Science.gov

Sample records for abiotic stress-related genes

  1. Excavating abiotic stress-related gene resources of terrestrial macroscopic cyanobacteria for crop genetic engineering: dawn and challenge

    PubMed Central

    Ye, Shuifeng; Gao, Xiang

    2015-01-01

    Genetically engineered (GE) crops with resistance to environmental stresses are one of the most important solutions for future food security. Numerous genes associated to plant stress resistance have been identified and characterized. However, the current reality is that only a few transgenic crops expressing prokaryotic genes are successfully applied in field conditions. These few prokaryotic genes include Agrobacterium strain CP4 EPSPS gene, Bacillus thuringiensis Cry1Ab gene and a bacterial chaperonin gene. Thus, the excavation of potentially critical genes still remains an arduous task for crop engineering. Terrestrial macroscopic cyanobacteria, Nostoc commune and Nostoc flagelliforme, which exhibit extreme resistance to desiccation stress, may serve as new prokaryotic bioresources for excavating critical genes. Recently, their marker gene wspA was heterologously expressed in Arabidopsis plant and the transgenics exhibited more flourishing root systems than wild-type plants under osmotic stress condition. In addition, some new genes associated with drought response and adaptation in N. flagelliforme are being uncovered by our ongoing RNA-seq analysis. Although the relevant work about the terrestrial macroscopic cyanobacteria is still underway, we believe that the prospect of excavating their critical genes for application in GE crops is quite optimistic. PMID:26418632

  2. Excavating abiotic stress-related gene resources of terrestrial macroscopic cyanobacteria for crop genetic engineering: dawn and challenge.

    PubMed

    Ye, Shuifeng; Gao, Xiang

    2015-01-01

    Genetically engineered (GE) crops with resistance to environmental stresses are one of the most important solutions for future food security. Numerous genes associated to plant stress resistance have been identified and characterized. However, the current reality is that only a few transgenic crops expressing prokaryotic genes are successfully applied in field conditions. These few prokaryotic genes include Agrobacterium strain CP4 EPSPS gene, Bacillus thuringiensis Cry1Ab gene and a bacterial chaperonin gene. Thus, the excavation of potentially critical genes still remains an arduous task for crop engineering. Terrestrial macroscopic cyanobacteria, Nostoc commune and Nostoc flagelliforme, which exhibit extreme resistance to desiccation stress, may serve as new prokaryotic bioresources for excavating critical genes. Recently, their marker gene wspA was heterologously expressed in Arabidopsis plant and the transgenics exhibited more flourishing root systems than wild-type plants under osmotic stress condition. In addition, some new genes associated with drought response and adaptation in N. flagelliforme are being uncovered by our ongoing RNA-seq analysis. Although the relevant work about the terrestrial macroscopic cyanobacteria is still underway, we believe that the prospect of excavating their critical genes for application in GE crops is quite optimistic. PMID:26418632

  3. Stress-related hormones and glycinebetaine interplay in protection of photosynthesis under abiotic stress conditions.

    PubMed

    Kurepin, Leonid V; Ivanov, Alexander G; Zaman, Mohammad; Pharis, Richard P; Allakhverdiev, Suleyman I; Hurry, Vaughan; Hüner, Norman P A

    2015-12-01

    Plants subjected to abiotic stresses such as extreme high and low temperatures, drought or salinity, often exhibit decreased vegetative growth and reduced reproductive capabilities. This is often associated with decreased photosynthesis via an increase in photoinhibition, and accompanied by rapid changes in endogenous levels of stress-related hormones such as abscisic acid (ABA), salicylic acid (SA) and ethylene. However, certain plant species and/or genotypes exhibit greater tolerance to abiotic stress because they are capable of accumulating endogenous levels of the zwitterionic osmolyte-glycinebetaine (GB). The accumulation of GB via natural production, exogenous application or genetic engineering, enhances plant osmoregulation and thus increases abiotic stress tolerance. The final steps of GB biosynthesis occur in chloroplasts where GB has been shown to play a key role in increasing the protection of soluble stromal and lumenal enzymes, lipids and proteins, of the photosynthetic apparatus. In addition, we suggest that the stress-induced GB biosynthesis pathway may well serve as an additional or alternative biochemical sink, one which consumes excess photosynthesis-generated electrons, thus protecting photosynthetic apparatus from overreduction. Glycinebetaine biosynthesis in chloroplasts is up-regulated by increases in endogenous ABA or SA levels. In this review, we propose and discuss a model describing the close interaction and synergistic physiological effects of GB and ABA in the process of cold acclimation of higher plants.

  4. Assessing Utilization and Environmental Risks of Important Genes in Plant Abiotic Stress Tolerance

    PubMed Central

    Khan, Mohammad S.; Khan, Muhammad A.; Ahmad, Dawood

    2016-01-01

    Transgenic plants with improved salt and drought stress tolerance have been developed with a large number of abiotic stress-related genes. Among these, the most extensively used genes are the glycine betaine biosynthetic codA, the DREB transcription factors, and vacuolar membrane Na+/H+ antiporters. The use of codA, DREBs, and Na+/H+ antiporters in transgenic plants has conferred stress tolerance and improved plant phenotype. However, the future deployment and commercialization of these plants depend on their safety to the environment. Addressing environmental risk assessment is challenging since mechanisms governing abiotic stress tolerance are much more complex than that of insect resistance and herbicide tolerance traits, which have been considered to date. Therefore, questions arise, whether abiotic stress tolerance genes need additional considerations and new measurements in risk assessment and, whether these genes would have effects on weediness and invasiveness potential of transgenic plants? While considering these concerns, the environmental risk assessment of abiotic stress tolerance genes would need to focus on the magnitude of stress tolerance, plant phenotype and characteristics of the potential receiving environment. In the present review, we discuss environmental concerns and likelihood of concerns associated with the use of abiotic stress tolerance genes. Based on our analysis, we conclude that the uses of these genes in domesticated crop plants are safe for the environment. Risk assessment, however, should be carefully conducted on biofeedstocks and perennial plants taking into account plant phenotype and the potential receiving environment. PMID:27446095

  5. Assessing Utilization and Environmental Risks of Important Genes in Plant Abiotic Stress Tolerance.

    PubMed

    Khan, Mohammad S; Khan, Muhammad A; Ahmad, Dawood

    2016-01-01

    Transgenic plants with improved salt and drought stress tolerance have been developed with a large number of abiotic stress-related genes. Among these, the most extensively used genes are the glycine betaine biosynthetic codA, the DREB transcription factors, and vacuolar membrane Na(+)/H(+) antiporters. The use of codA, DREBs, and Na(+)/H(+) antiporters in transgenic plants has conferred stress tolerance and improved plant phenotype. However, the future deployment and commercialization of these plants depend on their safety to the environment. Addressing environmental risk assessment is challenging since mechanisms governing abiotic stress tolerance are much more complex than that of insect resistance and herbicide tolerance traits, which have been considered to date. Therefore, questions arise, whether abiotic stress tolerance genes need additional considerations and new measurements in risk assessment and, whether these genes would have effects on weediness and invasiveness potential of transgenic plants? While considering these concerns, the environmental risk assessment of abiotic stress tolerance genes would need to focus on the magnitude of stress tolerance, plant phenotype and characteristics of the potential receiving environment. In the present review, we discuss environmental concerns and likelihood of concerns associated with the use of abiotic stress tolerance genes. Based on our analysis, we conclude that the uses of these genes in domesticated crop plants are safe for the environment. Risk assessment, however, should be carefully conducted on biofeedstocks and perennial plants taking into account plant phenotype and the potential receiving environment. PMID:27446095

  6. SlDEAD31, a Putative DEAD-Box RNA Helicase Gene, Regulates Salt and Drought Tolerance and Stress-Related Genes in Tomato.

    PubMed

    Zhu, Mingku; Chen, Guoping; Dong, Tingting; Wang, Lingling; Zhang, Jianling; Zhao, Zhiping; Hu, Zongli

    2015-01-01

    The DEAD-box RNA helicases are involved in almost every aspect of RNA metabolism, associated with diverse cellular functions including plant growth and development, and their importance in response to biotic and abiotic stresses is only beginning to emerge. However, none of DEAD-box genes was well characterized in tomato so far. In this study, we reported on the identification and characterization of two putative DEAD-box RNA helicase genes, SlDEAD30 and SlDEAD31 from tomato, which were classified into stress-related DEAD-box proteins by phylogenetic analysis. Expression analysis indicated that SlDEAD30 was highly expressed in roots and mature leaves, while SlDEAD31 was constantly expressed in various tissues. Furthermore, the expression of both genes was induced mainly in roots under NaCl stress, and SlDEAD31 mRNA was also increased by heat, cold, and dehydration. In stress assays, transgenic tomato plants overexpressing SlDEAD31 exhibited dramatically enhanced salt tolerance and slightly improved drought resistance, which were simultaneously demonstrated by significantly enhanced expression of multiple biotic and abiotic stress-related genes, higher survival rate, relative water content (RWC) and chlorophyll content, and lower water loss rate and malondialdehyde (MDA) production compared to wild-type plants. Collectively, these results provide a preliminary characterization of SlDEAD30 and SlDEAD31 genes in tomato, and suggest that stress-responsive SlDEAD31 is essential for salt and drought tolerance and stress-related gene regulation in plants. PMID:26241658

  7. SlDEAD31, a Putative DEAD-Box RNA Helicase Gene, Regulates Salt and Drought Tolerance and Stress-Related Genes in Tomato

    PubMed Central

    Zhu, Mingku; Chen, Guoping; Dong, Tingting; Wang, Lingling; Zhang, Jianling; Zhao, Zhiping; Hu, Zongli

    2015-01-01

    The DEAD-box RNA helicases are involved in almost every aspect of RNA metabolism, associated with diverse cellular functions including plant growth and development, and their importance in response to biotic and abiotic stresses is only beginning to emerge. However, none of DEAD-box genes was well characterized in tomato so far. In this study, we reported on the identification and characterization of two putative DEAD-box RNA helicase genes, SlDEAD30 and SlDEAD31 from tomato, which were classified into stress-related DEAD-box proteins by phylogenetic analysis. Expression analysis indicated that SlDEAD30 was highly expressed in roots and mature leaves, while SlDEAD31 was constantly expressed in various tissues. Furthermore, the expression of both genes was induced mainly in roots under NaCl stress, and SlDEAD31 mRNA was also increased by heat, cold, and dehydration. In stress assays, transgenic tomato plants overexpressing SlDEAD31 exhibited dramatically enhanced salt tolerance and slightly improved drought resistance, which were simultaneously demonstrated by significantly enhanced expression of multiple biotic and abiotic stress-related genes, higher survival rate, relative water content (RWC) and chlorophyll content, and lower water loss rate and malondialdehyde (MDA) production compared to wild-type plants. Collectively, these results provide a preliminary characterization of SlDEAD30 and SlDEAD31 genes in tomato, and suggest that stress-responsive SlDEAD31 is essential for salt and drought tolerance and stress-related gene regulation in plants. PMID:26241658

  8. Systematic Analysis of Integrated Gene Functional Network of Four Chronic Stress-related Lifestyle Disorders

    PubMed Central

    Roy, Souvick; Chakraborty, Abhik; Ghosh, Chinmoy; Banerjee, Birendranath

    2015-01-01

    Background: Stress is a term used to define factors involved in changes in the physiological balances resulting in disease conditions. Chronic exposure to stress conditions in modern lifestyles has resulted in a group of disorders called lifestyle disorders. Genetic background and environmental factors are interrelated to lifestyle in determining the health status of individuals. Hence, identification of disease-associated genes is the primary step toward explanations of pathogenesis of these diseases. In functional genomics, large-scale molecular and physiological data are used for the identification of causative genes associated with a disease. Aim: The objective of our study was to find a common set of genes involved in chronic stress-related lifestyle diseases such as cardiovascular diseases (CVDs), type 2 diabetes (T2D), hypertension (HTN), and obesity. Materials and Methods: In our study, we have performed a systematic analysis of the functional gene network of four chronic stress-related lifestyle diseases by retrieving genes from published databases. We have tried to systematically construct a functional protein-protein interaction (PPI) network. The goals of establishing this network were the functional enrichment study of interacting partners as well as functional disease ontology annotation (FunDO) of the enriched genes. Results: This study enabled the identification of key genes involved in these stress-related lifestyle diseases by prioritizing candidate genes based on their degree of involvement. In this systematic analysis, we have found key genes for these diseases based on their involvement and association at the gene network level and PPI. Conclusion: We have deciphered a group of genes that in combination play a crucial role and may impact the function of the whole genome in the four lifestyle disorders mentioned. PMID:27330735

  9. Cloning the Gravity and Shear Stress Related Genes from MG-63 Cells by Subtracting Hybridization

    NASA Astrophysics Data System (ADS)

    Zhang, Shu; Dai, Zhong-quan; Wang, Bing; Cao, Xin-sheng; Li, Ying-hui; Sun, Xi-qing

    2008-06-01

    Background The purpose of the present study was to clone the gravity and shear stress related genes from osteoblast-like human osteosarcoma MG-63 cells by subtractive hybridization. Method MG-63 cells were divided into two groups (1G group and simulated microgravity group). After cultured for 60 h in two different gravitational environments, two groups of MG-63 cells were treated with 1.5Pa fluid shear stress (FSS) for 60 min, respectively. The total RNA in cells was isolated. The gravity and shear stress related genes were cloned by subtractive hybridization. Result 200 clones were gained. 30 positive clones were selected using PCR method based on the primers of vector and sequenced. The obtained sequences were analyzed by blast. changes of 17 sequences were confirmed by RT-PCR and these genes are related to cell proliferation, cell differentiation, protein synthesis, signal transduction and apoptosis. 5 unknown genes related to gravity and shear stress were found. Conclusion In this part of our study, our result indicates that simulated microgravity may change the activities of MG-63 cells by inducing the functional alterations of specific genes.

  10. Autoinducer-2 signaling is involved in regulation of stress-related genes of Deinococcus radiodurans.

    PubMed

    Lin, Lin; Li, Tao; Dai, Shang; Yu, Jiangliu; Chen, Xiuqin; Wang, Liangyan; Wang, Yunguang; Hua, Yuejin; Tian, Bing

    2016-01-01

    Autoinducer-2 (AI-2) serves as a quorum-sensing signaling molecule that mediates both intraspecies and interspecies communication among bacteria, and plays critical roles in regulating various bacterial behaviors. In the present study, we investigated the functions of AI-2 signaling in the extremophilic bacterium Deinococcus radiodurans R1 by construction of the LuxS gene disruption mutant, survival phenotype assay and gene transcription assay. The gene mutant (DRΔLuxS), which was unable to produce AI-2, was significantly more sensitive to both gamma radiation and H2O2 compared with the wild-type strain. Addition of the wild-type-derived spent medium into the cell culture of DRΔLuxS fully restored the radioresistance of D. radiodurans. A higher level of reactive oxygen species accumulated in the mutant compared with the wild type under normal or oxidative stress. Quantitative real-time PCR assays showed that transcriptional levels of stress-related proteins, including catalase, extracellular nuclease, Dps-1 and ABC transporters, were decreased in DRΔLuxS, indicating that AI-2 is involved in regulation of stress-related genes of D. radiodurans. Hence, AI-2 signaling may contribute to the extreme resistance of D. radiodurans to radiation and oxidative stresses.

  11. Boron induced expression of some stress-related genes in tomato.

    PubMed

    Tombuloglu, Huseyin; Semizoglu, Nihan; Sakcali, Serdal; Kekec, Guzin

    2012-02-01

    Boron (B) is a potential environmental toxicant for plants under excessive conditions. To understand the molecular stress response involved in high B exposure, we focused on the transcript accumulation of three stress-related genes: Hsp90, MT2 and GR1. Transcript accumulations were determined on B-stressed tomato plants by using a quantitative real-time PCR technique. Tomato seedlings were exposed to B ranging from 80 to 5120 μM for 24 h in nutrient solution. Root and shoot transcript accumulations were assessed. Results showed that the genes were over-expressed in B-stressed tomato. The highest relative fold change value was measured on GR1 for both root and shoot (8-10 and 30-34-fold increases, respectively), indicating the activation of the oxidative stress enzyme to tolerate B-stress as an early response. The activation of these genes could be a protection mechanism against to B stress. PMID:22018856

  12. Expression of stress-related genes in diapause of European corn borer (Ostrinia nubilalis Hbn.).

    PubMed

    Popović, Željko D; Subotić, Ana; Nikolić, Tatjana V; Radojičić, Ratko; Blagojević, Duško P; Grubor-Lajšić, Gordana; Koštál, Vladimír

    2015-08-01

    Diapause is a state of arrested development during which insects cope with many external and internal stressful factors. European corn borer, Ostrinia nubilalis, overwinters as a fifth instar freeze-tolerant diapausing larva. In order to explore diapause-linked stress tolerance processes, the expression of selected genes coding for stress-related proteins-glutathione S-transferase (Gst), thioredoxin (Trx), glutaredoxin (Grx), ferritin (Fer), metallothionein (Mtn), and heat shock proteins Hsp90, Hsc70, Hsp20.4, and Hsp20.1-was assessed in the fat body of diapause-destined, warm (22 °C) and cold (5 °C) acclimated diapausing larvae using the quantitative real-time PCR. Gene expression was normalised to mRNA transcripts for Actin and Rps03, and relative expression was calculated using non-diapausing larvae as a control group. During the initiation phase of diapause, the abundance of mRNA transcripts of Grx, Hsp90, Hsc70, and Hsp20.1 was significantly upregulated, Trx, Fer, Mtn, and Hsp20.1 were unchanged, while only Gst was clearly downregulated in comparison to non-diapause control. Later, in the early phase of diapause, the expression of most genes (except Trx and Hsp20.1) was upregulated in warm-acclimated larvae, while only Trx and Hsp90 were upregulated in cold-acclimated larvae. Furthermore, the relative expression of all genes (except Trx) increased gradually throughout the diapause in cold-acclimated larvae. This result indicates that the half-life of mRNAs is prolonged during diapause at low temperature, which may lead to a gradual accumulation of mRNA transcripts. Our results show that both diapause programming and temperatures affect the expression of stress-related genes in Ostrinia nubilalis. PMID:25882225

  13. Stress-related gene expression in mice treated with inorganic arsenicals.

    PubMed

    Liu, J; Kadiiska, M B; Liu, Y; Lu, T; Qu, W; Waalkes, M P

    2001-06-01

    Arsenic (As) is an environmental chemical of high concern for human health. Acute toxicity of arsenic is dependent on its chemical forms and proximity to high local arsenic concentrations is one of the mechanisms for cell death. This study was designed to define acute arsenic-induced stress-related gene expression in vivo. Mice were injected sc with either sodium arsenite [As(III), 100 micromol/kg], sodium arsenate [As(V), 300 micromol/kg], or saline. To examine stress-related gene expression, livers were removed 3 h after arsenic injection for RNA and protein extraction. The Atlas Mouse Stress/Toxicology array revealed that the expression of genes related to stress, DNA damage, and metabolism was altered by acute arsenic treatments. Expression of heme oxygenase 1 (HO-1), a hallmark for arsenic-induced stress, was increased 10-fold, along with increases in heat shock protein-60 (HSP60), DNA damage inducible protein GADD45, and the DNA excision repair protein ERCC1. Downregulation of certain cytochrome P450 enzymes occurred with arsenic treatment. Multiprobe RNase protection assay revealed the activation of the c-Jun/AP-1 transcription complex after arsenic treatments. Western blot analysis further confirmed the enhanced production of arsenic-induced stress proteins such as HO-1, HSP70, HSP90, metallothionein, the metal-responsive transcription factor MTF-1, nuclear factor kappa B and c-Jun/AP-1. Increases in caspase-1 and cytokines such as tumor necrosis factor-alpha (TNF-alpha) and macrophage inflammatory protein-2 were also evident. In summary, this study profiled the gene expression pattern in mice treated with inorganic arsenicals, which adds to our understanding of acute arsenic poisoning and toxicity.

  14. Expression analysis of stress-related genes in kernels of different maize (Zea mays L.) inbred lines with different resistance to aflatoxin contamination.

    PubMed

    Jiang, Tingbo; Zhou, Boru; Luo, Meng; Abbas, Hamed K; Kemerait, Robert; Lee, Robert Dewey; Scully, Brian T; Guo, Baozhu

    2011-06-01

    This research examined the expression patterns of 94 stress-related genes in seven maize inbred lines with differential expressions of resistance to aflatoxin contamination. The objective was to develop a set of genes/probes associated with resistance to A. flavus and/or aflatoxin contamination. Ninety four genes were selected from previous gene expression studies with abiotic stress to test the differential expression in maize lines, A638, B73, Lo964, Lo1016, Mo17, Mp313E, and Tex6, using real-time RT-PCR. Based on the relative-expression levels, the seven maize inbred lines clustered into two different groups. One group included B73, Lo1016 and Mo17, which had higher levels of aflatoxin contamination and lower levels of overall gene expression. The second group which included Tex6, Mp313E, Lo964 and A638 had lower levels of aflatoxin contamination and higher overall levels of gene expressions. A total of six "cross-talking" genes were identified between the two groups, which are highly expressed in the resistant Group 2 but down-regulated in susceptible Group 1. When further subjected to drought stress, Tex6 expressed more genes up-regulated and B73 has fewer genes up-regulated. The transcript patterns and interactions measured in these experiments indicate that the resistant mechanism is an interconnected process involving many gene products and transcriptional regulators, as well as various host interactions with environmental factors, particularly, drought and high temperature. PMID:22069724

  15. SIRT3 Functions in the Nucleus in the Control of Stress-Related Gene Expression

    PubMed Central

    Iwahara, Toshinori; Bonasio, Roberto; Narendra, Varun

    2012-01-01

    SIRT3 is a member of the Sir2 family of NAD+-dependent protein deacetylases that promotes longevity in many organisms. The processed short form of SIRT3 is a well-established mitochondrial protein whose deacetylase activity regulates various metabolic processes. However, the presence of full-length (FL) SIRT3 in the nucleus and its functional importance remain controversial. Our previous studies demonstrated that nuclear FL SIRT3 functions as a histone deacetylase and is transcriptionally repressive when artificially recruited to a reporter gene. Here, we report that nuclear FL SIRT3 is subjected to rapid degradation under conditions of cellular stress, including oxidative stress and UV irradiation, whereas the mitochondrial processed form is unaffected. FL SIRT3 degradation is mediated by the ubiquitin-proteasome pathway, at least partially through the ubiquitin protein ligase (E3) activity of SKP2. Finally, we show by chromatin immunoprecipitation that some target genes of nuclear SIRT3 are derepressed upon degradation of SIRT3 caused by stress stimuli. Thus, SIRT3 exhibits a previously unappreciated role in the nucleus, modulating the expression of some stress-related and nuclear-encoded mitochondrial genes. PMID:23045395

  16. Genome-wide identification, expression analysis of auxin-responsive GH3 family genes in maize (Zea mays L.) under abiotic stresses.

    PubMed

    Feng, Shangguo; Yue, Runqing; Tao, Sun; Yang, Yanjun; Zhang, Lei; Xu, Mingfeng; Wang, Huizhong; Shen, Chenjia

    2015-09-01

    Auxin is involved in different aspects of plant growth and development by regulating the expression of auxin-responsive family genes. As one of the three major auxin-responsive families, GH3 (Gretchen Hagen3) genes participate in auxin homeostasis by catalyzing auxin conjugation and bounding free indole-3-acetic acid (IAA) to amino acids. However, how GH3 genes function in responses to abiotic stresses and various hormones in maize is largely unknown. Here, the latest updated maize (Zea mays L.) reference genome sequence was used to characterize and analyze the ZmGH3 family genes from maize. The results showed that 13 ZmGH3 genes were mapped on five maize chromosomes (total 10 chromosomes). Highly diversified gene structures and tissue-specific expression patterns suggested the possibility of function diversification for these genes in response to environmental stresses and hormone stimuli. The expression patterns of ZmGH3 genes are responsive to several abiotic stresses (salt, drought and cadmium) and major stress-related hormones (abscisic acid, salicylic acid and jasmonic acid). Various environmental factors suppress auxin free IAA contents in maize roots suggesting that these abiotic stresses and hormones might alter GH3-mediated auxin levels. The responsiveness of ZmGH3 genes to a wide range of abiotic stresses and stress-related hormones suggested that ZmGH3s are involved in maize tolerance to environmental stresses.

  17. Virus-induced gene silencing is a versatile tool for unraveling the functional relevance of multiple abiotic-stress-responsive genes in crop plants

    PubMed Central

    Ramegowda, Venkategowda; Mysore, Kirankumar S.; Senthil-Kumar, Muthappa

    2014-01-01

    Virus-induced gene silencing (VIGS) is an effective tool for gene function analysis in plants. Over the last decade, VIGS has been successfully used as both a forward and reverse genetics technique for gene function analysis in various model plants, as well as crop plants. With the increased identification of differentially expressed genes under various abiotic stresses through high-throughput transcript profiling, the application of VIGS is expected to be important in the future for functional characterization of a large number of genes. In the recent past, VIGS was proven to be an elegant tool for functional characterization of genes associated with abiotic stress responses. In this review, we provide an overview of how VIGS is used in different crop species to characterize genes associated with drought-, salt-, oxidative- and nutrient-deficiency-stresses. We describe the examples from studies where abiotic stress related genes are characterized using VIGS. In addition, we describe the major advantages of VIGS over other currently available functional genomics tools. We also summarize the recent improvements, limitations and future prospects of using VIGS as a tool for studying plant responses to abiotic stresses. PMID:25071806

  18. Expression of stress-related genes in zebrawood (Astronium fraxinifolium, Anacardiaceae) seedlings following germination in microgravity.

    PubMed

    Inglis, Peter W; Ciampi, Ana Y; Salomão, Antonieta N; Costa, Tânia da S A; Azevedo, Vânia C R

    2014-03-01

    Seeds of a tropical tree species from Brazil, Astronium fraxinifolium, or zebrawood, were germinated, for the first time in microgravity, aboard the International Space Station for nine days. Following three days of subsequent growth under normal terrestrial gravitational conditions, greater root length and numbers of secondary roots was observed in the microgravity-treated seedlings compared to terrestrially germinated controls. Suppression subtractive hybridization of cDNA and EST analysis were used to detect differential gene expression in the microgravity-treated seedlings in comparison to those initially grown in normal gravity (forward subtraction). Despite their return to, and growth in normal gravity, the subtracted library derived from microgravity-treated seedlings was enriched in known microgravity stress-related ESTs, corresponding to large and small heat shock proteins, 14-3-3-like protein, polyubiquitin, and proteins involved in glutathione metabolism. In contrast, the reverse-subtracted library contained a comparatively greater variety of general metabolism-related ESTs, but was also enriched for peroxidase, possibly indicating the suppression of this protein in the microgravity-treated seedlings. Following continued growth for 30 days, higher concentrations of total chlorophyll were detected in the microgravity-exposed seedlings.

  19. Stress-related gene expression in brain and adrenal gland of porcine fetuses and neonates.

    PubMed

    Schwerin, Manfred; Kanitz, Ellen; Tuchscherer, Margret; Brüssow, Klaus-Peter; Nürnberg, Gerd; Otten, Winfried

    2005-03-01

    This study was conducted to examine stress-induced effects on gene expression of specific markers for HPA axis and neuronal activity in fetuses and neonatal pigs. Brain, pituitary gland, and adrenal gland were obtained to determine the mRNA levels for corticotropin-releasing hormone (CRH), CRH receptor 1 (CRHR1), pro-opiomelanocortin (POMC), ACTH receptor (MC2R), c-jun and c-fos. The suitability of these molecular markers was determined in neonatal pigs which were maternally deprived for two hours. It was found that maternal deprivation caused significantly higher transcript levels of c-fos and CRH in brain accompanied by a down-regulation of CRHR1 mRNA and an up-regulation of c-jun in the pituitary gland. To determine the effect of elevated maternal cortisol levels on gene expression of these molecular markers in fetuses, pregnant sows were treated with 100 IU ACTH (Synacthen Depot) s.c. every two days between Day 49 and Day 75 of gestation (normal gestation length 114 days). Animals were killed 48 hours after the last ACTH administration and fetuses of each sow were isolated. The ACTH treatment of sows significantly increased mRNA expression of c-fos but not of CRH in the fetal brain, and significantly decreased MC2R mRNA expression in the adrenal gland. However, HPA axis seems not to be fully developed in Day 77-fetuses because fetal pituitary CRHR1 and POMC mRNA expression was low in most of the fetuses. Although the expression of endocrine regulatory factors was partially incomplete in fetuses at the beginning of the third-trimester, ACTH dependent activation of c-fos mRNA in brain indicates a stress-related increase of neuronal activity. Based on these results it is assumed that prenatal stress in pigs may also have effects on the activity of the HPA axis in the offspring.

  20. The effect of temperature and pH gradients on Lactobacillus rhamnosus gene expression of stress-related genes.

    PubMed

    Wallenius, Janne; Uuksulainen, Tuomas; Salonen, Kalle; Rautio, Jari; Eerikäinen, Tero

    2011-11-01

    In this study, Lactobacillus rhamnosus, a renowned probiotic, was cultivated in fluctuating environment. Base gradients caused by a pH control in an industrial process and temperature gradients caused by uneven heating were simulated with a scale-down method. A pH gradient was created in a plug flow reactor (PFR). Expression of pH stress-related genes (atpA, aldB, cfa, groEL, hrcA and pstS) were studied as a relative gene expression study using ldhD as a reference gene. Expression measurements were carried out with the TRAC method. The responses of groEL, hrcA and atpA genes to temperature and pH changes were observed. The expression of phosphate uptake system-related pstS gene was induced almost linearly in the chemostat cultivation experiments when the base gradient in the PFR was increased. Correlations between the results from gene expression studies and freeze stability or acid stress survival were studied. However, by measuring the expression of these genes, we were not able to predict eventual freeze stability or survival from the acid stress test.

  1. Programming of stress-related behavior and epigenetic neural gene regulation in mice offspring through maternal exposure to predator odor.

    PubMed

    St-Cyr, Sophie; McGowan, Patrick O

    2015-01-01

    Perinatal stress mediated through the mother can lead to long-term alterations in stress-related phenotypes in offspring. The capacity for adaptation to adversity in early life depends in part on the life history of the animal. This study was designed to examine the behavioral and neural response in adult offspring to prenatal exposure to predator odor: an ethologically-relevant psychological stressor. Pregnant mice were exposed daily to predator odors or distilled water control over the second half of the pregnancy. Predator odor exposure lead to a transient decrease in maternal care in the mothers. As adults, the offspring of predator odor-exposed mothers showed increased anti-predator behavior, a predator-odor induced decrease in activity and, in female offspring, an increased corticosterone (CORT) response to predator odor exposure. We found a highly specific response among stress-related genes within limbic brain regions. Transcript abundance of Corticotropin-releasing hormone receptor 1 (CRHR1) was elevated in the amygdala in adult female offspring of predator odor-exposed mothers. In the hippocampus of adult female offspring, decreased Brain-derived neurotrophic factor (BDNF) transcript abundance was correlated with a site-specific decrease in DNA methylation in Bdnf exon IV, indicating the potential contribution of this epigenetic mechanism to maternal programming by maternal predator odor exposure. These data indicate that maternal predator odor exposure alone is sufficient to induce an altered stress-related phenotype in adulthood, with implications for anti-predator behavior in offspring.

  2. Programming of stress-related behavior and epigenetic neural gene regulation in mice offspring through maternal exposure to predator odor

    PubMed Central

    St-Cyr, Sophie; McGowan, Patrick O.

    2015-01-01

    Perinatal stress mediated through the mother can lead to long-term alterations in stress-related phenotypes in offspring. The capacity for adaptation to adversity in early life depends in part on the life history of the animal. This study was designed to examine the behavioral and neural response in adult offspring to prenatal exposure to predator odor: an ethologically-relevant psychological stressor. Pregnant mice were exposed daily to predator odors or distilled water control over the second half of the pregnancy. Predator odor exposure lead to a transient decrease in maternal care in the mothers. As adults, the offspring of predator odor-exposed mothers showed increased anti-predator behavior, a predator-odor induced decrease in activity and, in female offspring, an increased corticosterone (CORT) response to predator odor exposure. We found a highly specific response among stress-related genes within limbic brain regions. Transcript abundance of Corticotropin-releasing hormone receptor 1 (CRHR1) was elevated in the amygdala in adult female offspring of predator odor-exposed mothers. In the hippocampus of adult female offspring, decreased Brain-derived neurotrophic factor (BDNF) transcript abundance was correlated with a site-specific decrease in DNA methylation in Bdnf exon IV, indicating the potential contribution of this epigenetic mechanism to maternal programming by maternal predator odor exposure. These data indicate that maternal predator odor exposure alone is sufficient to induce an altered stress-related phenotype in adulthood, with implications for anti-predator behavior in offspring. PMID:26082698

  3. Response of key stress-related genes of the seagrass Posidonia oceanica in the vicinity of submarine volcanic vents

    NASA Astrophysics Data System (ADS)

    Lauritano, C.; Ruocco, M.; Dattolo, E.; Buia, M. C.; Silva, J.; Santos, R.; Olivé, I.; Costa, M. M.; Procaccini, G.

    2015-07-01

    Submarine volcanic vents are being used as natural laboratories to assess the effects of increased ocean acidity and carbon dioxide (CO2) concentration on marine organisms and communities. However, in the vicinity of volcanic vents other factors in addition to CO2, which is the main gaseous component of the emissions, may directly or indirectly confound the biota responses to high CO2. Here we used for the first time the expression of antioxidant and stress-related genes of the seagrass Posidonia oceanica to assess the stress levels of the species. Our hypothesis is that unknown factors are causing metabolic stress that may confound the putative effects attributed to CO2 enrichment only. We analyzed the expression of 35 antioxidant and stress-related genes of P. oceanica in the vicinity of submerged volcanic vents located in the islands of Ischia and Panarea, Italy, and compared them with those from control sites away from the influence of vents. Reverse-transcription quantitative polymerase chain reaction (RT-qPCR) was used to characterize gene expression patterns. Fifty-one percent of genes analyzed showed significant expression changes. Metal detoxification genes were mostly down-regulated in relation to controls at both Ischia and Panarea, indicating that P. oceanica does not increase the synthesis of heavy metal detoxification proteins in response to the environmental conditions present at the two vents. The up-regulation of genes involved in the free radical detoxification response (e.g., CAPX, SODCP and GR) indicates that, in contrast with Ischia, P. oceanica at the Panarea site faces stressors that result in the production of reactive oxygen species, triggering antioxidant responses. In addition, heat shock proteins were also activated at Panarea and not at Ischia. These proteins are activated to adjust stress-accumulated misfolded proteins and prevent their aggregation as a response to some stressors, not necessarily high temperature. This is the first

  4. ABI-like transcription factor gene TaABL1 from wheat improves multiple abiotic stress tolerances in transgenic plants.

    PubMed

    Xu, Dong-Bei; Gao, Shi-Qing; Ma, You-Zhi; Xu, Zhao-Shi; Zhao, Chang-Ping; Tang, Yi-Miao; Li, Xue-Yin; Li, Lian-Cheng; Chen, Yao-Feng; Chen, Ming

    2014-12-01

    The phytohormone abscisic acid (ABA) plays crucial roles in adaptive responses of plants to abiotic stresses. ABA-responsive element binding proteins (AREBs) are basic leucine zipper transcription factors that regulate the expression of downstream genes containing ABA-responsive elements (ABREs) in promoter regions. A novel ABI-like (ABA-insensitive) transcription factor gene, named TaABL1, containing a conserved basic leucine zipper (bZIP) domain was cloned from wheat. Southern blotting showed that three copies were present in the wheat genome. Phylogenetic analyses indicated that TaABL1 belonged to the AREB subfamily of the bZIP transcription factor family and was most closely related to ZmABI5 in maize and OsAREB2 in rice. Expression of TaABL1 was highly induced in wheat roots, stems, and leaves by ABA, drought, high salt, and low temperature stresses. TaABL1 was localized inside the nuclei of transformed wheat mesophyll protoplast. Overexpression of TaABL1 enhanced responses of transgenic plants to ABA and hastened stomatal closure under stress, thereby improving tolerance to multiple abiotic stresses. Furthermore, overexpression of TaABL1 upregulated or downregulated the expression of some stress-related genes controlling stomatal closure in transgenic plants under ABA and drought stress conditions, suggesting that TaABL1 might be a valuable genetic resource for transgenic molecular breeding.

  5. Elevated systemic expression of ER stress related genes is associated with stress-related mental disorders in the Detroit Neighborhood Health Study

    PubMed Central

    Nevell, Lisa; Zhang, Kezhong; Aiello, Allison; Koenen, Karestan; Galea, Sandro; Soliven, Richelo; Zhang, Chao; Wildman, Derek E.; Uddin, Monica

    2014-01-01

    Background The role of Endoplasmic Reticulum (ER) stress response in mental illness is not well understood. Human studies and animal models of depression show elevated brain ER stress response. In addition, some ER stress associated disorders (e.g. cardiovascular disease) show higher rates of depression compared to the general population, raising the possibility that ER stress response contributes to depression risk. It remains unknown, however, if ER stress response is present among individuals suffering from other stress-related mental illness, and whether such a response would be evident in a non-clinical sample. This study tests for systemic changes in ER stress response associated with major depressive disorder (MDD) or post-traumatic stress disorder (PTSD) among community-dwelling individuals. Methods We analyzed expression of BiP, EDEM1, CHOP, and XBP1, the major indicators of ER stress response, with Real-Time PCR in leukocyte-derived RNA samples from 86 participants of the Detroit Neighborhood Health Study. Participants were selected based on the presence of either past year MDD or past year PTSD; controls were age and sex matched. Results Relative to controls, MDD is associated with a 1.34-fold increase in BiP (P=0.004), 1.35-fold increase in EDEM1 (P=0.001), 1.68-fold increase in CHOP (P=0.002), and 1.60-fold increase in XBP1 (P=0.004). These results remained significant after correction for multiple testing. In contrast, PTSD is associated with a 1.27 fold increase in EDEM1 expression only (P=0.027), a result that is attenuated to non-significance following adjustment for multiple testing; however, a subsample of participants with past month PTSD showed elevated expression of BiP and EDEM1 (uncorrected p value 0.049 and 0.017, respectively). Conclusions These data indicate systemic and persistent activation of the ER stress response pathway in MDD among community-dwelling individuals. Systemic activation of the ER stress response may also occur in PTSD

  6. Physiological, Diurnal and Stress-Related Variability of Cadmium-Metallothionein Gene Expression in Land Snails

    PubMed Central

    Pedrini-Martha, Veronika; Niederwanger, Michael; Kopp, Renate; Schnegg, Raimund; Dallinger, Reinhard

    2016-01-01

    The terrestrial Roman snail Helix pomatia has successfully adapted to strongly fluctuating conditions in its natural soil habitat. Part of the snail’s stress defense strategy is its ability to express Metallothioneins (MTs). These are multifunctional, cysteine-rich proteins that bind and inactivate transition metal ions (Cd2+, Zn2+, Cu+) with high affinity. In Helix pomatia a Cadmium (Cd)-selective, inducible Metallothionein Isoform (CdMT) is mainly involved in detoxification of this harmful metal. In addition, the snail CdMT has been shown to also respond to certain physiological stressors. The aim of the present study was to investigate the physiological and diurnal variability of CdMT gene expression in snails exposed to Cd and non-metallic stressors such as desiccation and oxygen depletion. CdMT gene expression was upregulated by Cd exposure and desiccation, whereas no significant impact on the expression of CdMT was measured due to oxygen depletion. Overall, Cd was clearly more effective as an inducer of the CdMT gene expression compared to the applied non-metallic stressors. In unexposed snails, diurnal rhythmicity of CdMT gene expression was observed with higher mRNA concentrations at night compared to daytime. This rhythmicity was severely disrupted in Cd-exposed snails which exhibited highest CdMT gene transcription rates in the morning. Apart from diurnal rhythmicity, feeding activity also had a strong impact on CdMT gene expression. Although underlying mechanisms are not completely understood, it is clear that factors increasing MT expression variability have to be considered when using MT mRNA quantification as a biomarker for environmental stressors. PMID:26935042

  7. OsPOP5, A Prolyl Oligopeptidase Family Gene from Rice Confers Abiotic Stress Tolerance in Escherichia coli

    PubMed Central

    Tan, Cun-Mei; Chen, Rong-Jun; Zhang, Jian-Hua; Gao, Xiao-Ling; Li, Li-Hua; Wang, Ping-Rong; Deng, Xiao-Jian; Xu, Zheng-Jun

    2013-01-01

    The prolyl oligopeptidase family, which is a group of serine peptidases, can hydrolyze peptides smaller than 30 residues. The prolyl oligopeptidase family in plants includes four members, which are prolyl oligopeptidase (POP, EC3.4.21.26), dipeptidyl peptidase IV (DPPIV, EC3.4.14.5), oligopeptidase B (OPB, EC3.4.21.83), and acylaminoacyl peptidase (ACPH, EC3.4.19.1). POP is found in human and rat, and plays important roles in multiple biological processes, such as protein secretion, maturation and degradation of peptide hormones, and neuropathies, signal transduction and memory and learning. However, the function of POP is unclear in plants. In order to study POP function in plants, we cloned the cDNA of the OsPOP5 gene from rice by nested-PCR. Sequence analysis showed that the cDNA encodes a protein of 596 amino acid residues with Mw ≈ 67.29 kD. In order to analyze the protein function under different abiotic stresses, OsPOP5 was expressed in Escherichia coli. OsPOP5 protein enhanced the tolerance of E. coli to high salinity, high temperature and simulated drought. The results indicate that OsPOP5 is a stress-related gene in rice and it may play an important role in plant tolerance to abiotic stress. PMID:24152437

  8. XA21-specific induction of stress-related genes following Xanthomonas infection of detached rice leaves

    PubMed Central

    Liu, Furong; Chen, Huamin; Wei, Tong; Nguyen, Yen P.; Shaker, Isaac W.F.

    2016-01-01

    The rice XA21 receptor kinase confers robust resistance to the bacterial pathogen Xanthomonas oryzaepv. oryzae (Xoo). We developed a detached leaf infection assay to quickly and reliably measure activation of the XA21-mediated immune response using genetic markers. We used RNA sequencing of elf18 treated EFR:XA21:GFP plants to identify candidate genes that could serve as markers for XA21 activation. From this analysis, we identified eight genes that are up-regulated in both in elf18 treated EFR:XA21:GFP rice leaves and Xoo infected XA21 rice leaves. These results provide a rapid and reliable method to assess bacterial-rice interactions. PMID:27703843

  9. Identification of Key Drought Stress-Related Genes in the Hyacinth Bean

    PubMed Central

    Yao, Lu-Ming; Wang, Biao; Cheng, Lin-Jing; Wu, Tian-Long

    2013-01-01

    Hyacinth bean (Lablab purpureus [Linn.] Sweet) possesses excellent characteristics for field production, but the response of this plant to drought stress has not been described at the molecular level. Suppression subtraction hybridization (SSH) is an effective way to exploit key factors for plant responses to drought stress that are involved in transcriptional and metabolic activities. In this study, forward and reverse SSH libraries were generated from root tissues of the drought-tolerant hyacinth bean genotype MEIDOU 2012 under water–stress conditions. A total of 1,287 unigenes (94 contigs and 1,193 singletons) were derived from sequence alignment and cluster assembly of 1400 ESTs, and 80.6% of those hit against NCBI non-redundant (nr) database with E value <1E−06. BLASTX analysis revealed that the majority top matches were proteins form Glycine max (L.) Merrill. (61.5%). According to a gene ontology (GO) functional classification, 816 functionally annotated unigenes were assigned to the biological process category (74.1%), and 83.9% of them classified into molecular function and 69.2% involved in cellular component. A total of 168 sequences were further annotated with 207 Enzyme Commission (EC) codes and mapped to 83 different KEGG pathways. Seventeen functionally relevant genes were found to be overrepresented under drought stress using enrichment analysis. Differential expression of unigenes were confirmed by quantitative real-time PCR assays, and their transcript profiles generally divided into three patterns, depending on the expression peaked levels after 6, 8 or 10 days dehydration, which indicated that these genes are functionally associated in the drought-stress response. PMID:23472143

  10. Identification of key drought stress-related genes in the hyacinth bean.

    PubMed

    Yao, Lu-Ming; Wang, Biao; Cheng, Lin-Jing; Wu, Tian-Long

    2013-01-01

    Hyacinth bean (Lablab purpureus [Linn.] Sweet) possesses excellent characteristics for field production, but the response of this plant to drought stress has not been described at the molecular level. Suppression subtraction hybridization (SSH) is an effective way to exploit key factors for plant responses to drought stress that are involved in transcriptional and metabolic activities. In this study, forward and reverse SSH libraries were generated from root tissues of the drought-tolerant hyacinth bean genotype MEIDOU 2012 under water-stress conditions. A total of 1,287 unigenes (94 contigs and 1,193 singletons) were derived from sequence alignment and cluster assembly of 1400 ESTs, and 80.6% of those hit against NCBI non-redundant (nr) database with E value <1E-06. BLASTX analysis revealed that the majority top matches were proteins form Glycine max (L.) Merrill. (61.5%). According to a gene ontology (GO) functional classification, 816 functionally annotated unigenes were assigned to the biological process category (74.1%), and 83.9% of them classified into molecular function and 69.2% involved in cellular component. A total of 168 sequences were further annotated with 207 Enzyme Commission (EC) codes and mapped to 83 different KEGG pathways. Seventeen functionally relevant genes were found to be overrepresented under drought stress using enrichment analysis. Differential expression of unigenes were confirmed by quantitative real-time PCR assays, and their transcript profiles generally divided into three patterns, depending on the expression peaked levels after 6, 8 or 10 days dehydration, which indicated that these genes are functionally associated in the drought-stress response. PMID:23472143

  11. Overexpression of stress-related genes enhances cell viability and velum formation in Sherry wine yeasts.

    PubMed

    Fierro-Risco, Jesús; Rincón, Ana María; Benítez, Tahía; Codón, Antonio C

    2013-08-01

    Flor formation and flor endurance have been related to ability by Saccharomyces cerevisiae flor yeasts to resist hostile conditions such as oxidative stress and the presence of acetaldehyde and ethanol. Ethanol and acetaldehyde toxicity give rise to formation of reactive oxygen species (ROS) and loss of cell viability. Superoxide dismutases Sod1p and Sod2p and other proteins such as Hsp12p are involved in oxidative stress tolerance. In this study, genes SOD1, SOD2, and HSP12 were overexpressed in flor yeast strains FJF206, FJF414 and B16. In the SOD1 and SOD2 transformant strains superoxide dismutases encoded by genes SOD1 and SOD2 increased their specific activity considerably as a direct result of overexpression of genes SOD1 and SOD2, indirectly, catalase, glutathione reductase, and glutathione peroxidase activities increased too. The HSP12 transformant strains showed higher levels of glutathione peroxidase and reductase activities. These transformant strains showed an increase in intracellular glutathione content, a reduction in peroxidized lipid concentration, and higher resistance to oxidative stress conditions. As a result, flor formation by these strains took place more rapidly than by their parental strains, velum being thicker and with higher percentages of viable cells. In addition, a slight decrease in ethanol and glycerol concentrations, and an increase in acetaldehyde were detected in wines matured under velum formed by transformant strains, as compared to their parental strains. In the industry, velum formed by transformant strains with increased viability may result in acceleration of both metabolism and wine aging, thus reducing time needed for wine maturation. PMID:23553032

  12. Response of key stress-related genes of the seagrass Posidonia oceanica in the vicinity of submarine volcanic vents

    NASA Astrophysics Data System (ADS)

    Lauritano, C.; Ruocco, M.; Dattolo, E.; Buia, M. C.; Silva, J.; Santos, R.; Olivé, I.; Costa, M. M.; Procaccini, G.

    2015-03-01

    Submarine volcanic vents are being used as natural laboratories to assess the effects of CO2 on marine organisms and communities, as this gas is the main component of emissions. Seagrasses should positively react to increased dissolved carbon, but in vicinity of volcanic vents there may be toxic substances, that can have indirect effects on seagrasses. Here we analysed the expression of 35 stress-related genes in the Mediterranean keystone seagrass species P. oceanica in the vicinity of submerged volcanic vents located in the Islands of Ischia and Panarea, Italy, and compared them with those from control sites away from the influence of vents. Reverse Transcription-Quantitative Polymerase Chain Reaction (RT-qPCR) was used to characterize the expression levels of genes. Fifty one per cent of genes analysed showed significant expression changes. Metal detoxification genes were mostly down-regulated in relation to controls both in Ischia and Panarea locations, indicating that P. oceanica does not increase the synthesis of heavy metal detoxification proteins in response to the environmental conditions present at the two vents. The expression levels of genes involved in free radical detoxification indicate that, in contrast with Ischia, P. oceanica at the Panarea vent face stressors that result in the production of reactive oxygen species triggering antioxidant responses. In addition, heat shock proteins were also activated at Panarea and not at Ischia. Overall, our study reveals that P. oceanica is generally under higher stress in the vicinity of the vents at Panarea than at Ischia, possibly resulting from environmental and evolutionary differences existing between the two volcanic sites. This is the first study analysing gene responses in marine plants living near natural CO2 vents and our results call for a careful consideration of factors, other than CO2 and acidification, that can cause stress to seagrasses and other organisms near volcanic vents.

  13. Bilberries potentially alleviate stress-related retinal gene expression induced by a high-fat diet in mice

    PubMed Central

    Kalesnykas, Giedrius; Adriaens, Michiel; Evelo, Chris T.; Törrönen, Riitta; Kaarniranta, Kai

    2012-01-01

    displayed differential regulation of genes in ontology groups, mainly pathways for apoptosis, inflammation, and oxidative stress, especially systemic lupus erythematosus, mitogen-activated protein kinase, and glutathione metabolism. Mice fed a HFD had increased retinal gene expression of several crystallins, while the HFD+BB mice showed potential downregulation of these crystallins when compared to the HFD mice. Bilberries also reduced the expression of genes in the mitogen-activated protein kinase (MAPK) pathway and increased those in the glutathione metabolism pathway. Conclusions HFD feeding induces differential expression of several stress-related genes in the mouse retina. Despite minor effects in the phenotype, a diet rich in bilberries mitigates the upregulation of crystallins otherwise induced by HFD. Thus, the early stages of obesity-associated and stress-related gene expression changes in the retina may be prevented with bilberries in the diet. PMID:22993483

  14. Identification of Arabidopsis Candidate Genes in Response to Biotic and Abiotic Stresses Using Comparative Microarrays

    PubMed Central

    Sham, Arjun; Moustafa, Khaled; Al-Ameri, Salma; Al-Azzawi, Ahmed; Iratni, Rabah; AbuQamar, Synan

    2015-01-01

    Plants have evolved with intricate mechanisms to cope with multiple environmental stresses. To adapt with biotic and abiotic stresses, plant responses involve changes at the cellular and molecular levels. The current study was designed to investigate the effects of combinations of different environmental stresses on the transcriptome level of Arabidopsis genome using public microarray databases. We investigated the role of cyclopentenones in mediating plant responses to environmental stress through TGA (TGACG motif-binding factor) transcription factor, independently from jasmonic acid. Candidate genes were identified by comparing plants inoculated with Botrytis cinerea or treated with heat, salt or osmotic stress with non-inoculated or non-treated tissues. About 2.5% heat-, 19% salinity- and 41% osmotic stress-induced genes were commonly upregulated by B. cinerea-treatment; and 7.6%, 19% and 48% of genes were commonly downregulated by B. cinerea-treatment, respectively. Our results indicate that plant responses to biotic and abiotic stresses are mediated by several common regulatory genes. Comparisons between transcriptome data from Arabidopsis stressed-plants support our hypothesis that some molecular and biological processes involved in biotic and abiotic stress response are conserved. Thirteen of the common regulated genes to abiotic and biotic stresses were studied in detail to determine their role in plant resistance to B. cinerea. Moreover, a T-DNA insertion mutant of the Responsive to Dehydration gene (rd20), encoding for a member of the caleosin (lipid surface protein) family, showed an enhanced sensitivity to B. cinerea infection and drought. Overall, the overlapping of plant responses to abiotic and biotic stresses, coupled with the sensitivity of the rd20 mutant, may provide new interesting programs for increased plant resistance to multiple environmental stresses, and ultimately increases its chances to survive. Future research directions towards a

  15. Natural variation in abiotic stress responsive gene expression and local adaptation to climate in Arabidopsis thaliana.

    PubMed

    Lasky, Jesse R; Des Marais, David L; Lowry, David B; Povolotskaya, Inna; McKay, John K; Richards, James H; Keitt, Timothy H; Juenger, Thomas E

    2014-09-01

    Gene expression varies widely in natural populations, yet the proximate and ultimate causes of this variation are poorly known. Understanding how variation in gene expression affects abiotic stress tolerance, fitness, and adaptation is central to the field of evolutionary genetics. We tested the hypothesis that genes with natural genetic variation in their expression responses to abiotic stress are likely to be involved in local adaptation to climate in Arabidopsis thaliana. Specifically, we compared genes with consistent expression responses to environmental stress (expression stress responsive, "eSR") to genes with genetically variable responses to abiotic stress (expression genotype-by-environment interaction, "eGEI"). We found that on average genes that exhibited eGEI in response to drought or cold had greater polymorphism in promoter regions and stronger associations with climate than those of eSR genes or genomic controls. We also found that transcription factor binding sites known to respond to environmental stressors, especially abscisic acid responsive elements, showed significantly higher polymorphism in drought eGEI genes in comparison to eSR genes. By contrast, eSR genes tended to exhibit relatively greater pairwise haplotype sharing, lower promoter diversity, and fewer nonsynonymous polymorphisms, suggesting purifying selection or selective sweeps. Our results indicate that cis-regulatory evolution and genetic variation in stress responsive gene expression may be important mechanisms of local adaptation to climatic selective gradients.

  16. Natural Variation in Abiotic Stress Responsive Gene Expression and Local Adaptation to Climate in Arabidopsis thaliana

    PubMed Central

    Lasky, Jesse R.; Des Marais, David L.; Lowry, David B.; Povolotskaya, Inna; McKay, John K.; Richards, James H.; Keitt, Timothy H.; Juenger, Thomas E.

    2014-01-01

    Gene expression varies widely in natural populations, yet the proximate and ultimate causes of this variation are poorly known. Understanding how variation in gene expression affects abiotic stress tolerance, fitness, and adaptation is central to the field of evolutionary genetics. We tested the hypothesis that genes with natural genetic variation in their expression responses to abiotic stress are likely to be involved in local adaptation to climate in Arabidopsis thaliana. Specifically, we compared genes with consistent expression responses to environmental stress (expression stress responsive, “eSR”) to genes with genetically variable responses to abiotic stress (expression genotype-by-environment interaction, “eGEI”). We found that on average genes that exhibited eGEI in response to drought or cold had greater polymorphism in promoter regions and stronger associations with climate than those of eSR genes or genomic controls. We also found that transcription factor binding sites known to respond to environmental stressors, especially abscisic acid responsive elements, showed significantly higher polymorphism in drought eGEI genes in comparison to eSR genes. By contrast, eSR genes tended to exhibit relatively greater pairwise haplotype sharing, lower promoter diversity, and fewer nonsynonymous polymorphisms, suggesting purifying selection or selective sweeps. Our results indicate that cis-regulatory evolution and genetic variation in stress responsive gene expression may be important mechanisms of local adaptation to climatic selective gradients. PMID:24850899

  17. Genome Wide Analysis of the Apple MYB Transcription Factor Family Allows the Identification of MdoMYB121 Gene Confering Abiotic Stress Tolerance in Plants

    PubMed Central

    Wang, Rong-Kai; Zhang, Rui-Fen; Hao, Yu-Jin

    2013-01-01

    The MYB proteins comprise one of the largest families of transcription factors (TFs) in plants. Although several MYB genes have been characterized to play roles in secondary metabolism, the MYB family has not yet been identified in apple. In this study, 229 apple MYB genes were identified through a genome-wide analysis and divided into 45 subgroups. A computational analysis was conducted using the apple genomic database to yield a complete overview of the MYB family, including the intron-exon organizations, the sequence features of the MYB DNA-binding domains, the carboxy-terminal motifs, and the chromosomal locations. Subsequently, the expression of 18 MYB genes, including 12 were chosen from stress-related subgroups, while another 6 ones from other subgroups, in response to various abiotic stresses was examined. It was found that several of these MYB genes, particularly MdoMYB121, were induced by multiple stresses. The MdoMYB121 was then further functionally characterized. Its predicted protein was found to be localized in the nucleus. A transgenic analysis indicated that the overexpression of the MdoMYB121 gene remarkably enhanced the tolerance to high salinity, drought, and cold stresses in transgenic tomato and apple plants. Our results indicate that the MYB genes are highly conserved in plant species and that MdoMYB121 can be used as a target gene in genetic engineering approaches to improve the tolerance of plants to multiple abiotic stresses. PMID:23950843

  18. Expression partitioning between genes duplicated by polyploidy under abiotic stress and during organ development.

    PubMed

    Liu, Zhenlan; Adams, Keith L

    2007-10-01

    Allopolyploidy has been a prominent mode of speciation and a recurrent process during plant evolution and has contributed greatly to the large number of duplicated genes in plant genomes [1-4]. Polyploidy often leads to changes in genome organization and gene expression [5-9]. The expression of genes that are duplicated by polyploidy (termed homeologs) can be partitioned between the duplicates so that one copy is expressed and functions only in some organs and the other copy is expressed only in other organs, indicative of subfunctionalization [10]. To determine how homeologous-gene expression patterns change during organ development and in response to abiotic stress conditions, we have examined expression of the alcohol dehydrogenase gene AdhA in allopolyploid cotton (Gossypium hirsutum). Expression ratios of the two homeologs vary considerably during the development of organs from seedlings and fruits. Abiotic stress treatments, including cold, dark, and water submersion, altered homeologous-gene expression. Most notably, only one copy is expressed in hypocotyls during a water-submersion treatment, and only the other copy is expressed during cold stress. These results imply that subfunctionalization of genes duplicated by polyploidy has occurred in response to abiotic stress conditions. Partitioning of duplicate gene expression in response to environmental stress may lead to duplicate gene retention during subsequent evolution. PMID:17825563

  19. Adaptive eukaryote-to-eukaryote lateral gene transfer: stress-related genes of algal origin in the closest unicellular relatives of animals.

    PubMed

    Nedelcu, A M; Miles, I H; Fagir, A M; Karol, K

    2008-11-01

    In addition to mutation, gene duplication and recombination, the transfer of genetic material between unrelated species is now regarded as a potentially significant player in the shaping of extant genomes and the evolution and diversification of life. Although this is probably true for prokaryotes, the extent of such genetic exchanges in eukaryotes (especially eukaryote-to-eukaryote transfers) is more controversial and the selective advantage and evolutionary impact of such events are less documented. A laterally transferred gene could either be added to the gene complement of the recipient or replace the recipient's homologue; whereas gene replacements can be either adaptive or stochastic, gene additions are most likely adaptive. Here, we report the finding of four stress-related genes (two ascorbate peroxidase and two metacaspase genes) of algal origin in the closest unicellular relatives of animals, the choanoflagellates. At least three of these sequences represent additions to the choanoflagellate gene complement, which is consistent with these transfers being adaptive. We suggest that these laterally acquired sequences could have provided the primitive choanoflagellates with additional or more efficient means to cope with stress, especially in relation to adapting to freshwater environments and/or sessile or colonial lifestyles.

  20. Adaptive eukaryote-to-eukaryote lateral gene transfer: stress-related genes of algal origin in the closest unicellular relatives of animals.

    PubMed

    Nedelcu, A M; Miles, I H; Fagir, A M; Karol, K

    2008-11-01

    In addition to mutation, gene duplication and recombination, the transfer of genetic material between unrelated species is now regarded as a potentially significant player in the shaping of extant genomes and the evolution and diversification of life. Although this is probably true for prokaryotes, the extent of such genetic exchanges in eukaryotes (especially eukaryote-to-eukaryote transfers) is more controversial and the selective advantage and evolutionary impact of such events are less documented. A laterally transferred gene could either be added to the gene complement of the recipient or replace the recipient's homologue; whereas gene replacements can be either adaptive or stochastic, gene additions are most likely adaptive. Here, we report the finding of four stress-related genes (two ascorbate peroxidase and two metacaspase genes) of algal origin in the closest unicellular relatives of animals, the choanoflagellates. At least three of these sequences represent additions to the choanoflagellate gene complement, which is consistent with these transfers being adaptive. We suggest that these laterally acquired sequences could have provided the primitive choanoflagellates with additional or more efficient means to cope with stress, especially in relation to adapting to freshwater environments and/or sessile or colonial lifestyles. PMID:18717747

  1. Starvation resistance and tissue-specific gene expression of stress-related genes in a naturally inbred ant population

    PubMed Central

    Bos, Nick; Pulliainen, Unni; Sundström, Liselotte; Freitak, Dalial

    2016-01-01

    Starvation is one of the most common and severe stressors in nature. Not only does it lead to death if not alleviated, it also forces the starved individual to allocate resources only to the most essential processes. This creates energetic trade-offs which can lead to many secondary challenges for the individual. These energetic trade-offs could be exacerbated in inbred individuals, which have been suggested to have a less efficient metabolism. Here, we studied the effect of inbreeding on starvation resistance in a natural population of Formica exsecta ants, with a focus on survival and tissue-specific expression of stress, metabolism and immunity-related genes. Starvation led to large tissue-specific changes in gene expression, but inbreeding had little effect on most of the genes studied. Our results illustrate the importance of studying stress responses in different tissues instead of entire organisms. PMID:27152219

  2. Starvation resistance and tissue-specific gene expression of stress-related genes in a naturally inbred ant population.

    PubMed

    Bos, Nick; Pulliainen, Unni; Sundström, Liselotte; Freitak, Dalial

    2016-04-01

    Starvation is one of the most common and severe stressors in nature. Not only does it lead to death if not alleviated, it also forces the starved individual to allocate resources only to the most essential processes. This creates energetic trade-offs which can lead to many secondary challenges for the individual. These energetic trade-offs could be exacerbated in inbred individuals, which have been suggested to have a less efficient metabolism. Here, we studied the effect of inbreeding on starvation resistance in a natural population of Formica exsecta ants, with a focus on survival and tissue-specific expression of stress, metabolism and immunity-related genes. Starvation led to large tissue-specific changes in gene expression, but inbreeding had little effect on most of the genes studied. Our results illustrate the importance of studying stress responses in different tissues instead of entire organisms. PMID:27152219

  3. Transposable Elements Contribute to Activation of Maize Genes in Response to Abiotic Stress

    PubMed Central

    Makarevitch, Irina; Waters, Amanda J.; West, Patrick T.; Stitzer, Michelle; Hirsch, Candice N.; Ross-Ibarra, Jeffrey; Springer, Nathan M.

    2015-01-01

    Transposable elements (TEs) account for a large portion of the genome in many eukaryotic species. Despite their reputation as “junk” DNA or genomic parasites deleterious for the host, TEs have complex interactions with host genes and the potential to contribute to regulatory variation in gene expression. It has been hypothesized that TEs and genes they insert near may be transcriptionally activated in response to stress conditions. The maize genome, with many different types of TEs interspersed with genes, provides an ideal system to study the genome-wide influence of TEs on gene regulation. To analyze the magnitude of the TE effect on gene expression response to environmental changes, we profiled gene and TE transcript levels in maize seedlings exposed to a number of abiotic stresses. Many genes exhibit up- or down-regulation in response to these stress conditions. The analysis of TE families inserted within upstream regions of up-regulated genes revealed that between four and nine different TE families are associated with up-regulated gene expression in each of these stress conditions, affecting up to 20% of the genes up-regulated in response to abiotic stress, and as many as 33% of genes that are only expressed in response to stress. Expression of many of these same TE families also responds to the same stress conditions. The analysis of the stress-induced transcripts and proximity of the transposon to the gene suggests that these TEs may provide local enhancer activities that stimulate stress-responsive gene expression. Our data on allelic variation for insertions of several of these TEs show strong correlation between the presence of TE insertions and stress-responsive up-regulation of gene expression. Our findings suggest that TEs provide an important source of allelic regulatory variation in gene response to abiotic stress in maize. PMID:25569788

  4. Modification of the association of bisphenol A with abnormal liver function by polymorphisms of oxidative stress-related genes.

    PubMed

    Kim, Jin Hee; Lee, Mee-Ri; Hong, Yun-Chul

    2016-05-01

    Some studies suggested oxidative stress as a possible mechanism for the relation between exposure to bisphenol A (BPA) and liver damage. Therefore, we evaluated modification of genetic polymorphisms of cyclooxygenase 2 (COX2 or PTGS2), epoxide hydrolase 1 (EPHX1), catalase (CAT), and superoxide dismutase 2 (SOD2 or MnSOD), which are oxidative stress-related genes, on the relation between exposure to BPA and liver function in the elderly. We assessed the association of visit-to-visit variations in BPA exposure with abnormal liver function by each genotype or haplotype after controlling for age, sex, BMI, alcohol consumption, exercise, urinary cotinine levels, and low density lipoprotein cholesterol using a GLIMMIX model. A significant association of BPA with abnormal liver function was observed only in participants with COX2 GG genotype at rs5277 (odds ratio (OR)=3.04 and p=0.0231), CAT genotype at rs769218 (OR=4.16 and p=0.0356), CAT CT genotype at rs769217 (OR=4.19 and p=0.0348), SOD2 TT genotype at rs4880 (OR=2.59 and p=0.0438), or SOD2 GG genotype at rs2758331 (OR=2.57 and p=0.0457). Moreover, we also found higher OR values in participants with a pair of G-G haplotypes for COX2 (OR=2.81 and p=0.0384), G-C-A haplotype for EPHX1 (OR=4.63 and p=0.0654), A-T haplotype for CAT (OR=4.48 and p=0.0245), or T-G-A haplotype for SOD2 (OR=2.91 and p=0.0491) compared with those with the other pair of haplotypes for each gene. Furthermore, the risk score composed of 4 risky pair of haplotypes showed interactive effect with BPA on abnormal liver function (p=0.0057). Our study results suggest that genetic polymorphisms of COX2, EPHX1, CAT, and SOD2 modify the association of BPA with liver function. PMID:26922413

  5. Identification and expression analysis of WRKY family genes under biotic and abiotic stresses in Brassica rapa.

    PubMed

    Kayum, Md Abdul; Jung, Hee-Jeong; Park, Jong-In; Ahmed, Nasar Uddin; Saha, Gopal; Yang, Tae-Jin; Nou, Ill-Sup

    2015-02-01

    WRKY proteins constitute one of the largest transcription factor families in higher plants, and they are involved in multiple biological processes such as plant development, metabolism, and responses to biotic and abiotic stresses. Genes of this family have been well documented in response to many abiotic and biotic stresses in many plant species, but not yet against Pectobacterium carotovorum subsp. carotovorum and Fusarium oxysporum f.sp. conglutinans in any of the plants. Moreover, potentiality of a specific gene may vary depending on stress conditions and genotypes. To identify stress resistance-related potential WRKY genes of Brassica rapa, we analyzed their expressions against above-mentioned pathogens and cold, salt, and drought stresses in B. rapa. Stress resistance-related functions of all Brassica rapa WRKY (BrWRKY) genes were firstly analyzed through homology study with existing biotic and abiotic stress resistance-related WRKY genes of other plant species and found a high degree of homology. We then identified all BrWRKY genes in a Br135K microarray dataset, which was created by applying low-temperature stresses to two contrasting Chinese cabbage doubled haploid (DH) lines, Chiifu and Kenshin, and selected 41 BrWRKY genes with high and differential transcript abundance levels. These selected genes were further investigated under cold, salt, and drought stresses as well as after infection with P. carotovorum subsp. carotovorum and F. oxysporum f.sp. conglutinans in B. rapa. The selected genes showed an organ-specific expression, and 22 BrWRKY genes were differentially expressed in Chiifu compared to Kenshin under cold and drought stresses. Six BrWRKY genes were more responsive in Kenshin compared to Chiffu under salt stress. In addition, eight BrWRKY genes showed differential expression after P. carotovorum subsp. carotovorum infection and five genes after F. oxysporum f.sp. conglutinans infection in B. rapa. Thus, the differentially expressed Br

  6. Identification and expression analysis of WRKY family genes under biotic and abiotic stresses in Brassica rapa.

    PubMed

    Kayum, Md Abdul; Jung, Hee-Jeong; Park, Jong-In; Ahmed, Nasar Uddin; Saha, Gopal; Yang, Tae-Jin; Nou, Ill-Sup

    2015-02-01

    WRKY proteins constitute one of the largest transcription factor families in higher plants, and they are involved in multiple biological processes such as plant development, metabolism, and responses to biotic and abiotic stresses. Genes of this family have been well documented in response to many abiotic and biotic stresses in many plant species, but not yet against Pectobacterium carotovorum subsp. carotovorum and Fusarium oxysporum f.sp. conglutinans in any of the plants. Moreover, potentiality of a specific gene may vary depending on stress conditions and genotypes. To identify stress resistance-related potential WRKY genes of Brassica rapa, we analyzed their expressions against above-mentioned pathogens and cold, salt, and drought stresses in B. rapa. Stress resistance-related functions of all Brassica rapa WRKY (BrWRKY) genes were firstly analyzed through homology study with existing biotic and abiotic stress resistance-related WRKY genes of other plant species and found a high degree of homology. We then identified all BrWRKY genes in a Br135K microarray dataset, which was created by applying low-temperature stresses to two contrasting Chinese cabbage doubled haploid (DH) lines, Chiifu and Kenshin, and selected 41 BrWRKY genes with high and differential transcript abundance levels. These selected genes were further investigated under cold, salt, and drought stresses as well as after infection with P. carotovorum subsp. carotovorum and F. oxysporum f.sp. conglutinans in B. rapa. The selected genes showed an organ-specific expression, and 22 BrWRKY genes were differentially expressed in Chiifu compared to Kenshin under cold and drought stresses. Six BrWRKY genes were more responsive in Kenshin compared to Chiffu under salt stress. In addition, eight BrWRKY genes showed differential expression after P. carotovorum subsp. carotovorum infection and five genes after F. oxysporum f.sp. conglutinans infection in B. rapa. Thus, the differentially expressed Br

  7. Characterization and abiotic stress-responsive expression analysis of SGT1 genes in Brassica oleracea.

    PubMed

    Shanmugam, Ashokraj; Thamilarasan, Senthil Kumar; Park, Jong-In; Jung, Mi Young; Nou, Ill-Sup

    2016-04-01

    SGT1 genes are involved in enhancing plant responses to various biotic and abiotic stresses. Brassica oleracea is known to contain two types of SGT1 genes, namely suppressor of G2 allele of SKP1 and suppressor of GCR2. In this study, through systematic analysis, four putative SGT1 genes were identified and characterized in B. oleracea. In phylogenetic analysis, the genes clearly formed separate groups, namely BolSGT1a, BolSGT1b (both suppressor of G2 allele of SKP1 types), and BolSGT1 (suppressor of GCR2). Functional domain analysis and organ-specific expression patterns suggested possible roles for BolSGT1 genes during stress conditions. BolSGT1 genes showed significant changes in expression in response to heat, cold, drought, salt, or ABA treatment. Interaction network analysis supported the expression analysis, and showed that the BolSGT1a and BolSGT1b genes are strongly associated with co-regulators during stress conditions. However, the BolSGT1 gene did not show any strong association. Hence, BolSGT1 might be a stress resistance-related gene that functions without a co-regulator. Our results show that BolSGT1 genes are potential target genes to improve B. oleracea resistance to abiotic stresses such as heat, cold, and salt.

  8. Characterization and abiotic stress-responsive expression analysis of SGT1 genes in Brassica oleracea.

    PubMed

    Shanmugam, Ashokraj; Thamilarasan, Senthil Kumar; Park, Jong-In; Jung, Mi Young; Nou, Ill-Sup

    2016-04-01

    SGT1 genes are involved in enhancing plant responses to various biotic and abiotic stresses. Brassica oleracea is known to contain two types of SGT1 genes, namely suppressor of G2 allele of SKP1 and suppressor of GCR2. In this study, through systematic analysis, four putative SGT1 genes were identified and characterized in B. oleracea. In phylogenetic analysis, the genes clearly formed separate groups, namely BolSGT1a, BolSGT1b (both suppressor of G2 allele of SKP1 types), and BolSGT1 (suppressor of GCR2). Functional domain analysis and organ-specific expression patterns suggested possible roles for BolSGT1 genes during stress conditions. BolSGT1 genes showed significant changes in expression in response to heat, cold, drought, salt, or ABA treatment. Interaction network analysis supported the expression analysis, and showed that the BolSGT1a and BolSGT1b genes are strongly associated with co-regulators during stress conditions. However, the BolSGT1 gene did not show any strong association. Hence, BolSGT1 might be a stress resistance-related gene that functions without a co-regulator. Our results show that BolSGT1 genes are potential target genes to improve B. oleracea resistance to abiotic stresses such as heat, cold, and salt. PMID:26966988

  9. Overexpression of MuHSP70 gene from Macrotyloma uniflorum confers multiple abiotic stress tolerance in transgenic Arabidopsis thaliana.

    PubMed

    Masand, Shikha; Yadav, Sudesh Kumar

    2016-02-01

    A 70-KD heat shock protein (HSP70) is one of the most conserved chaperones. It is involved in de novo protein folding and prevents the aggregation of unfolded proteins under lethal environmental factors. The purpose of this study is to characterise a MuHSP70 from horsegram (Macrotyloma uniflorum) and elucidating its role in stress tolerance of plants. A MuHSP70 was cloned and characterised from a natural drought stress tolerant HPK4 variety of horsegram (M. uniflorum). For functional characterization, MuHSP70 was overexpressed in transgenic Arabidopsis. Overexpression of MuHSP70 was found to provide tolerance to the transgenic Arabidopsis against various stresses such as heat, cold, drought, salinity and oxidative stress. MuHSP70 transgenics were observed to maintain the shoot biomass, root length, relative water content, and chlorophyll content during exposure to multi-stresses relative to non-transgenic control. Transgenic lines have further shown the reduced levels of MDA, H2O2, and proteolytic activity. Together, these findings suggest that overexpression of MuHSP70 plays an important role in improving abiotic stress tolerance and could be a crucial candidate gene for exploration in crop improvement program.

  10. Overexpression of MuHSP70 gene from Macrotyloma uniflorum confers multiple abiotic stress tolerance in transgenic Arabidopsis thaliana.

    PubMed

    Masand, Shikha; Yadav, Sudesh Kumar

    2016-02-01

    A 70-KD heat shock protein (HSP70) is one of the most conserved chaperones. It is involved in de novo protein folding and prevents the aggregation of unfolded proteins under lethal environmental factors. The purpose of this study is to characterise a MuHSP70 from horsegram (Macrotyloma uniflorum) and elucidating its role in stress tolerance of plants. A MuHSP70 was cloned and characterised from a natural drought stress tolerant HPK4 variety of horsegram (M. uniflorum). For functional characterization, MuHSP70 was overexpressed in transgenic Arabidopsis. Overexpression of MuHSP70 was found to provide tolerance to the transgenic Arabidopsis against various stresses such as heat, cold, drought, salinity and oxidative stress. MuHSP70 transgenics were observed to maintain the shoot biomass, root length, relative water content, and chlorophyll content during exposure to multi-stresses relative to non-transgenic control. Transgenic lines have further shown the reduced levels of MDA, H2O2, and proteolytic activity. Together, these findings suggest that overexpression of MuHSP70 plays an important role in improving abiotic stress tolerance and could be a crucial candidate gene for exploration in crop improvement program. PMID:26694324

  11. Selection of suitable reference genes for assessing gene expression in pearl millet under different abiotic stresses and their combinations

    PubMed Central

    Shivhare, Radha; Lata, Charu

    2016-01-01

    Pearl millet [Pennisetum glaucum (L.) R. Br.] a widely used grain and forage crop, is grown in areas frequented with one or more abiotic stresses, has superior drought and heat tolerance and considered a model crop for stress tolerance studies. Selection of suitable reference genes for quantification of target stress-responsive gene expression through quantitative real-time (qRT)-PCR is important for elucidating the molecular mechanisms of improved stress tolerance. For precise normalization of gene expression data in pearl millet, ten candidate reference genes were examined in various developmental tissues as well as under different individual abiotic stresses and their combinations at 1 h (early) and 24 h (late) of stress using geNorm, NormFinder and RefFinder algorithms. Our results revealed EF-1α and UBC-E2 as the best reference genes across all samples, the specificity of which was confirmed by assessing the relative expression of a PgAP2 like-ERF gene that suggested use of these two reference genes is sufficient for accurate transcript normalization under different stress conditions. To our knowledge this is the first report on validation of reference genes under different individual and multiple abiotic stresses in pearl millet. The study can further facilitate fastidious discovery of stress-tolerance genes in this important stress-tolerant crop. PMID:26972345

  12. Foxtail Millet NF-Y Families: Genome-Wide Survey and Evolution Analyses Identified Two Functional Genes Important in Abiotic Stresses.

    PubMed

    Feng, Zhi-Juan; He, Guan-Hua; Zheng, Wei-Jun; Lu, Pan-Pan; Chen, Ming; Gong, Ya-Ming; Ma, You-Zhi; Xu, Zhao-Shi

    2015-01-01

    It was reported that Nuclear Factor Y (NF-Y) genes were involved in abiotic stress in plants. Foxtail millet (Setaria italica), an elite stress tolerant crop, provided an impetus for the investigation of the NF-Y families in abiotic responses. In the present study, a total of 39 NF-Y genes were identified in foxtail millet. Synteny analyses suggested that foxtail millet NF-Y genes had experienced rapid expansion and strong purifying selection during the process of plant evolution. De novo transcriptome assembly of foxtail millet revealed 11 drought up-regulated NF-Y genes. SiNF-YA1 and SiNF-YB8 were highly activated in leaves and/or roots by drought and salt stresses. Abscisic acid (ABA) and H2O2 played positive roles in the induction of SiNF-YA1 and SiNF-YB8 under stress treatments. Transient luciferase (LUC) expression assays revealed that SiNF-YA1 and SiNF-YB8 could activate the LUC gene driven by the tobacco (Nicotiana tobacam) NtERD10, NtLEA5, NtCAT, NtSOD, or NtPOD promoter under normal or stress conditions. Overexpression of SiNF-YA1 enhanced drought and salt tolerance by activating stress-related genes NtERD10 and NtCAT1 and by maintaining relatively stable relative water content (RWC) and contents of chlorophyll, superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and malondialdehyde (MDA) in transgenic lines under stresses. SiNF-YB8 regulated expression of NtSOD, NtPOD, NtLEA5, and NtERD10 and conferred relatively high RWC and chlorophyll contents and low MDA content, resulting in drought and osmotic tolerance in transgenic lines under stresses. Therefore, SiNF-YA1 and SiNF-YB8 could activate stress-related genes and improve physiological traits, resulting in tolerance to abiotic stresses in plants. All these results will facilitate functional characterization of foxtail millet NF-Ys in future studies. PMID:26734043

  13. Foxtail Millet NF-Y Families: Genome-Wide Survey and Evolution Analyses Identified Two Functional Genes Important in Abiotic Stresses

    PubMed Central

    Feng, Zhi-Juan; He, Guan-Hua; Zheng, Wei-Jun; Lu, Pan-Pan; Chen, Ming; Gong, Ya-Ming; Ma, You-Zhi; Xu, Zhao-Shi

    2015-01-01

    It was reported that Nuclear Factor Y (NF-Y) genes were involved in abiotic stress in plants. Foxtail millet (Setaria italica), an elite stress tolerant crop, provided an impetus for the investigation of the NF-Y families in abiotic responses. In the present study, a total of 39 NF-Y genes were identified in foxtail millet. Synteny analyses suggested that foxtail millet NF-Y genes had experienced rapid expansion and strong purifying selection during the process of plant evolution. De novo transcriptome assembly of foxtail millet revealed 11 drought up-regulated NF-Y genes. SiNF-YA1 and SiNF-YB8 were highly activated in leaves and/or roots by drought and salt stresses. Abscisic acid (ABA) and H2O2 played positive roles in the induction of SiNF-YA1 and SiNF-YB8 under stress treatments. Transient luciferase (LUC) expression assays revealed that SiNF-YA1 and SiNF-YB8 could activate the LUC gene driven by the tobacco (Nicotiana tobacam) NtERD10, NtLEA5, NtCAT, NtSOD, or NtPOD promoter under normal or stress conditions. Overexpression of SiNF-YA1 enhanced drought and salt tolerance by activating stress-related genes NtERD10 and NtCAT1 and by maintaining relatively stable relative water content (RWC) and contents of chlorophyll, superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and malondialdehyde (MDA) in transgenic lines under stresses. SiNF-YB8 regulated expression of NtSOD, NtPOD, NtLEA5, and NtERD10 and conferred relatively high RWC and chlorophyll contents and low MDA content, resulting in drought and osmotic tolerance in transgenic lines under stresses. Therefore, SiNF-YA1 and SiNF-YB8 could activate stress-related genes and improve physiological traits, resulting in tolerance to abiotic stresses in plants. All these results will facilitate functional characterization of foxtail millet NF-Ys in future studies. PMID:26734043

  14. Cross-Family Translational Genomics of Abiotic Stress-Responsive Genes between Arabidopsis and Medicago truncatula

    PubMed Central

    Kim, Jin-Hyun; Yoo, Dongwoon; Seo, Young-Su; Jeong, Soon-Chun; Lee, Jai-Heon; Chung, Youngsoo; Jung, Ki-Hong; Cook, Douglas R.; Choi, Hong-kyu

    2014-01-01

    Cross-species translation of genomic information may play a pivotal role in applying biological knowledge gained from relatively simple model system to other less studied, but related, genomes. The information of abiotic stress (ABS)-responsive genes in Arabidopsis was identified and translated into the legume model system, Medicago truncatula. Various data resources, such as TAIR/AtGI DB, expression profiles and literatures, were used to build a genome-wide list of ABS genes. tBlastX/BlastP similarity search tools and manual inspection of alignments were used to identify orthologous genes between the two genomes. A total of 1,377 genes were finally collected and classified into 18 functional criteria of gene ontology (GO). The data analysis according to the expression cues showed that there was substantial level of interaction among three major types (i.e., drought, salinity and cold stress) of abiotic stresses. In an attempt to translate the ABS genes between these two species, genomic locations for each gene were mapped using an in-house-developed comparative analysis platform. The comparative analysis revealed that fragmental colinearity, represented by only 37 synteny blocks, existed between Arabidopsis and M. truncatula. Based on the combination of E-value and alignment remarks, estimated translation rate was 60.2% for this cross-family translation. As a prelude of the functional comparative genomic approaches, in-silico gene network/interactome analyses were conducted to predict key components in the ABS responses, and one of the sub-networks was integrated with corresponding comparative map. The results demonstrated that core members of the sub-network were well aligned with previously reported ABS regulatory networks. Taken together, the results indicate that network-based integrative approaches of comparative and functional genomics are important to interpret and translate genomic information for complex traits such as abiotic stresses. PMID:24675968

  15. The CarERF genes in chickpea (Cicer arietinum L.) and the identification of CarERF116 as abiotic stress responsive transcription factor.

