Science.gov

Sample records for abiotic uvi reduction

  1. Abiotic Reductive Immobilization of U(VI) by Biogenic Mackinawite

    SciTech Connect

    Veeramani, Harish; Scheinost, Andreas; Monsegue, Niven; Qafoku, Nikolla; Kukkadapu, Ravi K.; Newville, Mathew; Lanzirotti, Anthony; Pruden, Amy; Murayama, Mitsuhiro; Hochella, Michael F.

    2013-03-01

    During subsurface bioremediation of uranium-contaminated sites, indigenous metal and sulfate-reducing bacteria may utilize a variety of electron acceptors, including ferric iron and sulfate that could lead to the formation of various biogenic minerals in-situ. Sulfides, as well as structural and adsorbed Fe(II) associated with biogenic Fe(II)-sulfide phases, can potentially catalyze abiotic U6+ reduction via direct electron transfer processes. In the present work, the propensity of biogenic mackinawite (Fe1+xS, x = 0 to 0.11) to reduce U6+ abiotically was investigated. The biogenic mackinawite produced by Shewanella putrefaciens strain CN32 was characterized by employing a suite of analytical techniques including TEM, SEM, XAS and Mössbauer analyses. Nanoscale and bulk analyses (microscopic and spectroscopic techniques, respectively) of biogenic mackinawite after exposure to U6+ indicate the formation of nanoparticulate UO2. This study suggests the relevance of Fe(II) and sulfide bearing biogenic minerals in mediating abiotic U6+ reduction, an alternative pathway in addition to direct enzymatic U6+ reduction.

  2. Abiotic U(VI) Reduction by Sorbed Fe(II) on Natural Sediments

    SciTech Connect

    Fox, Patricia M.; Davis, James A.; Kukkadapu, Ravi K.; Singer, David M.; Bargar, John R.; Williams, Kenneth H.

    2013-09-15

    Laboratory experiments were performed as a function of aqueous Fe(II) concentration to determine the uptake and oxidation of Fe(II), and Fe(II)-mediated abiotic reduction of U(VI) by aquifer sediments from the Rifle IFRC field site in Colorado, USA. Mössbauer analysis of the sediments spiked with aqueous 57Fe(II) showed that 57Fe(II) was oxidized on the mineral surfaces to 57Fe(III) and most likely formed a nano-particulate Fe(III)-oxide or ferrihydrite-like phase. The extent of 57Fe oxidation decreased with increasing 57Fe(II) uptake, such that 100 % was oxidized at 7.3 μmol/g Fe and 52 % at 39.6 μmol/g Fe, indicating that the sediments had a finite capacity for oxidation of Fe(II). Abiotic U(VI) reduction was observed by XANES spectroscopy only when the Fe(II) uptake was greater than approximately 20 μmol/g and surface-bound Fe(II) was present. The level of U(VI) reduction increased with increasing Fe(II)- loading above this level to a maximum of 18 and 36 % U(IV) at pH 7.2 (40.7 μmol/g Fe) and 8.3 (56.1 μmol/g Fe), respectively in the presence of 400 ppm CO2. Greater U(VI) reduction was observed in CO2 free systems [up to 44 and 54 % at pH 7.2 (17.3 μmol/g Fe) and 8.3 (54.8 μmol/g Fe), respectively] compared to 400 ppm CO2 systems, presumably due to differences in aqueous U(VI) speciation. While pH affects the amount of Fe(II) uptake onto the solid phase, with greater Fe(II) uptake at higher pH, similar amounts of U(VI) reduction were observed at pH 7.2 and 8.3 for a similar Fe(II) uptake. Thus, it appears that abiotic U(VI) reduction is controlled primarily by Fe(II) concentration and aqueous U(VI) speciation. The range of Fe(II) loadings tested in this study are within the range observed in bioreduced sediments, suggesting that Fe(II)-mediated abiotic U(VI) reduction may indeed play a role in field settings.

  3. Abiotic U(VI) reduction by sorbed Fe(II) on natural sediments

    NASA Astrophysics Data System (ADS)

    Fox, Patricia M.; Davis, James A.; Kukkadapu, Ravi; Singer, David M.; Bargar, John; Williams, Kenneth H.

    2013-09-01

    Laboratory experiments were performed as a function of aqueous Fe(II) concentration to determine the uptake and oxidation of Fe(II), and Fe(II)-mediated abiotic reduction of U(VI) by aquifer sediments from the DOE Rifle field research site in Colorado, USA. Mössbauer analysis of the sediments spiked with aqueous 57Fe(II) showed that 57Fe(II) was oxidized on the mineral surfaces to 57Fe(III) and most likely formed a nano-particulate Fe(III)-oxide or ferrihydrite-like phase. The extent of 57Fe oxidation decreased with increasing 57Fe(II) uptake, such that 98% was oxidized at 7.3 μmol/g Fe and 41% at 39.6 μmol/g Fe, indicating that the sediments had a limited capacity for oxidation of Fe(II). Abiotic U(VI) reduction was observed by XANES spectroscopy only when the Fe(II) uptake was greater than approximately 20 μmol/g and surface-bound Fe(II) was present, possibly as oligomeric Fe(II) surface species. The degree of U(VI) reduction increased with increasing Fe(II)-loading above this level to a maximum of 18% and 36% U(IV) at pH 7.2 (40.7 μmol/g Fe) and 8.3 (56.1 μmol/g Fe), respectively in the presence of 400 ppm CO2. Greater U(VI) reduction was observed in CO2-free systems [up to 44% and 54% at pH 7.2 (17.3 μmol/g Fe) and 8.3 (54.8 μmol/g Fe), respectively] compared to 400 ppm CO2 systems, presumably due to differences in aqueous U(VI) speciation. While pH affects the amount of Fe(II) uptake onto the solid phase, with greater Fe(II) uptake at higher pH, similar amounts of U(VI) reduction were observed at pH 7.2 and 8.3 for a similar Fe(II) uptake. Thus, it appears that abiotic U(VI) reduction is controlled primarily by sorbed Fe(II) concentration and aqueous U(VI) speciation. The range of Fe(II) loadings tested in this study are within the range observed in biostimulation experiments at the Rifle site, suggesting that Fe(II)-mediated abiotic U(VI) reduction could play a significant role in field settings.

  4. Products of abiotic U(VI) reduction by biogenic magnetite and vivianite

    NASA Astrophysics Data System (ADS)

    Veeramani, Harish; Alessi, Daniel S.; Suvorova, Elena I.; Lezama-Pacheco, Juan S.; Stubbs, Joanne E.; Sharp, Jonathan O.; Dippon, Urs; Kappler, Andreas; Bargar, John R.; Bernier-Latmani, Rizlan

    2011-05-01

    Reductive immobilization of uranium by the stimulation of dissimilatory metal-reducing bacteria (DMRB) has been investigated as a remediation strategy for subsurface U(VI) contamination. In those environments, DMRB may utilize a variety of electron acceptors, such as ferric iron which can lead to the formation of reactive biogenic Fe(II) phases. These biogenic phases could potentially mediate abiotic U(VI) reduction. In this work, the DMRB Shewanella putrefaciens strain CN32 was used to synthesize two biogenic Fe(II)-bearing minerals: magnetite (a mixed Fe(II)-Fe(III) oxide) and vivianite (an Fe(II)-phosphate). Analysis of abiotic redox interactions between these biogenic minerals and U(VI) showed that both biogenic minerals reduced U(VI) completely. XAS analysis indicates significant differences in speciation of the reduced uranium after reaction with the two biogenic Fe(II)-bearing minerals. While biogenic magnetite favored the formation of structurally ordered, crystalline UO 2, biogenic vivianite led to the formation of a monomeric U(IV) species lacking U-U associations in the corresponding EXAFS spectrum. To investigate the role of phosphate in the formation of monomeric U(IV) such as sorbed U(IV) species complexed by mineral surfaces, versus a U(IV) mineral, uranium was reduced by biogenic magnetite that was pre-sorbed with phosphate. XAS analysis of this sample also revealed the formation of monomeric U(IV) species suggesting that the presence of phosphate hinders formation of UO 2. This work shows that U(VI) reduction products formed during in situ biostimulation can be influenced by the mineralogical and geochemical composition of the surrounding environment, as well as by the interfacial solute-solid chemistry of the solid-phase reductant.

  5. Influence of magnetite stoichiometry on U(VI) reduction.

    PubMed

    Latta, Drew E; Gorski, Christopher A; Boyanov, Maxim I; O'Loughlin, Edward J; Kemner, Kenneth M; Scherer, Michelle M

    2012-01-17

    Hexavalent uranium (U(VI)) can be reduced enzymatically by various microbes and abiotically by Fe(2+)-bearing minerals, including magnetite, of interest because of its formation from Fe(3+) (oxy)hydroxides via dissimilatory iron reduction. Magnetite is also a corrosion product of iron metal in suboxic and anoxic conditions and is likely to form during corrosion of steel waste containers holding uranium-containing spent nuclear fuel. Previous work indicated discrepancies in the extent of U(VI) reduction by magnetite. Here, we demonstrate that the stoichiometry (the bulk Fe(2+)/Fe(3+) ratio, x) of magnetite can, in part, explain the observed discrepancies. In our studies, magnetite stoichiometry significantly influenced the extent of U(VI) reduction by magnetite. Stoichiometric and partially oxidized magnetites with x ≥ 0.38 reduced U(VI) to U(IV) in UO(2) (uraninite) nanoparticles, whereas with more oxidized magnetites (x < 0.38) and maghemite (x = 0), sorbed U(VI) was the dominant phase observed. Furthermore, as with our chemically synthesized magnetites (x ≥ 0.38), nanoparticulate UO(2) was formed from reduction of U(VI) in a heat-killed suspension of biogenic magnetite (x = 0.43). X-ray absorption and Mössbauer spectroscopy results indicate that reduction of U(VI) to U(IV) is coupled to oxidation of Fe(2+) in magnetite. The addition of aqueous Fe(2+) to suspensions of oxidized magnetite resulted in reduction of U(VI) to UO(2), consistent with our previous finding that Fe(2+) taken up from solution increased the magnetite stoichiometry. Our results suggest that magnetite stoichiometry and the ability of aqueous Fe(2+) to recharge magnetite are important factors in reduction of U(VI) in the subsurface. PMID:22148359

  6. Kinetics of Abiotic Uranium(VI) Reduction by Sulfide

    NASA Astrophysics Data System (ADS)

    Hyun, S.; Davis, J. A.; Hayes, K. F.

    2010-12-01

    Uranium(VI) reduction is an important process affecting the radionuclide’s fate under sulfate reducing conditions. In this work, kinetics of abiotic U(VI) reduction by dissolved sulfide was studied using a batch reactor. The effects of solution pH, dissolved carbonate, Ca(II), U(VI), and S(-II) concentration on the reduction kinetics were tested. The ranges of these experimental variables were designed to cover the variation in groundwater chemistry observed at the Old Rifle uranium mill tailings site (Colorado, USA). Dissolved U concentration was monitored as a function of time using inductively coupled plasma-mass spectrometry to measure the rate of U(VI) reduction. Solid phase reduction products were identified using X-ray diffraction, transmission electron microscopy, and X-ray absorption spectroscopy. The results showed that changes in the experimental variables significantly affected U(VI) reduction kinetics by dissolved sulfide. U(VI) reduction occurred under circumneutral pH while no reduction was observed under alkaline conditions. The reduction rate was slowed by increased dissolved carbonate concentration. One solid phase reduction product was identified as nanoscale uraninite (UO2+x(s)). Thermodynamic modeling showed that the dissolved U(VI) aqueous species changed as a function of solution conditions correlated with the change in the reduction rate. These results show that U(VI) aqueous speciation is important in determining abiotic U(VI) reduction kinetics by dissolved sulfide. This study also illustrates the potential importance of dissolved sulfide in field-scale modeling of U reactive transport, and is expected to contribute to the understanding of long-term effects of biostimulation on U transport at the Rifle site.

  7. Reduction of U(VI) Complexes by Anthraquinone Disulfonate: Experiment and Molecular Modeling

    SciTech Connect

    Ainsworth, C.C.; Wang, Z.; Rosso, K.M.; Wagnon, K.; Fredrickson, J.K.

    2004-03-17

    Past studies demonstrate that complexation will limit abiotic and biotic U(VI) reduction rates and the overall extent of reduction. However, the underlying basis for this behavior is not understood and presently unpredictable across species and ligand structure. The central tenets of these investigations are: (1) reduction of U(VI) follows the electron-transfer (ET) mechanism developed by Marcus; (2) the ET rate is the rate-limiting step in U(VI) reduction and is the step that is most affected by complexation; and (3) Marcus theory can be used to unify the apparently disparate U(VI) reduction rate data and as a computational tool to construct a predictive relationship.

  8. U(VI) reduction to mononuclear U(IV) by Desulfitobacterium species.

    PubMed

    Fletcher, Kelly E; Boyanov, Maxim I; Thomas, Sara H; Wu, Qingzhong; Kemner, Kenneth M; Löffler, Frank E

    2010-06-15

    The bioreduction of U(VI) to U(IV) affects uranium mobility and fate in contaminated subsurface environments and is best understood in Gram-negative model organisms such as Geobacter and Shewanella spp. This study demonstrates that U(VI) reduction is a common trait of Gram-positive Desulfitobacterium spp. Five different Desulfitobacterium isolates reduced 100 microM U(VI) to U(IV) in <10 days, whereas U(VI) remained soluble in abiotic and heat-killed controls. U(VI) reduction in live cultures was confirmed using X-ray absorption near-edge structure (XANES) analysis. Interestingly, although bioreduction of U(VI) is almost always reported to yield the uraninite mineral (UO(2)), extended X-ray absorption fine structure (EXAFS) analysis demonstrated that the U(IV) produced in the Desulfitobacterium cultures was not UO(2). The EXAFS data indicated that the U(IV) product was a phase or mineral composed of mononuclear U(IV) atoms closely surrounded by light element shells. This atomic arrangement likely results from inner-sphere bonds between U(IV) and C/N/O- or P/S-containing ligands, such as carbonate or phosphate. The formation of a distinct U(IV) phase warrants further study because the characteristics of the reduced material affect uranium stability and fate in the contaminated subsurface. PMID:20469854

  9. Kinetics of Microbial Reduction of Solid Phase U(VI)

    SciTech Connect

    Liu, Chongxuan; Jeon, Byong Hun; Zachara, John M.; Wang, Zheming; Dohnalkova, Alice; Fredrickson, Jim K.

    2006-10-01

    Sodium boltwoodite (NaUO2SiO3OH ?1.5H2O) was used to assess the kinetics of microbial reduction of solid phase U(VI) by a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1. The bioreduction kinetics was studied with Na-boltwoodite in suspension or within alginate beads. Concentrations of U(VI)tot and cell number were varied to evaluate the coupling of U(VI) dissolution, diffusion, and microbial activity. Batch experiments were performed in a non-growth medium with lactate as electron donor at pH 6.8 buffered with PIPES. Microscopic and spectroscopic analyses with transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and laser-induced fluorescence spectroscopy (LIFS) collectively indicated that solid phase U(VI) was first dissolved and diffused out of grain interiors before it was reduced on bacterial surfaces and/or within the periplasm. The kinetics of solid phase U(VI) bioreduction was well described by a coupled model of bicarbonate-promoted dissolution of Na-boltwoodite, intraparticle uranyl diffusion, and Monod type bioreduction kinetics with respect to dissolved U(VI) concentration. The results demonstrated the intimate coupling of biological, chemical, and physical processes in microbial reduction of solid phase U(VI).

  10. Influence of Reactive Transport on the Reduction of U(VI) in the Presence of Fe(III) and Nitrate: Implications for U(VI) Immobilization by Bioremediation/Bioba

    SciTech Connect

    Wood, Brian D.

    2004-06-01

    The research in FY04 was focused in five specific topics: (1) U(VI) sorption on microbially and abiotically reduced sediments, (2) oxidation of biogenic U(IV) in presence of Fe(II), (3) U(VI) reduction by reduced sediments, (4) kinetics of U(VI) sorption on natural sediments under conditions of flow, and (5) NMR imaging of S. onidensis biofilms in porous media. Two manuscripts are currently in review, and another five (or four?) manuscripts are currently in preparation for submission.

  11. Can microbially-generated hydrogen sulfide account for the rates of U(VI) reduction by a sulfate-reducing bacterium?

    SciTech Connect

    Boonchayaanant, Benjaporn; Gu, Baohua; Wang, Wei; Ortiz, Monica E; Criddle, Craig

    2010-01-01

    In situ remediation of uranium contaminated soil and groundwater is attractive because a diverse range of microbial and abiotic processes reduce soluble and mobile U(VI) to sparingly soluble and immobile U(IV). Often these processes are linked. Sulfate-reducing bacteria (SRB), for example, enzymatically reduce U(VI) to U(IV), but they also produce hydrogen sulfide that can itself reduce U(VI). This study evaluated the relative importance of these processes for Desulfovibrio aerotolerans, a SRB isolated from a U(VI)-contaminated site. For the conditions evaluated, the observed rate of SRB-mediated U(VI) reduction can be explained by the abiotic reaction of U(VI) with the microbially-generated H{sub 2}S. The presence of trace ferrous iron appeared to enhance the extent of hydrogen sulfide-mediated U(VI) reduction at 5 mM bicarbonate, but had no clear effect at 15 mM. During the hydrogen sulfide-mediated reduction of U(VI), a floc formed containing uranium and sulfur. U(VI) sequestered in the floc was not available for further reduction.

  12. Importance of c-Type cytochromes for U(VI) reduction by Geobacter sulfurreducens

    PubMed Central

    Shelobolina, Evgenya S; Coppi, Maddalena V; Korenevsky, Anton A; DiDonato, Laurie N; Sullivan, Sara A; Konishi, Hiromi; Xu, Huifang; Leang, Ching; Butler, Jessica E; Kim, Byoung-Chan; Lovley, Derek R

    2007-01-01

    Background In order to study the mechanism of U(VI) reduction, the effect of deleting c-type cytochrome genes on the capacity of Geobacter sulfurreducens to reduce U(VI) with acetate serving as the electron donor was investigated. Results The ability of several c-type cytochrome deficient mutants to reduce U(VI) was lower than that of the wild type strain. Elimination of two confirmed outer membrane cytochromes and two putative outer membrane cytochromes significantly decreased (ca. 50–60%) the ability of G. sulfurreducens to reduce U(VI). Involvement in U(VI) reduction did not appear to be a general property of outer membrane cytochromes, as elimination of two other confirmed outer membrane cytochromes, OmcB and OmcC, had very little impact on U(VI) reduction. Among the periplasmic cytochromes, only MacA, proposed to transfer electrons from the inner membrane to the periplasm, appeared to play a significant role in U(VI) reduction. A subpopulation of both wild type and U(VI) reduction-impaired cells, 24–30%, accumulated amorphous uranium in the periplasm. Comparison of uranium-accumulating cells demonstrated a similar amount of periplasmic uranium accumulation in U(VI) reduction-impaired and wild type G. sulfurreducens. Assessment of the ability of the various suspensions to reduce Fe(III) revealed no correlation between the impact of cytochrome deletion on U(VI) reduction and reduction of Fe(III) hydroxide and chelated Fe(III). Conclusion This study indicates that c-type cytochromes are involved in U(VI) reduction by Geobacter sulfurreducens. The data provide new evidence for extracellular uranium reduction by G. sulfurreducens but do not rule out the possibility of periplasmic uranium reduction. Occurrence of U(VI) reduction at the cell surface is supported by the significant impact of elimination of outer membrane cytochromes on U(VI) reduction and the lack of correlation between periplasmic uranium accumulation and the capacity for uranium reduction

  13. Model-based Analysis of Mixed Uranium(VI) Reduction by Biotic and Abiotic Pathways During in Situ Bioremediation

    SciTech Connect

    Zhao, Jiao; Scheibe, Timothy D.; Mahadevan, Radhakrishnan

    2013-10-24

    Uranium bioremediation has emerged as a potential strategy of cleanup of radionuclear contamination worldwide. An integrated geochemical & microbial community model is a promising approach to predict and provide insights into the bioremediation of a complicated natural subsurface. In this study, an integrated column-scale model of uranium bioremediation was developed, taking into account long-term interactions between biotic and abiotic processes. It is also combined with a comprehensive thermodynamic analysis to track the fate and cycling of biogenic species. As compared with other bioremediation models, the model increases the resolution of the connection of microbial community to geochemistry and establishes direct quantitative correlation between overall community evolution and geochemical variation, thereby accurately predicting the community dynamics under different sedimentary conditions. The thermodynamic analysis examined a recently identified homogeneous reduction of U(VI) by Fe(II) under dynamic sedimentary conditions across time and space. It shows that the biogenic Fe(II) from Geobacter metabolism can be removed rapidly by the biogenic sulphide from sulfate reducer metabolism, hence constituting one of the reasons that make the abiotic U(VI) reduction thermodynamically infeasible in the subsurface. Further analysis indicates that much higher influent concentrations of both Fe(II) and U(VI) than normal are required to for abiotic U(VI) reduction to be thermodynamically feasible, suggesting that the abiotic reduction cannot be an alternative to the biotic reduction in the remediation of uranium contaminated groundwater.

  14. U(VI) Reduction in Sulfate-Reducing Subsurface Sediments Amended with Ethanol or Acetate

    PubMed Central

    Converse, Brandon J.; Wu, Tao; Findlay, Robert H.

    2013-01-01

    An experiment was conducted with subsurface sediments from Oak Ridge National Laboratory to determine the potential for reduction of U(VI) under sulfate-reducing conditions with either ethanol or acetate as the electron donor. The results showed extensive U(VI) reduction in sediments supplied with either electron donor, where geochemical and microbiological analyses demonstrated active sulfate reduction. PMID:23624470

  15. U(VI) reduction at the nano, meso and meter scale: concomitant transition from simpler to more complex biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Veeramani, H.; Hochella, M. F.

    2012-12-01

    Reduction of aqueous hexavalent U(VI) to the sparingly soluble nanoparticulate mineral uraninite [UO2] represents a promising strategy for the in situ immobilization of uranium in contaminated subsurface sediments and groundwater. Studies related to uranium reduction have been extensively carried out at various scales ranging from nano to meso to the meter scale with varying degrees of success. While nanoscale processes involving simple two-electron transfer reactions such as enzymatic microbial U(VI) reduction results in biogenic UO2 formation, mesoscale processes involving minerals and U(VI) are a step up in complexity and have shown varying results ranging from partial uranium reduction to the formation of mixed U(IV)/U(V) species. Although nano- and meso-scale biogeochemical processes have been helpful in predicting the contaminant dynamics at the meter scale, their occurrence is not necessarily apparent in soils and aquifers given the enormous volume of contaminated groundwater to be remediated, among other factors. The formation and long-term stability of biologically reduced uranium at the meter scale is also determined in addition by the complex interplay of aqueous geochemistry, hydrology, soil and sediment mineralogy and microbial community dynamics. For instance, indigenous subsurface microbes often encounter multiple electron acceptors in heterogeneous environments during biostimulation and can catalyze the formation of various reactive biogenic minerals. In such cases, abiotic interactions between U(VI) and reactive biogenic minerals is potentially important because the success of a remediation strategy is contingent upon the speciation of reduced uranium. This presentation will give an overview of uranium reduction ranging from simple nanoscale biological processes to increasingly complex meso and meter scale processes involving abiotic interactions between aqueous uranium and nano-biogenic minerals and the effect of mineralogy and aqueous

  16. Effects of Bacillus subtilis on the reduction of U(VI) by nano-Fe0

    NASA Astrophysics Data System (ADS)

    Ding, Congcong; Cheng, Wencai; Sun, Yubing; Wang, Xiangke

    2015-09-01

    The effects of Bacillus subtilis (B. subtilis, a typical model bacterium) on the reduction of U(VI) by nanoscale zero-valent iron (nano-Fe0) were investigated using batch techniques. The reaction products were analysed using spectroscopic techniques, and a kinetics model was developed to elucidate the mechanisms of U(VI) reduction by nano-Fe0. The presence of B. subtilis enhanced the U(VI) sorption rate at pH 3.5-9.5 but inhibited the reduction rate of U(VI) to U(IV) at pH > 4.5. According to the FTIR and XRD analysis, the reduction of U(VI) to U(IV) was inhibited due to the formation of inner-sphere surface complexes between the oxygen-containing functional groups of B. subtilis or extracellular polymeric substances with the Fe(II)/Fe(III) generated by nano-Fe0, which blocked electron transport from the Fe0 core to U(VI). Based on the EXAFS analysis, a fitting of U-Fe shell at ∼3.44 Å revealed inner-sphere bidentate complexes between uranyl and the oxide film of nano-Fe0. For the nano-Fe0 + B. subtilis system, the U-Fe shell (at ∼3.44 Å) and the U-C/P shell (at ∼2.90 Å) further indicated the formation of inner-sphere surface complexes. The kinetics model supported that U(VI) reduction was triggered by U(VI) sorption on the oxide shell of nano-Fe0. The XPS and XANES analyses showed that reductive precipitation was the main mechanism of U(VI) removal by nano-Fe0, whereas the sorption process dominated the removal of U(VI) in the presence of B. subtilis, which was further demonstrated by TEM images.

  17. Influence of Dynamical Conditions on the Reduction of UVI at the Magnetite-Solution Interface

    SciTech Connect

    Ilton, Eugene S.; Boily, Jean F.; Buck, Edgar C.; Skomurski, Frances N.; Rosso, Kevin M.; Cahill, Christopher L.; Bargar, John R.; Felmy, Andrew R.

    2010-01-14

    The heterogeneous reduction of UVI to UIV by ferrous iron is a potentially key process influencing the fate and transport of U in the environment. The reactivity of both sorbed and structural FeII has been studied for numerous substrates, including magnetite. The results from UVI-magnetite experiments have been variable, ranging from no reduction to clear evidence for the formation of UIV. In this contribution, we used XAS and high resolution (+cryogenic) XPS to study the interaction of UVI with nano-particulate magnetite. The results indicated that UVI was partially reduced to UV with no evidence of UIV. However, thermodynamic calculations indicated that mixed-valence U phases with average oxidation states below (V) should have been stable, indicating that the system was not in redox equilibrium. A reaction pathway that involves incorporation of U and stabilization of UV and UVI in secondary phases is invoked to explain the observations.

  18. Characterization of U(VI) reduction in contaminated sediments with slow-degrading electron donor source

    NASA Astrophysics Data System (ADS)

    Wu, W.; Watson, D. B.; Zhang, G.; Mehlhorn, T.; Lowe, K.; Earles, J.; Phillips, J.; Kelly, S. D.; Boyanov, M.; Kemner, K. M.; Schadt, C.; Criddle, C. S.; Jardine, P. M.; Brooks, S. C.

    2011-12-01

    In order to select sustainable, high efficiency and cost effective electron donor source, oleate and emulsified vegetable oil (EVO) were tested uranium (VI) reduction in comparison with ethanol in microcosms using uranium contaminated sediments and groundwater from the US DOE Oak Ridge Integrated Field Research Challenge (ORIFRC) site. The effect of initial sulfate concentration on U(VI) reduction was also tested. Both oleate and EVO were effective electron donor sources for U(VI) reduction. Accumulation of acetate as a major product and the removal of aqueous U(VI) were observed and were associated with sulfate reduction. Both oleate and EVO supported U(VI) reduction but at slower rates with a comparable but slightly lower extent of reduction than ethanol. X-ray absorption near-edge spectroscopy (XANES) analysis confirmed reduction of U(VI) to U(IV). The extent of U(VI) reduction in solid phase was negatively influenced by aqueous calcium concentration. The majority of electrons of the three substrates were consumed by sulfate reduction, Fe(III) reduction, and methanogenesis. Initial U(VI) concentration in the aqueous phase increased with increased sulfate concentration (1 versus 5 mM), likely due to U(VI) desorption from the solid phase. At the higher initial sulfate concentration more U(VI) was reduced and fewer electrons were used in methanogenesis. Analysis of bacterial and archeal populations using 16S rRNA gene libraries showed a significant increase in Deltaproteobacteria after biostimulation. The microbial community structures developed with oleate and EVO were significantly distinct from those developed with ethanol. Bacteria similar to Desulforegula spp. was predominant for oleate and EVO degradation but were not observed in ethanol-amended microcosms. Known U(VI)-reducing bacteria in the microcosms amended with the three electron donor sources included iron(III) reducing Geobacter spp. but in lower abundances than sulfate-reducing Desulfovibrio spp. The

  19. Kinetics of U(VI) reduction control kinetics of U(IV) reoxidation

    SciTech Connect

    Senko, J.M.; Minyard, M.L.; Dempsey, B.A.; Roden, E.E.; Yeh, G.-T.; Burgos, W.D.

    2006-04-05

    For the in situ reductive immobilization of U to be an acceptable strategy for the removal of that element from groundwater, the long-term stability of U(IV) must be determined. Rates of biotransformation of Fe species influence the mineralogy of the resulting products (Fredrickson et al., 2003; Senko et al., 2005), and we hypothesize that the rate of U(VI) reduction influences the mineralogy of resultant U(IV) precipitates. We hypothesize that slower rates of U(VI) reduction will yield U(IV) phases that are more resistant to reoxidation, and will therefore be more stable upon cessation of electron donor addition. U(IV) phases formed by relatively slow reduction may be more crystalline or larger in comparison to their relatively rapidly-formed counterparts (Figure 1), thus limiting the reactivity of slowly-formed U(IV) phases toward various oxidants. The physical location of U(IV) precipitates relative to bacterial cells may also limit the reactivity of biogenic U(IV) phases. In this situation, we expect that precipitation of U(IV) within the bacterial cell may protect U(IV) from reoxidation by limiting physical contact between U(IV) and oxidants (Figure 1). We assessed the effect of U(VI) reduction rate on the subsequent reoxidation of biogenic U(IV) and are currently conducting column scale studies to determine whether U(VI) reduction rate can be manipulated by varying the electron donor concentration used to stimulate U(VI) reduction.

  20. Inhibition of U(VI) reduction by synthetic and natural pyrite.

    PubMed

    Yang, Zhuanwei; Kang, Mingliang; Ma, Bin; Xie, Jinglin; Chen, Fanrong; Charlet, Laurent; Liu, Chunli

    2014-09-16

    Reductive precipitation is an effective method of attenuating the mobility of uranium (U) in subsurface environments. The reduction of U(VI) by synthetic and naturally occurring pyrite was investigated at pH 3.0-9.5. In contrast to thermodynamic calculations that were used to predict UO2(s) precipitation, a mixed U(IV) and U(VI) product (e.g., U3O8/U4O9/U3O7) was only observed at pH 6.21-8.63 and 4.52-4.83 for synthetic and natural pyrite, respectively. Under acidic conditions, the reduction of UO2(2+) by surface-associated Fe(2+) may not be favored because the mineral surface is nearly neutral or not negative enough. At high pH, the sorption of negatively charged U(VI) species is not favored on the negatively charged mineral surface. Thus, the redox reaction is not favored. Trace elements generally contained within the natural pyrite structure can affect the reactivity of pyrite and lead to a different result between the natural and synthetic pyrite. Because UO2(s) is extremely redox-sensitive toward U(VI), the observed UO2+x(s) phase reduction product indicates a surface reaction that is largely controlled by reaction kinetics and pyrite surface chemistry. These factors may explain why most laboratory experiments have observed incomplete U(VI) reduction on Fe(II)-bearing minerals. PMID:25148405

  1. Reduction of U(VI) to U(IV) by indigenous bacteria in contaminated ground water

    NASA Astrophysics Data System (ADS)

    Abdelouas, A.; Lu, Yongming; Lutze, W.; Nuttall, H. E.

    1998-12-01

    We report on bio-catalyzed reduction and immobilization of U(VI) species (0.25 mg/l to 235 mg/l) in ground water in the presence of high concentrations of nitrate, sulfate and carbonate. We studied ground water from the uranium mill tailings site near Tuba City, Arizona (USA). Experiments with the ground water were conducted in the presence of the Navajo sandstone host rock. Uranium in solution is complexed by carbonate. Two indigenous denitrifying bacteria were identified Pseudomonas aeruginosa and P. stutzeri, and one sulfate reducing bacterium, Shewanella putrefaciens, also known as Fe(III)-reducer. S. putrefaciens can use U(VI) as an electron acceptor, instead of Fe(III). Ethanol was used as the organic carbon source. Microbially mediated reactions are sequential in the order of decreasing redox intensity. Metabolic reduction of nitrate to gaseous species (N 2, N 2O) was complete within 1 week at 16°C. The sulfate concentration remained constant. Some of the U(VI) coprecipitated with aragonite/calcite or was adsorbed on biomass during denitrification. Subsequently, the enzymatically catalyzed reduction of U(VI) to U(IV) was complete within 3 weeks but was accompanied by reduction of sulfate to sulfide. U(IV) precipitated as a uraninite solid solution (U, Ca)O 2, adhering to the bacteria. The final concentration in solution was ≤1 μg/l. U(VI) was not reduced by sulfide. Complexation of U(VI) by carbonate made its reduction by sulfide even slower than in pure water. The bio-catalyzed reaction is the faster process under the conditions given by the composition of the ground water.

  2. U(VI) sorption and reduction kinetics on the magnetite (111) surface

    SciTech Connect

    Singer, David M.; Chatman, Shawn ME; Ilton, Eugene S.; Rosso, Kevin M.; Banfield, Jillian F.; Waychunas, Glenn

    2012-04-03

    Sorption of contaminants onto mineral surfaces is an important process that can restrict their transport in the environment. In the current study, uranium (U) uptake on magnetite (111) was measured as a function of time and solution composition (pH, [CO3]T, [Ca]) under continuous batch-flow conditions. We observed, in real-time and in situ, adsorption and reduction of U(VI) and subsequent growth of UO2 nanoprecipitates using atomic force microscopy (AFM) and newly developed batch-flow U LIII-edge grazing-incidence x-ray absorption spectroscopy near-edge structure (GI-XANES) spectroscopy. U(VI) reduction occurred with and without CO3 present, and coincided with nucleation and growth of particles; maximum sorption loadings were 23 mol m-2 (pH 5) and 27 mol m-2 (pH 10). The U sorption loading was lower when Ca and CO3 were both present and during experiments in which no U(VI) reduction occurred; the maximum U sorption loading was 17 mol m-2 (pH 5 and 10). In situ batch-flow AFM data indicated that UO2 particles achieved a maximum height of 4-5 nm after about 8 hours of exposure, yet lateral growth as aggregates continued up to 300 nm. U uptake is therefore divided into three-stages; (1) initial adsorption of U(VI), (2) reduction of U(VI) to UO2 nanoprecipitates at surface-specific sites after 2-3 hours of exposure, and (3) completion of U(VI) reduction after 6-8 hours, with continuing slow adsorption of U(VI). U(VI) reduction also corresponded to detectable increases in Fe released to solution and surface topography changes, indicating that reduction is coupled to Fe(II) availability at or from the magnetite (111) surface. In addition to providing molecular-scale details about U sorption on magnetite, this work also presents novel advances for collecting surface sensitive molecular-scale information in real-time under batch-flow conditions.

  3. Role of U(VI) Reduction by Geobacter species

    SciTech Connect

    Lovely, Derrick

    2008-12-23

    Previous work had suggested that Acholeplasma palmae has a higher capacity for uranium sorption than other bacteria studied. Sorption studies were performed with cells in suspension in various solutions containing uranium, and results were used to generate uranium-biosorption isotherms. Results from this study showed that the U(VI) sorption capacity of G. uraniireducens was relatively similar in simple solutions, such as sodium chloride or bicarbonate. However, this ability to sorb uranium significantly decreased in groundwater. This suggested that certain chemicals present in the groundwater were inhibiting the ability of cell components of Geobacter to adsorb uranium. It was hypothesized that uranium removal would also be diminished in the bicarbonate solution. However, this did not seem to be the case, as uranium was as easily removed in the bicarbonate solution as in the sodium chloride solution.

  4. Elucidating Geochemical and Biogeochemical U(VI) Reduction Via Soil Sterilization at Oak Ridge, Tennessee

    NASA Astrophysics Data System (ADS)

    Bank, T. L.; Jardine, P. M.; Phelps, T. J.; Ginder-Vogel, M. A.; Fendorf, S. E.; Baldwin, M. E.

    2005-12-01

    The adsorption and reduction of U(VI) onto sterilized and nonsterilized soil from the Oak Ridge Reservation was studied to distinguish biogeochemical versus geochemical effects on metal reduction. The Oak Ridge soil under investigation is a saprolite sequence of interbedded weathered shale and limestone obtained at the capillary fringe with a pH near 7.6. Experiments were conducted on unaltered soils as well as subsamples of the soil that were pre-treated to remove free oxides and/or organic matter. Soils were sterilized by either steam sterilization at 1210C or by γ-irradiation using a Cobalt-60 source with a γ-ray dosage of 20kGy. Sterile and nonsterile U(VI) batch experiments were completed aerobically over a reaction time of 400 hours. The reactions were buffered using 25mM HEPES and NaHCO3. Initial U(VI) concentrations ranged from 0.5 to 10 ppm. The effects of sterilization on bacterial population, soil mineralogy, pH, ζ-potential, cation exchange capacity, redox potential, and soil organic matter (SOM) were identified. Sterilization by irradiation was >99.99% efficient and steam sterilization was approximately 99% efficient. Major mineralogy, soil pH, and clay mineral ζ-potential were unaffected by the sterilization techniques. The cation exchange capacity of the irradiated soils decreased from 40 to 30 cmolc/kg. Sterilization by irradiation caused some degradation of the SOM, as determined by UV-VIS, however the results were practically insignificant due to the small quantity of SOM in the Oak Ridge soil (<0.1%). The redox potential of the soil before and after sterilization is being tested. Results indicate that the removal of U(VI) from solution onto untreated soils was significantly increased in soil sterilized by γ-irradiation compared to nonsterilized soil and suggests that geochemical processes, rather than biogeochemical processes, controlled U(VI) sorption/reduction in these soils. Results of experiments completed using soils pre-treated with H2

  5. Reduction of U(VI) and Toxic Metals by Desulfovibrio Cytochrome c3

    SciTech Connect

    Wall, Judy D.

    2003-06-01

    The project, ''Reduction of U(VI) and toxic metals by Desulfovibrio cytochrome c3'', is designed to obtain spectroscopic information for or against a functional interaction of cytochrome c3 and uranium in the whole cells. That is, is the cytochrome c3 the uranium reductase? Our approach has been to start with purified cytochrome and determine any unique spectral disturbances during electron flow to U(VI). Then we will attempt to identify these signals emanating from cells actively reducing uranium. This project is being carried out in collaboration with Dr. William Woodruff at the Los Alamos National Laboratory where the spectral experiments are being carried out.

  6. INVESTIGATION OF THE TRANSFORMATION OF URANIUM UNDER IRON-REDUCING CONDITIONS: REDUCTION OF UVI BY BIOGENIC FEII/FEIII HYDROXIDE (GREEN RUST)

    SciTech Connect

    O'Loughlin, Edward J.; Scherer, Michelle M.; Kemner, Kenneth M.

    2006-12-31

    The recent identification of green rusts (GRs) as products of the reduction of FeIII oxyhydroxides by dissimilatory iron-reducing bacteria, coupled with the ability of synthetic (GR) to reduce UVI species to insoluble UO2, suggests that biogenic green rusts (BioGRs) may play an important role in the speciation (and thus mobility) of U in FeIII-reducing environments. The objective of our research was to examine the potential for BioGR to affect the speciation of U under FeIII-reducing conditions. To meet this objective, we designed and executed a hypothesis-driven experimental program to identify key factors leading to the formation of BioGRs as products of dissimilatory FeIII reduction, to determine the key factors controlling the reduction of UVI to UIV by GRs, and to identify the resulting U-bearing mineral phases. The results of this research significantly increase our understanding of the coupling of biotic and abiotic processes with respect to the speciation of U in iron-reducing environments. In particular, the reduction of UVI to UIV by BioGR with the subsequent formation of U-bearing mineral phases may be effective for immobilizing U in suboxic subsurface environments. This information has direct applications to contaminant transport modeling and bioremediation engineering for natural or enhanced in situ remediation of subsurface contamination.

  7. U(VI) Reduction by Diverse Outer Surface c-Type Cytochromes of Geobacter sulfurreducens

    PubMed Central

    Leavitt, Janet J.; Comolli, Luis R.; Csencsits, Roseann; Janot, Noemie; Flanagan, Kelly A.; Gray, Arianna S.; Leang, Ching; Izallalen, Mounir; Mester, Tünde; Lovley, Derek R.

    2013-01-01

    Early studies with Geobacter sulfurreducens suggested that outer-surface c-type cytochromes might play a role in U(VI) reduction, but it has recently been suggested that there is substantial U(VI) reduction at the surface of the electrically conductive pili known as microbial nanowires. This phenomenon was further investigated. A strain of G. sulfurreducens, known as Aro-5, which produces pili with substantially reduced conductivity reduced U(VI) nearly as well as the wild type, as did a strain in which the gene for PilA, the structural pilin protein, was deleted. In order to reduce rates of U(VI) reduction to levels less than 20% of the wild-type rates, it was necessary to delete the genes for the five most abundant outer surface c-type cytochromes of G. sulfurreducens. X-ray absorption near-edge structure spectroscopy demonstrated that whereas 83% ± 10% of the uranium associated with wild-type cells correspond to U(IV) after 4 h of incubation, with the quintuple mutant, 89% ± 10% of uranium was U(VI). Transmission electron microscopy and X-ray energy dispersion spectroscopy revealed that wild-type cells did not precipitate uranium along pili as previously reported, but U(IV) was precipitated at the outer cell surface. These findings are consistent with those of previous studies, which have suggested that G. sulfurreducens requires outer-surface c-type cytochromes but not pili for the reduction of soluble extracellular electron acceptors. PMID:23934497

  8. Influence of Reactive Transport on the Reduction of U(VI) in the Presence of Fe(III) and Nitrate: Implications for U(VI) Immobilization by Bioremediation / Biobarriers- Final Report

    SciTech Connect

    B.D. Wood

    2007-01-01

    Subsurface contamination by metals and radionuclides represent some of the most challenging remediation problems confronting the Department of Energy (DOE) complex. In situ remediation of these contaminants by dissimilatory metal reducing bacteria (DMRB) has been proposed as a potential cost effective remediation strategy. The primary focus of this research is to determine the mechanisms by which the fluxes of electron acceptors, electron donors, and other species can be controlled to maximize the transfer of reductive equivalents to the aqueous and solid phases. The proposed research is unique in the NABIR portfolio in that it focuses on (i) the role of flow and transport in the initiation of biostimulation and the successful sequestration of metals and radionuclides [specifically U(VI)], (ii) the subsequent reductive capacity and stability of the reduced sediments produced by the biostimulation process, and (iii) the potential for altering the growth of biomass in the subsurface by the addition of specific metabolic uncoupling compounds. A scientifically-based understanding of these phenomena are critical to the ability to design successful bioremediation schemes. The laboratory research will employ Shewanella putrefaciens (CN32), a facultative DMRB that can use Fe(III) oxides as a terminal electron acceptor. Sediment-packed columns will be inoculated with this organism, and the reduction of U(VI) by the DMRB will be stimulated by the addition of a carbon and energy source in the presence of Fe(III). Separate column experiments will be conducted to independently examine: (1) the importance of the abiotic reduction of U(VI) by biogenic Fe(II); (2) the influence of the transport process on Fe(III) reduction and U(VI) immobilization, with emphasis on methods for controlling the fluxes of aqueous species to maximize uranium reduction; (3) the reductive capacity of biologically-reduced sediments (with respect to re-oxidation by convective fluxes of O2 and NO3-) and

  9. Microbial reduction of U(VI) under alkaline conditions: implications for radioactive waste geodisposal.

    PubMed

    Williamson, Adam J; Morris, Katherine; Law, Gareth T W; Rizoulis, Athanasios; Charnock, John M; Lloyd, Jonathan R

    2014-11-18

    Although there is consensus that microorganisms significantly influence uranium speciation and mobility in the subsurface under circumneutral conditions, microbiologically mediated U(VI) redox cycling under alkaline conditions relevant to the geological disposal of cementitious intermediate level radioactive waste, remains unexplored. Here, we describe microcosm experiments that investigate the biogeochemical fate of U(VI) at pH 10-10.5, using sediments from a legacy lime working site, stimulated with an added electron donor, and incubated in the presence and absence of added Fe(III) as ferrihydrite. In systems without added Fe(III), partial U(VI) reduction occurred, forming a U(IV)-bearing non-uraninite phase which underwent reoxidation in the presence of air (O2) and to some extent nitrate. By contrast, in the presence of added Fe(III), U(VI) was first removed from solution by sorption to the Fe(III) mineral, followed by bioreduction and (bio)magnetite formation coupled to formation of a complex U(IV)-bearing phase with uraninite present, which also underwent air (O2) and partial nitrate reoxidation. 16S rRNA gene pyrosequencing showed that Gram-positive bacteria affiliated with the Firmicutes and Bacteroidetes dominated in the post-reduction sediments. These data provide the first insights into uranium biogeochemistry at high pH and have significant implications for the long-term fate of uranium in geological disposal in both engineered barrier systems and the alkaline, chemically disturbed geosphere. PMID:25231875

  10. Reduction of U(VI) Incorporated in the Structure of Hematite

    SciTech Connect

    Ilton, Eugene S.; Lazama Pacheco, Juan S.; Bargar, John R.; Shi, Zhi; Liu, Juan; Kovarik, Libor; Engelhard, Mark H.; Felmy, Andrew R.

    2012-09-04

    U(VI) doped hematite was synthesized and exposed to two different organic reductants with E0 of 0.23 and 0.70 V. A combination of HAADF-TEM and EXAFS provided evidence that uranium was incorporated in hematite in uranate, likely octahedral coordination. XPS indicated that structurally incorporated U(VI) was reduced to U(V), whereas adsorbed U(VI) was reduced to U(IV). Specifically, the experiments indicate that U(V) was the dominant oxidation state of uranium in hematite around Eh -0.24 to -0.28 V and pH 7.7-8.6 for at least up to 5 weeks of reaction time. U(V), but not U(IV), was also detected in hematite at Eh +0.21 V (pH 7.1-7.3). The results support the hypothesis, based on previous experimental and theoretical work, that the stability field of U(V) is widened relative to U(IV) and U(VI) in uranate coordination environments where the coordination number of U is less than 8.

  11. Reduction of U(VI) incorporated in the structure of hematite.

    PubMed

    Ilton, Eugene S; Pacheco, Juan S Lezama; Bargar, John R; Shi, Zhi; Liu, Juan; Kovarik, Libor; Engelhard, Mark H; Felmy, Andrew R

    2012-09-01

    U(VI) doped hematite was synthesized and exposed to two different organic reductants with E(0) of 0.23 and 0.70 V. A combination of HAADF-TEM and EXAFS provided evidence that uranium was incorporated in hematite in uranate, likely octahedral coordination. XPS indicated that structurally incorporated U(VI) was reduced to U(V), whereas non-incorporated U(VI) was reduced to U(IV). Specifically, the experiments indicate that U(V) was the dominant oxidation state of uranium in hematite around Eh -0.24 to -0.28 V and pH 7.7-8.6 for at least up to 5 weeks of reaction time. U(V), but not U(IV), was also detected in hematite at Eh +0.21 V (pH 7.1-7.3). The results support the hypothesis, based on previous experimental and theoretical work, that the stability field of U(V) is widened relative to U(IV) and U(VI) in uranate coordination environments where the coordination number of U is less than 8. PMID:22834714

  12. Microbial Reductive Transformation of Phyllosilicate Fe(III) and U(VI) in Fluvial Subsurface Sediments

    SciTech Connect

    Lee, Ji-Hoon; Fredrickson, Jim K.; Kukkadapu, Ravi K.; Boyanov, Maxim I.; Kemner, Kenneth M.; Lin, Xueju; Kennedy, David W.; Bjornstad, Bruce N.; Konopka, Allan; Moore, Dean A.; Resch, Charles T.; Phillips, Jerry L.

    2012-03-14

    The microbial reduction of Fe(III) and U(VI) were investigated in shallow aquifer sediments collected from subsurface Pleistocene flood deposits near the Hanford Reach of the Columbia River in Washington State. Increases in 0.5 N HCl-extractable Fe(II) were observed in incubated sediments and 57Fe Mössbauer spectroscopy revealed that Fe(III) associated with phyllosilicates and pyroxene was reduced to Fe(II). Aqueous uranium(VI) concentrations decreased in incubated Hanford sediments with the rate and extent being greater in sediment amended with organic carbon. X-ray absorption spectroscopy of bioreduced sediments indicated that 67-77% of the U signal was U(VI), probably as an adsorbed species associated with a new or modified reactive mineral phase. Phylotypes within the Deltaproteobacteria were more common in Hanford sediments incubated with U(VI) than without and in U(VI)-free incubations, members of the Clostridiales were dominant with sulfate-reducing phylotypes more common in the sulfate-amended sediments. These results demonstrate the potential for anaerobic reduction phyllosilicate Fe(III) and sulfate in Hanford unconfined aquifer sediments and biotransformations involving reduction and adsorption leading to decreased aqueous U concentrations.

  13. Pilot-Scale In Situ Bioremediation of Uranium in a Highly Contaminated Aquifer. 2. Reduction of U(VI and Geochemical Control of U(VI) Bioavailability

    SciTech Connect

    Wu, Weimin; Carley, Jack M; Gentry, Terry J; Ginder-Vogel, Matthew; Fienen, Michael; Mehlhorn, Tonia L; Yan, Hui; Carroll, Sue L; Pace, Molly; Nyman, Jennifer L; Luo, Jian; Fields, Matthew Wayne; Hickey, Robert; Gu, Baohua; Watson, David B; Cirpka, Olaf; Zhou, Jizhong; Fendorf, Scott; Kitanidis, Peter K; Jardine, Philip M; Criddle, Craig

    2006-07-01

    In situ microbial reduction of soluble U(VI) to sparingly soluble U(IV) was evaluated at the site of the former S-3 Ponds in Area 3 of the U.S. Department of Energy Natural and Accelerated Bioremediation Research Field Research Center, Oak Ridge, TN. After establishing conditions favorable for bioremediation (Wu, et al. Environ. Sci. Technol. 2006, 40, 3988-3995), intermittent additions of ethanol were initiated within the conditioned inner loop of a nested well recirculation system. These additions initially stimulated denitrification of matrix-entrapped nitrate, but after 2 months, aqueous U levels fell from 5 to {approx}1 {micro}M and sulfate reduction ensued. Continued additions sustained U(VI) reduction over 13 months. X-ray near-edge absorption spectroscopy (XANES) confirmed U(VI) reduction to U(IV) within the inner loop wells, with up to 51%, 35%, and 28% solid-phase U(IV) in sediment samples from the injection well, a monitoring well, and the extraction well, respectively. Microbial analyses confirmed the presence of denitrifying, sulfate-reducing, and iron-reducing bacteria in groundwater and sediments. System pH was generally maintained at less than 6.2 with low bicarbonate level (0.75-1.5 mM) and residual sulfate to suppress methanogenesis and minimize uranium mobilization. The bioavailability of sorbed U(VI) was manipulated by addition of low-level carbonate (<5 mM) followed by ethanol (1-1.5 mM). Addition of low levels of carbonate increased the concentration of aqueous U, indicating an increased rate of U desorption due to formation of uranyl carbonate complexes. Upon ethanol addition, aqueous U(VI) levels fell, indicating that the rate of microbial reduction exceeded the rate of desorption. Sulfate levels simultaneously decreased, with a corre sponding increase in sulfide. When ethanol addition ended but carbonate addition continued, soluble U levels increased, indicating faster desorption than reduction. When bicarbonate addition stopped, aqueous U

  14. Pilot-scale in situ bioremedation of uranium in a highly contaminated aquifer. 2. Reduction of u(VI) and geochemical control of u(VI) bioavailability.

    PubMed

    Wu, Wei-Min; Carley, Jack; Gentry, Terry; Ginder-Vogel, Matthew A; Fienen, Michael; Mehlhorn, Tonia; Yan, Hui; Caroll, Sue; Pace, Molly N; Nyman, Jennifer; Luo, Jian; Gentile, Margaret E; Fields, Matthew W; Hickey, Robert F; Gu, Baohua; Watson, David; Cirpka, Olaf A; Zhou, Jizhong; Fendorf, Scott; Kitanidis, Peter K; Jardine, Philip M; Criddle, Craig S

    2006-06-15

    In situ microbial reduction of soluble U(VI) to sparingly soluble U(IV) was evaluated at the site of the former S-3 Ponds in Area 3 of the U.S. Department of Energy Natural and Accelerated Bioremediation Research Field Research Center, Oak Ridge, TN. After establishing conditions favorable for bioremediation (Wu, et al. Environ. Sci. Technol. 2006, 40, 3988-3995), intermittent additions of ethanol were initiated within the conditioned inner loop of a nested well recirculation system. These additions initially stimulated denitrification of matrix-entrapped nitrate, but after 2 months, aqueous U levels fell from 5 to approximately 1 microM and sulfate reduction ensued. Continued additions sustained U(VI) reduction over 13 months. X-ray near-edge absorption spectroscopy (XANES) confirmed U(VI) reduction to U(IV) within the inner loop wells, with up to 51%, 35%, and 28% solid-phase U(IV) in sediment samples from the injection well, a monitoring well, and the extraction well, respectively. Microbial analyses confirmed the presence of denitrifying, sulfate-reducing, and iron-reducing bacteria in groundwater and sediments. System pH was generally maintained at less than 6.2 with low bicarbonate level (0.75-1.5 mM) and residual sulfate to suppress methanogenesis and minimize uranium mobilization. The bioavailability of sorbed U(VI) was manipulated by addition of low-level carbonate (< 5 mM) followed by ethanol (1-1.5 mM). Addition of low levels of carbonate increased the concentration of aqueous U, indicating an increased rate of U desorption due to formation of uranyl carbonate complexes. Upon ethanol addition, aqueous U(VI) levels fell, indicating that the rate of microbial reduction exceeded the rate of desorption. Sulfate levels simultaneously decreased, with a corresponding increase in sulfide. When ethanol addition ended but carbonate addition continued, soluble U levels increased, indicating faster desorption than reduction. When bicarbonate addition stopped

  15. ABIOTIC REDUCTION OF NITRO AROMATIC PESTICIDES IN ANAEROBIC LABORATORY SYSTEMS

    EPA Science Inventory

    Rapid abiotic reduction of nitro aromatic pesticides occurs in homogeneous solutions of quinone redox couples, which were selected to model the redox-labile functianal groups in natural organic matter. he kinetics of methyl parathion disappearance are first order in methyl parath...

  16. Microbial community changes in response to ethanol or methanol amendments for U(VI) reduction.

    PubMed

    Vishnivetskaya, Tatiana A; Brandt, Craig C; Madden, Andrew S; Drake, Meghan M; Kostka, Joel E; Akob, Denise M; Küsel, Kirsten; Palumbo, Anthony V

    2010-09-01

    Microbial community responses to ethanol, methanol, and methanol plus humics amendments in relationship to U(VI) bioreduction were studied in laboratory microcosm experiments using sediments and ground water from a uranium-contaminated site in Oak Ridge, TN. The type of carbon source added, the duration of incubation, and the sampling site influenced the bacterial community structure upon incubation. Analysis of 16S rRNA gene clone libraries indicated that (i) bacterial communities found in ethanol- and methanol-amended samples with U(VI) reduction were similar due to the presence of Deltaproteobacteria and Betaproteobacteria (members of the families Burkholderiaceae, Comamonadaceae, Oxalobacteraceae, and Rhodocyclaceae); (ii) methanol-amended samples without U(VI) reduction exhibited the lowest diversity and the bacterial community contained 69.2 to 92.8% of the family Methylophilaceae; and (iii) the addition of humics resulted in an increase of phylogenetic diversity of Betaproteobacteria (Rodoferax, Polaromonas, Janthinobacterium, Methylophilales, and unclassified) and Firmicutes (Desulfosporosinus and Clostridium). PMID:20601514

  17. Aqueous Complexation Reactions Governing the Rate and Extent of Biogeochemical U(VI) Reduction

    SciTech Connect

    Scott C. Brooks; Wenming Dong; Sue Carroll; James K. Fredrickson; Kenneth M. Kemner; Shelly D. Kelly

    2006-06-01

    The proposed research will elucidate the principal biogeochemical reactions that govern the concentration, chemical speciation, and reactivity of the redox-sensitive contaminant uranium. The results will provide an improved understanding and predictive capability of the mechanisms that govern the biogeochemical reduction of uranium in subsurface environments. In addition, the work plan is designed to: (1) Generate fundamental scientific understanding on the relationship between U(VI) chemical speciation and its susceptibility to biogeochemical reduction reactions. (2) Elucidate the controls on the rate and extent of contaminant reactivity. (3) Provide new insights into the aqueous and solid speciation of U(VI)/U(IV) under representative groundwater conditions.

  18. Electrochemical and spectroscopic evidence on the one-electron reduction of U(VI) to U(V) on magnetite

    SciTech Connect

    Yuan, Ke; Ilton, Eugene S.; Antonio, Mark R.; Li, Zhongrui; Cook, Peter J.; Becker, Udo

    2015-05-19

    Reduction of U(VI) to U(IV) on mineral surfaces has been considered as a one-step two electron process. However, stabilized U(V), with no evidence of U(IV), found in recent studies indicates U(VI) can undergo a one electron reduction to U(V) without further progression to U(IV). We investigated the mechanisms of uranium reduction by reducing U(VI) electrochemically on a magnetite electrode at pH 3.4 . The one electron reduction of U(VI) was first confirmed using the cyclic voltammetry method. Formation of nano-size uranium precipitates on the surface of magnetite at reducing potentials and dissolution of the solids at oxidizing potentials were observed by in situ electrochemical AFM. XPS analysis of the magnetite electrodes polarized in uranium solutions at voltages from 0.1 ~ 0.9 V (vs. Ag/AgCl) showed the presence of only U(V) and U(VI). The highest amount of U(V) relative to U(VI) was prepared at 0.7 V, where the longest average U–Oaxial distance of 2.05 ± 0.01 Å was evident in the same sample revealed by EXAFS analysis. The results demonstrate that the electrochemical reduction of U(VI) on magnetite only yields U(V), even at a potential of 0.9 V, which favors the one-electron reduction mechanism. U(V) did not disproportionate but stabilized on magnetite through precipitation of mixed-valence state U(VI)/U(V) solids.

  19. Isotopic and Geochemical Tracers for U(VI) Reduction and U Mobility at an in Situ Recovery U Mine.

    PubMed

    Basu, Anirban; Brown, Shaun T; Christensen, John N; DePaolo, Donald J; Reimus, Paul W; Heikoop, Jeffrey M; Woldegabriel, Giday; Simmons, Ardyth M; House, Brian M; Hartmann, Matt; Maher, Kate

    2015-05-19

    In situ recovery (ISR) uranium (U) mining mobilizes U in its oxidized hexavalent form (U(VI)) by oxidative dissolution of U from the roll-front U deposits. Postmining natural attenuation of residual U(VI) at ISR mines is a potential remediation strategy. Detection and monitoring of naturally occurring reducing subsurface environments are important for successful implementation of this remediation scheme. We used the isotopic tracers (238)U/(235)U (δ(238)U), (234)U/(238)U activity ratio, and (34)S/(32)S (δ(34)S), and geochemical measurements of U ore and groundwater collected from 32 wells located within, upgradient, and downgradient of a roll-front U deposit to detect U(VI) reduction and U mobility at an ISR mining site at Rosita, TX, USA. The δ(238)U in Rosita groundwater varies from +0.61‰ to -2.49‰, with a trend toward lower δ(238)U in downgradient wells. The concurrent decrease in U(VI) concentration and δ(238)U with an ε of 0.48‰ ± 0.08‰ is indicative of naturally occurring reducing environments conducive to U(VI) reduction. Additionally, characteristic (234)U/(238)U activity ratio and δ(34)S values may also be used to trace the mobility of the ore zone groundwater after mining has ended. These results support the use of U isotope-based detection of natural attenuation of U(VI) at Rosita and other similar ISR mining sites. PMID:25909757

  20. Microbial Community Changes in Response to Ethanol or Methanol Amendments for U(VI) Reduction

    SciTech Connect

    Vishnivetskaya, Tatiana A; Brandt, Craig C; Madden, Andrew; Drake, Meghan M; Kostka, Joel; Akob, Denise M.; Kusel, Kirsten; Palumbo, Anthony Vito

    2010-01-01

    Microbial community responses to ethanol, methanol and methanol + humics amendments in relationship to uranium bioremediation were studied in laboratory microcosm experiments using sediments and ground water from a uranium-contaminated site in Oak Ridge, Tennessee. Ethanol addition always resulted in uranium reduction at rate of 0.8-1.0 mol l-1 d-1 while methanol addition did so occasionally at rate 0.95 mol l-1 d-1. The type of carbon source added, the duration of incubation, and the sampling site influenced the bacterial community structure upon incubation. Analysis of 16S rRNA gene clone libraries indicated (1) bacterial communities found in ethanol- and methanol-amended samples with U(VI) reduction were similar due to presence of -Proteobacteria, and -Proteobacteria (members of the families Burkholderiaceae, Comamonadaceae, Oxalobacteraceae, and Rhodocyclaceae); (2) methanol-amended samples without U(VI) reduction exhibited the lowest diversity and the bacterial community contained 69.2-92.8% of the family Methylophilaceae; and (3) the addition of humics resulted in an increase of phylogenetic diversity of -Proteobacteria (Rodoferax, Polaromonas, Janthinobacterium, Methylophilales, unclassified) and Firmicutes (Desulfosporosinus, Clostridium).

  1. Reductive transformation of carbamazepine by abiotic and biotic processes.

    PubMed

    König, Anne; Weidauer, Cindy; Seiwert, Bettina; Reemtsma, Thorsten; Unger, Tina; Jekel, Martin

    2016-09-15

    The antiepileptic drug carbamazepine (CBZ) is ubiquitously present in the anthropogenic water cycle and is therefore of concern regarding the potable water supply. Despite of its persistent behavior in the aquatic environment, a redox dependent removal at bank filtration sites with anaerobic aquifer passage was reported repeatedly but not elucidated in detail yet. The reductive transformation of CBZ was studied, using abiotic systems (catalytic hydrogenation, electrochemistry) as well as biologically active systems (column systems, batch degradation tests). In catalytic hydrogenation CBZ is gradually hydrogenated and nine transformation products (TPs) were detected by liquid chromatography high-resolution mass spectrometry. 10,11-Dihydro-CBZ ((2H)-CBZ) was the major stable product in these abiotic, surface catalyzed reduction processes and turned out to be not a precursor of the more hydrogenated TPs. In the biotic reduction processes the formation of (2H)-CBZ alone could not explain the observed CBZ decline. There, also traces of (6H)-CBZ and (8H)-CBZ were formed by microbes under anaerobic conditions and four phase-II metabolites of reduced CBZ could be detected and tentatively identified. Thus, the spectrum of reduction products of CBZ is more diverse than previously thought. In environmental samples CBZ removal along an anaerobic soil passage was confirmed and (2H)-CBZ was determined at one of the sites. PMID:27267475

  2. Electrochemical and Spectroscopic Evidence on the One-Electron Reduction of U(VI) to U(V) on Magnetite.

    PubMed

    Yuan, Ke; Ilton, Eugene S; Antonio, Mark R; Li, Zhongrui; Cook, Peter J; Becker, Udo

    2015-05-19

    Reduction of U(VI) to U(IV) on mineral surfaces is often considered a one-step two-electron process. However, stabilized U(V), with no evidence of U(IV), found in recent studies indicates U(VI) can undergo a one-electron reduction to U(V) without further progression to U(IV). We investigated reduction pathways of uranium by reducing U(VI) electrochemically on a magnetite electrode at pH 3.4. Cyclic voltammetry confirms the one-electron reduction of U(VI) to U(V). Formation of nanosize uranium precipitates on the magnetite surface at reducing potentials and dissolution of the solids at oxidizing potentials are observed by in situ electrochemical atomic force microscopy. XPS analysis of the magnetite electrodes polarized in uranium solutions at voltages from -0.1 to -0.9 V (E(0)(U(VI)/U(V))= -0.135 V vs Ag/AgCl) show the presence of only U(V) and U(VI). The sample with the highest U(V)/U(VI) ratio was prepared at -0.7 V, where the longest average U-O(axial) distance of 2.05 ± 0.01 Å was evident in the same sample revealed by extended X-ray absorption fine structure analysis. The results demonstrate that the electrochemical reduction of U(VI) on magnetite only yields U(V), even at a potential of -0.9 V, which favors the one-electron reduction mechanism. U(V) does not disproportionate but stabilizes on magnetite through precipitation of mixed-valence state U(V)/U(VI) solids. PMID:25893535

  3. Plutonium(VI) accumulation and reduction by lichen biomass: correlation with U(VI).

    PubMed

    Ohnuki, Toshihiko; Aoyagi, Hisao; Kitatsuji, Yoshihiro; Samadfam, Mohammad; Kimura, Yasuhiko; William Purvis, O

    2004-01-01

    The uptake of plutonium(VI) and uranium(VI) by lichen biomass was studied in the foliose lichen Parmotrema tinctorum to elucidate the migration behavior of Pu and U in the terrestrial environment. Pu and U uptake by P. tinctorum averaged 0.040+/-0.010 and 0.055+/-0.015 g gdry (-1), respectively, after 96 h incubation with 4.0 x 10(14) mol 1(-1) Pu solutions of pH 3, 4 and 5. SEM observations showed that the accumulated Pu is evenly distributed on the upper and lower surfaces of P. tinctorum, in contrast to U(VI), which accumulated in both cortical and medullary layers. UV/VIS absorption spectroscopy demonstrates that a fraction of Pu(VI) in the solution is reduced to Pu(V) by the organic substances released from P. tinctorum, and the accumulated Pu on the surface is reduced to Pu(IV), while U(VI) keeps the oxidation state of VI. Since the solubility of Pu(IV) hydroxides is very low, reduced Pu(VI) does not penetrate to the medullary layers, but is probably precipitated as Pu(IV) hydroxides on the cortical lichen surface. It is concluded that the uptake and reduction of Pu(VI) by lichens is important to determine the mobilization and oxidation states of Pu in the terrestrial environment. PMID:15381325

  4. Acceleration of Microbially Mediated U(VI) Reduction at a Uranium Mill Tailings Site, Colorado Plateau

    SciTech Connect

    Phil Long; Todd Anderson; Aaron Peacock; Steve Heald; Yun-Juan Chang; Dick Dayvault; Derek R. Lovley; C.T. Resch; Helen Vrionis; Irene Ortiz-Bernad; D.C. White

    2004-03-17

    A second field-scale electron donor amendment experiment was conducted in 2003 at the Old Rifle Uranium Mill Tailings Remedial Action (UMTRA) site in Rifle, Colorado. The objective of the 2003 experiment (done in collaboration with the U.S. Department of Energy's UMTRA Groundwater Project) was to test the hypothesis that amendment of increased concentration of electron donor would result in an increased export of electron donor down gradient which in turn would create a larger zone of down-gradient U(VI) bioreduction sustained over a longer time period relative to the 2002 experiment (Anderson et al. 2003). During the first experiment (2002), {approx}3 mM acetate was amended to subsurface over a period of 3 months in a 15m by 18m by 2.5m volume comprised of 3 upgradient monitoring wells, 20 injection wells, and 15 down-gradient monitoring wells. After an initial one-month phase of metal reduction, bioavailable oxidized Fe was consumed near the injection gallery and the dominant terminal electron accepting process became sulfate reduction, rapidly consuming the injected acetate. For the 2003 experiment, we amended sufficient acetate ({approx}10 mM) to consume available sulfate and export acetate down-gradient where bioavailable oxidized Fe was still present. Data from the experiment indicate that acetate was exported further down gradient, resulting in a larger zone of microbial U(VI) reduction than for the 2002 experiment. Geohydrologic, geochemical, and microbiological data collected during the course of both experiments enable assessment of relative importance of a number of factors controlling the experimental outcomes. Companion posters by Anderson et al. and White et al. provide additional results.

  5. Modeling Reduction of Uranium U(VI) under Variable Sulfate Concentrations by Sulfate-Reducing Bacteria

    PubMed Central

    Spear, John R.; Figueroa, Linda A.; Honeyman, Bruce D.

    2000-01-01

    The kinetics for the reduction of sulfate alone and for concurrent uranium [U(VI)] and sulfate reduction, by mixed and pure cultures of sulfate-reducing bacteria (SRB) at 21 ± 3°C were studied. The mixed culture contained the SRB Desulfovibrio vulgaris along with a Clostridium sp. determined via 16S ribosomal DNA analysis. The pure culture was Desulfovibrio desulfuricans (ATCC 7757). A zero-order model best fit the data for the reduction of sulfate from 0.1 to 10 mM. A lag time occurred below cell concentrations of 0.1 mg (dry weight) of cells/ml. For the mixed culture, average values for the maximum specific reaction rate, Vmax, ranged from 2.4 ± 0.2 μmol of sulfate/mg (dry weight) of SRB · h−1) at 0.25 mM sulfate to 5.0 ± 1.1 μmol of sulfate/mg (dry weight) of SRB · h−1 at 10 mM sulfate (average cell concentration, 0.52 mg [dry weight]/ml). For the pure culture, Vmax was 1.6 ± 0.2 μmol of sulfate/mg (dry weight) of SRB · h−1 at 1 mM sulfate (0.29 mg [dry weight] of cells/ml). When both electron acceptors were present, sulfate reduction remained zero order for both cultures, while uranium reduction was first order, with rate constants of 0.071 ± 0.003 mg (dry weight) of cells/ml · min−1 for the mixed culture and 0.137 ± 0.016 mg (dry weight) of cells/ml · min−1 (U0 = 1 mM) for the D. desulfuricans culture. Both cultures exhibited a faster rate of uranium reduction in the presence of sulfate and no lag time until the onset of U reduction in contrast to U alone. This kinetics information can be used to design an SRB-dominated biotreatment scheme for the removal of U(VI) from an aqueous source. PMID:10966381

  6. Isotopic and geochemical tracers for U(VI) reduction and U mobility at an in situ recovery U mine

    DOE PAGESBeta

    Basu, Anirban; Brown, Shaun T.; Christensen, John N.; DePaolo, Donald J.; Reimus, Paul W.; Heikoop, Jeffrey M.; Woldegabriel, Giday; Simmons, Ardyth M.; House, Brian M.; Hartmann, Matt; et al

    2015-05-19

    In situ recovery (ISR) uranium (U) mining mobilizes U in its oxidized hexavalent form (U(VI)) by oxidative dissolution of U from the roll-front U deposits. Post-mining natural attenuation of residual U(VI) at ISR mines is a potential remediation strategy. Detection and monitoring of naturally occurring reducing subsurface environments are important for successful implementation of this remediation scheme. We used the isotopic tracers ²³⁸U/²³⁵U (δ²³⁸U), ²³⁴U/²³⁸U activity ratio, and ³⁴S/³²S (δ³⁴S), and geochemical measurements of U ore and groundwater collected from 32 wells located within, upgradient, and downgradient of a roll-front U deposit to detect U(VI) reduction and U mobility atmore » an ISR mining site at Rosita, TX, USA. The δ²³⁸U in Rosita groundwater varies from 0.61‰ to -2.49‰, with a trend toward lower δ²³⁸U in downgradient wells. The concurrent decrease in U(VI) concentration and δ²³⁸U with an ε of 0.48‰ ± 0.08‰ is indicative of naturally occurring reducing environments conducive to U(VI) reduction. Additionally, characteristic ²³⁴U/²³⁸U activity ratio and δ³⁴S values may also be used to trace the mobility of the ore zone groundwater after mining has ended. These results support the use of U isotope-based detection of natural attenuation of U(VI) at Rosita and other similar ISR mining sites.« less

  7. Influence of Mn oxides on the reduction of U(VI) by the metal-reducing bacterium Shewanella putrefaciens

    SciTech Connect

    Fredrickson, Jim K.; Zachara, John M.; Kennedy, David W.; Liu, Chongxuan; Duff, Martine C.; Hunter, David; Dohnalkova, Alice

    2002-09-16

    Dissimilatory metal-reducing bacteria (DMRB) enzymatically reduce Fe(III), Mn(III/IV), U(VI), and other polyvalent metals during anaerobic respiration. Previous investigations of the bacterial reduction of U(VI) in the presence of goethite (a-FeOOH) found that, in spite of potential competition as an electron acceptor, goethite had little impact on the bacterial reduction of U(VI) to insoluble U(IV). Mn(III/IV) oxides are also electron acceptors for DMRB but are stronger oxidants than Fe(III) oxides. Differences in the solubility of oxidized Mn and U challenges predictions of their biogeochemical behavior during redox cycling. The potential for Mn oxides to modify the biogeochemical behavior of U during reduction by a subsurface bacterium Shewanella putrefaciens CN32 was investigated using synthetic Mn(III/IV) oxides [pyrolusite ({beta}-MnO{sub 2}), bixbyite (Mn{sub 2}O{sub 3}) and K{sup +}-birnessite (K{sub 4}Mn{sub 14}O{sub 27} {center_dot} 8H{sub 2}O)]. In the absence of bacteria, pyrolusite and bixbyite oxidized biogenic uraninite (UO{sub 2}(s)) to soluble U(VI) species, with bixbyite being the most rapid oxidant. The Mn(III/IV) oxides lowered the bioreduction rate of U(VI) relative to rates in their absence, or in the presence of gibbsite [Al(OH){sub 3}] added as a non-redox reactive surface. Evolved Mn(II) increased with increasing initial U(VI) concentration in the biotic experiments, indicating that valence cycling of U facilitated the reduction of Mn(III/IV). Despite an excess of the Mn oxide, 43-100% of the initial U was bioreduced after extended incubation. Analysis of thin sections of bacterial-Mn oxide suspensions revealed that the reduced U resided in the periplasmic space of the bacterial cells. In the absence of Mn(III/IV) oxides, UO{sub 2}(s) accumulated as copius fine-grained particles external to the cell. These results indicate that the presence of Mn(III/IV) oxides may impede the biological reduction of U(VI) in subsoils and sediments?.

