal' trend was not observed for {sup 13}C values of dissolved alkanes with increasing carbon number. This may relate to the specific mechanism of carbon reduction and hydrocarbon chain growth under hydrothermal conditions at elevated temperatures and pressures. Over time, significant {sup 13}C depletion in CH{sub 4} suggests either depolymerization reactions occurring in addition to

  18. Energy harvesting by implantable abiotically catalyzed glucose fuel cells

    NASA Astrophysics Data System (ADS)

    Kerzenmacher, S.; Ducrée, J.; Zengerle, R.; von Stetten, F.

    Implantable glucose fuel cells are a promising approach to realize an autonomous energy supply for medical implants that solely relies on the electrochemical reaction of oxygen and glucose. Key advantage over conventional batteries is the abundant availability of both reactants in body fluids, rendering the need for regular replacement or external recharging mechanisms obsolete. Implantable glucose fuel cells, based on abiotic catalysts such as noble metals and activated carbon, have already been developed as power supply for cardiac pacemakers in the late-1960s. Whereas, in vitro and preliminary in vivo studies demonstrated their long-term stability, the performance of these fuel cells is limited to the μW-range. Consequently, no further developments have been reported since high-capacity lithium iodine batteries for cardiac pacemakers became available in the mid-1970s. In recent years research has been focused on enzymatically catalyzed glucose fuel cells. They offer higher power densities than their abiotically catalyzed counterparts, but the limited enzyme stability impedes long-term application. In this context, the trend towards increasingly energy-efficient low power MEMS (micro-electro-mechanical systems) implants has revived the interest in abiotic catalysts as a long-term stable alternative. This review covers the state-of-the-art in implantable abiotically catalyzed glucose fuel cells and their development since the 1960s. Different embodiment concepts are presented and the historical achievements of academic and industrial research groups are critically reviewed. Special regard is given to the applicability of the concept as sustainable micro-power generator for implantable devices.

  19. Changes in biotic and abiotic processes following mangrove clearing

    NASA Astrophysics Data System (ADS)

    Granek, Elise; Ruttenberg, Benjamin I.

    2008-12-01

    Mangrove forests, important tropical coastal habitats, are in decline worldwide primarily due to removal by humans. Changes to mangrove systems can alter ecosystem properties through direct effects on abiotic factors such as temperature, light and nutrient supply or through changes in biotic factors such as primary productivity or species composition. Despite the importance of mangroves as transitional habitats between land and sea, little research has examined changes that occur when they are cleared. We examined changes in a number of biotic and abiotic factors following the anthropogenic removal of red mangroves ( Rhizophora mangle) in the Panamanian Caribbean, including algal biomass, algal diversity, algal grazing rates, light penetration, temperature, sedimentation rates and sediment organic content. In this first study examining multiple ecosystem-level effects of mangrove disturbance, we found that areas cleared of mangroves had higher algal biomass and richness than intact mangrove areas. This increase in algal biomass and richness was likely due to changes in abiotic factors (e.g. light intensity, temperature), but not biotic factors (fish herbivory). Additionally the algal and cyanobacterial genera dominating mangrove-cleared areas were rare in intact mangroves and included a number of genera that compete with coral for space on reefs. Interestingly, sedimentation rates did not differ between intact and cleared areas, but the sediments that accumulated in intact mangroves had higher organic content. These findings are the first to demonstrate that anthropogenic clearing of mangroves changes multiple biotic and abiotic processes in mangrove forests and that some of these changes may influence adjacent habitats such as coral reefs and seagrass beds. Additional research is needed to further explore the community and ecosystem-level effects of mangrove clearing and their influence on adjacent habitats, but it is clear that mangrove conservation is an

  20. Polyamines in response to abiotic stress tolerance through transgenic approaches

    PubMed Central

    Pathak, Malabika Roy; Teixeira da Silva, Jaime A; Wani, Shabir H

    2014-01-01

    The distribution, growth, development and productivity of crop plants are greatly affected by various abiotic stresses. Worldwide, sustainable crop productivity is facing major challenges caused by abiotic stresses by reducing the potential yield in crop plants by as much as 70%. Plants can generally adapt to one or more environmental stresses to some extent. Physiological and molecular studies at transcriptional, translational, and transgenic plant levels have shown the pronounced involvement of naturally occurring plant polyamines (PAs), in controlling, conferring, and modulating abiotic stress tolerance in plants. PAs are small, low molecular weight, non-protein polycations at physiological pH, that are present in all living organisms, and that have strong binding capacity to negatively charged DNA, RNA, and different protein molecules. They play an important role in plant growth and development by controlling the cell cycle, acting as cell signaling molecules in modulating plant tolerance to a variety of abiotic stresses. The commonly known PAs, putrescine, spermidine, and spermine tend to accumulate together accompanied by an increase in the activities of their biosynthetic enzymes under a range of environmental stresses. PAs help plants to combat stresses either directly or by mediating a signal transduction pathway, as shown by molecular cloning and expression studies of PA biosynthesis-related genes, knowledge of the functions of PAs, as demonstrated by developmental studies, and through the analysis of transgenic plants carrying PA genes. This review highlights how PAs in higher plants act during environmental stress and how transgenic strategies have improved our understanding of the molecular mechanisms at play. PMID:24710064

  1. Wheat EST resources for functional genomics of abiotic stress

    PubMed Central

    Houde, Mario; Belcaid, Mahdi; Ouellet, François; Danyluk, Jean; Monroy, Antonio F; Dryanova, Ani; Gulick, Patrick; Bergeron, Anne; Laroche, André; Links, Matthew G; MacCarthy, Luke; Crosby, William L; Sarhan, Fathey

    2006-01-01

    Background Wheat is an excellent species to study freezing tolerance and other abiotic stresses. However, the sequence of the wheat genome has not been completely characterized due to its complexity and large size. To circumvent this obstacle and identify genes involved in cold acclimation and associated stresses, a large scale EST sequencing approach was undertaken by the Functional Genomics of Abiotic Stress (FGAS) project. Results We generated 73,521 quality-filtered ESTs from eleven cDNA libraries constructed from wheat plants exposed to various abiotic stresses and at different developmental stages. In addition, 196,041 ESTs for which tracefiles were available from the National Science Foundation wheat EST sequencing program and DuPont were also quality-filtered and used in the analysis. Clustering of the combined ESTs with d2_cluster and TGICL yielded a few large clusters containing several thousand ESTs that were refractory to routine clustering techniques. To resolve this problem, the sequence proximity and "bridges" were identified by an e-value distance graph to manually break clusters into smaller groups. Assembly of the resolved ESTs generated a 75,488 unique sequence set (31,580 contigs and 43,908 singletons/singlets). Digital expression analyses indicated that the FGAS dataset is enriched in stress-regulated genes compared to the other public datasets. Over 43% of the unique sequence set was annotated and classified into functional categories according to Gene Ontology. Conclusion We have annotated 29,556 different sequences, an almost 5-fold increase in annotated sequences compared to the available wheat public databases. Digital expression analysis combined with gene annotation helped in the identification of several pathways associated with abiotic stress. The genomic resources and knowledge developed by this project will contribute to a better understanding of the different mechanisms that govern stress tolerance in wheat and other cereals. PMID

  2. Abiotic Deposition of Fe Complexes onto Leptothrix Sheaths

    PubMed Central

    Kunoh, Tatsuki; Hashimoto, Hideki; McFarlane, Ian R.; Hayashi, Naoaki; Suzuki, Tomoko; Taketa, Eisuke; Tamura, Katsunori; Takano, Mikio; El-Naggar, Mohamed Y.; Kunoh, Hitoshi; Takada, Jun

    2016-01-01

    Bacteria classified in species of the genus Leptothrix produce extracellular, microtubular, Fe-encrusted sheaths. The encrustation has been previously linked to bacterial Fe oxidases, which oxidize Fe(II) to Fe(III) and/or active groups of bacterial exopolymers within sheaths to attract and bind aqueous-phase inorganics. When L. cholodnii SP-6 cells were cultured in media amended with high Fe(II) concentrations, Fe(III) precipitates visibly formed immediately after addition of Fe(II) to the medium, suggesting prompt abiotic oxidation of Fe(II) to Fe(III). Intriguingly, these precipitates were deposited onto the sheath surface of bacterial cells as the population was actively growing. When Fe(III) was added to the medium, similar precipitates formed in the medium first and were abiotically deposited onto the sheath surfaces. The precipitates in the Fe(II) medium were composed of assemblies of globular, amorphous particles (ca. 50 nm diameter), while those in the Fe(III) medium were composed of large, aggregated particles (≥3 µm diameter) with a similar amorphous structure. These precipitates also adhered to cell-free sheaths. We thus concluded that direct abiotic deposition of Fe complexes onto the sheath surface occurs independently of cellular activity in liquid media containing Fe salts, although it remains unclear how this deposition is associated with the previously proposed mechanisms (oxidation enzyme- and/or active group of organic components-involved) of Fe encrustation of the Leptothrix sheaths. PMID:27271677

  3. Cell Wall Metabolism in Response to Abiotic Stress.

    PubMed

    Le Gall, Hyacinthe; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-01-01

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions. PMID:27135320

  4. Titania may produce abiotic oxygen atmospheres on habitable exoplanets

    PubMed Central

    Narita, Norio; Enomoto, Takafumi; Masaoka, Shigeyuki; Kusakabe, Nobuhiko

    2015-01-01

    The search for habitable exoplanets in the Universe is actively ongoing in the field of astronomy. The biggest future milestone is to determine whether life exists on such habitable exoplanets. In that context, oxygen in the atmosphere has been considered strong evidence for the presence of photosynthetic organisms. In this paper, we show that a previously unconsidered photochemical mechanism by titanium (IV) oxide (titania) can produce abiotic oxygen from liquid water under near ultraviolet (NUV) lights on the surface of exoplanets. Titania works as a photocatalyst to dissociate liquid water in this process. This mechanism offers a different source of a possibility of abiotic oxygen in atmospheres of exoplanets from previously considered photodissociation of water vapor in upper atmospheres by extreme ultraviolet (XUV) light. Our order-of-magnitude estimation shows that possible amounts of oxygen produced by this abiotic mechanism can be comparable with or even more than that in the atmosphere of the current Earth, depending on the amount of active surface area for this mechanism. We conclude that titania may act as a potential source of false signs of life on habitable exoplanets. PMID:26354078

  5. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants

    PubMed Central

    Sah, Saroj K.; Reddy, Kambham R.; Li, Jiaxu

    2016-01-01

    Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression. PMID:27200044

  6. Titania may produce abiotic oxygen atmospheres on habitable exoplanets

    NASA Astrophysics Data System (ADS)

    Narita, Norio; Enomoto, Takafumi; Masaoka, Shigeyuki; Kusakabe, Nobuhiko

    2015-12-01

    The search for habitable exoplanets in the Universe is actively ongoing in the field of astronomy. The biggest future milestone is to determine whether life exists on such habitable exoplanets. In that context, oxygen in the atmosphere has been considered strong evidence for the presence of photosynthetic organisms. In this paper, we show that a previously unconsidered photochemical mechanism by titanium (IV) oxide (titania) can produce abiotic oxygen from liquid water under near ultraviolet (NUV) lights on the surface of exoplanets. Titania works as a photocatalyst to dissociate liquid water in this process. This mechanism offers a different source of a possibility of abiotic oxygen in atmospheres of exoplanets from previously considered photodissociation of water vapor in upper atmospheres by extreme ultraviolet (XUV) light. Our order-of-magnitude estimation shows that possible amounts of oxygen produced by this abiotic mechanism can be comparable with or even more than that in the atmosphere of the current Earth, depending on the amount of active surface area for this mechanism. We conclude that titania may act as a potential source of false signs of life on habitable exoplanets.Reference:Narita N. et al.,Scientific Reports 5, Article number: 13977 (2015)http://www.nature.com/articles/srep13977

  7. Titania may produce abiotic oxygen atmospheres on habitable exoplanets

    NASA Astrophysics Data System (ADS)

    Narita, Norio; Enomoto, Takafumi; Masaoka, Shigeyuki; Kusakabe, Nobuhiko

    2015-09-01

    The search for habitable exoplanets in the Universe is actively ongoing in the field of astronomy. The biggest future milestone is to determine whether life exists on such habitable exoplanets. In that context, oxygen in the atmosphere has been considered strong evidence for the presence of photosynthetic organisms. In this paper, we show that a previously unconsidered photochemical mechanism by titanium (IV) oxide (titania) can produce abiotic oxygen from liquid water under near ultraviolet (NUV) lights on the surface of exoplanets. Titania works as a photocatalyst to dissociate liquid water in this process. This mechanism offers a different source of a possibility of abiotic oxygen in atmospheres of exoplanets from previously considered photodissociation of water vapor in upper atmospheres by extreme ultraviolet (XUV) light. Our order-of-magnitude estimation shows that possible amounts of oxygen produced by this abiotic mechanism can be comparable with or even more than that in the atmosphere of the current Earth, depending on the amount of active surface area for this mechanism. We conclude that titania may act as a potential source of false signs of life on habitable exoplanets.

  8. Titania may produce abiotic oxygen atmospheres on habitable exoplanets.

    PubMed

    Narita, Norio; Enomoto, Takafumi; Masaoka, Shigeyuki; Kusakabe, Nobuhiko

    2015-09-10

    The search for habitable exoplanets in the Universe is actively ongoing in the field of astronomy. The biggest future milestone is to determine whether life exists on such habitable exoplanets. In that context, oxygen in the atmosphere has been considered strong evidence for the presence of photosynthetic organisms. In this paper, we show that a previously unconsidered photochemical mechanism by titanium (IV) oxide (titania) can produce abiotic oxygen from liquid water under near ultraviolet (NUV) lights on the surface of exoplanets. Titania works as a photocatalyst to dissociate liquid water in this process. This mechanism offers a different source of a possibility of abiotic oxygen in atmospheres of exoplanets from previously considered photodissociation of water vapor in upper atmospheres by extreme ultraviolet (XUV) light. Our order-of-magnitude estimation shows that possible amounts of oxygen produced by this abiotic mechanism can be comparable with or even more than that in the atmosphere of the current Earth, depending on the amount of active surface area for this mechanism. We conclude that titania may act as a potential source of false signs of life on habitable exoplanets.

  9. Abiotic carbonate dissolution traps carbon in a semiarid desert

    PubMed Central

    Fa, Keyu; Liu, Zhen; Zhang, Yuqing; Qin, Shugao; Wu, Bin; Liu, Jiabin

    2016-01-01

    It is generally considered that desert ecosystems release CO2 to the atmosphere, but recent studies in drylands have shown that the soil can absorb CO2 abiotically. However, the mechanisms and exact location of abiotic carbon absorption remain unclear. Here, we used soil sterilization, 13CO2 addition, and detection methods to trace 13C in the soil of the Mu Us Desert, northern China. After 13CO2 addition, a large amount of 13CO2 was absorbed by the sterilised soil, and 13C was found enriched both in the soil gaseous phase and dissolved inorganic carbon (DIC). Further analysis indicated that about 79.45% of the total 13C absorbed by the soil was trapped in DIC, while the amount of 13C in the soil gaseous phase accounted for only 0.22% of the total absorbed 13C. However, about 20.33% of the total absorbed 13C remained undetected. Our results suggest that carbonate dissolution might occur predominately, and the soil liquid phase might trap the majority of abiotically absorbed carbon. It is possible that the trapped carbon in the soil liquid phase leaches into the groundwater; however, further studies are required to support this hypothesis. PMID:27020762

  10. Cell Wall Metabolism in Response to Abiotic Stress

    PubMed Central

    Gall, Hyacinthe Le; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-01-01

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions. PMID:27135320

  11. Abiotic Deposition of Fe Complexes onto Leptothrix Sheaths.

    PubMed

    Kunoh, Tatsuki; Hashimoto, Hideki; McFarlane, Ian R; Hayashi, Naoaki; Suzuki, Tomoko; Taketa, Eisuke; Tamura, Katsunori; Takano, Mikio; El-Naggar, Mohamed Y; Kunoh, Hitoshi; Takada, Jun

    2016-01-01

    Bacteria classified in species of the genus Leptothrix produce extracellular, microtubular, Fe-encrusted sheaths. The encrustation has been previously linked to bacterial Fe oxidases, which oxidize Fe(II) to Fe(III) and/or active groups of bacterial exopolymers within sheaths to attract and bind aqueous-phase inorganics. When L. cholodnii SP-6 cells were cultured in media amended with high Fe(II) concentrations, Fe(III) precipitates visibly formed immediately after addition of Fe(II) to the medium, suggesting prompt abiotic oxidation of Fe(II) to Fe(III). Intriguingly, these precipitates were deposited onto the sheath surface of bacterial cells as the population was actively growing. When Fe(III) was added to the medium, similar precipitates formed in the medium first and were abiotically deposited onto the sheath surfaces. The precipitates in the Fe(II) medium were composed of assemblies of globular, amorphous particles (ca. 50 nm diameter), while those in the Fe(III) medium were composed of large, aggregated particles (≥3 µm diameter) with a similar amorphous structure. These precipitates also adhered to cell-free sheaths. We thus concluded that direct abiotic deposition of Fe complexes onto the sheath surface occurs independently of cellular activity in liquid media containing Fe salts, although it remains unclear how this deposition is associated with the previously proposed mechanisms (oxidation enzyme- and/or active group of organic components-involved) of Fe encrustation of the Leptothrix sheaths. PMID:27271677

  12. Titania may produce abiotic oxygen atmospheres on habitable exoplanets.

    PubMed

    Narita, Norio; Enomoto, Takafumi; Masaoka, Shigeyuki; Kusakabe, Nobuhiko

    2015-01-01

    The search for habitable exoplanets in the Universe is actively ongoing in the field of astronomy. The biggest future milestone is to determine whether life exists on such habitable exoplanets. In that context, oxygen in the atmosphere has been considered strong evidence for the presence of photosynthetic organisms. In this paper, we show that a previously unconsidered photochemical mechanism by titanium (IV) oxide (titania) can produce abiotic oxygen from liquid water under near ultraviolet (NUV) lights on the surface of exoplanets. Titania works as a photocatalyst to dissociate liquid water in this process. This mechanism offers a different source of a possibility of abiotic oxygen in atmospheres of exoplanets from previously considered photodissociation of water vapor in upper atmospheres by extreme ultraviolet (XUV) light. Our order-of-magnitude estimation shows that possible amounts of oxygen produced by this abiotic mechanism can be comparable with or even more than that in the atmosphere of the current Earth, depending on the amount of active surface area for this mechanism. We conclude that titania may act as a potential source of false signs of life on habitable exoplanets. PMID:26354078

  13. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants.

    PubMed

    Sah, Saroj K; Reddy, Kambham R; Li, Jiaxu

    2016-01-01

    Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression. PMID:27200044

  14. Cell Wall Metabolism in Response to Abiotic Stress.

    PubMed

    Le Gall, Hyacinthe; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-02-16

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions.

  15. Abiotic Versus Biotic Weathering Of Olivine As Possible Biosignatures

    NASA Technical Reports Server (NTRS)

    Longazo, Teresa G.; Wentworth, Susan J.; Clemett, Simon J.; Southam, Gordon; McKay, David S.

    2001-01-01

    We are investigating the weathering of silicate minerals by both purely inorganic, and biologically mediated processes using field-emission scanning electron microscopy (FESEM) and energy dispersive x-ray spectroscopy (EDS). By resolving surface textures and chemical compositions of weathered surfaces at the sub-micron scale we hope to be able to distinguish abiotic from biotic weathering processes and so establish a new biosignature applicable to the study of astromaterials including but not limited to the Martian meteorites. Sterilized olivine grains (San Carlos, Arizona) no more than 1-2 mm in their longest dimension were optically assayed to be uniform in color and free of inclusions were selected as weathering subjects. Prior to all experiments surface morphologies and Fe/Mg ratios were determined for each grain using FE-SEM and EDS. Experiments were divided into two categories abiotic and biotic and were compared with "naturally" weathered samples. For the preliminary experiments, two trials (open and closed to the ambient laboratory environment) were performed under abiotic conditions, and three trials under biotic conditions (control, day 1 and day 2). The open system abiotic trials used sterile grains heated at 98 C and 200 C for both 24 and 48 hours in 1L double distilled de-ionized water. The closed system abiotic trials were conducted under the same conditions but in a sealed two layer steel/Teflon "bomb" apparatus. The biotic trials used sterile grains mounted in a flow-through device attached to a wellhead on the Columbia River aquifer. Several discolored, altered, grains were selected to document "natural" weathering surface textures for comparison with the experimental samples. Preliminary results indicate there are qualitative differences in weathered surface textures among all the designed experiments. The olivine grains in abiotic trials displayed etching, pitting, denticulate margins, dissolution and clay formation. The scale of the features

  16. Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin

    PubMed Central

    Shi, Haitao; Jiang, Chuan; Ye, Tiantian; Tan, Dun-xian; Reiter, Russel J.; Zhang, Heng; Liu, Renyi; Chan, Zhulong

    2015-01-01

    Melatonin (N-acetyl-5-methoxytryptamine), a well-known animal hormone, is also involved in plant development and abiotic stress responses. In this study, it is shown that exogenous application of melatonin conferred improved salt, drought, and cold stress resistances in bermudagrass. Moreover, exogenous melatonin treatment alleviated reactive oxygen species (ROS) burst and cell damage induced by abiotic stress; this involved activation of several antioxidants. Additionally, melatonin-pre-treated plants exhibited higher concentrations of 54 metabolites, including amino acids, organic acids, sugars, and sugar alcohols, than non-treated plants under abiotic stress conditions. Genome-wide transcriptomic profiling identified 3933 transcripts (2361 up-regulated and 1572 down-regulated) that were differentially expressed in melatonin-treated plants versus controls. Pathway and gene ontology (GO) term enrichment analyses revealed that genes involved in nitrogen metabolism, major carbohydrate metabolism, tricarboxylic acid (TCA)/org transformation, transport, hormone metabolism, metal handling, redox, and secondary metabolism were over-represented after melatonin pre-treatment. Taken together, this study provides the first evidence of the protective roles of exogenous melatonin in the bermudagrass response to abiotic stresses, partially via activation of antioxidants and modulation of metabolic homeostasis. Notably, metabolic and transcriptomic analyses showed that the underlying mechanisms of melatonin could involve major reorientation of photorespiratory and carbohydrate and nitrogen metabolism. PMID:25225478

  17. Abiotic Transformations Of 17α-Estradiol In Simulated Wastewater Influent

    EPA Science Inventory

    Scientists from various disciplines have been studying the fate, impact and transport of estrogens in natural and engineered systems. Emphasis is mostly focused on natural and synthetic estrogens affiliated with humans and animals. It is widely accepted that Wastewater Treatmen...