    PubMed

    Deokar, Amit A; Kondawar, Vishwajith; Kohli, Deshika; Aslam, Mohammad; Jain, Pradeep K; Karuppayil, S Mohan; Varshney, Rajeev K; Srinivasan, Ramamurthy

    2015-01-01

    The AP2/ERF family is one of the largest transcription factor gene families that are involved in various plant processes, especially in response to biotic and abiotic stresses. Complete genome sequences of one of the world's most important pulse crops chickpea (Cicer arietinum L.), has provided an important opportunity to identify and characterize genome-wide ERF genes. In this study, we identified 120 putative ERF genes from chickpea. The genomic organization of the chickpea ERF genes suggested that the gene family might have been expanded through the segmental duplications. The 120 member ERF family was classified into eleven distinct groups (I-X and VI-L). Transcriptional factor CarERF116, which is differentially expressed between drought tolerant and susceptible chickpea cultivar under terminal drought stress has been identified and functionally characterized. The CarERF116 encodes a putative protein of 241 amino acids and classified into group IX of ERF family. An in vitro CarERF116 protein-DNA binding assay demonstrated that CarERF116 protein specifically interacts with GCC box. We demonstrate that CarERF116 is capable of transactivation activity of and show that the functional transcriptional domain lies at the C-terminal region of the CarERF116. In transgenic Arabidopsis plants overexpressing CarERF116, significant up-regulation of several stress related genes were observed. These plants also exhibit resistance to osmotic stress and reduced sensitivity to ABA during seed germination. Based on these findings, we conclude that CarERF116 is an abiotic stress responsive gene, which plays an important role in stress tolerance. In addition, the present study leads to genome-wide identification and evolutionary analyses of chickpea ERF gene family, which will facilitate further research on this important group of genes and provides valuable resources for comparative genomics among the grain legumes. PMID:25274312

  16. The CarERF genes in chickpea (Cicer arietinum L.) and the identification of CarERF116 as abiotic stress responsive transcription factor.

    PubMed

    Deokar, Amit A; Kondawar, Vishwajith; Kohli, Deshika; Aslam, Mohammad; Jain, Pradeep K; Karuppayil, S Mohan; Varshney, Rajeev K; Srinivasan, Ramamurthy

    2015-01-01

    The AP2/ERF family is one of the largest transcription factor gene families that are involved in various plant processes, especially in response to biotic and abiotic stresses. Complete genome sequences of one of the world's most important pulse crops chickpea (Cicer arietinum L.), has provided an important opportunity to identify and characterize genome-wide ERF genes. In this study, we identified 120 putative ERF genes from chickpea. The genomic organization of the chickpea ERF genes suggested that the gene family might have been expanded through the segmental duplications. The 120 member ERF family was classified into eleven distinct groups (I-X and VI-L). Transcriptional factor CarERF116, which is differentially expressed between drought tolerant and susceptible chickpea cultivar under terminal drought stress has been identified and functionally characterized. The CarERF116 encodes a putative protein of 241 amino acids and classified into group IX of ERF family. An in vitro CarERF116 protein-DNA binding assay demonstrated that CarERF116 protein specifically interacts with GCC box. We demonstrate that CarERF116 is capable of transactivation activity of and show that the functional transcriptional domain lies at the C-terminal region of the CarERF116. In transgenic Arabidopsis plants overexpressing CarERF116, significant up-regulation of several stress related genes were observed. These plants also exhibit resistance to osmotic stress and reduced sensitivity to ABA during seed germination. Based on these findings, we conclude that CarERF116 is an abiotic stress responsive gene, which plays an important role in stress tolerance. In addition, the present study leads to genome-wide identification and evolutionary analyses of chickpea ERF gene family, which will facilitate further research on this important group of genes and provides valuable resources for comparative genomics among the grain legumes.

  17. Recent Molecular Advances on Downstream Plant Responses to Abiotic Stress

    PubMed Central

    dos Reis, Sávio Pinho; Lima, Aline Medeiros; de Souza, Cláudia Regina Batista

    2012-01-01

    Abiotic stresses such as extremes of temperature and pH, high salinity and drought, comprise some of the major factors causing extensive losses to crop production worldwide. Understanding how plants respond and adapt at cellular and molecular levels to continuous environmental changes is a pre-requisite for the generation of resistant or tolerant plants to abiotic stresses. In this review we aimed to present the recent advances on mechanisms of downstream plant responses to abiotic stresses and the use of stress-related genes in the development of genetically engineered crops. PMID:22942725

  18. Abiotic Stresses Downregulate Key Genes Involved in Nitrogen Uptake and Assimilation in Brassica juncea L.

    PubMed

    Goel, Parul; Singh, Anil Kumar

    2015-01-01

    Abiotic stresses such as salinity, drought and extreme temperatures affect nitrogen (N) uptake and assimilation in plants. However, little is known about the regulation of N pathway genes at transcriptional level under abiotic stress conditions in Brassica juncea. In the present work, genes encoding nitrate transporters (NRT), ammonium transporters (AMT), nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT), glutamate dehydrogenase (GDH), asparagines synthetase (ASN) were cloned from Brassica juncea L. var. Varuna. The deduced protein sequences were analyzed to predict their subcellular localization, which confirmed localization of all the proteins in their respective cellular organelles. The protein sequences were also subjected to conserved domain identification, which confirmed presence of characteristic domains in all the proteins, indicating their putative functions. Moreover, expression of these genes was studied after 1h and 24h of salt (150 mM NaCl), osmotic (250 mM Mannitol), cold (4°C) and heat (42°C) stresses. Most of the genes encoding nitrate transporters and enzymes responsible for N assimilation and remobilization were found to be downregulated under abiotic stresses. The expression of BjAMT1.2, BjAMT2, BjGS1.1, BjGDH1 and BjASN2 was downregulated after 1hr, while expression of BjNRT1.1, BjNRT2.1, BjNiR1, BjAMT2, BjGDH1 and BjASN2 was downregulated after 24h of all the stress treatments. However, expression of BjNRT1.1, BjNRT1.5 and BjGDH2 was upregulated after 1h of all stress treatments, while no gene was found to be upregulated after 24h of stress treatments, commonly. These observations indicate that expression of most of the genes is adversely affected under abiotic stress conditions, particularly under prolonged stress exposure (24h), which may be one of the reasons of reduction in plant growth and development under abiotic stresses. PMID:26605918

  19. Abiotic Stresses Downregulate Key Genes Involved in Nitrogen Uptake and Assimilation in Brassica juncea L.

    PubMed

    Goel, Parul; Singh, Anil Kumar

    2015-01-01

    Abiotic stresses such as salinity, drought and extreme temperatures affect nitrogen (N) uptake and assimilation in plants. However, little is known about the regulation of N pathway genes at transcriptional level under abiotic stress conditions in Brassica juncea. In the present work, genes encoding nitrate transporters (NRT), ammonium transporters (AMT), nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT), glutamate dehydrogenase (GDH), asparagines synthetase (ASN) were cloned from Brassica juncea L. var. Varuna. The deduced protein sequences were analyzed to predict their subcellular localization, which confirmed localization of all the proteins in their respective cellular organelles. The protein sequences were also subjected to conserved domain identification, which confirmed presence of characteristic domains in all the proteins, indicating their putative functions. Moreover, expression of these genes was studied after 1h and 24h of salt (150 mM NaCl), osmotic (250 mM Mannitol), cold (4°C) and heat (42°C) stresses. Most of the genes encoding nitrate transporters and enzymes responsible for N assimilation and remobilization were found to be downregulated under abiotic stresses. The expression of BjAMT1.2, BjAMT2, BjGS1.1, BjGDH1 and BjASN2 was downregulated after 1hr, while expression of BjNRT1.1, BjNRT2.1, BjNiR1, BjAMT2, BjGDH1 and BjASN2 was downregulated after 24h of all the stress treatments. However, expression of BjNRT1.1, BjNRT1.5 and BjGDH2 was upregulated after 1h of all stress treatments, while no gene was found to be upregulated after 24h of stress treatments, commonly. These observations indicate that expression of most of the genes is adversely affected under abiotic stress conditions, particularly under prolonged stress exposure (24h), which may be one of the reasons of reduction in plant growth and development under abiotic stresses.

  20. Abiotic Stresses: Insight into Gene Regulation and Protein Expression in Photosynthetic Pathways of Plants.

    PubMed

    Nouri, Mohammad-Zaman; Moumeni, Ali; Komatsu, Setsuko

    2015-01-01

    Global warming and climate change intensified the occurrence and severity of abiotic stresses that seriously affect the growth and development of plants,especially, plant photosynthesis. The direct impact of abiotic stress on the activity of photosynthesis is disruption of all photosynthesis components such as photosystem I and II, electron transport, carbon fixation, ATP generating system and stomatal conductance. The photosynthetic system of plants reacts to the stress differently, according to the plant type, photosynthetic systems (C₃ or C₄), type of the stress, time and duration of the occurrence and several other factors. The plant responds to the stresses by a coordinate chloroplast and nuclear gene expression. Chloroplast, thylakoid membrane, and nucleus are the main targets of regulated proteins and metabolites associated with photosynthetic pathways. Rapid responses of plant cell metabolism and adaptation to photosynthetic machinery are key factors for survival of plants in a fluctuating environment. This review gives a comprehensive view of photosynthesis-related alterations at the gene and protein levels for plant adaptation or reaction in response to abiotic stress.

  1. Abiotic Stresses: Insight into Gene Regulation and Protein Expression in Photosynthetic Pathways of Plants

    PubMed Central

    Nouri, Mohammad-Zaman; Moumeni, Ali; Komatsu, Setsuko

    2015-01-01

    Global warming and climate change intensified the occurrence and severity of abiotic stresses that seriously affect the growth and development of plants, especially, plant photosynthesis. The direct impact of abiotic stress on the activity of photosynthesis is disruption of all photosynthesis components such as photosystem I and II, electron transport, carbon fixation, ATP generating system and stomatal conductance. The photosynthetic system of plants reacts to the stress differently, according to the plant type, photosynthetic systems (C3 or C4), type of the stress, time and duration of the occurrence and several other factors. The plant responds to the stresses by a coordinate chloroplast and nuclear gene expression. Chloroplast, thylakoid membrane, and nucleus are the main targets of regulated proteins and metabolites associated with photosynthetic pathways. Rapid responses of plant cell metabolism and adaptation to photosynthetic machinery are key factors for survival of plants in a fluctuating environment. This review gives a comprehensive view of photosynthesis-related alterations at the gene and protein levels for plant adaptation or reaction in response to abiotic stress. PMID:26343644

  2. Abiotic Stresses: Insight into Gene Regulation and Protein Expression in Photosynthetic Pathways of Plants.

    PubMed

    Nouri, Mohammad-Zaman; Moumeni, Ali; Komatsu, Setsuko

    2015-01-01

    Global warming and climate change intensified the occurrence and severity of abiotic stresses that seriously affect the growth and development of plants,especially, plant photosynthesis. The direct impact of abiotic stress on the activity of photosynthesis is disruption of all photosynthesis components such as photosystem I and II, electron transport, carbon fixation, ATP generating system and stomatal conductance. The photosynthetic system of plants reacts to the stress differently, according to the plant type, photosynthetic systems (C₃ or C₄), type of the stress, time and duration of the occurrence and several other factors. The plant responds to the stresses by a coordinate chloroplast and nuclear gene expression. Chloroplast, thylakoid membrane, and nucleus are the main targets of regulated proteins and metabolites associated with photosynthetic pathways. Rapid responses of plant cell metabolism and adaptation to photosynthetic machinery are key factors for survival of plants in a fluctuating environment. This review gives a comprehensive view of photosynthesis-related alterations at the gene and protein levels for plant adaptation or reaction in response to abiotic stress. PMID:26343644

  3. Suitable Reference Genes for Accurate Gene Expression Analysis in Parsley (Petroselinum crispum) for Abiotic Stresses and Hormone Stimuli

    PubMed Central

    Li, Meng-Yao; Song, Xiong; Wang, Feng; Xiong, Ai-Sheng

    2016-01-01

    Parsley, one of the most important vegetables in the Apiaceae family, is widely used in the food, medicinal, and cosmetic industries. Recent studies on parsley mainly focus on its chemical composition, and further research involving the analysis of the plant's gene functions and expressions is required. qPCR is a powerful method for detecting very low quantities of target transcript levels and is widely used to study gene expression. To ensure the accuracy of results, a suitable reference gene is necessary for expression normalization. In this study, four software, namely geNorm, NormFinder, BestKeeper, and RefFinder were used to evaluate the expression stabilities of eight candidate reference genes of parsley (GAPDH, ACTIN, eIF-4α, SAND, UBC, TIP41, EF-1α, and TUB) under various conditions, including abiotic stresses (heat, cold, salt, and drought) and hormone stimuli treatments (GA, SA, MeJA, and ABA). Results showed that EF-1α and TUB were the most stable genes for abiotic stresses, whereas EF-1α, GAPDH, and TUB were the top three choices for hormone stimuli treatments. Moreover, EF-1α and TUB were the most stable reference genes among all tested samples, and UBC was the least stable one. Expression analysis of PcDREB1 and PcDREB2 further verified that the selected stable reference genes were suitable for gene expression normalization. This study can guide the selection of suitable reference genes in gene expression in parsley. PMID:27746803

  4. Evaluation and selection of reliable reference genes for gene expression under abiotic stress in cotton (Gossypium hirsutum L.).

    PubMed

    Wang, Min; Wang, Qinglian; Zhang, Baohong

    2013-11-01

    Reference genes are critical for normalization of the gene expression level of target genes. The widely used housekeeping genes may change their expression levels at different tissue under different treatment or stress conditions. Therefore, systematical evaluation on the housekeeping genes is required for gene expression analysis. Up to date, no work was performed to evaluate the housekeeping genes in cotton under stress treatment. In this study, we chose 10 housekeeping genes to systematically assess their expression levels at two different tissues (leaves and roots) under two different abiotic stresses (salt and drought) with three different concentrations. Our results show that there is no best reference gene for all tissues at all stress conditions. The reliable reference gene should be selected based on a specific condition. For example, under salt stress, UBQ7, GAPDH and EF1A8 are better reference genes in leaves; TUA10, UBQ7, CYP1, GAPDH and EF1A8 were better in roots. Under drought stress, UBQ7, EF1A8, TUA10, and GAPDH showed less variety of expression level in leaves and roots. Thus, it is better to identify reliable reference genes first before performing any gene expression analysis. However, using a combination of housekeeping genes as reference gene may provide a new strategy for normalization of gene expression. In this study, we found that combination of four housekeeping genes worked well as reference genes under all the stress conditions.

  5. Transcriptome Analysis Reveals Crosstalk of Responsive Genes to Multiple Abiotic Stresses in Cotton (Gossypium hirsutum L.)

    PubMed Central

    Zhu, Ya-Na; Shi, Dong-Qiao; Ruan, Meng-Bin; Zhang, Li-Li; Meng, Zhao-Hong; Liu, Jie; Yang, Wei-Cai

    2013-01-01

    Abiotic stress is a major environmental factor that limits cotton growth and yield, moreover, this problem has become more and more serious recently, as multiple stresses often occur simultaneously due to the global climate change and environmental pollution. In this study, we sought to identify genes involved in diverse stresses including abscisic acid (ABA), cold, drought, salinity and alkalinity by comparative microarray analysis. Our result showed that 5790, 3067, 5608, 778 and 6148 transcripts, were differentially expressed in cotton seedlings under treatment of ABA (1μM ABA), cold (4°C), drought (200mM mannitol), salinity (200mM NaCl) and alkalinity (pH=11) respectively. Among the induced or suppressed genes, 126 transcripts were shared by all of the five kinds of abiotic stresses, with 64 up-regulated and 62 down-regulated. These common members are grouped as stress signal transduction, transcription factors (TFs), stress response/defense proteins, metabolism, transport facilitation, as well as cell wall/structure, according to the function annotation. We also noticed that large proportion of significant differentially expressed genes specifically regulated in response to different stress. Nine of the common transcripts of multiple stresses were selected for further validation with quantitative real time RT-PCR (qRT-PCR). Furthermore, several well characterized TF families, for example, WRKY, MYB, NAC, AP2/ERF and zinc finger were shown to be involved in different stresses. As an original report using comparative microarray to analyze transcriptome of cotton under five abiotic stresses, valuable information about functional genes and related pathways of anti-stress, and/or stress tolerance in cotton seedlings was unveiled in our result. Besides this, some important common factors were focused for detailed identification and characterization. According to our analysis, it suggested that there was crosstalk of responsive genes or pathways to multiple abiotic

  6. Transcriptome analysis reveals crosstalk of responsive genes to multiple abiotic stresses in cotton (Gossypium hirsutum L.).

    PubMed

    Zhu, Ya-Na; Shi, Dong-Qiao; Ruan, Meng-Bin; Zhang, Li-Li; Meng, Zhao-Hong; Liu, Jie; Yang, Wei-Cai

    2013-01-01

    Abiotic stress is a major environmental factor that limits cotton growth and yield, moreover, this problem has become more and more serious recently, as multiple stresses often occur simultaneously due to the global climate change and environmental pollution. In this study, we sought to identify genes involved in diverse stresses including abscisic acid (ABA), cold, drought, salinity and alkalinity by comparative microarray analysis. Our result showed that 5790, 3067, 5608, 778 and 6148 transcripts, were differentially expressed in cotton seedlings under treatment of ABA (1 μM ABA), cold (4°C), drought (200 mM mannitol), salinity (200 mM NaCl) and alkalinity (pH=11) respectively. Among the induced or suppressed genes, 126 transcripts were shared by all of the five kinds of abiotic stresses, with 64 up-regulated and 62 down-regulated. These common members are grouped as stress signal transduction, transcription factors (TFs), stress response/defense proteins, metabolism, transport facilitation, as well as cell wall/structure, according to the function annotation. We also noticed that large proportion of significant differentially expressed genes specifically regulated in response to different stress. Nine of the common transcripts of multiple stresses were selected for further validation with quantitative real time RT-PCR (qRT-PCR). Furthermore, several well characterized TF families, for example, WRKY, MYB, NAC, AP2/ERF and zinc finger were shown to be involved in different stresses. As an original report using comparative microarray to analyze transcriptome of cotton under five abiotic stresses, valuable information about functional genes and related pathways of anti-stress, and/or stress tolerance in cotton seedlings was unveiled in our result. Besides this, some important common factors were focused for detailed identification and characterization. According to our analysis, it suggested that there was crosstalk of responsive genes or pathways to multiple

  7. Comprehensive analysis of trihelix genes and their expression under biotic and abiotic stresses in Populus trichocarpa

    PubMed Central

    Wang, Zhanchao; Liu, Quangang; Wang, Hanzeng; Zhang, Haizhen; Xu, Xuemei; Li, Chenghao; Yang, Chuanping

    2016-01-01

    Trihelix genes play important roles in plant growth and development and responses to biotic and abiotic stresses. Here, we identified 56 full-length trihelix genes in Populus trichocarpa and classified them into five groups. Most genes within a given group had similar gene structures and conserved motifs. The trihelix genes were unequally distributed across 19 different linkage groups. Fifteen paralogous pairs were identified, 14 of which have undergone segmental duplication events. Promoter cis-element analysis indicated that most trihelix genes contain stress- or phytohormone-related cis-elements. The expression profiles of the trihelix genes suggest that they are primarily expressed in leaves and roots. Quantitative real-time reverse transcription polymerase chain reaction analysis indicated that members of the trihelix gene family are significantly induced in response to osmotic, abscisic acid, salicylic acid, methyl jasmonate and pathogen infection. PtrGT10 was identified as a target gene of miR172d, which is involved in the osmotic response. Repression of PtrGT10 could increase reactive oxygen species scavenging ability and decrease cell death. This study provides novel insights into the phylogenetic relationships and functions of the P. trichocarpa trihelix genes, which will aid future functional studies investigating the divergent roles of trihelix genes belonging to other species. PMID:27782188

  8. Identification of suitable qPCR reference genes in leaves of Brassica oleracea under abiotic stresses.

    PubMed

    Brulle, Franck; Bernard, Fabien; Vandenbulcke, Franck; Cuny, Damien; Dumez, Sylvain

    2014-04-01

    Real-time quantitative PCR is nowadays a standard method to study gene expression variations in various samples and experimental conditions. However, to interpret results accurately, data normalization with appropriate reference genes appears to be crucial. The present study describes the identification and the validation of suitable reference genes in Brassica oleracea leaves. Expression stability of eight candidates was tested following drought and cold abiotic stresses by using three different softwares (BestKeeper, NormFinder and geNorm). Four genes (BolC.TUB6, BolC.SAND1, BolC.UBQ2 and BolC.TBP1) emerged as the most stable across the tested conditions. Further gene expression analysis of a drought- and a cold-responsive gene (BolC.DREB2A and BolC.ELIP, respectively), confirmed the stability and the reliability of the identified reference genes when used for normalization in the leaves of B. oleracea. These four genes were finally tested upon a benzene exposure and all appeared to be useful reference genes along this toxicological condition. These results provide a good starting point for future studies involving gene expression measurement on leaves of B. oleracea exposed to environmental modifications. PMID:24566730

  9. Identification of suitable reference genes in mangrove Aegiceras corniculatum under abiotic stresses.

    PubMed

    Peng, Ya-Lan; Wang, You-Shao; Gu, Ji-Dong

    2015-10-01

    Gene expression studies could provide insight into the physiological mechanisms and strategies used by plants under stress conditions. Selection of suitable internal control gene(s) is essential to accurately assess gene expression levels. For the mangrove plant, Aegiceras corniculatum, reliable reference genes to normalize real-time quantitative PCR data have not been previously investigated. In this study, the expression stabilities of five candidate reference genes [glyceraldehydes-3-phosphate dehydrogenase (GAPDH), 18SrRNA, β-Actin, 60S ribosomal protein L2, and elongation factor-1-A] were determined in leaves of A. corniculatum treated by cold, drought, salt, heavy metals, and pyrene and in different tissues of A. corniculatum under normal condition. Two software programs (geNorm and NormFinder) were employed to analyze and rank the tested genes. Results showed that GAPDH was the most suitable reference gene in A. corniculatum and the combination of two or three genes was recommended for greater accuracy. To assess the value of these tested genes as internal controls, the relative quantifications of CuZnSOD gene were also conducted. Results showed that the relative expression levels of CuZnSOD gene varied depending on the internal reference genes used, which highlights the importance of the choice of suitable internal controls in gene expression studies. Furthermore, the results also confirmed that GAPDH was a suitable reference gene for qPCR normalization in A. corniculatum under abiotic stresses. Identification of A. corniculatum reference gens in a wide range of experimental samples will provide a useful reference in future gene expression studies in this species, particularly involving similar stresses. PMID:25980489

  10. Identification of suitable reference genes in mangrove Aegiceras corniculatum under abiotic stresses.

    PubMed

    Peng, Ya-Lan; Wang, You-Shao; Gu, Ji-Dong

    2015-10-01

    Gene expression studies could provide insight into the physiological mechanisms and strategies used by plants under stress conditions. Selection of suitable internal control gene(s) is essential to accurately assess gene expression levels. For the mangrove plant, Aegiceras corniculatum, reliable reference genes to normalize real-time quantitative PCR data have not been previously investigated. In this study, the expression stabilities of five candidate reference genes [glyceraldehydes-3-phosphate dehydrogenase (GAPDH), 18SrRNA, β-Actin, 60S ribosomal protein L2, and elongation factor-1-A] were determined in leaves of A. corniculatum treated by cold, drought, salt, heavy metals, and pyrene and in different tissues of A. corniculatum under normal condition. Two software programs (geNorm and NormFinder) were employed to analyze and rank the tested genes. Results showed that GAPDH was the most suitable reference gene in A. corniculatum and the combination of two or three genes was recommended for greater accuracy. To assess the value of these tested genes as internal controls, the relative quantifications of CuZnSOD gene were also conducted. Results showed that the relative expression levels of CuZnSOD gene varied depending on the internal reference genes used, which highlights the importance of the choice of suitable internal controls in gene expression studies. Furthermore, the results also confirmed that GAPDH was a suitable reference gene for qPCR normalization in A. corniculatum under abiotic stresses. Identification of A. corniculatum reference gens in a wide range of experimental samples will provide a useful reference in future gene expression studies in this species, particularly involving similar stresses.

  11. Modulation of adrenocorticotrophin hormone (ACTH)-induced expression of stress-related genes by PUFA in inter-renal cells from European sea bass (Dicentrarchus labrax).

    PubMed

    Montero, Daniel; Terova, Genciana; Rimoldi, Simona; Tort, Lluis; Negrin, Davinia; Zamorano, María Jesús; Izquierdo, Marisol

    2015-01-01

    Dietary fatty acids have been shown to exert a clear effect on the stress response, modulating the release of cortisol. The role of fatty acids on the expression of steroidogenic genes has been described in mammals, but little is known in fish. The effect of different fatty acids on the release of cortisol and expression of stress-related genes of European sea bass (Dicentrarchus labrax) head kidney, induced by a pulse of adenocorticotrophin hormone (ACTH), was studied. Tissue was maintained in superfusion with 60 min of incubation with EPA, DHA, arachidonic acid (ARA), linoleic acid or α-linolenic acid (ALA) during 490 min. Cortisol was measured by RIA. The quantification of stress-related genes transcripts was conducted by One-Step TaqMan real-time RT-PCR. There was an effect of the type of fatty acid on the ACTH-induced release of cortisol, values from ALA treatment being elevated within all of the experimental period. The expression of some steroidogenic genes, such as the steroidogenic acute regulatory protein (StAR) and c-fos, were affected by fatty acids, ALA increasing the expression of StAR after 1 h of ACTH stimulation whereas DHA, ARA and ALA increased the expression of c-fos after 20 min. ARA increased expression of the 11β-hydroxylase gene. Expression of heat shock protein 70 (HSP70) was increased in all the experimental treatments except for ARA. Results corroborate previous studies of the effect of different fatty acids on the release of cortisol in marine fish and demonstrate that those effects are mediated by alteration of the expression of steroidogenic genes.

  12. Abiotic stress tolerance: from gene discovery in model organisms to crop improvement.

    PubMed

    Bressan, Ray; Bohnert, Hans; Zhu, Jian-Kang

    2009-01-01

    Productive and sustainable agriculture necessitates growing plants in sub-optimal environments with less input of precious resources such as fresh water. For a better understanding and rapid improvement of abiotic stress tolerance, it is important to link physiological and biochemical work to molecular studies in genetically tractable model organisms. With the use of several technologies for the discovery of stress tolerance genes and their appropriate alleles, transgenic approaches to improving stress tolerance in crops remarkably parallels breeding principles with a greatly expanded germplasm base and will succeed eventually.

  13. Protective effects of selenium on oxidative damage and oxidative stress related gene expression in rat liver under chronic poisoning of arsenic.

    PubMed

    Xu, Zhao; Wang, Zhou; Li, Jian-jun; Chen, Chen; Zhang, Ping-chuan; Dong, Lu; Chen, Jing-hong; Chen, Qun; Zhang, Xiao-tian; Wang, Zhi-lun

    2013-08-01

    Arsenic (As) is a toxic metalloid existing widely in the environment, and chronic exposure to it through contaminated drinking water has become a global problem of public health. The present study focused on the protective effects of selenium on oxidative damage of chronic arsenic poisoning in rat liver. Rats were divided into four groups at random and given designed treatments for 20 weeks. The oxidative damage of liver tissue was evaluated by lipid peroxidation and antioxidant enzymes. Oxidative stress related genes were detected to reflect the liver stress state at the molecular level. Compared to the control and Na2SeO3 groups, the MDA content in liver tissue was decreased and the activities of antioxidant enzymes were increased in the Na2SeO3 intervention group. The mRNA levels of SOD1, CAT, GPx and Txnrd1 were increased significantly (P<0.05) in the combined Na2SeO3+NaAsO2 treatment group. The expressions of HSP70 and HO-1 were significantly (P<0.05) increased in the NaAsO2 group and reduced in the combined treatment group. The results indicate that long-term intake of NaAsO2 causes oxidative damage in the rat liver, and Na2SeO3 protects liver cells by adjusting the expression of oxidative stress related genes to improve the activities of antioxidant enzymes. PMID:23603382

  14. Protective effects of selenium on oxidative damage and oxidative stress related gene expression in rat liver under chronic poisoning of arsenic.

    PubMed

    Xu, Zhao; Wang, Zhou; Li, Jian-jun; Chen, Chen; Zhang, Ping-chuan; Dong, Lu; Chen, Jing-hong; Chen, Qun; Zhang, Xiao-tian; Wang, Zhi-lun

    2013-08-01

    Arsenic (As) is a toxic metalloid existing widely in the environment, and chronic exposure to it through contaminated drinking water has become a global problem of public health. The present study focused on the protective effects of selenium on oxidative damage of chronic arsenic poisoning in rat liver. Rats were divided into four groups at random and given designed treatments for 20 weeks. The oxidative damage of liver tissue was evaluated by lipid peroxidation and antioxidant enzymes. Oxidative stress related genes were detected to reflect the liver stress state at the molecular level. Compared to the control and Na2SeO3 groups, the MDA content in liver tissue was decreased and the activities of antioxidant enzymes were increased in the Na2SeO3 intervention group. The mRNA levels of SOD1, CAT, GPx and Txnrd1 were increased significantly (P<0.05) in the combined Na2SeO3+NaAsO2 treatment group. The expressions of HSP70 and HO-1 were significantly (P<0.05) increased in the NaAsO2 group and reduced in the combined treatment group. The results indicate that long-term intake of NaAsO2 causes oxidative damage in the rat liver, and Na2SeO3 protects liver cells by adjusting the expression of oxidative stress related genes to improve the activities of antioxidant enzymes.

  15. Transgenic alfalfa plants expressing the sweetpotato Orange gene exhibit enhanced abiotic stress tolerance.

    PubMed

    Wang, Zhi; Ke, Qingbo; Kim, Myoung Duck; Kim, Sun Ha; Ji, Chang Yoon; Jeong, Jae Cheol; Lee, Haeng-Soon; Park, Woo Sung; Ahn, Mi-Jeong; Li, Hongbing; Xu, Bingcheng; Deng, Xiping; Lee, Sang-Hoon; Lim, Yong Pyo; Kwak, Sang-Soo

    2015-01-01

    Alfalfa (Medicago sativa L.), a perennial forage crop with high nutritional content, is widely distributed in various environments worldwide. We recently demonstrated that the sweetpotato Orange gene (IbOr) is involved in increasing carotenoid accumulation and enhancing resistance to multiple abiotic stresses. In this study, in an effort to improve the nutritional quality and environmental stress tolerance of alfalfa, we transferred the IbOr gene into alfalfa (cv. Xinjiang Daye) under the control of an oxidative stress-inducible peroxidase (SWPA2) promoter through Agrobacterium tumefaciens-mediated transformation. Among the 11 transgenic alfalfa lines (referred to as SOR plants), three lines (SOR2, SOR3, and SOR8) selected based on their IbOr transcript levels were examined for their tolerance to methyl viologen (MV)-induced oxidative stress in a leaf disc assay. The SOR plants exhibited less damage in response to MV-mediated oxidative stress and salt stress than non-transgenic plants. The SOR plants also exhibited enhanced tolerance to drought stress, along with higher total carotenoid levels. The results suggest that SOR alfalfa plants would be useful as forage crops with improved nutritional value and increased tolerance to multiple abiotic stresses, which would enhance the development of sustainable agriculture on marginal lands.

  16. Molecular characterization of 60 isolated wheat MYB genes and analysis of their expression during abiotic stress

    PubMed Central

    Zhang, Lichao; Zhao, Guangyao; Jia, Jizeng; Liu, Xu; Kong, Xiuying

    2012-01-01

    The proteins of the MYB superfamily play central roles in developmental processes and defence responses in plants. Sixty unique wheat MYB genes that contain full-length cDNA sequences were isolated. These 60 genes were grouped into three categories, namely one R1R2R3-MYB, 22 R2R3-MYBs, and 37 MYB-related members. The sequence composition of the R2 and R3 repeats was conserved among the 22 wheat R2R3-MYB proteins. Phylogenetic comparison of the members of this superfamily among wheat, rice, and Arabidopsis revealed that the putative functions of some wheat MYB proteins were clustered into the Arabidopsis functional clades. Tissue-specific expression profiles showed that most of the wheat MYB genes were expressed in all of the tissues examined, suggesting that wheat MYB genes take part in multiple cellular processes. The expression analysis during abiotic stress identified a group of MYB genes that respond to one or more stress treatments. The overexpression of a salt-inducible gene, TaMYB32, enhanced the tolerance to salt stress in transgenic Arabidopsis. This study is the first comprehensive study of the MYB gene family in Triticeae. PMID:21934119

  17. Plant core environmental stress response genes are systemically coordinated during abiotic stresses.

    PubMed

    Hahn, Achim; Kilian, Joachim; Mohrholz, Anne; Ladwig, Friederike; Peschke, Florian; Dautel, Rebecca; Harter, Klaus; Berendzen, Kenneth W; Wanke, Dierk

    2013-01-01

    Studying plant stress responses is an important issue in a world threatened by global warming. Unfortunately, comparative analyses are hampered by varying experimental setups. In contrast, the AtGenExpress abiotic stress experiment displays intercomparability. Importantly, six of the nine stresses (wounding, genotoxic, oxidative, UV-B light, osmotic and salt) can be examined for their capacity to generate systemic signals between the shoot and root, which might be essential to regain homeostasis in Arabidopsis thaliana. We classified the systemic responses into two groups: genes that are regulated in the non-treated tissue only are defined as type I responsive and, accordingly, genes that react in both tissues are termed type II responsive. Analysis of type I and II systemic responses suggest distinct functionalities, but also significant overlap between different stresses. Comparison with salicylic acid (SA) and methyl-jasmonate (MeJA) responsive genes implies that MeJA is involved in the systemic stress response. Certain genes are predominantly responding in only one of the categories, e.g., WRKY genes respond mainly non-systemically. Instead, genes of the plant core environmental stress response (PCESR), e.g., ZAT10, ZAT12, ERD9 or MES9, are part of different response types. Moreover, several PCESR genes switch between the categories in a stress-specific manner.

  18. Effects of methionine supplementation on the expression of oxidative stress-related genes in acute heat stress-exposed broilers.

    PubMed

    Del Vesco, Ana Paula; Gasparino, Eliane; Grieser, Daiane de Oliveira; Zancanela, Vittor; Soares, Maria Amélia Menck; Neto, Adhemar Rodrigues de Oliveira

    2015-02-28

    The aim of the present study was to evaluate the effects of heat stress (HS) and methionine supplementation on the markers of stress and on the gene expression levels of uncoupling proteins (UCP), betaine-homocysteine methyltransferase (BHMT), cystathionine β-synthase (CBS), glutathione synthetase (GSS) and glutathione peroxidase 7 (GPx7). Broilers from 1 to 21 d and from 22 to 42 d of age were divided into three treatment groups related to methionine supplementation: without methionine supplementation (MD); recommended level of methionine supplementation (DL1); excess methionine supplementation (DL2). The broilers were either kept at a comfortable thermal temperature or exposed to HS (38°C for 24 h). During the starter period, we observed the effects of the interaction between diet and environment on the gene expression levels of UCP, BHMT and GSS. Higher gene expression levels of UCP and BHMT were observed in broilers that were maintained at thermal comfort conditions and received the MD diet. HS broilers fed the DL1 and DL2 diets had the highest expression level of GSS. The expression levels of the CBS and GPx7 genes were influenced by both the environment and methionine supplementation. During the grower period, the gene expression levels of BHMT, CBS, GSS and GPx7 were affected by the diet × environment interaction. A higher expression level of BHMT was observed in broilers maintained at thermal comfort conditions and on the MD diet. HS induced higher expression levels of CBS, GSS and GPx7 in broilers that received the DL1 and DL2 diets. The present results suggest that under HS conditions, methionine supplementation could mitigate the effects of stress, since methionine contributed to the increased expression levels of genes related to antioxidant activity.

  19. Stress-related genes define essential steps in the response of maize seedlings to smoke-water.

    PubMed

    Soós, Vilmos; Sebestyén, Endre; Juhász, Angéla; Pintér, János; Light, Marnie E; Van Staden, Johannes; Balázs, Ervin

    2009-05-01

    Smoke from burning vegetation is widely recognised as a germination cue for seed germination and recent reports suggest that smoke treatments can improve seedling vigour also. We investigated the effect of smoke-water on seedling vigour and changes of the global transcriptome in the early post-germination phase in maize. Application of smoke-water improved the germination characteristics and seedling vigour. The transcriptional response of embryos and emerging radicles 24 and 48 h after the onset of smoke treatment was investigated. The microarray study revealed a number of smoke-responsive genes amongst which stress- and abscisic acid (ABA)-related genes were over-represented. The global promoter analysis of the smoke-responsive genes revealed a tight correlation with the results obtained from Gene Ontology annotations. This concerted over-expression shows that smoke treatment induces stress and ABA-related responses in the early post-germination phase which leads to better adaptation to environmental stress factors occurring during germination, eventually resulting in greater seedling vigour.

  20. Changes in expression of oxidative stress related genes in grapefruit peel in response to yeast Metschnikowia fructicola

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To gain insight into the mode of action of the yeast biocontrol agent, Metschnikowia fructicola, the transcription profiles of genes involved in oxidative stress were studied in grapefruit (Citrus paradis, 'Star Ruby') surface wounds following the application of the yeast antagonist. Three transcri...

  1. Topological characteristics of target genes regulated by abiotic-stress-responsible miRNAs in a rice interactome network.

    PubMed

    Zhang, Linzhong; Xuan, Hongdong; Zuo, Yongchun; Xu, Gaojian; Wang, Ping; Song, Youhong; Zhang, Shihua

    2016-05-01

    A great number of microRNAs (miRNAs) have been identified in responding and acting in gene regulatory networks associated with plant tolerance to abiotic stress conditions, such as drought, salinity, and high temperature. The topological exploration of target genes regulated by abiotic-stress-responsible miRNAs (ASRmiRs) in a network facilitates to discover the molecular basis of plant abiotic stress response. This study was based on the staple food rice (Oryza sativa) in which ASRmiRs were manually curated. After having compared the topological properties of target genes (stress-miR-targets) with those (non-stress-miR-targets) not regulated by ASRmiRs in a rice interactome network, we found that stress-miR-targets exhibited distinguishable topological properties. The interaction probability analysis and k-core decomposition showed that stress-miR-targets preferentially interacted with non-stress-miR-targets and located at the peripheral positions in the network. Our results indicated an obvious topological distinction between the two types of genes, reflecting the specific mechanisms of action of stress-miR-targets in rice abiotic stress response. Also, the results may provide valuable clues to elucidate molecular mechanisms of crop response to abiotic stress.

  2. Effects of glutamine supplementation on oxidative stress-related gene expression and antioxidant properties in rats with streptozotocin-induced type 2 diabetes.

    PubMed

    Tsai, Pei-Hsuan; Liu, Jun-Jen; Yeh, Chui-Li; Chiu, Wan-Chun; Yeh, Sung-Ling

    2012-04-01

    There are close links among hyperglycaemia, oxidative stress and diabetic complications. Glutamine (GLN) is an amino acid with immunomodulatory properties. The present study investigated the effect of dietary GLN on oxidative stress-relative gene expressions and tissue oxidative damage in diabetes. There were one normal control (NC) and two diabetic groups in the present study. Diabetes was induced by an intraperitoneal injection of nicotinamide followed by streptozotocin (STZ). Rats in the NC group were fed a regular chow diet. In the two diabetic groups, one group (diabetes mellitus, DM) was fed a common semi-purified diet while the other group received a diet in which part of the casein was replaced by GLN (DM-GLN). GLN provided 25% of total amino acid N. The experimental groups were fed the respective diets for 8 weeks, and then the rats were killed for further analysis. The results showed that blood thioredoxin-interacting protein (Txnip) mRNA expression in the diabetic groups was higher than that in the NC group. Compared with the DM group, the DM-GLN group had lower glutamine fructose-6-phosphate transaminase 1, a receptor of advanced glycation end products, and Txnip gene expressions in blood mononuclear cells. The total antioxidant capacity was lower and antioxidant enzyme activities were altered by the diabetic condition. GLN supplementation increased antioxidant capacity and normalised antioxidant enzyme activities. Also, the renal nitrotyrosine level and Txnip mRNA expression were lower when GLN was administered. These results suggest that dietary GLN supplementation decreases oxidative stress-related gene expression, increases the antioxidant potential and may consequently attenuate renal oxidative damage in rats with STZ-induced diabetes.

  3. Stress-related gene expression changes in rainbow trout hepatocytes exposed to various municipal wastewater treatment influents and effluents.

    PubMed

    Gagné, F; Smyth, S A; André, C; Douville, M; Gélinas, M; Barclay, K

    2013-03-01

    The present study sought to examine the performance of six different wastewater treatment processes from 12 wastewater treatment plants using a toxicogenomic approach in rainbow trout hepatocytes. Freshly prepared rainbow trout hepatocytes were exposed to increasing concentrations of influent (untreated wastewaters) and effluent (C(18)) extracts for 48 h at 15 °C. A test battery of eight genes was selected to track changes in xenobiotic biotransformation, estrogenicity, heavy metal detoxification, and oxidative stress. The wastewaters were processed by six different treatment systems: facultative and aerated lagoons, activated sludge, biological aerated filter, biological nutrient removal, chemically assisted primary treated, and trickling filter/solids contact. Based on the chemical characteristics of the effluents, the treatment plants were generally effective in removing total suspended solids and chemical oxygen demand, but less so for ammonia and alkalinity. The 12 influents differed markedly with each other, which makes the comparison among treatment processes difficult. For the influents, both population size and flow rate influenced the increase in the following mRNA levels in exposed hepatocytes: metallothionein (MT), cytochrome P4503A4 (CYP3A4), and vitellogenin (VTG). Gene expression of glutathione S-transferase (GST) and the estrogen receptor (ER), were influenced only by population size in exposed cells to the influent extracts. The remaining genes-superoxide dismutase (SOD) and multidrug resistance transporter (MDR)-were not influenced by either population size or flow rate in exposed cells. It is noteworthy that the changes in MT, ER, and VTG in cells exposed to the effluents were significantly affected by the influents across the 12 cities examined. However, SOD, CYP1A1, CYP3A4, GST, and MDR gene expression were the least influenced by the incoming influents. The data also suggest that wastewater treatments involving biological or aeration

  4. RhNAC3, a stress-associated NAC transcription factor, has a role in dehydration tolerance through regulating osmotic stress-related genes in rose petals.

    PubMed

    Jiang, Xinqiang; Zhang, Changqing; Lü, Peitao; Jiang, Guimei; Liu, Xiaowei; Dai, Fanwei; Gao, Junping

    2014-01-01

    Petal cell expansion depends on cell wall metabolism, changes in cell turgor pressure and restructuring of the cytoskeleton, and recovery ability of petal cell expansion is defined as an indicator of dehydration tolerance in flowers. We previously reported that RhNAC2, a development-related NAC domain transcription factor, confers dehydration tolerance through regulating cell wall-related genes in rose petals. Here, we identify RhNAC3, a novel rose SNAC gene, and its expression in petals induced by dehydration, wounding, exogenous ethylene and abscisic acid (ABA). Expression studies in Arabidopsis protoplasts and yeast show that RhNAC3 has transactivation activity along its full length and in the carboxyl-terminal domain. Silencing RhNAC3 in rose petals by virus-induced gene silencing (VIGS) significantly decreased the cell expansion of rose petals under rehydration conditions. In total, 24 of 27 osmotic stress-related genes were down-regulated in RhNAC3-silenced rose petals, while only 4 of 22 cell expansion-related genes were down-regulated. Overexpression of RhNAC3 in Arabidopsis gave improved drought tolerance, with lower water loss of leaves in transgenic plants. Arabidopsis ATH1 microarray analysis showed that RhNAC3 regulated the expression of stress-responsive genes in overexpressing lines, and further analysis revealed that most of the RhNAC3-up-regulated genes were involved in the response to osmotic stress. Comparative analysis revealed that different transcription regulation existed between RhNAC3 and RhNAC2. Taken together, these data indicate that RhNAC3, as a positive regulator, confers dehydration tolerance of rose petals mainly through regulating osmotic adjustment-associated genes.

  5. Using Phenomic Analysis of Photosynthetic Function for Abiotic Stress Response Gene Discovery

    PubMed Central

    Rungrat, Tepsuda; Awlia, Mariam; Brown, Tim; Cheng, Riyan; Sirault, Xavier; Fajkus, Jiri; Trtilek, Martin; Furbank, Bob; Badger, Murray; Tester, Mark; Pogson, Barry J; Borevitz, Justin O; Wilson, Pip

    2016-01-01

    Monitoring the photosynthetic performance of plants is a major key to understanding how plants adapt to their growth conditions. Stress tolerance traits have a high genetic complexity as plants are constantly, and unavoidably, exposed to numerous stress factors, which limits their growth rates in the natural environment. Arabidopsis thaliana, with its broad genetic diversity and wide climatic range, has been shown to successfully adapt to stressful conditions to ensure the completion of its life cycle. As a result, A. thaliana has become a robust and renowned plant model system for studying natural variation and conducting gene discovery studies. Genome wide association studies (GWAS) in restructured populations combining natural and recombinant lines is a particularly effective way to identify the genetic basis of complex traits. As most abiotic stresses affect photosynthetic activity, chlorophyll fluorescence measurements are a potential phenotyping technique for monitoring plant performance under stress conditions. This review focuses on the use of chlorophyll fluorescence as a tool to study genetic variation underlying the stress tolerance responses to abiotic stress in A. thaliana. PMID:27695390

  6. Using Phenomic Analysis of Photosynthetic Function for Abiotic Stress Response Gene Discovery

    PubMed Central

    Rungrat, Tepsuda; Awlia, Mariam; Brown, Tim; Cheng, Riyan; Sirault, Xavier; Fajkus, Jiri; Trtilek, Martin; Furbank, Bob; Badger, Murray; Tester, Mark; Pogson, Barry J; Borevitz, Justin O; Wilson, Pip

    2016-01-01

    Monitoring the photosynthetic performance of plants is a major key to understanding how plants adapt to their growth conditions. Stress tolerance traits have a high genetic complexity as plants are constantly, and unavoidably, exposed to numerous stress factors, which limits their growth rates in the natural environment. Arabidopsis thaliana, with its broad genetic diversity and wide climatic range, has been shown to successfully adapt to stressful conditions to ensure the completion of its life cycle. As a result, A. thaliana has become a robust and renowned plant model system for studying natural variation and conducting gene discovery studies. Genome wide association studies (GWAS) in restructured populations combining natural and recombinant lines is a particularly effective way to identify the genetic basis of complex traits. As most abiotic stresses affect photosynthetic activity, chlorophyll fluorescence measurements are a potential phenotyping technique for monitoring plant performance under stress conditions. This review focuses on the use of chlorophyll fluorescence as a tool to study genetic variation underlying the stress tolerance responses to abiotic stress in A. thaliana.

  7. Transcriptome characterization and gene expression of Epinephelus spp in endoplasmic reticulum stress-related pathway during betanodavirus infection in vitro

    PubMed Central

    2012-01-01

    Background Grouper (Epinephelus spp) is an economically important fish species worldwide. However, viral pathogens such as nervous necrosis virus (NNV) have been causing severe infections in the fish, resulting in great loss in the grouper aquaculture industry. Yet, the understanding of the molecular mechanisms underlying the pathogenicity of NNV is still inadequate, mainly due to insufficient genomic information of the host. Results De novo assembly of grouper transcriptome in the grouper kidney (GK) cells was conducted by using short read sequencing technology of Solexa/Illumina. A sum of 66,582 unigenes with mean length of 603 bp were obtained, and were annotated according to Gene Ontology (GO) and Clusters of Orthologous Groups (COG). In addition, the tag-based digital gene expression (DGE) system was used to investigate the gene expression and pathways associated with NNV infection in GK cells. The analysis revealed endoplasmic reticulum (ER) stress response was prominently affected in NNV-infected GK cells. A further analysis revealed an interaction between the NNV capsid protein and the ER chaperone immunoglobulin heavy-chain binding protein (BiP). Furthermore, exogenous expression of NNV capsid protein was able to induce XBP-1 mRNA splicing in vivo, suggesting a role of the capsid protein in the NNV-induced ER stress. Conclusions Our data presents valuable genetic information for Epinephelus spp., which will benefit future study in this non-model but economically important species. The DGE profile of ER stress response in NNV-infected cells provides information of many important components associated with the protein processing in ER. Specifically, we showed that the viral capsid protein might play an important role in the ER stress response. PMID:23170826

  8. Analysis of the expression of putative heat-stress related genes in relation to thermotolerance of cork oak.

    PubMed

    Correia, Barbara; Rodriguez, José Luis; Valledor, Luis; Almeida, Tânia; Santos, Conceição; Cañal, Maria Jesús; Pinto, Glória

    2014-03-15

    Cork oak (Quercus suber L.) is a research priority in the Mediterranean area and because of cork oaks' distribution these stands are experiencing daily stress. Based on projections of intensifying climate change and considering the key role of exploring the recovery abilities, cork oak seedlings were subjected to a cumulative temperature increase from 25°C to 55°C and subsequent recovery. CO2 assimilation rate, chlorophyll fluorescence, anthocyanins, proline and lipid peroxidation were used to evaluate plant performance, while the relative abundance of seven genes encoding for proteins of cork oak with a putative role in thermal/stress regulation (POX1, POX2, HSP10.4, HSP17a.22, CHS, MTL and RBC) was analyzed by qPCR (quantitative Polymerase Chain Reaction). A temperature change to 35°C showed abundance alterations in the tested genes; at 45°C, the molecular changes were associated with an antioxidant response, possibly modulated by anthocyanins. At 55°C, HSP17a.22, MTL and proline accumulation were evident. After recovery, physiological balance was restored, whereas POX1, HSP10.4 and MTL abundances were suggested to be involved in increased thermotolerance. The data presented here are expected to pinpoint some pathways changes occurring during such stress and further recovery in this particular Mediterranean species.

  9. Analysis of Cell Wall-Related Genes in Organs of Medicago sativa L. under Different Abiotic Stresses

    PubMed Central

    Behr, Marc; Legay, Sylvain; Hausman, Jean-Francois; Guerriero, Gea

    2015-01-01

    Abiotic constraints are a source of concern in agriculture, because they can have a strong impact on plant growth and development, thereby affecting crop yield. The response of plants to abiotic constraints varies depending on the type of stress, on the species and on the organs. Although many studies have addressed different aspects of the plant response to abiotic stresses, only a handful has focused on the role of the cell wall. A targeted approach has been used here to study the expression of cell wall-related genes in different organs of alfalfa plants subjected for four days to three different abiotic stress treatments, namely salt, cold and heat stress. Genes involved in different steps of cell wall formation (cellulose biosynthesis, monolignol biosynthesis and polymerization) have been analyzed in different organs of Medicago sativa L. Prior to this analysis, an in silico classification of dirigent/dirigent-like proteins and class III peroxidases has been performed in Medicago truncatula and M. sativa. The final goal of this study is to infer and compare the expression patterns of cell wall-related genes in response to different abiotic stressors in the organs of an important legume crop. PMID:26193255

  10. Overexpression of calmodulin-like (ShCML44) stress-responsive gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses.

    PubMed

    Munir, Shoaib; Liu, Hui; Xing, Yali; Hussain, Saddam; Ouyang, Bo; Zhang, Yuyang; Li, Hanxia; Ye, Zhibiao

    2016-01-01

    Calmodulin-like (CML) proteins are important Ca(2+) sensors, which play significant role in mediating plant stress tolerance. In the present study, cold responsive calmodulin-like (ShCML44) gene was isolated from cold tolerant wild tomato (Solanum habrochaites), and functionally characterized. The ShCML44 was differentially expressed in all plant tissues including root, stem, leaf, flower and fruit, and was strongly up-regulated under cold, drought and salinity stresses along with plant growth hormones. Under cold stress, progressive increase in the expression of ShCML44 was observed particularly in cold-tolerant S. habrochaites. The ShCML44-overexpressed plants showed greater tolerance to cold, drought, and salinity stresses, and recorded higher germination and better seedling growth. Transgenic tomato plants demonstrated higher antioxidant enzymes activity, gas exchange and water retention capacity with lower malondialdehyde accumulation and membrane damage under cold and drought stresses compared to wild-type. Moreover, transgenic plants exhibited reduced reactive oxygen species and higher relative water contents under cold and drought stress, respectively. Greater stress tolerance of transgenic plants was further reflected by the up-/down-regulation of stress-related genes including SOD, GST, CAT, POD, LOX, PR and ERD. In crux, these results strengthen the molecular understanding of ShCML44 gene to improve the abiotic stress tolerance in tomato. PMID:27546315

  11. Overexpression of calmodulin-like (ShCML44) stress-responsive gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses

    PubMed Central

    Munir, Shoaib; Liu, Hui; Xing, Yali; Hussain, Saddam; Ouyang, Bo; Zhang, Yuyang; Li, Hanxia; Ye, Zhibiao

    2016-01-01

    Calmodulin-like (CML) proteins are important Ca2+ sensors, which play significant role in mediating plant stress tolerance. In the present study, cold responsive calmodulin-like (ShCML44) gene was isolated from cold tolerant wild tomato (Solanum habrochaites), and functionally characterized. The ShCML44 was differentially expressed in all plant tissues including root, stem, leaf, flower and fruit, and was strongly up-regulated under cold, drought and salinity stresses along with plant growth hormones. Under cold stress, progressive increase in the expression of ShCML44 was observed particularly in cold-tolerant S. habrochaites. The ShCML44-overexpressed plants showed greater tolerance to cold, drought, and salinity stresses, and recorded higher germination and better seedling growth. Transgenic tomato plants demonstrated higher antioxidant enzymes activity, gas exchange and water retention capacity with lower malondialdehyde accumulation and membrane damage under cold and drought stresses compared to wild-type. Moreover, transgenic plants exhibited reduced reactive oxygen species and higher relative water contents under cold and drought stress, respectively. Greater stress tolerance of transgenic plants was further reflected by the up-/down-regulation of stress-related genes including SOD, GST, CAT, POD, LOX, PR and ERD. In crux, these results strengthen the molecular understanding of ShCML44 gene to improve the abiotic stress tolerance in tomato. PMID:27546315

  12. Introduction of Pea DNA Helicase 45 Into Sugarcane (Saccharum spp. Hybrid) Enhances Cell Membrane Thermostability And Upregulation Of Stress-responsive Genes Leads To Abiotic Stress Tolerance.

    PubMed

    Augustine, Sruthy Maria; Ashwin Narayan, J; Syamaladevi, Divya P; Appunu, C; Chakravarthi, M; Ravichandran, V; Tuteja, Narendra; Subramonian, N

    2015-05-01

    DNA helicases are motor proteins that play an essential role in nucleic acid metabolism, by providing a duplex-unwinding function. To improve the drought and salinity tolerance of sugarcane, a DEAD-box helicase gene isolated from pea with a constitutive promoter, Port Ubi 2.3 was transformed into the commercial sugarcane variety Co 86032 through Agrobacterium-mediated transformation, and the transgenics were screened for tolerance to soil moisture stress and salinity. The transgene integration was confirmed through polymerase chain reaction, and the V 0 transgenic events showed significantly higher cell membrane thermostability under normal irrigated conditions. The V 1 transgenic events were screened for tolerance to soil moisture stress and exhibited significantly higher cell membrane thermostability, transgene expression, relative water content, gas exchange parameters, chlorophyll content, and photosynthetic efficiency under soil moisture stress compared to wild-type (WT). The overexpression of PDH45 transgenic sugarcane also led to the upregulation of DREB2-induced downstream stress-related genes. The transgenic events demonstrated higher germination ability and better chlorophyll retention than WT under salinity stress. Our results suggest the possibility for development of increased abiotic stress tolerant sugarcane cultivars through overexpression of PDH45 gene. Perhaps this is the first report, which provides evidence for increased drought and salinity tolerance in sugarcane through overexpression of PDH45.

  13. A positive correlation between mercury and oxidative stress-related gene expression (GPX3 and GSTM3) is measured in female Double-crested Cormorant blood.

    PubMed

    Gibson, Laura A; Lavoie, Raphael A; Bissegger, Sonja; Campbell, Linda M; Langlois, Valerie S

    2014-08-01

    Mercury (Hg) is a widespread contaminant that has been shown to induce a wide range of adverse health effects in birds including reproductive, physiological and neurological impairments. Here we explored the relationship between blood total Hg concentrations ([THg]) and oxidative stress gene induction in the aquatic piscivorous Double-crested Cormorants (Phalacrocorax auritus) using a non-lethal technique, i.e., blood gene expression analysis. P. auritus blood was sampled at five sites across the Great Lakes basin, Ontario, Canada and was analyzed for [THg]. To assess cellular stress, the expression of glutathione peroxidases 1 and 3 (GPX1, GPX3), superoxide dismutase 1 (SOD1), heat-shock protein 70 kd-8 (HSP70-8) and glutathione S-transferase µ3 (GSTM3) were measured in whole blood samples using real-time RT-PCR. Results showed a significantly positive correlation between female blood [THg] and both GPX3 and GSTM3 expression. Different levels of oxidative stress experienced by males and females during the breeding season may be influencing the differential oxidative stress responses to blood [THg] observed in this study. Overall, these results suggest that Hg may lead to oxidative stress as some of the cellular stress-related genes were altered in the blood of female P. auritus and that blood gene expression analysis is a successful approach to assess bird health condition.

  14. A positive correlation between mercury and oxidative stress-related gene expression (GPX3 and GSTM3) is measured in female Double-crested Cormorant blood.

    PubMed

    Gibson, Laura A; Lavoie, Raphael A; Bissegger, Sonja; Campbell, Linda M; Langlois, Valerie S

    2014-08-01

    Mercury (Hg) is a widespread contaminant that has been shown to induce a wide range of adverse health effects in birds including reproductive, physiological and neurological impairments. Here we explored the relationship between blood total Hg concentrations ([THg]) and oxidative stress gene induction in the aquatic piscivorous Double-crested Cormorants (Phalacrocorax auritus) using a non-lethal technique, i.e., blood gene expression analysis. P. auritus blood was sampled at five sites across the Great Lakes basin, Ontario, Canada and was analyzed for [THg]. To assess cellular stress, the expression of glutathione peroxidases 1 and 3 (GPX1, GPX3), superoxide dismutase 1 (SOD1), heat-shock protein 70 kd-8 (HSP70-8) and glutathione S-transferase µ3 (GSTM3) were measured in whole blood samples using real-time RT-PCR. Results showed a significantly positive correlation between female blood [THg] and both GPX3 and GSTM3 expression. Different levels of oxidative stress experienced by males and females during the breeding season may be influencing the differential oxidative stress responses to blood [THg] observed in this study. Overall, these results suggest that Hg may lead to oxidative stress as some of the cellular stress-related genes were altered in the blood of female P. auritus and that blood gene expression analysis is a successful approach to assess bird health condition. PMID:24788667

  15. Comprehensive Analysis and Expression Profiling of the OsLAX and OsABCB Auxin Transporter Gene Families in Rice (Oryza sativa) under Phytohormone Stimuli and Abiotic Stresses

    PubMed Central

    Chai, Chenglin; Subudhi, Prasanta K.

    2016-01-01

    The plant hormone auxin regulates many aspects of plant growth and developmental processes. Auxin gradient is formed in plant as a result of polar auxin transportation by three types of auxin transporters such as OsLAX, OsPIN, and OsABCB. We report here the analysis of two rice auxin transporter gene families, OsLAX and OsABCB, using bioinformatics tools, publicly accessible microarray data, and quantitative RT-PCR. There are 5 putative OsLAXs and 22 putative OsABCBs in rice genome, which were mapped on 8 chromosomes. The exon-intron structure of OsLAX genes and properties of deduced proteins were relatively conserved within grass family, while that of OsABCB genes varied greatly. Both constitutive and organ/tissue specific expression patterns were observed in OsLAXs and OsABCBs. Analysis of evolutionarily closely related “gene pairs” together with organ/tissue specific expression revealed possible “function gaining” and “function losing” events during rice evolution. Most OsLAX and OsABCB genes were regulated by drought and salt stress, as well as hormonal stimuli [auxin and Abscisic Acid (ABA)], which suggests extensive crosstalk between abiotic stresses and hormone signaling pathways. The existence of large number of auxin and stress related cis-regulatory elements in promoter regions might account for their massive responsiveness of these genes to these environmental stimuli, indicating complexity of regulatory networks involved in various developmental and physiological processes. The comprehensive analysis of OsLAX and OsABCB auxin transporter genes in this study would be helpful for understanding the biological significance of these gene families in hormone signaling and adaptation of rice plants to unfavorable environments. PMID:27200061

  16. Comprehensive Analysis and Expression Profiling of the OsLAX and OsABCB Auxin Transporter Gene Families in Rice (Oryza sativa) under Phytohormone Stimuli and Abiotic Stresses.

    PubMed

    Chai, Chenglin; Subudhi, Prasanta K

    2016-01-01

    The plant hormone auxin regulates many aspects of plant growth and developmental processes. Auxin gradient is formed in plant as a result of polar auxin transportation by three types of auxin transporters such as OsLAX, OsPIN, and OsABCB. We report here the analysis of two rice auxin transporter gene families, OsLAX and OsABCB, using bioinformatics tools, publicly accessible microarray data, and quantitative RT-PCR. There are 5 putative OsLAXs and 22 putative OsABCBs in rice genome, which were mapped on 8 chromosomes. The exon-intron structure of OsLAX genes and properties of deduced proteins were relatively conserved within grass family, while that of OsABCB genes varied greatly. Both constitutive and organ/tissue specific expression patterns were observed in OsLAXs and OsABCBs. Analysis of evolutionarily closely related "gene pairs" together with organ/tissue specific expression revealed possible "function gaining" and "function losing" events during rice evolution. Most OsLAX and OsABCB genes were regulated by drought and salt stress, as well as hormonal stimuli [auxin and Abscisic Acid (ABA)], which suggests extensive crosstalk between abiotic stresses and hormone signaling pathways. The existence of large number of auxin and stress related cis-regulatory elements in promoter regions might account for their massive responsiveness of these genes to these environmental stimuli, indicating complexity of regulatory networks involved in various developmental and physiological processes. The comprehensive analysis of OsLAX and OsABCB auxin transporter genes in this study would be helpful for understanding the biological significance of these gene families in hormone signaling and adaptation of rice plants to unfavorable environments. PMID:27200061

  17. Alfalfa Cellulose synthase gene expression under abiotic stress: a Hitchhiker's guide to RT-qPCR normalization.

    PubMed

    Guerriero, Gea; Legay, Sylvain; Hausman, Jean-Francois

    2014-01-01

    Abiotic stress represents a serious threat affecting both plant fitness and productivity. One of the promptest responses that plants trigger following abiotic stress is the differential expression of key genes, which enable to face the adverse conditions. It is accepted and shown that the cell wall senses and broadcasts the stress signal to the interior of the cell, by triggering a cascade of reactions leading to resistance. Therefore the study of wall-related genes is particularly relevant to understand the metabolic remodeling triggered by plants in response to exogenous stresses. Despite the agricultural and economical relevance of alfalfa (Medicago sativa L.), no study, to our knowledge, has addressed specifically the wall-related gene expression changes in response to exogenous stresses in this important crop, by monitoring the dynamics of wall biosynthetic gene expression. We here identify and analyze the expression profiles of nine cellulose synthases, together with other wall-related genes, in stems of alfalfa plants subjected to different abiotic stresses (cold, heat, salt stress) at various time points (e.g. 0, 24, 72 and 96 h). We identify 2 main responses for specific groups of genes, i.e. a salt/heat-induced and a cold/heat-repressed group of genes. Prior to this analysis we identified appropriate reference genes for expression analyses in alfalfa, by evaluating the stability of 10 candidates across different tissues (namely leaves, stems, roots), under the different abiotic stresses and time points chosen. The results obtained confirm an active role played by the cell wall in response to exogenous stimuli and constitute a step forward in delineating the complex pathways regulating the response of plants to abiotic stresses. PMID:25084115

  18. Betacyanin Biosynthetic Genes and Enzymes Are Differentially Induced by (a)biotic Stress in Amaranthus hypochondriacus

    PubMed Central

    Casique-Arroyo, Gabriela; Martínez-Gallardo, Norma; González de la Vara, Luis; Délano-Frier, John P.

    2014-01-01

    An analysis of key genes and enzymes of the betacyanin biosynthetic pathway in Amaranthus hypochondriacus (Ah) was performed. Complete cDNA sequence of Ah genes coding for cyclo-DOPA 5-O glucosyltransferase (AhcDOPA5-GT), two 4, 5-DOPA-extradiol-dioxygenase isoforms (AhDODA-1 and AhDODA-2, respectively), and a betanidin 5-O-glucosyltransferase (AhB5-GT), plus the partial sequence of an orthologue of the cytochrome P-450 R gene (CYP76AD1) were obtained. With the exception AhDODA-2, which had a closer phylogenetic relationship to DODA-like genes in anthocyanin-synthesizing plants, all genes analyzed closely resembled those reported in related Caryophyllales species. The measurement of basal gene expression levels, in addition to the DOPA oxidase tyrosinase (DOT) activity, in different tissues of three Ah genotypes having contrasting pigmentation levels (green to red-purple) was determined. Additional analyses were performed in Ah plants subjected to salt and drought stress and to two different insect herbivory regimes. Basal pigmentation accumulation in leaves, stems and roots of betacyanic plants correlated with higher expression levels of AhDODA-1 and AhB5-GT, whereas DOT activity levels coincided with pigment accumulation in stems and roots and with the acyanic nature of green plants, respectively, but not with pigmentation in leaves. Although the abiotic stress treatments tested produced changes in pigment levels in different tissues, pigment accumulation was the highest in leaves and stems of drought stressed betacyanic plants, respectively. However, tissue pigment accumulation in stressed Ah plants did not always correlate with betacyanin biosynthetic gene expression levels and/or DOT activity. This effect was tissue- and genotype-dependent, and further suggested that other unexamined factors were influencing pigment content in stressed Ah. The results obtained from the insect herbivory assays, particularly in acyanic plants, also support the proposal that

  19. Betacyanin biosynthetic genes and enzymes are differentially induced by (a)biotic stress in Amaranthus hypochondriacus.

    PubMed

    Casique-Arroyo, Gabriela; Martínez-Gallardo, Norma; González de la Vara, Luis; Délano-Frier, John P

    2014-01-01

    An analysis of key genes and enzymes of the betacyanin biosynthetic pathway in Amaranthus hypochondriacus (Ah) was performed. Complete cDNA sequence of Ah genes coding for cyclo-DOPA 5-O glucosyltransferase (AhcDOPA5-GT), two 4, 5-DOPA-extradiol-dioxygenase isoforms (AhDODA-1 and AhDODA-2, respectively), and a betanidin 5-O-glucosyltransferase (AhB5-GT), plus the partial sequence of an orthologue of the cytochrome P-450 R gene (CYP76AD1) were obtained. With the exception AhDODA-2, which had a closer phylogenetic relationship to DODA-like genes in anthocyanin-synthesizing plants, all genes analyzed closely resembled those reported in related Caryophyllales species. The measurement of basal gene expression levels, in addition to the DOPA oxidase tyrosinase (DOT) activity, in different tissues of three Ah genotypes having contrasting pigmentation levels (green to red-purple) was determined. Additional analyses were performed in Ah plants subjected to salt and drought stress and to two different insect herbivory regimes. Basal pigmentation accumulation in leaves, stems and roots of betacyanic plants correlated with higher expression levels of AhDODA-1 and AhB5-GT, whereas DOT activity levels coincided with pigment accumulation in stems and roots and with the acyanic nature of green plants, respectively, but not with pigmentation in leaves. Although the abiotic stress treatments tested produced changes in pigment levels in different tissues, pigment accumulation was the highest in leaves and stems of drought stressed betacyanic plants, respectively. However, tissue pigment accumulation in stressed Ah plants did not always correlate with betacyanin biosynthetic gene expression levels and/or DOT activity. This effect was tissue- and genotype-dependent, and further suggested that other unexamined factors were influencing pigment content in stressed Ah. The results obtained from the insect herbivory assays, particularly in acyanic plants, also support the proposal that

  20. Selection of Reliable Reference Genes for Gene Expression Analysis under Abiotic Stresses in the Desert Biomass Willow, Salix psammophila

    PubMed Central

    Li, Jianbo; Jia, Huixia; Han, Xiaojiao; Zhang, Jin; Sun, Pei; Lu, Mengzhu; Hu, Jianjun

    2016-01-01

    Salix psammophila is a desert shrub willow that has extraordinary adaptation to abiotic stresses and plays an important role in maintaining local ecosystems. Moreover, S. psammophila is regarded as a promising biomass feedstock because of its high biomass yields and short rotation coppice cycle. However, few suitable reference genes (RGs) for quantitative real-time polymerase chain reaction (qRT-PCR) constrain the study on normalization of gene expression in S. psammophila until now. Here, we investigated the expression stabilities of 14 candidate RGs across tissue types and under four abiotic stress treatments, including heat, cold, salt, and drought treatments. After calculation of PCR efficiencies, three different software, NormFinder, geNorm, and BestKeeper were employed to analyze systematically the qRT-PCR data, and the outputs were merged by RankAggreg software. The optimal RGs selected for gene expression analysis were EF1α (Elongation factor-1 alpha) and OTU (OTU-like cysteine protease family protein) for different tissue types, UBC (Ubiquitin-conjugating enzyme E2) and LTA4H (Leukotriene A-4 hydrolase homolog) for heat treatment, HIS (Histone superfamily protein H3) and ARF2 (ADP-ribosylation factor 2) for cold treatment, OTU and ACT7 (Actin 7) for salt treatment, UBC and LTA4H for drought treatment. The expression of UBC, ARF2, and VHAC (V-type proton ATPase subunit C) varied the least across tissue types and under abiotic stresses. Furthermore, the relative genes expression profiles of one tissue-specific gene WOX1a (WUSCHEL-related homeobox 1a), and four stress-inducible genes, including Hsf-A2 (Heat shock transcription factors A2), CBF3 (C-repeat binding factor 3), HKT1 (High-Affinity K+ Transporter 1), and GST (Glutathione S-transferase), were conducted to confirm the validity of the RGs in this study. These results provided an important RGs application guideline for gene expression characterization in S. psammophila. PMID:27761137

  1. Modification of the association between lead exposure and amyotrophic lateral sclerosis by iron and oxidative stress related gene polymorphisms.

    PubMed

    Eum, Ki-Do; Seals, Ryan M; Taylor, Kathryn M; Grespin, Matthew; Umbach, David M; Hu, Howard; Sandler, Dale P; Kamel, Freya; Weisskopf, Marc G

    2015-03-01

    Our objective was to examine whether functional polymorphisms in hemochromatosis (HFE; H63D and C282Y), transferrin (TfC2), and glutathione-s-transferase Pi1 (GSTP1; Ile105Val) genes modify any lead-ALS association. We measured blood lead using atomic absorption spectroscopy and bone lead - a biomarker of cumulative lead exposure - using K-shell-X-ray fluorescence in 100 neurologist-confirmed ALS cases and 194 controls, the latter recruited as part of two separate studies; all subjects lived in New England. Participants were considered variant carriers or wild-type for each polymorphism. To assess effect modification, we included cross-product terms between lead biomarkers and each polymorphism in separate adjusted polytomous logistic regression models. Compared with wild-type, the odds ratio (OR) per 15.6 μg/g patella lead (interquartile range; IQR) was 8.24 (95% CI 0.94-72.19) times greater among C282Y variant carriers, and 0.34 (95% CI 0.15-0.78) times smaller among H63D variant carriers. Results were weaker for tibia lead. Compared with wild-type the OR per 2 μg/dl blood lead (IQR) was 0.36 (95% CI 0.19-0.68) times smaller among H63D variant carriers, and 1.96 (95% CI 0.98-3.92) times greater among GSTP1 variant carriers. In conclusion, we found that HFE and GSTP1 genotypes modified the association between lead biomarkers and ALS. Contrasting modification by the HFE polymorphisms H63D and C282Y may suggest that the modification is not simply the result of increased iron. PMID:25293352

  2. Transcriptional dynamics of immune, growth and stress related genes in skeletal muscle of the fine flounder (Paralichthys adpersus) during different nutritional statuses.

    PubMed

    Valenzuela, Cristián A; Escobar, Daniela; Perez, Lorena; Zuloaga, Rodrigo; Estrada, Juan Manuel; Mercado, Luis; Valdés, Juan Antonio; Molina, Alfredo

    2015-11-01

    The effects of stress on immune activity and growth in early vertebrates have not been studied in detail. The present study used fine flounder (Paralichthys adspersus) skeletal muscle as a model to evaluate molecules involved in the stress response, including the glucocorticoid receptors, foxo1/3, and the target genes of these. Additionally, immune markers (il-1β and tnfα) and effector molecules of atrophy (bnip3, caspase-3, and lc3) were assessed. These molecules were analyzed during periods of long-term fasting and refeeding. During fasting, gene expression related to the stress response and atrophy increased; whereas immune markers were down-regulated. During refeeding, atrophy- and stress-related gene expression significantly decreased. In contrast, immune markers were up-regulated. These results provide novel insight on the control of growth in the skeletal muscle of a non-mammalian species under a stressful condition, suggesting that growth, stress, and immune activity in muscle are closely related and coordinated by orchestrated transcriptional dynamics.

  3. Transcriptional regulation of cell cycle genes in response to abiotic stresses correlates with dynamic changes in histone modifications in maize.

    PubMed

    Zhao, Lin; Wang, Pu; Hou, Haoli; Zhang, Hao; Wang, Yapei; Yan, Shihan; Huang, Yan; Li, Hui; Tan, Junjun; Hu, Ao; Gao, Fei; Zhang, Qi; Li, Yingnan; Zhou, Hong; Zhang, Wei; Li, Lijia

    2014-01-01

    The histone modification level has been shown to be related with gene activation and repression in stress-responsive process, but there is little information on the relationship between histone modification and cell cycle gene expression responsive to environmental cues. In this study, the function of histone modifications in mediating the transcriptional regulation of cell cycle genes under various types of stress was investigated in maize (Zea mays L.). Abiotic stresses all inhibit the growth of maize seedlings, and induce total acetylation level increase compared with the control group in maize roots. The positive and negative regulation of the expression of some cell cycle genes leads to perturbation of cell cycle progression in response to abiotic stresses. Chromatin immunoprecipitation analysis reveals that dynamic histone acetylation change in the promoter region of cell cycle genes is involved in the control of gene expression in response to external stress and different cell cycle genes have their own characteristic patterns for histone acetylation. The data also showed that the combinations of hyperacetylation and hypoacetylation states of specific lysine sites on the H3 and H4 tails on the promoter regions of cell cycle genes regulate specific cell cycle gene expression under abiotic stress conditions, thus resulting in prolonged cell cycle duration and an inhibitory effect on growth and development in maize seedlings. PMID:25171199

  4. An Arabidopsis ATPase gene involved in nematode-induced syncytium development and abiotic stress responses

    PubMed Central

    Ali, Muhammad Amjad; Plattner, Stephan; Radakovic, Zoran; Wieczorek, Krzysztof; Elashry, Abdelnaser; Grundler, Florian MW; Ammelburg, Moritz; Siddique, Shahid; Bohlmann, Holger

    2013-01-01

    The beet cyst nematode Heterodera schachtii induces syncytia in the roots of Arabidopsis thaliana, which are its only nutrient source. One gene, At1g64110, that is strongly up-regulated in syncytia as shown by RT-PCR, quantitative RT-PCR, in situ RT-PCR and promoter::GUS lines, encodes an AAA+-type ATPase. Expression of two related genes in syncytia, At4g28000 and At5g52882, was not detected or not different from control root segments. Using amiRNA lines and T-DNA mutants, we show that At1g64110 is important for syncytium and nematode development. At1g64110 was also inducible by wounding, jasmonic acid, salicylic acid, heat and cold, as well as drought, sodium chloride, abscisic acid and mannitol, indicating involvement of this gene in abiotic stress responses. We confirmed this using two T-DNA mutants that were more sensitive to abscisic acid and sodium chloride during seed germination and root growth. These mutants also developed significantly smaller roots in response to abscisic acid and sodium chloride. An in silico analysis showed that ATPase At1g64110 (and also At4g28000 and At5g52882) belong to the ‘meiotic clade’ of AAA proteins that includes proteins such as Vps4, katanin, spastin and MSP1. PMID:23480402

  5. A novel locus in the oxidative stress-related gene ALOX12 moderates the association between PTSD and thickness of the prefrontal cortex.

    PubMed

    Miller, Mark W; Wolf, Erika J; Sadeh, Naomi; Logue, Mark; Spielberg, Jeffrey M; Hayes, Jasmeet P; Sperbeck, Emily; Schichman, Steven A; Stone, Angie; Carter, Weleetka C; Humphries, Donald E; Milberg, William; McGlinchey, Regina

    2015-12-01

    Oxidative stress has been implicated in many common age-related diseases and is hypothesized to play a role in posttraumatic stress disorder (PTSD)-related neurodegeneration (Miller and Sadeh, 2014). This study examined the influence of the oxidative stress-related genes ALOX 12 and ALOX 15 on the association between PTSD and cortical thickness. Factor analyses were used to identify and compare alternative models of the structure of cortical thickness in a sample of 218 veterans. The best-fitting model was then used for a genetic association analysis in White non-Hispanic participants (n=146) that examined relationships between 33 single nucleotide polymorphisms (SNPs) spanning the two genes, 8 cortical thickness factors, and each SNP×PTSD interaction. Results identified a novel ALOX12 locus (indicated by two SNPs in perfect linkage disequilibrium: rs1042357 and rs10852889) that moderated the association between PTSD and reduced thickness of the right prefrontal cortex. A whole-cortex vertex-wise analysis showed this effect to be localized to clusters spanning the rostral middle frontal gyrus, superior frontal gyrus, rostral anterior cingulate cortex, and medial orbitofrontal cortex. These findings illustrate a novel factor-analytic approach to neuroimaging-genetic analyses and provide new evidence for the possible involvement of oxidative stress in PTSD-related neurodegeneration.

  6. Comprehensive Expression Profiling of Rice Tetraspanin Genes Reveals Diverse Roles During Development and Abiotic Stress

    PubMed Central

    Mani, Balaji; Agarwal, Manu; Katiyar-Agarwal, Surekha

    2015-01-01

    Tetraspanin family is comprised of evolutionarily conserved integral membrane proteins. The incredible ability of tetraspanins to form ‘micro domain complexes’ and their preferential targeting to membranes emphasizes their active association with signal recognition and communication with neighboring cells, thus acting as key modulators of signaling cascades. In animals, tetraspanins are associated with multitude of cellular processes. Unlike animals, the biological relevance of tetraspanins in plants has not been well investigated. In Arabidopsis tetraspanins are known to contribute in important plant development processes such as leaf morphogenesis, root, and floral organ formation. In the present study we investigated the genomic organization, chromosomal distribution, phylogeny and domain structure of 15 rice tetraspanin proteins (OsTETs). OsTET proteins had similar domain structure and signature ‘GCCK/R’ motif as reported in Arabidopsis. Comprehensive expression profiling of OsTET genes suggested their possible involvement during rice development. While OsTET9 and 10 accumulated predominantly in flowers, OsTET5, 8, and 12 were preferentially expressed in root tissues. Noticeably, seven OsTETs exhibited more than twofold up regulation at early stages of flag leaf senescence in rice. Furthermore, several OsTETs were differentially regulated in rice seedlings exposed to abiotic stresses, exogenous treatment of hormones and nutrient deprivation. Transient subcellular localization studies of eight OsTET proteins in tobacco epidermal cells showed that these proteins localized in plasma membrane. The present study provides valuable insights into the possible roles of tetraspanins in regulating development and defining response to abiotic stresses in rice. Targeted proteomic studies would be useful in identification of their interacting partners under different conditions and ultimately their biological function in plants. PMID:26697042

  7. Endoplasmic Reticulum Stress-Related Genes in Yellow Catfish Pelteobagrus fulvidraco: Molecular Characterization, Tissue Expression, and Expression Responses to Dietary Copper Deficiency and Excess.

    PubMed

    Song, Yu-Feng; Luo, Zhi; Huang, Chao; Chen, Qi-Liang; Pan, Ya-Xiong; Xu, Yi-Huan

    2015-10-01

    Two endoplasmic reticulum (ER) molecular chaperones [glucose-regulated protein 78 (grp78) and calreticulin (crt)] and three ER stress sensors [PKR-like ER kinase (perk), inositol requiring enzyme (ire)-1α, and activating transcription factor (atf)-6α] cDNAs were first characterized from yellow catfish, Pelteobagrus fulvidraco. The predicted amino acid sequences for the yellow catfish grp78, crt, perk, ire-1α, and atf-6α revealed that the proteins contained all of the structural features that were characteristic of the five genes in other species, including the KDEL motif, signal peptide, sensor domain, and effector domain. mRNAs of the five genes mentioned above were expressed in various tissues, but their mRNA levels varied among tissues. Dietary Cu excess, but not Cu deficiency, activated the chaperones (grp78 and crt) and folding sensors in ER, and the UPR signaling pathways (i.e., perk-eif2α and the ire1-xbp1) in a tissue-specific manner. For the first time, our study cloned grp78, crt, perk, ire-1α, and atf-6α genes in yellow catfish and demonstrated their differential expression among tissues. Moreover, the present study also indicated differential regulation of these ER stress-related genes by dietary Cu deficiency and excess, which will be beneficial for us to evaluate effects of dietary Cu levels in fish at the molecular level, based on the upstream pathway of lipid metabolism (the ER) and thus provide novel insights regarding the nutrition of Cu in fish. PMID:26276384

  8. Tomato plants overexpressing cryptochrome 2 reveal altered expression of energy and stress-related gene products in response to diurnal cues.