  8. Carbon isotope fractionation during abiotic reductive dehalogenation of trichloroethene (TCE).

    PubMed

    Bill, M; Schüth, C; Barth, J A; Kalin, R M

    2001-08-01

    Dehalogenation of trichloroethene (TCE) in the aqueous phase, either on palladium catalysts with hydrogen as the reductant or on metallic iron, was associated with strong changes in delta13C. In general, the delta13C of product phases were more negative than those of the parent compound and were enriched with time and fraction of TCE remaining. For dehalogenation with iron, the delta13C of TCE and products varied from -42/1000 to +5/1000. For the palladium experiments, the final product, ethane, reached the initial delta13C of TCE at completion of the dehalogenation reaction. During dehalogenation, the carbon isotope fractionation between TCE and product phases was not constant. The variation in delta13C of TCE and products offers a new monitoring tool that operates independently of the initial concentration of pollutants for abiotic degradation processes of TCE in the subsurface, and may be useful for evaluation of remediation efficiency. PMID:11513419

  9. Interactions between Biological and Abiotic Pathways in the Reduction of Chlorinated Solvents

    EPA Science Inventory

    While biologically mediated reductive dechlorination continues to be a significant focus of chlorinated solvent remediation, there has been an increased interest in abiotic reductive processes for the remediation of chlorinated solvents. In situ chemical reduction (ISCR) uses zer...

  10. Influence of dynamical conditions on the reduction of U(VI) at the magnetite-solution interface.

    PubMed

    Ilton, Eugene S; Boily, Jean-François; Buck, Edgar C; Skomurski, Frances N; Rosso, Kevin M; Cahill, Christopher L; Bargar, John R; Felmy, Andrew R

    2010-01-01

    The heterogeneous reduction of U(VI) to U(IV) by ferrous iron is believed to be a key process influencing the fate and transport of U in the environment. The reactivity of both sorbed and structural Fe(II) has been studied for numerous substrates, including magnetite. Published results from U(VI)-magnetite experiments have been variable, ranging from no reduction to clear evidence for the formation of U(IV). In this contribution, we used XAS and high resolution (+/-cryogenic) XPS to study the interaction of U(VI) with nanoparticulate magnetite. The results indicated that U(VI) was partially reduced to U(V) with no evidence of U(IV). However, thermodynamic calculations indicated that U phases with average oxidation states below (V) should have been stable, indicating that the system was not in redox equilibrium. A reaction pathway that involves incorporation and stabilization of U(V) and U(VI) into secondary phases is invoked to explain the observations. The results suggest an important and previously unappreciated role of U(V) in the fate and transport of uranium in the environment. PMID:20039748

  11. The Use of Chemical Probes for the Characterization of the Predominant Abiotic Reductants in Anaerobic Sediments

    EPA Science Inventory

    Identifying the predominant chemical reductants and pathways for electron transfer in anaerobic systems is paramount to the development of environmental fate models that incorporate pathways for abiotic reductive transformations. Currently, such models do not exist. In this chapt...

  12. Quantitative separation of monomeric U(IV) from UO2 in products of U(VI) reduction

    PubMed Central

    Alessi, Daniel S.; Uster, Benjamin; Veeramani, Harish; Suvorova, Elena I.; Lezama-Pacheco, Juan S.; Stubbs, Joanne E.; Bargar, John R.; Bernier-Latmani, Rizlan

    2012-01-01

    The reduction of soluble hexavalent uranium to tetravalent uranium can be catalyzed by bacteria and minerals. The end-product of this reduction is often the mineral uraninite, which was long assumed to be the only product of U(VI) reduction. However, recent studies report the formation of other species including an adsorbed U(IV) species, operationally referred to as monomeric U(IV). The discovery of monomeric U(IV) is important because the species is likely to be more labile and more susceptible to reoxidation than uraninite. Because there is a need to distinguish between these two U(IV) species, we propose here a wet chemical method of differentiating monomeric U(IV) from uraninite in environmental samples. To calibrate the method, U(IV) was extracted from known mixtures of uraninite and monomeric U(IV) and testted using X-ray absorption spectroscopy (XAS). Monomeric U(IV) was efficiently removed from biomass and Fe(II)-bearing phases by bicarbonate extraction, without affecting uraninite stability. After confirming that the method effectively separates monomeric U(IV) and uraninite, it is further evaluated for a system containing those reduced U species and adsorbed U(VI). The method provides a rapid complement, and in some cases alternative, to XAS analyses for quantifying monomeric U(IV), uraninite, and adsorbed U(VI) species in environmental samples. PMID:22540966

  13. Reductive degradation of chloramphenicol using bioelectrochemical system (BES): a comparative study of abiotic cathode and biocathode.

    PubMed

    Sun, Fei; Liu, Hao; Liang, Bin; Song, Rentao; Yan, Qun; Wang, Aijie

    2013-09-01

    Reductive degradation of choramphenicol (CAP) using Bioelectrochemical system (BES) with both abiotic cathode and biocathode was investigated. It was found that the CAP reduction efficiency during the first 24 h reached 86.3% of the biocathode group, while which was only 62.9% in the case of abiotic cathode. Except for the cathode potential, other indicators of the cathode performance as the cathode current, the current response of the cyclic voltammetry, the ohm resistance, and the polarization resistance of the biocathode group were all better than those of the abiotic group. Moreover, specific CAP reductive rate of the biocathode with sludge fermentation liquid (0.199 h(-1)) as carbon source was close to that of the glucose (0.215 h(-1)), but was about 3.2 times of the abiotic cathode group (0.062 h(-1)). It suggested that the introduction of biocathode would better the cathode performance, and then further increase the CAP reduction. PMID:23849757

  14. Metaproteomics Identifies the Protein Machinery Involved in Metal and Radionuclide Reduction in Subsurface Microbiomes and Elucidates Mechanisms and U(VI) Reduction Immobilization

    SciTech Connect

    Pfiffner, Susan M.; Löffler, Frank; Ritalahti, Kirsti; Sayler, Gary; Layton, Alice; Hettich, Robert

    2015-08-31

    The overall goal for this funded project was to develop and exploit environmental metaproteomics tools to identify biomarkers for monitoring microbial activity affecting U speciation at U-contaminated sites, correlate metaproteomics profiles with geochemical parameters and U(VI) reduction activity (or lack thereof), elucidate mechanisms contributing to U(VI) reduction, and provide remediation project managers with additional information to make science-based site management decisions for achieving cleanup goals more efficiently. Although significant progress has been made in elucidating the microbiology contribution to metal and radionuclide reduction, the cellular components, pathway(s), and mechanisms involved in U trans-formation remain poorly understood. Recent advances in (meta)proteomics technology enable detailed studies of complex samples, including environmental samples, which differ between sites and even show considerable variability within the same site (e.g., the Oak Ridge IFRC site). Additionally, site-specific geochemical conditions affect microbial activity and function, suggesting generalized assessment and interpretations may not suffice. This research effort integrated current understanding of the microbiology and biochemistry of U(VI) reduction and capitalize on advances in proteomics technology made over the past few years. Field-related analyses used Oak Ridge IFRC field ground water samples from locations where slow-release substrate biostimulation has been implemented to accelerate in situ U(VI) reduction rates. Our overarching hypothesis was that the metabolic signature in environmental samples, as deciphered by the metaproteome measurements, would show a relationship with U(VI) reduction activity. Since metaproteomic and metagenomic characterizations were computationally challenging and time-consuming, we used a tiered approach that combines database mining, controlled laboratory studies, U(VI) reduction activity measurements, phylogenetic

  15. Effect of abiotic factors on the mercury reduction process by humic acids in aqueous systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mercury (Hg) in the environment can have serious toxic effects on a variety of living organisms, and is a pollutant of concern worldwide. The reduction of mercury from the toxic Hg2+ form to Hg0 is especially important. One pathway for this reduction to occur is through an abiotic process with humic...

  16. Investigation of the Transformation of Uranium under Iron-Reducing Conditions: Reduction of UVI by Biogenic FeII/FeIII Hydroxide (Green Rust)

    SciTech Connect

    Edward O’Loughlin; Michelle Scherer; Kenneth Kemner; Shelly Kelly

    2004-03-17

    hypotheses: (1) The formation of GRs by dissimilatory Fe{sup III} reduction is controlled by Fe{sup III} speciation, solution composition, and microbial physiology. (2) The chemical composition and structural properties of biogenic GRs are variable and depend on the conditions under which they were formed. (3) The rate of U{sup VI} reduction by biogenic GRs varies depending on their chemical composition and structure, particularly with respect to the Fe{sup II}/Fe{sup III} ratio and the nature of the interlayer anions. (4) The rate of U{sup VI} reduction by a given biogenic GR is affected by the solution composition (e.g., pH, uranium concentration, the concentration of carbonate and other ligands, and the presence of other potential oxidants). Moreover, the solution composition affects both the speciation of U{sup VI} and U{sup IV} and the stability of the GR. (5) The reduction of UVI to UIV can be coupled to dissimilatory FeIII reduction under conditions that promote the formation of biogenic GR and other reactive Fe{sup II} species. The results of this research will increase our understanding of the coupling of biotic and abiotic processes with respect to the speciation of U in Fe{sup III}-reducing environments. This information has direct applications to understanding contaminant transport and the development of in situ bioremediation technologies for treatment of subsurface U contamination.

  17. Dynamic Succession of Groundwater Functional Microbial Communities in Response to Emulsified Vegetable Oil Amendment during Sustained In Situ U(VI) Reduction

    PubMed Central

    Zhang, Ping; Wu, Wei-Min; Van Nostrand, Joy D.; Deng, Ye; He, Zhili; Gihring, Thomas; Zhang, Gengxin; Schadt, Chris W.; Watson, David; Jardine, Phil; Criddle, Craig S.; Brooks, Scott; Marsh, Terence L.; Tiedje, James M.; Arkin, Adam P.

    2015-01-01

    A pilot-scale field experiment demonstrated that a one-time amendment of emulsified vegetable oil (EVO) reduced groundwater U(VI) concentrations for 1 year in a fast-flowing aquifer. However, little is known about how EVO amendment stimulates the functional gene composition, structure, and dynamics of groundwater microbial communities toward prolonged U(VI) reduction. In this study, we hypothesized that EVO amendment would shift the functional gene composition and structure of groundwater microbial communities and stimulate key functional genes/groups involved in EVO biodegradation and reduction of electron acceptors in the aquifer. To test these hypotheses, groundwater microbial communities after EVO amendment were analyzed using a comprehensive functional gene microarray. Our results showed that EVO amendment stimulated sequential shifts in the functional composition and structure of groundwater microbial communities. Particularly, the relative abundance of key functional genes/groups involved in EVO biodegradation and the reduction of NO3−, Mn(IV), Fe(III), U(VI), and SO42− significantly increased, especially during the active U(VI) reduction period. The relative abundance for some of these key functional genes/groups remained elevated over 9 months. Montel tests suggested that the dynamics in the abundance, composition, and structure of these key functional genes/groups were significantly correlated with groundwater concentrations of acetate, NO3−, Mn(II), Fe(II), U(VI), and SO42−. Our results suggest that EVO amendment stimulated dynamic succession of key functional microbial communities. This study improves our understanding of the composition, structure, and function changes needed for groundwater microbial communities to sustain a long-term U(VI) reduction. PMID:25862231

  18. Abiotic CO2 reduction during geologic carbon sequestration facilitated by Fe(II)-bearing minerals

    NASA Astrophysics Data System (ADS)

    Nielsen, L. C.; Maher, K.; Bird, D. K.; Brown, G. E.; Thomas, B.; Johnson, N. C.; Rosenbauer, R. J.

    2012-12-01

    Redox reactions involving subsurface minerals and fluids and can lead to the abiotic generation of hydrocarbons from CO2 under certain conditions. Depleted oil reservoirs and saline aquifers targeted for geologic carbon sequestration (GCS) can contain significant quantities of minerals such as ferrous chlorite, which could facilitate the abiotic reduction of carbon dioxide to n-carboxylic acids, hydrocarbons, and amorphous carbon (C0). If such reactions occur, the injection of supercritical CO2 (scCO2) could significantly alter the oxidation state of the reservoir and cause extensive reorganization of the stable mineral assemblage via dissolution and reprecipitation reactions. Naturally occurring iron oxide minerals such as magnetite are known to catalyze CO2 reduction, resulting in the synthesis of organic compounds. Magnetite is thermodynamically stable in Fe(II) chlorite-bearing mineral assemblages typical of some reservoir formations. Thermodynamic calculations demonstrate that GCS reservoirs buffered by the chlorite-kaolinite-carbonate(siderite/magnesite)-quartz assemblage favor the reduction of CO2 to n-carboxylic acids, hydrocarbons, and C0, although the extent of abiotic CO2 reduction may be kinetically limited. To investigate the rates of abiotic CO2 reduction in the presence of magnetite, we performed batch abiotic CO2 reduction experiments using a Dickson-type rocking hydrothermal apparatus at temperatures (373 K) and pressures (100 bar) within the range of conditions relevant to GCS. Blank experiments containing CO2 and H2 were used to rule out the possibility of catalytic activity of the experimental apparatus. Reaction of brine-suspended magnetite nanoparticles with scCO2 at H2 partial pressures typical of reservoir rocks - up to 100 and 0.1 bars respectively - was used to investigate the kinetics of magnetite-catalyzed abiotic CO2 reduction. Later experiments introducing ferrous chlorite (ripidolite) were carried out to determine the potential for

  19. Isotopic and geochemical tracers for U(VI) reduction and U mobility at an in situ recovery U mine

    SciTech Connect

    Basu, Anirban; Brown, Shaun T.; Christensen, John N.; DePaolo, Donald J.; Reimus, Paul W.; Heikoop, Jeffrey M.; Woldegabriel, Giday; Simmons, Ardyth M.; House, Brian M.; Hartmann, Matt; Maher, Kate

    2015-05-19

    In situ recovery (ISR) uranium (U) mining mobilizes U in its oxidized hexavalent form (U(VI)) by oxidative dissolution of U from the roll-front U deposits. Post-mining natural attenuation of residual U(VI) at ISR mines is a potential remediation strategy. Detection and monitoring of naturally occurring reducing subsurface environments are important for successful implementation of this remediation scheme. We used the isotopic tracers ²³⁸U/²³⁵U (δ²³⁸U), ²³⁴U/²³⁸U activity ratio, and ³⁴S/³²S (δ³⁴S), and geochemical measurements of U ore and groundwater collected from 32 wells located within, upgradient, and downgradient of a roll-front U deposit to detect U(VI) reduction and U mobility at an ISR mining site at Rosita, TX, USA. The δ²³⁸U in Rosita groundwater varies from 0.61‰ to -2.49‰, with a trend toward lower δ²³⁸U in downgradient wells. The concurrent decrease in U(VI) concentration and δ²³⁸U with an ε of 0.48‰ ± 0.08‰ is indicative of naturally occurring reducing environments conducive to U(VI) reduction. Additionally, characteristic ²³⁴U/²³⁸U activity ratio and δ³⁴S values may also be used to trace the mobility of the ore zone groundwater after mining has ended. These results support the use of U isotope-based detection of natural attenuation of U(VI) at Rosita and other similar ISR mining sites.

  20. Fe(III) Reduction and U(VI) Immobilization by Paenibacillus sp. Strain 300A, Isolated from Hanford 300A Subsurface Sediments

    PubMed Central

    Ahmed, Bulbul; Cao, Bin; McLean, Jeffrey S.; Ica, Tuba; Dohnalkova, Alice; Istanbullu, Ozlem; Paksoy, Akin; Fredrickson, Jim K.

    2012-01-01

    A facultative iron-reducing [Fe(III)-reducing] Paenibacillus sp. strain was isolated from Hanford 300A subsurface sediment biofilms that was capable of reducing soluble Fe(III) complexes [Fe(III)-nitrilotriacetic acid and Fe(III)-citrate] but unable to reduce poorly crystalline ferrihydrite (Fh). However, Paenibacillus sp. 300A was capable of reducing Fh in the presence of low concentrations (2 μM) of either of the electron transfer mediators (ETMs) flavin mononucleotide (FMN) or anthraquinone-2,6-disulfonate (AQDS). Maximum initial Fh reduction rates were observed at catalytic concentrations (<10 μM) of either FMN or AQDS. Higher FMN concentrations inhibited Fh reduction, while increased AQDS concentrations did not. We also found that Paenibacillus sp. 300A could reduce Fh in the presence of natural ETMs from Hanford 300A subsurface sediments. In the absence of ETMs, Paenibacillus sp. 300A was capable of immobilizing U(VI) through both reduction and adsorption. The relative contributions of adsorption and microbial reduction to U(VI) removal from the aqueous phase were ∼7:3 in PIPES [piperazine-N,N′-bis(2-ethanesulfonic acid)] and ∼1:4 in bicarbonate buffer. Our study demonstrated that Paenibacillus sp. 300A catalyzes Fe(III) reduction and U(VI) immobilization and that these reactions benefit from externally added or naturally existing ETMs in 300A subsurface sediments. PMID:22961903

  1. Fe(III) reduction and U(VI) immobilization by Paenibacillus sp. strain 300A, isolated from Hanford 300A subsurface sediments.

    PubMed

    Ahmed, Bulbul; Cao, Bin; McLean, Jeffrey S; Ica, Tuba; Dohnalkova, Alice; Istanbullu, Ozlem; Paksoy, Akin; Fredrickson, Jim K; Beyenal, Haluk

    2012-11-01

    A facultative iron-reducing [Fe(III)-reducing] Paenibacillus sp. strain was isolated from Hanford 300A subsurface sediment biofilms that was capable of reducing soluble Fe(III) complexes [Fe(III)-nitrilotriacetic acid and Fe(III)-citrate] but unable to reduce poorly crystalline ferrihydrite (Fh). However, Paenibacillus sp. 300A was capable of reducing Fh in the presence of low concentrations (2 μM) of either of the electron transfer mediators (ETMs) flavin mononucleotide (FMN) or anthraquinone-2,6-disulfonate (AQDS). Maximum initial Fh reduction rates were observed at catalytic concentrations (<10 μM) of either FMN or AQDS. Higher FMN concentrations inhibited Fh reduction, while increased AQDS concentrations did not. We also found that Paenibacillus sp. 300A could reduce Fh in the presence of natural ETMs from Hanford 300A subsurface sediments. In the absence of ETMs, Paenibacillus sp. 300A was capable of immobilizing U(VI) through both reduction and adsorption. The relative contributions of adsorption and microbial reduction to U(VI) removal from the aqueous phase were ∼7:3 in PIPES [piperazine-N,N'-bis(2-ethanesulfonic acid)] and ∼1:4 in bicarbonate buffer. Our study demonstrated that Paenibacillus sp. 300A catalyzes Fe(III) reduction and U(VI) immobilization and that these reactions benefit from externally added or naturally existing ETMs in 300A subsurface sediments. PMID:22961903

  2. Fe(III) Reduction and U(VI) Immobilization by Paenibacillus sp. Strain 300A, Isolated from Hanford 300A Subsurface Sediments

    SciTech Connect

    Ahmed, B.; Cao, B.; McLean, Jeffrey S.; Ica, Tuba; Dohnalkova, Alice; Istanbullu, Ozlem; Paksoy, Akin; Fredrickson, Jim K.; Beyenal, Haluk

    2012-11-07

    A facultative iron-reducing (Fe(III)-reducing) Paenibacillus sp. strain was isolated from Hanford 300A subsurface sediment biofilms that was capable of reducing soluble Fe(III) complexes (Fe(III)-NTA and Fe(III)-citrate) but unable to reduce poorly crystalline ferrihydrite (Fh). However, Paenibacillus sp. 300A was capable of reducing Fh in the presence of low concentrations (2 µM) of either of electron transfer mediators (ETMs) flavin mononucleotide (FMN) or anthraquinone-2,6-disulfonate (AQDS). Maximum initial Fh reduction rates were observed at catalytic concentrations (<10 µM) of either FMN or AQDS. Higher FMN concentrations inhibited Fh reduction, while increased AQDS concentrations did not. We found that Paenibacillus sp. 300A also could reduce Fh in the presence of natural ETMs from Hanford 300A subsurface sediments. In the absence of ETMs, Paenibacillus sp. 300A was capable of immobilizing U(VI) through both reduction and adsorption. The relative contributions of adsorption and microbial reduction to U(VI) removal from the aqueous phase were ~7:3 in PIPES and ~1:4 in bicarbonate buffer. Our study demonstrated that Paenibacillus sp. 300A catalyzes Fe(III) reduction and U(VI) immobilization and that these reactions benefit from externally added or naturally existing ETMs in 300A subsurface sediments.

  3. Reduction of U(VI) and Toxic Metals by Desulfovibrio Cytochrome C3

    SciTech Connect

    Wall, Judy D

    2013-04-11

    The central objective of our proposed research was twofold: 1) to investigate the structure-function relationship of Desulfovibrio desulfuricans (now Desulfovibrio alaskensis G20) cytochrome c3 with uranium and 2) to elucidate the mechanism for uranium reduction in vitro and in vivo. Physiological analysis of a mutant of D. desulfuricans with a mutation of the gene encoding the type 1 tetraheme cytochrome c3 had demonstrated that uranium reduction was negatively impacted while sulfate reduction was not if lactate were the electron donor. This was thought to be due to the presence of a branched pathway of electron flow from lactate leading to sulfate reduction. Our experimental plan was to elucidate the structural and mechanistic details of uranium reduction involving cytochrome c3.

  4. Reduction of Fe(III), Cr(VI), U(VI), and Tc(VII) by Deinococcus radiodurans R1

    PubMed Central

    Fredrickson, J. K.; Kostandarithes, H. M.; Li, S. W.; Plymale, A. E.; Daly, M. J.

    2000-01-01

    Deinococcus radiodurans is an exceptionally radiation-resistant microorganism capable of surviving acute exposures to ionizing radiation doses of 15,000 Gy and previously described as having a strictly aerobic respiratory metabolism. Under strict anaerobic conditions, D. radiodurans R1 reduced Fe(III)-nitrilotriacetic acid coupled to the oxidation of lactate to CO2 and acetate but was unable to link this process to growth. D. radiodurans reduced the humic acid analog anthraquinone-2,6-disulfonate (AQDS) to its dihydroquinone form, AH2DS, which subsequently transferred electrons to the Fe(III) oxides hydrous ferric oxide and goethite via a previously described electron shuttle mechanism. D. radiodurans reduced the solid-phase Fe(III) oxides in the presence of either 0.1 mM AQDS or leonardite humic acids (2 mg ml−1) but not in their absence. D. radiodurans also reduced U(VI) and Tc(VII) in the presence of AQDS. In contrast, Cr(VI) was directly reduced in anaerobic cultures with lactate although the rate of reduction was higher in the presence of AQDS. The results are the first evidence that D. radiodurans can reduce Fe(III) coupled to the oxidation of lactate or other organic compounds. Also, D. radiodurans, in combination with humic acids or synthetic electron shuttle agents, can reduce U and Tc and thus has potential applications for remediation of metal- and radionuclide-contaminated sites where ionizing radiation or other DNA-damaging agents may restrict the activity of more sensitive organisms. PMID:10788374

  5. Reduction of Fe(III), Cr(VI), U(VI), and Tc(VII) by Deinococcus radiodurans R1

    SciTech Connect

    Fredrickson, J.K.; Kostandarithes, H.M.; Li, S.W.; Plymake, A.E.; Daly, M.J.

    2000-05-01

    Deinococcus radiodurans is an exceptionally radiation-resistant microorganism capable of surviving acute exposures to ionizing radiation doses of 15,000 Gy and previously described as having a strictly aerobic respiratory metabolism. Under strict anaerobic conditions, D. radiodurans R1 reduced Fe(III)-nitrilotriacetic acid coupled to the oxidation of lactate to CO{sub 2} and acetate but was unable to link this process to growth. D. radiodurans reduced the humic acid analog anthraquinone-2,6-disulfonate (AQDS) to its dihydroquinone form, AH{sub 2}DS, which subsequently transferred electrons to the Fe(III) oxides hydrous ferric oxide and goethite via a previously described electron shuttle mechanism. D. radiodurans reduced the solid-phase Fe(III) oxides in the presence of either 0.1 mM AQDS or leonardite humic acids (2 mg ml{sup {minus}1}) but not in their absence. D. radiodurans also reduced U(VI) and Tc(VII) in the presence of AQDS. In contrast, Cr(VI) was directly reduced in anaerobic cultures with lactate although the rate of reduction was higher in the presence of AQDS. The results are the first evidence that D. radiodurans can reduce Fe(III) coupled to the oxidation of lactate or other organic compounds. Also, D. radiodurans, in combination with humic acids or synthetic electron shuttle agents, can reduce U and Tc and thus has potential applications for remediation of metal- and radionuclide-contaminated sites where ionizing radiation or other DNA-damaging agents may restrict the activity of more sensitive organisms.

  6. Reduction of Fe(III), Cr(VI), U(VI), and Tc(VII) by Deinococcus radiodurans R1.

    PubMed

    Fredrickson, J K; Kostandarithes, H M; Li, S W; Plymale, A E; Daly, M J

    2000-05-01

    Deinococcus radiodurans is an exceptionally radiation-resistant microorganism capable of surviving acute exposures to ionizing radiation doses of 15,000 Gy and previously described as having a strictly aerobic respiratory metabolism. Under strict anaerobic conditions, D. radiodurans R1 reduced Fe(III)-nitrilotriacetic acid coupled to the oxidation of lactate to CO(2) and acetate but was unable to link this process to growth. D. radiodurans reduced the humic acid analog anthraquinone-2,6-disulfonate (AQDS) to its dihydroquinone form, AH(2)DS, which subsequently transferred electrons to the Fe(III) oxides hydrous ferric oxide and goethite via a previously described electron shuttle mechanism. D. radiodurans reduced the solid-phase Fe(III) oxides in the presence of either 0.1 mM AQDS or leonardite humic acids (2 mg ml(-1)) but not in their absence. D. radiodurans also reduced U(VI) and Tc(VII) in the presence of AQDS. In contrast, Cr(VI) was directly reduced in anaerobic cultures with lactate although the rate of reduction was higher in the presence of AQDS. The results are the first evidence that D. radiodurans can reduce Fe(III) coupled to the oxidation of lactate or other organic compounds. Also, D. radiodurans, in combination with humic acids or synthetic electron shuttle agents, can reduce U and Tc and thus has potential applications for remediation of metal- and radionuclide-contaminated sites where ionizing radiation or other DNA-damaging agents may restrict the activity of more sensitive organisms. PMID:10788374

  7. Archaeal (Per)Chlorate Reduction at High Temperature: An Interplay of Biotic and Abiotic Reactions

    NASA Astrophysics Data System (ADS)

    Liebensteiner, Martin G.; Pinkse, Martijn W. H.; Schaap, Peter J.; Stams, Alfons J. M.; Lomans, Bart P.

    2013-04-01

    Perchlorate and chlorate anions [(per)chlorate] exist in the environment from natural and anthropogenic sources, where they can serve as electron acceptors for bacteria. We performed growth experiments combined with genomic and proteomic analyses of the hyperthermophile Archaeoglobus fulgidus that show (per)chlorate reduction also extends into the archaeal domain of life. The (per)chlorate reduction pathway in A. fulgidus relies on molybdo-enzymes that have similarity with bacterial enzymes; however, chlorite is not enzymatically split into chloride and oxygen. Evidence suggests that it is eliminated by an interplay of abiotic and biotic redox reactions involving sulfur compounds. Biological (per)chlorate reduction by ancient archaea at high temperature may have prevented accumulation of perchlorate in early terrestrial environments and consequently given rise to oxidizing conditions on Earth before the rise of oxygenic photosynthesis.

  8. An experimental and ab initio study on the abiotic reduction of uranyl by ferrous iron

    NASA Astrophysics Data System (ADS)

    Taylor, S. D.; Marcano, M. C.; Rosso, K. M.; Becker, U.

    2015-05-01

    It is important to understand the mechanisms controlling the removal of uranyl from solution from an environmental standpoint, particularly whether soluble Fe(II) is capable of reducing soluble U(VI) to insoluble U(IV). Experiments were performed to shed light into discrepancies of recent studies about precipitation of U-containing solids without changing oxidation states versus precipitation/reduction reactions, especially with respect to the kinetics of these reactions. To understand the atomistic mechanisms, thermodynamics, and kinetics of these redox processes, ab initio electron transfer (ET) calculations, using Marcus theory, were applied to study the reduction of U(VI)aq to U(V)aq by Fe(II)aq (the first rate-limiting ET-step). Outer-sphere (OS) and inner-sphere (IS) Fe-U complexes were modeled to represent simple species within a homogeneous environment through which ET could occur. Experiments on the chemical reduction were performed by reacting 1 mM Fe(II)aq at pH 7.2 with high (i.e., 0.16 mM) and lower (i.e., 0.02 mM) concentrations of U(VI)aq. At higher U concentration, a rapid decrease in U(VI)aq was observed within the first hour of reaction. XRD and XPS analyses of the precipitates confirmed the presence of (meta)schoepite phases, where up to ∼25% of the original U was reduced to U4+ and/or U5+-containing phases. In contrast, at 0.02 mM U, the U(VI)aq concentration remained fairly constant for the first 3 h of reaction and only then began to decrease due to slower precipitation kinetics. XPS spectra confirm the partial chemical reduction U associated with the precipitate (up to ∼30%). Thermodynamic calculations support that the reduction of U(VI)aq to U(IV)aq by Fe(II)aq is energetically unfavorable. The batch experiments in this study show U(VI) is removed from solution by precipitation and that transitioning to a heterogeneous system in turn enables the solid U phase to be partially reduced. Ab initio ET calculations revealed that OS ET is

  9. Abiotic reduction of trifluralin and pendimethalin by sulfides in black-carbon-amended coastal sediments.

    PubMed

    Gong, Wenwen; Liu, Xinhui; Xia, Shuhua; Liang, Baocui; Zhang, Wei

    2016-06-01

    Dinitroaniline herbicides such as trifluralin and pendimethalin are persistent bioaccumulative toxins to aquatic organisms. Thus, in-situ remediation of contaminated sediments is desired. This study investigated whether black carbons (BCs), including apple wood charcoal (BC1), rice straw biochar (BC2), and activated carbon (BC3), could facilitate abiotic reduction of trifluralin and pendimethalin by sulfides of environmentally-relevant concentrations in anoxic coastal sediments. The reduction rates of trifluralin and pendimethalin increased substantially with increasing BC dosages in the sediments. This enhancing effect was dependent on BC type with the greatest for BC3 followed by BC1 and BC2, which well correlated with their specific surface area. The pseudo-first order reduction rate constants (kobs) for BC3-amended sediment (2%) were 13- and 14 times the rate constants in the BC-free sediment. The reduction rates increased with increasing temperature from 8 to 25°C in the BC-amended sediment, following the Arrhenius relationship. Finally, through molecular modeling by density functional theory and reaction species identification from mass spectra, molecular pathways of trifluralin and pendimethalin reduction were elucidated. In contrary to the separate sequential reduction of each nitro group to amine group, both nitro groups, first reduced to nitroso, then eventually to amine groups. PMID:26905610

  10. Simultaneous adsorption and reduction of U(VI) on reduced graphene oxide-supported nanoscale zerovalent iron.

    PubMed

    Sun, Yubing; Ding, Congcong; Cheng, Wencai; Wang, Xiangke

    2014-09-15

    The reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) composites were synthesized by chemical deposition method and were characterized by SEM, high resolution TEM, Raman and potentiometric acid-base titrations. The characteristic results showed that the nZVI nanoparticles can be uniformly dispersed on the surface of rGO. The removal of U(VI) on nZVI/rGO composites as a function of contact time, pH and U(VI) initial concentration was investigated by batch technique. The removal kinetics of U(VI) on nZVI and nZVI/rGO were well simulated by a pseudo-first-order kinetic model and pseudo-second-order kinetic model, respectively. The presence of rGO on nZVI nanoparticles increased the reaction rate and removal capacity of U(VI) significantly, which was attributed to the chemisorbed OH(-) groups of rGO and the massive enrichment of Fe(2+) on rGO surface by XPS analysis. The XRD analysis revealed that the presence of rGO retarded the transformation of iron corrosion products from magnetite/maghemite to lepidocrocite. According to the fitting of EXAFS spectra, the UC (at ∼2.9Å) and UFe (at ∼3.2Å) shells were observed, indicating the formation of inner-sphere surface complexes on nZVI/rGO composites. Therefore, the nZVI/rGO composites can be suitable as efficient materials for the in-situ remediation of uranium-contaminated groundwater in the environmental pollution management. PMID:25194557

  11. Abiotic nitrogen fixation on terrestrial planets: reduction of NO to ammonia by FeS.

    PubMed

    Summers, David P; Basa, Ranor C B; Khare, Bishun; Rodoni, David

    2012-02-01

    Understanding the abiotic fixation of nitrogen and how such fixation can be a supply of prebiotic nitrogen is critical for understanding both the planetary evolution of, and the potential origin of life on, terrestrial planets. As nitrogen is a biochemically essential element, sources of biochemically accessible nitrogen, especially reduced nitrogen, are critical to prebiotic chemistry and the origin of life. Loss of atmospheric nitrogen can result in loss of the ability to sustain liquid water on a planetary surface, which would impact planetary habitability and hydrological processes that shape the surface. It is known that NO can be photochemically converted through a chain of reactions to form nitrate and nitrite, which can be subsequently reduced to ammonia. Here, we show that NO can also be directly reduced, by FeS, to ammonia. In addition to removing nitrogen from the atmosphere, this reaction is particularly important as a source of reduced nitrogen on an early terrestrial planet. By converting NO directly to ammonia in a single step, ammonia is formed with a higher product yield (~50%) than would be possible through the formation of nitrate/nitrite and subsequent conversion to ammonia. In conjunction with the reduction of NO, there is also a catalytic disproportionation at the mineral surface that converts NO to NO₂ and N₂O. The NO₂ is then converted to ammonia, while the N₂O is released back in the gas phase, which provides an abiotic source of nitrous oxide. PMID:22283408

  12. Real-Time Manganese Phase Dynamics during Biological and Abiotic Manganese Oxide Reduction.

    PubMed

    Johnson, Jena E; Savalia, Pratixa; Davis, Ryan; Kocar, Benjamin D; Webb, Samuel M; Nealson, Kenneth H; Fischer, Woodward W

    2016-04-19

    Manganese oxides are often highly reactive and easily reduced, both abiotically, by a variety of inorganic chemical species, and biologically during anaerobic respiration by microbes. To evaluate the reaction mechanisms of these different reduction routes and their potential lasting products, we measured the sequence progression of microbial manganese(IV) oxide reduction mediated by chemical species (sulfide and ferrous iron) and the common metal-reducing microbe Shewanella oneidensis MR-1 under several endmember conditions, using synchrotron X-ray spectroscopic measurements complemented by X-ray diffraction and Raman spectroscopy on precipitates collected throughout the reaction. Crystalline or potentially long-lived phases produced in these experiments included manganese(II)-phosphate, manganese(II)-carbonate, and manganese(III)-oxyhydroxides. Major controls on the formation of these discrete phases were alkalinity production and solution conditions such as inorganic carbon and phosphate availability. The formation of a long-lived Mn(III) oxide appears to depend on aqueous Mn(2+) production and the relative proportion of electron donors and electron acceptors in the system. These real-time measurements identify mineralogical products during Mn(IV) oxide reduction, contribute to understanding the mechanism of various Mn(IV) oxide reduction pathways, and assist in interpreting the processes occurring actively in manganese-rich environments and recorded in the geologic record of manganese-rich strata. PMID:27018915

  13. Reduction of ferrihydrite with adsorbed and coprecipitated organic matter: microbial reduction by Geobacter bremensis vs. abiotic reduction by Na-dithionite

    NASA Astrophysics Data System (ADS)

    Eusterhues, K.; Hädrich, A.; Neidhardt, J.; Küsel, K.; Keller, T. F.; Jandt, K. D.; Totsche, K. U.

    2014-09-01

    Ferrihydrite is a widespread poorly crystalline Fe oxide which becomes easily coated by natural organic matter in the environment. This mineral-bound organic matter entirely changes the mineral surface properties and therefore the reactivity of the original mineral. Here, we investigated 2-line ferrihydrite, ferrihydrite with adsorbed organic matter, and ferrihydrite coprecipitated with organic matter for microbial and abiotic reduction of Fe(III). Ferrihydrite-organic matter associations with different organic matter loadings were reduced either by Geobacter bremensis or abiotically by Na-dithionite. Both types of experiments showed decreasing initial Fe-reduction rates and decreasing degrees of reduction with increasing amounts of mineral-bound organic matter. At similar organic matter loadings, coprecipitated ferrihydrites were more reactive than ferrihydrites with adsorbed organic matter. The difference can be explained by the smaller crystal size and poor crystallinity of such coprecipitates. At small organic matter loadings the poor crystallinity of coprecipitates led to even faster Fe-reduction rates than found for pure ferrihydrite. The amount of mineral-bound organic matter also affected the formation of secondary minerals: goethite was only found after reduction of organic matter-free ferrihydrite and siderite was only detected when ferrihydrites with relatively low amounts of mineral-bound organic matter were reduced. We conclude that direct contact of G. bremensis to the Fe oxide mineral surface was inhibited by attached organic matter. Consequently, mineral-bound organic matter shall be taken into account as a factor in slowing down reductive dissolution.

  14. Inhibition of a U(VI)- and sulfate-reducing consortia by U(VI).

    PubMed

    Nyman, Jennifer L; Wu, Hsin-I; Gentile, Margaret E; Kitanidis, Peter K; Criddle, Craig S

    2007-09-15

    The stimulation of microbial U(VI) reduction is currently being investigated as a means to reduce uranium's mobility in groundwater, but little is known about the concentration at which U(VI) might inhibit microbial activity, or the effect of U(VI) on bacterial community structure. We investigated these questions with an ethanol-fed U(VI)- and sulfate-reducing enrichment developed from sediment from the site of an ongoing field biostimulation experiment at Area 3 of the Oak Ridge Field Research Center (FRC). Sets of triplicate enrichments were spiked with increasing concentrations of U(VI) (from 49 microm to 9.2 mM). As the U(VI) concentration increased to 224 microM, the culture's production of acetate from ethanol slowed, and at or above 1.6 mM U(VI) little acetate was produced over the time frame of the experiment. An uncoupling inhibition model was applied to the data, and the inhibition coefficient for U(VI), Ku, was found to be approximately 100 microM U(VI), or 24 mg/L, indicating the inhibitory effect is relevant at highly contaminated sites. Microbial community structure at the conclusion of the experiment was analyzed with terminal restriction fragment length polymorphism (T-RFLP) analysis. T-RFs associated with Desulfovibrio-like organisms decreased in relative abundance with increasing U(VI) concentration, whereas Clostridia-like T-RFs increased. PMID:17948804

  15. Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing phyllosilicates.

    PubMed

    Lee, Woojin; Batchelor, Bill

    2004-09-01

    Abiotic reductive dechlorination of chlorinated ethylenes (tetrachloroethylene (PCE), trichloroethylene (TCE), cis-dichloroethylene (c-DCE), and vinylchloride (VC)) by iron-bearing phyllosilicates (biotite, vermiculite, and montmorillonite) was characterized to obtain better understanding of the behavior of these contaminants in systems undergoing remediation by natural attenuation and redox manipulation. Batch experiments were conducted to evaluate dechlorination kinetics and some experiments were conducted with addition of Fe(II) to simulate impact of microbial iron reduction. A modified Langmuir-Hinshelwood kinetic model adequately described reductive dechlorination kinetics of target organics by the iron-bearing phyllosilicates. The rate constants stayed between 0.08 (+/-10.4%) and 0.401 (+/-8.1%) day(-1) and the specific initial reductive capacity of iron-bearing phyllosilicates for chlorinated ethylenes stayed between 0.177 (+/-6.1%) and 1.06 (+/-7.1%) microM g(-1). The rate constants for the reductive dechlorination of TCE at reactive biotite surface increased as pH (5.5-8.5) and concentration of sorbed Fe(II) (0-0.15 mM g(-1)) increased. The appropriateness of the model is supported by the fact that the rate constants were independent of solid concentration (0.0085-0.17 g g(-1)) and initial TCE concentration (0.15-0.60 mM). Biotite had the greatest rate constant among the phyllosilicates both with and without Fe(II) addition. The rate constants were increased by a factor of 1.4-2.5 by Fe(II) addition. Between 1.8% and 36% of chlorinated ethylenes removed were partitioned to the phyllosilicates. Chloride was produced as a product of degradation and no chlorinated intermediates were observed throughout the experiment. PMID:15268967

  16. Biogeochemical Modeling of In Situ U(VI) Reduction and Immobilization with Emulsified Vegetable Oil as the Electron Donor at a Field Site in Oak Ridge, Tennessee

    NASA Astrophysics Data System (ADS)

    Tang, G.; Parker, J.; Wu, W.; Schadt, C. W.; Watson, D. B.; Brooks, S. C.; Orifrc Team

    2011-12-01

    A comprehensive biogeochemical model was developed to quantitatively describe the coupled hydrologic, geochemical and microbiological processes that occurred following injection of emulsified vegetable oil (EVO) as the electron donor to immobilize U(VI) at the Oak Ridge Integrated Field Research Challenge site (ORIFRC) in Tennessee. The model couples the degradation of EVO, production and oxidation of long-chain fatty acids (LCFA), glycerol, hydrogen and acetate, reduction of nitrate, manganese, ferrous iron, sulfate and uranium, and methanoganesis with growth of multiple microbial groups. The model describes the evolution of geochemistry and microbial populations not only in the aqueous phase as typically observed, but also in the mineral phase and therefore enables us to evaluate the applicability of rates from the literature for field scale assessment, estimate the retention and degradation rates of EVO and LCFA, and assess the influence of the coupled processes on fate and transport of U(VI). Our results suggested that syntrophic bacteria or metal reducers might catalyze LCFA oxidation in the downstream locations when sulfate was consumed, and competition between methanogens and others for electron donors and slow growth of methanogen might contribute to the sustained reducing condition. Among the large amount of hydrologic, geochemical and microbiological parameter values, the initial biomass, and the interactions (e.g., inhibition) of the microbial functional groups, and the rate and extent of Mn and Fe oxide reduction appear as the major sources of uncertainty. Our model provides a platform to conduct numerical experiments to study these interactions, and could be useful for further iterative experimental and modeling investigations into the bioreductive immobiliztion of radionuclide and metal contaminants in the subsurface.

  17. Reduction of ferrihydrite with adsorbed and coprecipitated organic matter: microbial reduction by Geobacter bremensis vs. abiotic reduction by Na-dithionite

    NASA Astrophysics Data System (ADS)

    Eusterhues, K.; Hädrich, A.; Neidhardt, J.; Küsel, K.; Keller, T. F.; Jandt, K. D.; Totsche, K. U.

    2014-04-01

    Ferrihydrite (Fh) is a widespread poorly crystalline Fe oxide which becomes easily coated by natural organic matter (OM) in the environment. This mineral-bound OM entirely changes the mineral surface properties and therefore the reactivity of the original mineral. Here, we investigated the reactivity of 2-line Fh, Fh with adsorbed OM and Fh coprecipitated with OM towards microbial and abiotic reduction of Fe(III). As a surrogate for dissolved soil OM we used a water extract of a Podzol forest floor. Fh-OM associations with different OM-loadings were reduced either by Geobacter bremensis or abiotically by Na-dithionite. Both types of experiments showed decreasing initial Fe reduction rates and decreasing degrees of reduction with increasing amounts of mineral-bound OM. At similar OM-loadings, coprecipitated Fhs were more reactive than Fhs with adsorbed OM. The difference can be explained by the smaller crystal size and poor crystallinity of such coprecipitates. At small OM loadings this led to even faster Fe reduction rates than found for pure Fh. The amount of mineral-bound OM also affected the formation of secondary minerals: goethite was only found after reduction of OM-free Fh and siderite was only detected when Fhs with relatively low amounts of mineral-bound OM were reduced. We conclude that direct contact of G. bremensis to the Fe oxide mineral surface was inhibited when blocked by OM. Consequently, mineral-bound OM shall be taken into account besides Fe(II) accumulation as a further widespread mechanism to slow down reductive dissolution.

  18. TRANSFORMATIONS OF HALOGENATED ALIPHATIC COMPOUNDS: OXIDATION, REDUCTION, SUBSTITUTION, AND DEHYDROHALOGENATION REACTIONS OCCUR ABIOTICALLY OR IN MICROBIAL AND MAMMALIAN SYSTEMS

    EPA Science Inventory

    The current understanding of abiotic and biotic chemistry of halogenated aliphatic compounds is systematized and summarized. Knowledge of abiotic transformations can provide a conceptual framework for understanding biologically mediated transformations. Most abiotic transformatio...

  19. Contribution of Extracellular Polymeric Substances from Shewanella sp. HRCR-1 Biofilms to U(VI) Immobilization

    SciTech Connect

    Cao, Bin; Ahmed, B.; Kennedy, David W.; Wang, Zheming; Shi, Liang; Marshall, Matthew J.; Fredrickson, Jim K.; Isern, Nancy G.; Majors, Paul D.; Beyenal, Haluk

    2011-06-05

    The goal of this study was to quantify the contribution of extracellular polymeric substances (EPS) in U(VI) immobilization by Shewanella sp. HRCR-1. Through comparison of U(VI) immobilization using cells with bound EPS (bEPS) and cells without EPS, we showed that i) bEPS from Shewanella sp. HRCR-1 biofilms contributed significantly to U(VI) immobilization, especially at low initial U(VI) concentrations, through both sorption and reduction; ii) bEPS could be considered as a functional extension of the cells for U(VI) immobilization and they likely play more important roles at initial U(VI) concentrations; and iii) U(VI) reduction efficiency was found to be dependent upon initial U(VI) concentration and the efficiency decreased at lower concentrations. To quantify relative contribution of sorption and reduction in U(VI) immobilization by EPS fractions, we isolated loosely associated EPS (laEPS) and bEPS from Shewanella sp. HRCR-1 biofilms grown in a hollow fiber membrane biofilm reactor and tested their reactivity with U(V). We found that, when in reduced form, the isolated cell-free EPS fractions could reduce U(VI). Polysaccharides in the EPS likely contributed to U(VI) sorption and dominated reactivity of laEPS while redox active components (e.g., outer membrane c-type cytochromes), especially in bEPS, might facilitate U(VI) reduction.

  20. CHARACTERIZING THE ABIOTIC REDUCTANTS FOR NITROAROMATIC COMPOUNDS AS A FUNCTION OF REDOX ZONATION IN ANOXIC SEDIMENTS

    EPA Science Inventory

    Reductive transformation is the dominant reaction pathway for the degradation of nitroaromatic compounds in anaerobic environments (Larson and Weber, 1994). Proposed reductants cover a spectrum ranging from reduced rninerals and organic matter to microbial enzyme systems. Transfo...

  1. Technetium Reduction and Permanent Sequestration by Abiotic and Biotic Formation of Low-Solubility Sulfide Mineral Phases

    SciTech Connect

    Tratnyek, Paul G.; Tebo, Bradley M.; Fan, Dimin; Anitori, Roberto; Szecsody, Jim; Jansik, Danielle

    2015-11-14

    One way to minimize the mobility of the TcVII oxyanion pertechnetate (TcO4-) is to effect reduction under sulfidogenic conditions (generated abiotically by Fe0 or biotically) to form TcSx, which is significantly slower to oxidize than TcIVO2. In sediment systems, TcSx and other precipitates may oxidize more slowly due to oxygen diffusion limitations to these low permeability precipitate zones. In addition, the TcO4- reduction rate may be more rapid in the presence of sediment because of additional reductive surface phases. This project aims to provide a fundamental understanding of the feasibility of immobilization of TcO4- as TcSx in the vadose zone or groundwater by application nano zero-valent iron (nZVI), and sulfide or sulfate. Biotic batch experiments have used the sulfate-reducing bacterium (SRB) Desulfotomaculum reducens. The iron sulfide mineral mackinawite was generated under these conditions, while vivianite was formed in nZVI only controls. The sulfide/bacteria-containing system consistently reduced aqueous pertechnetate rapidly (> 95% in the first hour), a rate similar to that for the sulfide-free, nZVI only system. Reduced Tc (aged for 3 months) generated in both SRB/nZVI systems was highly resistant to reoxidation. In reduced samples, Tc was found associated with solid phases containing Fe and S (D. reducens/nZVI) or Fe (nZVI only). Experiments using D. reducens without nZVI provided some additional insights. Firstly, stationary phase cultures were able to slowly reduce pertechnetate. Secondly, addition of pertechnetate at the beginning of cell growth (lag phase) resulted in a faster rate of Tc reduction, possibly indicating a direct (e.g. enzymatic) role for D. reducens in Tc reduction. Abiotic batch experiments were conducted with Na2S as the sulfide source. Pertechnetate reduction was

  2. Abiotic reduction of aquifer materials by dithionite: A promising in-situ remediation technology

    SciTech Connect

    Amonette, J.E.; Szecsody, J.E.; Schaef, H.T.; Gorby, Y.A.; Fruchter, J.S.; Templeton, J.C.

    1994-11-01

    Laboratory batch and column experiments were conducted with Hanford sediments to develop the capability to predict (1) the longevity of dithionite in these systems, (2) its efficiency as a reductant of structural iron, and (3) the longevity and reactivity of the reduced iron with soluble inorganic and organic species. After an initial induction period, the loss of dithionite by disproportionation and oxidation could be described by pseudo-first-order (PFO) kinetics. Other than the initial reaction with ferric iron, the primary factor promoting loss of dithionite in this system was disproportion nation via heterogeneous catalysis at mineral surfaces. The efficiency of the reduction of structural iron was nearly 100% for the first fourth of the ferric iron, but declined exponentially with higher degrees of reduction so that 75% of the ferric iron could be reduced. This decrease in reduction efficiency probably was related to differences in the accessibility of ferric iron in the mineral particles, with iron in clay-sized particles being the most accessible and that in silt- and sand-sized particles less accessible. Flow-through column studies showed that a reduced-sediment barrier created in this manner could maintain a reducing environment.

  3. Nitrogen Assimilation, Abiotic Stress and Glucose 6-Phosphate Dehydrogenase: The Full Circle of Reductants.

    PubMed

    Esposito, Sergio

    2016-01-01

    Glucose 6 phosphate dehydrogenase (G6PDH; EC 1.1.1.49) is well-known as the main regulatory enzyme of the oxidative pentose phosphate pathway (OPPP) in living organisms. Namely, in Planta, different G6PDH isoforms may occur, generally localized in cytosol and plastids/chloroplasts. These enzymes are differently regulated by distinct mechanisms, still far from being defined in detail. In the last decades, a pivotal function for plant G6PDHs during the assimilation of nitrogen, providing reductants for enzymes involved in nitrate reduction and ammonium assimilation, has been described. More recently, several studies have suggested a main role of G6PDH to counteract different stress conditions, among these salinity and drought, with the involvement of an ABA depending signal. In the last few years, this recognized vision has been greatly widened, due to studies clearly showing the non-conventional subcellular localization of the different G6PDHs, and the peculiar regulation of the different isoforms. The whole body of these considerations suggests a central question: how do the plant cells distribute the reductants coming from G6PDH and balance their equilibrium? This review explores the present knowledge about these mechanisms, in order to propose a scheme of distribution of reductants produced by G6PDH during nitrogen assimilation and stress. PMID:27187489

  4. Nitrogen Assimilation, Abiotic Stress and Glucose 6-Phosphate Dehydrogenase: The Full Circle of Reductants

    PubMed Central

    Esposito, Sergio

    2016-01-01

    Glucose 6 phosphate dehydrogenase (G6PDH; EC 1.1.1.49) is well-known as the main regulatory enzyme of the oxidative pentose phosphate pathway (OPPP) in living organisms. Namely, in Planta, different G6PDH isoforms may occur, generally localized in cytosol and plastids/chloroplasts. These enzymes are differently regulated by distinct mechanisms, still far from being defined in detail. In the last decades, a pivotal function for plant G6PDHs during the assimilation of nitrogen, providing reductants for enzymes involved in nitrate reduction and ammonium assimilation, has been described. More recently, several studies have suggested a main role of G6PDH to counteract different stress conditions, among these salinity and drought, with the involvement of an ABA depending signal. In the last few years, this recognized vision has been greatly widened, due to studies clearly showing the non-conventional subcellular localization of the different G6PDHs, and the peculiar regulation of the different isoforms. The whole body of these considerations suggests a central question: how do the plant cells distribute the reductants coming from G6PDH and balance their equilibrium? This review explores the present knowledge about these mechanisms, in order to propose a scheme of distribution of reductants produced by G6PDH during nitrogen assimilation and stress. PMID:27187489

  5. Stable Isotope Systematics of Abiotic Nitrite Reduction Coupled with Anaerobic Iron Oxidation: The Role of Reduced Clays and Fe-bearing Minerals

    NASA Astrophysics Data System (ADS)

    Grabb, K. C.; Buchwald, C.; Hansel, C. M.; Wankel, S. D.

    2014-12-01

    Under anaerobic conditions, it is widely assumed that nitrate (NO3-) and nitrite (NO2-) reduction is primarily the result of microbial respiration. However, it has also been shown that abiotic reduction of nitrate and nitrite by reduced iron (Fe(II)), whether mineral-bound or surface-associated, may also occur under certain environmentally relevant conditions. With a range of experimental conditions, we investigated the nitrogen and oxygen stable isotope systematics of abiotic nitrite reduction by Fe(II) in an effort to characterize biotic and abiotic processes in the environment. While homogenous reactions between NO2- and Fe(II) in artificial seawater showed little reduction, heterogeneous reactions involving Fe-containing minerals showed considerable nitrite loss. Specifically, rapid nitrite reduction was observed in experiments that included reduced clays (illite, Na-montmorillonite, and nontronite) and those that exhibited iron oxide formation (ferrihydrite, magnetite and/or green rust). While these iron oxides and clay minerals offer both a source of reduced iron in the mineral matrix as well as a surface for Fe(II) activation, control experiments with corundum as a non-Fe containing mineral surface showed little NO2- loss, implicating a more dominant role of structural Fe in the clays during nitrite reduction. The isotope effects for 15N and 18O (15ɛ and 18ɛ) ranged from 5 to 14‰ for 15ɛ and 5 to 17‰ for 18ɛ and were typically coupled such that 15ɛ ~ 18ɛ. Reactions below pH 7 were slower and the 18ɛ was affected by oxygen atom exchange with water. Although little data exist for comparison with the dual isotopes of microbial NO2- reduction, these data serve as a benchmark for evaluating the role of abiotic processes in N reduction, particularly in sediment systems low in organic carbon and high in iron.

  6. Reduction of photosynthetic sensitivity in response to abiotic stress in tomato is mediated by a new generation plant activator

    PubMed Central

    2013-01-01

    Background Yield losses as a result of abiotic stress factors present a significant challenge for the future of global food production. While breeding technologies provide potential to combat negative stress-mediated outcomes over time, interventions which act to prime plant tolerance to stress, via the use of phytohormone-based elicitors for example, could act as a valuable tool for crop protection. However, the translation of fundamental biology into functioning solution is often constrained by knowledge-gaps. Results Photosynthetic and transcriptomic responses were characterised in young tomato (Solanum lycopersicum L.) seedlings in response to pre-treatment with a new plant health activator technology, ‘Alethea’, followed by a subsequent 100 mM salinity stress. Alethea is a novel proprietary technology composed of three key constituent compounds; the hitherto unexplored compound potassium dihydrojasmonate, an analogue of jasmonic acid; sodium benzoate, a carboxylic acid precursor to salicylic acid, and the α-amino acid L-arginine. Salinity treatment led to a maximal 47% reduction in net photosynthetic rate 8 d following NaCl treatment, yet in Alethea pre-treated seedlings, sensitivity to salinity stress was markedly reduced during the experimental period. Microarray analysis of leaf transcriptional responses showed that while salinity stress and Alethea individually impacted on largely non-overlapping, distinct groups of genes, Alethea pre-treatment substantially modified the response to salinity. Alethea affected the expression of genes related to biotic stress, ethylene signalling, cell wall synthesis, redox signalling and photosynthetic processes. Since Alethea had clear effects on photosynthesis/chloroplastic function at the physiological and molecular levels, we also investigated the ability of Alethea to protect various crop species against methyl viologen, a potent generator of oxidative stress in chloroplasts. Alethea pre-treatment produced

  7. The study of abiotic reduction of nitrate and nitrite in Boom Clay

    NASA Astrophysics Data System (ADS)

    Mariën, A.; Bleyen, N.; Aerts, S.; Valcke, E.

    In Belgium, Boom Clay is studied as a reference host rock for the geological disposal of high-level and intermediate-level radioactive waste. Compatibility studies at the SCK•CEN aim at investigating a perturbation of the capacity of Boom Clay to retard the migration of radionuclides to the biosphere, after disposal of Eurobitum bituminized radioactive waste in the clay ( Valcke et al., 2009; Aertsens et al., 2009; Bleyen et al., 2010). One of the geo-chemical perturbations is the possible oxidation of Boom Clay by the large amounts of nitrate that will be released by Eurobitum. A more oxidised Boom Clay could have a lower reducing capacity towards redox sensitive radionuclides, possibly enhancing their migration. As the conditions in the Boom Clay formation around a disposal gallery for Eurobitum are far from optimal for the growth of prokaryotes (limited space in the far-field, high pH in the near-field, gamma radiation by the waste during the first ∼300 years (effect limited to the primary and secondary waste package)), the impact of microbially mediated reduction of nitrate and nitrite is unclear. Therefore, batch tests are performed at the SCK•CEN to study whether nitrate and nitrite can directly oxidise the main redoxactive components of Boom Clay (dissolved organic matter, kerogen, pyrite) without the mediation of prokaryotes. In a first series of batch tests, which are reported in this paper, the activity of denitrifying and nitrate reducing prokaryotes was inhibited by the addition of NaN 3. NaN 3 revealed to be an efficient inhibitor for these prokaryotes without affecting considerably the geochemistry of Boom Clay and/or Boom Clay pore water. Neither in batch tests with the Boom Clay slurries (with NaNO 3 (0.1 and 1 M) or NaNO 2 (0.1 M)) and with Boom Clay water (with 0.05 and 0.2 M NaNO 3) a pure chemical nitrate or nitrite reduction was observed after respectively 3, 7 and 17 weeks and 1 year (Boom Clay slurries) and about 2 years (Boom Clay

  8. QSARS FOR PREDICTING BIOTIC AND ABIOTIC REDUCTIVE TRANSFORMATION RATE CONSTANTS OF HALOGENATED HYDROCARBONS IN ANOXIC SEDIMENT SYSTEMS

    EPA Science Inventory

    Quantitative structure-activity relationships (QSARs) are developed relating biotic and abiotic pseudo-first-order disappearance rate constants of halogenated hydrocarbons in anoxic sediments to a number of readily available molecular descriptors. ased upon knowledge of the under...

  9. UVIS Stray Light

    NASA Astrophysics Data System (ADS)

    Petro, Larry

    2009-07-01

    Structures outside the optical path of the detector FOV and the surfaces of optical elements could scatter significant light from bright sources onto the UVIS CCD. Such structures are oversized by typically a few mm relative to the FOV?s beam. The beam footprint of a source outside the FOV can overlap the edges of those structures, which will cause light to be scattered onto the detector. This on orbit test will: 1} verify that release of gravitational stress has not changed the detector mask by comparison with similar ground tests, 2} assess the far wing stray light from a sources outside the CCD FOV, 3} note any sources of stray light in the near and far field that were not noted during ground test, and 4} assess the surface brightness of the off-chip target PSF relative to the on-chip PSF.

  10. Reaction of U-VI with titanium-substituted magnetite: Influence of Ti on U-IV speciation

    SciTech Connect

    Latta, Drew; Pearce, Carolyn I.; Rosso, Kevin M.; Kemner, Kenneth M.; Boyanov, Maxim I.

    2013-07-01

    Reduction of hexavalent uranium (UVI) to less soluble tetravalent uranium (UIV) through enzymatic or abiotic redox reactions has the potential to alter U mobility in subsurface environments. As a ubiquitous natural mineral, magnetite (Fe3O4) is of interest because of its ability to act as a rechargeable reductant for UVI. Natural magnetites are often impure with titanium, and structural Fe3+ replacement by TiIV yields a proportional increase in the relative Fe2+ content in the metal sublattice to maintain bulk charge neutrality. In the absence of oxidation, the Ti content sets the initial bulk Fe2+/Fe3+ ratio (R). Here, we demonstrate that Ti-doped magnetites (Fe3 xTixO4) reduce UVI to UIV. The UVI-Fe2+ redox reactivity was found to be controlled directly by R, but was otherwise independent of Ti content (xTi). However, in contrast to previous studies with pure magnetite where UVI was reduced to nanocrystalline uraninite (UO2), the presence of structural Ti (xTi = 0.25 0.53) results in the formation of UIV species that lack the bidentate U-O2-U bridges of uraninite. Extended x-ray absorption fine structure spectroscopic analysis indicated that the titanomagnetite-bound UIV phase has a novel UIV-Ti binding geometry, different from the coordination of UIV in the mineral brannerite (UIVTi2O6). The observed UIV-Ti coordination at a distance of 3.43 Å suggests a binuclear corner-sharing adsorption/incorporation UIV complex with the solid phase. Furthermore, we explored the effect of oxidation (decreasing R) and solids-to-solution ratio on the reduced UIV phase. The formation of the non-uraninite UIV-Ti phase appears to be controlled by availability of surface Ti sites, rather than R. Our work highlights a previously unrecognized role of Ti in the environmental chemistry of UIV and suggests that further work to characterize the long-term stability of UIV phases formed in the presence of Ti is warranted.

  11. WFC3: UVIS Dark Calibration

    NASA Astrophysics Data System (ADS)

    Bourque, Matthew; Biretta, John A.; Anderson, Jay; Baggett, Sylvia M.; Gunning, Heather C.; MacKenty, John W.

    2014-06-01

    Wide Field Camera 3 (WFC3), a fourth-generation imaging instrument on board the Hubble Space Telescope (HST), has exhibited excellent performance since its installation during Servicing Mission 4 in May 2009. The UVIS detector, comprised of two e2v CCDs, is one of two channels available on WFC3 and is named for its ultraviolet and visible light sensitivity. We present the various procedures and results of the WFC3/UVIS dark calibration, which monitors the health and stability of the UVIS detector, provides characterization of hot pixels and dark current, and produces calibration files to be used as a correction for dark current in science images. We describe the long-term growth of hot pixels and the impacts that UVIS Charge Transfer Efficiency (CTE) losses, postflashing, and proximity to the readout amplifiers have on the population. We also discuss the evolution of the median dark current, which has been slowly increasing since the start of the mission and is currently ~6 e-/hr/pix, averaged across each chip. We outline the current algorithm for creating UVIS dark calibration files, which includes aggressive cosmic ray masking, image combination, and hot pixel flagging. Calibration products are available to the user community, typically 3-5 days after initial processing, through the Calibration Database System (CDBS). Finally, we discuss various improvements to the calibration and monitoring procedures. UVIS dark monitoring will continue throughout and beyond HST’s current proposal cycle.

  12. MICROSCALE METABOLIC, REDOX AND ABIOTIC REACTIONS IN HANFORD 300 AREA SUBSURFACE SEDIMENTS

    SciTech Connect

    Beyenal, Haluk; McLEan, Jeff; Majors, Paul; Fredrickson, Jim

    2013-11-14

    The Hanford 300 Area is a unique site due to periodic hydrologic influence of river water resulting in changes in groundwater elevation and flow direction. This area is also highly subject to uranium remobilization, the source of which is currently believed to be the region at the base of the vadose zone that is subject to period saturation due to the changes in the water levels in the Columbia River. We found that microbial processes and redox and abiotic reactions which operate at the microscale were critical to understanding factors controlling the macroscopic fate and transport of contaminants in the subsurface. The combined laboratory and field research showed how microscale conditions control uranium mobility and how biotic, abiotic and redox reactions relate to each other. Our findings extended the current knowledge to examine U(VI) reduction and immobilization using natural 300 Area communities as well as selected model organisms on redox-sensitive and redox-insensitive minerals. Using innovative techniques developed specifically to probe biogeochemical processes at the microscale, our research expanded our current understanding of the roles played by mineral surfaces, bacterial competition, and local biotic, abiotic and redox reaction rates on the reduction and immobilization of uranium.

  13. Identification of abiotic and biotic reductive dechlorination in a chlorinated ethene plume after thermal source remediation by means of isotopic and molecular biology tools

    NASA Astrophysics Data System (ADS)

    Badin, Alice; Broholm, Mette M.; Jacobsen, Carsten S.; Palau, Jordi; Dennis, Philip; Hunkeler, Daniel

    2016-09-01

    Thermal tetrachloroethene (PCE) remediation by steam injection in a sandy aquifer led to the release of dissolved organic carbon (DOC) from aquifer sediments resulting in more reduced redox conditions, accelerated PCE biodegradation, and changes in microbial populations. These changes were documented by comparing data collected prior to the remediation event and eight years later. Based on the premise that dual C-Cl isotope slopes reflect ongoing degradation pathways, the slopes associated with PCE and TCE suggest the predominance of biotic reductive dechlorination near the source area. PCE was the predominant chlorinated ethene near the source area prior to thermal treatment. After thermal treatment, cDCE became predominant. The biotic contribution to these changes was supported by the presence of Dehalococcoides sp. DNA (Dhc) and Dhc targeted rRNA close to the source area. In contrast, dual C-Cl isotope analysis together with the almost absent VC 13C depletion in comparison to cDCE 13C depletion suggested that cDCE was subject to abiotic degradation due to the presence of pyrite, possible surface-bound iron (II) or reduced iron sulphides in the downgradient part of the plume. This interpretation is supported by the relative lack of Dhc in the downgradient part of the plume. The results of this study show that thermal remediation can enhance the biodegradation of chlorinated ethenes, and that this effect can be traced to the mobilisation of DOC due to steam injection. This, in turn, results in more reduced redox conditions which favor active reductive dechlorination and/or may lead to a series of redox reactions which may consecutively trigger biotically induced abiotic degradation. Finally, this study illustrates the valuable complementary application of compound-specific isotopic analysis combined with molecular biology tools to evaluate which biogeochemical processes are taking place in an aquifer contaminated with chlorinated ethenes.

  14. Identification of abiotic and biotic reductive dechlorination in a chlorinated ethene plume after thermal source remediation by means of isotopic and molecular biology tools.

    PubMed

    Badin, Alice; Broholm, Mette M; Jacobsen, Carsten S; Palau, Jordi; Dennis, Philip; Hunkeler, Daniel

    2016-09-01

    Thermal tetrachloroethene (PCE) remediation by steam injection in a sandy aquifer led to the release of dissolved organic carbon (DOC) from aquifer sediments resulting in more reduced redox conditions, accelerated PCE biodegradation, and changes in microbial populations. These changes were documented by comparing data collected prior to the remediation event and eight years later. Based on the premise that dual C-Cl isotope slopes reflect ongoing degradation pathways, the slopes associated with PCE and TCE suggest the predominance of biotic reductive dechlorination near the source area. PCE was the predominant chlorinated ethene near the source area prior to thermal treatment. After thermal treatment, cDCE became predominant. The biotic contribution to these changes was supported by the presence of Dehalococcoides sp. DNA (Dhc) and Dhc targeted rRNA close to the source area. In contrast, dual C-Cl isotope analysis together with the almost absent VC (13)C depletion in comparison to cDCE (13)C depletion suggested that cDCE was subject to abiotic degradation due to the presence of pyrite, possible surface-bound iron (II) or reduced iron sulphides in the downgradient part of the plume. This interpretation is supported by the relative lack of Dhc in the downgradient part of the plume. The results of this study show that thermal remediation can enhance the biodegradation of chlorinated ethenes, and that this effect can be traced to the mobilisation of DOC due to steam injection. This, in turn, results in more reduced redox conditions which favor active reductive dechlorination and/or may lead to a series of redox reactions which may consecutively trigger biotically induced abiotic degradation. Finally, this study illustrates the valuable complementary application of compound-specific isotopic analysis combined with molecular biology tools to evaluate which biogeochemical processes are taking place in an aquifer contaminated with chlorinated ethenes. PMID:27318432

  15. Reduction of nitrogen compounds in oceanic basement and its implications for HCN formation and abiotic organic synthesis

    PubMed Central

    2009-01-01

    Hydrogen cyanide is an excellent organic reagent and is central to most of the reaction pathways leading to abiotic formation of simple organic compounds containing nitrogen, such as amino acids, purines and pyrimidines. Reduced carbon and nitrogen precursor compounds for the synthesis of HCN may be formed under off-axis hydrothermal conditions in oceanic lithosphere in the presence of native Fe and Ni and are adsorbed on authigenic layer silicates and zeolites. The native metals as well as the molecular hydrogen reducing CO2 to CO/CH4 and NO3-/NO2- to NH3/NH4+ are a result of serpentinization of mafic rocks. Oceanic plates are conveyor belts of reduced carbon and nitrogen compounds from the off-axis hydrothermal environments to the subduction zones, where compaction, dehydration, desiccation and diagenetic reactions affect the organic precursors. CO/CH4 and NH3/NH4+ in fluids distilled out of layer silicates and zeolites in the subducting plate at an early stage of subduction will react upon heating and form HCN, which is then available for further organic reactions to, for instance, carbohydrates, nucleosides or even nucleotides, under alkaline conditions in hydrated mantle rocks of the overriding plate. Convergent margins in the initial phase of subduction must, therefore, be considered the most potent sites for prebiotic reactions on Earth. This means that origin of life processes are, perhaps, only possible on planets where some kind of plate tectonics occur. PMID:19849830

  16. Reduction of nitrogen compounds in oceanic basement and its implications for HCN formation and abiotic organic synthesis.

    PubMed

    Holm, Nils G; Neubeck, Anna

    2009-01-01

    Hydrogen cyanide is an excellent organic reagent and is central to most of the reaction pathways leading to abiotic formation of simple organic compounds containing nitrogen, such as amino acids, purines and pyrimidines. Reduced carbon and nitrogen precursor compounds for the synthesis of HCN may be formed under off-axis hydrothermal conditions in oceanic lithosphere in the presence of native Fe and Ni and are adsorbed on authigenic layer silicates and zeolites. The native metals as well as the molecular hydrogen reducing CO2 to CO/CH4 and NO3-/NO2- to NH3/NH4+ are a result of serpentinization of mafic rocks. Oceanic plates are conveyor belts of reduced carbon and nitrogen compounds from the off-axis hydrothermal environments to the subduction zones, where compaction, dehydration, desiccation and diagenetic reactions affect the organic precursors. CO/CH4 and NH3/NH4+ in fluids distilled out of layer silicates and zeolites in the subducting plate at an early stage of subduction will react upon heating and form HCN, which is then available for further organic reactions to, for instance, carbohydrates, nucleosides or even nucleotides, under alkaline conditions in hydrated mantle rocks of the overriding plate. Convergent margins in the initial phase of subduction must, therefore, be considered the most potent sites for prebiotic reactions on Earth. This means that origin of life processes are, perhaps, only possible on planets where some kind of plate tectonics occur. PMID:19849830

  17. Potential Role of Nitrite for Abiotic Fe(II) Oxidation and Cell Encrustation during Nitrate Reduction by Denitrifying Bacteria

    PubMed Central

    Klueglein, Nicole; Zeitvogel, Fabian; Stierhof, York-Dieter; Floetenmeyer, Matthias; Konhauser, Kurt O.; Obst, Martin

    2014-01-01

    Microorganisms have been observed to oxidize Fe(II) at neutral pH under anoxic and microoxic conditions. While most of the mixotrophic nitrate-reducing Fe(II)-oxidizing bacteria become encrusted with Fe(III)-rich minerals, photoautotrophic and microaerophilic Fe(II) oxidizers avoid cell encrustation. The Fe(II) oxidation mechanisms and the reasons for encrustation remain largely unresolved. Here we used cultivation-based methods and electron microscopy to compare two previously described nitrate-reducing Fe(II) oxidizers ( Acidovorax sp. strain BoFeN1 and Pseudogulbenkiania sp. strain 2002) and two heterotrophic nitrate reducers (Paracoccus denitrificans ATCC 19367 and P. denitrificans Pd 1222). All four strains oxidized ∼8 mM Fe(II) within 5 days in the presence of 5 mM acetate and accumulated nitrite (maximum concentrations of 0.8 to 1.0 mM) in the culture media. Iron(III) minerals, mainly goethite, formed and precipitated extracellularly in close proximity to the cell surface. Interestingly, mineral formation was also observed within the periplasm and cytoplasm; intracellular mineralization is expected to be physiologically disadvantageous, yet acetate consumption continued to be observed even at an advanced stage of Fe(II) oxidation. Extracellular polymeric substances (EPS) were detected by lectin staining with fluorescence microscopy, particularly in the presence of Fe(II), suggesting that EPS production is a response to Fe(II) toxicity or a strategy to decrease encrustation. Based on the data presented here, we propose a nitrite-driven, indirect mechanism of cell encrustation whereby nitrite forms during heterotrophic denitrification and abiotically oxidizes Fe(II). This work adds to the known assemblage of Fe(II)-oxidizing bacteria in nature and complicates our ability to delineate microbial Fe(II) oxidation in ancient microbes preserved as fossils in the geological record. PMID:24271182

  18. Constraining the role of iron in environmental nitrogen transformations: Dual stable isotope systematics of abiotic NO2- reduction by Fe(II) and its production of N2O

    NASA Astrophysics Data System (ADS)

    Buchwald, Carolyn; Grabb, Kalina; Hansel, Colleen M.; Wankel, Scott D.

    2016-08-01

    Despite mounting evidence for biogeochemical interactions between iron and nitrogen, our understanding of their environmental importance remains limited. Here we present an investigation of abiotic nitrite (NO2-) reduction by Fe(II) or 'chemodenitrification', and its relevance to the production of nitrous oxide (N2O), specifically focusing on dual (N and O) isotope systematics under a variety of environmental conditions. We observe a range of kinetic isotope effects that are regulated by reaction rates, with faster rates at higher pH (∼8), higher concentrations of Fe(II) and in the presence of mineral surfaces. A clear non-linear relationship between rate constant and kinetic isotope effects of NO2- reduction was evident (with larger isotope effects at slower rates) and is interpreted as reflecting the dynamics of Fe(II)-N reaction intermediates. N and O isotopic composition of product N2O also suggests a complex network of parallel and/or competing pathways. Our findings suggest that NO2- reduction by Fe(II) may represent an important abiotic source of environmental N2O, especially in iron-rich environments experiencing dynamic redox variations. This study provides a multi-compound, multi-isotope framework for evaluating the environmental occurrence of abiotic NO2- reduction and N2O formation, helping future studies constrain the relative roles of abiotic and biological N2O production pathways.