  18. Abiotic and Biotic Transformation of TCE under Sulfate Reducing Conditions: the Role of Spatial Heterogeneity

    EPA Science Inventory

    At a number of sites in the USA, passive reactive barriers built with shredded plant mulch have been constructed to treat ground water contaminated with TCE. These barriers are called biowalls because anaerobic biodegradation of the plant mulch is expected to provide substrates...

  19. SORPTION AND ABIOTIC REDOX TRANSFORMATION OF NITROBENZENE AT THE SMECTITE-WATER INTERFACE

    EPA Science Inventory

    The effect of the redox state of structural Fe on the surface reactivity of iron-bearing phyllosilicates in aqueous suspension was investigated using a molecular probe. For this purpose the structural Fe in montmorillonite and ferruginous smectite was chemically reduced by sodium...

  20. ABIOTIC REDOX TRANSFORMATION OF ORGANIC COMPOUNDS AT THE CLAY-WATER INTERFACE

    EPA Science Inventory

    The interactions of clay, water and organic compounds considerably modify the structural and physico-chemical properties of all components and create a unique domain for biological and chemical species in environments. Previous research indicates that the nature and properties of...

  1. Biotic and abiotic degradation of four cephalosporin antibiotics in a lake surface water and sediment.

    PubMed

    Jiang, Muxian; Wang, Lianhong; Ji, Rong

    2010-09-01

    Cephalosporins are widely used veterinary and human antibiotics, but their environmental fate and impacts are still unclear. We studied degradation of four cephalosporins (cefradine, cefuroxime, ceftriaxone, and cefepime) from each generation in the surface water and sediment of Lake Xuanwu, China. The four cephalosporins degraded abiotically in the surface water in the dark with half-lives of 2.7-18.7d, which were almost the same as that in sterilized surface water. Under exposure to simulated sunlight, the half-lives of the cephalosporins decreased significantly to 2.2-5.0d, with the maximal decrease for ceftriaxone from 18.7d in the dark to 4.1d under the light exposure. Effects of dissolved organic matter (DOM) and nitrate on photodegradation of the cephalosporins were compound-specific. While DOM (5 mg L(-1)) stimulated the photodegradation of only cefradine (by 9%) and cefepime (by 34%), nitrate (10 microM) had effects only on cefepime (stimulation by 13%). Elimination rates of the cephalosporins in oxic sediment (half-lives of 0.8-3.1d) were higher than in anoxic sediment (half-lives of 1.1-4.1d), mainly attributed to biodegradation. The data indicate that abiotic hydrolysis (for cefradine, cefuroxime, and cefepime) and direct photolysis (for ceftriaxone) were the primary processes for elimination of the cephalosporins in the surface water of the lake, whereas biodegradation was responsible for the elimination of the cephalosporins in the sediment. Further studies are needed on chemical structure, toxicity, and persistence of transformation products of the cephalosporins in the environment.

  2. Stressed out symbiotes: hypotheses for the influence of abiotic stress on arbuscular mycorrhizal fungi.

    PubMed

    Millar, Niall S; Bennett, Alison E

    2016-11-01

    Abiotic stress is a widespread threat to both plant and soil communities. Arbuscular mycorrhizal (AM) fungi can alleviate effects of abiotic stress by improving host plant stress tolerance, but the direct effects of abiotic stress on AM fungi are less well understood. We propose two hypotheses predicting how AM fungi will respond to abiotic stress. The stress exclusion hypothesis predicts that AM fungal abundance and diversity will decrease with persistent abiotic stress. The mycorrhizal stress adaptation hypothesis predicts that AM fungi will evolve in response to abiotic stress to maintain their fitness. We conclude that abiotic stress can have effects on AM fungi independent of the effects on the host plant. AM fungal communities will change in composition in response to abiotic stress, which may mean the loss of important individual species. This could alter feedbacks to the plant community and beyond. AM fungi will adapt to abiotic stress independent of their host plant. The adaptation of AM fungi to abiotic stress should allow the maintenance of the plant-AM fungal mutualism in the face of changing climates.

  3. Model Comparison for Abiotic versus Biotic Pollen Dispersal.

    PubMed

    Foster, Erich L; Chan, David M; Dyer, Rodney J

    2016-10-01

    An agent-based model with a correlated random walk is used to explore pollination within a forest. For abiotic dispersal, say via the wind, we use a purely random walk where there is no correlation between consecutive steps and for biotic dispersal, say via insect, we use a moderate or highly correlated random walk. In particular, we examine the differences in a number of biological measurement between a purely random walk and a correlated random walk in terms of gene dispersal in low and high plant densities. PMID:27550704

  4. Model Comparison for Abiotic versus Biotic Pollen Dispersal.

    PubMed

    Foster, Erich L; Chan, David M; Dyer, Rodney J

    2016-10-01

    An agent-based model with a correlated random walk is used to explore pollination within a forest. For abiotic dispersal, say via the wind, we use a purely random walk where there is no correlation between consecutive steps and for biotic dispersal, say via insect, we use a moderate or highly correlated random walk. In particular, we examine the differences in a number of biological measurement between a purely random walk and a correlated random walk in terms of gene dispersal in low and high plant densities.

  5. May Cyclic Nucleotides Be a Source for Abiotic RNA Synthesis?

    NASA Astrophysics Data System (ADS)

    Costanzo, Giovanna; Pino, Samanta; Botta, Giorgia; Saladino, Raffaele; di Mauro, Ernesto

    2011-12-01

    Nucleic bases are obtained by heating formamide in the presence of various catalysts. Formamide chemistry also allows the formation of acyclonucleosides and the phosphorylation of nucleosides in every possible position, also affording 2',3' and 3',5' cyclic forms. We have reported that 3',5' cyclic GMP and 3',5' cyclic AMP polymerize in abiotic conditions yielding short oligonucleotides. The characterization of this reaction is being pursued, several of its parameters have been determined and experimental caveats are reported. The yield of non-enzymatic polymerization of cyclic purine nucleotides is very low. Polymerization is strongly enhanced by the presence of base-complementary RNA sequences.

  6. Anaerobic transformations of complex organic compounds in subsurface soils

    SciTech Connect

    Proctor, B.L. )

    1988-09-01

    This study was initiated following increased observations of man-made organic chemicals in groundwater. In the US, over 40% of the population depends on groundwater for drinking purposes. Soil is often the receptacle for organic chemicals, and there is a danger that they may reach the groundwater in a toxic form. Once contamination of the soil and vadose water has occurred, the compound may not be detected and/or degraded for decades. Limited, if any, information is available on the biotic-abiotic transformations of complex organic compounds in subsurface soils. The purpose of this study was to determine for each test compound (phenothiazine, 1-chloronaphthalene, 2-trifluoromethyl phenothiazine, 2-chloro-5 trifluoromethyl benzophenone and 2,2{prime},4,4{prime} tetrachlorobiphenyl) the following: (A) the soil sorption capacity for untreated subsurface soil, acid-treated, base-treated, mercuric chloride-treated, and calcium chloride treated subsurface soil; (B) transformation of the test compound in EPA soft water under anaerobic biotic and abiotic conditions; (C) transformation of the test compound in subsurface soils microcosms under anaerobic biotic and abiotic conditions; and (D) comparison of the results form the soil and water anaerobic biotic and abiotic studies.

  7. Responses of transgenic Arabidopsis plants and recombinant yeast cells expressing a novel durum wheat manganese superoxide dismutase TdMnSOD to various abiotic stresses.

    PubMed

    Kaouthar, Feki; Ameny, Farhat-Khemakhem; Yosra, Kamoun; Walid, Saibi; Ali, Gargouri; Faiçal, Brini

    2016-07-01

    In plant cells, the manganese superoxide dismutase (Mn-SOD) plays an elusive role in the response to oxidative stress. In this study, we describe the isolation and functional characterization of a novel Mn-SOD from durum wheat (Triticum turgidum L. subsp. Durum), named TdMnSOD. Molecular phylogeny analysis showed that the durum TdMnSOD exhibited high amino acids sequence identity with other Mn-SOD plants. The three-dimensional structure showed that TdMnSOD forms a homotetramer and each subunit is composed of a predominantly α-helical N-terminal domain and a mixed α/β C-terminal domain. TdMnSOD gene expression analysis showed that this gene was induced by various abiotic stresses in durum wheat. The expression of TdMnSOD enhances tolerance of the transformed yeast cells to salt, osmotic, cold and H2O2-induced oxidative stresses. Moreover, the analysis of TdMnSOD transgenic Arabidopsis plants subjected to different environmental stresses revealed low H2O2 and high proline levels as compared to the wild-type plants. Compared with the non-transformed plants, an increase in the total SOD and two other antioxidant enzyme activities including catalase (CAT) and peroxidases (POD) was observed in the three transgenic lines subjected to abiotic stress. Taken together, these data provide evidence for the involvement of durum wheat TdMnSOD in tolerance to multiple abiotic stresses in crop plants. PMID:27152457

  8. Small RNAs in Plant Responses to Abiotic Stresses: Regulatory Roles and Study Methods

    PubMed Central

    Ku, Yee-Shan; Wong, Johanna Wing-Hang; Mui, Zeta; Liu, Xuan; Hui, Jerome Ho-Lam; Chan, Ting-Fung; Lam, Hon-Ming

    2015-01-01

    To survive under abiotic stresses in the environment, plants trigger a reprogramming of gene expression, by transcriptional regulation or translational regulation, to turn on protective mechanisms. The current focus of research on how plants cope with abiotic stresses has transitioned from transcriptomic analyses to small RNA investigations. In this review, we have summarized and evaluated the current methodologies used in the identification and validation of small RNAs and their targets, in the context of plant responses to abiotic stresses. PMID:26501263

  9. Reduction operators of Burgers equation

    PubMed Central

    Pocheketa, Oleksandr A.; Popovych, Roman O.

    2013-01-01

    The solution of the problem on reduction operators and nonclassical reductions of the Burgers equation is systematically treated and completed. A new proof of the theorem on the special “no-go” case of regular reduction operators is presented, and the representation of the coefficients of operators in terms of solutions of the initial equation is constructed for this case. All possible nonclassical reductions of the Burgers equation to single ordinary differential equations are exhaustively described. Any Lie reduction of the Burgers equation proves to be equivalent via the Hopf–Cole transformation to a parameterized family of Lie reductions of the linear heat equation. PMID:23576819

  10. Calcium-Mediated Abiotic Stress Signaling in Roots.

    PubMed

    Wilkins, Katie A; Matthus, Elsa; Swarbreck, Stéphanie M; Davies, Julia M

    2016-01-01

    Roots are subjected to a range of abiotic stresses as they forage for water and nutrients. Cytosolic free calcium is a common second messenger in the signaling of abiotic stress. In addition, roots take up calcium both as a nutrient and to stimulate exocytosis in growth. For calcium to fulfill its multiple roles must require strict spatio-temporal regulation of its uptake and efflux across the plasma membrane, its buffering in the cytosol and its sequestration or release from internal stores. This prompts the question of how specificity of signaling output can be achieved against the background of calcium's other uses. Threats to agriculture such as salinity, water availability and hypoxia are signaled through calcium. Nutrient deficiency is also emerging as a stress that is signaled through cytosolic free calcium, with progress in potassium, nitrate and boron deficiency signaling now being made. Heavy metals have the capacity to trigger or modulate root calcium signaling depending on their dose and their capacity to catalyze production of hydroxyl radicals. Mechanical stress and cold stress can both trigger an increase in root cytosolic free calcium, with the possibility of membrane deformation playing a part in initiating the calcium signal. This review addresses progress in identifying the calcium transporting proteins (particularly channels such as annexins and cyclic nucleotide-gated channels) that effect stress-induced calcium increases in roots and explores links to reactive oxygen species, lipid signaling, and the unfolded protein response. PMID:27621742

  11. Geochemistry: biosignatures and abiotic constraints on early life.

    PubMed

    Lollar, Barbara Sherwood; McCollom, Thomas M

    2006-12-14

    Ueno et al. contend that methane found in fluid inclusions within hydrothermally precipitated quartz in the Dresser Formation of western Australia (which is roughly 3.5 Gyr old) provides evidence for microbial methanogenesis in the early Archaean era. The authors discount alternative origins for this methane, suggesting that the range of delta(13)C(CH(4)) values that they record (-56 to -36 per thousand) is attributable to mixing between a primary microbial end-member with a delta(13)C(CH(4)) value of less than -56 per thousand and a mature thermogenic gas enriched in (13)C (about -36 per thousand). However, abiotic methane produced experimentally and in other Precambrian greenstone settings has (13)C-depleted delta(13)C(CH(4)) values, as well as Delta(13)C(CO(2)-CH(4)) relationships that encompass the range measured for the inclusions by Ueno et al. - which suggests that an alternative, abiotic origin for the methane is equally plausible. The conclusions of Ueno et al. about the timing of the onset of microbial methanogenesis might not therefore be justified. PMID:17167427

  12. Abiotic stress and control of grain number in cereals.

    PubMed

    Dolferus, Rudy; Ji, Xuemei; Richards, Richard A

    2011-10-01

    Grain number is the only yield component that is directly associated with increased grain yield in important cereal crops like wheat. Historical yield studies show that increases in grain yield are always accompanied by an increase in grain number. Adverse weather conditions can cause severe fluctuations in grain yield and substantial yield losses in cereal crops. The problem is global and despite its impact on world food production breeding and selection approaches have only met with limited success. A specific period during early reproductive development, the young microspore stage of pollen development, is extremely vulnerable to abiotic stress in self-fertilising cereals (wheat, rice, barley, sorghum). A better understanding of the physiological and molecular processes that lead to stress-induced pollen abortion may provide us with the key to finding solutions for maintaining grain number under abiotic stress conditions. Due to the complexity of the problem, stress-proofing our main cereal crops will be a challenging task and will require joint input from different research disciplines.

  13. Influence of abiotic stress signals on secondary metabolites in plants

    PubMed Central

    Ramakrishna, Akula; Ravishankar, Gokare Aswathanarayana

    2011-01-01

    Plant secondary metabolites are unique sources for pharmaceuticals, food additives, flavors, and industrially important biochemicals. Accumulation of such metabolites often occurs in plants subjected to stresses including various elicitors or signal molecules. Secondary metabolites play a major role in the adaptation of plants to the environment and in overcoming stress conditions. Environmental factors viz. temperature, humidity, light intensity, the supply of water, minerals, and CO2 influence the growth of a plant and secondary metabolite production. Drought, high salinity, and freezing temperatures are environmental conditions that cause adverse effects on the growth of plants and the productivity of crops. Plant cell culture technologies have been effective tools for both studying and producing plant secondary metabolites under in vitro conditions and for plant improvement. This brief review summarizes the influence of different abiotic factors include salt, drought, light, heavy metals, frost etc. on secondary metabolites in plants. The focus of the present review is the influence of abiotic factors on secondary metabolite production and some of important plant pharmaceuticals. Also, we describe the results of in vitro cultures and production of some important secondary metabolites obtained in our laboratory. PMID:22041989

  14. Calcium-Mediated Abiotic Stress Signaling in Roots

    PubMed Central

    Wilkins, Katie A.; Matthus, Elsa; Swarbreck, Stéphanie M.; Davies, Julia M.

    2016-01-01

    Roots are subjected to a range of abiotic stresses as they forage for water and nutrients. Cytosolic free calcium is a common second messenger in the signaling of abiotic stress. In addition, roots take up calcium both as a nutrient and to stimulate exocytosis in growth. For calcium to fulfill its multiple roles must require strict spatio-temporal regulation of its uptake and efflux across the plasma membrane, its buffering in the cytosol and its sequestration or release from internal stores. This prompts the question of how specificity of signaling output can be achieved against the background of calcium’s other uses. Threats to agriculture such as salinity, water availability and hypoxia are signaled through calcium. Nutrient deficiency is also emerging as a stress that is signaled through cytosolic free calcium, with progress in potassium, nitrate and boron deficiency signaling now being made. Heavy metals have the capacity to trigger or modulate root calcium signaling depending on their dose and their capacity to catalyze production of hydroxyl radicals. Mechanical stress and cold stress can both trigger an increase in root cytosolic free calcium, with the possibility of membrane deformation playing a part in initiating the calcium signal. This review addresses progress in identifying the calcium transporting proteins (particularly channels such as annexins and cyclic nucleotide-gated channels) that effect stress-induced calcium increases in roots and explores links to reactive oxygen species, lipid signaling, and the unfolded protein response. PMID:27621742

  15. Calcium-Mediated Abiotic Stress Signaling in Roots

    PubMed Central

    Wilkins, Katie A.; Matthus, Elsa; Swarbreck, Stéphanie M.; Davies, Julia M.

    2016-01-01

    Roots are subjected to a range of abiotic stresses as they forage for water and nutrients. Cytosolic free calcium is a common second messenger in the signaling of abiotic stress. In addition, roots take up calcium both as a nutrient and to stimulate exocytosis in growth. For calcium to fulfill its multiple roles must require strict spatio-temporal regulation of its uptake and efflux across the plasma membrane, its buffering in the cytosol and its sequestration or release from internal stores. This prompts the question of how specificity of signaling output can be achieved against the background of calcium’s other uses. Threats to agriculture such as salinity, water availability and hypoxia are signaled through calcium. Nutrient deficiency is also emerging as a stress that is signaled through cytosolic free calcium, with progress in potassium, nitrate and boron deficiency signaling now being made. Heavy metals have the capacity to trigger or modulate root calcium signaling depending on their dose and their capacity to catalyze production of hydroxyl radicals. Mechanical stress and cold stress can both trigger an increase in root cytosolic free calcium, with the possibility of membrane deformation playing a part in initiating the calcium signal. This review addresses progress in identifying the calcium transporting proteins (particularly channels such as annexins and cyclic nucleotide-gated channels) that effect stress-induced calcium increases in roots and explores links to reactive oxygen species, lipid signaling, and the unfolded protein response.

  16. Influence of abiotic stress signals on secondary metabolites in plants.

    PubMed

    Ramakrishna, Akula; Ravishankar, Gokare Aswathanarayana

    2011-11-01

    Plant secondary metabolites are unique sources for pharmaceuticals, food additives, flavors, and industrially important biochemicals. Accumulation of such metabolites often occurs in plants subjected to stresses including various elicitors or signal molecules. Secondary metabolites play a major role in the adaptation of plants to the environment and in overcoming stress conditions. Environmental factors viz. temperature, humidity, light intensity, the supply of water, minerals, and CO2 influence the growth of a plant and secondary metabolite production. Drought, high salinity, and freezing temperatures are environmental conditions that cause adverse effects on the growth of plants and the productivity of crops. Plant cell culture technologies have been effective tools for both studying and producing plant secondary metabolites under in vitro conditions and for plant improvement. This brief review summarizes the influence of different abiotic factors include salt, drought, light, heavy metals, frost etc. on secondary metabolites in plants. The focus of the present review is the influence of abiotic factors on secondary metabolite production and some of important plant pharmaceuticals. Also, we describe the results of in vitro cultures and production of some important secondary metabolites obtained in our laboratory.

  17. Geochemistry: biosignatures and abiotic constraints on early life.

    PubMed

    Lollar, Barbara Sherwood; McCollom, Thomas M

    2006-12-14

    Ueno et al. contend that methane found in fluid inclusions within hydrothermally precipitated quartz in the Dresser Formation of western Australia (which is roughly 3.5 Gyr old) provides evidence for microbial methanogenesis in the early Archaean era. The authors discount alternative origins for this methane, suggesting that the range of delta(13)C(CH(4)) values that they record (-56 to -36 per thousand) is attributable to mixing between a primary microbial end-member with a delta(13)C(CH(4)) value of less than -56 per thousand and a mature thermogenic gas enriched in (13)C (about -36 per thousand). However, abiotic methane produced experimentally and in other Precambrian greenstone settings has (13)C-depleted delta(13)C(CH(4)) values, as well as Delta(13)C(CO(2)-CH(4)) relationships that encompass the range measured for the inclusions by Ueno et al. - which suggests that an alternative, abiotic origin for the methane is equally plausible. The conclusions of Ueno et al. about the timing of the onset of microbial methanogenesis might not therefore be justified.

  18. Hexagonal Lyotropic Liquid Crystal from Simple "Abiotic" Foldamers.

    PubMed

    Chen, Yu; Zhao, Zhiqiang; Bian, Zheng; Jin, Rizhe; Kang, Chuanqing; Qiu, Xuepeng; Guo, Haiquan; Du, Zhijun; Gao, Lianxun

    2016-08-01

    The motivation of foldamer chemistry is to identify novel building blocks that have the potential to imitate natural species. Peptides and peptide mimetics can form stable helical conformations and further self-assemble into diverse aggregates in water, where it is difficult to isolate a single helix. In contrast, most "abiotic" foldamers may fold into helical structures in solution, but are difficult to assemble into tertiary ones. It remains a challenge to obtain "abiotic" species similar to peptides. In this paper, a novel foldamer scaffold, in which p-phenyleneethynylene units are linked by chiral carbon atoms, was designed and prepared. In very dilute solutions, these oligomers were random coils. The hexamer and octamers could form a hexagonal lyotropic liquid crystal (LC) in CH2Cl2 when the concentrations reached the critical values. The microscopic observations indicated that they could assemble into the nanofibers in the LC. Interestingly, after some LC phases were diluted at room temperature, the nanofibers could be preserved. The good stabilities of the assemblies are possibly attributed to a more compact backbone and more rigid side chains. PMID:27547649

  19. Microbial reduction of iodate

    USGS Publications Warehouse

    Councell, T.B.; Landa, E.R.; Lovley, D.R.