    PubMed

    Lopez, Loredana; Carbone, Fabrizio; Bianco, Linda; Giuliano, Giovanni; Facella, Paolo; Perrotta, Gaetano

    2012-05-01

    In order to sense and respond to the fluctuating light conditions, higher plants possess several families of photoreceptors, such as phytochromes (PHYs), cryptochromes (CRYs) and phototropins. CRYs are responsible for photomorphogenesis and play a role in circadian, developmental and adaptive growth regulation of plants. In tomato (Solanum lycopersicum), CRY2 controls vegetative development, flowering time, fruit antioxidant content as well as the diurnal transcription of several other photoreceptor genes. We applied large-scale molecular approaches to identify altered transcripts and proteins in tomato wild-type (WT) versus a CRY2 overexpressing transgenic genotype, under a diurnal rhythm. Our results showed that tomato CRY2 profoundly affects both gene and protein expression in response to daily light cycle. Particularly altered molecular pathways are related to biotic/abiotic stress, photosynthesis, including components of the light and dark reactions and of starch and sucrose biosynthesis, as well as to secondary metabolism, such as phenylpropanoid, phenolic and flavonoid/anthocyanin biosynthesis pathways. One of the most interesting results is the coordinated up-regulation, in the transgenic genotype, of a consistent number of transcripts and proteins involved in photorespiration and photosynthesis. It is conceivable that light modulates the energetic metabolism of tomato through a fine CRY2-mediated transcriptional control.

  9. Effects of astaxanthin-containing oil on development and stress-related gene expression of bovine embryos exposed to heat stress.

    PubMed

    Namekawa, T; Ikeda, S; Sugimoto, M; Kume, S

    2010-12-01

    Early bovine embryos are vulnerable to heat stress during the first few days after fertilization. The inhibitory effect of heat stress on embryonic development is known to be associated with oxidative stress, which can be attenuated by antioxidants. In the present study, we focused on the use of astaxanthin as an antioxidant and examined the effects of astaxanthin-containing oil (Ax) on post-fertilization development of bovine embryos subjected to heat stress in vitro and the expression of stress-related genes. Bovine 1-cell embryos were in vitro produced by in vitro maturation and fertilization (IVF) of oocytes recovered from abattoir-derived ovaries. At 20 h post-insemination (hpi, 0 h = the start of IVF), the embryos were introduced in modified synthetic oviduct fluid supplemented with 25 ppm of Ax (concentration of astaxanthin was 0.25 ppm) or vehicle (dimethyl sulfoxide) up to 72 hpi. The embryos were basically cultured at 38.5°C, and in the heat stress group, embryos were exposed twice to 40.5°C for 10 h (at 20-30 and 44-54 hpi). Under the condition without the Ax treatment, the cleavage rate, rate of development to the 5-8 cell stage, blastocyst yield from cultured embryos and that from cleaved embryos were lower in the heat stress group than in the group not subjected to heat stress (p < 0.05). In the heat stress group, the rate of development to the 5-8 cell stage was improved (p < 0.05) by the addition of Ax. Subsequently, we performed semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) to investigate the effects of heat stress and Ax on the mRNA expression of Src homology 2 domain-containing transforming protein C1 (SHC1), an oxidative stress adaptor protein, and superoxide dismutase 2 (SOD2), a mitochondrial reactive oxygen species (ROS) scavenger. In 5-8 cell embryos at 72 hpi, the mRNA expression levels of SHC1 and SOD2 were lower in the Ax- and heat-treated group than in the other groups (p < 0

  10. The root-colonizing endophyte Pirifomospora indica confers drought tolerance in Arabidopsis by stimulating the expression of drought stress-related genes in leaves.

    PubMed

    Sherameti, Irena; Tripathi, Swati; Varma, Ajit; Oelmüller, Ralf

    2008-06-01

    Piriformospora indica is an endophytic fungus that colonizes the roots of many plant species, including Arabidopsis. We exposed 18-day-old Arabidopsis seedlings, which were either cocultivated with the fungus or mock-treated for the last 9 days, to mild drought stress for 84 h. During the first 36 to 48 h, seedlings cocultivated with the fungus continued to grow, while the uncolonized controls did not. This results in a threefold difference in the fresh weight and a more than twofold difference in the chlorophyll content. The photosynthetic efficiency was only slightly reduced in the colonized (F variable/F maximum [Fv/Fm] at t(0 h) = 0.82 and t(36 h) = 0.79) and was severely impaired in the uncolonized (Fv/Fm at t(0 h) = 0.81 and (t)(36 h) = 0.49) seedlings, which also showed symptoms of withering. When seedlings exposed to drought stress for 72 or 84 h were transferred to soil, 10% (72 h) and none (84 h) of uncolonized seedlings reached the flowering stage and produced seeds, while 59% (72 h) and 47% (84 h) of the colonized seedlings flowered and produced seeds. After exposure to drought stress for 3 h, the message levels for RESPONSE TO DEHYDRATION 29A, EARLY RESPONSE TO DEHYDRATION1, ANAC072, DEHYDRATION-RESPONSE ELEMENT BINDING PROTEIN2A, SALT-, AND DROUGHT-INDUCED RING FINGER1, phospholipase Ddelta, CALCINEURIN B-LIKE PROTEIN (CBL)1, CBL-INTERACTING PROTEIN KINASE3, and the histone acetyltransferase (HAT) were upregulated in the leaves of P. indica-colonized seedlings. Uncolonized seedlings responded 3 to 6 h later, and the message levels increased much less. We identified an Arabidopsis ethylmethane-sulfonate mutant that is less resistant to drought stress and in which the stress-related genes were not upregulated in the presence of P. indica. Thus, P. indica confers drought-stress tolerance to Arabidopsis, and this is associated with the priming of the expression of a quite diverse set of stress-related genes in the leaves. Transfer to soil was again

  11. Sugar beet M14 glyoxalase I gene can enhance plant tolerance to abiotic stresses.

    PubMed

    Wu, Chuan; Ma, Chunquan; Pan, Yu; Gong, Shilong; Zhao, Chenxi; Chen, Sixue; Li, Haiying

    2013-05-01

    Glyoxalase I is the first enzyme of the glyoxalase system that can detoxify methylglyoxal, a cytotoxic compound increased rapidly under stress conditions. Here we report cloning and characterization of a glyoxalase I from sugar beet M14 line (an interspecific hybrid between a wild species Beta corolliflora Zoss and a cultivated species B. vulgaris L). The full-length gene BvM14-glyoxalase I has 1,449 bp in length with an open reading frame of 1,065 bp encoding 354 amino acids. Sequence analysis shows the conserved glyoxalase I domains, metal and glutathione binding sites and secondary structure (α-helixes and β-sheets). The BvM14-glyoxalase I gene was ubiquitously expressed in different tissues of sugar beet M14 line and up-regulated in response to salt, mannitol and oxidative stresses. Heterologous expression of BvM14-glyoxalase I could increase E. coli tolerance to methylglyoxal. Transgenic tobacco plants constitutively expressing BvM14-glyoxalase I were generated. Both leaf discs and seedlings showed significant tolerance to methylglyoxal, salt, mannitol and H2O2. These results suggest an important role of BvM14-glyoxalase I in cellular detoxification and tolerance to abiotic stresses.

  12. Different cucumber CsYUC genes regulate response to abiotic stresses and flower development

    PubMed Central

    Yan, Shuangshuang; Che, Gen; Ding, Lian; Chen, Zijing; Liu, Xiaofeng; Wang, Hongyin; Zhao, Wensheng; Ning, Kang; Zhao, Jianyu; Tesfamichael, Kiflom; Wang, Qian; Zhang, Xiaolan

    2016-01-01

    The phytohormone auxin is essential for plant growth and development, and YUCCA (YUC) proteins catalyze a rate-limiting step for endogenous auxin biosynthesis. Despite YUC family genes have been isolated from several species, systematic expression analyses of YUCs in response to abiotic stress are lacking, and little is known about the function of YUC homologs in agricultural crops. Cucumber (Cucumis sativus L.) is a world cultivated vegetable crop with great economical and nutritional value. In this study, we isolated 10 YUC family genes (CsYUCs) from cucumber and explored their expression pattern under four types of stress treatments. Our data showed that CsYUC8 and CsYUC9 were specifically upregulated to elevate the auxin level under high temperature. CsYUC10b was dramatically increased but CsYUC4 was repressed in response to low temperature. CsYUC10a and CsYUC11 act against the upregulation of CsYUC10b under salinity stress, suggesting that distinct YUC members participate in different stress response, and may even antagonize each other to maintain the proper auxin levels in cucumber. Further, CsYUC11 was specifically expressed in the male flower in cucumber, and enhanced tolerance to salinity stress and regulated pedicel and stamen development through auxin biosynthesis in Arabidopsis. PMID:26857463

  13. Sugar beet M14 glyoxalase I gene can enhance plant tolerance to abiotic stresses.

    PubMed

    Wu, Chuan; Ma, Chunquan; Pan, Yu; Gong, Shilong; Zhao, Chenxi; Chen, Sixue; Li, Haiying

    2013-05-01

    Glyoxalase I is the first enzyme of the glyoxalase system that can detoxify methylglyoxal, a cytotoxic compound increased rapidly under stress conditions. Here we report cloning and characterization of a glyoxalase I from sugar beet M14 line (an interspecific hybrid between a wild species Beta corolliflora Zoss and a cultivated species B. vulgaris L). The full-length gene BvM14-glyoxalase I has 1,449 bp in length with an open reading frame of 1,065 bp encoding 354 amino acids. Sequence analysis shows the conserved glyoxalase I domains, metal and glutathione binding sites and secondary structure (α-helixes and β-sheets). The BvM14-glyoxalase I gene was ubiquitously expressed in different tissues of sugar beet M14 line and up-regulated in response to salt, mannitol and oxidative stresses. Heterologous expression of BvM14-glyoxalase I could increase E. coli tolerance to methylglyoxal. Transgenic tobacco plants constitutively expressing BvM14-glyoxalase I were generated. Both leaf discs and seedlings showed significant tolerance to methylglyoxal, salt, mannitol and H2O2. These results suggest an important role of BvM14-glyoxalase I in cellular detoxification and tolerance to abiotic stresses. PMID:23203352

  14. PL1 fusion gene: a novel visual selectable marker gene that confers tolerance to multiple abiotic stresses in transgenic tomato.

    PubMed

    Jin, Feng; Li, Shu; Dang, Lijie; Chai, Wenting; Li, Pengli; Wang, Ning Ning

    2012-10-01

    Visual selectable markers, including the purple color caused by the accumulation of anthocyanins, have been proposed for use as antibiotic-free alternatives. However, the excessive accumulation of anthocyanins seriously inhibits the growth and development of transgenic plants. In our study, the AtDWF4 promoter from Arabidopsis and the tomato LeANT1 gene, encoding a MYB transcription factor, were used to construct the PL1 fusion gene to test whether it could be used as a visual selectable marker gene for tomato transformation. All the PL1 transgenic shoots exhibited intense purple color on shoot induction medium. In the transgenic tomato plants, PL1 was highly expressed in the cotyledons, but expressed only slightly in the true leaves and other organs. The expression of PL1 had no significantly adverse effects on the growth or development of the transgenic tomato plants, and conferred tolerance to multiple abiotic stresses in them. With the “cut off green shoots” method, multiple independent 35S::GFP transgenic tomato lines were successfully obtained using PL1 as the selectable marker gene. These results suggest that PL1 has potential application of visual selectable marker gene for tomato transformation.

  15. Glutathione Deficiency of the Arabidopsis Mutant pad2-1 Affects Oxidative Stress-Related Events, Defense Gene Expression, and the Hypersensitive Response1[C][W][OA

    PubMed Central

    Dubreuil-Maurizi, Carole; Vitecek, Jan; Marty, Laurent; Branciard, Lorelise; Frettinger, Patrick; Wendehenne, David; Meyer, Andreas J.; Mauch, Felix; Poinssot, Benoît

    2011-01-01

    The Arabidopsis (Arabidopsis thaliana) phytoalexin-deficient mutant pad2-1 displays enhanced susceptibility to a broad range of pathogens and herbivorous insects that correlates with deficiencies in the production of camalexin, indole glucosinolates, and salicylic acid (SA). The pad2-1 mutation is localized in the GLUTAMATE-CYSTEINE LIGASE (GCL) gene encoding the first enzyme of glutathione biosynthesis. While pad2-1 glutathione deficiency is not caused by a decrease in GCL transcripts, analysis of GCL protein level revealed that pad2-1 plants contained only 48% of the wild-type protein amount. In contrast to the wild type, the oxidized form of GCL was dominant in pad2-1, suggesting a distinct redox environment. This finding was corroborated by the expression of GRX1-roGFP2, showing that the cytosolic glutathione redox potential was significantly less negative in pad2-1. Analysis of oxidative stress-related gene expression showed a higher transcript accumulation in pad2-1 of GLUTATHIONE REDUCTASE, GLUTATHIONE-S-TRANSFERASE, and RESPIRATORY BURST OXIDASE HOMOLOG D in response to the oomycete Phytophthora brassicae. Interestingly, oligogalacturonide elicitation in pad2-1 revealed a lower plasma membrane depolarization that was found to act upstream of an impaired hydrogen peroxide production. This impaired hydrogen peroxide production was also observed during pathogen infection and correlated with a reduced hypersensitive response in pad2-1. In addition, a lack of pathogen-triggered expression of the ISOCHORISMATE SYNTHASE1 gene, coding for the SA-biosynthetic enzyme isochorismate synthase, was identified as the cause of the SA deficiency in pad2-1. Together, our results indicate that the pad2-1 mutation is related to a decrease in GCL protein and that the resulting glutathione deficiency negatively affects important processes of disease resistance. PMID:22007023

  16. Selection of reliable reference genes for RT-qPCR analysis during developmental stages and abiotic stress in Setaria viridis

    PubMed Central

    Martins, Polyana Kelly; Mafra, Valéria; de Souza, Wagner Rodrigo; Ribeiro, Ana Paula; Vinecky, Felipe; Basso, Marcos Fernando; da Cunha, Bárbara Andrade Dias Brito; Kobayashi, Adilson Kenji; Molinari, Hugo Bruno Correa

    2016-01-01

    Real-time PCR (RT-qPCR) expression analysis is a powerful analytical technique, but reliable results depend on the use of stable reference genes for proper normalization. This study proposed to test the expression stability of 13 candidate reference genes in Setaria viridis, a monocot species recently proposed as a new C4 model plant. Gene expression stability of these genes was assayed across different tissues and developmental stages of Setaria and under drought or aluminum stress. In general, our results showed Protein Kinase, RNA Binding Protein and SDH as the most stable genes. Moreover, pairwise analysis showed that two reference genes were sufficient to normalize the gene expression data under each condition. By contrast, GAPDH and ACT were the least stably expressed genes tested. Validation of suitable reference genes was carried out to profile the expression of P5CS and GolS during abiotic stress. In addition, normalization of gene expression of SuSy, involved in sugar metabolism, was assayed in the developmental dataset. This study provides a list of reliable reference genes for transcript normalization in S. viridis in different tissues and stages of development and under abiotic stresses, which will facilitate genetic studies in this monocot model plant. PMID:27321675

  17. Selection of reliable reference genes for RT-qPCR analysis during developmental stages and abiotic stress in Setaria viridis.

    PubMed

    Martins, Polyana Kelly; Mafra, Valéria; de Souza, Wagner Rodrigo; Ribeiro, Ana Paula; Vinecky, Felipe; Basso, Marcos Fernando; da Cunha, Bárbara Andrade Dias Brito; Kobayashi, Adilson Kenji; Molinari, Hugo Bruno Correa

    2016-01-01

    Real-time PCR (RT-qPCR) expression analysis is a powerful analytical technique, but reliable results depend on the use of stable reference genes for proper normalization. This study proposed to test the expression stability of 13 candidate reference genes in Setaria viridis, a monocot species recently proposed as a new C4 model plant. Gene expression stability of these genes was assayed across different tissues and developmental stages of Setaria and under drought or aluminum stress. In general, our results showed Protein Kinase, RNA Binding Protein and SDH as the most stable genes. Moreover, pairwise analysis showed that two reference genes were sufficient to normalize the gene expression data under each condition. By contrast, GAPDH and ACT were the least stably expressed genes tested. Validation of suitable reference genes was carried out to profile the expression of P5CS and GolS during abiotic stress. In addition, normalization of gene expression of SuSy, involved in sugar metabolism, was assayed in the developmental dataset. This study provides a list of reliable reference genes for transcript normalization in S. viridis in different tissues and stages of development and under abiotic stresses, which will facilitate genetic studies in this monocot model plant. PMID:27321675

  18. Homeologous genes involved in mannitol synthesis reveal unequal contributions in response to abiotic stress in Coffea arabica.

    PubMed

    de Carvalho, Kenia; Petkowicz, Carmen L O; Nagashima, Getulio T; Bespalhok Filho, João C; Vieira, Luiz G E; Pereira, Luiz F P; Domingues, Douglas S

    2014-10-01

    Polyploid plants can exhibit transcriptional modulation in homeologous genes in response to abiotic stresses. Coffea arabica, an allotetraploid, accounts for 75% of the world's coffee production. Extreme temperatures, salinity and drought limit crop productivity, which includes coffee plants. Mannitol is known to be involved in abiotic stress tolerance in higher plants. This study aimed to investigate the transcriptional responses of genes involved in mannitol biosynthesis and catabolism in C. arabica leaves under water deficit, salt stress and high temperature. Mannitol concentration was significantly increased in leaves of plants under drought and salinity, but reduced by heat stress. Fructose content followed the level of mannitol only in heat-stressed plants, suggesting the partitioning of the former into other metabolites during drought and salt stress conditions. Transcripts of the key enzymes involved in mannitol biosynthesis, CaM6PR, CaPMI and CaMTD, were modulated in distinct ways depending on the abiotic stress. Our data suggest that changes in mannitol accumulation during drought and salt stress in leaves of C. arabica are due, at least in part, to the increased expression of the key genes involved in mannitol biosynthesis. In addition, the homeologs of the Coffea canephora subgenome did not present the same pattern of overall transcriptional response, indicating differential regulation of these genes by the same stimulus. In this way, this study adds new information on the differential expression of C. arabica homeologous genes under adverse environmental conditions showing that abiotic stresses can influence the homeologous gene regulation pattern, in this case, mainly on those involved in mannitol pathway. PMID:24861101

  19. Added value of stress related gene inductions in HepG2 cells as effect measurement in monitoring of air pollution

    NASA Astrophysics Data System (ADS)

    Nobels, Ingrid; Vanparys, Caroline; Van den Heuvel, Rosette; Vercauteren, Jordy; Blust, Ronny

    2012-08-01

    In this study we studied the effects of particulate matter samples (PM) through gene expression analysis in a routine air quality monitoring campaign by the Flemish Environment Agency (VMM, Belgium). We selected a human hepatoma (HepG2) multiple endpoint reporter assay for targeted stress related endpoint screening. Organic extracts of air samples (total suspended particles, TSP) were collected during one year in an industrial, urban and background location in Flanders, Belgium. Simultaneously, meteorological conditions (temperature, wind speed and precipitation) and particulate matter size ≤ 10 μM (PM10), organic (OC), elemental (EC) and total (TC) carbon were monitored and air samples were collected for chemical analysis (11 PAHs). Correlations between the induction of the different stress genes and the chemical pollutants were analysed. Exposure of HepG2 cells to daily air equivalents (20 m3) of organic TSP extracts revealed the dominant induction of the xenobiotic response element (Xre) and phase I (Cyp1A1) and phase II (GstYa) biotransformation enzymes. Additional effects were the induction of c-Fos, a proto-oncogen and Gadd45, a marker for cell cycle disturbance and responsive to genotoxic compounds. Inductions of other relevant pathways, such as sequestration of heavy metals, retinoids response, protein misfolding and increased cAMP levels were measured occasionally. A significant correlation was found between the genes Cyp1A1 (a typical marker for presence of PAHs and dioxin like compounds), c-Fos, Gadd45, (responsive to DNA damaging compounds) and the amount of PM10 and elemental carbon (EC) whereas no correlation was found between these genes and total PAHs content. This may suggest that the observed induction of Cyp1A1 and DNA damage related genes was provoked (partially) by other particle bound compounds (e.g. pesticides, PCBs, brominated flame retardants, dioxins, …), than PAHs. The contribution of particle bound compounds, other than PAHs might

  20. Intra-specific variations in expression of stress-related genes in beech progenies are stronger than drought-induced responses.

    PubMed

    Carsjens, Caroline; Nguyen Ngoc, Quynh; Guzy, Jonas; Knutzen, Florian; Meier, Ina Christin; Müller, Markus; Finkeldey, Reiner; Leuschner, Christoph; Polle, Andrea

    2014-12-01

    Rapidly decreasing water availability as a consequence of climate change is likely to endanger the range of long-lived tree species. A pressing question is, therefore, whether adaptation to drought exists in important temperate tree species like European beech (Fagus sylvatica L.), a wide-spread, dominant forest tree in Central Europe. Here, five beech stands were selected along a precipitation gradient from moist to dry conditions. Neutral genetic markers revealed strong variation within and little differentiation between the populations. Natural regeneration from these stands was transferred to a common garden and used to investigate the expression of genes for abscisic acid (ABA)-related drought signaling [9-cis-epoxy-dioxygenase (NCED), protein phosphatase 2C (PP2C), early responsive to dehydration (ERD)] and stress protection [ascorbate peroxidase (APX), superoxide dismutase (SOD), aldehyde dehydrogenase (ALDH), glutamine amidotransferase (GAT)] that are involved in drought acclimation. We hypothesized that progenies from dry sites exhibit constitutively higher expression levels of ABA- and stress-related genes and are less drought responsive than progenies from moist sites. Transcript levels and stress responses (leaf area loss, membrane integrity) of well-irrigated and drought-stressed plants were measured during the early, mid- and late growing season. Principal component (PC) analysis ordered the beech progenies according to the mean annual precipitation at tree origin by the transcript levels of SOD, ALDH, GAT and ERD as major loadings along PC1. PC2 separated moist and drought treatments with PP2C levels as important loading. These results suggest that phosphatase-mediated signaling is flexibly acclimated to the current requirements, whereas stress compensatory measures exhibited genotypic variation, apparently underlying climate selection. In contrast to expectation, the drought responses were less pronounced than the progeny-related differences and the

  1. Intra-specific variations in expression of stress-related genes in beech progenies are stronger than drought-induced responses.

    PubMed

    Carsjens, Caroline; Nguyen Ngoc, Quynh; Guzy, Jonas; Knutzen, Florian; Meier, Ina Christin; Müller, Markus; Finkeldey, Reiner; Leuschner, Christoph; Polle, Andrea

    2014-12-01

    Rapidly decreasing water availability as a consequence of climate change is likely to endanger the range of long-lived tree species. A pressing question is, therefore, whether adaptation to drought exists in important temperate tree species like European beech (Fagus sylvatica L.), a wide-spread, dominant forest tree in Central Europe. Here, five beech stands were selected along a precipitation gradient from moist to dry conditions. Neutral genetic markers revealed strong variation within and little differentiation between the populations. Natural regeneration from these stands was transferred to a common garden and used to investigate the expression of genes for abscisic acid (ABA)-related drought signaling [9-cis-epoxy-dioxygenase (NCED), protein phosphatase 2C (PP2C), early responsive to dehydration (ERD)] and stress protection [ascorbate peroxidase (APX), superoxide dismutase (SOD), aldehyde dehydrogenase (ALDH), glutamine amidotransferase (GAT)] that are involved in drought acclimation. We hypothesized that progenies from dry sites exhibit constitutively higher expression levels of ABA- and stress-related genes and are less drought responsive than progenies from moist sites. Transcript levels and stress responses (leaf area loss, membrane integrity) of well-irrigated and drought-stressed plants were measured during the early, mid- and late growing season. Principal component (PC) analysis ordered the beech progenies according to the mean annual precipitation at tree origin by the transcript levels of SOD, ALDH, GAT and ERD as major loadings along PC1. PC2 separated moist and drought treatments with PP2C levels as important loading. These results suggest that phosphatase-mediated signaling is flexibly acclimated to the current requirements, whereas stress compensatory measures exhibited genotypic variation, apparently underlying climate selection. In contrast to expectation, the drought responses were less pronounced than the progeny-related differences and the

  2. Characterization of a Wheat Heme Oxygenase-1 Gene and Its Responses to Different Abiotic Stresses

    PubMed Central

    Xu, Dao-kun; Jin, Qi-jiang; Xie, Yan-jie; Liu, Ya-hui; Lin, Yu-ting; Shen, Wen-biao; Zhou, Yi-jun

    2011-01-01

    In animals and recently in plants, heme oxygenase-1 (HO1) has been found to confer protection against a variety of oxidant-induced cell and tissue injuries. In this study, a wheat (Triticum aestivum) HO1 gene TaHO1 was cloned and sequenced. It encodes a polypeptide of 31.7 kD with a putative N-terminal plastid transit peptide. The amino acid sequence of TaHO1 was found to be 78% similar to that of maize HO1. Phylogenetic analysis revealed that TaHO1 clusters together with the HO1-like sequences in plants. The purified recombinant TaHO1 protein expressed in Escherichia coli was active in the conversion of heme to biliverdin IXa (BV), and showed that the Vmax was 8.8 U·mg−1 protein with an apparent Km value for hemin of 3.04 μM. The optimum Tm and pH were 35 °C and 7.4, respectively. The result of subcellular localization of TaHO1 showed that the putative transit peptide was sufficient for green fluorescent protein (GFP) to localize in chloroplast and implied that TaHO1 gene product is at least localized in the chloroplast. Moreover, we found that TaHO1 mRNA could be differentially induced by the well-known nitric oxide (NO) donor sodium nitroprusside (SNP), gibberellin acid (GA), abscisic acid (ABA), hydrogen peroxide (H2O2) and NaCl treatments. Therefore, the results suggested that TaHO1 might play an important role in abiotic stress responses. PMID:22174625

  3. Genome-Wide Identification and Expression Analyses of Aquaporin Gene Family during Development and Abiotic Stress in Banana.

    PubMed

    Hu, Wei; Hou, Xiaowan; Huang, Chao; Yan, Yan; Tie, Weiwei; Ding, Zehong; Wei, Yunxie; Liu, Juhua; Miao, Hongxia; Lu, Zhiwei; Li, Meiying; Xu, Biyu; Jin, Zhiqiang

    2015-01-01

    Aquaporins (AQPs) function to selectively control the flow of water and other small molecules through biological membranes, playing crucial roles in various biological processes. However, little information is available on the AQP gene family in bananas. In this study, we identified 47 banana AQP genes based on the banana genome sequence. Evolutionary analysis of AQPs from banana, Arabidopsis, poplar, and rice indicated that banana AQPs (MaAQPs) were clustered into four subfamilies. Conserved motif analysis showed that all banana AQPs contained the typical AQP-like or major intrinsic protein (MIP) domain. Gene structure analysis suggested the majority of MaAQPs had two to four introns with a highly specific number and length for each subfamily. Expression analysis of MaAQP genes during fruit development and postharvest ripening showed that some MaAQP genes exhibited high expression levels during these stages, indicating the involvement of MaAQP genes in banana fruit development and ripening. Additionally, some MaAQP genes showed strong induction after stress treatment and therefore, may represent potential candidates for improving banana resistance to abiotic stress. Taken together, this study identified some excellent tissue-specific, fruit development- and ripening-dependent, and abiotic stress-responsive candidate MaAQP genes, which could lay a solid foundation for genetic improvement of banana cultivars. PMID:26307965

  4. Genome-Wide Identification and Expression Analyses of Aquaporin Gene Family during Development and Abiotic Stress in Banana

    PubMed Central

    Hu, Wei; Hou, Xiaowan; Huang, Chao; Yan, Yan; Tie, Weiwei; Ding, Zehong; Wei, Yunxie; Liu, Juhua; Miao, Hongxia; Lu, Zhiwei; Li, Meiying; Xu, Biyu; Jin, Zhiqiang

    2015-01-01

    Aquaporins (AQPs) function to selectively control the flow of water and other small molecules through biological membranes, playing crucial roles in various biological processes. However, little information is available on the AQP gene family in bananas. In this study, we identified 47 banana AQP genes based on the banana genome sequence. Evolutionary analysis of AQPs from banana, Arabidopsis, poplar, and rice indicated that banana AQPs (MaAQPs) were clustered into four subfamilies. Conserved motif analysis showed that all banana AQPs contained the typical AQP-like or major intrinsic protein (MIP) domain. Gene structure analysis suggested the majority of MaAQPs had two to four introns with a highly specific number and length for each subfamily. Expression analysis of MaAQP genes during fruit development and postharvest ripening showed that some MaAQP genes exhibited high expression levels during these stages, indicating the involvement of MaAQP genes in banana fruit development and ripening. Additionally, some MaAQP genes showed strong induction after stress treatment and therefore, may represent potential candidates for improving banana resistance to abiotic stress. Taken together, this study identified some excellent tissue-specific, fruit development- and ripening-dependent, and abiotic stress-responsive candidate MaAQP genes, which could lay a solid foundation for genetic improvement of banana cultivars. PMID:26307965

  5. Molecular marker assisted gene stacking for biotic and abiotic stress resistance genes in an elite rice cultivar

    PubMed Central

    Das, Gitishree; Rao, G. J. N.

    2015-01-01

    Severe yield loss due to various biotic stresses like bacterial blight (BB), gall midge (insect) and Blast (disease) and abiotic stresses like submergence and salinity are a serious constraint to the rice productivity throughout the world. The most effective and reliable method of management of the stresses is the enhancement of host resistance, through an economical and environmentally friendly approach. Through the application of marker assisted selection (MAS) technique, the present study reports a successful pyramidization of genes/QTLs to confer resistance/tolerance to blast (Pi2, Pi9), gall Midge (Gm1, Gm4), submergence (Sub1), and salinity (Saltol) in a released rice variety CRMAS2621-7-1 as Improved Lalat which had already incorporated with three BB resistance genes xa5, xa13, and Xa21 to supplement the Xa4 gene present in Improved Lalat. The molecular analysis revealed clear polymorphism between the donor and recipient parents for all the markers that are tagged to the target traits. The conventional backcross breeding approach was followed till BC3F1 generation and starting from BC1F1 onwards, marker assisted selection was employed at each step to monitor the transfer of the target alleles with molecular markers. The different BC3F1s having the target genes/QTLs were inter crossed to generate hybrids with all 10 stress resistance/tolerance genes/QTLs into a single plant/line. Homozygous plants for resistance/tolerance genes in different combinations were recovered. The BC3F3 lines were characterized for their agronomic and quality traits and promising progeny lines were selected. The SSR based background selection was done. Most of the gene pyramid lines showed a high degree of similarity to the recurrent parent for both morphological, grain quality traits and in SSR based background selection. Out of all the gene pyramids tested, two lines had all the 10 resistance/tolerance genes and showed adequate levels of resistance/tolerance against the five target

  6. HyPRP1 Gene Suppressed by Multiple Stresses Plays a Negative Role in Abiotic Stress Tolerance in Tomato

    PubMed Central

    Li, Jinhua; Ouyang, Bo; Wang, Taotao; Luo, Zhidan; Yang, Changxian; Li, Hanxia; Sima, Wei; Zhang, Junhong; Ye, Zhibiao

    2016-01-01

    Many hybrid proline-rich protein (HyPRP) genes respond to biotic and abiotic stresses in plants, but little is known about their roles other than as putative cell-wall structural proteins. A HyPRP1 gene encodes a protein with proline-rich domain, and an eight-cysteine motif was identified from our previous microarray experiments on drought-tolerant tomato. In this study, the expression of the HyPRP1 gene in tomato was suppressed under various abiotic stresses, such as drought, high salinity, cold, heat, and oxidative stress. Transgenic functional analysis showed no obvious changes in phenotypes, but enhanced tolerance to various abiotic stresses (e.g., oxidative stress, dehydration, and salinity) was observed in RNAi transgenic plants. Interestingly, several SO2 detoxification-related enzymes, including sulfite oxidase, ferredoxins (Fds), and methionine sulfoxide reductase A (Msr A), were revealed in HyPRP1-interacting proteins identified by Yeast Two-Hybrid screening. More sulfates and transcripts of Msr A and Fds were accumulated in HyPRP1 knockdown lines when wild-type plants were exposed to SO2 gas. Our findings illustrate that the tomato HyPRP1 is a negative regulator of salt and oxidative stresses and is probably involved in sulfite metabolism. PMID:27446190

  7. HyPRP1 Gene Suppressed by Multiple Stresses Plays a Negative Role in Abiotic Stress Tolerance in Tomato.

    PubMed

    Li, Jinhua; Ouyang, Bo; Wang, Taotao; Luo, Zhidan; Yang, Changxian; Li, Hanxia; Sima, Wei; Zhang, Junhong; Ye, Zhibiao

    2016-01-01

    Many hybrid proline-rich protein (HyPRP) genes respond to biotic and abiotic stresses in plants, but little is known about their roles other than as putative cell-wall structural proteins. A HyPRP1 gene encodes a protein with proline-rich domain, and an eight-cysteine motif was identified from our previous microarray experiments on drought-tolerant tomato. In this study, the expression of the HyPRP1 gene in tomato was suppressed under various abiotic stresses, such as drought, high salinity, cold, heat, and oxidative stress. Transgenic functional analysis showed no obvious changes in phenotypes, but enhanced tolerance to various abiotic stresses (e.g., oxidative stress, dehydration, and salinity) was observed in RNAi transgenic plants. Interestingly, several SO2 detoxification-related enzymes, including sulfite oxidase, ferredoxins (Fds), and methionine sulfoxide reductase A (Msr A), were revealed in HyPRP1-interacting proteins identified by Yeast Two-Hybrid screening. More sulfates and transcripts of Msr A and Fds were accumulated in HyPRP1 knockdown lines when wild-type plants were exposed to SO2 gas. Our findings illustrate that the tomato HyPRP1 is a negative regulator of salt and oxidative stresses and is probably involved in sulfite metabolism. PMID:27446190

  8. Genome-wide characterization and analysis of bZIP transcription factor gene family related to abiotic stress in cassava.

    PubMed

    Hu, Wei; Yang, Hubiao; Yan, Yan; Wei, Yunxie; Tie, Weiwei; Ding, Zehong; Zuo, Jiao; Peng, Ming; Li, Kaimian

    2016-01-01

    The basic leucine zipper (bZIP) transcription factor family plays crucial roles in various aspects of biological processes. Currently, no information is available regarding the bZIP family in the important tropical crop cassava. Herein, 77 bZIP genes were identified from cassava. Evolutionary analysis indicated that MebZIPs could be divided into 10 subfamilies, which was further supported by conserved motif and gene structure analyses. Global expression analysis suggested that MebZIPs showed similar or distinct expression patterns in different tissues between cultivated variety and wild subspecies. Transcriptome analysis of three cassava genotypes revealed that many MebZIP genes were activated by drought in the root of W14 subspecies, indicating the involvement of these genes in the strong resistance of cassava to drought. Expression analysis of selected MebZIP genes in response to osmotic, salt, cold, ABA, and H2O2 suggested that they might participate in distinct signaling pathways. Our systematic analysis of MebZIPs reveals constitutive, tissue-specific and abiotic stress-responsive candidate MebZIP genes for further functional characterization in planta, yields new insights into transcriptional regulation of MebZIP genes, and lays a foundation for understanding of bZIP-mediated abiotic stress response. PMID:26947924

  9. Genome-wide characterization and analysis of bZIP transcription factor gene family related to abiotic stress in cassava.

    PubMed

    Hu, Wei; Yang, Hubiao; Yan, Yan; Wei, Yunxie; Tie, Weiwei; Ding, Zehong; Zuo, Jiao; Peng, Ming; Li, Kaimian

    2016-03-07

    The basic leucine zipper (bZIP) transcription factor family plays crucial roles in various aspects of biological processes. Currently, no information is available regarding the bZIP family in the important tropical crop cassava. Herein, 77 bZIP genes were identified from cassava. Evolutionary analysis indicated that MebZIPs could be divided into 10 subfamilies, which was further supported by conserved motif and gene structure analyses. Global expression analysis suggested that MebZIPs showed similar or distinct expression patterns in different tissues between cultivated variety and wild subspecies. Transcriptome analysis of three cassava genotypes revealed that many MebZIP genes were activated by drought in the root of W14 subspecies, indicating the involvement of these genes in the strong resistance of cassava to drought. Expression analysis of selected MebZIP genes in response to osmotic, salt, cold, ABA, and H2O2 suggested that they might participate in distinct signaling pathways. Our systematic analysis of MebZIPs reveals constitutive, tissue-specific and abiotic stress-responsive candidate MebZIP genes for further functional characterization in planta, yields new insights into transcriptional regulation of MebZIP genes, and lays a foundation for understanding of bZIP-mediated abiotic stress response.

  10. Genome-wide characterization and analysis of bZIP transcription factor gene family related to abiotic stress in cassava

    PubMed Central

    Hu, Wei; Yang, Hubiao; Yan, Yan; Wei, Yunxie; Tie, Weiwei; Ding, Zehong; Zuo, Jiao; Peng, Ming; Li, Kaimian

    2016-01-01

    The basic leucine zipper (bZIP) transcription factor family plays crucial roles in various aspects of biological processes. Currently, no information is available regarding the bZIP family in the important tropical crop cassava. Herein, 77 bZIP genes were identified from cassava. Evolutionary analysis indicated that MebZIPs could be divided into 10 subfamilies, which was further supported by conserved motif and gene structure analyses. Global expression analysis suggested that MebZIPs showed similar or distinct expression patterns in different tissues between cultivated variety and wild subspecies. Transcriptome analysis of three cassava genotypes revealed that many MebZIP genes were activated by drought in the root of W14 subspecies, indicating the involvement of these genes in the strong resistance of cassava to drought. Expression analysis of selected MebZIP genes in response to osmotic, salt, cold, ABA, and H2O2 suggested that they might participate in distinct signaling pathways. Our systematic analysis of MebZIPs reveals constitutive, tissue-specific and abiotic stress-responsive candidate MebZIP genes for further functional characterization in planta, yields new insights into transcriptional regulation of MebZIP genes, and lays a foundation for understanding of bZIP-mediated abiotic stress response. PMID:26947924

  11. CsSAD: a fatty acid desaturase gene involved in abiotic resistance in Camellia sinensis (L.).

    PubMed

    Ding, Z T; Shen, J Z; Pan, L L; Wang, Y U; Li, Y S; Wang, Y; Sun, H W

    2016-01-01

    Tea (Camellia sinensis L.) is a thermophilic evergreen woody plant that has poor cold tolerance. The SAD gene plays a key role in regulating fatty acid synthesis and membrane lipid fluidity in response to temperature change. In this study, full-length SAD cDNA was cloned from tea leaves using rapid amplification of cDNA ends and polymerase chain reaction (PCR)-based methods. Sequence analysis demonstrated that CsSAD had a high similarity to other corresponding cDNAs. At 25°C, the CsSAD transcriptional level was highest in the leaf and lowest in the stem, but there was no obvious difference between the root and stem organs. CsSAD expression was investigated by reverse transcription-PCR, which showed that CsSAD was upregulated at 4° and -5°C. At 25°C, CsSAD was induced by polyethylene glycol, abscisic acid, and wounding, and a similar trend was observed at 4°C, but the mean expression level at 4°C was lower than that at 25°C. Under natural cold acclimation, the 'CsCr05' variety's CsSAD expression level increased before decreasing. The CsSAD expression level in variety 'CsCr06' showed no obvious change at first, but rapidly increased to a maximum when the temperature was very low. Our study demonstrates that CsSAD is upregulated in response to different abiotic conditions, and that it is important to study the stress resistance of the tea plant, particularly in response to low temperature, drought, and wounding. PMID:26985937

  12. Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress.

    PubMed

    Rostoks, Nils; Mudie, Sharon; Cardle, Linda; Russell, Joanne; Ramsay, Luke; Booth, Allan; Svensson, Jan T; Wanamaker, Steve I; Walia, Harkamal; Rodriguez, Edmundo M; Hedley, Peter E; Liu, Hui; Morris, Jenny; Close, Timothy J; Marshall, David F; Waugh, Robbie

    2005-12-01

    More than 2,000 genome-wide barley single nucleotide polymorphisms (SNPs) were developed by resequencing unigene fragments from eight diverse accessions. The average genome-wide SNP frequency observed in 877 unigenes was 1 SNP per 200 bp. However, SNP frequency was highly variable with the least number of SNP and SNP haplotypes observed within European cultivated germplasm reflecting effects of breeding history on genetic diversity. More than 300 SNP loci were mapped genetically in three experimental mapping populations which allowed the construction of an integrated SNP map incorporating a large number of RFLP, AFLP and SSR markers (1,237 loci in total). The genes used for SNP discovery were selected based on their transcriptional response to a variety of abiotic stresses. A set of known barley abiotic stress QTL was positioned on the linkage map, while the available sequence and gene expression information facilitated the identification of genes potentially associated with these traits. Comparison of the sequenced SNP loci to the rice genome sequence identified several regions of highly conserved gene order providing a framework for marker saturation in barley genomic regions of interest. The integration of genome-wide SNP and expression data with available genetic and phenotypic information will facilitate the identification of gene function in barley and other non-model organisms. PMID:16244872

  13. Genome-Wide Analysis of the AP2/ERF Superfamily Genes and their Responses to Abiotic Stress in Medicago truncatula

    PubMed Central

    Shu, Yongjun; Liu, Ying; Zhang, Jun; Song, Lili; Guo, Changhong

    2016-01-01

    The AP2/ERF superfamily is a large, plant-specific transcription factor family that is involved in many important processes, including plant growth, development, and stress responses. Using Medicago truncatula genome information, we identified and characterized 123 putative AP2/ERF genes, which were named as MtERF1–123. These genes were classified into four families based on phylogenetic analysis, which is consistent with the results of other plant species. MtERF genes are distributed throughout all chromosomes but are clustered on various chromosomes due to genomic tandem and segmental duplication. Using transcriptome, high-throughput sequencing data, and qRT-PCR analysis, we assessed the expression patterns of the MtERF genes in tissues during development and under abiotic stresses. In total, 87 MtERF genes were expressed in plant tissues, most of which were expressed in specific tissues during development or under specific abiotic stress treatments. These results support the notion that MtERF genes are involved in developmental regulation and environmental responses in M. truncatula. Furthermore, a cluster of DREB subfamily members on chromosome 6 was induced by both cold and freezing stress, representing a positive gene regulatory response under low temperature stress, which suggests that these genes might contribute to freezing tolerance to M. truncatula. In summary, our genome-wide characterization, evolutionary analysis, and expression pattern analysis of MtERF genes in M. truncatula provides valuable information for characterizing the molecular functions of these genes and utilizing them to improve stress tolerance in plants. PMID:26834762

  14. Isolation and characterization of the Agvip1 gene and response to abiotic and metal ions stresses in three celery cultivars.

    PubMed

    Li, Yan; Chen, Yi-Yun; Wang, Feng; Xu, Zhi-Sheng; Jiang, Qian; Xiong, Ai-Sheng

    2014-09-01

    VIP1, a VirE2-interacting protein 1, specifically interacts with VirE2 and acts as a molecular adaptor in Agrobacterium-mediated genetic transformation. This protein is widely used in plant genetic engineering. In this study, we cloned the Agvip1 gene that encodes the AgVIP1 protein from three celery (Apium graveolens) cultivars, namely, "Liuhe Huangxinqin", "Jinnan Shiqin", and "Ventura". The sequence analysis indicated that the Agvip1 gene from the three celery cultivars contained 768 bp Open Reading Frame and encoded with 255 amino acid residues. The N-terminal of AgVIP1 contained RNA recognition motif superfamily, a conserved domain. The Agvip1 gene in three cultivars had very high homology. The phylogenetic tree of VIP1-like proteins was constructed among celery and other plant species, showing that VIP1-like proteins from Solanum lycopersicum and Solanum tuberosum in Solanaceae had the shortest evolutionary relationship with AgVIP1 from A. graveolens in Apiaceae. Quantitative real-time PCR demonstrated that the Agvip1 gene had tissue-specific expression, mainly in the celery root. The expression analysis showed that the Agvip1 gene was induced by abiotic stresses differently in three celery cultivars. In "Liuhe Huangxinqin", the Agvip1 gene was up-regulated under hot, cold stresses. In "Jinnan Shiqin", the Agvip1 gene was up-regulated obviously under cold, drought treatments. However, in "Ventura", the Agvip1 gene was up-regulated under salt stress. The Agvip1 was also induced after metal ions treatments in three celery cultivars. These findings will provide more information on the Agvip1 gene and AgVIP1 protein, and enhance the understanding of the Agvip1 gene regulatory mechanisms under abiotic and metal ions stresses in celery. PMID:24969482

  15. Isolation and characterization of the Agvip1 gene and response to abiotic and metal ions stresses in three celery cultivars.

    PubMed

    Li, Yan; Chen, Yi-Yun; Wang, Feng; Xu, Zhi-Sheng; Jiang, Qian; Xiong, Ai-Sheng

    2014-09-01

    VIP1, a VirE2-interacting protein 1, specifically interacts with VirE2 and acts as a molecular adaptor in Agrobacterium-mediated genetic transformation. This protein is widely used in plant genetic engineering. In this study, we cloned the Agvip1 gene that encodes the AgVIP1 protein from three celery (Apium graveolens) cultivars, namely, "Liuhe Huangxinqin", "Jinnan Shiqin", and "Ventura". The sequence analysis indicated that the Agvip1 gene from the three celery cultivars contained 768 bp Open Reading Frame and encoded with 255 amino acid residues. The N-terminal of AgVIP1 contained RNA recognition motif superfamily, a conserved domain. The Agvip1 gene in three cultivars had very high homology. The phylogenetic tree of VIP1-like proteins was constructed among celery and other plant species, showing that VIP1-like proteins from Solanum lycopersicum and Solanum tuberosum in Solanaceae had the shortest evolutionary relationship with AgVIP1 from A. graveolens in Apiaceae. Quantitative real-time PCR demonstrated that the Agvip1 gene had tissue-specific expression, mainly in the celery root. The expression analysis showed that the Agvip1 gene was induced by abiotic stresses differently in three celery cultivars. In "Liuhe Huangxinqin", the Agvip1 gene was up-regulated under hot, cold stresses. In "Jinnan Shiqin", the Agvip1 gene was up-regulated obviously under cold, drought treatments. However, in "Ventura", the Agvip1 gene was up-regulated under salt stress. The Agvip1 was also induced after metal ions treatments in three celery cultivars. These findings will provide more information on the Agvip1 gene and AgVIP1 protein, and enhance the understanding of the Agvip1 gene regulatory mechanisms under abiotic and metal ions stresses in celery.

  16. An obesity-like gene MdTLP7 from apple (Malus × domestica) enhances abiotic stress tolerance.

    PubMed

    Du, Fan; Xu, Jia-Ning; Zhan, Chun-Yan; Yu, Zhi-Bo; Wang, Xiao-Yun

    2014-03-01

    Tubby-like proteins (TLPs) are found in a broad range of multicellular organisms. In mammals, genetic mutation of tubby or other TLPs can result in certain disease phenotypes related to animal specific characters: obesity, retinal degeneration, hearing loss, et al. Plants also harbor a large number of TLP genes, but the information in plants is far more limited. We identified a highly up-regulated obesity-like gene, MdTLP7, in our previous study of apple differential gene expression profile under chilling, indicating its possible role in plant abiotic stress tolerance. cDNA of MdTLP7 was amplified and expressed in Escherichia coli. In the solid and solution medium, the rate of growth and the quantity of the cell carrying MdTLP7 gene were significantly more than that of empty vector under salt and temperature stresses. To identify the functional region, serial deletion from both N-terminus and C-terminus of MdTLP7 was performed. In 415 amino acid polypeptide chain of MdTLP7, a middle conservative fragment (120-310 amino acid residues) played vital roles in stress tolerance. This fragment was involved in β barrel of Tubby domain according to the model of Tubby domain. All above results suggested MdTLP7 confers stress-tolerance to E. coli cell against abiotic stresses.

  17. [Characterization and subcellular localization of two SBP genes and their response to abiotic stress in soybean (Glycine max (L.) Merr.)].

    PubMed

    Yang, Yan; Wang, Shuang; Huang, Liyan; Ma, Hongyu; Shu, Yingjie; He, Xiaoling; Ma, Hao

    2014-11-01

    High temperature and humidity stress during seed growth and development of spring soybean can result in seed deterioration in South China. We isolated two genes (GmSBP and GmSBPL) encoding putative SBP proteins from soybean (Glycine max (L.) Merr.) to study their biological functions and response to abiotic stress,. The two SBP proteins are hydrophilic and incomplete membrane ones. Real-time quantitative (RT-PCR) analysis reveals that the expression of the two genes in the developing seeds of the seed deterioration resistant cultivar Xiangdou No. 3 and sensitive cultivar Ningzhen No. 1 was significantly affected by high temperature and humidity treatment. Meanwhile, the levels of sucrose and soluble sugar in the developing seeds of both cultivars were also affected under high temperature and humidity stress. During seed growth and development, the expression of the two genes as well as the levels of sucrose and soluble sugar reached the highest at 30 days after flower. GmSBP2 and GmSBPL were found to be differentially expressed in different soybean tissues. Sub-cellular localization indicated that two genes were located in cytoplasm and cell membrane. Our results indicate that GmSBP2 and GmSBPL might be involved in the response to abiotic stress, which will enrich our understanding of pre-harvest seed deterioration and resistance in soybean from one side.

  18. Identification of 30 MYB transcription factor genes and analysis of their expression during abiotic stress in peanut (Arachis hypogaea L.).

    PubMed

    Chen, Na; Yang, Qingli; Pan, Lijuan; Chi, Xiaoyuan; Chen, Mingna; Hu, Dongqing; Yang, Zhen; Wang, Tong; Wang, Mian; Yu, Shanlin

    2014-01-01

    The MYB superfamily constitutes one of the most abundant groups of transcription factors and plays central roles in developmental processes and defense responses in plants. In the work described in this article, 30 unique peanut MYB genes that contained full-length cDNA sequences were isolated. The 30 genes were grouped into three categories: one R1R2R3-MYB, nine R2R3-MYBs and 20 MYB-related members. The sequence composition of the R2 and R3 repeats was conserved among the nine peanut R2R3-MYB proteins. Phylogenetic comparison of the members of this superfamily between peanut and Arabidopsis revealed that the putative functions of some peanut MYB proteins were clustered into the Arabidopsis functional groups. Expression analysis during abiotic stress identified a group of MYB genes that responded to at least one stress treatment. This is the first comprehensive study of the MYB gene family in peanut.

  19. NAC transcription factors in plant abiotic stress responses.

    PubMed

    Nakashima, Kazuo; Takasaki, Hironori; Mizoi, Junya; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2012-02-01

    Abiotic stresses such as drought and high salinity adversely affect the growth and productivity of plants, including crops. The development of stress-tolerant crops will be greatly advantageous for modern agriculture in areas that are prone to such stresses. In recent years, several advances have been made towards identifying potential stress related genes which are capable of increasing the tolerance of plants to abiotic stress. NAC proteins are plant-specific transcription factors and more than 100 NAC genes have been identified in Arabidopsis and rice to date. Phylogenetic analyses indicate that the six major groups were already established at least in an ancient moss lineage. NAC transcription factors have a variety of important functions not only in plant development but also in abiotic stress responses. Stress-inducible NAC genes have been shown to be involved in abiotic stress tolerance. Transgenic Arabidopsis and rice plants overexpressing stress-responsive NAC (SNAC) genes have exhibited improved drought tolerance. These studies indicate that SNAC factors have important roles for the control of abiotic stress tolerance and that their overexpression can improve stress tolerance via biotechnological approaches. Although these transcription factors can bind to the same core NAC recognition sequence, recent studies have demonstrated that the effects of NAC factors for growth are different. Moreover, the NAC proteins are capable of functioning as homo- or hetero-dimer forms. Thus, SNAC factors can be useful for improving stress tolerance in transgenic plants, although the mechanism for mediating the stress tolerance of these homologous factors is complex in plants. Recent studies also suggest that crosstalk may exist between stress responses and plant growth. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.

  20. Abiotic stresses affect differently the intron splicing and expression of chloroplast genes in coffee plants (Coffea arabica) and rice (Oryza sativa).

    PubMed

    Nguyen Dinh, Sy; Sai, Than Zaw Tun; Nawaz, Ghazala; Lee, Kwanuk; Kang, Hunseung

    2016-08-20

    Despite the increasing understanding of the regulation of chloroplast gene expression in plants, the importance of intron splicing and processing of chloroplast RNA transcripts under stress conditions is largely unknown. Here, to understand how abiotic stresses affect the intron splicing and expression patterns of chloroplast genes in dicots and monocots, we carried out a comprehensive analysis of the intron splicing and expression patterns of chloroplast genes in the coffee plant (Coffea arabica) as a dicot and rice (Oryza sativa) as a monocot under abiotic stresses, including drought, cold, or combined drought and heat stresses. The photosynthetic activity of both coffee plants and rice seedlings was significantly reduced under all stress conditions tested. Analysis of the transcript levels of chloroplast genes revealed that the splicing of tRNAs and mRNAs in coffee plants and rice seedlings were significantly affected by abiotic stresses. Notably, abiotic stresses affected differently the splicing of chloroplast tRNAs and mRNAs in coffee plants and rice seedlings. The transcript levels of most chloroplast genes were markedly downregulated in both coffee plants and rice seedlings upon stress treatment. Taken together, these results suggest that coffee and rice plants respond to abiotic stresses via regulating the intron splicing and expression of different sets of chloroplast genes. PMID:27448724

  1. Overexpression of ShDHN, a dehydrin gene from Solanum habrochaites enhances tolerance to multiple abiotic stresses in tomato.

    PubMed

    Liu, Hui; Yu, Chuying; Li, Hanxia; Ouyang, Bo; Wang, Taotao; Zhang, Junhong; Wang, Xin; Ye, Zhibiao

    2015-02-01

    Dehydrins (DHNs) play important roles in plant adaptation to abiotic stress. In this study, a cold-induced SK3-type DHN gene (ShDHN) isolated from wild tomato species Solanum habrochaites was characterized for its function in abiotic stress tolerance. ShDHN was constitutively expressed in root, leaf, stem, flower and fruit. ShDHN was continuously up-regulated during cold stress and showed higher expression level in the cold-tolerant S. habrochaites than in the susceptible S. lycopersicum. Moreover, ShDHN expression was also regulated by drought, salt, osmotic stress, and exogenous signaling molecules. Overexpression of ShDHN in cultivated tomato increased tolerance to cold and drought stresses and improved seedling growth under salt and osmotic stresses. Compared with the wild-type, the transgenic plants accumulated more proline, maintained higher enzymatic activities of superoxide dismutase and catalase, and suffered less membrane damage under cold and drought stresses. Moreover, the transgenic plants accumulated lower levels of H2O2 and O2(-) under cold stress, and had higher relative water contents and lower water loss rates under dehydration conditions. Furthermore, overexpression of ShDHN in tomato led to the up- or down-regulated expression of several genes involved in ROS scavenging and JA signaling pathway, including SOD1, GST, POD, LOX, PR1 and PR2. Taken together, these results indicate that ShDHN has pleiotropic effects on improving plant adaptation to abiotic stresses and that it possesses potential usefulness in genetic improvement of stress tolerance in tomato. PMID:25576005

  2. Systematic analysis of maize class III peroxidase gene family reveals a conserved subfamily involved in abiotic stress response.

    PubMed

    Wang, Yu; Wang, Qianqian; Zhao, Yang; Han, Guomin; Zhu, Suwen

    2015-07-15

    Class III peroxidases (PRXs) are plant-specific enzymes that play key roles in the responses to biotic and abiotic stress during plant growth and development. In this study, we identified 119 nonredundant PRX genes (designated ZmPRXs). These PRX genes were divided into 18 groups based on their phylogenetic relationships. We performed systematic bioinformatics analysis of the PRX genes, including analysis of gene structures, conserved motifs, phylogenetic relationships and gene expression profiles. The ZmPRXs are unevenly distributed on the 10 maize chromosomes. In addition, these genes have undergone 16 segmental duplication and 12 tandem duplication events, indicating that both segmental and tandem duplication were the main contributors to the expansion of the maize PRX family. Ka/Ks analysis suggested that most duplicated ZmPRXs experienced purifying selection, with limited functional divergence during the duplication events, and comparative analysis among maize, sorghum and rice revealed that there were independent duplication events besides the whole-genome duplication of the maize genome. Furthermore, microarray analysis indicated that most highly expressed genes might play significant roles in root. We examined the expression of five candidate ZmPRXs under H2O2, SA, NaCl and PEG stress conditions using quantitative real-time PCR (qRT-PCR), revealing differential expression patterns. This study provides useful information for further functional analysis of the PRX gene family in maize.

  3. A combination of gene expression ranking and co-expression network analysis increases discovery rate in large-scale mutant screens for novel Arabidopsis thaliana abiotic stress genes.

    PubMed

    Ransbotyn, Vanessa; Yeger-Lotem, Esti; Basha, Omer; Acuna, Tania; Verduyn, Christoph; Gordon, Michal; Chalifa-Caspi, Vered; Hannah, Matthew A; Barak, Simon

    2015-05-01

    As challenges to food security increase, the demand for lead genes for improving crop production is growing. However, genetic screens of plant mutants typically yield very low frequencies of desired phenotypes. Here, we present a powerful computational approach for selecting candidate genes for screening insertion mutants. We combined ranking of Arabidopsis thaliana regulatory genes according to their expression in response to multiple abiotic stresses (Multiple Stress [MST] score), with stress-responsive RNA co-expression network analysis to select candidate multiple stress regulatory (MSTR) genes. Screening of 62 T-DNA insertion mutants defective in candidate MSTR genes, for abiotic stress germination phenotypes yielded a remarkable hit rate of up to 62%; this gene discovery rate is 48-fold greater than that of other large-scale insertional mutant screens. Moreover, the MST score of these genes could be used to prioritize them for screening. To evaluate the contribution of the co-expression analysis, we screened 64 additional mutant lines of MST-scored genes that did not appear in the RNA co-expression network. The screening of these MST-scored genes yielded a gene discovery rate of 36%, which is much higher than that of classic mutant screens but not as high as when picking candidate genes from the co-expression network. The MSTR co-expression network that we created, AraSTressRegNet is publicly available at http://netbio.bgu.ac.il/arnet. This systems biology-based screening approach combining gene ranking and network analysis could be generally applicable to enhancing identification of genes regulating additional processes in plants and other organisms provided that suitable transcriptome data are available. PMID:25370817

  4. A combination of gene expression ranking and co-expression network analysis increases discovery rate in large-scale mutant screens for novel Arabidopsis thaliana abiotic stress genes.

    PubMed

    Ransbotyn, Vanessa; Yeger-Lotem, Esti; Basha, Omer; Acuna, Tania; Verduyn, Christoph; Gordon, Michal; Chalifa-Caspi, Vered; Hannah, Matthew A; Barak, Simon

    2015-05-01

    As challenges to food security increase, the demand for lead genes for improving crop production is growing. However, genetic screens of plant mutants typically yield very low frequencies of desired phenotypes. Here, we present a powerful computational approach for selecting candidate genes for screening insertion mutants. We combined ranking of Arabidopsis thaliana regulatory genes according to their expression in response to multiple abiotic stresses (Multiple Stress [MST] score), with stress-responsive RNA co-expression network analysis to select candidate multiple stress regulatory (MSTR) genes. Screening of 62 T-DNA insertion mutants defective in candidate MSTR genes, for abiotic stress germination phenotypes yielded a remarkable hit rate of up to 62%; this gene discovery rate is 48-fold greater than that of other large-scale insertional mutant screens. Moreover, the MST score of these genes could be used to prioritize them for screening. To evaluate the contribution of the co-expression analysis, we screened 64 additional mutant lines of MST-scored genes that did not appear in the RNA co-expression network. The screening of these MST-scored genes yielded a gene discovery rate of 36%, which is much higher than that of classic mutant screens but not as high as when picking candidate genes from the co-expression network. The MSTR co-expression network that we created, AraSTressRegNet is publicly available at http://netbio.bgu.ac.il/arnet. This systems biology-based screening approach combining gene ranking and network analysis could be generally applicable to enhancing identification of genes regulating additional processes in plants and other organisms provided that suitable transcriptome data are available.

  5. Reference Gene Validation for Quantitative PCR Under Various Biotic and Abiotic Stress Conditions in Toxoptera citricida (Hemiptera, Aphidiae).

    PubMed

    Shang, Feng; Wei, Dan-Dan; Jiang, Xuan-Zhao; Wei, Dong; Shen, Guang-Mao; Feng, Ying-Cai; Li, Ting; Wang, Jin-Jun

    2015-08-01

    The regulation of mRNA expression level is critical for gene expression studies. Currently, quantitative reverse transcription polymerase chain reaction (qRT-PCR) is commonly used to investigate mRNA expression level of genes under various experimental conditions. An important factor that determines the optimal quantification of qRT-PCR data is the choice of the reference gene for normalization. To advance gene expression studies in Toxoptera citricida (Kirkaldy), an important citrus pest and a main vector of the Citrus tristeza virus, we used five tools (GeNorm, NormFinder, BestKeeper, ΔCt methods, and RefFinder) to evaluate seven candidate reference genes (elongation factor-1 alpha [EF1α], beta tubulin [β-TUB], 18S ribosomal RNA [18S], RNA polymerase II large subunit (RNAP II), beta actin (β-ACT), alpha tubulin, and glyceraldhyde-3-phosphate dehydrogenase) under different biotic (developmental stages and wing dimorphism) and abiotic stress (thermal, starvation, and UV irradiation) conditions. The results showed that EF1α and 18S were the most stable genes under various biotic states, β-ACT and β-TUB during thermal stress, EF1α and RNAP II under starvation stress, and RNAP II, β-ACT, and EF1α under UV irradiation stress conditions. This study provides useful resources for the transcriptional profiling of genes in T. citricida and closely related aphid species. PMID:26470351

  6. Selection of Suitable Reference Genes for qPCR Normalization under Abiotic Stresses and Hormone Stimuli in Carrot Leaves

    PubMed Central

    Tian, Chang; Jiang, Qian; Wang, Feng; Wang, Guang-Long; Xu, Zhi-Sheng; Xiong, Ai-Sheng

    2015-01-01

    Carrot, a biennial herb of the Apiaceae family, is among the most important vegetable crops in the world. In this study, nine candidate reference genes (GAPDH, ACTIN, eIF-4α, PP2A, SAND, TIP41, UBQ, EF-1α, and TUB) were cloned from carrot. Carrot plants were subjected to abiotic stresses (heat, cold, salt, and drought) and hormone stimuli (gibberellin, salicylic acid, methyl jasmonate, and abscisic acid). The expression profiles of the candidate reference genes were evaluated in three technical and biological replicates. Real-time qPCR data analyses were performed using three commonly used Excel-based applets namely, BestKeeper, geNorm, and NormFinder. ACTIN and TUB were the most stable genes identified among all sample groups, but individual analysis revealed changes in their expression profiles. GAPDH displayed the maximum stability for most of single stresses. To further validate the suitability of the reference genes identified in this study, the expression profile of DcDREB-A1 gene (homolog of AtDREB-A1 gene of Arabidophsis) was studied in carrot. The appropriate reference genes were selected that showed stable expression under the different experimental conditions. PMID:25658122

  7. Selection and validation of reference genes for target gene analysis with quantitative RT-PCR in leaves and roots of bermudagrass under four different abiotic stresses.

    PubMed

    Chen, Yu; Tan, Zhiqun; Hu, Baoyun; Yang, Zhimin; Xu, Bin; Zhuang, Lili; Huang, Bingru

    2014-10-21

    Quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR) is an effective method for quantifying expression levels of target genes. The accuracy of qRT-PCR results is largely dependent on the selection of stable reference genes. The stability of reference gene expression may vary with plant species and environmental conditions. The objective of this study was to select stable reference genes for qRT-PCR analysis of target genes in different organs under different abiotic stresses for a perennial grass species, bermudagrass (Cynodon dactylon). The stability of eight potential reference genes (TUB, ACT, GAPDH, EF1α, TIP41, PP2A, CACS and UPL7) was evaluated under four different abiotic stresses (salt, drought, cold and heat) and in leaves and roots of bermudagrass. Four programs (geNorm, NormFinder, BestKeeper and RefFinder) were employed to evaluate the stability of reference gene expression and to identify the most stable reference genes for bermudagrass. Eight potential reference genes exhibited differential expression stability in leaves and roots under salt, drought, cold and heat stress. The expression levels of PP2A and CACS were stable in roots and leaves under salt stress, in leaves under drought stress and in roots exposed to cold and heat stress. EF1α and TIP41 expression was stable in roots of drought-stressed plants. UPL7, TUB and GAPDH were stably expressed in leaves under cold stress. Expression levels of PP2A and TIP41 were stable in leaves under heat stress. The use of the reference genes identified as internal controls for examination of gene expression patterns and quantification of expression levels of target genes will enable accurate qRT-PCR analysis in bermudagrass.

  8. Improved Alkane Production in Nitrogen-Fixing and Halotolerant Cyanobacteria via Abiotic Stresses and Genetic Manipulation of Alkane Synthetic Genes.

    PubMed

    Kageyama, Hakuto; Waditee-Sirisattha, Rungaroon; Sirisattha, Sophon; Tanaka, Yoshito; Mahakhant, Aparat; Takabe, Teruhiro

    2015-07-01

    Cyanobacteria possess the unique capacity to produce alkane. In this study, effects of nitrogen deficiency and salt stress on biosynthesis of alkanes were investigated in three kinds of cyanobacteria. Intracellular alkane accumulation was increased in nitrogen-fixing cyanobacterium Anabaena sp. PCC7120, but decreased in non-diazotrophic cyanobacterium Synechococcus elongatus PCC7942 and constant in a halotolerant cyanobacterium Aphanothece halophytica under nitrogen-deficient condition. We also found that salt stress increased alkane accumulation in Anabaena sp. PCC7120 and A. halophytica. The expression levels of two alkane synthetic genes were not upregulated significantly under nitrogen deficiency or salt stress in Anabaena sp. PCC7120. The transformant Anabaena sp. PCC7120 cells with additional alkane synthetic gene set from A. halophytica increased intracellular alkane accumulation level compared to control cells. These results provide a prospect to improve bioproduction of alkanes in nitrogen-fixing halotolerant cyanobacteria via abiotic stresses and genetic engineering.

  9. Reference gene selection for quantitative real-time reverse-transcriptase PCR in orchardgrass subjected to various abiotic stresses.

    PubMed

    Huang, Linkai; Yan, Haidong; Jiang, Xiaomei; Zhang, Yu; Zhang, Xinquan; Ji, Yang; Zeng, Bing; Xu, Bin; Yin, Guohua; Lee, Samantha; Yan, Yanhong; Ma, Xiao; Peng, Yan

    2014-12-15

    Quantitative real-time reverse-transcriptase PCR (qRT-PCR) is a powerful tool for the measurement of gene expression; however, the accuracy of this approach depends on the stability of reference genes. The objective of the present study was to identify the stable reference genes in orchardgrass (Dactylis glomerata L.), a principal cool-season forage grass in the world. Ten candidate reference genes were selected in this study including ATP-binding [ABC], actin [ACTIN], cyclophilin [CYP2], glyceraldehyde 3-phosphate dehydrogenase [GAPDH], beta-amylase 4 [BAM4], zeitlupe [ZTL], MAP Kinase 4 [MPK4], ubiquitin-conjugating enzyme [UBC], S-adenosylmethionine decarboxylase [SAMDC], and translationally controlled tumor protein [TCTP]. The candidate genes were assessed in orchardgrass leaves and roots under conditions of drought, high salinity, heat, waterlogging, and abscisic acid (ABA) treatments. We used GeNorm, BestKeeper, NormFinder, and RefFinder for qRT-PCR normalization and validation to determine that the expression of these reference genes was stress-dependent. ACTIN, CYP2, and ABC were found to be the most stably expressed genes for drought stress while ACTIN, TCTP, and ABC were the most stable under salt stress. ACTIN, CYP2, and ABC were all found to be good reference genes for studying heat stress. Likewise, CYP2, MPK4, and ABC were most suitable to study waterlogging, and ACTIN, CYP2, and MPK4 were determined as the three best reference genes for ABA studies. Our study identified and validated the possible reference genes in orchardgrass that may be used for quantification of target gene expression under various abiotic stresses.

  10. Genome-Wide Identification of R2R3-MYB Genes and Expression Analyses During Abiotic Stress in Gossypium raimondii

    PubMed Central

    He, Qiuling; Jones, Don C.; Li, Wei; Xie, Fuliang; Ma, Jun; Sun, Runrun; Wang, Qinglian; Zhu, Shuijin; Zhang, Baohong

    2016-01-01

    The R2R3-MYB is one of the largest families of transcription factors, which have been implicated in multiple biological processes. There is great diversity in the number of R2R3-MYB genes in different plants. However, there is no report on genome-wide characterization of this gene family in cotton. In the present study, a total of 205 putative R2R3-MYB genes were identified in cotton D genome (Gossypium raimondii), that are much larger than that found in other cash crops with fully sequenced genomes. These GrMYBs were classified into 13 groups with the R2R3-MYB genes from Arabidopsis and rice. The amino acid motifs and phylogenetic tree were predicted and analyzed. The sequences of GrMYBs were distributed across 13 chromosomes at various densities. The results showed that the expansion of the G. Raimondii R2R3-MYB family was mainly attributable to whole genome duplication and segmental duplication. Moreover, the expression pattern of 52 selected GrMYBs and 46 GaMYBs were tested in roots and leaves under different abiotic stress conditions. The results revealed that the MYB genes in cotton were differentially expressed under salt and drought stress treatment. Our results will be useful for determining the precise role of the MYB genes during stress responses with crop improvement. PMID:27009386

  11. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress.

    PubMed

    Nicot, Nathalie; Hausman, Jean-François; Hoffmann, Lucien; Evers, Danièle

    2005-11-01

    Plant stress studies are more and more based on gene expression. The analysis of gene expression requires sensitive, precise, and reproducible measurements for specific mRNA sequences. Real-time RT-PCR is at present the most sensitive method for the detection of low abundance mRNA. To avoid bias, real-time RT-PCR is referred to one or several internal control genes, which should not fluctuate during treatments. Here, the non-regulation of seven housekeeping genes (beta-tubulin, cyclophilin, actin, elongation factor 1-alpha (ef1alpha), 18S rRNA, adenine phosphoribosyl transferase (aprt), and cytoplasmic ribosomal protein L2) during biotic (late blight) and abiotic stresses (cold and salt stress) was tested on potato plants using geNorm software. Results from the three experimental conditions indicated that ef1alpha was the most stable among the seven tested. The expression of the other housekeeping genes tested varied upon stress. In parallel, a study of the variability of expression of hsp20.2, shown to be implicated in late blight stress, was realized. The relative quantification of the hsp20.2 gene varied according to the internal control and the number of internal controls used, thus highlighting the importance of the choice of internal controls in such experiments.

  12. Differential Regulation of Genes Coding for Organelle and Cytosolic ClpATPases under Biotic and Abiotic Stresses in Wheat

    PubMed Central

    Muthusamy, Senthilkumar K.; Dalal, Monika; Chinnusamy, Viswanathan; Bansal, Kailash C.

    2016-01-01

    A sub-group of class I Caseinolytic proteases (Clps) function as molecular chaperone and confer thermotolerance to plants. We identified class I Clp family consisting of five ClpB/HSP100, two ClpC, and two ClpD genes from bread wheat. Phylogenetic analysis showed that these genes were highly conserved across grass genomes. Subcellular localization prediction revealed that TaClpC and TaClpD subgroup proteins and TaClpB1 proteins are potentially targeted to chloroplast, while TaClpB5 to mitochondria, and TaClpB2, TaClpB3, and TaClpB4 to cytoplasm. Spatio-temporal expression pattern analysis revealed that four TaClpB and TaClpD2 genes are expressed in majority of all tissues and developmental stages of wheat. Real-time RT-PCR analysis of expression levels of Clp genes in seven wheat genotypes under different abiotic stresses revealed that genes coding for the cytosolic Clps namely TaClpB2 and TaClpB3 were upregulated under heat, salt and oxidative stress but were downregulated by cold stress in most genotypes. In contrast, genes coding for the chloroplastic Clps TaClpC1, TaClpC2, and TaClpD1 genes were significantly upregulated by mainly by cold stress in most genotypes, while TaClpD2 gene was upregulated >2 fold by salt stress in DBW16. The TaClpB5 gene coding for mitochondrial Clp was upregulated in all genotypes under heat, salt and oxidative stresses. In addition, we found that biotic stresses also upregulated TaClpB4 and TaClpD1. Among biotic stresses, Tilletia caries induced TaClpB2, TaClpB3, TaClpC1, and TaClpD1. Differential expression pattern under different abiotic and biotic stresses and predicted differential cellular localization of Clps suggest their non-redundant organelle and stress-specific roles. Our results also suggest the potential role of Clps in cold, salt and biotic stress responses in addition to the previously established role in thermotolerance of wheat. PMID:27446158

  13. Differential Regulation of Genes Coding for Organelle and Cytosolic ClpATPases under Biotic and Abiotic Stresses in Wheat.

    PubMed

    Muthusamy, Senthilkumar K; Dalal, Monika; Chinnusamy, Viswanathan; Bansal, Kailash C

    2016-01-01

    A sub-group of class I Caseinolytic proteases (Clps) function as molecular chaperone and confer thermotolerance to plants. We identified class I Clp family consisting of five ClpB/HSP100, two ClpC, and two ClpD genes from bread wheat. Phylogenetic analysis showed that these genes were highly conserved across grass genomes. Subcellular localization prediction revealed that TaClpC and TaClpD subgroup proteins and TaClpB1 proteins are potentially targeted to chloroplast, while TaClpB5 to mitochondria, and TaClpB2, TaClpB3, and TaClpB4 to cytoplasm. Spatio-temporal expression pattern analysis revealed that four TaClpB and TaClpD2 genes are expressed in majority of all tissues and developmental stages of wheat. Real-time RT-PCR analysis of expression levels of Clp genes in seven wheat genotypes under different abiotic stresses revealed that genes coding for the cytosolic Clps namely TaClpB2 and TaClpB3 were upregulated under heat, salt and oxidative stress but were downregulated by cold stress in most genotypes. In contrast, genes coding for the chloroplastic Clps TaClpC1, TaClpC2, and TaClpD1 genes were significantly upregulated by mainly by cold stress in most genotypes, while TaClpD2 gene was upregulated >2 fold by salt stress in DBW16. The TaClpB5 gene coding for mitochondrial Clp was upregulated in all genotypes under heat, salt and oxidative stresses. In addition, we found that biotic stresses also upregulated TaClpB4 and TaClpD1. Among biotic stresses, Tilletia caries induced TaClpB2, TaClpB3, TaClpC1, and TaClpD1. Differential expression pattern under different abiotic and biotic stresses and predicted differential cellular localization of Clps suggest their non-redundant organelle and stress-specific roles. Our results also suggest the potential role of Clps in cold, salt and biotic stress responses in addition to the previously established role in thermotolerance of wheat. PMID:27446158

  14. Genome-Wide Identification and Expression Profiling of Tomato Hsp20 Gene Family in Response to Biotic and Abiotic Stresses

    PubMed Central

    Yu, Jiahong; Cheng, Yuan; Feng, Kun; Ruan, Meiying; Ye, Qingjing; Wang, Rongqing; Li, Zhimiao; Zhou, Guozhi; Yao, Zhuping; Yang, Yuejian; Wan, Hongjian

    2016-01-01

    genes could be induced profusely by abiotic and biotic stresses such as heat, drought, salt, Botrytis cinerea, and Tomato Spotted Wilt Virus (TSWV), indicating their potential roles in mediating the response of tomato plants to environment stresses. In conclusion, these results provide valuable information for elucidating the evolutionary relationship of Hsp20 gene family and functional characterization of the SlHsp20 gene family in the future. PMID:27582749

  15. Genome-Wide Identification and Expression Profiling of Tomato Hsp20 Gene Family in Response to Biotic and Abiotic Stresses.

    PubMed

    Yu, Jiahong; Cheng, Yuan; Feng, Kun; Ruan, Meiying; Ye, Qingjing; Wang, Rongqing; Li, Zhimiao; Zhou, Guozhi; Yao, Zhuping; Yang, Yuejian; Wan, Hongjian

    2016-01-01

    genes could be induced profusely by abiotic and biotic stresses such as heat, drought, salt, Botrytis cinerea, and Tomato Spotted Wilt Virus (TSWV), indicating their potential roles in mediating the response of tomato plants to environment stresses. In conclusion, these results provide valuable information for elucidating the evolutionary relationship of Hsp20 gene family and functional characterization of the SlHsp20 gene family in the future. PMID:27582749

  16. Genome-Wide Identification and Expression Profiling of Tomato Hsp20 Gene Family in Response to Biotic and Abiotic Stresses.

    PubMed

    Yu, Jiahong; Cheng, Yuan; Feng, Kun; Ruan, Meiying; Ye, Qingjing; Wang, Rongqing; Li, Zhimiao; Zhou, Guozhi; Yao, Zhuping; Yang, Yuejian; Wan, Hongjian

    2016-01-01

    genes could be induced profusely by abiotic and biotic stresses such as heat, drought, salt, Botrytis cinerea, and Tomato Spotted Wilt Virus (TSWV), indicating their potential roles in mediating the response of tomato plants to environment stresses. In conclusion, these results provide valuable information for elucidating the evolutionary relationship of Hsp20 gene family and functional characterization of the SlHsp20 gene family in the future.

  17. Clones of FeSOD, MDHAR, DHAR Genes from White Clover and Gene Expression Analysis of ROS-Scavenging Enzymes during Abiotic Stress and Hormone Treatments.

    PubMed

    Zhang, Yan; Li, Zhou; Peng, Yan; Wang, Xiaojuan; Peng, Dandan; Li, Yaping; He, Xiaoshuang; Zhang, Xinquan; Ma, Xiao; Huang, Linkai; Yan, Yanhong

    2015-01-01

    Increased transcriptional levels of genes encoding antioxidant enzymes play important protective roles in coping with excessive accumulation of reactive oxygen species (ROS) in plants exposed to various abiotic stresses. To fully elucidate different evolutions and functions of ROS-scavenging enzymatic genes, we isolated iron superoxide dismutase (FeSOD), dehydroascorbate reductase (DHAR) and monodehydroascorbate reductase (MDHAR) from white clover for the first time and subsequently tested dynamic expression profiles of these genes together with previously identified other antioxidant enzyme genes including copper zinc superoxide dismutase (Cu/ZnSOD), manganese superoxide dismutase (MnSOD), glutathione reductase (GR), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) in response to cold, drought, salinity, cadmium stress and exogenous abscisic acid (ABA) or spermidine (Spd) treatment. The cloned fragments of FeSOD, DHAR and MDHAR genes were 630, 471 and 669 bp nucleotide sequences encoding 210, 157 and 223 amino acids, respectively. Phylogenetic analysis indicated that both amino acid and nucleotide sequences of these three genes are highly conservative. In addition, the analysis of genes expression showed the transcription of GR, POD, MDHAR, DHAR and Cu/ZnSOD were rapidly activated with relatively high abundance during cold stress. Differently, CAT, APX, FeSOD, Cu/ZnSOD and MnSOD exhibited more abundant transcripts compared to others under drought stress. Under salt stress, CAT was induced preferentially (3-12 h) compared to GR which was induced later (12-72 h). Cadmium stress mainly up-regulated Cu/ZnSOD, DHAR and MDHAR. Interestingly, most of genes expression induced by ABA or Spd happened prior to various abiotic stresses. The particular expression patterns and different response time of these genes indicated that white clover differentially activates genes encoding antioxidant enzymes to mitigate the damage of ROS during various environmental

  18. A single gene all3940 (Dps) overexpression in Anabaena sp. PCC 7120 confers multiple abiotic stress tolerance via proteomic alterations.

    PubMed

    Narayan, Om Prakash; Kumari, Nidhi; Bhargava, Poonam; Rajaram, Hema; Rai, Lal Chand

    2016-01-01

    DNA-binding proteins (Dps) induced during starvation play an important role in gene regulation and maintaining homeostasis in bacteria. The nitrogen-fixing cyanobacterium, Anabaena PCC7120, has four genes annotated as coding for Dps; however, the information on their physiological roles is limiting. One of the genes coding for Dps, 'all3940' was found to be induced under different abiotic stresses in Anabaena and upon overexpression enhanced the tolerance of Anabaena to a multitude of stresses, which included salinity, heat, heavy metals, pesticide, and nutrient starvation. On the other hand, mutation in the gene resulted in decreased growth of Anabaena. The modulation in the levels of All3940 in Anabaena, achieved either by overexpression of the protein or mutation of the gene, resulted in changes in the proteome, which correlated well with the physiological changes observed. Proteins required for varied physiological activities, such as photosynthesis, carbon-metabolism, oxidative stress alleviation, exhibited change in protein profile upon modulation of All3940 levels in Anabaena. This suggested a direct or an indirect effect of All3940 on the expression of the above stress-responsive proteins, thereby enhancing tolerance in Anabaena PCC7120. Thus, All3940, though categorized as a Dps, is possibly a general stress protein having a global role in regulating tolerance to multitude of stresses in Anabaena.