  19. Stable Isotope Fractionation of Tetrachloroethene during Reductive Dechlorination by Sulfurospirillum multivorans and Desulfitobacterium sp. Strain PCE-S and Abiotic Reactions with Cyanocobalamin

    PubMed Central

    Nijenhuis, Ivonne; Andert, Janet; Beck, Kirsten; Kästner, Matthias; Diekert, Gabriele; Richnow, Hans-Hermann

    2005-01-01

    Carbon stable isotope fractionation of tetrachloroethene (PCE) during reductive dechlorination by whole cells and crude extracts of Sulfurospirillum multivorans and Desulfitobacterium sp. strain PCE-S and the abiotic reaction with cyanocobalamin (vitamin B12) was studied. Fractionation was largest during the reaction with cyanocobalamin with αC = 1.0132. Stable isotope fractionation was lower but still in a similar order of magnitude for Desulfitobacterium sp. PCE-S (αC = 1.0052 to 1.0098). The isotope fractionation of PCE during dehalogenation by S. multivorans was lower by 1 order of magnitude (αC = 1.00042 to 1.0017). Additionally, an increase in isotope fractionation was observed with a decrease in cell integrity for both strains. For Desulfitobacterium sp. strain PCE-S, the carbon stable isotope fractionation factors were 1.0052 and 1.0089 for growing cells and crude extracts, respectively. For S. multivorans, αC values were 1.00042, 1.00097, and 1.0017 for growing cells, crude extracts, and the purified PCE reductive dehalogenase, respectively. For the field application of stable isotope fractionation, care is needed as fractionation may vary by more than an order of magnitude depending on the bacteria present, responsible for degradation. PMID:16000743

  20. A kinetic pressure effect on the experimental abiotic reduction of aqueous CO2 to methane from 1 to 3.5 kbar at 300 °C

    NASA Astrophysics Data System (ADS)

    Lazar, Codi; Cody, George D.; Davis, Jeffrey M.

    2015-02-01

    Aqueous abiotic methane concentrations in a range of geologic settings are below levels expected for equilibrium with coexisting CO2 and H2, indicating that kinetics can control the speciation of reduced carbon-bearing fluids. Previous studies have suggested that mineral catalysts or gas-phase reactions may increase the rate of methanogenesis. Here, we report on experiments that indicate pressure can also accelerate aqueous reduction of CO2 to CH4. Four series of cold-seal hydrothermal experiments were performed from 1 to 3.5 kbar at 300 °C for two weeks and analyzed using gas chromatography/mass spectrometry. The starting fluids were 10-20-μL solutions of 70-mmolal 13C-labeled formic acid (H13COOH) contained in welded gold capsules. Increasing pressure (P) resulted in a systematic, reproducible log-linear increase in 13CH4 yields. The pressure effect could be quantified the log-linear slope, Δlog[13CH4]/ΔP (log mmolal per kbar). The mean slope was 0.66 ± 0.05 (±1s.e.), indicating that 13CH4 yields increased by an average factor of 40-50 over a P range of 2.5 kbar. Pressure-independent variations in [13CH4] were observed as scatter about the log-linear regressions and as variations in the y-intercepts of the regressions. These variations were attributed to trace amounts of catalytic Fe along the inner capsule wall that remained despite cleaning the Au capsules in nitric acid prior to each experimental series. The mechanism for the pressure-dependent effect was interpreted to result from one or more of the following three processes: reduction of a metastable reaction intermediate such as methanol, formation of Fe-carbonyl complexes in the fluid, and/or heterogeneous catalysis by Fe. The results suggest that pressure may influence aqueous abiotic CH4 yields in certain geological environments, particularly when the relative effects of other kinetic factors such as temperature are diminished, e.g., in cool forearcs or other settings with a steep geothermal

  1. Uranium Isotopic Fractionation Induced by U(VI) Adsorption Onto Common Aquifer Minerals

    NASA Astrophysics Data System (ADS)

    Jemison, N.; Johnson, T. M.; Shiel, A. E.; Lundstrom, C.

    2014-12-01

    Mining and processing of uranium (U) ore for nuclear energy and weapons has led to U contamination of groundwater. Reduction of soluble, mobile U(VI) to UO2 decreases uranium groundwater concentrations and is an important driver of natural and stimulated attenuation. 238U/235U measurements can be used to monitor and perhaps quantify U(VI) reduction; biological reduction of U(VI) has been shown to produce a ~1.0‰ isotopic fractionation in both laboratory and field settings, with the reduced product enriched in 238U. However, adsorption of U(VI) onto minerals may complicate the use of 238U/235U in this application; adsorption of U(VI) onto Mn oxides induces an isotopic fractionation of 0.2‰ with the sorbed U(VI) depleted in 238U. At present, the isotopic shift produced by adsorption of U(VI) onto other minerals has not yet been explored. This study measures U isotopic fractionation during adsorption onto goethite, birnessite, quartz, illite, and complex aquifer materials. In addition, the effect of U speciation on fractionation is also examined by adsorption of uranyl (UO22+), uranyl carbonato (such as UO2(CO3)22- and UO2(CO3)34-), and calcium uranyl carbonato (Ca2UO2(CO3)3(aq) and CaUO2(CO3)32-) ions to goethite and birnessite. Experiments are carried out with a multi-stage, batch approach, in which a U(VI)-bearing solution is exposed to three stages of adsorption, and the final solution is analyzed by a double-spike MC-ICP-MS method. This increases our ability to resolve among sorbents the extent of fractionation. Early results suggest that uranium adsorption to different minerals produces different isotopic fractionations, with quartz producing little to no fractionation (<0 .05‰), while goethite produces a 0.16‰ isotopic shift (adsorbed U(VI) depleted in 238U).

  2. UVIS CTE Monitor: Star Clusters

    NASA Astrophysics Data System (ADS)

    Noeske, Kai

    2010-09-01

    *** NOTE 2: 2ND CHANGE MAR 26 2011: VISIT 13 HAD FAILED. APPROVED FOR REPETITION. ****** NEW VISIT 14 IS IDENTICAL TO FORMER VISIT 13, WITH EXCEPTIONS THAT SOME SUBEXPOSURES ARE REMOVED. ****** SEE OBSERVING DESCRIPTION FOR DETAILS. ****** NOTE: THIS IS A CHANGED PHASE II PROPOSAL AFTER VISITS 1,2,7 HAD BEEN EXECUTED ****** CHANGES BECAME NECESSARY AFTER ANALYSIS OF INCOMING CALIBRATION DATA FROM 12379 AND 12348 ****** THIS REVISED PHASE II {submission 14FEB2011} ADDS THE EVALUATION OF CHARGE INJECTION***The changes amount to:1} dropping the 3rd epoch {August 2011} of external CTE monitoring {3 orbits}2} simplifying the CTE monitor observations in the second epoch {March 2011}, freeing up 1 orbit3} using the freed up orbits from 1} and 2}, together with two additional external orbits that we were granted, to thoroughly assess the data quality of charge - injected data under realistic observing setups.These charge-injected observations will be obtained during the 2nd epoch of the CTE monitor program, in the March 2011 window.------ Original Text prior to 14 Feb 2011 below this line -----------This program extends the Cycle 17 external CTE calibration {CAL/WFC3 ID 11924} program for WFC3/UVIS over Cycle 18. Targets are {i} the sparse cluster NGC 6791 observed in Cycle 17, to continue a consistent set of observations that allows to isolate the time evolution of the CTE, and {ii} a denser field in 47 Tuc {NGC 104}. The latter will provide data to measure the dependence of the CTE on field crowding. It will also provide a consistent comparison between the CTE evolution of WFC3/UVIS and that of ACS/WFC at the same time into the flight {1 year}, because ACS/WFC CTE data were based on 47 Tuc observations. Additional observations of 47 Tuc in the CVZ will provide a wide range of background levels to measure the background dependence of the UVIS CTE.Goals are {i} the continued monitoring of the time evolution of the WFC3/UVIS CTE, {ii} establishing the detector X

  3. Bicarbonate Impact on U(VI) Bioreduction in a Shallow Alluvial Aquifer

    SciTech Connect

    Long, Philip E.; Williams, Kenneth H.; Davis, James A.; Fox, Patricia M.; Wilkins, Michael J.; Yabusaki, Steven B.; Fang, Yilin; Waichler, Scott R.; Berman, Elena S.; Gupta, Manish; Chandler, Darrell P.; Murray, Christopher J.; Peacock, Aaron D.; Giloteaux, L.; Handley, Kim M.; Lovley, Derek R.; Banfield, Jillian F.

    2015-02-01

    Field-scale biostimulation and desorption tracer experiments conducted in a uranium (U) contaminated, shallow alluvial aquifer have provided insight into the coupling of microbiology, biogeochemistry, and hydrogeology that control U mobility in the subsurface. Initial experiments successfully tested the concept that Fe-reducing bacteria such as Geobacter sp. could enzymatically reduce soluble U(VI) to insoluble U(IV) during in situ electron donor amendment (Anderson et al. 2003, Williams et al. 2011). In parallel, in situ desorption tracer tests using bicarbonate amendment demonstrated rate-limited U(VI) desorption (Fox et al. 2012). These results and prior laboratory studies underscored the importance of enzymatic U(VI)-reduction and suggested the ability to combine desorption and bioreduction of U(VI). Here we report the results of a new field experiment in which bicarbonate-promoted uranium desorption and acetate amendment were combined and compared to an acetate amendment-only experiment in the same experimental plot. Results confirm that bicarbonate amendment to alluvial aquifer desorbs U(VI) and increases the abundance of Ca-uranyl-carbonato complexes. At the same time, that the rate of acetate-promoted enzymatic U(VI) reduction was greater in the presence of added bicarbonate in spite of the increased dominance of Ca-uranyl-carbonato aqueous complexes. A model-simulated peak rate of U(VI) reduction was ~3.8 times higher during acetate-bicarbonate treatment than under acetate-only conditions. Lack of consistent differences in microbial community structure between acetate-bicarbonate and acetate-only treatments suggest that a significantly higher rate of U(VI) reduction the bicarbonate-impacted sediment may be due to a higher intrinsic rate of microbial reduction induced by elevated concentrations of the bicarbonate oxyanion. The findings indicate that bicarbonate amendment may be useful in improving the engineered bioremediation of uranium in aquifers.

  4. Bicarbonate impact on U(VI) bioreduction in a shallow alluvial aquifer

    NASA Astrophysics Data System (ADS)

    Long, Philip E.; Williams, Kenneth H.; Davis, James A.; Fox, Patricia M.; Wilkins, Michael J.; Yabusaki, Steven B.; Fang, Yilin; Waichler, Scott R.; Berman, Elena S. F.; Gupta, Manish; Chandler, Darrell P.; Murray, Chris; Peacock, Aaron D.; Giloteaux, Ludovic; Handley, Kim M.; Lovley, Derek R.; Banfield, Jillian F.

    2015-02-01

    Field-scale biostimulation and desorption tracer experiments conducted in a uranium (U) contaminated, shallow alluvial aquifer have provided insight into the coupling of microbiology, biogeochemistry, and hydrogeology that control U mobility in the subsurface. Initial experiments successfully tested the concept that Fe-reducing bacteria such as Geobacter sp. could enzymatically reduce soluble U(VI) to insoluble U(IV) during in situ electron donor amendment (Anderson et al., 2003; Williams et al., 2011). In parallel, in situ desorption tracer tests using bicarbonate amendment demonstrated rate-limited U(VI) desorption (Fox et al., 2012). These results and prior laboratory studies underscored the importance of enzymatic U(VI)-reduction and suggested the ability to combine desorption and bioreduction of U(VI). Here we report the results of a new field experiment in which bicarbonate-promoted uranium desorption and acetate amendment were combined and compared to an acetate amendment-only experiment in the same experimental plot. Results confirm that bicarbonate amendment to alluvial aquifer sediments desorbs U(VI) and increases the abundance of Ca-uranyl-carbonato complexes. At the same time, the rate of acetate-promoted enzymatic U(VI) reduction was greater in the presence of added bicarbonate in spite of the increased dominance of Ca-uranyl-carbonato aqueous complexes. A model-simulated peak rate of U(VI) reduction was ∼3.8 times higher during acetate-bicarbonate treatment than under acetate-only conditions. Lack of consistent differences in microbial community structure between acetate-bicarbonate and acetate-only treatments suggest that a significantly higher rate of U(VI) reduction in the bicarbonate-impacted sediment may be due to a higher intrinsic rate of microbial reduction induced by elevated concentrations of the bicarbonate oxyanion. The findings indicate that bicarbonate amendment may be useful in improving the engineered bioremediation of uranium in

  5. Biotic and abiotic reduction and solubilization of Pu(IV)O₂•xH₂O(am) as affected by anthraquinone-2,6-disulfonate (AQDS) and ethylenediaminetetraacetate (EDTA).

    PubMed

    Plymale, Andrew E; Bailey, Vanessa L; Fredrickson, James K; Heald, Steve M; Buck, Edgar C; Shi, Liang; Wang, Zheming; Resch, Charles T; Moore, Dean A; Bolton, Harvey

    2012-02-21

    This study measured reductive solubilization of plutonium(IV) hydrous oxide (Pu(IV)O(2)·xH(2)O((am))) with hydrogen (H(2)) as electron donor, in the presence or absence of dissimilatory metal-reducing bacteria (DMRB), anthraquinone-2,6-disulfonate (AQDS), and ethylenediaminetetraacetate (EDTA). In PIPES buffer at pH 7 with excess H(2), Shewanella oneidensis and Geobacter sulfurreducens both solubilized <0.001% of 0.5 mM Pu(IV)O(2)·xH(2)O((am)) over 8 days, with or without AQDS. However, Pu((aq)) increased by an order of magnitude in some treatments, and increases in solubility were associated with production of Pu(III)((aq)). The solid phase of these treatments contained Pu(III)(OH)(3(am)), with more in the DMRB treatments compared with abiotic controls. In the presence of EDTA and AQDS, PuO(2)·xH(2)O((am)) was completely solubilized by S. oneidensis and G. sulfurreducens in ∼24 h. Without AQDS, bioreductive solubilization was slower (∼22 days) and less extensive (∼83-94%). In the absence of DMRB, EDTA facilitated reductive solubilization of 89% (without AQDS) to 98% (with AQDS) of the added PuO(2)·xH(2)O((am)) over 418 days. An in vitro assay demonstrated electron transfer to PuO(2)·xH(2)O((am)) from the S. oneidensis outer-membrane c-type cytochrome MtrC. Our results (1) suggest that PuO(2)·xH(2)O((am)) reductive solubilization may be important in reducing environments, especially in the presence of complexing ligands and electron shuttles, (2) highlight the environmental importance of polynuclear, colloidal Pu, (3) provide additional evidence that Pu(III)-EDTA is a more likely mobile form of Pu than Pu(IV)-EDTA, and (4) provide another example of outer-membrane cytochromes and electron-shuttling compounds facilitating bioreduction of insoluble electron acceptors in geologic environments. PMID:22276620

  6. Constraining the role of iron in environmental nitrogen transformations. Dual stable isotope systematics of abiotic NO2- reduction by Fe(II) and its production of N2O

    SciTech Connect

    Johnston, David; Wankel, Scott David; Buchwald, Carolyn; Hansel, Colleen

    2015-09-16

    Redox reactions involving nitrogen and iron have been shown to have important implications for mobilization of priority contaminants. Thus, an understanding of the linkages between their biogeochemical cycling is critical for predicting subsurface mobilization of radionuclides such as uranium. Despite mounting evidence for biogeochemical interactions between iron and nitrogen, our understanding of their environmental importance remains limited. Here we present an investigation of abiotic nitrite (NO2-) reduction by Fe(II) or ‘chemodenitrification,’ and its relevance to the production of nitrous oxide (N2O), specifically focusing on dual (N and O) isotope systematics under a variety of environmentally relevant conditions. We observe a range of kinetic isotope effects that are regulated by reaction rates, with faster rates at higher pH (~8), higher concentrations of Fe(II) and in the presence of mineral surfaces. A clear non-linear relationship between rate constant and kinetic isotope effects of NO2- reduction was evident (with larger isotope effects at slower rates) and is interpreted as reflecting the dynamics of Fe(II)-N reaction intermediates. N and O isotopic composition of product N2O also suggests a complex network of parallel and/or competing pathways. Our findings suggest that NO2- reduction by Fe(II) may represent an important abiotic source of environmental N2O, especially in iron-rich environments experiencing dynamic redox variations. This study provides a multi-compound, multi-isotope framework for evaluating the environmental occurrence of abiotic NO2- reduction and N2O formation, helping future studies constrain the relative roles of abiotic and biological N2O production pathways.

  7. Iron Reduction and Radionuclide Immobilization: Kinetic, Thermodynamic and Hydrologic controls & Reaction-Based Modeling - Final Report

    SciTech Connect

    William D. Burgos

    2004-06-18

    Our research focused on (1) microbial reduction of Fe(III) and U(VI) individually, and concomitantly in natural sediments, (2) Fe(III) oxide surface chemistry, specifically with respect to reactions with Fe(II)and U(VI), (3) the influence of humic substances on Fe(III) and U(VI) bioreduction, and on U(VI) complexation, and (4) the development of reaction-based reactive transport biogeochemical models to numerically simulate our experimental results. We have continued our investigations on microbial reduction of Fe(III) oxides. Modeling our earlier experimental results required assumption of a hydrated surface for hematite, more reactive than predicted based on theoretical solubility (Burgos et al.2002). Subsequent studies with Shewanella putrefaciens and Geobacter sulfurreducens confirmed the rates of Fe(III) bioreduction depend on oxide surface area rather than oxide thermodynamic properties (Roden,2003a,b;2004; Burgos et al,2003). We examined the potential for bioreduction of U(VI) by Geobacter sulfurreducens in the presence of synthetic Fe(III) oxides and natural Fe(III) oxide-containing solids (Jeon et al,2004a,b) in which more than 95% of added U(VI) was sorbed to mineral surfaces. The results showed a significant portion of solid-associated U(VI) was resistant to both enzymatic and abiotic (Fe(II)-driven) reduction, but the rate and extent of bioreduction of U(VI) was increased due to the addition of anthraquinone-2,6-disulfonate (AQDS). We conducted long-term semicontinuous culture and column experiments on coupled Fe(III) oxide/U(VI) reduction. These experiments were conducted with natural subsurface sediment from the Oyster site in Virginia, whose Fe content and microbial reducibility are comparable to ORNL FRC sediments (Jeon et al, 2004b). The results conclusively demonstrated the potential for sustained removal of U(VI) from solution via DMRB activity in excess of the U(VI) sorption capacity of the natural mineral assemblages. Jang (2004) demonstrated

  8. Identification of simultaneous U(VI) sorption complexes and U(IV) nanoprecipitates on the magnetite (111) surface

    SciTech Connect

    Singer, David M.; Chatman, Shawn ME; Ilton, Eugene S.; Rosso, Kevin M.; Banfield, Jillian F.; Waychunas, Glenn

    2012-04-03

    Sequestration of uranium (U) by magnetite is a potentially important sink for U in natural and contaminated environments. However, molecular-scale controls which favor U(VI) uptake including both adsorption of U(VI) and reduction to U(VI) by magnetite remain poorly understood, in particular the role of U(VI)-CO3-Ca complexes in inhibiting U(VI) reduction. To investigate U uptake pathways on magnetite as a function of U(VI) aqueous speciation, we performed batch sorption experiments on (111) surfaces of natural single crystals under a range of solution conditions (pH 5 and 10; 0.1 mM U(VI); 1 mM NaCl; and with or without 0.5 mM CO3 and 0.1 mM Ca) and characterized surface-associated U using grazing incidence extended x-ray absorption fine structure spectroscopy (GI-EXAFS), grazing incidence x-ray diffraction (GI-XRD), and scanning electron microscopy (SEM). In the absence of both carbonate ([CO3]T, denoted here as CO3) and calcium (Ca), or in the presence of CO3 only, co-existing adsorption of U(VI) surface species and reduction to U(IV) occurs at both pH 5 and 10. In the presence of both CO3 and Ca, only adsorption of U(VI) occur. When U reduction occurs, nanoparticulate UO2 forms only within and adjacent to surface microtopographic features such as crystal boundaries and cracks. This result suggests that U reduction is limited to defect-rich surface regions. Further, at both pH 5 and 10 in the presence of both CO3 and Ca, U(VI)-CO3-Ca ternary surface species develop and U reduction is precluded. These findings extend the range of conditions under which U (VI)-CO3-Ca complexes inhibit U reduction.

  9. Haloes seen in UVIS reflectance

    NASA Astrophysics Data System (ADS)

    Esposito, L. W.; Bradley, E. T.; Colwell, J. E.; Sremcevic, M.

    2012-12-01

    UVIS SOI reflectance spectra show bright 'haloes' around the locations of some of the strongest resonances in Saturn's A ring (Esposito etal 2005). UV spectra constrain the size and composition of the icy ring particles (Bradley etal 2010, 2012). We investigate the Janus 4:3, 5:3, 6:5 and Mimas 5:3 inner Lindblad resonances as well as at the Mimas 5:3 vertical resonance (bending wave location). Models of ring particle regolith evolution (Elliott and Esposito 2010) indicate the deeper regolith is made of older and purer ice. The strong resonances can cause streamline crowding (Lewis and Stewart 2005) which damps the interparticle velocity, allowing temporary clumps to grow, which in turn increase the velocity, eroding the clumps and releasing smaller particles and regolith (see the predator-prey model of Esposito etal 2012). This cyclic behavior, driven by the resonant perturbation from the moon, can yield collision velocities at particular azimuths greater than 1m/sec, sufficient to erode the aggregates (Blum 2006), exposing older, purer materials. Thus, the radial location of the strongest resonances can be where we find both large aggregates and disrupted fragments, in a balance maintained by the periodic moon forcing. If this stirring exposes older, and purer ice, the velocity threshold for eroding the aggregates can explain why only the strongest Lindblad resonances show haloes. Diffusion can explain the morphology of these haloes, although they are not well-resolved spatially by UVIS. Spectra determine the relative contributions of particle size and purity at these locations, for comparison to estimates from the regolith evolution models.

  10. The Integrated Field-Scale Subsurface Research Challenge Site (IFC) at Rifle, Colorado: Preliminary Results on Microbiological, Geochemical and Hydrologic Processes Controlling Iron Reduction and Uranium Mobility

    NASA Astrophysics Data System (ADS)

    Long, P. E.; Banfield, J.; Bush, R.; Campbell, K.; Chandler, D. P.; Davis, J. A.; Dayvault, R.; Druhan, J.; Elifantz, H.; Englert, A.; Hettich, R. L.; Holmes, D.; Hubbard, S.; Icenhower, J.; Jaffe, P. R.; Kerkhof, L. J.; Kukkadapu, R. K.; Lesher, E.; Lipton, M.; Lovley, D.; Morris, S.; Morrison, S.; Mouser, P.; Newcomer, D.; N'guessan, L.; Peacock, A.; Qafoku, N.; Resch, C. T.; Spane, F.; Spaulding, B.; Steefel, C.; Verberkmoes, N.; Wilkins, M.; Williams, K. H.; Yabusaki, S. B.

    2007-12-01

    The IFC at Rifle, Colorado was recently funded by the U.S. Department of Energy to address knowledge gaps in 1) geochemical and microbial controls on stimulated U(VI) bioreduction by iron-reducers, 2) U(VI) sorption under Fe-reducing conditions, 3) post-biostimulation U(VI) stability and removal, and 4) rates of natural bioreduction of U(VI). The over-arching goal of the project is to develop a mechanistic understanding of bioreductive and abiotic processes that control uranium mobility targeting new knowledge that can be translated into scientifically defensible flow and reactive transport process models. The Rifle IFC will conduct a focused set of field and lab experiments that use recently developed sciences of proteogenomics and stable isotope probing to track microbial metabolic status during acetate amendment. This information will be linked to changes in Fe redox status and sulfide minerals, with field-scale changes detected by non-invasive hydrogeophysics, including 3-D resistivity tomography. A key goal of the project is to combine abiotic sorption processes under reducing conditions with biotic processes controlling U(VI) reduction. The initial field-scale experiment for the Rifle IFC was conducted during the summer of 2007 with the objectives of collecting simultaneous metagenomic and proteomic samples during acetate amendment and to assess the impact of intentionally decreasing electron donor concentration on the metabolic processes of iron reducers. The 2007 experiment replicated previous field experiments, producing dominance of Geobacter sp. in groundwater within 10 days after the start of acetate amendment. The experiment also confirmed the importance of heterogeneities in controlling the flux of electron donor and the impact of naturally reduced zones on the duration of Fe reduction.

  11. WFC3/UVIS 2.0

    NASA Astrophysics Data System (ADS)

    Deustua, Susana E.; Mack, Jennifer; Bowers, Ariel; and the WFC3/UVIS2.0 Team

    2016-01-01

    WFC3 UVIS data processing pipeline has been improved to provide better precision by implementing chip dependent photometry and cte corrections. The two UVIS CCDs have different characteristics, different QE and different wavelength dependent response functions. Therefore, to improve the photometric precision, new flat fields, zero points, encircled energy curves and aperture corrections were generated. In this presentation we describe these changes, and their effects on data analysis, including using AstroDrizzle. CTE corrections are presented by S. Baggett at this meeting.

  12. Speciation-Dependent Microbial Reduction of Uranium Within Iron-Coated Sands

    SciTech Connect

    Neiss, J.; Stewart, B.D.; Nico, P.S.; Fendorf, S.

    2009-06-03

    Transport of uranium within surface and subsurface environments is predicated largely on its redox state. Uranyl reduction may transpire through either biotic (enzymatic) or abiotic pathways; in either case, reduction of U(VI) to U(IV) results in the formation of sparingly soluble UO{sub 2} precipitates. Biological reduction of U(VI), while demonstrated as prolific under both laboratory and field conditions, is influenced by competing electron acceptors (such as nitrate, manganese oxides, or iron oxides) and uranyl speciation. Formation of Ca-UO{sub 2}-CO{sub 3} ternary complexes, often the predominate uranyl species in carbonate-bearing soils and sediments, decreases the rate of dissimilatory U(VI) reduction. The combined influence of uranyl speciation within a mineralogical matrix comparable to natural environments and under hydrodynamic conditions, however, remains unresolved. We therefore examined uranyl reduction by Shewanella putrefaciens within packed mineral columns of ferrihydrite-coated quartz sand under conditions conducive or nonconducive to Ca-UO{sub 2}-CO{sub 3} species formation. The results are dramatic. In the absence of Ca, where uranyl carbonato complexes dominate, U(VI) reduction transpires and consumes all of the U(VI) within the influent solution (0.166 mM) over the first 2.5 cm of the flow field for the entirety of the 54 d experiment. Over 2 g of U is deposited during this reaction period, and despite ferrihydrite being a competitive electron acceptor, uranium reduction appears unabated for the duration of our experiments. By contrast, in columns with 4 mM Ca in the influent solution (0.166 mM uranyl), reduction (enzymatic or surface-bound Fe(ll) mediated) appears absent and breakthrough occurs within 18 d (at a flow rate of 3 pore volumes per day). Uranyl speciation, and in particular the formation of ternary Ca-UO2-CO3 complexes, has a profound impact on U(VI) reduction and thus transport within anaerobic systems.

  13. Reduction of uranium by Desulfovibrio desulfuricans

    USGS Publications Warehouse

    Lovley, D.R.; Phillips, E.J.P.

    1992-01-01

    The possibility that sulfate-reducing microorganisms contribute to U(VI) reduction in sedimentary environments was investigated. U(VI) was reduced to U(IV) when washed cells of sulfate-grown Desulfovibrio desulfuricans were suspended in a bicarbonate buffer with lactate or H2 as the electron donor. There was no U(VI) reduction in the absence of an electron donor or when the cells were killed by heat prior to the incubation. The rates of U(VI) reduction were comparable to those in respiratory Fe(III)-reducing microorganisms. Azide or prior exposure of the cells to air did not affect the ability of D. desulfuricans to reduce U(VI). Attempts to grow D. desulfuricans with U(VI) as the electron acceptor were unsuccessful. U(VI) reduction resulted in the extracellular precipitation of the U(IV) mineral uraninite. The presence of sulfate had no effect on the rate of U(VI) reduction. Sulfate and U(VI) were reduced simultaneously. Enzymatic reduction of U(VI) by D. desulfuricans was much faster than nonenzymatic reduction of U(VI) by sulfide, even when cells of D. desulfuricans were added to provide a potential catalytic surface for the nonenzymatic reaction. The results indicate that enzymatic U(VI) reduction by sulfate-reducing microorganisms may be responsible for the accumulation of U(IV) in sulfidogenic environments. Furthermore, since the reduction of U(VI) to U(IV) precipitates uranium from solution, D. desulfuricans might be a useful organisms for recovering uranium from contaminated waters and waste streams.

  14. WFC3 UVIS Crosstalk Images

    NASA Astrophysics Data System (ADS)

    Baggett, S.; Hartig, G.; Cheung, E.

    2004-09-01

    This report summarizes the behavior of the Wide Field Camera 3 UVIS channel crosstalk features seen in the first ground-test data from the integrated instrument. There appear to be two types of crosstalk: the first arises from sources at any exposure level (from a few DN up to saturation); the crosstalk from a source in one amp appears in the three other amps as mirror images of the source. The second type arises from highly saturated pixels only; in these cases, the crosstalk appears in the adjoining amp of the same CCD as the source. Both types of crosstalk are highly nonlinear, occur at very low levels (<10DN/ pixel at the default gain of 1.5), and depend upon the bias level, gain, and pixel binning settings. A software workaround to eliminate some of the crosstalk is currently in hand in the form of timing patterns with alternate clamp times. The hardware cause for some of the crosstalk, a common-mode noise susceptibility in the CCD electronics box, has been identified and successfully fixed in the non-flight hardware; the problem is expected to be fixed in the flight hardware later this year. Meanwhile, further tests are underway at the Detector Characterization Lab (DCL at GSFC) to explore additional possible causes of crosstalk in the camera head electronics.

  15. Reduction and immobilization of radionuclides and toxic metal ions using combined zero valent iron and anaerobic bacteria. 1998 annual progress report

    SciTech Connect

    Weathers, L.

    1998-06-01

    'Previous research findings indicate that both zero valent iron and sulfate reducing bacteria (SRB) can yield significant decreases in Cr(VI) or U(VI) concentrations due to abiotic and microbial reduction, respectively. The major hypothesis associated with this research project is that a combined abiotic-biological system can synergistically combine both processes to maximize metal ion reduction in an engineered permeable reactive barrier. The overall goal of this project is to design a combined abiotic/microbial, reactive, permeable, in-situ barrier with sufficient reductive potential to prevent downgradient migration of toxic metal ions. The field-scale application of this technology would utilize anaerobic digester sludge, Fe(O) particles for supporting anaerobic biofilms, and suitable aquifer material for construction of the barrier. Successful completion of this goal requires testing of the two hypotheses listed above by evaluating: (1) the rates of abiotic metal ion reduction, and (2) the rates of microbial metal ion reduction in microbial and combined abiotic/microbial reduction systems under a range of environmental conditions. This report summarizes work after one and one-half years of a three year project. Abiotic studies: The thrust of the abiotic research conducted to date has been to determine the rates of Cr(VI) reduction in batch reactors and to evaluate the role of aquifer materials on those rates. Experiments have been conducted to determine the rates of reduction by Fe(II) and Fe(O). The parameters that have been evaluated are the effect of pH and the presence of sulfide and aquifer material.'

  16. Uranium isotopes fingerprint biotic reduction

    SciTech Connect

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J.; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-04-20

    Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U), i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. In addition, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.

  17. Uranium isotopes fingerprint biotic reduction

    DOE PAGESBeta

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J.; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-04-20

    Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U),more » i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. In addition, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.« less

  18. Uranium isotopes fingerprint biotic reduction.

    PubMed

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-05-01

    Knowledge of paleo-redox conditions in the Earth's history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U), i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth's crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. Additionally, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium. PMID:25902522

  19. Uranium isotopes fingerprint biotic reduction

    PubMed Central

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J.; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-01-01

    Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U), i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. Additionally, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium. PMID:25902522

  20. UVIS tungsten lamp cross-check

    NASA Astrophysics Data System (ADS)

    Baggett, Sylvia

    2009-07-01

    This proposal will verify the operation of the spare UVIS channel calsystem tungsten lamp. Internal flatfields will be obtained in one filter from each of the twelve filter wheels, providing an initial baseline and comparison for those taken with the primary lamp {WF09, 11422}. Filters for this proposal were chosen based upon a balance of multiple factors: reasonable countrate with calsystem tungsten lamp {no long exposure times}, science priority of the filter, overall coverage of UVIS wavelength regime, and slot location in the wheel. Exposures will be taken in the default full-frame, four-amp, unbinned readout mode.This proposal corresponds to the spare lamp portion of SMOV activity id WFC3-09.

  1. WFC3 SS Uvis SOFA Test

    NASA Astrophysics Data System (ADS)

    MacKenty, John

    2012-10-01

    Part of side switch activities.This proposal will verify the operation of all SOFA filter wheels using the default calsystem tungsten lamp. Internal flatfields will be obtained in one filter from each of the twelve filter wheels, establishing an initial baseline over a broad wavelength range. Subsequent proposals {e.g., WF18, proposal 13206} will obtain full internal flatfield coverage in all UVIS filters. Filters for this proposal were chosen based upon a balance of multiple factors: reasonable countrate with calsystem tungsten lamp {no long exposure times}, science priority of the filter, overall coverage of UVIS wavelength regime, and slot location in the wheel. Exposures will be taken in the default full-frame, four-amp, unbinned readout mode.ID: WF09a

  2. WFC3 SS UVIS Spare Tungsten Lamp

    NASA Astrophysics Data System (ADS)

    MacKenty, John

    2012-10-01

    Part of side switch activities.This proposal will verify the operation of the spare UVIS channel calsystem tungsten lamp. Internal flatfields will be obtained in one filter from each of the twelve filter wheels, providing an initial baseline and comparison for those taken with the primary lamp {WF09}. Filters for this proposal were chosen based upon a balance of multiple factors: reasonable countrate with calsystem tungsten lamp {no long exposure times}, science priority of the filter, overall coverage of UVIS wavelength regime, and slot location in the wheel. Exposures will be taken in the default full-frame, four-amp, unbinned readout mode.This proposal corresponds to the spare lamp portion of SS SMOV activity ID: WF09b

  3. Characterization of UVIS traps with CI

    NASA Astrophysics Data System (ADS)

    Sabbi, Elena

    2013-10-01

    The charge transfer efficiency {CTE} of the WFC3/UVIS channel is declining as damage from radiation is accumulating. The impact of CTE losses on scientific data can be mitigated by removing the charge-trailing at pixel level. This program is designed to identify and characterize the traps responsible for the charge losses and to monitor the grouth of the trap number with time.

  4. Biotic and Abiotic Reduction and Solubilization of Pu(IV)O2•xH2O(am) as Affected by Anthraquinone-2,6-disulfonate (AQDS) and Ethylenediaminetetraacetate (EDTA)

    SciTech Connect

    Plymale, Andrew E.; Bailey, Vanessa L.; Fredrickson, Jim K.; Heald, Steve M.; Buck, Edgar C.; Shi, Liang; Wang, Zheming; Resch, Charles T.; Moore, Dean A.; Bolton, Harvey

    2012-01-24

    In the presence of hydrogen (H{sub 2}), the synthetic chelating agent ethylenediaminetetraacetate (EDTA), and the electron shuttle anthraquinone-2,6-disulfonate (AQDS), the dissimilatory metal-reducing bacteria (DMRB) Shewanella oneidensis and Geobacter sulfurreducens both reductively solubilized 100% of added 0.5 mM plutonium (IV) hydrous oxide (Pu(IV)O{sub 2} {lg_bullet} xH{sub 2}O{sub (am)}) in {approx}24 h at pH 7 in a non-complexing buffer. In the absence of AQDS, bioreduction was much slower ({approx}22 days) and less extensive ({approx}83-94%). In the absence of DMRB but under comparable conditions, 89% (without AQDS) to 98% (with AQDS) of added 0.5 mM PuO{sub 2} {lg_bullet} xH{sub 2}O{sub (am)} was reductively solubilized over 418 days. Under comparable conditions but in the absence of EDTA, <0.001% of the 0.5 mM PuO{sub 2} {lg_bullet} xH{sub 2}O{sub (am)} was solubilized, with or without bacteria. However, Pu(aq) increased by as much as an order of magnitude in some EDTA-free treatments, both biotic and abiotic, and increases in solubility were associated with the production of both Pu(OH)3(am) and Pu(III)(aq). Incubation with DMRB in the absence of EDTA increased the polymeric and crystalline content of the PuO{sub 2} {lg_bullet} xH{sub 2}O{sub (am)} and also decreased Pu solubility in 6-N HCl. Results from an in vitro assay demonstrated electron transfer to PuO{sub 2} {lg_bullet} xH{sub 2}O{sub (am)} from the S. oneidensis outer-membrane c-type cytochrome MtrC, and EDTA increased the oxidation of MtrC by PuO{sub 2} {lg_bullet} xH{sub 2}O{sub (am)}. Our results suggest that PuO{sub 2} {lg_bullet} xH{sub 2}O{sub (am)} biotic and abiotic reduction and solubilization may be important in anoxic, reducing environments, especially where complexing ligands and electron shuttling compounds are present.

  5. Diagnosing Abiotic Degradation

    EPA Science Inventory

    The abiotic degradation of chlorinated solvents in ground water can be difficult to diagnose. Under current practice, most of the “evidence” is negative; specifically the apparent disappearance of chlorinated solvents with an accumulation of vinyl chloride, ethane, ethylene, or ...

  6. A Mixed-Valent Uranium Phosphonate Framework Containing U(IV) , U(V) , and U(VI).

    PubMed

    Chen, Lanhua; Zheng, Tao; Bao, Songsong; Zhang, Linjuan; Liu, Hsin-Kuan; Zheng, Limin; Wang, Jianqiang; Wang, Yaxing; Diwu, Juan; Chai, Zhifang; Albrecht-Schmitt, Thomas E; Wang, Shuao

    2016-08-16

    It is shown that U(V) O2 (+) ions can reside at U(VI) O2 (2+) lattice sites during mild reduction and crystallization process under solvothermal conditions, yielding a complicated and rare mixed-valent uranium phosphonate compound that simultaneously contains U(IV) , U(V) , and U(VI) . The presence of uranium with three oxidation states was confirmed by various characterization techniques, including X-ray crystallography, X-ray photoelectron, electron paramagnetic resonance, FTIR, UV/Vis-NIR absorption, and synchrotron radiation X-ray absorption spectroscopy, and magnetism measurements. PMID:27356283

  7. Role of U(VI) Adsorption in U(VI) Reduction by Geobacter Species.

    SciTech Connect

    None, None

    2009-03-09

    Previous work had suggested that Acholeplasma palmae has a higher capacity for uranium sorption than other bacteria studied. Sorption studies were performed with cells in suspension in various solutions containing uranium and results were used to generate uranium-biosorption isotherms.

  8. Metal reduction by spores of Desulfotomaculum reducens.

    PubMed

    Junier, Pilar; Frutschi, Manon; Wigginton, Nicholas S; Schofield, Eleanor J; Bargar, John R; Bernier-Latmani, Rizlan

    2009-12-01

    The bioremediation of uranium-contaminated sites is designed to stimulate the activity of microorganisms able to catalyze the reduction of soluble U(VI) to the less soluble mineral UO(2). U(VI) reduction does not necessarily support growth in previously studied bacteria, but it typically involves viable vegetative cells and the presence of an appropriate electron donor. We characterized U(VI) reduction by the sulfate-reducing bacterium Desulfotomaculum reducens strain MI-1 grown fermentatively on pyruvate and observed that spores were capable of U(VI) reduction. Hydrogen gas - a product of pyruvate fermentation - rather than pyruvate, served as the electron donor. The presence of spent growth medium was required for the process, suggesting that an unknown factor produced by the cells was necessary for reduction. Ultrafiltration of the spent medium followed by U(VI) reduction assays revealed that the factor's molecular size was below 3 kDa. Pre-reduced spent medium displayed short-term U(VI) reduction activity, suggesting that the missing factor may be an electron shuttle, but neither anthraquinone-2,6-disulfonic acid nor riboflavin rescued spore activity in fresh medium. Spores of D. reducens also reduced Fe(III)-citrate under experimental conditions similar to those for U(VI) reduction. This is the first report of a bacterium able to reduce metals while in a sporulated state and underscores the novel nature of the mechanism of metal reduction by strain MI-1. PMID:19601961

  9. U(VI) behaviour in hyperalkaline calcite systems

    NASA Astrophysics Data System (ADS)

    Smith, Kurt F.; Bryan, Nicholas D.; Swinburne, Adam N.; Bots, Pieter; Shaw, Samuel; Natrajan, Louise S.; Mosselmans, J. Frederick W.; Livens, Francis R.; Morris, Katherine

    2015-01-01

    The behaviour of U(VI) in hyperalkaline fluid/calcite systems was studied over a range of U(VI) concentrations (5.27 × 10-5 μM to 42.0 μM) and in two high pH systems, young and old synthetic cement leachate in batch sorption experiments. These systems were selected to be representative of young- (pH 13.3) and old-stage (pH 10.5) leachate evolution within a cementitious geological disposal facility. Batch sorption experiments, modelling, extended X-ray absorption fine structure spectroscopy, electron microscopy, small angle X-ray scattering and luminescence spectroscopy were used to define the speciation of U(VI) across the systems of study. At the lowest concentrations (5.27 × 10-5 μM 232U(VI)) significant U removal was observed for both old and young cement leachates, and this was successfully modelled using a first order kinetic adsorption modelling approach. At higher concentrations (>4.20 μM) in the young cement leachate, U(VI) showed no interaction with the calcite surface over an 18 month period. Small angle X-ray scattering techniques indicated that at high U concentrations (42.0 μM) and after 18 months, the U(VI) was present in a colloidal form which had little interaction with the calcite surface and consisted of both primary and aggregated particles with a radius of 7.6 ± 1.1 and 217 ± 24 Å, respectively. In the old cement leachate, luminescence spectroscopy identified two surface binding sites for U(VI) on calcite: in the system with 0.21 μM U(VI), a liebigite-like Ca2UO2(CO3)3 surface complex was identified; at higher U(VI) concentrations (0.42 μM), a second binding site of undetermined coordination was identified. At elevated U(VI) concentrations (>2.10 μM) in old cement leachate, both geochemical data and luminescence spectroscopy suggested that surface mediated precipitation was controlling U(VI) behaviour. A focused ion beam mill was used to create a section across the U(VI) precipitate-calcite interface. Transmission electron

  10. Identification of Simultaneous U(VI) Sorption Complexes and U(IV) Nanoprecipitates on the Magnetite (111) Surface

    SciTech Connect

    Singer, David M.; Chatman, Shawn M.; Ilton, Eugene S.; Rosso, Kevin M.; Banfield, Jillian F.; Waychunas, Glenn A.

    2012-05-10

    Sequestration of uranium (U) by magnetite is a potentially important sink for U in natural and contaminated environments. However, molecular-scale controls that favor U(VI) uptake including both adsorption of U(VI) and reduction to U(IV) by magnetite remain poorly understood, in particular, the role of U(VI)-CO{sub 3}-Ca complexes in inhibiting U(VI) reduction. To investigate U uptake pathways on magnetite as a function of U(VI) aqueous speciation, we performed batch sorption experiments on (111) surfaces of natural single crystals under a range of solution conditions (pH 5 and 10; 0.1 mM U(VI); 1 mM NaNO{sub 3}; and with or without 0.5 mM CO{sub 3} and 0.1 mM Ca) and characterized surface-associated U using grazing incidence extended X-ray absorption fine structure spectroscopy (GI-EXAFS), grazing incidence X-ray diffraction (GI-XRD), and scanning electron microscopy (SEM). In the absence of both carbonate ([CO{sub 3}]T, denoted here as CO{sub 3}) and calcium (Ca), or in the presence of CO{sub 3} only, coexisting adsorption of U(VI) surface species and reduction to U(IV) occurs at both pH 5 and 10. In the presence of both Ca and CO{sub 3}, only U(VI) adsorption (VI) occurs. When U reduction occurs, nanoparticulate UO{sub 2} forms only within and adjacent to surface microtopographic features such as crystal boundaries and cracks. This result suggests that U reduction is limited to defect-rich surface regions. Further, at both pH 5 and 10 in the presence of both CO{sub 3} and Ca, U(VI)-CO{sub 3}-Ca ternary surface species develop and U reduction is inhibited. These findings extend the range of conditions under which U(VI)-CO{sub 3}-Ca complexes inhibit U reduction.

  11. Reduction kinetics of aqueous U(VI) in acidic chloride brines to uraninite by methane, hydrogen or C-graphite under hydrothermal conditions: Implications for the genesis of unconformity-related uranium ore deposits

    NASA Astrophysics Data System (ADS)

    Dargent, Maxime; Truche, Laurent; Dubessy, Jean; Bessaque, Gilles; Marmier, Hervé

    2015-10-01

    The formation of hydrothermal uranium ore deposits involves the reduction of dissolved U(VI)(aq) to uraninite. However, the nature of the reducing agent and the kinetics of such a process are currently unknown. These questions are addressed through dedicated experiments performed under conditions relevant for the genesis of unconformity-related uranium (URU) deposits. We tested the efficiency of the following potential reductants supposed to be involved in the reaction: H2, CH4, C-graphite and dissolved Fe(II). Results demonstrate the great efficiency of H2, CH4 and C-graphite to reduce U(VI)(aq) into uraninite in acidic chloride brines, unlike dissolved Fe(II). Times needed for H2 (1.4 bar), CH4 (2.4 bar) and C-graphite (water/carbon mass ratio = 10) to reduce 1 mM of U(VI)(aq) in an acidic brine (1 m LiCl, pH ≈ 1 fixed by HCl) to uraninite at 200 °C are 12 h, 3 days and 4 months, respectively. The effects of temperature (T) between 100 °C and 200 °C, H2 partial pressure (0.14, 1.4, and 5.4 bar), salinity (0.1, 1 and 3.2 m LiCl) and pH at 25 °C (0.8 and 3.3) on the reduction rate were also investigated. Results show that increasing temperature and H2 partial pressure increase the reaction rate, whereas increasing salinity or pH have the reverse effect. The reduction of uranyl to uraninite follows an apparent zero-order with respect to time, whatever the considered electron donor. From the measured rate constants, the following values of activation energy (Ea), depending on the nature of the electron donor, have been derived: EaC-graphite = 155 ± 3 kJ mol-1, EaCH4 = 143 ± 6 kJ mol-1, and EaH2 = 124 ± 15 kJ mol-1 at T < 150 °C and 32 ± 6 kJ mol-1 at T > 150 °C. An empirical relationship between the reaction rate, the hydrogen partial pressure, the uranyl speciation, and the temperature is also proposed. This allows an estimation of the time of formation of a giant U ore deposit such as McArthur River (Canada). The duration of the mineralizing event is

  12. Release of contaminant U(VI) from soils

    SciTech Connect

    Zheng, Zuoping; Wan, Jiamin

    2003-08-20

    The retention, mobility, and bio-availability of U(VI) incontaminated soils depend strongly on release of U(VI). Laboratory batchexperiments were performed to evaluate the factors controlling therelease of U(VI) from contaminated soil at Oak Ridge, Tennessee. We foundthat the ionic strength of the extraction solution strongly affectsrelease of U(VI). Increase in ionic strength shows a strong effect onU(VI) release as indicated by the increase in release rates andassociated release of U(VI) concentrations. We also found that the ratioof solution volume to solid mass (V/M) has a significant impact on therelease of U(VI). Increase in the V/M ratio shows a negligible effect onthe U(VI) release over a 4-day period. However, at Day 30 and Day 120,larger V/M ratios cause greater U(VI) release. The maximum U(VI)concentrations observed in the release experiments are in the range ofschoepite estimated under conditions relevant to the experiments,suggesting that schoepite solubility primarily controls the U(VI)release, but that solubilization and desorption effects cannot bedistinguished using macroscopic methods.

  13. ADSORPTION AND TRANSPORT OF U(VI) IN SUBSURFACE MEDIA

    EPA Science Inventory

    U(VI) adsorption and transport in three natural, heterogeneous subsurface media were investigated in batch and column experiments. The rate of U(VI) adsorption to the natural samples was rapid over the first few hours of the experiments, and then slowed appreciably after twenty-f...

  14. Final Report for "Toward Quantifying Kinetics of Biotic and Abiotic Metal Reduction with Electrical Geophysical Methods" DE-FG02-08ER64520

    SciTech Connect

    Singha, Kamini; Brantley, Susan

    2012-06-07

    Although changes in the bulk electrical conductivity in aquifers have been attributed to microbial activity, electrical conductivity has never been used to infer biogeochemical reaction rates quantitatively. To explore the use of electrical conductivity to measure reaction rates, we conducted iron oxide reduction experiments of increasing biological complexity. To quantify reaction rates, we proposed composite reactions that incorporated the stiochiometry of five different types of reactions: redox, acid-based, sorption, dissolution/precipitation, and biosynthesis. In batch and column experiments, such reaction stiochiometries inferred from a few chemical measurements allowed quantification of the Fe-oxide reduction rate based on changes in electrical conductivity. The relationship between electrical conductivity and fluid chemistry did not hold during the latter stages of the column experiment when electrical conductivity increased while fluid chemistry remained constant. Growth of an electrically conductive biofilm could explain this late stage electrical conductivity increase. This work demonstrates that measurements of electrical conductivity and flow rate, combined with a few direct chemical measurements, can be used to quantify biogeochemical reaction rates in controlled laboratory situations and may be able to detect the presence of biofilms.

  15. Abiotic origin of biopolymers

    NASA Technical Reports Server (NTRS)

    Oro, J.; Stephen-Sherwood, E.

    1976-01-01

    A variety of methods have been investigated in different laboratories for the polymerization of amino acids and nucleotides under abiotic conditions. They include (1) thermal polymerization; (2) direct polymerization of certain amino acid nitriles, amides, or esters; (3) polymerization using polyphosphate esters; (4) polymerization under aqueous or drying conditions at moderate temperatures using a variety of simple catalysts or condensing agents like cyanamide, dicyandiamide, or imidazole; and (5) polymerization under similar mild conditions but employing activated monomers or abiotically synthesized high-energy compounds such as adenosine 5'-triphosphate (ATP). The role and significance of these methods for the synthesis of oligopeptides and oligonucleotides under possible primitive-earth conditions is evaluated. It is concluded that the more recent approach involving chemical processes similar to those used by contemporary living organisms appears to offer a reasonable solution to the prebiotic synthesis of these biopolymers.

  16. Haloes Seen In UVIS Reflectance Spectra

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.; Bradley, E.; Colwell, J.; Sremcevic, M.

    2012-10-01

    UVIS SOI reflectance spectra show bright ‘haloes’ around the locations of some of the strongest resonances in Saturn’s A ring (Esposito etal 2005). UV spectra constrain the size and composition of the icy ring particles (Bradley etal 2010, 2012). We investigate the Janus 4:3, 5:3, 6:5 and Mimas 5:3 inner Lindblad resonances as well as at the Mimas 5:3 vertical resonance (bending wave location). Models of ring particle regolith evolution (Elliott and Esposito 2010) indicate the deeper regolith is made of older and purer ice. The strong resonances cause streamline crowding (Lewis and Stewart 2005) which damps the interparticle velocity, allowing temporary clumps to grow, which in turn increase the velocity, eroding the clumps and releasing smaller particles and regolith (see the predator-prey model of Esposito etal 2012). This cyclic behavior, driven by the resonant perturbation from the moon, can yield collision velocities greater than 1m/sec, sufficient to erode the aggregates (Blum 2006), exposing older, purer materials. Thus, the radial location of the strongest resonances can be where we find both large aggregates and disrupted fragments, in a balance maintained by the periodic moon forcing. If this stirring exposes older, and purer ice, the velocity threshold for eroding the aggregates can explain why only the strongest Lindblad resonances show haloes. UVIS spectra can determine the relative contributions of particle size and purity at these locations, for comparison to estimates from the regolith evolution models.

  17. Reductive Sequestration Of Pertechnetate (99TcO4–) By Nano Zerovalent Iron (nZVI) Transformed By Abiotic Sulfide

    SciTech Connect

    Fan, Dimin; Anitori, Roberto; Tebo, Bradley M.; Tratnyek, Paul G.; Lezama Pacheco, Juan S.; Kukkadapu, Ravi K.; Engelhard, Mark H.; Bowden, Mark E.; Kovarik, Libor; Arey, Bruce W.

    2013-04-24

    Under anoxic conditions, soluble 99TcO4– can be reduced to less soluble TcO2•nH2O, but the oxide is highly susceptible to reoxidation. Here we investigate an alternative strategy for remediation of Tc-contaminated groundwater whereby sequestration as Tc sulfide is favored by sulfidic conditions stimulated by nano zero-valent iron (nZVI). nZVI was pre-exposed to increasing concentrations of sulfide in simulated Hanford groundwater for 24 hrs to mimic the stages of aquifer sulfate reduction and onset of biotic sulfidogenesis. Solid-phase characterizations of the sulfidated nZVI confirmed the formation of nanocrystalline FeS phases, but higher S/Fe ratios (>0.112) did not result in the formation of significantly more FeS. The kinetics of Tc sequestration by these materials showed faster Tc removal rates with increasing S/Fe between S/Fe = 0–0.056, but decreasing Tc removal rates with S/Fe > 0.224. The more favorable Tc removal kinetics at low S/Fe could be due to a higher affinity of TcO4– for FeS (over iron oxides), and electron microscopy confirmed that the majority of the Tc was associated with FeS phases. The inhibition of Tc removal at high S/Fe appears to have been caused by excess HS–. X-ray absorption spectroscopy revealed that as S/Fe increased, Tc speciation shifted from TcO2•nH2O to TcS2. The most substantial change of Tc speciation occurred at low S/Fe, coinciding with the rapid increase of Tc removal rate. This agreement further confirms the importance of FeS in Tc sequestration.

  18. Reductive immobilization of uranium(VI) by amorphous iron sulfide.

    PubMed

    Hua, Bin; Deng, Baolin

    2008-12-01

    Batch experiments were used to evaluate the reductive immobilization of hexavalent uranium (U(VI)) by synthesized, amorphous iron sulfide (FeS) in the anoxic environment. The tests were initiated by spiking 168.0 microM U(VI) to 0.18 g/L FeS suspensions under a CO2-free condition with pH varied from 5.99 to 10.17. The immobilization rate of U(VI) was determined by monitoring the changes of aqueous U(VI) concentration, and the reduction rate of U(VI) associated with FeS was determined by the difference between the total spiked U(VI) and the extractable amount of U(VI) by 25 mM NaHCO3 solution. The results showed that a rapid removal of U(VI) from the aqueous phase occurred within 1 h under all pH conditions accompanied by a simultaneous release of Fe(ll), whereas the reduction of U(VI) associated with FeS took hours to over a week for completion. The reduction rate was greatly increased with decreasing pH within the examined pH range. Product analysis by X-ray photoelectron spectroscopy showed the formation of U3O8/4O9/UO2, polysulfide, and ferric iron. PMID:19192785

  19. Astrometric Correction for WFC3/UVIS Lithographic-Mask Pattern

    NASA Astrophysics Data System (ADS)

    Kozhurina-Platais, V.; Hammer, D.; Dencheva, N.; Hack, W.

    2013-07-01

    Observations of the central field in Cen taken with large dither patterns and over a large range of HST roll-angles exposed through F606W UVIS filter hav e been used to examine the lithographic-mask pattern imprinted on the WFC3/UVIS detec tor during the manufacturing process. This detector defect introduces fine-scale astrome tric errors at the level of about 0.2 pixel with a complicated spatial structure across the WFC3/ UVIS CCD chips. The fine-scale solution was utilized to construct a 2-D look-up table for co rrection of the WFC3/UVIS lithographic-mask pattern. The astrometric errors due to th is detector defect have been cor- rected down to the ~ 0.05 pixel level. The derived 2-D look-up table can be interpol ated at any point in the WFC3/UVIS image by ST software DrizzlePac / AstroDrizzle. The main results of these calibrations are: 1) new polynomial coefficien ts of geometric distortion for 14 calibrated UVIS filters in the form of Instrument Distortion Co rrection Table (IDCTAB file) were improved to account for the lithographic-mask pattern i n the WFC3/UVIS detector; 2) new derived look-up table in the form of a D2IMFILE, which sig nificantly improves (30-60%) the fine-scale structure in the WFC3/UVIS geometric distorti on; 3) geometric distortion cou- pled with the D2IMFILE and new improved IDCTAB can now be succ essfully corrected to the precision level of ~ 0.05 pixel (2 mas) for the UVIS detector.

  20. Uranium reduction by Shewanella oneidensis MR-1 as a function of NaHCO3 concentration: surface complexation control of reduction kinetics.

    PubMed

    Sheng, Ling; Fein, Jeremy B

    2014-04-01

    It is crucial to determine the controls on the kinetics of U(VI) bioreduction in order to understand and model the fate and mobility of U in groundwater systems and also to enhance the effectiveness of U bioremediation strategies. In this study, we measured the rate of U(VI) reduction by Shewanella oneidensis strain MR-1 as function of NaHCO3 concentration. The experiments demonstrate that increasing concentrations of NaHCO3 in the system lead to slower U(VI) reduction kinetics. The NaHCO3 concentration also strongly affects the speciation of U(VI) on the bacterial cell envelope. We used a thermodynamic surface complexation modeling approach to determine the speciation and concentration of U(VI) adsorbed onto the bacteria as a function of the NaHCO3 concentration in the experimental systems. We observed a strong positive correlation between the measured U(VI) reduction rates and the calculated total concentration of U(VI) surface complexes formed on the bacterial cell envelope. This positive correlation indicates that the speciation and concentration of U(VI) adsorbed on the bacterial cell envelope control the kinetics of U(VI) bioreduction under the experimental conditions. The results of this study serve as a basis for developing speciation-based kinetic rate laws for enzymatic reduction of U(VI) by bacteria. PMID:24576101

  1. Cryogenic Laser Induced U(VI) Fluorescence Studies of a U(VI) Substituted Natural Calcite: Implications to U(VI) Speciation in Contaminated Hanford Sediments

    SciTech Connect

    Wang, Zheming; Zachara, John M.; McKinley, James P.; Smith, Steven C.

    2005-04-14

    Time-resolved laser-induced fluorescence spectroscopy (TRLFS) and imaging spectromicroscopy (TRLFISM) were used to examine the chemical speciation of uranyl in contaminated subsurface sediments from the Hanford Site, Washington. Spectroscopic measurements for contaminant U(VI) were compared to those from a natural, uranyl-bearing calcite (NUC) that had been found via X-ray absorption spectroscopy (XAS) to include uranyl in the same coordination environment as calcium (1). Spectral deconvolution of TRLFS measurements on the NUC revealed the unexpected presence of two distinct chemical environments consistent with published spectra of U(VI)-substituted synthetic calcite and aragonite. Apparently, some U(VI) substitution sites in calcite distorted to exhibit a local, more energetically favorable aragonite structure. TRLFS measurements of the Hanford sediments were similar to the NUC in terms of peak positions and intensity, despite a small CaCO3 content (<0.1 to 3.2 mass%). Spectral deconvolution of the sediment measurements also revealed the presence of U(VI) in calcite and aragonite structural environments. TRLFISM measurements at multiple locations in the different sediments displayed only minor variation indicating a uniform speciation pattern. Collectively, the measurements implied that waste U(VI), long-resident beneath the sampled disposal pond (32 y), had co-precipitated within newly formed carbonates. These results have major implications for the solubility and fate of the contaminated U(VI).

  2. Upper Atmospheric Density Retrievals from UVIS Dayglow Observations of Titan

    NASA Astrophysics Data System (ADS)

    Stevens, Michael H.; Evans, J. S.; Ajello, J. M.; Bradley, E. T.; Meier, R. R.; Westlake, J. H.; Waite, J. H.

    2012-10-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed Titan’s dayside limb on multiple occasions between 2007-2012. The airglow observations reveal the same variety of EUV (600-1150 λ) and FUV (1150-1900 λ) emissions arising from photoelectron impact and photofragmentation of molecular nitrogen (N2) on Earth. Through spectral analysis we extract radiance profiles for each set of UVIS limb emissions in the EUV and FUV, which are attenuated by methane (CH4). Using a terrestrial airglow model adapted to Titan, we derive the N2 and CH4 density profiles using the prescribed solar irradiance for the relevant Cassini orbit and compare the calculated radiance profiles directly with observations. We find that the Titan airglow can be explained by solar driven processes to within the uncertainties of the UVIS observations. Fluctuations in the observed airglow between flybys suggest compositional changes in the background atmosphere. The source of these compositional changes is not yet known, although the interaction of Titan with Saturn’s magnetosphere has been implicated as an important contributing factor. Here we use unique UVIS airglow observations over Titan’s disk to quantify compositional fluctuations with latitude and local time. We furthermore compare N2 and CH4 densities retrieved from the UVIS airglow to in situ observations by the Cassini Ion and Neutral Mass Spectrometer (INMS) and discuss how the UVIS and INMS variations may be related to Titan’s varying plasma environment.

  3. Cassini UVIS Observations Show Active Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Esposito, L.; Colwell, J. E.; UVIS Team

    2004-12-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) is part of the remote sensing payload of the NASA/ESA Cassini spacecraft. This spectrograph includes channels for extreme UV and far UV spectroscopic imaging, high speed photometry of stellar occultations, solar EUV occultation, and a hydrogen/deuterium absorption cell. We report our initial results from UVIS observations of Saturn's rings. Dynamic interactions between neutrals, ions, rings, moons and meteoroids produce a highly structured and time variable Saturn system Oxygen in the Saturn system dominates the magnetosphere. Observed fluctuations indicate close interactions with plasma sources. Stochastic events in the E ring may be the ultimate source. The spectral signature of water ice is seen on Phoebe and in Saturn's rings. Water ice is mixed non-uniformly with darker constituents. The high structure of the UV ring reflectance argues that collisional transport dominates ballistic transport in darkening the rings. Our preliminary results support the idea that rings are recycled fragments of moons: the current processes are more important than history and initial conditions. The spectra along the UVIS SOI radial scan indicate varying amounts of water ice. In the A ring, the ice fraction increases outward to a maximum at the outer edge. This large-scale variation is consistent with initially pure ice that has suffered meteoritic bombardment over the age of the Solar system (Cuzzi and Estrada 1998). We also see variations over scales of 1000 - 3000 km, which cannot be explained by this mechanism. Ballistic transport of spectrally neutral extrinsic pollutants from meteoroids striking the rings has a typical throw distance of 6000 km (Durisen et al 1989), too long to explain this finer structure. We propose a class of smaller renewal events, in which a small moon residing within the rings is shattered by an external impactor (Colwell and Esposito 1993, Barbara and Esposito 2002, Esposito and Colwell 2003). The

  4. Influence of Calcium on Microbial Reduction of Solid Phase Uranium (VI)

    SciTech Connect

    Liu, Chongxuan; Jeon, Byong-Hun; Zachara, John M.; Wang, Zheming

    2007-06-27

    The effect of calcium on microbial reduction of a solid phase U(VI), sodium boltwoodite (NaUO2SiO3OH ∙1.5H2O), was evaluated in a culture of a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1. Batch experiments were performed in a non-growth bicarbonate medium with lactate as electron donor at pH 7 buffered with PIPES. Calcium increased both the rate and extent of Na-boltwoodite dissolution by increasing its solubility through the formation of a ternary aqueous calcium-uranyl-carbonate species. The ternary species, however, decreased the rates of microbial reduction of aqueous U(VI). Laser-induced fluorescence spectroscopy (LIFS) and transmission electron microscopy (TEM) revealed that microbial reduction of solid phase U(VI) is a sequentially coupled process of Na-boltwoodite dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) to U(IV) that accumulated on bacterial surfaces/periplasm. The overall rates of microbial reduction of solid phase U(VI) can be described by the coupled rates of dissolution and microbial reduction that were both influenced by calcium. The results demonstrated that dissolved U(VI) concentration during microbial reduction was a complex function of solid phase U(VI) dissolution kinetics, aqueous U(VI) speciation, and microbial activity.

  5. Redox Interactions of Tc(VII), U(VI), and Np(V) with Microbially Reduced Biotite and Chlorite.

    PubMed

    Brookshaw, Diana R; Pattrick, Richard A D; Bots, Pieter; Law, Gareth T W; Lloyd, Jonathan R; Mosselmans, J Fredrick W; Vaughan, David J; Dardenne, Kathy; Morris, Katherine

    2015-11-17

    Technetium, uranium, and neptunium are contaminants that cause concern at nuclear facilities due to their long half-life, environmental mobility, and radiotoxicity. Here we investigate the impact of microbial reduction of Fe(III) in biotite and chlorite and the role that this has in enhancing mineral reactivity toward soluble TcO4(-), UO2(2+), and NpO2(+). When reacted with unaltered biotite and chlorite, significant sorption of U(VI) occurred in low carbonate (0.2 mM) buffer, while U(VI), Tc(VII), and Np(V) showed low reactivity in high carbonate (30 mM) buffer. On reaction with the microbially reduced minerals, all radionuclides were removed from solution with U(VI) reactivity influenced by carbonate. Analysis by X-ray absorption spectroscopy (XAS) confirmed reductive precipitation to poorly soluble U(IV) in low carbonate conditions and both Tc(VII) and Np(V) in high carbonate buffer were also fully reduced to poorly soluble Tc(IV) and Np(IV) phases. U(VI) reduction was inhibited under high carbonate conditions. Furthermore, EXAFS analysis suggested that in the reaction products, Tc(IV) was associated with Fe, Np(IV) formed nanoparticulate NpO2, and U(IV) formed nanoparticulate UO2 in chlorite and was associated with silica in biotite. Overall, microbial reduction of the Fe(III) associated with biotite and chlorite primed the minerals for reductive scavenging of radionuclides: this has clear implications for the fate of radionuclides in the environment. PMID:26488884

  6. WFC3 SMOV Proposal 11419: UVIS Gain

    NASA Astrophysics Data System (ADS)

    Baggett, S.; Borders, T.

    2009-11-01

    This report summarizes the gain results obtained from the SMOV UVIS Detector Functional program, proposal #11419. Based on internal calibration flatfields, the gain at the nominal 1.5 setting was measured at 1.61, 1.61, 1.63, and 1.62 e-/DN, with errors <0.01 e- /DN, for quadrants A, B, C, and D, respectively. These values are ~3% higher than those measured in ground test images and to date have been stable on-orbit: a preliminary mea- surement of the recent Cycle 17 gain data (proposal 11906, PI Pavlovsky) yielded gains within 1% or better of the SMOV values. The off-nominal gain settings are restricted parameters and unavailable for general use, however, the SMOV proposal obtained data to check these settings on-orbit relative to the nominal 1.5 setting. The values for the off-nominal gains were measured at 1.04, 1.02, 1.04, 1.04 e-/DN and at 2.17, 2.12, 2.17, 2.16 e-/DN for the gain 1.0 and gain 2.0 settings. The exposure times for the gain 4.0 images were erroneously set too low to allow a determination of that setting; the observations were not repeated.

  7. U(VI) bioreduction with emulsified vegetable oil as the electron donor-- Microcosm tests and model development

    SciTech Connect

    Tang, Guoping; Wu, Wei-min; Watson, David B; Parker, Jack C.; Schadt, Christopher Warren; Brooks, Scott C; Shi, Xiaoqing

    2013-01-01

    Microcosm tests were conducted to study U(VI) bioreduction in contaminated sediments with emulsified vegetable oil (EVO) as the electron donor. In the microcosms, EVO was degraded by indigenous microorganisms and stimulated Fe, U, and sulfate bioreduction, and methanogenesis. Removal of aqueous U occurred concurrently with sulfate reduction, with more reduction of total U in the case of higher initial sulfate concentrations. X-ray absorption near-edge spectroscopy (XANES) analysis confirmed U(VI) reduction to U(IV). As the acetate concentration peaked in 10~20 days in oleate microcosms, the maximum was reached in 100~120 days in the EVO microcosms, indicating that EVO hydrolysis was rate-limiting. The acetate accumulation was sustained over 50 days longer in the oleate and EVO than in the ethanol microcosms, suggesting that acetate-utilizing methanogenesis was slower in the cases of oleate and EVO. Both slow hydrolysis and methanogenesis could contribute to potential sustained bioreduction in field application. Biogeochemical models were developed to couple degradation of EVO, production and oxidation of long-chain fatty acids, glycerol, acetate, and hydrogen, reduction of Fe(III), U(VI) and sulfate, and methanogenesis with growth and decay of microbial functional groups. The models were used to simulate the coupled processes in a field test in a companion article.

  8. Abiotic Buildup of Ozone

    NASA Astrophysics Data System (ADS)

    Domagal-Goldman, S. D.; Meadows, V. S.

    2010-10-01

    Two of the best biosignature gases for remote detection of life on extrasolar planets are oxygen (O2) and its photochemical byproduct, ozone (O3). The main reason for their prominence as biosignatures is that large abiotic fluxes of O2 and O3 are not considered sustainable on geological and astronomical timescales. We show here how buildup of O3 can occur on planets orbiting M stars, even in the absence of the large biological fluxes. This is possible because the destruction of O2 and O3 is driven by UV photochemistry. This chemistry is much slower on planets around these stars, due to the smaller incident UV flux. Because the destruction of these gases is slower, O3 can build up to detectable levels even if the O3 source is small. We will present atmospheric profiles of these gases for planets around AD Leo (an M dwarf) as well as spectra that show the implications for missions such as Darwin and the Terrestrial Planet Finder (TPF).

  9. Proposal for a modification of the UVI risk scale.

    PubMed

    Zaratti, Francesco; Piacentini, Rubén D; Guillén, Héctor A; Cabrera, Sergio H; Liley, J Ben; McKenzie, Richard L

    2014-07-01

    The standardisation of UV information to the public through the UV Index (UVI) has been hugely beneficial since its endorsement by multiple international agencies more than 10 years ago. It has now gained widespread acceptance, and UVI values are available throughout the world from satellite instruments, ground-based measurements, and from forecasts based on model calculations. These have been useful for atmospheric scientists, health professionals (skin and eye specialists), and the general public. But the descriptors and health messages associated with the UVI scale are targeted towards European skin types and UV regimes, and are not directly applicable to the population living closer to the equator, especially for those in the high-altitude Altiplano region of South America. This document arose from discussions at the Latin American Society of Photobiology and Photomedicine's Congress, which was held in Arequipa, Peru, in November 2013. A major outcome of the meeting was the Arequipa Accord, which is intended as a unifying document to ensure co-ordination of UV and health research decisions in Latin America. A plank of that agreement was the need to tailor the UVI scale to make it more relevant to the region and its population. Here we make some suggestions to improve the international applicability of the UVI scale. PMID:24728468

  10. WFC3/UVIS Charge Transfer Efficiency 2009-2015

    NASA Astrophysics Data System (ADS)

    Baggett, S.; Gosmeyer, C.; Noeske, K.

    2015-03-01

    Observations of the globular cluster Ω Cen taken with the WFC3/UVIS F606W over a 5-year time period have been used to create a standard astrometric c atalog in the central region of this cluster. The newly created catalog is then used to examine th e linear part of the WFC3/UVIS distortion solution and to search for variations of the astro metric X&Y scale over time. The variations of the X&Y scale over time have been examined with X&Y positions derived from single UVIS drizzled images, based on Kozhurina-Platais (2 014) geometric distortion solution in the form of the reference IDCTAB file for ST software DrizzleP ac/AstroDrizzle and ST OPUS pipe-line. The main results of this examination are: 1) over the 5-year time period of WFC3 operations, the WFC3/UVIS distortion is found to be tim e-independent; 2) there is no sudden or extreme fluctuations in the WFC3/UVIS astrometri c scale; 3) the geometric distortion solution over this period time is accurate at the l evel of ± 2 mas. 5R 2015wfc..rept....3B

  11. Characterization of the biochemical-pathway of uranium (VI) reduction in facultative anaerobic bacteria.

    PubMed

    Mtimunye, Phalazane J; Chirwa, Evans M N

    2014-10-01

    Cultures of U(VI) reducing bacteria sourced from abandoned uranium mine tailing dam were evaluated for their ability to reduce U(VI) to U(IV). The species in the cultures reduced U(VI) in solutions with initial U(VI) concentration up to 400mgL(-)(1) under a near neutral pH of 6.5. The electron flow pathway and fate of reduced species was also analysed in the individual species in order to evaluate the potential for control and optimisation of the reduction potential at the biochemical level. The results showed that U(VI) reduction in live cells was completely blocked by the NADH-dehydrogenase inhibitor, rotenone (C23H22O6), and thioredoxin inhibitor, cadmium chloride (CdCl2), showing that U(VI) reduction involves the electron flow through NADH-dehydrogenase, a primary electron donor to the electron transport respiratory (ETR) system. Mass balance analysis of uranium species aided by visual and electron microscopy suggest that most U(VI) reduction occurred on the cell surface of the isolated species. This finding indicates the possibility of easy uranium recovery for beneficial use through biological remediation. Should the U(VI) be reduced inside the cell, recovery would require complete disruption of the cells and therefore would be difficult. The study contributes new knowledge on the underlying mechanisms in the U(VI) reduction in facultative anaerobes. PMID:25065785

  12. Cassini UVIS observations of Titan nightglow spectra

    NASA Astrophysics Data System (ADS)

    Ajello, Joseph M.; West, Robert A.; Gustin, Jacques; Larsen, Kristopher; Stewart, A. Ian F.; Esposito, Larry W.; McClintock, William E.; Holsclaw, Gregory M.; Bradley, E. Todd

    2012-12-01

    In this paper we present the first nightside EUV and FUV airglow limb spectra of Titan showing molecular emissions. The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed photon emissions of Titan's day and night limb-airglow and disk-airglow on multiple occasions, including during an eclipse observation. The 71 airglow observations analyzed in this paper show EUV (600-1150 Å) and FUV (1150-1900 Å) atomic multiplet lines and band emissions arising from either photoelectron induced fluorescence and solar photo-fragmentation of molecular nitrogen (N2) or excitation by magnetosphere plasma. The altitude of the peak UV emissions on the limb during daylight occurred inside the thermosphere at the altitude of the topside ionosphere (near 1000 km altitude). However, at night on the limb, a subset of emission features, much weaker in intensity, arise in the atmosphere with two different geometries. First, there is a twilight photoelectron-excited glow that persists with solar depression angle up to 25-30 degrees past the terminator, until the solar XUV shadow height passes the altitude of the topside ionosphere (1000-1200 km). The UV twilight glow spectrum is similar to the dayglow but weaker in intensity. Second, beyond 120° solar zenith angle, when the upper atmosphere of Titan is in total XUV darkness, there is indication of weak and sporadic nightside UV airglow emissions excited by magnetosphere plasma collisions with ambient thermosphere gas, with similar N2 excited features as above in the daylight or twilight glow over an extended altitude range.

  13. Variability in Saturn's upper atmosphere from Cassini/UVIS occultations

    NASA Astrophysics Data System (ADS)

    Koskinen, T. T.; Strobel, D. F.; West, R. A.; Yelle, R. V.