    1997-01-01

    The different oxidation species of iodine have markedly different sorption properties. Hence, changes in iodine redox states can greatly affect the mobility of iodine in the environment. Although a major microbial role has been suggested in the past to account for these redox changes, little has been done to elucidate the responsible microorganisms or the mechanisms involved. In the work presented here, direct microbial reduction of iodate was demonstrated with anaerobic cell suspensions of the sulfate reducing bacterium Desulfovibrio desulfuricans which reduced 96% of an initial 100 ??M iodate to iodide at pH 7 in 30 mM NaHCO3 buffer, whereas anaerobic cell suspensions of the dissimilatory Fe(III)-reducing bacterium Shewanella putrefaciens were unable to reduce iodate in 30 mM NaHCO3 buffer (pH 7). Both D. desulfuricans and S. putrefaciens were able to reduce iodate at pH 7 in 10 mM HEPES buffer. Both soluble ferrous iron and sulfide, as well as iron monosulfide (FeS) were shown to abiologically reduce iodate to iodide. These results indicate that ferric iron and/or sulfate reducing bacteria are capable of mediating both direct, enzymatic, as well as abiotic reduction of iodate in natural anaerobic environments. These microbially mediated reactions may be important factors in the fate and transport of 129I in natural systems.

  20. Abiotic Formation of Methyl Halides in the Terrestrial Environment

    NASA Astrophysics Data System (ADS)

    Keppler, F.

    2011-12-01

    Methyl chloride and methyl bromide are the most abundant chlorine and bromine containing organic compounds in the atmosphere. Since both compounds have relatively long tropospheric lifetimes they can effectively transport halogen atoms from the Earth's surface, where they are released, to the stratosphere and following photolytic oxidation form reactive halogen gases that lead to the chemical destruction of ozone. Methyl chloride and methyl bromide account for more than 20% of the ozone-depleting halogens delivered to the stratosphere and are predicted to grow in importance as the chlorine contribution to the stratosphere from anthropogenic CFCs decline. Today methyl chloride and methyl bromide originate mainly from natural sources with only a minor fraction considered to be of anthropogenic origin. However, until as recently as 2000 most of the methyl chloride and methyl bromide input to the atmosphere was considered to originate from the oceans, but investigations in recent years have clearly demonstrated that terrestrial sources such as biomass burning, wood-rotting fungi, coastal salt marshes, tropical vegetation and organic matter degradation must dominate the atmospheric budgets of these trace gases. However, many uncertainties still exist regarding strengths of both sources and sinks, as well as the mechanisms of formation of these naturally occurring halogenated gases. A better understanding of the atmospheric budget of both methyl chloride and methyl bromide is therefore required for reliable prediction of future ozone depletion. Biotic and abiotic methylation processes of chloride and bromide ion are considered to be the dominant pathways of formation of these methyl halides in nature. In this presentation I will focus on abiotic formation processes in the terrestrial environment and the potential parameters that control their emissions. Recent advances in our understanding of the abiotic formation pathway of methyl halides will be discussed. This will

  1. AhpC (alkyl hydroperoxide reductase) from Anabaena sp. PCC 7120 protects Escherichia coli from multiple abiotic stresses

    SciTech Connect

    Mishra, Yogesh; Chaurasia, Neha; Rai, Lal Chand

    2009-04-17

    Alkyl hydroperoxide reductase (AhpC) is known to detoxify peroxides and reactive sulfur species (RSS). However, the relationship between its expression and combating of abiotic stresses is still not clear. To investigate this relationship, the genes encoding the alkyl hydroperoxide reductase (ahpC) from Anabaena sp. PCC 7120 were introduced into E. coli using pGEX-5X-2 vector and their possible functions against heat, salt, carbofuron, cadmium, copper and UV-B were analyzed. The transformed E. coli cells registered significantly increase in growth than the control cells under temperature (47 {sup o}C), NaCl (6% w/v), carbofuron (0.025 mg ml{sup -1}), CdCl{sub 2} (4 mM), CuCl{sub 2} (1 mM), and UV-B (10 min) exposure. Enhanced expression of ahpC gene as measured by semi-quantitative RT-PCR under aforementioned stresses at different time points demonstrated its role in offering tolerance against multiple abiotic stresses.

  2. ABI-like transcription factor gene TaABL1 from wheat improves multiple abiotic stress tolerances in transgenic plants.

    PubMed

    Xu, Dong-Bei; Gao, Shi-Qing; Ma, You-Zhi; Xu, Zhao-Shi; Zhao, Chang-Ping; Tang, Yi-Miao; Li, Xue-Yin; Li, Lian-Cheng; Chen, Yao-Feng; Chen, Ming

    2014-12-01

    The phytohormone abscisic acid (ABA) plays crucial roles in adaptive responses of plants to abiotic stresses. ABA-responsive element binding proteins (AREBs) are basic leucine zipper transcription factors that regulate the expression of downstream genes containing ABA-responsive elements (ABREs) in promoter regions. A novel ABI-like (ABA-insensitive) transcription factor gene, named TaABL1, containing a conserved basic leucine zipper (bZIP) domain was cloned from wheat. Southern blotting showed that three copies were present in the wheat genome. Phylogenetic analyses indicated that TaABL1 belonged to the AREB subfamily of the bZIP transcription factor family and was most closely related to ZmABI5 in maize and OsAREB2 in rice. Expression of TaABL1 was highly induced in wheat roots, stems, and leaves by ABA, drought, high salt, and low temperature stresses. TaABL1 was localized inside the nuclei of transformed wheat mesophyll protoplast. Overexpression of TaABL1 enhanced responses of transgenic plants to ABA and hastened stomatal closure under stress, thereby improving tolerance to multiple abiotic stresses. Furthermore, overexpression of TaABL1 upregulated or downregulated the expression of some stress-related genes controlling stomatal closure in transgenic plants under ABA and drought stress conditions, suggesting that TaABL1 might be a valuable genetic resource for transgenic molecular breeding.

  3. Reading Transformation

    ERIC Educational Resources Information Center

    Reeves, Melinda

    2006-01-01

    The parents of students who attend Decatur High School thought that there was little hope of their kids going on to college. After a year or so in Decatur's reading program, their sons and daughters were both transformed and college bound. In this article, the author describes how Decatur was able to successfully transform their students. Seven…

  4. Transformational Events

    ERIC Educational Resources Information Center

    Denning, Peter J.; Hiles, John E.

    2006-01-01

    Transformational Events is a new pedagogic pattern that explains how innovations (and other transformations) happened. The pattern is three temporal stages: an interval of increasingly unsatisfactory ad hoc solutions to a persistent problem (the "mess"), an offer of an invention or of a new way of thinking, and a period of widespread adoption and…

  5. Effects of Reductive Biomineralization of Ferric Hydroxides on Sustained Microbial Metabolism and Contaminant Sequestration

    NASA Astrophysics Data System (ADS)

    Hansel, C. M.; Benner, S. G.; Nico, P. S.; Fendorf, S.

    2002-12-01

    Iron (hydr)oxides not only serve as potent sorbents and repositories for contaminants but also provide a terminal electron acceptor for microbial respiration. The microbial reduction of Fe (hydr)oxides and subsequent secondary solid-phase transformations will, therefore, have a profound influence on the biogeochemical cycling of Fe and associated metals. Here we elucidate the pathways and mechanisms of secondary mineralization during dissimilatory iron reduction of 2-line ferrihydrite under advective flow conditions. Solids were characterized using a host of spectroscopic and microscopic techniques to quantitatively determine the mineral components and microbial-mineral interactions. Secondary mineralization of ferrihydrite occurs via a coupled, biotic-abiotic pathway resulting in the production of primarily magnetite and goethite. Operating mineralization pathways are dictated by competing abiotic reactions of bacterially-generated ferrous iron with the ferrihydrite surface. The distribution of goethite and magnetite within the column is dictated, in large part, by flow-induced ferrous Fe profiles. While goethite precipitation ensues over a large Fe(II) concentration range, magnetite accumulation is only observed at concentrations exceeding 0.3 mM over a 9 d reaction period thus leading to a progression of magnetite levels downgradient within the column. While goethite's precipitation rate exceeds that of magnetite allowing for its initial precipitation, continued growth is inhibited by magnetite nucleation, most likely a result of lower Fe(III) activity. The operating secondary mineralization pathways following reductive dissolution of ferrihydrite at a given pH will therefore be governed by Fe(II) concentration, which drives mineral precipitation kinetics and selection of competing mineral pathways. The ultimate Fe mineral phase assemblage and distribution will have profound consequences on the reduction and sequestration of contaminants. For instance

  6. Endophytic fungi: resource for gibberellins and crop abiotic stress resistance.

    PubMed

    Khan, Abdul Latif; Hussain, Javid; Al-Harrasi, Ahmed; Al-Rawahi, Ahmed; Lee, In-Jung

    2015-03-01

    The beneficial effects of endophytes on plant growth are important for agricultural ecosystems because they reduce the need for fertilizers and decrease soil and water pollution while compensating for environmental perturbations. Endophytic fungi are a novel source of bioactive secondary metabolites; moreover, recently they have been found to produce physiologically active gibberellins as well. The symbiosis of gibberellins producing endophytic fungi with crops can be a promising strategy to overcome the adverse effects of abiotic stresses. The association of such endophytes has not only increased plant biomass but also ameliorated plant-growth during extreme environmental conditions. Endophytic fungi represent a trove of unexplored biodiversity and a frequently overlooked component of crop ecology. The present review describes the role of gibberellins producing endophytic fungi, suggests putative mechanisms involved in plant endophyte stress interactions and discusses future prospects in this field.

  7. Abiotic factors affecting the toxicity of lead to fungi.

    PubMed Central

    Babich, H; Stotzky, G

    1979-01-01

    The toxicity of lead (Pb) to fungi in pure culture was influenced by several abiotic factors: pH, inorganic anions, clay minerals, and particulate (humic acid) and soluble organic matter. The toxicity of Pb was potentiated under acidic conditions (pH 5 and 6), and phosphate or carbonate anions reduced the toxicity, apparently as a result of the formation of sparingly soluble Pb salts. Clay minerals (montmorillonite greater than attapulgite greater than kaolinite) and particulate humic acid protected against the toxicity of Pb, presumably as the result of sorption, by cation exchange of the Pb to the exchange complexes, which reduced its availability for uptake by the fungi. Soluble organics, such as tryptone, yeast extract, cysteine, succinic acid, and increasing concentrations of neopeptone, also reduced the toxicity of Pb. PMID:43707

  8. An Abiotic Glass-Bead Collector Exhibiting Active Transport

    PubMed Central

    Goto, Youhei; Kanda, Masato; Yamamoto, Daigo; Shioi, Akihisa

    2015-01-01

    Animals relocate objects as needed by active motion. Active transport is ubiquitous in living organisms but has been difficult to realize in abiotic systems. Here we show that a self-propelled droplet can gather scattered beads toward one place on a floor and sweep it clean. This is a biomimetic active transport with loadings and unloadings, because the transport was performed by a carrier and the motion of the carrier was maintained by the energy of the chemical reaction. The oil droplet produced fluctuation of the local number density of the beads on the floor, followed by its autocatalytic growth. This mechanism may inspire the technologies based on active transport wherein chemical and physical substances migrate as in living organisms. PMID:26387743

  9. Temporal dynamics of biotic and abiotic drivers of litter decomposition.

    PubMed

    García-Palacios, Pablo; Shaw, E Ashley; Wall, Diana H; Hättenschwiler, Stephan

    2016-05-01

    Climate, litter quality and decomposers drive litter decomposition. However, little is known about whether their relative contribution changes at different decomposition stages. To fill this gap, we evaluated the relative importance of leaf litter polyphenols, decomposer communities and soil moisture for litter C and N loss at different stages throughout the decomposition process. Although both microbial and nematode communities regulated litter C and N loss in the early decomposition stages, soil moisture and legacy effects of initial differences in litter quality played a major role in the late stages of the process. Our results provide strong evidence for substantial shifts in how biotic and abiotic factors control litter C and N dynamics during decomposition. Taking into account such temporal dynamics will increase the predictive power of decomposition models that are currently limited by a single-pool approach applying control variables uniformly to the entire decay process.

  10. An Abiotic Glass-Bead Collector Exhibiting Active Transport

    NASA Astrophysics Data System (ADS)

    Goto, Youhei; Kanda, Masato; Yamamoto, Daigo; Shioi, Akihisa

    2015-09-01

    Animals relocate objects as needed by active motion. Active transport is ubiquitous in living organisms but has been difficult to realize in abiotic systems. Here we show that a self-propelled droplet can gather scattered beads toward one place on a floor and sweep it clean. This is a biomimetic active transport with loadings and unloadings, because the transport was performed by a carrier and the motion of the carrier was maintained by the energy of the chemical reaction. The oil droplet produced fluctuation of the local number density of the beads on the floor, followed by its autocatalytic growth. This mechanism may inspire the technologies based on active transport wherein chemical and physical substances migrate as in living organisms.

  11. Spectral induced polarization signatures of abiotic FeS precipitation

    SciTech Connect

    Ntarlagiannis, D.; Doherty, R.; Williams, K. H.

    2010-01-15

    In recent years, geophysical methods have been shown to be sensitive to microbial induced mineralization processes. The spectral induced polarization (SIP) method appears to be very promising for monitoring mineralization and microbial processes. With this work, we study the links of mineralization and SIP signals, in the absence of microbial activity. We recorded the SIP response during abiotic FeS precipitation. We show that the SIP signals are diagnostic of FeS mineralization and can be differentiated from SIP signals from bio-mineralization processes. More specifically the imaginary conductivity shows almost linear dependence on the amount of FeS precipitating out of solution, above the threshold value 0.006 gr under our experimental conditions. This research has direct implications for the use of the SIP method as a monitoring, and decision making, tool for sustainable remediation of metals in contaminated soils and groundwater.

  12. Authentic Research Experience and "Big Data" Analysis in the Classroom: Maize Response to Abiotic Stress.

    PubMed

    Makarevitch, Irina; Frechette, Cameo; Wiatros, Natalia

    2015-01-01

    Integration of inquiry-based approaches into curriculum is transforming the way science is taught and studied in undergraduate classrooms. Incorporating quantitative reasoning and mathematical skills into authentic biology undergraduate research projects has been shown to benefit students in developing various skills necessary for future scientists and to attract students to science, technology, engineering, and mathematics disciplines. While large-scale data analysis became an essential part of modern biological research, students have few opportunities to engage in analysis of large biological data sets. RNA-seq analysis, a tool that allows precise measurement of the level of gene expression for all genes in a genome, revolutionized molecular biology and provides ample opportunities for engaging students in authentic research. We developed, implemented, and assessed a series of authentic research laboratory exercises incorporating a large data RNA-seq analysis into an introductory undergraduate classroom. Our laboratory series is focused on analyzing gene expression changes in response to abiotic stress in maize seedlings; however, it could be easily adapted to the analysis of any other biological system with available RNA-seq data. Objective and subjective assessment of student learning demonstrated gains in understanding important biological concepts and in skills related to the process of science.

  13. Authentic Research Experience and "Big Data" Analysis in the Classroom: Maize Response to Abiotic Stress.

    PubMed

    Makarevitch, Irina; Frechette, Cameo; Wiatros, Natalia

    2015-01-01

    Integration of inquiry-based approaches into curriculum is transforming the way science is taught and studied in undergraduate classrooms. Incorporating quantitative reasoning and mathematical skills into authentic biology undergraduate research projects has been shown to benefit students in developing various skills necessary for future scientists and to attract students to science, technology, engineering, and mathematics disciplines. While large-scale data analysis became an essential part of modern biological research, students have few opportunities to engage in analysis of large biological data sets. RNA-seq analysis, a tool that allows precise measurement of the level of gene expression for all genes in a genome, revolutionized molecular biology and provides ample opportunities for engaging students in authentic research. We developed, implemented, and assessed a series of authentic research laboratory exercises incorporating a large data RNA-seq analysis into an introductory undergraduate classroom. Our laboratory series is focused on analyzing gene expression changes in response to abiotic stress in maize seedlings; however, it could be easily adapted to the analysis of any other biological system with available RNA-seq data. Objective and subjective assessment of student learning demonstrated gains in understanding important biological concepts and in skills related to the process of science. PMID:26163561

  14. Mercury bioaccumulation in an estuarine predator: Biotic factors, abiotic factors, and assessments of fish health.

    PubMed

    Smylie, Meredith S; McDonough, Christopher J; Reed, Lou Ann; Shervette, Virginia R

    2016-07-01

    Estuarine wetlands are major contributors to mercury (Hg) transformation into its more toxic form, methylmercury (MeHg). Although these complex habitats are important, estuarine Hg bioaccumulation is not well understood. The longnose gar Lepisosteus osseus (L. 1758), an estuarine predator in the eastern United States, was selected to examine Hg processes due to its abundance, estuarine residence, and top predator status. This study examined variability in Hg concentrations within longnose gar muscle tissue spatially and temporally, the influence of biological factors, potential maternal transfer, and potential negative health effects on these fish. Smaller, immature fish had the highest Hg concentrations and were predominantly located in low salinity waters. Sex and diet were also important factors and Hg levels peaked in the spring. Although maternal transfer occurred in small amounts, the potential negative health effects to young gar remain unknown. Fish health as measured by fecundity and growth rate appeared to be relatively unaffected by Hg at concentrations in the present study (less than 1.3 ppm wet weight). The analysis of biotic and abiotic factors relative to tissue Hg concentrations in a single estuarine fish species provided valuable insight in Hg bioaccumulation, biomagnification, and elimination. Insights such as these can improve public health policy and environmental management decisions related to Hg pollution. PMID:27086072

  15. Carbon isotopic fractionation of CFCs during abiotic and biotic degradation.

    PubMed

    Archbold, Marie E; Elliot, Trevor; Kalin, Robert M

    2012-02-01

    Carbon stable isotope ((13)C) fractionation in chlorofluorocarbon (CFC) compounds arising from abiotic (chemical) degradation using zero-valent iron (ZVI) and biotic (landfill gas attenuation) processes is investigated. Batch tests (at 25 °C) for CFC-113 and CFC-11 using ZVI show quantitative degradation of CFC-113 to HCFC-123a and CFC-1113 following pseudo-first-order kinetics corresponding to a half-life (τ(1/2)) of 20.5 h, and a ZVI surface-area normalized rate constant (k(SA)) of -(9.8 ± 0.5) × 10(-5) L m(-2) h(-1). CFC-11 degraded to trace HCFC-21 and HCFC-31 following pseudo-first-order kinetics corresponding to τ(1/2) = 17.3 h and k(SA) = -(1.2 ± 0.5) × 10(-4) L m(-2) h(-1). Significant kinetic isotope effects of ε(‰) = -5.0 ± 0.3 (CFC-113) and -17.8 ± 4.8 (CFC-11) were observed. Compound-specific carbon isotope analyses also have been used here to characterize source signatures of CFC gases (HCFC-22, CFC-12, HFC-134a, HCFC-142b, CFC-114, CFC-11, CFC-113) for urban (UAA), rural/remote (RAA), and landfill (LAA) ambient air samples, as well as in situ surface flux chamber (FLUX; NO FLUX) and landfill gas (LFG) samples at the Dargan Road site, Northern Ireland. The latter values reflect biotic degradation and isotopic fractionation in LFG production, and local atmospheric impact of landfill emissions through the cover. Isotopic fractionations of Δ(13)C ∼ -13‰ (HCFC-22), Δ(13)C ∼ -35‰ (CFC-12) and Δ(13)C ∼ -15‰ (CFC-11) were observed for LFG in comparison to characteristic solvent source signatures, with the magnitude of the isotopic effect for CFC-11 apparently similar to the kinetic isotope effect for (abiotic) ZVI degradation.

  16. Relevance of proteomic investigations in plant abiotic stress physiology.

    PubMed

    Hakeem, Khalid Rehman; Chandna, Ruby; Ahmad, Parvaiz; Iqbal, Muhammad; Ozturk, Munir

    2012-11-01

    Plant growth and productivity are influenced by various abiotic stresses. Stressful conditions may lead to delays in seed germination, reduced seedling growth, and decreased crop yields. Plants respond to environmental stresses via differential expression of a subset of genes, which results in changes in omic compositions, such as transcriptome, proteome, and metabolome. Since the development of modern biotechnology, various research projects have been carried out to understand the approaches that plants have adopted to overcome environmental stresses. Advancements in omics have made functional genomics easy to understand. Since the fundamentals of classical genomics were unable to clear up confusion related to the functional aspects of the metabolic processes taking place during stress conditions, new fields have been designed and are known as omics. Proteomics, the analysis of genomic complements of proteins, has caused a flurry of activity in the past few years. It defines protein functions in cells and explains how those protein functions respond to changing environmental conditions. The ability of crop plants to cope up with the variety of environmental stresses depends on a number of changes in their proteins, which may be up- and downregulated as a result of altered gene expression. Most of these molecules display an essential function, either in the regulation of the response (e.g., components of the signal transduction pathway), or in the adaptation process (e.g., enzymes involved in stress repair and degradation of damaged cellular contents), allowing plants to recover and survive the stress. Many of these proteins are constitutively expressed under normal conditions, but when under stress, they undergo a modification of their expression levels. This review will explain how proteomics can help in elucidating important plant processes in response to various abiotic stresses.

  17. Using the Model Perennial Grass Brachypodium sylvaticum to Engineer Resistance to Multiple Abiotic Stresses

    SciTech Connect

    Gordon, Sean; Reguera, Maria; Sade, Nir; Cartwright, Amy; Tobias, Christian; Thilmony, Roger; Blumwald, Eduardo; Vogel, John

    2015-03-20

    We are using the perennial model grass Brachypodium sylvaticum to identify combinations of transgenes that enhance tolerance to multiple, simultaneous abiotic stresses. The most successful transgene combinations will ultimately be used to create improved switchgrass (Panicum virgatum L.) cultivars. To further develop B. sylvaticum as a perennial model grass, and facilitate our planned transcriptional profiling, we are sequencing and annotating the genome. We have generated ~40x genome coverage using PacBio sequencing of the largest possible size selected libraries (18, 22, 25 kb). Our initial assembly using only long-read sequence contained 320 Mb of sequence with an N50 contig length of 315 kb and an N95 contig length of 40 kb. This assembly consists of 2,430 contigs, the largest of which was 1.6 Mb. The estimated genome size based on c-values is 340 Mb indicating that about 20 Mb of presumably repetitive DNA remains yet unassembled. Significantly, this assembly is far superior to an assembly created from paired-end short-read sequence, ~100x genome coverage. The short-read-only assembly contained only 226 Mb of sequence in 19k contigs. To aid the assembly of the scaffolds into chromosome-scale assemblies we produced an F2 mapping population and have genotyped 480 individuals using a genotype by sequence approach. One of the reasons for using B. sylvaticum as a model system is to determine if the transgenes adversely affect perenniality and winter hardiness. Toward this goal, we examined the freezing tolerance of wild type B. sylvaticum lines to determine the optimal conditions for testing the freezing tolerance of the transgenics. A survey of seven accessions noted significant natural variation in freezing tolerance. Seedling or adult Ain-1 plants, the line used for transformation, survived an 8 hour challenge down to -6 oC and 50% survived a challenge down to -9 oC. Thus, we will be able to easily determine if the transgenes compromise freezing tolerance. In the

  18. Improved Alkane Production in Nitrogen-Fixing and Halotolerant Cyanobacteria via Abiotic Stresses and Genetic Manipulation of Alkane Synthetic Genes.