  19. A soybean β-expansin gene GmEXPB2 intrinsically involved in root system architecture responses to abiotic stresses.

    PubMed

    Guo, Wenbing; Zhao, Jing; Li, Xinxin; Qin, Lu; Yan, Xiaolong; Liao, Hong

    2011-05-01

    Root system architecture responds plastically to some abiotic stresses, including phosphorus (P), iron (Fe) and water deficiency, but its response mechanism is still unclear. We cloned and characterized a vegetative β-expansin gene, GmEXPB2, from a Pi starvation-induced soybean cDNA library. Transient expression of 35S::GmEXPB2-GFP in onion epidermal cells verified that GmEXPB2 is a secretory protein located on the cell wall. GmEXPB2 was found to be primarily expressed in roots, and was highly induced by Pi starvation, and the induction pattern was confirmed by GUS staining in transgenic soybean hairy roots. Results from intact soybean composite plants either over-expressing GmEXPB2 or containing knockdown constructs, showed that GmEXPB2 is involved in hairy root elongation, and subsequently affects plant growth and P uptake, especially at low P levels. The results from a heterogeneous transformation system indicated that over-expressing GmEXPB2 in Arabidopsis increased root cell division and elongation, and enhanced plant growth and P uptake at both low and high P levels. Furthermore, we found that, in addition to Pi starvation, GmEXPB2 was also induced by Fe and mild water deficiencies. Taken together, our results suggest that GmEXPB2 is a critical root β-expansin gene that is intrinsically involved in root system architecture responses to some abiotic stresses, including P, Fe and water deficiency. In the case of Pi starvation responses, GmEXPB2 may enhance both P efficiency and P responsiveness by regulating adaptive changes of the root system architecture. This finding has great agricultural potential for improving crop P uptake on both low-P and P-fertilized soils.

  20. An R2R3 MYB transcription factor in wheat, TaPIMP1, mediates host resistance to Bipolaris sorokiniana and drought stresses through regulation of defense- and stress-related genes.

    PubMed

    Zhang, Zengyan; Liu, Xin; Wang, Xindong; Zhou, Miaoping; Zhou, Xianyao; Ye, Xingguo; Wei, Xuening

    2012-12-01

    In this study, we report new insights into the function of a wheat (Triticum aestivum) MYB gene TaPIMP1 through overexpression and underexpression, and its underlying mechanism in wheat. Electrophoretic mobility shift and yeast-one-hybrid assays indicated that TaPIMP1 can bind to five MYB-binding sites including ACI, and activate the expression of the genes with the cis-element, confirming that TaPIMP1 is an MYB transcription activator. TaPIMP1-overexpressing transgenic wheat exhibited significantly enhanced resistance to the fungal pathogen Bipolaris sorokiniana and drought stresses, whereas TaPIMP1-underexpressing transgenic wheat showed more susceptibility to the stresses compared with untransformed wheat, revealing that TaPIMP1 positively modulates host-defense responses to B. sorokiniana and drought stresses. Microarray analysis showed that a subset of defense- and stress-related genes were up-regulated by TaPIMP1. These genes, including TaPIMP1, RD22, TLP4 and PR1a, were regulated by ABA and salicylic acid (SA). TaPIMP1-underexpressing transgenic wheat showed compromised induction of these stress-responsive genes following ABA and SA treatments. In summary, TaPIMP1, as a positive molecular linker, mediates resistance to B. sorokiniana and drought stresses by regulation of stress-related genes in ABA- and SA-signaling pathways in wheat. Furthermore, TaPIMP1 may provide a transgenic tool for engineering multiple-resistance wheat in breeding programs.

  1. Comprehensive Genomic Analysis and Expression Profiling of the NOX Gene Families under Abiotic Stresses and Hormones in Plants.

    PubMed

    Chang, Yan-Li; Li, Wen-Yan; Miao, Hai; Yang, Shuai-Qi; Li, Ri; Wang, Xiang; Li, Wen-Qiang; Chen, Kun-Ming

    2016-03-01

    Plasma membrane NADPH oxidases (NOXs) are key producers of reactive oxygen species under both normal and stress conditions in plants and they form functional subfamilies. Studies of these subfamilies indicated that they show considerable evolutionary selection. We performed a comparative genomic analysis that identified 50 ferric reduction oxidases (FRO) and 77 NOX gene homologs from 20 species representing the eight major plant lineages within the supergroup Plantae: glaucophytes, rhodophytes, chlorophytes, bryophytes, lycophytes, gymnosperms, monocots, and eudicots. Phylogenetic and structural analysis classified these FRO and NOX genes into four well-conserved groups represented as NOX, FRO I, FRO II, and FRO III. Further analysis of NOXs of phylogenetic and exon/intron structures showed that single intron loss and gain had occurred, yielding the diversified gene structures during the evolution of NOXs family genes and which were classified into four conserved subfamilies which are represented as Sub.I, Sub.II, Sub.III, and Sub.IV. Additionally, both available global microarray data analysis and quantitative real-time PCR experiments revealed that the NOX genes in Arabidopsis and rice (Oryza sativa) have different expression patterns in different developmental stages, various abiotic stresses and hormone treatments. Finally, coexpression network analysis of NOX genes in Arabidopsis and rice revealed that NOXs have significantly correlated expression profiles with genes which are involved in plants metabolic and resistance progresses. All these results suggest that NOX family underscores the functional diversity and divergence in plants. This finding will facilitate further studies of the NOX family and provide valuable information for functional validation of this family in plants. PMID:26907500

  2. Comprehensive Genomic Analysis and Expression Profiling of the NOX Gene Families under Abiotic Stresses and Hormones in Plants.

    PubMed

    Chang, Yan-Li; Li, Wen-Yan; Miao, Hai; Yang, Shuai-Qi; Li, Ri; Wang, Xiang; Li, Wen-Qiang; Chen, Kun-Ming

    2016-02-23

    Plasma membrane NADPH oxidases (NOXs) are key producers of reactive oxygen species under both normal and stress conditions in plants and they form functional subfamilies. Studies of these subfamilies indicated that they show considerable evolutionary selection. We performed a comparative genomic analysis that identified 50 ferric reduction oxidases (FRO) and 77 NOX gene homologs from 20 species representing the eight major plant lineages within the supergroup Plantae: glaucophytes, rhodophytes, chlorophytes, bryophytes, lycophytes, gymnosperms, monocots, and eudicots. Phylogenetic and structural analysis classified these FRO and NOX genes into four well-conserved groups represented as NOX, FRO I, FRO II, and FRO III. Further analysis of NOXs of phylogenetic and exon/intron structures showed that single intron loss and gain had occurred, yielding the diversified gene structures during the evolution of NOXs family genes and which were classified into four conserved subfamilies which are represented as Sub.I, Sub.II, Sub.III, and Sub.IV. Additionally, both available global microarray data analysis and quantitative real-time PCR experiments revealed that the NOX genes in Arabidopsis and rice (Oryza sativa) have different expression patterns in different developmental stages, various abiotic stresses and hormone treatments. Finally, coexpression network analysis of NOX genes in Arabidopsis and rice revealed that NOXs have significantly correlated expression profiles with genes which are involved in plants metabolic and resistance progresses. All these results suggest that NOX family underscores the functional diversity and divergence in plants. This finding will facilitate further studies of the NOX family and provide valuable information for functional validation of this family in plants.

  3. Comprehensive Genomic Analysis and Expression Profiling of the NOX Gene Families under Abiotic Stresses and Hormones in Plants

    PubMed Central

    Chang, Yan-Li; Li, Wen-Yan; Miao, Hai; Yang, Shuai-Qi; Li, Ri; Wang, Xiang; Li, Wen-Qiang; Chen, Kun-Ming

    2016-01-01

    Plasma membrane NADPH oxidases (NOXs) are key producers of reactive oxygen species under both normal and stress conditions in plants and they form functional subfamilies. Studies of these subfamilies indicated that they show considerable evolutionary selection. We performed a comparative genomic analysis that identified 50 ferric reduction oxidases (FRO) and 77 NOX gene homologs from 20 species representing the eight major plant lineages within the supergroup Plantae: glaucophytes, rhodophytes, chlorophytes, bryophytes, lycophytes, gymnosperms, monocots, and eudicots. Phylogenetic and structural analysis classified these FRO and NOX genes into four well-conserved groups represented as NOX, FRO I, FRO II, and FRO III. Further analysis of NOXs of phylogenetic and exon/intron structures showed that single intron loss and gain had occurred, yielding the diversified gene structures during the evolution of NOXs family genes and which were classified into four conserved subfamilies which are represented as Sub.I, Sub.II, Sub.III, and Sub.IV. Additionally, both available global microarray data analysis and quantitative real-time PCR experiments revealed that the NOX genes in Arabidopsis and rice (Oryza sativa) have different expression patterns in different developmental stages, various abiotic stresses and hormone treatments. Finally, coexpression network analysis of NOX genes in Arabidopsis and rice revealed that NOXs have significantly correlated expression profiles with genes which are involved in plants metabolic and resistance progresses. All these results suggest that NOX family underscores the functional diversity and divergence in plants. This finding will facilitate further studies of the NOX family and provide valuable information for functional validation of this family in plants. PMID:26907500

  4. A bHLH gene from Tamarix hispida improves abiotic stress tolerance by enhancing osmotic potential and decreasing reactive oxygen species accumulation.

    PubMed

    Ji, Xiaoyu; Nie, Xianguang; Liu, Yujia; Zheng, Lei; Zhao, Huimin; Zhang, Bing; Huo, Lin; Wang, Yucheng

    2016-02-01

    Basic helix-loop-helix (bHLH) leucine-zipper transcription factors play important roles in abiotic stress responses. However, their specific roles in abiotic stress tolerance are not fully known. Here, we functionally characterized a bHLH gene, ThbHLH1, from Tamarix hispida in abiotic stress tolerance. ThbHLH1 specifically binds to G-box motif with the sequence of 'CACGTG'. Transiently transfected T. hispida plantlets with transiently overexpressed ThbHLH1 and RNAi-silenced ThbHLH1 were generated for gain- and loss-of-function analysis. Transgenic Arabidopsis thaliana lines overexpressing ThbHLH1 were generated to confirm the gain- and loss-of-function analysis. Overexpression of ThbHLH1 significantly elevates glycine betaine and proline levels, increases Ca(2+) concentration and enhances peroxidase (POD) and superoxide dismutase (SOD) activities to decrease reactive oxygen species (ROS) accumulation. Additionally, ThbHLH1 regulates the expression of the genes including P5CS, BADH, CaM, POD and SOD, to activate the above physiological changes, and also induces the expression of stress tolerance-related genes LEAs and HSPs. These data suggest that ThbHLH1 induces the expression of stress tolerance-related genes to improve abiotic stress tolerance by increasing osmotic potential, improving ROS scavenging capability and enhancing second messenger in stress signaling cascades. PMID:26786541

  5. A bHLH gene from Tamarix hispida improves abiotic stress tolerance by enhancing osmotic potential and decreasing reactive oxygen species accumulation.

    PubMed

    Ji, Xiaoyu; Nie, Xianguang; Liu, Yujia; Zheng, Lei; Zhao, Huimin; Zhang, Bing; Huo, Lin; Wang, Yucheng

    2016-02-01

    Basic helix-loop-helix (bHLH) leucine-zipper transcription factors play important roles in abiotic stress responses. However, their specific roles in abiotic stress tolerance are not fully known. Here, we functionally characterized a bHLH gene, ThbHLH1, from Tamarix hispida in abiotic stress tolerance. ThbHLH1 specifically binds to G-box motif with the sequence of 'CACGTG'. Transiently transfected T. hispida plantlets with transiently overexpressed ThbHLH1 and RNAi-silenced ThbHLH1 were generated for gain- and loss-of-function analysis. Transgenic Arabidopsis thaliana lines overexpressing ThbHLH1 were generated to confirm the gain- and loss-of-function analysis. Overexpression of ThbHLH1 significantly elevates glycine betaine and proline levels, increases Ca(2+) concentration and enhances peroxidase (POD) and superoxide dismutase (SOD) activities to decrease reactive oxygen species (ROS) accumulation. Additionally, ThbHLH1 regulates the expression of the genes including P5CS, BADH, CaM, POD and SOD, to activate the above physiological changes, and also induces the expression of stress tolerance-related genes LEAs and HSPs. These data suggest that ThbHLH1 induces the expression of stress tolerance-related genes to improve abiotic stress tolerance by increasing osmotic potential, improving ROS scavenging capability and enhancing second messenger in stress signaling cascades.

  6. Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants.

    PubMed

    Choi, Chang-Sun; Sano, Hiroshi

    2007-05-01

    To examine the relationship between gene expression and DNA methylation, transcriptionally activated genes were screened in hypomethylated transgenic tobacco plants expressing an anti-DNA methyltransferase sequence. Among 16 genes initially identified, one clone was found to encode a glycerophosphodiesterase-like protein (NtGPDL), earlier reported to be responsive to aluminium stress. When detached leaves from wild type tobacco plants were treated with aluminium, NtGPDL transcripts were induced within 6 h, and corresponding genomic loci were demethylated at CCGG sites within 1 h. Direct bisulfite methylation mapping revealed that CG sites in coding regions were selectively demethylated, and that promoter regions were totally unmethylated regardless of the stress. Salt and low temperature treatments also induced similar demethylation patterns. Such effects could be attributable to oxidative stress, since reactive oxygen species generated by paraquat efficiently induced the same pattern of demethylation at coding regions. Pathogen infection induced neither transcripts nor genomic demethylation. These results suggested a close correlation between methylation and expression of NtGPDL upon abiotic stresses with a cause-effect relationship. Since DNA methylation is linked to histone modification, it is conceivable that demethylation at coding regions might induce alteration of chromatin structure, thereby enhancing transcription. We propose that environmental responses of plants are partly mediated through active alteration of the DNA methylation status. PMID:17273870

  7. Co-expressional conservation in virulence and stress related genes of three Gammaproteobacterial species: Escherichia coli, Salmonella enterica and Pseudomonas aeruginosa.

    PubMed

    Hosseinkhan, Nazanin; Zarrineh, Peyman; Rokni-Zadeh, Hassan; Ashouri, Mohammad Reza; Masoudi-Nejad, Ali

    2015-11-01

    Gene co-expression analysis is one of the main aspects of systems biology that uses high-throughput gene expression data. In the present study we applied cross-species co-expressional analysis on a module of biofilm and stress response associated genes. We addressed different kinds of stresses in three most intensively studied members of Gammaproteobacteria including Escherichia coli K12, Pseudomonas aeruginosa PAO1 and Salmonella enterica for which large sets of gene expression data are available. Our aim was to evaluate the presence of common stress response strategies adopted by these microorganisms that may be assigned to the other members of Gammaproteobacteria. Results of functional annotation analysis revealed distinct categories among co-expressed genes, most of which concerned biological processes associated with virulence and stress response. Transcriptional regulatory analysis of genes present in co-expressed modules showed that the global stress sigma factor, RpoS, besides several local transcription factors accounts for the observed co-expressional response, and that several cases of feed-forward loops exist between global regulators, local transcription factors and their targets. Our results lend partial support to our underlying assumption of the conservation of core biological processes and regulatory interactions among these related Gammaproteobacteria members. This has led to the implementation of transferring gene function annotations from well-studied Gammaproteobacterial species to less-characterized members. These findings can shed light on the discovery of new drug targets capable of controlling severe infections caused by these groups of bacteria.

  8. Identification and validation of reference genes for Populus euphratica gene expression analysis during abiotic stresses by quantitative real-time PCR.

    PubMed

    Wang, Hou-Ling; Chen, Jinhuan; Tian, Qianqian; Wang, Shu; Xia, Xinli; Yin, Weilun

    2014-11-01

    Populus euphratica is the only arboreal species that is established in the world's largest shifting-sand desert in China and is well-adapted to the extreme desert environment, so it is widely considered a model system for researching into abiotic stress resistance of woody plants. However, few P. euphratica reference genes (RGs) have been identified for quantitative real-time polymerase chain reaction (qRT-PCR) until now. Validation of suitable RGs is essential for gene expression normalization research. In this study, we screened 16 endogenous candidate RGs in P. euphratica leaves in six abiotic stress treatments, including abscisic acid (ABA), cold, dehydration, drought, short-duration salt (SS) and long-duration salt (LS) treatments, each with 6 treatment gradients. After calculation of PCR efficiencies, three different software tools, NormFinder, geNorm and BestKeeper, were employed to analyze the qRT-PCR data systematically, and the outputs were merged by means of a non-weighted unsupervised rank aggregation method. The genes selected as optimal for gene expression analysis of the six treatments were RPL17 (ribosomal protein L17) in ABA, EF1α (elongation factor-1 alpha) in cold, HIS (histone superfamily protein H3) in dehydration, GIIα in drought and SS, and TUB (tubulin) in LS. The expression of 60S (the 60S ribosomal protein) varied the least during all treatments. To illustrate the suitability of these RGs, the relative quantifications of three stress-inducible genes, PePYL1, PeSCOF-1 and PeSCL7 were investigated with different RGs. The results, calculated using qBasePlus software, showed that compared with the least-appropriate RGs, the expression profiles normalized by the recommended RGs were closer to expectations. Our study provided an important RG application guideline for P. euphratica gene expression characterization. PMID:24720378

  9. Reference Gene Validation for Quantitative RT-PCR during Biotic and Abiotic Stresses in Vitis vinifera

    PubMed Central

    Borges, Alexandre Filipe; Fonseca, Catarina; Ferreira, Ricardo Boavida; Lourenço, Ana Maria; Monteiro, Sara

    2014-01-01

    Grapevine is one of the most cultivated fruit crop worldwide with Vitis vinifera being the species with the highest economical importance. Being highly susceptible to fungal pathogens and increasingly affected by environmental factors, it has become an important agricultural research area, where gene expression analysis plays a fundamental role. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is currently amongst the most powerful techniques to perform gene expression studies. Nevertheless, accurate gene expression quantification strongly relies on appropriate reference gene selection for sample normalization. Concerning V. vinifera, limited information still exists as for which genes are the most suitable to be used as reference under particular experimental conditions. In this work, seven candidate genes were investigated for their stability in grapevine samples referring to four distinct stresses (Erysiphe necator, wounding and UV-C irradiation in leaves and Phaeomoniella chlamydospora colonization in wood). The expression stability was evaluated using geNorm, NormFinder and BestKeeper. In all cases, full agreement was not observed for the three methods. To provide comprehensive rankings integrating the three different programs, for each treatment, a consensus ranking was created using a non-weighted unsupervised rank aggregation method. According to the last, the three most suitable reference genes to be used in grapevine leaves, regardless of the stress, are UBC, VAG and PEP. For the P. chlamydospora treatment, EF1, CYP and UBC were the best scoring genes. Acquaintance of the most suitable reference genes to be used in grapevine samples can contribute for accurate gene expression quantification in forthcoming studies. PMID:25340748

  10. Breadfruit (Artocarpus altilis) gibberellin 2-oxidase genes in stem elongation and abiotic stress response.

    PubMed

    Zhou, Yuchan; Underhill, Steven J R

    2016-01-01

    Breadfruit (Artocarpus altilis) is a traditional staple tree crop in the Oceania. Susceptibility to windstorm damage is a primary constraint on breadfruit cultivation. Significant tree loss due to intense tropical windstorm in the past decades has driven a widespread interest in developing breadfruit with dwarf stature. Gibberellin (GA) is one of the most important determinants of plant height. GA 2-oxidase is a key enzyme regulating the flux of GA through deactivating biologically active GAs in plants. As a first step toward understanding the molecular mechanism of growth regulation in the species, we isolated a cohort of four full-length GA2-oxidase cDNAs, AaGA2ox1- AaGA2ox4 from breadfruit. Sequence analysis indicated the deduced proteins encoded by these AaGA2oxs clustered together under the C19 GA2ox group. Transcripts of AaGA2ox1, AaGA2ox2 and AaGA2ox3 were detected in all plant organs, but exhibited highest level in source leaves and stems. In contrast, transcript of AaGA2ox4 was predominantly expressed in roots and flowers, and displayed very low expression in leaves and stems. AaGA2ox1, AaGA2ox2 and AaGA2ox3, but not AaGA2ox4 were subjected to GA feedback regulation where application of exogenous GA3 or gibberellin biosynthesis inhibitor, paclobutrazol was shown to manipulate the first internode elongation of breadfruit. Treatments of drought or high salinity increased the expression of AaGA2ox1, AaGA2ox2 and AaGA2ox4. But AaGA2ox3 was down-regulated under salt stress. The function of AaGA2oxs is discussed with particular reference to their role in stem elongation and involvement in abiotic stress response in breadfruit.

  11. Breadfruit (Artocarpus altilis) gibberellin 2-oxidase genes in stem elongation and abiotic stress response.

    PubMed

    Zhou, Yuchan; Underhill, Steven J R

    2016-01-01

    Breadfruit (Artocarpus altilis) is a traditional staple tree crop in the Oceania. Susceptibility to windstorm damage is a primary constraint on breadfruit cultivation. Significant tree loss due to intense tropical windstorm in the past decades has driven a widespread interest in developing breadfruit with dwarf stature. Gibberellin (GA) is one of the most important determinants of plant height. GA 2-oxidase is a key enzyme regulating the flux of GA through deactivating biologically active GAs in plants. As a first step toward understanding the molecular mechanism of growth regulation in the species, we isolated a cohort of four full-length GA2-oxidase cDNAs, AaGA2ox1- AaGA2ox4 from breadfruit. Sequence analysis indicated the deduced proteins encoded by these AaGA2oxs clustered together under the C19 GA2ox group. Transcripts of AaGA2ox1, AaGA2ox2 and AaGA2ox3 were detected in all plant organs, but exhibited highest level in source leaves and stems. In contrast, transcript of AaGA2ox4 was predominantly expressed in roots and flowers, and displayed very low expression in leaves and stems. AaGA2ox1, AaGA2ox2 and AaGA2ox3, but not AaGA2ox4 were subjected to GA feedback regulation where application of exogenous GA3 or gibberellin biosynthesis inhibitor, paclobutrazol was shown to manipulate the first internode elongation of breadfruit. Treatments of drought or high salinity increased the expression of AaGA2ox1, AaGA2ox2 and AaGA2ox4. But AaGA2ox3 was down-regulated under salt stress. The function of AaGA2oxs is discussed with particular reference to their role in stem elongation and involvement in abiotic stress response in breadfruit. PMID:26646240

  12. Microarray Meta-Analysis Focused on the Response of Genes Involved in Redox Homeostasis to Diverse Abiotic Stresses in Rice

    PubMed Central

    de Abreu Neto, Joao B.; Frei, Michael

    2016-01-01

    Plants are exposed to a wide range of abiotic stresses (AS), which often occur in combination. Because physiological investigations typically focus on one stress, our understanding of unspecific stress responses remains limited. The plant redox homeostasis, i.e., the production and removal of reactive oxygen species (ROS), may be involved in many environmental stress conditions. Therefore, this study intended to identify genes, which are activated in diverse AS, focusing on ROS-related pathways. We conducted a meta-analysis (MA) of microarray experiments, focusing on rice. Transcriptome data were mined from public databases and fellow researchers, which represented 36 different experiments and investigated diverse AS, including ozone stress, drought, heat, cold, salinity, and mineral deficiencies/toxicities. To overcome the inherent artifacts of different MA methods, data were processed using Fisher, rOP, REM, and product of rank (GeneSelector), and genes identified by most approaches were considered as shared differentially expressed genes (DEGs). Two MA strategies were adopted: first, datasets were separated into shoot, root, and seedling experiments, and these tissues were analyzed separately to identify shared DEGs. Second, shoot and seedling experiments were classed into oxidative stress (OS), i.e., ozone and hydrogen peroxide treatments directly producing ROS in plant tissue, and other AS, in which ROS production is indirect. In all tissues and stress conditions, genes a priori considered as ROS-related were overrepresented among the DEGs, as they represented 4% of all expressed genes but 7–10% of the DEGs. The combined MA approach was substantially more conservative than individual MA methods and identified 1001 shared DEGs in shoots, 837 shared DEGs in root, and 1172 shared DEGs in seedlings. Within the OS and AS groups, 990 and 1727 shared DEGs were identified, respectively. In total, 311 genes were shared between OS and AS, including many regulatory

  13. Comprehensive analysis of SET domain gene family in foxtail millet identifies the putative role of SiSET14 in abiotic stress tolerance

    PubMed Central

    Yadav, Chandra Bhan; Muthamilarasan, Mehanathan; Dangi, Anand; Shweta, Shweta; Prasad, Manoj

    2016-01-01

    SET domain-containing genes catalyse histone lysine methylation, which alters chromatin structure and regulates the transcription of genes that are involved in various developmental and physiological processes. The present study identified 53 SET domain-containing genes in C4 panicoid model, foxtail millet (Setaria italica) and the genes were physically mapped onto nine chromosomes. Phylogenetic and structural analyses classified SiSET proteins into five classes (I–V). RNA-seq derived expression profiling showed that SiSET genes were differentially expressed in four tissues namely, leaf, root, stem and spica. Expression analyses using qRT-PCR was performed for 21 SiSET genes under different abiotic stress and hormonal treatments, which showed differential expression of these genes during late phase of stress and hormonal treatments. Significant upregulation of SiSET gene was observed during cold stress, which has been confirmed by over-expressing a candidate gene, SiSET14 in yeast. Interestingly, hypermethylation was observed in gene body of highly differentially expressed genes, whereas methylation event was completely absent in their transcription start sites. This suggested the occurrence of demethylation events during various abiotic stresses, which enhance the gene expression. Altogether, the present study would serve as a base for further functional characterization of SiSET genes towards understanding their molecular roles in conferring stress tolerance. PMID:27585852

  14. Comprehensive analysis of SET domain gene family in foxtail millet identifies the putative role of SiSET14 in abiotic stress tolerance.

    PubMed

    Yadav, Chandra Bhan; Muthamilarasan, Mehanathan; Dangi, Anand; Shweta, Shweta; Prasad, Manoj

    2016-01-01

    SET domain-containing genes catalyse histone lysine methylation, which alters chromatin structure and regulates the transcription of genes that are involved in various developmental and physiological processes. The present study identified 53 SET domain-containing genes in C4 panicoid model, foxtail millet (Setaria italica) and the genes were physically mapped onto nine chromosomes. Phylogenetic and structural analyses classified SiSET proteins into five classes (I-V). RNA-seq derived expression profiling showed that SiSET genes were differentially expressed in four tissues namely, leaf, root, stem and spica. Expression analyses using qRT-PCR was performed for 21 SiSET genes under different abiotic stress and hormonal treatments, which showed differential expression of these genes during late phase of stress and hormonal treatments. Significant upregulation of SiSET gene was observed during cold stress, which has been confirmed by over-expressing a candidate gene, SiSET14 in yeast. Interestingly, hypermethylation was observed in gene body of highly differentially expressed genes, whereas methylation event was completely absent in their transcription start sites. This suggested the occurrence of demethylation events during various abiotic stresses, which enhance the gene expression. Altogether, the present study would serve as a base for further functional characterization of SiSET genes towards understanding their molecular roles in conferring stress tolerance. PMID:27585852

  15. GhDRIN1, a novel drought-induced gene of upland cotton (Gossypium hirsutum L.) confers abiotic and biotic stress tolerance in transgenic tobacco.

    PubMed

    Dhandapani, Gurusamy; Lakshmi Prabha, Azhagiyamanavalan; Kanakachari, Mogilicherla; Phanindra, Mullapudi Lakshmi Venkata; Prabhakaran, Narayanasamy; Gothandapani, Sellamuthu; Padmalatha, Kethireddy Venkata; Solanke, Amolkumar U; Kumar, Polumetla Ananda

    2015-04-01

    A novel stress tolerance cDNA fragment encoding GhDRIN1 protein was identified and its regulation was studied in cotton boll tissues and seedlings subjected to various biotic and abiotic stresses. Phylogenetic and conserved domain prediction indicated that GhDRIN1 was annotated with a hypothetical protein of unknown function. Subcellular localization showed that GhDRIN1 is localized in the chloroplasts. The promoter sequence was isolated and subjected to in silico study. Various cis-acting elements responsive to biotic and abiotic stresses and hormones were found. Transgenic tobacco seedlings exhibited better growth on amended MS medium and showed minimal leaf damage in insect bioassays carried out with Helicoverpa armigera larvae. Transgenic tobacco showed better tolerance to water-deficit and fast recovered upon rewatering. Present work demonstrated that GhDRIN1, a novel stress tolerance gene of cotton, positively regulates the response to biotic and abiotic stresses in transgenic tobacco. PMID:25413882

  16. GhDRIN1, a novel drought-induced gene of upland cotton (Gossypium hirsutum L.) confers abiotic and biotic stress tolerance in transgenic tobacco.

    PubMed

    Dhandapani, Gurusamy; Lakshmi Prabha, Azhagiyamanavalan; Kanakachari, Mogilicherla; Phanindra, Mullapudi Lakshmi Venkata; Prabhakaran, Narayanasamy; Gothandapani, Sellamuthu; Padmalatha, Kethireddy Venkata; Solanke, Amolkumar U; Kumar, Polumetla Ananda

    2015-04-01

    A novel stress tolerance cDNA fragment encoding GhDRIN1 protein was identified and its regulation was studied in cotton boll tissues and seedlings subjected to various biotic and abiotic stresses. Phylogenetic and conserved domain prediction indicated that GhDRIN1 was annotated with a hypothetical protein of unknown function. Subcellular localization showed that GhDRIN1 is localized in the chloroplasts. The promoter sequence was isolated and subjected to in silico study. Various cis-acting elements responsive to biotic and abiotic stresses and hormones were found. Transgenic tobacco seedlings exhibited better growth on amended MS medium and showed minimal leaf damage in insect bioassays carried out with Helicoverpa armigera larvae. Transgenic tobacco showed better tolerance to water-deficit and fast recovered upon rewatering. Present work demonstrated that GhDRIN1, a novel stress tolerance gene of cotton, positively regulates the response to biotic and abiotic stresses in transgenic tobacco.

  17. Multiple abiotic stimuli are integrated in the regulation of rice gene expression under field conditions.

    PubMed

    Plessis, Anne; Hafemeister, Christoph; Wilkins, Olivia; Gonzaga, Zennia Jean; Meyer, Rachel Sarah; Pires, Inês; Müller, Christian; Septiningsih, Endang M; Bonneau, Richard; Purugganan, Michael

    2015-01-01

    Plants rely on transcriptional dynamics to respond to multiple climatic fluctuations and contexts in nature. We analyzed the genome-wide gene expression patterns of rice (Oryza sativa) growing in rainfed and irrigated fields during two distinct tropical seasons and determined simple linear models that relate transcriptomic variation to climatic fluctuations. These models combine multiple environmental parameters to account for patterns of expression in the field of co-expressed gene clusters. We examined the similarities of our environmental models between tropical and temperate field conditions, using previously published data. We found that field type and macroclimate had broad impacts on transcriptional responses to environmental fluctuations, especially for genes involved in photosynthesis and development. Nevertheless, variation in solar radiation and temperature at the timescale of hours had reproducible effects across environmental contexts. These results provide a basis for broad-based predictive modeling of plant gene expression in the field. PMID:26609814

  18. Overexpression of GmHsp90s, a heat shock protein 90 (Hsp90) gene family cloning from soybean, decrease damage of abiotic stresses in Arabidopsis thaliana.

    PubMed

    Xu, Jinyan; Xue, Chenchen; Xue, Dong; Zhao, Jinming; Gai, Junyi; Guo, Na; Xing, Han

    2013-01-01

    Hsp90 is one of the most conserved and abundant molecular chaperones and is an essential component of the protective stress response; however, its roles in abiotic stress responses in soybean (Glycine max) remain obscure. Here, 12 GmHsp90 genes from soybean were identified and found to be expressed and to function differentially under abiotic stresses. The 12 GmHsp90 genes were isolated and named GmHsp90A1-GmHsp90A6, GmHsp90B1, GmHsp90B2, GmHsp90C1.1, GmHsp90C1.2, GmHsp90C2.1 and GmHsp90C2.2 based on their characteristics and high homology to other Hsp90s according to a new nomenclature system. Quantitative real-time PCR expression data revealed that all the genes exhibited higher transcript levels in leaves and could be strongly induced under heat, osmotic and salt stress but not cold stress. Overexpression of five typical genes (GmHsp90A2, GmHsp90A4, GmHsp90B1, GmHsp90C1.1 and GmHsp90C2.1) in Arabidopsis thaliana provided useful evidences that GmHsp90 genes can decrease damage of abiotic stresses. In addition, an abnormal accumulation of proline was detected in some transgenic Arabidopsis plants suggested overexpressing GmHsp90s may affect the synthesis and response system of proline. Our work represents a systematic determination of soybean genes encoding Hsp90s, and provides useful evidence that GmHsp90 genes function differently in response to abiotic stresses and may affect the synthesis and response system of proline.

  19. Multiple abiotic stimuli are integrated in the regulation of rice gene expression under field conditions

    PubMed Central

    Plessis, Anne; Hafemeister, Christoph; Wilkins, Olivia; Gonzaga, Zennia Jean; Meyer, Rachel Sarah; Pires, Inês; Müller, Christian; Septiningsih, Endang M; Bonneau, Richard; Purugganan, Michael

    2015-01-01

    Plants rely on transcriptional dynamics to respond to multiple climatic fluctuations and contexts in nature. We analyzed the genome-wide gene expression patterns of rice (Oryza sativa) growing in rainfed and irrigated fields during two distinct tropical seasons and determined simple linear models that relate transcriptomic variation to climatic fluctuations. These models combine multiple environmental parameters to account for patterns of expression in the field of co-expressed gene clusters. We examined the similarities of our environmental models between tropical and temperate field conditions, using previously published data. We found that field type and macroclimate had broad impacts on transcriptional responses to environmental fluctuations, especially for genes involved in photosynthesis and development. Nevertheless, variation in solar radiation and temperature at the timescale of hours had reproducible effects across environmental contexts. These results provide a basis for broad-based predictive modeling of plant gene expression in the field. DOI: http://dx.doi.org/10.7554/eLife.08411.001 PMID:26609814

  20. Barley Genes as Tools to Confer Abiotic Stress Tolerance in Crops.

    PubMed

    Gürel, Filiz; Öztürk, Zahide N; Uçarlı, Cüneyt; Rosellini, Daniele

    2016-01-01

    Barley is one of the oldest cultivated crops in the world with a high adaptive capacity. The natural tolerance of barley to stress has led to increasing interest in identification of stress responsive genes through small/large-scale omics studies, comparative genomics, and overexpression of some of these genes by genetic transformation. Two major categories of proteins involved in stress tolerance are transcription factors (TFs) responsible from the re-programming of the metabolism in stress environment, and genes encoding Late Embryogenesis Abundant (LEA) proteins, antioxidant enzymes, osmolytes, and transporters. Constitutive overexpression of several barley TFs, such as C-repeat binding factors (HvCBF4), dehydration-responsive element-binding factors (HvDREB1), and WRKYs (HvWRKY38), in transgenic plants resulted in higher tolerance to drought and salinity, possibly by effectively altering the expression levels of stress tolerance genes due to their higher DNA binding affinity. Na(+)/H(+) antiporters, channel proteins, and lipid transporters can also be the strong candidates for engineering plants for tolerance to salinity and low temperatures. PMID:27536305

  1. Barley Genes as Tools to Confer Abiotic Stress Tolerance in Crops

    PubMed Central

    Gürel, Filiz; Öztürk, Zahide N.; Uçarlı, Cüneyt; Rosellini, Daniele

    2016-01-01

    Barley is one of the oldest cultivated crops in the world with a high adaptive capacity. The natural tolerance of barley to stress has led to increasing interest in identification of stress responsive genes through small/large-scale omics studies, comparative genomics, and overexpression of some of these genes by genetic transformation. Two major categories of proteins involved in stress tolerance are transcription factors (TFs) responsible from the re-programming of the metabolism in stress environment, and genes encoding Late Embryogenesis Abundant (LEA) proteins, antioxidant enzymes, osmolytes, and transporters. Constitutive overexpression of several barley TFs, such as C-repeat binding factors (HvCBF4), dehydration-responsive element-binding factors (HvDREB1), and WRKYs (HvWRKY38), in transgenic plants resulted in higher tolerance to drought and salinity, possibly by effectively altering the expression levels of stress tolerance genes due to their higher DNA binding affinity. Na+/H+ antiporters, channel proteins, and lipid transporters can also be the strong candidates for engineering plants for tolerance to salinity and low temperatures. PMID:27536305

  2. Regulation of Arabidopsis COPINE 1 Gene Expression in Response to Pathogens and Abiotic Stimuli1

    PubMed Central

    Jambunathan, Niranjani; McNellis, Timothy W.

    2003-01-01

    The copines are a widely distributed class of calcium-dependent, phospholipid-binding proteins of undetermined biological function. Mutation of the Arabidopsis CPN1 (COPINE 1) gene causes a humidity-sensitive lesion mimic phenotype with increased resistance to a bacterial and an oomyceteous pathogen, constitutive pathogenesis-related gene expression, and an accelerated hypersensitive cell death defense response. Here, we show that the disease resistance phenotype of the cpn1-1 mutant was also temperature sensitive, demonstrate increased CPN1 gene transcript accumulation in wild-type plants under low-humidity conditions, and present a detailed analysis of CPN1 gene transcript accumulation in response to bacterial pathogens. In wild-type plants, CPN1 transcript accumulation was rapidly, locally, and transiently induced by both avirulent and virulent strains of Pseudomonas syringae pv tomato bacteria. However, induction of CPN1 transcript accumulation by avirulent bacteria was much faster and stronger than that induced by virulent bacteria. Bacterial induction of CPN1 transcript accumulation was dependent on a functional type III bacterial protein secretion system. In planta expression of the avrRpt2 avirulence gene was sufficient to trigger rapid CPN1 transcript accumulation. CPN1 transcript accumulation was induced by salicylic acid treatment but was not observed during lesion formation in the lesion mimic mutants lsd1 and lsd5. These results are consistent with CPN1 playing a role in plant disease resistance responses, possibly as a suppressor of defense responses including the hypersensitive cell death defense response. The results also suggest that CPN1 may represent a link between plant disease resistance and plant acclimation to low-humidity and low-temperature conditions. PMID:12857819

  3. Characterization of reference genes for RT-qPCR in the desert moss Syntrichia caninervis in response to abiotic stress and desiccation/rehydration.

    PubMed

    Li, Xiaoshuang; Zhang, Daoyuan; Li, Haiyan; Gao, Bei; Yang, Honglan; Zhang, Yuanming; Wood, Andrew J

    2015-01-01

    Syntrichia caninervis is the dominant bryophyte of the biological soil crusts found in the Gurbantunggut desert. The extreme desert environment is characterized by prolonged drought, temperature extremes, high radiation and frequent cycles of hydration and dehydration. S. caninervis is an ideal organism for the identification and characterization of genes related to abiotic stress tolerance. Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) expression analysis is a powerful analytical technique that requires the use of stable reference genes. Using available S. caninervis transcriptome data, we selected 15 candidate reference genes and analyzed their relative expression stabilities in S. caninervis gametophores exposed to a range of abiotic stresses or a hydration-desiccation-rehydration cycle. The programs geNorm, NormFinder, and RefFinder were used to assess and rank the expression stability of the 15 candidate genes. The stability ranking results of reference genes under each specific experimental condition showed high consistency using different algorithms. For abiotic stress treatments, the combination of two genes (α-TUB2 and CDPK) were sufficient for accurate normalization. For the hydration-desiccation-rehydration process, the combination of two genes (α-TUB1 and CDPK) were sufficient for accurate normalization. 18S was among the least stable genes in all of the experimental sets and was unsuitable as reference gene in S. caninervis. This is the first systematic investigation and comparison of reference gene selection for RT-qPCR work in S. caninervis. This research will facilitate gene expression studies in S. caninervis, related moss species from the Syntrichia complex and other mosses. PMID:25699066

  4. Rice husks and their hydrochars cause unexpected stress response in the nematode Caenorhabditis elegans: reduced transcription of stress-related genes.

    PubMed

    Chakrabarti, Shumon; Dicke, Christiane; Kalderis, Dimitrios; Kern, Jürgen

    2015-08-01

    Currently, char substrates gain a lot of interest since soils amended with such substrates are being discussed to increase in fertility and productivity, water retention, and mitigation of greenhouse gases. Char substrates can be produced by carbonization of organic matter. Among different process conditions, temperature is the main factor controlling the occurrence of organic and inorganic contaminants such as phenols and furfurals, which may affect target and non-target organisms. The hydrochar produced at 200 °C contained both furfural and phenol with concentrations of 282 and 324 mg kg(-1) in contrast to the 300 °C hydrochar, which contained only phenol with a concentration of 666 mg kg(-1). By washing with acetone and water, these concentrations were significantly reduced. In this study, the potential toxic effects of hydrochars on the free-living nematode Caenorhabditis elegans were investigated via gene transcription studies using the following four matrices: (i) raw rice husk, (ii) unwashed rice char, (iii) acetone/water washed rice char, and (iv) the wash water of the two rice chars produced at 200 and 300 °C via hydrothermal carbonization (HTC). Furthermore, genetically modified strains, where the green fluorescent protein (GFP) gene sequence is linked to a reporter gene central in specific anti-stress regulations, were also exposed to these matrices. Transgenic worms exposed to hydrochars showed very weak, if any, fluorescence, and expression of the associated RNAs related to stress response and biotransformation genes was surprisingly downregulated. Similar patterns were also found for the raw rice husk. It is hypothesized that an unidentified chemical trigger exists in the rice husk, which is not destroyed during the HTC process. Therefore, the use of GFP transgenic nematode strains cannot be recommended as a general rapid monitoring tool for farmers treating their fields with artificial char. However, it is hypothesized that the observed reduced

  5. The SbMT-2 gene from a halophyte confers abiotic stress tolerance and modulates ROS scavenging in transgenic tobacco.

    PubMed

    Chaturvedi, Amit Kumar; Patel, Manish Kumar; Mishra, Avinash; Tiwari, Vivekanand; Jha, Bhavanath

    2014-01-01

    Heavy metals are common pollutants of the coastal saline area and Salicornia brachiata an extreme halophyte is frequently exposed to various abiotic stresses including heavy metals. The SbMT-2 gene was cloned and transformed to tobacco for the functional validation. Transgenic tobacco lines (L2, L4, L6 and L13) showed significantly enhanced salt (NaCl), osmotic (PEG) and metals (Zn++, Cu++ and Cd++) tolerance compared to WT plants. Transgenic lines did not show any morphological variation and had enhanced growth parameters viz. shoot length, root length, fresh weight and dry weight. High seed germination percentage, chlorophyll content, relative water content, electrolytic leakage and membrane stability index confirmed that transgenic lines performed better under salt (NaCl), osmotic (PEG) and metals (Zn++, Cu++ and Cd++) stress conditions compared to WT plants. Proline, H2O2 and lipid peroxidation (MDA) analyses suggested the role of SbMT-2 in cellular homeostasis and H2O2 detoxification. Furthermore in vivo localization of H2O2 and O2-; and elevated expression of key antioxidant enzyme encoding genes, SOD, POD and APX evident the possible role of SbMT-2 in ROS scavenging/detoxification mechanism. Transgenic lines showed accumulation of Cu++ and Cd++ in root while Zn++ in stem under stress condition. Under control (unstressed) condition, Zn++ was accumulated more in root but accumulation of Zn++ in stem under stress condition suggested that SbMT-2 may involve in the selective translocation of Zn++ from root to stem. This observation was further supported by the up-regulation of zinc transporter encoding genes NtZIP1 and NtHMA-A under metal ion stress condition. The study suggested that SbMT-2 modulates ROS scavenging and is a potential candidate to be used for phytoremediation and imparting stress tolerance. PMID:25340650

  6. The SbMT-2 gene from a halophyte confers abiotic stress tolerance and modulates ROS scavenging in transgenic tobacco.

    PubMed

    Chaturvedi, Amit Kumar; Patel, Manish Kumar; Mishra, Avinash; Tiwari, Vivekanand; Jha, Bhavanath

    2014-01-01

    Heavy metals are common pollutants of the coastal saline area and Salicornia brachiata an extreme halophyte is frequently exposed to various abiotic stresses including heavy metals. The SbMT-2 gene was cloned and transformed to tobacco for the functional validation. Transgenic tobacco lines (L2, L4, L6 and L13) showed significantly enhanced salt (NaCl), osmotic (PEG) and metals (Zn++, Cu++ and Cd++) tolerance compared to WT plants. Transgenic lines did not show any morphological variation and had enhanced growth parameters viz. shoot length, root length, fresh weight and dry weight. High seed germination percentage, chlorophyll content, relative water content, electrolytic leakage and membrane stability index confirmed that transgenic lines performed better under salt (NaCl), osmotic (PEG) and metals (Zn++, Cu++ and Cd++) stress conditions compared to WT plants. Proline, H2O2 and lipid peroxidation (MDA) analyses suggested the role of SbMT-2 in cellular homeostasis and H2O2 detoxification. Furthermore in vivo localization of H2O2 and O2-; and elevated expression of key antioxidant enzyme encoding genes, SOD, POD and APX evident the possible role of SbMT-2 in ROS scavenging/detoxification mechanism. Transgenic lines showed accumulation of Cu++ and Cd++ in root while Zn++ in stem under stress condition. Under control (unstressed) condition, Zn++ was accumulated more in root but accumulation of Zn++ in stem under stress condition suggested that SbMT-2 may involve in the selective translocation of Zn++ from root to stem. This observation was further supported by the up-regulation of zinc transporter encoding genes NtZIP1 and NtHMA-A under metal ion stress condition. The study suggested that SbMT-2 modulates ROS scavenging and is a potential candidate to be used for phytoremediation and imparting stress tolerance.

  7. The SbMT-2 Gene from a Halophyte Confers Abiotic Stress Tolerance and Modulates ROS Scavenging in Transgenic Tobacco

    PubMed Central

    Chaturvedi, Amit Kumar; Patel, Manish Kumar; Mishra, Avinash; Tiwari, Vivekanand; Jha, Bhavanath

    2014-01-01

    Heavy metals are common pollutants of the coastal saline area and Salicornia brachiata an extreme halophyte is frequently exposed to various abiotic stresses including heavy metals. The SbMT-2 gene was cloned and transformed to tobacco for the functional validation. Transgenic tobacco lines (L2, L4, L6 and L13) showed significantly enhanced salt (NaCl), osmotic (PEG) and metals (Zn++, Cu++ and Cd++) tolerance compared to WT plants. Transgenic lines did not show any morphological variation and had enhanced growth parameters viz. shoot length, root length, fresh weight and dry weight. High seed germination percentage, chlorophyll content, relative water content, electrolytic leakage and membrane stability index confirmed that transgenic lines performed better under salt (NaCl), osmotic (PEG) and metals (Zn++, Cu++ and Cd++) stress conditions compared to WT plants. Proline, H2O2 and lipid peroxidation (MDA) analyses suggested the role of SbMT-2 in cellular homeostasis and H2O2 detoxification. Furthermore in vivo localization of H2O2 and O2−; and elevated expression of key antioxidant enzyme encoding genes, SOD, POD and APX evident the possible role of SbMT-2 in ROS scavenging/detoxification mechanism. Transgenic lines showed accumulation of Cu++ and Cd++ in root while Zn++ in stem under stress condition. Under control (unstressed) condition, Zn++ was accumulated more in root but accumulation of Zn++ in stem under stress condition suggested that SbMT-2 may involve in the selective translocation of Zn++ from root to stem. This observation was further supported by the up-regulation of zinc transporter encoding genes NtZIP1 and NtHMA-A under metal ion stress condition. The study suggested that SbMT-2 modulates ROS scavenging and is a potential candidate to be used for phytoremediation and imparting stress tolerance. PMID:25340650

  8. Evaluation of suitable reference genes for quantitative RT-PCR during development and abiotic stress in Panonychus citri (McGregor) (Acari: Tetranychidae).

    PubMed

    Niu, Jin-Zhi; Dou, Wei; Ding, Tian-Bo; Yang, Li-Hong; Shen, Guang-Mao; Wang, Jin-Jun

    2012-05-01

    Quantitative real time reverse transcriptase polymerase chain reaction (RT-qPCR) is preferred for gene expression analysis in living organisms. Currently, it is a valuable tool for biological and ecological studies as it provides a relatively straightforward way to assess the relevance of transcriptional regulation under developmental and stress tolerance conditions. However, studies have shown that some commonly used reference genes varied among different experimental treatments, thus, systematic evaluation of reference genes is critical for gene expression profiling, which is often neglected in gene expression studies of arthropods. The aim of this study is to identify the suitable reference genes for RT-qPCR experiments involving various developmental stages and/or under abiotic stresses in citrus red mite Panonychus citri, a key pest in citrus orchards worldwide. GeNorm, NormFinder, and Bestkeeper software analysis indicates that elongation factor-1 alpha (ELF1A), RNA polymerase II largest subunit, alpha tublin, and glyceraldhyde-3-phosphate dehydrogenase (GAPDH) are the most stable reference genes in various developmental stages, meanwhile, ELF1A and GAPDH were the most stable reference genes under various abiotic stresses. Furthermore, this study will serve as a resource to screen reference genes for gene expression studies in any other spider mite species.

  9. DNA methyltransferases and stress-related genes expression in zebrafish larvae after exposure to heat and copper during reprogramming of DNA methylation

    PubMed Central

    Dorts, Jennifer; Falisse, Elodie; Schoofs, Emilie; Flamion, Enora; Kestemont, Patrick; Silvestre, Frédéric

    2016-01-01

    DNA methylation, a well-studied epigenetic mark, is important for gene regulation in adulthood and for development. Using genetic and epigenetic approaches, the present study aimed at evaluating the effects of heat stress and copper exposure during zebrafish early embryogenesis when patterns of DNA methylation are being established, a process called reprogramming. Embryos were exposed to 325 μg Cu/L from fertilization (<1 h post fertilization - hpf) to 4 hpf at either 26.5 °C or 34 °C, followed by incubation in clean water at 26.5 °C till 96 hpf. Significant increased mortality rates and delayed hatching were observed following exposure to combined high temperature and Cu. Secondly, both stressors, alone or in combination, significantly upregulated the expression of de novo DNA methyltransferase genes (dnmt3) along with no differences in global cytosine methylation level. Finally, Cu exposure significantly increased the expression of metallothionein (mt2) and heat shock protein (hsp70), the latter being also increased following exposure to high temperature. These results highlighted the sensitivity of early embryogenesis and more precisely of the reprogramming period to environmental challenges, in a realistic situation of combined stressors. PMID:27731414

  10. Effect of Low Doses (5-40 cGy) of Gamma-irradiation on Lifespan and Stress-related Genes Expression Profile in Drosophila melanogaster

    PubMed Central

    Zhikrevetskaya, Svetlana; Peregudova, Darya; Danilov, Anton; Plyusnina, Ekaterina; Krasnov, George; Dmitriev, Alexey; Kudryavtseva, Anna; Shaposhnikov, Mikhail; Moskalev, Alexey

    2015-01-01

    Studying of the effects of low doses of γ-irradiation is a crucial issue in different areas of interest, from environmental safety and industrial monitoring to aerospace and medicine. The goal of this work is to identify changes of lifespan and expression stress-sensitive genes in Drosophila melanogaster, exposed to low doses of γ-irradiation (5 – 40 cGy) on the imaginal stage of development. Although some changes in life extensity in males were identified (the effect of hormesis after the exposure to 5, 10 and 40 cGy) as well as in females (the effect of hormesis after the exposure to 5 and 40 cGy), they were not caused by the organism “physiological” changes. This means that the observed changes in life expectancy are not related to the changes of organism physiological functions after the exposure to low doses of ionizing radiation. The identified changes in gene expression are not dose-dependent, there is not any proportionality between dose and its impact on expression. These results reflect nonlinear effects of low dose radiation and sex-specific radio-resistance of the postmitotic cell state of Drosophila melanogaster imago. PMID:26248317

  11. Environmental Lead Exposure, Catalase Gene, and Markers of Antioxidant and Oxidative Stress Relation to Hypertension: An Analysis Based on the EGAT Study

    PubMed Central

    Kaojarern, Sukhumpun; Chanprasertyothin, Suwannee; Panpunuan, Pachara; Petchpoung, Krittaya; Tatsaneeyapant, Aninthita; Yoovathaworn, Krongtong; Sura, Thunyachai; Kaojarern, Sming; Sritara, Piyamit

    2015-01-01

    Lead has been linked to the development of hypertension via oxidative stress. Catalase plays an important role in the disposal of hydrogen peroxide in erythrocyte and its activity was determined by CAT gene. The aims of this study were to investigate (1) the association between blood levels of antioxidant markers such as catalase, superoxide dismutase, glutathione, glutathione peroxidase, oxidative stress-marker (malondialdehyde), and blood lead level and (2) the influence of genetic polymorphism of CAT gene (rs769217) on change in blood pressure in general population of EGAT study project. This is a cross-sectional study of 332 normotensive, 432 prehypertensive, and 222 hypertensive male subjects. Hypertensive subjects had significantly higher blood lead level (5.28 μg/dL) compared to normotensive (4.41 μg/dL) and prehypertensive (4.55 μg/dL) subjects (P < 0.05). These significant findings are also found in MDA levels. Moreover, individuals with TT genotype in hypertensive group had significantly higher blood lead and MDA levels (6.06 μg/dL and 9.67 μmol/L) than those with CC genotype (5.32 μg/dL and 8.31 μmol/L, P < 0.05). Our findings suggested that decreased blood catalase activity in this polymorphism together with low level lead exposure induced lipid peroxidation may be responsible for hypertension. PMID:25793211

  12. Expression profile of six stress-related genes and productive performances of fast and slow growing broiler strains reared under heat stress conditions

    PubMed Central

    Rimoldi, Simona; Lasagna, Emiliano; Sarti, Francesca Maria; Marelli, Stefano Paolo; Cozzi, Maria Cristina; Bernardini, Giovanni; Terova, Genciana

    2015-01-01

    High temperature is one of the prominent environmental factors causing economic losses to the poultry industry as it negatively affects growth and production performance in broiler chickens. We used One Step TaqMan real time RT-PCR (reverse transcription polymerase chain reaction) technology to study the effects of chronic heat stress on the expression of genes codifying for the antioxidative enzymes superoxide dismutase (SOD), and catalase (CAT), as well as for heat shock protein (HSP) 70, HSP90, glucocorticoid receptor (NR3C1), and caspase 6 (CASP6) in the liver of two different broiler genetic strains: Red JA Cou Nu Hubbard (CN) and Ross 508 Aviagen (RO). CN is a naked neck slow growing broiler intended for the free range and/or organic markets, whereas RO is selected for fast growing. We also analysed the effect of chronic heat stress on productive performances, and plasma corticosterone levels as well as the association between transcriptomic response and specific SNPs (single nucleotide polymorphisms) in each genetic strain of broiler chickens. RO and CN broilers, 4 weeks of age, were maintained for 4 weeks at either 34 °C or 22 °C. The results demonstrated that there was a genotype and a temperature main effect on the broilers' growth from the 4th to the 8th week of age, but the interaction effect between genotype and temperature resulted not statistically significant. By considering the genotype effect, fast growing broilers (RO) grew more than the slow growing ones (CN), whereas by considering the temperature effect, broilers in unheated conditions grew more than the heat stressed ones. Corticosterone levels increased significantly in the blood of heat stressed broilers, due to the activation of the HPA (hypothalamic–pituitary–adrenocortical axis). Carcass yield at slaughter was of similar values in the 4 cohorts (genotype/temperature combinations or treatment groups), ranging from 86.5 to 88.6%, whereas carcass weight was negatively influenced

  13. Expression profile of six stress-related genes and productive performances of fast and slow growing broiler strains reared under heat stress conditions.

    PubMed

    Rimoldi, Simona; Lasagna, Emiliano; Sarti, Francesca Maria; Marelli, Stefano Paolo; Cozzi, Maria Cristina; Bernardini, Giovanni; Terova, Genciana

    2015-12-01

    High temperature is one of the prominent environmental factors causing economic losses to the poultry industry as it negatively affects growth and production performance in broiler chickens. We used One Step TaqMan real time RT-PCR (reverse transcription polymerase chain reaction) technology to study the effects of chronic heat stress on the expression of genes codifying for the antioxidative enzymes superoxide dismutase (SOD), and catalase (CAT), as well as for heat shock protein (HSP) 70, HSP90, glucocorticoid receptor (NR3C1), and caspase 6 (CASP6) in the liver of two different broiler genetic strains: Red JA Cou Nu Hubbard (CN) and Ross 508 Aviagen (RO). CN is a naked neck slow growing broiler intended for the free range and/or organic markets, whereas RO is selected for fast growing. We also analysed the effect of chronic heat stress on productive performances, and plasma corticosterone levels as well as the association between transcriptomic response and specific SNPs (single nucleotide polymorphisms) in each genetic strain of broiler chickens. RO and CN broilers, 4 weeks of age, were maintained for 4 weeks at either 34 °C or 22 °C. The results demonstrated that there was a genotype and a temperature main effect on the broilers' growth from the 4th to the 8th week of age, but the interaction effect between genotype and temperature resulted not statistically significant. By considering the genotype effect, fast growing broilers (RO) grew more than the slow growing ones (CN), whereas by considering the temperature effect, broilers in unheated conditions grew more than the heat stressed ones. Corticosterone levels increased significantly in the blood of heat stressed broilers, due to the activation of the HPA (hypothalamic-pituitary-adrenocortical axis). Carcass yield at slaughter was of similar values in the 4 cohorts (genotype/temperature combinations or treatment groups), ranging from 86.5 to 88.6%, whereas carcass weight was negatively influenced by

  14. Assessment of growth, genotoxic responses and expression of stress related genes in the Pacific oyster Crassostrea gigas following chronic exposure to ionizing radiation.

    PubMed

    Devos, Alexandre; Dallas, Lorna J; Voiseux, Claire; Lecomte-Pradines, Catherine; Jha, Awadhesh N; Fiévet, Bruno

    2015-06-30

    Marine organisms are exposed to low doses of anthropogenic contaminants during their entire life. Authorized amounts of radionuclides are discharged in the Channel by nuclear facilities. The Pacific oyster was used to investigate the potential impact of chronic exposure to ionizing radiation. Though we exposed larvae and spat for two weeks to much higher concentrations than those encountered near nuclear facilities, oyster growth and expression of 9 selected stress genes were not significantly changed. To determine potential DNA damage, 2year old oysters were exposed for two weeks to tritiated water. The comet assay was used to evaluate the level of DNA strand breaks in haemocytes, whilst the 'clearance rate' was used as a measure of physiological effects. Whilst other parameters did not alter, DNA damage significantly increased. Our results highlight the significance of the observed DNA damage and their potential consequences at higher levels of biological organization.

  15. In planta transformation of sorghum (Sorghum bicolor (L.) Moench) using TPS1 gene for enhancing tolerance to abiotic stresses.

    PubMed

    Yellisetty, Varalaxmi; Reddy, L A; Mandapaka, Maheswari

    2015-09-01

    An in planta transformation protocol for sorghum (Sorghum bicolor (L.) Moench) using shoot apical meristem of germinating seedlings is reported in this study. Agrobacterium tumefaciens strain, LBA4404 with pCAMBIA1303 vector and construct pCAMBIA1303TPS1 were individually used for transformation. Since, the transgene is integrated into the cells of already differentiated tissues, the T 0 plants were chimeric and stable integration was observed in T1 generation. β-Glucuronidase (GUS) expression in the seedlings and spikelets of emerging cob was the first indication of transformability in T0 generation which was further confirmed by PCR analysis using hpt and TPS1 gene-specific primers. Screening on 25 mg/L hygromycin combined with PCR analysis was used for selection of transformants in the T1 generation. Transformation efficiencies ranged between 34-38% and 26-34% using pCAMBIA1303 vector and construct pCAMBIA1303TPS1, respectively. Molecular characterization of the T2 transgenics using PCR, RT-PCR and Southern blot analyses further revealed the integration, expression and inheritance of the transgene. These results indicate the feasibility of the method to generate transgenics with pCAM-BIA1303 vector and construct pCAMBIA1303TPS1. The abiotic stress tolerance of TPS1 transgenics developed in the present study was evident by the ability of the transformants to tolerate 200 mM NaCl as well as higher root growth and biomass. PMID:26440081

  16. Selection of Suitable Reference Genes for RT-qPCR Normalization under Abiotic Stresses and Hormone Stimulation in Persimmon (Diospyros kaki Thunb)

    PubMed Central

    Wang, Peihong; Xiong, Aisheng; Gao, Zhihong; Yu, Xinyi; Li, Man; Hou, Yingjun; Sun, Chao; Qu, Shenchun

    2016-01-01

    The success of quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) to quantify gene expression depends on the stability of the reference genes used for data normalization. To date, systematic screening for reference genes in persimmon (Diospyros kaki Thunb) has never been reported. In this study, 13 candidate reference genes were cloned from 'Nantongxiaofangshi' using information available in the transcriptome database. Their expression stability was assessed by geNorm and NormFinder algorithms under abiotic stress and hormone stimulation. Our results showed that the most suitable reference genes across all samples were UBC and GAPDH, and not the commonly used persimmon reference gene ACT. In addition, UBC combined with RPII or TUA were found to be appropriate for the "abiotic stress" group and α-TUB combined with PP2A were found to be appropriate for the "hormone stimuli" group. For further validation, the transcript level of the DkDREB2C homologue under heat stress was studied with the selected genes (CYP, GAPDH, TUA, UBC, α-TUB, and EF1-α). The results suggested that it is necessary to choose appropriate reference genes according to the test materials or experimental conditions. Our study will be useful for future studies on gene expression in persimmon. PMID:27513755

  17. Selection of Suitable Reference Genes for RT-qPCR Normalization under Abiotic Stresses and Hormone Stimulation in Persimmon (Diospyros kaki Thunb).

    PubMed

    Wang, Peihong; Xiong, Aisheng; Gao, Zhihong; Yu, Xinyi; Li, Man; Hou, Yingjun; Sun, Chao; Qu, Shenchun

    2016-01-01

    The success of quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) to quantify gene expression depends on the stability of the reference genes used for data normalization. To date, systematic screening for reference genes in persimmon (Diospyros kaki Thunb) has never been reported. In this study, 13 candidate reference genes were cloned from 'Nantongxiaofangshi' using information available in the transcriptome database. Their expression stability was assessed by geNorm and NormFinder algorithms under abiotic stress and hormone stimulation. Our results showed that the most suitable reference genes across all samples were UBC and GAPDH, and not the commonly used persimmon reference gene ACT. In addition, UBC combined with RPII or TUA were found to be appropriate for the "abiotic stress" group and α-TUB combined with PP2A were found to be appropriate for the "hormone stimuli" group. For further validation, the transcript level of the DkDREB2C homologue under heat stress was studied with the selected genes (CYP, GAPDH, TUA, UBC, α-TUB, and EF1-α). The results suggested that it is necessary to choose appropriate reference genes according to the test materials or experimental conditions. Our study will be useful for future studies on gene expression in persimmon. PMID:27513755

  18. Selection of Suitable Reference Genes for RT-qPCR Normalization under Abiotic Stresses and Hormone Stimulation in Persimmon (Diospyros kaki Thunb).

    PubMed

    Wang, Peihong; Xiong, Aisheng; Gao, Zhihong; Yu, Xinyi; Li, Man; Hou, Yingjun; Sun, Chao; Qu, Shenchun

    2016-01-01

    The success of quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) to quantify gene expression depends on the stability of the reference genes used for data normalization. To date, systematic screening for reference genes in persimmon (Diospyros kaki Thunb) has never been reported. In this study, 13 candidate reference genes were cloned from 'Nantongxiaofangshi' using information available in the transcriptome database. Their expression stability was assessed by geNorm and NormFinder algorithms under abiotic stress and hormone stimulation. Our results showed that the most suitable reference genes across all samples were UBC and GAPDH, and not the commonly used persimmon reference gene ACT. In addition, UBC combined with RPII or TUA were found to be appropriate for the "abiotic stress" group and α-TUB combined with PP2A were found to be appropriate for the "hormone stimuli" group. For further validation, the transcript level of the DkDREB2C homologue under heat stress was studied with the selected genes (CYP, GAPDH, TUA, UBC, α-TUB, and EF1-α). The results suggested that it is necessary to choose appropriate reference genes according to the test materials or experimental conditions. Our study will be useful for future studies on gene expression in persimmon.

  19. Selection of Reference Genes for Gene Expression Normalization in Peucedanum praeruptorum Dunn under Abiotic Stresses, Hormone Treatments and Different Tissues

    PubMed Central

    Zhao, Yucheng; Luo, Jun; Xu, Sheng; Wang, Wei; Liu, Tingting; Han, Chao; Chen, Yijun; Kong, Lingyi

    2016-01-01

    Peucedanum praeruptorum Dunn is one of the main traditional Chinese medicines producing coumarins and plenty of literatures are focused on the biosynthesis of coumarins. Quantitative real-time reverse transcription PCR (qRT-PCR) is a widely used method in studying the biosynthesis pathway and the selection of reference genes plays a crucial role in accurate normalization. To facilitate biosynthesis study of coumarins, twelve candidate reference genes were selected from the transcriptome database of P. praeruptorum according to previous studies. Then, BestKeeper, geNoFrm and NormFinder were used for selecting stably expressed reference genes in different tissues and under various stress treatments. The results indicated that, among the twelve candidate reference genes, the SAND family protein (SAND), actin 2 (ACT2), ubiquitin-conjugating enzyme 9 (UBC9), protein phosphatase 2A gene (PP2A) and polypyrimidine tract-binding protein (PTBP1) were the most stable reference genes under different experimental treatments, while glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and tubulin beta-6 (TUB6) were the least stable genes. In addition, the suitability of SAND, TIP41-like protein (TIP41), UBC9, ACT2, TUB6 and their combination as reference genes were confirmed by normalizing the expression of 1-aminocyclopropane-1-carboxylate oxidase (ACO) in different treatments. This work is the first survey of the stability of reference genes in P. praeruptorum and provides guidelines to obtain more accurate qRT-PCR results in P. praeruptorum and other plant species. PMID:27022972

  20. Selection of Reference Genes for Gene Expression Normalization in Peucedanum praeruptorum Dunn under Abiotic Stresses, Hormone Treatments and Different Tissues.

    PubMed

    Zhao, Yucheng; Luo, Jun; Xu, Sheng; Wang, Wei; Liu, Tingting; Han, Chao; Chen, Yijun; Kong, Lingyi

    2016-01-01

    Peucedanum praeruptorum Dunn is one of the main traditional Chinese medicines producing coumarins and plenty of literatures are focused on the biosynthesis of coumarins. Quantitative real-time reverse transcription PCR (qRT-PCR) is a widely used method in studying the biosynthesis pathway and the selection of reference genes plays a crucial role in accurate normalization. To facilitate biosynthesis study of coumarins, twelve candidate reference genes were selected from the transcriptome database of P. praeruptorum according to previous studies. Then, BestKeeper, geNoFrm and NormFinder were used for selecting stably expressed reference genes in different tissues and under various stress treatments. The results indicated that, among the twelve candidate reference genes, the SAND family protein (SAND), actin 2 (ACT2), ubiquitin-conjugating enzyme 9 (UBC9), protein phosphatase 2A gene (PP2A) and polypyrimidine tract-binding protein (PTBP1) were the most stable reference genes under different experimental treatments, while glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and tubulin beta-6 (TUB6) were the least stable genes. In addition, the suitability of SAND, TIP41-like protein (TIP41), UBC9, ACT2, TUB6 and their combination as reference genes were confirmed by normalizing the expression of 1-aminocyclopropane-1-carboxylate oxidase (ACO) in different treatments. This work is the first survey of the stability of reference genes in P. praeruptorum and provides guidelines to obtain more accurate qRT-PCR results in P. praeruptorum and other plant species.

  1. Cloning the PvP5CS gene from common bean (Phaseolus vulgaris) and its expression patterns under abiotic stresses.

    PubMed

    Chen, Ji-Bao; Wang, Shu-Min; Jing, Rui-Lian; Mao, Xin-Guo

    2009-01-01

    A full-length cDNA denominated PvP5CS for Delta(1)-pyrroline-5-carboxylate synthetase (P5CS), an enzyme involved in the biosynthesis of proline, was cloned from common bean using a candidate gene approach. PvP5CS contains an open reading frame encoding a 716 amino acid polypeptide. Sequence analysis showed that PvP5CS shares 95.1% homology in nucleotide sequence and 93.2% identity in amino acid sequence with the mothbean (Vigna aconitifolia) P5CS. The expression patterns of PvP5CS in common bean treated with drought, cold (4 degrees C), and salt (200 mM NaCl) stresses were examined using real-time quantitative PCR. These abiotic stresses caused significant up-regulation of the expression of PvP5CS in leaves. The PvP5CS mRNA transcript increased to 2.5 times the control level after 4d drought stress. A rapid up-regulation of PvP5CS, to about 16.3 times the control at 2h post-treatment was observed under salt stress. A significant increase in PvP5CS expression (11.7-fold) was detected after 2h of cold stress. The peaks of proline accumulation appeared at 8d for drought, 24h for cold and 9h for salt stress, somewhat later than the peaks of PvP5CS expression. These results suggest that PvP5CS was a stress-inducible gene regulating the accumulation of proline in plants subjected to stress. Finally, subcellular localization assays showed that the PvP5CS protein was present in the nucleus and at the plasmalemma.

  2. Down-regulation of sweetpotato lycopene β-cyclase gene enhances tolerance to abiotic stress in transgenic calli.

    PubMed

    Kim, Sun Ha; Jeong, Jae Cheol; Park, Seyeon; Bae, Ji-Yeong; Ahn, Mi-Jeong; Lee, Haeng-Soon; Kwak, Sang-Soo

    2014-12-01

    Lycopene β-cyclase (LCY-β) is a key enzyme involved in the synthesis of α- and β-branch carotenoids such as α-carotene and β-carotene through the cyclization of lycopene. IbLCY-β had a length of 1,506 bp and approximately 80 % nucleotide sequence identity with that of tomato LCY-β. IbLCY-β was strongly expressed in leaves, and expression was enhanced by salt-stress and osmotic-stress conditions. To characterize the LCY-β gene (IbLCY-β) of sweetpotato (Ipomoea batatas), it was isolated and transformed into calli of white-fleshed sweetpotato using an IbLCY-β-RNAi vector. Transgenic IbLCY-β-RNAi calli had yellow to orange color and higher antioxidant activity compared to that of white, nontransgenic (NT) calli. Transgenic cells had significantly higher contents of total carotenoids, although lycopene was not detected in transgenic or NT cells. All transgenic calli had strongly activated expression of carotenoid biosynthetic genes such as β-carotene hydroxylases (CHY-β), cytochrome P450 monooxygenases (P450), and carotenoid cleavage dioxigenase 1 (CCD1). Transgenic cells exhibited less salt-induced oxidative-stress damage compared to that of NT cells, and also had greater tolerance for polyethylene glycol (PEG)-mediated drought compared to that of NT cells, due to the higher water content and reduced malondialdehyde (MDA) content. The abscisic acid content was also higher in transgenic cells. These results show that a study of IbLCY-β can facilitate understanding of the carotenoid biosynthetic pathway in sweetpotato. IbLCY-β could be useful for developing transgenic sweetpotato enriched with nutritional carotenoids and with greater tolerance to abiotic stresses.

  3. Hydrogen sulfide regulates abiotic stress tolerance and biotic stress resistance in Arabidopsis.

    PubMed

    Shi, Haitao; Ye, Tiantian; Han, Ning; Bian, Hongwu; Liu, Xiaodong; Chan, Zhulong

    2015-07-01

    Hydrogen sulfide (H2S) is an important gaseous molecule in various plant developmental processes and plant stress responses. In this study, the transgenic Arabidopsis thaliana plants with modulated expressions of two cysteine desulfhydrases, and exogenous H2S donor (sodium hydrosulfide, NaHS) and H2S scavenger (hypotaurine, HT) pre-treated plants were used to dissect the involvement of H2S in plant stress responses. The cysteine desulfhydrases overexpressing plants and NaHS pre-treated plants exhibited higher endogenous H2S level and improved abiotic stress tolerance and biotic stress resistance, while cysteine desulfhydrases knockdown plants and HT pre-treated plants displayed lower endogenous H2S level and decreased stress resistance. Moreover, H2S upregulated the transcripts of multiple abiotic and biotic stress-related genes, and inhibited reactive oxygen species (ROS) accumulation. Interestingly, MIR393-mediated auxin signaling including MIR393a/b and their target genes (TIR1, AFB1, AFB2, and AFB3) was transcriptionally regulated by H2S, and was related with H2S-induced antibacterial resistance. Moreover, H2S regulated 50 carbon metabolites including amino acids, organic acids, sugars, sugar alcohols, and aromatic amines. Taken together, these results indicated that cysteine desulfhydrase and H2S conferred abiotic stress tolerance and biotic stress resistance, via affecting the stress-related gene expressions, ROS metabolism, metabolic homeostasis, and MIR393-targeted auxin receptors. PMID:25329496

  4. Hydrogen sulfide regulates abiotic stress tolerance and biotic stress resistance in Arabidopsis.

    PubMed

    Shi, Haitao; Ye, Tiantian; Han, Ning; Bian, Hongwu; Liu, Xiaodong; Chan, Zhulong

    2015-07-01

    Hydrogen sulfide (H2S) is an important gaseous molecule in various plant developmental processes and plant stress responses. In this study, the transgenic Arabidopsis thaliana plants with modulated expressions of two cysteine desulfhydrases, and exogenous H2S donor (sodium hydrosulfide, NaHS) and H2S scavenger (hypotaurine, HT) pre-treated plants were used to dissect the involvement of H2S in plant stress responses. The cysteine desulfhydrases overexpressing plants and NaHS pre-treated plants exhibited higher endogenous H2S level and improved abiotic stress tolerance and biotic stress resistance, while cysteine desulfhydrases knockdown plants and HT pre-treated plants displayed lower endogenous H2S level and decreased stress resistance. Moreover, H2S upregulated the transcripts of multiple abiotic and biotic stress-related genes, and inhibited reactive oxygen species (ROS) accumulation. Interestingly, MIR393-mediated auxin signaling including MIR393a/b and their target genes (TIR1, AFB1, AFB2, and AFB3) was transcriptionally regulated by H2S, and was related with H2S-induced antibacterial resistance. Moreover, H2S regulated 50 carbon metabolites including amino acids, organic acids, sugars, sugar alcohols, and aromatic amines. Taken together, these results indicated that cysteine desulfhydrase and H2S conferred abiotic stress tolerance and biotic stress resistance, via affecting the stress-related gene expressions, ROS metabolism, metabolic homeostasis, and MIR393-targeted auxin receptors.

  5. Comparative characterization of sweetpotato antioxidant genes from expressed sequence tags of dehydration-treated fibrous roots under different abiotic stress conditions.

    PubMed

    Kim, Yun-Hee; Jeong, Jae Cheol; Lee, Haeng-Soon; Kwak, Sang-Soo

    2013-04-01

    Drought stress is one of the most adverse conditions for plant growth and productivity. The plant antioxidant system is an important defense mechanism and includes antioxidant enzymes and low-molecular weight antioxidants. Understanding the biochemical and molecular responses to drought is essential for improving plant resistance to water-limited conditions. Previously, we isolated and characterized expressed sequence tags (ESTs) from a full-length enriched cDNA library prepared from fibrous roots of sweetpotato subjected to dehydration stress (Kim et al. in BMB Rep 42:271-276, [5]). In this study, we isolated and characterized 11 sweetpotato antioxidant genes from sweetpotato EST library under various abiotic stress conditions, which included six intracellular CuZn superoxide dismutases (CuZnSOD), ascorbate peroxidase, catalase, glutathione peroxidase (GPX), glutathione-S-transferase, thioredoxin (TRX), and five extracellular peroxidase genes. The expression of almost all the antioxidant genes induced under dehydration treatments occurred in leaves, with the exception of extracellular swPB6, whereas some antioxidant genes showed increased expression levels in the fibrous roots, such as intracellular GPX, TRX, extracellular swPA4, and swPB7 genes. During various abiotic stress treatments in leaves, such as exposure to NaCl, cold, and abscisic acid, several intracellular antioxidant genes were strongly expressed compared with the expression of extracellular antioxidant genes. These results indicated that some intracellular antioxidant genes, especially swAPX1 and CuZnSOD, might be specifically involved in important defense mechanisms against oxidative stress induced by various abiotic stresses including dehydration in sweetpotato plants.

  6. A novel Glycine soja tonoplast intrinsic protein gene responds to abiotic stress and depresses salt and dehydration tolerance in transgenic Arabidopsis thaliana.

    PubMed

    Wang, Xi; Li, Yong; Ji, Wei; Bai, Xi; Cai, Hua; Zhu, Dan; Sun, Xiao-Li; Chen, Lian-Jiang; Zhu, Yan-Ming

    2011-07-15

    Tonoplast intrinsic protein (TIP) is a subfamily of the aquaporin (AQP), also known as major intrinsic protein (MIP) family, and regulates water movement across vacuolar membranes. Some reports have implied that TIP genes are associated with plant tolerance to some abiotic stresses that cause water loss, such as drought and high salinity. In our previous work, we found that an expressed sequence tag (EST) representing a TIP gene in our Glycine soja EST library was inducible by abiotic stresses. This TIP was subsequently isolated from G. soja with cDNA library screening, EST assembly and PCR, and named as GsTIP2;1. The expression patterns of GsTIP2;1 in G. soja under low temperature, salt and dehydration stress were different in leaves and roots. Though GsTIP2;1 is a stress-induced gene, overexpression of GsTIP2;1 in Arabidopsis thaliana depressed tolerance to salt and dehydration stress, but did not affect seedling growth under cold or favorable conditions. Higher dehydration speed was detected in Arabidopsis plants overexpressing GsTIP2;1, implying GsTIP2;1 might mediate stress sensitivity by enhancing water loss in the plant. Such a result is not identical to previous reports, providing some new information about the relationship between TIP and plant abiotic stress tolerance.

  7. Genome-Wide Analysis of Genes Encoding Methionine-Rich Proteins in Arabidopsis and Soybean Suggesting Their Roles in the Adaptation of Plants to Abiotic Stress.

    PubMed

    Chu, Ha Duc; Le, Quynh Ngoc; Nguyen, Huy Quang; Le, Dung Tien

    2016-01-01

    Oxidation and reduction of methionine (Met) play important roles in scavenging reactive oxygen species (ROS) and signaling in living organisms. To understand the impacts of Met oxidation and reduction in plants during stress, we surveyed the genomes of Arabidopsis and soybean (Glycine max L.) for genes encoding Met-rich proteins (MRPs). We found 121 and 213 genes encoding MRPs in Arabidopsis and soybean, respectively. Gene annotation indicated that those with known function are involved in vital cellular processes such as transcriptional control, calcium signaling, protein modification, and metal transport. Next, we analyzed the transcript levels of MRP-coding genes under normal and stress conditions. We found that 57 AtMRPs were responsive either to drought or to high salinity stress in Arabidopsis; 35 GmMRPs were responsive to drought in the leaf of late vegetative or early reproductive stages of soybean. Among the MRP genes with a known function, the majority of the abiotic stress-responsive genes are involved in transcription control and calcium signaling. Finally, Arabidopsis plant which overexpressed an MRP-coding gene, whose transcripts were downregulated by abiotic stress, was more sensitive to paraquat than the control. Taken together, our report indicates that MRPs participate in various vital processes of plants under normal and stress conditions. PMID:27635394

  8. Genome-Wide Analysis of Genes Encoding Methionine-Rich Proteins in Arabidopsis and Soybean Suggesting Their Roles in the Adaptation of Plants to Abiotic Stress

    PubMed Central

    Chu, Ha Duc; Le, Quynh Ngoc; Nguyen, Huy Quang

    2016-01-01

    Oxidation and reduction of methionine (Met) play important roles in scavenging reactive oxygen species (ROS) and signaling in living organisms. To understand the impacts of Met oxidation and reduction in plants during stress, we surveyed the genomes of Arabidopsis and soybean (Glycine max L.) for genes encoding Met-rich proteins (MRPs). We found 121 and 213 genes encoding MRPs in Arabidopsis and soybean, respectively. Gene annotation indicated that those with known function are involved in vital cellular processes such as transcriptional control, calcium signaling, protein modification, and metal transport. Next, we analyzed the transcript levels of MRP-coding genes under normal and stress conditions. We found that 57 AtMRPs were responsive either to drought or to high salinity stress in Arabidopsis; 35 GmMRPs were responsive to drought in the leaf of late vegetative or early reproductive stages of soybean. Among the MRP genes with a known function, the majority of the abiotic stress-responsive genes are involved in transcription control and calcium signaling. Finally, Arabidopsis plant which overexpressed an MRP-coding gene, whose transcripts were downregulated by abiotic stress, was more sensitive to paraquat than the control. Taken together, our report indicates that MRPs participate in various vital processes of plants under normal and stress conditions.

  9. Genome-Wide Analysis of Genes Encoding Methionine-Rich Proteins in Arabidopsis and Soybean Suggesting Their Roles in the Adaptation of Plants to Abiotic Stress

    PubMed Central

    Chu, Ha Duc; Le, Quynh Ngoc; Nguyen, Huy Quang

    2016-01-01

    Oxidation and reduction of methionine (Met) play important roles in scavenging reactive oxygen species (ROS) and signaling in living organisms. To understand the impacts of Met oxidation and reduction in plants during stress, we surveyed the genomes of Arabidopsis and soybean (Glycine max L.) for genes encoding Met-rich proteins (MRPs). We found 121 and 213 genes encoding MRPs in Arabidopsis and soybean, respectively. Gene annotation indicated that those with known function are involved in vital cellular processes such as transcriptional control, calcium signaling, protein modification, and metal transport. Next, we analyzed the transcript levels of MRP-coding genes under normal and stress conditions. We found that 57 AtMRPs were responsive either to drought or to high salinity stress in Arabidopsis; 35 GmMRPs were responsive to drought in the leaf of late vegetative or early reproductive stages of soybean. Among the MRP genes with a known function, the majority of the abiotic stress-responsive genes are involved in transcription control and calcium signaling. Finally, Arabidopsis plant which overexpressed an MRP-coding gene, whose transcripts were downregulated by abiotic stress, was more sensitive to paraquat than the control. Taken together, our report indicates that MRPs participate in various vital processes of plants under normal and stress conditions. PMID:27635394

  10. Molecular Characterization of the 14-3-3 Gene Family in Brachypodium distachyon L. Reveals High Evolutionary Conservation and Diverse Responses to Abiotic Stresses.