    2015-10-01

    We present new density and temperature profiles based on more than 20 stellar occultations by Saturn's upper atmosphere observed simultaneously by the EUV and FUV channels of the Cassini/UVIS instrument. With these results, more than 40 stellar and solar occultations from Cassini/UVIS [1, 2, 3] and 6 occultations from Voyager/UVS [4] have now been analyzed. The results provide valuable constraints on models of chemistry, dynamics and thermal structure in the upper atmosphere. They are also required to plan for the end of the Cassini mission.

  14. Kinetic Desorption and Sorption of U(VI) During Reactive Transport in a Contaminated Hanford Sediment

    SciTech Connect

    Qafoku, Nik; Zachara, John M.; Liu, Chongxuan; Gassman, Paul L.; Qafoku, Odeta; Smith, Steven C.

    2005-05-12

    Column experiments were conducted to investigate U(VI) desorption and sorption kinetics in a sand-textured, contaminated (22.7 µmol kg-1) capillary fringe sediment that had experienced long-term exposure to U(VI). The clay fraction mineralogy of the sediment was dominated by montmorillonite, muscovite, vermiculite, and chlorite. Saturated column experiments were performed under mildly alkaline/calcareous conditions representative of the Hanford site where uranyl–carbonate and calcium–uranyl–carbonate complexes dominate aqueous speciation. A U(VI) free solution was used to study U(VI) desorption in columns where different flow rates were applied. Uranium(VI) sorption was studied after the desorption of labile contaminant U(VI) using different U(VI) concentrations in the leaching solution. Strong kinetic behavior was observed for both U(VI) desorption and sorption. Although U(VI) is semi–mobile in mildly alkaline, calcareous subsurface environments, our results showed substantial U(VI) sorption, significant retardation during transport, and atypical breakthrough curves with extended tailing. A distributed rate model was applied to describe the effluent data and to allow comparisons between the desorption rate of contaminant U(VI) with the rate of short-term U(VI) sorption. Desorption was the slower process. Our results suggest that U(VI) release and transport in the vadose zone and aquifer system from which the sediment was obtained are kinetically controlled.

  15. The effect of temperature on the speciation of U(VI) in sulfate solutions

    SciTech Connect

    Rao, Linfeng; Tian, Guoxin

    2008-09-15

    Sulfate, one of the inorganic constituents that could be present in the nuclear waste repository, forms complexes with U(VI) and affects its migration in the environment. Results show that the complexation of U(VI) with sulfate is enhanced by the increase in temperature. The effect of temperature on the complexation and speciation of U(VI) in sulfate solutions is discussed.

  16. Operational Definitions and Implementation of WFC3 UVIS Subarrays

    NASA Astrophysics Data System (ADS)

    Lupie, O.; Robinson, M.; Welty, A.; Baggett, W.; McKinney, M.

    2002-12-01

    This technical memo describes the implementation of WFC3 UVIS channel subarrays. The capability described herein allows for both user-defined subarrays and a set of fixed subarray apertures. The precedent and experience for such an implementation are the ACS and STIS instruments.

  17. Transient F Ring Dust Features in Cassini UVIS Solar Occultations

    NASA Astrophysics Data System (ADS)

    Becker, T. M.; Colwell, J. E.; Esposito, L. W.; Attree, N.; Murray, C.

    2015-12-01

    We present results from an investigation of the variable particle size distribution in Saturn's dynamic F ring. We analyze 13 solar occultations observed by the Cassini Ultraviolet Imaging Spectrograph (UVIS), of which 4 occultations show a clear signature of diffracted sunlight. The magnitude and scattering angle of the diffraction signal suggest the presence of a significant population of micron-sized dust particles; however, the lack of a detection of diffracted light in other solar occultations implies that such a population is transient or spatially variable. Initial comparisons with images from the Cassini Imaging Science Subsystem (ISS) suggest that a diffraction signal is detected in UVIS occultations that coincide with a recent collisional event in the F ring core, as seen in the ISS images. This implies that such events release a significant population of dust, which can then be measured by the diffraction signature in the UVIS data. We use a forward-modeling approach to place constraints on the particle size distribution of the F ring during each solar occultation. We present these measurements of the size distribution and our comparisons of the F ring dust population as measured by UVIS with the ISS images of the ring.

  18. Improvement of the Valencia region ultraviolet index (UVI) forecasting system

    NASA Astrophysics Data System (ADS)

    Gómez, I.; Marín, M. J.; Pastor, F.; Estrela, M. J.

    2012-04-01

    The CEAM Foundation (Valencia, Spain) has developed an operational ultraviolet index (UVI) forecasting system based on the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model. The main objective of this system is to provide the general public with a tool to minimize the impact of ultraviolet (UV) radiation, which can cause important human health problems. The system presented in this paper has been developed in collaboration with the Environment Department of the Regional Government of Valencia, and it replaces the one running until 2007. The new system substitutes the previously used Ozone Monitoring Instrument (OMI) observed data with the total ozone column data forecasted from the Global Forecasting System (GFS) model. This has allowed the forecasting period to be increased from only 1 day in the original system to 3 days, with daily updates. The UVI forecast presented herein uses maps to show the hourly daytime evolution of the UV index on selected locations as well as the maximum UVI expected in the area of interest for the following 3 days (D, D+1, and D+2). The locations selected correspond to measurement stations equipped with erythemal radiation instruments. The UVI forecast information, the erythemal radiation experimental data, and other outreach information are supplied to the public through both the CEAM Meteorology and Climatology Program Web page and the Environment Department of the Regional Government of Valencia Web page.

  19. Reduction of uranium by cytochrome c3 of Desulfovibrio vulgaris

    USGS Publications Warehouse

    Lovley, D.R.; Widman, P.K.; Woodward, J.C.; Phillips, E.J.P.

    1993-01-01

    The mechanism for U(VI) reduction by Desulfovibrio vulgaris (Hildenborough) was investigated. The H2-dependent U(VI) reductase activity in the soluble fraction of the cells was lost when the soluble fraction was passed over a cationic exchange column which extracted cytochrome c3. Addition of cytochrome c3 back to the soluble fraction that had been passed over the cationic exchange column restored the U(VI)-reducing capacity. Reduced cytochrome c3 was oxidized by U(VI), as was a c-type cytochrome(s) in whole-cell suspensions. When cytochrome c3 was combined with hydrogenase, its physiological electron donor, U(VI) was reduced in the presence of H2. Hydrogenase alone could not reduce U(VI). Rapid U(VI) reduction was followed by a subsequent slow precipitation of the U(IV) mineral uraninite. Cytochrome c3 reduced U(VI) in a uranium-contaminated surface water and groundwater. Cytochrome c3 provides the first enzyme model for the reduction and biomineralization of uranium in sedimentary environments. Furthermore, the finding that cytochrome c3 can catalyze the reductive precipitation of uranium may aid in the development of fixed-enzyme reactors and/or organisms with enhanced U(VI)-reducing capacity for the bioremediation of uranium- contaminated waters and waste streams.

  20. ROS Regulation During Abiotic Stress Responses in Crop Plants

    PubMed Central

    You, Jun; Chan, Zhulong

    2015-01-01

    Abiotic stresses such as drought, cold, salt and heat cause reduction of plant growth and loss of crop yield worldwide. Reactive oxygen species (ROS) including hydrogen peroxide (H2O2), superoxide anions (O2•-), hydroxyl radical (OH•) and singlet oxygen (1O2) are by-products of physiological metabolisms, and are precisely controlled by enzymatic and non-enzymatic antioxidant defense systems. ROS are significantly accumulated under abiotic stress conditions, which cause oxidative damage and eventually resulting in cell death. Recently, ROS have been also recognized as key players in the complex signaling network of plants stress responses. The involvement of ROS in signal transduction implies that there must be coordinated function of regulation networks to maintain ROS at non-toxic levels in a delicate balancing act between ROS production, involving ROS generating enzymes and the unavoidable production of ROS during basic cellular metabolism, and ROS-scavenging pathways. Increasing evidence showed that ROS play crucial roles in abiotic stress responses of crop plants for the activation of stress-response and defense pathways. More importantly, manipulating ROS levels provides an opportunity to enhance stress tolerances of crop plants under a variety of unfavorable environmental conditions. This review presents an overview of current knowledge about homeostasis regulation of ROS in crop plants. In particular, we summarize the essential proteins that are involved in abiotic stress tolerance of crop plants through ROS regulation. Finally, the challenges toward the improvement of abiotic stress tolerance through ROS regulation in crops are discussed. PMID:26697045

  1. Effects of the Anaerobic Respiration of Shewanella oneidensis MR-1 on the Stability of Extracellular U(VI) Nanofibers

    PubMed Central

    Jiang, Shenghua; Hur, Hor-Gil

    2013-01-01

    Uranium (VI) is considered to be one of the most widely dispersed and problematic environmental contaminants, due in large part to its high solubility and great mobility in natural aquatic systems. We previously reported that under anaerobic conditions, Shewanella oneidensis MR-1 grown in medium containing uranyl acetate rapidly accumulated long, extracellular, ultrafine U(VI) nanofibers composed of polycrystalline chains of discrete meta-schoepite (UO3·2H2O) nanocrystallites. Wild-type MR-1 finally transformed the uranium (VI) nanofibers to uranium (IV) nanoparticles via further reduction. In order to investigate the influence of the respiratory chain in the uranium transformation process, a series of mutant strains lacking a periplasmic cytochrome MtrA, outer membrane (OM) cytochrome MtrC and OmcA, a tetraheme cytochrome CymA anchored to the cytoplasmic membrane, and a trans-OM protein MtrB, were tested in this study. Although all the mutants produced U(VI) nanofibers like the wild type, the transformation rates from U(VI) nanofibers to U(IV) nanoparticles varied; in particular, the mutant with deletion in tetraheme cytochrome CymA stably maintained the uranium (VI) nanofibers, suggesting that the respiratory chain of S. oneidensis MR-1 is probably involved in the stability of extracellular U(VI) nanofibers, which might be easily treated via the physical processes of filtration or flocculation for the remediation of uranium contamination in sediments and aquifers, as well as the recovery of uranium in manufacturing processes. PMID:23719584

  2. Effects of the anaerobic respiration of Shewanella oneidensis MR-1 on the stability of extracellular U(VI) nanofibers.

    PubMed

    Jiang, Shenghua; Hur, Hor-Gil

    2013-01-01

    Uranium (VI) is considered to be one of the most widely dispersed and problematic environmental contaminants, due in large part to its high solubility and great mobility in natural aquatic systems. We previously reported that under anaerobic conditions, Shewanella oneidensis MR-1 grown in medium containing uranyl acetate rapidly accumulated long, extracellular, ultrafine U(VI) nanofibers composed of polycrystalline chains of discrete meta-schoepite (UO(3)·2H2O) nanocrystallites. Wild-type MR-1 finally transformed the uranium (VI) nanofibers to uranium (IV) nanoparticles via further reduction. In order to investigate the influence of the respiratory chain in the uranium transformation process, a series of mutant strains lacking a periplasmic cytochrome MtrA, outer membrane (OM) cytochrome MtrC and OmcA, a tetraheme cytochrome CymA anchored to the cytoplasmic membrane, and a trans-OM protein MtrB, were tested in this study. Although all the mutants produced U(VI) nanofibers like the wild type, the transformation rates from U(VI) nanofibers to U(IV) nanoparticles varied; in particular, the mutant with deletion in tetraheme cytochrome CymA stably maintained the uranium (VI) nanofibers, suggesting that the respiratory chain of S. oneidensis MR-1 is probably involved in the stability of extracellular U(VI) nanofibers, which might be easily treated via the physical processes of filtration or flocculation for the remediation of uranium contamination in sediments and aquifers, as well as the recovery of uranium in manufacturing processes. PMID:23719584

  3. Effect of phosphate on U(VI) sorption to montmorillonite: Ternary complexation and precipitation barriers

    NASA Astrophysics Data System (ADS)

    Troyer, Lyndsay D.; Maillot, Fabien; Wang, Zheming; Wang, Zimeng; Mehta, Vrajesh S.; Giammar, Daniel E.; Catalano, Jeffrey G.

    2016-02-01

    Phosphate addition is a potential treatment method to lower the solubility of U(VI) in soil and groundwater systems by causing U(VI) phosphate precipitation as well as enhancing adsorption. Previous work has shown that iron oxide surfaces may facilitate the nucleation of U(VI) phosphate minerals and, that under weakly acidic conditions, phosphate also enhances U(VI) adsorption to such phases. Like iron oxides, clays are important reactive phases in the subsurface but little is known about the interaction of U(VI) and phosphate with these minerals. The effect of aqueous phosphate on U(VI) binding to Wyoming montmorillonite (SWy-2) in air-equilibrated systems was investigated. Equilibrium U(VI) uptake to montmorillonite was determined at pH 4, 6 and 8 at discrete initial phosphate concentrations between 0 and 100 μM. The observed behavior of U(VI) indicates a transition from adsorption to precipitation with increasing total uranium and phosphate concentrations at all pH values. At the highest phosphate concentration examined at each pH value, a barrier to U(VI) phosphate nucleation is observed. At lower concentrations, phosphate has no effect on macroscopic U(VI) adsorption. To assess the mechanisms of U(VI)-phosphate interactions on smectite surfaces, U(VI) speciation was investigated under selected conditions using laser-induced fluorescence spectroscopy (LIFS) and extended X-ray absorption fine-structure (EXAFS) spectroscopy. Samples above the precipitation threshold display EXAFS and LIFS spectral signatures consistent with the autunite family of U(VI) phosphate minerals. However, at lower U(VI) concentrations, changes in LIFS spectra upon phosphate addition suggest that U(VI)-phosphate ternary surface complexes form on the montmorillonite surface at pH 4 and 6 despite the lack of a macroscopic effect on adsorption. The speciation of solid-associated U(VI) below the precipitation threshold at pH 8 is dominated by U(VI)-carbonate surface complexes. This work

  4. Surface complexation modeling of U(VI) sorption to Hanford sediment with varying geochemical conditions

    SciTech Connect

    Um, Wooyong; Serne, R. Jeffrey; Krupka, Kenneth M.

    2007-04-11

    A series of U(VI) adsorption experiments with varying pH, ionic strength, concentrations of dissolved U(VI) and carbonate was conducted to provide a more realistic database for U(VI) adsorption onto near-field vadose zone sediments at the proposed Integrated Disposal Facility (IDF) on the Hanford Site. The distribution coefficient, Kd, for U(VI) in predicted “pure” glass leachate is 0 mL/g because the glass leachate has high sodium and carbonate concentrations and high pH. The zero adsorption result suggests that uranium will exhibit no retardation when the subsurface geochemistry is controlled by glass leachate. However, U(VI) can be sequestrated even when the pH, carbonate and sodium concentrations reached levels similar to “pure” glass leachate, because U(VI) coprecipitates with calcite. When glass leachate interacts with existing porewater or surrounding sediments, sorption is observed and the numerical value of the U(VI) Kd varies significantly. A non-electrostatic, general composite approach for surface complexation modeling was applied and a combination of two U(VI) surface species, monodentate (SOUO2+) and bidentate (SO2UO2(CO3)2-), simulated very well the measured U(VI) adsorption data. The general composite surface complexation model, compared to the constant or single-valued Kd model, more accurately predicted U(VI) adsorption under the varying geochemical conditions expected at the IDF.

  5. CASSINI UVIS STELLAR OCCULTATION OBSERVATIONS OF SATURN's RINGS

    SciTech Connect

    Colwell, J. E.; Jerousek, R. G.; Pettis, D.; Bradley, E. T.; Esposito, L. W.; Sremcevic, M.

    2010-12-15

    The Cassini spacecraft's Ultraviolet Imaging Spectrograph (UVIS) includes a high-speed photometer (HSP) that has observed more than 100 stellar occultations by Saturn's rings. Here, we document a standardized technique applied to the UVIS-HSP ring occultation datasets delivered to the Planetary Data System as higher level data products. These observations provide measurements of ring structure that approaches the scale of the largest common ring particles ({approx}5 m). The combination of multiple occultations at different viewing geometries enables reconstruction of the three-dimensional structure of the rings. This inversion of the occultation data depends on accurate calibration of the data so that occultations of different stars taken at different times and under different viewing conditions can be combined to retrieve ring structure. We provide examples of the structure of the rings as seen from several occultations at different incidence angles to the rings, illustrating changes in the apparent structure with viewing geometry.

  6. HST/WFC3: Improvements to the UVIS Dark Calibration

    NASA Astrophysics Data System (ADS)

    Bourque, Matthew; Baggett, Sylvia M.; WFC3 Team

    2016-06-01

    The Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) UVIS detector, comprised of two e2v CCDs, exhibits an inherent dark current (in the absence of any illumination) presently measured at ~7 e-/hr and increasing at ~1 e-/hr/yr. Additionally, detector degradation due to on-orbit radiation damage generates a continuously increasing though small population of hot pixels (dark current exceeding 54 e-/hr, currently ~4% of each chip). We present the results of the WFC3/UVIS dark calibration, which provides calibration files used as a correction for these detector characteristics. We also discuss the impacts that Charge Transfer Efficiency (CTE) losses and detector post-flashing have on the hot pixel population, as well as various improvements to the calibration procedure that were introduced in the CALWF3 v3.3 pipeline.

  7. The WFC3/UVIS Reference Files : 2. Biases and Darks

    NASA Astrophysics Data System (ADS)

    Martel, A. R.; Baggett, S.; Bushouse, H.; Sabbi, E.

    2008-09-01

    Bias and dark reference files for the Wide Field Camera 3 (WFC3) UVIS flight detector were assembled from ground data acquired in the final thermal vacuum campaign at the Goddard Space Flight Center (GSFC). These represent the first generation of reference files for the UVIS channel and will serve to calibrate the on-orbit data from the early phase of the fourth Servicing Mission Observatory Verification (SMOV4). In this report, we present our methodology for assembling the bias and dark reference data, tabulate the resulting reference files, and discuss their overall features. We also discuss the assignment of their data quality flags. The most up-to-date reference files are available on the STScI WFC3 Web site.

  8. Revisiting Uvis Observations of the Enceladus Water Vapor Plume

    NASA Astrophysics Data System (ADS)

    Portyankina, G.

    2014-12-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) onboard Cassini spacecraft observed occultations of several stars and the Sun by the water vapor plume and separate jets emitting from the southern pole of Enceladus [Hansen et al., 2006 and 2011]. During the solar occultation separate collimated gas jets were detected inside the background plume. These observations provide data about water vapor column densities along the line of sight of the UVIS instrument. Monte Carlo simulations and Direct Simulation Monte Carlo (DSMC) are used to model the plume of Enceladus including an option to add multiple jet sources to the general background plume. The models account for molecular collisions, gravitational and Coriolis forces. Jet sources can differ in production rate and velocity distribution of the water molecules emitted. Recent observations of the visible dust plume by the Cassini Imaging Science Subsystem (ISS) identified as many as 98 jet sources located along Tiger stripes [Porco et al. 2014]. We applied the spatial distribution of the sources observed by ISS in our models. The output of the models are the 3-D distribution of water vapor density and surface deposition patterns. Comparison between the simulation results and column densitioes derived from UVIS observations provide constraints on the physical characteristics of the plume and jets.

  9. Modeling of the structure-specific kinetics of abiotic, dark reduction of Hg(II) complexed by O/N and S functional groups in humic acids while accounting for time-dependent structural rearrangement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Redox transformations involving electron transfer from natural organic matter (NOM) are important for the mercury (Hg) biogeochemical cycle. In the water column light drives the reduction of Hg(II) to Hg(0), whereas in soils and sediments dark reduction of Hg(II) is of greater importance. The object...

  10. The role of nanopores on U(VI) sorption and redox behavior in U(VI)-contaminated subsurface sediments

    SciTech Connect

    Xu, Huifang; Roden, Eric E.; Kemner, Kenneth M.; Jung, Hun-Bok; Konishi, Hiromi; Boyanov, Maxim; Sun, Yubing; Mishra, Bhoopesh

    2013-10-16

    Most reactive surfaces in clay-dominated sediments are present within nanopores (pores of nm dimension). The behavior of geological fluids and minerals in nanopores is significantly different from those in normal non-nanoporous environments. The effect of nanopore surfaces on U(VI) sorption/desorption and reduction is likely to be significant in clay-rich subsurface environments. Our research results from both model nanopore system and natural sediments from both model system (synthetic nanopore alumina) and sediments from the ORNL Field Research Center prove that U(VI) sorption on nanopore surfaces can be greatly enhanced by nanopore confinement environments. The results from the project provide advanced mechanistic, quantitative information on the physiochemical controls on uranium sorption and redox behavior in subsurface sediments. The influence of nanopore surfaces on coupled uranium sorption/desorption and reduction processes is significant in virtually all subsurface environments, because most reactive surfaces are in fact nanopore surfaces. The results will enhance transfer of our laboratory-based research to a major field research initiative where reductive uranium immobilization is being investigated. Our results will also provide the basic science for developing in-situ colloidal barrier of nanoporous alumina in support of environmental remediation and long term stewardship of DOE sites.

  11. Abiotic Organic Chemistry in Hydrothermal Systems.

    NASA Astrophysics Data System (ADS)

    Simoneit, B. R.; Rushdi, A. I.

    2004-12-01

    Abiotic organic chemistry in hydrothermal systems is of interest to biologists, geochemists and oceanographers. This chemistry consists of thermal alteration of organic matter and minor prebiotic synthesis of organic compounds. Thermal alteration has been extensively documented to yield petroleum and heavy bitumen products from contemporary organic detritus. Carbon dioxide, carbon monoxide, ammonia and sulfur species have been used as precursors in prebiotic synthesis experiments to organic compounds. These inorganic species are common components of hot spring gases and marine hydrothermal systems. It is of interest to further test their reactivities in reductive aqueous thermolysis. We have synthesized organic compounds (lipids) in aqueous solutions of oxalic acid, and with carbon disulfide or ammonium bicarbonate at temperatures from 175-400° C. The synthetic lipids from oxalic acid solutions consisted of n-alkanols, n-alkanoic acids, n-alkyl formates, n-alkanones, n-alkenes and n-alkanes, typically to C30 with no carbon number preferences. The products from CS2 in acidic aqueous solutions yielded cyclic thioalkanes, alkyl polysulfides, and thioesters with other numerous minor compounds. The synthesis products from oxalic acid and ammonium bicarbonate solutions were homologous series of n-alkyl amides, n-alkyl amines, n-alkanes and n-alkanoic acids, also to C30 with no carbon number predominance. Condensation (dehydration) reactions also occur under elevated temperatures in aqueous medium as tested by model reactions to form amide, ester and nitrile bonds. It is concluded that the abiotic formation of aliphatic lipids, condensation products (amides, esters, nitriles, and CS2 derivatives (alkyl polysulfides, cyclic polysulfides) is possible under hydrothermal conditions and warrants further studies.

  12. Kinetic desorption and sorption of U(VI) during reactive transport in a contaminated Hanford sediment.

    PubMed

    Qafoku, Nikolla P; Zachara, John M; Liu, Chongxuan; Gassman, Paul L; Qafoku, Odeta S; Smith, Steven C

    2005-05-01

    Column experiments were conducted to investigate U(VI) desorption and sorption kinetics in a sand-textured, U(VI)-contaminated (22.7 micromol kg(-1)) capillary fringe sediment from the U.S. Department of Energy (DOE) Hanford site. Saturated column experiments were performed under mildly alkaline conditions representative of the Hanford site where uranyl-carbonate and calcium-uranyl-carbonate complexes dominate aqueous speciation. A U(VI)-free solution was used to study contaminant U(VI) desorption in columns where different flow rates were applied. Sorbed, contaminant U(VI) was partially labile (11.8%), and extended leaching times and water volumes were required for complete desorption of the labile fraction. Uranium-(VI) sorption was studied after the desorption of labile, contaminant U(VI) using different U(VI) concentrations in the leaching solution. Strong kinetic effects were observed for both U(VI) sorption and desorption, with half-life ranging from 8.5 to 48.5 h for sorption and from 39.3 to 150 h for desorption. Although U(VI) is semi-mobile in mildly alkaline, subsurface environments, we observed substantial U(VI) adsorption, significant retardation during transport, and atypical breakthrough curves with extended tailing. A distributed rate model was applied to describe the effluent data and to allow comparisons between the desorption rate of contaminant U(VI) with the rate of shortterm U(VI) sorption. Desorption was the slower process. We speculate that the kinetic behavior results from transport or chemical phenomena within the phyllosilicate-dominated fine fraction present in the sediment. Our results suggest that U(VI) release and transport in the vadose zone and aquifer system from which the sediment was obtained are kinetically controlled. PMID:15926566

  13. Transient groundwater chemistry near a river: Effects on U(VI) transport in laboratory column experiments

    SciTech Connect

    Yin, Jun; Haggerty, Roy; Stoliker, Deborah L.; Kent, Douglas B.; Istok, Jonathan D.; Greskowiak, Janek; Zachara, John M.

    2011-04-05

    In the 300 Area of a U(VI)-contaminated aquifer at Hanford, Washington, USA, inorganic carbon and major cations, which have large impacts on U(VI) transport, change on an hourly and seasonal basis near the Columbia River. Batch and column experiments were conducted to investigate the factors controlling U(VI) adsorption/desorption by changing chemical conditions over time. Low alkalinity and low Ca concentrations (Columbia River water) enhanced adsorption and reduced aqueous concentrations. Conversely, high alkalinity and high Ca concentrations (Hanford groundwater) reduced adsorption and increased aqueous concentrations of U(VI). An equilibrium surface complexation model calibrated using laboratory batch experiments accounted for the decrease in U(VI) adsorption observed with increasing (bi)carbonate concentrations and other aqueous chemical conditions. In the column experiment, alternating pulses of river and groundwater caused swings in aqueous U(VI) concentration. A multispecies multirate surface complexation reactive transport model simulated most of the major U(VI) changes in two column experiments. The modeling results also indicated that U(VI) transport in the studied sediment could be simulated by using a single kinetic rate without loss of accuracy in the simulations. Moreover, the capability of the model to predict U(VI) transport in Hanford groundwater under transient chemical conditions depends significantly on the knowledge of real-time change of local groundwater chemistry.

  14. Transient groundwater chemistry near a river: Effects on U(VI) transport in laboratory column experiments

    USGS Publications Warehouse

    Yin, J.; Haggerty, R.; Stoliker, D.L.; Kent, D.B.; Istok, J.D.; Greskowiak, J.; Zachara, J.M.

    2011-01-01

    In the 300 Area of a U(VI)-contaminated aquifer at Hanford, Washington, USA, inorganic carbon and major cations, which have large impacts on U(VI) transport, change on an hourly and seasonal basis near the Columbia River. Batch and column experiments were conducted to investigate the factors controlling U(VI) adsorption/desorption by changing chemical conditions over time. Low alkalinity and low Ca concentrations (Columbia River water) enhanced adsorption and reduced aqueous concentrations. Conversely, high alkalinity and high Ca concentrations (Hanford groundwater) reduced adsorption and increased aqueous concentrations of U(VI). An equilibrium surface complexation model calibrated using laboratory batch experiments accounted for the decrease in U(VI) adsorption observed with increasing (bi)carbonate concentrations and other aqueous chemical conditions. In the column experiment, alternating pulses of river and groundwater caused swings in aqueous U(VI) concentration. A multispecies multirate surface complexation reactive transport model simulated most of the major U(VI) changes in two column experiments. The modeling results also indicated that U(VI) transport in the studied sediment could be simulated by using a single kinetic rate without loss of accuracy in the simulations. Moreover, the capability of the model to predict U(VI) transport in Hanford groundwater under transient chemical conditions depends significantly on the knowledge of real-time change of local groundwater chemistry. Copyright 2011 by the American Geophysical Union.

  15. Transient groundwater chemistry near a river: Effects on U(VI) transport in laboratory column experiments

    USGS Publications Warehouse

    Yin, Jun; Haggerty, Roy; Stoliker, Deborah L.; Kent, Douglas B.; Istok, Jonathan D.; Greskowiak, Janek; Zachara, John M.

    2011-01-01

    In the 300 Area of a U(VI)-contaminated aquifer at Hanford, Washington, USA, inorganic carbon and major cations, which have large impacts on U(VI) transport, change on an hourly and seasonal basis near the Columbia River. Batch and column experiments were conducted to investigate the factors controlling U(VI) adsorption/desorption by changing chemical conditions over time. Low alkalinity and low Ca concentrations (Columbia River water) enhanced adsorption and reduced aqueous concentrations. Conversely, high alkalinity and high Ca concentrations (Hanford groundwater) reduced adsorption and increased aqueous concentrations of U(VI). An equilibrium surface complexation model calibrated using laboratory batch experiments accounted for the decrease in U(VI) adsorption observed with increasing (bi)carbonate concentrations and other aqueous chemical conditions. In the column experiment, alternating pulses of river and groundwater caused swings in aqueous U(VI) concentration. A multispecies multirate surface complexation reactive transport model simulated most of the major U(VI) changes in two column experiments. The modeling results also indicated that U(VI) transport in the studied sediment could be simulated by using a single kinetic rate without loss of accuracy in the simulations. Moreover, the capability of the model to predict U(VI) transport in Hanford groundwater under transient chemical conditions depends significantly on the knowledge of real-time change of local groundwater chemistry.

  16. Solvent impregnated resin for isolation of U(VI) from industrial wastes

    SciTech Connect

    Karve, M.; Rajgor, R.V.

    2008-07-01

    A solid-phase extraction method based upon impregnation of Cyanex 302 (bis(2,4,4- trimethylpentyl)mono-thio-phosphinic acid) on Amberlite XAD-2 resin is proposed for isolation of U(VI) from uranmicrolite ore tailing samples and industrial effluent samples. U(VI) was sorbed from nitric acid media on the solvent-impregnated resin (SIR) and was recovered completely with 1.0 M HCl. Based upon sorption behavior of U(VI) with Cyanex 302, it was quantitatively sorbed on the SIR in a dynamic method, while the other metal ions were not sorbed by the modified resin. The preparation of impregnated resin is simple, based upon physical interaction of the extractant and solid support, has good sorption capacity for U(VI), and is also reliable for detection of traces of U(VI). (authors)

  17. WFC3/UVIS Dark Current Calibration and Detector Characteristics

    NASA Astrophysics Data System (ADS)

    Bourque, Matthew; Biretta, John A.; Baggett, Sylvia M.; Anderson, Jay; MacKenty, John W.; WFC3 Team

    2015-01-01

    The Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) is a fourth-generation imaging instrument that was installed during Servicing Mission 4 in May 2009. The WFC3/UVIS detector, comprised of two e2v CCDs, exhibits an inherent dark current (in the absence of any illumination) presently measured at ~6 e-/hr. In addition, detector degradation due to on-orbit radiation damage generates a continuously increasing though small population of hot pixels (dark current exceeding 54 e-/hr, ~4% of each chip) as well as 'sink' pixels (pixels which contain a large number of charge traps). We present the procedures and results of the WFC3/UVIS dark calibration, which provides calibration files used as a correction for these detector characteristics. We discuss the impacts that Charge Transfer Efficiency (CTE) losses and detector post-flashing have on the hot pixel population and overall calibration, as well as the plans for flagging the 'sink' pixels in the calibration pipeline. Finally, we discuss various improvements to the calibration procedure that will increase the accuracy of dark current and hot pixel measurements.

  18. Ultraviolet Observations of Phoebe from the Cassini UVIS

    NASA Technical Reports Server (NTRS)

    Hendrix, Amanda R.; Hansen, Candice J.

    2007-01-01

    Observations of Saturn's distant moon Phoebe were made at far-ultraviolet (FUV) (1100-1900 A) and extreme-ultraviolet (EUV) (600-1100 A) wavelengths by the Cassini Ultraviolet Imaging Spectrograph (UVIS) during the Cassini spacecraft flyby on June 11, 2004. These are the first UV spectra of Phoebe and the first detection of water ice on a Solar System surface using FUV wavelengths. The characteristics of water ice in the FUV are presented, and Hapke models are used to interpret the spectra in terms of composition and grain size; the use of both areal and intimate mixing models is explored. Non-ice species used in these models include carbon, ice tholin, Triton tholin, poly-HCN and kerogen. Satisfactory disk-integrated fits are obtained for intimate mixtures of approx.10% H2O plus a non-ice species. Spatially resolved regions of higher (approx.20%) and lower (approx.5%) H2O ice concentrations are also detected. Phoebe does not display any evidence of volatile activity. Upper limits on atomic oxygen and carbon are 5 x 10(exp 11) and 2 x 10(exp 12) atoms/sq. cm, respectively, for solar photon scattering. The UVIS detection of water ice on Phoebe, and the ice amounts detected, are consistent with IR measurements and contribute to the evidence for a Phoebe origin in the outer Solar System rather than in the main asteroid belt.

  19. Investigation of U(VI) Adsorption in Quartz-Chlorite Mineral Mixtures

    SciTech Connect

    Wang, Zheming; Zachara, John M.; Shang, Jianying; Jeon, Choong; Liu, Juan; Liu, Chongxuan

    2014-08-25

    A batch and cryogenic laser-induced time-resolved fluorescence spectroscopy investigation of U(VI) adsorbed on quartz-chlorite mixtures with variable mass ratios have been performed under field-relevant uranium concentrations (5x10-7 M and 5x10-6 M) in pH 8.1 synthetic groundwater. The U(VI) adsorption Kd values steadily increased as the mass fraction of chlorite increased, indicating preferential sorption to chlorite. For all mineral mixtures, U(VI) adsorption Kd values were lower than that calculated from the assumption of component additivity; The largest deviation occurred when the mass fractions of the two minerals were equal. U(VI) adsorbed on quartz and chlorite displayed characteristic individual fluorescence spectra that were not affected by mineral mixing. The spectra of U(VI) adsorbed within the mixtures could be simulated by one surface U(VI) species on quartz and two on chlorite. The fluorescence intensity decreased in a nonlinear manner as the adsorbed U(VI) concentration increased with increasing chlorite mass fraction – likely due to ill-defined fluorescence quenching by both structural Fe/Cr in chlorite, and trace amounts of solubilized and re-precipitated Fe/Cr in the aqueous phase. However, the fractional spectral intensities of U(VI) adsorbed on quartz and chlorite followed the same trend of fractional adsorbed U(VI) concentration in each mineral phase; approximate linear correlations in the quartz:chlorite mass ratio ranges of 0.0 - 0.2 and 0.2 - 1.0, offering a method to estimate of U(VI) concentration distribution between the mineral components.

  20. Genetic diversity in pollen abiotic stress tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic diversity in reproductive abiotic stress tolerance has been investigated by cotton breeders throughout the public and private sectors. The primary focus of these studies has been the evaluation of abiotic stress responses during the development of the flower prior to anthesis. Sterility in...

  1. Genetic Diversity in Pollen Abiotic Stress Tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic diversity in reproductive abiotic stress tolerance has been investigated by cotton breeders throughout the public and private sectors. The primary focus of these studies has been the evaluation of abiotic stress responses during the development of the flower prior to anthesis. Sterility in...

  2. Modeling of the structure-specific kinetics of abiotic, dark reduction of Hg(II) complexed by O/N and S functional groups in humic acids while accounting for time-dependent structural rearrangement

    NASA Astrophysics Data System (ADS)

    Jiang, Tao; Skyllberg, Ulf; Wei, Shiqiang; Wang, Dingyong; Lu, Song; Jiang, Zhenmao; Flanagan, Dennis C.

    2015-04-01

    Dark reduction of Hg(II) to Hg(0) in deep waters, soils and sediments accounts for a large part of legacy Hg recycling back to the atmosphere. Natural organic matter (NOM) plays a dual role in the process, acting as an electron donor and complexation agent of Hg(II). Experimental determination of rates of dark Hg(II) reduction is complicated by the simultaneously ongoing kinetics of Hg(II) rearrangement from the abundant, relatively weakly bonding RO/N (carboxyl, amino) groups in NOM to the much stronger bonding RSH (thiol) group. In this study, kinetics of the rearrangement are accounted for and we report rates of dark Hg(II) reduction for two molecular structures in presence of humic acids (HA) extracted from three different sources. Values on the pseudo first-order rate constant for the proposed structure Hg(OR)2 (kredHg(OR)2) were 0.18, 0.22 and 0.35 h-1 for Peat, Coal and Soil HA, respectively, and values on the constant for the proposed structure RSHgOR (kred RSHgOR) were 0.003 and 0.006 h-1 for Peat and Soil HA, respectively. The Hg(SR)2 structure is the thermodynamically most stable, but the limited time of the experiment (53 h) did not allow for a determination of the rate of the very slow reduction of Hg(II) in this structure. For two out of three HA samples the concentration of RSH groups optimized by the kinetic model (0.6 × 10-3 RSH groups per C atoms) was in good agreement with independent estimates provided by sulfur X-ray absorption near-edge spectroscopy (S XANES). Experiments conducted at varying concentrations of Hg(II) and HA demonstrated a positive relationship between Hg(II) reduction and concentrations of specific Hg(II) structures and electron donor groups, suggesting first order in each of these two components. The limitation of the Hg(II) reduction by electron donating groups of HA, as represented by the native reducing capacity (NRC), was demonstrated for the Coal HA sample. Normalization to NRC resulted in pseudo second-order rate

  3. Study of sorption-retarded U(VI) diffusion in Hanford silt/clay material

    SciTech Connect

    Bai, Jing; Liu, Chongxuan; Ball, William P.

    2009-10-15

    A diffusion cell method was developed to measure the effective aqueous diffusion coefficient for U(VI) under strictly controlled chemical conditions within the inter-particle pores of silt/clay sediment from the DOE Hanford site, WA. "Inward-flux” diffusion studies were conducted in which U(VI) concentrations in both aqueous and solid phases were measured as a function of distance into the cell under conditions of constant concentration at the cell boundaries. A sequential extraction method was developed to measure sorbed U(VI) content in the solid phase, while accounting for the non-negligible extractable background U(VI). U(VI) diffusion data were found to be consistent with a model that assumed that: 1) a single effective aqueous diffusion coefficient could be used to simulate the coupled diffusion of various aqueous U(VI) species, and 2) the local equilibrium assumption (LEA) is appropriate for modeling the effects of sorption under the given experimental conditions. An effective aqueous diffusion coefficient (De) of 1.6x10^-6 cm2/s was obtained under conditions of pH 8.0 and calcite saturation that are relevant to the subsurface conditions at some regions of the Hanford site. The developed experimental techniques provide a practical approach for measuring effective aqueous U(VI) diffusivity in sorptive porous media.

  4. Interaction of CPR5 with Cell Cycle Regulators UVI4 and OSD1 in Arabidopsis

    PubMed Central

    Bao, Zhilong; Hua, Jian

    2014-01-01

    The impact of cell cycle on plant immunity was indicated by the enhancement of disease resistance with overexpressing OSD1 and UVI4 genes that are negative regulators of cell cycle controller APC (anaphase promoting complex). CPR5 is another gene that is implicated in cell cycle regulation and plant immunity, but its mode of action is not known. Here we report the analysis of genetic requirement for the function of UVI4 and OSD1 in cell cycle progression control and in particular the involvement of CPR5 in this regulation. We show that the APC activator CCS52A1 partially mediates the function of OSD1 and UVI4 in female gametophyte development. We found that the cpr5 mutation suppresses the endoreduplication defect in the uvi4 single mutant and partially rescued the gametophyte development defect in the osd1 uvi4 double mutant while the uvi4 mutation enhances the cpr5 defects in trichome branching and plant disease resistance. In addition, cyclin B1 genes CYCB1;1, CYCB1;2, and CYCB1;4 are upregulated in cpr5. Therefore, CPR5 has a large role in cell cycle regulation and this role has a complex interaction with that of UVI4 and OSD1. This study further indicates an intrinsic link between plant defense responses and cell cycle progression. PMID:24945150

  5. Comparing approaches for simulating the reactive transport of U(VI) in ground water

    USGS Publications Warehouse

    Curtis, G.P.; Kohler, M.; Davis, J.A.

    2009-01-01

    The reactive transport of U(VI) in a well-characterized shallow alluvial aquifer at a former U(VI) mill located near Naturita, CO, was predicted for comparative purposes using a surface complexation model (SCM) and a constant K d approach to simulate U(VI) adsorption. The ground water at the site had U(VI) concentrations that ranged from 0.01 to 20 ??M, alkalinities that ranged from 2.5 to 18 meq/L, and a nearly constant pH of 7.1. The SCM used to simulate U(VI) adsorption was previously determined independently using laboratory batch adsorption experiments. Simulations obtained using the SCM approach were compared with simulations that used a constant K d approach to simulate adsorption using previously determined site-specific K d values. In both cases, the ground water flow and transport models used a conceptual model that was previously calibrated to a chloride plume present at the site. Simulations with the SCM approach demonstrated that the retardation factor varied temporally and spatially because of the differential transport of alkalinity and dissolved U(VI) and the nonlinearity of the U(VI) adsorption. The SCM model also simulated a prolonged slow decline in U(VI) concentration, which was not simulated using a constant K d model. Simulations using the SCM approach and the constant K d approach were similar after 20 years of transport but diverged significantly after 60 years. The simulations demonstrate the need for site-specific geochemical information on U(VI) adsorption to produce credible simulations of future transport. ?? 2009 Springer-Verlag.

  6. The effect of Paecilomyces catenlannulatus on removal of U(VI) by illite.

    PubMed

    Li, Fengbo; Gao, Zhimou; Li, Xiaoyu; Fang, Lejin

    2014-11-01

    The effect of Paecilomyces catenlannulatus (P. catenlannulatus) on removal of U(VI) onto illite as a function of contact time, pH, ionic strength, and solution concentration was conducted by batch techniques. The adsorption kinetics indicated that the removal of U(VI) on illite and illite coated P. catenlannulatus can be fitted by pseudo-second order kinetic model very well. The removal of U(VI) on illite and illite coated P. catenlannulatus increased with increasing pH from 1.0 to 7.0, whereas the decrease of U(VI) adsorption on illite and illite coated P. catenlannulatus was observed at pH > 7.5. The adsorption behavior of U(VI) on illite and illite coated P. catenlannulatus can be simulated by the double diffuse model under various pH conditions. The ionic strength-dependent experiments showed that the removal of U(VI) on illite was outer-sphere surface complexation, whereas the inner-sphere surface complexation predominated the U(VI) adsorption onto illite coated P. catenlannulatus at pH 5.0-7.0. The maximum adsorption capacity of U(VI) on illite and illite coated P. catenlannulatus calculated from Langmuir model at pH 5.0 and T = 298 K was 46.729 and 54.347 mg/g, respectively, revealing enhanced adsorption of U(VI) on illite coated P. catenlannulatus. This paper highlights the effect of microorganism on the removal of radionuclides from aqueous solutions in environmental pollution management. PMID:24998746

  7. HST WFC3/UVIS: charge transfer efficiency monitoring and mitigation

    NASA Astrophysics Data System (ADS)

    Baggett, Sylvia M.; Sosey, Megan L.; Anderson, Jay; Gosmeyer, Catherine; Bourque, Matthew; Bajaj, Varun; Khandrika, Harish G.; Martlin, Catherine; Kozhurina-Platais, Vera; Sabbi, Elena; WFC3 Team

    2016-01-01

    The harsh low-earth orbit environment is known to damage CCD devices and the HST WFC3/UVIS camera is no exception. One consequence of the radiation damage is charge-transfer efficiency (CTE) loss over time. We summarize the level of the CTE losses, the effect on science data, and the pre- and post-observation mitigation options available. Among them is the pixel-based CTE correction, which has been incorporated into the HST automatic data processing pipeline. The pipeline now provides both standard and CTE-corrected data products; observers with older data can re-retrieve their images via the the Mikulski Archive for Space Telescopes (MAST) to obtain the new products.

  8. Enzymatic iron and uranium reduction by sulfate-reducing bacteria

    USGS Publications Warehouse

    Lovley, D.R.; Roden, E.E.; Phillips, E.J.P.; Woodward, J.C.

    1993-01-01

    The potential for sulfate-reducing bacteria (SRB) to enzymatically reduce Fe(III) and U(VI) was investigated. Five species of Desulfovibrio as well as Desulfobacterium autotrophicum and Desulfobulbus propionicus reduced Fe(III) chelated with nitrilotriacetic acid as well as insoluble Fe(III) oxide. Fe(III) oxide reduction resulted in the accumulation of magnetite and siderite. Desulfobacter postgatei reduced the chelated Fe(III) but not Fe(III) oxide. Desulfobacter curvatus, Desulfomonile tiedjei, and Desulfotomaculum acetoxidans did not reduce Fe(III). Only Desulfovibrio species reduced U(VI). U(VI) reduction resulted in the precipitation of uraninite. None of the SRB that reduced Fe(III) or U(VI) appeared to conserve enough energy to support growth from this reaction. However, Desulfovibrio desulfuricans metabolized H2 down to lower concentrations with Fe(III) or U(VI) as the electron acceptor than with sulfate, suggesting that these metals may be preferred electron acceptors at the low H2 concentrations present in most marine sediments. Molybdate did not inhibit Fe(III) reduction by D. desulfuricans. This indicates that the inability of molybdate to inhibit Fe(III) reduction in marine sediments does not rule out the possibility that SRB are important catalysts for Fe(III) reduction. The results demonstrate that although SRB were previously considered to reduce Fe(III) and U(VI) indirectly through the production of sulfide, they may also directly reduce Fe(III) and U(VI) through enzymatic mechanisms. These findings, as well as our recent discovery that the So-reducing microorganism Desulfuromonas acetoxidans can reduce Fe(III), demonstrate that there are close links between the microbial sulfur, iron, and uranium cycles in anaerobic marine sediments. ?? 1993.

  9. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants

    PubMed Central

    Khan, M. Iqbal R.; Fatma, Mehar; Per, Tasir S.; Anjum, Naser A.; Khan, Nafees A.

    2015-01-01

    Abiotic stresses (such as metals/metalloids, salinity, ozone, UV-B radiation, extreme temperatures, and drought) are among the most challenging threats to agricultural system and economic yield of crop plants. These stresses (in isolation and/or combination) induce numerous adverse effects in plants, impair biochemical/physiological and molecular processes, and eventually cause severe reductions in plant growth, development and overall productivity. Phytohormones have been recognized as a strong tool for sustainably alleviating adverse effects of abiotic stresses in crop plants. In particular, the significance of salicylic acid (SA) has been increasingly recognized in improved plant abiotic stress-tolerance via SA-mediated control of major plant-metabolic processes. However, the basic biochemical/physiological and molecular mechanisms that potentially underpin SA-induced plant-tolerance to major abiotic stresses remain least discussed. Based on recent reports, this paper: (a) overviews historical background and biosynthesis of SA under both optimal and stressful environments in plants; (b) critically appraises the role of SA in plants exposed to major abiotic stresses; (c) cross-talks potential mechanisms potentially governing SA-induced plant abiotic stress-tolerance; and finally (d) briefly highlights major aspects so far unexplored in the current context. PMID:26175738

  10. U(VI) adsorption on aquifer sediments at the Hanford Site.

    PubMed

    Um, Wooyong; Serne, R Jeffrey; Brown, Christopher F; Last, George V

    2007-08-15

    Aquifer sediments collected via split-spoon sampling in two new groundwater wells in the 200-UP-1 operable unit at the Hanford Site were characterized and showed typical Ringold Unit E Formation properties dominated by gravel and sand. High iron-oxide content in Fe oxide/clay coatings caused the highest U(VI) adsorption as quantified by batch K(d) values, indicating iron oxides are the key solid adsorbent in the 200-UP-1 sediments that affect U(VI) fate and mobility. Even though U(VI) adsorption on the gravel-sized fraction of the sediments is considered to be negligible, careful characterization should be conducted to determine U(VI) adsorption on gravel, because of presence of Fe oxides coatings and diffusion-controlled adsorption into the gravel particles' interior surfaces. A linear adsorption isotherm was observed up to 10(-6) M (238 microg/L) of total U(VI) concentration in batch U(VI) adsorption tests with varying total U(VI) concentrations in spiked groundwater. U(VI) adsorption decreased with increasing concentrations of dissolved carbonate, because strong anionic aqueous uranium-carbonate complexes formed at high pH and high alkalinity conditions. Noticeable uranium desorption hysteresis was observed in a flow-through column experiment, suggesting that desorption K(d) values for aged uranium-contaminated sediments at the Hanford Site can be larger than adsorption K(d) values determined in short-term laboratory experiments and slow uranium release from contaminated sediments into the groundwater is expected. PMID:17499879

  11. U(VI) adsorption on aquifer sediments at the Hanford Site

    NASA Astrophysics Data System (ADS)

    Um, Wooyong; Serne, R. Jeffrey; Brown, Christopher F.; Last, George V.

    2007-08-01

    Aquifer sediments collected via split-spoon sampling in two new groundwater wells in the 200-UP-1 operable unit at the Hanford Site were characterized and showed typical Ringold Unit E Formation properties dominated by gravel and sand. High iron-oxide content in Fe oxide/clay coatings caused the highest U(VI) adsorption as quantified by batch Kd values, indicating iron oxides are the key solid adsorbent in the 200-UP-1 sediments that affect U(VI) fate and mobility. Even though U(VI) adsorption on the gravel-sized fraction of the sediments is considered to be negligible, careful characterization should be conducted to determine U(VI) adsorption on gravel, because of presence of Fe oxides coatings and diffusion-controlled adsorption into the gravel particles' interior surfaces. A linear adsorption isotherm was observed up to 10 - 6 M (238 μg/L) of total U(VI) concentration in batch U(VI) adsorption tests with varying total U(VI) concentrations in spiked groundwater. U(VI) adsorption decreased with increasing concentrations of dissolved carbonate, because strong anionic aqueous uranium-carbonate complexes formed at high pH and high alkalinity conditions. Noticeable uranium desorption hysteresis was observed in a flow-through column experiment, suggesting that desorption Kd values for aged uranium-contaminated sediments at the Hanford Site can be larger than adsorption Kd values determined in short-term laboratory experiments and slow uranium release from contaminated sediments into the groundwater is expected.

  12. Preconcentration of U(VI) ions on few-layered graphene oxide nanosheets from aqueous solutions.

    PubMed

    Zhao, Guixia; Wen, Tao; Yang, Xin; Yang, Shubin; Liao, Jiali; Hu, Jun; Shao, Dadong; Wang, Xiangke

    2012-05-28

    Graphene oxide nanosheets have attracted multidisciplinary attention due to their unique physicochemical properties. Herein, few-layered graphene oxide nanosheets were synthesized from graphite using a modified Hummers method and were characterized by TEM, AFM, Raman spectroscopy, XPS, FTIR spectroscopy, TG-DTA and acid-base titrations. The prepared few-layered graphene oxide nanosheets were used as adsorbents for the preconcentration of U(VI) ions from large volumes of aqueous solutions as a function of pH, ionic strength and temperature. The sorption of U(VI) ions on the graphene oxide nanosheets was strongly dependent on pH and independent of the ionic strength, indicating that the sorption was mainly dominated by inner-sphere surface complexation rather than by outer-sphere surface complexation or ion exchange. The abundant oxygen-containing functional groups on the surfaces of the graphene oxide nanosheets played an important role in U(VI) sorption. The sorption of U(VI) on graphene oxide nanosheets increased with an increase in temperature and the thermodynamic parameters calculated from the temperature-dependent sorption isotherms suggested that the sorption of U(vi) on graphene oxide nanosheets was an endothermic and spontaneous process. The maximum sorption capacities (Q(max)) of U(VI) at pH 5.0 ± 0.1 and T = 20 °C was 97.5 mg g(-1), which was much higher than any of the currently reported nanomaterials. The graphene oxide nanosheets may be suitable materials for the removal and preconcentration of U(VI) ions from large volumes of aqueous solutions, for example, U(VI) polluted wastewater, if they can be synthesized in a cost-effective manner on a large scale in the future. PMID:22473651

  13. Upscaling of U(VI) Desorption and Transport Using Decimeter-Scale Tanks

    SciTech Connect

    Rodriguez, Derrick

    2015-01-28

    Experimental work was used to validate modeling studies and develop multicontinuum models of U(VI) transport in a contaminated aquifer. At the bench scale, it has been shown that U(VI) desorption is rate-limited and that rates are dependent on the bicarbonate concentration. Two decimeter-scale experiments were conducted in order to help establish rigorous upscaling approaches that could be tested at the tracer test and plume scales.

  14. Upscaling of U(VI) Desorption and Transport Using Decimeter-Scale Tanks

    SciTech Connect

    Rodriguez, Derrick

    2014-12-22

    Experimental work was used to validate modeling studies and develop multicontinuum models of U(VI) transport in a contaminated aquifer. At the bench scale, it has been shown that U(VI) desorption is rate-limited and that rates are dependent on the bicarbonate concentration. Two decimeter-scale experiments were conducted in order to help establish rigorous upscaling approaches that could be tested at the tracer test and plume scales.

  15. Periplasmic Cytochrome c3 of Desulfovibrio vulgaris Is Directly Involved in H2-Mediated Metal but Not Sulfate Reduction

    PubMed Central

    Elias, Dwayne A.; Suflita, Joseph M.; McInerney, Michael J.; Krumholz, Lee R.

    2004-01-01

    Kinetic parameters and the role of cytochrome c3 in sulfate, Fe(III), and U(VI) reduction were investigated in Desulfovibrio vulgaris Hildenborough. While sulfate reduction followed Michaelis-Menten kinetics (Km = 220 μM), loss of Fe(III) and U(VI) was first-order at all concentrations tested. Initial reduction rates of all electron acceptors were similar for cells grown with H2 and sulfate, while cultures grown using lactate and sulfate had similar rates of metal loss but lower sulfate reduction activities. The similarities in metal, but not sulfate, reduction with H2 and lactate suggest divergent pathways. Respiration assays and reduced minus oxidized spectra were carried out to determine c-type cytochrome involvement in electron acceptor reduction. c-type cytochrome oxidation was immediate with Fe(III) and U(VI) in the presence of H2, lactate, or pyruvate. Sulfidogenesis occurred with all three electron donors and effectively oxidized the c-type cytochrome in lactate- or pyruvate-reduced, but not H2-reduced cells. Correspondingly, electron acceptor competition assays with lactate or pyruvate as electron donors showed that Fe(III) inhibited U(VI) reduction, and U(VI) inhibited sulfate loss. However, sulfate reduction was slowed but not halted when H2 was the electron donor in the presence of Fe(III) or U(VI). U(VI) loss was still impeded by Fe(III) when H2 was used. Hence, we propose a modified pathway for the reduction of sulfate, Fe(III), and U(VI) which helps explain why these bacteria cannot grow using these metals. We further propose that cytochrome c3 is an electron carrier involved in lactate and pyruvate oxidation and is the reductase for alternate electron acceptors with higher redox potentials than sulfate. PMID:14711670

  16. Periplasmic Cytochrome c(3) of Desulfovibrio vulgaris Is Directly Involved in H2-Mediated Metal but Not Sulfate Reduction

    SciTech Connect

    Elias, Dwayne A.; Suflita, Joseph M.; McInerney, Michael J.; Krumholz, Lee R.

    2004-01-01

    Kinetic parameters and the role of cytochrome c3 in sulfate, Fe(III), and U(VI) reduction were investigated in Desulfovibrio vulgaris Hildenborough. While sulfate reduction followed Michaelis-Menten kinetics (Km 220 uM), loss of Fe(III) and U(VI) was first-order at all concentrations tested. Initial reduction rates of all electron acceptors were similar for cells grown with H2 and sulfate, while cultures grown using lactate and sulfate had similar rates of metal loss but lower sulfate reduction activities. The similarities in metal, but not sulfate, reduction with H2 and lactate suggest divergent pathways. Respiration assays and reduced minus oxidized spectra were carried out to determine c-type cytochrome involvement in electron acceptor reduction. c-type cytochrome oxidation was immediate with Fe(III) and U(VI) in the presence of H2, lactate, or pyruvate. Sulfidogenesis occurred with all three electron donors and effectively oxidized the c-type cytochrome in lactate or pyruvate-reduced, but not H2-reduced cells. Correspondingly, electron acceptor competition assays with lactate or pyruvate as electron donors showed that Fe(III) inhibited U(VI) reduction, and U(VI) inhibited sulfate loss. However, sulfate reduction was slowed but not halted when H2 was the electron donor in the presence of Fe(III) or U(VI). U(VI) loss was still impeded by Fe(III) when H2 was used. Hence, we propose a modified pathway for the reduction of sulfate, Fe(III), and U(VI) which helps explain why these bacteria cannot grow using these metals. We further propose that cytochrome c3 is an electron carrier involved in lactate and pyruvate oxidation and is the reductase for alternate electron acceptors with higher redox potentials than sulfate.

  17. Study of sorption-retarded U(VI) diffusion in Hanford silt/clay material.

    PubMed

    Bai, Jing; Liu, Chongxuan; Ball, William P

    2009-10-15

    A diffusion cell method was applied to measure the effective pore diffusion coefficient (Dp) for U(VI) under strictly controlled chemical conditions in a silt/clay sediment from the U.S. Department of Energy Hanford site, WA. "Inward-flux" diffusion studies were conducted in which [U(VI)] in both aqueous and solid phases was measured as a function of distance in the diffusion cell under conditions of constant concentration at the cell boundaries. A sequential extraction method was developed to measure sorbed contaminant U(VI) in the solid phase containing extractable background U(VI). The effect of sorption kinetics on U(VI) interparticle diffusion was evaluated by comparing sorption-retarded diffusion models with sorption described either as equilibrium or intraparticle diffusion-limited processes. Both experimental and modeling results indicated that (1) a single pore diffusion coefficient can simulate the diffusion of total aqueous U(VI), and (2) the local equilibrium assumption (LEA) is appropriate for modeling sorption-retarded diffusion under the given experimental conditions. Dp of 1.6-1.7 x 10(-6) cm2/s was estimated in aqueous solution at pH 8.0 and saturated with respect to calcite, as relevant to some subsurface regions of the Hanford site. PMID:19921882

  18. Aerosol properties in Titan's upper atmosphere from UVIS airglow observations

    NASA Astrophysics Data System (ADS)

    Lavvas, Panayotis; Koskinen, Tommi; Royer, Emilie; Rannou, Pascal; West, Robert A.

    2015-11-01

    Multiple Cassini observations reveal that the abundant aerosol particles in Titan's atmosphere are formed at high altitudes, particularly in the thermosphere [1]. They subsequently fall towards the lower atmosphere, and in their path, their size, shape, and population change in reflection to the variable atmospheric conditions.Although multiple observations can help us retrieve information for the aerosol properties in the lower atmosphere [2], we have limited knowledge for their properties in the altitude range between their formation region in the thermosphere, and the upper region of the main haze layer. UVIS is one of a few instruments that can probe this part of the atmosphere and allow for the retrieval of the aerosol properties.Here we analyze observations of atmospheric airglow that demonstrate the signature of N2 emissions and light scattering from aerosol particles, at different altitudes above 500 km [3]. We fit these observations with a combined model of N2 airglow [4] and atmospheric scattering by gases and aerosols that allows us to separate the pure scattering component and retrieve the aerosol size (distribution) and density. We particularly focus on observations from the T32 flyby that probed high southern latitudes in 2007 and combine good altitude resolution with high signal to noise ratio. We combine these with observations at different phase angles and observing geometry conditions (nadir vs. limb) in order to set better constraints on the aerosol properties.Our preliminary results demonstrate an increase in the average particle size with decreasing altitude in the atmosphere, from about 10 nm at 800 km to ~50 nm at 500 km, and an extinction profile at 185 nm wavelength, similar to the profile derive from UVIS occultation measurements at lower latitudes [5].[1] Lavvas et al. 2013. PNAS, doi/10.1073/pnas.1217059110, and references therein.[2] Tomasko et al. 2008, PSS, 56, p.669; Bellucci et al. 2009, Icarus 201, p.198[3] Ajello et al. 2008, GRL

  19. Uranium(VI) reduction and removal by high performing purified anaerobic cultures from mine soil.

    PubMed

    Chabalala, Simphiwe; Chirwa, Evans M N

    2010-01-01

    Biological uranium reduction was investigated using bacteria isolated from a uranium mine in Limpopo, South Africa. Background uranium concentration in soil from the mine was determined to be 168 mgkg(-1) much higher than the typical background uranium concentration in natural soils (0.30-11.7 mgkg(-1)). Therefore it was expected that the bacteria isolated from the site were resistant to U(VI) toxicity. Preliminary studies using a non-purified consortium from the mine soil showed that U(VI) [uranyl(VI) dioxide, UO(2)(2+)] was reduced and re-oxidized intermittently due to the coexistence of U(VI) reducers and U(VI) oxidisers in the soil. Results from U(VI) reduction by individual species showed that the purified cultures of Pantoea sp., Pseudomonas sp. and Enterobacter sp. reduced U(VI) to U(IV) [U(OH)(4)(aq)] under pH 5-6. Klebsiella sp. had to be eliminated from the cultures since these contributed to the remobilisation of uranium to the hexavelant form. The initial reduction rate determined at 50% point in 30 mgL(-1) batches was highest in Pseudomonas sp. at 30 mgL(-1), followed by Pantoea sp. Rapid reduction was observed in all cultures during the first 6h of incubation with equilibrium conditions obtained only after incubation for 24h. Complete U(VI) reduction was observed at concentrations as high as 200mgL(-1) and up to 88% removal after 24h in batches with an initial added U(VI) concentration of 400 mgL(-1). PMID:19883933

  20. Characterization of the holographic imaging grating of GOMOS UVIS spectrometer

    NASA Astrophysics Data System (ADS)

    Graeffe, Jussi; Saari, Heikki K.; Astola, Heikki; Rainio, Kari; Mazuray, Lorand; Pierot, Dominique; Craen, Pierre; Gruslin, Michel; Lecat, Jean-Herve; Bonnemason, Francis; Flamand, Jean; Thevenon, Alain

    1996-11-01

    A Finnish-French group has proposed an imaging spectrometer- based instrument for the ENVISAT Earth observation satellite of ESA, which yields a global mapping of the vertical profile of ozone and other related atmospheric gases. The GOMOS instrument works by measuring the UV-visible spectrum of a star that is occulting behind the Earth's atmosphere. The prime contractor of GOMOS is Matra Marconi Space France. The focal plane optics are designed and manufactured by Spacebel Instrumentation S.A. and the holographic grating by Jobin-Yvon. VTT Automation, Measurement Technology has participated in the GOMOS studies since 1989 and is presently responsible for the verification tests of the imaging quality and opto-mechanical interfaces of the holographic imaging grating of GOMOS. The UVIS spectrometer of GOMOS consists of a holographic, aberration corrected grating and of a CCD detector. The alignment of the holographic grating needs as an input very accurate knowledge of the mechanical interfaces. VTT Automation has designed, built and tested a characterization system for the holographic grating. This system combines the accurate optical imaging measurements with the absolute knowledge of the geometrical parameters at the accuracy of plus or minus 10 micrometers which makes the system unique. The developed system has been used for two breadboard gratings and the qualification model grating. The imaging quality results and their analysis together with alignment procedure utilizing of the knowledge of mechanical interfaces is described.

  1. The variability of Saturn's thermosphere from Cassini/UVIS occultations

    NASA Astrophysics Data System (ADS)

    Koskinen, Tommi; Sandel, Bill R.; Yelle, Roger V.

    2014-11-01

    We present temperature and density profiles that we retrieved from 17 stellar occultations obtained by the Cassini UVIS instrument. These results complement our previous analysis of 15 solar occultations by Saturn’s upper atmosphere. We find that the exospheric temperature ranges from 370 K to 550 K, in agreement with our previous results. The temperature appears to increase with latitude from the equator to the poles by 100 - 150 K, a trend that is also evident in the pressure level altitudes that we derive from the data. We also find evidence for the expansion of the thermosphere by about 500 km between 2005 and 2011 at low to mid northern latitudes. This expansion is probably caused by significant warming of the lower thermosphere that anti-correlates with solar activity. We also present a comparison of our results with the newly available reanalysis of the Voyager UVS results (Vervack and Moses, 2014), and discuss the results in the context of energy deposition and dynamics in Saturn’s upper atmosphere.

  2. Global Auroral Energy Deposition Derived from Polar UVI Images

    NASA Technical Reports Server (NTRS)

    Fillingim, M. O.; Brittnacher, M. J.; Elsen, R.; Parks, G. K.; Spann, J. F., Jr.; Germany, G. A.

    1997-01-01

    Quantitative measurement of the transfer of energy and momentum to the ionosphere from the solar wind is one of the main objectives of the ISTP program. Global measurement of auroral energy deposition derived from observations of the longer wavelength LBH band emissions made by the Ultraviolet Imager on the Polar spacecraft is one of the key elements in this satellite and ground-based instrument campaign. These "measurements" are inferred by combining information from consecutive images using different filters and have a time resolution on the average of three minutes and are made continuously over a 5 to 8 hour period during each 18 hour orbit of the Polar spacecraft. The energy deposition in the ionosphere from auroral electron precipitation augments are due to Joule heating associated with field aligned currents. Assuming conjugacy of energy deposition between the two hemispheres the total energy input to the ionosphere through electron precipitation can be determined at high time resolution. Previously, precipitating particle measurements along the tracks of low altitude satellites provided only local measurements and the global energy precipitation could be inferred through models but not directly measured. We use the UVI images for the entire month of January 1997 to estimate the global energy deposition at high time resolution. We also sort the energy deposition into sectors to find possible trends, for example, on the dayside and nightside, or the dawn and dusk sides.

  3. DEMONSTRATION BULLETIN: METAL-ENHANCED ABIOTIC DEGRADATION TECHNOLOGY - ENVIROMETAL TECHNOLOGIES, INC.

    EPA Science Inventory

    EnviroMetal Technologies, Inc. (ETI), of Guelph, ON, Canada, has developed the metal-enhanced abiotic degradation technology to treat halogenated volatile organic compounds (VOC) in water. A reactive, zero-valent, granular iron medium causes reductive dehalogenation of VOCs yield...

  4. Abiotic transformation of dinitrophenols under sulfate-reducing conditions

    SciTech Connect

    Gui, L.; Bouwer, E.J.

    1996-10-01

    Dinitrophenols are hazardous chemicals commonly detected in the environment. Little is known about their fate under sulfate-reducing conditions (SRC) where H{sub 2}S level is elevated due to microbial activity. Dinitrophenols are susceptible to both biotic and abiotic transformation under SRC. The objectives of this research are to investigate dinitrophenol transformation using hydrogen sulfide as a reductant, and to determine factors that affect the abiotic transformation kinetics under SRC. Dinitrophenols studied were 2,4-dinitrophenol (DNP), 4,6-dinitro-o-cresol (DNOC), and 2-sec-butyl-4,6-dinitrophenol (dinoseb). All three dinitrophenols were transformed through an ortho-nitroreduction pathway. In the presence of H{sub 2}S as the bulk reductant and a small amount of trace metals (10{sup -6} to 10{sup -7} M), pseudo-first-order kinetics was observed. Addition of yeast extract (YE, 0.02%) enhanced dinoseb transformation rate significantly. An increase in HS concentration resulted in Michaelis-Menton type kinetics for dinoseb in the presence of trace metals and YE, suggesting that trace metals and YE functioned as electron mediators.

  5. Acceleration of Field-Scale Bioreduction of U(VI) in a Shallow Alluvial Aquifer: Temporal and Spatial Evolution of Biogeochemistry

    SciTech Connect

    Long, Phil

    2005-04-20

    Uranium mill tailings sites provide access to uranium-contaminated groundwater at sites that are shallow and low hazard, making it possible to address the following scientific objectives: (1) Determine the dominant electron accepting processes at field sites with long-term metal/rad contamination; (2) Define the biogeochemical transformations that may be important to either natural or accelerated bioremediation under field conditions; and (3) Examine the potential for using biostimulation (electron donor addition) to accelerate reduction of U(VI) to U(IV) at the field scale.

  6. Macroscopic and Microscopic Investigation of U(VI) and Eu(III) Adsorption on Carbonaceous Nanofibers.

    PubMed

    Sun, Yubing; Wu, Zhen-Yu; Wang, Xiangxue; Ding, Congcong; Cheng, Wencai; Yu, Shu-Hong; Wang, Xiangke

    2016-04-19

    The adsorption mechanism of U(VI) and Eu(III) on carbonaceous nanofibers (CNFs) was investigated using batch, IR, XPS, XANES, and EXAFS techniques. The pH-dependent adsorption indicated that the adsorption of U(VI) on the CNFs was significantly higher than the adsorption of Eu(III) at pH < 7.0. The maximum adsorption capacity of the CNFs calculated from the Langmuir model at pH 4.5 and 298 K for U(VI) and Eu(III) were 125 and 91 mg/g, respectively. The CNFs displayed good recyclability and recoverability by regeneration experiments. Based on XPS and XANES analyses, the enrichment of U(VI) and Eu(III) was attributed to the abundant adsorption sites (e.g., -OH and -COOH groups) of the CNFs. IR analysis further demonstrated that -COOH groups were more responsible for U(VI) adsorption. In addition, the remarkable reducing agents of the R-CH2OH groups were responsible for the highly efficient adsorption of U(VI) on the CNFs. The adsorption mechanism of U(VI) on the CNFs at pH 4.5 was shifted from inner- to outer-sphere surface complexation with increasing initial concentration, whereas the surface (co)precipitate (i.e., schoepite) was observed at pH 7.0 by EXAFS spectra. The findings presented herein play an important role in the removal of radionuclides on inexpensive and available carbon-based nanoparticles in environmental cleanup applications. PMID:26998856

  7. ABIOTIC REDUCTION AND DETOXIFICATION OF CHROMATE PRESENT IN SOILS

    EPA Science Inventory

    Theoretical and experimental research has supported the assertion that Cr(III) species are the most stable, immobile, and nontoxic forms of chromium and that they may form rapidly when adequate reducing agents are introduced in an oxidized soil environment. The objective of this ...

  8. Impact of phosphate on U(VI) immobilization in the presence of goethite

    NASA Astrophysics Data System (ADS)

    Singh, Abhas; Ulrich, Kai-Uwe; Giammar, Daniel E.

    2010-11-01

    Past mining, processing, and waste disposal activities have left a legacy of uranium-contaminated soil and groundwater. Phosphate addition to subsurface environments can potentially immobilize U(VI) in-situ through interactions with uranium at mineral-water interfaces. Phosphate can induce the precipitation of low solubility U(VI)-phosphates, and it may enhance or inhibit U(VI) adsorption to iron(III) (oxy)hydroxide surfaces. Such surfaces may also facilitate the heterogeneous nucleation of U(VI)-phosphate precipitates. The interactions among phosphate, U(VI), and goethite (α-FeOOH) were investigated in a year-long series of experiments at pH 4. Reaction time, total U(VI), total phosphate, and the presence and absence of goethite were systematically varied to determine their effects on the extent of U(VI) uptake and the dominant uranium immobilization mechanism. Dissolved U(VI) and phosphate concentrations were interpreted within a reaction-based modeling framework that included dissolution-precipitation reactions and a surface complexation model to account for adsorption. The best available thermodynamic data and past surface complexation models were integrated to form an internally consistent framework. Additional evidence for the uptake mechanisms was obtained using scanning electron microscopy and X-ray diffraction. The formation and crystal growth of a U(VI)-phosphate phase, most likely chernikovite, UO 2HPO 4·4H 2O (s), occurred rapidly for initially supersaturated suspensions both with and without goethite. Nucleation appears to occur homogeneously for almost all conditions, even in the presence of goethite, but heterogeneous nucleation was likely at one condition. The U(VI)-phosphate solids exhibited metastability depending on the TOTU:TOTP ratio. At the highest phosphate concentration studied (130 μM), U(VI) uptake was enhanced due to the likely formation of a ternary surface complex for low (˜1 μM) to intermediate (˜10 μM) TOTU concentrations and

  9. U(VI) Adsorption on Aquifer Sediments at the Hanford Site

    SciTech Connect

    Um, Wooyong; Serne, R. Jeffrey; Brown, Christopher F.; Last, George V.

    2007-08-15

    Aquifer core samples collected in three new groundwater wells in the 200-UP-1 operable unit at the Hanford Site were characterized and showed typical Ringold Formation Unit E dominated by gravel and sand. High iron-oxide content in iron (Fe) oxide/clay coatings caused the highest U(VI) adsorption as quantified by Kd values, indicating these hydrous iron oxides are the key solid adsorbent in the 200-UP-1 sediments that affect U(VI) fate and mobility. In batch adsorption tests with varying total U(VI) concentrations in spiked groundwater, a linear isotherm up to 1 ppm of total U(VI) concentration was observed. However, U(VI) adsorption decreased with increasing concentrations of dissolved carbonate, because strong anionic aqueous uranium-carbonate complexes formed at elevated pH and high carbonate conditions. A small amount of uranium desorption hysteresis was observed in a flow-through column experiment, suggesting that desorption Kd values for aged uranium-contaminated sediments at the Hanford Site can be larger than Kd values determined in short-term laboratory experiments and slow uranium release into the groundwater is expected.

  10. Bioreduction of U(VI) and stability of immobilized uranium under suboxic conditions.

    PubMed

    Hu, Nan; Ding, De-xin; Li, Shi-mi; Tan, Xiang; Li, Guang-yue; Wang, Yong-dong; Xu, Fei

    2016-04-01

    In order to study the bioreduction of U(VI) and stability of immobilized uranium under suboxic conditions, microcosm were amended with ethanol, lactate and glucose, and incubated under suboxic conditions. During the incubation, total dissolved U in amended microcosms decreased from 0.95 mg/L to 0.03 mg/L. Pyrosequencing results showed that, the proportion of anaerobic microorganisms capable of reducing U(VI) under suboxic conditions was small compared with that under anoxic conditions; the proportion of aerobic and facultative anaerobic microorganisms capable of consuming the dissolved oxygen was large; and some of the facultative anaerobic microorganisms could reduce U(VI). These results indicated that different microbial communities were responsible for the bioreduction of U(VI) under suboxic and anoxic conditions. After the electron donors were exhausted, total dissolved U in the amended microcosms remained unchanged, while the U(VI)/U(IV) ratio in the solid phase of sediments increased obviously. This implied that the performance of bioreduction of the U(VI) can be maintained under suboxic condition. PMID:26854555

  11. A representative retinoid X receptor antagonist UVI3003 induced teratogenesis in zebrafish embryos.

    PubMed

    Zheng, Liang; Xu, Ting; Li, Daoji; Zhou, Junliang

    2015-03-01

    Retinoid X receptor (RXR) interfering activity has been detected in different water resources. To study RXR disruptor-induced toxicological effects on vertebrates, embryos of zebrafish (Danio rerio) were exposed to a representative RXR antagonist UVI3003. Results showed that the teratogenic index (LC50 /EC50 ) of UVI3003 was as high as 5.4. UVI3003 induced multiple malformations of embryos, including deformed fins, reduced brains, small jaws, bent tails and edema in hearts, the degree of which became more severe with increasing exposure concentration. Although no significant difference was observed in the hatching rates between the exposure group and control, the whole body length was significantly reduced by 6.5% and 8.9% when exposed to 200 and 300 µg l(-1) of UVI3003, respectively. The heart rate also significantly decreased by 8.8-50.2% during exposure. Further experiments revealed that the pharyngula stage was the most sensitive development phase in terms of embryo response to UVI3003. The results demonstrated severe teratogenicity of RXR antagonist in zebrafish embryos and provided important data for ecotoxicological evaluation of RXR antagonists. PMID:25186191

  12. U(VI) Sequestration in Hydroxyapatite Produced by Microbial Glycerol 3-Phosphate Metabolism▿ †

    PubMed Central

    Shelobolina, Evgenya S.; Konishi, Hiromi; Xu, Huifang; Roden, Eric E.