    PubMed

    Kageyama, Hakuto; Waditee-Sirisattha, Rungaroon; Sirisattha, Sophon; Tanaka, Yoshito; Mahakhant, Aparat; Takabe, Teruhiro

    2015-07-01

    Cyanobacteria possess the unique capacity to produce alkane. In this study, effects of nitrogen deficiency and salt stress on biosynthesis of alkanes were investigated in three kinds of cyanobacteria. Intracellular alkane accumulation was increased in nitrogen-fixing cyanobacterium Anabaena sp. PCC7120, but decreased in non-diazotrophic cyanobacterium Synechococcus elongatus PCC7942 and constant in a halotolerant cyanobacterium Aphanothece halophytica under nitrogen-deficient condition. We also found that salt stress increased alkane accumulation in Anabaena sp. PCC7120 and A. halophytica. The expression levels of two alkane synthetic genes were not upregulated significantly under nitrogen deficiency or salt stress in Anabaena sp. PCC7120. The transformant Anabaena sp. PCC7120 cells with additional alkane synthetic gene set from A. halophytica increased intracellular alkane accumulation level compared to control cells. These results provide a prospect to improve bioproduction of alkanes in nitrogen-fixing halotolerant cyanobacteria via abiotic stresses and genetic engineering.

  19. Plant abiotic stress diagnostic by laser induced chlorophyll fluorescence spectral analysis of in vivo leaf tissue of biofuel species

    NASA Astrophysics Data System (ADS)

    Gouveia-Neto, Artur S.; Silva, Elias A., Jr.; Costa, Ernande B.; Bueno, Luciano A.; Silva, Luciana M. H.; Granja, Manuela M. C.; Medeiros, Maria J. L.; Câmara, Terezinha J. R.; Willadino, Lilia G.

    2010-02-01

    Laser induced fluorescence is exploited to evaluate the effect of abiotic stresses upon the evolution and characteristics of in vivo chlorophyll emission spectra of leaves tissues of brazilian biofuel plants species(Saccharum officinarum and Jatropha curcas). The chlorophyll fluorescence spectra of 20 min predarkened intact leaves were studied employing several excitation wavelengths in the UV-VIS spectral region. Red(Fr) and far-red (FFr) chlorophyll fluorescence emission signals around 685 nm and 735 nm, respectively, were analyzed as a function of the stress intensity and the time of illumination(Kautsky effect). The Chl fluorescence ratio Fr/FFr which is a valuable nondestructive indicator of the chlorophyll content of leaves was investigated during a period of time of 30 days. The dependence of the Chl fluorescence ratio Fr/FFr upon the intensity of the abiotic stress(salinity) was examined. The results indicated that the salinity plays a major hole in the chlorophyll concentration of leaves in both plants spieces, with a significant reduction in the chlorophyll content for NaCl concentrations in the 25 - 200 mM range. The laser induced chlorophyll fluorescence analysis allowed detection of damage caused by salinity in the early stages of the plants growing process, and can be used as an early-warning indicator of salinity stress

  20. Abiotic Stresses Antagonize the Rice Defence Pathway through the Tyrosine-Dephosphorylation of OsMPK6

    PubMed Central

    Kishi-Kaboshi, Mitsuko; Matsushita, Akane; Jiang, Chang-Jie; Goto, Shingo; Takahashi, Akira; Hirochika, Hirohiko; Takatsuji, Hiroshi

    2015-01-01

    Plants, as sessile organisms, survive environmental changes by prioritizing their responses to the most life-threatening stress by allocating limited resources. Previous studies showed that pathogen resistance was suppressed under abiotic stresses. Here, we show the mechanism underlying this phenomenon. Phosphorylation of WRKY45, the central transcription factor in salicylic-acid (SA)-signalling-dependent pathogen defence in rice, via the OsMKK10-2–OsMPK6 cascade, was required to fully activate WRKY45. The activation of WRKY45 by benzothiadiazole (BTH) was reduced under low temperature and high salinity, probably through abscisic acid (ABA) signalling. An ABA treatment dephosphorylated/inactivated OsMPK6 via protein tyrosine phosphatases, OsPTP1/2, leading to the impaired activation of WRKY45 and a reduction in Magnaporthe oryzae resistance, even after BTH treatment. BTH induced a strong M. oryzae resistance in OsPTP1/2 knockdown rice, even under cold and high salinity, indicating that OsPTP1/2 is the node of SA-ABA signalling crosstalk and its down-regulation makes rice disease resistant, even under abiotic stresses. These results points to one of the directions to further improve crops by managing the tradeoffs between different stress responses of plants. PMID:26485146

  1. Organelle transformation.

    PubMed

    Bhattacharya, Anjanabha; Kumar, Anish; Desai, Nirali; Parikh, Seema

    2012-01-01

    The source of genetic information in a plant cell is contained in nucleus, plastids, and mitochondria. Organelle transformation is getting a lot of attention nowadays because of its superior performance over the conventional and most commonly used nuclear transformation for obtaining transgenic lines. Absence of gene silencing, strong predictable transgene expression, and its application in molecular pharming, both in pharmaceutical and nutraceuticals, are some of many advantages. Other important benefits of utilizing this technology include the absence of transgene flow, as organelles are maternally inherited. This may increase the acceptability of organelle transformation technology in the development of transgenic crops in a wider scale all over the globe. As the need for crop productivity and therapeutic compounds increases, organelle transformation may be able to bridge the gap, thereby having a definite promise for the future.

  2. Triple transformation

    NASA Astrophysics Data System (ADS)

    Khan, Farrukh I.; Schinn, Dustin S.

    2013-08-01

    A new business plan that enables policy transformation and resource mobilization at the national and international level, while improving access to resources, will allow the Green Climate Fund to integrate development goals and action on climate change.

  3. Organelle transformation.

    PubMed

    Bhattacharya, Anjanabha; Kumar, Anish; Desai, Nirali; Parikh, Seema

    2012-01-01

    The source of genetic information in a plant cell is contained in nucleus, plastids, and mitochondria. Organelle transformation is getting a lot of attention nowadays because of its superior performance over the conventional and most commonly used nuclear transformation for obtaining transgenic lines. Absence of gene silencing, strong predictable transgene expression, and its application in molecular pharming, both in pharmaceutical and nutraceuticals, are some of many advantages. Other important benefits of utilizing this technology include the absence of transgene flow, as organelles are maternally inherited. This may increase the acceptability of organelle transformation technology in the development of transgenic crops in a wider scale all over the globe. As the need for crop productivity and therapeutic compounds increases, organelle transformation may be able to bridge the gap, thereby having a definite promise for the future. PMID:22610643

  4. Abiotic and biotic controls of organic matter cycling in a managed stream

    NASA Astrophysics Data System (ADS)

    Edmonds, Jennifer W.; Grimm, Nancy B.

    2011-06-01

    Urbanization often alters the physical, chemical, and biological structure of aquatic ecosystems embedded within them, creating managed ecosystems with different structure and functioning as compared to their unmanaged counterparts. Our work focused on patterns in dissolved organic carbon (DOC) along a managed stream in Phoenix, Arizona. We documented longitudinal changes in DOC concentrations and quality (defined as chemical complexity and measured as specific ultraviolet absorbance at 254 nm, SUVA) along a 66 km stream dominated by treated wastewater effluent. DOC concentrations along the stream declined by an average of 64%, and chemical complexity increased substantially. We posed four hypotheses to explain changes in downstream water chemistry; including hydrologic dilution, microbial mineralization, abiotic sorption to suspended sediments, and photodegradation by ultraviolet (UV) radiation. Only the second and fourth hypotheses represent permanent removal mechanisms. Our data most strongly supported predictions from the dilution hypothesis and microbial mineralization as an explanation for the changes in DOC chemistry. Surface-subsurface water linkages were important but altered from unmanaged streams, as deep groundwater was used to augment surface flows. Variation in the use of groundwater was linked to human decision making and engineering related to water management. Reduction in geomorphic complexity increased the importance of dilution in explaining patterns but also increased the importance of UV oxidation as a mechanism influencing DOC chemistry. Our findings suggest urban stream management has shifted dependence on microbially mediated C removal mechanisms to hydrologic dilution to reduce output concentrations. This shift lowers contaminant removal potential and increases dependence on limited groundwater resources.

  5. OsSRO1a Interacts with RNA Binding Domain-Containing Protein (OsRBD1) and Functions in Abiotic Stress Tolerance in Yeast

    PubMed Central

    Sharma, Shweta; Kaur, Charanpreet; Singla-Pareek, Sneh L.; Sopory, Sudhir K.

    2016-01-01

    SRO1 is an important regulator of stress and hormonal response in plants and functions by interacting with transcription factors and several other proteins involved in abiotic stress response. In the present study, we report OsRBD1, an RNA binding domain 1- containing protein as a novel interacting partner of OsSRO1a from rice. The interaction of OsSRO1a with OsRBD1 was shown in yeast as well as in planta. Domain–domain interaction study revealed that C-terminal RST domain of OsSRO1a interacts with the N-terminal RRM1 domain of OsRBD1 protein. Both the proteins were found to co-localize in nucleus. Transcript profiling under different stress conditions revealed co-regulation of OsSRO1a and OsRBD1 expression under some abiotic stress conditions. Further, co-transformation of both OsSRO1a and OsRBD1 in yeast conferred enhanced tolerance toward salinity, osmotic, and methylglyoxal treatments. Our study suggests that the interaction of OsSRO1a with OsRBD1 confers enhanced stress tolerance in yeast and may play an important role under abiotic stress responses in plants. PMID:26870074

  6. Contributions of Abiotic and Biotic Processes to the Aerobic Removal of Phenolic Endocrine-Disrupting Chemicals in a Simulated Estuarine Aquatic Environment.

    PubMed

    Yang, Lihua; Cheng, Qiao; Tam, Nora F Y; Lin, Li; Su, Weiqi; Luan, Tiangang

    2016-04-19

    The contributions of abiotic and biotic processes in an estuarine aquatic environment to the removal of four phenolic endocrine-disrupting chemicals (EDCs) were evaluated through simulated batch reactors containing water-only or water-sediment collected from an estuary in South China. More than 90% of the free forms of all four spiked EDCs were removed from these reactors at the end of 28 days under aerobic conditions, with the half-life of 17α-ethynylestradiol (EE2) longer than those of propylparaben (PP), nonylphenol (NP) and 17β-estradiol (E2). The interaction with dissolved oxygen contributed to NP removal and was enhanced by aeration. The PP and E2 removal was positively influenced by adsorption on suspended particles initially, whereas abiotic transformation by estuarine-dissolved matter contributed to their complete removal. Biotic processes, including degradation by active aquatic microorganisms, had significant effects on the removal of EE2. Sedimentary inorganic and organic matter posed a positive effect only when EE2 biodegradation was inhibited. Estrone (E1), the oxidizing product of E2, was detected, proving that E2 was removed by the naturally occurring oxidizers in the estuarine water matrixes. These results revealed that the estuarine aquatic environment was effective in removing free EDCs, and the contributions of abiotic and biotic processes to their removal were compound specific.

  7. Effect of combined application of methyl isothiocyanate and chloropicrin on their transformation.

    PubMed

    Zheng, Wei; Yates, Scott R; Papiernik, Sharon K; Guo, Mingxin

    2004-01-01

    Combining several soil fumigants to increase the broad spectrum of pest control is a common fumigation practice in current production agriculture. In this study, we investigated the effect of combined application of chloropicrin and methyl isothiocyanate (MITC) on their transformations and persistence in the environment. In aqueous solution, no direct reaction between MITC and chloropicrin occurred and relatively slow rates of hydrolysis of these compounds were observed in aquatic environments free of suspended solids. The transformation of chloropicrin, however, was accelerated in aqueous solution with MITC because of a reduction reaction with bisulfide (HS(-)), which is a by-product of MITC hydrolysis. In soil, when fumigants were applied simultaneously, the degradation of MITC was suppressed under the bi-fumigant application due to the inhibition of soil microbial activity and a possible abiotic competition with chloropicrin for a limited number of reaction sites on the surface of soil particles. However, the degradation rate of chloropicrin was significantly enhanced in the bi-fumigant soil system, which was primarily attributed to the reaction of chloropicrin and HS(-). Two sequential application approaches were developed to investigate the feasibility of the combined application of metam sodium (parent compound of MITC) and chloropicrin in soil and assess their potential effects on environmental fate. For both application sequences, the degradation of chloropicrin was accelerated and that of MITC, as a major breakdown product of metam sodium, was inhibited in soil. PMID:15537938

  8. Designing abiotic single nanotube membranes for bioanalytical and biomedical applications

    NASA Astrophysics Data System (ADS)

    Harrell, Christopher Chad

    The goal of this research is to develop abiotic nanostructured sensor platforms for bioanalytical and biomedical applications. The first part of this work is the fabrication of synthetic single nanopore membranes within a polymeric support. We describe here an alternative approach that we believe is easier and more accessible than previously described methods. Fluorescence microscopy is used to identify and isolate single nanopores within these membranes. Furthermore, an electroless plating method can be used to deposit a gold nanotube within the single nanopore, and this provides a route for further decreasing the inside diameter of the pore. The second part relies on a method which allows one to prepare single asymmetric nanopores with a tailored cone opening angle, therefore controlling the effective length of the pores. This nanopore system is based on one sided chemical etching of heavy ion irradiated dielectric films. This process offers the advantage of controlling not only the pore diameter but the pore geometry as well. By controlling the pore dimensions it offers one the ability to fine tune the nanopore system for the analysis of individual molecules. The third part of this work describes a device which consisted of a single conically shaped gold nanotube embedded within a polymeric membrane. This device mimics one of the key functions of biological voltage-gated ion channels---the ability to strongly rectify the ionic current flowing through it. We report here artificial ion channels that rectify the ion current flowing through them via an "electromechanical" mechanism. The electromechanical response is provided by single-stranded DNA molecules attached to the nanotube walls. The final part of this work describes a nanodevice, which consisted of a single abiotic nanopore system. This system is used to analyze single DNA molecules based on the electrophoretic transport of the molecule through the single nanopore system. Finally, this system was used to

  9. Carbon isotopic fractionation of CFCs during abiotic and biotic degradation.

    PubMed

    Archbold, Marie E; Elliot, Trevor; Kalin, Robert M

    2012-02-01

    Carbon stable isotope ((13)C) fractionation in chlorofluorocarbon (CFC) compounds arising from abiotic (chemical) degradation using zero-valent iron (ZVI) and biotic (landfill gas attenuation) processes is investigated. Batch tests (at 25 °C) for CFC-113 and CFC-11 using ZVI show quantitative degradation of CFC-113 to HCFC-123a and CFC-1113 following pseudo-first-order kinetics corresponding to a half-life (τ(1/2)) of 20.5 h, and a ZVI surface-area normalized rate constant (k(SA)) of -(9.8 ± 0.5) × 10(-5) L m(-2) h(-1). CFC-11 degraded to trace HCFC-21 and HCFC-31 following pseudo-first-order kinetics corresponding to τ(1/2) = 17.3 h and k(SA) = -(1.2 ± 0.5) × 10(-4) L m(-2) h(-1). Significant kinetic isotope effects of ε(‰) = -5.0 ± 0.3 (CFC-113) and -17.8 ± 4.8 (CFC-11) were observed. Compound-specific carbon isotope analyses also have been used here to characterize source signatures of CFC gases (HCFC-22, CFC-12, HFC-134a, HCFC-142b, CFC-114, CFC-11, CFC-113) for urban (UAA), rural/remote (RAA), and landfill (LAA) ambient air samples, as well as in situ surface flux chamber (FLUX; NO FLUX) and landfill gas (LFG) samples at the Dargan Road site, Northern Ireland. The latter values reflect biotic degradation and isotopic fractionation in LFG production, and local atmospheric impact of landfill emissions through the cover. Isotopic fractionations of Δ(13)C ∼ -13‰ (HCFC-22), Δ(13)C ∼ -35‰ (CFC-12) and Δ(13)C ∼ -15‰ (CFC-11) were observed for LFG in comparison to characteristic solvent source signatures, with the magnitude of the isotopic effect for CFC-11 apparently similar to the kinetic isotope effect for (abiotic) ZVI degradation. PMID:22191586

  10. Review of recent transgenic studies on abiotic stress tolerance and future molecular breeding in potato

    PubMed Central

    Kikuchi, Akira; Huynh, Huu Duc; Endo, Tsukasa; Watanabe, Kazuo

    2015-01-01

    Global warming has become a major issue within the last decade. Traditional breeding programs for potato have focused on increasing productivity and quality and disease resistance, thus, modern cultivars have limited tolerance of abiotic stresses. The introgression of abiotic stress tolerance into modern cultivars is essential work for the future. Recently, many studies have investigated abiotic stress using transgenic techniques. This manuscript focuses on the study of abiotic stress, in particular drought, salinity and low temperature, during this century. Dividing studies into these three stress categories for this review was difficult. Thus, based on the study title and the transgene property, transgenic studies were classified into five categories in this review; oxidative scavengers, transcriptional factors, and above three abiotic categories. The review focuses on studies that investigate confer of stress tolerance and the identification of responsible factors, including wild relatives. From a practical application perspective, further evaluation of transgenic potato with abiotic stress tolerance is required. Although potato plants, including wild species, have a large potential for abiotic stress tolerance, exploration of the factors responsible for conferring this tolerance is still developing. Molecular breeding, including genetic engineering and conventional breeding using DNA markers, is expected to develop in the future. PMID:25931983

  11. Reduction of astrographic catalogues

    NASA Technical Reports Server (NTRS)

    Stock, J.; Prugna, F. D.; Cova, J.

    1984-01-01

    An automatic program for the reduction of overlapping Carte du Ciel plates is described. The projection and transformation equations are given and the RAA subprogram flow is outlined. The program was applied to two different sets of data, namely to nine overlapping plates of the Cape Zone of the CdC, and to fifteen plates taken with the CIDA-refractor of the open cluster Tr10.

  12. Oxidation, Reduction, and Deoxygenation

    NASA Astrophysics Data System (ADS)

    Madsen, Robert

    In this chapter, methods for oxidation, reduction, and deoxygenation of carbohydrates are presented. In most cases, the reactions have been used on aldoses and their derivatives including glycosides, uronic acids, glycals, and other unsaturated monosaccharides. A number of reactions have also been applied to aldonolactones. The methods include both chemical and enzymatic procedures and some of these can be applied for regioselective transformation of unprotected or partially protected carbohydrates.

  13. Stable Isotope Evidence for Abiotic Ammonium Production in the Hydrothermal Vent Fluids from the Mid-Cayman Rise

    NASA Astrophysics Data System (ADS)

    Charoenpong, C.; Wankel, S. D.; Seewald, J.

    2015-12-01

    The Mid-Cayman Rise hosts the world's deepest (up to 4,987 meters) hydrothermal vent field, Piccard. Under the tremendous pressure, the vent fluid from Piccard can be as hot as 398°C. Here, the concentration of ammonium (35 μmol/kg) is much higher than that of the bottom water nitrate (22 μmol/kg). The undetectable nitrate in the vent fluid suggests that nitrate is completely reduced to ammonium in the reaction zone and there has to be an additional source for ammonium production. Because Piccard is unsedimented (i.e., lacking significant sedimentary organic matter), the other possible source of ammonium is the reduction of nitrogen gas (N2). We demonstrated that the isotopic composition of ammonium (δ15N-NH4+) for the Piccard vent fluid end-member (3.4 ± 0.1 ‰) supports the mixing between two ammonium sources: the reduction of nitrate and the reduction of N2. However, at Von Damm, shallower depth (up to 2,300 meters) causes the vent fluid to be relatively cooler (138°C) compared to Piccard and it is very likely that the reduction of nitrate is the only source of ammonium in the vent fluid. Studying the vent fluids from these sites where the temperatures are well above the upper limit for life can be useful in assessing the conditions and abiotic processes that might have given rise to the ammonium production in the early prebiotic ocean.

  14. Reduction and Acetylation of 2,4-Dinitrotoluene by a Pseudomonas aeruginosa Strain

    PubMed Central

    Noguera, D. R.; Freedman, D. L.

    1996-01-01

    Aerobic and anoxic biotransformation of 2,4-dinitrotoluene (DNT) was examined by using a Pseudomonas aeruginosa strain isolated from a plant treating propellant manufacturing wastewater. DNT biotransformation in the presence and absence of oxygen was mostly reductive and was representative of the type of cometabolic transformations that occur when a high concentration of an easily degradable carbon source is present. P. aeruginosa reduced both nitro groups on DNT, with the formation of mainly 4-amino-2-nitrotoluene and 2-amino-4-nitrotoluene and small quantities of 2,4-diaminotoluene. Acetylation of the arylamines was a significant reaction. 4-Acetamide-2-nitrotoluene and the novel compounds 2-acetamide-4-nitrotoluene, 4-acetamide-2-aminotoluene, and 2,4-diacetamidetoluene were identified as DNT metabolites. The biotransformation of 2,4-diaminotoluene to 4-acetamide-2-aminotoluene was 24 times faster than abiotic transformation. 2-Nitrotoluene and 4-nitrotoluene were also reduced to their corresponding toluidines and then acetylated. However, the yield of 4-acetamidetoluene was much higher than that of 2-acetamidetoluene, demonstrating that acetylation at the position para to the methyl group was favored. PMID:16535348

  15. Assessing iron-mediated oxidation of toluene and reduction of nitroaromatic contaminants in anoxic environments using compound-specific isotope analysis.