    PubMed

    Cao, Hui; Xu, Yuxing; Yuan, Linlin; Bian, Yanwei; Wang, Lihui; Zhen, Shoumin; Hu, Yingkao; Yan, Yueming

    2016-01-01

    The 14-3-3 gene family identified in all eukaryotic organisms is involved in a wide range of biological processes, particularly in resistance to various abiotic stresses. Here, we performed the first comprehensive study on the molecular characterization, phylogenetics, and responses to various abiotic stresses of the 14-3-3 gene family in Brachypodium distachyon L. A total of seven 14-3-3 genes from B. distachyon and 120 from five main lineages among 12 species were identified, which were divided into five well-conserved subfamilies. The molecular structure analysis showed that the plant 14-3-3 gene family is highly evolutionarily conserved, although certain divergence had occurred in different subfamilies. The duplication event investigation revealed that segmental duplication seemed to be the predominant form by which the 14-3-3 gene family had expanded. Moreover, seven critical amino acids were detected, which may contribute to functional divergence. Expression profiling analysis showed that BdGF14 genes were abundantly expressed in the roots, but showed low expression in the meristems. All seven BdGF14 genes showed significant expression changes under various abiotic stresses, including heavy metal, phytohormone, osmotic, and temperature stresses, which might play important roles in responses to multiple abiotic stresses mainly through participating in ABA-dependent signaling and reactive oxygen species-mediated MAPK cascade signaling pathways. In particular, BdGF14 genes generally showed upregulated expression in response to multiple stresses of high temperature, heavy metal, abscisic acid (ABA), and salicylic acid (SA), but downregulated expression under H2O2, NaCl, and polyethylene glycol (PEG) stresses. Meanwhile, dynamic transcriptional expression analysis of BdGF14 genes under longer treatments with heavy metals (Cd(2+), Cr(3+), Cu(2+), and Zn(2+)) and phytohormone (ABA) and recovery revealed two main expression trends in both roots and leaves: up

  11. Molecular Characterization of the 14-3-3 Gene Family in Brachypodium distachyon L. Reveals High Evolutionary Conservation and Diverse Responses to Abiotic Stresses

    PubMed Central

    Cao, Hui; Xu, Yuxing; Yuan, Linlin; Bian, Yanwei; Wang, Lihui; Zhen, Shoumin; Hu, Yingkao; Yan, Yueming

    2016-01-01

    The 14-3-3 gene family identified in all eukaryotic organisms is involved in a wide range of biological processes, particularly in resistance to various abiotic stresses. Here, we performed the first comprehensive study on the molecular characterization, phylogenetics, and responses to various abiotic stresses of the 14-3-3 gene family in Brachypodium distachyon L. A total of seven 14-3-3 genes from B. distachyon and 120 from five main lineages among 12 species were identified, which were divided into five well-conserved subfamilies. The molecular structure analysis showed that the plant 14-3-3 gene family is highly evolutionarily conserved, although certain divergence had occurred in different subfamilies. The duplication event investigation revealed that segmental duplication seemed to be the predominant form by which the 14-3-3 gene family had expanded. Moreover, seven critical amino acids were detected, which may contribute to functional divergence. Expression profiling analysis showed that BdGF14 genes were abundantly expressed in the roots, but showed low expression in the meristems. All seven BdGF14 genes showed significant expression changes under various abiotic stresses, including heavy metal, phytohormone, osmotic, and temperature stresses, which might play important roles in responses to multiple abiotic stresses mainly through participating in ABA-dependent signaling and reactive oxygen species-mediated MAPK cascade signaling pathways. In particular, BdGF14 genes generally showed upregulated expression in response to multiple stresses of high temperature, heavy metal, abscisic acid (ABA), and salicylic acid (SA), but downregulated expression under H2O2, NaCl, and polyethylene glycol (PEG) stresses. Meanwhile, dynamic transcriptional expression analysis of BdGF14 genes under longer treatments with heavy metals (Cd2+, Cr3+, Cu2+, and Zn2+) and phytohormone (ABA) and recovery revealed two main expression trends in both roots and leaves: up-down and up

  12. Evaluation of Sorghum [Sorghum bicolor (L.)] Reference Genes in Various Tissues and under Abiotic Stress Conditions for Quantitative Real-Time PCR Data Normalization.

    PubMed

    Sudhakar Reddy, Palakolanu; Srinivas Reddy, Dumbala; Sivasakthi, Kaliamoorthy; Bhatnagar-Mathur, Pooja; Vadez, Vincent; Sharma, Kiran K

    2016-01-01

    Accurate and reliable gene expression data from qPCR depends on stable reference gene expression for potential gene functional analyses. In this study, 15 reference genes were selected and analyzed in various sample sets including abiotic stress treatments (salt, cold, water stress, heat, and abscisic acid) and tissues (leaves, roots, seedlings, panicle, and mature seeds). Statistical tools, including geNorm, NormFinder and RefFinder, were utilized to assess the suitability of reference genes based on their stability rankings for various sample groups. For abiotic stress, PP2A and CYP were identified as the most stable genes. In contrast, EIF4α was the most stable in the tissue sample set, followed by PP2A; PP2A was the most stable in all the sample set, followed by EIF4α. GAPDH, and UBC1 were the least stably expressed in the tissue and all the sample sets. These results also indicated that the use of two candidate reference genes would be sufficient for the optimization of normalization studies. To further verify the suitability of these genes for use as reference genes, SbHSF5 and SbHSF13 gene expression levels were normalized using the most and least stable sorghum reference genes in root and water stressed-leaf tissues of five sorghum varieties. This is the first systematic study of the selection of the most stable reference genes for qPCR-related assays in Sorghum bicolor that will potentially benefit future gene expression studies in sorghum and other closely related species.

  13. Evaluation of Sorghum [Sorghum bicolor (L.)] Reference Genes in Various Tissues and under Abiotic Stress Conditions for Quantitative Real-Time PCR Data Normalization

    PubMed Central

    Sudhakar Reddy, Palakolanu; Srinivas Reddy, Dumbala; Sivasakthi, Kaliamoorthy; Bhatnagar-Mathur, Pooja; Vadez, Vincent; Sharma, Kiran K.

    2016-01-01

    Accurate and reliable gene expression data from qPCR depends on stable reference gene expression for potential gene functional analyses. In this study, 15 reference genes were selected and analyzed in various sample sets including abiotic stress treatments (salt, cold, water stress, heat, and abscisic acid) and tissues (leaves, roots, seedlings, panicle, and mature seeds). Statistical tools, including geNorm, NormFinder and RefFinder, were utilized to assess the suitability of reference genes based on their stability rankings for various sample groups. For abiotic stress, PP2A and CYP were identified as the most stable genes. In contrast, EIF4α was the most stable in the tissue sample set, followed by PP2A; PP2A was the most stable in all the sample set, followed by EIF4α. GAPDH, and UBC1 were the least stably expressed in the tissue and all the sample sets. These results also indicated that the use of two candidate reference genes would be sufficient for the optimization of normalization studies. To further verify the suitability of these genes for use as reference genes, SbHSF5 and SbHSF13 gene expression levels were normalized using the most and least stable sorghum reference genes in root and water stressed-leaf tissues of five sorghum varieties. This is the first systematic study of the selection of the most stable reference genes for qPCR-related assays in Sorghum bicolor that will potentially benefit future gene expression studies in sorghum and other closely related species. PMID:27200008

  14. Isolation and characterization of a catalase gene "HuCAT3" from pitaya (Hylocereus undatus) and its expression under abiotic stress.

    PubMed

    Nie, Qiong; Gao, Guo-Li; Fan, Qing-jie; Qiao, Guang; Wen, Xiao-Peng; Liu, Tao; Peng, Zhi-Jun; Cai, Yong-Qiang

    2015-05-25

    Abiotic stresses usually cause H2O2 accumulation, with harmful effects, in plants. Catalase may play a key protective role in plant cells by detoxifying this excess H2O2. Pitaya (Hylocereus undatus) shows broad ecological adaptation due to its high tolerance to abiotic stresses, e.g. drought, heat and poor soil. However, involvement of the pitaya catalase gene (HuCAT) in tolerance to abiotic stresses is unknown. In the present study, a full-length HuCAT3 cDNA (1870 bp) was isolated from pitaya based on our previous microarray data and RACE method. The cDNA sequence and deduced amino acid sequence shared 73-77% and 75-80% identity with other plant catalases, respectively. HuCAT3 contains conserved catalase family domain and catalytic sites. Pairwise comparison and phylogenetic analysis indicated that HuCAT3 is most similar to Eriobotrya japonica CAT, followed by Dimocarpus longan CAT and Nicotiana tabacum CAT1. Expression profile analysis demonstrated that HuCAT3 is mainly expressed in green cotyledons and mature stems, and was regulated by H2O2, drought, cold and salt stress, whereas, its expression patterns and maximum expression levels varied with stress types. HuCAT activity increased as exposure to the tested stresses, and the fluctuation of HuCAT activity was consistent with HuCAT3 mRNA abundance (except for 0.5 days upon drought stress). HuCAT3 mRNA elevations and HuCAT activities changes under cold stress were also in conformity with the cold tolerances among the four genotypes. The obtained results confirmed a major role of HuCAT3 in abiotic stress response of pitaya. This may prove useful in understanding pitaya's high tolerance to abiotic stresses at molecular level.

  15. Reactive oxygen species signaling in plants under abiotic stress.

    PubMed

    Choudhury, Shuvasish; Panda, Piyalee; Sahoo, Lingaraj; Panda, Sanjib Kumar

    2013-04-01

    Abiotic stresses like heavy metals, drought, salt, low temperature, etc. are the major factors that limit crop productivity and yield. These stresses are associated with production of certain deleterious chemical entities called reactive oxygen species (ROS), which include hydrogen peroxide (H₂O₂), superoxide radical (O₂(-)), hydroxyl radical (OH(-)), etc. ROS are capable of inducing cellular damage by degradation of proteins, inactivation of enzymes, alterations in the gene and interfere in various pathways of metabolic importance. Our understanding on ROS in response to abiotic stress is revolutionized with the advancements in plant molecular biology, where the basic understanding on chemical behavior of ROS is better understood. Understanding the molecular mechanisms involved in ROS generation and its potential role during abiotic stress is important to identify means by which plant growth and metabolism can be regulated under acute stress conditions. ROS mediated oxidative stress, which is the key to understand stress related toxicity have been widely studied in many plants and the results in those studies clearly revealed that oxidative stress is the main symptom of toxicity. Plants have their own antioxidant defense mechanisms to encounter ROS that is of enzymic and non-enzymic nature . Coordinated activities of these antioxidants regulate ROS detoxification and reduces oxidative load in plants. Though ROS are always regarded to impart negative impact on plants, some reports consider them to be important in regulating key cellular functions; however, such reports in plant are limited. Molecular approaches to understand ROS metabolism and signaling have opened new avenues to comprehend its critical role in abiotic stress. ROS also acts as secondary messenger that signals key cellular functions like cell proliferation, apoptosis and necrosis. In higher eukaryotes, ROS signaling is not fully understood. In this review we summarize our understanding on ROS

  16. Distinct expression patterns of two Arabidopsis phytocystatin genes, AtCYS1 and AtCYS2, during development and abiotic stresses

    PubMed Central

    Hwang, Jung Eun; Hong, Joon Ki; Lim, Chan Ju; Chen, Huan; Je, Jihyun; Yang, Kyung Ae; Kim, Dool Yi; Choi, Young Ju; Lee, Sang Yeol

    2010-01-01

    The phytocystatins of plants are members of the cystatin superfamily of proteins, which are potent inhibitors of cysteine proteases. The Arabidopsis genome encodes seven phytocystatin isoforms (AtCYSs) in two distantly related AtCYS gene clusters. We selected AtCYS1 and AtCYS2 as representatives for each cluster and then generated transgenic plants expressing the GUS reporter gene under the control of each gene promoter. These plants were used to examine AtCYS expression at various stages of plant development and in response to abiotic stresses. Histochemical analysis of AtCYS1 promoter- and AtCYS2 promoter-GUS transgenic plants revealed that these genes have similar but distinct spatial and temporal expression patterns during normal development. In particular, AtCYS1 was preferentially expressed in the vascular tissue of all organs, whereas AtCYS2 was expressed in trichomes and guard cells in young leaves, caps of roots, and in connecting regions of the immature anthers and filaments and the style and stigma in flowers. In addition, each AtCYS gene has a unique expression profile during abiotic stresses. High temperature and wounding stress enhanced the expression of both AtCYS1 and AtCYS2, but the temporal and spatial patterns of induction differed. From these data, we propose that these two AtCYS genes play important, but distinct, roles in plant development and stress responses. PMID:20526604

  17. Genome-wide analysis of the maize (Zea may L.) CPP-like gene family and expression profiling under abiotic stress.

    PubMed

    Song, X Y; Zhang, Y Y; Wu, F C; Zhang, L

    2016-01-01

    Cysteine-rich polycomb-like (CPP) proteins are members of a small family of transcription factors, which have been identified and characterized in Arabidopsis, rice, and soybean. In this study, we investigated CPP-like genes in the maize genome. The results revealed 13 putative CPP-like genes, which were found to encode 17 distinct transcripts and were distributed unequally on 7 of 10 maize chromosomes. Analysis of phylogenetic relationships showed that Arabidopsis, rice, and maize CPP-like transcription factors can be grouped into two subfamilies. We also used real-time RT-PCR to evaluate changes in the transcript levels of ZmCPP genes in response to abiotic stresses (heat, cold, salt, and drought stresses). These findings provide an overview of the evolution of the ZmCPP gene family, which will aid in the functional characterization of CPP-like genes in maize growth and development. PMID:27525875

  18. Wheat hypersensitive-induced reaction genes TaHIR1 and TaHIR3 are involved in response to stripe rust fungus infection and abiotic stresses.

    PubMed

    Duan, Yinghui; Guo, Jun; Shi, Xuexia; Guan, Xiangnan; Liu, Furong; Bai, Pengfei; Huang, Lili; Kang, Zhensheng

    2013-02-01

    KEY MESSAGE : TaHIR1 and TaHIR3 play positive roles in resistance to the stripe rust fungus via inducing HR and regulating defense-related genes, but are negatively regulated by various abiotic stimuli. Plant hypersensitive-induced reaction (HIR) genes are known to be associated with the hypersensitive response and disease defense. In wheat, two HIR genes, TaHIR1 and TaHIR3, have been identified and found to be up-regulated after infection with the stripe rust fungus. Here, we further determined their roles in defense against abiotic stresses and the stripe rust pathogen, Puccinia striiformis f. sp. tritici. TaHIR1 and TaHIR3 proteins were localized in the plasma membrane of tobacco cells. The expression of TaHIR1 and TaHIR3 was reduced by the environmental stimuli, including low temperature, drought, and high salinity stresses. In addition, the expression of TaHIR1 and TaHIR3 was down-regulated by exogenously applied ethrel and abscisic acid, whereas expression was not affected by treatments with salicylic acid and methyl jasmonate. Furthermore, barley stripe mosaic virus-induced gene silencing of TaHIR1 and TaHIR3 reduced resistance in wheat cultivar Suwon11 against an avirulent stripe rust pathotype CYR23 and area of necrotic cells neighboring the infection sites, and altered the expression levels of defense-related genes. These results suggest that TaHIR1 and TaHIR3 function positively in the incompatible interaction of wheat-stripe rust fungus, but exhibit negative transcriptional response to abiotic stresses.

  19. Involvement of co-repressor LUH and the adapter proteins SLK1 and SLK2 in the regulation of abiotic stress response genes in Arabidopsis

    PubMed Central

    2014-01-01

    Background During abiotic stress many genes that are important for growth and adaptation to stress are expressed at elevated levels. However, the mechanisms that keep the stress responsive genes from expressing under non stress conditions remain elusive. Recent genetic characterization of the co-repressor LEUNIG_HOMOLOG (LUH) and transcriptional adaptor proteins SEUSS-LIKE1 (SLK1) and SLK2 have been proposed to function redundantly in diverse developmental processes; however their function in the abiotic stress response is unknown. Moreover, the molecular functions of LUH, SLK1 and SLK2 remain obscure. Here, we show the molecular function of LUH, SLK1 and SLK2 and the role of this complex in the abiotic stress response. Results The luh, slk1 and slk2 mutant plants shows enhanced tolerance to salt and osmotic stress conditions. SLK1 and SLK2 interact physically with the LUFS domain in LUH forming SLK1-LUH and SLK2-LUH co-repressor complexes to inhibit the transcription. LUH has repressor activity, whereas SLK1 and SLK2 function as adaptors to recruit LUH, which in turn recruits histone deacetylase to the target sequences to repress transcription. The stress response genes RD20, MYB2 and NAC019 are expressed at elevated levels in the luh, slk1 and slk2 mutant plants. Furthermore, these stress response genes are associated with decreased nucleosome density and increased acetylation levels at H3K9 and H3K14 in the luh, slk1 and slk2 mutant plants. Conclusions Our results indicate that SLK1, SLK2 and LUH form a co-repressor complex. LUH represses by means of an epigenetic process involving histone modification to facilitate the condensation of chromatin thus preventing transcription at the target genes. PMID:24564815

  20. Finding the undiscovered roles of genes: an approach using mutual ranking of coexpressed genes and promoter architecture-case study: dual roles of thaumatin like proteins in biotic and abiotic stresses.

    PubMed

    Deihimi, Tahereh; Niazi, Ali; Ebrahimi, Mansour; Kajbaf, Kimia; Fanaee, Somaye; Bakhtiarizadeh, Mohammad Reza; Ebrahimie, Esmaeile

    2012-01-01

    Regarding the possible multiple functions of a specific gene, finding the alternative roles of genes is a major challenge. Huge amount of available expression data and the central role of the promoter and its regulatory elements provide unique opportunely to address this issue. The question is that how the expression data and promoter analysis can be applied to uncover the different functions of a gene. A computational approach has been presented here by analysis of promoter regulatory elements, coexpressed gene as well as protein domain and prosite analysis. We applied our approach on Thaumatin like protein (TLP) as example. TLP is of group 5 of pathogenesis related proteins which their antifungal role has been proved previously. In contrast, Osmotin like proteins (OLPs) are basic form of TLPs with proved role only in abiotic stresses. We demonstrated the possible outstanding homolouges involving in both biotic and abiotic stresses by analyzing 300 coexpressed genes for each Arabidopsis TLP and OLP in biotic, abiotic, hormone, and light microarray experiments based on mutual ranking. In addition, promoter analysis was employed to detect transcription factor binding sites (TFBs) and their differences between OLPs and TLPs. A specific combination of five TFBs was found in all TLPs presenting the key structure in functional response of TLP to fungal stress. Interestingly, we found the fungal response TFBs in some of salt responsive OLPs, indicating the possible role of OLPs in biotic stresses. Thirteen TFBS were unique for all OLPs and some found in TLPs, proposing the possible role of these TLPs in abiotic stresses. Multivariate analysis showed the possibility of estimating models for distinguishing biotic and abiotic functions of TIPs based on promoter regulatory elements. This is the first report in identifying multiple roles of TLPs and OLPs in biotic and abiotic stresses. This study provides valuable clues for screening and discovering new genes with possible

  1. Characterization of expressed sequence tags (ESTs) of pigeonpea (Cajanus cajan L.) and functional validation of selected genes for abiotic stress tolerance in Arabidopsis thaliana.

    PubMed

    Priyanka, B; Sekhar, K; Sunita, T; Reddy, V D; Rao, Khareedu Venkateswara

    2010-03-01

    Pigeonpea, a major grain legume crop with remarkable drought tolerance traits, has been used for the isolation of stress-responsive genes. Herein, we report generation of ESTs, transcript profiles of selected genes and validation of candidate genes obtained from the subtracted cDNA libraries of pigeonpea plants subjected to PEG/water-deficit stress conditions. Cluster analysis of 124 selected ESTs yielded 75 high-quality ESTs. Homology searches disclosed that 55 ESTs share significant similarity with the known/putative proteins or ESTs available in the databases. These ESTs were characterized and genes relevant to the specific physiological processes were identified. Of the 75 ESTs obtained from the cDNA libraries of drought-stressed plants, 20 ESTs proved to be unique to the pigeonpea. These sequences are envisaged to serve as a potential source of stress-inducible genes of the drought stress-response transcriptome, and hence may be used for deciphering the mechanism of drought tolerance of the pigeonpea. Expression profiles of selected genes revealed increased levels of m-RNA transcripts in pigeonpea plants subjected to different abiotic stresses. Transgenic Arabidopsis lines, expressing Cajanus cajan hybrid-proline-rich protein (CcHyPRP), C. cajan cyclophilin (CcCYP) and C. cajan cold and drought regulatory (CcCDR) genes, exhibited marked tolerance, increased plant biomass and enhanced photosynthetic rates under PEG/NaCl/cold/heat stress conditions. This study represents the first report dealing with the isolation of drought-specific ESTs, transcriptome analysis and functional validation of drought-responsive genes of the pigeonpea. These genes, as such, hold promise for engineering crop plants bestowed with tolerance to major abiotic stresses. PMID:20131066

  2. The auxin response factor gene family in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress.

    PubMed

    Hu, Wei; Zuo, Jiao; Hou, Xiaowan; Yan, Yan; Wei, Yunxie; Liu, Juhua; Li, Meiying; Xu, Biyu; Jin, Zhiqiang

    2015-01-01

    Auxin signaling regulates various auxin-responsive genes via two types of transcriptional regulators, Auxin Response Factors (ARF) and Aux/IAA. ARF transcription factors act as critical components of auxin signaling that play important roles in modulating various biological processes. However, limited information about this gene family in fruit crops is currently available. Herein, 47 ARF genes were identified in banana based on its genome sequence. Phylogenetic analysis of the ARFs from banana, rice, and Arabidopsis suggested that the ARFs could be divided into four subgroups, among which most ARFs from the banana showed a closer relationship with those from rice than those from Arabidopsis. Conserved motif analysis showed that all identified MaARFs had typical DNA-binding and ARF domains, but 12 members lacked the dimerization domain. Gene structure analysis showed that the number of exons in MaARF genes ranged from 5 to 21, suggesting large variation amongst banana ARF genes. The comprehensive expression profiles of MaARF genes yielded useful information about their involvement in diverse tissues, different stages of fruit development and ripening, and responses to abiotic stresses in different varieties. Interaction networks and co-expression assays indicated the strong transcriptional response of banana ARFs and ARF-mediated networks in early fruit development for different varieties. Our systematic analysis of MaARFs revealed robust tissue-specific, development-dependent, and abiotic stress-responsive candidate MaARF genes for further functional assays in planta. These findings could lead to potential applications in the genetic improvement of banana cultivars, and yield new insights into the complexity of the control of MaARF gene expression at the transcriptional level. Finally, they support the hypothesis that ARFs are a crucial component of the auxin signaling pathway, which regulates a wide range of physiological processes. PMID:26442055

  3. The auxin response factor gene family in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress

    PubMed Central

    Hu, Wei; Zuo, Jiao; Hou, Xiaowan; Yan, Yan; Wei, Yunxie; Liu, Juhua; Li, Meiying; Xu, Biyu; Jin, Zhiqiang

    2015-01-01

    Auxin signaling regulates various auxin-responsive genes via two types of transcriptional regulators, Auxin Response Factors (ARF) and Aux/IAA. ARF transcription factors act as critical components of auxin signaling that play important roles in modulating various biological processes. However, limited information about this gene family in fruit crops is currently available. Herein, 47 ARF genes were identified in banana based on its genome sequence. Phylogenetic analysis of the ARFs from banana, rice, and Arabidopsis suggested that the ARFs could be divided into four subgroups, among which most ARFs from the banana showed a closer relationship with those from rice than those from Arabidopsis. Conserved motif analysis showed that all identified MaARFs had typical DNA-binding and ARF domains, but 12 members lacked the dimerization domain. Gene structure analysis showed that the number of exons in MaARF genes ranged from 5 to 21, suggesting large variation amongst banana ARF genes. The comprehensive expression profiles of MaARF genes yielded useful information about their involvement in diverse tissues, different stages of fruit development and ripening, and responses to abiotic stresses in different varieties. Interaction networks and co-expression assays indicated the strong transcriptional response of banana ARFs and ARF-mediated networks in early fruit development for different varieties. Our systematic analysis of MaARFs revealed robust tissue-specific, development-dependent, and abiotic stress-responsive candidate MaARF genes for further functional assays in planta. These findings could lead to potential applications in the genetic improvement of banana cultivars, and yield new insights into the complexity of the control of MaARF gene expression at the transcriptional level. Finally, they support the hypothesis that ARFs are a crucial component of the auxin signaling pathway, which regulates a wide range of physiological processes. PMID:26442055

  4. Laminarin modulates the chloroplast antioxidant system to enhance abiotic stress tolerance partially through the regulation of the defensin-like gene expression.

    PubMed

    Wu, Yi-Ru; Lin, Yi-Chen; Chuang, Huey-wen

    2016-06-01

    Algae wall polysaccharide, laminarin (Lam), has an established role on induction of plant disease resistance. In this study, application of Lam increased Arabidopsis fresh weight and enhanced tolerance to salt and heat stress by stabilizing chloroplast under adverse environment. Transcriptome analysis indicated that, in addition to induced a large number of genes associated with the host defense, genes involved in the regulation of abiotic stress tolerance mostly the heat stress response constituted the largest group of the up-regulated genes. Lam induced expression of IRT1, ZIP8, and copper transporters involved in transport of Fe, Zn, Cu ions associated with the activity of chloroplast antioxidant system. Lam also up-regulated genes involved in the synthesis of terpenoid, a plastidial-derived secondary metabolite with antioxidant activity. Overexpression of a Lam-induced defensin like 202 (DEFL202) resulted in increased chloroplast stability under salt stress and increased plant growth activity after heat stress. Expression of antioxidant enzymes including SOD and ascorbate peroxidase (APX), photosystem PsbA-D1 and ABA-dependent responsive to desiccation 22 (RD22) was induced to higher levels in the transgenic seedlings. In sum, our results suggest that Lam is an potent inducer for induction of chloroplastic antioxidant activity. Lam affect plant abiotic stress tolerance partially through regulation of the DEFL-mediated pathway. PMID:27095402

  5. Laminarin modulates the chloroplast antioxidant system to enhance abiotic stress tolerance partially through the regulation of the defensin-like gene expression.

    PubMed

    Wu, Yi-Ru; Lin, Yi-Chen; Chuang, Huey-wen

    2016-06-01

    Algae wall polysaccharide, laminarin (Lam), has an established role on induction of plant disease resistance. In this study, application of Lam increased Arabidopsis fresh weight and enhanced tolerance to salt and heat stress by stabilizing chloroplast under adverse environment. Transcriptome analysis indicated that, in addition to induced a large number of genes associated with the host defense, genes involved in the regulation of abiotic stress tolerance mostly the heat stress response constituted the largest group of the up-regulated genes. Lam induced expression of IRT1, ZIP8, and copper transporters involved in transport of Fe, Zn, Cu ions associated with the activity of chloroplast antioxidant system. Lam also up-regulated genes involved in the synthesis of terpenoid, a plastidial-derived secondary metabolite with antioxidant activity. Overexpression of a Lam-induced defensin like 202 (DEFL202) resulted in increased chloroplast stability under salt stress and increased plant growth activity after heat stress. Expression of antioxidant enzymes including SOD and ascorbate peroxidase (APX), photosystem PsbA-D1 and ABA-dependent responsive to desiccation 22 (RD22) was induced to higher levels in the transgenic seedlings. In sum, our results suggest that Lam is an potent inducer for induction of chloroplastic antioxidant activity. Lam affect plant abiotic stress tolerance partially through regulation of the DEFL-mediated pathway.

  6. The Expression Profiling of the Lipoxygenase (LOX) Family Genes During Fruit Development, Abiotic Stress and Hormonal Treatments in Cucumber (Cucumis sativus L.)

    PubMed Central

    Yang, Xue-Yong; Jiang, Wei-Jie; Yu, Hong-Jun

    2012-01-01

    Lipoxygenases (LOXs) are non-haem iron-containing dioxygenases that catalyse oxygenation of polyunsaturated fatty acids and lipids to initiate the formation of a group of biologically active compounds called oxylipins. Plant oxylipins play important and diverse functions in the cells. In the current study, expression analysis during cucumber development using semi-quantitative RT-PCR revealed that 13 of 23 CsLOX genes were detectable, and were tissue specific or preferential accumulation. In total, 12 genes were found to be differentially expressed during fruit development and have different patterns of expression in exocarp, endocarp and pulp at day 5 after anthesis. The expression analysis of these 12 cucumber LOX genes in response to abiotic stresses and plant growth regulator treatments revealed their differential transcript in response to more than one treatment, indicating their diverse functions in abiotic stress and hormone responses. Results suggest that in cucumber the expanded LOX genes may play more diverse roles in life cycle and comprehensive data generated will be helpful in conducting functional genomic studies to understand their precise roles in cucumber fruit development and stress responses. PMID:22408466

  7. Overexpression of the NDR1/HIN1-Like Gene NHL6 Modifies Seed Germination in Response to Abscisic Acid and Abiotic Stresses in Arabidopsis.

    PubMed

    Bao, Yan; Song, Wei-Meng; Pan, Jing; Jiang, Chun-Mei; Srivastava, Renu; Li, Bei; Zhu, Lu-Ying; Su, Hong-Yan; Gao, Xiao-Shu; Liu, Hua; Yu, Xiang; Yang, Lei; Cheng, Xian-Hao; Zhang, Hong-Xia

    2016-01-01

    NHL (NDR1/HIN1-like) genes play crucial roles in pathogen induced plant responses to biotic stress. Here, we report the possible function of NHL6 in plant response to abscisic acid (ABA) and abiotic stress. NHL6 was highly expressed in non-germinated seeds, and its expression was strongly induced by ABA and multiple abiotic stress signals. Loss-of-function of NHL6 decreased sensitivity to ABA in the early developmental stages including seed germination and post-germination seedling growth of the nhl6 mutants. However, overexpression of NHL6 increased sensitivity to ABA, salt and osmotic stress of the transgenic plants. Further studies indicated that the increased sensitivity in the 35S::NHL6 overexpressing plants could be a result of both ABA hypersensitivity and increased endogenous ABA accumulation under the stress conditions. It was also seen that the ABA-responsive element binding factors AREB1, AREB2 and ABF3 could regulate NHL6 expression at transcriptional level. Our results indicate that NHL6 plays an important role in the abiotic stresses-induced ABA signaling and biosynthesis, particularly during seed germination and early seedling development in Arabidopsis.

  8. Overexpression of the NDR1/HIN1-Like Gene NHL6 Modifies Seed Germination in Response to Abscisic Acid and Abiotic Stresses in Arabidopsis.

    PubMed

    Bao, Yan; Song, Wei-Meng; Pan, Jing; Jiang, Chun-Mei; Srivastava, Renu; Li, Bei; Zhu, Lu-Ying; Su, Hong-Yan; Gao, Xiao-Shu; Liu, Hua; Yu, Xiang; Yang, Lei; Cheng, Xian-Hao; Zhang, Hong-Xia

    2016-01-01

    NHL (NDR1/HIN1-like) genes play crucial roles in pathogen induced plant responses to biotic stress. Here, we report the possible function of NHL6 in plant response to abscisic acid (ABA) and abiotic stress. NHL6 was highly expressed in non-germinated seeds, and its expression was strongly induced by ABA and multiple abiotic stress signals. Loss-of-function of NHL6 decreased sensitivity to ABA in the early developmental stages including seed germination and post-germination seedling growth of the nhl6 mutants. However, overexpression of NHL6 increased sensitivity to ABA, salt and osmotic stress of the transgenic plants. Further studies indicated that the increased sensitivity in the 35S::NHL6 overexpressing plants could be a result of both ABA hypersensitivity and increased endogenous ABA accumulation under the stress conditions. It was also seen that the ABA-responsive element binding factors AREB1, AREB2 and ABF3 could regulate NHL6 expression at transcriptional level. Our results indicate that NHL6 plays an important role in the abiotic stresses-induced ABA signaling and biosynthesis, particularly during seed germination and early seedling development in Arabidopsis. PMID:26849212

  9. Overexpression of the NDR1/HIN1-Like Gene NHL6 Modifies Seed Germination in Response to Abscisic Acid and Abiotic Stresses in Arabidopsis

    PubMed Central

    Pan, Jing; Jiang, Chun-Mei; Srivastava, Renu; Li, Bei; Zhu, Lu-Ying; Su, Hong-Yan; Gao, Xiao-Shu; Liu, Hua; Yu, Xiang; Yang, Lei; Cheng, Xian-Hao; Zhang, Hong-Xia

    2016-01-01

    NHL (NDR1/HIN1-like) genes play crucial roles in pathogen induced plant responses to biotic stress. Here, we report the possible function of NHL6 in plant response to abscisic acid (ABA) and abiotic stress. NHL6 was highly expressed in non-germinated seeds, and its expression was strongly induced by ABA and multiple abiotic stress signals. Loss-of-function of NHL6 decreased sensitivity to ABA in the early developmental stages including seed germination and post-germination seedling growth of the nhl6 mutants. However, overexpression of NHL6 increased sensitivity to ABA, salt and osmotic stress of the transgenic plants. Further studies indicated that the increased sensitivity in the 35S::NHL6 overexpressing plants could be a result of both ABA hypersensitivity and increased endogenous ABA accumulation under the stress conditions. It was also seen that the ABA-responsive element binding factors AREB1, AREB2 and ABF3 could regulate NHL6 expression at transcriptional level. Our results indicate that NHL6 plays an important role in the abiotic stresses-induced ABA signaling and biosynthesis, particularly during seed germination and early seedling development in Arabidopsis. PMID:26849212

  10. Expression of the 1-SST and 1-FFT genes and consequent fructan accumulation in Agave tequilana and A. inaequidens is differentially induced by diverse (a)biotic-stress related elicitors.

    PubMed

    Suárez-González, Edgar Martín; López, Mercedes G; Délano-Frier, John P; Gómez-Leyva, Juan Florencio

    2014-02-15

    The expression of genes coding for sucrose:sucrose 1-fructosyltransferase (1-SST; EC 2.4.1.99) and fructan:fructan 1-fructosyltransferase (1-FFT; EC 2.4.1.100), both fructan biosynthesizing enzymes, characterization by TLC and HPAEC-PAD, as well as the quantification of the fructo-oligosaccharides (FOS) accumulating in response to the exogenous application of sucrose, kinetin (cytokinin) or other plant hormones associated with (a)biotic stress responses were determined in two Agave species grown in vitro, domesticated Agave tequilana var. azul and wild A. inaequidens. It was found that elicitors such as salicylic acid (SA), and jasmonic acid methyl ester (MeJA) had the strongest effect on fructo-oligosaccharide (FOS) accumulation. The exogenous application of 1mM SA induced a 36-fold accumulation of FOS of various degrees of polymerization (DP) in stems of A. tequilana. Other treatments, such as 50mM abscisic acid (ABA), 8% Sucrose (Suc), and 1.0 mg L(-1) kinetin (KIN) also led to a significant accumulation of low and high DP FOS in this species. Conversely, treatment with 200 μM MeJA, which was toxic to A. tequilana, induced an 85-fold accumulation of FOS in the stems of A. inaequidens. Significant FOS accumulation in this species also occurred in response to treatments with 1mM SA, 8% Suc, and 10% polyethylene glycol (PEG). Maximum yields of 13.6 and 8.9 mg FOS per g FW were obtained in stems of A. tequilana and A. inaequidens, respectively. FOS accumulation in the above treatments was tightly associated with increased expression levels of either the 1-FFT or the 1-SST gene in tissues of both Agave species. PMID:23988562

  11. Expression of the 1-SST and 1-FFT genes and consequent fructan accumulation in Agave tequilana and A. inaequidens is differentially induced by diverse (a)biotic-stress related elicitors.

    PubMed

    Suárez-González, Edgar Martín; López, Mercedes G; Délano-Frier, John P; Gómez-Leyva, Juan Florencio

    2014-02-15

    The expression of genes coding for sucrose:sucrose 1-fructosyltransferase (1-SST; EC 2.4.1.99) and fructan:fructan 1-fructosyltransferase (1-FFT; EC 2.4.1.100), both fructan biosynthesizing enzymes, characterization by TLC and HPAEC-PAD, as well as the quantification of the fructo-oligosaccharides (FOS) accumulating in response to the exogenous application of sucrose, kinetin (cytokinin) or other plant hormones associated with (a)biotic stress responses were determined in two Agave species grown in vitro, domesticated Agave tequilana var. azul and wild A. inaequidens. It was found that elicitors such as salicylic acid (SA), and jasmonic acid methyl ester (MeJA) had the strongest effect on fructo-oligosaccharide (FOS) accumulation. The exogenous application of 1mM SA induced a 36-fold accumulation of FOS of various degrees of polymerization (DP) in stems of A. tequilana. Other treatments, such as 50mM abscisic acid (ABA), 8% Sucrose (Suc), and 1.0 mg L(-1) kinetin (KIN) also led to a significant accumulation of low and high DP FOS in this species. Conversely, treatment with 200 μM MeJA, which was toxic to A. tequilana, induced an 85-fold accumulation of FOS in the stems of A. inaequidens. Significant FOS accumulation in this species also occurred in response to treatments with 1mM SA, 8% Suc, and 10% polyethylene glycol (PEG). Maximum yields of 13.6 and 8.9 mg FOS per g FW were obtained in stems of A. tequilana and A. inaequidens, respectively. FOS accumulation in the above treatments was tightly associated with increased expression levels of either the 1-FFT or the 1-SST gene in tissues of both Agave species.

  12. Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress.

    PubMed

    Schmidt, Gregor W; Delaney, Sven K

    2010-03-01

    Real-time RT-PCR is a powerful technique for the measurement of gene expression, but its accuracy depends on the stability of the internal reference gene(s) used for data normalization. Tobacco (Nicotiana tabacum) is an important model in studies of plant gene expression, but stable reference genes have not been well-studied in the tobacco system. We address this problem by analysing the expression stability of eight potential tobacco reference genes. Primers targeting each gene (18S rRNA, EF-1alpha, Ntubc2, alpha- and beta-tubulin, PP2A, L25 and actin) were developed and optimized. The expression of each gene was then measured by real-time PCR in a diverse set of 22 tobacco cDNA samples derived from developmentally distinct tissues and from plants exposed to several abiotic stresses. L25 and EF-1alpha demonstrated the highest expression stability, followed by Ntubc2. Measurement of L25 and EF-1alpha was sufficient for accurate normalization in either the developmental or stress-treated samples, but Ntubc2 was also required when considering the entire sample set. Analysis of a tobacco circadian gene (NTCP-23) verified these reference genes in an additional context, and all techniques were optimized to enable a high-throughput approach. These results provide a foundation for the more accurate and widespread use of real-time RT-PCR in tobacco. PMID:20098998

  13. Towards the Identification of New Genes Involved in ABA-Dependent Abiotic Stresses Using Arabidopsis Suppressor Mutants of abh1 Hypersensitivity to ABA during Seed Germination

    PubMed Central

    Daszkowska-Golec, Agata; Chorazy, Edyta; Maluszynski, Miroslaw; Szarejko, Iwona

    2013-01-01

    Abscisic acid plays a pivotal role in the abiotic stress response in plants. Although great progress has been achieved explaining the complexity of the stress and ABA signaling cascade, there are still many questions to answer. Mutants are a valuable tool in the identification of new genes or new alleles of already known genes and in elucidating their role in signaling pathways. We applied a suppressor mutation approach in order to find new components of ABA and abiotic stress signaling in Arabidopsis. Using the abh1 (ABA hypersensitive 1) insertional mutant as a parental line for EMS mutagenesis, we selected several mutants with suppressed hypersensitivity to ABA during seed germination. Here, we present the response to ABA and a wide range of abiotic stresses during the seed germination and young seedling development of two suppressor mutants—soa2 (suppressor of abh1 hypersensitivity to ABA 2) and soa3 (suppressor of abh1 hypersensitivity to ABA 3). Generally, both mutants displayed a suppression of the hypersensitivity of abh1 to ABA, NaCl and mannitol during germination. Both mutants showed a higher level of tolerance than Columbia-0 (Col-0—the parental line of abh1) in high concentrations of glucose. Additionally, soa2 exhibited better root growth than Col-0 in the presence of high ABA concentrations. soa2 and soa3 were drought tolerant and both had about 50% fewer stomata per mm2 than the wild-type but the same number as their parental line—abh1. Taking into account that suppressor mutants had the same genetic background as their parental line—abh1, it was necessary to backcross abh1 with Landsberg erecta four times for the map-based cloning approach. Mapping populations, derived from the cross of abh1 in the Landsberg erecta background with each suppressor mutant, were created. Map based cloning in order to identify the suppressor genes is in progress. PMID:23807502

  14. Functional analysis of superoxide dismutases (SODs) in sunflower under biotic and abiotic stress conditions. Identification of two new genes of mitochondrial Mn-SOD.

    PubMed

    Fernández-Ocaña, Ana; Chaki, Mounira; Luque, Francisco; Gómez-Rodríguez, María V; Carreras, Alfonso; Valderrama, Raquel; Begara-Morales, Juan C; Hernández, Luis E; Corpas, Francisco J; Barroso, Juan B

    2011-07-15

    Superoxide dismutases (SODs) are a family of metalloenzymes that catalyse the disproportionation of superoxide radicals into hydrogen peroxide and oxygen. In sunflower (Helianthus annuus L.) seedlings, two new Mn-SOD isozymes, designated as I and II, were identified. However, no evidence for a Fe-SOD was found. Both Mn-SOD I and Mn-SOD II have a cleaved sequence of 14 residues that target the mitochondrion with a probability of 81% and 95%, respectively. The gene expression of these new mitochondrial Mn-SODs as well as the previously reported cytosolic and chloroplastic CuZnSODs was analyzed by real-time quantitative reverse transcription-PCR. This was done in the main organs (roots, hypocotyls, and cotyledons) of sunflower seedlings and also under biotic (infection by the pathogen Plasmopara halstedii) and abiotic stress conditions, including high and low temperature and mechanical wounding. Both CuZn-SODs had a gene expression of 1000-fold higher than that of mitochondrial Mn-SODs. And the expression of the Mn-SOD I was approximately 12-fold higher than that of Mn-SOD II. The Mn-SOD I showed a significant modulation in response to the assayed biotic and abiotic stresses even when it had no apparent oxidative stress, such as low temperature. Thus, it is proposed that the mitochondrial Mn-SOD I gene could act as an early sensor of adverse conditions to prevent potential oxidative damage.

  15. Expression of Rice CYP450-Like Gene (Os08g01480) in Arabidopsis Modulates Regulatory Network Leading to Heavy Metal and Other Abiotic Stress Tolerance

    PubMed Central

    Rai, Arti; Singh, Ruchi; Shirke, Pramod Arvind; Tripathi, Rudra Deo; Trivedi, Prabodh Kumar; Chakrabarty, Debasis

    2015-01-01

    Heavy metal (HM) toxicity has become a grave problem in the world since it leads to hazardous effects on living organisms. Transcriptomic/proteomic studies in plants have identified a large number of metal-responsive gene families. Of these, cytochrome-P450 (CYPs) family members are composed of enzymes carrying out detoxification of exogenous molecules. Here, we report a CYP-like protein encoded by Os08g01480 locus in rice that helps the plant to combat HM and other abiotic stresses. To functionally characterize CYP-like gene, cDNA and promoter were isolated from rice to develop Arabidopsis transgenic lines. Heterologous expression of Os08g01480 in Arabidopsis provided significant tolerance towards abiotic stresses. In silico analysis reveals that Os08g01480 might help plants to combat environmental stress via modulating auxin metabolism. Transgenic lines expressing reporter gene under control of Os08g01480 promoter demonstrated differential promoter activity in different tissues during environmental stresses. These studies indicated that differential expression of Os08g01480 might be modulating response of plants towards environmental stresses as well as in different developmental stages. PMID:26401987

  16. Overexpression of a mitochondrial ATP synthase small subunit gene (AtMtATP6) confers tolerance to several abiotic stresses in Saccharomyces cerevisiae and Arabidopsis thaliana.

    PubMed

    Zhang, Xinxin; Liu, Shenkui; Takano, Tetsuo

    2008-07-01

    Mitochondrial F(1)F(0)-ATPase is a key enzyme in plant metabolism, providing cells with ATP that uses the transmembrane electrochemical proton gradient to drive synthesis of ATP. A 6 kDa protein (At3g46430) has been previously purified from Arabidopsis thaliana mitochondrial F(1)F(0)-ATPase. In this study, the gene (AtMtATP6; GenBank accession no. AK117680) encoding this protein was isolated from Arabidopsis and characterized. Northern blot analyses showed that the expression of AtMtATP6 gene in Arabidopsis suspension-cultured cells was induced by several abiotic stresses from salts, drought, and cold. Over-expression of AtMtATP6 gene in transgenic yeast and Arabidopsis plants increased the resistance to salts, drought, oxidative and cold stresses. Taken together, our data raise the possibility that induction of the F(1)F(0)-ATPase plays a role in stress tolerance.

  17. The α-Crystallin Domain Containing Genes: Identification, Phylogeny and Expression Profiling in Abiotic Stress, Phytohormone Response and Development in Tomato (Solanum lycopersicum).

    PubMed

    Paul, Asosii; Rao, Sombir; Mathur, Saloni

    2016-01-01

    The α-crystallin domain (ACD) is an ancient domain conserved among all kingdoms. Plant ACD proteins have roles in abiotic stresses, transcriptional regulation, inhibiting virus movement, and DNA demethylation. An exhaustive in-silico analysis using Hidden Markov Model-based conserved motif search of the tomato proteome yielded a total of 50 ACD proteins that belonged to four groups, sub-divided further into 18 classes. One of these groups belongs to the small heat shock protein (sHSP) class of proteins, molecular chaperones implicated in heat tolerance. Both tandem and segmental duplication events appear to have shaped the expansion of this gene family with purifying selection being the primary driving force for evolution. The expression profiling of the Acd genes in two different heat stress regimes suggested that their transcripts are differentially regulated with roles in acclimation and adaptive response during recovery. The co-expression of various genes in response to different abiotic stresses (heat, low temperature, dehydration, salinity, and oxidative stress) and phytohormones (abscisic acid and salicylic acid) suggested possible cross-talk between various members to combat a myriad of stresses. Further, several genes were highly expressed in fruit, root, and flower tissues as compared to leaf signifying their importance in plant development too. Evaluation of the expression of this gene family in field grown tissues highlighted the prominent role they have in providing thermo-tolerance during daily temperature variations. The function of three putative sHSPs was established as holdase chaperones as evidenced by protection to malate-dehydrogenase against heat induced protein-aggregation. This study provides insights into the characterization of the Acd genes in tomato and forms the basis for further functional validation in-planta. PMID:27066058

  18. Isolation and expression analysis of 18 CsbZIP genes implicated in abiotic stress responses in the tea plant (Camellia sinensis).

    PubMed

    Cao, Hongli; Wang, Lu; Yue, Chuan; Hao, Xinyuan; Wang, Xinchao; Yang, Yajun

    2015-12-01

    Basic leucine zipper (bZIP) transcription factors (TFs) play essential roles in regulating stress processes in plants. Despite the economic importance of this woody crop, there is little information about bZIP TFs in tea plants. In this study, 18 bZIP genes were isolated from the tea plant (Camellia sinensis) and named sequentially from CsbZIP1 to CsbZIP18. According to the phylogenetic classification as in Arabidopsis, the CsbZIP genes spanned ten subgroups (Group A, B, C, D, E, F, H, I, S and K) of bZIP TFs. When analyzed for organ specific expression, all CsbZIP genes were found to be ubiquitously expressed in roots, stems, leaves and flowers. Expression analysis of CsbZIP genes in response to four abiotic stresses showed that in leaves, 9, 9, 15 and 11 CsbZIPs have 2-fold greater variation in transcript abundance under cold, exogenous ABA, high salinity and dehydration conditions, respectively. In roots, 5, 12, 14 and 11 CsbZIPs were differentially expressed under conditions of cold, exogenous ABA, high salinity and dehydration stresses. Moreover, CsbZIP genes in Groups F, H, S and K exhibited several folds up-and/or down-regulation against the above four stresses. Notably, CsbZIP18 of group K showed significant up-regulation in response to these same stresses, suggesting a vital functional role in stress response. Together, these findings increase our knowledge of bZIP TFs in the tea plant and suggest the significance of CsbZIP genes in plant abiotic responses.

  19. The α-Crystallin Domain Containing Genes: Identification, Phylogeny and Expression Profiling in Abiotic Stress, Phytohormone Response and Development in Tomato (Solanum lycopersicum)

    PubMed Central

    Paul, Asosii; Rao, Sombir; Mathur, Saloni

    2016-01-01

    The α-crystallin domain (ACD) is an ancient domain conserved among all kingdoms. Plant ACD proteins have roles in abiotic stresses, transcriptional regulation, inhibiting virus movement, and DNA demethylation. An exhaustive in-silico analysis using Hidden Markov Model-based conserved motif search of the tomato proteome yielded a total of 50 ACD proteins that belonged to four groups, sub-divided further into 18 classes. One of these groups belongs to the small heat shock protein (sHSP) class of proteins, molecular chaperones implicated in heat tolerance. Both tandem and segmental duplication events appear to have shaped the expansion of this gene family with purifying selection being the primary driving force for evolution. The expression profiling of the Acd genes in two different heat stress regimes suggested that their transcripts are differentially regulated with roles in acclimation and adaptive response during recovery. The co-expression of various genes in response to different abiotic stresses (heat, low temperature, dehydration, salinity, and oxidative stress) and phytohormones (abscisic acid and salicylic acid) suggested possible cross-talk between various members to combat a myriad of stresses. Further, several genes were highly expressed in fruit, root, and flower tissues as compared to leaf signifying their importance in plant development too. Evaluation of the expression of this gene family in field grown tissues highlighted the prominent role they have in providing thermo-tolerance during daily temperature variations. The function of three putative sHSPs was established as holdase chaperones as evidenced by protection to malate-dehydrogenase against heat induced protein-aggregation. This study provides insights into the characterization of the Acd genes in tomato and forms the basis for further functional validation in-planta. PMID:27066058

  20. Expression profiling of abiotic stress-inducible genes in response to multiple stresses in rice (Oryza sativa L.) varieties with contrasting level of stress tolerance.

    PubMed

    Basu, Supratim; Roychoudhury, Aryadeep

    2014-01-01

    The present study considered transcriptional profiles and protein expression analyses from shoot and/or root tissues under three abiotic stress conditions, namely, salinity, dehydration, and cold, as well as following exogenous abscisic acid treatment, at different time points of stress exposure in three indica rice varieties, IR-29 (salt sensitive), Pokkali, and Nonabokra (both salt tolerant). The candidate genes chosen for expression studies were HKT-1, SOS-3, NHX-1, SAPK5, SAPK7, NAC-1, Rab16A, OSBZ8, DREBP2, CRT/DREBP, WRKY24, and WRKY71, along with the candidate proteins OSBZ8, SAMDC, and GST. Gene expression profile revealed considerable differences between the salt-sensitive and salt-tolerant rice varieties, as the expression in the latter was higher even at the constitutive level, whereas it was inducible only by corresponding stress signals in IR-29. Whether in roots or shoots, the transcriptional responses to different stressors peaked following 24 h of stress/ABA exposure, and the transcript levels enhanced gradually with the period of exposure. The generality of stress responses at the transcriptional level was therefore time dependent. Heat map data also showed differential transcript abundance in the three varieties, correlating the observation with transcript profiling. In silico analysis of the upstream regions of all the genes represented the existence of conserved sequence motifs in single or multiple copies that are indispensable to abiotic stress response. Overall, the transcriptome and proteome analysis undertaken in the present study indicated that genes/proteins conferring tolerance, belonging to different functional classes, were overrepresented, thus providing novel insight into the functional basis of multiple stress tolerance in indica rice varieties. The present work will pave the way in future to select gene(s) for overexpression, so as to generate broad spectrum resistance to multiple stresses simultaneously. PMID:25110688

  1. Arabidopsis Raf-Like Mitogen-Activated Protein Kinase Kinase Kinase Gene Raf43 Is Required for Tolerance to Multiple Abiotic Stresses

    PubMed Central

    Virk, Nasar; Li, Dayong; Tian, Limei; Huang, Lei; Hong, Yongbo; Li, Xiaohui; Zhang, Yafen; Liu, Bo; Zhang, Huijuan; Song, Fengming

    2015-01-01

    Mitogen-activated protein kinase (MAPK) cascades are critical signaling modules that mediate the transduction of extracellular stimuli into intracellular response. A relatively large number of MAPKKKs have been identified in a variety of plant genomes but only a few of them have been studied for their biological function. In the present study, we identified an Arabidopsis Raf-like MAPKKK gene Raf43 and studied its function in biotic and abiotic stress response using a T-DNA insertion mutant raf43-1 and two Raf43-overexpressing lines Raf43-OE#1 and Raf43-OE#13. Expression of Raf43 was induced by multiple abiotic and biotic stresses including treatments with drought, mannitol and oxidative stress or defense signaling molecule salicylic acid and infection with necrotrophic fungal pathogen Botrytis cinerea. Seed germination and seedling root growth of raf43-1 were significantly inhibited on MS medium containing mannitol, NaCl, H2O2 or methyl viologen (MV) while seed germination and seedling root growth of the Raf43-OE#1 and Raf43-OE#13 lines was similar to wild type Col-0 under the above stress conditions. Soil-grown raf43-1 plants exhibited reduced tolerance to MV, drought and salt stress. Abscisic acid inhibited significantly seed germination and seedling root growth of the raf43-1 line but had no effect on the two Raf43-overexpressing lines. Expression of stress-responsive RD17 and DREB2A genes was significantly down-regulated in raf43-1 plants. However, the raf43-1 and Raf43-overexpressing plants showed similar disease phenotype to the wild type plants after infection with B. cinerea or Pseudomonas syringae pv. tomato DC3000. Our results demonstrate that Raf43, encoding for a Raf-like MAPKKK, is required for tolerance to multiple abiotic stresses in Arabidopsis. PMID:26222830

  2. Arabidopsis Raf-Like Mitogen-Activated Protein Kinase Kinase Kinase Gene Raf43 Is Required for Tolerance to Multiple Abiotic Stresses.

    PubMed

    Virk, Nasar; Li, Dayong; Tian, Limei; Huang, Lei; Hong, Yongbo; Li, Xiaohui; Zhang, Yafen; Liu, Bo; Zhang, Huijuan; Song, Fengming

    2015-01-01

    Mitogen-activated protein kinase (MAPK) cascades are critical signaling modules that mediate the transduction of extracellular stimuli into intracellular response. A relatively large number of MAPKKKs have been identified in a variety of plant genomes but only a few of them have been studied for their biological function. In the present study, we identified an Arabidopsis Raf-like MAPKKK gene Raf43 and studied its function in biotic and abiotic stress response using a T-DNA insertion mutant raf43-1 and two Raf43-overexpressing lines Raf43-OE#1 and Raf43-OE#13. Expression of Raf43 was induced by multiple abiotic and biotic stresses including treatments with drought, mannitol and oxidative stress or defense signaling molecule salicylic acid and infection with necrotrophic fungal pathogen Botrytis cinerea. Seed germination and seedling root growth of raf43-1 were significantly inhibited on MS medium containing mannitol, NaCl, H2O2 or methyl viologen (MV) while seed germination and seedling root growth of the Raf43-OE#1 and Raf43-OE#13 lines was similar to wild type Col-0 under the above stress conditions. Soil-grown raf43-1 plants exhibited reduced tolerance to MV, drought and salt stress. Abscisic acid inhibited significantly seed germination and seedling root growth of the raf43-1 line but had no effect on the two Raf43-overexpressing lines. Expression of stress-responsive RD17 and DREB2A genes was significantly down-regulated in raf43-1 plants. However, the raf43-1 and Raf43-overexpressing plants showed similar disease phenotype to the wild type plants after infection with B. cinerea or Pseudomonas syringae pv. tomato DC3000. Our results demonstrate that Raf43, encoding for a Raf-like MAPKKK, is required for tolerance to multiple abiotic stresses in Arabidopsis. PMID:26222830

  3. Screening and Validation of Housekeeping Genes of the Root and Cotyledon of Cunninghamia lanceolata under Abiotic Stresses by Using Quantitative Real-Time PCR

    PubMed Central

    Bao, Wenlong; Qu, Yanli; Shan, Xiaoyi; Wan, Yinglang

    2016-01-01

    Cunninghamia lanceolata (Chinese fir) is a fast-growing and commercially important conifer of the Cupressaceae family. Due to the unavailability of complete genome sequences and relatively poor genetic background information of the Chinese fir, it is necessary to identify and analyze the expression levels of suitable housekeeping genes (HKGs) as internal reference for precise analysis. Based on the results of database analysis and transcriptome sequencing, we have chosen five candidate HKGs (Actin, GAPDH, EF1a, 18S rRNA, and UBQ) with conservative sequences in the Chinese fir and related species for quantitative analysis. The expression levels of these HKGs in roots and cotyledons under five different abiotic stresses in different time intervals were measured by qRT-PCR. The data were statistically analyzed using the following algorithms: NormFinder, BestKeeper, and geNorm. Finally, RankAggreg was applied to merge the sequences generated from three programs and rank these according to consensus sequences. The expression levels of these HKGs showed variable stabilities under different abiotic stresses. Among these, Actin was the most stable internal control in root, and GAPDH was the most stable housekeeping gene in cotyledon. We have also described an experimental procedure for selecting HKGs based on the de novo sequencing database of other non-model plants. PMID:27483238

  4. Molecular Characterization of MaCCS, a Novel Copper Chaperone Gene Involved in Abiotic and Hormonal Stress Responses in Musa acuminata cv. Tianbaojiao

    PubMed Central

    Feng, Xin; Chen, Fanglan; Liu, Weihua; Thu, Min Kyaw; Zhang, Zihao; Chen, Yukun; Cheng, Chunzhen; Lin, Yuling; Wang, Tianchi; Lai, Zhongxiong

    2016-01-01

    Copper/zinc superoxide dismutases (Cu/ZnSODs) play important roles in improving banana resistance to adverse conditions, but their activities depend on the copper chaperone for superoxide dismutase (CCS) delivering copper to them. However, little is known about CCS in monocots and under stress conditions. Here, a novel CCS gene (MaCCS) was obtained from a banana using reverse transcription PCR and rapid-amplification of cDNA ends (RACE) PCR. Sequence analyses showed that MaCCS has typical CCS domains and a conserved gene structure like other plant CCSs. Alternative transcription start sites (ATSSs) and alternative polyadenylation contribute to the mRNA diversity of MaCCS. ATSSs in MaCCS resulted in one open reading frame containing two in-frame start codons to form two protein versions, which is supported by the MaCCS subcellular localization of in both cytosol and chloroplasts. Furthermore, MaCCS promoter was found to contain many cis-elements associated with abiotic and hormonal responses. Quantitative real-time PCR analysis showed that MaCCS was expressed in all tested tissues (leaves, pseudostems and roots). In addition, MaCCS expression was significantly induced by light, heat, drought, abscisic acid and indole-3-acetic acid, but inhibited by relatively high concentrations of CuSO4 and under cold treatment, which suggests that MaCCS is involved in abiotic and hormonal responses. PMID:27023517

  5. Abiotic stresses differentially affect the expression of O-methyltransferase genes related to methoxypyrazine biosynthesis in seeded and parthenocarpic fruits of Vitis vinifera (L.).

    PubMed

    Vallarino, José G; Gainza-Cortés, Felipe; Verdugo-Alegría, Claudio; González, Enrique; Moreno, Yerko M

    2014-07-01

    MPs (3-alkyl-2-methoxypyrazines) are grape-derived aroma compounds that are associated with detrimental herbaceous flavours in some wines. It is well known that several viticultural and environmental parameters can modulate MP concentrations in grapes, although comprehensive molecular studies have not been conducted in this field. Although the biosynthesis pathway of MPs has not been fully elucidated, four Vitis vinifera O-methyltransferase genes (VvOMT1-4) have been related to be involved in MP biosynthesis. We assessed whether different abiotic stresses induction have an impact on MP levels in grapes and wines from seeded and parthenocarpic fruits. Our results show that the timing of VvOMT3 expression is associated with the period of MPs accumulation in seeded fruits during both abiotic stresses, whereas no association was found in parthenocarpic fruits. These results are discussed in the context of how different viticultural practices can modulate VvOMT gene expression, which has a direct impact on MPs levels in wines. PMID:24518323

  6. Characterization of a novel plantain Asr gene, MpAsr, that is regulated in response to infection of Fusarium oxysporum f. sp. cubense and abiotic stresses.

    PubMed

    Liu, Hai-Yan; Dai, Jin-Ran; Feng, Dong-Ru; Liu, Bing; Wang, Hong-Bin; Wang, Jin-Fa

    2010-03-01

    Asr (abscisic acid, stress, ripening induced) genes are typically upregulated by a wide range of factors, including drought, cold, salt, abscisic acid (ABA) and injury; in addition to plant responses to developmental and environmental signals. We isolated an Asr gene, MpAsr, from a suppression subtractive hybridization (SSH) cDNA library of cold induced plantain (Musa paradisiaca) leaves. MpAsr expression was upregulated in Fusarium oxysporum f. sp. cubense infected plantain leaves, peels and roots, suggesting that MpAsr plays a role in plantain pathogen response. In addition, a 581-bp putative promoter region of MpAsr was isolated via genome walking and cis-elements involved in abiotic stress and pathogen-related responses were detected in this same region. Furthermore, the MpAsr promoter demonstrated positive activity and inducibility in tobacco under F. oxysporum f. sp. cubense infection and ABA, cold, dehydration and high salt concentration treatments. Interestingly, transgenic Arabidopsis plants overexpressing MpAsr exhibited higher drought tolerance, but showed no significant decreased sensitivity to F. oxysporum f. sp. cubense. These results suggest that MpAsr might be involved in plant responses to both abiotic stress and pathogen attack. PMID:20377692

  7. Heterologous expression of Anabaena PCC 7120 all3940 (a Dps family gene) protects Escherichia coli from nutrient limitation and abiotic stresses

    SciTech Connect

    Narayan, Om Prakash; Kumari, Nidhi; Rai, Lal Chand

    2010-03-26

    This study presents first hand data on the cloning and heterologous expression of Anabaena PCC 7120 all3940 (a dps family gene) in combating nutrients limitation and multiple abiotic stresses. The Escherichia coli transformed with pGEX-5X-2-all3940 construct when subjected to iron, carbon, nitrogen, phosphorus limitation and carbofuron, copper, UV-B, heat, salt and cadmium stress registered significant increase in growth over the cells transformed with empty vector under iron (0%), carbon (0.05%), nitrogen (3.7 mM) and phosphorus (2 mM) limitation and carbofuron (0.025 mg ml{sup -1}), CuCl{sub 2} (1 mM), UV-B (10 min), heat (47 {sup o}C), NaCl (6% w/v) and CdCl{sub 2} (4 mM) stress. Enhanced expression of all3940 gene measured by semi-quantitative RT-PCR at different time points under above mentioned treatments clearly demonstrates its role in tolerance against aforesaid abiotic stresses. This study opens the gate for developing transgenic cyanobacteria capable of growing successfully under above mentioned stresses.

  8. Screening and Validation of Housekeeping Genes of the Root and Cotyledon of Cunninghamia lanceolata under Abiotic Stresses by Using Quantitative Real-Time PCR.

    PubMed

    Bao, Wenlong; Qu, Yanli; Shan, Xiaoyi; Wan, Yinglang

    2016-01-01

    Cunninghamia lanceolata (Chinese fir) is a fast-growing and commercially important conifer of the Cupressaceae family. Due to the unavailability of complete genome sequences and relatively poor genetic background information of the Chinese fir, it is necessary to identify and analyze the expression levels of suitable housekeeping genes (HKGs) as internal reference for precise analysis. Based on the results of database analysis and transcriptome sequencing, we have chosen five candidate HKGs (Actin, GAPDH, EF1a, 18S rRNA, and UBQ) with conservative sequences in the Chinese fir and related species for quantitative analysis. The expression levels of these HKGs in roots and cotyledons under five different abiotic stresses in different time intervals were measured by qRT-PCR. The data were statistically analyzed using the following algorithms: NormFinder, BestKeeper, and geNorm. Finally, RankAggreg was applied to merge the sequences generated from three programs and rank these according to consensus sequences. The expression levels of these HKGs showed variable stabilities under different abiotic stresses. Among these, Actin was the most stable internal control in root, and GAPDH was the most stable housekeeping gene in cotyledon. We have also described an experimental procedure for selecting HKGs based on the de novo sequencing database of other non-model plants. PMID:27483238

  9. Abiotic stresses differentially affect the expression of O-methyltransferase genes related to methoxypyrazine biosynthesis in seeded and parthenocarpic fruits of Vitis vinifera (L.).

    PubMed

    Vallarino, José G; Gainza-Cortés, Felipe; Verdugo-Alegría, Claudio; González, Enrique; Moreno, Yerko M

    2014-07-01

    MPs (3-alkyl-2-methoxypyrazines) are grape-derived aroma compounds that are associated with detrimental herbaceous flavours in some wines. It is well known that several viticultural and environmental parameters can modulate MP concentrations in grapes, although comprehensive molecular studies have not been conducted in this field. Although the biosynthesis pathway of MPs has not been fully elucidated, four Vitis vinifera O-methyltransferase genes (VvOMT1-4) have been related to be involved in MP biosynthesis. We assessed whether different abiotic stresses induction have an impact on MP levels in grapes and wines from seeded and parthenocarpic fruits. Our results show that the timing of VvOMT3 expression is associated with the period of MPs accumulation in seeded fruits during both abiotic stresses, whereas no association was found in parthenocarpic fruits. These results are discussed in the context of how different viticultural practices can modulate VvOMT gene expression, which has a direct impact on MPs levels in wines.

  10. Characterization of a novel plantain Asr gene, MpAsr, that is regulated in response to infection of Fusarium oxysporum f. sp. cubense and abiotic stresses.

    PubMed

    Liu, Hai-Yan; Dai, Jin-Ran; Feng, Dong-Ru; Liu, Bing; Wang, Hong-Bin; Wang, Jin-Fa

    2010-03-01

    Asr (abscisic acid, stress, ripening induced) genes are typically upregulated by a wide range of factors, including drought, cold, salt, abscisic acid (ABA) and injury; in addition to plant responses to developmental and environmental signals. We isolated an Asr gene, MpAsr, from a suppression subtractive hybridization (SSH) cDNA library of cold induced plantain (Musa paradisiaca) leaves. MpAsr expression was upregulated in Fusarium oxysporum f. sp. cubense infected plantain leaves, peels and roots, suggesting that MpAsr plays a role in plantain pathogen response. In addition, a 581-bp putative promoter region of MpAsr was isolated via genome walking and cis-elements involved in abiotic stress and pathogen-related responses were detected in this same region. Furthermore, the MpAsr promoter demonstrated positive activity and inducibility in tobacco under F. oxysporum f. sp. cubense infection and ABA, cold, dehydration and high salt concentration treatments. Interestingly, transgenic Arabidopsis plants overexpressing MpAsr exhibited higher drought tolerance, but showed no significant decreased sensitivity to F. oxysporum f. sp. cubense. These results suggest that MpAsr might be involved in plant responses to both abiotic stress and pathogen attack.

  11. Molecular Characterization of MaCCS, a Novel Copper Chaperone Gene Involved in Abiotic and Hormonal Stress Responses in Musa acuminata cv. Tianbaojiao.

    PubMed

    Feng, Xin; Chen, Fanglan; Liu, Weihua; Thu, Min Kyaw; Zhang, Zihao; Chen, Yukun; Cheng, Chunzhen; Lin, Yuling; Wang, Tianchi; Lai, Zhongxiong

    2016-01-01

    Copper/zinc superoxide dismutases (Cu/ZnSODs) play important roles in improving banana resistance to adverse conditions, but their activities depend on the copper chaperone for superoxide dismutase (CCS) delivering copper to them. However, little is known about CCS in monocots and under stress conditions. Here, a novel CCS gene (MaCCS) was obtained from a banana using reverse transcription PCR and rapid-amplification of cDNA ends (RACE) PCR. Sequence analyses showed that MaCCS has typical CCS domains and a conserved gene structure like other plant CCSs. Alternative transcription start sites (ATSSs) and alternative polyadenylation contribute to the mRNA diversity of MaCCS. ATSSs in MaCCS resulted in one open reading frame containing two in-frame start codons to form two protein versions, which is supported by the MaCCS subcellular localization of in both cytosol and chloroplasts. Furthermore, MaCCS promoter was found to contain many cis-elements associated with abiotic and hormonal responses. Quantitative real-time PCR analysis showed that MaCCS was expressed in all tested tissues (leaves, pseudostems and roots). In addition, MaCCS expression was significantly induced by light, heat, drought, abscisic acid and indole-3-acetic acid, but inhibited by relatively high concentrations of CuSO₄ and under cold treatment, which suggests that MaCCS is involved in abiotic and hormonal responses. PMID:27023517

  12. Arabidopsis AtbHLH112 regulates the expression of genes involved in abiotic stress tolerance by binding to their E-box and GCG-box motifs.

    PubMed

    Liu, Yujia; Ji, Xiaoyu; Nie, Xianguang; Qu, Min; Zheng, Lei; Tan, Zilong; Zhao, Huimin; Huo, Lin; Liu, Shengnan; Zhang, Bing; Wang, Yucheng

    2015-08-01

    Plant basic helix-loop-helix (bHLH) transcription factors play essential roles in abiotic stress tolerance. However, most bHLHs have not been functionally characterized. Here, we characterized the functional role of a bHLH transcription factor from Arabidopsis, AtbHLH112, in response to abiotic stress. AtbHLH112 is a nuclear-localized protein, and its nuclear localization is induced by salt, drought and abscisic acid (ABA). In addition, AtbHLH112 serves as a transcriptional activator, with the activation domain located at its N-terminus. In addition to binding to the E-box motifs of stress-responsive genes, AtbHLH112 binds to a novel motif with the sequence 'GG[GT]CC[GT][GA][TA]C' (GCG-box). Gain- and loss-of-function analyses showed that the transcript level of AtbHLH112 is positively correlated with salt and drought tolerance. AtbHLH112 mediates stress tolerance by increasing the expression of P5CS genes and reducing the expression of P5CDH and ProDH genes to increase proline levels. AtbHLH112 also increases the expression of POD and SOD genes to improve reactive oxygen species (ROS) scavenging ability. We present a model suggesting that AtbHLH112 is a transcriptional activator that regulates the expression of genes via binding to their GCG- or E-boxes to mediate physiological responses, including proline biosynthesis and ROS scavenging pathways, to enhance stress tolerance.

  13. Selection of appropriate reference genes for quantitative real-time PCR in Oxytropis ochrocephala Bunge using transcriptome datasets under abiotic stress treatments

    PubMed Central

    Zhuang, Huihui; Fu, Yanping; He, Wei; Wang, Lin; Wei, Yahui

    2015-01-01

    Background: Oxytropis ochrocephala Bunge, an indigenous locoweed species in China, poses great threats to livestock on grasslands. There is a need for further genetic study in the plants per se, for understanding the basis of its acclimation mechanism in various unfavorable environmental conditions and to implement effective control measures. Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) is the most commonly used method for gene expression analysis. To facilitate gene expression studies and obtain more accurate qRT-PCR data, normalization relative to stable reference genes is required. The aim of this study was to select the most stable reference genes for transcriptional analysis in O. ochrocephala. Results: We selected 12 candidate reference genes, 18S ribosomal RNA (18S RNA), actin2/7 (ACT7), β-actin (ACTB), actin101 (ACT101), actin11 (ACT11), β-tubulin (TUB), α-tubulin (TUA), glyceraldehyde-3-phosphate dehydrogenase-1 (GAPDH1), GAPDH2, metallothionein-like protein (MET), fructose-bisphosphate aldolase (FBA) and histone H3 (HIS), from the transcriptome datasets of O. ochrocephala and determined the suitability by analyzing their expression levels when exposed to a range of abiotic stress conditions. By employing software packages including geNorm, NormFinder and BestKeeper, HIS, ACT7, and ACT101 were assessed as the most suitable set for normalization in all samples. When normalized with the most stable reference genes, the expression patterns of the three target genes were in accordance with those in the transcriptome data, indicating that the reference genes selected in this study are suitable. Conclusions: The study provided appropriate reference genes for accurate normalization in qRT-PCR analysis in O. ochrocephala and emphasized the importance of validating reference genes for gene expression analysis under specific experimental condition. The usage of inappropriate reference gene would cause misinterpretation. PMID

  14. A Novel Peroxidase CanPOD Gene of Pepper Is Involved in Defense Responses to Phytophtora capsici Infection as well as Abiotic Stress Tolerance

    PubMed Central

    Wang, Jun-E; Liu, Ke-Ke; Li, Da-Wei; Zhang, Ying-Li; Zhao, Qian; He, Yu-Mei; Gong, Zhen-Hui

    2013-01-01

    Peroxidases are involved in many plant processes including plant defense responses to biotic and abiotic stresses. We isolated a novel peroxidase gene CanPOD from leaves of pepper cultivar A3. The full-length gene has a 1353-bp cDNA sequence and contains an open reading frame (ORF) of 975-bp, which encodes a putative polypeptide of 324 amino acids with a theoretical protein size of 34.93 kDa. CanPOD showed diverse expression levels in different tissues of pepper plants. To evaluate the role of CanPOD in plant stress responses, the expression patterns of CanPOD were examined using Real-Time RT-PCR. The results indicated that CanPOD was significantly induced by Phytophtora capsici. Moreover, CanPOD was also up-regulated in leaves after salt and drought stress treatments. In addition, CanPOD expression was strongly induced by signaling hormones salicylic acid (SA). In contrast, CanPOD was not highly expressed after treatment with cold. Meanwhile, in order to further assess the role of gene CanPOD in defense response to P. capsici attack, we performed a loss-of-function experiment using the virus-induced gene silencing (VIGS) technique in pepper plants. In comparison to the control plant, the expression levels of CanPOD were obviously decreased in CanPOD-silenced pepper plants. Furthermore, we analyzed the effect of P. capsici on detached-leaves and found that the CanPOD-silenced plant leaves were highly susceptible to P. capsici infection. Taken together, our results suggested that CanPOD is involved in defense responses to P. capsici infection as well as abiotic stresses in pepper plants. PMID:23380961

  15. AtHD2D Gene Plays a Role in Plant Growth, Development, and Response to Abiotic Stresses in Arabidopsis thaliana

    PubMed Central

    Han, Zhaofen; Yu, Huimin; Zhao, Zhong; Hunter, David; Luo, Xinjuan; Duan, Jun; Tian, Lining

    2016-01-01

    The histone deacetylases play important roles in the regulation of gene expression and the subsequent control of a number of important biological processes, including those involved in the response to environmental stress. A specific group of histone deacetylase genes, HD2, is present in plants. In Arabidopsis, HD2s include HD2A, HD2B, HD2C, and HD2D. Previous research showed that HD2A, HD2B, and HD2C are more related in terms of expression and function, but not HD2D. In this report, we studied different aspects of AtHD2D in Arabidopsis with respect to plant response to drought and other abiotic stresses. Bioinformatics analysis indicates that HD2D is distantly related to other HD2 genes. Transient expression in Nicotiana benthamiana and stable expression in Arabidopsis of AtHD2D fused with gfp showed that AtHD2D was expressed in the nucleus. Overexpression of AtHD2D resulted in developmental changes including fewer main roots, more lateral roots, and a higher root:shoot ratio. Seed germination and plant flowering time were delayed in transgenic plants expressing AtHD2D, but these plants exhibited higher degrees of tolerance to abiotic stresses, including drought, salt, and cold stresses. Physiological studies indicated that the malondialdehyde (MDA) content was high in wild-type plants but in plants overexpressing HD2D the MDA level increased slowly in response to stress conditions of drought, cold, and salt stress. Furthermore, electrolyte leakage in leaf cells of wild type plants increased but remained stable in transgenic plants. Our results indicate that AtHD2D is unique among HD2 genes and it plays a role in plant growth and development regulation and these changes can modulate plant stress responses. PMID:27066015

  16. AtHD2D Gene Plays a Role in Plant Growth, Development, and Response to Abiotic Stresses in Arabidopsis thaliana.

    PubMed

    Han, Zhaofen; Yu, Huimin; Zhao, Zhong; Hunter, David; Luo, Xinjuan; Duan, Jun; Tian, Lining

    2016-01-01

    The histone deacetylases play important roles in the regulation of gene expression and the subsequent control of a number of important biological processes, including those involved in the response to environmental stress. A specific group of histone deacetylase genes, HD2, is present in plants. In Arabidopsis, HD2s include HD2A, HD2B, HD2C, and HD2D. Previous research showed that HD2A, HD2B, and HD2C are more related in terms of expression and function, but not HD2D. In this report, we studied different aspects of AtHD2D in Arabidopsis with respect to plant response to drought and other abiotic stresses. Bioinformatics analysis indicates that HD2D is distantly related to other HD2 genes. Transient expression in Nicotiana benthamiana and stable expression in Arabidopsis of AtHD2D fused with gfp showed that AtHD2D was expressed in the nucleus. Overexpression of AtHD2D resulted in developmental changes including fewer main roots, more lateral roots, and a higher root:shoot ratio. Seed germination and plant flowering time were delayed in transgenic plants expressing AtHD2D, but these plants exhibited higher degrees of tolerance to abiotic stresses, including drought, salt, and cold stresses. Physiological studies indicated that the malondialdehyde (MDA) content was high in wild-type plants but in plants overexpressing HD2D the MDA level increased slowly in response to stress conditions of drought, cold, and salt stress. Furthermore, electrolyte leakage in leaf cells of wild type plants increased but remained stable in transgenic plants. Our results indicate that AtHD2D is unique among HD2 genes and it plays a role in plant growth and development regulation and these changes can modulate plant stress responses.

  17. Characterization of a novel wheat NAC transcription factor gene involved in defense response against stripe rust pathogen infection and abiotic stresses.

    PubMed

    Xia, Ning; Zhang, Gang; Liu, Xin-Ying; Deng, Lin; Cai, Gao-Lei; Zhang, Yi; Wang, Xiao-Jie; Zhao, Jie; Huang, Li-Li; Kang, Zhen-Sheng

    2010-12-01

    Proteins encoded by the NAC gene family constitute one of the largest plant-specific transcription factors, which have been identified to play many important roles in both abiotic and biotic stress adaptation, as well as in plant development regulation. In the current paper, a full-length cDNA sequence of a novel wheat NAC gene, designated as TaNAC4, was isolated using in silico cloning and the reverse transcription PCR (RT-PCR) methods. TaNAC4 sharing high homology with rice OsNAC4 gene was predicted to encode a protein of 308 amino acid residues, which contained a plant-specific NAC domain in the N-terminus. Transient expression analysis indicated that the deduced TaNAC4 protein was localized in the nucleus of onion epidemical cells. Yeast one-hybrid assay revealed that the C-terminal region of the TaNAC4 protein had transcriptional activity. The expression of TaNAC4 was largely higher in the wheat seedling roots, than that in leaves and stems. TaNAC4 transcript in wheat leaves was induced by the infection of strip rust pathogen, and also by exogenous applied methyl jasmonate (MeJA), ABA and ethylene. However, salicylic acid (SA) had no obvious effect on TaNAC4 expression. Environmental stimuli, including high salinity, wounding, and low-temperature also induced TaNAC4 expression. These results indicate that this novel TaNAC4 gene functions as a transcriptional activator involved in wheat response to biotic and abiotic stresses.

  18. Expression analysis of genes encoding mitogen-activated protein kinases in maize provides a key link between abiotic stress signaling and plant reproduction.

    PubMed

    Sun, Wei; Chen, Hao; Wang, Juan; Sun, Hong Wei; Yang, Shu Ke; Sang, Ya Lin; Lu, Xing Bo; Xu, Xiao Hui

    2015-01-01

    Mitogen-activated protein kinases (MAPKs) play important roles in stress responses and development in plants. Maize (Zea mays), an important cereal crop, is a model plant species for molecular studies. In the last decade, several MAPKs have been identified in maize; however, their functions have not been studied extensively. Genome-wide identification and expression analysis of maize MAPK genes could provide valuable information for understanding their functions. In this study, 20 non-redundant maize MAPK genes (ZmMPKs) were identified via a genome-wide survey. Phylogenetic analysis of MAPKs from maize, rice (Oryza sativa), Arabidopsis (Arabidopsis thaliana), poplar (Populus trichocarpa), and tomato (Solanum lycopersicum) classified them into four major classes. ZmMPKs in the same class had similar domains, motifs, and genomic structures. Gene duplication investigations suggested that segmental duplications made a large contribution to the expansion of ZmMPKs. A number of cis-acting elements related to plant development and response to stress and hormones were identified in the promoter regions of ZmMPKs. Furthermore, transcript profile analysis in eight tissues and organs at various developmental stages demonstrated that most ZmMPKs were preferentially expressed in reproductive tissues and organs. The transcript abundance of most ZmMPKs changed significantly under salt, drought, cold, or abscisic acid (ABA) treatments, implying that they might participate in abiotic stress and ABA signaling. These expression analyses indicated that ZmMPKs might serve as linkers between abiotic stress signaling and plant reproduction. Our data will deepen our understanding of the complexity of the maize MAPK gene family and provide new clues to investigate their functions.

  19. Enhanced Tolerance of Transgenic Potato Plants Over-Expressing Non-specific Lipid Transfer Protein-1 (StnsLTP1) against Multiple Abiotic Stresses.

    PubMed

    Gangadhar, Baniekal H; Sajeesh, Kappachery; Venkatesh, Jelli; Baskar, Venkidasamy; Abhinandan, Kumar; Yu, Jae W; Prasad, Ram; Mishra, Raghvendra K

    2016-01-01

    Abiotic stresses such as heat, drought, and salinity are major environmental constraints that limit potato (Solanum tuberosum L.) production worldwide. Previously, we found a potential thermo-tolerance gene, named StnsLTP1 from potato using yeast functional screening. Here, we report the functional characterization of StnsLTP1 and its role in multiple abiotic stresses in potato plants. Computational analysis of StnsLTP1 with other plant LTPs showed eight conserved cysteine residues, and four α-helices stabilized by four disulfide bridges. Expression analysis of StnsLTP1 gene showed differential expression under heat, water-deficit and salt stresses. Transgenic potato lines over-expressing StnsLTP1 gene displayed enhanced cell membrane integrity under stress conditions, as indicated by reduced membrane lipid per-oxidation, and hydrogen peroxide content relative to untransformed (UT) control plants. In addition, transgenic lines over-expressing StLTP1 also exhibited increased antioxidant enzyme activity with enhanced accumulation of ascorbates, and up-regulation of stress-related genes including StAPX, StCAT, StSOD, StHsfA3, StHSP70, and StsHSP20 compared with the UT plants. These results suggests that StnsLTP1 transgenic plants acquired improved tolerance to multiple abiotic stresses through enhanced activation of antioxidative defense mechanisms via cyclic scavenging of reactive oxygen species and regulated expression of stress-related genes. PMID:27597854

  20. Enhanced Tolerance of Transgenic Potato Plants Over-Expressing Non-specific Lipid Transfer Protein-1 (StnsLTP1) against Multiple Abiotic Stresses

    PubMed Central

    Gangadhar, Baniekal H.; Sajeesh, Kappachery; Venkatesh, Jelli; Baskar, Venkidasamy; Abhinandan, Kumar; Yu, Jae W.; Prasad, Ram; Mishra, Raghvendra K.