    2009-01-01

    Previous studies have demonstrated the potential for removal of U(VI) from solution via precipitation of U(VI)-bearing calcium-phosphate (Ca-P) minerals coupled to microbial hydrolysis of glycerol phosphate compounds. We evaluated this process in circumneutral-pH groundwater from Area 2 of the U.S. Department of Energy Field Research Center at Oak Ridge National Laboratory. Area 2 groundwater contains high concentrations of dissolved calcium (ca. 4 mM), and thus, release of phosphate during glycerol phosphate metabolism has the potential to create conditions favorable for U(VI) sequestration in Ca-P minerals. Microbial enumeration and isolation studies verified the presence of aerobic and nitrate-reducing glycerol 3-phosphate (G3P)-metabolizing microorganisms in Area 2 sediments. Coprecipitation of U(VI) with Ca-P minerals coupled to microbial G3P hydrolysis was demonstrated in artificial groundwater under aerobic and nitrate-reducing conditions. Transmission electron microscopy analysis and mineral-washing experiments demonstrated that U(VI) was incorporated into the structure of the insoluble Ca-P mineral hydroxyapatite [Ca5(PO4)3OH]. Our results support the idea that U(VI) can be effectively removed from solution in contaminated aquifers through stimulation of microbial organophosphate metabolism. PMID:19633115

  13. High performance of phosphonate-functionalized mesoporous silica for U(VI) sorption from aqueous solution.

    PubMed

    Yuan, Li-Yong; Liu, Ya-Lan; Shi, Wei-Qun; Lv, Yu-Long; Lan, Jian-Hui; Zhao, Yu-Liang; Chai, Zhi-Fang

    2011-07-28

    The renaissance of nuclear energy promotes increasing basic research on the separation and enrichment of nuclear fuel associated radionuclides. Herein, we report the first study for developing mesoporous silica functionalized with phosphonate (NP10) as a sorbent for U(VI) sorption from aqueous solution. The mesoporous silica was synthesized by co-condensation of diethylphosphatoethyltriethoxysilane (DPTS) and tetraethoxysilane (TEOS), using cationic surfactant cetyltrimethylammonium bromide (CTAB) as the template. The synthesized silica nanoparticles were observed to possess a mesoporous structure with a uniform pore diameter of 2.7 nm, and to have good stability and high efficiency for U(VI) sorption from aqueous solution. A maximum sorption capacity of 303 mg g(-1) and fast equilibrium time of 30 min were achieved under near neutral conditions at room temperature. The adsorbed U(VI) can be easily desorbed by using 0.1 mol L(-1) HNO(3), and the reclaimed mesoporous silica can be reused with no decrease of sorption capacity. In addition, the preconcentration of U(VI) from a 100 mL aqueous solution using the functionalized mesoporous silica was also studied. The preconcentration factor was found to be as high as 100, suggesting the vast opportunities of this kind of mesoporous silica for the solid-phase extraction and enrichment of U(VI). PMID:21681327

  14. Pathways for abiotic organic synthesis at submarine hydrothermal fields

    PubMed Central

    McDermott, Jill M.; Seewald, Jeffrey S.; German, Christopher R.; Sylva, Sean P.

    2015-01-01

    Arguments for an abiotic origin of low-molecular weight organic compounds in deep-sea hot springs are compelling owing to implications for the sustenance of deep biosphere microbial communities and their potential role in the origin of life. Theory predicts that warm H2-rich fluids, like those emanating from serpentinizing hydrothermal systems, create a favorable thermodynamic drive for the abiotic generation of organic compounds from inorganic precursors. Here, we constrain two distinct reaction pathways for abiotic organic synthesis in the natural environment at the Von Damm hydrothermal field and delineate spatially where inorganic carbon is converted into bioavailable reduced carbon. We reveal that carbon transformation reactions in a single system can progress over hours, days, and up to thousands of years. Previous studies have suggested that CH4 and higher hydrocarbons in ultramafic hydrothermal systems were dependent on H2 generation during active serpentinization. Rather, our results indicate that CH4 found in vent fluids is formed in H2-rich fluid inclusions, and higher n-alkanes may likely be derived from the same source. This finding implies that, in contrast with current paradigms, these compounds may form independently of actively circulating serpentinizing fluids in ultramafic-influenced systems. Conversely, widespread production of formate by ΣCO2 reduction at Von Damm occurs rapidly during shallow subsurface mixing of the same fluids, which may support anaerobic methanogenesis. Our finding of abiogenic formate in deep-sea hot springs has significant implications for microbial life strategies in the present-day deep biosphere as well as early life on Earth and beyond. PMID:26056279

  15. Pathways for abiotic organic synthesis at submarine hydrothermal fields.

    PubMed

    McDermott, Jill M; Seewald, Jeffrey S; German, Christopher R; Sylva, Sean P

    2015-06-23

    Arguments for an abiotic origin of low-molecular weight organic compounds in deep-sea hot springs are compelling owing to implications for the sustenance of deep biosphere microbial communities and their potential role in the origin of life. Theory predicts that warm H2-rich fluids, like those emanating from serpentinizing hydrothermal systems, create a favorable thermodynamic drive for the abiotic generation of organic compounds from inorganic precursors. Here, we constrain two distinct reaction pathways for abiotic organic synthesis in the natural environment at the Von Damm hydrothermal field and delineate spatially where inorganic carbon is converted into bioavailable reduced carbon. We reveal that carbon transformation reactions in a single system can progress over hours, days, and up to thousands of years. Previous studies have suggested that CH4 and higher hydrocarbons in ultramafic hydrothermal systems were dependent on H2 generation during active serpentinization. Rather, our results indicate that CH4 found in vent fluids is formed in H2-rich fluid inclusions, and higher n-alkanes may likely be derived from the same source. This finding implies that, in contrast with current paradigms, these compounds may form independently of actively circulating serpentinizing fluids in ultramafic-influenced systems. Conversely, widespread production of formate by ΣCO2 reduction at Von Damm occurs rapidly during shallow subsurface mixing of the same fluids, which may support anaerobic methanogenesis. Our finding of abiogenic formate in deep-sea hot springs has significant implications for microbial life strategies in the present-day deep biosphere as well as early life on Earth and beyond. PMID:26056279

  16. Determining Individual Mineral Contributions To U(VI) Adsorption In A Contaminated Aquifer Sediment: A Fluorescence Spectroscopy Study

    SciTech Connect

    Wang, Zheming; Zachara, John M.; Boily, Jean F.; Xia, Yuanxian; Resch, Charles T.; Moore, Dean A.; Liu, Chongxuan

    2011-05-15

    The adsorption and speciation of U(VI) was investigated on contaminated, fine grained sediment materials from the Hanford 300 area (SPP1 GWF) in simulated groundwater using cryogenic laser-induced U(VI) fluorescence spectroscopy combined with chemometric analysis. A series of reference minerals (montmorillonite, illite, Michigan chlorite, North Carolina chlorite, California clinochlore, quartz and synthetic 6-line ferrihydrite) was used for comparison that represents the mineralogical constituents of SPP1 GWF. Surface area-normalized Kd values were measured at U(VI) concentrations of 5x10-7 mol L-1 and 5x10-6 mol L-1, respectively, that displayed the following affinity series: 6-line-ferrihydrite > North Carolina chlorite ≈ California clinochlore > Michigan chlorite ≈ quartz > montmorillonite ≈ illite ≈ SPP1 GWF. Both time-resolved spectra and asynchronous two-dimensional (2D) correlation analysis of SPP1 GWF at different delay times indicated that two major adsorbed U(VI) species were present in the sediment that resembled U(VI) adsorbed on quartz and phyllosilicates. Simulations of the normalized fluorescence spectra confirmed that the speciation of SPP1 GWF was best represented by a linear combination of U(VI) adsorbed on quartz (90%) and phyllosilicates (10%). However, the fluorescence quantum yield for U(VI) adsorbed on phyllosilicates was lower than quartz and, consequently, its fractional contribution to speciation may be underestimated. Spectral comparison with literature data suggested that U(VI) exists primarily as inner-sphere U(VI) complexes with surface silanol groups on quartz while U(VI) on phyllosilicates was consistent with the formation of surface U(VI) tricarbonate complexes.

  17. MOF catalysis of Fe(II)-to-Fe(III) reaction for an ultrafast and one-step generation of the Fe2O3@MOF composite and uranium(vi) reduction by iron(ii) under ambient conditions.

    PubMed

    Xiong, Yang Yang; Li, Jian Qiang; Yan, Chang Sheng; Gao, Heng Ya; Zhou, Jian Ping; Gong, Le Le; Luo, Ming Biao; Zhang, Le; Meng, Pan Pan; Luo, Feng

    2016-08-01

    Herein, we demonstrate that Zn-MOF-74 enables the ultrafast and one-step generation of the Fe2O3@MOF composite once Zn-MOF-74 contacts with FeSO4 solution. This unique reaction can be further applied in catalysis of U(vi) reduction by Fe(ii) under ambient conditions. The results provide a highly renovated strategy for U(vi) reduction by Fe(ii) just under ambient conditions, which completely subvert all established methods about U(vi) reduction by Fe(ii) in which O2- and CO2-free conditions are absolutely required. PMID:27380820

  18. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants.

    PubMed

    Khan, M Iqbal R; Fatma, Mehar; Per, Tasir S; Anjum, Naser A; Khan, Nafees A

    2015-01-01

    Abiotic stresses (such as metals/metalloids, salinity, ozone, UV-B radiation, extreme temperatures, and drought) are among the most challenging threats to agricultural system and economic yield of crop plants. These stresses (in isolation and/or combination) induce numerous adverse effects in plants, impair biochemical/physiological and molecular processes, and eventually cause severe reductions in plant growth, development and overall productivity. Phytohormones have been recognized as a strong tool for sustainably alleviating adverse effects of abiotic stresses in crop plants. In particular, the significance of salicylic acid (SA) has been increasingly recognized in improved plant abiotic stress-tolerance via SA-mediated control of major plant-metabolic processes. However, the basic biochemical/physiological and molecular mechanisms that potentially underpin SA-induced plant-tolerance to major abiotic stresses remain least discussed. Based on recent reports, this paper: (a) overviews historical background and biosynthesis of SA under both optimal and stressful environments in plants; (b) critically appraises the role of SA in plants exposed to major abiotic stresses; PMID:26175738

  19. ABIOTIC ORGANIC REACTIONS AT MINERAL SURFACES

    EPA Science Inventory

    Abiotic organic reactions, such as hydrolysis, elimination, substitution, redox, and polymerization reactions, can be influenced by surfaces of clay and primary minerals, and of metal oxides. This influence is due to adsorption of the reactants to surface Lewis and Bronsted sites...

  20. Abiotic Bromination of Soil Organic Matter.

    PubMed

    Leri, Alessandra C; Ravel, Bruce

    2015-11-17

    Biogeochemical transformations of plant-derived soil organic matter (SOM) involve complex abiotic and microbially mediated reactions. One such reaction is halogenation, which occurs naturally in the soil environment and has been associated with enzymatic activity of decomposer organisms. Building on a recent finding that naturally produced organobromine is ubiquitous in SOM, we hypothesized that inorganic bromide could be subject to abiotic oxidations resulting in bromination of SOM. Through lab-based degradation treatments of plant material and soil humus, we have shown that abiotic bromination of particulate organic matter occurs in the presence of a range of inorganic oxidants, including hydrogen peroxide and assorted forms of ferric iron, producing both aliphatic and aromatic forms of organobromine. Bromination of oak and pine litter is limited primarily by bromide concentration. Fresh plant material is more susceptible to bromination than decayed litter and soil humus, due to a labile pool of mainly aliphatic compounds that break down during early stages of SOM formation. As the first evidence of abiotic bromination of particulate SOM, this study identifies a mechanistic source of the natural organobromine in humic substances and the soil organic horizon. Formation of organobromine through oxidative treatments of plant material also provides insights into the relative stability of aromatic and aliphatic components of SOM. PMID:26468620

  1. Diffusion of U(VI) in Opalinus Clay: Influence of temperature and humic acid

    NASA Astrophysics Data System (ADS)

    Joseph, C.; Van Loon, L. R.; Jakob, A.; Steudtner, R.; Schmeide, K.; Sachs, S.; Bernhard, G.

    2013-05-01

    The diffusion of U(VI) (c0 = 1 × 10-6 mol/L) in compacted Opalinus Clay from the Mont Terri underground laboratory, Switzerland, was studied in the absence and presence of humic acid (10 mg/L) at two different temperatures (25 °C, 60 °C) under anaerobic conditions. As background electrolyte synthetic Opalinus Clay pore water (pH 7.6, I = 0.36 mol/L) was used. The diffusion-accessible porosity, ɛ, was determined for each Opalinus Clay bore core sample by through-diffusion experiments with tritiated water (HTO) before the U(VI) diffusion experiments were carried out. The values for the effective diffusion and distribution coefficients De and Kd obtained for U(VI) and humic acid at 25 °C as well as at 60 °C showed that humic acid has no significant influence on the U(VI) diffusion. The diffusion profiles of humic acid in Opalinus Clay at 25 and 60 °C indicate the contributions of two different humic acid particle size fractions (<1 kDa and 10-100 kDa). The small-sized humic acid fraction diffused through the whole Opalinus Clay samples at both temperatures within the 3 month duration of the U(VI) diffusion experiments. At 60 °C, diffusion profiles of two different U(VI) species were observed. In a separate experiment the U(VI) speciation in the source reservoir solution at 60 °C was analyzed by laser-induced fluorescence spectroscopy, photon correlation spectroscopy and scanning electron microscopy with an energy dispersive X-ray detector. The two diffusion profiles could be attributed to an unknown colloidal and a known aquatic U(VI) species (Ca2UO2(CO3)3(aq)). The diffusion results showed that the interaction of U(VI) and of the large-sized humic acid colloid fraction with the clay is stronger at 60 °C. An increase of Kd from 0.025 ± 0.003 m3/kg at 25 °C to 0.25 ± 0.05 m3/kg for U(VI)colloidal at 60 °C was determined. In addition, the value for De of U(VI) increased with increasing temperature. Using the De values at 25 and 60 °C, a preliminary

  2. A Shape-Based Technique for Aurora Oval Segmentation From UVI Images

    NASA Astrophysics Data System (ADS)

    Cao, C.; Newman, T. S.; Germany, G.

    2005-12-01

    A new shape-based method for segmenting the auroral oval from NASA POLAR Ultraviolet Imager (UVI) data is presented. The POLAR mission has produced millions of UVI images, making automated auroral segmentation a beneficial and critical early processing step in analysis of high-latitude ionosphere-thermopshere-magnetosphere (ITM) coupling using auroral images. Past approaches to automatically or semi-automatically segment the auroral oval from UVI imagery include various types of thresholding, histogram-based K-means, and neural network methods. The existing approaches are generally not robust due to the high noise level, the low level of intensity contrast, and the day glow present in some UVI images. A common shortcoming of existing methods is incomplete detection of the auroral oval for some images. In some cases, existing methods can even fail to detect any part of the oval. The method introduced here is more robust to the challenges of the UVI imagery. Recently, we have demonstrated that the auroral oval's shape in UVI images is well-modelled as an elliptic arc. The segmentation method introduced here exploits this finding; we allow shape knowledge to guide auroral processing. The method involves use of a linear least-squares based shape parameter binning approach that operates on pixels determined from an image-specific thresholding step. The binning approach utilizes a modified randomized Hough Transform scheme that is also fast (faster than conventional binning schemes). The approach treats the inner and outer auroral oval boundaries separately and also incorporates heuristics that allow robust differentiation of appropriate inner and outer boundaries. The new method has been tested on more than 1000 aurora images. Results indicate that the method is highly reliable, even in the presence of high image noise, low contrast, and moderate levels of day glow.

  3. WFC3 SMOV Proposal 11450: The Photometric Performance and Calibration of WFC3/UVIS

    NASA Astrophysics Data System (ADS)

    Kalirai, J. S.; MacKenty, J.; Rajan, A.; Baggett, S.; Bohlin, R.; Brown, T.; Deustua, S.; Kimble, R. A.; Riess, A.; Sabbi, E.

    2009-11-01

    We present the photometric calibration of the UVIS camera on WFC3. Following successful instal- lation during Servicing Mission 4, we began a primary calibration program to measure the photo- metric zero points of 37 high priority filters on the UVIS1 CCD. Additional secondary observations obtained as a part of the UVIS Contamination Monitor Program with both UVIS1 and UVIS2 are also analyzed (CAL11426 - Baggett et al. 2009). All measurements are made from a set of high signal-to-noise imaging observations of the white dwarf standards GD 153 (primary program) and GRW+70d5824 (secondary program). We find that the total system throughput of both CCDs is significantly better than expected from the Thermal Vacuum 3 (TV3) testing campaign, with effi- ciency gains of ~10% at the blue and red ends of the spectral coverage, and ~20% near the central wavelength, 5500 Å. Repeat visits in a subset of filters separated by approximately 1 day, 1 week, and 1 month indicate photometric stability in the measured counts to better than 0.5%. We update the Exposure Time Calculator (ETC) with these preliminary results by fitting a smooth curve (2nd order polynomial) to the ratios of the efficiency gains over previous predictions, in the medium and wide band filters. This polynomial is interpolated at a fine wavelength grid and multiplied into the SYNPHOT throughput routines. We also provide photometric zero points for the UVIS camera in three photometric systems, STMAG, ABMAG, and VEGAMAG. A much more detailed Cycle 17 calibration plan, including observations targeting multiple primary standards, and with all filters on both CCDs, begins in October 2009.

  4. Development of a biomarker for Geobacter activity and strain composition: Proteogenomic analysis of the citrate synthase protein during bioremediation of U(VI)

    SciTech Connect

    Wilkins, M.J.; Callister, S.J.; Miletto, M.; Williams, K.H.; Nicora, C.D.; Lovley, D.R.; Long, P.E.; Lipton, M.S.

    2010-02-15

    Monitoring the activity of target microorganisms during stimulated bioremediation is a key problem for the development of effective remediation strategies. At the US Department of Energy's Integrated Field Research Challenge (IFRC) site in Rifle, CO, the stimulation of Geobacter growth and activity via subsurface acetate addition leads to precipitation of U(VI) from groundwater as U(IV). Citrate synthase (gltA) is a key enzyme in Geobacter central metabolism that controls flux into the TCA cycle. Here, we utilize shotgun proteomic methods to demonstrate that the measurement of gltA peptides can be used to track Geobacter activity and strain evolution during in situ biostimulation. Abundances of conserved gltA peptides tracked Fe(III) reduction and changes in U(VI) concentrations during biostimulation, whereas changing patterns of unique peptide abundances between samples suggested sample-specific strain shifts within the Geobacter population. Abundances of unique peptides indicated potential differences at the strain level between Fe(III)-reducing populations stimulated during in situ biostimulation experiments conducted a year apart at the Rifle IFRC. These results offer a novel technique for the rapid screening of large numbers of proteomic samples for Geobacter species and will aid monitoring of subsurface bioremediation efforts that rely on metal reduction for desired outcomes.

  5. Development of a biomarker for Geobacter activity and strain composition; Proteogenomic analysis of the citrate synthase protein during bioremediation of U(VI).

    SciTech Connect

    Wilkins, Michael J.; Callister, Stephen J.; Miletto, Marzia; Williams, Kenneth H.; Nicora, Carrie D.; Lovely, Derek R.; Long, Philip E.; Lipton, Mary S.

    2011-01-01

    Monitoring the activity of target microorganisms during stimulated bioremediation is a key problem for the development of effective remediation strategies. At the U.S. Department of Energy’s Integrated Field Research Challenge (IFRC) site in Rifle, CO, the stimulation of Geobacter growth and activity via subsurface acetate addition leads to precipitation of U(VI) from groundwater as U(IV). Citrate synthase (gltA) is a key enzyme in Geobacter central metabolism that controls flux into the TCA cycle. Here, we utilize shotgun proteomic methods to demonstrate that the measurement of gltA peptides can be used to track Geobacter activity and strain evolution during in situ biostimulation. Abundances of conserved gltA peptides tracked Fe(III) reduction and changes in U(VI) concentrations during biostimulation, whereas changing patterns of unique peptide abundances between samples suggested sample-specific strain shifts within the Geobacter population. Abundances of unique peptides indicated potential differences at the strain level between Fe(III)-reducing populations stimulated during in situ biostimulation experiments conducted a year apart at the Rifle IFRC. These results offer a novel technique for the rapid screening of large numbers of proteomic samples for Geobacter species and will aid monitoring of subsurface bioremediation efforts that rely on metal reduction for desired outcomes.

  6. Chemical Reactivity Probes for Assessing Abiotic Natural Attenuation by Reducing Iron Minerals.

    PubMed

    Fan, Dimin; Bradley, Miranda J; Hinkle, Adrian W; Johnson, Richard L; Tratnyek, Paul G

    2016-02-16

    Increasing recognition that abiotic natural attenuation (NA) of chlorinated solvents can be important has created demand for improved methods to characterize the redox properties of the aquifer materials that are responsible for abiotic NA. This study explores one promising approach: using chemical reactivity probes (CRPs) to characterize the thermodynamic and kinetic aspects of contaminant reduction by reducing iron minerals. Assays of thermodynamic CRPs were developed to determine the reduction potentials (ECRP) of suspended minerals by spectrophotometric determination of equilibrium CRP speciation and calculations using the Nernst equation. ECRP varied as expected with mineral type, mineral loading, and Fe(II) concentration. Comparison of ECRP with reduction potentials measured potentiometrically using a Pt electrode (EPt) showed that ECRP was 100-150 mV more negative than EPt. When EPt was measured with small additions of CRPs, the systematic difference between EPt and ECRP was eliminated, suggesting that these CRPs are effective mediators of electron transfer between mineral and electrode surfaces. Model contaminants (4-chloronitrobenzene, 2-chloroacetophenone, and carbon tetrachloride) were used as kinetic CRPs. The reduction rate constants of kinetic CRPs correlated well with the ECRP for mineral suspensions. Using the rate constants compiled from literature for contaminants and relative mineral reduction potentials based on ECRP measurements, qualitatively consistent trends were obtained, suggesting that CRP-based assays may be useful for estimating abiotic NA rates of contaminants in groundwater. PMID:26814150

  7. Using High Performance Computing to Understand Roles of Labile and Nonlabile U(VI) on Hanford 300 Area Plume Longevity

    SciTech Connect

    Lichtner, Peter C.; Hammond, Glenn E.

    2012-07-28

    Evolution of a hexavalent uranium [U(VI)] plume at the Hanford 300 Area bordering the Columbia River is investigated to evaluate the roles of labile and nonlabile forms of U(VI) on the longevity of the plume. A high fidelity, three-dimensional, field-scale, reactive flow and transport model is used to represent the system. Richards equation coupled to multicomponent reactive transport equations are solved for times up to 100 years taking into account rapid fluctuations in the Columbia River stage resulting in pulse releases of U(VI) into the river. The peta-scale computer code PFLOTRAN developed under a DOE SciDAC-2 project is employed in the simulations and executed on ORNL's Cray XT5 supercomputer Jaguar. Labile U(VI) is represented in the model through surface complexation reactions and its nonlabile form through dissolution of metatorbernite used as a surrogate mineral. Initial conditions are constructed corresponding to the U(VI) plume already in place to avoid uncertainties associated with the lack of historical data for the waste stream. The cumulative U(VI) flux into the river is compared for cases of equilibrium and multirate sorption models and for no sorption. The sensitivity of the U(VI) flux into the river on the initial plume configuration is investigated. The presence of nonlabile U(VI) was found to be essential in explaining the longevity of the U(VI) plume and the prolonged high U(VI) concentrations at the site exceeding the EPA MCL for uranium.

  8. Reactive oxygen species in abiotic stress signaling.

    PubMed

    Jaspers, Pinja; Kangasjärvi, Jaakko

    2010-04-01

    Reactive oxygen species (ROS) are known to accumulate during abiotic stresses, and different cellular compartments respond to them by distinctive profiles of ROS formation. In contrast to earlier views, it is becoming increasingly evident that even during stress, ROS production is not necessarily a symptom of cellular dysfunction but might represent a necessary signal in adjusting the cellular machinery to the altered conditions. ROS can modulate many signal transduction pathways, such as mitogen-activated protein kinase cascades, and ultimately influence the activity of transcription factors. However, the picture of ROS-mediated signaling is still fragmentary and the issues of ROS perception as well as the signaling specificity remain open. Here, we review some of the recent advances in plant abiotic stress signaling with emphasis on processes known to be affected heavily by ROS. PMID:20028478

  9. Abiotic immobilization/detoxification of recalcitrant organics

    SciTech Connect

    Whelan, G. ); Sims, R.C. )

    1990-11-01

    In contrast to many remedial techniques that simply transfer hazardous wastes from one part of the environment to another (e.g., off-site landfilling), in situ restoration may offer a safe and cost-effective solution through transformation (to less hazardous products) or destruction of recalcitrant organics. Currently, the US Environmental Protection Agency and US Department of Energy are encouraging research that addresses the development of innovative alternatives for hazardous-waste control. One such alternative is biotic and abiotic immobilization and detoxification of polynuclear aromatic hydrocarbons (PNAs) as associated with the soil humification process. This paper discusses (1) the possibility of using abiotic catalysis (with manganese dioxide) to polymerize organic substances; (2) aspects associated with the thermodynamics and kinetics of the process, and (3) a simple model upon which analyses may be based. 36 refs., 7 figs., 3 tabs.

  10. HST/WFC3 UVIS Detector: Dark, Charge Transfer Efficiency, and Point Spread Function Calibrations

    NASA Astrophysics Data System (ADS)

    Bourque, Matthew; Anderson, Jay; Baggett, Sylvia; Bowers, Ariel; MacKenty, John W.; Sahu, Kailash C.

    2015-08-01

    Wide Field Camera 3 (WFC3) is a fourth-generation imaging instrument on board the Hubble Space Telescope (HST) that was installed during Servicing Mission 4 in May 2009. As one of two channels available on WFC3, the UVIS detector is comprised of two e2v CCDs and is sensitive to ultraviolet and visible light. Here we provide updates to the characterization and monitoring of the UVIS performance and stability. We present the long-term growth of the dark current and the hot pixel population, as well as the evolution of Charge Transfer Efficiency (CTE). We also discuss updates to the UVIS dark calibration products, which are used to correct for dark current in science images. We examine the impacts of CTE losses and outline some techniques to mitigate CTE effects during and after observation by use of post-flash and pixel-based CTE corrections. Finally, we summarize an investigation of WFC3/UVIS Point Spread Functions (PSFs) and their potential use for characterizing the focus of the instrument.

  11. Compositional Variations from UVIS Observations of Titan's Dayglow and Comparisons with in situ INMS Observations

    NASA Astrophysics Data System (ADS)

    Stevens, M. H.; Evans, J. S.; Ajello, J. M.; Bradley, E. T.; Meier, R. R.; Westlake, J. H.; Waite, J. H., Jr.

    2012-04-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed Titan’s dayside limb on multiple occasions between 2007 and 2011. The airglow observations reveal the same variety of EUV (600-1150Å) and FUV (1150-1900Å) emissions arising from photoelectron excitation and photofragmentation of molecular nitrogen (N2) on Earth. Through spectral analysis we extract radiance profiles for each set of UVIS limb emissions in the EUV and FUV, which are attenuated by methane (CH4). Using a terrestrial airglow model adapted to Titan, we derive the N2 and CH4 density profiles using the prescribed solar irradiance for the relevant Cassini orbit and compare the calculated radiance profiles directly with observations. We find that the UVIS airglow observations can be explained by solar driven processes, although fluctuations in the observed airglow between flybys suggest compositional changes in the background atmosphere. We compare the compositional variations inferred from the UVIS airglow to in situ observations by the Cassini Ion and Neutral Mass Spectrometer (INMS) from the same Titan orbit and discuss how the variations may be related to Titan’s varying plasma environment.

  12. Uranium(VI) reduction by nanoscale zero-valent iron in anoxic batch systems: The role of Fe(II) and Fe(III)

    SciTech Connect

    Yan, Sen; Chen, Yongheng; Xiang, Wu; Bao, Zhengyu; Liu, Chongxuan; Deng, Baolin

    2014-12-01

    The role of Fe(II) and Fe(III) on U(VI) reduction by nanoscale zerovalent iron (nanoFe0) was investigated using two iron chelators 1,10-phenanthroline and triethanolamine (TEA) under a CO2-free anoxic condition. The results showed U(VI) reduction was strongly inhibited by 1,10-phenanthroline and TEA in a pH range from 6.92 to 9.03. For instance, at pH 6.92 the observed U(VI) reduction rates decreased by 80.7% and 82.3% in the presence of 1,10-phenanthroline and TEA, respectively. The inhibition was attributed to the formation of stable complexes between 1,10-phenanthroline and Fe(II) or TEA and Fe(III). In the absence of iron chelators, U(VI) reduction can be enhanced by surface-bound Fe(II) on nanoFe0. Our results suggested that Fe(III) and Fe(II) probably acted as an electron shuttle to mediate the transfer of electrons from nanoFe0 to U(VI), therefore a combined system with Fe(II), Fe(III) and nanoFe0 can facilitate the U(VI) reductive immobilization in the contaminated groundwater.

  13. Characterization of U(VI) Sorption-Desorption Processes and Model Upscaling

    SciTech Connect

    Bai, Jing; Dong, Wenming; Ball, William P.

    2006-10-12

    The objectives of the overall collaborative EMSP effort (with which this project is associated) were to characterize sorption and desorption processes of U(VI) on pristine and contaminated Hanford sediments over a range of sediment facies and materials properties and to relate such characterization both to fundamental molecular-scale understanding and field-scale models of geochemistry and mass transfer. The research was intended to provide new insights on the mechanisms of U(VI) retardation at Hanford, and to allow the development of approaches by which laboratory-developed geochemical models could be upscaled for defensible field-scale predictions of uranium transport in the environment. Within this broader context, objectives of the JHU-based project were to test hypotheses regarding the coupled roles of adsorption and impermeable-zone diffusion in controlling the fate and transport of U(VI) species under conditions of comparatively short-term exposure. In particular, this work tested the following hypotheses: (1) the primary adsorption processes in the Hanford sediment over the pH range of 7 to 10 are surface complexation reactions of aqueous U(VI) hydroxycarbonate and carbonate complexes with amphoteric edge sites on detrital phyllosilicates in the silt/clay size fraction; (2) macroscopic adsorption intensity (at given aqueous conditions) is a function of mineral composition and aquatic chemistry; and (3) equilibrium sorption and desorption to apply in short-term, laboratory-spiked pristine sediments; and (4) interparticle diffusion can be fully understood in terms of a model that couples molecular diffusion of uranium species in the porewater with equilibrium sorption under the relevant aqueous conditions. The primary focus of the work was on developing and applying both models and experiments to test the applicability of "local equilibrium" assumptions in the modeling interpretation of sorption retarded interparticle diffusion, as relevant to processes of U(VI

  14. Probing the interaction of U(vi) with phosphonate-functionalized mesoporous silica using solid-state NMR spectroscopy.

    PubMed

    Uribe, Eva C; Mason, Harris E; Shusterman, Jennifer A; Bruchet, Anthony; Nitsche, Heino

    2016-06-21

    The fundamental interaction of U(vi) with diethylphosphatoethyl triethoxysilane functionalized SBA-15 mesoporous silica is studied by macroscopic batch experiments and solid-state NMR spectroscopy. DPTS-functionalized silica has been shown to extract U(vi) from nitric acid solutions at or above pH 3. Extraction is dependent on pH and ionic strength. Single-pulse (31)P NMR on U(vi) contacted samples revealed that U(vi) only interacts with a fraction of the ligands present on the surface. At pH 4 the U(vi) extraction capacity of the material is limited to 27-37% of the theoretical capacity, based on ligand loading. We combined single pulse (31)P NMR on U(vi)-contacted samples with batch studies to measure a ligand-to-metal ratio of approximately 2 : 1 at pH 3 and 4. Batch studies and cross-polarization NMR measurements reveal that U(vi) binds to deprotonated phosphonate and/or silanol sites. We use (31)P-(31)P DQ-DRENAR NMR studies to compare the average dipolar coupling between phosphorus spins for both U(vi)-complexed and non-complexed ligand environments. These measurements reveal that U(vi) extraction is not limited by inadequate surface distribution of ligands, but rather by low stability of the surface phosphonate complex. PMID:27265020

  15. Cross-tolerance to biotic and abiotic stresses in plants: a focus on resistance to aphid infestation.

    PubMed

    Foyer, Christine H; Rasool, Brwa; Davey, Jack W; Hancock, Robert D

    2016-03-01

    Plants co-evolved with an enormous variety of microbial pathogens and insect herbivores under daily and seasonal variations in abiotic environmental conditions. Hence, plant cells display a high capacity to respond to diverse stresses through a flexible and finely balanced response network that involves components such as reduction-oxidation (redox) signalling pathways, stress hormones and growth regulators, as well as calcium and protein kinase cascades. Biotic and abiotic stress responses use common signals, pathways and triggers leading to cross-tolerance phenomena, whereby exposure to one type of stress can activate plant responses that facilitate tolerance to several different types of stress. While the acclimation mechanisms and adaptive responses that facilitate responses to single biotic and abiotic stresses have been extensively characterized, relatively little information is available on the dynamic aspects of combined biotic/abiotic stress response. In this review, we consider how the abiotic environment influences plant responses to attack by phloem-feeding aphids. Unravelling the signalling cascades that underpin cross-tolerance to biotic and abiotic stresses will allow the identification of new targets for increasing environmental resilience in crops. PMID:26936830

  16. The U(VI) speciation influenced by a novel Paenibacillus isolate from Mont Terri Opalinus clay.

    PubMed

    Lütke, Laura; Moll, Henry; Bachvarova, Velina; Selenska-Pobell, Sonja; Bernhard, Gert

    2013-05-21

    Bacterial cell walls have a high density of ionizable functional groups available for U(VI) binding, hence have a great potential to affect the speciation of this contaminant in the environment. The studied strain of the genus Paenibacillus is a novel isolate originating from the Mont Terri Opalinus clay formations (Switzerland) which are currently investigated as a potential host rock for future nuclear waste storage. U(VI) binding to the cell surface functional groups was studied by potentiometry combined with time-resolved laser-induced fluorescence spectroscopy (TRLFS). Four bacterial U(VI) surface complexes were identified: R-COO-UO2(+), R-O-PO3-UO2, R-O-PO3H-UO2(+), and (R-O-PO3)2-UO2(2-). The corresponding complex stability constants were calculated to be 5.33 ± 0.08, 8.89 ± 0.04, 12.92 ± 0.05, and 13.62 ± 0.08, respectively. Hence UO2(2+) displays a moderate to strong interaction with the bacterial surface functional groups. In the acidic pH range (pH 3) UO2(2+) binding onto the cell envelope is governed by coordination to hydrogen phosphoryl sites. Upon increasing the pH an increasing coordination of UO2(2+) to carboxylic and deprotonated phosphoryl sites was found. At a pH greater than 7 uranyl hydroxides dominate the speciation. Additionally the bacteria-mediated release of inorganic phosphate in dependence on [U(VI)] at different pH values was studied to assess the influence of phosphate release on U(VI) mobilization. PMID:23508301

  17. Determining individual mineral contributions to U(VI) adsorption in a contaminated aquifer sediment: A fluorescence spectroscopy study

    NASA Astrophysics Data System (ADS)

    Wang, Zheming; Zachara, John M.; Boily, Jean-François; Xia, Yuanxian; Resch, Tom C.; Moore, Dean A.; Liu, C.

    2011-05-01

    The adsorption and speciation of U(VI) was investigated on contaminated, fine grained sediment materials from the Hanford 300 area (SPP1 GWF) in simulated groundwater using cryogenic laser-induced U(VI) fluorescence spectroscopy combined with chemometric analysis. A series of reference minerals (montmorillonite, illite, Michigan chlorite, North Carolina chlorite, California clinochlore, quartz and synthetic 6-line ferrihydrite) was used for comparison that represents the mineralogical constituents of SPP1 GWF. Surface area-normalized Kd values were measured at U(VI) concentrations of 5 × 10 -7 and 5 × 10 -6 mol L -1 that displayed the following affinity series: 6-line-ferrihydrite > North Carolina chlorite ≈ California clinochlore > quartz ≈ Michigan chlorite > illite > montmorillonite. Both time-resolved spectra and asynchronous two-dimensional (2D) correlation analysis of SPP1 GWF at different delay times indicated that two major adsorbed U(VI) species were present in the sediment that resembled U(VI) adsorbed on quartz and phyllosilicates. Simulations of the normalized fluorescence spectra confirmed that the speciation of SPP1 GWF was best represented by a linear combination of U(VI) adsorbed on quartz (90%) and phyllosilicates (10%). However, the fluorescence quantum yield for U(VI) adsorbed on phyllosilicates was lower than quartz and, consequently, its fractional contribution to speciation may be underestimated. Spectral comparison with literature data suggested that U(VI) exist primarily as inner-sphere complexes with surface silanol groups on quartz and as surface U(VI) tricarbonate complexes on phyllosilicates.

  18. Comparison of U(VI) adsorption onto nanoscale zero-valent iron and red soil in the presence of U(VI)-CO3/Ca-U(VI)-CO3 complexes.

    PubMed

    Zhang, Zhibin; Liu, Jun; Cao, Xiaohong; Luo, Xuanping; Hua, Rong; Liu, Yan; Yu, Xiaofeng; He, Likai; Liu, Yunhai

    2015-12-30

    The influence of U(VI)-CO3 and Ca-U(VI)-CO3 complexes on U(VI) adsorption onto red soil and nanoscale zero-valent iron (NZVI) was investigated using batch adsorption and fixed-bed column experiments to simulate the feasibility of NZVI as the reactive medium in permeable- reactive barriers (PRB) for in situ remediation of uranium-contaminated red soils. The adsorption capacity (qe) and distribution constant (Kd) of NZVI and red soil decreased with increasing pH, dissolved carbonate and calcium concentrations, but the qe and Kd values of NZVI were 5-10 times higher than those of red soil. The breakthrough pore volume (PV) values increased with the decrease of pH, dissolved carbonate and calcium concentration; however, the breakthrough PV values of the PRB column filled with 5% NZVI were 2.0-3.5 times higher than the 100% red soil column. The U(VI)-CO3 complexes adsorbed onto the surface of red soil/NZVI (≡SOH) to form SO-UO2CO3(-) or SO-UO2 (CO3)2(3-). XPS and XRD analysis further confirmed the reduction of U(VI) to U(IV) and the formation of FeOOH on NZVI surfaces. The findings of this study are significant to the remediation of uranium-contaminated red soils and the consideration of practical U(VI) species in the natural environment. PMID:26280584

  19. Formation of Intermediate Carbon Phases in Hydrothermal Abiotic Organic Synthesis

    NASA Astrophysics Data System (ADS)

    Fu, Q.; Foustoukos, D. I.; Seyfried, W. E.

    2005-12-01

    With high dissolved concentrations of methane and other hydrocarbon species revealed at the Rainbow and Logatchev vent systems on the Mid-Atlantic Ridge, it is essential to better understand reaction pathways of abiotic organic synthesis in hydrothermal systems. Thus, we performed a hydrothermal carbon reduction experiment with 13C labeled carbon source at temperature and pressure conditions that approximate those inferred for ultramafic-hosted hydrothermal systems. Pentlandite, a common alteration mineral phase in subseafloor reaction zones, acted as a potential catalyst. Surface analysis techniques (XPS and ToF-SIMS) were used to characterize intermediate carbon species within this process. Time series dissolved H2 and H2S concentrations indicated thermodynamic equilibrium. Dissolved H2 and H2S concentrations of 13 and 2 mmol/kg, respectively, are approximately equivalent to measured values in Rainbow and Logatchev hydrothermal systems. Isotopically pure 13C methane and other alkane species (C2H6 and C3H8) were observed throughout the experiment, and attained steady state conditions. XPS analysis on mineral product surface indicated carbon enrichment on mineral surface following reaction. The majority of surface carbon involves species containing C-C or C-H bonds, such as alkyl or methylene groups. Alcohol and carboxyl groups in fewer amounts were also observed. ToF-SIMS analysis, which can offer isotope identification with high mass resolution, showed that most of these carbon species were 13C-labeled. Unlike gas phase Fischer-Tropsch synthesis, no carbide was observed on mineral product surface during the experiment. Therefore, a reaction pathway is proposed for formation of dissolved linear alkane species in hydrothermal abiotic organic synthesis, where oxygen-bearing organic compounds are expected to form in aqueous products by way of alcohol and carboxyl groups on mineral catalyst surface.

  20. Surface Complexation Modeling of U(VI) Adsorption onto Savannah River Site Sediments

    NASA Astrophysics Data System (ADS)

    Dong, W.; Wan, J.; Tokunaga, T. K.; Denham, M.; Davis, J.; Hubbard, S. S.

    2011-12-01

    The Savannah River Site (SRS) was a U.S. Department of Energy facility for plutonium production during the Cold War. Waste plumes containing low-level radioactivity and acidic waste solutions were discharged to a series of unlined seepage basins in the F-Area of the SRS from 1955 to 1988. Although the site has undergone many years of active remediation, the groundwater remains acidic, and the concentrations of U and other radionuclides are still significantly higher than their Maximum Contaminant Levels (MCLs). The objective of this effort is to understand and predict U(VI) mobility in acidic waste plumes through developing surface complexation models (SCMs). Laboratory batch experiments were conducted to evaluate U adsorption behavior over the pH range of 3.0 to 9.5. Ten sorbent samples were selected including six contaminated sediment samples from three boreholes drilled within the plume and along the groundwater flow direction, two uncontaminated (pristine) sediment samples from a borehole outside of the plume, and two reference minerals, goethite and kaolinite (identified as the dominant minerals in the clay size fraction of the F-Area sediments). The results show that goethite and kaolinite largely control U partitioning behavior. In comparison with the pristine sediment, U(VI) adsorption onto contaminated sediments exhibits adsorption edges shifted toward lower pH by about 1.0 unit (e.g., from pH≈4.5 to pH≈3.5). We developed a SCMs based component additivity (CA) approach, which can successfully predict U(VI) adsorption onto uncontaminated SRS sediments. However, application of the same SCMs based CA approach to contaminated sediments resulted in underestimates of U(VI) adsorption at acidic pH conditions. The model sensitivity analyses indicate that both goethite and kaolinite surfaces co-contributed to U(VI) adsorption under acidic pH conditions. In particular, the exchange sites of clay minerals might play an important role in adsorption of U(VI) at p

  1. Uranium(VI) Reduction by Nanoscale Zerovalent Iron in Anoxic Batch Systems

    SciTech Connect

    Yan, Sen; Hua, Bin; Bao, Zhengyu; Yang, John; Liu, Chongxuan; Deng, Baolin

    2010-11-17

    This study investigated the influences of pH, bicarbonate, and calcium on U(VI) adsorption and reduction by synthetic nanosize zero valent iron (nano Fe0) particles under an anoxic condition. The results showed that about 87.1%, 82.7% and 78.3% of U(VI) could be reduced within 96 hours in the presence of 10 mM bicarbonate at pHs 6.92, 8.03 and 9.03, respectively. The rates of U(VI) reduction and adsorption by nano Fe0, however, varied significantly with increasing pH and concentrations of bicarbonate and/or calcium. Solid phase analysis by X-ray photoelectron spectroscopy confirmed the formation of UO2 and iron (hydr)oxides as a result of the redox interactions between adsorbed U(VI) and nano Fe0. This study highlights the potential important role of groundwater chemical composition in controlling the rates of U(VI) reductive immobilization using nano Fe0 in subsurface environments.

  2. Reaction-Based Reactive Transport Modeling of Fe(III) and U(V) Reduction

    SciTech Connect

    Burgos, William D.; Roden, Eric E.; Yeh, Gour-Tsyh

    2005-06-01

    Our new research project (started Fall 2004) was funded by a grant to The Pennsylvania State University, University of Central Florida, and The University of Alabama in the Integrative Studies Element of the NABIR Program (DE-FG04-ER63914/63915/63196). Our previous NABIR project (DE-FG02-01ER63180/63181/63182, funded within the Biotransformation Element) focused on (1) microbial reduction of Fe(III) and U(VI) individually, and concomitantly in natural sediments, (2) Fe(III) oxide surface chemistry, specifically with respect to reactions with Fe(II) and U(VI), (3) the influence of humic substances on Fe(III) and U(VI) bioreduction, and on U(VI) complexation, and (4) the development of reaction-based reactive transport biogeochemical models to numerically simulate our experimental results. The new project focuses on the development of a mechanistic understanding and quantitative models of coupled Fe(III)/U(VI) reduction in FRC Area 2 sediments. This work builds on our previous studies of microbial Fe(III) and U(VI) reduction, and is directly aligned with the Scheibe et al. NABIR FRC Field Project at Area 2.

  3. High performance of phosphate-functionalized graphene oxide for the selective adsorption of U(VI) from acidic solution

    NASA Astrophysics Data System (ADS)

    Liu, Xia; Li, Jiaxing; Wang, Xiangxue; Chen, Changlun; Wang, Xiangke

    2015-11-01

    In this study, phosphate-functionalized graphene oxide (PGO) was prepared by grafting triethyl phosphite onto the surface of GO using Arbuzov reaction. The as-prepared PGO was characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transformed infrared spectroscopy and Zeta potential. The application of the PGO to remove U(VI) from aqueous solution was investigated with a maximum adsorption capacity of 251.7 mg/g at pH = 4.0 ± 0.1 and T = 303 K. The adsorption mechanism was also investigated by X-ray photoelectron spectroscopy analysis, indicating a chemical adsorption of U(VI) on PGO surface. Moreover, experimental results gave a better removal efficiency toward U(VI) on PGO surface than other heavy metal ions at acidic solution, indicating the selective extraction of U(VI) from environmental pollutants.

  4. Influence of ammonium availability on expression of nifD and amtB genes during biostimulation of a U(VI) contaminated aquifer: implications for U(VI) removal and monitoring the metabolic state of Geobacteraceae

    SciTech Connect

    Mouser, Paula J.; N'Guessan, A. Lucie; Elifantz, Hila; Holmes, Dawn E.; Williams, Kenneth H; Wilkins, Michael J.; Long, Philip E.; Lovley, Derek R.

    2009-03-25

    The influence of ammonium availability on bacterial community structure and the physiological status of Geobacter species during in situ bioremediation of uranium-contaminated groundwater was evaluated. Ammonium concentrations varied by 2 orders of magnitude (<4 to 400 ?M) across the study site. Analysis of 16S rRNA sequences suggested that ammonium may have been one factor influencing the community composition prior to acetate amendment with Rhodoferax species predominating over Geobacter species with higher ammonium and Dechloromonas species dominating at the site with lowest ammonium. However, once acetate was added and dissimilatory metal reduction was stimulated, Geobacter species became the predominant organisms at all locations. Rates of U(VI) reduction appeared to be more related to acetate concentrations rather than ammonium levels. In situ mRNA transcript abundance of the nitrogen fixation gene, nifD, and the ammonium transporter gene, amtB, in Geobacter species indicated that ammonium was the primary source of nitrogen during uranium reduction. The abundance of amtB was inversely correlated to ammonium levels, whereas nifD transcript levels were similar across all sites examined. These results suggest that nifD and amtB expression are closely regulated in response to ammonium availability to ensure an adequate supply of nitrogen while conserving cell resources. Thus, quantifying nifD and amtB transcript expression appears to be a useful approach for monitoring the nitrogen-related physiological status of subsurface Geobacter species. This study also emphasizes the need for more detailed analysis of geochemical and physiological interactions at the field scale in order to adequately model subsurface microbial processes during bioremediation.

  5. UVIS CCD EPER CTE measurements performed during the April 2007 Ambient Calibration campaign (SMS UV02S01)

    NASA Astrophysics Data System (ADS)

    Robberto, Massimo

    The UVIS spare detector (UVIS build 2) has been installed in WFC3 and used for a short ambient ground test campaign in April 2007. Tests have been performed using the Extended Pixel Edge Response (EPER) measure of the Charge Transfer Efficiency. In this ISR I describe the methods and results of the test. The Charge Transfer Efficiency appears to be higher than 99.9999%, in agreement with previous DCL measures.

  6. U(VI) bioreduction with emulsified vegetable oil as the electron donor-Model application to a field test

    SciTech Connect

    Tang, Guoping; Watson, David B; Wu, Wei-min; Schadt, Christopher Warren; Parker, Jack C; Brooks, Scott C

    2013-01-01

    A one-time 2-hour emulsified vegetable oil (EVO) injection in a fast flowing aquifer decreased U discharge to a stream for over a year. Using a comprehensive biogeochemical model developed in the companion article based on microcosm tests, we approximately matched the observed acetate, nitrate, Fe, U, and sulfate concentrations, and described the major evolution trends of multiple microbial functional groups in the field test. While the lab-determined parameters were generally applicable in the field-scale simulation, the EVO hydrolysis rate constant was estimated to be an order of magnitude greater in the field than in the microcosms. The model predicted substantial biomass (sulfate reducers) and U(IV) accumulation near the injection wells and along the side boundaries of the treatment zone where electron donors (long-chain fatty acids) from the injection wells met electron acceptors (sulfate) from the surrounding environment. While EVO retention and hydrolysis characteristics were expected to control treatment longevity, modeling results indicated that electron acceptors such as sulfate may not only compete for electrons but also play a conducive role in degrading complex substrates and enhancing U(VI) reduction and immobilization. As a result, the spacing of the injection wells could be optimized for effective sustainable bioremediation.

  7. SERDP ER-1421 Abiotic and Biotic Mechanisms Controlling In Situ Remediation of NDMA: Final Report

    SciTech Connect

    Szecsody, James E.; McKinley, James P.; Crocker, Fiona H.; Breshears, Andrew T.; Devary, Brooks J.; Fredrickson, Herbert L.; Thompson, Karen T.

    2009-09-30

    This laboratory-scale project was initiated to investigate in situ abiotic/biotic mineralization of NDMA. Under iron-reducing conditions, aquifer sediments showed rapid abiotic NDMA degradation to dimethylamine (DMA), nitrate, formate, and finally, CO2. These are the first reported experiments of abiotic NDMA mineralization. The NDMA reactivity of these different iron phases showed that adsorbed ferrous iron was the dominant reactive phase that promoted NDMA reduction, and other ferrous phases present (siderite, iron sulfide, magnetite, structural ferrous iron in 2:1 clays) did not promote NDMA degradation. In contrast, oxic sediments that were biostimulated with propane promoted biomineralization of NDMA by a cometabolic monooxygenase enzyme process. Other monooxygenase enzyme processes were not stimulated with methane or toluene additions, and acetylene addition did not block mineralization. Although NDMA mineralization extent was the highest in oxic, biostimulated sediments (30 to 82%, compared to 10 to 26% for abiotic mineralization in reduced sediments), large 1-D column studies (high sediment/water ratio of aquifers) showed 5.6 times higher NDMA mineralization rates in reduced sediment (half-life 410 ± 147 h) than oxic biomineralization (half life 2293 ± 1866 h). Sequential reduced/oxic biostimulated sediment mineralization (half-life 3180 ± 1094 h) was also inefficient compared to reduced sediment. These promising laboratory-scale results for NDMA mineralization should be investigated at field scale. Future studies of NDMA remediation should focus on the comparison of this in situ abiotic NDMA mineralization (iron-reducing environments) to ex situ biomineralization, which has been shown successful in other studies.

  8. Probing the interaction of U(VI) with phosphonate-functionalized mesoporous silica using solid-state NMR spectroscopy

    DOE PAGESBeta

    Uribe, Eva C.; Mason, Harris E.; Shusterman, Jennifer A.; Bruchet, Anthony; Nitsche, Heino

    2016-05-30

    The fundamental interaction of U(VI) with diethylphosphatoethyl triethoxysilane functionalized SBA-15 mesoporous silica is studied by macroscopic batch experiments and solid-state NMR spectroscopy. DPTS-functionalized silica has been shown to extract U(VI) from nitric acid solutions at or above pH 3. Extraction is dependent on pH and ionic strength. Single-pulse 31P NMR on U(VI) contacted samples revealed that U(VI)only interacts with a fraction of the ligands present on the surface. At pH 4 the U(VI) extraction capacity of the material is limited to 27–37% of the theoretical capacity, based on ligand loading. We combined single pulse 31P NMR on U(VI)-contacted samples withmore » batch studies to measure a ligand-to-metal ratio of approximately 2 : 1 at pH 3 and 4. Batch studies and cross-polarization NMR measurements reveal that U(VI) binds to deprotonated phosphonate and/or silanol sites. We use 31P–31P DQ-DRENAR NMR studies to compare the average dipolar coupling between phosphorus spins for both U(VI)-complexed and non-complexed ligand environments. Furthermore, these measurements reveal that U(VI) extraction is not limited by inadequate surface distribution of ligands, but rather by low stability of the surface phosphonate complex.« less

  9. Boreal winter comparison of auroral images from Polar UVI and IMAGE FUV

    NASA Astrophysics Data System (ADS)

    Spann, J. F.; Germany, G.; Maddox, W.; Fillingim, M.; Parks, G.; Mende, S.

    2004-12-01

    Same-scene images made with Polar UVI and IMAGE FUV are compared for the boreal winter of 2000-2001. The results of the comparison are used to determine whether the use of both instruments could lead to a better evaluation of the average precipitation and total energy input than with either one individually. These results are a part of a broader investigation to quantitatively compare conjugate images using both instruments and to correlate observed asymmetries with solar wind and seasonal parameters.

  10. Stable carbon isotope analysis to distinguish biotic and abiotic degradation of 1,1,1-trichloroethane in groundwater sediments.

    PubMed

    Broholm, Mette M; Hunkeler, Daniel; Tuxen, Nina; Jeannottat, Simon; Scheutz, Charlotte

    2014-08-01

    The fate and treatability of 1,1,1-TCA by natural and enhanced reductive dechlorination was studied in laboratory microcosms. The study shows that compound-specific isotope analysis (CSIA) identified an alternative 1,1,1-TCA degradation pathway that cannot be explained by assuming biotic reductive dechlorination. In all biotic microcosms 1,1,1-TCA was degraded with no apparent increase in the biotic degradation product 1,1-DCA. 1,1,1-TCA degradation was documented by a clear enrichment in (13)C in all biotic microcosms, but not in the abiotic control, which suggests biotic or biotically mediated degradation. Biotic degradation by reductive dechlorination of 1,1-DCA to CA only occurred in bioaugmented microcosms and in donor stimulated microcosms with low initial 1,1,1-TCA or after significant decrease in 1,1,1-TCA concentration (after∼day 200). Hence, the primary degradation pathway for 1,1,1-TCA does not appear to be reductive dechlorination via 1,1-DCA. In the biotic microcosms, the degradation of 1,1,1-TCA occurred under iron and sulfate reducing conditions. Biotic reduction of iron and sulfate likely resulted in formation of FeS, which can abiotically degrade 1,1,1-TCA. Hence, abiotic degradation of 1,1,1-TCA mediated by biotic FeS formation constitute an explanation for the observed 1,1,1-TCA degradation. This is supported by a high 1,1,1-TCA (13)C enrichment factor consistent with abiotic degradation in biotic microcosms. 1,1-DCA carbon isotope field data suggest that this abiotic degradation of 1,1,1-TCA is a relevant process also at the field site. PMID:24559936

  11. HST/WFC3: Evolution of the UVIS Channel's Charge Transfer Efficiency

    NASA Astrophysics Data System (ADS)

    Gosmeyer, Catherine; Baggett, Sylvia M.; Anderson, Jay; WFC3 Team

    2016-06-01

    The Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) contains both an IR and a UVIS channel. After more than six years on orbit, the UVIS channel performance remains stable; however, on-orbit radiation damage has caused the charge transfer efficiency (CTE) of UVIS's two CCDs to degrade. This degradation is seen as vertical charge 'bleeding' from sources during readout and its effect evolves as the CCDs age. The WFC3 team has developed software to perform corrections that push the charge back to the sources, although it cannot recover faint sources that have been bled out entirely. Observers can mitigate this effect in various ways such as by placing sources near the amplifiers, observing bright targets, and by increasing the total background to at least 12 electrons, either by using a broader filter, lengthening exposure time, or post-flashing. We present results from six years of calibration data to re-evaluate the best level of total background for mitigating CTE loss and to re-verify that the pixel-based CTE correction software is performing optimally over various background levels. In addition, we alert observers that CTE-corrected products are now available for retrieval from MAST as part of the CALWF3 v3.3 pipeline upgrade.

  12. Abiotic Methane Synthesis: Caveats and New Results

    NASA Astrophysics Data System (ADS)

    Zou, R.; Sharma, A.

    2005-12-01

    The role of mineral interaction with geochemical fluids under hydrothermal conditions has invoked models of geochemical synthesis of organic molecules at deep crustal conditions. Since Thomas Gold's (1992) hypothesis of the possibility of an abiotic organic synthesis, there have been several reports of hydrocarbon formation under high pressure and temperature conditions. Several previous experimental studies have recognized that small amounts of methane (and other light HC compounds) can be synthesized via catalysis by transition metals: Fe, Ni (Horita and Berndt, 1999 Science) and Cr (Foustavous and Seyfried, 2004 Science). In light of these pioneering experiments, an investigation of the feasibility of abiotic methane synthesis at higher pressure conditions in deep geological setting and the possible role of catalysis warrants a closer look. We conducted three sets of experiments in hydrothermal diamond anvil cell using FeO nanopowder, CaCO 3 and water at 300° - 600° C and 0.5 - 5 GPa : (a) with stainless steel gasket, (b) gold-lined gasket, and (c) gold-lined gasket with added Fe and Ni nanopowder. The reactions were monitored in-situ using micro-Raman spectroscopy with 532nm and 632nm lasers. The solids phases were characterized in-situ using synchrotron X-ray diffraction at CHESS-Cornell and quenched products with an electron microprobe. Interestingly, a variable amount of hydrocarbon was observed only in runs with stainless steel gasket and with Fe, Ni nanoparticles. Experiments with gold-lined reactors did not show any hydrocarbon formation. Added high resolution microscopy of the products and their textural relationship within the diamond cell with Raman spectroscopy data show that the hydrocarbon (methane and other light fractions) synthesis is a direct result of transition metal catalysis, rather than wustite - calcium carbonate reaction as recently reported by Scott et al (2004, PNAS). The author will further present new results highlighting abiotic

  13. Generation of RNA in abiotic conditions.

    NASA Astrophysics Data System (ADS)

    di Mauro, Ernesto

    Generation of RNA in abiotic conditions. Ernesto Di Mauro Dipartimento di Genetica Bi-ologia Molecolare, Universit` "Sapienza" Roma, Italy. a At least four conditions must be satisfied for the spontaneous generation of (pre)-genetic poly-mers: 1) availability of precursors that are activated enough to spontaneously polymerize. Preliminary studies showed that (a) nucleic bases and acyclonucleosides can be synthesized from formamide H2NCOH by simply heating with prebiotically available mineral catalysts [last reviewed in (1)], and that b) nucleic bases can be phosphorylated in every possible posi-tion [2'; 3'; 5'; cyclic 2',3'; cyclic 3',5' (2)]. The higher stability of the cyclic forms allows their accumulation. 2) A polymerization mechanism. A reaction showing the formation of RNA polymers starting from prebiotically plausible precursors (3',5' cyclic GMP and 3', 5'cyclic AMP) was recently reported (3). Polymerization in these conditions is thermodynamically up-hill and an equilibrium is attained that limits the maximum length of the polymer produced to about 40 nucleotides for polyG and 100 nucleotides for polyA. 3) Ligation of the synthesized oligomers. If this type of reaction could occur according to a terminal-joining mechanism and could generate canonical 3',5' phosphodiester bonds, exponential growth would be obtained of the generated oligomers. This type of reaction has been reported (4) , limited to homogeneous polyA sequences and leading to the production of polyA dimers and tetramers. What is still missing are: 4) mechanisms that provide the proof of principle for the generation of sequence complexity. We will show evidence for two mechanisms providing this proof of principle for simple complementary sequences. Namely: abiotic sequence complementary-driven terminal ligation and sequence-complementary terminal growth. In conclusion: all the steps leading to the generation of RNA in abiotic conditions are satisfied. (1) R Saladino, C Crestini, F

  14. Genetic Dissection of Abiotic Stress Tolerance in Sorghum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sorghum, the fifth most important cereal crop in the world is a highly versatile crop and an excellent model species due to its overall tolerance to a number of abiotic stress conditions. To gain a better understanding of the physiological and genetic basis of abiotic stress tolerance in sorghum w...

  15. Cell wall remodeling under abiotic stress

    PubMed Central

    Tenhaken, Raimund

    2015-01-01

    Plants exposed to abiotic stress respond to unfavorable conditions on multiple levels. One challenge under drought stress is to reduce shoot growth while maintaining root growth, a process requiring differential cell wall synthesis and remodeling. Key players in this process are the formation of reactive oxygen species (ROS) and peroxidases, which initially cross-link phenolic compounds and glycoproteins of the cell walls causing stiffening. The function of ROS shifts after having converted all the peroxidase substrates in the cell wall. If ROS-levels remain high during prolonged stress, OH°-radicals are formed which lead to polymer cleavage. In concert with xyloglucan modifying enzymes and expansins, the resulting cell wall loosening allows further growth of stressed organs. PMID:25709610

  16. Adsorption of U(VI) on sericite in the presence of Bacillus subtilis: A combined batch, EXAFS and modeling techniques

    NASA Astrophysics Data System (ADS)

    Sun, Yubing; Zhang, Rui; Ding, Congcong; Wang, Xiangxue; Cheng, Wencai; Chen, Changlun; Wang, Xiangke

    2016-05-01

    The effect of Bacillus subtilis (B. subtilis) on the adsorption of U(VI) onto sericite was investigated using batch, EXAFS and modeling techniques. The batch adsorption indicated that the increased adsorption of U(VI) on sericite + B. subtilis systems at pH < 5.0 was predominantly attributed to the formation of inner-sphere complexes between U(VI) and surface functional groups of B. subtilis, whereas the inhibited adsorption was observed at pH > 6.0 due to the combination of deprotonated carboxyl groups of B. subtilis with the hydroxyl of sericite. The slightly enhanced adsorption of U(VI) on sericite + B. subtilis with increasing CO2 contents at pH < 6.0 was ascribed to the electrostatic attraction between positively charged U(VI) species (UO22+ species) and negatively charged surface of sericite + B. subtilis, whereas the U(VI) adsorption sharply decreased at pH > 7.0 owing to electrostatic repulsion between negatively charged sericite + B. subtilis and negatively charged U(VI) species such as UO2(OH)3- or UO2(CO3)22- species. According to EXAFS analysis, the increased adsorption mechanism of U(VI) on sericite + B. subtilis at pH 4.0 was attributed to the formation of U-P shell, whereas the bidentate inner-sphere surface complexes was also observed at pH 7.0 due to the formation of U-C shell (2.92 Å) and/or U-Si/Al (3.18 Å) shell. Under the range of allowable error, the pH-dependent and isothermal adsorption of U(VI) on sericite + B. subtilis can be fitted by surface complexation modeling using ion exchange and surface complexation reaction by using equilibrium parameters obtained from each binary systems. These findings are important to understand the fate and transport of U(VI) on the mineral-bacteria ternary systems in the near-surface environment.

  17. The Stable Isotope Fractionation of Abiotic Reactions: A Benchmark in the Detection of Life

    NASA Technical Reports Server (NTRS)

    Summers, David P.

    2003-01-01

    mil to as low as -60 % (potentially comparable to that which accompanies the biosynthesis of organic matter). We need to understand what kind of fractionations are observed with reactions under the non-reducing or mildly reducing conditions now thought to be present on the early Earth. While nitrogen is receiving increased attention as a tool for these kinds of analyses, almost nothing is known about the isotope fractionation that one would expect for abiotic sources of fixed/reduced nitrogen. This project will measure the fixation from a series of abiotic reactions that may have been present on the early Earth (and other terrestrial planets) and produced organic material that could have ended up in the rock record. The work will look at a number of reactions, under a non- reducing, or mildly reducing, atmosphere, covering sources of prebiotic organic C & N from shock heating, to photochemistry, to hydrothermal reactions. Some reactions that we plan to study are; Shock heating of a non-reducing atmosphere to produce CO and NO (in collaboration with Chris McKay), formation of formaldehyde (and related compounds) from COY the formation of ammonia from nitrogen oxides (ultimately from NO) by ferrous iron reduction, and the hydrothermal synthesis of compounds including the hydrocarboxylation/hydrocarbonylation reaction (in collaboration with George Cody), reactions of oxalate to form hydrocarbons and other oxygenated compounds and the formation of lipids from oxalic/formic acid (in collaboration with Tom McCollom), and reactions of carbon monoxide & carbon dioxide with N2, ammonia or nitritehitrate to form hydrogen cyanide, nitriles, ammonia/amines and nitrous

  18. Improved abiotic stress tolerance of bermudagrass by exogenous small molecules.

    PubMed

    Chan, Zhulong; Shi, Haitao

    2015-01-01

    As a widely used warm-season turfgrass in landscapes and golf courses, bermudagrass encounters multiple abiotic stresses during the growth and development. Physiology analysis indicated that abiotic stresses induced the accumulation of ROS and decline of photosynthesis, resulting in increased cell damage and inhibited growth. Proteomic and metabolomic approaches showed that antioxidant enzymes and osmoprotectant contents (sugar, sucrose, dehydrin, proline) were extensively changed under abiotic stress conditions. Exogenous application of small molecules, such as ABA, NO, CaCl2, H2S, polyamine and melatonin, could effectively alleviate damages caused by multiple abiotic stresses, including drought, salt, heat and cold. Based on high through-put RNA seq analysis, genes involved in ROS, transcription factors, hormones, and carbohydrate metabolisms were largely enriched. The data indicated that small molecules induced the accumulation of osmoprotectants and antioxidants, kept cell membrane integrity, increased photosynthesis and kept ion homeostasis, which protected bermudagrass from damages caused by abiotic stresses. PMID:25757363

  19. Adsorption and desorption of U(VI) on functionalized graphene oxides: a combined experimental and theoretical study.

    PubMed

    Sun, Yubing; Yang, Shubin; Chen, Yue; Ding, Congcong; Cheng, Wencai; Wang, Xiangke

    2015-04-01

    The adsorption and desorption of U(VI) on graphene oxides (GOs), carboxylated GOs (HOOC-GOs), and reduced GOs (rGOs) were investigated by batch experiments, EXAFS technique, and computational theoretical calculations. Isothermal adsorptions showed that the adsorption capacities of U(VI) were GOs > HOOC-GOs > rGOs, whereas the desorbed amounts of U(VI) were rGOs > GOs > HOOC-GOs by desorption kinetics. According to EXAFS analysis, inner-sphere surface complexation dominated the adsorption of U(VI) on GOs and HOOC-GOs at pH 4.0, whereas outer-sphere surface complexation of U(VI) on rGO was observed at pH 4.0, which was consistent with surface complexation modeling. Based on the theoretical calculations, the binding energy of [G(···)UO2](2+) (8.1 kcal/mol) was significantly lower than those of [HOOC-GOs(···)UO2](2+) (12.1 kcal/mol) and [GOs-O(···)UO2](2+) (10.2 kcal/mol), suggesting the physisorption of UO2(2+) on rGOs. Such high binding energy of [GOs-COO(···)UO2](+) (50.5 kcal/mol) revealed that the desorption of U(VI) from the -COOH groups was much more difficult. This paper highlights the effect of the hydroxyl, epoxy, and carboxyl groups on the adsorption and desorption of U(VI), which plays an important role in designing GOs for the preconcentration and removal of radionuclides in environmental pollution cleanup applications. PMID:25761122

  20. ABIOTIC REDUCTIVE DECHLORINATION OF CARBON TETRACHLORIDE AND HEXACHLOROETHANE BY ENVIRONMENTAL REDUCTANTS

    EPA Science Inventory

    The transformation rates of hexachloroethane (HCA) and carbon tetrachloride (CTET) have been measured in model systems representing the ground water environment and in slurries of fractionated Borden aquifer material. his report summarizes research conducted to identify the envir...

  1. Biotransformation involved in sustained reductive removal of uranium in contaminant aquifers

    SciTech Connect

    Lovley, Derek R.

    2005-06-01

    This report summarizes progress made from August 2004 to July 2005. During this period research focused primarily on obtaining a better understanding of the factors controlling the reduction of U(VI) during in situ uranium bioremediation as well as investigating the potential for using electrodes as an alternative electron donor to promote in situ uranium reduction. Analysis of the 2003 experiment at the field study site in Rifle, CO was completed. The results demonstrated the substantial heterogeneity of the zone undergoing bioremediation, both in terms of geochemistry and microbiology. The lack of U(VI) reduction under sulfate-reducing conditions was clearly documented. The need for more detailed sampling both with time and with depth in the aquifer was demonstrated. For the first time a comparison between the composition of the microbial community in the sediments and the microbes in the corresponding groundwater was attempted. The findings from this study are important not only in further demonstrating the potential for in situ uranium bioremediation, but also for indicating how methods and sampling approaches should be improved in the future. A manuscript summarizing these findings has been accepted for publication in Applied and Environmental Microbiology. In summer of 2004 a new field experiment was conducted at the Rifle site. A novel feature of this study was much more intensive sampling in order to better define the progression of microbial processes during in situ uranium bioremediation. The results demonstrated that stimulation of in situ uranium bioremediation with added acetate was a repeatable phenomenon and that U(VI) reduction was clearly linked to the presence and activity of microorganisms in the family Geobacteraceae. A manuscript summarizing these results is in preparation. A surprising result of the field studies at the Rifle site was that although Geobacter species actively reduced U(VI) in the groundwater, removing it from solution, a high

  2. Regulation of Photosynthesis during Abiotic Stress-Induced Photoinhibition.

    PubMed

    Gururani, Mayank Anand; Venkatesh, Jelli; Tran, Lam Son Phan

    2015-09-01

    Plants as sessile organisms are continuously exposed to abiotic stress conditions that impose numerous detrimental effects and cause tremendous loss of yield. Abiotic stresses, including high sunlight, confer serious damage on the photosynthetic machinery of plants. Photosystem II (PSII) is one of the most susceptible components of the photosynthetic machinery that bears the brunt of abiotic stress. In addition to the generation of reactive oxygen species (ROS) by abiotic stress, ROS can also result from the absorption of excessive sunlight by the light-harvesting complex. ROS can damage the photosynthetic apparatus, particularly PSII, resulting in photoinhibition due to an imbalance in the photosynthetic redox signaling pathways and the inhibition of PSII repair. Designing plants with improved abiotic stress tolerance will require a comprehensive understanding of ROS signaling and the regulatory functions of various components, including protein kinases, transcription factors, and phytohormones, in the responses of photosynthetic machinery to abiotic stress. Bioenergetics approaches, such as chlorophyll a transient kinetics analysis, have facilitated our understanding of plant vitality and the assessment of PSII efficiency under adverse environmental conditions. This review discusses the current understanding and indicates potential areas of further studies on the regulation of the photosynthetic machinery under abiotic stress. PMID:25997389

  3. Abiotic and Microbial Interactions during Anaerobic Transformations of Fe(II) and NOX-

    PubMed Central

    Picardal, Flynn

    2012-01-01

    Microbial Fe(II) oxidation using NO3- as the terminal electron acceptor [nitrate-dependent Fe(II) oxidation, NDFO] has been studied for over 15 years. Although there are reports of autotrophic isolates and stable enrichments, many of the bacteria capable of NDFO are known organotrophic NO3--reducers that require the presence of an organic, primary substrate, e.g., acetate, for significant amounts of Fe(II) oxidation. Although the thermodynamics of Fe(II) oxidation are favorable when coupled to either NO3- or NO2- reduction, the kinetics of abiotic Fe(II) oxidation by NO3- are relatively slow except under special conditions. NDFO is typically studied in batch cultures containing millimolar concentrations of Fe(II), NO3-, and the primary substrate. In such systems, NO2- is often observed to accumulate in culture media during Fe(II) oxidation. Compared to NO3-, abiotic reactions of biogenic NO2- and Fe(II) are relatively rapid. The kinetics and reaction pathways of Fe(II) oxidation by NO2- are strongly affected by medium composition and pH, reactant concentration, and the presence of Fe(II)-sorptive surfaces, e.g., Fe(III) oxyhydroxides and cellular surfaces. In batch cultures, the combination of abiotic and microbial Fe(II) oxidation can alter product distribution and, more importantly, results in the formation of intracellular precipitates and extracellular Fe(III) oxyhydroxide encrustations that apparently limit further cell growth and Fe(II) oxidation. Unless steps are taken to minimize or account for potential abiotic reactions, results of microbial NDFO studies can be obfuscated by artifacts of the chosen experimental conditions, the use of inappropriate analytical methods, and the resulting uncertainties about the relative importance of abiotic and microbial reactions. In this manuscript, abiotic reactions of NO3- and NO2- with aqueous Fe2+, chelated Fe(II), and solid-phase Fe(II) are reviewed along with factors that can influence overall NDFO reaction rates

  4. Coupled biotic-abiotic oxidation of organic matter by biogenic MnO_{2}

    NASA Astrophysics Data System (ADS)

    Gonzalez, Julia; Peña, Jasquelin

    2016-04-01

    Some reactive soil minerals are strongly implicated in stabilising organic matter. However, others can play an active role in the oxidation of organic molecules. In natural systems, layer-type manganese oxide minerals (MnO2) typically occur as biomineral assemblages consisting of mineral particles and microbial biomass. Both the mineral and biological fractions of the assemblage can be powerful oxidants of organic C. The biological compartment relies on a set of enzymes to drive oxidative transformations of reduced C-substrates, whereas MnO2 minerals are strong, less specific abiotic oxidants that are assumed to rely on interfacial interactions between C-substrates and the mineral surface. This project aims to understand the coupling between microbial C mineralization and abiotic C oxidation mediated by MnO2 in bacterial-MnO2 assemblages. Specifically, under conditions of high C turnover, microbial respiration can significantly alter local pH, dissolved oxygen and pool of available reductants, which may modify rates and mechanism of C oxidation by biotic and abiotic components. We first investigated changes in the solution chemistry of Pseudomonas putida suspensions exposed to varying concentrations of glucose, chosen to represent readily bioavailable substrates in soils. Glucose concentrations tested ranged between 0 and 5.5mM and changes in pH, dissolved oxygen and dissolved organic and inorganic carbon were tracked over 48h. We then combined literature review and wet-chemical experiments to compile the pH dependence of rates of organic substrate oxidation by MnO2, including glucose. Our results demonstrate a strong pH dependence for these abiotic reactions. In assemblages of P. putida - MnO2, kinetic limitations for abiotic C oxidation by MnO2 are overcome by changes in biogeochemical conditions that result from bacterial C metabolism. When extrapolated to a soil solution confronted to an input of fresh dissolved organic matter, bacterial C metabolism of the

  5. Solubility data for U(VI) hydroxide and Np(IV) hydrous oxide: application of MCC-3 methodology

    SciTech Connect

    Krupka, K.M.; Rai, D.; Fulton, R.W.; Strickert, R.G.