    PubMed

    Tobler, Nicole B; Hofstetter, Thomas B; Schwarzenbach, René P

    2007-11-15

    We evaluated compound-specific isotope analysis (CSIA) as a tool to assess the coupling of microbial toluene oxidation by Fe(III)-reducing bacteria and abiotic reduction of nitroaromatic contaminants by biogenic mineral-bound Fe(II) species. Examination of the two processes in isolated systems revealed a reproducible carbon isotope fractionation for toluene oxidation by Geobacter metal-lireducens with a solid Fe(III) phase as terminal electron acceptor. We found a carbon isotope enrichment factor, epsilonC, of -1.0 +/- 0.1 per thousand, which corresponds to an apparent kinetic isotope effect (AKIE(C)) of 1.0073 +/- 0.0009 for the oxidative cleavage of a C-H bond. Nitrogen isotope fractionation of the reduction of nitroaromatic compounds (NAC) by mineral-bound Fe(ll) species yielded a nitrogen isotope enrichment factor, epsilonN, of -39.7 +/- 3.4 per thousand for the reduction of an aromatic NO2-group (AKIE(N) = 1.0413 +/- 0.0037) that was constant for variable experimental conditions. Finally, AKIE values for C and N observed in coupled experiments, where reactive Fe(II) was generated through microbial activity, were identical to those obtained in the isolated experiments. This study provides new evidence on isotope fractionation behavior during contaminant transformation and promotes the use of CSIA for the elucidation of complex contaminant transformation pathways in the environment.

  16. Microbial toxicity and characterization of DNAN (bio)transformation product mixtures.

    PubMed

    Olivares, Christopher I; Sierra-Alvarez, Reyes; Alvarez-Nieto, Cristina; Abrell, Leif; Chorover, Jon; Field, Jim A

    2016-07-01

    2,4-Dinitroanisole (DNAN) is an emerging insensitive munitions compound. It undergoes rapid (bio)transformation in soils and anaerobic sludge. The primary transformation pathway catalyzed by a combination of biotic and abiotic factors is nitrogroup reduction followed by coupling of reactive intermediates to form azo-dimers. Additional pathways include N-acetylation and O-demethoxylation. Toxicity due to (bio)transformation products of DNAN has received little attention. In this study, the toxicity of DNAN (bio)transformation monomer products and azo-dimer and trimer surrogates to acetoclastic methanogens and the marine bioluminescent bacterium, Allivibrio fischeri, were evaluated. Methanogens were severely inhibited by 3-nitro-4-methoxyaniline (MENA), with a 50%-inhibiting concentration (IC50) of 25 μM, which is more toxic than DNAN with the same assay, but posed a lower toxicity to Allivibrio fischeri (IC50 = 219 μM). On the other hand, N-(5-amino-2-methoxyphenyl) acetamide (Ac-DAAN) was the least inhibitory test-compound for both microbial targets. Azo-dimer and trimer surrogates were very highly toxic to both microbial systems, with a toxicity similar or stronger than that of DNAN. A semi-quantitative LC-QTOF-MS method was employed to determine product mixture profiles at different stages of biotransformation, and compared with the microbial toxicity of the product-mixtures formed. Methanogenic toxicity increased due to putative reactive nitroso-intermediates as DNAN was reduced. However, the inhibition later attenuated as dimers became the predominant products in the mixtures. In contrast, A. fischeri tolerated the initial biotransformation products but were highly inhibited by the predominant azo-dimer products formed at longer incubation times, suggesting these ultimate products are more toxic than DNAN.

  17. A Model of Continental Growth and Mantle Degassing Comparing Biotic and Abiotic Worlds

    NASA Astrophysics Data System (ADS)

    Höning, D.; Hansen-Goos, H.; Spohn, T.

    2012-12-01

    While examples for interaction of the biosphere with the atmosphere can be easily cited (e.g., production and consumption of O2), interaction between the biosphere and the solid planet and its interior is much less established. It has been argued (e.g., Rosing et al. 2006; Sleep et al, 2012) that the formation of continents could be a consequence of bioactivity harvesting solar energy through photosynthesis to help build the continents and that the mantle should carry a chemical biosignature. We present an interaction model that includes mantle convection, mantle water vapor degassing at mid-oceanic ridges and regassing through subduction zones, continental crust formation and erosion and water storage and transport in a porous oceanic crust that includes hydrous mineral phases. The mantle viscosity in this model depends on the water concentration in the mantle. We use boundary layer theory of mantle convection to parameterize the mantle convection flow rate and assume that the plate speed equals the mantle flow rate. The biosphere enters the calculation through the assumption that the continental erosion rate is enhanced by a factor of several through bioactivity and through an assumed reduction of the kinetic barrier to diagenetic and metamorphic reactions (e.g., Kim et al. 2004) in the sedimentary basins in subduction zones that would lead to increased water storage capacities. We further include a stochastic model of continent-to-continent interactions that limits the effective total length of subduction zones. We use present day parameters of the Earth and explore a phase plane spanned by the percentage of surface coverage of the Earth by continents and the total water content of the mantle. We vary the ratio of the erosion rate in a postulated abiotic Earth to the present Earth, as well as the activation barrier to diagenetic and metamorphic reactions that affect the water storage capacity of the subducting crust. We find stable and unstable fixed points in

  18. Wheat proteomics: proteome modulation and abiotic stress acclimation

    PubMed Central

    Komatsu, Setsuko; Kamal, Abu H. M.; Hossain, Zahed

    2014-01-01

    Cellular mechanisms of stress sensing and signaling represent the initial plant responses to adverse conditions. The development of high-throughput “Omics” techniques has initiated a new era of the study of plant molecular strategies for adapting to environmental changes. However, the elucidation of stress adaptation mechanisms in plants requires the accurate isolation and characterization of stress-responsive proteins. Because the functional part of the genome, namely the proteins and their post-translational modifications, are critical for plant stress responses, proteomic studies provide comprehensive information about the fine-tuning of cellular pathways that primarily involved in stress mitigation. This review summarizes the major proteomic findings related to alterations in the wheat proteomic profile in response to abiotic stresses. Moreover, the strengths and weaknesses of different sample preparation techniques, including subcellular protein extraction protocols, are discussed in detail. The continued development of proteomic approaches in combination with rapidly evolving bioinformatics tools and interactive databases will facilitate understanding of the plant mechanisms underlying stress tolerance. PMID:25538718

  19. Abiotic environmental factors influencing blowfly colonisation patterns in the field.

    PubMed

    George, Kelly A; Archer, Melanie S; Toop, Tes

    2013-06-10

    The accuracy of minimum post-mortem interval (mPMI) estimates usually hinges upon the ability of forensic entomologists to predict the conditions under which calliphorids will colonise bodies. However, there can be delays between death and colonisation due to poorly understood abiotic and biotic factors, hence the need for a mPMI. To quantify the importance of various meteorological and light-level factors, beef liver baits were placed in the field (Victoria, Australia) on 88 randomly selected days over 3 years in all seasons and observed every 60-90 min for evidence of colonisation. Baits were exposed during daylight, and the following parameters were measured: barometric pressure, light intensity, wind speed, ambient temperature, relative humidity and rainfall. Collected data were analysed using backward LR logistic regression to produce an equation of colonisation probability. This type of analysis removes factors with the least influence on colonisation in successive steps until all remaining variables significantly increase the accuracy of predicting colonisation presence or absence. Ambient temperature was a positive predictor variable (an increase in temperature increased the probability of calliphorid colonisation). Relative humidity was a negative predictor variable (an increase in humidity decreased the probability of calliphorid colonisation). Barometric pressure, light intensity, wind speed and rainfall did not enhance the accuracy of the probability model; however, analysis of species activity patterns suggests that heavy rainfall and strong wind speeds inhibit calliphorid colonisation.

  20. Identification of Cassava MicroRNAs under Abiotic Stress.

    PubMed

    Ballén-Taborda, Carolina; Plata, Germán; Ayling, Sarah; Rodríguez-Zapata, Fausto; Becerra Lopez-Lavalle, Luis Augusto; Duitama, Jorge; Tohme, Joe

    2013-01-01

    The study of microRNAs (miRNAs) in plants has gained significant attention in recent years due to their regulatory role during development and in response to biotic and abiotic stresses. Although cassava (Manihot esculenta Crantz) is tolerant to drought and other adverse conditions, most cassava miRNAs have been predicted using bioinformatics alone or through sequencing of plants challenged by biotic stress. Here, we use high-throughput sequencing and different bioinformatics methods to identify potential cassava miRNAs expressed in different tissues subject to heat and drought conditions. We identified 60 miRNAs conserved in other plant species and 821 potential cassava-specific miRNAs. We also predicted 134 and 1002 potential target genes for these two sets of sequences. Using real time PCR, we verified the condition-specific expression of 5 cassava small RNAs relative to a non-stress control. We also found, using publicly available expression data, a significantly lower expression of the predicted target genes of conserved and nonconserved miRNAs under drought stress compared to other cassava genes. Gene Ontology enrichment analysis along with condition specific expression of predicted miRNA targets, allowed us to identify several interesting miRNAs which may play a role in stress-induced posttranscriptional regulation in cassava and other plants. PMID:24328029

  1. Identification of Cassava MicroRNAs under Abiotic Stress

    PubMed Central

    Ballén-Taborda, Carolina; Plata, Germán; Ayling, Sarah; Rodríguez-Zapata, Fausto; Tohme, Joe

    2013-01-01

    The study of microRNAs (miRNAs) in plants has gained significant attention in recent years due to their regulatory role during development and in response to biotic and abiotic stresses. Although cassava (Manihot esculenta Crantz) is tolerant to drought and other adverse conditions, most cassava miRNAs have been predicted using bioinformatics alone or through sequencing of plants challenged by biotic stress. Here, we use high-throughput sequencing and different bioinformatics methods to identify potential cassava miRNAs expressed in different tissues subject to heat and drought conditions. We identified 60 miRNAs conserved in other plant species and 821 potential cassava-specific miRNAs. We also predicted 134 and 1002 potential target genes for these two sets of sequences. Using real time PCR, we verified the condition-specific expression of 5 cassava small RNAs relative to a non-stress control. We also found, using publicly available expression data, a significantly lower expression of the predicted target genes of conserved and nonconserved miRNAs under drought stress compared to other cassava genes. Gene Ontology enrichment analysis along with condition specific expression of predicted miRNA targets, allowed us to identify several interesting miRNAs which may play a role in stress-induced posttranscriptional regulation in cassava and other plants. PMID:24328029

  2. Identification of Cassava MicroRNAs under Abiotic Stress.

    PubMed

    Ballén-Taborda, Carolina; Plata, Germán; Ayling, Sarah; Rodríguez-Zapata, Fausto; Becerra Lopez-Lavalle, Luis Augusto; Duitama, Jorge; Tohme, Joe

    2013-01-01

    The study of microRNAs (miRNAs) in plants has gained significant attention in recent years due to their regulatory role during development and in response to biotic and abiotic stresses. Although cassava (Manihot esculenta Crantz) is tolerant to drought and other adverse conditions, most cassava miRNAs have been predicted using bioinformatics alone or through sequencing of plants challenged by biotic stress. Here, we use high-throughput sequencing and different bioinformatics methods to identify potential cassava miRNAs expressed in different tissues subject to heat and drought conditions. We identified 60 miRNAs conserved in other plant species and 821 potential cassava-specific miRNAs. We also predicted 134 and 1002 potential target genes for these two sets of sequences. Using real time PCR, we verified the condition-specific expression of 5 cassava small RNAs relative to a non-stress control. We also found, using publicly available expression data, a significantly lower expression of the predicted target genes of conserved and nonconserved miRNAs under drought stress compared to other cassava genes. Gene Ontology enrichment analysis along with condition specific expression of predicted miRNA targets, allowed us to identify several interesting miRNAs which may play a role in stress-induced posttranscriptional regulation in cassava and other plants.

  3. Biotic and abiotic stress can induce cystatin expression in chestnut.

    PubMed

    Pernas, M; Sánchez-Monge, R; Salcedo, G

    2000-02-11

    A cysteine proteinase inhibitor (cystatin) from chestnut (Castanea sativa) seeds, designated CsC, has been previously characterized. Its antifungal, acaricide and inhibitory activities have allowed to involve CsC in defence mechanisms. The CsC transcription levels decreased during seed maturation and increased throughout germination, an opposite behavior to that shown by most phytocystatins. No inhibition of endogenous proteinase activity by purified CsC was found during the seed maturation or germination processes. CsC message accumulation was induced in chestnut leaves after fungal infection, as well as by wounding and jasmonic acid treatment. Induction in roots was also observed by the last two treatments. Furthermore, CsC transcript levels strongly raised, both in roots and leaves, when chestnut plantlets were subjected to cold- and saline-shocks, and also in roots by heat stress. All together, these data suggest that chestnut cystatin is not only involved in defence responses to pests and pathogen invasion, but also in those related to abiotic stress.

  4. Circadian Redox Signaling in Plant Immunity and Abiotic Stress

    PubMed Central

    Spoel, Steven H.

    2014-01-01

    Abstract Significance: Plant crops are critically important to provide quality food and bio-energy to sustain a growing human population. Circadian clocks have been shown to deliver an adaptive advantage to plants, vastly increasing biomass production by efficient anticipation to the solar cycle. Plant stress, on the other hand, whether biotic or abiotic, prevents crops from reaching maximum productivity. Recent Advances: Stress is associated with fluctuations in cellular redox and increased phytohormone signaling. Recently, direct links between circadian timekeeping, redox fluctuations, and hormone signaling have been identified. A direct implication is that circadian control of cellular redox homeostasis influences how plants negate stress to ensure growth and reproduction. Critical Issues: Complex cellular biochemistry leads from perception of stress via hormone signals and formation of reactive oxygen intermediates to a physiological response. Circadian clocks and metabolic pathways intertwine to form a confusing biochemical labyrinth. Here, we aim to find order in this complex matter by reviewing current advances in our understanding of the interface between these networks. Future Directions: Although the link is now clearly defined, at present a key question remains as to what extent the circadian clock modulates redox, and vice versa. Furthermore, the mechanistic basis by which the circadian clock gates redox- and hormone-mediated stress responses remains largely elusive. Antioxid. Redox Signal. 20, 3024–3039. PMID:23941583

  5. The role of transcriptional coactivator ADA2b in Arabidopsis abiotic stress responses

    PubMed Central

    Kaldis, Athanasios; Nikoloudi, Adriana; Tsementzi, Despoina

    2011-01-01

    Plant growth and crop production can be greatly affected by common environmental stresses such as drought, high salinity and low temperatures. Gene expression is affected by several abiotic stresses. Stress-inducible genes are regulated by transcription factors and epigenetic mechanisms such as histone modifications. In this mini-review, we have explored the role of transcriptional adaptor ADA2b in Arabidopsis responses to abiotic stress. ADA2b is required for the expression of genes involved in abiotic stress either by controlling H3 and H4 acetylation in the case of salt stress or affecting nucleosome occupancy in low temperatures response. PMID:21897124

  6. The role of transcriptional coactivator ADA2b in Arabidopsis abiotic stress responses.

    PubMed

    Vlachonasios, Konstantinos E; Kaldis, Athanasios; Nikoloudi, Adriana; Tsementzi, Despoina

    2011-10-01

    Plant growth and crop production can be greatly affected by common environmental stresses such as drought, high salinity and low temperatures. Gene expression is affected by several abiotic stresses. Stress-inducible genes are regulated by transcription factors and epigenetic mechanisms such as histone modifications. In this Mini-Review, we have explored the role of transcriptional adaptor ADA2b in Arabidopsis responses to abiotic stress. ADA2b is required for the expression of genes involved in abiotic stress either by controlling H3 and H4 acetylation in the case of salt stress or affecting nucleosome occupancy in low temperatures response.

  7. Transformational leadership.

    PubMed

    Taccetta-Chapnick, M

    1996-01-01

    Rapid changes in the health care system have caused competition among institutions, as organizations are restructured to increase client satisfaction, resulting in the need for a new style of leadership. The transformational leader communicates the mission and vision of the organization and empowers others to effectively resolve conflicts that may arise with change. The health care team that can cope with changes and conflicts views restructuring as a positive transaction and approaches client satisfaction with energy and motivation. Institutions with transformational leadership are the ones that will survive the transition.

  8. Microbial Sulfate Reduction Enhances Arsenic Mobility Downstream of Zerovalent-Iron-Based Permeable Reactive Barrier.

    PubMed

    Kumar, Naresh; Couture, Raoul-Marie; Millot, Romain; Battaglia-Brunet, Fabienne; Rose, Jérôme

    2016-07-19

    We assessed the potential of zerovalent-iron- (Fe(0)) based permeable reactive barrier (PRB) systems for arsenic (As) remediation in the presence or absence of microbial sulfate reduction. We conducted long-term (200 day) flow-through column experiments to investigate the mechanisms of As transformation and mobility in aquifer sediment (in particular, the PRB downstream linkage). Changes in As speciation in the aqueous phase were monitored continuously. Speciation in the solid phase was determined at the end of the experiment using X-ray absorption near-edge structure (XANES) spectroscopy analysis. We identified thio-As species in solution and AsS in solid phase, which suggests that the As(V) was reduced to As(III) and precipitated as AsS under sulfate-reducing conditions and remained as As(V) under abiotic conditions, even with low redox potential and high Fe(II) content (4.5 mM). Our results suggest that the microbial sulfate reduction plays a key role in the mobilization of As from Fe-rich aquifer sediment under anoxic conditions. Furthermore, they illustrate that the upstream-downstream linkage of PRB affects the speciation and mobility of As in downstream aquifer sediment, where up to 47% of total As initially present in the sediment was leached out in the form of mobile thio-As species. PMID:27309856

  9. Microbial Sulfate Reduction Enhances Arsenic Mobility Downstream of Zerovalent-Iron-Based Permeable Reactive Barrier.

    PubMed

    Kumar, Naresh; Couture, Raoul-Marie; Millot, Romain; Battaglia-Brunet, Fabienne; Rose, Jérôme

    2016-07-19

    We assessed the potential of zerovalent-iron- (Fe(0)) based permeable reactive barrier (PRB) systems for arsenic (As) remediation in the presence or absence of microbial sulfate reduction. We conducted long-term (200 day) flow-through column experiments to investigate the mechanisms of As transformation and mobility in aquifer sediment (in particular, the PRB downstream linkage). Changes in As speciation in the aqueous phase were monitored continuously. Speciation in the solid phase was determined at the end of the experiment using X-ray absorption near-edge structure (XANES) spectroscopy analysis. We identified thio-As species in solution and AsS in solid phase, which suggests that the As(V) was reduced to As(III) and precipitated as AsS under sulfate-reducing conditions and remained as As(V) under abiotic conditions, even with low redox potential and high Fe(II) content (4.5 mM). Our results suggest that the microbial sulfate reduction plays a key role in the mobilization of As from Fe-rich aquifer sediment under anoxic conditions. Furthermore, they illustrate that the upstream-downstream linkage of PRB affects the speciation and mobility of As in downstream aquifer sediment, where up to 47% of total As initially present in the sediment was leached out in the form of mobile thio-As species.

  10. Transformation Time

    ERIC Educational Resources Information Center

    Berry, John N., III

    2007-01-01

    The program for the march by librarians on America's capital for the American Library Association (ALA) conference is predictably loaded with lobbying, legislation, and DC tours. It also abounds with professional opportunity and reflects the impact of Leslie Burger, one of the most activist ALA presidents in recent history. Her "Transformation"…

  11. Transformation & Metamorphosis

    ERIC Educational Resources Information Center

    Lott, Debra

    2009-01-01

    The sculptures of Canadian artist Brian Jungen are a great inspiration for a lesson on creating new forms. Jungen transforms found objects into unique creations without fully concealing their original form or purpose. Frank Stella's sculpture series, including "K.132,2007" made of stainless steel and spray paint, is another great example of…

  12. Transforming Schools.

    ERIC Educational Resources Information Center

    Cookson, Peter W., Jr., Ed.; Schneider, Barbara, Ed.