    2016-01-01

    Abiotic stresses such as heat, drought, and salinity are major environmental constraints that limit potato (Solanum tuberosum L.) production worldwide. Previously, we found a potential thermo-tolerance gene, named StnsLTP1 from potato using yeast functional screening. Here, we report the functional characterization of StnsLTP1 and its role in multiple abiotic stresses in potato plants. Computational analysis of StnsLTP1 with other plant LTPs showed eight conserved cysteine residues, and four α-helices stabilized by four disulfide bridges. Expression analysis of StnsLTP1 gene showed differential expression under heat, water-deficit and salt stresses. Transgenic potato lines over-expressing StnsLTP1 gene displayed enhanced cell membrane integrity under stress conditions, as indicated by reduced membrane lipid per-oxidation, and hydrogen peroxide content relative to untransformed (UT) control plants. In addition, transgenic lines over-expressing StLTP1 also exhibited increased antioxidant enzyme activity with enhanced accumulation of ascorbates, and up-regulation of stress-related genes including StAPX, StCAT, StSOD, StHsfA3, StHSP70, and StsHSP20 compared with the UT plants. These results suggests that StnsLTP1 transgenic plants acquired improved tolerance to multiple abiotic stresses through enhanced activation of antioxidative defense mechanisms via cyclic scavenging of reactive oxygen species and regulated expression of stress-related genes. PMID:27597854

  1. Enhanced Tolerance of Transgenic Potato Plants Over-Expressing Non-specific Lipid Transfer Protein-1 (StnsLTP1) against Multiple Abiotic Stresses

    PubMed Central

    Gangadhar, Baniekal H.; Sajeesh, Kappachery; Venkatesh, Jelli; Baskar, Venkidasamy; Abhinandan, Kumar; Yu, Jae W.; Prasad, Ram; Mishra, Raghvendra K.

    2016-01-01

    Abiotic stresses such as heat, drought, and salinity are major environmental constraints that limit potato (Solanum tuberosum L.) production worldwide. Previously, we found a potential thermo-tolerance gene, named StnsLTP1 from potato using yeast functional screening. Here, we report the functional characterization of StnsLTP1 and its role in multiple abiotic stresses in potato plants. Computational analysis of StnsLTP1 with other plant LTPs showed eight conserved cysteine residues, and four α-helices stabilized by four disulfide bridges. Expression analysis of StnsLTP1 gene showed differential expression under heat, water-deficit and salt stresses. Transgenic potato lines over-expressing StnsLTP1 gene displayed enhanced cell membrane integrity under stress conditions, as indicated by reduced membrane lipid per-oxidation, and hydrogen peroxide content relative to untransformed (UT) control plants. In addition, transgenic lines over-expressing StLTP1 also exhibited increased antioxidant enzyme activity with enhanced accumulation of ascorbates, and up-regulation of stress-related genes including StAPX, StCAT, StSOD, StHsfA3, StHSP70, and StsHSP20 compared with the UT plants. These results suggests that StnsLTP1 transgenic plants acquired improved tolerance to multiple abiotic stresses through enhanced activation of antioxidative defense mechanisms via cyclic scavenging of reactive oxygen species and regulated expression of stress-related genes.

  2. Enhanced Tolerance of Transgenic Potato Plants Over-Expressing Non-specific Lipid Transfer Protein-1 (StnsLTP1) against Multiple Abiotic Stresses.

    PubMed

    Gangadhar, Baniekal H; Sajeesh, Kappachery; Venkatesh, Jelli; Baskar, Venkidasamy; Abhinandan, Kumar; Yu, Jae W; Prasad, Ram; Mishra, Raghvendra K

    2016-01-01

    Abiotic stresses such as heat, drought, and salinity are major environmental constraints that limit potato (Solanum tuberosum L.) production worldwide. Previously, we found a potential thermo-tolerance gene, named StnsLTP1 from potato using yeast functional screening. Here, we report the functional characterization of StnsLTP1 and its role in multiple abiotic stresses in potato plants. Computational analysis of StnsLTP1 with other plant LTPs showed eight conserved cysteine residues, and four α-helices stabilized by four disulfide bridges. Expression analysis of StnsLTP1 gene showed differential expression under heat, water-deficit and salt stresses. Transgenic potato lines over-expressing StnsLTP1 gene displayed enhanced cell membrane integrity under stress conditions, as indicated by reduced membrane lipid per-oxidation, and hydrogen peroxide content relative to untransformed (UT) control plants. In addition, transgenic lines over-expressing StLTP1 also exhibited increased antioxidant enzyme activity with enhanced accumulation of ascorbates, and up-regulation of stress-related genes including StAPX, StCAT, StSOD, StHsfA3, StHSP70, and StsHSP20 compared with the UT plants. These results suggests that StnsLTP1 transgenic plants acquired improved tolerance to multiple abiotic stresses through enhanced activation of antioxidative defense mechanisms via cyclic scavenging of reactive oxygen species and regulated expression of stress-related genes.

  3. A mutation in the expansin-like A2 gene enhances resistance to necrotrophic fungi and hypersensitivity to abiotic stress in Arabidopsis thaliana.

    PubMed

    Abuqamar, Synan; Ajeb, Suad; Sham, Arjun; Enan, Mohamed Rizq; Iratni, Rabah

    2013-10-01

    Expansins are cell wall loosening agents, known for their endogenous function in cell wall extensibility. The Arabidopsis expansin-like A2 (EXLA2) gene was identified by its down-regulation in response to infection by the necrotrophic pathogen Botrytis cinerea, and by the reduced susceptibility of an exla2 mutant to the same pathogen. The exla2 mutant was equally susceptible to Pseudomonas syringae pv. tomato, but was more resistant to the necrotrophic fungus Alternaria brassicicola, when compared with the wild-type or with transgenic, ectopic EXLA2-overexpressing lines. The exla2 mutants also enhanced tolerance to the phytoprostane-A1 . This suggests that the absence or down-regulation of EXLA2 leads to increased resistance to B. cinerea in a CORONATINE INSENSITIVE 1 (COI1)-dependent manner, and this down-regulation can be achieved by phytoprostane-A1 treatment. EXLA2 is induced significantly by salinity and cold, and by the exogenous application of abscisic acid. The exla2 mutant also showed hypersensitivity towards increased salt and cold, and this hypersensitivity required a functional abscisic acid pathway. The differential temporal expression of EXLA2 and the phenotypes in transgenic plants with altered expression of EXLA2 indicate that plant cell wall structure is an important player during Arabidopsis developmental stages. Our results indicate that EXLA2 appears to be important in response to various biotic and abiotic stresses, particularly in the pathogenesis of necrotrophic pathogens and in the tolerance to abiotic stress.

  4. Transcriptome Analysis of Sunflower Genotypes with Contrasting Oxidative Stress Tolerance Reveals Individual- and Combined- Biotic and Abiotic Stress Tolerance Mechanisms.

    PubMed

    Ramu, Vemanna S; Paramanantham, Anjugam; Ramegowda, Venkategowda; Mohan-Raju, Basavaiah; Udayakumar, Makarla; Senthil-Kumar, Muthappa

    2016-01-01

    In nature plants are often simultaneously challenged by different biotic and abiotic stresses. Although the mechanisms underlying plant responses against single stress have been studied considerably, plant tolerance mechanisms under combined stress is not understood. Also, the mechanism used to combat independently and sequentially occurring many number of biotic and abiotic stresses has also not systematically studied. From this context, in this study, we attempted to explore the shared response of sunflower plants to many independent stresses by using meta-analysis of publically available transcriptome data and transcript profiling by quantitative PCR. Further, we have also analyzed the possible role of the genes so identified in contributing to combined stress tolerance. Meta-analysis of transcriptomic data from many abiotic and biotic stresses indicated the common representation of oxidative stress responsive genes. Further, menadione-mediated oxidative stress in sunflower seedlings showed similar pattern of changes in the oxidative stress related genes. Based on this a large scale screening of 55 sunflower genotypes was performed under menadione stress and those contrasting in oxidative stress tolerance were identified. Further to confirm the role of genes identified in individual and combined stress tolerance the contrasting genotypes were individually and simultaneously challenged with few abiotic and biotic stresses. The tolerant hybrid showed reduced levels of stress damage both under combined stress and few independent stresses. Transcript profiling of the genes identified from meta-analysis in the tolerant hybrid also indicated that the selected genes were up-regulated under individual and combined stresses. Our results indicate that menadione-based screening can identify genotypes not only tolerant to multiple number of individual biotic and abiotic stresses, but also the combined stresses.

  5. Transcriptome Analysis of Sunflower Genotypes with Contrasting Oxidative Stress Tolerance Reveals Individual- and Combined- Biotic and Abiotic Stress Tolerance Mechanisms

    PubMed Central

    Ramu, Vemanna S.; Paramanantham, Anjugam; Ramegowda, Venkategowda; Mohan-Raju, Basavaiah; Udayakumar, Makarla

    2016-01-01

    In nature plants are often simultaneously challenged by different biotic and abiotic stresses. Although the mechanisms underlying plant responses against single stress have been studied considerably, plant tolerance mechanisms under combined stress is not understood. Also, the mechanism used to combat independently and sequentially occurring many number of biotic and abiotic stresses has also not systematically studied. From this context, in this study, we attempted to explore the shared response of sunflower plants to many independent stresses by using meta-analysis of publically available transcriptome data and transcript profiling by quantitative PCR. Further, we have also analyzed the possible role of the genes so identified in contributing to combined stress tolerance. Meta-analysis of transcriptomic data from many abiotic and biotic stresses indicated the common representation of oxidative stress responsive genes. Further, menadione-mediated oxidative stress in sunflower seedlings showed similar pattern of changes in the oxidative stress related genes. Based on this a large scale screening of 55 sunflower genotypes was performed under menadione stress and those contrasting in oxidative stress tolerance were identified. Further to confirm the role of genes identified in individual and combined stress tolerance the contrasting genotypes were individually and simultaneously challenged with few abiotic and biotic stresses. The tolerant hybrid showed reduced levels of stress damage both under combined stress and few independent stresses. Transcript profiling of the genes identified from meta-analysis in the tolerant hybrid also indicated that the selected genes were up-regulated under individual and combined stresses. Our results indicate that menadione-based screening can identify genotypes not only tolerant to multiple number of individual biotic and abiotic stresses, but also the combined stresses. PMID:27314499

  6. Identification and expression of C2H2 transcription factor genes in Carica papaya under abiotic and biotic stresses.

    PubMed

    Jiang, Ling; Pan, Lin-jie

    2012-06-01

    C2H2 proteins belong to a group of transcription factors (TFs) existing as a superfamily that plays important roles in defense responses and various other physiological processes in plants. The present study aimed to screen for and identify C2H2 proteins associated with defense responses to abiotic and biotic stresses in Carica papaya L. Data were collected for 47,483 papaya-expressed sequence tags (ESTs). The full-length cDNA nucleotide sequences of 87 C2H2 proteins were predicated by BioEdit. All 91 C2H2 proteins were aligned, and a phylogenetic tree was constructed using DNAman. The expression levels of 42 C2H2 were analyzed under conditions of salt stress by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Methyl jasmonate treatment rapidly upregulated ZF(23.4) and ZF(30,912.1) by 18.6- and 21.7-fold, respectively. ZF(1.3), ZF(138.44), ZF(94.49), ZF(29.160), and ZF(20.206) were found to be downregulated after low temperature treatment at very significant levels (p < 0.01). ZF(23.4), ZF(161.1), and ZF(30,912.1) were upregulated while ZF1.3, ZF(158.1), ZF(249.5), ZF(138.44), ZF(94.49), ZF(29.160), and ZF(20.206) were significantly downregulated by Spermine treatment. ZF(23.4) was upregulated while ZF(1.3), ZF(249.5), ZF(94.94), ZF(29.160), ZF(138.44), and ZF(20.206) were significantly repressed after SA treatment. ZF(23.4) and ZF(30,912.1) were significantly upregulated after sap inoculation with papaya ringspot virus pathogen. ZF(30,912.1) was subcellularly localized in the nucleus by a transgenic fusion of pBS-ZF(30,912.1)-GFP into the protoplast of papaya. The results of the present study showed that ZF(30,912.1) could be an important TF that mediates responses to abiotic and biotic stresses in papaya.

  7. Multiple abiotic stress tolerance in Vigna mungo is altered by overexpression of ALDRXV4 gene via reactive carbonyl detoxification.

    PubMed

    Singh, Preeti; Kumar, Deepak; Sarin, Neera Bhalla

    2016-06-01

    Vigna mungo (blackgram) is an important leguminous pulse crop, which is grown for its protein rich edible seeds. Drought and salinity are the major abiotic stresses which adversely affect the growth and productivity of crop plants including blackgram. The ALDRXV4 belongs to the aldo-keto reductase superfamily of enzymes that catalyze the reduction of carbonyl metabolites in the cells and plays an important role in the osmoprotection and detoxification of the reactive carbonyl species. In the present study, we developed transgenic plants of V. mungo using Agrobacterium mediated transformation. The transgene integration was confirmed by Southern blot analysis whereas the expression was confirmed by RT-PCR, Western blot and enzyme activity. The T1 generation transgenic plants displayed improved tolerance to various environmental stresses, including drought, salt, methyl viologen and H2O2 induced oxidative stress. The increased aldose reductase activity, higher sorbitol content and less accumulation of the toxic metabolite, methylglyoxal in the transgenic lines under non-stress and stress (drought and salinity) conditions resulted in increased protection through maintenance of better photosynthetic efficiency, higher relative water content and less photooxidative damage. The accumulation of reactive oxygen species was remarkably decreased in the transgenic lines as compared with the wild type plants. This study of engineering multiple stress tolerance in blackgram, is the first report to date and this strategy for trait improvement is proposed to provide a novel germplasm for blackgram production on marginal lands. PMID:26956699

  8. Multiple abiotic stress tolerance in Vigna mungo is altered by overexpression of ALDRXV4 gene via reactive carbonyl detoxification.

    PubMed

    Singh, Preeti; Kumar, Deepak; Sarin, Neera Bhalla

    2016-06-01

    Vigna mungo (blackgram) is an important leguminous pulse crop, which is grown for its protein rich edible seeds. Drought and salinity are the major abiotic stresses which adversely affect the growth and productivity of crop plants including blackgram. The ALDRXV4 belongs to the aldo-keto reductase superfamily of enzymes that catalyze the reduction of carbonyl metabolites in the cells and plays an important role in the osmoprotection and detoxification of the reactive carbonyl species. In the present study, we developed transgenic plants of V. mungo using Agrobacterium mediated transformation. The transgene integration was confirmed by Southern blot analysis whereas the expression was confirmed by RT-PCR, Western blot and enzyme activity. The T1 generation transgenic plants displayed improved tolerance to various environmental stresses, including drought, salt, methyl viologen and H2O2 induced oxidative stress. The increased aldose reductase activity, higher sorbitol content and less accumulation of the toxic metabolite, methylglyoxal in the transgenic lines under non-stress and stress (drought and salinity) conditions resulted in increased protection through maintenance of better photosynthetic efficiency, higher relative water content and less photooxidative damage. The accumulation of reactive oxygen species was remarkably decreased in the transgenic lines as compared with the wild type plants. This study of engineering multiple stress tolerance in blackgram, is the first report to date and this strategy for trait improvement is proposed to provide a novel germplasm for blackgram production on marginal lands.

  9. A Survey of Stress-Related Illnesses.

    ERIC Educational Resources Information Center

    Ashlock, Larry; Hayman, Peter

    The prevalence of stress-related medical conditions in clients of Readjustment Counseling Service at Veterans Centers was investigated. The purpose of the study was to gain further knowledge specifically pertaining to the long-term health consequences of exposure to combat trauma. A review of relevant literature is provided. Veterans Center…

  10. Rubisco Activase Is Also a Multiple Responder to Abiotic Stresses in Rice

    PubMed Central

    Chen, Yue; Wang, Xiao-Man; Zhou, Li; He, Yi; Wang, Dun; Qi, Yan-Hua; Jiang, De-An

    2015-01-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase activase (RCA) is a nuclear gene that encodes a chloroplast protein that plays an important role in photosynthesis. Some reports have indicated that it may play a role in acclimation to different abiotic stresses. In this paper, we analyzed the stress-responsive elements in the 2.0 kb 5’-upstream regions of the RCA gene promoter and the primary, secondary and tertiary structure of the protein. We identified some cis-elements of multiple stress-related components in the RCA promoter. Amino acid and evolution analyses showed that the RCA protein had conserved regions between different species; however, the size and type varied. The secondary structures, binding sites and tertiary structures of the RCA proteins were also different. This might reflect the differences in the transcription and translation levels of the two RCA isoforms during adaptation to different abiotic stresses. Although both the transcription and translation levels of RCA isoforms in the rice leaves increased under various stresses, the large isoform was increased more significantly in the chloroplast stroma and thylakoid. It can be concluded that RCA, especially RCAL, is also a multiple responder to abiotic stresses in rice, which provides new insights into RCA functions. PMID:26479064

  11. Isolation of a Novel Peroxisomal Catalase Gene from Sugarcane, Which Is Responsive to Biotic and Abiotic Stresses

    PubMed Central

    Ling, Hui; Chen, Shanshan; Wang, Shanshan; Xu, Liping; Allan, Andrew C.; Que, Youxiong

    2014-01-01

    Catalase is an iron porphyrin enzyme, which serves as an efficient scavenger of reactive oxygen species (ROS) to avoid oxidative damage. In sugarcane, the enzymatic activity of catalase in a variety (Yacheng05–179) resistant to the smut pathogen Sporisorium scitamineum was always higher than that of the susceptible variety (Liucheng03–182), suggesting that catalase activity may have a positive correlation with smut resistance in sugarcane. To understand the function of catalase at the molecular level, a cDNA sequence of ScCAT1 (GenBank Accession No. KF664183), was isolated from sugarcane infected by S. scitamineum. ScCAT1 was predicted to encode 492 amino acid residues, and its deduced amino acid sequence shared a high degree of homology with other plant catalases. Enhanced growth of ScCAT1 in recombinant Escherichia coli Rosetta cells under the stresses of CuCl2, CdCl2 and NaCl indicated its high tolerance. Q-PCR results showed that ScCAT1 was expressed at relatively high levels in the bud, whereas expression was moderate in stem epidermis and stem pith. Different kinds of stresses, including S. scitamineum challenge, plant hormones (SA, MeJA and ABA) treatments, oxidative (H2O2) stress, heavy metal (CuCl2) and hyper-osmotic (PEG and NaCl) stresses, triggered a significant induction of ScCAT1. The ScCAT1 protein appeared to localize in plasma membrane and cytoplasm. Furthermore, histochemical assays using DAB and trypan blue staining, as well as conductivity measurement, indicated that ScCAT1 may confer the sugarcane immunity. In conclusion, the positive response of ScCAT1 to biotic and abiotic stresses suggests that ScCAT1 is involved in protection of sugarcane against reactive oxidant-related environmental stimuli. PMID:24392135

  12. Stress Tolerance Profiling of a Collection of Extant Salt-Tolerant Rice Varieties and Transgenic Plants Overexpressing Abiotic Stress Tolerance Genes.

    PubMed

    Kurotani, Ken-ichi; Yamanaka, Kazumasa; Toda, Yosuke; Ogawa, Daisuke; Tanaka, Maiko; Kozawa, Hirotsugu; Nakamura, Hidemitsu; Hakata, Makoto; Ichikawa, Hiroaki; Hattori, Tsukaho; Takeda, Shin

    2015-10-01

    Environmental stress tolerance is an important trait for crop improvement. In recent decades, numerous genes that confer tolerance to abiotic stress such as salinity were reported. However, the levels of salt tolerance differ greatly depending on growth conditions, and mechanisms underlying the complicated nature of stress tolerance are far from being fully understood. In this study, we investigated the profiles of stress tolerance of nine salt-tolerant rice varieties and transgenic rice lines carrying constitutively expressed genes that are potentially involved in salt tolerance, by evaluating their growth and viability under salt, heat, ionic and hyperosmotic stress conditions. Profiling of the extant varieties and selected chromosome segment substitution lines showed that salt tolerance in a greenhouse condition was more tightly correlated with ionic stress tolerance than osmotic stresses. In Nona Bokra, one of the most salt-tolerant varieties, the contribution of the previously identified sodium transporter HKT1;5 to salt tolerance was fairly limited. In addition, Nona Bokra exhibited high tolerance to all the stresses imposed. More surprisingly, comparative evaluation of 74 stress tolerance genes revealed that the most striking effect to enhance salt tolerance was conferred by overexpressing CYP94C2b, which promotes deactivation of jasmonate. In contrast, genes encoding ABA signaling factors conferred multiple stress tolerance. Genes conferring tolerance to both heat and hyperosmotic stresses were preferentially linked to functional categories related to heat shock proteins, scavenging of reactive oxygen species and Ca(2+) signaling. These comparative profiling data provide a new basis for understanding the ability of plants to grow under harsh environmental conditions.

  13. Stress Tolerance Profiling of a Collection of Extant Salt-Tolerant Rice Varieties and Transgenic Plants Overexpressing Abiotic Stress Tolerance Genes.

    PubMed

    Kurotani, Ken-ichi; Yamanaka, Kazumasa; Toda, Yosuke; Ogawa, Daisuke; Tanaka, Maiko; Kozawa, Hirotsugu; Nakamura, Hidemitsu; Hakata, Makoto; Ichikawa, Hiroaki; Hattori, Tsukaho; Takeda, Shin

    2015-10-01

    Environmental stress tolerance is an important trait for crop improvement. In recent decades, numerous genes that confer tolerance to abiotic stress such as salinity were reported. However, the levels of salt tolerance differ greatly depending on growth conditions, and mechanisms underlying the complicated nature of stress tolerance are far from being fully understood. In this study, we investigated the profiles of stress tolerance of nine salt-tolerant rice varieties and transgenic rice lines carrying constitutively expressed genes that are potentially involved in salt tolerance, by evaluating their growth and viability under salt, heat, ionic and hyperosmotic stress conditions. Profiling of the extant varieties and selected chromosome segment substitution lines showed that salt tolerance in a greenhouse condition was more tightly correlated with ionic stress tolerance than osmotic stresses. In Nona Bokra, one of the most salt-tolerant varieties, the contribution of the previously identified sodium transporter HKT1;5 to salt tolerance was fairly limited. In addition, Nona Bokra exhibited high tolerance to all the stresses imposed. More surprisingly, comparative evaluation of 74 stress tolerance genes revealed that the most striking effect to enhance salt tolerance was conferred by overexpressing CYP94C2b, which promotes deactivation of jasmonate. In contrast, genes encoding ABA signaling factors conferred multiple stress tolerance. Genes conferring tolerance to both heat and hyperosmotic stresses were preferentially linked to functional categories related to heat shock proteins, scavenging of reactive oxygen species and Ca(2+) signaling. These comparative profiling data provide a new basis for understanding the ability of plants to grow under harsh environmental conditions. PMID:26329877

  14. Expression of Arabidopsis FCS-Like Zinc finger genes is differentially regulated by sugars, cellular energy level, and abiotic stress

    PubMed Central

    Jamsheer K, Muhammed; Laxmi, Ashverya

    2015-01-01

    Cellular energy status is an important regulator of plant growth, development, and stress mitigation. Environmental stresses ultimately lead to energy deficit in the cell which activates the SNF1-RELATED KINASE 1 (SnRK1) signaling cascade which eventually triggering a massive reprogramming of transcription to enable the plant to survive under low-energy conditions. The role of Arabidopsis thaliana FCS-Like Zinc finger (FLZ) gene family in energy and stress signaling is recently come to highlight after their interaction with kinase subunits of SnRK1 were identified. In a detailed expression analysis in different sugars, energy starvation, and replenishment series, we identified that the expression of most of the FLZ genes is differentially modulated by cellular energy level. It was found that FLZ gene family contains genes which are both positively and negatively regulated by energy deficit as well as energy-rich conditions. Genetic and pharmacological studies identified the role of HEXOKINASE 1- dependent and energy signaling pathways in the sugar-induced expression of FLZ genes. Further, these genes were also found to be highly responsive to different stresses as well as abscisic acid. In over-expression of kinase subunit of SnRK1, FLZ genes were found to be differentially regulated in accordance with their response toward energy fluctuation suggesting that these genes may work downstream to the established SnRK1 signaling under low-energy stress. Taken together, the present study provides a conceptual framework for further studies related to SnRK1-FLZ interaction in relation to sugar and energy signaling and stress response. PMID:26442059

  15. Overexpression of gamma-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements.

    PubMed

    Yusuf, Mohd Aslam; Kumar, Deepak; Rajwanshi, Ravi; Strasser, Reto Jörg; Tsimilli-Michael, Merope; Govindjee; Sarin, Neera Bhalla

    2010-08-01

    Tocopherols (vitamin E) are lipid soluble antioxidants synthesized by plants and some cyanobacteria. We have earlier reported that overexpression of the gamma-tocopherol methyl transferase (gamma-TMT) gene from Arabidopsis thaliana in transgenic Brassica juncea plants resulted in an over six-fold increase in the level of alpha-tocopherol, the most active form of all the tocopherols. Tocopherol levels have been shown to increase in response to a variety of abiotic stresses. In the present study on Brassica juncea, we found that salt, heavy metal and osmotic stress induced an increase in the total tocopherol levels. Measurements of seed germination, shoot growth and leaf disc senescence showed that transgenic Brassica juncea plants overexpressing the gamma-TMT gene had enhanced tolerance to the induced stresses. Analysis of the chlorophyll a fluorescence rise kinetics, from the initial "O" level to the "P" (the peak) level, showed that there were differential effects of the applied stresses on different sites of the photosynthetic machinery; further, these effects were alleviated in the transgenic (line 16.1) Brassica juncea plants. We show that alpha-tocopherol plays an important role in the alleviation of stress induced by salt, heavy metal and osmoticum in Brassica juncea. PMID:20144585

  16. The heat shock factor gene family in Salix suchowensis: a genome-wide survey and expression profiling during development and abiotic stresses

    PubMed Central

    Zhang, Jin; Li, Yu; Jia, Hui-Xia; Li, Jian-Bo; Huang, Juan; Lu, Meng-Zhu; Hu, Jian-Jun

    2015-01-01

    Heat shock transcription factors (Hsfs), which act as important transcriptional regulatory proteins, play crucial roles in plant developmental processes, and stress responses. Recently, the genome of the shrub willow Salix suchowensis was fully sequenced. In this study, a total of 27 non-redundant Hsf genes were identified from the S. suchowensis genome. Phylogenetic analysis revealed that the members of the SsuHsf family can be divided into three groups (class A, B, and C) based on their structural characteristics. Promoter analysis indicated that the SsuHsfs promoters included various cis-acting elements related to hormone and/or stress responses. Furthermore, the expression profiles of 27 SsuHsfs were analyzed in different tissues and under various stresses (heat, drought, salt, and ABA treatment) using RT-PCR. The results demonstrated that the SsuHsfs were involved in abiotic stress responses. Our results contribute to a better understanding of the complexity of the SsuHsf gene family, and will facilitate functional characterization in future studies. PMID:26442061

  17. Three TaFAR genes function in the biosynthesis of primary alcohols and the response to abiotic stresses in Triticum aestivum.

    PubMed

    Wang, Meiling; Wang, Yong; Wu, Hongqi; Xu, Jing; Li, Tingting; Hegebarth, Daniela; Jetter, Reinhard; Chen, Letian; Wang, Zhonghua

    2016-01-01

    Cuticular waxes play crucial roles in protecting plants against biotic and abiotic stresses. They are complex mixtures of very-long-chain fatty acids and their derivatives, including C20-C32 fatty alcohols. Here, we report the identification of 32 FAR-like genes and the detailed characterization of TaFAR2, TaFAR3 and TaFAR4, wax biosynthetic genes encoding fatty acyl-coenzyme A reductase (FAR) in wheat leaf cuticle. Heterologous expression of the three TaFARs in wild-type yeast and mutated yeast showed that TaFAR2, TaFAR3 and TaFAR4 were predominantly responsible for the accumulation of C18:0, C28:0 and C24:0 primary alcohols, respectively. Transgenic expression of the three TaFARs in tomato fruit and Arabidopsis cer4 mutant led to increased production of C22:0-C30:0 primary alcohols. GFP-fusion protein injection assay showed that the three encoded TaFAR proteins were localized to the endoplasmic reticulum (ER), the site of wax biosynthesis. The transcriptional expression of the three TaFAR genes was induced by cold, salt, drought and ABA. Low air humidity led to increased expression of TaFAR genes and elevated wax accumulation in wheat leaves. Collectively, these data suggest that TaFAR2, TaFAR3 and TaFAR4 encode active alcohol-forming FARs involved in the synthesis of primary alcohol in wheat leaf and the response to environmental stresses. PMID:27112792

  18. Three TaFAR genes function in the biosynthesis of primary alcohols and the response to abiotic stresses in Triticum aestivum

    PubMed Central

    Wang, Meiling; Wang, Yong; Wu, Hongqi; Xu, Jing; Li, Tingting; Hegebarth, Daniela; Jetter, Reinhard; Chen, Letian; Wang, Zhonghua

    2016-01-01

    Cuticular waxes play crucial roles in protecting plants against biotic and abiotic stresses. They are complex mixtures of very-long-chain fatty acids and their derivatives, including C20–C32 fatty alcohols. Here, we report the identification of 32 FAR-like genes and the detailed characterization of TaFAR2, TaFAR3 and TaFAR4, wax biosynthetic genes encoding fatty acyl-coenzyme A reductase (FAR) in wheat leaf cuticle. Heterologous expression of the three TaFARs in wild-type yeast and mutated yeast showed that TaFAR2, TaFAR3 and TaFAR4 were predominantly responsible for the accumulation of C18:0, C28:0 and C24:0 primary alcohols, respectively. Transgenic expression of the three TaFARs in tomato fruit and Arabidopsis cer4 mutant led to increased production of C22:0–C30:0 primary alcohols. GFP-fusion protein injection assay showed that the three encoded TaFAR proteins were localized to the endoplasmic reticulum (ER), the site of wax biosynthesis. The transcriptional expression of the three TaFAR genes was induced by cold, salt, drought and ABA. Low air humidity led to increased expression of TaFAR genes and elevated wax accumulation in wheat leaves. Collectively, these data suggest that TaFAR2, TaFAR3 and TaFAR4 encode active alcohol-forming FARs involved in the synthesis of primary alcohol in wheat leaf and the response to environmental stresses. PMID:27112792

  19. Expression profiles of 12 late embryogenesis abundant protein genes from Tamarix hispida in response to abiotic stress.

    PubMed

    Gao, Caiqiu; Liu, Yali; Wang, Chao; Zhang, Kaimin; Wang, Yucheng

    2014-01-01

    Twelve embryogenesis abundant protein (LEA) genes (named ThLEA-1 to -12) were cloned from Tamarix hispida. The expression profiles of these genes in response to NaCl, PEG, and abscisic acid (ABA) in roots, stems, and leaves of T. hispida were assessed using real-time reverse transcriptase-polymerase chain reaction (RT-PCR). These ThLEAs all showed tissue-specific expression patterns in roots, stems, and leaves under normal growth conditions. However, they shared a high similar expression patterns in the roots, stems, and leaves when exposed to NaCl and PEG stress. Furthermore, ThLEA-1, -2, -3, -4, and -11 were induced by NaCl and PEG, but ThLEA-5, -6, -8, -10, and -12 were downregulated by salt and drought stresses. Under ABA treatment, some ThLEA genes, such as ThLEA-1, -2, and -3, were only slightly differentially expressed in roots, stems, and leaves, indicating that they may be involved in the ABA-independent signaling pathway. These findings provide a basis for the elucidation of the function of LEA genes in future work. PMID:25133264

  20. Expression of TaWRKY44, a wheat WRKY gene, in transgenic tobacco confers multiple abiotic stress tolerances.

    PubMed

    Wang, Xiatian; Zeng, Jian; Li, Ying; Rong, Xiaoli; Sun, Jiutong; Sun, Tao; Li, Miao; Wang, Lianzhe; Feng, Ying; Chai, Ruihong; Chen, Mingjie; Chang, Junli; Li, Kexiu; Yang, Guangxiao; He, Guangyuan

    2015-01-01

    The WRKY transcription factors have been reported to be involved in various plant physiological and biochemical processes. In this study, we successfully assembled 10 unigenes from expressed sequence tags (ESTs) of wheat and designated them as TaWRKY44-TaWRKY53, respectively. Among these genes, a subgroup I gene, TaWRKY44, was found to be upregulated by treatments with PEG6000, NaCl, 4°C, abscisic acid (ABA), H2O2 and gibberellin (GA). The TaWRKY44-GFP fusion protein was localized to the nucleus of onion epidermal cells, and TaWRKY44 was able to bind to the core DNA sequences of TTGACC and TTAACC in yeast. The N-terminal of TaWRKY44 showed transcriptional activation activity. Expression of TaWRKY44 in tobacco plants conferred drought and salt tolerance and transgenic tobacco exhibited a higher survival rate, relative water content (RWC), soluble sugar, proline and superoxide dismutase (SOD) content, as well as higher activities of catalase (CAT) and peroxidase (POD), but less ion leakage (IL), lower contents of malondialdehyde (MDA), and H2O2. In addition, expression of TaWRKY44 also increased the seed germination rate in the transgenic lines under osmotic stress conditions while exhibiting a lower H2O2 content and higher SOD, CAT, and POD activities. Expression of TaWRKY44 upregulated the expression of some reactive oxygen species (ROS)-related genes and stress-responsive genes in tobacco under osmotic stresses. These data demonstrate that TaWRKY44 may act as a positive regulator in drought/salt/osmotic stress responses by either efficient ROS elimination through direct or indirect activation of the cellular antioxidant systems or activation of stress-associated gene expression. PMID:26322057

  1. Composition of the SAGA complex in plants and its role in controlling gene expression in response to abiotic stresses

    PubMed Central

    Moraga, Felipe; Aquea, Felipe

    2015-01-01

    Protein complexes involved in epigenetic regulation of transcription have evolved as molecular strategies to face environmental stress in plants. SAGA (Spt–Ada–Gcn5 Acetyltransferase) is a transcriptional co-activator complex that regulates numerous cellular processes through the coordination of multiple post-translational histone modifications, including acetylation, deubiquitination, and chromatin recognition. The diverse functions of the SAGA complex involve distinct modules that are highly conserved between yeast, flies, and mammals. In this review, the composition of the SAGA complex in plants is described and its role in gene expression regulation under stress conditions summarized. Some of these proteins are likely involved in the regulation of the inducible expression of genes under light, cold, drought, salt, and iron stress, although the functions of several of its components remain unknown. PMID:26528322

  2. Expression of selected Ginkgo biloba heat shock protein genes after cold treatment could be induced by other abiotic stress.

    PubMed

    Cao, Fuliang; Cheng, Hua; Cheng, Shuiyuan; Li, Linling; Xu, Feng; Yu, Wanwen; Yuan, Honghui

    2012-01-01

    Heat shock proteins (HSPs) play various stress-protective roles in plants. In this study, three HSP genes were isolated from a suppression subtractive hybridization (SSH) cDNA library of Ginkgo biloba leaves treated with cold stress. Based on the molecular weight, the three genes were designated GbHSP16.8, GbHSP17 and GbHSP70. The full length of the three genes were predicted to encode three polypeptide chains containing 149 amino acids (Aa), 152 Aa, and 657 Aa, and their corresponding molecular weights were predicted as follows: 16.67 kDa, 17.39 kDa, and 71.81 kDa respectively. The three genes exhibited distinctive expression patterns in different organs or development stages. GbHSP16.8 and GbHSP70 showed high expression levels in leaves and a low level in gynoecia, GbHSP17 showed a higher transcription in stamens and lower level in fruit. This result indicates that GbHSP16.8 and GbHSP70 may play important roles in Ginkgo leaf development and photosynthesis, and GbHSP17 may play a positive role in pollen maturation. All three GbHSPs were up-regulated under cold stress, whereas extreme heat stress only caused up-regulation of GbHSP70, UV-B treatment resulted in up-regulation of GbHSP16.8 and GbHSP17, wounding treatment resulted in up-regulation of GbHSP16.8 and GbHSP70, and abscisic acid (ABA) treatment caused up-regulation of GbHSP70 primarily.

  3. Molecular characterization and expression profile of methionine sulfoxide reductase gene family in maize (Zea mays) under abiotic stresses.

    PubMed

    Zhu, Jiantang; Ding, Pengcheng; Li, Qingqing; Gao, YanKun; Chen, Fanguo; Xia, Guangmin

    2015-05-15

    Methionine (Met) oxidation to methionine sulfoxide (MetSO) is a common form of damage caused by reactive oxygen species (ROS) accumulation via various environmental stresses. Methionine sulfoxide reductase (MSR) repairs oxidized Met and protects organisms from oxidative damage. Two types of MSR, A and B, have been identified based on substrate stereo specificity; they share no sequence similarity. In the present study, we characterized six genes encoding the putative MSR from two public databases. We compared them with MSRs from 6 species, and evaluated molecular characterization, phylogenetic analysis, tertiary structure and conserved motifs. On the basis of in silico and the qRT-PCR experimental data, we analyzed cDNA sequences and expression patterns of ZmMSR genes in different organs in maize. We found that ZmMSR genes were induced by polyethylene glycol (PEG) and NaCl, both known to generate oxidative stress. The results show that MSRs are conserved in different species, suggesting that MSRs across different species share common mechanisms related to diverse defense responses.

  4. Characterization of a wheat (Triticum aestivum L.) expansin gene, TaEXPB23, involved in the abiotic stress response and phytohormone regulation.

    PubMed

    Han, Yang yang; Li, Ai xiu; Li, Feng; Zhao, Mei rong; Wang, Wei

    2012-05-01

    Expansins are proteins that are generally accepted to be key regulators of cell wall extension and plant growth. We examined the expression pattern of TaEXPB23, a wheat (Triticum aestivum L.) expansin gene, under exogenous phytohormone and abiotic stress treatments. In addition, we evaluated its function in the tolerance to salt stress and high temperature (HT) by overexpressing it in transgenic tobacco plants. In subcellular localization assays, TaEXPB23 localized to the cell wall. Expression analysis demonstrated that the transcription pattern of TaEXPB23 corresponded to wheat coleoptile growth. Real-time RT-PCR analysis revealed that TaEXPB23 transcript expression was upregulated by exogenous methyl jasmonate (MeJA) and salt stress, but downregulated by exogenous gibberellins (GA₃), ethylene (ET), indole-3-acetic acid (IAA) and α-naphthlcetic acid (NAA). Overexpression of TaEXPB23 in tobacco (tabacum) conferred tolerance to salt stress by enhancing water retention ability (WRA) and decreasing osmotic potential (OP). However, transgenic plants overexpressing TaEXPB23 did not show any improvement in the tolerance to HT stress. These results suggested that TaEXPB23 is regulated by phytohormones and is involved in the regulation of salt stress tolerance.

  5. A sucrose:fructan-6-fructosyltransferase (6-SFT) gene from Psathyrostachys huashanica confers abiotic stress tolerance in tobacco.

    PubMed

    He, Xiaolan; Chen, Zhenzhen; Wang, Jianwei; Li, Wenxu; Zhao, Jixin; Wu, Jun; Wang, Zhonghua; Chen, Xinhong

    2015-10-10

    Fructans are accessible carbohydrate reserves in various plant species, which possess many physiological functions including anti-oxidation, stabilizing subcellular structures, and osmotic adjustment. In addition, fructans may play important roles in stress tolerance in plant species. In this study, we isolated a Psathyrostachys huashanica (2n=2x=14, NsNs) sucrose:fructan-6-fructosyltransferase (Ph-6-SFT) using homologous cloning and genomic walking. Sequencing and gene structure analysis showed that Ph-6-SFT contains four exons and three introns, with a transcript of 2207 bp. Sequence analysis indicated that the coding sequence of Ph-6-SFT is 1851 bp long and it encodes 616 amino acids, where the structure shares high similarity with 6-SFTs from other plants. Furthermore, Ph-6-SFT was transferred into tobacco (Nicotiana tabacum L.) cv. W38 via Agrobacterium-mediated transformation. Compared with the wild-type plants, the transgenic tobacco plants exhibited a much higher tolerance of drought, cold, and high salinity. In all conditions, physiological studies showed that the tolerance of transgenic plants was associated with the accumulation of carbohydrate and proline, but reductions in malondialdehyde. Our results suggest that the 6-SFT gene from P. huashanica enhanced stress tolerance in tobacco plants and it may be applied as a genetic tool for improving stress tolerance in other crops. PMID:26072162

  6. A sucrose:fructan-6-fructosyltransferase (6-SFT) gene from Psathyrostachys huashanica confers abiotic stress tolerance in tobacco.

    PubMed

    He, Xiaolan; Chen, Zhenzhen; Wang, Jianwei; Li, Wenxu; Zhao, Jixin; Wu, Jun; Wang, Zhonghua; Chen, Xinhong

    2015-10-10

    Fructans are accessible carbohydrate reserves in various plant species, which possess many physiological functions including anti-oxidation, stabilizing subcellular structures, and osmotic adjustment. In addition, fructans may play important roles in stress tolerance in plant species. In this study, we isolated a Psathyrostachys huashanica (2n=2x=14, NsNs) sucrose:fructan-6-fructosyltransferase (Ph-6-SFT) using homologous cloning and genomic walking. Sequencing and gene structure analysis showed that Ph-6-SFT contains four exons and three introns, with a transcript of 2207 bp. Sequence analysis indicated that the coding sequence of Ph-6-SFT is 1851 bp long and it encodes 616 amino acids, where the structure shares high similarity with 6-SFTs from other plants. Furthermore, Ph-6-SFT was transferred into tobacco (Nicotiana tabacum L.) cv. W38 via Agrobacterium-mediated transformation. Compared with the wild-type plants, the transgenic tobacco plants exhibited a much higher tolerance of drought, cold, and high salinity. In all conditions, physiological studies showed that the tolerance of transgenic plants was associated with the accumulation of carbohydrate and proline, but reductions in malondialdehyde. Our results suggest that the 6-SFT gene from P. huashanica enhanced stress tolerance in tobacco plants and it may be applied as a genetic tool for improving stress tolerance in other crops.

  7. Molecular cloning and expression profile of an abiotic stress and hormone responsive MYB transcription factor gene from Panax ginseng.

    PubMed

    Afrin, Sadia; Zhu, Jie; Cao, Hongzhe; Huang, Jingjia; Xiu, Hao; Luo, Tiao; Luo, Zhiyong

    2015-04-01

    The v-myb avian myeloblastosis viral oncogene homolog (MYB) family constitutes one of the most abundant groups of transcription factors and plays vital roles in developmental processes and defense responses in plants. A ginseng (Panax ginseng C.A. Meyer) MYB gene was cloned and designated as PgMYB1. The cDNA of PgMYB1 is 762 base pairs long and encodes the R2R3-type protein consisting 238 amino acids. Subcellular localization showed that PgMYB1-mGFP5 fusion protein was specifically localized in the nucleus. To understand the functional roles of PgMYB1, we investigated the expression patterns of PgMYB1 in different tissues and under various conditions. Quantitative real-time polymerase chain reaction and western blot analysis showed that PgMYB1 was expressed at higher level in roots, leaves, and lateral roots than in stems and seeds. The expression of PgMYB1 was up-regulated by abscisic acid, salicylic acid, NaCl, and cold (chilling), and down-regulated by methyl jasmonate. These results suggest that PgMYB1 might be involved in responding to environmental stresses and hormones. PMID:25791525

  8. Molecular cloning and expression profile of an abiotic stress and hormone responsive MYB transcription factor gene from Panax ginseng.

    PubMed

    Afrin, Sadia; Zhu, Jie; Cao, Hongzhe; Huang, Jingjia; Xiu, Hao; Luo, Tiao; Luo, Zhiyong

    2015-04-01

    The v-myb avian myeloblastosis viral oncogene homolog (MYB) family constitutes one of the most abundant groups of transcription factors and plays vital roles in developmental processes and defense responses in plants. A ginseng (Panax ginseng C.A. Meyer) MYB gene was cloned and designated as PgMYB1. The cDNA of PgMYB1 is 762 base pairs long and encodes the R2R3-type protein consisting 238 amino acids. Subcellular localization showed that PgMYB1-mGFP5 fusion protein was specifically localized in the nucleus. To understand the functional roles of PgMYB1, we investigated the expression patterns of PgMYB1 in different tissues and under various conditions. Quantitative real-time polymerase chain reaction and western blot analysis showed that PgMYB1 was expressed at higher level in roots, leaves, and lateral roots than in stems and seeds. The expression of PgMYB1 was up-regulated by abscisic acid, salicylic acid, NaCl, and cold (chilling), and down-regulated by methyl jasmonate. These results suggest that PgMYB1 might be involved in responding to environmental stresses and hormones.

  9. Molecular cloning and expression analyses of RPS3a gene from mulberry under abiotic stresses and among different mulberry varieties.

    PubMed

    Qian, J; Zhou, H; Zhao, M D; Wang, H; Li, F; Wang, Y H; Fang, R J; Zhao, W G; Kim, H J

    2016-01-01

    A full-length cDNA sequence coding ribosomal protein S3a of mulberry tree, which we designated MmRPS3a (GenBank accession No. KR610331), was cloned based on mulberry expressed sequence tags. Sequence analysis showed that the MmRPS3a is 1089 bp long and contains a 80-bp 5'-UTR (untranslated region) and a 220-bp 3'-UTR. Its open reading frame consists of a 789-bp encoding 262 amino acids with a predicted molecular weight of 30.053 kDa and an isoelectric point of 9.84. Homology analysis revealed that MmRPS3a gene is highly conservative in mulberry and other species including Morus notabilis, Theobroma cacao, and Ricinus communis. Phylogenetic analysis based on MmRPS3a of other species showed that mulberry had a closer relationship with Prunus persica, Arabidopsis thaliana, Solanum tuberosum, Solanum lycopersicum, and Vitis vinifera. The results of quantitative PCR analysis showed that the transcriptional level of MmRPS3a mRNA changed significantly under the conditions of hypothermia, aridity, salt stress, and varieties of differing resistances. PMID:27173298

  10. The Persimmon 9-lipoxygenase Gene DkLOX3 Plays Positive Roles in Both Promoting Senescence and Enhancing Tolerance to Abiotic Stress.

    PubMed

    Hou, Yali; Meng, Kun; Han, Ye; Ban, Qiuyan; Wang, Biao; Suo, Jiangtao; Lv, Jingyi; Rao, Jingping

    2015-01-01

    The lipoxygenase (LOX) pathway is a key regulator for lipid peroxidation, which is crucial for plant senescence and defense pathways. In this study, the transcriptional expression patterns of three persimmon (Diospyros kaki L. 'Fupingjianshi') 9-lipoxygenase genes (DkLOX1, DkLOX3, and DkLOX4) were investigated. DkLOX1 was specifically expressed in fruit, particularly in young fruit, and showed little response to the postharvest environments. DkLOX4 was expressed in all tissues and slightly stimulated by mechanical damage and low temperature. DkLOX3 was expressed mainly in mature fruit, and the expression was extremely high throughout the storage period, apparently up-regulated by mechanical damage and high carbon dioxide treatments. Further functional analysis showed that overexpression of DkLOX3 in tomato (Solanum lycopersicum cv. Micro-Tom) accelerated fruit ripening and softening. This was accompanied by higher malondialdehyde (MDA) content and lycopene accumulation, advanced ethylene release peak and elevated expression of ethylene synthesis genes, including ACS2, ACO1, and ACO3. In addition, DkLOX3 overexpression promoted dark induced transgenic Arabidopsis leaf senescence with more chlorophyll loss, increased electrolyte leakage and MDA content. Furthermore, the functions of DkLOX3 in response to abiotic stresses, including osmotic stress, high salinity and drought were investigated. Arabidopsis DkLOX3 overexpression (DkLOX3-OX) transgenic lines were found to be more tolerant to osmotic stress with higher germination rate and root growth than wild-type. Moreover, DkLOX3-OX Arabidopsis plants also exhibited enhanced resistance to high salinity and drought, with similar decreased O2 (-) and H2O2 accumulation and upregulation of stress-responsive genes expression, including RD22, RD29A, RD29B, and NCED3, except for FRY1, which plays a negative role in stress response. Overall, these results suggested that DkLOX3 plays positive roles both in promoting ripening

  11. A wheat salinity-induced WRKY transcription factor TaWRKY93 confers multiple abiotic stress tolerance in Arabidopsis thaliana.

    PubMed

    Qin, Yuxiang; Tian, Yanchen; Liu, Xiuzhi

    2015-08-21

    Wheat is an important crop in the world. But most of the cultivars are salt sensitive, and often adversely affected by salt stress. WRKY transcription factors play a major role in plant responses to salt stress, but the effective salinity regulatory WRKYs identified in bread wheat are limited and the mechanism of salt stress tolerance is also not well explored. Here, we identified a salt (NaCl) induced class II WRKY transcription factor TaWRKY93. Its transcript level was strongly induced by salt (NaCl) and exogenous abscisic acid (ABA). Over-expression of TaWRKY93 in Arabidopsis thaliana enhanced salt (NaCl), drought, low temperature and osmotic (mannitol) stress tolerance, mainly demonstrated by transgenic plants forming longer primary roots or more lateral roots on MS plates supplemented with NaCl and mannitol individually, higher survival rate under drought and low temperature stress. Further, transgenic plants maintained a more proline content, higher relative water content and less electrolyte leakage than the wild type plants. The transcript abundance of a series of abiotic stress-related genes was up-regulated in the TaWRKY93 transgenic plants. In summary, TaWRKY93 is a new positive regulator of abiotic stress, it may increase salinity, drought and low temperature stress tolerance through enhancing osmotic adjustment, maintaining membrane stability and increasing transcription of stress related genes, and contribute to the superior agricultural traits of SR3 through promoting root development. It can be used as a candidate gene for wheat transgenic engineering breeding against abiotic stress.

  12. Genome-Wide Identification and Expression Profiling Analysis of ZmPIN, ZmPILS, ZmLAX and ZmABCB Auxin Transporter Gene Families in Maize (Zea mays L.) under Various Abiotic Stresses

    PubMed Central

    Sun, Tao; Zhang, Lei; Yang, Yanjun; Qi, Jianshuang; Yan, Shufeng; Han, Xiaohua; Wang, Huizhong; Shen, Chenjia

    2015-01-01

    The auxin influx carriers auxin resistant 1/like aux 1 (AUX/LAX), efflux carriers pin-formed (PIN) (together with PIN-like proteins) and efflux/conditional P-glycoprotein (ABCB) are major protein families involved in auxin polar transport. However, how they function in responses to exogenous auxin and abiotic stresses in maize is largely unknown. In this work, the latest updated maize (Zea mays L.) reference genome sequence was used to characterize and analyze the ZmLAX, ZmPIN, ZmPILS and ZmABCB family genes from maize. The results showed that five ZmLAXs, fifteen ZmPINs, nine ZmPILSs and thirty-five ZmABCBs were mapped on all ten maize chromosomes. Highly diversified gene structures, nonconservative transmembrane helices and tissue-specific expression patterns suggested the possibility of function diversification for these genes. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to analyze the expression patterns of ZmLAX, ZmPIN, ZmPILS and ZmABCB genes under exogenous auxin and different environmental stresses. The expression levels of most ZmPIN, ZmPILS, ZmLAX and ZmABCB genes were induced in shoots and were reduced in roots by various abiotic stresses (drought, salt and cold stresses). The opposite expression response patterns indicated the dynamic auxin transport between shoots and roots under abiotic stresses. Analysis of the expression patterns of ZmPIN, ZmPILS, ZmLAX and ZmABCB genes under drought, salt and cold treatment may help us to understand the possible roles of maize auxin transporter genes in responses and tolerance to environmental stresses. PMID:25742625

  13. Oxidative Stress Related Diseases in Newborns

    PubMed Central

    Aykac, Kubra

    2016-01-01

    We review oxidative stress-related newborn disease and the mechanism of oxidative damage. In addition, we outline diagnostic and therapeutic strategies and future directions. Many reports have defined oxidative stress as an imbalance between an enhanced reactive oxygen/nitrogen species and the lack of protective ability of antioxidants. From that point of view, free radical-induced damage caused by oxidative stress seems to be a probable contributing factor to the pathogenesis of many newborn diseases, such as respiratory distress syndrome, bronchopulmonary dysplasia, periventricular leukomalacia, necrotizing enterocolitis, patent ductus arteriosus, and retinopathy of prematurity. We share the hope that the new understanding of the concept of oxidative stress and its relation to newborn diseases that has been made possible by new diagnostic techniques will throw light on the treatment of those diseases. PMID:27403229

  14. Oxidative Stress Related Diseases in Newborns.

    PubMed

    Ozsurekci, Yasemin; Aykac, Kubra

    2016-01-01

    We review oxidative stress-related newborn disease and the mechanism of oxidative damage. In addition, we outline diagnostic and therapeutic strategies and future directions. Many reports have defined oxidative stress as an imbalance between an enhanced reactive oxygen/nitrogen species and the lack of protective ability of antioxidants. From that point of view, free radical-induced damage caused by oxidative stress seems to be a probable contributing factor to the pathogenesis of many newborn diseases, such as respiratory distress syndrome, bronchopulmonary dysplasia, periventricular leukomalacia, necrotizing enterocolitis, patent ductus arteriosus, and retinopathy of prematurity. We share the hope that the new understanding of the concept of oxidative stress and its relation to newborn diseases that has been made possible by new diagnostic techniques will throw light on the treatment of those diseases. PMID:27403229

  15. Cloning and characterization of HbMT2a, a metallothionein gene from Hevea brasiliensis Muell. Arg differently responds to abiotic stress and heavy metals

    SciTech Connect

    Li, Yan; Chen, Yue Yi; Yang, Shu Guang; Tian, Wei Min

    2015-05-22

    Metallothioneins (MTs) are of low molecular mass, cysteine-rich proteins. They play an important role in the detoxification of heavy metals and homeostasis of intracellular metal ions, and protecting against intracellular oxidative damages. In this study a full-length cDNA of type 2 plant metallothioneins, HbMT2a, was isolated from 25 mM Polyethyleneglycol (PEG) stressed leaves of Hevea brasiliensis by RACE. The HbMT2a was 372 bp in length and had a 237 bp open reading frame (ORF) encoding for a protein of 78 amino acid residues with molecular mass of 7.772 kDa. The expression of HbMT2a in the detached leaves of rubber tree clone RY7-33-97 was up-regulated by Me-JA, ABA, PEG, H{sub 2}O{sub 2}, Cu{sup 2+} and Zn{sup 2+}, but down-regulated by water. The role of HbMT2a protein in protecting against metal toxicity was demonstrated in vitro. PET-28a-HbMT2-beared Escherichia coli. Differential expression of HbMT2a upon treatment with 10 °C was observed in the detached leaves of rubber tree clone 93-114 which is cold-resistant and Reken501 which is cold-sensitive. The expression patterns of HbMT2a in the two rubber tree clones may be ascribed to a change in the level of endogenous H{sub 2}O{sub 2}. - Highlights: • Cloning an HbMT2a gene from rubber tree. • Analyzing expression patterns of HbMT2a upon abiotic stress and heavy metal stress. • Finding different expression patterns of HbMT2a among two Hevea germplasm. • The expressed protein of HbMT2a enhances copper and zinc tolerance in Escherichia coli.

  16. Identification and Validation of Reference Genes for Quantification of Target Gene Expression with Quantitative Real-time PCR for Tall Fescue under Four Abiotic Stresses

    PubMed Central

    Hu, Baoyun; Tan, Zhiqun; Huang, Bingru

    2015-01-01

    Tall fescue (Festuca arundinacea Schreb.) is widely utilized as a major forage and turfgrass species in the temperate regions of the world and is a valuable plant material for studying molecular mechanisms of grass stress tolerance due to its superior drought and heat tolerance among cool-season species. Selection of suitable reference genes for quantification of target gene expression is important for the discovery of molecular mechanisms underlying improved growth traits and stress tolerance. The stability of nine potential reference genes (ACT, TUB, EF1a, GAPDH, SAND, CACS, F-box, PEPKR1 and TIP41) was evaluated using four programs, GeNorm, NormFinder, BestKeeper, and RefFinder. The combinations of SAND and TUB or TIP41 and TUB were most stably expressed in salt-treated roots or leaves. The combinations of GAPDH with TIP41 or TUB were stable in roots and leaves under drought stress. TIP41 and PEPKR1 exhibited stable expression in cold-treated roots, and the combination of F-box, TIP41 and TUB was also stable in cold-treated leaves. CACS and TUB were the two most stable reference genes in heat-stressed roots. TIP41 combined with TUB and ACT was stably expressed in heat-stressed leaves. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) assays of the target gene FaWRKY1 using the identified most stable reference genes confirmed the reliability of selected reference genes. The selection of suitable reference genes in tall fescue will allow for more accurate identification of stress-tolerance genes and molecular mechanisms conferring stress tolerance in this stress-tolerant species. PMID:25786207

  17. Identification and validation of reference genes for quantification of target gene expression with quantitative real-time PCR for tall fescue under four abiotic stresses.

    PubMed

    Yang, Zhimin; Chen, Yu; Hu, Baoyun; Tan, Zhiqun; Huang, Bingru

    2015-01-01

    Tall fescue (Festuca arundinacea Schreb.) is widely utilized as a major forage and turfgrass species in the temperate regions of the world and is a valuable plant material for studying molecular mechanisms of grass stress tolerance due to its superior drought and heat tolerance among cool-season species. Selection of suitable reference genes for quantification of target gene expression is important for the discovery of molecular mechanisms underlying improved growth traits and stress tolerance. The stability of nine potential reference genes (ACT, TUB, EF1a, GAPDH, SAND, CACS, F-box, PEPKR1 and TIP41) was evaluated using four programs, GeNorm, NormFinder, BestKeeper, and RefFinder. The combinations of SAND and TUB or TIP41 and TUB were most stably expressed in salt-treated roots or leaves. The combinations of GAPDH with TIP41 or TUB were stable in roots and leaves under drought stress. TIP41 and PEPKR1 exhibited stable expression in cold-treated roots, and the combination of F-box, TIP41 and TUB was also stable in cold-treated leaves. CACS and TUB were the two most stable reference genes in heat-stressed roots. TIP41 combined with TUB and ACT was stably expressed in heat-stressed leaves. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) assays of the target gene FaWRKY1 using the identified most stable reference genes confirmed the reliability of selected reference genes. The selection of suitable reference genes in tall fescue will allow for more accurate identification of stress-tolerance genes and molecular mechanisms conferring stress tolerance in this stress-tolerant species.

  18. The Arabidopsis ETHYLENE RESPONSE FACTOR1 Regulates Abiotic Stress-Responsive Gene Expression by Binding to Different cis-Acting Elements in Response to Different Stress Signals1[W][OA

    PubMed Central

    Cheng, Mei-Chun; Liao, Po-Ming; Kuo, Wei-Wen; Lin, Tsan-Piao

    2013-01-01

    ETHYLENE RESPONSE FACTOR1 (ERF1) is an upstream component in both jasmonate (JA) and ethylene (ET) signaling and is involved in pathogen resistance. Accumulating evidence suggests that ERF1 might be related to the salt stress response through ethylene signaling. However, the specific role of ERF1 in abiotic stress and the molecular mechanism underlying the signaling cross talk still need to be elucidated. Here, we report that ERF1 was highly induced by high salinity and drought stress in Arabidopsis (Arabidopsis thaliana). The salt stress induction required both JA and ET signaling but was inhibited by abscisic acid. ERF1-overexpressing lines (35S:ERF1) were more tolerant to drought and salt stress. They also displayed constitutively smaller stomatal aperture and less transpirational water loss. Surprisingly, 35S:ERF1 also showed enhanced heat tolerance and up-regulation of heat tolerance genes compared with the wild type. Several suites of genes activated by JA, drought, salt, and heat were found in microarray analysis of 35S:ERF1. Chromatin immunoprecipitation assays found that ERF1 up-regulates specific suites of genes in response to different abiotic stresses by stress-specific binding to GCC or DRE/CRT. In response to biotic stress, ERF1 bound to GCC boxes but not DRE elements; conversely, under abiotic stress, we observed specific binding of ERF1 to DRE elements. Furthermore, ERF1 bound preferentially to only one among several GCC box or DRE/CRT elements in the promoter region of its target genes. ERF1 plays a positive role in salt, drought, and heat stress tolerance by stress-specific gene regulation, which integrates JA, ET, and abscisic acid signals. PMID:23719892

  19. Characterization of Rice Homeobox Genes, OsHOX22 and OsHOX24, and Over-expression of OsHOX24 in Transgenic Arabidopsis Suggest Their Role in Abiotic Stress Response

    PubMed Central

    Bhattacharjee, Annapurna; Khurana, Jitendra P.; Jain, Mukesh

    2016-01-01

    Homeobox transcription factors are well known regulators of plant growth and development. In this study, we carried out functional analysis of two candidate stress-responsive HD-ZIP I class homeobox genes from rice, OsHOX22, and OsHOX24. These genes were highly up-regulated under various abiotic stress conditions at different stages of rice development, including seedling, mature and reproductive stages. The transcript levels of these genes were enhanced significantly in the presence of plant hormones, including abscisic acid (ABA), auxin, salicylic acid, and gibberellic acid. The recombinant full-length and truncated homeobox proteins were found to be localized in the nucleus. Electrophoretic mobility shift assay established the binding of these homeobox proteins with specific DNA sequences, AH1 (CAAT(A/T)ATTG) and AH2 (CAAT(C/G)ATTG). Transactivation assays in yeast revealed the transcriptional activation potential of full-length OsHOX22 and OsHOX24 proteins. Homo- and hetero-dimerization capabilities of these proteins have also been demonstrated. Further, we identified putative novel interacting proteins of OsHOX22 and OsHOX24 via yeast-two hybrid analysis. Over-expression of OsHOX24 imparted higher sensitivity to stress hormone, ABA, and abiotic stresses in the transgenic Arabidopsis plants as revealed by various physiological and phenotypic assays. Microarray analysis revealed differential expression of several stress-responsive genes in transgenic lines as compared to wild-type. Many of these genes were found to be involved in transcriptional regulation and various metabolic pathways. Altogether, our results suggest the possible role of OsHOX22/OsHOX24 homeobox proteins as negative regulators in abiotic stress responses. PMID:27242831

  20. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants.

    PubMed

    Hao, Yu-Jun; Wei, Wei; Song, Qing-Xin; Chen, Hao-Wei; Zhang, Yu-Qin; Wang, Fang; Zou, Hong-Feng; Lei, Gang; Tian, Ai-Guo; Zhang, Wan-Ke; Ma, Biao; Zhang, Jin-Song; Chen, Shou-Yi

    2011-10-01

    NAC transcription factors play important roles in plant growth, development and stress responses. Previously, we identified multiple NAC genes in soybean (Glycine max). Here, we identify the roles of two genes, GmNAC11 and GmNAC20, in stress responses and other processes. The two genes were differentially induced by multiple abiotic stresses and plant hormones, and their transcripts were abundant in roots and cotyledons. Both genes encoded proteins that localized to the nucleus and bound to the core DNA sequence CGT[G/A]. In the protoplast assay system, GmNAC11 acts as a transcriptional activator, whereas GmNAC20 functions as a mild repressor; however, the C-terminal end of GmANC20 has transcriptional activation activity. Over-expression of GmNAC20 enhances salt and freezing tolerance in transgenic Arabidopsis plants; however, GmNAC11 over-expression only improves salt tolerance. Over-expression of GmNAC20 also promotes lateral root formation. GmNAC20 may regulate stress tolerance through activation of the DREB/CBF-COR pathway, and may control lateral root development by altering auxin signaling-related genes. GmNAC11 probably regulates DREB1A and other stress-related genes. The roles of the two GmNAC genes in stress tolerance were further analyzed in soybean transgenic hairy roots. These results provide a basis for genetic manipulation to improve the agronomic traits of important crops.

  1. Identification and characterization of fructose 1,6-bisphosphate aldolase genes in Arabidopsis reveal a gene family with diverse responses to abiotic stresses.

    PubMed

    Lu, Wei; Tang, Xiaoli; Huo, Yanqing; Xu, Rui; Qi, Shengdong; Huang, Jinguang; Zheng, Chengchao; Wu, Chang-ai

    2012-07-15

    Fructose 1,6-biphosphate aldolase (FBA) is a key enzyme in plants, which is involved not only in glycolysis and gluconeogenesis in the cytoplasm, but also in the Calvin cycle in plastids. Research on FBAs in various organisms has been reported, but there is none on FBAs in Arabidopsis at the molecular level. In the current study, eight FBA family genes (AtFBA1-8) were identified and analyzed in Arabidopsis thaliana. These genes have a highly conserved aldolase-type TIM barrel domain and a C-terminal peptide, but variable N-terminal peptides. Based on the phylogenetic analysis of FBA protein sequences from Arabidopsis and other plant species, AtFBA family was classified into two subfamilies, including three members (AtFBA1-3) with high similarities to FBAs occurring at plastid, and five (AtFBA4-8) with high similarities to FBAs localized in the cytoplasm. By confocal microscopy analysis with GFP fusion protein, AtFBA3 and AtFBA4 as well as AtFBA6 were observed to be localized in the plastid and cytoplasm, respectively. At least two duplicated gene pairs of AtFBA1 and AtFBA2, as well as AtFBA4 and AtFBA8 were found. Transcript level analysis of AtFBA genes in various tissues revealed the unique and overlapping expression patterns of plastid and cytosol AtFBA genes, suggesting that these genes may function at different stages of plant growth and development. Interestingly, AtFBA1, AtFBA2, AtFBA5 and AtFBA7 showed undetectable expression in roots. The expression patterns of AtFBA genes under different stress conditions suggested that all the members showed different expression patterns in response to stresses, including ABA, NaCl, Cd, abnormal temperature and drought, and, except for AtFBA3, most of the AtFBA genes were significantly responsive to drought stress in roots. Moreover, AtFBA1, AtFBA2, AtFBA5, AtFBA7 and AtFBA8 were induced by at least one of three sugars (sucrose, glucose and fructose) after 24h of treatment. Further functional analyses indicated important

  2. Abiotic stress-induced oscillations in steady-state transcript levels of Group 3 LEA protein genes in the moss, Physcomitrella patens.

    PubMed

    Shinde, Suhas; Shinde, Rupali; Downey, Frances; Ng, Carl K-Y

    2013-01-01

    The moss, Physcomitrella patens is a non-seed land plant belonging to early diverging lineages of land plants following colonization of land in the Ordovician period in Earth's history. Evidence suggests that mosses can be highly tolerant of abiotic stress. We showed previously that dehydration stress and abscisic acid treatments induced oscillations in steady-state levels of LEA (Late Embryogenesis Abundant) protein transcripts, and that removal of ABA resulted in rapid attenuation of oscillatory increases in transcript levels. Here, we show that other abiotic stresses like salt and osmotic stresses also induced oscillations in steady-state transcript levels and that the amplitudes of the oscillatory increases in steady-state transcript levels are reflective of the severity of the abiotic stress treatment. Together, our results suggest that oscillatory increases in transcript levels in response to abiotic stresses may be a general phenomenon in P. patens and that temporally dynamic increases in steady-state transcript levels may be important for adaptation to life in constantly fluctuating environmental conditions. PMID:23221763

  3. Abiotic stress-induced oscillations in steady-state transcript levels of Group 3 LEA protein genes in the moss, Physcomitrella patens.

    PubMed

    Shinde, Suhas; Shinde, Rupali; Downey, Frances; Ng, Carl K-Y

    2013-01-01

    The moss, Physcomitrella patens is a non-seed land plant belonging to early diverging lineages of land plants following colonization of land in the Ordovician period in Earth's history. Evidence suggests that mosses can be highly tolerant of abiotic stress. We showed previously that dehydration stress and abscisic acid treatments induced oscillations in steady-state levels of LEA (Late Embryogenesis Abundant) protein transcripts, and that removal of ABA resulted in rapid attenuation of oscillatory increases in transcript levels. Here, we show that other abiotic stresses like salt and osmotic stresses also induced oscillations in steady-state transcript levels and that the amplitudes of the oscillatory increases in steady-state transcript levels are reflective of the severity of the abiotic stress treatment. Together, our results suggest that oscillatory increases in transcript levels in response to abiotic stresses may be a general phenomenon in P. patens and that temporally dynamic increases in steady-state transcript levels may be important for adaptation to life in constantly fluctuating environmental conditions.

  4. Expression of dehydrin gene from Arctic Cerastium arcticum increases abiotic stress tolerance and enhances the fermentation capacity of a genetically engineered Saccharomyces cerevisiae laboratory strain.

    PubMed

    Kim, Il-Sup; Kim, Hyun-Young; Kim, Young-Saeng; Choi, Han-Gu; Kang, Sung-Ho; Yoon, Ho-Sung

    2013-10-01

    We investigated Arctic plants to determine if they have a specific mechanism enabling them to adapt to extreme environments because they are subject to such conditions throughout their life cycles. Among the cell defense systems of the Arctic mouse-ear chickweed Cerastium arcticum, we identified a stress-responsive dehydrin gene CaDHN that belongs to the SK5 subclass and contains conserved regions with one S segment at the N-terminus and five K segments from the N-terminus to the C-terminus. To investigate the molecular properties of CaDHN, the yeast Saccharomyces was transformed with CaDHN. CaDHN-expressing transgenic yeast (TG) cells recovered more rapidly from challenge with exogenous stimuli, including oxidants (hydrogen peroxide, menadione, and tert-butyl hydroperoxide), high salinity, freezing and thawing, and metal (Zn(2+)), than wild-type (WT) cells. TG cells were sensitive to copper, cobalt, and sodium dodecyl sulfate. In addition, the cell survival of TG cells was higher than that of WT cells when cells at the mid-log and stationary stages were exposed to increased ethanol concentrations. There was a significant difference in cultures that have an ethanol content >16 %. During glucose-based batch fermentation at generally used (30 °C) and low (18 °C) temperatures, TG cells produced a higher alcohol concentration through improved cell survival. Specifically, the final alcohol concentrations were 13.3 and 13.2 % in TG cells during fermentation at 30 and 18 °C, respectively, whereas they were 10.2 and 9.4 %, respectively, in WT cells under the same fermentation conditions. An in vitro assay revealed that purified CaDHN acted as a reactive oxygen species scavenger by neutralizing H2O2 and a chaperone by preventing high temperature-mediated catalase inactivation. Taken together, our results show that CaDHN expression in transgenic yeast confers tolerance to various abiotic stresses by improving redox homeostasis and enhances fermentation capacity

  5. Expression of dehydrin gene from Arctic Cerastium arcticum increases abiotic stress tolerance and enhances the fermentation capacity of a genetically engineered Saccharomyces cerevisiae laboratory strain.

    PubMed

    Kim, Il-Sup; Kim, Hyun-Young; Kim, Young-Saeng; Choi, Han-Gu; Kang, Sung-Ho; Yoon, Ho-Sung

    2013-10-01

    We investigated Arctic plants to determine if they have a specific mechanism enabling them to adapt to extreme environments because they are subject to such conditions throughout their life cycles. Among the cell defense systems of the Arctic mouse-ear chickweed Cerastium arcticum, we identified a stress-responsive dehydrin gene CaDHN that belongs to the SK5 subclass and contains conserved regions with one S segment at the N-terminus and five K segments from the N-terminus to the C-terminus. To investigate the molecular properties of CaDHN, the yeast Saccharomyces was transformed with CaDHN. CaDHN-expressing transgenic yeast (TG) cells recovered more rapidly from challenge with exogenous stimuli, including oxidants (hydrogen peroxide, menadione, and tert-butyl hydroperoxide), high salinity, freezing and thawing, and metal (Zn(2+)), than wild-type (WT) cells. TG cells were sensitive to copper, cobalt, and sodium dodecyl sulfate. In addition, the cell survival of TG cells was higher than that of WT cells when cells at the mid-log and stationary stages were exposed to increased ethanol concentrations. There was a significant difference in cultures that have an ethanol content >16 %. During glucose-based batch fermentation at generally used (30 °C) and low (18 °C) temperatures, TG cells produced a higher alcohol concentration through improved cell survival. Specifically, the final alcohol concentrations were 13.3 and 13.2 % in TG cells during fermentation at 30 and 18 °C, respectively, whereas they were 10.2 and 9.4 %, respectively, in WT cells under the same fermentation conditions. An in vitro assay revealed that purified CaDHN acted as a reactive oxygen species scavenger by neutralizing H2O2 and a chaperone by preventing high temperature-mediated catalase inactivation. Taken together, our results show that CaDHN expression in transgenic yeast confers tolerance to various abiotic stresses by improving redox homeostasis and enhances fermentation capacity

  6. Glycinebetaine and abiotic stress tolerance in plants

    PubMed Central

    Giri, Jitender

    2011-01-01

    The accumulation of osmolytes like glycinebetaine (GB) in cell is known to protect organisms against abiotic stresses via osmoregulation or osmoprotection. Transgenic plants engineered to produce GB accumulate very low concentration of GB, which might not be sufficient for osmoregulation. Therefore, other roles of GB like cellular macromolecule protection and ROS detoxification have been suggested as mechanisms responsible for abiotic stress tolerance in transgenic plants. In addition, GB influences expression of several endogenous genes in transgenic plants. The new insights gained about the mechanism of stress tolerance in GB accumulating transgenic plants are discussed. PMID:22057338

  7. A Phytophthora sojae cytoplasmic effector mediates disease resistance and abiotic stress tolerance in Nicotiana benthamiana.

    PubMed

    Zhang, Meixiang; Ahmed Rajput, Nasir; Shen, Danyu; Sun, Peng; Zeng, Wentao; Liu, Tingli; Juma Mafurah, Joseph; Dou, Daolong

    2015-06-03

    Each oomycete pathogen encodes a large number of effectors. Some effectors can be used in crop disease resistance breeding, such as to accelerate R gene cloning and utilisation. Since cytoplasmic effectors may cause acute physiological changes in host cells at very low concentrations, we assume that some of these effectors can serve as functional genes for transgenic plants. Here, we generated transgenic Nicotiana benthamiana plants that express a Phytophthora sojae CRN (crinkling and necrosis) effector, PsCRN115. We showed that its expression did not significantly affect the growth and development of N. benthamiana, but significantly improved disease resistance and tolerance to salt and drought stresses. Furthermore, we found that expression of heat-shock-protein and cytochrome-P450 encoding genes were unregulated in PsCRN115-transgenic N. benthamiana based on digital gene expression profiling analyses, suggesting the increased plant defence may be achieved by upregulation of these stress-related genes in transgenic plants. Thus, PsCRN115 may be used to improve plant tolerance to biotic and abiotic stresses.

  8. Abiotic origin of biopolymers

    NASA Technical Reports Server (NTRS)

    Oro, J.; Stephen-Sherwood, E.

    1976-01-01

    A variety of methods have been investigated in different laboratories for the polymerization of amino acids and nucleotides under abiotic conditions. They include (1) thermal polymerization; (2) direct polymerization of certain amino acid nitriles, amides, or esters; (3) polymerization using polyphosphate esters; (4) polymerization under aqueous or drying conditions at moderate temperatures using a variety of simple catalysts or condensing agents like cyanamide, dicyandiamide, or imidazole; and (5) polymerization under similar mild conditions but employing activated monomers or abiotically synthesized high-energy compounds such as adenosine 5'-triphosphate (ATP). The role and significance of these methods for the synthesis of oligopeptides and oligonucleotides under possible primitive-earth conditions is evaluated. It is concluded that the more recent approach involving chemical processes similar to those used by contemporary living organisms appears to offer a reasonable solution to the prebiotic synthesis of these biopolymers.

  9. Improved abiotic stress tolerance of bermudagrass by exogenous small molecules.

    PubMed

    Chan, Zhulong; Shi, Haitao

    2015-01-01

    As a widely used warm-season turfgrass in landscapes and golf courses, bermudagrass encounters multiple abiotic stresses during the growth and development. Physiology analysis indicated that abiotic stresses induced the accumulation of ROS and decline of photosynthesis, resulting in increased cell damage and inhibited growth. Proteomic and metabolomic approaches showed that antioxidant enzymes and osmoprotectant contents (sugar, sucrose, dehydrin, proline) were extensively changed under abiotic stress conditions. Exogenous application of small molecules, such as ABA, NO, CaCl2, H2S, polyamine and melatonin, could effectively alleviate damages caused by multiple abiotic stresses, including drought, salt, heat and cold. Based on high through-put RNA seq analysis, genes involved in ROS, transcription factors, hormones, and carbohydrate metabolisms were largely enriched. The data indicated that small molecules induced the accumulation of osmoprotectants and antioxidants, kept cell membrane integrity, increased photosynthesis and kept ion homeostasis, which protected bermudagrass from damages caused by abiotic stresses. PMID:25757363

  10. Characterization of a common wheat (Triticum aestivum L.) TaSnRK2.7 gene involved in abiotic stress responses

    PubMed Central

    Zhang, Hongying; Mao, Xinguo; Jing, Ruilian; Chang, Xiaoping; Xie, Huimin

    2011-01-01

    Sucrose non-fermenting-1-related protein kinase 2 (SnRK2) plays a key role in the plant stress signalling transduction pathway via phosphorylation. Here, a SnRK2 member of common wheat, TaSnRK2.7, was cloned and characterized. Southern blot analysis suggested that the common wheat genome contains three copies of TaSnRK2.7. Subcellular localization showed the presence of TaSnRK2.7 in the cell membrane, cytoplasm, and nucleus. Expression patterns revealed that TaSnRK2.7 is expressed strongly in roots, and responds to polyethylene glycol, NaCl, and cold stress, but not to abscisic acid (ABA) application, suggesting that TaSnRK2.7 might participate in non-ABA-dependent signal transduction pathways. TaSnRK2.7 was transferred to Arabidopsis under the control of the CaMV-35S promoter. Function analysis showed that TaSnRK2.7 is involved in carbohydrate metabolism, decreasing osmotic potential, enhancing photosystem II activity, and promoting root growth. Its overexpression results in enhanced tolerance to multi-abiotic stress. Therefore, TaSnRK2.7 is a multifunctional regulatory factor in plants, and has the potential to be utilized in transgenic breeding to improve abiotic stress tolerance in crop plants. PMID:21030389

  11. Identification and characterization of the GhHsp20 gene family in Gossypium hirsutum.

    PubMed

    Ma, Wei; Zhao, Ting; Li, Jie; Liu, Bingliang; Fang, Lei; Hu, Yan; Zhang, Tianzhen

    2016-01-01

    In higher plants, Heat Shock Protein 20 (Hsp20) plays crucial roles in growth, development and responses to abiotic stresses. In this study, 94 GhHsp20 genes were identified in G. hirsutum, and these genes were phylogenetically clustered into 14 subfamilies. Out of these, 73 paralogous gene pairs remained in conserved positions on segmental duplicated blocks and only 14 genes clustered into seven tandem duplication event regions. Transcriptome analysis showed that 82 GhHsp20 genes were expressed in at least one tested tissues, indicating that the GhHsp20 genes were involved in physiological and developmental processes of cotton. Further, expression profiles under abiotic stress exhibited that two-thirds of the GhHsp20 genes were responsive to heat stress, while 15 genes were induced by multiple stresses. In addition, qRT-PCR confirmed that 16 GhHsp20 genes were hot-induced, and eight genes were up-regulated under multiple abiotic stresses and stress-related phytohormone treatments. Taken together, our results presented here would be helpful in laying the foundation for understanding the complex mechanisms of GhHsp20 mediated developmental processes and abiotic stress signaling transduction pathways in cotton. PMID:27580529

  12. Identification and characterization of the GhHsp20 gene family in Gossypium hirsutum

    PubMed Central

    Ma, Wei; Zhao, Ting; Li, Jie; Liu, Bingliang; Fang, Lei; Hu, Yan; Zhang, Tianzhen

    2016-01-01

    In higher plants, Heat Shock Protein 20 (Hsp20) plays crucial roles in growth, development and responses to abiotic stresses. In this study, 94 GhHsp20 genes were identified in G. hirsutum, and these genes were phylogenetically clustered into 14 subfamilies. Out of these, 73 paralogous gene pairs remained in conserved positions on segmental duplicated blocks and only 14 genes clustered into seven tandem duplication event regions. Transcriptome analysis showed that 82 GhHsp20 genes were expressed in at least one tested tissues, indicating that the GhHsp20 genes were involved in physiological and developmental processes of cotton. Further, expression profiles under abiotic stress exhibited that two-thirds of the GhHsp20 genes were responsive to heat stress, while 15 genes were induced by multiple stresses. In addition, qRT-PCR confirmed that 16 GhHsp20 genes were hot-induced, and eight genes were up-regulated under multiple abiotic stresses and stress-related phytohormone treatments. Taken together, our results presented here would be helpful in laying the foundation for understanding the complex mechanisms of GhHsp20 mediated developmental processes and abiotic stress signaling transduction pathways in cotton. PMID:27580529

  13. Circadian regulation of abiotic stress tolerance in plants.

    PubMed

    Grundy, Jack; Stoker, Claire; Carré, Isabelle A

    2015-01-01

    Extremes of temperatures, drought and salinity cause widespread crop losses throughout the world and impose severe limitations on the amount of land that can be used for agricultural purposes. Hence, there is an urgent need to develop crops that perform better under such abiotic stress conditions. Here, we discuss intriguing, recent evidence that circadian clock contributes to plants' ability to tolerate different types of environmental stress, and to acclimate to them. The clock controls expression of a large fraction of abiotic stress-responsive genes, as well as biosynthesis and signaling downstream of stress response hormones. Conversely, abiotic stress results in altered expression and differential splicing of the clock genes, leading to altered oscillations of downstream stress-response pathways. We propose a range of mechanisms by which this intimate coupling between the circadian clock and environmental stress-response pathways may contribute to plant growth and survival under abiotic stress.