    1984-10-01

    Experiments based on a modified MCC-3S test method were conducted to investigate the solubility of U(VI) hydroxide (the mineral schoepite) and Np(IV) hydrous oxide at ambient temperature. The solubility of U(VI) hydroxide was investigated in carbonate-free, oxidizing aqueous solutions in the pH range of 3 to 11. The measured concentrations of dissolved U confirm the amphoteric behavior of U(VI) hydroxide solid and the importance of anionic U(VI) hydroxyl complexes in accurately calculating the solubilities of U(VI) solids under basic pH conditions. the effect of fluoride complexation on the solubility of Np(IV) hydrous oxide was studied in carbonate-free, near-neutral to alkaline solutions that contained 100 ppM total F. For solutions in which sodium dithionite (Na/sub 2/S/sub 2/O/sub 4/) and metallic Fe were used as reducing agents, the addition of 100 ppM F had no measurable effect on the solubility of Np(IV) hydrous oxide.

  6. Effect of Subgrid Heterogeneity on Scaling Geochemical and Biogeochemical Reactions: A Case of U(VI) Desorption

    SciTech Connect

    Liu, Chongxuan; Shang, Jianying; Shan, Huimei; Zachara, John M.

    2014-02-04

    The effect of subgrid heterogeneity in sediment properties on the rate of uranyl[U(VI)] desorption was investigated using a sediment collected from the US Department of Energy Hanford site. The sediment was sieved into 7 grain size fractions that each exhibited different U(VI) desorption properties. Six columns were assembled using the sediment with its grain size fractions arranged in different spatial configurations to mimic subgrid heterogeneity in reactive transport properties. The apparent rate of U(VI) desorption varied significantly in the columns. Those columns with sediment structures leading to preferential transport had much lower rates of U(VI) desorption than those with relatively homogeneous transport. Modeling analysis indicated that the U(VI) desorption model and parameters characterized from well-mixed reactors significantly over-predicted the measured U(VI) desorption in the columns with preferential transport. A dual domain model, which operationally separates reactive transport properties into two subgrid domains improved the predictions significantly. A similar effect of subgrid heterogeneity, albeit at a less degree, was observed for denitrification, which also occurred in the columns. The results imply that subgrid heterogeneity is an important consideration in extrapolating reaction rates from the laboratory to field.

  7. Recent Molecular Advances on Downstream Plant Responses to Abiotic Stress

    PubMed Central

    dos Reis, Sávio Pinho; Lima, Aline Medeiros; de Souza, Cláudia Regina Batista

    2012-01-01

    Abiotic stresses such as extremes of temperature and pH, high salinity and drought, comprise some of the major factors causing extensive losses to crop production worldwide. Understanding how plants respond and adapt at cellular and molecular levels to continuous environmental changes is a pre-requisite for the generation of resistant or tolerant plants to abiotic stresses. In this review we aimed to present the recent advances on mechanisms of downstream plant responses to abiotic stresses and the use of stress-related genes in the development of genetically engineered crops. PMID:22942725

  8. Chemical Priming of Plants Against Multiple Abiotic Stresses: Mission Possible?

    PubMed

    Savvides, Andreas; Ali, Shawkat; Tester, Mark; Fotopoulos, Vasileios

    2016-04-01

    Crop plants are subjected to multiple abiotic stresses during their lifespan that greatly reduce productivity and threaten global food security. Recent research suggests that plants can be primed by chemical compounds to better tolerate different abiotic stresses. Chemical priming is a promising field in plant stress physiology and crop stress management. We review here promising chemical agents such as sodium nitroprusside, hydrogen peroxide, sodium hydrosulfide, melatonin, and polyamines that can potentially confer enhanced tolerance when plants are exposed to multiple abiotic stresses. The challenges and opportunities of chemical priming are addressed, with the aim to boost future research towards effective application in crop stress management. PMID:26704665

  9. The abiotic degradation of soil organic matter to oxalic acid

    NASA Astrophysics Data System (ADS)

    Studenroth, Sabine; Huber, Stefan; Schöler, H. F.

    2010-05-01

    The abiotic degradation of soil organic matter to volatile organic compounds was studied intensely over the last years (Keppler et al., 2000; Huber et al., 2009). It was shown that soil organic matter is oxidised due to the presence of iron (III), hydrogen peroxide and chloride and thereby produces diverse alkyl halides, which are emitted into the atmosphere. The formation of polar halogenated compounds like chlorinated acetic acids which are relevant toxic environmental substances was also found in soils and sediments (Kilian et al., 2002). The investigation of the formation of other polar halogenated and non-halogenated compounds like diverse mono- and dicarboxylic acids is going to attain more and more importance. Due to its high acidity oxalic acid might have impacts on the environment e.g., nutrient leaching, plant diseases and negative influence on microbial growth. In this study, the abiotic formation of oxalic acid in soil is examined. For a better understanding of natural degradation processes mechanistic studies were conducted using the model compound catechol as representative for structural elements of the humic substances and its reaction with iron (III) and hydrogen peroxide. Iron is one of the most abundant elements on earth and hydrogen peroxide is produced by bacteria or through incomplete reduction of oxygen. To find suitable parameters for an optimal reaction and a qualitative and quantitative analysis method the following reaction parameters are varied: concentration of iron (III) and hydrogen peroxide, time dependence, pH-value and influence of chloride. Analysis of oxalic acid was performed employing an ion chromatograph equipped with a conductivity detector. The time dependent reaction shows a relatively fast formation of oxalic acid, the optimum yield is achieved after 60 minutes. Compared to the concentration of catechol an excess of hydrogen peroxide as well as a low concentration of iron (III) are required. In absence of chloride the

  10. Abiotic uptake of gases by organic soils

    NASA Astrophysics Data System (ADS)

    Smagin, A. V.

    2007-12-01

    Methodological and experimental studies of the abiotic uptake of gaseous substances by organic soils were performed. The static adsorption method of closed vessels for assessing the interaction of gases with the solid and liquid soil phases and the dynamic method of determining the sorption isotherms of gases by soils were analyzed. The theoretical substantiation of the methods and their practical implementations on the basis of a PGA-7 portable gas analyzer (Russia) were considered. Good agreement between the equilibrium sorption isotherms of the gases and the Langmuir model was revealed; for the real ranges of natural gas concentrations, this model can be reduced to the linear Henry equation. The limit values of the gas sorption (Langmuir monolayer capacity) are typical for dry samples; they vary from 670 4000 g/m3 for methane and oxygen to 20 000 25 000 g/m3 for carbon dioxide. The linear distribution coefficients of gases between the solid and gas phases of organic soils (Henry constants) are 8 18 units for poorly sorbed gases (O2, CH4) and 40 60 units for CO2. The kinetics of the chemicophysical uptake of gases by the soil studied is linear in character and obeys the relaxation kinetic model of the first order with the corresponding relaxation constants, which vary from 1 h -1 in wet samples to 10 h -1 in dry samples.

  11. Polyamines and abiotic stress tolerance in plants

    PubMed Central

    Gill, Sarvajeet Singh

    2010-01-01

    Environmental stresses including climate change, especially global warming, are severely affecting plant growth and productivity worldwide. It has been estimated that two-thirds of the yield potential of major crops are routinely lost due to the unfavorable environmental factors. On the other hand, the world population is estimated to reach about 10 billion by 2050, which will witness serious food shortages. Therefore, crops with enhanced vigour and high tolerance to various environmental factors should be developed to feed the increasing world population. Maintaining crop yields under adverse environmental stresses is probably the major challenge facing modern agriculture where polyamines can play important role. Polyamines (PAs)(putrescine, spermidine and spermine) are group of phytohormone-like aliphatic amine natural compounds with aliphatic nitrogen structure and present in almost all living organisms including plants. Evidences showed that polyamines are involved in many physiological processes, such as cell growth and development and respond to stress tolerance to various environmental factors. In many cases the relationship of plant stress tolerance was noted with the production of conjugated and bound polyamines as well as stimulation of polyamine oxidation. Therefore, genetic manipulation of crop plants with genes encoding enzymes of polyamine biosynthetic pathways may provide better stress tolerance to crop plants. Furthermore, the exogenous application of PAs is also another option for increasing the stress tolerance potential in plants. Here, we have described the synthesis and role of various polyamines in abiotic stress tolerance in plants. PMID:20592804

  12. Effectiveness of U(VI) Bioremediation by DMRB in Dual Porosity Soils Explored via Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Rotter, B. E.; Barry, A.; Gerhard, J. I.

    2006-12-01

    The use of naturally present dissimilatory metal reducing bacteria (DMRB) is a promising bioremediation option for uranium-contaminated sites. DMRB activity is typically stimulated by introducing an organic carbon source into the subsurface, resulting in bioreduction of highly soluble U(VI) to immobile U(IV). While this process has been demonstrated in the laboratory for simple systems, it is important to understand how its effectiveness is influenced by a variety of natural and engineered processes expected in typical applications. Biogeochemical reactive transport models provide a valuable means for investigating the performance of and parameter sensitivities of these complex systems. A new one-dimensional model for DMRB bioreduction of U(VI) was developed in PHREEQC. The model includes multiple redox processes, U(VI) sorption, and both single and dual porosity domains. The model was applied to a variety of real-site parameterized scenarios in order to explore the impact of (i) modeling approaches, (ii) expected natural variability inherent in porous media systems, and (iii) engineering options for implementation. Examples of the first include diverse approaches to modeling active biomass (1st order vs. non-growth Monod vs. Monod with growth; multiple microbial communities vs. a single community). Examples of the second include diffusion-limited mass transfer between the advective flow region and the immobile micro-matrix region through variations in region porosities, bioreduction rates and mass transfer rate coefficients, as well as aquifer mineralogy. Examples of the third include organic carbon injection regimes (quantity and duration) and their impact on U(IV) reoxidation. These suites of simulations provide valuable insight into key system sensitivities that will guide further model development and upscaling to field scale.

  13. Particle Sizes in Saturn’s Rings from Diffraction Signals in Cassini UVIS Occultation Data

    NASA Astrophysics Data System (ADS)

    Becker, Tracy M.; Colwell, Joshua E.; Esposito, Larry W.; Attree, Nicholas O.; Murray, Carl D.

    2015-11-01

    Since its arrival at Saturn in 2004, the Cassini spacecraft has illuminated many aspects of the planet’s extensive ring system, including its vast range of particle sizes. Constraints on the particle size distribution are critical for understanding the evolution of the ring system. Our investigation focuses on modeling diffraction signals in occultation data from the Cassini Ultraviolet Imaging Spectrograph (UVIS) to measure the population of the smallest particles in Saturn’s rings.Occultation data from Cassini’s Radio Science Subsystem and the Visual and Infrared Mapping Spectrometer also provide measurements of the size distribution. The amount of light diffracted by the occulting particles is a reflection of the ratio of the wavelength of light and the radius of the particles. We can utilize the diffraction signals at different wavelengths measured by different instruments to describe the particle size distribution of Saturn’s rings.The UVIS wavelength bandpass, 51.2-180 nm, is the shortest of these instruments, making it most sensitive to the smallest particles. We model the diffraction signals detected in stellar occultation data at ring edges and find that Saturn’s outer A ring lacks any significant population of sub-mm particles, but the average size of the smallest particles decreases from ~1.5 cm at the Encke Gap to ~4 mm at the outer edge of the A ring. Diffraction spikes have also been identified at the edge of the B ring and at sharp edges of ringlets in the C ring and Cassini Division, suggestive of mm-sized particles throughout the rings. We analyze solar occultations by the F ring and sporadically detect diffracted light, indicating the population of sub-mm particles responsible for the diffraction is transient or spatially variable. Comparisons with images from the Cassini Imaging Science Subsystem suggest that these diffraction signals coincide with nearby collisional events in the F ring core. This may indicate that such events release

  14. Modeling of the Enceladus water vapor jets for interpreting UVIS star and solar occultation observations

    NASA Astrophysics Data System (ADS)

    Portyankina, Ganna; Esposito, Larry W.; Aye, Klaus-Michael; Hansen, Candice J.

    2015-11-01

    One of the most spectacular discoveries of the Cassini mission is jets emitting from the southern pole of Saturn’s moon Enceladus. The composition of the jets is water vapor and salty ice grains with traces of organic compounds. Jets, merging into a wide plume at a distance, are observed by multiple instruments on Cassini. Recent observations of the visible dust plume by the Cassini Imaging Science Subsystem (ISS) identified as many as 98 jet sources located along “tiger stripes” [Porco et al. 2014]. There is a recent controversy on the question if some of these jets are “optical illusion” caused by geometrical overlap of continuous source eruptions along the “tiger stripes” in the field of view of ISS [Spitale et al. 2015]. The Cassini’s Ultraviolet Imaging Spectrograph (UVIS) observed occultations of several stars and the Sun by the water vapor plume of Enceladus. During the solar occultation separate collimated gas jets were detected inside the background plume [Hansen et al., 2006 and 2011]. These observations directly provide data about water vapor column densities along the line of sight of the UVIS instrument and could help distinguish between the presence of only localized or also continuous sources. We use Monte Carlo simulations and Direct Simulation Monte Carlo (DSMC) to model the plume of Enceladus with multiple (or continuous) jet sources. The models account for molecular collisions, gravitational and Coriolis forces. The models result in the 3-D distribution of water vapor density and surface deposition patterns. Comparison between the simulation results and column densities derived from UVIS observations provide constraints on the physical characteristics of the plume and jets. The specific geometry of the UVIS observations helps to estimate the production rates and velocity distribution of the water molecules emitted by the individual jets.Hansen, C. J. et al., Science 311:1422-1425 (2006); Hansen, C. J. et al, GRL 38:L11202 (2011

  15. Sulfur isotopes as indicators of amended bacterial sulfate reduction processes influencing field scale uranium bioremediation.

    PubMed

    Druhan, Jennifer L; Conrad, Mark E; Williams, Kenneth H; N'Guessan, Lucie; Long, Philip E; Hubbard, Susan S

    2008-11-01

    Aqueous uranium (U(VI)) concentrations in a contaminated aquifer in Rifle Colorado have been successfully lowered through electron donor amended bioreduction. Samples collected during the acetate amendment experiment were analyzed for aqueous concentrations of Fe(ll), sulfate, sulfide, acetate, U(VI), and delta(34)S of sulfate and sulfide to explore the utility of sulfur isotopes as indicators of in situ acetate amended sulfate and uranium bioreduction processes. Enrichment of up to 7% per hundred in delta(34)S of sulfate in down-gradient monitoring wells indicates a transition to elevated bacterial sulfate reduction. A depletion in Fe(II), sulfate, and sulfide concentrations atthe height of sulfate reduction, along with an increase in the delta(34)S of sulfide to levels approaching the delta(34)S values of sulfate, indicates sulfate limited conditions concurrent with a rebound in U(VI) concentrations. Upon cessation of acetate amendment, sulfate and sulfide concentrations increased, while delta(34)S values of sulfide returned to less than -20% per hundred and sulfate delta(34)S decreased to near-background values, indicating lower levels of sulfate reduction accompanied by a corresponding drop in U(VI). Results indicate a transition between electron donor and sulfate-limited conditions at the height of sulfate reduction and suggest stability of biogenic FeS precipitates following the end of acetate amendment. PMID:19031870

  16. Sulfur Isotopes as Indicators of Amended Bacterial Sulfate Reduction Processes Influencing Field Scale Uranium Bioremediation

    SciTech Connect

    Druhan, Jennifer L.; Conrad, Mark E.; Williams, Kenneth H.; N'Guessan, A. Lucie; Long, Philip E.; Hubbard, Susan S.

    2008-11-01

    Aqueous uranium (U(VI)) concentrations in a contaminated aquifer in Rifle Colorado have been successfully lowered through electron donor amended bioreduction. Samples collected during the acetate amendment experiment were analyzed for aqueous concentrations of Fe(II), sulfate, sulfide, acetate, U(VI), and δ34S of sulfate and sulfide to explore the utility of sulfur isotopes as indicators of in situ acetate amended sulfate and uranium bioreduction processes. Enrichment of up to 7‰ in δ34S of sulfate in down-gradient monitoring wells indicates a transition to elevated bacterial sulfate reduction. A depletion in Fe(II), sulfate, and sulfide concentrations at the height of sulfate reduction, along with an increase in the δ34S of sulfide to levels approaching the d34S values of sulfate, indicates sulfate limited conditions concurrent with a rebound in U(VI) concentrations. Upon cessation of acetate amendment, sulfate and sulfide concentrations increased, while δ34S values of sulfide returned to less than -20‰ and sulfate δ34S decreased to near-background values, indicating lower levels of sulfate reduction accompanied by a corresponding drop in U(VI). Results indicate a transition between electron donor and sulfate-limited conditions at the height of sulfate reduction and suggest stability of biogenic FeS precipitates following the end of acetate amendment.

  17. Olivine Weathering: Abiotic Versus Biotic Processes as Possible Biosignatures

    NASA Technical Reports Server (NTRS)

    Longazo, T. G.; Wentworth, S. J.; McKay, D. S.; Southam, G.; Clemett, S. J.

    2001-01-01

    A preliminary study to determine how abiotic versus biotic processes affect the weathering of olivine crystals. Perhaps the differences between these weathering processes could be used as biosignatures. Additional information is contained in the original extended abstract.

  18. Abiotic stress responses in plant roots: a proteomics perspective

    PubMed Central

    Ghosh, Dipanjana; Xu, Jian

    2014-01-01

    Abiotic stress conditions adversely affect plant growth, resulting in significant decline in crop productivity. To mitigate and recover from the damaging effects of such adverse environmental conditions, plants have evolved various adaptive strategies at cellular and metabolic levels. Most of these strategies involve dynamic changes in protein abundance that can be best explored through proteomics. This review summarizes comparative proteomic studies conducted with roots of various plant species subjected to different abiotic stresses especially drought, salinity, flood, and cold. The main purpose of this article is to highlight and classify the protein level changes in abiotic stress response pathways specifically in plant roots. Shared as well as stressor-specific proteome signatures and adaptive mechanism(s) are simultaneously described. Such a comprehensive account will facilitate the design of genetic engineering strategies that enable the development of broad-spectrum abiotic stress-tolerant crops. PMID:24478786

  19. Circadian regulation of abiotic stress tolerance in plants

    PubMed Central

    Grundy, Jack; Stoker, Claire; Carré, Isabelle A.

    2015-01-01

    Extremes of temperatures, drought and salinity cause widespread crop losses throughout the world and impose severe limitations on the amount of land that can be used for agricultural purposes. Hence, there is an urgent need to develop crops that perform better under such abiotic stress conditions. Here, we discuss intriguing, recent evidence that circadian clock contributes to plants’ ability to tolerate different types of environmental stress, and to acclimate to them. The clock controls expression of a large fraction of abiotic stress-responsive genes, as well as biosynthesis and signaling downstream of stress response hormones. Conversely, abiotic stress results in altered expression and differential splicing of the clock genes, leading to altered oscillations of downstream stress-response pathways. We propose a range of mechanisms by which this intimate coupling between the circadian clock and environmental stress-response pathways may contribute to plant growth and survival under abiotic stress. PMID:26379680

  20. Roles of melatonin in abiotic stress resistance in plants.

    PubMed

    Zhang, Na; Sun, Qianqian; Zhang, Haijun; Cao, Yunyun; Weeda, Sarah; Ren, Shuxin; Guo, Yang-Dong

    2015-02-01

    In recent years melatonin has emerged as a research highlight in plant studies. Melatonin has different functions in many aspects of plant growth and development. The most frequently mentioned functions of melatonin are related to abiotic stresses such as drought, radiation, extreme temperature, and chemical stresses. This review mainly focuses on the regulatory effects of melatonin when plants face harsh environmental conditions. Evidence indicates that environmental stress can increase the level of endogenous melatonin in plants. Overexpression of the melatonin biosynthetic genes elevates melatonin levels in transgenic plants. The transgenic plants show enhanced tolerance to abiotic stresses. Exogenously applied melatonin can also improve the ability of plants to tolerate abiotic stresses. The mechanisms by which melatonin alleviates abiotic stresses are discussed. PMID:25124318

  1. Comparison of biotic and abiotic treatment approaches for co-mingled perchlorate, nitrate, and nitramine explosives in groundwater

    NASA Astrophysics Data System (ADS)

    Schaefer, C. E.; Fuller, M. E.; Condee, C. W.; Lowey, J. M.; Hatzinger, P. B.

    2007-01-01

    Biological and abiotic approaches for treating co-mingled perchlorate, nitrate, and nitramine explosives in groundwater were compared in microcosm and column studies. In microcosms, microscale zero-valent iron (mZVI), nanoscale zero-valent iron (nZVI), and nickel catalyzed the reduction of RDX and HMX from initial concentrations of 9 and 1 mg/L, respectively, to below detection (0.02 mg/L), within 2 h. The mZVI and nZVI also degraded nitrate (3 mg/L) to below 0.4 mg/L, but none of the metal catalysts were observed to appreciably reduce perchlorate (˜ 5 mg/L) in microcosms. Perchlorate losses were observed after approximately 2 months in columns of aquifer solids treated with mZVI, but this decline appears to be the result of biodegradation rather than abiotic reduction. An emulsified vegetable oil substrate was observed to effectively promote the biological reduction of nitrate, RDX and perchlorate in microcosms, and all four target contaminants in the flow-through columns. Nitrate and perchlorate were biodegraded most rapidly, followed by RDX and then HMX, although the rates of biological reduction for the nitramine explosives were appreciably slower than observed for mZVI or nickel. A model was developed to compare contaminant degradation mechanisms and rates between the biotic and abiotic treatments.

  2. Experimental and Modeling Study of Sorption-Retarded U(VI) Diffusion in a Hanford Silt/Clay Material

    NASA Astrophysics Data System (ADS)

    Bai, J.; Liu, C.; Ball, W. P.

    2008-12-01

    Two types of "inward-flux" diffusion cell systems immersed in finite- and infinite- volume liquid systems were designed to study U(VI) diffusion in a silt/clay size Hanford sediment material at pH 8.0 (±0.1) and in equilibrium with calcite solids and atmospheric CO2. U(VI) concentrations at the cell boundaries were monitored during the cell operation, and the spatial profiles of U(VI) concentrations in both the pore water and the solid phase in the cell media were measured at the end of the cell operation. Results show that while sorption equilibrium was maintained in the "infinite-volume" cell system, strong non-equilibrium occurred in the cells of the "finite-volume" systems, where desorption from solids near the cell-solution interface was important. Rate limitations to sorption and desorption were also independently measured in batch sorption and desorption experiments. A distributed first-order rate model was applied to model U(VI) sorption/desorption kinetics in the batch and the two types of diffusion cell systems. Sensitivity analysis on the modeling confirmed that local equilibrium of sorption was reasonably valid for the infinite-volume system, but less valid for the finite-volume case, presumably because of the greater importance of desorption, and/or the lower U(VI) in the finite-volume system. With proper accounting for non-equilibrium sorption, both types of cells provided good experimental measure of effective diffusion rates. The use of tritiated water (HTO) tracer provided independent measurement of the tortuosity factor, allowing calculation of molecular diffusion coefficients for the dominant U(VI) species, principally Ca2(UO2)(CO3)30 and Ca(UO2)(CO3)32-.

  3. Adsorption characteristics of U(VI) on Fe(III)Cr(III) (oxy)hydroxides synthesized at different temperatures.

    PubMed

    Ahn, Hyangsig; Jo, Ho Young; Lee, Young Jae; Kim, Geon-Young

    2016-07-01

    In this study, the adsorption behavior of U(VI) on (oxy)hydroxides synthesized at different temperatures (25 and 75 °C) was investigated. Four (oxy)hydroxides were synthesized by drying slurries of Fe(III) and Fe(III)Cr(III) (oxy)hydroxide in a vacuum desiccator (25 °C) or in an oven (75 °C). Batch adsorption tests were conducted using the (oxy)hydroxides thus synthesized and groundwater containing uranium ions. In general, the U(VI) removal fraction significantly increased with increasing pH from 3 to 5, remained constant with increasing pH from 5 to 9, and decreased at pH greater than 9, regardless of the type of (oxy)hydroxides and solid-to-liquid ratio. The effect of pH on the U(VI) removal fraction was more significant at a low solid-to-liquid ratio. The oven-dried Fe(III) (oxy)hydroxide exhibited a U(VI) removal fraction lower than that of the vacuum-dried one, whereas the oven-dried Fe(III)Cr(III) (oxy)hydroxide exhibited a U(VI) removal fraction higher than that exhibited by the vacuum-dried one. X-ray photoelectron spectroscopy (XPS) analysis results indicated that the difference in the U(VI) removal fraction is attributed to the dissolution and precipitation of the Fe(III) (oxy)hydroxide during oven drying and dehydration of the Fe(III)Cr(III) (oxy)hydroxide during oven drying. PMID:27060782

  4. Detection of Abiotic Methane in Terrestrial Continental Hydrothermal Systems: Implications for Methane on Mars

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Niles, Paul B.; Gibson, Everett K., Jr.; Romanek, Christopher S.; Zhang, Chuanlun L.; Bissada, Kadry K.

    2008-01-01

    The recent detection of methane in the Martian atmosphere and the possibility that its origin could be attributed to biological activity, have highlighted the importance of understanding the mechanisms of methane formation and its usefulness as a biomarker. Much debate has centered on the source of the methane in hydrothermal fluids, whether it is formed biologically by microorganisms, diagenetically through the decomposition of sedimentary organic matter, or inorganically via reduction of CO2 at high temperatures. Ongoing research has now shown that much of the methane present in sea-floor hydrothermal systems is probably formed through inorganic CO2 reduction processes at very high temperatures (greater than 400 C). Experimental results have indicated that methane might form inorganically at temperatures lower still, however these results remain controversial. Currently, methane in continental hydrothermal systems is thought to be formed mainly through the breakdown of sedimentary organic matter and carbon isotope equilibrium between CO2 and CH4 is thought to be rarely present if at all. Based on isotopic measurements of CO2 and CH4 in two continental hydrothermal systems, we suggest that carbon isotope equilibration exists at temperatures as low as 155 C. This would indicate that methane is forming through abiotic CO2 reduction at lower temperatures than previously thought and could bolster arguments for an abiotic origin of the methane detected in the martian atmosphere.

  5. Sulfidization of lepidocrocite and its effect on uranium phase distribution and reduction

    NASA Astrophysics Data System (ADS)

    Alexandratos, Vasso G.; Behrends, Thilo; Van Cappellen, Philippe

    2014-10-01

    Sulfidization of iron oxyhydroxides can be accompanied by a release of adsorbed uranium, thus enhancing the mobility of uranium in systems undergoing a shift in redox conditions. We investigated the phase distribution and redox state of uranium in batch experiments, in which lepidocrocite with adsorbed U(VI) was reacted with sulfide. The amount of added sulfide was varied in the experiments performed, at pH 8 and ionic strength of 0.1 M. Sulfide, when not added in excess, was removed from solution within less than 1 h of reaction time. Consumption of dissolved sulfide was accompanied by reduction of Fe(III) and formation of iron sulfide. Each addition of sulfide led to an instantaneous release of uranium into solution. This release is most likely caused by the exchange of hydroxide groups at the lepidocrocite surface by thiol groups which have a lower tendency to bind uranium. Along with the consumption of dissolved sulfide, part of the released uranium became reassociated with the solid phase. This can be explained by a reversal of the ligand exchange process at the solid surfaces. However, steady state concentrations of dissolved uranium remained higher than before sulfide addition, indicating that the product of lepidocrocite sulfidization has a lower affinity for uranium than the starting material. Reduction of U(VI) also contributed to the transfer of dissolved uranium back to the solid phase. X-ray absorption spectroscopy revealed that reduction of U(VI) occurred in all experiments. The extent of U(VI) reduction depended on sulfide addition, however, formation of UO2 occurred within a period of 48 h only when sulfide was added in excess. This suggests that the presence of dissolved sulfide is a prerequisite for fast reduction of U(VI) and formation of UO2. This would imply that the fast reaction of lepidocrocite with sulfide outcompetes reduction of U(VI) and, by this, kinetically inhibits the thermodynamically more favorable reduction of U(VI) to uraninite

  6. Surface complexation modeling of U(VI) adsorption by aquifer sediments from a former mill tailings site at Rifle, Colorado

    SciTech Connect

    Hyun, S. P.; Fox, Patricia M.; Davis, James A.; Campbell, Kate M.; Hayes, Kim F.; Long, Philip E.

    2009-12-15

    U(VI) adsorption by two aquifer sediment samples was studied under oxic conditions as a function of pH, U(VI), Ca, and dissolved carbonate concentration. Background-A (BKG-A) sediment was collected upstream of a former uranium mill-tailings site at Rifle, Colorado, and Little Rusty Composite (LRC) was collected on site but with low U contamination. Batch adsorption experiments were performed using artificial groundwater solutions prepared to simulate the field groundwater composition in equilibrium with specific partial pressures of carbon dioxide. To encompass the geochemical conditions of the alluvial aquifer at the site, the experimental conditions ranged from 6.8×10-8 to 10-5 M in [U(VI)]tot, 7.2 to 8.0 in pH, 3.0×10-3 to 6.0×10-3 M in [Ca2+], and 0.05 to 2.6% in partial pressure of carbon dioxide. The sediment was extracted with a dilute bicarbonate/carbonate solution to determine the background labile U(VI) already present in the sediment. A semi-empirical surface complexation model was developed to describe U(VI) adsorption using FITEQL4. The non-electrostatic, generalized composite surface complexation model successfully simulated U(VI) adsorption over the range of groundwater conditions at the Old Rifle site, using a two-site, two-reaction fitting scheme. The sensitivity of model parameters to background U(VI) concentration on the two samples was evaluated. U(VI) adsorption experiments were also performed using a sand fraction of BKG-A separated through repeated sonication and wet-sieving. Surface area normalized Kd for the bulk and sand fraction indicated similar reactivity for both. The surface complexation model developed in this work is expected to contribute to the prediction of fate and transport of U(VI) in the alluvial aquifer at the Old Rifle site, and to assist in the simulation of biostimulation field experiments performed at the site.

  7. Contributions of Fe Minerals to Abiotic Dechlorination

    EPA Science Inventory

    Most applications of enhanced in situ bioremediation are based on biological reductive dechlorination. Anaerobic metabolism can also produce reactive minerals that allow for in situ biogeochemical transformation of chlorinated organic contaminants such as PCE, TCE, and cis-DCE. ...

  8. Cassini UVIS Results from Occultations of Stars by Saturn's Icy Moons

    NASA Astrophysics Data System (ADS)

    Hansen, Candice; Hendrix, A.

    2009-09-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) has observed occultations of stars by Enceladus, Tethys, Dione, Rhea and Iapetus. Stellar occultations are a sensitive probe for gases and have been extremely valuable for understanding the composition (predominantly water), flux and structure of Enceladus’ plume [1, 2]. More recently we have been looking for trace gases in the plume such as ethylene and methanol. A much-anticipated solar occultation will be observed next year to quantify the existence and amount of N2. At Tethys and Iapetus upper limits are set for the column densities of local volatiles (water, O2, CO2, and CO), all of which have absorption features at far ultraviolet wavelengths. The Rhea occultation data, in addition to setting upper limits on surrounding gases, have been analyzed to look for the presence of the debris disk reported by Cassini's MIMI instrument [3]. No material was detected with 2 sigma certainty, however the low optical depth of the material suggests that the probability of its detection by UVIS is < 1 in 1000. An occultation of epsilon Canis Majoris by Dione will take place in September 2009. Results of that occultation will be presented. This work was partially supported by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. [1] Hansen, C. J. et al., Science 311:1422 (2006). [2] Hansen, C. J. et al., Nature 456 (2008). [3] Jones, G. H. et al., Science 319:1380 (2008).

  9. WFC3: Understanding and Mitigating UVIS Charge Transfer Efficiency Losses and IR Persistence Effects

    NASA Astrophysics Data System (ADS)

    Baggett, Sylvia M.; Anderson, J.; Long, K. S.; MacKenty, J. W.; Noeske, K.; Biretta, J. A.; WFC3 Team

    2014-01-01

    A panchromatic instrument, Wide Field Camera 3 (WFC3) contains a UVIS channel with a 4096x4096 pixel e2v CCD array as well as an IR channel with a 1014x1014 Rockwell Scientific HgCdTe focal plane array (FPA). Both detectors have been performing well on-orbit since the installation of the instrument in the Hubble Space Telescope (HST) in May 2009. However, as expected, the harsh low-earth orbit environment has been damaging the UVIS CCDs, resulting in a progressive loss of charge transfer efficiency (CTE) over time. We summarize the magnitude of the CTE losses, the effect on science data, and the pre- and post-observation mitigation options available. The IR FPA does not suffer from accumulating radiation damage but it does exhibit persistence i.e. an after-glow from sources in previous exposures, an anomaly commonly seen in these types of IR arrays. We summarize the characteristics of persistence in WFC3, suggest methods for reducing the effects during observation planning, and describe the calibration products which are available via the Mikulski Archive for Space Telescopes (MAST) for addressing persistence in IR science data.

  10. A New Statistical Convection Model Derived from SuperDARN and Polar UVI Observations

    NASA Astrophysics Data System (ADS)

    Ruohoniemi, J. M.; Greenwald, R. A.; Liou, K.

    2001-12-01

    Since the inception of the SuperDARN concept of coordinated multi-radar observations of ionospheric convection in 1993 a vast database of primary measurements has been accumulated. Following on earlier work with data collected from the Goose Bay radar in the pre-SuperDARN era, we have applied this database to the statistical characterization of the global pattern of high-latitude convection. For a subset of the measurements it is possible to order the velocity according to the geometry of the UVI auroral oval as this is inferred from observations with the Polar UVI instrument. In this talk we will review the derivation of the new convection model and discuss the results of sorting by solar wind and auroral geometry. We find that certain features, obscured in the usual bin-averaging approach, are more pronounced when proper account is taken of the variability of structures in the convection pattern. We compare with previous work and discuss the application of the new model in situations where information on the auroral geometry is present, absent, or can be reasonably inferred from proxy observations.

  11. A New Statistical Convection Model Derived from SuperDARN and Polar UVI Observations

    NASA Astrophysics Data System (ADS)

    Ruohoniemi, J. M.; Greenwald, R. A.; Liou, K.; Shepherd, S. G.

    2002-05-01

    Since the inception of the SuperDARN concept of coordinated multi-radar observations of ionospheric convection in 1993 a vast database of primary measurements has been accumulated. Following on earlier work with data collected from the Goose Bay radar in the pre-SuperDARN era, we have applied this database to the statistical characterization of the global pattern of high-latitude convection. For a subset of the measurements it is possible to order the velocity according to the geometry of the UVI auroral oval as this is inferred from observations with the Polar UVI instrument. In this talk we will review the derivation of the new convection model and discuss the results of sorting by solar wind and auroral geometry. We find that certain features, obscured in the usual bin-averaging approach, are more pronounced when proper account is taken of the variability of structures in the convection pattern. We compare with previous work and discuss the application of the new model in situations where information on the auroral geometry is present, absent, or can be reasonably inferred from proxy observations.

  12. Cassini UVIS Observations of the Io Plasma Torus. 4; Modeling Temporal and Azimuthal Variability

    NASA Technical Reports Server (NTRS)

    Steffl, A. J.; Delamere, P. A.; Bagenal, F.

    2008-01-01

    In this fourth paper in a series, we present a model of the remarkable temporal and azimuthal variability of the Io plasma torus observed during the Cassini encounter with Jupiter. Over a period of three months, the Cassini Ultraviolet Imaging Spectrograph (UVIS) observed a dramatic variaton in the average torus composition. Superimposed on this long-term variation, is a 10.07-hour periodicity caused by azimuthal variation in plasma composition subcorotating relative to System III longitude. Quite surprisingly, the amplitude of the azimuthal variation appears to be modulated at the beat frequency between the System III period and the observed 10.07-hour period. Previously, we have successfully modeled the months-long compositional change by supposing a factor of three increase in the amount of material supplied to Io's extended neutral clouds. Here, we extend our torus chemistry model to include an azimuthal dimension. We postulate the existence of two azimuthal variations in the number of superthermal electrons in the torus: a primary variation that subcorotates with a period of 10.07 hours and a secondary variation that remains fixed in System III longitude. Using these two hot electron variations, our model can reproduce the observed temporal and azimuthal variations observed by Cassini UVIS.

  13. Spectroscopic studies of U(VI) sorption at the kaolinite-water interface. Final report

    SciTech Connect

    Thompson, H.A.; Parks, G.A.; Brown, G.E. Jr.

    1994-06-01

    Efficient use of U as a resource and safe handling, recycling and disposal of U-containing wastes require an understanding of the factors controlling the fate of U, where fate refers to the destination of U, typically expressed as an environmental medium or a process phase. The sorption process constitutes a change in elemental fate. Partitioning of an element from solution to a solid phase, or sorption, can be divided into three broad categories: adsorption, surface precipitation, and absorption. Extended X-ray absorption fine structure (EXAFS), a type of X-ray absorption spectroscopy (XAS), offers the possibility for distinguishing among different modes of sorption by characterizing the atomic environment of the sorbing element. In this study, the authors use EXAFS to determine the structure of U(VI) sorption complexes at the kaolinite-water interface. In Chapter One, they present an overview of selected aspects of U structural chemistry as a basis for considering the structural environment of U at the solid-water interface. To evaluate the utility of XAS for characterization of the structural environment of U(VI) at the solid-water interface, they have carried out an in-depth analysis of XAS data from U(VI)-containing solid and solution model compounds, which they describe in Chapter Two. In Chapter three, they consider sorption of U by kaolinite as a means of effecting the removal of U from surface collection pond waters on the Rocky Flats Plant site in northern Colorado.

  14. Molecular nitrogen and methane density retrievals from Cassini UVIS dayglow observations of Titan's upper atmosphere

    NASA Astrophysics Data System (ADS)

    Stevens, Michael H.; Evans, J. Scott; Lumpe, Jerry; Westlake, Joseph H.; Ajello, Joseph M.; Bradley, E. Todd; Esposito, Larry W.

    2015-02-01

    We retrieve number densities of molecular nitrogen (N2) and methane (CH4) from Titan's upper atmosphere using the UV dayglow. We use Cassini Ultraviolet Imaging Spectrograph (UVIS) limb observations from 800 to 1300 km of the N I 1493 Å and N II 1085 Å multiplets, both produced directly from photofragmentation of N2. UVIS N2 and CH4 densities are in agreement with measurements from Cassini's Ion Neutral Mass Spectrometer (INMS) from the same flyby if INMS densities are scaled up by a factor of 3.0 as reported in previous studies. Analysis of three Cassini flybys of Titan shows that (1) the CH4 homopause on Titan is between 900 and 1100 km, (2) upper atmospheric temperatures vary by less than 10 K over 6 h at the same geographic location and (3) from 1100 to 1700 local solar time temperatures also vary by less than 10 K. The capability of retrieving the global-scale composition from these data complements existing techniques and significantly advances the study of upper atmospheric variability at Titan and for any other atmosphere with a detectable UV dayglow.

  15. The Composition and Structure of Enceladus' Plume from a Cassini UVIS Observation of a Solar Occultation

    NASA Astrophysics Data System (ADS)

    Hansen, C. J.; Shemansky, D. E.; Esposito, L. W.; Stewart, I.; Hendrix, A. R.

    2010-12-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed an occultation of the sun by Enceladus’ water vapor plume on May 18, 2010. UVIS used its extreme ultraviolet (EUV) channel for this new observation, to detect absorptions in the wavelength range 55 to 110 nm. Molecular nitrogen and water vapor have absorptions in this range. The N2 b(3,0) line is at 97.2 nm, extinguishing the solar H Lyman gamma emission. Cassini’s Ion and Neutral Mass Spectrometer (INMS) detected a species with an atomic mass of 28 amu, which could be CO, C2H4 or N2 [1, 2]. Definitive UVIS detection of N2 was important to clear up this ambiguity, and this was an important goal of the observation, as the presence or lack of N2 is key to models of the geochemistry in the interior [3, 4, 5]. UVIS did not detect N2 and we set an upper limit for the column density of 3 x 10^13 cm^-2. The absorption features in the spectrum are best fit by a water vapor column density of 0.9 x 10^16 cm^-2. This column density is in family with previous UVIS measurements from stellar occultations in 2005 and 2007 at far ultraviolet wavelengths, suggesting that Enceladus’ activity has been stable for the last 5 years [6, 7]. We used fluctuations in the signal to probe the structure of the gas jets again, as was analyzed in the 2007 occultation of zeta Orionis [7]. Gas jets are correlated to the dust jets detected by Cassini’s Imaging Science Subsystem [8]. The path of the sun cut through the jets horizontally at an altitude above the limb of ~15 km at the closest point. The resolution of the solar occultation is higher than the stellar occultation, and collimation of the gas jets observed in the solar occultation is greater than estimated in 2007. The observed collimation allows us to derive a mach number of ~4 for the ratio of the vertical velocity in the jet to the thermal velocity of the plume gas. The new opportunity afforded by this solar occultation is used to further model the structure and

  16. Incorporation of Np(V) and U(VI) in carbonate and sulfate minerals crystallized from aqueous solution

    NASA Astrophysics Data System (ADS)

    Balboni, Enrica; Morrison, Jessica M.; Wang, Zheming; Engelhard, Mark H.; Burns, Peter C.

    2015-02-01

    The neptunyl Np(V)O2+ and uranyl U(VI)O22+ ions are soluble in groundwater, although their interaction with minerals in the subsurface may impact their mobility. One mechanism for the immobilization of actinyl ions in the subsurface is co-precipitation in low-temperature minerals that form naturally, or that are induced to form as part of a remediation strategy. Important differences in the crystal-chemical behavior of the Np(V) neptunyl and U(VI) uranyl ions suggest their behavior towards incorporation into growing crystals may differ significantly. Using a selection of low-temperature minerals synthesized in aqueous systems under ambient conditions, this study examines the factors that impact the structural incorporation of the Np(V) neptunyl and U(VI) uranyl ions in carbonate and sulfate minerals. Calcite (CaCO3), aragonite (CaCO3), gypsum (CaSO4·2H2O), strontianite (SrCO3), cerussite (PbCO3), celestine (SrSO4), and anglesite (PbSO4) were synthesized from aqueous solutions containing either 400-1000 ppm of U(VI) or Np(V) relative to the divalent cation present in the system. The synthetic products were investigated by inductively coupled plasma mass spectrometry, luminescence and time resolved luminescence spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. Amongst the carbonate minerals, calcite significantly favors Np(V) incorporation over U(VI). U(VI) and Np(V) are incorporated in aragonite and strontianite in similar amounts, whereas cerussite did not incorporate either U(VI) or Np(V) under the synthesis conditions. The sulfate minerals weakly interact with the actinyl ions, relative to the carbonate minerals. Incorporation of U(VI) and Np(V) in celestine was observed at the level of a few tens of ppm; anglesite and gypsum did not incorporate detectable U(VI) or Np(V). Luminescence spectra of the uranyl incorporated in aragonite and strontianite are consistent with a uranyl unit coordinated by three bidentate CO32- groups

  17. Coupling microbial catabolic actions with abiotic redox processes: a new recipe for persistent organic pollutant (POP) removal.

    PubMed

    Jeon, Jong-Rok; Murugesan, Kumarasamy; Nam, In-Hyun; Chang, Yoon-Seok

    2013-01-01

    The continuous release of toxic persistent organic pollutants (POPs) into the environment has raised a need for effective cleanup methods. The tremendous natural diversity of microbial catabolic mechanisms suggests that catabolic routes may be applied to the remediation of POP-contaminated fields. A large number of the recalcitrant xenobiotics have been shown to be removable via the natural catabolic mechanisms of microbes, and detailed biochemical studies of the catabolic methods, together with the development of sophisticated genetic engineering, have led to the use of synthetic microbes for the bioremediation of POPs. However, the steric effects of substituted halogen moieties, microbe toxicity, and the low bioavailability of POPs still deteriorate the efficiency of removal strategies based on natural and synthetic catabolic mechanisms. Recently, abiotic redox processes that induce rapid reductive dehalogenation, hydroxyl radical-based oxidation, or electron shuttling have been reasonably coupled with microbial catabolic actions, thereby compensating for the drawbacks of biotic processes in POP removal. In this review, we first compare the pros and cons of individual methodologies (i.e., the natural and synthetic catabolism of microbes and the abiotic processes involving zero-valent irons, advanced oxidation processes, and small organic stimulants) for POP removal. We then highlight recent trends in coupling the biotic-abiotic methodologies and discuss how the processes are both feasible and superior to individual methodologies for POP cleanup. Cost-effective and environmentally sustainable abiotic redox actions could enhance the microbial bioremediation potential for POPs. PMID:23153459

  18. Polyamines and abiotic stress in plants: a complex relationship.

    PubMed

    Minocha, Rakesh; Majumdar, Rajtilak; Minocha, Subhash C

    2014-01-01

    The physiological relationship between abiotic stress in plants and polyamines was reported more than 40 years ago. Ever since there has been a debate as to whether increased polyamines protect plants against abiotic stress (e.g., due to their ability to deal with oxidative radicals) or cause damage to them (perhaps due to hydrogen peroxide produced by their catabolism). The observation that cellular polyamines are typically elevated in plants under both short-term as well as long-term abiotic stress conditions is consistent with the possibility of their dual effects, i.e., being protectors from as well as perpetrators of stress damage to the cells. The observed increase in tolerance of plants to abiotic stress when their cellular contents are elevated by either exogenous treatment with polyamines or through genetic engineering with genes encoding polyamine biosynthetic enzymes is indicative of a protective role for them. However, through their catabolic production of hydrogen peroxide and acrolein, both strong oxidizers, they can potentially be the cause of cellular harm during stress. In fact, somewhat enigmatic but strong positive relationship between abiotic stress and foliar polyamines has been proposed as a potential biochemical marker of persistent environmental stress in forest trees in which phenotypic symptoms of stress are not yet visible. Such markers may help forewarn forest managers to undertake amelioration strategies before the appearance of visual symptoms of stress and damage at which stage it is often too late for implementing strategies for stress remediation and reversal of damage. This review provides a comprehensive and critical evaluation of the published literature on interactions between abiotic stress and polyamines in plants, and examines the experimental strategies used to understand the functional significance of this relationship with the aim of improving plant productivity, especially under conditions of abiotic stress. PMID:24847338

  19. Polyamines and abiotic stress in plants: a complex relationship1

    PubMed Central

    Minocha, Rakesh; Majumdar, Rajtilak; Minocha, Subhash C.

    2014-01-01

    The physiological relationship between abiotic stress in plants and polyamines was reported more than 40 years ago. Ever since there has been a debate as to whether increased polyamines protect plants against abiotic stress (e.g., due to their ability to deal with oxidative radicals) or cause damage to them (perhaps due to hydrogen peroxide produced by their catabolism). The observation that cellular polyamines are typically elevated in plants under both short-term as well as long-term abiotic stress conditions is consistent with the possibility of their dual effects, i.e., being protectors from as well as perpetrators of stress damage to the cells. The observed increase in tolerance of plants to abiotic stress when their cellular contents are elevated by either exogenous treatment with polyamines or through genetic engineering with genes encoding polyamine biosynthetic enzymes is indicative of a protective role for them. However, through their catabolic production of hydrogen peroxide and acrolein, both strong oxidizers, they can potentially be the cause of cellular harm during stress. In fact, somewhat enigmatic but strong positive relationship between abiotic stress and foliar polyamines has been proposed as a potential biochemical marker of persistent environmental stress in forest trees in which phenotypic symptoms of stress are not yet visible. Such markers may help forewarn forest managers to undertake amelioration strategies before the appearance of visual symptoms of stress and damage at which stage it is often too late for implementing strategies for stress remediation and reversal of damage. This review provides a comprehensive and critical evaluation of the published literature on interactions between abiotic stress and polyamines in plants, and examines the experimental strategies used to understand the functional significance of this relationship with the aim of improving plant productivity, especially under conditions of abiotic stress. PMID:24847338

  20. Anaerobic abiotic transformations of cis-1,2-dichloroethene in fractured sandstone.

    PubMed

    Darlington, Ramona; Lehmicke, Leo G; Andrachek, Richard G; Freedman, David L

    2013-02-01

    A fractured sandstone aquifer at an industrial site is contaminated with trichloroethene to depths greater than 244 m. Field data indicate that trichloroethene is undergoing reduction to cis-1,2-dichloroethene (cDCE); vinyl chloride and ethene are present at much lower concentrations. Transformation of cDCE by pathways other than reductive dechlorination (abiotic and/or biotic) is of interest. Pyrite, which has been linked to abiotic transformation of chlorinated ethenes, is present at varying levels in the sandstone. To evaluate the possible role of pyrite in transforming cDCE, microcosms were prepared with groundwater, ~40 mg L(-1) cDCE+[(14)C]cDCE, and crushed solids (pure pyrite, pyrite-rich sandstone, or typical sandstone). During 120 d of incubation, the highest level of cDCE transformation occurred with typical sandstone (11-14% (14)CO(2), 1-3% (14)C-soluble products), followed by pyrite-rich sandstone (2-4% (14)CO(2), 1% (14)C-soluble products) and even lesser amounts with pure pyrite. These results indicate pyrite is not likely the mineral involved in transforming cDCE. A separate experiment using only typical sandstone compared the rate of cDCE transformation in non-sterilized, autoclaved, and propylene-oxide sterilized treatments, with pseudo-first order rate constants of 8.7, 5.4, and 1.0 yr(-1), respectively; however, transformation stopped after several months of incubation. Autoclaving increased the volume of pores, adsorption pore diameter, and surface area in comparison to non-sterilized typical sandstone. Nevertheless, autoclaving was less disruptive than chemical sterilization. The results provide definitive experimental evidence that cDCE undergoes anaerobic abiotic and biotic transformation in typical sandstone, with formation of CO(2) and soluble products. PMID:23102697

  1. Abiotic Stresses Downregulate Key Genes Involved in Nitrogen Uptake and Assimilation in Brassica juncea L.

    PubMed Central

    Goel, Parul; Singh, Anil Kumar

    2015-01-01

    Abiotic stresses such as salinity, drought and extreme temperatures affect nitrogen (N) uptake and assimilation in plants. However, little is known about the regulation of N pathway genes at transcriptional level under abiotic stress conditions in Brassica juncea. In the present work, genes encoding nitrate transporters (NRT), ammonium transporters (AMT), nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT), glutamate dehydrogenase (GDH), asparagines synthetase (ASN) were cloned from Brassica juncea L. var. Varuna. The deduced protein sequences were analyzed to predict their subcellular localization, which confirmed localization of all the proteins in their respective cellular organelles. The protein sequences were also subjected to conserved domain identification, which confirmed presence of characteristic domains in all the proteins, indicating their putative functions. Moreover, expression of these genes was studied after 1h and 24h of salt (150 mM NaCl), osmotic (250 mM Mannitol), cold (4°C) and heat (42°C) stresses. Most of the genes encoding nitrate transporters and enzymes responsible for N assimilation and remobilization were found to be downregulated under abiotic stresses. The expression of BjAMT1.2, BjAMT2, BjGS1.1, BjGDH1 and BjASN2 was downregulated after 1hr, while expression of BjNRT1.1, BjNRT2.1, BjNiR1, BjAMT2, BjGDH1 and BjASN2 was downregulated after 24h of all the stress treatments. However, expression of BjNRT1.1, BjNRT1.5 and BjGDH2 was upregulated after 1h of all stress treatments, while no gene was found to be upregulated after 24h of stress treatments, commonly. These observations indicate that expression of most of the genes is adversely affected under abiotic stress conditions, particularly under prolonged stress exposure (24h), which may be one of the reasons of reduction in plant growth and development under abiotic stresses. PMID:26605918

  2. Solubility data for U(VI) hydroxide and Np(IV) hydrous oxide: application of MCC-3 methodology

    SciTech Connect

    Krupka, K.M.; Rai, D.; Fulton, R.W.; Strickert, R.G.

    1985-01-01

    Experiments based on a modified MCC-3S test method were conducted to investigate the solubility of U(VI) hydroxide (the mineral schoepite) and Np(IV) hydrous oxide at ambient temperature. The solubility of U(VI) hydroxide was investigated in carbonate-free, oxidizing aqueous solutions in the pH range of 3 to 11. The measured concentrations of dissolved U confirm the amphoteric behavior of U(VI) hydroxide solid and the importance of anionic U(VI) solids under basic pH conditions. The effect of fluoride complexation on the solubility of Np(IV) hydrous oxide was studied in carbonate-free, near-neutral to alkaline solutions that contained 100 ppm total F. For solutions in which sodium dithionite (Na2S2O4) and metallic Fe were used as reducing agents, the addition of 100 ppm F had no measurable effect on the solubility of Np(IV) hydrous oxide. 20 references, 1 figure.

  3. Bioreduction of U(VI) in groundwater under anoxic conditions from a decommissioned in situ leaching uranium mine.

    PubMed

    Ding, De-xin; Li, Shi-mi; Hu, Nan; Xu, Fei; Li, Guang-yue; Wang, Yong-dong

    2015-04-01

    To determine whether the U(VI) in groundwater under anoxic conditions at a decommissioned in situ leaching (ISL) uranium mine could be bioreduced, groundwater samples containing suspended sediments were taken from the mine, experimental setup was fabricated, and the jar containing the groundwater in the setup was amended with ethanol and incubated under anoxic conditions. The variations of pH, chemical oxygen demand, nitrate, sulfate, U(VI), and dissolved oxygen (DO) concentrations were monitored during the incubation. U(VI) concentration dropped to 0.043 mg/L when the stimulated microorganisms were active, and it then increased to 0.835 mg/L within 10 days after the metabolism of the stimulated microorganisms was inhibited. The DO variation was observed in the amended jar during the incubation, and the metabolism of the stimulated microorganisms was found to affect the DO concentration. Firmicutes were found to be dominant in the sediments in the amended jar through the 16S rRNA pyrosequencing. The results indicate that it is possible to bioreduce U(VI) in the groundwater under anoxic conditions at the decommissioned ISL uranium mine by adding carbon source into it without removing the oxygen from it. PMID:25341364

  4. Effects of antagonist of retinoid X receptor (UVI3003) on morphology and gene profile of Xenopus tropicalis embryos.

    PubMed

    Zhu, Jingmin; Shi, Huahong; Zhu, Pan; Hu, Lingling; Wu, Lijiao; Yang, Yi; Rotchell, Jeanette M

    2014-07-01

    We exposed Xenopus tropicalis embryos to a selective antagonist of retinoid X receptor (UVI3003). UVI3003 induced multiple malformations at the concentrations of 200-1000 μg/L after 48 h exposure. The most prominent malformations affected brains, eyes, cement gland and fins. UVI3003 also induced variable and divergent malformations at 250-1500 μg/L after 0-24 and 24-48 h exposure. Microarray analysis showed that seven genes (rps15, serp2, fmr1, cyp2e1, lrrc9, ugtla6 and LOC100490188) were differentially regulated in all three treatment groups after 0-24h exposure. The most significantly affected pathway was galactose metabolism. In 24-48 h exposure groups, 18 genes were differentially regulated, mainly comprising components of the PPAR signaling pathway. These results suggested that UVI3003 is teratogenic in amphibian embryos. Differential gene expression suggests that galactose metabolism and PPAR signaling pathways may provide underlying mechanistic detail accounting for the observed malformations. PMID:24950139

  5. Influence of Calcite Solids and Dissolved Calcium on U(VI) Sorption and Desorption in Hanford Subsurface Sediments

    SciTech Connect

    Dong, Wenming; Ball, William P.; Stone, Alan T.; Bai, Jing; Liu, Chongxuan; Wang, Zheming

    2004-03-29

    We have investigated U(VI) sorption and desorption with batch experiments conducted on core samples from the Hanford, WA, site as well as on sub-fractions of these materials and laboratory-grade calcite. In these studies, [U(VI)] was varied between 10- 7 and 10-5 and pH between 7.2 to 10, at constant I (=0.05) and constant PCO2 (10-3.5 atm), using water that was saturated with respect to calcite. A carbonate-free (acetic acid- treated) fraction of silt/clay material showed higher sorption than untreated material, suggesting that carbonates block access to higher affinity sites. Of particular interest was that U(VI) sorption on untreated material was maximum at pH=8.4, with substantially less sorption at lower and higher pH and in contrast to results from calcite free studies, which show strong sorption at pH {approx} 5 to 8. U(VI) speciation results suggest that aqueous-phase Ca2UO2(CO3)3 was the source of the otherwise unexpectedly low sorption at pH <8.4.

  6. The interactive biotic and abiotic processes of DDT transformation under dissimilatory iron-reducing conditions.

    PubMed

    Jin, Xin; Wang, Fang; Gu, Chenggang; Yang, Xinglun; Kengara, Fredrick O; Bian, Yongrong; Song, Yang; Jiang, Xin

    2015-11-01

    The objective of the study was to elucidate the biotic and abiotic processes under dissimilatory iron reducing conditions involved in reductive dechlorination and iron reduction. DDT transformation was investigated in cultures of Shewanella putrefaciens 200 with/without α-FeOOH. A modified first-order kinetics model was developed and described DDT transformation well. Both the α-FeOOH reduction rate and the dechlorination rate of DDT were positively correlated to the biomass. Addition of α-FeOOH enhanced reductive dechlorination of DDT by favoring the cell survival and generating Fe(II) which was absorbed on the surface of bacteria and iron oxide. 92% of the absorbed Fe(II) was Na-acetate (1M) extractable. However, α-FeOOH also played a negative role of competing for electrons as reflected by the dechlorination rate of DDT was inhibited when increasing the α-FeOOH from 1 g L(-1) to 5 g L(-1). DDT was measured to be toxic to S. putrefaciens 200. The metabolites DDD, DDE and DDMU were recalcitrant to S. putrefaciens 200. The results suggested that iron oxide was not the key factor to promote the dissipation of DDX (DDT and the metabolites), whereas the one-electron reduction potential (E1) of certain organochlorines is the main factor and that the E1 higher than the threshold of the reductive driving forces of DIRB probably ensures the occur of reductive dechlorination. PMID:26025430

  7. Low temperature equilibrium isotope fractionation and isotope exchange kinetics between U(IV) and U(VI)

    NASA Astrophysics Data System (ADS)

    Wang, Xiangli; Johnson, Thomas M.; Lundstrom, Craig C.

    2015-06-01

    Measurements of the uranium (U) isotope ratio 238U/235U provide an emerging redox proxy in environmental and paleoredox studies, but many key parameters concerning U isotope fractionation are still poorly constrained. Here we report the equilibrium isotopic fractionation between dissolved U(IV) and dissolved U(VI), and rates of isotope exchange between solid-phase U(IV) and dissolved U(VI). We conducted one experiment at high concentration [35 mM U(IV) and 32 mM U(VI)] and low pH (0.2) in hydrochloric acid media at room temperature to determine the equilibrium isotopic fractionation between dissolved U(IV) and dissolved U(VI). Isotopic equilibrium was reached in about 19 days under such experimental conditions. The equilibrium isotope fractionation was determined to be 1.64 ± 0.16‰, with U(IV) being enriched in 238U relative to U(VI). Applicability of the determined equilibrium fractionation is discussed. We also conducted a set of experiments to determine isotopic exchange rates between dissolved U(VI) and nanouraninite U(IV) under conditions closer to those in natural system, with lower concentrations and neutral pH. The exchange rate was found to conform to the rate law R = k[U(VI)]adsorbed, in which R is the isotopic exchange rate (μM day-1); k is the rate constant determined to be 0.21 day-1; and [U(VI)]adsorbed is the concentration of U(VI) adsorbed to nanouraninite (μM). Our results, combined with consideration of the variables controlling U(VI)-U(IV) contact in natural settings, indicate that the timescale for significant isotope equilibration varies depending on environmental conditions, mostly uranium concentrations. In natural uncontaminated sediments with low uranium concentrations, equilibration is expected to occur on a timescale of hundreds to thousands of years. In contrast, in U-contaminated aquifers with high U concentrations, significant equilibration could occur on timescales of weeks to years.

  8. Cassini UVIS Solar Zenith Angle Studies of Titan Dayglow Based on N2 High Resolution Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ajello, Joseph; West, Robert; Holsclaw, Greg; Royer, Emilie; Heays, Alan; Bradley, Todd; Stevens, Michael

    2014-11-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed photon emissions of Titan’s day and night limb-airglow on multiple occasions, including during an eclipse observation. On one occasion the UVIS made a Solar Zenith Angle (SZA) study of the Titan limb dayglow (2011 DOY 171) from about 70 to 95 degrees SZA. The UV intensity variation observations of the N2 photoelectron excited spectral features from the EUV (563-118.2 nm) and FUV (111.5-191.2nm) sub-systems followed a Chapman function. For other observations at night on the limb, the emission features are much weaker in intensity. Beyond 120 deg SZA, when the upper atmosphere of Titan below 1200 km is in total XUV darkness, there is an indication of weak and sporadic night side UV airglow emission excited by magnetosphere plasma collisions with ambient thermosphere gas, with similar N2 excited features as above in the daylight or twilight glow over an extended altitude range. We have analyzed the UVIS airglow spectra with models based on high resolution laboratory electron impact induced fluorescence spectra. We have measured high-resolution (FWHM = 0.2 Å) extreme-ultraviolet (EUV, 800-1350 Å) laboratory emission spectra of molecular nitrogen excited by electron impact at 20 and 100 eV. Molecular emission was observed to vibrationally-excited ground state levels as high as v''=17, from the a 1Πg , b 1Πu, and b‧ 1Σu+ excited valence states and the Rydberg series c‧n+1 1Σu+, cn 1Πu and o 1Πu for n between 3 and 9. A total of 491 emission features were observed from N2 electronic-vibrational transitions and atomic N I and N II multiplets. Their emission cross sections were measured.The blended molecular emission bands were disentangled with the aid of a model which solves the coupled-Schroedinger equation

  9. Predictive ability of four auroral precipitation models as evaluated using Polar UVI global images

    NASA Astrophysics Data System (ADS)

    Newell, P. T.; Sotirelis, T.; Liou, K.; Lee, A. R.; Wing, S.; Green, J.; Redmon, R.

    2010-12-01

    Auroral precipitation models have been valuable tools for several decades, but it has been difficult to estimate their objective accuracy. The use of global UV imagers, which make relatively instantaneous estimates of hemispheric auroral power, provides one approach forward. We present the first such validation and quantitative comparison of auroral precipitation models. Specifically, we correlated Polar UVI images with the predictions of four precipitation models. These are the Hardy Kp model, the Brautigam IMF-based model, the Evans nowcast model currently used at NOAA, and OVATION Prime, recently introduced by Newell and colleagues. Because calibration uncertainties exist for all particle detectors, and for imagers as well, we focus on correlation coefficients rather than the absolute magnitudes. To minimize dayglow, the nightside precipitating power (1800-0600 MLT) is considered and only for cases where that entire region is within the Polar UVI field of view. Also, only instances where each model has a prediction are considered (i.e., there must be IMF data, and there must be a NOAA satellite pass within the last 1 h). Altogether, 27,613 1 min ("instantaneous") images satisfied these criteria from 1996 to 1997. The four models investigated predict roughly half the variance in auroral power. From least to best at predicting instantaneous auroral power, the results are Brautigam IMF model (r = 0.68, r2 = 46%); Evans nowcast model (r = 0.70, r2 = 49%); Hardy Kp model (r = 0.72, r2 = 52%); and OVATION Prime IMF (r = 0.75, r2 = 56%). We also considered 1 h averages of UVI images. All four models improved, but the nowcast jumped from third to first: Brautigam IMF (r = 0.69, r2 = 48%); Hardy Kp (r = 0.74, r2 = 55%); OVATION Prime IMF (r = 0.76, r2 = 58%); Evans nowcast (r = 0.77, r2 = 59%). The nowcast approach benefits most from hourly averaging because at times more than one satellite pass is available. In principle, with enough satellites, the nowcast approach

  10. Surface complexation of U(VI) on goethite (α-FeOOH)

    NASA Astrophysics Data System (ADS)

    Sherman, David M.; Peacock, Caroline L.; Hubbard, Christopher G.

    2008-01-01

    Sorption of U(VI) to goethite is a fundamental control on the mobility of uranium in soil and groundwater. Here, we investigated the sorption of U on goethite using EXAFS spectroscopy, batch sorption experiments and DFT calculations of the energetics and structures of possible surface complexes. Based on EXAFS spectra, it has previously been proposed that U(VI), as the uranyl cation UO22+, sorbs to Fe oxide hydroxide phases by forming a bidentate edge-sharing (E2) surface complex, >Fe(OH)2UO2(H2O)n. Here, we argue that this complex alone cannot account for the sorption capacity of goethite (α-FeOOH). Moreover, we show that all of the EXAFS signal attributed to the E2 complex can be accounted for by multiple scattering. We propose that the dominant surface complex in CO2-free systems is a bidentate corner-sharing (C2) complex, (>FeOH)2UO2(H2O)3 which can form on the dominant {101} surface. However, in the presence of CO2, we find an enhancement of UO2 sorption at low pH and attribute this to a (>FeO)CO2UO2 ternary complex. With increasing pH, U(VI) desorbs by the formation of aqueous carbonate and hydroxyl complexes. However, this desorption is preceded by the formation of a second ternary surface complex (>FeOH)2UO2CO3. The three proposed surface complexes, (>FeOH)2UO2(H2O)3, >FeOCO2UO2, and (>FeOH)2UO2CO3 are consistent with EXAFS spectra. Using these complexes, we developed a surface complexation model for U on goethite with a 1-pK model for surface protonation, an extended Stern model for surface electrostatics and inclusion of all known UO2-OH-CO3 aqueous complexes in the current thermodynamic database. The model gives an excellent fit to our sorption experiments done in both ambient and reduced CO2 environments at surface loadings of 0.02-2.0 wt% U.

  11. Simulating adsorption of U(VI) under transient groundwater flow and hydrochemistry: Physical versus chemical nonequilibrium model

    USGS Publications Warehouse

    Greskowiak, J.; Hay, M.B.; Prommer, H.; Liu, C.; Post, V.E.A.; Ma, R.; Davis, J.A.; Zheng, C.; Zachara, J.M.

    2011-01-01

    Coupled intragrain diffusional mass transfer and nonlinear surface complexation processes play an important role in the transport behavior of U(VI) in contaminated aquifers. Two alternative model approaches for simulating these coupled processes were analyzed and compared: (1) the physical nonequilibrium approach that explicitly accounts for aqueous speciation and instantaneous surface complexation reactions in the intragrain regions and approximates the diffusive mass exchange between the immobile intragrain pore water and the advective pore water as multirate first-order mass transfer and (2) the chemical nonequilibrium approach that approximates the diffusion-limited intragrain surface complexation reactions by a set of multiple first-order surface complexation reaction kinetics, thereby eliminating the explicit treatment of aqueous speciation in the intragrain pore water. A model comparison has been carried out for column and field scale scenarios, representing the highly transient hydrological and geochemical conditions in the U(VI)-contaminated aquifer at the Hanford 300A site, Washington, USA. It was found that the response of U(VI) mass transfer behavior to hydrogeochemically induced changes in U(VI) adsorption strength was more pronounced in the physical than in the chemical nonequilibrium model. The magnitude of the differences in model behavior depended particularly on the degree of disequilibrium between the advective and immobile phase U(VI) concentrations. While a clear difference in U(VI) transport behavior between the two models was noticeable for the column-scale scenarios, only minor differences were found for the Hanford 300A field scale scenarios, where the model-generated disequilibrium conditions were less pronounced as a result of frequent groundwater flow reversals. Copyright 2011 by the American Geophysical Union.

  12. Simulating adsorption of U(VI) under transient groundwater flow and hydrochemistry – Physical versus non-equilibrium model

    SciTech Connect

    Greskowiak, Janek; Hay, Michael B.; Prommer, Henning; Liu, Chongxuan; Post, Vincent; Ma, Rui; Davis, James A.; Zheng, Chunmiao; Zachara, John M.

    2011-08-03

    Coupled intra-grain diffusional mass-transfer and non-linear surface complexation processes play an important role for the transport behaviour of U(VI) in contaminated aquifers. Two alternative model approaches for simulating these coupled processes have been analysed and compared: (i) the physical non-equilibrium approach that explicitly accounts for aqueous speciation and instantaneous surface complexation reactions in the intra-grain regions and approximates the diffusive mass exchange between the immobile intra-grain pore water and the advective pore water as multi-rate 1st-order mass transfer and (ii) the chemical non-equilibrium approach that approximates the diffusion-limited intra-grain surface complexation reactions by a set of multiple 1st-order surface complexation reaction kinetics, thereby eliminating the explicit treatment of aqueous speciation in the intra grain pore water. Model comparison has been carried out for column and field scale scenarios, representing the highly transient hydrological and geochemical conditions in the U(VI)-contaminated aquifer at the Hanford 300A site, Washington, USA. It was found that the response of apparent U(VI) adsorption/desorption kinetic behaviour to hydrogeochemically induced changes in U(VI) sorption strength is more pronounced in the physical than in the chemical non-equilibrium model. The magnitude of the differences in model behaviour depends particularly on the degree of disequilibrium between the advective and immobile phase U(VI) concentrations. While a clear difference in U(VI) transport behaviour between the two models was noticeable for the column-scale scenarios, only minor differences were found for the Hanford 300A field scale scenarios, where the model-generated disequilibrium conditions were less pronounced as a result of high frequent groundwater flow reversals.

  13. Surface complexation modeling of U(VI) adsorption by aquifer sediments from a former mill tailings site at Rifle, Colorado

    USGS Publications Warehouse

    Hyun, S.P.; Fox, P.M.; Davis, J.A.; Campbell, K.M.; Hayes, K.F.; Long, P.E.

    2009-01-01

    A study of U(VI) adsorption by aquifer sediment samples from a former uranium mill tailings site at Rifle, Colorado, was conducted under oxic conditions as a function of pH, U(VI), Ca, and dissolved carbonate concentration. Batch adsorption experiments were performed using <2mm size sediment fractions, a sand-sized fraction, and artificial groundwater solutions prepared to simulate the field groundwater composition. To encompass the geochemical conditions of the alluvial aquifer at the site, the experimental conditions ranged from 6.8 ?? 10-8 to 10-5 M in [U(VI)]tot, 7.2 to 8.0 in pH, 3.0 ?? 10-3 to 6.0 ?? 10 -3 M in [Ca2+], and 0.05 to 2.6% in partial pressure of carbon dioxide. Surface area normalized U(VI) adsorption Kd values for the sand and <2 mm sediment fraction were similar, suggesting a similar reactive surface coating on both fractions. A two-site two-reaction, nonelectrostatic generalized composite surface complexation model was developed and successfully simulated the U(VI) adsorption data. The model successfully predicted U(VI) adsorption observed from a multilevel sampling well installed at the site. A comparison of the model with the one developed previously for a uranium mill tailings site at Naturita, Colorado, indicated that possible calcite nonequilibrium of dissolved calcium concentration should be evaluated. The modeling results also illustrate the importance of the range of data used in deriving the best fit model parameters. ?? 2009 American Chemical Society.

  14. Diverse roles of jasmonates and ethylene in abiotic stress tolerance.

    PubMed

    Kazan, Kemal

    2015-04-01

    Jasmonates (JAs) and ethylene (ET), often acting cooperatively, play essential roles in regulating plant defense against pests and pathogens. Recent research reviewed here has revealed mechanistic new insights into the mode of action of these hormones in plant abiotic stress tolerance. During cold stress, JAs and ET differentially regulate the C-repeat binding factor (CBF) pathway. Major JA and ET signaling hubs such as JAZ proteins, CTR1, MYC2, components of the mediator complex, EIN2, EIN3, and several members of the AP2/ERF transcription factor gene family all have complex regulatory roles during abiotic stress adaptation. Better understanding the roles of these phytohormones in plant abiotic stress tolerance will contribute to the development of crop plants tolerant to a wide range of stressful environments. PMID:25731753

  15. Current perspectives in proteomic analysis of abiotic stress in Grapevines

    PubMed Central

    George, Iniga S.; Haynes, Paul A.

    2014-01-01

    Grapes are an important crop plant which forms the basis of a globally important industry. Grape and wine production is particularly vulnerable to environmental and climatic fluctuations, which makes it essential for us to develop a greater understanding of the molecular level responses of grape plants to various abiotic stresses. The completion of the initial grape genome sequence in 2007 has led to a significant increase in research on grapes using proteomics approaches. In this article, we discuss some of the current research on abiotic stress in grapevines, in the context of abiotic stress research in other plant species. We also highlight some of the current limitations in grapevine proteomics and identify areas with promising scope for potential future research. PMID:25538720

  16. ELUCIDATING THE ROLE OF ELECTRON TRANSFER MEDIATORS IN REDUCTIVE TRANSFORMATIONS IN NATURAL SEDIMENTS

    EPA Science Inventory

    To study the identity and reactivity of electron transfer mediators (ETMs) in natural sediments, the reduction kinetics of a glass bead-azo dye complex were measured in abiotic and biotic model systems, as well as in natural sediments. In abiotic model systems, the bead-dye comp...

  17. Environmental Selenium Transformations: Distinguishing Abiotic and Biotic Factors Influencing Se Redox Transformations

    NASA Astrophysics Data System (ADS)

    Rosenfeld, C.; Kenyon, J.; James, B. R.; Santelli, C. M.