    The authors in this book address the issues that relate to the crisis in American education and review some of the proposed solutions. To transform education, schools must be examined as social systems that are interrelated with families, communities, and the world of work. Following the introduction, section 1, "Conditions for Educational…

  13. Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow

    NASA Astrophysics Data System (ADS)

    Hansel, Colleen M.; Benner, Shawn G.; Neiss, Jim; Dohnalkova, Alice; Kukkadapu, Ravi K.; Fendorf, Scott

    2003-08-01

    Iron (hydr)oxides not only serve as potent sorbents and repositories for nutrients and contaminants but also provide a terminal electron acceptor for microbial respiration. The microbial reduction of Fe (hydr)oxides and the subsequent secondary solid-phase transformations will, therefore, have a profound influence on the biogeochemical cycling of Fe as well as associated metals. Here we elucidate the pathways and mechanisms of secondary mineralization during dissimilatory iron reduction by a common iron-reducing bacterium, Shewanella putrefaciens (strain CN32), of 2-line ferrihydrite under advective flow conditions. Secondary mineralization of ferrihydrite occurs via a coupled, biotic-abiotic pathway primarily resulting in the production of magnetite and goethite with minor amounts of green rust. Operating mineralization pathways are driven by competing abiotic reactions of bacterially generated ferrous iron with the ferrihydrite surface. Subsequent to the initial sorption of ferrous iron on ferrihydrite, goethite (via dissolution/reprecipitation) and/or magnetite (via solid-state conversion) precipitation ensues resulting in the spatial coupling of both goethite and magnetite with the ferrihydrite surface. The distribution of goethite and magnetite within the column is dictated, in large part, by flow-induced ferrous Fe profiles. While goethite precipitation occurs over a large Fe(II) concentration range, magnetite accumulation is only observed at concentrations exceeding 0.3 mmol/L (equivalent to 0.5 mmol Fe[II]/g ferrihydrite) following 16 d of reaction. Consequently, transport-regulated ferrous Fe profiles result in a progression of magnetite levels downgradient within the column. Declining microbial reduction over time results in lower Fe(II) concentrations and a subsequent shift in magnetite precipitation mechanisms from nucleation to crystal growth. While the initial precipitation rate of goethite exceeds that of magnetite, continued growth is inhibited by

  14. The Plant Heat Stress Transcription Factors (HSFs): Structure, Regulation, and Function in Response to Abiotic Stresses

    PubMed Central

    Guo, Meng; Liu, Jin-Hong; Ma, Xiao; Luo, De-Xu; Gong, Zhen-Hui; Lu, Ming-Hui

    2016-01-01

    Abiotic stresses such as high temperature, salinity, and drought adversely affect the survival, growth, and reproduction of plants. Plants respond to such unfavorable changes through developmental, physiological, and biochemical ways, and these responses require expression of stress-responsive genes, which are regulated by a network of transcription factors (TFs), including heat stress transcription factors (HSFs). HSFs play a crucial role in plants response to several abiotic stresses by regulating the expression of stress-responsive genes, such as heat shock proteins (Hsps). In this review, we describe the conserved structure of plant HSFs, the identification of HSF gene families from various plant species, their expression profiling under abiotic stress conditions, regulation at different levels and function in abiotic stresses. Despite plant HSFs share highly conserved structure, their remarkable diversification across plants reflects their numerous functions as well as their integration into the complex stress signaling and response networks, which can be employed in crop improvement strategies via biotechnological intervention. PMID:26904076

  15. Improvement of plant abiotic stress tolerance through modulation of the polyamine pathway.

    PubMed

    Shi, Haitao; Chan, Zhulong

    2014-02-01

    Polyamines (mainly putrescine (Put), spermidine (Spd), and spermine (Spm)) have been widely found in a range of physiological processes and in almost all diverse environmental stresses. In various plant species, abiotic stresses modulated the accumulation of polyamines and related gene expression. Studies using loss-of-function mutants and transgenic overexpression plants modulating polyamine metabolic pathways confirmed protective roles of polyamines during plant abiotic stress responses, and indicated the possibility to improve plant tolerance through genetic manipulation of the polyamine pathway. Additionally, putative mechanisms of polyamines involved in plant abiotic stress tolerance were thoroughly discussed and crosstalks among polyamine, abscisic acid, and nitric oxide in plant responses to abiotic stress were emphasized. Special attention was paid to the interaction between polyamine and reactive oxygen species, ion channels, amino acid and carbon metabolism, and other adaptive responses. Further studies are needed to elucidate the polyamine signaling pathway, especially polyamine-regulated downstream targets and the connections between polyamines and other stress responsive molecules.

  16. Abiotic and biological mechanisms of nitric oxide removal from waste air in biotrickling filters.

    PubMed

    Chen, Jian-Meng; Ma, Jian-Feng

    2006-01-01

    Nitric oxide (NO) may participate in the ozone layer depletion and forming of nitric acid. Abiotic and biological mechanisms of NO removal from waste gases were studied in a biotrickling filter. The abiotic NO removal rate in the biotrickling filter was estimated by a review of the literature. The abiotic and biological removals were also verified in the biotrickling filter. The result has shown that chemical oxidation and bionitrification were both involved in the NO removal. It was found that the NO removal in high concentration (approximately 1000 ppm or higher) was in large measure the result of abiotic removal in both gas-phase and liquid-phase reactions. When NO concentration is low (less than approximately 100 ppm), bionitrification was the main process in the NO removal process in the biotrickling filter.

  17. Mud, Macrofauna and Microbes: An ode to benthic organism-abiotic interactions at varying scales

    EPA Science Inventory

    Benthic environments are dynamic habitats, subject to variable sources and rates of sediment delivery, reworking from the abiotic and biotic processes, and complex biogeochemistry. These activities do not occur in a vacuum, and interact synergistically to influence food webs, bi...

  18. The Plant Heat Stress Transcription Factors (HSFs): Structure, Regulation, and Function in Response to Abiotic Stresses.

    PubMed

    Guo, Meng; Liu, Jin-Hong; Ma, Xiao; Luo, De-Xu; Gong, Zhen-Hui; Lu, Ming-Hui

    2016-01-01

    Abiotic stresses such as high temperature, salinity, and drought adversely affect the survival, growth, and reproduction of plants. Plants respond to such unfavorable changes through developmental, physiological, and biochemical ways, and these responses require expression of stress-responsive genes, which are regulated by a network of transcription factors (TFs), including heat stress transcription factors (HSFs). HSFs play a crucial role in plants response to several abiotic stresses by regulating the expression of stress-responsive genes, such as heat shock proteins (Hsps). In this review, we describe the conserved structure of plant HSFs, the identification of HSF gene families from various plant species, their expression profiling under abiotic stress conditions, regulation at different levels and function in abiotic stresses. Despite plant HSFs share highly conserved structure, their remarkable diversification across plants reflects their numerous functions as well as their integration into the complex stress signaling and response networks, which can be employed in crop improvement strategies via biotechnological intervention.

  19. ABIOTIC FORMATION OF CARBOXYLIC ACIDS (RCOOH) IN INTERSTELLAR AND SOLAR SYSTEM MODEL ICES

    SciTech Connect

    Kim, Y. S.; Kaiser, R. I.

    2010-12-10

    The present laboratory study simulated the abiotic formation of carboxylic acids (RCOOH) in interstellar and solar system model ices of carbon dioxide (CO{sub 2})-hydrocarbon mix C{sub n} H{sub 2n+2} (n = 1-6). The pristine model ices were irradiated at 10 K under contamination-free, ultrahigh vacuum conditions with energetic electrons generated in the track of galactic cosmic-ray particles. The chemical processing of the ices was monitored by a Fourier transform infrared spectrometer and a quadrupole mass spectrometer during the irradiation phase and subsequent warm-up phases on line and in situ in order to extract qualitative (carriers) and quantitative (rate constants and yields) information on the newly synthesized species. Carboxylic acids were identified to be the main carrier, together with carbon monoxide (CO) and a trace of formyl (HCO) and hydroxycarbonyl (HOCO) radicals at 10 K. The upper limit of acid column density at 10 K was estimated as much as (1.2 {+-} 0.1) x 10{sup 17} molecules cm{sup -2} at doses of 17 {+-} 2 eV molecule{sup -1}, or the yield of 39% {+-} 4% from the initial column density of carbon dioxide. The temporal column density profiles of the products were then numerically fit using two independent kinetic schemes of reaction mechanisms. Finally, we transfer this laboratory simulation to star-forming regions of the interstellar medium, wherein cosmic-ray-induced processing of icy grains at temperatures as low as 10 K could contribute to the current level of chemical complexity as evidenced in astronomical observations and in extracts of carbonaceous meteorites.

  20. Abiotic and microbiotic factors controlling biofilm formation by thermophilic sporeformers.

    PubMed

    Zhao, Yu; Caspers, Martien P M; Metselaar, Karin I; de Boer, Paulo; Roeselers, Guus; Moezelaar, Roy; Nierop Groot, Masja; Montijn, Roy C; Abee, Tjakko; Kort, Remco

    2013-09-01

    One of the major concerns in the production of dairy concentrates is the risk of contamination by heat-resistant spores from thermophilic bacteria. In order to acquire more insight in the composition of microbial communities occurring in the dairy concentrate industry, a bar-coded 16S amplicon sequencing analysis was carried out on milk, final products, and fouling samples taken from dairy concentrate production lines. The analysis of these samples revealed the presence of DNA from a broad range of bacterial taxa, including a majority of mesophiles and a minority of (thermophilic) spore-forming bacteria. Enrichments of fouling samples at 55°C showed the accumulation of predominantly Brevibacillus and Bacillus, whereas enrichments at 65°C led to the accumulation of Anoxybacillus and Geobacillus species. Bacterial population analysis of biofilms grown using fouling samples as an inoculum indicated that both Anoxybacillus and Geobacillus preferentially form biofilms on surfaces at air-liquid interfaces rather than on submerged surfaces. Three of the most potent biofilm-forming strains isolated from the dairy factory industrial samples, including Geobacillus thermoglucosidans, Geobacillus stearothermophilus, and Anoxybacillus flavithermus, have been characterized in detail with respect to their growth conditions and spore resistance. Strikingly, Geobacillus thermoglucosidans, which forms the most thermostable spores of these three species, is not able to grow in dairy intermediates as a pure culture but appears to be dependent for growth on other spoilage organisms present, probably as a result of their proteolytic activity. These results underscore the importance of abiotic and microbiotic factors in niche colonization in dairy factories, where the presence of thermophilic sporeformers can affect the quality of end products.

  1. Abiotic and Microbiotic Factors Controlling Biofilm Formation by Thermophilic Sporeformers

    PubMed Central

    Zhao, Yu; Caspers, Martien P. M.; Metselaar, Karin I.; de Boer, Paulo; Roeselers, Guus; Moezelaar, Roy; Nierop Groot, Masja; Montijn, Roy C.; Abee, Tjakko

    2013-01-01

    One of the major concerns in the production of dairy concentrates is the risk of contamination by heat-resistant spores from thermophilic bacteria. In order to acquire more insight in the composition of microbial communities occurring in the dairy concentrate industry, a bar-coded 16S amplicon sequencing analysis was carried out on milk, final products, and fouling samples taken from dairy concentrate production lines. The analysis of these samples revealed the presence of DNA from a broad range of bacterial taxa, including a majority of mesophiles and a minority of (thermophilic) spore-forming bacteria. Enrichments of fouling samples at 55°C showed the accumulation of predominantly Brevibacillus and Bacillus, whereas enrichments at 65°C led to the accumulation of Anoxybacillus and Geobacillus species. Bacterial population analysis of biofilms grown using fouling samples as an inoculum indicated that both Anoxybacillus and Geobacillus preferentially form biofilms on surfaces at air-liquid interfaces rather than on submerged surfaces. Three of the most potent biofilm-forming strains isolated from the dairy factory industrial samples, including Geobacillus thermoglucosidans, Geobacillus stearothermophilus, and Anoxybacillus flavithermus, have been characterized in detail with respect to their growth conditions and spore resistance. Strikingly, Geobacillus thermoglucosidans, which forms the most thermostable spores of these three species, is not able to grow in dairy intermediates as a pure culture but appears to be dependent for growth on other spoilage organisms present, probably as a result of their proteolytic activity. These results underscore the importance of abiotic and microbiotic factors in niche colonization in dairy factories, where the presence of thermophilic sporeformers can affect the quality of end products. PMID:23851093

  2. A review of selection-based tests of abiotic surrogates for species representation.

    PubMed

    Beier, Paul; Sutcliffe, Patricia; Hjort, Jan; Faith, Daniel P; Pressey, Robert L; Albuquerque, Fabio

    2015-06-01

    Because conservation planners typically lack data on where species occur, environmental surrogates--including geophysical settings and climate types--have been used to prioritize sites within a planning area. We reviewed 622 evaluations of the effectiveness of abiotic surrogates in representing species in 19 study areas. Sites selected using abiotic surrogates represented more species than an equal number of randomly selected sites in 43% of tests (55% for plants) and on average improved on random selection of sites by about 8% (21% for plants). Environmental diversity (ED) (42% median improvement on random selection) and biotically informed clusters showed promising results and merit additional testing. We suggest 4 ways to improve performance of abiotic surrogates. First, analysts should consider a broad spectrum of candidate variables to define surrogates, including rarely used variables related to geographic separation, distance from coast, hydrology, and within-site abiotic diversity. Second, abiotic surrogates should be defined at fine thematic resolution. Third, sites (the landscape units prioritized within a planning area) should be small enough to ensure that surrogates reflect species' environments and to produce prioritizations that match the spatial resolution of conservation decisions. Fourth, if species inventories are available for some planning units, planners should define surrogates based on the abiotic variables that most influence species turnover in the planning area. Although species inventories increase the cost of using abiotic surrogates, a modest number of inventories could provide the data needed to select variables and evaluate surrogates. Additional tests of nonclimate abiotic surrogates are needed to evaluate the utility of conserving nature's stage as a strategy for conservation planning in the face of climate change.

  3. Concentration effects on biotic and abiotic processes in the removal of 1,1,2-trichloroethane and vinyl chloride using carbon-amended ZVI

    NASA Astrophysics Data System (ADS)

    Patterson, Bradley M.; Lee, Matthew; Bastow, Trevor P.; Wilson, John T.; Donn, Michael J.; Furness, Andrew; Goodwin, Bryan; Manefield, Mike

    2016-05-01

    A permeable reactive barrier, consisting of both zero valent iron (ZVI) and a biodegradable organic carbon, was evaluated for the remediation of 1,1,2-trichloroethane (1,1,2-TCA) contaminated groundwater. During an 888 day laboratory column study, degradation rates initially stabilized with a degradation half-life of 4.4 ± 0.4 days. Based on the accumulation of vinyl chloride (VC) and limited production of 1,1-dichloroethene (1,1-DCE) and 1,2-dichloroethane (1,2-DCA), the dominant degradation pathway was likely abiotic dichloroelimination to form VC. Degradation of VC was not observed based on the accumulation of VC and limited ethene production. After a step reduction in the influent concentration of 1,1,2-TCA from 170 ± 20 mg L- 1 to 39 ± 11 mg L- 1, the degradation half-life decreased 5-fold to 0.83 ± 0.17 days. The isotopic enrichment factor of 1,1,2-TCA also changed after the step reduction from - 14.6 ± 0.7‰ to - 0.72 ± 0.12‰, suggesting a possible change in the degradation mechanism from abiotic reductive degradation to biodegradation. Microbiological data suggested a co-culture of Desulfitobacterium and Dehalococcoides was responsible for the biodegradation of 1,1,2-TCA to ethene.

  4. Concentration effects on biotic and abiotic processes in the removal of 1,1,2-trichloroethane and vinyl chloride using carbon-amended ZVI.

    PubMed

    Patterson, Bradley M; Lee, Matthew; Bastow, Trevor P; Wilson, John T; Donn, Michael J; Furness, Andrew; Goodwin, Bryan; Manefield, Mike

    2016-05-01

    A permeable reactive barrier, consisting of both zero valent iron (ZVI) and a biodegradable organic carbon, was evaluated for the remediation of 1,1,2-trichloroethane (1,1,2-TCA) contaminated groundwater. During an 888 day laboratory column study, degradation rates initially stabilized with a degradation half-life of 4.4±0.4 days. Based on the accumulation of vinyl chloride (VC) and limited production of 1,1-dichloroethene (1,1-DCE) and 1,2-dichloroethane (1,2-DCA), the dominant degradation pathway was likely abiotic dichloroelimination to form VC. Degradation of VC was not observed based on the accumulation of VC and limited ethene production. After a step reduction in the influent concentration of 1,1,2-TCA from 170±20 mg L(-1) to 39±11 mg L(-1), the degradation half-life decreased 5-fold to 0.83±0.17 days. The isotopic enrichment factor of 1,1,2-TCA also changed after the step reduction from -14.6±0.7‰ to -0.72±0.12‰, suggesting a possible change in the degradation mechanism from abiotic reductive degradation to biodegradation. Microbiological data suggested a co-culture of Desulfitobacterium and Dehalococcoides was responsible for the biodegradation of 1,1,2-TCA to ethene.

  5. Adaptation to abiotic conditions drives local adaptation in bacteria and viruses coevolving in heterogeneous environments.

    PubMed

    Gorter, Florien A; Scanlan, Pauline D; Buckling, Angus

    2016-02-01

    Parasite local adaptation, the greater performance of parasites on their local compared with foreign hosts, has important consequences for the maintenance of diversity and epidemiology. While the abiotic environment may significantly affect local adaptation, most studies to date have failed either to incorporate the effects of the abiotic environment, or to separate them from those of the biotic environment. Here, we tease apart biotic and abiotic components of local adaptation using the bacterium Pseudomonas fluorescens and its viral parasite bacteriophage Φ2. We coevolved replicate populations of bacteria and phages at three different temperatures, and determined their performance against coevolutionary partners from the same and different temperatures. Crucially, we measured performance at different assay temperatures, which allowed us to disentangle adaptation to biotic and abiotic habitat components. Our results show that bacteria and phages are more resistant and infectious, respectively, at the temperature at which they previously coevolved, confirming that local adaptation to abiotic conditions can play a crucial role in determining parasite infectivity and host resistance. Our work underlines the need to assess host-parasite interactions across multiple relevant abiotic environments, and suggests that microbial adaption to local temperatures can create ecological barriers to dispersal across temperature gradients.

  6. Reverse Engineering: A Key Component of Systems Biology to Unravel Global Abiotic Stress Cross-Talk

    PubMed Central

    Friedel, Swetlana; Usadel, Björn; von Wirén, Nicolaus; Sreenivasulu, Nese

    2012-01-01

    Understanding the global abiotic stress response is an important stepping stone for the development of universal stress tolerance in plants in the era of climate change. Although co-occurrence of several stress factors (abiotic and biotic) in nature is found to be frequent, current attempts are poor to understand the complex physiological processes impacting plant growth under combinatory factors. In this review article, we discuss the recent advances of reverse engineering approaches that led to seminal discoveries of key candidate regulatory genes involved in cross-talk of abiotic stress responses and summarized the available tools of reverse engineering and its relevant application. Among the universally induced regulators involved in various abiotic stress responses, we highlight the importance of (i) abscisic acid (ABA) and jasmonic acid (JA) hormonal cross-talks and (ii) the central role of WRKY transcription factors (TF), potentially mediating both abiotic and biotic stress responses. Such interactome networks help not only to derive hypotheses but also play a vital role in identifying key regulatory targets and interconnected hormonal responses. To explore the full potential of gene network inference in the area of abiotic stress tolerance, we need to validate hypotheses by implementing time-dependent gene expression data from genetically engineered plants with modulated expression of target genes. We further propose to combine information on gene-by-gene interactions with data from physical interaction platforms such as protein–protein or TF-gene networks. PMID:23293646

  7. Phytoplankton responses to temperature increases are constrained by abiotic conditions and community composition.

    PubMed

    Striebel, Maren; Schabhüttl, Stefanie; Hodapp, Dorothee; Hingsamer, Peter; Hillebrand, Helmut

    2016-11-01

    Effects of temperature changes on phytoplankton communities seem to be highly context-specific, but few studies have analyzed whether this context specificity depends on differences in the abiotic conditions or in species composition between studies. We present an experiment that allows disentangling the contribution of abiotic and biotic differences in shaping the response to two aspects of temperature change: permanent increase of mean temperature versus pulse disturbance in form of a heat wave. We used natural communities from six different sites of a floodplain system as well as artificially mixed communities from laboratory cultures and grew both, artificial and natural communities, in water from the six different floodplain lakes (sites). All 12 contexts (2 communities × 6 sites) were first exposed to three different temperature levels (12, 18, 24 °C, respectively) and afterward to temperature pulses (4 °C increase for 7 h day(-1)). Temperature-dependent changes in biomass and community composition depended on the initial composition of phytoplankton communities. Abiotic conditions had a major effect on biomass of phytoplankton communities exposed to different temperature conditions, however, the effect of biotic and abiotic conditions together was even more pronounced. Additionally, phytoplankton community responses to pulse temperature effects depended on the warming history. By disentangling abiotic and biotic effects, our study shows that temperature-dependent effects on phytoplankton communities depend on both, biotic and abiotic constraints. PMID:27488200

  8. Phytoplankton responses to temperature increases are constrained by abiotic conditions and community composition.

    PubMed

    Striebel, Maren; Schabhüttl, Stefanie; Hodapp, Dorothee; Hingsamer, Peter; Hillebrand, Helmut

    2016-11-01

    Effects of temperature changes on phytoplankton communities seem to be highly context-specific, but few studies have analyzed whether this context specificity depends on differences in the abiotic conditions or in species composition between studies. We present an experiment that allows disentangling the contribution of abiotic and biotic differences in shaping the response to two aspects of temperature change: permanent increase of mean temperature versus pulse disturbance in form of a heat wave. We used natural communities from six different sites of a floodplain system as well as artificially mixed communities from laboratory cultures and grew both, artificial and natural communities, in water from the six different floodplain lakes (sites). All 12 contexts (2 communities × 6 sites) were first exposed to three different temperature levels (12, 18, 24 °C, respectively) and afterward to temperature pulses (4 °C increase for 7 h day(-1)). Temperature-dependent changes in biomass and community composition depended on the initial composition of phytoplankton communities. Abiotic conditions had a major effect on biomass of phytoplankton communities exposed to different temperature conditions, however, the effect of biotic and abiotic conditions together was even more pronounced. Additionally, phytoplankton community responses to pulse temperature effects depended on the warming history. By disentangling abiotic and biotic effects, our study shows that temperature-dependent effects on phytoplankton communities depend on both, biotic and abiotic constraints.

  9. Investigation of In-situ Biogeochemical Reduction of Chlorinated Solvents in Groundwater by Reduced Iron Minerals

    EPA Science Inventory

    Biogeochemical transformation is a process in which chlorinated solvents are degraded abiotically by reactive minerals formed by, at least in part or indirectly from, anaerobic biological processes. Five mulch biowall and/or vegetable oil-based bioremediation applications for tr...

  10. Expression of ZAT12 transcripts in transgenic tomato under various abiotic stresses and modeling of ZAT12 protein in silico.