  14. Circadian regulation of abiotic stress tolerance in plants

    PubMed Central

    Grundy, Jack; Stoker, Claire; Carré, Isabelle A.

    2015-01-01

    Extremes of temperatures, drought and salinity cause widespread crop losses throughout the world and impose severe limitations on the amount of land that can be used for agricultural purposes. Hence, there is an urgent need to develop crops that perform better under such abiotic stress conditions. Here, we discuss intriguing, recent evidence that circadian clock contributes to plants’ ability to tolerate different types of environmental stress, and to acclimate to them. The clock controls expression of a large fraction of abiotic stress-responsive genes, as well as biosynthesis and signaling downstream of stress response hormones. Conversely, abiotic stress results in altered expression and differential splicing of the clock genes, leading to altered oscillations of downstream stress-response pathways. We propose a range of mechanisms by which this intimate coupling between the circadian clock and environmental stress-response pathways may contribute to plant growth and survival under abiotic stress. PMID:26379680

  15. Allantoin, a stress-related purine metabolite, can activate jasmonate signaling in a MYC2-regulated and abscisic acid-dependent manner

    PubMed Central

    Takagi, Hiroshi; Ishiga, Yasuhiro; Watanabe, Shunsuke; Konishi, Tomokazu; Egusa, Mayumi; Akiyoshi, Nobuhiro; Matsuura, Takakazu; Mori, Izumi C.; Hirayama, Takashi; Kaminaka, Hironori; Shimada, Hiroshi; Sakamoto, Atsushi

    2016-01-01

    Allantoin is a metabolic intermediate of purine catabolism that often accumulates in stressed plants. Recently, we used Arabidopsis knockout mutants (aln) of ALLANTOINASE to show that this purine metabolite activates abscisic acid (ABA) production, thereby stimulating stress-related gene expression and enhancing seedling tolerance to abiotic stress. A detailed re-examination of the microarray data of an aln mutant (aln-1) confirmed the increased expression of ABA-related genes and also revealed altered expression of genes involved in jasmonic acid (JA) responses, probably under the control of MYC2, a master switch in the JA signaling pathway. Consistent with the transcriptome profiles, the aln-1 mutant displayed increased JA levels and enhanced responses to mechanical wounding and exogenous JA. Moreover, aln mutants demonstrated modestly increased susceptibility to Pseudomonas syringae and Pectobacterium carotovorum, probably reflecting the antagonistic action of MYC2 on the defense against these bacterial phytopathogens. Exogenously administered allantoin elicited the expression of JA-responsive genes, including MYC2, in wild-type plants, supporting the idea that allantoin might be responsible for the observed JA-related phenotypes of aln mutants. However, mutants deficient in bioactive JA (jar1-1), insensitive to JA (myc2-3), or deficient in ABA (aba2-1 and bglu18) suppressed the effect of exogenous allantoin. The suppression was further confirmed in aln-1 jar1-1 and aln-1 bglu18 double mutants. These results indicate that allantoin can activate the MYC2-regulated JA signaling pathway through ABA production. Overall, this study suggests a possible connection of purine catabolism with stress hormone homeostasis and signaling, and highlights the potential importance of allantoin in these interactions. PMID:26931169

  16. A cold-induced myo-inositol transporter-like gene confers tolerance to multiple abiotic stresses in transgenic tobacco plants.

    PubMed

    Sambe, Mame Abdou Nahr; He, Xueying; Tu, Qinghua; Guo, Zhenfei

    2015-03-01

    A full length cDNA encoding a myo-inositol transporter-like protein, named as MfINT-like, was cloned from Medicago sativa subsp. falcata (herein falcata), a species with greater cold tolerance than alfalfa (M. sativa subsp. sativa). MfINT-like is located on plasma membranes. MfINT-like transcript was induced 2-4 h after exogenous myo-inositol treatment, 24-96 h with cold, and 96 h by salinity. Given that myo-inositol accumulates higher in falcata after 24 h of cold treatment, myo-inositol is proposed to be involved in cold-induced expression of MfINT-like. Higher levels of myo-inositol was observed in leaves of transgenic tobacco plants overexpressing MfINT-like than the wild-type but not in the roots of plants grown on myo-inositol containing medium, suggesting that transgenic plants had higher myo-inositol transport activity than the wild-type. Transgenic plants survived better to freezing temperature, and had lower ion leakage and higher maximal photochemical efficiency of photosystem II (Fv /Fm ) after chilling treatment. In addition, greater plant fresh weight was observed in transgenic plants as compared with the wild-type when plants were grown under drought or salinity stress. The results suggest that MfINT-like mediated transport of myo-inositol is associated with plant tolerance to abiotic stresses.

  17. Interactions between Arabidopsis DNA repair genes UVH6, DDB1A, and DDB2 during abiotic stress tolerance and floral development.

    PubMed

    Ly, Valentina; Hatherell, Avril; Kim, Esther; Chan, Ainsley; Belmonte, Mark F; Schroeder, Dana F

    2013-12-01

    Plants must protect themselves from a spectrum of abiotic stresses. For example, the sun is a source of heat, intense light, and DNA-damaging ultraviolet (UV) rays. Damaged DNA binding protein 1A (DDB1A), DDB2, and UV hypersensitive 6 (UVH6)/XPD are all involved in the repair of UV-damaged DNA - DDB1A and DDB2 in the initial damage recognition stage, while the UVH6/XPD helicase unwinds the damaged strand. We find that, as predicted, Arabidopsis ddb1a and ddb2 mutants do not affect uvh6/xpd UV tolerance. In addition, uvh6 is heat sensitive, and ddb1a and ddb2 weakly enhance this trait. The uvh6 ddb1a and uvh6 ddb2 double mutants also exhibit sensitivity to oxidative stress, suggesting a role for DDB1 complexes in heat and oxidative stress tolerance. Finally, we describe a new uvh6 phenotype, the low penetrance production of flowers with five petals and five sepals. ddb1a and ddb2 suppress this phenotype in uvh6 mutants. Interestingly, heat treatment also induces five-petalled flowers in the ddb1a and ddb2 single mutants. Thus UVH6, DDB1A, and DDB2 all contribute to UV tolerance, heat tolerance and floral patterning.

  18. Roles of melatonin in abiotic stress resistance in plants.

    PubMed

    Zhang, Na; Sun, Qianqian; Zhang, Haijun; Cao, Yunyun; Weeda, Sarah; Ren, Shuxin; Guo, Yang-Dong

    2015-02-01

    In recent years melatonin has emerged as a research highlight in plant studies. Melatonin has different functions in many aspects of plant growth and development. The most frequently mentioned functions of melatonin are related to abiotic stresses such as drought, radiation, extreme temperature, and chemical stresses. This review mainly focuses on the regulatory effects of melatonin when plants face harsh environmental conditions. Evidence indicates that environmental stress can increase the level of endogenous melatonin in plants. Overexpression of the melatonin biosynthetic genes elevates melatonin levels in transgenic plants. The transgenic plants show enhanced tolerance to abiotic stresses. Exogenously applied melatonin can also improve the ability of plants to tolerate abiotic stresses. The mechanisms by which melatonin alleviates abiotic stresses are discussed.

  19. A cotton Raf-like MAP3K gene, GhMAP3K40, mediates reduced tolerance to biotic and abiotic stress in Nicotiana benthamiana by negatively regulating growth and development.

    PubMed

    Chen, Xiaobo; Wang, Ji; Zhu, Ming; Jia, Haihong; Liu, Dongdong; Hao, Lili; Guo, Xingqi

    2015-11-01

    Mitogen-activated protein kinase (MAPK) cascades mediate various responses in plants. As the top component, MAP3Ks deserve more attention; however, little is known about the role of MAP3Ks, especially in cotton, a worldwide economic crop. In this study, a gene encoding a putative Raf-like MAP3K, GhMAP3K40, was isolated. GhMAP3K40 expression was induced by stress and multiple signal molecules. The plants overexpressing GhMAP3K40 had an enhanced tolerance to drought and salt stress at the germination stage. However, at the seedling stage, the transgenic plants suffered more severe damage after drought, exposure to pathogens and oxidative stress. The defence-related genes and the antioxidant system were activated in transgenic palnts, suggesting that GhMAP3K40 positively regulate the defence response. The transgenic plants were less able to prevent pathogenic invasion, which was due to defects in the cell structure of the leaves. The root system of the control plants were stronger compared with the transgenic plants. These results indicated a negative role of GhMAP3K40 in growth and development and GhMAP3K40 possibly caused the defects by down-regulating the lignin biosynthesis. Overall, these results suggest that GhMAP3K40 may positively regulate defence response but cause reduced tolerance to biotic and abiotic stress by negatively regulating growth and development. PMID:26475184

  20. A cotton Raf-like MAP3K gene, GhMAP3K40, mediates reduced tolerance to biotic and abiotic stress in Nicotiana benthamiana by negatively regulating growth and development.

    PubMed

    Chen, Xiaobo; Wang, Ji; Zhu, Ming; Jia, Haihong; Liu, Dongdong; Hao, Lili; Guo, Xingqi

    2015-11-01

    Mitogen-activated protein kinase (MAPK) cascades mediate various responses in plants. As the top component, MAP3Ks deserve more attention; however, little is known about the role of MAP3Ks, especially in cotton, a worldwide economic crop. In this study, a gene encoding a putative Raf-like MAP3K, GhMAP3K40, was isolated. GhMAP3K40 expression was induced by stress and multiple signal molecules. The plants overexpressing GhMAP3K40 had an enhanced tolerance to drought and salt stress at the germination stage. However, at the seedling stage, the transgenic plants suffered more severe damage after drought, exposure to pathogens and oxidative stress. The defence-related genes and the antioxidant system were activated in transgenic palnts, suggesting that GhMAP3K40 positively regulate the defence response. The transgenic plants were less able to prevent pathogenic invasion, which was due to defects in the cell structure of the leaves. The root system of the control plants were stronger compared with the transgenic plants. These results indicated a negative role of GhMAP3K40 in growth and development and GhMAP3K40 possibly caused the defects by down-regulating the lignin biosynthesis. Overall, these results suggest that GhMAP3K40 may positively regulate defence response but cause reduced tolerance to biotic and abiotic stress by negatively regulating growth and development.

  1. Genome-Wide Identification and Expression Analysis of MRLK Family Genes Associated with Strawberry (Fragaria vesca) Fruit Ripening and Abiotic Stress Responses

    PubMed Central

    Zhang, Qing; Jia, Meiru; Xing, Yu; Qin, Ling; Li, Bingbing; Jia, Wensuo

    2016-01-01

    Malectin-like domain-containing receptor-like kinases (MRLK) constitute a large and divergent family of proteins in plants; however, little is known about the role of MRLKs in fruit growth and development. In this study, we characterized MRLK family genes in diploid strawberry, Fragaria vesca. Based on an analysis of malectin-like domain and a search in the strawberry genome and NCBI database, we identified 62 FvMRLKs in the strawberry genome, and classified these genes into six subfamilies with distinct malectin domains in the extracellular regions of the encoded proteins. Gene expression analysis indicated that more than 80% of the FvMRLKs were expressed in various tissues, with higher levels in roots than in other organs. Thirty-three FvMRLKs were found to be expressed in fruits during the early stages of development, and over 60% of these exhibited dramatic decreases in expression during fruit growth and development. Moreover, the expression of some FvMRLKs was sensitive to both environmental and internal cues that play critical roles in regulating strawberry fruit development and ripening. Collectively, this study provides valuable insight into the FvMRLKs gene family and its role in regulating strawberry fruit development and ripening. PMID:27685863

  2. Small RNAs in Plant Responses to Abiotic Stresses: Regulatory Roles and Study Methods

    PubMed Central

    Ku, Yee-Shan; Wong, Johanna Wing-Hang; Mui, Zeta; Liu, Xuan; Hui, Jerome Ho-Lam; Chan, Ting-Fung; Lam, Hon-Ming

    2015-01-01

    To survive under abiotic stresses in the environment, plants trigger a reprogramming of gene expression, by transcriptional regulation or translational regulation, to turn on protective mechanisms. The current focus of research on how plants cope with abiotic stresses has transitioned from transcriptomic analyses to small RNA investigations. In this review, we have summarized and evaluated the current methodologies used in the identification and validation of small RNAs and their targets, in the context of plant responses to abiotic stresses. PMID:26501263

  3. Isolation, in silico characterization, localization and expression analysis of abiotic stress-responsive rice G-protein β subunit (RGB1)

    PubMed Central

    Yadav, Dinesh K; Shukla, Devesh; Tuteja, Narendra

    2014-01-01

    Heterotrimeric G-proteins constitute the classical signaling paradigm along with their cognate G-protein coupled receptors (GPCRs) and appropriate downstream effectors. G-protein complex is composed of highly conserved Gα, Gβ, and Gγ subunits. In the present study, we have characterized the cis-regulatory elements of the promoter, signature motifs, transcript profile in response to abiotic stresses, and sub-cellular localization of G-protein β subunit RGB1(I) from Indica rice. The RGB1(I) promoter sequence has various stress-related cis-regulatory elements suggesting its role in abiotic stress signaling. Presence of six WD-40 repeat signature motifs in RGB1(I) suggest its role in exchange of GDP by GTP in Gα subunit and receptor recognition. Presence of multiple N-myristoylation consensus sites in RGB1(I) protein sequence, which is necessary for membrane localization of protein, confirms the association of RGB1(I) in plasma membrane. Extrinsic association of RGB1(I) with plasma membrane seems essential for its role in regulation of signaling pathways and adaptation to high salt stress. We report the sub-cellular localization of RGB1(I) in plasma membrane, cytosol and nucleus. The localization of RGB1(I) in nucleus supports its possible interaction with transcription factors regulating the expression of salt stress responsive genes. The RGB1(I) transcript was upregulated under KCl, cold, dehydration and micronutrient (Mn2+ and Zn2+) stress. However, transcript variation under elevated temperature, ABA, NaCl, and toxic heavy metals (viz. arsenite, arsenate, cadmium and lead) was not encouraging. These evidences indicate an active and significant role of RGB1(I) in the regulation of abiotic stresses in rice and propound its possible exploitation in the development of abiotic stress tolerance in crops. PMID:24739238

  4. Abiotic self-replication.

    PubMed

    Meyer, Adam J; Ellefson, Jared W; Ellington, Andrew D

    2012-12-18

    functions (including the replication of nucleic acids) to more competent protein enzymes would complete the journey from an abiotic world to the molecular biology we see today. PMID:22891822

  5. Abiotic self-replication.

    PubMed

    Meyer, Adam J; Ellefson, Jared W; Ellington, Andrew D

    2012-12-18

    functions (including the replication of nucleic acids) to more competent protein enzymes would complete the journey from an abiotic world to the molecular biology we see today.

  6. The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants.

    PubMed

    Gao, Shi-Qing; Chen, Ming; Xu, Zhao-Shi; Zhao, Chang-Ping; Li, Liancheng; Xu, Hui-jun; Tang, Yi-miao; Zhao, Xin; Ma, You-Zhi

    2011-04-01

    Abscisic acid (ABA)-responsive element binding proteins (AREBs) are basic domain/leucine zipper transcription factors that bind to the ABA-responsive element (ABRE) in the promoter regions of ABA-inducible genes in plants. A novel bZIP transcription factor gene, GmbZIP1, encoding 438 amino acids with a conserved bZIP domain composed of 60 amino acids was isolated from salt-tolerant soybean cv. Tiefeng 8. Southern blotting showed that only one copy was present in the soybean genome. Phylogenetic analyses showed that GmbZIP1 belonged to the AREB subfamily of the bZIP family and was most closely related to AtABF2 and OsTRAB1. The expression of GmbZIP1 was highly induced by ABA, drought, high salt and low temperature; and GmbZIP1 was expressed in soybean roots, stems and leaves under different stress conditions. GmbZIP1 was localized inside the nuclei of transformed onion epidermal cells. Overexpression of GmbZIP1 enhanced the responses of transgenic plants to ABA and triggered stomatal closure under stresses, potentially leading to improved tolerances to several abiotic stresses such as high salt, low temperature and drought in transgenic plants. Furthermore, overexpression of GmbZIP1 affected the expression of some ABA or stress-related genes involved in regulating stomatal closure in Arabidopsis under ABA, drought and high salt stress conditions. A few AREB elements were detected in the promoter region of those ABA or stress-related genes, suggesting that GmbZIP1 regulates the ABA response or stomatal closure mediated by those downstream genes in transgenic Arabidopsis. Moreover, GmbZIP1 was used to improve the drought tolerance trait of Chinese wheat varieties BS93. Functional analysis showed that overexpression of GmbZIP1 enhanced the drought tolerance of transgenic wheat, and transcripts of GmbZIP1 were detected in transgenic wheat using RT-PCR. In addition, GmbZIP1 overexpression did not result in growth retardation in all transgenic plants, suggesting that Gmb

  7. Characterization of the algC Gene Expression Pattern in the Multidrug Resistant Acinetobacter baumannii AIIMS 7 and Correlation with Biofilm Development on Abiotic Surface

    PubMed Central

    Sahu, Praveen K.; Iyer, Pavithra S.; Barage, Sagar H.; Sonawane, Kailas D.; Chopade, Balu A.

    2014-01-01

    Relative quantification of algC gene expression was evaluated in the multidrug resistant strain Acinetobacter baumannii AIIMS 7 biofilm (3 to 96 h, on polystyrene surface) compared to the planktonic counterparts. Comparison revealed differential algC expression pattern with maximum 81.59-fold increase in biofilm cells versus 3.24-fold in planktonic cells (P < 0.05). Expression levels strongly correlated with specific biofilm stages (scale of 3 to 96 h), coinciding maximum at initial surface attachment stage (9 h) and biofilm maturation stage (48 h). Cloning, heterologous expression, and bioinformatics analyses indicated algC gene product as the bifunctional enzyme phosphomannomutase/phosphoglucomutase (PMM/PGM) of ∼53 kDa size, which augmented biofilms significantly in algC clones compared to controls (lacking algC gene), further localized by scanning electron microscopy. Moreover, molecular dynamics analysis on the three-dimensional structure of PMM/PGM (simulated up to 10 ns) revealed enzyme structure as stable and similar to that in P. aeruginosa (synthesis of alginate and lipopolysaccharide core) and involved in constitution of biofilm EPS (extracellular polymeric substances). Our observation on differential expression pattern of algC having strong correlation with important biofilm stages, scanning electron-microscopic evidence of biofilm augmentation taken together with predictive enzyme functions via molecular dynamic (MD) simulation, proposes a new basis of A. baumannii AIIMS 7 biofilm development on inanimate surfaces. PMID:25544957

  8. Molecular approaches to improve rice abiotic stress tolerance.

    PubMed

    Mizoi, Junya; Yamaguchi-Shinozaki, Kazuko

    2013-01-01

    Abiotic stress is a major factor limiting productivity of rice crops in large areas of the world. Because plants cannot avoid abiotic stress by moving, they have acquired various mechanisms for stress tolerance in the course of their evolution. Enhancing or introducing such mechanisms in rice is one effective way to develop stress-tolerant cultivars. Based on physiological studies on stress responses, recent progress in plant molecular biology has enabled discovery of many genes involved in stress tolerance. These genes include regulatory genes, which regulate stress response (e.g., transcription factors and protein kinases), and functional genes, which protect the cell (e.g., enzymes for generating protective metabolites and proteins). Both kinds of genes are used to increase stress tolerance in rice. In addition, several quantitative trait loci (QTLs) associated with higher stress tolerance have been cloned, contributing to the discovery of significantly important genes for stress tolerance.

  9. Identification and prediction of abiotic stress responsive transcription factors involved in abiotic stress signaling in soybean.

    PubMed

    Tran, Lam-Son Phan; Mochida, Keiichi

    2010-03-01

    Abiotic stresses such as extreme temperature, drought, high salinity, cold and waterlogging often result in significant losses to the yields of economically important crops such as soybean (Glycine max L.). Transcription factors (TFs) which bind to DNA through specific cis-regulatory sequences either activate or repress gene transcription have been reported to act as control switches in stress signaling. Recent completion of the soybean genomic sequence has open wide opportunities for large-scale identification and annotations of regulatory TFs in soybean for functional studies. Within the soybean genome, we identified 5,035 TF models which grouped into 61 families. Detailed annotations of soybean TF genes can be accessed at SoybeanTFDB (soybeantfdb.psc.riken.jp). Moreover, we have reported a new idea of high throughput prediction and selection of abiotic stress responsive TFs based on the existence of known stress responsive cis-element(s) located in the promoter regions of respective TFs and GO annotations. We, therefore, have provided a basic platform for the genome-wide analysis of regulatory mechanisms underlying abiotic stress responses and a reliable tool for prediction and selection of stress responsive TFs for further functional studies and genetic engineering.

  10. Multiple abiotic stress responsive rice cyclophilin

    PubMed Central

    Trivedi, Dipesh Kumar; Ansari, Mohammad Wahid; Tuteja, Narendra

    2013-01-01

    Cyclophilins (CYP), a member of immunophillin group of proteins, are more often conserved in all genera including plants. Here, we report on the identification of a new cyclophilin gene OsCYP-25 (LOC_Os09 g39780) from rice which found to be upregulated in response to various abiotic stresses viz., salinity, cold, heat and drought. It has an ORF of 540 bp, encoding a protein of 179 amino acids, consisting of PPIase domain, which is highly conserved. The OsCYP-25 promoter analysis revealed that different cis-regulatory elements (e.g., MYBCORE, MYC, CBFHV, GT1GMSCAM4, DRECRTCOREAT, CCAATBOX1, WRKY71OS and WBOXATNPR1) are involved to mediate OsCYP-25 response under stress. We have also predicted interacting partners by STRING software. In interactome, protein partners includes WD domain containing protein, the 60S ribosome subunit biogenesis protein, the ribosomal protein L10, the DEAD-box helicase, the EIF-2α, YT521-B protein, the 60S ribosomal protein and the PPR repeat domain containing protein. The in silico analysis showed that OsCYP-25 interacts with different proteins involved in cell growth, differentiation, ribosome biogenesis, RNA metabolism, RNA editing, gene expression, signal transduction or stress response. These findings suggest that OsCYP-25 might perform an important function in mediating wide range of cellular response under multiple abiotic stresses. PMID:24265852

  11. The role of transcriptional coactivator ADA2b in Arabidopsis abiotic stress responses

    PubMed Central

    Kaldis, Athanasios; Nikoloudi, Adriana; Tsementzi, Despoina

    2011-01-01

    Plant growth and crop production can be greatly affected by common environmental stresses such as drought, high salinity and low temperatures. Gene expression is affected by several abiotic stresses. Stress-inducible genes are regulated by transcription factors and epigenetic mechanisms such as histone modifications. In this mini-review, we have explored the role of transcriptional adaptor ADA2b in Arabidopsis responses to abiotic stress. ADA2b is required for the expression of genes involved in abiotic stress either by controlling H3 and H4 acetylation in the case of salt stress or affecting nucleosome occupancy in low temperatures response. PMID:21897124

  12. The role of transcriptional coactivator ADA2b in Arabidopsis abiotic stress responses.

    PubMed

    Vlachonasios, Konstantinos E; Kaldis, Athanasios; Nikoloudi, Adriana; Tsementzi, Despoina

    2011-10-01

    Plant growth and crop production can be greatly affected by common environmental stresses such as drought, high salinity and low temperatures. Gene expression is affected by several abiotic stresses. Stress-inducible genes are regulated by transcription factors and epigenetic mechanisms such as histone modifications. In this Mini-Review, we have explored the role of transcriptional adaptor ADA2b in Arabidopsis responses to abiotic stress. ADA2b is required for the expression of genes involved in abiotic stress either by controlling H3 and H4 acetylation in the case of salt stress or affecting nucleosome occupancy in low temperatures response.

  13. Cognitive impairment in patients with stress-related exhaustion.

    PubMed

    Jonsdottir, I H; Nordlund, A; Ellbin, S; Ljung, T; Glise, K; Währborg, P; Wallin, A

    2013-03-01

    Patients who seek medical care for stress-related mental health problems frequently report cognitive impairments as the most pronounced symptom. The purpose of the present study was to compare cognitive function in patients with stress-related exhaustion with that in healthy controls, using a comprehensive battery of cognitive tests. We also explored whether neuropsychological findings were related to severity of illness measured using the Shirom-Melamed burnout questionnaire and hospital anxiety and depression scale. Thirty-three patients (15 males) and 37 healthy controls (11 males), mean age 46 years [standard deviation (SD) 3.9] and 47 years (SD 4.3), respectively, were included in the final analysis. Five cognitive domains were assessed: (1) speed, attention and working memory, (2) learning and episodic memory, (3) executive functions, (4) visuospatial functions and (5) language. The most pronounced difference between patients and controls was seen on executive function, when tested with a multidimensional test, including aspects of speed, control and working memory. The patients also performed poorer on Digit span, measuring attention span and working memory as well as on learning and episodic memory, when measured as delayed recall and the difference between immediate and delayed recall. Delayed recall was the only test that was significantly related to severity of burnout symptoms among the patients. This could reflect poor cognitive sustainability in the patients with the highest burnout scores, as this particular test was the last one performed during the test session. This study clearly shows that cognitive impairment should be considered when evaluating and treating patients who seek medical care for stress-related exhaustion.

  14. Oxylipins and plant abiotic stress resistance.

    PubMed

    Savchenko, T V; Zastrijnaja, O M; Klimov, V V

    2014-04-01

    Oxylipins are signaling molecules formed enzymatically or spontaneously from unsaturated fatty acids in all aerobic organisms. Oxylipins regulate growth, development, and responses to environmental stimuli of organisms. The oxylipin biosynthesis pathway in plants includes a few parallel branches named after first enzyme of the corresponding branch as allene oxide synthase, hydroperoxide lyase, divinyl ether synthase, peroxygenase, epoxy alcohol synthase, and others in which various biologically active metabolites are produced. Oxylipins can be formed non-enzymatically as a result of oxygenation of fatty acids by free radicals and reactive oxygen species. Spontaneously formed oxylipins are called phytoprostanes. The role of oxylipins in biotic stress responses has been described in many published works. The role of oxylipins in plant adaptation to abiotic stress conditions is less studied; there is also obvious lack of available data compilation and analysis in this area of research. In this work we analyze data on oxylipins functions in plant adaptation to abiotic stress conditions, such as wounding, suboptimal light and temperature, dehydration and osmotic stress, and effects of ozone and heavy metals. Modern research articles elucidating the molecular mechanisms of oxylipins action by the methods of biochemistry, molecular biology, and genetics are reviewed here. Data on the role of oxylipins in stress signal transduction, stress-inducible gene expression regulation, and interaction of these metabolites with other signal transduction pathways in cells are described. In this review the general oxylipin-mediated mechanisms that help plants to adjust to a broad spectrum of stress factors are considered, followed by analysis of more specific responses regulated by oxylipins only under certain stress conditions. New approaches to improvement of plant resistance to abiotic stresses based on the induction of oxylipin-mediated processes are discussed.

  15. Polyamines and abiotic stress in plants: a complex relationship1

    PubMed Central

    Minocha, Rakesh; Majumdar, Rajtilak; Minocha, Subhash C.

    2014-01-01

    The physiological relationship between abiotic stress in plants and polyamines was reported more than 40 years ago. Ever since there has been a debate as to whether increased polyamines protect plants against abiotic stress (e.g., due to their ability to deal with oxidative radicals) or cause damage to them (perhaps due to hydrogen peroxide produced by their catabolism). The observation that cellular polyamines are typically elevated in plants under both short-term as well as long-term abiotic stress conditions is consistent with the possibility of their dual effects, i.e., being protectors from as well as perpetrators of stress damage to the cells. The observed increase in tolerance of plants to abiotic stress when their cellular contents are elevated by either exogenous treatment with polyamines or through genetic engineering with genes encoding polyamine biosynthetic enzymes is indicative of a protective role for them. However, through their catabolic production of hydrogen peroxide and acrolein, both strong oxidizers, they can potentially be the cause of cellular harm during stress. In fact, somewhat enigmatic but strong positive relationship between abiotic stress and foliar polyamines has been proposed as a potential biochemical marker of persistent environmental stress in forest trees in which phenotypic symptoms of stress are not yet visible. Such markers may help forewarn forest managers to undertake amelioration strategies before the appearance of visual symptoms of stress and damage at which stage it is often too late for implementing strategies for stress remediation and reversal of damage. This review provides a comprehensive and critical evaluation of the published literature on interactions between abiotic stress and polyamines in plants, and examines the experimental strategies used to understand the functional significance of this relationship with the aim of improving plant productivity, especially under conditions of abiotic stress. PMID:24847338

  16. Emotionally based strategic communications and societal stress-related disorders.

    PubMed

    Cosić, Krešimir; Srbljinović, Armano; Popović, Siniša; Wiederhold, Brenda K; Wiederhold, Mark D

    2012-11-01

    This article discusses the potential of emotionally based strategic communications (EBSCs) as an extension of traditional strategic communications in prevention of societal stress-related disorders. The concept of EBSCs takes into consideration dominant emotional maps of a specific sociocultural environment in which communications take place. EBSCs may have a significant potential to transform mainly negative-dominant emotional maps of targeted social groups into more positive ones, as a precondition of building a more resilient and stress-resistant social environment. A better understanding of dominant emotional maps and their conditioning may facilitate restoration of more positive emotional maps by touching the right emotions of significant parts of the targeted social groups in the right way. Dominant emotional maps of societies afflicted by economic downturns, natural disasters, conflicts etc., are typically characterized by negatively valenced emotions. Persistent negatively valenced group-based dominant emotions may be used as a quantitative statistical measure of potential stress-related disorders and post-traumatic stress disorders among respected group members. The toxic power of extreme negative emotions, attitudes, actions, and behavior might be reduced by EBSCs as a communication method for transforming negative-dominant emotional maps into more positive ones. EBSCs are conceptualized as the positively valenced stimulation of a negatively emotionally affected group by an appropriate communication strategy to minimize dominant-negative emotional maps and behavior of the targeted group.

  17. Recent Advances in Polyamine Metabolism and Abiotic Stress Tolerance

    PubMed Central

    Rangan, Parimalan; Subramani, Rajkumar; Singh, Amit Kumar

    2014-01-01

    Global warming is an alarming problem in agriculture and its effect on yield loss has been estimated to be five per cent for every degree centigrade rise in temperature. Plants exhibit multiple mechanisms like optimizing signaling pathway, involvement of secondary messengers, production of biomolecules specifically in response to stress, modulation of various metabolic networks in accordance with stress, and so forth, in order to overcome abiotic stress factors. Many structural genes and networks of pathway were identified and reported in plant systems for abiotic stress tolerance. One such crucial metabolic pathway that is involved in normal physiological function and also gets modulated during stress to impart tolerance is polyamine metabolic pathway. Besides the role of structural genes, it is also important to know the mechanism by which these structural genes are regulated during stress. Present review highlights polyamine biosynthesis, catabolism, and its role in abiotic stress tolerance with special reference to plant systems. Additionally, a system based approach is discussed as a potential strategy to dissect the existing variation in crop species in unraveling the interacting regulatory components/genetic determinants related to PAs mediated abiotic stress tolerance. PMID:25136565

  18. Recent advances in polyamine metabolism and abiotic stress tolerance.

    PubMed

    Rangan, Parimalan; Subramani, Rajkumar; Kumar, Rajesh; Singh, Amit Kumar; Singh, Rakesh

    2014-01-01

    Global warming is an alarming problem in agriculture and its effect on yield loss has been estimated to be five per cent for every degree centigrade rise in temperature. Plants exhibit multiple mechanisms like optimizing signaling pathway, involvement of secondary messengers, production of biomolecules specifically in response to stress, modulation of various metabolic networks in accordance with stress, and so forth, in order to overcome abiotic stress factors. Many structural genes and networks of pathway were identified and reported in plant systems for abiotic stress tolerance. One such crucial metabolic pathway that is involved in normal physiological function and also gets modulated during stress to impart tolerance is polyamine metabolic pathway. Besides the role of structural genes, it is also important to know the mechanism by which these structural genes are regulated during stress. Present review highlights polyamine biosynthesis, catabolism, and its role in abiotic stress tolerance with special reference to plant systems. Additionally, a system based approach is discussed as a potential strategy to dissect the existing variation in crop species in unraveling the interacting regulatory components/genetic determinants related to PAs mediated abiotic stress tolerance.

  19. Recent advances in polyamine metabolism and abiotic stress tolerance.

    PubMed

    Rangan, Parimalan; Subramani, Rajkumar; Kumar, Rajesh; Singh, Amit Kumar; Singh, Rakesh

    2014-01-01

    Global warming is an alarming problem in agriculture and its effect on yield loss has been estimated to be five per cent for every degree centigrade rise in temperature. Plants exhibit multiple mechanisms like optimizing signaling pathway, involvement of secondary messengers, production of biomolecules specifically in response to stress, modulation of various metabolic networks in accordance with stress, and so forth, in order to overcome abiotic stress factors. Many structural genes and networks of pathway were identified and reported in plant systems for abiotic stress tolerance. One such crucial metabolic pathway that is involved in normal physiological function and also gets modulated during stress to impart tolerance is polyamine metabolic pathway. Besides the role of structural genes, it is also important to know the mechanism by which these structural genes are regulated during stress. Present review highlights polyamine biosynthesis, catabolism, and its role in abiotic stress tolerance with special reference to plant systems. Additionally, a system based approach is discussed as a potential strategy to dissect the existing variation in crop species in unraveling the interacting regulatory components/genetic determinants related to PAs mediated abiotic stress tolerance. PMID:25136565

  20. Transcriptome Profiling of the Green Alga Spirogyra pratensis (Charophyta) Suggests an Ancestral Role for Ethylene in Cell Wall Metabolism, Photosynthesis, and Abiotic Stress Responses1[OPEN

    PubMed Central

    2016-01-01

    It is well known that ethylene regulates a diverse set of developmental and stress-related processes in angiosperms, yet its roles in early-diverging embryophytes and algae are poorly understood. Recently, it was shown that ethylene functions as a hormone in the charophyte green alga Spirogyra pratensis. Since land plants evolved from charophytes, this implies conservation of ethylene as a hormone in green plants for at least 450 million years. However, the physiological role of ethylene in charophyte algae has remained unknown. To gain insight into ethylene responses in Spirogyra, we used mRNA sequencing to measure changes in gene expression over time in Spirogyra filaments in response to an ethylene treatment. Our analyses show that at the transcriptional level, ethylene predominantly regulates three processes in Spirogyra: (1) modification of the cell wall matrix by expansins and xyloglucan endotransglucosylases/hydrolases, (2) down-regulation of chlorophyll biosynthesis and photosynthesis, and (3) activation of abiotic stress responses. We confirmed that the photosynthetic capacity and chlorophyll content were reduced by an ethylene treatment and that several abiotic stress conditions could stimulate cell elongation in an ethylene-dependent manner. We also found that the Spirogyra transcriptome harbors only 10 ethylene-responsive transcription factor (ERF) homologs, several of which are regulated by ethylene. These results provide an initial understanding of the hormonal responses induced by ethylene in Spirogyra and help to reconstruct the role of ethylene in ancestral charophytes prior to the origin of land plants. PMID:27489312

  1. Transcriptome Profiling of the Green Alga Spirogyra pratensis (Charophyta) Suggests an Ancestral Role for Ethylene in Cell Wall Metabolism, Photosynthesis, and Abiotic Stress Responses.

    PubMed

    Van de Poel, Bram; Cooper, Endymion D; Van Der Straeten, Dominique; Chang, Caren; Delwiche, Charles F

    2016-09-01

    It is well known that ethylene regulates a diverse set of developmental and stress-related processes in angiosperms, yet its roles in early-diverging embryophytes and algae are poorly understood. Recently, it was shown that ethylene functions as a hormone in the charophyte green alga Spirogyra pratensis Since land plants evolved from charophytes, this implies conservation of ethylene as a hormone in green plants for at least 450 million years. However, the physiological role of ethylene in charophyte algae has remained unknown. To gain insight into ethylene responses in Spirogyra, we used mRNA sequencing to measure changes in gene expression over time in Spirogyra filaments in response to an ethylene treatment. Our analyses show that at the transcriptional level, ethylene predominantly regulates three processes in Spirogyra: (1) modification of the cell wall matrix by expansins and xyloglucan endotransglucosylases/hydrolases, (2) down-regulation of chlorophyll biosynthesis and photosynthesis, and (3) activation of abiotic stress responses. We confirmed that the photosynthetic capacity and chlorophyll content were reduced by an ethylene treatment and that several abiotic stress conditions could stimulate cell elongation in an ethylene-dependent manner. We also found that the Spirogyra transcriptome harbors only 10 ethylene-responsive transcription factor (ERF) homologs, several of which are regulated by ethylene. These results provide an initial understanding of the hormonal responses induced by ethylene in Spirogyra and help to reconstruct the role of ethylene in ancestral charophytes prior to the origin of land plants.

  2. Transcriptome Profiling of the Green Alga Spirogyra pratensis (Charophyta) Suggests an Ancestral Role for Ethylene in Cell Wall Metabolism, Photosynthesis, and Abiotic Stress Responses.

    PubMed

    Van de Poel, Bram; Cooper, Endymion D; Van Der Straeten, Dominique; Chang, Caren; Delwiche, Charles F

    2016-09-01

    It is well known that ethylene regulates a diverse set of developmental and stress-related processes in angiosperms, yet its roles in early-diverging embryophytes and algae are poorly understood. Recently, it was shown that ethylene functions as a hormone in the charophyte green alga Spirogyra pratensis Since land plants evolved from charophytes, this implies conservation of ethylene as a hormone in green plants for at least 450 million years. However, the physiological role of ethylene in charophyte algae has remained unknown. To gain insight into ethylene responses in Spirogyra, we used mRNA sequencing to measure changes in gene expression over time in Spirogyra filaments in response to an ethylene treatment. Our analyses show that at the transcriptional level, ethylene predominantly regulates three processes in Spirogyra: (1) modification of the cell wall matrix by expansins and xyloglucan endotransglucosylases/hydrolases, (2) down-regulation of chlorophyll biosynthesis and photosynthesis, and (3) activation of abiotic stress responses. We confirmed that the photosynthetic capacity and chlorophyll content were reduced by an ethylene treatment and that several abiotic stress conditions could stimulate cell elongation in an ethylene-dependent manner. We also found that the Spirogyra transcriptome harbors only 10 ethylene-responsive transcription factor (ERF) homologs, several of which are regulated by ethylene. These results provide an initial understanding of the hormonal responses induced by ethylene in Spirogyra and help to reconstruct the role of ethylene in ancestral charophytes prior to the origin of land plants. PMID:27489312

  3. Breeding for abiotic stresses for sustainable agriculture.

    PubMed

    Witcombe, J R; Hollington, P A; Howarth, C J; Reader, S; Steele, K A

    2008-02-27

    Using cereal crops as examples, we review the breeding for tolerance to the abiotic stresses of low nitrogen, drought, salinity and aluminium toxicity. All are already important abiotic stress factors that cause large and widespread yield reductions. Drought will increase in importance with climate change, the area of irrigated land that is salinized continues to increase, and the cost of inorganic N is set to rise. There is good potential for directly breeding for adaptation to low N while retaining an ability to respond to high N conditions. Breeding for drought and salinity tolerance have proven to be difficult, and the complex mechanisms of tolerance are reviewed. Marker-assisted selection for component traits of drought in rice and pearl millet and salinity tolerance in wheat has produced some positive results and the pyramiding of stable quantitative trait locuses controlling component traits may provide a solution. New genomic technologies promise to make progress for breeding tolerance to these two stresses through a more fundamental understanding of underlying processes and identification of the genes responsible. In wheat, there is a great potential of breeding genetic resistance for salinity and aluminium tolerance through the contributions of wild relatives.

  4. Reverse Engineering: A Key Component of Systems Biology to Unravel Global Abiotic Stress Cross-Talk

    PubMed Central

    Friedel, Swetlana; Usadel, Björn; von Wirén, Nicolaus; Sreenivasulu, Nese

    2012-01-01

    Understanding the global abiotic stress response is an important stepping stone for the development of universal stress tolerance in plants in the era of climate change. Although co-occurrence of several stress factors (abiotic and biotic) in nature is found to be frequent, current attempts are poor to understand the complex physiological processes impacting plant growth under combinatory factors. In this review article, we discuss the recent advances of reverse engineering approaches that led to seminal discoveries of key candidate regulatory genes involved in cross-talk of abiotic stress responses and summarized the available tools of reverse engineering and its relevant application. Among the universally induced regulators involved in various abiotic stress responses, we highlight the importance of (i) abscisic acid (ABA) and jasmonic acid (JA) hormonal cross-talks and (ii) the central role of WRKY transcription factors (TF), potentially mediating both abiotic and biotic stress responses. Such interactome networks help not only to derive hypotheses but also play a vital role in identifying key regulatory targets and interconnected hormonal responses. To explore the full potential of gene network inference in the area of abiotic stress tolerance, we need to validate hypotheses by implementing time-dependent gene expression data from genetically engineered plants with modulated expression of target genes. We further propose to combine information on gene-by-gene interactions with data from physical interaction platforms such as protein–protein or TF-gene networks. PMID:23293646

  5. Sex Differences in Stress-Related Psychiatric Disorders: Neurobiological Perspectives

    PubMed Central

    Bangasser, Debra A.; Valentino, Rita J.

    2014-01-01

    Stress is associated with the onset and severity of several psychiatric disorders that occur more frequently in women than men, including posttraumatic stress disorder (PTSD) and depression. Patients with these disorders present with dysregulation of several stress response systems, including the neuroendocrine response to stress, corticolimbic responses to negatively valenced stimuli, and hyperarousal. Thus, sex differences within their underlying circuitry may explain sex biases in disease prevalence. This review describes clinical studies that identify sex differences within the activity of these circuits, as well as preclinical studies that demonstrate cellular and molecular sex differences in stress responses systems. These studies reveal sex differences from the molecular to the systems level that increase endocrine, emotional, and arousal responses to stress in females. Exploring these sex differences is critical because this research can reveal the neurobiological underpinnings of vulnerability to stress-related psychiatric disorders and guide the development of novel pharmacotherapies. PMID:24726661

  6. The Plant Heat Stress Transcription Factors (HSFs): Structure, Regulation, and Function in Response to Abiotic Stresses

    PubMed Central

    Guo, Meng; Liu, Jin-Hong; Ma, Xiao; Luo, De-Xu; Gong, Zhen-Hui; Lu, Ming-Hui

    2016-01-01

    Abiotic stresses such as high temperature, salinity, and drought adversely affect the survival, growth, and reproduction of plants. Plants respond to such unfavorable changes through developmental, physiological, and biochemical ways, and these responses require expression of stress-responsive genes, which are regulated by a network of transcription factors (TFs), including heat stress transcription factors (HSFs). HSFs play a crucial role in plants response to several abiotic stresses by regulating the expression of stress-responsive genes, such as heat shock proteins (Hsps). In this review, we describe the conserved structure of plant HSFs, the identification of HSF gene families from various plant species, their expression profiling under abiotic stress conditions, regulation at different levels and function in abiotic stresses. Despite plant HSFs share highly conserved structure, their remarkable diversification across plants reflects their numerous functions as well as their integration into the complex stress signaling and response networks, which can be employed in crop improvement strategies via biotechnological intervention. PMID:26904076

  7. The Plant Heat Stress Transcription Factors (HSFs): Structure, Regulation, and Function in Response to Abiotic Stresses.

    PubMed

    Guo, Meng; Liu, Jin-Hong; Ma, Xiao; Luo, De-Xu; Gong, Zhen-Hui; Lu, Ming-Hui

    2016-01-01

    Abiotic stresses such as high temperature, salinity, and drought adversely affect the survival, growth, and reproduction of plants. Plants respond to such unfavorable changes through developmental, physiological, and biochemical ways, and these responses require expression of stress-responsive genes, which are regulated by a network of transcription factors (TFs), including heat stress transcription factors (HSFs). HSFs play a crucial role in plants response to several abiotic stresses by regulating the expression of stress-responsive genes, such as heat shock proteins (Hsps). In this review, we describe the conserved structure of plant HSFs, the identification of HSF gene families from various plant species, their expression profiling under abiotic stress conditions, regulation at different levels and function in abiotic stresses. Despite plant HSFs share highly conserved structure, their remarkable diversification across plants reflects their numerous functions as well as their integration into the complex stress signaling and response networks, which can be employed in crop improvement strategies via biotechnological intervention.

  8. Computational gene expression profiling under salt stress reveals patterns of co-expression

    PubMed Central

    Sanchita; Sharma, Ashok

    2016-01-01

    Plants respond differently to environmental conditions. Among various abiotic stresses, salt stress is a condition where excess salt in soil causes inhibition of plant growth. To understand the response of plants to the stress conditions, identification of the responsible genes is required. Clustering is a data mining technique used to group the genes with similar expression. The genes of a cluster show similar expression and function. We applied clustering algorithms on gene expression data of Solanum tuberosum showing differential expression in Capsicum annuum under salt stress. The clusters, which were common in multiple algorithms were taken further for analysis. Principal component analysis (PCA) further validated the findings of other cluster algorithms by visualizing their clusters in three-dimensional space. Functional annotation results revealed that most of the genes were involved in stress related responses. Our findings suggest that these algorithms may be helpful in the prediction of the function of co-expressed genes. PMID:26981411

  9. Exploration for the salt stress tolerance genes from a salt-treated halophyte, Suaeda asparagoides.

    PubMed

    Ayarpadikannan, Selvam; Chung, Eunsook; Cho, Chang-Woo; So, Hyun-Ah; Kim, Soon-Ok; Jeon, Joo-Min; Kwak, Myoung-Hae; Lee, Seon-Woo; Lee, Jai-Heon

    2012-01-01

    Salinity stress severely affects plant growth and development causing crop loss worldwide. Suaeda asparagoides is a salt-marsh euhalophyte widely distributed in southwestern foreshore of Korea. To isolate salt tolerance genes from S. asparagoides, we constructed a cDNA library from leaf tissues of S. asparagoides that was treated with 200 mM NaCl. A total of 1,056 clones were randomly selected for EST sequencing, and 932 of them produced readable sequence. By sequence analysis, we identified 538 unigenes and registered each in National Center for Biotechnology Information. The 80 salt stress related genes were selected to study their differential expression. Reverse transcription-PCR and Northern blot analysis revealed that 23 genes were differentially expressed under the high salinity stress conditions in S. asparagoides. They are functionally diverse including transport, signal transduction, transcription factor, metabolism and stress associated protein, and unknown function. Among them dehydrin (SaDhn) and RNA binding protein (SaRBP1) were examined for their abiotic stress tolerance in yeast (Saccharomyces cerevisiae). Yeast overexpressing SaDhn and SaRBP1 showed enhanced tolerance to osmotic, freezing and heat shock stresses. This study provides the evidence that SaRBP1 and SaDhn from S. asparagoides exert abiotic stress tolerance in yeast. Information of salt stress related genes from S. asparagoides would contribute for the accumulating genetic resources to improve osmotic tolerance in plants. PMID:21874516

  10. Integrating omic approaches for abiotic stress tolerance in soybean

    PubMed Central

    Deshmukh, Rupesh; Sonah, Humira; Patil, Gunvant; Chen, Wei; Prince, Silvas; Mutava, Raymond; Vuong, Tri; Valliyodan, Babu; Nguyen, Henry T.

    2014-01-01

    Soybean production is greatly influenced by abiotic stresses imposed by environmental factors such as drought, water submergence, salt, and heavy metals. A thorough understanding of plant response to abiotic stress at the molecular level is a prerequisite for its effective management. The molecular mechanism of stress tolerance is complex and requires information at the omic level to understand it effectively. In this regard, enormous progress has been made in the omics field in the areas of genomics, transcriptomics, and proteomics. The emerging field of ionomics is also being employed for investigating abiotic stress tolerance in soybean. Omic approaches generate a huge amount of data, and adequate advancements in computational tools have been achieved for effective analysis. However, the integration of omic-scale information to address complex genetics and physiological questions is still a challenge. In this review, we have described advances in omic tools in the view of conventional and modern approaches being used to dissect abiotic stress tolerance in soybean. Emphasis was given to approaches such as quantitative trait loci (QTL) mapping, genome-wide association studies (GWAS), and genomic selection (GS). Comparative genomics and candidate gene approaches are also discussed considering identification of potential genomic loci, genes, and biochemical pathways involved in stress tolerance mechanism in soybean. This review also provides a comprehensive catalog of available online omic resources for soybean and its effective utilization. We have also addressed the significance of phenomics in the integrated approaches and recognized high-throughput multi-dimensional phenotyping as a major limiting factor for the improvement of abiotic stress tolerance in soybean. PMID:24917870

  11. The measurement of stress-related immune dysfunction in psychoneuroimmunology.

    PubMed

    Vedhara, K; Fox, J D; Wang, E C

    1999-05-01

    In recent years there has been a dramatic increase in research dedicated to the psycho-behavioural modulation of immune function, i.e. the field of Psychoneuroimmunology (PNI). This has led, necessarily, to the use of several in vitro and in vivo techniques in attempts to delineate the relationship between these two phenomena. However, since the field's inception, considerable uncertainty has existed over the significance of the immune outcomes detected and this has been compounded by the equivocal nature of some of the published data. A great deal of this uncertainty could, however, be overcome if a clearer understanding was achieved on the advantages and limitations conferred by the manifold immune assays described in the literature. This would, in turn, encourage their more appropriate use within PNI. Hence, in this review we describe the rationale behind, and offer an evaluation of, some of the more frequently used in vitro and in vivo immunological and virological techniques. We hope that a clear understanding of the rationale behind such assays and their inherent advantages and limitations will inform the discussion of the significance of stress-related immune impairment.

  12. Stress-Related Immune Markers in Depression: Implications for Treatment

    PubMed Central

    Hughes, Martina M.; Connor, Thomas J.

    2016-01-01

    Major depression is a serious psychiatric disorder; however, the precise biological basis of depression still remains elusive. A large body of evidence implicates a dysregulated endocrine and inflammatory response system in the pathogenesis of depression. Despite this, given the heterogeneity of depression, not all depressed patients exhibit dysregulation of the inflammatory and endocrine systems. Evidence suggests that inflammation is associated with depression in certain subgroups of patients and that those who have experienced stressful life events such as childhood trauma or bereavement may be at greater risk of developing depression. Consequently, prolonged exposure to stress is thought to be a key trigger for the onset of a depressive episode. This review assesses the relationship between stress and the immune system, with a particular interest in the mechanisms by which stress impacts immune function, and how altered immune functioning, in turn, may lead to a feed forward cascade of multiple systems dysregulation and the subsequent manifestation of depressive symptomology. The identification of stress-related immune markers and potential avenues for advances in therapeutic intervention is vital. Changes in specific biological markers may be used to characterize or differentiate depressive subtypes or specific symptoms and may predict treatment response, in turn facilitating a more effective, targeted, and fast-acting approach to treatment. PMID:26775294

  13. Identification of genes involved in the drought adaptation and recovery in Portulaca oleracea by differential display.

    PubMed

    D'Andrea, Rodrigo Matías; Triassi, Agustina; Casas, María Isabel; Andreo, Carlos Santiago; Lara, María Valeria

    2015-05-01

    Portulaca oleracea is one of the richest plant sources of ω-3 and ω-6 fatty acids and other compounds potentially valuable for nutrition. It is broadly established in arid, semiarid and well-watered fields, thus making it a promising candidate for research on abiotic stress resistance mechanisms. It is capable of withstanding severe drought and then of recovering upon rehydration. Here, the adaptation to drought and the posterior recovery was evaluated at transcriptomic level by differential display validated by qRT-PCR. Of the 2279 transcript-derived fragments amplified, 202 presented differential expression. Ninety of them were successfully isolated and sequenced. Selected genes were tested against different abiotic stresses in P. oleracea and the behavior of their orthologous genes in Arabidopsis thaliana was also explored to seek for conserved response mechanisms. In drought adapted and in recovered plants changes in expression of many protein metabolism-, lipid metabolism- and stress-related genes were observed. Many genes with unknown function were detected, which also respond to other abiotic stresses. Some of them are also involved in the seed desiccation/imbibition process and thus would be of great interest for further research. The potential use of candidate genes to engineer drought tolerance improvement and recovery is discussed.

  14. Wheat EST resources for functional genomics of abiotic stress

    PubMed Central

    Houde, Mario; Belcaid, Mahdi; Ouellet, François; Danyluk, Jean; Monroy, Antonio F; Dryanova, Ani; Gulick, Patrick; Bergeron, Anne; Laroche, André; Links, Matthew G; MacCarthy, Luke; Crosby, William L; Sarhan, Fathey

    2006-01-01

    Background Wheat is an excellent species to study freezing tolerance and other abiotic stresses. However, the sequence of the wheat genome has not been completely characterized due to its complexity and large size. To circumvent this obstacle and identify genes involved in cold acclimation and associated stresses, a large scale EST sequencing approach was undertaken by the Functional Genomics of Abiotic Stress (FGAS) project. Results We generated 73,521 quality-filtered ESTs from eleven cDNA libraries constructed from wheat plants exposed to various abiotic stresses and at different developmental stages. In addition, 196,041 ESTs for which tracefiles were available from the National Science Foundation wheat EST sequencing program and DuPont were also quality-filtered and used in the analysis. Clustering of the combined ESTs with d2_cluster and TGICL yielded a few large clusters containing several thousand ESTs that were refractory to routine clustering techniques. To resolve this problem, the sequence proximity and "bridges" were identified by an e-value distance graph to manually break clusters into smaller groups. Assembly of the resolved ESTs generated a 75,488 unique sequence set (31,580 contigs and 43,908 singletons/singlets). Digital expression analyses indicated that the FGAS dataset is enriched in stress-regulated genes compared to the other public datasets. Over 43% of the unique sequence set was annotated and classified into functional categories according to Gene Ontology. Conclusion We have annotated 29,556 different sequences, an almost 5-fold increase in annotated sequences compared to the available wheat public databases. Digital expression analysis combined with gene annotation helped in the identification of several pathways associated with abiotic stress. The genomic resources and knowledge developed by this project will contribute to a better understanding of the different mechanisms that govern stress tolerance in wheat and other cereals. PMID

  15. Stress-related function of bHLH109 in somatic embryo induction in Arabidopsis.

    PubMed

    Nowak, Katarzyna; Gaj, Małgorzata D

    2016-04-01

    The bHLH109 gene of the bHLH family was identified among the transcription factor encoding genes that were differentially expressed in an embryogenic culture of Arabidopsis. A strong activation of bHLH109 expression was found to be associated with somatic embryogenesis (SE) induction. Several pieces of evidence suggested the involvement of bHLH109 in SE, including the high stimulation of the gene expression in SE-induced explants, which contrasts to the drastically lower level of the gene transcripts in the non-embryogenic callus and in tissue that is induced towards shoot regeneration via organogenesis. Moreover, in contrast to the overexpression of bHLH109, which has been indicated to enhance SE induction in a culture, the bhlh109 knock-out mutation was found to impair the embryogenic potential of explants. In order to identify the genes interacting with the bHLH109, the candidate co-expressed genes were identified in a yeast one hybrid assay. The in vitro regulatory interactions that were identified were verified through mutant and expression analysis. The results suggest that in SE bHLH109 acts as an activator of ECP63, a member of the LEA (LATE EMBRYOGENESIS ABUNDANT) family. Among the potential regulators of bHLH109, three candidates (At5g61620, bZIP4 and bZIP43) were indicated to possibly control bHLH109. The functions of all of the genes that are assumed to interact with bHLH109 are annotated to stress responses. Collectively, the results of the study provide new evidence that cell responses to stress that is imposed under in vitro conditions underlies the promotion of SE. bHLH109 may play a central role in the stress-related mechanism of SE induction via an increased accumulation of the LEA protein (ECP63), which results in the enhanced tolerance of the cells to stress. PMID:26973252

  16. Genome-wide analysis and identification of stress-responsive genes of the NAM-ATAF1,2-CUC2 transcription factor family in apple.

    PubMed

    Su, Hongyan; Zhang, Shizhong; Yuan, Xiaowei; Chen, Changtian; Wang, Xiao-Fei; Hao, Yu-Jin

    2013-10-01

    NAC (NAM, ATAF1,2, and CUC2) proteins constitute one of the largest families of plant-specific transcription factors. To date, little is known about the NAC genes in the apple (Malus domestica). In this study, a total of 180 NAC genes were identified in the apple genome and were phylogenetically clustered into six groups (I-VI) with the NAC genes from Arabidopsis and rice. The predicted apple NAC genes were distributed across all of 17 chromosomes at various densities. Additionally, the gene structure and motif compositions of the apple NAC genes were analyzed. Moreover, the expression of 29 selected apple NAC genes was analyzed in different tissues and under different abiotic stress conditions. All of the selected genes, with the exception of four genes, were expressed in at least one of the tissues tested, which indicates that the NAC genes are involved in various aspects of the physiological and developmental processes of the apple. Encouragingly, 17 of the selected genes were found to respond to one or more of the abiotic stress treatments, and these 17 genes included not only the expected 7 genes that were clustered with the well-known stress-related marker genes in group IV but also 10 genes located in other subgroups, none of which contains members that have been reported to be stress-related. To the best of our knowledge, this report describes the first genome-wide analysis of the apple NAC gene family, and the results should provide valuable information for understanding the classification and putative functions of this family.

  17. Acupuncture and moxibustion for stress-related disorders

    PubMed Central

    2014-01-01

    Acupuncture and moxibustion, which medical doctors are licensed by the government of Japan to perform, can improve the psychological relationship between doctors and patients, especially when it is disturbed by a “game”, a dysfunctional interpersonal interaction that is repeated unintentionally. This advantage is due to the essential properties of acupuncture and moxibustion. Acupuncture and moxibustion are helpful in treating somatoform disorders, especially musculoskeletal symptoms. In Japan, a holistic acupuncture and moxibustion therapy called Sawada-style has been developed. This is based on fundamental meridian points that are considered to have effects on central, autonomic nervous, immune, metabolic, and endocrine systems to regulate the whole body balance. In addition, some of the fundamental points have effects on Qi, blood, and water patterns associated with major depression, generalized anxiety disorder, eating disorders, and somatoform disorders. The fixed protocol of Sawada-style would be suitable for large-scale, randomized, controlled studies in the future. Recent systematic reviews indicate that electroacupuncture would be a useful addition to antidepressant therapy for some symptoms accompanying fibromyalgia. Acupuncture and moxibustion are also recommended for irritable bowel syndrome, instead of Western drug therapy. Surprisingly, the dorsal prefrontal cerebral cortex, which is associated with a method of scalp acupuncture applied for gastrointestinal disorders, has been found to be activated in patients with irritable bowel syndrome. It is quite possible that regulation of this cortical area is related to the effect of scalp acupuncture. This acupuncture method can be effective not only for irritable bowel syndrome but also for other stress-related gastrointestinal disorders. PMID:24456818

  18. Stress-related development of obesity and cortisol in women.

    PubMed

    Vicennati, Valentina; Pasqui, Francesca; Cavazza, Carla; Pagotto, Uberto; Pasquali, Renato

    2009-09-01

    Chronic exposure to environmental stress may play a role in the development of obesity, through hyperactivation of the hypothalamic-pituitary-adrenocortical (HPA) axis. This study investigated the dynamics of weight gain and the activity of the HPA axis in women who developed weight gain after a stressful event. This is a case-control retrospective study. Two groups of age-matched premenopausal women were selected. One (n = 14) included women characterized by a rapid weight gain following a stressful event, defined as the "stress-related obesity " (SRO) group, and the other (n = 21) women with nonstress-related development of obesity, defined as the "nonstress-related obesity " (NSRO) group. Twenty-one healthy premenopausal women served as normal-weight controls. Baseline hormonal and metabolic parameters, and 24-h urinary free cortisol (UFC/24 h) excretion rate (as a measure of HPA-axis activity) were measured in all women. Anthropometry, diet, and physical activity were similar in both obese groups. Both obese groups showed similar metabolic and hormonal profiles, but the SRO group had UFC/24 h values (41.1 +/- 14.3 microg) significantly higher (P < 0.001) with respect to the NSRO (26.6 +/- 17.6 microg) or the normal-weight control groups (21.1 +/- 9.8 microg). Moreover, time (years) to achieve maximum Deltaweight gain (kg) and the Deltaweight gain/time ratio were significantly shorter (P < 0.001) and higher (P < 0.001) in the SRO group with respect to the NSRO group, respectively. In the SRO group, there was a tendency to a significant correlation between UFC/24 h and the Deltaweight gain/time ratio. These findings support the concept that SRO has distinct pathophysiological mechanisms, including hyperactivity of the HPA axis.

  19. Oxidative Stress-Related Transcription Factors in the Regulation of Secondary Metabolism

    PubMed Central

    Hong, Sung-Yong; Roze, Ludmila V.; Linz, John E.

    2013-01-01

    There is extensive and unequivocal evidence that secondary metabolism in filamentous fungi and plants is associated with oxidative stress. In support of this idea, transcription factors related to oxidative stress response in yeast, plants, and fungi have been shown to participate in controlling secondary metabolism. Aflatoxin biosynthesis, one model of secondary metabolism, has been demonstrated to be triggered and intensified by reactive oxygen species buildup. An oxidative stress-related bZIP transcription factor AtfB is a key player in coordinate expression of antioxidant genes and genes involved in aflatoxin biosynthesis. Recent findings from our laboratory provide strong support for a regulatory network comprised of at least four transcription factors that bind in a highly coordinated and timely manner to promoters of the target genes and regulate their expression. In this review, we will focus on transcription factors involved in co-regulation of aflatoxin biosynthesis with oxidative stress response in aspergilli, and we will discuss the relationship of known oxidative stress-associated transcription factors and secondary metabolism in other organisms. We will also talk about transcription factors that are involved in oxidative stress response, but have not yet been demonstrated to be affiliated with secondary metabolism. The data support the notion that secondary metabolism provides a secondary line of defense in cellular response to oxidative stress. PMID:23598564

  20. Relaxin-3 Receptor (RXFP3) Signalling Mediates Stress-Related Alcohol Preference in Mice

    PubMed Central

    Walker, Andrew W.; Smith, Craig M.; Chua, Berenice E.; Krstew, Elena V.; Zhang, Cary; Gundlach, Andrew L.; Lawrence, Andrew J.

    2015-01-01

    Stressful life events are causally linked with alcohol use disorders (AUDs), providing support for a hypothesis that alcohol consumption is aimed at stress reduction. We have previously shown that expression of relaxin-3 mRNA in rat brain correlates with alcohol intake and that central antagonism of relaxin-3 receptors (RXFP3) prevents stress-induced reinstatement of alcohol-seeking. Therefore the objectives of these studies were to investigate the impact of Rxfp3 gene deletion in C57BL/6J mice on baseline and stress-related alcohol consumption. Male wild-type (WT) and Rxfp3 knockout (KO) (C57/B6JRXFP3TM1/DGen) littermate mice were tested for baseline saccharin and alcohol consumption and preference over water in a continuous access two-bottle free-choice paradigm. Another cohort of mice was subjected to repeated restraint followed by swim stress to examine stress-related alcohol preference. Hepatic alcohol and aldehyde dehydrogenase activity was assessed in mice following chronic alcohol intake and in naive controls. WT and Rxfp3 KO mice had similar baseline saccharin and alcohol preference, and hepatic alcohol processing. However, Rxfp3 KO mice displayed a stress-induced reduction in alcohol preference that was not observed in WT littermates. Notably, this phenotype, once established, persisted for at least six weeks after cessation of stress exposure. These findings suggest that in mice, relaxin-3/RXFP3 signalling is involved in maintaining high alcohol preference during and after stress, but does not appear to strongly regulate the primary reinforcing effects of alcohol. PMID:25849482

  1. Relaxin-3 receptor (RXFP3) signalling mediates stress-related alcohol preference in mice.

    PubMed

    Walker, Andrew W; Smith, Craig M; Chua, Berenice E; Krstew, Elena V; Zhang, Cary; Gundlach, Andrew L; Lawrence, Andrew J

    2015-01-01

    Stressful life events are causally linked with alcohol use disorders (AUDs), providing support for a hypothesis that alcohol consumption is aimed at stress reduction. We have previously shown that expression of relaxin-3 mRNA in rat brain correlates with alcohol intake and that central antagonism of relaxin-3 receptors (RXFP3) prevents stress-induced reinstatement of alcohol-seeking. Therefore the objectives of these studies were to investigate the impact of Rxfp3 gene deletion in C57BL/6J mice on baseline and stress-related alcohol consumption. Male wild-type (WT) and Rxfp3 knockout (KO) (C57/B6JRXFP3TM1/DGen) littermate mice were tested for baseline saccharin and alcohol consumption and preference over water in a continuous access two-bottle free-choice paradigm. Another cohort of mice was subjected to repeated restraint followed by swim stress to examine stress-related alcohol preference. Hepatic alcohol and aldehyde dehydrogenase activity was assessed in mice following chronic alcohol intake and in naive controls. WT and Rxfp3 KO mice had similar baseline saccharin and alcohol preference, and hepatic alcohol processing. However, Rxfp3 KO mice displayed a stress-induced reduction in alcohol preference that was not observed in WT littermates. Notably, this phenotype, once established, persisted for at least six weeks after cessation of stress exposure. These findings suggest that in mice, relaxin-3/RXFP3 signalling is involved in maintaining high alcohol preference during and after stress, but does not appear to strongly regulate the primary reinforcing effects of alcohol.

  2. Polyamines in response to abiotic stress tolerance through transgenic approaches

    PubMed Central

    Pathak, Malabika Roy; Teixeira da Silva, Jaime A; Wani, Shabir H

    2014-01-01

    The distribution, growth, development and productivity of crop plants are greatly affected by various abiotic stresses. Worldwide, sustainable crop productivity is facing major challenges caused by abiotic stresses by reducing the potential yield in crop plants by as much as 70%. Plants can generally adapt to one or more environmental stresses to some extent. Physiological and molecular studies at transcriptional, translational, and transgenic plant levels have shown the pronounced involvement of naturally occurring plant polyamines (PAs), in controlling, conferring, and modulating abiotic stress tolerance in plants. PAs are small, low molecular weight, non-protein polycations at physiological pH, that are present in all living organisms, and that have strong binding capacity to negatively charged DNA, RNA, and different protein molecules. They play an important role in plant growth and development by controlling the cell cycle, acting as cell signaling molecules in modulating plant tolerance to a variety of abiotic stresses. The commonly known PAs, putrescine, spermidine, and spermine tend to accumulate together accompanied by an increase in the activities of their biosynthetic enzymes under a range of environmental stresses. PAs help plants to combat stresses either directly or by mediating a signal transduction pathway, as shown by molecular cloning and expression studies of PA biosynthesis-related genes, knowledge of the functions of PAs, as demonstrated by developmental studies, and through the analysis of transgenic plants carrying PA genes. This review highlights how PAs in higher plants act during environmental stress and how transgenic strategies have improved our understanding of the molecular mechanisms at play. PMID:24710064

  3. Polyamines and abiotic stress tolerance in plants.

    PubMed

    Gill, Sarvajeet Singh; Tuteja, Narendra

    2010-01-01

    Environmental stresses including climate change, especially global warming, are severely affecting plant growth and productivity worldwide. It has been estimated that two-thirds of the yield potential of major crops are routinely lost due to the unfavorable environmental factors. On the other hand, the world population is estimated to reach about 10 billion by 2050, which will witness serious food shortages. Therefore, crops with enhanced vigour and high tolerance to various environmental factors should be developed to feed the increasing world population. Maintaining crop yields under adverse environmental stresses is probably the major challenge facing modern agriculture where polyamines can play important role. Polyamines (PAs)(putrescine, spermidine and spermine) are group of phytohormone-like aliphatic amine natural compounds with aliphatic nitrogen structure and present in almost all living organisms including plants. Evidences showed that polyamines are involved in many physiological processes, such as cell growth and development and respond to stress tolerance to various environmental factors. In many cases the relationship of plant stress tolerance was noted with the production of conjugated and bound polyamines as well as stimulation of polyamine oxidation. Therefore, genetic manipulation of crop plants with genes encoding enzymes of polyamine biosynthetic pathways may provide better stress tolerance to crop plants. Furthermore, the exogenous application of PAs is also another option for increasing the stress tolerance potential in plants. Here, we have described the synthesis and role of various polyamines in abiotic stress tolerance in plants.

  4. Polyamines and abiotic stress tolerance in plants

    PubMed Central

    Gill, Sarvajeet Singh

    2010-01-01

    Environmental stresses including climate change, especially global warming, are severely affecting plant growth and productivity worldwide. It has been estimated that two-thirds of the yield potential of major crops are routinely lost due to the unfavorable environmental factors. On the other hand, the world population is estimated to reach about 10 billion by 2050, which will witness serious food shortages. Therefore, crops with enhanced vigour and high tolerance to various environmental factors should be developed to feed the increasing world population. Maintaining crop yields under adverse environmental stresses is probably the major challenge facing modern agriculture where polyamines can play important role. Polyamines (PAs)(putrescine, spermidine and spermine) are group of phytohormone-like aliphatic amine natural compounds with aliphatic nitrogen structure and present in almost all living organisms including plants. Evidences showed that polyamines are involved in many physiological processes, such as cell growth and development and respond to stress tolerance to various environmental factors. In many cases the relationship of plant stress tolerance was noted with the production of conjugated and bound polyamines as well as stimulation of polyamine oxidation. Therefore, genetic manipulation of crop plants with genes encoding enzymes of polyamine biosynthetic pathways may provide better stress tolerance to crop plants. Furthermore, the exogenous application of PAs is also another option for increasing the stress tolerance potential in plants. Here, we have described the synthesis and role of various polyamines in abiotic stress tolerance in plants. PMID:20592804

  5. Stress-Related Growth in Racial/Ethnic Minority Adolescents: Measurement Structure and Validity

    ERIC Educational Resources Information Center

    Vaughn, Allison A.; Roesch, Scott C.; Aldridge, Arianna A.

    2009-01-01

    Stress-related growth is defined as the perception or experience of deriving benefits from encountering stressful circumstances and, thus, has been identified as a protective factor against stress. The current study revised and subsequently validated scores on an existing measure of stress-related growth in a sample of racial/ethnic minority…

  6. Improvement of plant abiotic stress tolerance through modulation of the polyamine pathway.

    PubMed

    Shi, Haitao; Chan, Zhulong

    2014-02-01

    Polyamines (mainly putrescine (Put), spermidine (Spd), and spermine (Spm)) have been widely found in a range of physiological processes and in almost all diverse environmental stresses. In various plant species, abiotic stresses modulated the accumulation of polyamines and related gene expression. Studies using loss-of-function mutants and transgenic overexpression plants modulating polyamine metabolic pathways confirmed protective roles of polyamines during plant abiotic stress responses, and indicated the possibility to improve plant tolerance through genetic manipulation of the polyamine pathway. Additionally, putative mechanisms of polyamines involved in plant abiotic stress tolerance were thoroughly discussed and crosstalks among polyamine, abscisic acid, and nitric oxide in plant responses to abiotic stress were emphasized. Special attention was paid to the interaction between polyamine and reactive oxygen species, ion channels, amino acid and carbon metabolism, and other adaptive responses. Further studies are needed to elucidate the polyamine signaling pathway, especially polyamine-regulated downstream targets and the connections between polyamines and other stress responsive molecules.

  7. Abiotic Nitrous Oxide Production in Natural and Artificial Seawater

    NASA Astrophysics Data System (ADS)

    Ochoa, H.; Stanton, C. L.; Cavazos, A. R.; Ostrom, N. E.; Glass, J. B.

    2014-12-01

    The ocean contributes approximately one third of global sources of nitrous oxide (N2O) to the atmosphere. While nitrification is thought to be the dominant pathway for marine N2O production, mechanisms remain unresolved. Previous studies have carried the implicit assumption that marine N2O originates directly from enzymatic sources. However, abiotic production of N2O is possible via chemical reactions between nitrogenous intermediates and redox active trace metals in seawater. In this study, we investigated N2O production and isotopic composition in treatments with and without added hydroxylamine (NH2OH) and nitric oxide (NO), intermediates in microbial oxidation of ammonia to nitrite, and Fe(III). Addition of substrates to sterile artificial seawater was compared with filtered and unfiltered seawater from Sapelo Island, coastal Georgia, USA. N2O production was observed immediately after addition of Fe(III) in the presence of NH2OH at pH 8 in sterile artificial seawater. Highest N2O production was observed in the presence of Fe(III), NO, and NH2OH. The isotopomer site preference of abiotically produced N2O was consistent with previous studies (31 ± 2 ‰). Higher abiotic N2O production was observed in sterile artificial seawater (salinity: 35 ppt) than filtered Sapelo Island seawater (salinity: 25 ppt) whereas diluted sterile artificial seawater (18 ppt) showed lowest N2O production, suggesting that higher salinity promotes enhanced abiotic N2O production. Addition of Fe(III) to unfiltered Sapelo Island seawater stimulated N2O production. The presence of ammonia-oxidizing archaea (AOA), which lack known N2O producing enzymes, in Sapelo Island seawater was confirmed by successful amplification of the archaeal amoA gene, whereas ammonia-oxidizing bacteria (AOB), which contain N2O-producing enzymes were undetected. Given the few Fe-containing proteins present in AOA, it is likely that Fe(III) addition promoted N2O production via an abiotic vs. enzymatic N2O mechanism

  8. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants

    PubMed Central

    Sah, Saroj K.; Reddy, Kambham R.; Li, Jiaxu

    2016-01-01

    Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression. PMID:27200044

  9. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants.

    PubMed

    Sah, Saroj K; Reddy, Kambham R; Li, Jiaxu

    2016-01-01

    Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression. PMID:27200044

  10. Comprehensive analysis suggests overlapping expression of rice ONAC transcription factors in abiotic and biotic stress responses.

    PubMed

    Sun, Lijun; Huang, Lei; Hong, Yongbo; Zhang, Huijuan; Song, Fengming; Li, Dayong

    2015-01-01

    NAC (NAM/ATAF/CUC) transcription factors comprise a large plant-specific gene family that contains more than 149 members in rice. Extensive studies have revealed that NAC transcription factors not only play important roles in plant growth and development, but also have functions in regulation of responses to biotic and abiotic stresses. However, biological functions for most of the members in the NAC family remain unknown. In this study, microarray data analyses revealed that a total of 63 ONAC genes exhibited overlapping expression patterns in rice under various abiotic (salt, drought, and cold) and biotic (infection by fungal, bacterial, viral pathogens, and parasitic plants) stresses. Thirty-eight ONAC genes exhibited overlapping expression in response to any two abiotic stresses, among which 16 of 30 selected ONAC genes were upregulated in response to exogenous ABA. Sixty-five ONAC genes showed overlapping expression patterns in response to any two biotic stresses. Results from the present study suggested that members of the ONAC genes with overlapping expression pattern may have pleiotropic biological functions in regulation of defense response against different abiotic and biotic stresses, which provide clues for further functional analysis of the ONAC genes in stress tolerance and pathogen resistance. PMID:25690040

  11. Rice Stress Associated Protein 1 (OsSAP1) Interacts with Aminotransferase (OsAMTR1) and Pathogenesis-Related 1a Protein (OsSCP) and Regulates Abiotic Stress Responses

    PubMed Central

    Kothari, Kamakshi S.; Dansana, Prasant K.; Giri, Jitender; Tyagi, Akhilesh K.

    2016-01-01

    Stress associated proteins (SAPs) are the A20/AN1 zinc-finger containing proteins which can regulate the stress signaling in plants. The rice SAP protein, OsSAP1 has been shown to confer abiotic stress tolerance to plants, when overexpressed, by modulating the expression of endogenous stress-related genes. To further understand the mechanism of OsSAP1-mediated stress signaling, OsSAP1 interacting proteins were identified using yeast two-hybrid analysis. Two novel proteins, aminotransferase (OsAMTR1) and a SCP/TAPS or pathogenesis-related 1 class of protein (OsSCP) were found to interact with OsSAP1. The genes encoding OsAMTR1 and OsSCP were stress-responsive and showed higher expression upon abiotic stress treatments. The role of OsAMTR1 and OsSCP under stress was analyzed by overexpressing them constitutively in Arabidopsis and responses of transgenic plants were assessed under salt and water-deficit stress. The OsAMTR1 and OsSCP overexpressing plants showed higher seed germination, root growth and fresh weight than wild-type plants under stress conditions. Overexpression of OsAMTR1 and OsSCP affected the expression of many known stress-responsive genes which were not affected by the overexpression of OsSAP1. Moreover, the transcript levels of OsSCP and OsAMTR1 were also unaffected by the overexpression of OsSAP1. Hence, it was concluded that OsSAP1 regulates the stress responsive signaling by interacting with these proteins which further regulate the downstream stress responsive gene expression. PMID:27486471

  12. Rice Stress Associated Protein 1 (OsSAP1) Interacts with Aminotransferase (OsAMTR1) and Pathogenesis-Related 1a Protein (OsSCP) and Regulates Abiotic Stress Responses.

    PubMed

    Kothari, Kamakshi S; Dansana, Prasant K; Giri, Jitender; Tyagi, Akhilesh K

    2016-01-01

    Stress associated proteins (SAPs) are the A20/AN1 zinc-finger containing proteins which can regulate the stress signaling in plants. The rice SAP protein, OsSAP1 has been shown to confer abiotic stress tolerance to plants, when overexpressed, by modulating the expression of endogenous stress-related genes. To further understand the mechanism of OsSAP1-mediated stress signaling, OsSAP1 interacting proteins were identified using yeast two-hybrid analysis. Two novel proteins, aminotransferase (OsAMTR1) and a SCP/TAPS or pathogenesis-related 1 class of protein (OsSCP) were found to interact with OsSAP1. The genes encoding OsAMTR1 and OsSCP were stress-responsive and showed higher expression upon abiotic stress treatments. The role of OsAMTR1 and OsSCP under stress was analyzed by overexpressing them constitutively in Arabidopsis and responses of transgenic plants were assessed under salt and water-deficit stress. The OsAMTR1 and OsSCP overexpressing plants showed higher seed germination, root growth and fresh weight than wild-type plants under stress conditions. Overexpression of OsAMTR1 and OsSCP affected the expression of many known stress-responsive genes which were not affected by the overexpression of OsSAP1. Moreover, the transcript levels of OsSCP and OsAMTR1 were also unaffected by the overexpression of OsSAP1. Hence, it was concluded that OsSAP1 regulates the stress responsive signaling by interacting with these proteins which further regulate the downstream stress responsive gene expression. PMID:27486471

  13. The Genetics of Stress-Related Disorders: PTSD, Depression, and Anxiety Disorders.

    PubMed

    Smoller, Jordan W

    2016-01-01

    Research into the causes of psychopathology has largely focused on two broad etiologic factors: genetic vulnerability and environmental stressors. An important role for familial/heritable factors in the etiology of a broad range of psychiatric disorders was established well before the modern era of genomic research. This review focuses on the genetic basis of three disorder categories-posttraumatic stress disorder (PTSD), major depressive disorder (MDD), and the anxiety disorders-for which environmental stressors and stress responses are understood to be central to pathogenesis. Each of these disorders aggregates in families and is moderately heritable. More recently, molecular genetic approaches, including genome-wide studies of genetic variation, have been applied to identify specific risk variants. In this review, I summarize evidence for genetic contributions to PTSD, MDD, and the anxiety disorders including genetic epidemiology, the role of common genetic variation, the role of rare and structural variation, and the role of gene-environment interaction. Available data suggest that stress-related disorders are highly complex and polygenic and, despite substantial progress in other areas of psychiatric genetics, few risk loci have been identified for these disorders. Progress in this area will likely require analysis of much larger sample sizes than have been reported to date. The phenotypic complexity and genetic overlap among these disorders present further challenges. The review concludes with a discussion of prospects for clinical translation of genetic findings and future directions for research.

  14. Arsenic trioxide induces endoplasmic reticulum stress-related events in neutrophils.

    PubMed

    Binet, François; Chiasson, Sonia; Girard, Denis

    2010-04-01

    We recently reported that the endoplasmic reticulum (ER)-induced cell pathway of apoptosis is operational in human neutrophils and that some ER stressors can accelerate this process. Recent data suggest that arsenic trioxide (As(2)O(3) or ATO), may also act as an ER stressor. The aims of the present study were to elucidate if other ER stress-related events occur in ATO-induced neutrophils, and to determine the role of caspase-4 in the proapoptotic activity of ATO. We found that ATO induced ubiquitination of proteins, and increased calcium concentration and gene expression of calcineurin in neutrophils. In addition to caspase-4, activities of caspase-3, -8 and -9 were increased by ATO. The processing of caspase-4 was reversed by a caspase-8 inhibitor, indicating that caspase-4 activation requires the action of upstream initiator components, questioning on the role of caspase-4 in ATO-induced ER stress-mediated cell apoptosis. Using caspase-4 deficient THP-1 cells, we demonstrated that the proapoptotic effect of ATO was similar to that of control caspase-4-positive cells. We conclude that ATO is an ER stressor that can induce cell apoptosis by a mechanism which does not require caspase-4. In addition, we conclude that caspase-4 activation in ATO-induced neutrophils could be involved in functions other than apoptosis.

  15. Different, overlapping mechanisms for colonization of abiotic and plant surfaces by Pseudomonas putida.

    PubMed

    Yousef-Coronado, Fátima; Travieso, María L; Espinosa-Urgel, Manuel

    2008-11-01

    Mechanisms governing biofilm formation have generated considerable interest in recent years, yet comparative analyses of processes for bacterial establishment on abiotic and biotic surfaces are still limited. In this report we have expanded previous information on the genetic determinants required for colonization of plant surfaces by Pseudomonas putida populations and analyzed their correlation with biofilm formation processes on abiotic surfaces. Insertional mutations affecting flagellar genes or the synthesis and transport of the large adhesin LapA lead to decreased adhesion to seeds and biofilm formation on abiotic surfaces. The latter also causes reduced fitness in the rhizosphere. Decreased seed adhesion and altered biofilm formation kinetics are observed in mutants affected in heme biosynthesis and a gene that might participate in oxidative stress responses, whereas a mutant in a gene involved in cytochrome oxidase assembly is affected in the bacterium-plant interaction but not in bacterial establishment on abiotic surfaces. Finally, a mutant altered in lipopolysaccharide biosynthesis is impaired in seed and root colonization but seems to initiate attachment to plastic faster than the wild type. This variety of phenotypes reflects the complexity of bacterial adaptation to sessile life, and the partial overlap between mechanisms leading to biofilm formation on abiotic and biotic surfaces.