    2014-12-01

    Worldwide, selenium (Se) is proving to be a significant environmental concern, with many anthropogenic activities (e.g. coal mining and combustion, phosphate mining and agricultural irrigation) releasing potentially hazardous concentrations into surface and subsurface ecosystems. The US EPA is currently considering aquatic Se regulations, however no guidelines exist for excess soil Se, despite its ability to act as a persistent Se source. Various abiotic and biological processes mediate Se oxidation/reduction (redox) transformations in soils, thus influencing its solubility and bioavailability. In this research we assess (1) the ability of metal-transforming fungal species to aerobically reduce Se (Se (IV and/or VI) to Se(0)), and (2) the relative contribution of biotic and abiotic pathways for aerobic Se transformation. The primary objective of this research is to determine what abiotic and biotic factors enhance or restrict Se bioavailability. Results indicate that fungal-mediated Se reduction may be quite widespread, with at least 7 out of 10 species of known Mn(II)-oxidizing fungi isolated from metal impacted environments also identified as capable of aerobically reducing Se(IV) and/or Se(VI) to Se(0). Increasing concentrations of selenite (SeO32-; Se(IV)) and selenate (SeO42-; Se(VI)) generally reduced fungal growth rates, although selenate was more likely to inhibit fungal growth than selenite. To study oxidation, Se(0) was combined with Mn(III/IV) (hydr)oxides (henceforth referred to as Mn oxides), Se-transforming fungi (Alternaria alternata), and oxalic acid to mimic Se biogeochemistry at the plant-soil interface. Increased pH in the presence of fungi (7.2 with fungi, 6.8 without fungi after 24 days) was observed. Additionally, a slight decrease in redox potential was measured for incubations without Mn oxides (236 mV with Mn oxides, 205 mV without Mn oxides after 24 days), indicating that Mn oxides may enhance Se oxidation. Elemental Se oxidation rates to

  18. Optical and radiometric models of the NOMAD instrument part I: the UVIS channel.

    PubMed

    Vandaele, Ann C; Willame, Yannick; Depiesse, Cédric; Thomas, Ian R; Robert, Séverine; Bolsée, David; Patel, Manish R; Mason, Jon P; Leese, Mark; Lesschaeve, Stefan; Antoine, Philippe; Daerden, Frank; Delanoye, Sofie; Drummond, Rachel; Neefs, Eddy; Ristic, Bojan; Lopez-Moreno, José-Juan; Bellucci, Giancarlo; Team, Nomad

    2015-11-16

    The NOMAD instrument has been designed to best fulfil the science objectives of the ExoMars Trace Gas Orbiter mission that will be launched in 2016. The instrument is a combination of three channels that cover the UV, visible and IR spectral ranges and can perform solar occultation, nadir and limb observations. In this series of two papers, we present the optical models representing the three channels of the instrument and use them to determine signal to noise levels for different observation modes and Martian conditions. In this first part, we focus on the UVIS channel, which will sound the Martian atmosphere using nadir and solar occultation viewing modes, covering the 200-650nm spectral range. High SNR levels (>1000) can easily be reached for wavelengths higher than 300nm both in solar occultation and nadir modes when considering binning. Below 300nm SNR are lower primarily because of the lower signal and the impact of atmospheric absorption. PMID:26698484

  19. Abiotic systems for the catalytic treatment of solvent-contaminated water

    SciTech Connect

    Betterton, E.A.; Arnold, R.G.; Liu, Zhijie; Hollan, N.

    1996-12-31

    Three abiotic systems are described that catalyze the reductive dehalogenation of heavily halogenated environmental pollutants, including carbon tetrachloride, trichloroethene, and perchloroethene. These systems include (a) an electrolytic reactor in which the potential on the working electrode (cathode) is fixed by using a potentiostat, (b) a light-driven system consisting of a semiconductor and (covalently attached) macrocycle that can accept light transmitted via an optical fiber, and a light-driven, two-solvent (isopropanol/acetone) system that promotes dehalogenation reactions via an unknown mechanism. Each is capable of accelerating reductive dehalogenation reactions to very high rates under laboratory conditions. Typically, millimolar concentrations of aqueous-phase targets can be dehalogenated in minutes to hours. The description of each system includes the elements of reaction mechanism (to the extent known), typical kinetic data, and a discussion of the feasibility of applying this technology for the in situ destruction of hazardous compounds. 14 refs., 11 figs., 2 tabs.

  20. Contribution of acetic acid to the hydrolysis of lignocellulosic biomass under abiotic conditions.

    PubMed

    Trzcinski, Antoine P; Stuckey, David C

    2015-06-01

    Acetic acid was used in abiotic experiments to adjust the solution pH and investigate its influence on the chemical hydrolysis of the Organic Fraction of Municipal Solid Waste (OFMSW). Soluble chemical oxygen demand (SCOD) was used to measure the hydrolysis under oxidative conditions (positive oxidation-reduction potential values), and pH 4 allowed for 20% (±2%) of the COD added to be solubilized, whereas only 12% (±1%) was solubilized at pH7. Under reducing conditions (negative oxidation-reduction potential values) and pH 4, 32.3% (±3%) of the OFMSW was solubilized which shows that acidogenesis at pH 4 during the anaerobic digestion of solid waste can result in chemical hydrolysis. In comparison, bacterial hydrolysis resulted in 54% (±6%) solubilization. PMID:25794810

  1. Ionospheric Convection in the Postnoon Auroral Oval: SuperDARN and Polar UVI Observations

    NASA Technical Reports Server (NTRS)

    Kozlovsky, A.; Koustov, A.; Lyatsky, W.; Kangas, J.; Parks, G.; Chua, D.

    2002-01-01

    Super Dual Auroral Radar Network (SuperDARN) observations, ultraviolet imaging from the Polar satellite (UVI), and particle precipitation data from DMSP satellites have been used to investigate the electrodynamics of the postnoon auroral oval in the Northern hemisphere. We show that: (1) For negative IMF By, the convection reversal (CR) was co-located with the maximum of auroral luminosity, but during positive IMF By the convection reversal was poleward of the auroral oval up to several degrees in latitude; (2) Postnoon auroral oval was associated with a large-scale upward field-aligned current (FAC) of the order of 6x10(exp -7). A m(exp -2) in magnitude (the FAC was inferred from the SuperDARN and UVI data). For negative IMF By, maximum of the auroral intensity coincides in latitude with the maximum of the upward field-aligned current. However, for positive IMF By. the maximum of the upward FAC was shifted to the poleward edge of the auroral oval; (3) In response to the IMF By turning from positive to negative, the maximum of the auroral luminosity did not change its position noticeably, but the position of the convection reversal changed considerably from 80-81 degs to about 76 degs MLAT, and the maximum of FAC moved from 77-78 degs to about 76 degs MLAT. Thus, after IMF By turns negative, both the FAC maximum and CR tend to coincide with the auroral maximum; (4) The IMF Bz positive deflection was followed by a decrease in both field-aligned current intensity and auroral luminosity. However, the decrease in the auroral luminosity lags behind the FAC decrease by about 12 min. Firstly, these observations allow us to suggest that the IMF By-related electric field can penetrate into the closed magnetosphere and produce convection and FAC changes in the region of the postnoon auroral oval. Secondly, we suggest that the interchange instability is a promising mechanism for the postnoon auroras.

  2. Cassini UVIS Observations of the Io Plasma Torus. 3; Observations of Temporal and Azimuthal Variability

    NASA Technical Reports Server (NTRS)

    Steffl, A. J.; Delamere, P. A.; Bagenal, F.

    2006-01-01

    In this third paper in a series presenting observations by the Cassini Ultraviolet Imaging Spectrometer (UVIS) of the Io plasma torus, we show remarkable, though subtle, spatio-temporal variations in torus properties. The Io torus is found to exhibit significant, near sinusoidal variations in ion composition as a functions of azimuthal position. The azimuthal variation in composition is such that the mixing ratio of S II us strongly correlated with the mixing ratio of S III and the equatorial electron density and strongly anti-correlated with the mixing ratios of both S IV and O II and the equatorial electron temperature. Surprisingly, the azimuthal variation in ion composition is observed to have a period of 10.07 h -- 1.5% longer than the System III rotation period of Jupiter, yet 1.3% shorter than the System UV period defined by [Brown, M. E., 1995. J. Geophys. Res. 100, 21683-21696]. Although the amplitude of the azimuthal variation of S III and O II remained in the range of 2-5%, the amplitude of the S II and S IV compositional variation ranged between 5 and 25% during the UVIS observations. Furthermore, the amplitude of the azimuthal variations of S II and S IV appears to be modulated by its location in System III longitude, such that when the region of maximum S II mixing ration (minimum S IV mixing ratio) is aligned with a System III longitude of 200 deg +/-, the amplitude is a factor of 4 greater than when the variation is anti-aligned. This behavior can explain numerous, often apparently contradictory, observations of variations in the properties of the Io plasma torus with the System III and System IV coordinate systems.

  3. Simultaneous reduction of arsenic(V) and uranium(VI) by mackinawite: role of uranyl arsenate precipitate formation.

    PubMed

    Troyer, Lyndsay D; Tang, Yuanzhi; Borch, Thomas

    2014-12-16

    Uranium (U) and arsenic (As) often occur together naturally and, as a result, can be co-contaminants at sites of uranium mining and processing, yet few studies have examined the simultaneous redox dynamics of U and As. This study examines the influence of arsenate (As(V)) on the reduction of uranyl (U(VI)) by the redox-active mineral mackinawite (FeS). As(V) was added to systems containing 47 or 470 μM U(VI) at concentrations ranging from 0 to 640 μM. In the absence of As(V), U was completely removed from solution and fully reduced to nano-uraninite (nano-UO2). While the addition of As(V) did not reduce U uptake, at As(V) concentrations above 320 μM, the reduction of U(VI) was limited due to the formation of a trögerite-like uranyl arsenate precipitate. The presence of U also significantly inhibited As(V) reduction. While less U(VI) reduction to nano-UO2 may take place in systems with high As(V) concentrations, formation of trögerite-like mineral phases may be an acceptable reclamation end point due to their high stability under oxic conditions. PMID:25383895

  4. Mechanisms and Dynamics of Abiotic and Biotic Interactions at Environmental Interfaces

    SciTech Connect

    Roso, Kevin M.

    2006-06-01

    The Stanford EMSI (SEMSI) was established in 2004 through joint funding by the National Science Foundation and the OBER-ERSD. It encompasses a number of universities and national laboratories. The PNNL component of the SEMSI is funded by ERSD and is the focus of this report. This component has the objective of providing theory support to the SEMSI by bringing computational capabilities and expertise to bear on important electron transfer problems at mineral/water and mineral/microbe interfaces. PNNL staff member Dr. Kevin Rosso, who is also ''matrixed'' into the Environmental Molecular Sciences Laboratory (EMSL) at PNNL, is a co-PI on the SEMSI project and the PNNL lead. The EMSL computational facilities being applied to the SEMSI project include the 11.8 teraflop massively-parallel supercomputer. Science goals of this EMSL/SEMSI partnership include advancing our understanding of: (1) The kinetics of U(VI) and Cr(VI) reduction by aqueous and solid-phase Fe(II), (2) The structure of mineral surfaces in equilibrium with solution, and (3) Mechanisms of bacterial electron transfer to iron oxide surfaces via outer-membrane cytochromes.

  5. A proposed abiotic reaction scheme for hydroxylamine and monochloramine under chloramination relevant drinking water conditions.

    PubMed

    Wahman, David G; Speitel, Gerald E; Machavaram, Madhav V

    2014-09-01

    Drinking water monochloramine (NH2Cl) use may promote ammonia-oxidizing bacteria (AOB). AOB use (i) ammonia monooxygenase for biological ammonia (NH3) oxidation to hydroxylamine (NH2OH) and (ii) hydroxylamine oxidoreductase for NH2OH oxidation to nitrite. NH2Cl and NH2OH may react, providing AOB potential benefits and detriments. The NH2Cl/NH2OH reaction would benefit AOB by removing the disinfectant (NH2Cl) and releasing their growth substrate (NH3), but the NH2Cl/NH2OH reaction would also provide a possible additional inactivation mechanism besides direct NH2Cl reaction with cells. Because biological NH2OH oxidation supplies the electrons required for biological NH3 oxidation, the NH2Cl/NH2OH reaction provides a direct mechanism for NH2Cl to inhibit NH3 oxidation, starving the cell of reductant by preventing biological NH2OH oxidation. To investigate possible NH2Cl/NH2OH reaction implications on AOB, an understanding of the underlying abiotic reaction is first required. The present study conducted a detailed literature review and proposed an abiotic NH2Cl/NH2OH reaction scheme (RS) for chloramination relevant drinking water conditions (μM concentrations, air saturation, and pH 7-9). Next, RS literature based kinetics and end-products were evaluated experimentally between pHs 7.7 and 8.3, representing (i) the pH range for future experiments with AOB and (ii) mid-range pHs typically found in chloraminated drinking water. In addition, a (15)N stable isotope experiment was conducted to verify nitrous oxide and nitrogen gas production and their nitrogen source. Finally, the RS was slightly refined using the experimental data and an AQUASIM implemented kinetic model. A chloraminated drinking water relevant RS is proposed and provides the abiotic reaction foundation for future AOB biotic experiments. PMID:24862953

  6. Evaluating reaction pathways of hydrothermal abiotic organic synthesis at elevated temperatures and pressures using carbon isotopes

    NASA Astrophysics Data System (ADS)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.

    2015-04-01

    Experiments were performed to better understand the role of environmental factors on reaction pathways and corresponding carbon isotope fractionations during abiotic hydrothermal synthesis of organic compounds using piston cylinder apparatus at 750 °C and 5.5 kbars. Chemical compositions of experimental products and corresponding carbon isotopic values were obtained by a Pyrolysis-GC-MS-IRMS system. Alkanes (methane and ethane), straight-chain saturated alcohols (ethanol and n-butanol) and monocarboxylic acids (formic and acetic acids) were generated with ethanol being the only organic compound with higher δ13C than CO2. CO was not detected in experimental products owing to the favorable water-gas shift reaction under high water pressure conditions. The pattern of δ13C values of CO2, carboxylic acids and alkanes are consistent with their equilibrium isotope relationships: CO2 > carboxylic acids > alkanes, but the magnitude of the fractionation among them is higher than predicted isotope equilibrium values. In particular, the isotopic fractionation between CO2 and CH4 remained constant at ∼31‰, indicating a kinetic effect during CO2 reduction processes. No "isotope reversal" of δ13C values for alkanes or carboxylic acids was observed, which indicates a different reaction pathway than what is typically observed during Fischer-Tropsch synthesis under gas phase conditions. Under constraints imposed in experiments, the anomalous 13C isotope enrichment in ethanol suggests that hydroxymethylene is the organic intermediate, and that the generation of other organic compounds enriched in 12C were facilitated by subsequent Rayleigh fractionation of hydroxymethylene reacting with H2 and/or H2O. Carbon isotope fractionation data obtained in this study are instrumental in assessing the controlling factors on abiotic formation of organic compounds in hydrothermal systems. Knowledge on how environmental conditions affect reaction pathways of abiotic synthesis of organic

  7. The effects of flow rate and concentration on nitrobenzene removal in abiotic and biotic zero-valent iron columns.

    PubMed

    Yin, Weizhao; Wu, Jinhua; Huang, Weilin; Li, Yongtao; Jiang, Gangbiao

    2016-08-01

    This study investigated the effects of varying nitrobenzene (NB) loadings via increasing flow rate or influent NB concentration mode on the removal efficiency in zero-valent iron (ZVI) columns sterilized (abiotic) or preloaded with acclimated microorganisms (biotic). It was shown that physical sequestration via adsorption/co-precipitation and reductive transformation of NB to aniline (AN) were the two major mechanisms for the NB removal in both abiotic and biotic ZVI columns. The NB removal efficiency decreased in both columns as the flow rate increased from 0.25 to 1.0mLmin(-1) whereas the AN recovery increased accordingly, with relatively high AN recovery observed at the flow rate of 1.0mLmin(-1). At the constant flow rate of 0.5mLmin(-1), increasing influent NB concentration from 80 to 400μmolL(-1) resulted in decreasing of the overall NB removal efficiency from 79.5 to 48.6% in the abiotic column and from 85.6 to 62.5% in the biotic column. The results also showed that the sequestration capacity and chemical reduction capacity were respectively 72% and 157.6% higher in the biotic column than in the abiotic column at the same tested hydraulic conditions and NB loadings. The optimal flow rates and influent NB concentrations were at 0.5mLmin(-1) and 80μmolL(-1) for the abiotic column and 2.0mLmin-1 and 240μmolL(-1) for the biotic column, respectively. This study indicated that microorganisms not only enhanced overall reduction of NB, but also facilitated NB sequestration within the porous media and that the optimal loading conditions for overall removal, sequestration, and reduction of NB may be different. Optimal operation conditions should be found for preferred sequestration or transformation (or both) of the target contaminants to meet different goals of groundwater remediation with the ZVI-PRB systems. PMID:27093118

  8. Determining the Desorption Kinetics of U(VI) from Contaminated Sediments Under Complex and Changing Solution Conditions

    NASA Astrophysics Data System (ADS)

    Hay, M. B.; Curtis, G. P.; Johnson, K. J.; Greskowiak, J.; Davis, J. A.

    2009-12-01

    Uranium(VI) transport in contaminated sediments is strongly controlled by the thermodynamics and kinetics of adsorption on mineral surfaces. Many studies on natural sediments and synthetic mineral phases have demonstrated the dependence of U(VI) sorption equilibrium on aqueous chemical conditions, with alkalinity, pH, ionic strength, and Ca concentration of particular importance in many natural systems. Desorption of U(VI) from contaminated sediments from DOE sites in Hanford, WA, Rifle, CO, and Naturita, CO also exhibits a significant kinetic limitation, with timescales of several weeks to months required to reach desorption equilibrium in some cases. This kinetic limitation is believed to be due to diffusion in intragranular pore space, which includes small fractures within grains and pores within clay aggregates and grain coatings. Development of appropriate reactive transport models that can be applied to predict the fate and transport of U(VI) in contaminated aquifers relies on accurately quantifying sorption equilibrium and kinetics at the grain scale, which vary from site to site based on sediment characteristics. This analysis typically involves laboratory batch- and column-scale adsorption/desorption experiments performed under a variety of chemical conditions to fully constrain surface complexation and kinetic models, requiring a constant set of chemical conditions over the duration of the experiment. In practice, however, this can be difficult in experiments aiming to quantify long-term kinetics (weeks to months time scale), due to slow ion exchange, mineral dissolution/precipitation, and redox processes. Long-term changes in solution conditions affect U(VI) sorption equilibrium, making it necessary to determine model parameters for U(VI) surface complexation, diffusion kinetics, and chemical weathering/ion exchange processes simultaneously from a given data set. We will present kinetic surface complexation model results obtained for size

  9. ABIOTIC DEGRADATION OF TRICHLOROETHYLENE UNDER THERMAL REMEDIATION CONDITIONS

    EPA Science Inventory

    The degradation of TCE (C2HCl3) to carbon dioxide (CO2) and chloride (Cl-) has been reported to occur during thermal remediation of subsurface environments. The overall goal of this study was to evaluate abiotic degradation of TCE at el...

  10. Recent advances in polyamine metabolism and abiotic stress tolerance.

    PubMed

    Rangan, Parimalan; Subramani, Rajkumar; Kumar, Rajesh; Singh, Amit Kumar; Singh, Rakesh

    2014-01-01

    Global warming is an alarming problem in agriculture and its effect on yield loss has been estimated to be five per cent for every degree centigrade rise in temperature. Plants exhibit multiple mechanisms like optimizing signaling pathway, involvement of secondary messengers, production of biomolecules specifically in response to stress, modulation of various metabolic networks in accordance with stress, and so forth, in order to overcome abiotic stress factors. Many structural genes and networks of pathway were identified and reported in plant systems for abiotic stress tolerance. One such crucial metabolic pathway that is involved in normal physiological function and also gets modulated during stress to impart tolerance is polyamine metabolic pathway. Besides the role of structural genes, it is also important to know the mechanism by which these structural genes are regulated during stress. Present review highlights polyamine biosynthesis, catabolism, and its role in abiotic stress tolerance with special reference to plant systems. Additionally, a system based approach is discussed as a potential strategy to dissect the existing variation in crop species in unraveling the interacting regulatory components/genetic determinants related to PAs mediated abiotic stress tolerance. PMID:25136565

  11. Genetic Diversity In Abiotic Stress Tolerances Among Wheat Species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Landraces and close related species of hexaploid wheat (Triticum aestivum L.) offer a vast reservoir of genetic resources for wheat improvement to production on abiotic stressed soils. In order to utilize the wheat landrace and close relative gene pools, the evaluation of wheat landrace and close r...

  12. Are karrikins involved in plant abiotic stress responses?

    PubMed

    Li, Weiqiang; Tran, Lam-Son Phan

    2015-09-01

    Recent reports have shown that strigolactones play a positive role in plant responses to drought and salt stress through MAX2 (More Axillary Growth 2). Increasing evidence suggests that MAX2 is also involved in karrikin signaling, raising the question whether karrikins play any role in plant adaptation to abiotic stresses. PMID:26255855

  13. ABIOTIC TRANSFORMATION PATHWAYS OF ORGANIC CHEMICALS IN AQUATIC ECOSYSTEMS

    EPA Science Inventory

    Information is presented for assessing the potential of an organic chemical to undergo abiotic transformation in aquatic ecosystems. hen predicting the environmental fate of an organic chemical, two primary questions must be addressed. irst, what are the reaction kinetics for the...

  14. A membraneless single compartment abiotic glucose fuel cell

    NASA Astrophysics Data System (ADS)

    Slaughter, Gymama; Sunday, Joshua

    2014-09-01

    A simple energy harvesting strategy has been developed to selectively catalyze glucose in the presence of oxygen in a glucose/O2 fuel cell. The anode consists of an abiotic catalyst Al/Au/ZnO, in which ZnO seed layer was deposited on the surface of Al/Au substrate using hydrothermal method. The cathode is constructed from a single rod of platinum with an outer diameter of 500 μm. The abiotic glucose fuel cell was studied in phosphate buffer solution (pH 7.4) containing 5 mM glucose at a temperature of 22 °C. The cell is characterized according to its open-circuit voltage, polarization profile, and power density plot. Under these conditions, the abiotic glucose fuel cell possesses an open-circuit voltage of 840 mV and delivered a maximum power density of 16.2 μW cm-2 at a cell voltage of 495 mV. These characteristics are comparable to biofuel cell utilizing a much more complex system design. Such low-cost lightweight abiotic catalyzed glucose fuel cells have a great promise to be optimized, miniaturized to power bio-implantable devices.

  15. Weighing Abiotic and Biotic Influences on Weed Seed Predation Rates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed seed predation is an important ecosystem service supporting weed management in low-external-input agroecosystems. Current knowledge of weed seed predation focuses on biotic mechanisms, with less understood about the relative impact of abiotic variables. In order to quantify relative contributio...

  16. Weighing Abiotic and Biotic Influences on Weed Seed Predation Rates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed seed predation is an important ecosystem service supporting weed management in low-external-input agroecosystems. Current knowledge of weed seed predation in arable systems focuses on biotic mechanisms, with less understood about the relative impact of abiotic variables on this process. In orde...

  17. Genetic mapping of abiotic stress responses in sorghum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to rich genetic diversity for tolerance to various abiotic stress conditions, sorghum is an ideal system for genetic mapping and elucidation of genome regions that confer such response among cereal crops. Coupled with the development of DNA marker technologies and most recently the sequencing o...

  18. Plastid transformation for abiotic stress tolerance in plants.

    PubMed

    Bansal, K C; Singh, A K; Wani, S H

    2012-01-01

    Abiotic stresses such as drought, salinity, and extreme temperatures are major limiting factors in plant growth and development and pose serious threat to global agricultural production. Here we describe a procedure, using a tobacco plastid transformation vector, to generate transplastomic plants with an enhanced ability to tolerate abiotic stresses such as salinity, drought, or cold stress. The procedure involves biolistic delivery of a plastid transformation vector into explants, antibiotic selection procedures, and -identification of transplastomic lines. The plastid transformation vector contains an aadA gene that encodes resistance to spectinomycin as a selectable marker along with the gene of interest for developing transplastomic plants that are tolerant to abiotic stresses. Shoot buds appear over the surface of bombarded explants following spectinomycin selection. Transplastomic shoots are multiplied following several rounds of -spectinomycin selection. Homoplasmic transplastomic lines are confirmed by spectinomycin and streptomycin double selection over a period of 4-5 weeks. The available reports suggest that transplastomic technology is a useful tool for expressing genes in plastids or chloroplasts for enhancing abiotic stress tolerance in plants. PMID:22895771

  19. Recent Advances in Polyamine Metabolism and Abiotic Stress Tolerance

    PubMed Central

    Rangan, Parimalan; Subramani, Rajkumar; Singh, Amit Kumar

    2014-01-01

    Global warming is an alarming problem in agriculture and its effect on yield loss has been estimated to be five per cent for every degree centigrade rise in temperature. Plants exhibit multiple mechanisms like optimizing signaling pathway, involvement of secondary messengers, production of biomolecules specifically in response to stress, modulation of various metabolic networks in accordance with stress, and so forth, in order to overcome abiotic stress factors. Many structural genes and networks of pathway were identified and reported in plant systems for abiotic stress tolerance. One such crucial metabolic pathway that is involved in normal physiological function and also gets modulated during stress to impart tolerance is polyamine metabolic pathway. Besides the role of structural genes, it is also important to know the mechanism by which these structural genes are regulated during stress. Present review highlights polyamine biosynthesis, catabolism, and its role in abiotic stress tolerance with special reference to plant systems. Additionally, a system based approach is discussed as a potential strategy to dissect the existing variation in crop species in unraveling the interacting regulatory components/genetic determinants related to PAs mediated abiotic stress tolerance. PMID:25136565

  20. Influence of abiotic stress, flower morphology, and pollen dehydration sensitivity on cotton out-crossing potential

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic diversity in reproductive abiotic stress tolerance has been reported for cotton [Gossypium hirsutum (L.)] based upon the percentage of anther dehiscence of mature pollen in adverse environments. This study investigated the abiotic stress tolerance of mature pollen and identified ...

  1. Micro- and Nano-scale Diffusion Domains Acting as Kinetic Controls for U(VI) Release to the Hanford 300-Area Aquifer

    NASA Astrophysics Data System (ADS)

    Stoliker, D. L.; Hay, M. B.; Davis, J. A.; Zachara, J. M.

    2008-12-01

    The 300-Area of the Hanford reservation, a cold-war era nuclear processing facility, is plagued by long-term elevated concentrations of U(VI) in the underlying aquifer. While the sediment U(VI) concentration is relatively low, it continues to act as a source and sink for the contaminant, allowing for persistent groundwater concentrations well above the maximum contamination limit (MCL). Simple Kd modeling of the attenuation of U(VI) in the aquifer predicted that groundwater U(VI) concentrations would decrease to below the drinking water standard by the year 2002. However, grain-scale morphology of the aquifer material suggests that intra-grain flow paths and mineral coatings, in which sorption complexes and precipitates formed over years of waste disposal, provide a significant kinetic constraint that slows groundwater flushing of the sediments. In order to quantify the impact of diffusion kinetics on the release of U(VI), high-resolution, non-reactive tracer studies were conducted on vadose zone sediments in both column and batch reactors. Systems were equilibrated for long time scales with tritated artificial groundwater and then flushed with flow and stop-flow events included for columns. Previously collected U(VI) release data from batch dissolution/desorption studies is compared with tritium tracer diffusion kinetics as well as porosimetry and detailed microscopy characterization. The micro-scale and nano-scale diffusion regimes, including intra-granular regions as well as mineral coatings, represent a significant potential long-term source of contaminant U(VI). Understanding the physical kinetic limitations coupled with the complex chemistry of U(VI) sorption processes within natural systems is an important step forward in providing information to strengthen field-scale reactive transport simulations.

  2. Interactions between Silicon Oxide Nanoparticles (SONPs) and U(VI) Contaminations: Effects of pH, Temperature and Natural Organic Matters.

    PubMed

    Wu, Hanyu; Li, Ping; Pan, Duoqiang; Yin, Zhuoxin; Fan, Qiaohui; Wu, Wangsuo

    2016-01-01

    The interactions between contaminations of U(VI) and silicon oxide nanoparticles (SONPs), both of which have been widely used in modern industry and induced serious environmental challenge due to their high mobility, bioavailability, and toxicity, were studied under different environmental conditions such as pH, temperature, and natural organic matters (NOMs) by using both batch and spectroscopic approaches. The results showed that the accumulation process, i.e., sorption, of U(VI) on SONPs was strongly dependent on pH and ionic strength, demonstrating that possible outer- and/or inner-sphere complexes were controlling the sorption process of U(VI) on SONPs in the observed pH range. Humic acid (HA), one dominated component of NOMs, bounded SONPs can enhance U(VI) sorption below pH~4.5, whereas restrain at high pH range. The reversible sorption of U(VI) on SONPs possibly indicated that the outer-sphere complexes were prevalent at pH 5. However, an irreversible interaction of U(VI) was observed in the presence of HA (Fig 1). It was mainly due to the ternary SONPs-HA-U(VI) complexes (Type A Complexes). After SONPs adsorbed U(VI), the particle size in suspension was apparently increased from ~240 nm to ~350 nm. These results showed that toxicity of both SONPs and U(VI) will decrease to some extent after the interaction in the environment. These findings are key for providing useful information on the possible mutual interactions among different contaminants in the environment. PMID:26930197

  3. Interactions between Silicon Oxide Nanoparticles (SONPs) and U(VI) Contaminations: Effects of pH, Temperature and Natural Organic Matters

    PubMed Central

    Wu, Hanyu; Li, Ping; Pan, Duoqiang; Yin, Zhuoxin; Fan, Qiaohui; Wu, Wangsuo

    2016-01-01

    The interactions between contaminations of U(VI) and silicon oxide nanoparticles (SONPs), both of which have been widely used in modern industry and induced serious environmental challenge due to their high mobility, bioavailability, and toxicity, were studied under different environmental conditions such as pH, temperature, and natural organic matters (NOMs) by using both batch and spectroscopic approaches. The results showed that the accumulation process, i.e., sorption, of U(VI) on SONPs was strongly dependent on pH and ionic strength, demonstrating that possible outer- and/or inner-sphere complexes were controlling the sorption process of U(VI) on SONPs in the observed pH range. Humic acid (HA), one dominated component of NOMs, bounded SONPs can enhance U(VI) sorption below pH~4.5, whereas restrain at high pH range. The reversible sorption of U(VI) on SONPs possibly indicated that the outer-sphere complexes were prevalent at pH 5. However, an irreversible interaction of U(VI) was observed in the presence of HA (Fig 1). It was mainly due to the ternary SONPs-HA-U(VI) complexes (Type A Complexes). After SONPs adsorbed U(VI), the particle size in suspension was apparently increased from ~240 nm to ~350 nm. These results showed that toxicity of both SONPs and U(VI) will decrease to some extent after the interaction in the environment. These findings are key for providing useful information on the possible mutual interactions among different contaminants in the environment. PMID:26930197

  4. Integrating omic approaches for abiotic stress tolerance in soybean

    PubMed Central

    Deshmukh, Rupesh; Sonah, Humira; Patil, Gunvant; Chen, Wei; Prince, Silvas; Mutava, Raymond; Vuong, Tri; Valliyodan, Babu; Nguyen, Henry T.

    2014-01-01

    Soybean production is greatly influenced by abiotic stresses imposed by environmental factors such as drought, water submergence, salt, and heavy metals. A thorough understanding of plant response to abiotic stress at the molecular level is a prerequisite for its effective management. The molecular mechanism of stress tolerance is complex and requires information at the omic level to understand it effectively. In this regard, enormous progress has been made in the omics field in the areas of genomics, transcriptomics, and proteomics. The emerging field of ionomics is also being employed for investigating abiotic stress tolerance in soybean. Omic approaches generate a huge amount of data, and adequate advancements in computational tools have been achieved for effective analysis. However, the integration of omic-scale information to address complex genetics and physiological questions is still a challenge. In this review, we have described advances in omic tools in the view of conventional and modern approaches being used to dissect abiotic stress tolerance in soybean. Emphasis was given to approaches such as quantitative trait loci (QTL) mapping, genome-wide association studies (GWAS), and genomic selection (GS). Comparative genomics and candidate gene approaches are also discussed considering identification of potential genomic loci, genes, and biochemical pathways involved in stress tolerance mechanism in soybean. This review also provides a comprehensive catalog of available online omic resources for soybean and its effective utilization. We have also addressed the significance of phenomics in the integrated approaches and recognized high-throughput multi-dimensional phenotyping as a major limiting factor for the improvement of abiotic stress tolerance in soybean. PMID:24917870

  5. Abiotic ozone and oxygen in atmospheres similar to prebiotic Earth

    SciTech Connect

    Domagal-Goldman, Shawn D.; Segura, Antígona; Claire, Mark W.; Robinson, Tyler D.; Meadows, Victoria S.

    2014-09-10

    The search for life on planets outside our solar system will use spectroscopic identification of atmospheric biosignatures. The most robust remotely detectable potential biosignature is considered to be the detection of oxygen (O{sub 2}) or ozone (O{sub 3}) simultaneous to methane (CH{sub 4}) at levels indicating fluxes from the planetary surface in excess of those that could be produced abiotically. Here we use an altitude-dependent photochemical model with the enhanced lower boundary conditions necessary to carefully explore abiotic O{sub 2} and O{sub 3} production on lifeless planets with a wide variety of volcanic gas fluxes and stellar energy distributions. On some of these worlds, we predict limited O{sub 2} and O{sub 3} buildup, caused by fast chemical production of these gases. This results in detectable abiotic O{sub 3} and CH{sub 4} features in the UV-visible, but no detectable abiotic O{sub 2} features. Thus, simultaneous detection of O{sub 3} and CH{sub 4} by a UV-visible mission is not a strong biosignature without proper contextual information. Discrimination between biological and abiotic sources of O{sub 2} and O{sub 3} is possible through analysis of the stellar and atmospheric context—particularly redox state and O atom inventory—of the planet in question. Specifically, understanding the spectral characteristics of the star and obtaining a broad wavelength range for planetary spectra should allow more robust identification of false positives for life. This highlights the importance of wide spectral coverage for future exoplanet characterization missions. Specifically, discrimination between true and false positives may require spectral observations that extend into infrared wavelengths and provide contextual information on the planet's atmospheric chemistry.

  6. Predominance of biotic over abiotic formation of halogenated hydrocarbons in hypersaline sediments in Western Australia.

    PubMed

    Ruecker, A; Weigold, P; Behrens, S; Jochmann, M; Laaks, J; Kappler, A

    2014-08-19

    Volatile halogenated organic compounds (VOX) contribute to ozone depletion and global warming. There is evidence of natural VOX formation in many environments ranging from forest soils to salt lakes. Laboratory studies have suggested that VOX formation can be chemically stimulated by reactive Fe species while field studies have provided evidence for direct biological (enzymatic) VOX formation. However, the relative contribution of abiotic and biotic processes to global VOX budgets is still unclear. The goals of this study were to quantify VOX release from sediments from a hypersaline lake in Western Australia (Lake Strawbridge) and to distinguish between the relative contributions of biotic and abiotic VOX formation in microbially active and sterilized microcosms. Our experiments demonstrated that the release of organochlorines from Lake Strawbridge sediments was mainly biotic. Among the organochlorines detected were monochlorinated, e.g., chloromethane (CH3Cl), and higher chlorinated VOX compounds such as trichloromethane (CHCl3). Amendment of sediments with either Fe(III) oxyhydroxide (ferrihydrite) or a mixture of lactate/acetate or both ferrihydrite and lactate/acetate did not stimulate VOX formation. This suggests that although microbial Fe(III) reduction took place, there was no stimulation of VOX formation via Fe redox transformations or the formation of reactive Fe species under our experimental conditions. PMID:25073729

  7. EXB1/WRKY71 transcription factor regulates both shoot branching and responses to abiotic stresses.

    PubMed

    Guo, Dongshu; Qin, Genji

    2016-03-01

    As the sessile organisms, plants evolve different strategies to survive in adverse environmental conditions. The elaborate regulation of shoot branching is an important strategy for plant morphological adaptation to various environments, while the regulation of reactive oxygen species (ROS), salicylic acid (SA) and jasmonic acid (JA) is pivotal for plant responses to biotic and abiotic stresses. Recently, we have demonstrated that Arabidopsis EXB1, a WRKY transcription factor, is a positive regulator of shoot branching as a cover story in Plant Cell. Here we show that WRKY23, an EXB1 close member, has a redundant role in control of shoot branching. We further show that EXB1 is induced by H2O2, ABA or mannitol treatments, suggesting that EXB1 may also play roles in plant responses to abiotic stresses. RNA-sequencing (RNA-seq) analysis using 4EnhpEXB1-EXB1GR inducible line indicates that the genes involved in oxidative stress, oxidation reduction, SA or JA signaling pathway are regulated by EXB1 induction in a short time. We suggest that EXB1/WRKY71 transcription factor may play pivotal roles in plant adaptation to environments by both morphological and physiological ways. PMID:26914912

  8. Microbiological and abiotic processes in modelling longer-term marine corrosion of steel.

    PubMed

    Melchers, Robert E

    2014-06-01

    Longer term exposure of mild steel in natural (biotic) waters progresses as a bimodal function of time, both for corrosion mass loss and for pit depth. Recent test results, however, found this also for immersion in clean fresh, almost pure and triply distilled waters. This shows chlorides or microbiological activity is not essential for the electrochemical processes producing bimodal behaviour. It is proposed that the first mode is aerobic corrosion that eventually produces a non-homogeneous corroded surface and rust coverage sufficient to allow formation of anoxic niches. Within these, aggressive autocatalytic reduction then occurs under anoxic abiotic conditions, caused by sulfide species originating from the MnS inclusions typical in steels. This is consistent with Wranglen's model for abiotic anoxic crevice and pitting corrosion without external aggressive ions. In biotic conditions, metabolites from anaerobic bacterial activity within and near the anoxic niches provides additional (sulfide) species to contribute to the severity of corrosion. Limited observational evidence that supports this hypothesis is given but further investigation is required to determine all contributor(s) to the cathodic current for the electrochemical reaction. The results are important for estimating the contribution of microbiological corrosion in infrastructure applications. PMID:24067447

  9. Novel Insights Into Microbial Uranium Reduction and Immobilization

    NASA Astrophysics Data System (ADS)

    Loeffler, F. E.; Fletcher, K.; Thomas, S.; Kemner, K. M.; Boyanov, M.; Sanford, R.

    2010-12-01

    Many ferric iron- and manganese oxide-reducing bacteria affect the oxidation state and complexation of toxic radionuclides in subsurface environments. Relevant to uranium (U) speciation are bacteria that reduce predominantly water-soluble and mobile U(VI) to U(IV), which has reduced solubility and typically forms the uraninite (UO2) mineral. Gram-negative model organisms including Shewanella spp., Geobacter spp., and more recently Anaeromyxobacter spp. use U(VI) as growth-supporting electron acceptor; however, the biomass yields are lower than predicted based on the theoretical free energy changes associated with U(VI)-to-U(IV) reduction. Recent findings demonstrated that U(VI) reduction is not limited to Gram-negative bacteria, and members of the genus Desulfitobacterium, which are commonly found in soil and subsurface environments, share the ability to reduce U(VI). Interestingly, extended X-ray absorption fine structure (EXAFS) analysis demonstrated that the U(IV) produced in cultures of five Desulfitobacterium spp. was not UO2 but rather a phase or mineral composed of mononuclear U(IV) atoms. Since the properties of the reduced product influence U(IV) fate, knowledge of the diversity of U reduction mechanisms and the stability of the end products is desirable for controlling and predicting U fate. For example, UO2 is susceptible to reoxidation by oxidants, and oxic/anoxic interface processes are controlling the stability of the precipitated material. In other words, metal reducers that thrive at the oxic/anoxic interface are likely key players affecting long-term U fate. Anaeromyxobacter spp. are facultative microaerophiles and grow with oxygen as electron acceptor at partial pressures equal to or below 0.18 atm. Thus, Anaeromyxobacter are uniquely adapted to life at the oxic-anoxic interface where they consume oxygen and take advantage of oxidized metal species including U(VI) as electron acceptors. The application of 16S rRNA gene-targeted qPCR approaches

  10. In vivo chelation of Am(III), Pu(IV), Np(V), and U(VI) in mice by TREN-(Me-3,2-HOPO)

    SciTech Connect

    Durbin, P.W.; Kullgren, B.; Xu, J.; Raymond, K.N.

    1993-08-01

    Octadentate 3,4,3-LI(1,2-HOPO), composed of the acidic hydroxypyridine isomer, 1,2-HOPO, is the most effective ligand yet prepared for in vivo chelation of Pu(IV) and Am(III), but it is difficult to prepare and acutely toxic. Hexadentate TREN-(Me-3,2-HOPO), composed of the less acidic Me-3,2-HOPO isomer, can be produced in relatively large quantities. TREN-(Me-3,2-HOPO) (30 {mu}mol.kg{sup {minus}1} injected intraperitoneally in mice 3 min to 1 h after intravenous injection of an actinide) removed significant body Pu(IV), Am(III), Np(V), or U(VI) (compared with controls), and those actinide reductions were significantly greater than were obtained with CaNa{sub 3}-DTPA. TREN-(Me-3,2-HOPO) was almost as effective for reducing body PU(IV) as 3,4,3-LI(1,2-HOPO). TREN-(Me-3,2-HOPO) is of low acute toxicity in mice and its clinical potential, as a practical compromise between the effectiveness of 3,4,3-LI(1,2-HOPO) and the safety of CaNa{sub 3}-DTPA, merits further investigation.

  11. Coupled Biogeochemical Processes Governing the Stability of Bacteriogenic Uraninite and Release of U(VI) in Heterogeneous Media: Molecular to Meter Scales

    SciTech Connect

    Bargar, John R.

    2006-11-15

    In-situ reductive biotransformation of subsurface U(VI) to U(IV) (as ?UO2?) has been proposed as a bioremediation method to immobilize uranium at contaminated DOE sites. The chemical stability of bacteriogenic ?UO2? is the seminal issue governing its success as an in-situ waste form in the subsurface. The structure and properties of chemically synthesized UO2+x have been investigated in great detail. It has been found to exhibit complex structural disorder, with nonstoichiometry being common, hence the designation ?UO2+x?, where 0 < x < 0.25. Little is known about the structures and properties of the important bacteriogenic analogs, which are believed to occur as nanoparticles in the environment. Chemically synthesized UO2+x exhibits an open fluorite structure and is known to accommodate significant doping of divalent cations. The extent to which bacteriogenic UO2+x incorporates common ground water cations (e.g., Ca2+) has not been investigated, and little is known about nonstoichiometry and structure defects in the bacteriogenic material. Particle size, nonstoichiometry, and doping may significantly alter the reactivity, and hence stability, of bacteriogenic UO2+x in the subsurface. The presence of associated sulfide minerals, and solid phase oxidants such as bacteriogenic Mn oxides may also affect the longevity of bacteriogenic UO2 in the subsurface.

  12. A Spectroscopic Study of the effect of Ligand Complexation on the Reduction of Uranium(VI) by Anthraquinone-2,6-disulfonate (AH2DS)

    SciTech Connect

    Wang, Zheming; Wagnon, Ken B.; Ainsworth, Calvin C.; Liu, Chongxuan; Rosso, Kevin M.; Fredrickson, Jim K.

    2008-11-03

    In this project, the reduction rate of uranyl complexes with hydroxide, carbonate, EDTA, and Desferriferrioxamine B (DFB) by anthraquinone-2,6-disulfonate (AH2DS), a potential electron shuttle for microbial reduction of metal ions (Newman and Kolter 2000), is studied by stopped-flow kinetics techniques under anoxic atmosphere. The apparent reaction rates varied with ligand type, solution pH, and U(VI) concentration. For each ligand, a single largest kobs within the studied pH range was observed, suggesting the influence of pH-dependent speciation on the U(VI) reduction rate. The maximum reaction rate found in each case followed the order of OH- > CO32- > EDTA > DFB, consistent with the same trend of the thermodynamic stability of the uranyl complexes and ionic sizes of the ligands. Increasing the stability of uranyl complexes and ligand size decreased the maximum reduction rate. The pH-dependent rates were modeled using a second-order rate expression that was assumed to be dependent on a single U(VI) complex and AH2DS species. By quantitatively comparing the calculated and measured apparent rate constants as a function of pH, species AHDS3- was suggested as the primary reductant in all cases examined. Species UO2CO3(aq) , UO2HEDTA-, and (UO2)2(OH)22+ were suggested as the principal electron acceptors among the U(VI) species mixture in carbonate, EDTA, and hydroxyl systems, respectively.

  13. Incorporation of Np(V) and U(VI) in Carbonate and Sulfate Minerals Crystallized from Aqueous Solution

    SciTech Connect

    Balboni, Enrica; Morrison, Jessica M.; Wang, Zheming; Engelhard, Mark H.; Burns, Peter C.

    2015-02-15

    The neptunyl Np(V)O2 + and uranyl U(VI)O2 2+ ions are soluble in groundwater, although their interaction with minerals in the subsurface may impact their mobility. One mechanism for the immobilization of actinyl ions in the subsurface is coprecipitation in low-temperature minerals that form naturally, or that are induced to form as part of a remediation strategy. Important differences in the crystal-chemical behavior of the Np(V) neptunyl and U(VI) uranyl ions suggest their behavior towards incorporation into growing crystals may differ significantly. Using a selection of low temperature minerals synthesized in aqueous systems under ambient conditions, this study examines the factors that impact the structural incorporation of the Np(V) neptunyl and U(VI) uranyl ions in carbonate and sulfate minerals.

  14. Enhanced U(VI) release from autunite mineral by aerobic Arthrobacter sp. in the presence of aqueous bicarbonate

    SciTech Connect

    Katsenovich, Yelena P.; Carvajal, Denny A.; Wellman, Dawn M.; Lagos, Leonel E.

    2012-05-01

    The bacterial effect on U(VI) release from the autunite mineral (Ca[(UO2)(PO4)]2•3H2O) was investigated to provide a more comprehensive understanding of the important microbiological processes affecting autunite stability within subsurface bicarbonate-bearing environments. Experiments were performed in a culture of the Arthrobacter oxydans G975 strain, herein referred to as G975, a soil bacterium previously isolated from Hanford Site soil. 91 mg of autunite powder and 50 mL of phosphorous-limiting sterile media were amended with bicarbonate (ranging between 1 and 10 mM) in glass reactor bottles and inoculated with the G975 strain after the dissolution of autunite was at steady state. SEM observations indicated that G975 formed a biofilm on the autunite surface and penetrated the mineral cleavages. The mineral surface colonization by bacteria tended to increase concomitantly with bicarbonate concentrations. Additionally, a sterile culture-ware with inserts was used in non-contact dissolution experiments where autunite and bacteria cells were kept separately. The data suggest that G975 bacteria is able to enhance the release of U(VI) from autunite without direct contact with the mineral. In the presence of bicarbonate, the damage to bacterial cells caused by U(VI) toxicity was reduced, yielding similar values for total organic carbon (TOC) degradation and cell density compared to U(VI)-free controls. The presence of active bacterial cells greatly enhanced the release of U(VI) from autunite in bicarbonate-amended media.

  15. Enhanced U(VI) release from autunite mineral by aerobic Arthrobacter sp. in the presence of aqueous bicarbonate

    SciTech Connect

    Katsenovich, Yelena; Carvajal, Denny A.; Wellman, Dawn M.; Lagos, Leonel

    2012-04-20

    The bacterial effect on U(VI) leaching from the autunite mineral (Ca[(UO{sub 2})(PO{sub 4})]{sub 2} {center_dot} 3H{sub 2}O) was investigated to provide a more comprehensive understanding into important microbiological processes affecting autunite stability within subsurface bicarbonate-bearing environments. Experiments were performed in a culture of G975 Arthrobacter oxydans strain, herein referred to as G975, a soil bacterium previously isolated from Hanford Site soil. 91 mg of autunite powder and 50 mL of phosphorus-limiting sterile media were amended with bicarbonate ranging between 1-10 mM in glass reactor bottles and inoculated with G975 strain after the dissolution of autunite was at steady state. SEM observations indicated G975 formed a biofilm on the autunite surface and penetrated the mineral cleavages. The mineral surface colonization by bacteria tended to increase concomitantly with bicarbonate concentrations. Additionally, a sterile cultureware with inserts was used in non-contact bioleaching experiments where autunite and bacteria cells were kept separately. The data suggest the G975 bacteria is able to enhance U(VI) leaching from autunite without the direct contact with the mineral. In the presence of bicarbonate, the damage to bacterial cells caused by U(VI) toxicity was reduced, yielding similar values for total organic carbon (TOC) degradation and cell density compared to U(VI)-free controls. The presence of active bacterial cells greatly enhanced the U(VI) bioleaching from autunite in bicarbonate-amended media.

  16. Complexation of U(VI) with 1-Hydroxyethane-1,1-diphosphonicAcid (HEDPA) in Acidic to Basic Solutions

    SciTech Connect

    Reed, W A; Rao, L; Zanonato, P; Garnov, A; Powell, B A; Nash, K L

    2007-01-24

    Complexation of U(VI) with 1-hydroxyethane-1,1-diphosphonic acid (HEDPA) in acidic to basic solutions has been studied with multiple techniques. A number of 1:1 (UO{sub 2}H{sub 3}L), 1:2 (UO{sub 2}H{sub j}L{sub 2} where j = 4, 3, 2, 1, 0 and -1) and 2:2 ((UO{sub 2}){sub 2}H{sub j}L{sub 2} where j = 1, 0 and -1) complexes form, but the 1:2 complexes are the major species in a wide pH range. Thermodynamic parameters (formation constants, enthalpy and entropy of complexation) were determined by potentiometry and calorimetry. Data indicate that the complexation of U(VI) with HEDPA is exothermic, favored by the enthalpy of complexation. This is in contrast to the complexation of U(VI) with dicarboxylic acids in which the enthalpy term usually is unfavorable. Results from electrospray ionization mass spectrometry (ESI-MS) and {sup 31}P NMR have confirmed the presence of 1:1, 1:2 and 2:2 U(VI)-HEDPA complexes.

  17. The mechanism of uranium transformation from U(VI) into nano-uramphite by two indigenous Bacillus thuringiensis strains.

    PubMed

    Pan, Xiaohong; Chen, Zhi; Chen, Fanbing; Cheng, Yangjian; Lin, Zhang; Guan, Xiong

    2015-10-30

    The mechanism of uranium transformation from U(VI) into nano-uramphite by two indigenous Bacillus thuringiensis strains was investigated in the present work. Our data showed that the bacteria isolated from uranium mine possessed highly accumulation ability to U(VI), and the maximum accumulation capacity was around 400 mg U/g biomass (dry weight). X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FT-IR) analyzes indicated that the U(VI) was adsorbed on the bacterial surface firstly through coordinating with phosphate, CH2 and amide groups, and then needle-like amorphous uranium compounds were formed. With the extension of time, the extracellular crystalline substances were disappeared, but some particles were appeared in the intracellular region, and these particles were characterized as tetragonal-uramphite. Moreover, the disrupted experiment indicated that the cell-free extracts had better uranium-immobilization ability than cell debris. Our findings provided the understanding of the uranium transformation process from amorphous uranium to crystalline uramphite, which would be useful in the regulation of uranium immobilization process. PMID:26026850

  18. Mechanisms of plant–plant interactions: concealment from herbivores is more important than abiotic-stress mediation in an African savannah

    PubMed Central

    Louthan, Allison M.; Doak, Daniel F.; Goheen, Jacob R.; Palmer, Todd M.; Pringle, Robert M.

    2014-01-01

    Recent work on facilitative plant–plant interactions has emphasized the importance of neighbours’ amelioration of abiotic stress, but the facilitative effects of neighbours in reducing plant apparency to herbivores have received less attention. Whereas theory on stress reduction predicts that competition should be more important in less stressful conditions, with facilitation becoming more important in harsh environments, apparency theory suggests that facilitation should be greater in the presence of herbivores, where it is disadvantageous to be conspicuous regardless of abiotic stress level. We tested the relative strength of neighbours’ stress reduction versus apparency reduction on survival, growth, reproduction and lifetime fitness of Hibiscus meyeri, a common forb in central Kenya, using neighbour removals conducted inside and outside large-herbivore exclosures replicated in arid and mesic sites. In the absence of herbivores, neighbours competed with H. meyeri in mesic areas and facilitated H. meyeri in arid areas, as predicted by stress-reduction mechanisms. By contrast, neighbours facilitated H. meyeri in the presence of herbivory, regardless of aridity level, consistent with plant apparency. Our results show that the facilitative effects arising from plant apparency are stronger than the effects arising from abiotic stress reduction in this system, suggesting that plant-apparency effects may be particularly important in systems with extant large-herbivore communities. PMID:24523267

  19. Reactions of the feldspar surface with metal ions: Sorption of Pb(II), U(VI) and Np(V), and surface analytical studies of reaction with Pb(II) and U(VI)

    NASA Astrophysics Data System (ADS)

    Chardon, Emmanuelle S.; Bosbach, Dirk; Bryan, Nicholas D.; Lyon, Ian C.; Marquardt, Christian; Römer, Jürgen; Schild, Dieter; Vaughan, David J.; Wincott, Paul L.; Wogelius, Roy A.; Livens, Francis R.

    2008-01-01

    Feldspar minerals are thermodynamically unstable in the near-surface environment and their surfaces are well known to react readily with aqueous solutions, leading to incongruent dissolution at low pH values, but congruent dissolution at neutral and high pH values. Interactions with mineral surfaces are an important control on the environmental transport of trace elements and detrital feldspars are abundant in soils and sediments. However, the interactions of metal ions in solution with the reacting feldspar surface have not been widely explored. The interactions of Pb(II), U(VI) and Np(V) ions with the feldspar surface have therefore been studied. Lead is taken up by the microcline surface at pH 6 and 10, but no uptake could be measured at pH 2. There was measurable uptake of Pb(II) on the plagioclase surface at pH 2, 6 and 10. Uptake always increased with pH. In most conditions, Pb(II) reacts through cation exchange process although, at high pH, a discrete phase, probably hydrocerrusite, is observed by atomic force microscopy (AFM) to precipitate on the plagioclase surface. Supersaturation with hydrocerrusite in these conditions is expected from thermodynamic calculations. Uptake of uranyl ion (UO22+), generally through surface complex formation, could only be measured at pH 6 and 10. At pH 6 and an initial U(VI) concentration above 21.0 μM, precipitation of becquerelite (Ca[(UO2)3O2(OH)3]2·8H2O), identified by AFM and characterised by grazing incidence X-ray diffraction and X-ray photoelectron spectroscopy, is observed on plagioclase. The U(VI) concentration range in which becquerelite precipitation begins (dissolved U(VI) 1-5 μM) is consistent with that predicted from thermodynamic modelling. On plagioclase feldspar, secondary ion mass spectrometry showed diffusion of uranium into the altered surface layer. Uptake of the neptunyl ion (Np(V)) was found at pH 6 and 10 for microcline and at pH 2, 6 and 10 for plagioclase, and was generally lower than uptake of

  20. Towards a More Complete Picture: Dissimilatory Metal Reduction by Anaeromyxobacter Species

    SciTech Connect

    Loeffler, Frank E.

    2004-06-01

    We investigate the physiological requirements of available Anaeromyxobacter isolates, and assess their distribution and abundance in the environment, including DOE sites. The performers on this project include Frank Loeffler (PI), Robert Sanford (Co-PI), Qingzhong Wu (postdoc), Sara Henry (graduate student) and Cornell Gayle (undergraduate student). Year-1 efforts focused on method and tool development to address the research objectives. First, we compared different analytical assays (based on fluorescent light emission and calorimetric methods) to quantify U(VI) in cultures of Anaeromyxobacter dehalogenans strain 2CP-C. The assays were optimized to reflect specific culture conditions, and we found that a laser-excited spectrofluorescence assay provided reproducible and accurate information on the amount of U(VI) reduced in bacterial cultures. To demonstrate the ability of Anaeromyxobacter dehalogenans strain 2CP-C to reduce U(VI), washed suspensions of fumarate-grown cells were prepared. These experiments confirmed that the rapid reduction of U(VI) to U(IV) depended on the presence of live cells, and no U(VI) reduction occurred in cell-free controls. Additional experiments explored the ability of three different Anaeromyxobacter strains to grow with the mineral hematite, an insoluble form of ferric iron, as electron acceptor. All strain grew equally well with soluble ferric iron (provided as ferric citrate) but distinct differences were observed between strains when grown with hematite. All strains tested shared a 16S rRNA gene similarity of >99.5%, suggesting that closely related strains may differ in their ability to access insoluble forms of ferric iron.

  1. Effects of aqueous uranyl speciation on the kinetics of microbial uranium reduction

    NASA Astrophysics Data System (ADS)

    Belli, Keaton M.; DiChristina, Thomas J.; Van Cappellen, Philippe; Taillefert, Martial

    2015-05-01

    The ability to predict the success of the microbial reduction of soluble U(VI) to highly insoluble U(IV) as an in situ bioremediation strategy is complicated by the wide range of geochemical conditions at contaminated sites and the strong influence of aqueous uranyl speciation on the bioavailability and toxicity of U(VI) to metal-reducing bacteria. To determine the effects of aqueous uranyl speciation on uranium bioreduction kinetics, incubations and viability assays with Shewanella putrefaciens strain 200 were conducted over a range of pH and dissolved inorganic carbon (DIC), Ca2+, and Mg2+ concentrations. A speciation-dependent kinetic model was developed to reproduce the observed time series of total dissolved uranium concentration over the range of geochemical conditions tested. The kinetic model yielded the highest rate constant for the reduction of uranyl non-carbonate species (i.e., the 'free' hydrated uranyl ion, uranyl hydroxides, and other minor uranyl complexes), indicating that they represent the most readily reducible fraction of U(VI) despite being the least abundant uranyl species in solution. The presence of DIC, Ca2+, and Mg2+ suppressed the formation of more bioavailable uranyl non-carbonate species and resulted in slower bioreduction rates. At high concentrations of bioavailable U(VI), however, uranium toxicity to S. putrefaciens inhibited bioreduction, and viability assays confirmed that the concentration of non-carbonate uranyl species best predicts the degree of toxicity. The effect of uranium toxicity was accounted for by incorporating the free ion activity model of metal toxicity into the bioreduction rate law. Overall, these results demonstrate that, in the absence of competing terminal electron acceptors, uranium bioreduction kinetics can be predicted over a wide range of geochemical conditions based on the bioavailability and toxicity imparted on U(VI) by solution composition. These findings also imply that the concentration of uranyl non

  2. Abiotic Nitrous Oxide Production in Natural and Artificial Seawater

    NASA Astrophysics Data System (ADS)

    Ochoa, H.; Stanton, C. L.; Cavazos, A. R.; Ostrom, N. E.; Glass, J. B.

    2014-12-01

    The ocean contributes approximately one third of global sources of nitrous oxide (N2O) to the atmosphere. While nitrification is thought to be the dominant pathway for marine N2O production, mechanisms remain unresolved. Previous studies have carried the implicit assumption that marine N2O originates directly from enzymatic sources. However, abiotic production of N2O is possible via chemical reactions between nitrogenous intermediates and redox active trace metals in seawater. In this study, we investigated N2O production and isotopic composition in treatments with and without added hydroxylamine (NH2OH) and nitric oxide (NO), intermediates in microbial oxidation of ammonia to nitrite, and Fe(III). Addition of substrates to sterile artificial seawater was compared with filtered and unfiltered seawater from Sapelo Island, coastal Georgia, USA. N2O production was observed immediately after addition of Fe(III) in the presence of NH2OH at pH 8 in sterile artificial seawater. Highest N2O production was observed in the presence of Fe(III), NO, and NH2OH. The isotopomer site preference of abiotically produced N2O was consistent with previous studies (31 ± 2 ‰). Higher abiotic N2O production was observed in sterile artificial seawater (salinity: 35 ppt) than filtered Sapelo Island seawater (salinity: 25 ppt) whereas diluted sterile artificial seawater (18 ppt) showed lowest N2O production, suggesting that higher salinity promotes enhanced abiotic N2O production. Addition of Fe(III) to unfiltered Sapelo Island seawater stimulated N2O production. The presence of ammonia-oxidizing archaea (AOA), which lack known N2O producing enzymes, in Sapelo Island seawater was confirmed by successful amplification of the archaeal amoA gene, whereas ammonia-oxidizing bacteria (AOB), which contain N2O-producing enzymes were undetected. Given the few Fe-containing proteins present in AOA, it is likely that Fe(III) addition promoted N2O production via an abiotic vs. enzymatic N2O mechanism

  3. Photo-oxidative stress markers as a measure of abiotic stress-induced leaf senescence: advantages and limitations.

    PubMed

    Pintó-Marijuan, Marta; Munné-Bosch, Sergi

    2014-07-01

    Inside chloroplasts, several abiotic stresses (including drought, high light, salinity, or extreme temperatures) induce a reduction in CO2 assimilation rates with a consequent increase in reactive oxygen species (ROS) production, ultimately leading to leaf senescence and yield loss. Photo-oxidation processes should therefore be mitigated to prevent leaf senescence, and plants have evolved several mechanisms to either prevent the formation of ROS or eliminate them. Technology evolution during the past decade has brought faster and more precise methodologies to quantify ROS production effects and damage, and the capacities of plants to withstand oxidative stress. Nevertheless, it is very difficult to disentangle photo-oxidative processes that bring leaf defence and acclimation, from those leading to leaf senescence (and consequently death). It is important to avoid the mistake of discussing results on leaf extracts as being equivalent to chloroplast extracts without taking into account that other organelles, such as peroxisomes, mitochondria, or the apoplast also significantly contribute to the overall ROS production within the cell. Another important aspect is that studies on abiotic stress-induced leaf senescence in crops do not always include a time-course evolution of studied processes, which limits our knowledge about what photo-oxidative stress processes are required to irreversibly induce the senescence programme. This review will summarize the current technologies used to evaluate the extent of photo-oxidative stress in plants, and discuss their advantages and limitations in characterizing abiotic stress-induced leaf senescence in crops. PMID:24683180

  4. SERDP ER-1376 Enhancement of In Situ Bioremediation of Energetic Compounds by Coupled Abiotic/Biotic Processes:Final Report for 2004 - 2006

    SciTech Connect

    Szecsody, James E.; Comfort, Steve; Fredrickson, Herbert L.; Boparai, Hardiljeet K.; Devary, Brooks J.; Thompson, Karen T.; Phillips, Jerry L.; Crocker, Fiona H.; Girvin, Donald C.; Resch, Charles T.; Shea, Patrick; Fischer, Ashley E.; Durkin, Lisa M.

    2007-08-07

    This project was initiated by SERDP to quantify processes and determine the effectiveness of abiotic/biotic mineralization of energetics (RDX, HMX, TNT) in aquifer sediments by combinations of biostimulation (carbon, trace nutrient additions) and chemical reduction of sediment to create a reducing environment. Initially it was hypothesized that a balance of chemical reduction of sediment and biostimulation would increase the RDX, HMX, and TNT mineralization rate significantly (by a combination of abiotic and biotic processes) so that this abiotic/biotic treatment may be a more efficient for remediation than biotic treatment alone in some cases. Because both abiotic and biotic processes are involved in energetic mineralization in sediments, it was further hypothesized that consideration for both abiotic reduction and microbial growth was need to optimize the sediment system for the most rapid mineralization rate. Results show that there are separate optimal abiotic/biostimulation aquifer sediment treatments for RDX/HMX and for TNT. Optimal sediment treatment for RDX and HMX (which have chemical similarities and similar degradation pathways) is mainly chemical reduction of sediment, which increased the RDX/HMX mineralization rate 100 to150 times (relative to untreated sediment), with additional carbon or trace nutrient addition, which increased the RDX/HMX mineralization rate an additional 3 to 4 times. In contrast, the optimal aquifer sediment treatment for TNT involves mainly biostimulation (glucose addition), which stimulates a TNT/glucose cometabolic degradation pathway (6.8 times more rapid than untreated sediment), degrading TNT to amino-intermediates that irreversibly sorb (i.e., end product is not CO2). The TNT mass migration risk is minimized by these transformation reactions, as the triaminotoluene and 2,4- and 2,6-diaminonitrotoluene products that irreversibly sorb are no longer mobile in the subsurface environment. These transformation rates are increased

  5. Investigation of interaction between U(VI) and carbonaceous nanofibers by batch experiments and modeling study.

    PubMed

    Zhang, Rui; Chen, Changlun; Li, Jie; Wang, Xiangke

    2015-12-15

    Carbonaceous nanofibers (CNFs) were synthesized using tellurium nanowires as a template and using glucose as carbon source by the hydrothermal carbonization method. The sorption capacity and mechanism of U(VI) on CNFs were investigated by a combination of batch sorption experiments, the double layer model (DLM) and X-ray photoelectron spectroscopy (XPS). The sorption edges were modeled well by considering the following surface complexes: SOUO2(+), SOUO2OH, SOUO2(OH)2(-) and SOUO2(OH)3(2-) on the strong site as well as XOUO2OH and XOUO2(+) on the weak one (S and X represent surface). The sorption isotherms could be well fitted by the DLM parameters. The difference between type A (SOUO2OH and XOUO2OH) and type B (SOUO2(+) and XOUO2(+)) was observed in XPS because the former species are of low binding energy while the latter are of high one. Desorption and recycle experiments showed that CNFs had good reusability and stability in the present of common sodium salts within five rounds. When co-existing with montmorillonite, CNFs could extract the sorbed uranium onto their surface by a pseudo-second order kinetic process. As a new sort of environmental functional nanomaterials, CNFs should be paid more attention in the area of separation and wastewater remediation. PMID:26342973

  6. Solution thermodynamics and structures of biscatecholamide complexes of Fe(III) and U(VI)

    SciTech Connect

    Gohdes, J.W.; Reilly, S.D.; Pecha, A.W.; Neu, M.P.

    1996-12-31

    We have studied the solution and solid-state complexes of a bis-catecholamide ligand, 2-LICAMS, with Fe(III) and U(VI). The first protonation constant was found to be pK{sub al} = 14.2(3) using {sup 1}H NMR titrations. Subsequent protonation constants were determined by potentiometric titration in 0.1 M TMAOTf at 25{degrees}C to be pK{sub a2} = 11.2(1), pK{sub 13} =6.5(1), pK{sub a4}= 5.9(1). Ligand-metal formation constants, {Beta}{sub mlh}, were found to be log {beta}{sub 110} = 31.4(2), log {beta}{sub 111} = 31.7(2), log {beta}{sub 112} = 34.9(2), and log {beta}11.1 = 18.0(1) for uranium(VI). To discriminate between monomeric or dimeric species models which both fit the potentiometric titration data, we isolated the hydroxide species and determined its single-crystal X-ray structure and EXAFS. The structure consists of a dimeric, bis-hydroxide bridged iron core which is spanned by two ligands. This study of solution equilibria indicates a higher stability for iron complexes of 2-LICAMS relative to uranyl complexes.

  7. Quantitative toxicoproteomic analysis of zebrafish embryos exposed to a retinoid X receptor antagonist UVI3003.

    PubMed

    Zheng, Liang; Yu, Jianlan; Shi, Huahong; Xia, Liang; Xin, Qi; Zhang, Qiang; Zhao, Heng; Luo, Ji; Jin, Wenhai; Li, Daoji; Zhou, Junliang

    2015-09-01

    Retinoid X receptor (RXR) antagonists, including some environmental endocrine disruptors, have a teratogenic effect on vertebrate embryos. To investigate the toxicological mechanism on the protein expression level, a quantitative proteomic study was conducted to analyze the proteome alterations of zebrafish (Danio rerio) embryos exposed to gradient concentrations of a representative RXR antagonist UVI3003. Using isobaric Tags for Relative and Absolute Quantitation (iTRAQ) labeling coupled nano high-performance liquid chromatography-tandem mass spectrometry (nano HPLC-MS/MS), in total 6592 proteins were identified, among which 195 proteins were found to be differentially expressed by more than a two-fold change in exposed groups compared with the control. Gene ontology analysis showed that these differential proteins were mostly involved in anatomical structure development, biosynthetic process, ion binding and oxidoreductase activity. Moreover, the biological pathways of translation, lipoprotein metabolism, cell survival and gluconeogenesis were intensively inhibited after exposure. Some significantly downregulated proteins such as apolipoprotein A-I and vitellogenin and upregulated proteins such as calcium activated nucleotidase 1b, glutathione S-transferase and glucose 6-dehydrogenases showed a strong dose-dependent response. The results provided new insight into the molecular details of RXR antagonist-induced teratogenicity and added novel information of pathways and potential biomarkers for evaluation of RXR interfering activity. PMID:25581642

  8. High-Precision Calibration of the WFC3/UVIS Geometric Distortion

    NASA Astrophysics Data System (ADS)

    Riess, Adam

    2014-10-01

    The geometric distortion solution for WFC3/UVIS is known in most filters to better than 0.01 pixels from the analysis of pointed data. Astrometric data taken with spatial scans suggest that residuals from this solution have typical magitudes of 0.003-0.005 pixels, and correlate on scales of 50-100 pixels. These deviations also appear to be stable in time, and therefore can be calibrated using apropriate data. This proposal aims at improving the calibration of local deviations from astrometric solution via spatial scans. The observations target two regions with high density of bright stars at several different large-scale dithers to obtain a dense coverage of high S/N trails over the majority of the detector. The data will be used to obtain a static correction to the distortion solution that can be used to improve the geometric distortion solution. The open clusters M 67 and M 48 have been selected to provide the highest density of stars of the right brightness for F606W (M 67) and F621M and F673N (M 48); these are the recommended filters for optimal extraction of astrometric information, depending on the brightness of the target.

  9. FUV and UVIS observations of circumnuclear star clusters in M83

    NASA Astrophysics Data System (ADS)

    Wofford, Aida; Chandar, Rupali; Leitherer, Claus

    2011-01-01

    We analyze archival HST/STIS/FUV-MAMA imaging and spectroscopy of 13 compact star clusters within the circumnuclear starburst region of M83, the closest such example. We compare the observed spectra with semi-empirical models, which are based on an empirical library of Galactic O and B stars observed with IUE, and with theoretical models, which are based on a new theoretical UV library of hot massive stars computed with WM-Basic. The models were generated with Starburst99 for metallicities of Z=0.020 and Z=0.040, and for stellar IMFs with upper mass limits of 10, 30, 50, and 100 M_⊙. We estimate the ages and masses of the clusters from the best fit model spectra, and find that the ages derived from the semi-empirical and theoretical models agree within a factor of 1.2 on average. A comparison of the spectroscopic age estimates with values derived from HST/WFC3/UVIS multi-band photometry shows a similar level of agreement for all but one cluster. The clusters have a range of ages from about 2 to 20 Myr, and do not appear to have an age gradient along M83's starburst. Clusters with strong P-Cygni profiles have masses of a few ×10^4 M_⊙, seem to have formed stars more massive than 30 M_⊙, and are consistent with a Kroupa IMF from 0.1-100 M_⊙.

  10. Upscaling of U(VI) Desorption Modeling from Batch Scale to Decimeter Scale

    NASA Astrophysics Data System (ADS)

    Kannappan, R.; Hay, M. B.; Miller, A. W.; Kohler, M.; Rodriguez, D.; Davis, J. A.; Curtis, G. P.

    2012-12-01

    Uranium (VI) is a contaminant of concern in several groundwater aquifers at many former uranium mills and processing facilities. Understanding the migration of U(VI) is important in assessing the risk of groundwater contamination and the efficacy of treatment options. Accurate prediction of field-scale migration is difficult because often key model parameters such as adsorption equilibrium and rate parameters are determined in batch scale experiments. These parameters need to be upscaled when used to simulate larger scale simulations. To better understand the impact of scale on transport, this research incorporates previous batch scale experimental data in the interpretation of decimeter scale tank experiments involving uranium desorption. In the decimeter scale experiments, different grain size fractions were used to create porous media systems with known physical and chemical heterogeneity. Tracer results allowed hydraulic parameters to be calibrated independently of chemical equilibrium parameters. Geochemical observations were used to evaluate alternative adsorption and mass transfer models with varying complexity. Surface complexation models derived from batch experiments were evaluated under different decimeter scale model conditions. A two dimensional reactive transport model was calibrated to the decimeter scale experiments and the model reproduced the observed transport. The flux-averaged concentrations exiting the tank were also reproduced by a one dimensional model that included a dual porosity formulation to account for heterogeneity. The decimeter scale model calibrations help determine the effectiveness of these methods of reducing complexity, which can later be applied to improve predictions of tracer and site scale systems.

  11. Arbuscular mycorrhizal fungal responses to abiotic stresses: A review.

    PubMed

    Lenoir, Ingrid; Fontaine, Joël; Lounès-Hadj Sahraoui, Anissa

    2016-03-01

    The majority of plants live in close collaboration with a diversity of soil organisms among which arbuscular mycorrhizal fungi (AMF) play an essential role. Mycorrhizal symbioses contribute to plant growth and plant protection against various environmental stresses. Whereas the resistance mechanisms induced in mycorrhizal plants after exposure to abiotic stresses, such as drought, salinity and pollution, are well documented, the knowledge about the stress tolerance mechanisms implemented by the AMF themselves is limited. This review provides an overview of the impacts of various abiotic stresses (pollution, salinity, drought, extreme temperatures, CO2, calcareous, acidity) on biodiversity, abundance and development of AMF and examines the morphological, biochemical and molecular mechanisms implemented by AMF to survive in the presence of these stresses. PMID:26803396

  12. Demonstration of significant abiotic iron isotope fractionation in nature

    USGS Publications Warehouse

    Bullen, T.D.; White, A.F.; Childs, C.W.; Vivit, D.V.; Schultz, M.S.

    2001-01-01

    Field and laboratory studies reveal that the mineral ferrihydrite, formed as a result of abiotic oxidation of aqueous ferrous to ferric Fe, contains Fe that is isotopically heavy relative to coexisting aqueous Fe. Because the electron transfer step of the oxidation process at pH >5 is essentially irreversible and should favor the lighter Fe isotopes in the ferric iron product, this result suggests that relatively heavy Fe isotopes are preferentially partitioned into the readily oxidized Fe(II)(OH)x(aq) species or their transition complexes prior to oxidation. The apparent Fe isotope fractionation factor, ??ferrihydrite-water, depends primarily on the relative abundances of the Fe(II)(aq) species. This study demonstrates that abiotic processes can fractionate the Fe isotopes to the same extent as biotic processes, and thus Fe isotopes on their own do not provide an effective biosignature.