    PubMed

    Rai, Avinash Chandra; Singh, Indra; Singh, Major; Shah, Kavita

    2014-12-01

    ZAT12 a C2H2-zinc-finger protein is an abiotic stress-responsive transcription factor in plants having less information about their structure. Transcription analysis proved that ZAT12 transcripts over-expressed during drought, heat and salt stress conditions which led to an interest in 3-D structural studies of ZAT12in Brassica carinata. Over-expression of BcZAT12 in transformed tomato plants under abiotic stresses, suggest role of ZAT12 in conferring stress-tolerance in tomato. Sequence analysis of ZAT12 protein (Accession No. ABB55254.1) from B. carinata revealed it as a 161 amino acid long protein with short conserved motif (140)LDLXL(144) in C-terminal, a leucine rich L-Box with-(14)EXXAXCLXXL(23) motif in N-terminal region and presence of two conserved Zinc-Finger motifs "CXXCXXXXXXXQALGGHXXXH" between positions 42-62 and 85-105. The two zinc finger motifs have presence of two conserved glutamic acid (Glu) and phenylalanine (Phe) residues. Two methionine (Met) residues at position 94 and 102 present in ZF-motif-2 were absent in ZF-motif-1. The (94)Met and (97)Ala in ZF-motif-2 were found to be replaced by serine (Ser) in ZF-motif-1. Homology and ab initio structural modeling of ZAT12 encoded BcZAT12 protein of B. carinata resulted in robust 3-D models and were evaluated for structural motifs, associated GO terms and protein-DNA interactions. The BcZAT12 protein model, was of good quality, reliable, stable and is deposited in PMDB database (PMDB ID: PM0078213). BcZAT12 is annotated as an intracellular protein having molecular function in Zn-binding which in turn regulates signal transduction/translation processes in response to abiotic stresses in plants. Results suggest BcZAT12 protein to interact directly with one strand of dsDNA via electrostatic and H-bonds. PMID:25187181

  11. Heterologous expression of Anabaena PCC 7120 all3940 (a Dps family gene) protects Escherichia coli from nutrient limitation and abiotic stresses

    SciTech Connect

    Narayan, Om Prakash; Kumari, Nidhi; Rai, Lal Chand

    2010-03-26

    This study presents first hand data on the cloning and heterologous expression of Anabaena PCC 7120 all3940 (a dps family gene) in combating nutrients limitation and multiple abiotic stresses. The Escherichia coli transformed with pGEX-5X-2-all3940 construct when subjected to iron, carbon, nitrogen, phosphorus limitation and carbofuron, copper, UV-B, heat, salt and cadmium stress registered significant increase in growth over the cells transformed with empty vector under iron (0%), carbon (0.05%), nitrogen (3.7 mM) and phosphorus (2 mM) limitation and carbofuron (0.025 mg ml{sup -1}), CuCl{sub 2} (1 mM), UV-B (10 min), heat (47 {sup o}C), NaCl (6% w/v) and CdCl{sub 2} (4 mM) stress. Enhanced expression of all3940 gene measured by semi-quantitative RT-PCR at different time points under above mentioned treatments clearly demonstrates its role in tolerance against aforesaid abiotic stresses. This study opens the gate for developing transgenic cyanobacteria capable of growing successfully under above mentioned stresses.

  12. RF transformer

    DOEpatents

    Smith, James L.; Helenberg, Harold W.; Kilsdonk, Dennis J.

    1979-01-01

    There is provided an improved RF transformer having a single-turn secondary of cylindrical shape and a coiled encapsulated primary contained within the secondary. The coil is tapered so that the narrowest separation between the primary and the secondary is at one end of the coil. The encapsulated primary is removable from the secondary so that a variety of different capacity primaries can be utilized with one secondary.

  13. A soybean β-expansin gene GmEXPB2 intrinsically involved in root system architecture responses to abiotic stresses.

    PubMed

    Guo, Wenbing; Zhao, Jing; Li, Xinxin; Qin, Lu; Yan, Xiaolong; Liao, Hong

    2011-05-01

    Root system architecture responds plastically to some abiotic stresses, including phosphorus (P), iron (Fe) and water deficiency, but its response mechanism is still unclear. We cloned and characterized a vegetative β-expansin gene, GmEXPB2, from a Pi starvation-induced soybean cDNA library. Transient expression of 35S::GmEXPB2-GFP in onion epidermal cells verified that GmEXPB2 is a secretory protein located on the cell wall. GmEXPB2 was found to be primarily expressed in roots, and was highly induced by Pi starvation, and the induction pattern was confirmed by GUS staining in transgenic soybean hairy roots. Results from intact soybean composite plants either over-expressing GmEXPB2 or containing knockdown constructs, showed that GmEXPB2 is involved in hairy root elongation, and subsequently affects plant growth and P uptake, especially at low P levels. The results from a heterogeneous transformation system indicated that over-expressing GmEXPB2 in Arabidopsis increased root cell division and elongation, and enhanced plant growth and P uptake at both low and high P levels. Furthermore, we found that, in addition to Pi starvation, GmEXPB2 was also induced by Fe and mild water deficiencies. Taken together, our results suggest that GmEXPB2 is a critical root β-expansin gene that is intrinsically involved in root system architecture responses to some abiotic stresses, including P, Fe and water deficiency. In the case of Pi starvation responses, GmEXPB2 may enhance both P efficiency and P responsiveness by regulating adaptive changes of the root system architecture. This finding has great agricultural potential for improving crop P uptake on both low-P and P-fertilized soils.

  14. Characterization of a eukaryotic translation initiation factor 5A homolog from Tamarix androssowii involved in plant abiotic stress tolerance

    PubMed Central

    2012-01-01

    Background The eukaryotic translation initiation factor 5A (eIF5A) promotes formation of the first peptide bond at the onset of protein synthesis. However, the function of eIF5A in plants is not well understood. Results In this study, we characterized the function of eIF5A (TaeIF5A1) from Tamarix androssowii. The promoter of TaeIF5A1 with 1,486 bp in length was isolated, and the cis-elements in the promoter were identified. A WRKY (TaWRKY) and RAV (TaRAV) protein can specifically bind to a W-box motif in the promoter of TaeIF5A1 and activate the expression of TaeIF5A1. Furthermore, TaeIF5A1, TaWRKY and TaRAV share very similar expression pattern and are all stress-responsive gene that functions in the abscisic acid (ABA) signaling pathway, indicating that they are components of a single regulatory pathway. Transgenic yeast and poplar expressing TaeIF5A1 showed elevated protein levels combined with improved abiotic stresses tolerance. Furthermore, TaeIF5A1-transformed plants exhibited enhanced superoxide dismutase (SOD) and peroxidase (POD) activities, lower electrolyte leakage and higher chlorophyll content under salt stress. Conclusions These results suggested that TaeIF5A1 is involved in abiotic stress tolerance, and is likely regulated by transcription factors TaWRKY and TaRAV both of which can bind to the W-box motif. In addition, TaeIF5A1 may mediate stress tolerance by increasing protein synthesis, enhancing ROS scavenging by improving SOD and POD activities, and preventing chlorophyll loss and membrane damage. Therefore, eIF5A may play an important role in plant adaptation to changing environmental conditions. PMID:22834699

  15. Isolation and characterization of the Agvip1 gene and response to abiotic and metal ions stresses in three celery cultivars.

    PubMed

    Li, Yan; Chen, Yi-Yun; Wang, Feng; Xu, Zhi-Sheng; Jiang, Qian; Xiong, Ai-Sheng

    2014-09-01

    VIP1, a VirE2-interacting protein 1, specifically interacts with VirE2 and acts as a molecular adaptor in Agrobacterium-mediated genetic transformation. This protein is widely used in plant genetic engineering. In this study, we cloned the Agvip1 gene that encodes the AgVIP1 protein from three celery (Apium graveolens) cultivars, namely, "Liuhe Huangxinqin", "Jinnan Shiqin", and "Ventura". The sequence analysis indicated that the Agvip1 gene from the three celery cultivars contained 768 bp Open Reading Frame and encoded with 255 amino acid residues. The N-terminal of AgVIP1 contained RNA recognition motif superfamily, a conserved domain. The Agvip1 gene in three cultivars had very high homology. The phylogenetic tree of VIP1-like proteins was constructed among celery and other plant species, showing that VIP1-like proteins from Solanum lycopersicum and Solanum tuberosum in Solanaceae had the shortest evolutionary relationship with AgVIP1 from A. graveolens in Apiaceae. Quantitative real-time PCR demonstrated that the Agvip1 gene had tissue-specific expression, mainly in the celery root. The expression analysis showed that the Agvip1 gene was induced by abiotic stresses differently in three celery cultivars. In "Liuhe Huangxinqin", the Agvip1 gene was up-regulated under hot, cold stresses. In "Jinnan Shiqin", the Agvip1 gene was up-regulated obviously under cold, drought treatments. However, in "Ventura", the Agvip1 gene was up-regulated under salt stress. The Agvip1 was also induced after metal ions treatments in three celery cultivars. These findings will provide more information on the Agvip1 gene and AgVIP1 protein, and enhance the understanding of the Agvip1 gene regulatory mechanisms under abiotic and metal ions stresses in celery. PMID:24969482

  16. Isolation and characterization of the Agvip1 gene and response to abiotic and metal ions stresses in three celery cultivars.

    PubMed

    Li, Yan; Chen, Yi-Yun; Wang, Feng; Xu, Zhi-Sheng; Jiang, Qian; Xiong, Ai-Sheng

    2014-09-01

    VIP1, a VirE2-interacting protein 1, specifically interacts with VirE2 and acts as a molecular adaptor in Agrobacterium-mediated genetic transformation. This protein is widely used in plant genetic engineering. In this study, we cloned the Agvip1 gene that encodes the AgVIP1 protein from three celery (Apium graveolens) cultivars, namely, "Liuhe Huangxinqin", "Jinnan Shiqin", and "Ventura". The sequence analysis indicated that the Agvip1 gene from the three celery cultivars contained 768 bp Open Reading Frame and encoded with 255 amino acid residues. The N-terminal of AgVIP1 contained RNA recognition motif superfamily, a conserved domain. The Agvip1 gene in three cultivars had very high homology. The phylogenetic tree of VIP1-like proteins was constructed among celery and other plant species, showing that VIP1-like proteins from Solanum lycopersicum and Solanum tuberosum in Solanaceae had the shortest evolutionary relationship with AgVIP1 from A. graveolens in Apiaceae. Quantitative real-time PCR demonstrated that the Agvip1 gene had tissue-specific expression, mainly in the celery root. The expression analysis showed that the Agvip1 gene was induced by abiotic stresses differently in three celery cultivars. In "Liuhe Huangxinqin", the Agvip1 gene was up-regulated under hot, cold stresses. In "Jinnan Shiqin", the Agvip1 gene was up-regulated obviously under cold, drought treatments. However, in "Ventura", the Agvip1 gene was up-regulated under salt stress. The Agvip1 was also induced after metal ions treatments in three celery cultivars. These findings will provide more information on the Agvip1 gene and AgVIP1 protein, and enhance the understanding of the Agvip1 gene regulatory mechanisms under abiotic and metal ions stresses in celery.

  17. Kinetics of Fe(II)-catalyzed transformation of 6-line ferrihydrite under anaerobic flow conditions

    SciTech Connect

    Yang, L.; Steefel, C.I.; Marcus, M.A.; Bargar, J.R.

    2010-04-01

    The readsorption of ferrous ions produced by the abiotic and microbially-mediated reductive dissolution of iron oxy-hydroxides drives a series of transformations of the host minerals. To further understand the mechanisms by which these transformations occur and their kinetics within a microporous flow environment, flow-through experiments were conducted in which capillary tubes packed with ferrihydrite-coated glass spheres were injected with inorganic Fe(II) solutions under circumneutral pH conditions at 25 C. Synchrotron X-ray diffraction was used to identify the secondary phase(s) formed and to provide data for quantitative kinetic analysis. At concentrations at and above 1.8 mM Fe(II) in the injection solution, magnetite was the only secondary phase formed (no intermediates were detected), with complete transformation following a nonlinear rate law requiring 28 hours and 150 hours of reaction at 18 and 1.8 mM Fe(II), respectively. However, when the injection solution consisted of 0.36 mM Fe(II), goethite was the predominant reaction product and formed much more slowly according to a linear rate law, while only minor magnetite was formed. When the rates are normalized based on the time to react half of the ferrihydrite on a reduced time plot, it is apparent that the 1.8 mM and 18 mM input Fe(II) experiments can be described by the same reaction mechanism, while the 0.36 input Fe(II) experiment is distinct. The analysis of the transformation kinetics suggest that the transformations involved an electron transfer reaction between the aqueous as well as sorbed Fe(II) and ferrihydrite acting as a semiconductor, rather than a simple dissolution and recrystallization mechanism. A transformation mechanism involving sorbed inner sphere Fe(II) alone is not supported, since the essentially equal coverage of sorption sites in the 18 mM and 1.8 mM Fe(II) injections cannot explain the difference in the transformation rates observed.

  18. PL1 fusion gene: a novel visual selectable marker gene that confers tolerance to multiple abiotic stresses in transgenic tomato.

    PubMed

    Jin, Feng; Li, Shu; Dang, Lijie; Chai, Wenting; Li, Pengli; Wang, Ning Ning

    2012-10-01

    Visual selectable markers, including the purple color caused by the accumulation of anthocyanins, have been proposed for use as antibiotic-free alternatives. However, the excessive accumulation of anthocyanins seriously inhibits the growth and development of transgenic plants. In our study, the AtDWF4 promoter from Arabidopsis and the tomato LeANT1 gene, encoding a MYB transcription factor, were used to construct the PL1 fusion gene to test whether it could be used as a visual selectable marker gene for tomato transformation. All the PL1 transgenic shoots exhibited intense purple color on shoot induction medium. In the transgenic tomato plants, PL1 was highly expressed in the cotyledons, but expressed only slightly in the true leaves and other organs. The expression of PL1 had no significantly adverse effects on the growth or development of the transgenic tomato plants, and conferred tolerance to multiple abiotic stresses in them. With the “cut off green shoots” method, multiple independent 35S::GFP transgenic tomato lines were successfully obtained using PL1 as the selectable marker gene. These results suggest that PL1 has potential application of visual selectable marker gene for tomato transformation.

  19. Anaerobic transformation of TNT

    SciTech Connect

    Kulpa, C.F.; Roopathy, R.

    1995-12-31

    Most studies on the microbial metabolism of nitroaromatic compounds have used aerobic tempts to degrade nitroaromatics under aerobic microorganisms. In many cases attempts to degrade nitroaromatics under aerobic conditions results in no mineralization and only superficial modifications of the structure. However, under anaerobic sulfate-reducing conditions, the nitroaromatic compounds undergo a series of reductions with the formation of amino compounds. Trinitrotoluene under sulfate-reducing conditions is reduced to triaminotoluene presumably by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of nitrate from trinitrotoluene is achieved by a series of reductive reactions with the production of ammonia and toluene by Desulfovibrio sp. (B strain). Similar metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. This presentation will review the data supporting the anaerobic transformation of TNT and other nitroaromatics.

  20. Abiotic Factors Affecting the Persistence of Avian Influenza Virus in Surface Waters of Waterfowl Habitats

    PubMed Central

    Dalton, Melinda S.; Cressler, Alan M.; Berghaus, Roy D.; Stallknecht, David E.

    2014-01-01

    Avian influenza (AI) virus can remain infectious in water for months, and virus-contaminated surface water is considered to be a source of infection within wild waterfowl populations. Previous work has characterized the effects of pH, salinity, and temperature on viral persistence in water, but most of that work was done with modified distilled water. The objective of this study was to identify the abiotic factors that influence the duration of AI virus persistence in natural surface water. Surface water samples were collected from 38 waterfowl habitats distributed across the United States. Samples were submitted to the U.S. Geological Survey National Water Quality Laboratory for chemical analysis and the University of Georgia for viral reduction time analysis. Samples were filtered with 0.22-μm filters, and the durations of persistence of three wild-bird-derived influenza A viruses within each water sample at 10, 17, and 28°C were determined. The effects of the surface water physicochemical factors on the duration of AI viral persistence in laboratory experiments were evaluated by multivariable linear regression with robust standard errors. The duration of AI virus persistence was determined to be longest in filtered surface water with a low temperature (<17°C), a neutral-to-basic pH (7.0 to 8.5), low salinity (<0.5 ppt), and a low ammonia concentration (<0.5 mg/liter). Our results also highlighted potential strain-related variation in the stability of AI virus in surface water. These results bring us closer to being able to predict the duration of AI virus persistence in surface water of waterfowl habitats. PMID:24584247

  1. Release of proteins from intact chloroplasts induced by reactive oxygen species during biotic and abiotic stress.

    PubMed

    Kwon, Kwang-Chul; Verma, Dheeraj; Jin, Shuangxia; Singh, Nameirakpam D; Daniell, Henry

    2013-01-01

    Plastids sustain life on this planet by providing food, feed, essential biomolecules and oxygen. Such diverse metabolic and biosynthetic functions require efficient communication between plastids and the nucleus. However, specific factors, especially large molecules, released from plastids that regulate nuclear genes have not yet been fully elucidated. When tobacco and lettuce transplastomic plants expressing GFP within chloroplasts, were challenged with Erwinia carotovora (biotic stress) or paraquat (abiotic stress), GFP was released into the cytoplasm. During this process GFP moves gradually towards the envelope, creating a central red zone of chlorophyll fluorescence. GFP was then gradually released from intact chloroplasts into the cytoplasm with an intact vacuole and no other visible cellular damage. Different stages of GFP release were observed inside the same cell with a few chloroplasts completely releasing GFP with detection of only red chlorophyll fluorescence or with no reduction in GFP fluorescence or transitional steps between these two phases. Time lapse imaging by confocal microscopy clearly identified sequence of these events. Intactness of chloroplasts during this process was evident from chlorophyll fluorescence emanated from thylakoid membranes and in vivo Chla fluorescence measurements (maximum quantum yield of photosystem II) made before or after infection with pathogens to evaluate their photosynthetic competence. Hydrogen peroxide and superoxide anion serve as signal molecules for generation of reactive oxygen species and Tiron, scavenger of superoxide anion, blocked release of GFP from chloroplasts. Significant increase in ion leakage in the presence of paraquat and light suggests changes in the chloroplast envelope to facilitate protein release. Release of GFP-RC101 (an antimicrobial peptide), which was triggered by Erwinia infection, ceased after conferring protection, further confirming this export phenomenon. These results suggest a

  2. Abiotic Dissolved Organic Matter-Mineral Interaction in the Karstic Floridan Aquifer

    NASA Astrophysics Data System (ADS)

    Jin, J.; Zimmerman, A.

    2007-12-01

    Dissolved organic matter (DOM)-mineral interaction (e.g. adsorption, desorption, mineral dissolution) in groundwater is a significant factor controlling geochemical, environmental and microbial processes and may be helpful in efforts to track groundwater sources or contaminant fate. Despite its importance, the dynamics and consequences of these abiotic interactions remain poorly understood, largely due to the inaccessibility and heterogeneity of the subsurface, as well as the chemical complexity of DOM. This study models the OM-mineral interactions that takes place in the Floridan aquifer through laboratory adsorption-desorption experiments using DOM (groundwater, river water, soil extracts) and carbonate minerals (calcite, dolomite) collected in north Florida. High performance liquid chromatography-size exclusion chromatography (HPLC-SEC) and UV-fluorescence excitation-emission matrix (EEM) spectrophotometry was used to examine the organic compound types exhibiting preferential affinity for carbonate minerals. Our results show that the DOM-carbonate adsorption/desorption isotherms are well described by the Freundlich model. Freundlich exponents (average value: 0.6488) less than one indicated a filling of adsorption sites. Minerals from Ocala tend to have higher adsorption affinity as well as adsorption capacity than those from Suwannee River Basin; however, both were found to have mineral dissolution. Two fluorescent signals, indicative of a fulvic-like (at excitation wavelength 295-310 nm, emission 400-420 nm) and a protein-like (275/345nm) moiety, were detected in DOM. A reduction in the fulvic-like peak intensity occurred following carbonate adsorption while the protein-like peaks remain almost unchanged indicating the preferential adsorption of fulvic acids. HPLC-SEC results (DOM properties as a function of molecular weight) will be discussed. The chemical properties of DOM in environmental groundwater samples will also be presented and evaluated in light of

  3. Asymmetric coexistence: bidirectional abiotic and biotic effects between goose barnacles and mussels.

    PubMed

    Kawai, Takashi; Tokeshi, Mutsunori

    2006-07-01

    1. Species coexistence depends on the net effect of interacting species, representing the sum of multiple interaction components that may act simultaneously and vary independently depending on ambient environmental conditions. Consequently, for a comprehensive understanding of the compound nature of species interactions and coexistence, a mechanistic approach that allows a separate evaluation of each interaction component is required. 2. Two sessile filter-feeders, the goose barnacle Capitulum mitella and the mussel Septifer virgatus, coexist on moderately wave-exposed rocky shores in south-western Japan. In the upper intertidal, Capitulum positively influenced Septifer survivorship and growth through amelioration of thermal stress and of physical disturbance. On the other hand, these species are potential competitors as they have similar body sizes and modes of resource utilization. These opposite processes, facilitation and competition, are based on abiotic characteristics and biotic functions of the two species, respectively. 3. In order to quantify the bidirectional abiotic, biotic and net effects, a series of experimental manipulations was conducted involving the use of living neighbours with both abiotic and biotic effects, and artificial mimics to simulate abiotic effects without biotic effects. 4. Capitulum had strong positive abiotic effects on the mussel survivorship in most experimental periods, while the biotic effect was negligible or weakly negative, suggesting that the net effect of Capitulum on mussel survival was largely attributable to the abiotic effect. In contrast, a significantly negative biotic effect on the mussel growth rate was always present, though this was cancelled out by the larger, positive abiotic effect. In the case of Septifer, its abiotic and biotic effects on the survivorship of goose barnacles were negligible, while those on the growth rate showed temporal variation. 5. With respect to the relationship between species

  4. Reduction and immobilization of radionuclides and toxic metal ions using combined zero valent iron and anaerobic bacteria. 1998 annual progress report

    SciTech Connect

    Weathers, L.

    1998-06-01

    'Previous research findings indicate that both zero valent iron and sulfate reducing bacteria (SRB) can yield significant decreases in Cr(VI) or U(VI) concentrations due to abiotic and microbial reduction, respectively. The major hypothesis associated with this research project is that a combined abiotic-biological system can synergistically combine both processes to maximize metal ion reduction in an engineered permeable reactive barrier. The overall goal of this project is to design a combined abiotic/microbial, reactive, permeable, in-situ barrier with sufficient reductive potential to prevent downgradient migration of toxic metal ions. The field-scale application of this technology would utilize anaerobic digester sludge, Fe(O) particles for supporting anaerobic biofilms, and suitable aquifer material for construction of the barrier. Successful completion of this goal requires testing of the two hypotheses listed above by evaluating: (1) the rates of abiotic metal ion reduction, and (2) the rates of microbial metal ion reduction in microbial and combined abiotic/microbial reduction systems under a range of environmental conditions. This report summarizes work after one and one-half years of a three year project. Abiotic studies: The thrust of the abiotic research conducted to date has been to determine the rates of Cr(VI) reduction in batch reactors and to evaluate the role of aquifer materials on those rates. Experiments have been conducted to determine the rates of reduction by Fe(II) and Fe(O). The parameters that have been evaluated are the effect of pH and the presence of sulfide and aquifer material.'