  16. Candida albicans autophagy, no longer a bystander: Its role in tolerance to ER stress-related antifungal drugs.

    PubMed

    Yu, Qilin; Jia, Chang; Dong, Yijie; Zhang, Bing; Xiao, Chenpeng; Chen, Yulu; Wang, Yuzhou; Li, Xiaoling; Wang, Lei; Zhang, Biao; Li, Mingchun

    2015-08-01

    Autophagy is a degradation process involved in pathogenicity of many pathogenic fungi. However, its roles in Candida albicans, the leading fungal pathogen in human beings, remain to be detailed. Most recently, we found that endoplasmic reticulum (ER) stress-inducing conditions led to transcriptional up-regulation of C. albicans autophagy-related (ATG) genes, implying a possible link between autophagy and ER stress response in this pathogen. Using a series of C. albicans ATG mutants and autophagy reporting systems, we found that both treatment of ER stress-related drugs and loss of the ER calcium pump Spf1 promoted autophagic flux of Atg8 and Lap41 (a homologue of Saccharomyces cerevisiae Ape1), indicating that these conditions induce autophagy. Moreover, deletion of ATG genes in the spf1Δ/Δ mutant rendered cells hypersensitive to these drugs and caused activation of UPR, revealing a role of autophagy in alleviating ER stress. In addition, only treatment of tunicamycin and loss of Spf1 in combination increased autophagic flux of the ER component Sec63, suggesting that most of the ER stress-related conditions cause non-selective autophagy rather than selective ER phagy. This study uncovers the important role of C. albicans autophagy in ER stress response and tolerance to antifungal drugs.

  17. Model Comparison for Abiotic versus Biotic Pollen Dispersal.

    PubMed

    Foster, Erich L; Chan, David M; Dyer, Rodney J

    2016-10-01

    An agent-based model with a correlated random walk is used to explore pollination within a forest. For abiotic dispersal, say via the wind, we use a purely random walk where there is no correlation between consecutive steps and for biotic dispersal, say via insect, we use a moderate or highly correlated random walk. In particular, we examine the differences in a number of biological measurement between a purely random walk and a correlated random walk in terms of gene dispersal in low and high plant densities. PMID:27550704

  18. Model Comparison for Abiotic versus Biotic Pollen Dispersal.

    PubMed

    Foster, Erich L; Chan, David M; Dyer, Rodney J

    2016-10-01

    An agent-based model with a correlated random walk is used to explore pollination within a forest. For abiotic dispersal, say via the wind, we use a purely random walk where there is no correlation between consecutive steps and for biotic dispersal, say via insect, we use a moderate or highly correlated random walk. In particular, we examine the differences in a number of biological measurement between a purely random walk and a correlated random walk in terms of gene dispersal in low and high plant densities.

  19. Transcriptomic analysis of grain amaranth (Amaranthus hypochondriacus) using 454 pyrosequencing: comparison with A. tuberculatus, expression profiling in stems and in response to biotic and abiotic stress

    PubMed Central

    2011-01-01

    Background Amaranthus hypochondriacus, a grain amaranth, is a C4 plant noted by its ability to tolerate stressful conditions and produce highly nutritious seeds. These possess an optimal amino acid balance and constitute a rich source of health-promoting peptides. Although several recent studies, mostly involving subtractive hybridization strategies, have contributed to increase the relatively low number of grain amaranth expressed sequence tags (ESTs), transcriptomic information of this species remains limited, particularly regarding tissue-specific and biotic stress-related genes. Thus, a large scale transcriptome analysis was performed to generate stem- and (a)biotic stress-responsive gene expression profiles in grain amaranth. Results A total of 2,700,168 raw reads were obtained from six 454 pyrosequencing runs, which were assembled into 21,207 high quality sequences (20,408 isotigs + 799 contigs). The average sequence length was 1,064 bp and 930 bp for isotigs and contigs, respectively. Only 5,113 singletons were recovered after quality control. Contigs/isotigs were further incorporated into 15,667 isogroups. All unique sequences were queried against the nr, TAIR, UniRef100, UniRef50 and Amaranthaceae EST databases for annotation. Functional GO annotation was performed with all contigs/isotigs that produced significant hits with the TAIR database. Only 8,260 sequences were found to be homologous when the transcriptomes of A. tuberculatus and A. hypochondriacus were compared, most of which were associated with basic house-keeping processes. Digital expression analysis identified 1,971 differentially expressed genes in response to at least one of four stress treatments tested. These included several multiple-stress-inducible genes that could represent potential candidates for use in the engineering of stress-resistant plants. The transcriptomic data generated from pigmented stems shared similarity with findings reported in developing stems of Arabidopsis and

  20. An atypical member of the light-harvesting complex stress-related protein family modulates diatom responses to light.

    PubMed

    Bailleul, Benjamin; Rogato, Alessandra; de Martino, Alessandra; Coesel, Sacha; Cardol, Pierre; Bowler, Chris; Falciatore, Angela; Finazzi, Giovanni

    2010-10-19

    Diatoms are prominent phytoplanktonic organisms that contribute around 40% of carbon assimilation in the oceans. They grow and perform optimally in variable environments, being able to cope with unpredictable changes in the amount and quality of light. The molecular mechanisms regulating diatom light responses are, however, still obscure. Using knockdown Phaeodactylum tricornutum transgenic lines, we reveal the key function of a member of the light-harvesting complex stress-related (LHCSR) protein family, denoted LHCX1, in modulation of excess light energy dissipation. In contrast to green algae, this gene is already maximally expressed in nonstressful light conditions and encodes a protein required for efficient light responses and growth. LHCX1 also influences natural variability in photoresponse, as evidenced in ecotypes isolated from different latitudes that display different LHCX1 protein levels. We conclude, therefore, that this gene plays a pivotal role in managing light responses in diatoms. PMID:20921421

  1. An atypical member of the light-harvesting complex stress-related protein family modulates diatom responses to light

    PubMed Central

    Bailleul, Benjamin; Rogato, Alessandra; de Martino, Alessandra; Coesel, Sacha; Cardol, Pierre; Bowler, Chris; Falciatore, Angela; Finazzi, Giovanni

    2010-01-01

    Diatoms are prominent phytoplanktonic organisms that contribute around 40% of carbon assimilation in the oceans. They grow and perform optimally in variable environments, being able to cope with unpredictable changes in the amount and quality of light. The molecular mechanisms regulating diatom light responses are, however, still obscure. Using knockdown Phaeodactylum tricornutum transgenic lines, we reveal the key function of a member of the light-harvesting complex stress-related (LHCSR) protein family, denoted LHCX1, in modulation of excess light energy dissipation. In contrast to green algae, this gene is already maximally expressed in nonstressful light conditions and encodes a protein required for efficient light responses and growth. LHCX1 also influences natural variability in photoresponse, as evidenced in ecotypes isolated from different latitudes that display different LHCX1 protein levels. We conclude, therefore, that this gene plays a pivotal role in managing light responses in diatoms. PMID:20921421

  2. Improved sanguinarine production via biotic and abiotic elicitations and precursor feeding in cell suspensions of latex-less variety of Papaver somniferum with their gene expression studies and upscaling in bioreactor.

    PubMed

    Verma, Priyanka; Khan, Shamshad Ahmad; Mathur, Ajay K; Ghosh, Sumit; Shanker, Karuna; Kalra, Alok

    2014-11-01

    Elicitors play an important role in challenging the plant defense system through plant-environment interaction and thus altering the secondary metabolite production. Culture filtrates of four endophytic fungi, namely, Chaetomium globosum, Aspergillus niveoglaucus, Paecilomyces lilacinus, and Trichoderma harzianum were tested on embryogenic cell suspensions of latex-less Papaver somniferum in dose-dependent kinetics. Besides this, abiotic elicitors salicylic acid, hydrogen peroxide, and carbon dioxide were also applied for improved sanguinarine production. Maximum biomass accumulation (growth index (GI) = 293.50 ± 14.82) and sanguinarine production (0.090 ± 0.008 % dry wt.) were registered by addition of 3.3 % v/v T. harzanium culture filtrate. Interestingly, it was further enhanced (GI = 323.40 ± 25.30; 0.105 ± 0.008 % dry wt.) when T. harzanium culture filtrate was employed along with 50 μM shikimate. This was also supported by real-time (RT) (qPCR), where 8-9-fold increase in cheilanthifoline synthase (CFS), stylopine synthase (STS), tetrahydroprotoberberine cis-N-methyltransferase (TNMT), and protopine 6-hydroxylase (P6H) transcripts was observed. Among abiotic elicitors, while hydrogen peroxide and carbon dioxide registered low level of sanguinarine accumulation, maximum sanguinarine content was detected by 250 μM salicylic acid (0.058 ± 0.003 % dry wt.; GI = 172.75 ± 13.40). RT (qPCR) also confirms the downregulation of sanguinarine pathway on CO2 supplementation. Various parameters ranging from agitation speed (70 rpm), impeller type (marine), media volume (2 l), inoculum weight (100 g), and culture duration (9 days) were optimized during upscaling in 5-l stirred tank bioreactor to obtain maximum sanguinarine production (GI = 434.00; 0.119 ± 0.070 % dry wt.). Addition of 3.3 % v/v T. harzanium culture filtrate and 50-μM shikimate was done on the 6th day of bioreactor run.

  3. Restraint effects on stress-related hormones and blood natural killer cell cytotoxicity in pigs with a mutated ryanodine receptor.

    PubMed

    Ciepielewski, Z M; Stojek, W; Glac, W; Wrona, D

    2013-05-01

    A mutation in the ryanodine receptor gene (RYR1) of the calcium release channel is responsible for increased stress susceptibility in pigs. In the present study, the relation of a mutation in RYR1 with the neuroendocrine (stress-related hormone) response and the immune defense represented by natural killer cell cytotoxicity (NKCC) during a 4-h restraint and recovery phase in 60 male pigs was investigated. Blood samples were collected from pigs previously divided into RYR1 genotypes (nn, Nn, NN), based on PCR amplification and restriction analyses. The blood samples collected during the restraint and recovery phases of the experiment were used to determine NKCC ((51)Cr-release assay), large granular lymphocyte number (hematologic method), and plasma concentrations of prolactin (PRL), GH, ACTH, and cortisol (COR) (by specific RIA). The greatest degree of NKCC response (P < 0.05) to restraint stress relative to controls was observed for the stress-susceptible homozygote group (nn). Measures of stress-related hormones were positively correlated with NKCC during the entire experimental period (P < 0.001 for all investigated hormones) in the nn group. Immunostimulatory effects in the early (0-60 min) phase of restraint were associated with increased hormone responses, especially PRL and GH. In the late (180-240 min) phase of stress and the recovery phase (480 min), a decrease in immune response was accompanied by an elevated COR response in all RYR1 genotypes. Moreover, divergent responses of both PRL (greatest in nn, P < 0.001) and GH (greatest in NN, P < 0.001) to the 4-h restraint were observed. Our results suggest that stress-susceptible RYR1-mutated homozygotes develop a greater level of immune defense, including cytotoxic activity of NK cells, and accompanied by more pronounced stress-induced changes in neuroendocrine response than stress-resistant heterozygous (Nn) and homozygous (NN) pigs.

  4. ScChi, Encoding an Acidic Class III Chitinase of Sugarcane, Confers Positive Responses to Biotic and Abiotic Stresses in Sugarcane

    PubMed Central

    Su, Yachun; Xu, Liping; Fu, Zhiwei; Yang, Yuting; Guo, Jinlong; Wang, Shanshan; Que, Youxiong

    2014-01-01

    Chitinases (EC 3.2.2.14), expressed during the plant-pathogen interaction, are associated with plant defense against pathogens. In the present study, a positive correlation between chitinase activity and sugarcane smut resistance was found. ScChi (GenBank accession no. KF664180), a Class III chitinase gene, encoded a 31.37 kDa polypeptide, was cloned and identified. Subcellular localization revealed ScChi targeting to the nucleus, cytoplasm and the plasma membrane. Real-time quantitative PCR (RT-qPCR) results showed that ScChi was highly expressed in leaf and stem epidermal tissues. The ScChi transcript was both higher and maintained longer in the resistance cultivar during challenge with Sporisorium scitamineum. The ScChi also showed an obvious induction of transcription after treatment with SA (salicylic acid), H2O2, MeJA (methyl jasmonate), ABA (abscisic acid), NaCl, CuCl2, PEG (polyethylene glycol) and low temperature (4 °C). The expression levels of ScChi and six immunity associated marker genes were upregulated by the transient overexpression of ScChi. Besides, histochemical assay of Nicotiana benthamiana leaves overexpressing pCAMBIA 1301-ScChi exhibited deep DAB (3,3′-diaminobenzidinesolution) staining color and high conductivity, indicating the high level of H2O2 accumulation. These results suggest a close relationship between the expression of ScChi and plant immunity. In conclusion, the positive responses of ScChi to the biotic and abiotic stimuli reveal that this gene is a stress-related gene of sugarcane. PMID:24552874

  5. Different peroxidase activities and expression of abiotic stress-related peroxidases in apical root segments of wheat genotypes with different drought stress tolerance under osmotic stress.

    PubMed

    Csiszár, Jolán; Gallé, Agnes; Horváth, Edit; Dancsó, Piroska; Gombos, Magdolna; Váry, Zsolt; Erdei, László; Györgyey, János; Tari, Irma

    2012-03-01

    One-week-old seedlings of Triticum aestivum L. cv. Plainsman V, a drought tolerant; and Cappelle Desprez, a drought sensitive wheat cultivar were subjected gradually to osmotic stress using polyethylene glycol (PEG 6000) reaching 400 mOsm on the 11th day. Compared to controls cv. Plainsman V maintained the root growth and relative water content of root tissues, while these parameters were decreased in the drought sensitive cv. Cappelle Desprez under PEG-mediated osmotic stress. Simultaneously, H(2)O(2) content in 1-cm-long apical segment of roots comprising the proliferation and elongation zone, showed a transient increase in cv. Plainsman V and a permanent raise in cv. Cappelle Desprez. Measurements of the transcript levels of selected class III peroxidase (TaPrx) coding sequences revealed significant differences between the two cultivars on the 9th day, two days after applying 100 mOsm PEG. The abundance of TaPrx04 transcript was enhanced transitionally in the root apex of cv. Plainsman V but decreased in cv. Cappelle Desprez under osmotic stress while the expression of TaPrx01, TaPrx03, TaPrx19, TaPrx68, TaPrx107 and TaPrx109-C decreased to different extents in both cultivars. After a transient decrease, activities of soluble peroxidase fractions of crude protein extracts rose in both cultivars on day 11, but the activities of cell wall-bound fractions increased only in cv. Cappelle Desprez under osmotic stress. Parallel with high H(2)O(2) content of the tissues, certain isoenzymes of covalently bound fraction in cv. Cappelle Desprez showed increased activity suggesting that they may limit the extension of root cell walls in this cultivar.

  6. Autophagy, a Conserved Mechanism for Protein Degradation, Responds to Heat, and Other Abiotic Stresses in Capsicum annuum L.

    PubMed Central

    Zhai, Yufei; Guo, Meng; Wang, Hu; Lu, Jinping; Liu, Jinhong; Zhang, Chong; Gong, Zhenhui; Lu, Minghui

    2016-01-01

    Abiotic stresses negatively affect plants growth and development by inducing protein denaturation, and autophagy degrades the damaged proteins to alleviate their toxicity, however, little is known about the involvement of autophagy in pepper (Capsicum annuum L.) tolerances to abiotic stresses. In this study, we identified autophagy-related gene (ATG) members in the whole genome of pepper by HMM method and analyzed their expression profiles in response to heat and other abiotic stresses by quantitative real-time PCR. The results showed that the CaATG contained 15 core ATG members including 29 ATG proteins with their respective conserved functional domains, involving the whole process of autophagy. Under normal environmental condition, the expression of CaATG genes showed tissue- and developmental stage-specific patterns, while under abiotic stresses of salt, drought, heat, cold and carbohydrate starvation, the accumulation of autophagosome punctate increased and the expression level of CaATG genes changed with stress type-dependent pattern, which indicates the linkage of autophagy in pepper response to abiotic stresses. After treated with heat stress, both the number of up-regulated CaATG genes and the increment of autophagosome punctate were higher in pepper thermotolerant line R9 than those in thermosensitive line B6, implying an association of autophagy with heat tolerance. In addition, CaATG6 was predicted to interact with CaHSP90 family members. Our study suggests that autophagy is connected to pepper tolerances to heat and other abiotic stresses. PMID:26904087

  7. Autophagy, a Conserved Mechanism for Protein Degradation, Responds to Heat, and Other Abiotic Stresses in Capsicum annuum L.

    PubMed

    Zhai, Yufei; Guo, Meng; Wang, Hu; Lu, Jinping; Liu, Jinhong; Zhang, Chong; Gong, Zhenhui; Lu, Minghui

    2016-01-01

    Abiotic stresses negatively affect plants growth and development by inducing protein denaturation, and autophagy degrades the damaged proteins to alleviate their toxicity, however, little is known about the involvement of autophagy in pepper (Capsicum annuum L.) tolerances to abiotic stresses. In this study, we identified autophagy-related gene (ATG) members in the whole genome of pepper by HMM method and analyzed their expression profiles in response to heat and other abiotic stresses by quantitative real-time PCR. The results showed that the CaATG contained 15 core ATG members including 29 ATG proteins with their respective conserved functional domains, involving the whole process of autophagy. Under normal environmental condition, the expression of CaATG genes showed tissue- and developmental stage-specific patterns, while under abiotic stresses of salt, drought, heat, cold and carbohydrate starvation, the accumulation of autophagosome punctate increased and the expression level of CaATG genes changed with stress type-dependent pattern, which indicates the linkage of autophagy in pepper response to abiotic stresses. After treated with heat stress, both the number of up-regulated CaATG genes and the increment of autophagosome punctate were higher in pepper thermotolerant line R9 than those in thermosensitive line B6, implying an association of autophagy with heat tolerance. In addition, CaATG6 was predicted to interact with CaHSP90 family members. Our study suggests that autophagy is connected to pepper tolerances to heat and other abiotic stresses.

  8. A NAP-Family Histone Chaperone Functions in Abiotic Stress Response and Adaptation1[OPEN

    PubMed Central

    Pareek, Ashwani; Singla-Pareek, Sneh Lata

    2016-01-01

    Modulation of gene expression is one of the most significant molecular mechanisms of abiotic stress response in plants. Via altering DNA accessibility, histone chaperones affect the transcriptional competence of genomic loci. However, in contrast to other factors affecting chromatin dynamics, the role of plant histone chaperones in abiotic stress response and adaptation remains elusive. Here, we studied the physiological function of a stress-responsive putative rice (Oryza sativa) histone chaperone of the NAP superfamily: OsNAPL6. We show that OsNAPL6 is a nuclear-localized H3/H4 histone chaperone capable of assembling a nucleosome-like structure. Utilizing overexpression and knockdown approaches, we found a positive correlation between OsNAPL6 expression levels and adaptation to multiple abiotic stresses. Results of comparative transcriptome profiling and promoter-recruitment studies indicate that OsNAPL6 functions during stress response via modulation of expression of various genes involved in diverse functions. For instance, we show that OsNAPL6 is recruited to OsRad51 promoter, activating its expression and leading to more efficient DNA repair and abrogation of programmed cell death under salinity and genotoxic stress conditions. These results suggest that the histone chaperone OsNAPL6 may serve a regulatory role in abiotic stress physiology possibly via modulating nucleosome dynamics at various stress-associated genomic loci. Taken together, our findings establish a hitherto unknown link between histone chaperones and abiotic stress response in plants. PMID:27342307

  9. Toward Coalescing Gene Expression and Function with QTLs of Water-Deficit Stress in Cotton.

    PubMed

    Kebede, Hirut; Payton, Paxton; Pham, Hanh Thi My; Allen, Randy D; Wright, Robert J

    2015-01-01

    Cotton exhibits moderately high vegetative tolerance to water-deficit stress but lint production is restricted by the available rainfed and irrigation capacity. We have described the impact of water-deficit stress on the genetic and metabolic control of fiber quality and production. Here we examine the association of tentative consensus sequences (TCs) derived from various cotton tissues under irrigated and water-limited conditions with stress-responsive QTLs. Three thousand sixteen mapped sequence-tagged-sites were used as anchored targets to examine sequence homology with 15,784 TCs to test the hypothesis that putative stress-responsive genes will map within QTLs associated with stress-related phenotypic variation more frequently than with other genomic regions not associated with these QTLs. Approximately 1,906 of 15,784 TCs were mapped to the consensus map. About 35% of the annotated TCs that mapped within QTL regions were genes involved in an abiotic stress response. By comparison, only 14.5% of the annotated TCs mapped outside these QTLs were classified as abiotic stress genes. A simple binomial probability calculation of this degree of bias being observed if QTL and non-QTL regions are equally likely to contain stress genes was P (x ≥ 85) = 7.99  × 10(-15). These results suggest that the QTL regions have a higher propensity to contain stress genes. PMID:26167172

  10. Sterility Caused by Floral Organ Degeneration and Abiotic Stresses in Arabidopsis and Cereal Grains

    PubMed Central

    Smith, Ashley R.; Zhao, Dazhong

    2016-01-01

    Natural floral organ degeneration or abortion results in unisexual or fully sterile flowers, while abiotic stresses lead to sterility after initiation of floral reproductive organs. Since normal flower development is essential for plant sexual reproduction and crop yield, it is imperative to have a better understanding of plant sterility under regular and stress conditions. Here, we review the functions of ABC genes together with their downstream genes in floral organ degeneration and the formation of unisexual flowers in Arabidopsis and several agriculturally significant cereal grains. We further explore the roles of hormones, including auxin, brassinosteroids, jasmonic acid, gibberellic acid, and ethylene, in floral organ formation and fertility. We show that alterations in genes affecting hormone biosynthesis, hormone transport and perception cause loss of stamens/carpels, abnormal floral organ development, poor pollen production, which consequently result in unisexual flowers and male/female sterility. Moreover, abiotic stresses, such as heat, cold, and drought, commonly affect floral organ development and fertility. Sterility is induced by abiotic stresses mostly in male floral organ development, particularly during meiosis, tapetum development, anthesis, dehiscence, and fertilization. A variety of genes including those involved in heat shock, hormone signaling, cold tolerance, metabolisms of starch and sucrose, meiosis, and tapetum development are essential for plants to maintain normal fertility under abiotic stress conditions. Further elucidation of cellular, biochemical, and molecular mechanisms about regulation of fertility will improve yield and quality for many agriculturally valuable crops. PMID:27790226

  11. Biological Networks Underlying Abiotic Stress Tolerance in Temperate Crops--A Proteomic Perspective.

    PubMed

    Kosová, Klára; Vítámvás, Pavel; Urban, Milan Oldřich; Klíma, Miroslav; Roy, Amitava; Prášil, Ilja Tom

    2015-09-01

    Abiotic stress factors, especially low temperatures, drought, and salinity, represent the major constraints limiting agricultural production in temperate climate. Under the conditions of global climate change, the risk of damaging effects of abiotic stresses on crop production increases. Plant stress response represents an active process aimed at an establishment of novel homeostasis under altered environmental conditions. Proteins play a crucial role in plant stress response since they are directly involved in shaping the final phenotype. In the review, results of proteomic studies focused on stress response of major crops grown in temperate climate including cereals: common wheat (Triticum aestivum), durum wheat (Triticum durum), barley (Hordeum vulgare), maize (Zea mays); leguminous plants: alfalfa (Medicago sativa), soybean (Glycine max), common bean (Phaseolus vulgaris), pea (Pisum sativum); oilseed rape (Brassica napus); potato (Solanum tuberosum); tobacco (Nicotiana tabaccum); tomato (Lycopersicon esculentum); and others, to a wide range of abiotic stresses (cold, drought, salinity, heat, imbalances in mineral nutrition and heavy metals) are summarized. The dynamics of changes in various protein functional groups including signaling and regulatory proteins, transcription factors, proteins involved in protein metabolism, amino acid metabolism, metabolism of several stress-related compounds, proteins with chaperone and protective functions as well as structural proteins (cell wall components, cytoskeleton) are briefly overviewed. Attention is paid to the differences found between differentially tolerant genotypes. In addition, proteomic studies aimed at proteomic investigation of multiple stress factors are discussed. In conclusion, contribution of proteomic studies to understanding the complexity of crop response to abiotic stresses as well as possibilities to identify and utilize protein markers in crop breeding processes are discussed.

  12. Biological Networks Underlying Abiotic Stress Tolerance in Temperate Crops—A Proteomic Perspective

    PubMed Central

    Kosová, Klára; Vítámvás, Pavel; Urban, Milan Oldřich; Klíma, Miroslav; Roy, Amitava; Prášil, Ilja Tom

    2015-01-01

    Abiotic stress factors, especially low temperatures, drought, and salinity, represent the major constraints limiting agricultural production in temperate climate. Under the conditions of global climate change, the risk of damaging effects of abiotic stresses on crop production increases. Plant stress response represents an active process aimed at an establishment of novel homeostasis under altered environmental conditions. Proteins play a crucial role in plant stress response since they are directly involved in shaping the final phenotype. In the review, results of proteomic studies focused on stress response of major crops grown in temperate climate including cereals: common wheat (Triticum aestivum), durum wheat (Triticum durum), barley (Hordeum vulgare), maize (Zea mays); leguminous plants: alfalfa (Medicago sativa), soybean (Glycine max), common bean (Phaseolus vulgaris), pea (Pisum sativum); oilseed rape (Brassica napus); potato (Solanum tuberosum); tobacco (Nicotiana tabaccum); tomato (Lycopersicon esculentum); and others, to a wide range of abiotic stresses (cold, drought, salinity, heat, imbalances in mineral nutrition and heavy metals) are summarized. The dynamics of changes in various protein functional groups including signaling and regulatory proteins, transcription factors, proteins involved in protein metabolism, amino acid metabolism, metabolism of several stress-related compounds, proteins with chaperone and protective functions as well as structural proteins (cell wall components, cytoskeleton) are briefly overviewed. Attention is paid to the differences found between differentially tolerant genotypes. In addition, proteomic studies aimed at proteomic investigation of multiple stress factors are discussed. In conclusion, contribution of proteomic studies to understanding the complexity of crop response to abiotic stresses as well as possibilities to identify and utilize protein markers in crop breeding processes are discussed. PMID:26340626

  13. Cytosine Methylation Alteration in Natural Populations of Leymus chinensis Induced by Multiple Abiotic Stresses

    PubMed Central

    Yu, Yingjie; Yang, Xuejiao; Wang, Huaying; Shi, Fengxue; Liu, Ying; Liu, Jushan; Li, Linfeng; Wang, Deli; Liu, Bao

    2013-01-01

    Background Human activity has a profound effect on the global environment and caused frequent occurrence of climatic fluctuations. To survive, plants need to adapt to the changing environmental conditions through altering their morphological and physiological traits. One known mechanism for phenotypic innovation to be achieved is environment-induced rapid yet inheritable epigenetic changes. Therefore, the use of molecular techniques to address the epigenetic mechanisms underpinning stress adaptation in plants is an important and challenging topic in biological research. In this study, we investigated the impact of warming, nitrogen (N) addition, and warming+nitrogen (N) addition stresses on the cytosine methylation status of Leymus chinensis Tzvel. at the population level by using the amplified fragment length polymorphism (AFLP), methylation-sensitive amplified polymorphism (MSAP) and retrotransposon based sequence-specific amplification polymorphism (SSAP) techniques. Methodology/Principal Findings Our results showed that, although the percentages of cytosine methylation changes in SSAP are significantly higher than those in MSAP, all the treatment groups showed similar alteration patterns of hypermethylation and hypomethylation. It meant that the abiotic stresses have induced the alterations in cytosine methylation patterns, and the levels of cytosine methylation changes around the transposable element are higher than the other genomic regions. In addition, the identification and analysis of differentially methylated loci (DML) indicated that the abiotic stresses have also caused targeted methylation changes at specific loci and these DML might have contributed to the capability of plants in adaptation to the abiotic stresses. Conclusions/Significance Our results demonstrated that abiotic stresses related to global warming and nitrogen deposition readily evoke alterations of cytosine methylation, and which may provide a molecular basis for rapid adaptation by

  14. Biological Networks Underlying Abiotic Stress Tolerance in Temperate Crops--A Proteomic Perspective.

    PubMed

    Kosová, Klára; Vítámvás, Pavel; Urban, Milan Oldřich; Klíma, Miroslav; Roy, Amitava; Prášil, Ilja Tom

    2015-01-01

    Abiotic stress factors, especially low temperatures, drought, and salinity, represent the major constraints limiting agricultural production in temperate climate. Under the conditions of global climate change, the risk of damaging effects of abiotic stresses on crop production increases. Plant stress response represents an active process aimed at an establishment of novel homeostasis under altered environmental conditions. Proteins play a crucial role in plant stress response since they are directly involved in shaping the final phenotype. In the review, results of proteomic studies focused on stress response of major crops grown in temperate climate including cereals: common wheat (Triticum aestivum), durum wheat (Triticum durum), barley (Hordeum vulgare), maize (Zea mays); leguminous plants: alfalfa (Medicago sativa), soybean (Glycine max), common bean (Phaseolus vulgaris), pea (Pisum sativum); oilseed rape (Brassica napus); potato (Solanum tuberosum); tobacco (Nicotiana tabaccum); tomato (Lycopersicon esculentum); and others, to a wide range of abiotic stresses (cold, drought, salinity, heat, imbalances in mineral nutrition and heavy metals) are summarized. The dynamics of changes in various protein functional groups including signaling and regulatory proteins, transcription factors, proteins involved in protein metabolism, amino acid metabolism, metabolism of several stress-related compounds, proteins with chaperone and protective functions as well as structural proteins (cell wall components, cytoskeleton) are briefly overviewed. Attention is paid to the differences found between differentially tolerant genotypes. In addition, proteomic studies aimed at proteomic investigation of multiple stress factors are discussed. In conclusion, contribution of proteomic studies to understanding the complexity of crop response to abiotic stresses as well as possibilities to identify and utilize protein markers in crop breeding processes are discussed. PMID:26340626

  15. Stress-Related Growth among Suicide Survivors: The Role of Interpersonal and Cognitive Factors.

    PubMed

    Levi-Belz, Yossi

    2015-01-01

    Although stress-related growth had been documented in bereaved individuals, it is still not clear to what extent it can be experienced by suicide survivors or which psychological processes facilitate it. The current study examined the role of interpersonal factors-self disclosure and social supports as well as cognitive coping strategies in stress-related growth among suicide survivors. The sample consisted of 135 suicide survivors (104 women and 31 men) aged 18-70. All participants completed the stress-related growth questionnaire as well as instruments measuring interpersonal activities, cognitive strategies, and demographic characteristics concerning the bereavement. The findings showed significant positive correlations between time elapsed since death, self-disclosure, social support, adaptive cognitive strategies, and stress-related growth. Furthermore, hierarchical regression analysis revealed that together these variables accounted for over 38% of the variance in stress-related growth. Interpersonal activities such as talking and interacting with others, as well as a cognitive focus on planning for the future emerged as important factors in personal transformation after suicide loss.

  16. Abiotic Bromination of Soil Organic Matter.

    PubMed

    Leri, Alessandra C; Ravel, Bruce

    2015-11-17

    Biogeochemical transformations of plant-derived soil organic matter (SOM) involve complex abiotic and microbially mediated reactions. One such reaction is halogenation, which occurs naturally in the soil environment and has been associated with enzymatic activity of decomposer organisms. Building on a recent finding that naturally produced organobromine is ubiquitous in SOM, we hypothesized that inorganic bromide could be subject to abiotic oxidations resulting in bromination of SOM. Through lab-based degradation treatments of plant material and soil humus, we have shown that abiotic bromination of particulate organic matter occurs in the presence of a range of inorganic oxidants, including hydrogen peroxide and assorted forms of ferric iron, producing both aliphatic and aromatic forms of organobromine. Bromination of oak and pine litter is limited primarily by bromide concentration. Fresh plant material is more susceptible to bromination than decayed litter and soil humus, due to a labile pool of mainly aliphatic compounds that break down during early stages of SOM formation. As the first evidence of abiotic bromination of particulate SOM, this study identifies a mechanistic source of the natural organobromine in humic substances and the soil organic horizon. Formation of organobromine through oxidative treatments of plant material also provides insights into the relative stability of aromatic and aliphatic components of SOM.

  17. Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging

    PubMed Central

    Hossain, Mohammad A.; Bhattacharjee, Soumen; Armin, Saed-Moucheshi; Qian, Pingping; Xin, Wang; Li, Hong-Yu; Burritt, David J.; Fujita, Masayuki; Tran, Lam-Son P.

    2015-01-01

    Plants are constantly challenged by various abiotic stresses that negatively affect growth and productivity worldwide. During the course of their evolution, plants have developed sophisticated mechanisms to recognize external signals allowing them to respond appropriately to environmental conditions, although the degree of adjustability or tolerance to specific stresses differs from species to species. Overproduction of reactive oxygen species (ROS; hydrogen peroxide, H2O2; superoxide, O2⋅-; hydroxyl radical, OH⋅ and singlet oxygen, 1O2) is enhanced under abiotic and/or biotic stresses, which can cause oxidative damage to plant macromolecules and cell structures, leading to inhibition of plant growth and development, or to death. Among the various ROS, freely diffusible and relatively long-lived H2O2 acts as a central player in stress signal transduction pathways. These pathways can then activate multiple acclamatory responses that reinforce resistance to various abiotic and biotic stressors. To utilize H2O2 as a signaling molecule, non-toxic levels must be maintained in a delicate balancing act between H2O2 production and scavenging. Several recent studies have demonstrated that the H2O2-priming can enhance abiotic stress tolerance by modulating ROS detoxification and by regulating multiple stress-responsive pathways and gene expression. Despite the importance of the H2O2-priming, little is known about how this process improves the tolerance of plants to stress. Understanding the mechanisms of H2O2-priming-induced abiotic stress tolerance will be valuable for identifying biotechnological strategies to improve abiotic stress tolerance in crop plants. This review is an overview of our current knowledge of the possible mechanisms associated with H2O2-induced abiotic oxidative stress tolerance in plants, with special reference to antioxidant metabolism. PMID:26136756

  18. Novel recombinant human lactoferrin: Differential activation of oxidative stress related gene expression

    PubMed Central

    Kruzel, Marian L.; Actor, Jeffrey K.; MichałZimecki; Wise, Jasen; Płoszaj, Paulina; Mirza, Shaper; Kruzel, Mark; Hwang, Shen-An; Ba, Xueqing; Boldogh, Istvan

    2014-01-01

    Lactoferrin, an iron-binding protein found in high concentrations in mammalian exocrine secretions, is an important component of the host defense system. It is also a major protein of the secondary granules of neutrophils from which is released upon activation. Due to its potential clinical utility, recombinant human lactoferrin (rhLF) has been produced in various eukaryotic expression systems; however, none of these are fully compatible with humans. Most of the biopharmaceuticals approved by the FDA for use in humans are produced in mammalian expression systems. The Chinese hamster ovary cells (CHO) have become the system of choice for proteins that require post-translational modifications, such as glycoproteins. The aim of this study was to scale-up expression and purification of rhLF in a CHO expression system, verify its glycan primary structure, and assess its biological properties in cell culture models. A stable CHO cell line producing >200 mg/L of rhLF was developed and established. rhLF was purified by a single-step cation-exchange chromatography procedure. The highly homogenous rhLF has a molecular weight of approximately 80 kDa. MALDI-TOF mass spectrometric analysis revealed N-linked, partially sialylated glycans at two glycosylation sites, typical for human milk LF. This novel rhLF showed a protective effect against oxidative stress in a similar manner to its natural counterpart. In addition, rhLF revealed a modulatory effect on cellular redox via upregulation of key antioxidant enzymes. These data imply that the CHO-derived rhLF is fully compatible with the native molecule, thus it has promise for human therapeutic applications. PMID:24070904

  19. Novel recombinant human lactoferrin: differential activation of oxidative stress related gene expression.

    PubMed

    Kruzel, Marian L; Actor, Jeffrey K; Zimecki, Michał; Wise, Jasen; Płoszaj, Paulina; Mirza, Shaper; Kruzel, Mark; Hwang, Shen-An; Ba, Xueqing; Boldogh, Istvan

    2013-12-01

    Lactoferrin, an iron-binding protein found in high concentrations in mammalian exocrine secretions, is an important component of the host defense system. It is also a major protein of the secondary granules of neutrophils from which is released upon activation. Due to its potential clinical utility, recombinant human lactoferrin (rhLF) has been produced in various eukaryotic expression systems; however, none of these are fully compatible with humans. Most of the biopharmaceuticals approved by the FDA for use in humans are produced in mammalian expression systems. The Chinese hamster ovary cells (CHO) have become the system of choice for proteins that require post-translational modifications, such as glycoproteins. The aim of this study was to scale-up expression and purification of rhLF in a CHO expression system, verify its glycan primary structure, and assess its biological properties in cell culture models. A stable CHO cell line producing >200mg/L of rhLF was developed and established. rhLF was purified by a single-step cation-exchange chromatography procedure. The highly homogenous rhLF has a molecular weight of approximately 80 kDa. MALDI-TOF mass spectrometric analysis revealed N-linked, partially sialylated glycans at two glycosylation sites, typical for human milk LF. This novel rhLF showed a protective effect against oxidative stress in a similar manner to its natural counterpart. In addition, rhLF revealed a modulatory effect on cellular redox via upregulation of key antioxidant enzymes. These data imply that the CHO-derived rhLF is fully compatible with the native molecule, thus it has promise for human therapeutic applications.

  20. WRKY proteins: signaling and regulation of expression during abiotic stress responses.

    PubMed

    Banerjee, Aditya; Roychoudhury, Aryadeep

    2015-01-01

    WRKY proteins are emerging players in plant signaling and have been thoroughly reported to play important roles in plants under biotic stress like pathogen attack. However, recent advances in this field do reveal the enormous significance of these proteins in eliciting responses induced by abiotic stresses. WRKY proteins act as major transcription factors, either as positive or negative regulators. Specific WRKY factors which help in the expression of a cluster of stress-responsive genes are being targeted and genetically modified to induce improved abiotic stress tolerance in plants. The knowledge regarding the signaling cascade leading to the activation of the WRKY proteins, their interaction with other proteins of the signaling pathway, and the downstream genes activated by them are altogether vital for justified targeting of the WRKY genes. WRKY proteins have also been considered to generate tolerance against multiple abiotic stresses with possible roles in mediating a cross talk between abiotic and biotic stress responses. In this review, we have reckoned the diverse signaling pattern and biological functions of WRKY proteins throughout the plant kingdom along with the growing prospects in this field of research. PMID:25879071

  1. WRKY Proteins: Signaling and Regulation of Expression during Abiotic Stress Responses

    PubMed Central

    Banerjee, Aditya

    2015-01-01

    WRKY proteins are emerging players in plant signaling and have been thoroughly reported to play important roles in plants under biotic stress like pathogen attack. However, recent advances in this field do reveal the enormous significance of these proteins in eliciting responses induced by abiotic stresses. WRKY proteins act as major transcription factors, either as positive or negative regulators. Specific WRKY factors which help in the expression of a cluster of stress-responsive genes are being targeted and genetically modified to induce improved abiotic stress tolerance in plants. The knowledge regarding the signaling cascade leading to the activation of the WRKY proteins, their interaction with other proteins of the signaling pathway, and the downstream genes activated by them are altogether vital for justified targeting of the WRKY genes. WRKY proteins have also been considered to generate tolerance against multiple abiotic stresses with possible roles in mediating a cross talk between abiotic and biotic stress responses. In this review, we have reckoned the diverse signaling pattern and biological functions of WRKY proteins throughout the plant kingdom along with the growing prospects in this field of research. PMID:25879071

  2. Protein S-nitrosylation in plants under abiotic stress: an overview.

    PubMed

    Romero-Puertas, María C; Rodríguez-Serrano, María; Sandalio, Luisa M

    2013-01-01

    Abiotic stress is one of the main problems affecting agricultural losses, and understanding the mechanisms behind plant tolerance and stress response will help us to develop new means of strengthening fruitful agronomy. The mechanisms of plant stress response are complex. Data obtained by experimental procedures are sometimes contradictory, depending on the species, strength, and timing applied. In recent years nitric oxide has been identified as a key signaling molecule involved in most plant responses to abiotic stress, either indirectly through gene activation or interaction with reactive oxygen species and hormones; or else directly, as a result of modifying enzyme activities mainly by nitration and S-nitrosylation. While the functional relevance of the S-nitrosylation of certain proteins has been assessed in response to biotic stress, it has yet to be characterized under abiotic stress. Here, we review initial works about S-nitrosylation in response to abiotic stress to conclude with a brief overview, and discuss further perspectives to obtain a clear outlook of the relevance of S-nitrosylation in plant response to abiotic stress.

  3. Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk.

    PubMed

    Kissoudis, Christos; van de Wiel, Clemens; Visser, Richard G F; van der Linden, Gerard

    2014-01-01

    Plants growing in their natural habitats are often challenged simultaneously by multiple stress factors, both abiotic and biotic. Research has so far been limited to responses to individual stresses, and understanding of adaptation to combinatorial stress is limited, but indicative of non-additive interactions. Omics data analysis and functional characterization of individual genes has revealed a convergence of signaling pathways for abiotic and biotic stress adaptation. Taking into account that most data originate from imposition of individual stress factors, this review summarizes these findings in a physiological context, following the pathogenesis timeline and highlighting potential differential interactions occurring between abiotic and biotic stress signaling across the different cellular compartments and at the whole plant level. Potential effects of abiotic stress on resistance components such as extracellular receptor proteins, R-genes and systemic acquired resistance will be elaborated, as well as crosstalk at the levels of hormone, reactive oxygen species, and redox signaling. Breeding targets and strategies are proposed focusing on either manipulation and deployment of individual common regulators such as transcription factors or pyramiding of non- (negatively) interacting components such as R-genes with abiotic stress resistance genes. We propose that dissection of broad spectrum stress tolerance conferred by priming chemicals may provide an insight on stress cross regulation and additional candidate genes for improving crop performance under combined stress. Validation of the proposed strategies in lab and field experiments is a first step toward the goal of achieving tolerance to combinatorial stress in crops. PMID:24904607

  4. Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk.

    PubMed

    Kissoudis, Christos; van de Wiel, Clemens; Visser, Richard G F; van der Linden, Gerard

    2014-01-01

    Plants growing in their natural habitats are often challenged simultaneously by multiple stress factors, both abiotic and biotic. Research has so far been limited to responses to individual stresses, and understanding of adaptation to combinatorial stress is limited, but indicative of non-additive interactions. Omics data analysis and functional characterization of individual genes has revealed a convergence of signaling pathways for abiotic and biotic stress adaptation. Taking into account that most data originate from imposition of individual stress factors, this review summarizes these findings in a physiological context, following the pathogenesis timeline and highlighting potential differential interactions occurring between abiotic and biotic stress signaling across the different cellular compartments and at the whole plant level. Potential effects of abiotic stress on resistance components such as extracellular receptor proteins, R-genes and systemic acquired resistance will be elaborated, as well as crosstalk at the levels of hormone, reactive oxygen species, and redox signaling. Breeding targets and strategies are proposed focusing on either manipulation and deployment of individual common regulators such as transcription factors or pyramiding of non- (negatively) interacting components such as R-genes with abiotic stress resistance genes. We propose that dissection of broad spectrum stress tolerance conferred by priming chemicals may provide an insight on stress cross regulation and additional candidate genes for improving crop performance under combined stress. Validation of the proposed strategies in lab and field experiments is a first step toward the goal of achieving tolerance to combinatorial stress in crops.

  5. Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk

    PubMed Central

    Kissoudis, Christos; van de Wiel, Clemens; Visser, Richard G. F.; van der Linden, Gerard

    2014-01-01

    Plants growing in their natural habitats are often challenged simultaneously by multiple stress factors, both abiotic and biotic. Research has so far been limited to responses to individual stresses, and understanding of adaptation to combinatorial stress is limited, but indicative of non-additive interactions. Omics data analysis and functional characterization of individual genes has revealed a convergence of signaling pathways for abiotic and biotic stress adaptation. Taking into account that most data originate from imposition of individual stress factors, this review summarizes these findings in a physiological context, following the pathogenesis timeline and highlighting potential differential interactions occurring between abiotic and biotic stress signaling across the different cellular compartments and at the whole plant level. Potential effects of abiotic stress on resistance components such as extracellular receptor proteins, R-genes and systemic acquired resistance will be elaborated, as well as crosstalk at the levels of hormone, reactive oxygen species, and redox signaling. Breeding targets and strategies are proposed focusing on either manipulation and deployment of individual common regulators such as transcription factors or pyramiding of non- (negatively) interacting components such as R-genes with abiotic stress resistance genes. We propose that dissection of broad spectrum stress tolerance conferred by priming chemicals may provide an insight on stress cross regulation and additional candidate genes for improving crop performance under combined stress. Validation of the proposed strategies in lab and field experiments is a first step toward the goal of achieving tolerance to combinatorial stress in crops. PMID:24904607

  6. Recent Advances in Utilizing Transcription Factors to Improve Plant Abiotic Stress Tolerance by Transgenic Technology

    PubMed Central

    Wang, Hongyan; Wang, Honglei; Shao, Hongbo; Tang, Xiaoli

    2016-01-01

    Agricultural production and quality are adversely affected by various abiotic stresses worldwide and this will be exacerbated by the deterioration of global climate. To feed a growing world population, it is very urgent to breed stress-tolerant crops with higher yields and improved qualities against multiple environmental stresses. Since conventional breeding approaches had marginal success due to the complexity of stress tolerance traits, the transgenic approach is now being popularly used to breed stress-tolerant crops. So identifying and characterizing the critical genes involved in plant stress responses is an essential prerequisite for engineering stress-tolerant crops. Far beyond the manipulation of single functional gene, engineering certain regulatory genes has emerged as an effective strategy now for controlling the expression of many stress-responsive genes. Transcription factors (TFs) are good candidates for genetic engineering to breed stress-tolerant crop because of their role as master regulators of many stress-responsive genes. Many TFs belonging to families AP2/EREBP, MYB, WRKY, NAC, bZIP have been found to be involved in various abiotic stresses and some TF genes have also been engineered to improve stress tolerance in model and crop plants. In this review, we take five large families of TFs as examples and review the recent progress of TFs involved in plant abiotic stress responses and their potential utilization to improve multiple stress tolerance of crops in the field conditions. PMID:26904044

  7. Recent Advances in Utilizing Transcription Factors to Improve Plant Abiotic Stress Tolerance by Transgenic Technology.

    PubMed

    Wang, Hongyan; Wang, Honglei; Shao, Hongbo; Tang, Xiaoli

    2016-01-01

    Agricultural production and quality are adversely affected by various abiotic stresses worldwide and this will be exacerbated by the deterioration of global climate. To feed a growing world population, it is very urgent to breed stress-tolerant crops with higher yields and improved qualities against multiple environmental stresses. Since conventional breeding approaches had marginal success due to the complexity of stress tolerance traits, the transgenic approach is now being popularly used to breed stress-tolerant crops. So identifying and characterizing the critical genes involved in plant stress responses is an essential prerequisite for engineering stress-tolerant crops. Far beyond the manipulation of single functional gene, engineering certain regulatory genes has emerged as an effective strategy now for controlling the expression of many stress-responsive genes. Transcription factors (TFs) are good candidates for genetic engineering to breed stress-tolerant crop because of their role as master regulators of many stress-responsive genes. Many TFs belonging to families AP2/EREBP, MYB, WRKY, NAC, bZIP have been found to be involved in various abiotic stresses and some TF genes have also been engineered to improve stress tolerance in model and crop plants. In this review, we take five large families of TFs as examples and review the recent progress of TFs involved in plant abiotic stress responses and their potential utilization to improve multiple stress tolerance of crops in the field conditions.

  8. Heterologous Overexpression of Poplar SnRK2 Genes Enhanced Salt Stress Tolerance in Arabidopsis thaliana

    PubMed Central

    Song, Xueqing; Yu, Xiang; Hori, Chiaki; Demura, Taku; Ohtani, Misato; Zhuge, Qiang

    2016-01-01

    Subfamily 2 of SNF1-related protein kinase (SnRK2) plays important roles in plant abiotic stress responses as a global positive regulator of abscisic acid signaling. In the genome of the model tree Populus trichocarpa, 12 SnRK2 genes have been identified, and some are upregulated by abiotic stresses. In this study, we heterologously overexpressed the PtSnRK2 genes in Arabidopsis thaliana and found that overexpression of PtSnRK2.5 and PtSnRK2.7 genes enhanced stress tolerance. In the PtSnRK2.5 and PtSnRK2.7 overexpressors, chlorophyll content, and root elongation were maintained under salt stress conditions, leading to higher survival rates under salt stress compared with those in the wild type. Transcriptomic analysis revealed that PtSnRK2.7 overexpression affected stress-related metabolic genes, including lipid metabolism and flavonoid metabolism, even under normal growth conditions. However, the stress response genes reported to be upregulated in Arabidopsis SRK2C/SnRK2.6 and wheat SnRK2.8 overexpressors were not changed by PtSnRK2.7 overexpression. Furthermore, PtSnRK2.7 overexpression widely and largely influenced the transcriptome in response to salt stress; genes related to transport activity, including anion transport-related genes, were characteristically upregulated, and a variety of metabolic genes were specifically downregulated. We also found that the salt stress response genes were greatly upregulated in the PtSnRK2.7 overexpressor. Taken together, poplar subclass 2 PtSnRK2 genes can modulate salt stress tolerance in Arabidopsis, through the activation of cellular signaling pathways in a different manner from that by herbal subclass 2 SnRK2 genes. PMID:27242819

  9. Allostatic Load: Single Parents, Stress-Related Health Issues, and Social Care

    ERIC Educational Resources Information Center

    Johner, Randy L.

    2007-01-01

    This article explores the possible relationships between allostatic load (AL) and stress-related health issues in the low-income single-parent population, using both a population health perspective (PHP) and a biological framework. A PHP identifies associations among such factors as gender, income, employment, and social support and their…

  10. School Performance, School Segregation, and Stress-Related Symptoms: Comparing Helsinki and Stockholm

    ERIC Educational Resources Information Center

    Modin, Bitte; Karvonen, Sakari; Rahkonen, Ossi; Östberg, Viveca

    2015-01-01

    This study investigates cross-cultural differences in the interrelation between school performance, school segregation, and stress-related health among 9th-grade students in the greater Stockholm and Helsinki areas. Contrary to the Swedish case, it has been proposed that school performance in Finland is largely independent of the specific school…

  11. Predictors of Stress-Related Growth in Parents of Children with ADHD

    ERIC Educational Resources Information Center

    Finzi-Dottan, Ricky; Triwitz, Yael Segal; Golubchik, Pavel

    2011-01-01

    This study was designed to investigate stress-related growth in 71 parents of children with ADHD, compared with 80 parents of non-clinical children. Adopting Tedeschi and Calhoun's (2004) theoretical framework for predicting personal growth, the study investigated the contribution of emotional intelligence (individual characteristics), social…

  12. Assessing the Validity of Self-Reported Stress-Related Growth

    ERIC Educational Resources Information Center

    Frazier, Patricia A.; Kaler, Matthew E.

    2006-01-01

    The purpose of these studies was to assess the validity of self-reported stress-related growth (SRG). In Study 1, individuals with breast cancer (n = 70) generally did not report greater well-being than a matched comparison group (n = 70). In Study 2, there were no significant differences in well-being between undergraduate students who said that…

  13. Abiotic immobilization/detoxification of recalcitrant organics

    SciTech Connect

    Whelan, G. ); Sims, R.C. )

    1990-11-01

    In contrast to many remedial techniques that simply transfer hazardous wastes from one part of the environment to another (e.g., off-site landfilling), in situ restoration may offer a safe and cost-effective solution through transformation (to less hazardous products) or destruction of recalcitrant organics. Currently, the US Environmental Protection Agency and US Department of Energy are encouraging research that addresses the development of innovative alternatives for hazardous-waste control. One such alternative is biotic and abiotic immobilization and detoxification of polynuclear aromatic hydrocarbons (PNAs) as associated with the soil humification process. This paper discusses (1) the possibility of using abiotic catalysis (with manganese dioxide) to polymerize organic substances; (2) aspects associated with the thermodynamics and kinetics of the process, and (3) a simple model upon which analyses may be based. 36 refs., 7 figs., 3 tabs.

  14. Oxidative stress-related genotypes, fruit and vegetable consumption and breast cancer risk.

    PubMed

    Li, Yulin; Ambrosone, Christine B; McCullough, Marjorie J; Ahn, Jiyoung; Stevens, Victoria L; Thun, Michael J; Hong, Chi-Chen

    2009-05-01

    Dietary antioxidants may interact with endogenous sources of pro- and antioxidants to impact breast cancer risk. A nested case-control study of postmenopausal women (505 cases and 502 controls) from the Cancer Prevention Study-II Nutrition Cohort was conducted to examine the interaction between oxidative stress-related genes and level of vegetable and fruit intake on breast cancer risk. Genetic variations in catalase (CAT) (C-262T), myeloperoxidase (MPO) (G-463A), endothelial nitric oxide synthase (NOS3) (G894T) and heme oxygenase-1 (HO-1) [(GT)(n) dinucleotide length polymorphism] were not associated with breast cancer risk. Women carrying the low-risk CAT CC [odds ratio (OR) = 0.75, 95% confidence interval (CI) 0.50-1.11], NOS3 TT (OR = 0.54, 95% CI = 0.26-1.12, P-trend = 0.10) or HO-1 S allele and MM genotype (OR = 0.56, 95% CI = 0.37-0.55), however, were found to be at non-significantly reduced breast cancer risk among those with high vegetable and fruit intake (> or = median; P-interactions = 0.04 for CAT, P = 0.005 for NOS3 and P = 0.07 for HO-1). Furthermore, those with > or = 4 putative low-risk alleles in total had significantly reduced risk (OR = 0.53, 95% CI = 0.32-0.88, P-interaction = 0.006) compared with those with < or = 2 low-risk alleles. In contrast, among women with low vegetable and fruit intake (< median), the low-risk CAT CC (OR = 1.33, 95% CI = 0.89-1.99), NOS3 TT (OR = 2.93, 95% CI = 1.38-6.22) and MPO AA (OR = 2.09, 95% CI = 0.73-5.95) genotypes appeared to be associated with raised breast cancer risk, with significantly increased risks observed in those with > or = 4 low-risk alleles compared with participants with < or = 2 low-risk alleles (OR = 1.77, 95% CI = 1.05-2.99, P-interaction = 0.006). Our results support the hypothesis that there are joint effects of endogenous and exogenous antioxidants.

  15. GmCYP82A3, a Soybean Cytochrome P450 Family Gene Involved in the Jasmonic Acid and Ethylene Signaling Pathway, Enhances Plant Resistance to Biotic and Abiotic Stresses.

    PubMed

    Yan, Qiang; Cui, Xiaoxia; Lin, Shuai; Gan, Shuping; Xing, Han; Dou, Daolong

    2016-01-01

    The cytochrome P450 monooxygenases (P450s) represent a large and important enzyme superfamily in plants. They catalyze numerous monooxygenation/hydroxylation reactions in biochemical pathways, P450s are involved in a variety of metabolic pathways and participate in the homeostasis of phytohormones. The CYP82 family genes specifically reside in dicots and are usually induced by distinct environmental stresses. However, their functions are largely unknown, especially in soybean (Glycine max L.). Here, we report the function of GmCYP82A3, a gene from soybean CYP82 family. Its expression was induced by Phytophthora sojae infection, salinity and drought stresses, and treatment with methyl jasmonate (MeJA) or ethephon (ETH). Its expression levels were consistently high in resistant cultivars. Transgenic Nicotiana benthamiana plants overexpressing GmCYP82A3 exhibited strong resistance to Botrytis cinerea and Phytophthora parasitica, and enhanced tolerance to salinity and drought stresses. Furthermore, transgenic plants were less sensitive to jasmonic acid (JA), and the enhanced resistance was accompanied with increased expression of the JA/ET signaling pathway-related genes. PMID:27588421

  16. GmCYP82A3, a Soybean Cytochrome P450 Family Gene Involved in the Jasmonic Acid and Ethylene Signaling Pathway, Enhances Plant Resistance to Biotic and Abiotic Stresses

    PubMed Central

    Yan, Qiang; Cui, Xiaoxia; Lin, Shuai; Gan, Shuping; Xing, Han; Dou, Daolong

    2016-01-01

    The cytochrome P450 monooxygenases (P450s) represent a large and important enzyme superfamily in plants. They catalyze numerous monooxygenation/hydroxylation reactions in biochemical pathways, P450s are involved in a variety of metabolic pathways and participate in the homeostasis of phytohormones. The CYP82 family genes specifically reside in dicots and are usually induced by distinct environmental stresses. However, their functions are largely unknown, especially in soybean (Glycine max L.). Here, we report the function of GmCYP82A3, a gene from soybean CYP82 family. Its expression was induced by Phytophthora sojae infection, salinity and drought stresses, and treatment with methyl jasmonate (MeJA) or ethephon (ETH). Its expression levels were consistently high in resistant cultivars. Transgenic Nicotiana benthamiana plants overexpressing GmCYP82A3 exhibited strong resistance to Botrytis cinerea and Phytophthora parasitica, and enhanced tolerance to salinity and drought stresses. Furthermore, transgenic plants were less sensitive to jasmonic acid (JA), and the enhanced resistance was accompanied with increased expression of the JA/ET signaling pathway-related genes. PMID:27588421

  17. The effects of anxiety and depression on stress-related growth among Chinese army recruits: Resilience and coping as mediators.

    PubMed

    Yu, Yongju; Peng, Li; Liu, Botao; Liu, Yunbo; Li, Min; Chen, Long; Xie, Junrun; Li, Jing; Li, Jiawen

    2016-09-01

    Stress-related growth can occur after various traumas or stressful events. In order to investigate how anxiety and depression relate to stress-related growth, this study was conducted with 443 Chinese army recruits who had just finished a 3-month recruit training program. Path analyses revealed that resilience and positive/negative coping partially mediated the effect of anxiety on perceived stress-related growth, while negative coping fully mediated the relationship between depression and perceived stress-related growth. Moreover, positive coping partially carried the influence of resilience on perceived stress-related growth. Anxiety and depression may be potential targets for intervention to enhance the development of stress-related growth among Chinese army recruits.

  18. Identification of Cassava MicroRNAs under Abiotic Stress.

    PubMed

    Ballén-Taborda, Carolina; Plata, Germán; Ayling, Sarah; Rodríguez-Zapata, Fausto; Becerra Lopez-Lavalle, Luis Augusto; Duitama, Jorge; Tohme, Joe

    2013-01-01

    The study of microRNAs (miRNAs) in plants has gained significant attention in recent years due to their regulatory role during development and in response to biotic and abiotic stresses. Although cassava (Manihot esculenta Crantz) is tolerant to drought and other adverse conditions, most cassava miRNAs have been predicted using bioinformatics alone or through sequencing of plants challenged by biotic stress. Here, we use high-throughput sequencing and different bioinformatics methods to identify potential cassava miRNAs expressed in different tissues subject to heat and drought conditions. We identified 60 miRNAs conserved in other plant species and 821 potential cassava-specific miRNAs. We also predicted 134 and 1002 potential target genes for these two sets of sequences. Using real time PCR, we verified the condition-specific expression of 5 cassava small RNAs relative to a non-stress control. We also found, using publicly available expression data, a significantly lower expression of the predicted target genes of conserved and nonconserved miRNAs under drought stress compared to other cassava genes. Gene Ontology enrichment analysis along with condition specific expression of predicted miRNA targets, allowed us to identify several interesting miRNAs which may play a role in stress-induced posttranscriptional regulation in cassava and other plants. PMID:24328029

  19. Identification of Cassava MicroRNAs under Abiotic Stress

    PubMed Central

    Ballén-Taborda, Carolina; Plata, Germán; Ayling, Sarah; Rodríguez-Zapata, Fausto; Tohme, Joe

    2013-01-01

    The study of microRNAs (miRNAs) in plants has gained significant attention in recent years due to their regulatory role during development and in response to biotic and abiotic stresses. Although cassava (Manihot esculenta Crantz) is tolerant to drought and other adverse conditions, most cassava miRNAs have been predicted using bioinformatics alone or through sequencing of plants challenged by biotic stress. Here, we use high-throughput sequencing and different bioinformatics methods to identify potential cassava miRNAs expressed in different tissues subject to heat and drought conditions. We identified 60 miRNAs conserved in other plant species and 821 potential cassava-specific miRNAs. We also predicted 134 and 1002 potential target genes for these two sets of sequences. Using real time PCR, we verified the condition-specific expression of 5 cassava small RNAs relative to a non-stress control. We also found, using publicly available expression data, a significantly lower expression of the predicted target genes of conserved and nonconserved miRNAs under drought stress compared to other cassava genes. Gene Ontology enrichment analysis along with condition specific expression of predicted miRNA targets, allowed us to identify several interesting miRNAs which may play a role in stress-induced posttranscriptional regulation in cassava and other plants. PMID:24328029

  20. Identification of Cassava MicroRNAs under Abiotic Stress.

    PubMed

    Ballén-Taborda, Carolina; Plata, Germán; Ayling, Sarah; Rodríguez-Zapata, Fausto; Becerra Lopez-Lavalle, Luis Augusto; Duitama, Jorge; Tohme, Joe

    2013-01-01

    The study of microRNAs (miRNAs) in plants has gained significant attention in recent years due to their regulatory role during development and in response to biotic and abiotic stresses. Although cassava (Manihot esculenta Crantz) is tolerant to drought and other adverse conditions, most cassava miRNAs have been predicted using bioinformatics alone or through sequencing of plants challenged by biotic stress. Here, we use high-throughput sequencing and different bioinformatics methods to identify potential cassava miRNAs expressed in different tissues subject to heat and drought conditions. We identified 60 miRNAs conserved in other plant species and 821 potential cassava-specific miRNAs. We also predicted 134 and 1002 potential target genes for these two sets of sequences. Using real time PCR, we verified the condition-specific expression of 5 cassava small RNAs relative to a non-stress control. We also found, using publicly available expression data, a significantly lower expression of the predicted target genes of conserved and nonconserved miRNAs under drought stress compared to other cassava genes. Gene Ontology enrichment analysis along with condition specific expression of predicted miRNA targets, allowed us to identify several interesting miRNAs which may play a role in stress-induced posttranscriptional regulation in cassava and other plants.

  1. Relevance of proteomic investigations in plant abiotic stress physiology.

    PubMed

    Hakeem, Khalid Rehman; Chandna, Ruby; Ahmad, Parvaiz; Iqbal, Muhammad; Ozturk, Munir

    2012-11-01

    Plant growth and productivity are influenced by various abiotic stresses. Stressful conditions may lead to delays in seed germination, reduced seedling growth, and decreased crop yields. Plants respond to environmental stresses via differential expression of a subset of genes, which results in changes in omic compositions, such as transcriptome, proteome, and metabolome. Since the development of modern biotechnology, various research projects have been carried out to understand the approaches that plants have adopted to overcome environmental stresses. Advancements in omics have made functional genomics easy to understand. Since the fundamentals of classical genomics were unable to clear up confusion related to the functional aspects of the metabolic processes taking place during stress conditions, new fields have been designed and are known as omics. Proteomics, the analysis of genomic complements of proteins, has caused a flurry of activity in the past few years. It defines protein functions in cells and explains how those protein functions respond to changing environmental conditions. The ability of crop plants to cope up with the variety of environmental stresses depends on a number of changes in their proteins, which may be up- and downregulated as a result of altered gene expression. Most of these molecules display an essential function, either in the regulation of the response (e.g., components of the signal transduction pathway), or in the adaptation process (e.g., enzymes involved in stress repair and degradation of damaged cellular contents), allowing plants to recover and survive the stress. Many of these proteins are constitutively expressed under normal conditions, but when under stress, they undergo a modification of their expression levels. This review will explain how proteomics can help in elucidating important plant processes in response to various abiotic stresses.

  2. Overexpression of Arabidopsis molybdenum cofactor sulfurase gene confers drought tolerance in maize (Zea mays L.).

    PubMed

    Lu, Yao; Li, Yajun; Zhang, Jiachang; Xiao, Yitao; Yue, Yuesen; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu

    2013-01-01

    Abscisic acid (ABA) is a key component of the signaling system that integrates plant adaptive responses to abiotic stress. Overexpression of Arabidopsis molybdenum cofactor sulfurase gene (LOS5) in maize markedly enhanced the expression of ZmAO and aldehyde oxidase (AO) activity, leading to ABA accumulation and increased drought tolerance. Transgenic maize (Zea mays L.) exhibited the expected reductions in stomatal aperture, which led to decreased water loss and maintenance of higher relative water content (RWC) and leaf water potential. Also, transgenic maize subjected to drought treatment exhibited lower leaf wilting, electrolyte leakage, malondialdehyde (MDA) and H(2)O(2) content, and higher activities of antioxidative enzymes and proline content compared to wild-type (WT) maize. Moreover, overexpression of LOS5 enhanced the expression of stress-regulated genes such as Rad 17, NCED1, CAT1, and ZmP5CS1 under drought stress conditions, and increased root system development and biomass yield after re-watering. The increased drought tolerance in transgenic plants was associated with ABA accumulation via activated AO and expression of stress-related gene via ABA induction, which sequentially induced a set of favorable stress-related physiological and biochemical responses.

  3. Overexpression of Arabidopsis Molybdenum Cofactor Sulfurase Gene Confers Drought Tolerance in Maize (Zea mays L.)

    PubMed Central

    Zhang, Jiachang; Xiao, Yitao; Yue, Yuesen; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu

    2013-01-01

    Abscisic acid (ABA) is a key component of the signaling system that integrates plant adaptive responses to abiotic stress. Overexpression of Arabidopsis molybdenum cofactor sulfurase gene (LOS5) in maize markedly enhanced the expression of ZmAO and aldehyde oxidase (AO) activity, leading to ABA accumulation and increased drought tolerance. Transgenic maize (Zea mays L.) exhibited the expected reductions in stomatal aperture, which led to decreased water loss and maintenance of higher relative water content (RWC) and leaf water potential. Also, transgenic maize subjected to drought treatment exhibited lower leaf wilting, electrolyte leakage, malondialdehyde (MDA) and H2O2 content, and higher activities of antioxidative enzymes and proline content compared to wild-type (WT) maize. Moreover, overexpression of LOS5 enhanced the expression of stress-regulated genes such as Rad 17, NCED1, CAT1, and ZmP5CS1 under drought stress conditions, and increased root system development and biomass yield after re-watering. The increased drought tolerance in transgenic plants was associated with ABA accumulation via activated AO and expression of stress-related gene via ABA induction, which sequentially induced a set of favorable stress-related physiological and biochemical responses. PMID:23326325

  4. Regulatory roles of serotonin and melatonin in abiotic stress tolerance in plants

    PubMed Central

    Kaur, Harmeet; Mukherjee, Soumya; Baluska, Frantisek; Bhatla, Satish C

    2015-01-01

    Understanding the physiological and biochemical basis of abiotic stress tolerance in plants has always been one of the major aspects of research aiming to enhance plant productivity in arid and semi-arid cultivated lands all over the world. Growth of stress-tolerant transgenic crops and associated agricultural benefits through increased productivity, and related ethical issues, are also the major concerns of current research in various laboratories. Interesting data on the regulation of abiotic stress tolerance in plants by serotonin and melatonin has accumulated in the recent past. These two indoleamines possess antioxidative and growth-inducing properties, thus proving beneficial for stress acclimatization. Present review shall focus on the modes of serotonin and melatonin-induced regulation of abiotic stress tolerance in plants. Complex molecular interactions of serotonin and auxin-responsive genes have suggested their antagonistic nature. Data from genomic and metabolomic analyses of melatonin-induced abiotic stress signaling have lead to an understanding of the regulation of stress tolerance through the modulation of transcription factors, enzymes and various signaling molecules. Melatonin, nitric oxide (NO) and calmodulin interactions have provided new avenues for research on the molecular aspects of stress physiology in plants. Investigations on the characterization of receptors associated with serotonin and melatonin responses, are yet to be undertaken in plants. Patenting of biotechnological inventions pertaining to serotonin and melatonin formulations (through soil application or foliar spray) are expected to be some of the possible ways to regulate abiotic stress tolerance in plants. The present review, thus, summarizes the regulatory roles of serotonin and melatonin in modulating the signaling events accompanying abiotic stress in plants. PMID:26633566

  5. Regulatory roles of serotonin and melatonin in abiotic stress tolerance in plants.

    PubMed

    Kaur, Harmeet; Mukherjee, Soumya; Baluska, Frantisek; Bhatla, Satish C

    2015-01-01

    Understanding the physiological and biochemical basis of abiotic stress tolerance in plants has always been one of the major aspects of research aiming to enhance plant productivity in arid and semi-arid cultivated lands all over the world. Growth of stress-tolerant transgenic crops and associated agricultural benefits through increased productivity, and related ethical issues, are also the major concerns of current research in various laboratories. Interesting data on the regulation of abiotic stress tolerance in plants by serotonin and melatonin has accumulated in the recent past. These two indoleamines possess antioxidative and growth-inducing properties, thus proving beneficial for stress acclimatization. Present review shall focus on the modes of serotonin and melatonin-induced regulation of abiotic stress tolerance in plants. Complex molecular interactions of serotonin and auxin-responsive genes have suggested their antagonistic nature. Data from genomic and metabolomic analyses of melatonin-induced abiotic stress signaling have lead to an understanding of the regulation of stress tolerance through the modulation of transcription factors, enzymes and various signaling molecules. Melatonin, nitric oxide (NO) and calmodulin interactions have provided new avenues for research on the molecular aspects of stress physiology in plants. Investigations on the characterization of receptors associated with serotonin and melatonin responses, are yet to be undertaken in plants. Patenting of biotechnological inventions pertaining to serotonin and melatonin formulations (through soil application or foliar spray) are expected to be some of the possible ways to regulate abiotic stress tolerance in plants. The present review, thus, summarizes the regulatory roles of serotonin and melatonin in modulating the signaling events accompanying abiotic stress in plants.

  6. SUMO-conjugating enzyme (Sce) and FK506-binding protein (FKBP) encoding rice (Oryza sativa L.) genes: genome-wide analysis, expression studies and evidence for their involvement in abiotic stress response.

    PubMed

    Nigam, Neha; Singh, Amanjot; Sahi, Chandan; Chandramouli, Anupama; Grover, Anil

    2008-04-01

    We report an in-depth characterization of two major stress proteins namely SUMO-conjugating enzyme (Sce) and peptidyl prolyl cis-trans isomerase (PPIase) in rice (Oryza sativa L.). Sce mediates addition of SUMO group to various cell proteins, through process referred to as SUMOylation. Rice nuclear genome has two putative genes encoding the Sce protein (OsSce1 and OsSce2). PCR-amplified full-length OsSce1 cDNA functionally complemented the growth defect in yeast cells lacking the equivalent Ubc9 protein (ScDeltaubc9). RT-PCR analysis showed that transcript levels of OsSce1 and OsSce2 in rice seedlings were regulated by temperature stress. OsSce1 protein was localized to the nucleus in onion epidermal cells as evidenced by the transient GFP expression analysis following micro-projectile gun-based shooting of an OsSce1-GFP fusion construct. PPIase proteins assist molecular chaperones in reactions associated with protein folding and protein transport across membrane. There are 23 putative genes encoding for FK506-binding proteins (FKBPs; specific class of PPIase) in rice genome. OsFKBP20 cDNA was isolated as a stress-inducible EST clone. Largest ORF of 561 bases in OsFKBP20 showed characteristic FK506-binding domain at N-terminus and a coiled-coil motif at C-terminus. RNA expression analysis indicated that OsFKBP20 transcript is heat-inducible. OsFKBP20 over-expression in yeast endowed capacity of high temperature tolerance to yeast cells. Yeast two-hybrid analysis showed that OsSce1 protein physically interacts with the OsFKBP20 protein. It is thus proposed that OsSce1 and OsFKBP20 proteins in concert mediate the stress response of rice plants. PMID:18219493

  7. Transcriptome analysis in Brassica rapa under the abiotic stresses using Brassica 24K oligo microarray.

    PubMed

    Lee, Sang-Choon; Lim, Myung-Ho; Kim, Jin A; Lee, Soo-In; Kim, Jung Sun; Jin, Mina; Kwon, Soo-Jin; Mun, Jeong-Hwan; Kim, Yeon-Ki; Kim, Hyun Uk; Hur, Yoonkang; Park, Beom-Seok

    2008-12-31

    Genome wide transcription analysis in response to stresses is essential to provide the basis of effective engineering strategies to improve stress tolerance in crop plants. In order to perform transcriptome analysis in Brassica rapa, we constructed a B. rapa oligo microarray, KBGP-24K, using sequence information from approximately 24,000 unigenes and analyzed cold (4 degrees C), salt (250 mM NaCl), and drought (air-dry) treated B. rapa plants. Among the B. rapa unigenes represented on the microarray, 417 (1.7%), 202 (0.8%), and 738 (3.1%) were identified as responsive genes that were differently expressed 5-fold or more at least once during a 48-h treatment with cold, salt, and drought, respectively. These results were confirmed by RT-PCR analysis. In the abiotic stress responsive genes identified, we found 56 transcription factor genes and 60 commonly responsive genes. It suggests that various transcriptional regulatory mechanisms and common signaling pathway are working together under the abiotic stresses in B. rapa. In conclusion, our new developed 24K oligo microarray will be a useful tool for transcriptome profiling and this work will provide valuable insight in the response to abiotic stress in B. rapa.

  8. Cognitive Disruptions in Stress-Related Psychiatric Disorders: A Role for Corticotropin Releasing Factor (CRF)

    PubMed Central

    Bangasser, Debra A.; Kawasumi, Yushi

    2015-01-01

    Stress is a potential etiology contributor to both post-traumatic stress disorders (PTSD) and major depression. One stress-related neuropeptide that is hypersecreted in these disorders is corticotropin releasing factor (CRF). Dysregulation of CRF has long been linked to the emotion and mood symptoms that characterize PTSD and depression. However, the idea that CRF also mediates the cognitive disruptions observed in patients with these disorders has received less attention. Here we review literature indicating that CRF can alter cognitive functions. Detailed are anatomical studies revealing that CRF is poised to modulate regions required for learning and memory. We also describe preclinical behavioral studies that demonstrate CRF’s ability to alter fear conditioning, impair memory consolidation, and alter a number of executive functions, including attention and cognitive flexibility. The implications of these findings for the etiology and treatment of the cognitive impairments observed in stress-related psychiatric disorders are described. PMID:25888454

  9. Targeting the neuropeptide Y system in stress-related psychiatric disorders

    PubMed Central

    Enman, Nicole M.; Sabban, Esther L.; McGonigle, Paul; Van Bockstaele, Elisabeth J.

    2014-01-01

    Repeated, extreme, or traumatic stressors can elicit pathological effects leading to many negative physical and psychological outcomes. Stressors can precipitate the onset of psychiatric diseases, or exacerbate pre-existing disorders including various anxiety and mood disorders. As stressors can negatively impact human psychiatric health, it is essential to identify neurochemicals that may confer protection from the negative sequelae of repeated or extreme stress exposure. Elucidating the neurobiological underpinnings of stress resilience will enhance our ability to promote resilience to, or recovery from, stress-related psychiatric disease. Herein, we will review the evidence for neuropeptide Y as an endogenous mediator of resilience and its potential relevance for the treatment of stress-related psychiatric diseases. PMID:25506604

  10. Interactions between immune, stress-related hormonal and cardiovascular systems following strenuous physical exercise.

    PubMed

    Menicucci, Danilo; Piarulli, Andrea; Mastorci, Francesca; Sebastiani, Laura; Laurino, Marco; Garbella, Erika; Castagnini, Cinzia; Pellegrini, Silvia; Lubrano, Valter; Bernardi, Giulio; Metelli, Maria; Bedini, Remo; L'abbate, Antonio; Pingitore, Alessandro; Gemignani, Angelo

    2013-09-01

    Physical exercise represents a eustress condition that promotes rapid coordinated adjustments in the immune, stress-related hormonal and cardiovascular systems, for maintaining homeostasis in response to increased metabolic demands. Compared to the tight multisystem coordination during exercise, evidence of between-systems cross talk in the early post exercise is still lacking. This study was aimed at identifying possible interactions between multiple systems following strenuous physical exercise (Ironman race) performed by twenty well-trained triathletes. Cardiac hemodynamics, left ventricle systolic and diastolic function and heart rate variability were measured along with plasma concentrations of immune messengers (cytokines and C-reactive protein) and stress-related hormones (catecholamines and cortisol) both 24h before and within 20 min after the race. Observed changes in antiinflammatory pathways, stress-related hormones and cardiovascular function were in line with previous findings; moreover, correlating parameters' changes (post versus pre-race) highlighted a dependence of cardiovascular function on the post-race biohumoral milieu: in particular, individual post-race variations of heart rate and diastolic function were strongly correlated with individual variations of anti-inflammatory cytokines, while individual baroreflex sensitivity changes were linked to IL-8 increase. Multiple correlations between anti-inflammatory cytokines and catecholamines were also found according with the autonomic regulation of immune function. Observed post-race cytokine and hormone levels were presumptively representative of the increases reached at the effort end while the cardiovascular parameters after the race were measured during the cardiovascular recovery; thus, results suggest that sustained strenuous exercise produced a stereotyped cardiovascular early recovery, whose speed could be conditioned by the immune and stress-related hormonal milieu.

  11. MicroRNAs As Potential Targets for Abiotic Stress Tolerance in Plants

    PubMed Central

    Shriram, Varsha; Kumar, Vinay; Devarumath, Rachayya M.; Khare, Tushar S.; Wani, Shabir H.

    2016-01-01

    The microRNAs (miRNAs) are small (20–24 nt) sized, non-coding, single stranded riboregulator RNAs abundant in higher organisms. Recent findings have established that plants assign miRNAs as critical post-transcriptional regulators of gene expression in sequence-specific manner to respond to numerous abiotic stresses they face during their growth cycle. These small RNAs regulate gene expression via translational inhibition. Usually, stress induced miRNAs downregulate their target mRNAs, whereas, their downregulation leads to accumulation and function of positive regulators. In the past decade, investigations were mainly aimed to identify plant miRNAs, responsive to individual or multiple environmental factors, profiling their expression patterns and recognizing their roles in stress responses and tolerance. Altered expressions of miRNAs implicated in plant growth and development have been reported in several plant species subjected to abiotic stress conditions such as drought, salinity, extreme temperatures, nutrient deprivation, and heavy metals. These findings indicate that miRNAs may hold the key as potential targets for genetic manipulations to engineer abiotic stress tolerance in crop plants. This review is aimed to provide recent updates on plant miRNAs, their biogenesis and functions, target prediction and identification, computational tools and databases available for plant miRNAs, and their roles in abiotic stress-responses and adaptive mechanisms in major crop plants. Besides, the recent case studies for overexpressing the selected miRNAs for miRNA-mediated enhanced abiotic stress tolerance of transgenic plants have been discussed. PMID:27379117

  12. Abiotic stress QTL in lettuce crop–wild hybrids: comparing greenhouse and field experiments

    PubMed Central

    Hartman, Yorike; Hooftman, Danny A P; Uwimana, Brigitte; Schranz, M Eric; van de Wiel, Clemens C M; Smulders, Marinus J M; Visser, Richard G F; Michelmore, Richard W; van Tienderen, Peter H

    2014-01-01

    The development of stress-tolerant crops is an increasingly important goal of current crop breeding. A higher abiotic stress tolerance could increase the probability of introgression of genes from crops to wild relatives. This is particularly relevant to the discussion on the risks of new GM crops that may be engineered to increase abiotic stress resistance. We investigated abiotic stress QTL in greenhouse and field experiments in which we subjected recombinant inbred lines from a cross between cultivated Lactuca sativa cv. Salinas and its wild relative L. serriola to drought, low nutrients, salt stress, and aboveground competition. Aboveground biomass at the end of the rosette stage was used as a proxy for the performance of plants under a particular stress. We detected a mosaic of abiotic stress QTL over the entire genome with little overlap between QTL from different stresses. The two QTL clusters that were identified reflected general growth rather than specific stress responses and colocated with clusters found in earlier studies for leaf shape and flowering time. Genetic correlations across treatments were often higher among different stress treatments within the same experiment (greenhouse or field), than among the same type of stress applied in different experiments. Moreover, the effects of the field stress treatments were more correlated with those of the greenhouse competition treatments than to those of the other greenhouse stress experiments, suggesting that competition rather than abiotic stress is a major factor in the field. In conclusion, the introgression risk of stress tolerance (trans-)genes under field conditions cannot easily be predicted based on genomic background selection patterns from controlled QTL experiments in greenhouses, especially field data will be needed to assess potential (negative) ecological effects of introgression of these transgenes into wild relatives. PMID:25360276

  13. MicroRNAs As Potential Targets for Abiotic Stress Tolerance in Plants.

    PubMed

    Shriram, Varsha; Kumar, Vinay; Devarumath, Rachayya M; Khare, Tushar S; Wani, Shabir H

    2016-01-01

    The microRNAs (miRNAs) are small (20-24 nt) sized, non-coding, single stranded riboregulator RNAs abundant in higher organisms. Recent findings have established that plants assign miRNAs as critical post-transcriptional regulators of gene expression in sequence-specific manner to respond to numerous abiotic stresses they face during their growth cycle. These small RNAs regulate gene expression via translational inhibition. Usually, stress induced miRNAs downregulate their target mRNAs, whereas, their downregulation leads to accumulation and function of positive regulators. In the past decade, investigations were mainly aimed to identify plant miRNAs, responsive to individual or multiple environmental factors, profiling their expression patterns and recognizing their roles in stress responses and tolerance. Altered expressions of miRNAs implicated in plant growth and development have been reported in several plant species subjected to abiotic stress conditions such as drought, salinity, extreme temperatures, nutrient deprivation, and heavy metals. These findings