  5. Integer cosine transform for image compression

    NASA Technical Reports Server (NTRS)

    Cheung, K.-M.; Pollara, F.; Shahshahani, M.

    1991-01-01

    This article describes a recently introduced transform algorithm called the integer cosine transform (ICT), which is used in transform-based data compression schemes. The ICT algorithm requires only integer operations on small integers and at the same time gives a rate-distortion performance comparable to that offered by the floating-point discrete cosine transform (DCT). The article addresses the issue of implementation complexity, which is of prime concern for source coding applications of interest in deep-space communications. Complexity reduction in the transform stage of the compression scheme is particularly relevant, since this stage accounts for most (typically over 80 percent) of the computational load.

  6. Photochemical and Nonphotochemical Transformations of Cysteine with Dissolved Organic Matter.

    PubMed

    Chu, Chiheng; Erickson, Paul R; Lundeen, Rachel A; Stamatelatos, Dimitrios; Alaimo, Peter J; Latch, Douglas E; McNeill, Kristopher

    2016-06-21

    Cysteine (Cys) plays numerous key roles in the biogeochemistry of natural waters. Despite its importance, a full assessment of Cys abiotic transformation kinetics, products and pathways under environmental conditions has not been conducted. This study is a mechanistic evaluation of the photochemical and nonphotochemical (dark) transformations of Cys in solutions containing chromophoric dissolved organic matter (CDOM). The results show that Cys underwent abiotic transformations under both dark and irradiated conditions. Under dark conditions, the transformation rates of Cys were moderate and were highly pH- and temperature-dependent. Under UVA or natural sunlight irradiations, Cys transformation rates were enhanced by up to two orders of magnitude compared to rates under dark conditions. Product analysis indicated cystine and cysteine sulfinic acid were the major photooxidation products. In addition, this study provides an assessment of the contributions of singlet oxygen, hydroxyl radical, hydrogen peroxide, and triplet dissolved organic matter to the CDOM-sensitized photochemical oxidation of Cys. The results suggest that another unknown pathway was dominant in the CDOM-sensitized photodegradation of Cys, which will require further study to identify. PMID:27172378

  7. Photochemical and Nonphotochemical Transformations of Cysteine with Dissolved Organic Matter.

    PubMed

    Chu, Chiheng; Erickson, Paul R; Lundeen, Rachel A; Stamatelatos, Dimitrios; Alaimo, Peter J; Latch, Douglas E; McNeill, Kristopher

    2016-06-21

    Cysteine (Cys) plays numerous key roles in the biogeochemistry of natural waters. Despite its importance, a full assessment of Cys abiotic transformation kinetics, products and pathways under environmental conditions has not been conducted. This study is a mechanistic evaluation of the photochemical and nonphotochemical (dark) transformations of Cys in solutions containing chromophoric dissolved organic matter (CDOM). The results show that Cys underwent abiotic transformations under both dark and irradiated conditions. Under dark conditions, the transformation rates of Cys were moderate and were highly pH- and temperature-dependent. Under UVA or natural sunlight irradiations, Cys transformation rates were enhanced by up to two orders of magnitude compared to rates under dark conditions. Product analysis indicated cystine and cysteine sulfinic acid were the major photooxidation products. In addition, this study provides an assessment of the contributions of singlet oxygen, hydroxyl radical, hydrogen peroxide, and triplet dissolved organic matter to the CDOM-sensitized photochemical oxidation of Cys. The results suggest that another unknown pathway was dominant in the CDOM-sensitized photodegradation of Cys, which will require further study to identify.

  8. Hamlet's Transformation.

    NASA Astrophysics Data System (ADS)

    Usher, P. D.

    1997-12-01

    William Shakespeare's Hamlet has much evidence to suggest that the Bard was aware of the cosmological models of his time, specifically the geocentric bounded Ptolemaic and Tychonic models, and the infinite Diggesian. Moreover, Shakespeare describes how the Ptolemaic model is to be transformed to the Diggesian. Hamlet's "transformation" is the reason that Claudius, who personifies the Ptolemaic model, summons Rosencrantz and Guildenstern, who personify the Tychonic. Pantometria, written by Leonard Digges and his son Thomas in 1571, contains the first technical use of the word "transformation." At age thirty, Thomas Digges went on to propose his Perfit Description, as alluded to in Act Five where Hamlet's age is given as thirty. In Act Five as well, the words "bore" and "arms" refer to Thomas' vocation as muster-master and his scientific interest in ballistics. England's leading astronomer was also the father of the poet whose encomium introduced the First Folio of 1623. His oldest child Dudley became a member of the Virginia Company and facilitated the writing of The Tempest. Taken as a whole, such manifold connections to Thomas Digges support Hotson's contention that Shakespeare knew the Digges family. Rosencrantz and Guildenstern in Hamlet bear Danish names because they personify the Danish model, while the king's name is latinized like that of Claudius Ptolemaeus. The reason Shakespeare anglicized "Amleth" to "Hamlet" was because he saw a parallel between Book Three of Saxo Grammaticus and the eventual triumph of the Diggesian model. But Shakespeare eschewed Book Four, creating this particular ending from an infinity of other possibilities because it "suited his purpose," viz. to celebrate the concept of a boundless universe of stars like the Sun.

  9. Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging

    PubMed Central

    Hossain, Mohammad A.; Bhattacharjee, Soumen; Armin, Saed-Moucheshi; Qian, Pingping; Xin, Wang; Li, Hong-Yu; Burritt, David J.; Fujita, Masayuki; Tran, Lam-Son P.

    2015-01-01

    Plants are constantly challenged by various abiotic stresses that negatively affect growth and productivity worldwide. During the course of their evolution, plants have developed sophisticated mechanisms to recognize external signals allowing them to respond appropriately to environmental conditions, although the degree of adjustability or tolerance to specific stresses differs from species to species. Overproduction of reactive oxygen species (ROS; hydrogen peroxide, H2O2; superoxide, O2⋅-; hydroxyl radical, OH⋅ and singlet oxygen, 1O2) is enhanced under abiotic and/or biotic stresses, which can cause oxidative damage to plant macromolecules and cell structures, leading to inhibition of plant growth and development, or to death. Among the various ROS, freely diffusible and relatively long-lived H2O2 acts as a central player in stress signal transduction pathways. These pathways can then activate multiple acclamatory responses that reinforce resistance to various abiotic and biotic stressors. To utilize H2O2 as a signaling molecule, non-toxic levels must be maintained in a delicate balancing act between H2O2 production and scavenging. Several recent studies have demonstrated that the H2O2-priming can enhance abiotic stress tolerance by modulating ROS detoxification and by regulating multiple stress-responsive pathways and gene expression. Despite the importance of the H2O2-priming, little is known about how this process improves the tolerance of plants to stress. Understanding the mechanisms of H2O2-priming-induced abiotic stress tolerance will be valuable for identifying biotechnological strategies to improve abiotic stress tolerance in crop plants. This review is an overview of our current knowledge of the possible mechanisms associated with H2O2-induced abiotic oxidative stress tolerance in plants, with special reference to antioxidant metabolism. PMID:26136756

  10. TRANSFORMER APPARATUS

    DOEpatents

    Wolfgang, F.; Nicol, J.

    1962-11-01

    Transformer apparatus is designed for measuring the amount of a paramagnetic substance dissolved or suspended in a diamagnetic liquid. The apparatus consists of a cluster of tubes, some of which are closed and have sealed within the diamagnetic substance without any of the paramagnetic material. The remaining tubes are open to flow of the mix- ture. Primary and secondary conductors are wrapped around the tubes in such a way as to cancel noise components and also to produce a differential signal on the secondaries based upon variations of the content of the paramagnetic material. (AEC)

  11. Nitrate Enhanced Microbial Cr(VI) Reduction-Final Report

    SciTech Connect

    John F. Stolz

    2011-06-15

    A major challenge for the bioremediation of radionuclides (i.e., uranium, technetium) and metals (i.e., Cr(VI), Hg) is the co-occurrence of nitrate as it can inhibit metal transformation. Denitrification (nitrate reduction to dinitrogen gas) is considered the most important ecological process. For many metal and metalloid reducing bacteria, however, ammonia is the end product through respiratory nitrate reduction (RNRA). The focus of this work was to determine how RNRA impacts Cr(VI) transformation. The goal was to elucidate the specific mechanism(s) that limits Cr(VI) reduction in the presence of nitrate and to use this information to develop strategies that enhance Cr(VI) reduction (and thus detoxification). Our central hypothesis is that nitrate impacts the biotransformation of metals and metalloids in three ways 1) as a competitive alternative electron acceptor (inhibiting transformation), 2) as a co-metabolite (i.e., concomitant reduction, stimulating transformation), and 3) as an inducer of specific proteins and pathways involved in oxidation/reduction reactions (stimulating transformation). We have identified three model organisms, Geobacter metallireducens (mechanism 1), Sulfurospirillum barnesii, (mechasism 2), and Desulfovibrio desulfuricans (mechanisms 3). Our specific aims were to 1) investigate the role of Cr(VI) concentration on the kinetics of both growth and reduction of nitrate, nitrite, and Cr(VI) in these three organisms; 2) develop a profile of bacterial enzymes involved in nitrate transformation (e.g., oxidoreductases) using a proteomic approach; 3) investigate the function of periplasmic nitrite reductase (Nrf) as a chromate reductase; and 4) develop a strategy to maximize microbial chromium reduction in the presence of nitrate. We found that growth on nitrate by G. metallireducens was inhibited by Cr(VI). Over 240 proteins were identified by LC/MS-MS. Redox active proteins, outer membrane heavy metal efflux proteins, and chemotaxis sensory

  12. Genome-Wide Analysis of Genes Encoding Methionine-Rich Proteins in Arabidopsis and Soybean Suggesting Their Roles in the Adaptation of Plants to Abiotic Stress.

    PubMed

    Chu, Ha Duc; Le, Quynh Ngoc; Nguyen, Huy Quang; Le, Dung Tien

    2016-01-01

    Oxidation and reduction of methionine (Met) play important roles in scavenging reactive oxygen species (ROS) and signaling in living organisms. To understand the impacts of Met oxidation and reduction in plants during stress, we surveyed the genomes of Arabidopsis and soybean (Glycine max L.) for genes encoding Met-rich proteins (MRPs). We found 121 and 213 genes encoding MRPs in Arabidopsis and soybean, respectively. Gene annotation indicated that those with known function are involved in vital cellular processes such as transcriptional control, calcium signaling, protein modification, and metal transport. Next, we analyzed the transcript levels of MRP-coding genes under normal and stress conditions. We found that 57 AtMRPs were responsive either to drought or to high salinity stress in Arabidopsis; 35 GmMRPs were responsive to drought in the leaf of late vegetative or early reproductive stages of soybean. Among the MRP genes with a known function, the majority of the abiotic stress-responsive genes are involved in transcription control and calcium signaling. Finally, Arabidopsis plant which overexpressed an MRP-coding gene, whose transcripts were downregulated by abiotic stress, was more sensitive to paraquat than the control. Taken together, our report indicates that MRPs participate in various vital processes of plants under normal and stress conditions. PMID:27635394

  13. Genome-Wide Analysis of Genes Encoding Methionine-Rich Proteins in Arabidopsis and Soybean Suggesting Their Roles in the Adaptation of Plants to Abiotic Stress

    PubMed Central

    Chu, Ha Duc; Le, Quynh Ngoc; Nguyen, Huy Quang

    2016-01-01

    Oxidation and reduction of methionine (Met) play important roles in scavenging reactive oxygen species (ROS) and signaling in living organisms. To understand the impacts of Met oxidation and reduction in plants during stress, we surveyed the genomes of Arabidopsis and soybean (Glycine max L.) for genes encoding Met-rich proteins (MRPs). We found 121 and 213 genes encoding MRPs in Arabidopsis and soybean, respectively. Gene annotation indicated that those with known function are involved in vital cellular processes such as transcriptional control, calcium signaling, protein modification, and metal transport. Next, we analyzed the transcript levels of MRP-coding genes under normal and stress conditions. We found that 57 AtMRPs were responsive either to drought or to high salinity stress in Arabidopsis; 35 GmMRPs were responsive to drought in the leaf of late vegetative or early reproductive stages of soybean. Among the MRP genes with a known function, the majority of the abiotic stress-responsive genes are involved in transcription control and calcium signaling. Finally, Arabidopsis plant which overexpressed an MRP-coding gene, whose transcripts were downregulated by abiotic stress, was more sensitive to paraquat than the control. Taken together, our report indicates that MRPs participate in various vital processes of plants under normal and stress conditions.

  14. Genome-Wide Analysis of Genes Encoding Methionine-Rich Proteins in Arabidopsis and Soybean Suggesting Their Roles in the Adaptation of Plants to Abiotic Stress

    PubMed Central

    Chu, Ha Duc; Le, Quynh Ngoc; Nguyen, Huy Quang

    2016-01-01

    Oxidation and reduction of methionine (Met) play important roles in scavenging reactive oxygen species (ROS) and signaling in living organisms. To understand the impacts of Met oxidation and reduction in plants during stress, we surveyed the genomes of Arabidopsis and soybean (Glycine max L.) for genes encoding Met-rich proteins (MRPs). We found 121 and 213 genes encoding MRPs in Arabidopsis and soybean, respectively. Gene annotation indicated that those with known function are involved in vital cellular processes such as transcriptional control, calcium signaling, protein modification, and metal transport. Next, we analyzed the transcript levels of MRP-coding genes under normal and stress conditions. We found that 57 AtMRPs were responsive either to drought or to high salinity stress in Arabidopsis; 35 GmMRPs were responsive to drought in the leaf of late vegetative or early reproductive stages of soybean. Among the MRP genes with a known function, the majority of the abiotic stress-responsive genes are involved in transcription control and calcium signaling. Finally, Arabidopsis plant which overexpressed an MRP-coding gene, whose transcripts were downregulated by abiotic stress, was more sensitive to paraquat than the control. Taken together, our report indicates that MRPs participate in various vital processes of plants under normal and stress conditions. PMID:27635394

  15. Assessing Utilization and Environmental Risks of Important Genes in Plant Abiotic Stress Tolerance

    PubMed Central

    Khan, Mohammad S.; Khan, Muhammad A.; Ahmad, Dawood

    2016-01-01

    Transgenic plants with improved salt and drought stress tolerance have been developed with a large number of abiotic stress-related genes. Among these, the most extensively used genes are the glycine betaine biosynthetic codA, the DREB transcription factors, and vacuolar membrane Na+/H+ antiporters. The use of codA, DREBs, and Na+/H+ antiporters in transgenic plants has conferred stress tolerance and improved plant phenotype. However, the future deployment and commercialization of these plants depend on their safety to the environment. Addressing environmental risk assessment is challenging since mechanisms governing abiotic stress tolerance are much more complex than that of insect resistance and herbicide tolerance traits, which have been considered to date. Therefore, questions arise, whether abiotic stress tolerance genes need additional considerations and new measurements in risk assessment and, whether these genes would have effects on weediness and invasiveness potential of transgenic plants? While considering these concerns, the environmental risk assessment of abiotic stress tolerance genes would need to focus on the magnitude of stress tolerance, plant phenotype and characteristics of the potential receiving environment. In the present review, we discuss environmental concerns and likelihood of concerns associated with the use of abiotic stress tolerance genes. Based on our analysis, we conclude that the uses of these genes in domesticated crop plants are safe for the environment. Risk assessment, however, should be carefully conducted on biofeedstocks and perennial plants taking into account plant phenotype and the potential receiving environment. PMID:27446095

  16. Research advances in major cereal crops for adaptation to abiotic stresses.

    PubMed

    Maiti, R K; Satya, Pratik

    2014-01-01

    With devastating increase in population there is a great necessity to increase crop productivity of staple crops but the productivity is greatly affected by various abiotic stress factors such as drought, salinity. An attempt has been made a brief account on abiotic stress resistance of major cereal crops viz. In spite of good successes obtained on physiological and use molecular biology, the benefits of this high cost technology are beyond the reach of developing countries. This review discusses several morphological, anatomical, physiological, biochemical and molecular mechanisms of major cereal crops related to the adaptation of these crop to abiotic stress factors. It discusses the effect of abiotic stresses on physiological processes such as flowering, grain filling and maturation and plant metabolisms viz. photosynthesis, enzyme activity, mineral nutrition, and respiration. Though significant progress has been attained on the physiological, biochemical basis of resistance to abiotic stress factors, very little progress has been achieved to increase productivity under sustainable agriculture. Therefore, there is a great necessity of inter-disciplinary research to address this issue and to evolve efficient technology and its transfer to the farmers' fields. PMID:25523172

  17. Soil abiotic factors influence interactions between belowground herbivores and plant roots.

    PubMed

    Erb, Matthias; Lu, Jing

    2013-03-01

    Root herbivores are important ecosystem drivers and agricultural pests, and, possibly as a consequence, plants protect their roots using a variety of defensive strategies. One aspect that distinguishes belowground from aboveground plant-insect interactions is that roots are constantly exposed to a set of soil-specific abiotic factors. These factors can profoundly influence root resistance, and, consequently, the outcome of the interaction with belowground feeders. In this review, we synthesize the current literature on the impact of soil moisture, nutrients, and texture on root-herbivore interactions. We show that soil abiotic factors influence the interaction by modulating herbivore abundance and behaviour, root growth and resistance, beneficial microorganisms, as well as natural enemies of the herbivores. We suggest that abiotic heterogeneity may explain the high variability that is often encountered in root-herbivore systems. We also propose that under abiotic stress, the relative fitness value of the roots and the potential negative impact of herbivory increases, which may lead to a higher defensive investment and an increased recruitment of beneficial microorganisms by the plant. At the same time, both root-feeding herbivores and natural enemies are likely to decrease in abundance under extreme environmental conditions, leading to a context- and species-specific impact on plant fitness. Only by using tightly controlled experiments that include soil abiotic heterogeneity will it be possible to understand the impact of root feeders on an ecosystem scale and to develop predictive models for pest occurrence and impact.

  18. A NAP-Family Histone Chaperone Functions in Abiotic Stress Response and Adaptation1[OPEN

    PubMed Central

    Pareek, Ashwani; Singla-Pareek, Sneh Lata

    2016-01-01

    Modulation of gene expression is one of the most significant molecular mechanisms of abiotic stress response in plants. Via altering DNA accessibility, histone chaperones affect the transcriptional competence of genomic loci. However, in contrast to other factors affecting chromatin dynamics, the role of plant histone chaperones in abiotic stress response and adaptation remains elusive. Here, we studied the physiological function of a stress-responsive putative rice (Oryza sativa) histone chaperone of the NAP superfamily: OsNAPL6. We show that OsNAPL6 is a nuclear-localized H3/H4 histone chaperone capable of assembling a nucleosome-like structure. Utilizing overexpression and knockdown approaches, we found a positive correlation between OsNAPL6 expression levels and adaptation to multiple abiotic stresses. Results of comparative transcriptome profiling and promoter-recruitment studies indicate that OsNAPL6 functions during stress response via modulation of expression of various genes involved in diverse functions. For instance, we show that OsNAPL6 is recruited to OsRad51 promoter, activating its expression and leading to more efficient DNA repair and abrogation of programmed cell death under salinity and genotoxic stress conditions. These results suggest that the histone chaperone OsNAPL6 may serve a regulatory role in abiotic stress physiology possibly via modulating nucleosome dynamics at various stress-associated genomic loci. Taken together, our findings establish a hitherto unknown link between histone chaperones and abiotic stress response in plants. PMID:27342307

  19. Research advances in major cereal crops for adaptation to abiotic stresses

    PubMed Central

    Maiti, RK; Satya, Pratik

    2014-01-01

    With devastating increase in population there is a great necessity to increase crop productivity of staple crops but the productivity is greatly affected by various abiotic stress factors such as drought, salinity. An attempt has been made a brief account on abiotic stress resistance of major cereal crops viz. In spite of good successes obtained on physiological and use molecular biology, the benefits of this high cost technology are beyond the reach of developing countries. This review discusses several morphological, anatomical, physiological, biochemical and molecular mechanisms of major cereal crops related to the adaptation of these crop to abiotic stress factors. It discusses the effect of abiotic stresses on physiological processes such as flowering, grain filling and maturation and plant metabolisms viz. photosynthesis, enzyme activity, mineral nutrition, and respiration. Though significant progress has been attained on the physiological, biochemical basis of resistance to abiotic stress factors, very little progress has been achieved to increase productivity under sustainable agriculture. Therefore, there is a great necessity of inter-disciplinary research to address this issue and to evolve efficient technology and its transfer to the farmers’ fields. PMID:25523172

  20. Superoxide dismutase--mentor of abiotic stress tolerance in crop plants.

    PubMed

    Gill, Sarvajeet Singh; Anjum, Naser A; Gill, Ritu; Yadav, Sandeep; Hasanuzzaman, Mirza; Fujita, Masayuki; Mishra, Panchanand; Sabat, Surendra C; Tuteja, Narendra

    2015-07-01

    Abiotic stresses impact growth, development, and productivity, and significantly limit the global agricultural productivity mainly by impairing cellular physiology/biochemistry via elevating reactive oxygen species (ROS) generation. If not metabolized, ROS (such as O2 (•-), OH(•), H2O2, or (1)O2) exceeds the status of antioxidants and cause damage to DNA, proteins, lipids, and other macromolecules, and finally cellular metabolism arrest. Plants are endowed with a family of enzymes called superoxide dismutases (SODs) that protects cells against potential consequences caused by cytotoxic O2 (•-) by catalyzing its conversion to O2 and H2O2. Hence, SODs constitute the first line of defense against abiotic stress-accrued enhanced ROS and its reaction products. In the light of recent reports, the present effort: (a) overviews abiotic stresses, ROS, and their metabolism; (b) introduces and discusses SODs and their types, significance, and appraises abiotic stress-mediated modulation in plants; (c) analyzes major reports available on genetic engineering of SODs in plants; and finally, (d) highlights major aspects so far least studied in the current context. Literature appraised herein reflects clear information paucity in context with the molecular/genetic insights into the major functions (and underlying mechanisms) performed by SODs, and also with the regulation of SODs by post-translational modifications. If the previous aspects are considered in the future works, the outcome can be significant in sustainably improving plant abiotic stress tolerance and efficiently managing agricultural challenges under changing climatic conditions.