  13. Effects of abiotic stress on plants: a systems biology perspective

    PubMed Central

    2011-01-01

    The natural environment for plants is composed of a complex set of abiotic stresses and biotic stresses. Plant responses to these stresses are equally complex. Systems biology approaches facilitate a multi-targeted approach by allowing one to identify regulatory hubs in complex networks. Systems biology takes the molecular parts (transcripts, proteins and metabolites) of an organism and attempts to fit them into functional networks or models designed to describe and predict the dynamic activities of that organism in different environments. In this review, research progress in plant responses to abiotic stresses is summarized from the physiological level to the molecular level. New insights obtained from the integration of omics datasets are highlighted. Gaps in our knowledge are identified, providing additional focus areas for crop improvement research in the future. PMID:22094046

  14. Abiotic mediation of a mutualism drives herbivore abundance.

    PubMed

    Mooney, Emily H; Phillips, Joseph S; Tillberg, Chadwick V; Sandrow, Cheryl; Nelson, Annika S; Mooney, Kailen A

    2016-01-01

    Species abundance is typically determined by the abiotic environment, but the extent to which such effects occur through the mediation of biotic interactions, including mutualisms, is unknown. We explored how light environment (open meadow vs. shaded understory) mediates the abundance and ant tending of the aphid Aphis helianthi feeding on the herb Ligusticum porteri. Yearly surveys consistently found aphids to be more than 17-fold more abundant on open meadow plants than on shaded understory plants. Manipulations demonstrated that this abundance pattern was not due to the direct effects of light environment on aphid performance, or indirectly through host plant quality or the effects of predators. Instead, open meadows had higher ant abundance and per capita rates of aphid tending and, accordingly, ants increased aphid population growth in meadow but not understory environments. The abiotic environment thus drives the abundance of this herbivore exclusively through the mediation of a protection mutualism. PMID:26563752

  15. Wheat EST resources for functional genomics of abiotic stress

    PubMed Central

    Houde, Mario; Belcaid, Mahdi; Ouellet, François; Danyluk, Jean; Monroy, Antonio F; Dryanova, Ani; Gulick, Patrick; Bergeron, Anne; Laroche, André; Links, Matthew G; MacCarthy, Luke; Crosby, William L; Sarhan, Fathey

    2006-01-01

    Background Wheat is an excellent species to study freezing tolerance and other abiotic stresses. However, the sequence of the wheat genome has not been completely characterized due to its complexity and large size. To circumvent this obstacle and identify genes involved in cold acclimation and associated stresses, a large scale EST sequencing approach was undertaken by the Functional Genomics of Abiotic Stress (FGAS) project. Results We generated 73,521 quality-filtered ESTs from eleven cDNA libraries constructed from wheat plants exposed to various abiotic stresses and at different developmental stages. In addition, 196,041 ESTs for which tracefiles were available from the National Science Foundation wheat EST sequencing program and DuPont were also quality-filtered and used in the analysis. Clustering of the combined ESTs with d2_cluster and TGICL yielded a few large clusters containing several thousand ESTs that were refractory to routine clustering techniques. To resolve this problem, the sequence proximity and "bridges" were identified by an e-value distance graph to manually break clusters into smaller groups. Assembly of the resolved ESTs generated a 75,488 unique sequence set (31,580 contigs and 43,908 singletons/singlets). Digital expression analyses indicated that the FGAS dataset is enriched in stress-regulated genes compared to the other public datasets. Over 43% of the unique sequence set was annotated and classified into functional categories according to Gene Ontology. Conclusion We have annotated 29,556 different sequences, an almost 5-fold increase in annotated sequences compared to the available wheat public databases. Digital expression analysis combined with gene annotation helped in the identification of several pathways associated with abiotic stress. The genomic resources and knowledge developed by this project will contribute to a better understanding of the different mechanisms that govern stress tolerance in wheat and other cereals. PMID

  16. Abiotic carbonate dissolution traps carbon in a semiarid desert

    NASA Astrophysics Data System (ADS)

    Fa, Keyu; Liu, Zhen; Zhang, Yuqing; Qin, Shugao; Wu, Bin; Liu, Jiabin

    2016-03-01

    It is generally considered that desert ecosystems release CO2 to the atmosphere, but recent studies in drylands have shown that the soil can absorb CO2 abiotically. However, the mechanisms and exact location of abiotic carbon absorption remain unclear. Here, we used soil sterilization, 13CO2 addition, and detection methods to trace 13C in the soil of the Mu Us Desert, northern China. After 13CO2 addition, a large amount of 13CO2 was absorbed by the sterilised soil, and 13C was found enriched both in the soil gaseous phase and dissolved inorganic carbon (DIC). Further analysis indicated that about 79.45% of the total 13C absorbed by the soil was trapped in DIC, while the amount of 13C in the soil gaseous phase accounted for only 0.22% of the total absorbed 13C. However, about 20.33% of the total absorbed 13C remained undetected. Our results suggest that carbonate dissolution might occur predominately, and the soil liquid phase might trap the majority of abiotically absorbed carbon. It is possible that the trapped carbon in the soil liquid phase leaches into the groundwater; however, further studies are required to support this hypothesis.

  17. Biotic and abiotic mercury methylation and demethylation in sediments

    SciTech Connect

    Zhang, L.; Planas, D. )

    1994-05-01

    Inorganic mercury (Hg(II)) methylation and methylmercury (MeHg) demethylation may occur in the water column, sediment-water interface and subsurficial sediment of aquatic ecosystems. These transformations involve mainly microbial mechanisms, although abiotic methylation may play a more important role in the water compartment. The relative importance of biotic versus abiotic mechanisms of methylation has not been determined however, and abiotic demethylation remains unknown. Little quantitative information is available on the role of bacterial activity in mercury transformations. It has been reported that at least 16 genera of aerobic and anaerobic microorganisms are able to methylate HG(II), and that a greater number are able to demethylate MeHg. Nevertheless, not all populations of these species are capable of methyl- and demethyl-transformations. The actual concentration of MeHg in the aquatic environment is regulated by the relative production and decomposition rates. This, in turn, depends on the availability of Hg(II), MeHg, and bacteria as well as on the physico-chemical properties of the sample. The objective of this study was to compare mercury methylation and demethylation rates in sediment samples with and without active bacterial populations. We therefore performed experiments to follow bacterial evolution during the course of Hg(II) methylation and MeHg demethylation in sediment slurries containing both sterile and non-sterile sediments.

  18. Abiotic Deposition of Fe Complexes onto Leptothrix Sheaths

    PubMed Central

    Kunoh, Tatsuki; Hashimoto, Hideki; McFarlane, Ian R.; Hayashi, Naoaki; Suzuki, Tomoko; Taketa, Eisuke; Tamura, Katsunori; Takano, Mikio; El-Naggar, Mohamed Y.; Kunoh, Hitoshi; Takada, Jun

    2016-01-01

    Bacteria classified in species of the genus Leptothrix produce extracellular, microtubular, Fe-encrusted sheaths. The encrustation has been previously linked to bacterial Fe oxidases, which oxidize Fe(II) to Fe(III) and/or active groups of bacterial exopolymers within sheaths to attract and bind aqueous-phase inorganics. When L. cholodnii SP-6 cells were cultured in media amended with high Fe(II) concentrations, Fe(III) precipitates visibly formed immediately after addition of Fe(II) to the medium, suggesting prompt abiotic oxidation of Fe(II) to Fe(III). Intriguingly, these precipitates were deposited onto the sheath surface of bacterial cells as the population was actively growing. When Fe(III) was added to the medium, similar precipitates formed in the medium first and were abiotically deposited onto the sheath surfaces. The precipitates in the Fe(II) medium were composed of assemblies of globular, amorphous particles (ca. 50 nm diameter), while those in the Fe(III) medium were composed of large, aggregated particles (≥3 µm diameter) with a similar amorphous structure. These precipitates also adhered to cell-free sheaths. We thus concluded that direct abiotic deposition of Fe complexes onto the sheath surface occurs independently of cellular activity in liquid media containing Fe salts, although it remains unclear how this deposition is associated with the previously proposed mechanisms (oxidation enzyme- and/or active group of organic components-involved) of Fe encrustation of the Leptothrix sheaths. PMID:27271677

  19. Lipid signalling in plant responses to abiotic stress.

    PubMed

    Hou, Quancan; Ufer, Guido; Bartels, Dorothea

    2016-05-01

    Lipids are one of the major components of biological membranes including the plasma membrane, which is the interface between the cell and the environment. It has become clear that membrane lipids also serve as substrates for the generation of numerous signalling lipids such as phosphatidic acid, phosphoinositides, sphingolipids, lysophospholipids, oxylipins, N-acylethanolamines, free fatty acids and others. The enzymatic production and metabolism of these signalling molecules are tightly regulated and can rapidly be activated upon abiotic stress signals. Abiotic stress like water deficit and temperature stress triggers lipid-dependent signalling cascades, which control the expression of gene clusters and activate plant adaptation processes. Signalling lipids are able to recruit protein targets transiently to the membrane and thus affect conformation and activity of intracellular proteins and metabolites. In plants, knowledge is still scarce of lipid signalling targets and their physiological consequences. This review focuses on the generation of signalling lipids and their involvement in response to abiotic stress. We describe lipid-binding proteins in the context of changing environmental conditions and compare different approaches to determine lipid-protein interactions, crucial for deciphering the signalling cascades. PMID:26510494

  20. Abiotic Deposition of Fe Complexes onto Leptothrix Sheaths.

    PubMed

    Kunoh, Tatsuki; Hashimoto, Hideki; McFarlane, Ian R; Hayashi, Naoaki; Suzuki, Tomoko; Taketa, Eisuke; Tamura, Katsunori; Takano, Mikio; El-Naggar, Mohamed Y; Kunoh, Hitoshi; Takada, Jun

    2016-01-01

    Bacteria classified in species of the genus Leptothrix produce extracellular, microtubular, Fe-encrusted sheaths. The encrustation has been previously linked to bacterial Fe oxidases, which oxidize Fe(II) to Fe(III) and/or active groups of bacterial exopolymers within sheaths to attract and bind aqueous-phase inorganics. When L. cholodnii SP-6 cells were cultured in media amended with high Fe(II) concentrations, Fe(III) precipitates visibly formed immediately after addition of Fe(II) to the medium, suggesting prompt abiotic oxidation of Fe(II) to Fe(III). Intriguingly, these precipitates were deposited onto the sheath surface of bacterial cells as the population was actively growing. When Fe(III) was added to the medium, similar precipitates formed in the medium first and were abiotically deposited onto the sheath surfaces. The precipitates in the Fe(II) medium were composed of assemblies of globular, amorphous particles (ca. 50 nm diameter), while those in the Fe(III) medium were composed of large, aggregated particles (≥3 µm diameter) with a similar amorphous structure. These precipitates also adhered to cell-free sheaths. We thus concluded that direct abiotic deposition of Fe complexes onto the sheath surface occurs independently of cellular activity in liquid media containing Fe salts, although it remains unclear how this deposition is associated with the previously proposed mechanisms (oxidation enzyme- and/or active group of organic components-involved) of Fe encrustation of the Leptothrix sheaths. PMID:27271677

  1. Titania may produce abiotic oxygen atmospheres on habitable exoplanets.

    PubMed

    Narita, Norio; Enomoto, Takafumi; Masaoka, Shigeyuki; Kusakabe, Nobuhiko

    2015-01-01

    The search for habitable exoplanets in the Universe is actively ongoing in the field of astronomy. The biggest future milestone is to determine whether life exists on such habitable exoplanets. In that context, oxygen in the atmosphere has been considered strong evidence for the presence of photosynthetic organisms. In this paper, we show that a previously unconsidered photochemical mechanism by titanium (IV) oxide (titania) can produce abiotic oxygen from liquid water under near ultraviolet (NUV) lights on the surface of exoplanets. Titania works as a photocatalyst to dissociate liquid water in this process. This mechanism offers a different source of a possibility of abiotic oxygen in atmospheres of exoplanets from previously considered photodissociation of water vapor in upper atmospheres by extreme ultraviolet (XUV) light. Our order-of-magnitude estimation shows that possible amounts of oxygen produced by this abiotic mechanism can be comparable with or even more than that in the atmosphere of the current Earth, depending on the amount of active surface area for this mechanism. We conclude that titania may act as a potential source of false signs of life on habitable exoplanets. PMID:26354078

  2. Titania may produce abiotic oxygen atmospheres on habitable exoplanets

    PubMed Central

    Narita, Norio; Enomoto, Takafumi; Masaoka, Shigeyuki; Kusakabe, Nobuhiko

    2015-01-01

    The search for habitable exoplanets in the Universe is actively ongoing in the field of astronomy. The biggest future milestone is to determine whether life exists on such habitable exoplanets. In that context, oxygen in the atmosphere has been considered strong evidence for the presence of photosynthetic organisms. In this paper, we show that a previously unconsidered photochemical mechanism by titanium (IV) oxide (titania) can produce abiotic oxygen from liquid water under near ultraviolet (NUV) lights on the surface of exoplanets. Titania works as a photocatalyst to dissociate liquid water in this process. This mechanism offers a different source of a possibility of abiotic oxygen in atmospheres of exoplanets from previously considered photodissociation of water vapor in upper atmospheres by extreme ultraviolet (XUV) light. Our order-of-magnitude estimation shows that possible amounts of oxygen produced by this abiotic mechanism can be comparable with or even more than that in the atmosphere of the current Earth, depending on the amount of active surface area for this mechanism. We conclude that titania may act as a potential source of false signs of life on habitable exoplanets. PMID:26354078

  3. Abiotic carbonate dissolution traps carbon in a semiarid desert

    PubMed Central

    Fa, Keyu; Liu, Zhen; Zhang, Yuqing; Qin, Shugao; Wu, Bin; Liu, Jiabin

    2016-01-01

    It is generally considered that desert ecosystems release CO2 to the atmosphere, but recent studies in drylands have shown that the soil can absorb CO2 abiotically. However, the mechanisms and exact location of abiotic carbon absorption remain unclear. Here, we used soil sterilization, 13CO2 addition, and detection methods to trace 13C in the soil of the Mu Us Desert, northern China. After 13CO2 addition, a large amount of 13CO2 was absorbed by the sterilised soil, and 13C was found enriched both in the soil gaseous phase and dissolved inorganic carbon (DIC). Further analysis indicated that about 79.45% of the total 13C absorbed by the soil was trapped in DIC, while the amount of 13C in the soil gaseous phase accounted for only 0.22% of the total absorbed 13C. However, about 20.33% of the total absorbed 13C remained undetected. Our results suggest that carbonate dissolution might occur predominately, and the soil liquid phase might trap the majority of abiotically absorbed carbon. It is possible that the trapped carbon in the soil liquid phase leaches into the groundwater; however, further studies are required to support this hypothesis. PMID:27020762

  4. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants

    PubMed Central

    Sah, Saroj K.; Reddy, Kambham R.; Li, Jiaxu

    2016-01-01

    Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression. PMID:27200044

  5. Titania may produce abiotic oxygen atmospheres on habitable exoplanets

    NASA Astrophysics Data System (ADS)

    Narita, Norio; Enomoto, Takafumi; Masaoka, Shigeyuki; Kusakabe, Nobuhiko

    2015-12-01

    The search for habitable exoplanets in the Universe is actively ongoing in the field of astronomy. The biggest future milestone is to determine whether life exists on such habitable exoplanets. In that context, oxygen in the atmosphere has been considered strong evidence for the presence of photosynthetic organisms. In this paper, we show that a previously unconsidered photochemical mechanism by titanium (IV) oxide (titania) can produce abiotic oxygen from liquid water under near ultraviolet (NUV) lights on the surface of exoplanets. Titania works as a photocatalyst to dissociate liquid water in this process. This mechanism offers a different source of a possibility of abiotic oxygen in atmospheres of exoplanets from previously considered photodissociation of water vapor in upper atmospheres by extreme ultraviolet (XUV) light. Our order-of-magnitude estimation shows that possible amounts of oxygen produced by this abiotic mechanism can be comparable with or even more than that in the atmosphere of the current Earth, depending on the amount of active surface area for this mechanism. We conclude that titania may act as a potential source of false signs of life on habitable exoplanets.Reference:Narita N. et al.,Scientific Reports 5, Article number: 13977 (2015)http://www.nature.com/articles/srep13977

  6. Cell Wall Metabolism in Response to Abiotic Stress

    PubMed Central

    Gall, Hyacinthe Le; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-01-01

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions. PMID:27135320

  7. Cell Wall Metabolism in Response to Abiotic Stress.

    PubMed

    Le Gall, Hyacinthe; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-01-01

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions. PMID:27135320

  8. Rate-limited U(VI) desorption during a small-scale tracer test in a heterogeneous uranium-contaminated aquifer

    NASA Astrophysics Data System (ADS)

    Fox, Patricia M.; Davis, James A.; Hay, Michael B.; Conrad, Mark E.; Campbell, Kate M.; Williams, Kenneth H.; Long, Philip E.

    2012-05-01

    A tracer test was performed at the Rifle Integrated Field Research Challenge site to assess the effect of addition of bicarbonate on U(VI) desorption from contaminated sediments in the aquifer and to compare equilibrium and rate-limited reactive transport model descriptions of mass transfer limitations on desorption. The tracer test consisted of injection of a 37 mM NaHCO3solution containing conservative tracers followed by down-gradient sampling of groundwater at various elevations and distances from the point of injection. Breakthrough curves show that dissolved U(VI) concentrations increased 1.2-2.6-fold above background levels, resulting from increases in bicarbonate alkalinity (from injectate solution) and Ca concentrations (from cation exchange). In general, more U(VI) was mobilized in shallower zones of the aquifer, where finer-grained sediments and higher solid phase U content were found compared to deeper zones. An equilibrium-based reactive transport model incorporating a laboratory-based surface complexation model derived from the same location predicted the general trends in dissolved U(VI) during the tracer test but greatly overpredicted the concentrations of U(VI), indicating that the system was not at equilibrium. Inclusion of a multirate mass transfer model successfully simulated the nonequilibrium desorption behavior of U(VI). Local sediment properties such as sediment texture (weight percent <2 mm), surface area, cation exchange capacity, and adsorbed U(VI) were heterogeneous at the meter scale, and it was important to incorporate these values into model parameters in order to produce accurate simulations.

  9. Reduction of uranium(VI) under sulfate-reducing conditions in the presence of Fe(III)-(hydr)oxides

    NASA Astrophysics Data System (ADS)

    Sani, R. K.; Peyton, B. M.; Amonette, J. E.; Geesey, G. G.

    2004-06-01

    Hexavalent uranium [U(VI)] dissolved in a modified lactate-C medium was treated under anoxic conditions with a mixture of an Fe(III)-(hydr)oxide mineral (hematite, goethite, or ferrihydrite) and quartz. The mass of Fe(III)-(hydr)oxide mineral was varied to give equivalent Fe(III)-mineral surface areas. After equilibration, the U(VI)-mineral suspensions were inoculated with sulfate-reducing bacteria, Desulfovibrio desulfuricans G20. Inoculation of the suspensions containing sulfate-limited medium yielded significant G20 growth, along with concomitant reduction of sulfate and U(VI) from solution. With lactate-limited medium, however, some of the uranium that had been removed from solution was resolubilized in the hematite treatments and, to a lesser extent, in the goethite treatments, once the lactate was depleted. No resolubilization was observed in the lactate-limited ferrihydrite treatment even after a prolonged incubation of 4 months. Uranium resolubilization was attributed to reoxidation of the uraninite by Fe(III) present in the (hydr)oxide phases. Analysis by U L 3-edge XANES spectroscopy of mineral specimens sampled at the end of the experiments yielded spectra similar to that of uraninite, but having distinct features, notably a much more intense and slightly broader white line consistent with precipitation of nanometer-sized particles. The XANES spectra thus provided strong evidence for SRB-promoted removal of U(VI) from solution by reductive precipitation of uraninite. Consequently, our results suggest that SRB mediate reduction of soluble U(VI) to an insoluble U(IV) oxide, so long as a suitable electron donor is available. Depletion of the electron donor may result in partial reoxidation of the U(IV) to soluble U(VI) species when the surfaces of crystalline Fe(III)-(hydr)oxides are incompletely reduced.

  10. Abiotic Versus Biotic Weathering Of Olivine As Possible Biosignatures

    NASA Technical Reports Server (NTRS)

    Longazo, Teresa G.; Wentworth, Susan J.; Clemett, Simon J.; Southam, Gordon; McKay, David S.

    2001-01-01

    We are investigating the weathering of silicate minerals by both purely inorganic, and biologically mediated processes using field-emission scanning electron microscopy (FESEM) and energy dispersive x-ray spectroscopy (EDS). By resolving surface textures and chemical compositions of weathered surfaces at the sub-micron scale we hope to be able to distinguish abiotic from biotic weathering processes and so establish a new biosignature applicable to the study of astromaterials including but not limited to the Martian meteorites. Sterilized olivine grains (San Carlos, Arizona) no more than 1-2 mm in their longest dimension were optically assayed to be uniform in color and free of inclusions were selected as weathering subjects. Prior to all experiments surface morphologies and Fe/Mg ratios were determined for each grain using FE-SEM and EDS. Experiments were divided into two categories abiotic and biotic and were compared with "naturally" weathered samples. For the preliminary experiments, two trials (open and closed to the ambient laboratory environment) were performed under abiotic conditions, and three trials under biotic conditions (control, day 1 and day 2). The open system abiotic trials used sterile grains heated at 98 C and 200 C for both 24 and 48 hours in 1L double distilled de-ionized water. The closed system abiotic trials were conducted under the same conditions but in a sealed two layer steel/Teflon "bomb" apparatus. The biotic trials used sterile grains mounted in a flow-through device attached to a wellhead on the Columbia River aquifer. Several discolored, altered, grains were selected to document "natural" weathering surface textures for comparison with the experimental samples. Preliminary results indicate there are qualitative differences in weathered surface textures among all the designed experiments. The olivine grains in abiotic trials displayed etching, pitting, denticulate margins, dissolution and clay formation. The scale of the features

  11. Analysis of Cassini UVIS Extreme and Far Ultraviolet Observations of Saturn’s Atmosphere

    NASA Astrophysics Data System (ADS)

    Parkinson, Christopher D.; Koskinen, Tommi; Gronoff, Guillaume; Yung, Yuk L.; Esposito, Larry

    2015-11-01

    The atmosphere of Saturn is mainly composed of H2 and neutral atomic helium. The study of He 584 Å and H Lyman-α brightnesses is interesting as the EUV and FUV (Extreme and Far Ultraviolet) planetary airglow have the potential to yield useful information about mixing and other important parameters in its thermosphere. Time variation, asymmetries, and polar enhancement of the airglow are also possible and analysis already performed using the public archived Cassini mission data sets have shown we can solve some of the outstanding problems associated with these phenomena for Saturn.Specifically, we have (1) examined epochal eddy mixing disparities in the Saturnian upper atmosphere and quantify temporal mixing variations that may have occurred in the upper atmosphere of Saturn, as may be evidenced in Cassini mission data, (2) quantified any enhanced mixing in the auroral regions of Saturn, and (3) performed a robust study of Saturnian H Lyman-α brightness with the view to discover any longitudinal H Lyman-α planetary asymmetry or “bulge” across the disc such as was discovered by Voyager at Jupiter, indicative of the distribution of atomic H and accounting for the observed flux and any variations from the normal temperature profile.We have analyzed Cassini UVIS EUV and FUV airglow data from Saturn using sophisticated photochemical and radiative transfer models to investigate unexplained differences in the dynamical processes operating within its upper atmosphere. Powerful analysis techniques allow us to extract information on atmospheric mixing, temperatures, and temporal changes due to the solar and seasonal cycles from the variations in distribution and intensity of airglow emissions that result. We report on results of these efforts to date.

  12. A multi-scale magnetotail reconnection event at Saturn and associated flows: Cassini/UVIS observations

    NASA Astrophysics Data System (ADS)

    Radioti, A.; Grodent, D.; Jia, X.; Gérard, J.-C.; Bonfond, B.; Pryor, W.; Gustin, J.; Mitchell, D. G.; Jackman, C. M.

    2016-01-01

    We present high-resolution Cassini/UVIS (Ultraviolet Imaging Spectrograph) observations of Saturn's aurora during May 2013 (DOY 140-141). The observations reveal an enhanced auroral activity in the midnight-dawn quadrant in an extended local time sector (∼02 to 05 LT), which rotates with an average velocity of ∼45% of rigid corotation. The auroral dawn enhancement reported here, given its observed location and brightness, is most probably due to hot tenuous plasma carried inward in fast moving flux tubes returning from a tail reconnection site to the dayside. These flux tubes could generate intense field-aligned currents that would cause aurora to brighten. However, the origin of tail reconnection (solar wind or internally driven) is uncertain. Based mainly on the flux variations, which do not demonstrate flux closure, we suggest that the most plausible scenario is that of internally driven tail reconnection which operates on closed field lines. The observations also reveal multiple intensifications within the enhanced region suggesting an x-line in the tail, which extends from 02 to 05 LT. The localised enhancements evolve in arc and spot-like small scale features, which resemble vortices mainly in the beginning of the sequence. These auroral features could be related to plasma flows enhanced from reconnection which diverge into multiple narrow channels then spread azimuthally and radially. We suggest that the evolution of tail reconnection at Saturn may be pictured by an ensemble of numerous narrow current wedges or that inward transport initiated in the reconnection region could be explained by multiple localised flow burst events. The formation of vortical-like structures could then be related to field-aligned currents, building up in vortical flows in the tail. An alternative, but less plausible, scenario could be that the small scale auroral structures are related to viscous interactions involving small-scale reconnection.

  13. Influence of phosphate and silica on U(VI) precipitation from acidic and neutralized wastewaters

    SciTech Connect

    Kanematsu, Masakazu; Perdrial, Nicolas; Um, Wooyong; Chorover, Jon; O'Day, Peggy A.

    2014-06-03

    Uranium speciation and physical-chemical characteristics were studied in solids precipitated from synthetic acidic to circumneutral wastewaters in the presence and absence of dissolved silica and phosphate to examine thermodynamic and kinetic controls on phase formation. Composition of synthetic wastewater was based on disposal sites 216-U-8 and 216-U-12 Cribs at the Hanford site (WA, USA). In the absence of dissolved silica or phosphate, crystalline or amorphous uranyl oxide hydrates, either compreignacite or meta-schoepite, precipitated at pH 5 or 7 after 30 d of reaction, in agreement with thermodynamic calculations. In the presence of 1 mM dissolved silica representative of groundwater concentrations, amorphous phases dominated by compreignacite precipitated rapidly at pH 5 or 7 as a metastable phase and formation of poorly-crystalline boltwoodite, the thermodynamically stable uranyl silicate phase, was slow. In the presence of phosphate (3 mM), meta-ankoleite initially precipitated as the primary phase at pH 3, 5, or 7 regardless of the presence of 1 mM dissolved silica. Analysis of precipitates by U LIII-edge EXAFS indicated that “autunite-type” sheets of meta-ankoleite transformed to “phosphuranylite-type” sheets after 30 d of reaction, probably due to Ca substitution in the structure. Low solubility of uranyl phosphate phases limits dissolved U(VI) concentrations but differences in particle size, crystallinity, and precipitate composition vary with pH and base cation concentration, which will influence the thermodynamic and kinetic stability of these phases.

  14. Thermodynamic stabilities of U(VI) minerals: Estimated and observed relationships

    SciTech Connect

    Finch, R.J.

    1996-12-31

    Gibbs free energies of formation ({Delta}G{degree}{sub f}) for several structurally related U(VI) minerals are estimated by summing the Gibbs energy contributions from component oxides. The estimated {Delta}G{degree}{sub f} values are used to construct activity-activity (stability) diagrams, and the predicted stability fields are compared with observed mineral occurrences and reaction pathways. With some exceptions, natural occurrences agree well with the mineral stability fields estimated for the systems SiO{sub 2}-CaO-UO{sub 3}-H{sub 2}O and CO{sub 2}-CaO-UO{sub 3}H{sub 2}O, providing confidence in the estimated thermodynamic values. Activity-activity diagrams are sensitive to small differences in {Delta}G{degree}{sub f} values, and mineral compositions must be known accurately, including structurally bound H{sub 2}O. The estimated {Delta}G{degree}{sub f} values are not considered reliable for a few minerals for two major reasons: (1) the structures of the minerals in question are not closely similar to those used to estimate the {Delta}G{sub f}* values of the component oxides, and/or (2) the minerals in question are exceptionally fine grained, leading to large surface energies that increase the effective mineral solubilities. The thermodynamic stabilities of uranium(VI) minerals are of interest for understanding the role of these minerals in controlling uranium concentrations in oxidizing groundwaters associated with uranium ore bodies, uranium mining and mill tailings and geological repositories for nuclear waste.

  15. Influence of phosphate and silica on U(VI) precipitation from acidic and neutralized wastewaters.

    PubMed

    Kanematsu, Masakazu; Perdrial, Nicolas; Um, Wooyong; Chorover, Jon; O'Day, Peggy A

    2014-06-01

    Uranium speciation and physical-chemical characteristics were studied in solids precipitated from synthetic acidic to circumneutral wastewaters in the presence and absence of dissolved silica and phosphate to examine thermodynamic and kinetic controls on phase formation. Composition of synthetic wastewater was based on disposal sites 216-U-8 and 216-U-12 Cribs at the Hanford site (WA, USA). In the absence of dissolved silica or phosphate, crystalline or amorphous uranyl oxide hydrates, either compreignacite or meta-schoepite, precipitated at pH 5 or 7 after 30 d of reaction, in agreement with thermodynamic calculations. In the presence of 1 mM dissolved silica representative of groundwater concentrations, amorphous phases dominated by compreignacite precipitated rapidly at pH 5 or 7 as a metastable phase and formation of poorly crystalline boltwoodite, the thermodynamically stable uranyl silicate phase, was slow. In the presence of phosphate (3 mM), meta-ankoleite initially precipitated as the primary phase at pH 3, 5, or 7 regardless of the presence of 1 mM dissolved silica. Analysis of precipitates by U LIII-edge extended X-ray absorption fine structure (EXAFS) indicated that "autunite-type" sheets of meta-ankoleite transformed to "phosphuranylite-type" sheets after 30 d of reaction, probably due to Ca substitution in the structure. Low solubility of uranyl phosphate phases limits dissolved U(VI) concentrations but differences in particle size, crystallinity, and precipitate composition vary with pH and base cation concentration, which will influence the thermodynamic and kinetic stability of these phases. PMID:24754743

  16. Isolation and analyses of uranium tolerant Serratia marcescens strains and their utilization for aerobic uranium U(VI) bioadsorption.

    PubMed

    Kumar, Rakshak; Acharya, Celin; Joshi, Santa Ram

    2011-08-01

    Enrichment-based methods targeted at uranium-tolerant populations among the culturable, aerobic, chemo-heterotrophic bacteria from the subsurface soils of Domiasiat (India's largest sandstone-type uranium deposits, containing an average ore grade of 0.1 % U(3)O(8)), indicated a wide occurrence of Serratia marcescens. Five representative S. marcescens isolates were characterized by a polyphasic taxonomic approach. The phylogenetic analyses of 16S rRNA gene sequences showed their relatedness to S. marcescens ATCC 13880 (≥99.4% similarity). Biochemical characteristics and random amplified polymorphic DNA profiles revealed significant differences among the representative isolates and the type strain as well. The minimum inhibitory concentration for uranium U(VI) exhibited by these natural isolates was found to range from 3.5-4.0 mM. On evaluation for their uranyl adsorption properties, it was found that all these isolates were able to remove nearly 90-92% (21-22 mg/L) and 60-70% (285-335 mg/L) of U(VI) on being challenged with 100 μM (23.8 mg/L) and 2 mM (476 mg/L) uranyl nitrate solutions, respectively, at pH 3.5 within 10 min of exposure. his capacity was retained by the isolates even after 24 h of incubation. Viability tests confirmed the tolerance of these isolates to toxic concentrations of soluble uranium U(VI) at pH 3.5. This is among the first studies to report uranium-tolerant aerobic chemoheterotrophs obtained from the pristine uranium ore-bearing site of Domiasiat. PMID:21887639

  17. An Integrated Assessment of Geochemical and Community Structure Determinants of Metal Reduction Rates in Subsurface Sediments

    SciTech Connect

    Joel E. Kostka

    2008-03-24

    This project represented a joint effort between Oak Ridge National Laboratory (ORNL), the University of Tennessee (UT), and Florida State University (FSU). ORNL served as the lead in-stitution with Dr. A.V. Palumbo responsible for project coordination, integration, and deliver-ables. In situ uranium bioremediation is focused on biostimulating indigenous microorganisms through a combination of pH neutralization and the addition of large amounts of electron donor. Successful biostimulation of U(VI) reduction has been demonstrated in the field and in the laboratory. However, little data is available on the dynamics of microbial populations capable of U(VI) reduction, and the differences in the microbial community dynamics between proposed electron donors have not been explored. In order to elucidate the potential mechanisms of U(VI) reduction for optimization of bioremediation strategies, structure-function relationships of microbial populations were investigated in microcosms of subsurface materials cocontaminated with radionuclides and nitrate from the Oak Ridge Field Research Center (ORFRC), Oak Ridge, Tennessee.

  18. Distinguishing Biotic from Abiotic Phosphate Oxygen Isotopic Signatures

    NASA Astrophysics Data System (ADS)

    Blake, R.; Moyer, C.; Colman, A.; Liang, Y.; Dogru, D.

    2006-05-01

    On earth, phosphate has a strong biological oxygen isotope signature due to its concentration and intense cycling by living organisms as an essential nutrient. Phosphate does not undergo oxygen isotope exchange with water at low temperature without enzymatic catalysis, making the oxygen isotope ratio (18O/16O) of phosphate, δ18OP, an attractive biosignature in the search for early and extraterrestrial life. Recent laboratory and field studies have demonstrated that the δ18OP value of dissolved inorganic phosphate (PO4) records specific microbial activity and enzymatic reaction pathways in both laboratory cultures and natural waters/sediments (Blake et al., 2005; Colman et al 2005; Liang and Blake, 2005). Phosphate oxygen isotope biosignatures may be distinguished from abiotic signatures by: (1) evaluating the degree of temperature-dependent PO4-water oxygen isotope exchange in aqueous systems and deviation from equilibrium; and (2) evolution from an abiotic P reservoir signature towards a biotic P reservoir signature. Important abiotic processes potentially affecting phosphate δ18OP values include dissolution/precipitation, adsorption/desorption, recrystallization of PO4 mineral phases, diagenesis and metamorphism. For most of these processes, the recording, retention and alteration of δ18OP biosignatures have not been evaluated. Deep-sea hydrothermal vent fields are an ideal system in which to study the preservation and alteration of δ18OP biosignatures, as well as potential look-alikes produced by heat-promoted PO4 -water oxygen isotope exchange. Results from recent studies of δ18OP biosignatures in hydrothermal deposits near 9 and 21 degrees N. EPR and at Loihi seamount will be presented.

  19. Biotic and Abiotic Transformation of a Volatile Organics Plume in a Semi-Arid Vadose Zone

    SciTech Connect

    Studer, J.E.; Singletary, M.A.; Miller, D.R.

    1999-04-08

    An evaluation of biotic and abiotic attenuation processes potentially important to chlorinated and non-chlorinated volatile organic compound (VOC) fate and transport in the 148 meter thick vadose zone beneath the Chemical Waste Landfill (CWL) was conducted. A unique feature of this evaluation is the comparison of two estimates of VOC mass present in the soil gas, pore-water, and solid phases (but not including mass as non-aqueous phase liquid [NAPL]) of the vadose zone in 1993. One estimate, 1,800 kg, was obtained from vadose zone transport modeling that incorporated molecular diffusion and volatilization to the atmosphere, but not biotic or chemical processes. The other estimate, 2,120 kg, was obtained from the sum of VOC mass physically removed during soil vapor extraction and an estimate of VOC mass remaining in the vadose zone in 1998, both adjusted to exclude NAPL mass. This comparison indicates that biogeochemical processes were at best slightly important to historical VOC plume development. Some evidence of aerobic degradation of non-chlorinated VOCs and abiotic transformation of 1,1,1-Trichloroethane was identified. Despite potentially amenable site conditions, no evidence was found of cometabolic and anaerobic transformation pathways. Relying principally on soil-gas analytical results, an upper-bound estimate of 21% mass reduction due to natural biogeochemical processes was developed. Although available information for the CWL indicates that natural attenuation processes other than volatilization to the atmosphere did not effective y enhance groundwater protection, these processes could be important in significantly reducing groundwater contamination and exposure risks at other sites. More laboratory and field research is required to improve our collective ability to characterize and exploit natural VOC attenuation processes, especially with respect to the combination of relatively thick and dry vadose zones and chlorinated VOCs.

  20. Model Comparison for Abiotic versus Biotic Pollen Dispersal.

    PubMed

    Foster, Erich L; Chan, David M; Dyer, Rodney J

    2016-10-01

    An agent-based model with a correlated random walk is used to explore pollination within a forest. For abiotic dispersal, say via the wind, we use a purely random walk where there is no correlation between consecutive steps and for biotic dispersal, say via insect, we use a moderate or highly correlated random walk. In particular, we examine the differences in a number of biological measurement between a purely random walk and a correlated random walk in terms of gene dispersal in low and high plant densities. PMID:27550704

  1. Coupled Abiotic-Biotic Degradation of Bisphenol A

    NASA Astrophysics Data System (ADS)

    Im, J.; Prevatte, C.; Campagna, S. R.; Loeffler, F.

    2014-12-01

    Bisphenol A (BPA) is a ubiquitous environmental contaminant with weak estrogenic activity. BPA is readily biodegradable with oxygen available, but is recalcitrant to microbial degradation under anoxic conditions. However, BPA is susceptible to abiotic transformation under anoxic conditions. To better understand the fate of BPA in anoxic environments, the kinetics of BPA transformation by manganese oxide (d-MnO2) were investigated. BPA was rapidly transformed by MnO2 with a pseudo-first-order rate constant of 0.413 min-1. NMR and LC-MS analyses identified 4-hydroxycumyl alcohol (HCA) as a major intermediate. Up to 64% of the initial amount of BPA was recovered as HCA within 5 min, but the conversion efficiency decreased with time, suggesting that HCA was further degraded by MnO2. Further experiments confirmed that HCA was also susceptible to transformation by MnO2, albeit at 5-fold lower rates than BPA transformation. Mass balance approaches suggested that HCA was the major BPA transformation intermediate, but other compounds may also be formed. The abiotic transformation of BPA by MnO2 was affected by pH, and 10-fold higher transformation rates were observed at pH 4.5 than at pH 10. Compared to BPA, HCA has a lower octanol-water partitioning coefficient (Log Kow) of 0.76 vs 2.76 for BPA and a higher aqueous solubility of 2.65 g L-1 vs 0.31 g L-1 for BPA, suggesting higher mobility of HCA in the environment. Microcosms established with freshwater sediment materials collected from four geographically distinct locations and amended with HCA demonstrated rapid HCA biodegradation under oxic, but not under anoxic conditions. These findings suggest that BPA is not inert under anoxic conditions and abiotic reactions with MnO2 generate HCA, which has increased mobility and is susceptible to aerobic degradation. Therefore, coupled abiotic-biotic processes can affect the fate and longevity of BPA in terrestrial environments.

  2. May Cyclic Nucleotides Be a Source for Abiotic RNA Synthesis?

    NASA Astrophysics Data System (ADS)

    Costanzo, Giovanna; Pino, Samanta; Botta, Giorgia; Saladino, Raffaele; di Mauro, Ernesto

    2011-12-01

    Nucleic bases are obtained by heating formamide in the presence of various catalysts. Formamide chemistry also allows the formation of acyclonucleosides and the phosphorylation of nucleosides in every possible position, also affording 2',3' and 3',5' cyclic forms. We have reported that 3',5' cyclic GMP and 3',5' cyclic AMP polymerize in abiotic conditions yielding short oligonucleotides. The characterization of this reaction is being pursued, several of its parameters have been determined and experimental caveats are reported. The yield of non-enzymatic polymerization of cyclic purine nucleotides is very low. Polymerization is strongly enhanced by the presence of base-complementary RNA sequences.

  3. Abiotic gas formation drives nitrogen loss from a desert ecosystem.

    PubMed

    McCalley, Carmody K; Sparks, Jed P

    2009-11-01

    In arid environments such as deserts, nitrogen is often the most limiting nutrient for biological activity. The majority of the ecosystem nitrogen flux is typically thought to be driven by production and loss of reactive nitrogen species by microorganisms in the soil. We found that high soil-surface temperatures (greater than 50 degrees C), driven by solar radiation, are the primary cause of nitrogen loss in Mojave Desert soils. This abiotic pathway not only enables the balancing of arid ecosystem nitrogen budgets, but also changes our view of global nitrogen cycling and the predicted impact of climate change and increased temperatures on nitrogen bioavailability. PMID:19892980

  4. Estimates of Production Rates for Comets C/2001 Q4 (NEAT) and C/2002 T7 (LINEAR) Derived from Polar UVI Observations

    NASA Astrophysics Data System (ADS)

    Spasojevic, M.; Fillingim, M. O.; Parks, G. K.

    2004-12-01

    During April and May of 2004, the Ultraviolet Imager (UVI) onboard the Polar spacecraft was in the unique position to observe two comets near their perihelion: C/2001 Q4 (NEAT) and C/2002 T7 (LINEAR). Using its suite of four far ultraviolet filters, UVI is able to observe atomic oxygen emissions at 130.4 nm and atomic carbon emissions at 156.1 nm and 165.7 nm. The photon flux is directly related to the production rates for these atoms. From the oxygen and carbon production rates, we are able to estimate the production rates of CO, OH, and water. Initial analysis shows that both comets are very dim in the far ultraviolet and are not easily detected by UVI. We are able to derive upper limits to the production rates. To our knowledge, this is the first report of observations of these comets in the far ultraviolet region.

  5. The role of sulphate reduction on the reductive S decolorization of the azo dye reactive orange 14.

    PubMed

    Cervantes, F J; Enriquez, J E; Mendoza-Hernandez, M R; Razo-Flores, E; Field, J A

    2006-01-01

    The aim of this study was to investigate the impact of a broad range of sulphate concentrations (0-10g SO4(-2) L(-1)) on the reduction of an azo dye (reactive orange 14 (RO14)) by an anaerobic sludge. An increase in the sulphate concentration generally stimulated the reduction of RO14 by sludge incubations supplemented with glucose, acetate or propionate as electron donor. Sulphate and azo dye reductions took place simultaneously in all incubations. However, there was a decrease on the rate of decolorization when sulphate was supplied at 10g SO4(-2) L(-1). Abiotic incubations at different sulphide concentrations (0-2.5 g sulphide L(-1)) promoted very poor reduction of RO14. However, addition of riboflavin (20 microM), as a redox mediator, accelerated the reduction of RO14 up to 44-fold compared to a control lacking the catalyst. Our results indicate that sulphate-reduction may significantly contribute to the reduction of azo dyes both by biological mechanisms and by abiotic reductions implicating sulphide as an electron donor. The contribution of abiotic decolorization by sulphide, however, was only significant when a proper redox mediator was included. Our results also revealed that sulphate-reduction can out-compete with azo reduction at high sulphate concentrations leading to a poor decolorising performance when no sufficient reducing capacity is available. PMID:16939099

  6. A Field-Scale Reactive Transport Model for U(VI) Migration Influenced by Coupled Multirate Mass Transfer and Surface Complexation Reactions

    SciTech Connect

    Ma, Rui; Zheng, Chunmiao; Prommer, Henning; Greskowiak, Janek; Liu, Chongxuan; Zachara, John M.; Rockhold, Mark L.

    2010-05-06

    A field-scale reactive transport model was developed that incorporates laboratory-characterized U(VI) surface complexation reactions (SCR) and multi-rate mass transfer processes, and field-measured hydrogeochemical conditions at Department of Energy, Hanford 300A site, Washington, where an Integrated Field Research Challenge project is ongoing. The model was used to assess the importance of multi-rate mass transfer processes on sorption-retarded U(VI) reactive transport at the 300A site and to evaluate the effect of variable geochemical conditions on U(VI) plume migration caused by dynamic river stage fluctuations at the east side of the site. Model simulations revealed a complex spatio-temporal variations of groundwater geochemistry that affects U(VI) speciation, adsorption, and plume migration. In general, the river water intrusion enhances uranium adsorption and lowers groundwater aqueous uranium concentration as a result of river water dilution that decreases aqueous carbonate concentration, which subsequently weakens aqueous U(VI)-carbonate complexation and enhances U(VI)-surface complexation. The simulations also found that SCR-retarded U migration becomes more dynamic and more in sync with the groundwater flow field when multi-rate mass transfer processes are involved. Strong U(VI) adsorption was simulated at the 300A site based on the field-measured hydrogeochemical conditions, suggesting a slow dissipation of U(VI) plume, a phenomenon consistent with the observation at the site. Uranium breakthrough curves at selected observation points and the mass changes over time in the simulation indicate that uranium adsorption/desorption never attains steady state as a result of both the highly dynamic flow field and the chemistry variations caused by river water intrusion. Thus, the multi-rate SCM model appears to be a crucial feature for future reactive transport simulations of uranium at the 300A site.

  7. Small RNAs in Plant Responses to Abiotic Stresses: Regulatory Roles and Study Methods

    PubMed Central

    Ku, Yee-Shan; Wong, Johanna Wing-Hang; Mui, Zeta; Liu, Xuan; Hui, Jerome Ho-Lam; Chan, Ting-Fung; Lam, Hon-Ming

    2015-01-01

    To survive under abiotic stresses in the environment, plants trigger a reprogramming of gene expression, by transcriptional regulation or translational regulation, to turn on protective mechanisms. The current focus of research on how plants cope with abiotic stresses has transitioned from transcriptomic analyses to small RNA investigations. In this review, we have summarized and evaluated the current methodologies used in the identification and validation of small RNAs and their targets, in the context of plant responses to abiotic stresses. PMID:26501263

  8. Surface catalysis of uranium(VI) reduction by iron(II)

    NASA Astrophysics Data System (ADS)

    Liger, Emmanuelle; Charlet, Laurent; Van Cappellen, Philippe

    1999-10-01

    Colloidal hematite (α-Fe2O3) is used as model solid to investigate the kinetic effect of specific adsorption interactions on the chemical reduction of uranyl (UVIO22+) by ferrous iron. Acid-base titrations and Fe(II) and uranyl adsorption experiments are performed on hematite suspensions, under O2- and CO2-free conditions. The results are explained in terms of a constant capacitance surface complexation model of the hematite-aqueous solution interface. Two distinct Fe(II) surface complexes are required to reproduce the data: (≡FeIIIOFeII)+ (or ≡FeIIIOFeII(OH2)n+) and ≡FeIIIOFeIIOH0 (or ≡FeIIIOFeII(OH2)n-1OH0). The latter complex represents a significant fraction of total adsorbed Fe(II) at pH > 6.5. Uranyl binding to the hematite particles is characterized by a sharp adsorption edge between pH 4 and pH 5.5. Because of the absence of competing aqueous carbonate complexes, uranyl remains completely adsorbed at pH > 7. A single mononuclear surface complex accounts for the adsorption of uranyl over the entire range of experimental conditions. Although thermodynamically feasible, no reaction between uranyl and Fe(II) is observed in homogeneous solution at pH 7.5, for periods of up to three days. In hematite suspensions, however, surface-bound uranyl reacts on a time scale of hours. Based on Fourier Transformed Infrared spectra, chemical reduction of U(VI) is inferred to be the mechanism responsible for the disappearance of uranyl. The kinetics of uranyl reduction are quantified by measuring the decrease with time of the concentration of U(VI) extractable from the hematite particles by NaHCO3. In the presence of excess Fe(II), the initial rate of U(VI) reduction exhibits a first-order dependence on the concentration of adsorbed uranyl. The pseudo-first-order rate constant varies with pH (range, 6-7.5) and the total (dissolved + adsorbed) concentration of Fe(II) (range, 2-160 μM). When analyzing the rate data in terms of the calculated surface speciation, the

  9. Metal reduction at low pH by a Desulfosporosinus species: implications for the biological treatment of acidic mine drainage

    SciTech Connect

    Senko, J.M.; Zhang, G.X.; McDonough, J.T.; Bruns, M.A.; Burgos, W.D.

    2009-07-01

    We isolated an acid-tolerant sulfate-reducing bacterium, GBSRB4.2, from coal mine-derived acidic mine drainage (AMD)-derived sediments. Sequence analysis of partial 16S rRNA gene of GBSRB4.2 revealed that it was affiliated with the genus Desulfosporosinus. GBSRB4.2 reduced sulfate, Fe(III) (hydr)oxide, Mn(IV) oxide, and U(VI) in acidic solutions (pH 4.2). Sulfate, Fe(III), and Mn(IV) but not U(VI) bioreduction led to an increase in the pH of acidic solutions and concurrent hydrolysis and precipitation of dissolved Al{sup 3+}. Reduction of Fe(III), Mn(IV), and U(VI) in sulfate-free solutions revealed that these metals are enzymatically reduced by GBSRB4.2. GBSRB4.2 reduced U(VI) in groundwater from a radionuclide-contaminated aquifer more rapidly at pH 4.4 than at pH 7.1, possibly due to the formation of poorly bioreducible Ca-U(VI)-CO{sub 3} complexes in the pH 7.1 groundwater.

  10. Determination of kinetic coefficients for the simultaneous reduction of sulfate and uranium by Desulfovibrio desulfuricans bacteria

    SciTech Connect

    Tucker, M.D.

    1995-05-01

    Uranium contamination of groundwaters and surface waters near abandoned mill tailings piles is a serious concern in many areas of the western United States. Uranium usually exists in either the U(IV) or the U(VI) oxidation state. U(VI) is soluble in water and, as a result, is very mobile in the environment. U(IV), however, is generally insoluble in water and, therefore, is not subject to aqueous transport. In recent years, researchers have discovered that certain anaerobic microorganisms, such as the sulfate-reducing bacteria Desulfovibrio desulfuricans, can mediate the reduction of U(VI) to U(IV). Although the ability of this microorganism to reduce U(VI) has been studied in some detail by previous researchers, the kinetics of the reactions have not been characterized. The purpose of this research was to perform kinetic studies on Desulfovibrio desulficans bacteria during simultaneous reduction of sulfate and uranium and to determine the phase in which uranium exists after it has been reduced and precipitated from solution. The studies were conducted in a laboratory-scale chemostat under substrate-limited growth conditions with pyruvate as the substrate. Kinetic coefficients for substrate utilization and cell growth were calculated using the Monod equation. The maximum rate of substrate utilization (k) was determined to be 4.70 days{sup {minus}1} while the half-velocity constant (K{sub s}) was 140 mg/l COD. The yield coefficient (Y) was determined to be 0.17 mg cells/mg COD while the endogenous decay coefficient (k{sub d}) was calculated as 0.072 days{sup {minus}1}. After reduction, U(IV) Precipitated from solution in the uraninite (UO{sub 2}) phase. Uranium removal efficiency as high as 90% was achieved in the chemostat.

  11. Calcium-Mediated Abiotic Stress Signaling in Roots

    PubMed Central

    Wilkins, Katie A.; Matthus, Elsa; Swarbreck, Stéphanie M.; Davies, Julia M.

    2016-01-01

    Roots are subjected to a range of abiotic stresses as they forage for water and nutrients. Cytosolic free calcium is a common second messenger in the signaling of abiotic stress. In addition, roots take up calcium both as a nutrient and to stimulate exocytosis in growth. For calcium to fulfill its multiple roles must require strict spatio-temporal regulation of its uptake and efflux across the plasma membrane, its buffering in the cytosol and its sequestration or release from internal stores. This prompts the question of how specificity of signaling output can be achieved against the background of calcium’s other uses. Threats to agriculture such as salinity, water availability and hypoxia are signaled through calcium. Nutrient deficiency is also emerging as a stress that is signaled through cytosolic free calcium, with progress in potassium, nitrate and boron deficiency signaling now being made. Heavy metals have the capacity to trigger or modulate root calcium signaling depending on their dose and their capacity to catalyze production of hydroxyl radicals. Mechanical stress and cold stress can both trigger an increase in root cytosolic free calcium, with the possibility of membrane deformation playing a part in initiating the calcium signal. This review addresses progress in identifying the calcium transporting proteins (particularly channels such as annexins and cyclic nucleotide-gated channels) that effect stress-induced calcium increases in roots and explores links to reactive oxygen species, lipid signaling, and the unfolded protein response. PMID:27621742

  12. Ion Transporters and Abiotic Stress Tolerance in Plants

    PubMed Central

    Brini, Faïçal; Masmoudi, Khaled

    2012-01-01

    Adaptation of plants to salt stress requires cellular ion homeostasis involving net intracellular Na+ and Cl− uptake and subsequent vacuolar compartmentalization without toxic ion accumulation in the cytosol. Sodium ions can enter the cell through several low- and high-affinity K+ carriers. Some members of the HKT family function as sodium transporter and contribute to Na+ removal from the ascending xylem sap and recirculation from the leaves to the roots via the phloem vasculature. Na+ sequestration into the vacuole depends on expression and activity of Na+/H+ antiporter that is driven by electrochemical gradient of protons generated by the vacuolar H+-ATPase and the H+-pyrophosphatase. Sodium extrusion at the root-soil interface is presumed to be of critical importance for the salt tolerance. Thus, a very rapid efflux of Na+ from roots must occur to control net rates of influx. The Na+/H+ antiporter SOS1 localized to the plasma membrane is the only Na+ efflux protein from plants characterized so far. In this paper, we analyze available data related to ion transporters and plant abiotic stress responses in order to enhance our understanding about how salinity and other abiotic stresses affect the most fundamental processes of cellular function which have a substantial impact on plant growth development. PMID:27398240

  13. Hexagonal Lyotropic Liquid Crystal from Simple "Abiotic" Foldamers.

    PubMed

    Chen, Yu; Zhao, Zhiqiang; Bian, Zheng; Jin, Rizhe; Kang, Chuanqing; Qiu, Xuepeng; Guo, Haiquan; Du, Zhijun; Gao, Lianxun

    2016-08-01

    The motivation of foldamer chemistry is to identify novel building blocks that have the potential to imitate natural species. Peptides and peptide mimetics can form stable helical conformations and further self-assemble into diverse aggregates in water, where it is difficult to isolate a single helix. In contrast, most "abiotic" foldamers may fold into helical structures in solution, but are difficult to assemble into tertiary ones. It remains a challenge to obtain "abiotic" species similar to peptides. In this paper, a novel foldamer scaffold, in which p-phenyleneethynylene units are linked by chiral carbon atoms, was designed and prepared. In very dilute solutions, these oligomers were random coils. The hexamer and octamers could form a hexagonal lyotropic liquid crystal (LC) in CH2Cl2 when the concentrations reached the critical values. The microscopic observations indicated that they could assemble into the nanofibers in the LC. Interestingly, after some LC phases were diluted at room temperature, the nanofibers could be preserved. The good stabilities of the assemblies are possibly attributed to a more compact backbone and more rigid side chains. PMID:27547649

  14. Influence of abiotic stress signals on secondary metabolites in plants

    PubMed Central

    Ramakrishna, Akula; Ravishankar, Gokare Aswathanarayana

    2011-01-01

    Plant secondary metabolites are unique sources for pharmaceuticals, food additives, flavors, and industrially important biochemicals. Accumulation of such metabolites often occurs in plants subjected to stresses including various elicitors or signal molecules. Secondary metabolites play a major role in the adaptation of plants to the environment and in overcoming stress conditions. Environmental factors viz. temperature, humidity, light intensity, the supply of water, minerals, and CO2 influence the growth of a plant and secondary metabolite production. Drought, high salinity, and freezing temperatures are environmental conditions that cause adverse effects on the growth of plants and the productivity of crops. Plant cell culture technologies have been effective tools for both studying and producing plant secondary metabolites under in vitro conditions and for plant improvement. This brief review summarizes the influence of different abiotic factors include salt, drought, light, heavy metals, frost etc. on secondary metabolites in plants. The focus of the present review is the influence of abiotic factors on secondary metabolite production and some of important plant pharmaceuticals. Also, we describe the results of in vitro cultures and production of some important secondary metabolites obtained in our laboratory. PMID:22041989

  15. Abiotic factors influence plant storage lipid accumulation and composition.

    PubMed

    Singer, Stacy D; Zou, Jitao; Weselake, Randall J

    2016-02-01

    The demand for plant-derived oils has increased substantially over the last decade, and is sure to keep growing. While there has been a surge in research efforts to produce plants with improved oil content and quality, in most cases the enhancements have been small. To add further complexity to this situation, substantial differences in seed oil traits among years and field locations have indicated that plant lipid biosynthesis is also influenced to a large extent by multiple environmental factors such as temperature, drought, light availability and soil nutrients. On the molecular and biochemical levels, the expression and/or activities of fatty acid desaturases, as well as diacylglycerol acyltransferase 1, have been found to be affected by abiotic factors, suggesting that they play a role in the lipid content and compositional changes seen under abiotic stress conditions. Unfortunately, while only a very small number of strategies have been developed as of yet to minimize these environmental effects on the production of storage lipids, it is clear that this feat will be of the utmost importance for developing superior oil crops with the capability to perform in a consistent manner in field conditions in the future. PMID:26795146

  16. Calcium-Mediated Abiotic Stress Signaling in Roots.

    PubMed

    Wilkins, Katie A; Matthus, Elsa; Swarbreck, Stéphanie M; Davies, Julia M

    2016-01-01

    Roots are subjected to a range of abiotic stresses as they forage for water and nutrients. Cytosolic free calcium is a common second messenger in the signaling of abiotic stress. In addition, roots take up calcium both as a nutrient and to stimulate exocytosis in growth. For calcium to fulfill its multiple roles must require strict spatio-temporal regulation of its uptake and efflux across the plasma membrane, its buffering in the cytosol and its sequestration or release from internal stores. This prompts the question of how specificity of signaling output can be achieved against the background of calcium's other uses. Threats to agriculture such as salinity, water availability and hypoxia are signaled through calcium. Nutrient deficiency is also emerging as a stress that is signaled through cytosolic free calcium, with progress in potassium, nitrate and boron deficiency signaling now being made. Heavy metals have the capacity to trigger or modulate root calcium signaling depending on their dose and their capacity to catalyze production of hydroxyl radicals. Mechanical stress and cold stress can both trigger an increase in root cytosolic free calcium, with the possibility of membrane deformation playing a part in initiating the calcium signal. This review addresses progress in identifying the calcium transporting proteins (particularly channels such as annexins and cyclic nucleotide-gated channels) that effect stress-induced calcium increases in roots and explores links to reactive oxygen species, lipid signaling, and the unfolded protein response. PMID:27621742

  17. Influence of Dissolved Organic Matter and Fe (II) on the Abiotic Reduction of Pentachloronitrobenzene

    EPA Science Inventory

    Nitroaromatic pesticides (NAPs) are hydrophobic contaminants that can accumulate in sediments by the deposition of suspended solids from surface waters. Fe(II) and dissolved organic matter (DOM), present in suboxic and anoxic zones of freshwater sediments, can transform NAPs in n...

  18. Characterization of U(VI) Sorption-Desorption Processes and Model Upscaling

    SciTech Connect

    Brown, Gordon E.

    2003-06-01

    In order to apply predictive reactive transport models to the Hanford site, detailed knowledge of the speciation of contaminants is required. Important speciation parameters include: (1) oxidation state; (2) the local molecular structure surrounding contaminant elements; (3) the type and binding of a contaminant ion sorption complex (if adsorbed); (4) the type(s) of phase within which a contaminant is structurally incorporated [e.g., present in a three-dimensional precipitate(s)]; (5) the phase associations of a contaminant; (6) the microscopic distribution of a contaminant within sediments and soils. In the present study, we have used synchrotron-based X-ray spectroscopic methods to study the speciation of U and Cu in contaminated soil and sediment samples from the Hanford Site. To complement and complete our initial XAFS investigation of U speciation in contaminated vadose zone sediments below tank BX-102, we have also performed mXRD studies of two sediment sample to identify the specific U(VI)-silicate phase present. Samples from the 300 Area were examined by mSXRF to determine the microscopic distribution and element associations of Cu and U. These samples were also analyzed by U LIII- and Cu K-edge XAFS spectroscopy to determine the chemical speciation of these elements. Conclusions to Date (1) Uranium occurs primarily as sodium-boltwoodite [Na2(UO2)2(SiO3OH)2-3H2O] in the BX-102 sediment samples. (2) The dissolution kinetics of sodium-boltwoodite will be a major control on the future transport of U beneath tank BX-102. (3) In the 300 Area soils and sediments, uranium occurs as U(VI) and copper as Cu(II). (4) U and Cu are often found together or adjacent to one another; however, these elements don?t appear to be spatially associated with Fe. (5) U appears to be bound to carbonate groups, and is likely contained in a CaCO3 mineral (calcite or aragonite). (6) It is unclear what phase(s) Cu is bound to or associate with, although the data are consistent with an

  19. Sorption behavior of U(VI) on phyllite: experiments and modeling.

    PubMed

    Arnold, T; Zorn, T; Zänker, H; Bernhard, G; Nitsche, H

    2001-02-01

    The sorption of U(VI) onto low-grade metamorphic rock phyllite was modeled with the diffuse double layer model (DDLM) using the primary mineralogical constituents of phyllite, i.e. quartz, chlorite, muscovite, and albite, as input components, and as additional component, the poorly ordered Fe oxide hydroxide mineral, ferrihydrite. Ferrihydrite forms during the batch sorption experiment as a weathering product of chlorite. In this process, Fe(II), leached from the chlorite, oxidizes to Fe(III), hydrolyses and precipitates as ferrihydrite. The formation of ferrihydrite during the batch sorption experiment was identified by Mössbauer spectroscopy, showing a 2.8% increase of Fe(III) in the phyllite powder. The ferrihydrite was present as Fe nanoparticles or agglomerates with diameters ranging from 6 to 25 nm, with indications for even smaller particles. These Fe colloids were detected in centrifugation experiments of a ground phyllite suspension using various centrifugal forces. The basis for the successful interpretation of the experimental sorption data of uranyl(VI) on phyllite were: (1) the determination of surface complex formation constants of uranyl with quartz, chlorite, muscovite, albite, and ferrihydrite in individual batch sorption experiments, (2) the determination of surface acidity constants of quartz, chlorite, muscovite, and albite obtained from separate acid-base titration, (3) the determination of surface site densities of quartz, chlorite, muscovite, and albite evaluated independently of each other with adsorption isotherms, and (4) the quantification of the secondary phase ferrihydrite, which formed during the batch sorption experiments with phyllite. The surface complex formation constants and the protolysis constants were optimized by using the experimentally obtained data sets and the computer code FITEQL. Surface site densities were evaluated from adsorption isotherms at pH 6.5. The uranyl(VI) sorption onto phyllite was accurately modeled with

  20. Deriving the Structure and Composition of Enceladus’ Plume from Cassini UVIS Observations

    NASA Astrophysics Data System (ADS)

    Hansen, Candice; Esposito, Larry; Colwell, Josh; Hendrix, Amanda; Portyankina, Ganna; Shemansky, Don; West, Robert

    2015-11-01

    Cassini’s Ultraviolet Imaging Spectrograph (UVIS) has observed 4 stellar and one solar occultation by Enceladus’ water vapor plume. The July 2005 occultation observation established that water is the primary constituent of the plume [1], and allowed us to calculate the flux of water coming from the plume; the 2007 occultation showed super-sonic jets of gas imbedded within the plume [2]. The solar occultation observation set upper limits for N2 as a constituent of the plume and provided higher resolution data on the jets [3]. On 19 October 2011, epsilon and zeta Orionis were simultaneously occulted by the plume. The stars were in separate pixels on the detector, separated by 24 mrad, or ~20 km, with the lower altitude star (epsilon Orionis) 18 km above the limb at its closest point. The profile at two altitudes shows evidence for a new gas jet location, possibly between dust jet #50 and #51 identified in [4].Results from the assemblage of these data sets, with implications for the composition and vertical structure of the plume and jets, will be described. Gas being expelled from the “tiger stripe” fissures is largely on a vertical escape trajectory away from Enceladus. Upper limits are set for water vapor near the limb at latitudes well away from the south pole at 3 x 1015 cm-2. Upper limits are set for the amount of ethylene and H2 in the plume, two species of interest to the chemistry of the plume [5]. No hydrogen or oxygen emission features have been observed from Enceladus’ water vapor plume, in contrast to the purported plumes at Europa, probably due to the very different plasma environment at Saturn. Data have now been processed consistently for all occultations with slightly different results for water vapor supply to the Saturn magnetosphere than previously reported. Overall, eruptive activity has been steady to within ~20% from 2005 to 2011.References: [1] Hansen, C. J. et al., Science 311:1422 (2006). Hansen, C. J. et al., Nature 456:477 (2008

  1. Aqueous U(VI) interaction with magnetite nanoparticles in a mixed flow reactor system: HR-XANES study

    NASA Astrophysics Data System (ADS)

    Pidchenko, I.; Heberling, F.; Kvashnina, KO; Finck, N.; Schild, D.; Bohnert, E.; Schäfer, T.; Rothe, J.; Geckeis, H.; Vitova, T.

    2016-05-01

    The redox variations and changes in local atomic environment of uranium (U) interacted with the magnetite nanoparticles were studied in a proof of principle experiment by the U L3 and M4 edges high energy resolution X-ray absorption near edge structure (HR-XANES) technique. We designed and applied a mixed flow reactor (MFR) set-up to maintain dynamic flow conditions during U-magnetite interactions. Formation of hydrolyzed, bi- and poly-nuclear U species were excluded by slow continuous injection of U(VI) (10-6 M) and pH control integrated in the MFR set-up. The applied U HR-XANES technique is more sensitive to minor changes in the U redox states and bonding compared to the conventional XANES method. Major U(VI) contribution in uranyl type of bonding is found in the magnetite nanoparticles after three days operation time of the MFR. Indications for shortening of the U-Oaxial bond length for the magnetite compared to the maghemite system are present too.

  2. The Host Galaxies of LoBAL QSOs at Low z: A Perspective from HST UVIS Images

    NASA Astrophysics Data System (ADS)

    Behn, Wyatt Alan; Lazarova, Mariana; Canalizo, Gabriela

    2016-06-01

    We present GALFIT models of a complete optically-selected volume-limited sample of Low-Ionization Broad Absorption Line QSOs (LoBALs) in the redshift range 0.5-0.6 observed with HST WFC3 UVIS F475W. We investigate the morphologies in the rest frame u which map the younger stellar populations. In addition, we present statistics on the number of neighborhood galaxies within 150 kpc and possible trends between clustering and host galaxy properties. This sample of LoBALs is selected from QSOs characterized by their extreme blue-shifted absorption in the Mg II line—which is a signature of high velocity winds towards the observer. Only ~1-3% of optically selected QSOs are LoBALs. Their low fraction could be explained by their orientation or by a short period of outflow manifest in all QSOs during their lifetime. We aim to better understand the possibility of the evolutionary model by studying their morphologies in detail. Previous work on this sample, from images with F125W filter (rest frame i), shows that at least 60% of these objects exhibit signs of recent merger activity. We complement those results with our results from the UVIS observations and neighborhood clustering statistics.

  3. Spectrophotometric Investigation of U(VI) Chloride Complexation in the NaCl/NaClO{sub 4} System

    SciTech Connect

    Paviet-Hartmann, P.; Lin, M.R.; Runde, W.H.

    1998-11-30

    Post closure radioactive release scenarios from geologic salt formation, such as the WIPP (Waste Isolation Pilot Plant)(USA) include hydrologic transport of radionuclides through a chloride saturated aquifer. Consequently, the understanding of actinide solution chemistry in brines is essential for modeling requiring accurate knowledge of the interaction between AnO{sub 2}{sup 2+} and chloride ions. Complexation constants of two U(VI) chloride species, UO{sub 2}Cl{sup +} and UO{sub 2}Cl{sub 2}{sup 0}, have been intensively studied for about 40 years using different methods. However, large uncertainties reflect the general difficulty in determining accurate stability constants of weak complexes. In order to model the behavior of U(VI) in brines, we studied the formation of its chloride complexes by UV-Vis spectroscopy as a function of the NaCl concentration at 25 C. The experiments were performed at constant ionic strength by varying the concentration ratio of NaCl and NaClO{sub 4}. Deconvolution resulted in single component absorption spectra for UO{sub 2}Cl{sup +} and UO{sub 2}Cl{sub 2}{sup 0}. The apparent stability constants of UO{sub 2}Cl{sup +} and UO{sub 2}Cl{sub 2}{sup 0} are at different ionic strengths and the experimental data are used to parameterize using the SIT approach.

  4. Equilibrium, kinetic and thermodynamic studies on the removal of U(VI) by low cost agricultural waste.

    PubMed

    Kausar, Abida; Bhatti, Haq Nawaz; MacKinnon, Gillian

    2013-11-01

    In this research, biosorption efficiency of different agro-wastes was evaluated with rice husk showing maximum biosorption capacity among the selected biosorbents. Optimization of native, SDS-treated and immobilized rice husk adsorption parameters including pH, biosorbent amount, contact time, initial U(VI) concentration and temperature for maximum U(VI) removal was investigated. Maximum biosorption capacity for native (29.56 mg g(-1)) and immobilized biomass (17.59 mg g(-1)) was observed at pH 4 while SDS-treated biomass showed maximum removal (28.08 mg g(-1)) at pH 5. The Langmuir sorption isotherm model correlated best with the U(IV) biosorption equilibrium data for the 10-100 mg L(-1) concentration range. The kinetics of the reaction followed pseudo-second order kinetic model. Thermodynamic parameters like free energy (ΔG(0)) and enthalpy (ΔH°) confirmed the spontaneous and exothermic nature of the process. Experiments to determine the regeneration capacity of the selected biosorbents and the effect of competing metal ions on biosorption capacity were also conducted. The biomass was characterized using scanning electron microscopy, surface area analysis, Fourier transformed infra-red spectroscopy and thermal gravimetric analysis. The study proved that rice husk has potential to treat uranium in wastewater. PMID:23787279

  5. A spectroscopic study on U(VI) biomineralization in cultivated Pseudomonas fluorescens biofilms isolated from granitic aquifers.

    PubMed

    Krawczyk-Bärsch, Evelyn; Lütke, Laura; Moll, Henry; Bok, Frank; Steudtner, Robin; Rossberg, André

    2015-03-01

    The interaction between the Pseudomonas fluorescens biofilm and U(VI) were studied using extended X-ray absorption fine structure spectroscopy (EXAFS), and time-resolved laser fluorescence spectroscopy (TRLFS). In EXAFS studies, the formation of a stable uranyl phosphate mineral, similar to autunite (Ca[UO2]2[PO4]2•2-6H2O) or meta-autunite (Ca[UO2]2[PO4]2•10-12H2O) was observed. This is the first time such a biomineralization process has been observed in P. fluorescens. Biomineralization occurs due to phosphate release from the cellular polyphosphate, likely as a cell's response to the added uranium. It differs significantly from the biosorption process occurring in the planktonic cells of the same strain. TRLFS studies of the uranium-contaminated nutrient medium identified aqueous Ca2UO2(CO3)3 and UO2(CO3)3 (4-) species, which in contrast to the biomineralization in the P. fluorescens biofilm, may contribute to the transport and migration of U(VI). The obtained results reveal that biofilms of P. fluorescens may play an important role in predicting the transport behavior of uranium in the environment. They will also contribute to the improvement of remediation methods in uranium-contaminated sites. PMID:25318416

  6. U(VI) biosorption by bi-functionalized Pseudomonas putida @ chitosan bead: Modeling and optimization using RSM.

    PubMed

    Sohbatzadeh, Hozhabr; Keshtkar, Ali Reza; Safdari, Jaber; Fatemi, Faezeh

    2016-08-01

    In this work, Pseudomonas putida cells immobilized into chitosan beads (PICB) were synthesized to investigate the impact of microorganism entrapment on biosorption capacity of prepared biosorbent for U(VI) biosorption from aqueous solutions. Response Surface Methodology (RSM) based on Central Composite Design (CCD) was utilized to evaluate the performance of the PICB in comparison with chitosan beads (CB) under batch mode. Performing experiments under optimal condition sets viz. pH 5, initial U(VI) concentration 500mg/L, biosorbent dosage 0.4g/L and 20wt.% bacterial cells showed that the observed biosorption capacity enhanced by 1.27 times from 398mg/g (CB) to 504mg/g (PICB) that confirmed the effectiveness of cells immobilization process. FTIR and potentiometric titration were then utilized to characterize the prepared biosorbents. While the dominant functional group in the binding process was NH3(+) (4.78meq/g) in the CB, the functional groups of NH3(+), NH2, OH, COOH (6.00meq/g) were responsible for the PICB. The equilibrium and kinetic studies revealed that the Langmuir isotherm model and the pseudo-second-order kinetic model were in better fitness with the CB and PICB experimental data. In conclusion, the present study indicated that the PICB could be a suitable biosorbent for uranium (VI) biosorption from aqueous solutions. PMID:27180295

  7. Effect of anthropogenic organic complexants on the solubility of Ni, Th, U(IV) and U(VI).

    PubMed

    Felipe-Sotelo, M; Edgar, M; Beattie, T; Warwick, P; Evans, N D M; Read, D

    2015-12-30

    The influence of anthropogenic organic complexants (citrate, EDTA and DTPA from 0.005 to 0.1M) on the solubility of nickel(II), thorium(IV) and uranium (U(IV) and U(VI)) has been studied. Experiments were carried out in 95%-saturated Ca(OH)2 solutions, representing the high pH conditions anticipated in the near field of a cementitious intermediate level radioactive waste repository. Results showed that Ni(II) solubility increased by 2-4 orders of magnitude in the presence of EDTA and DTPA and from 3 to 4 orders of magnitude in the case of citrate. Citrate had the greatest effect on the solubility of Th(IV) and U(IV)/(VI). XRD and SEM analyses indicate that the precipitates are largely amorphous; only in the case of Ni(II), is there some evidence of incipient crystallinity, in the form of Ni(OH)2 (theophrastite). A study of the effect of calcium suggests that U(VI) and Ni(II) may form metal-citrate-OH complexes stabilised by Ca(2+). Thermodynamic modelling underestimates the concentrations in solution in the presence of the ligands for all the elements considered here. Further investigation of the behaviour of organic ligands under hyperalkaline conditions is important because of the use of the thermodynamic constants in preparing the safety case for the geological disposal of radioactive wastes. PMID:26253235

  8. Abiotic Formation of Methyl Halides in the Terrestrial Environment

    NASA Astrophysics Data System (ADS)

    Keppler, F.

    2011-12-01

    Methyl chloride and methyl bromide are the most abundant chlorine and bromine containing organic compounds in the atmosphere. Since both compounds have relatively long tropospheric lifetimes they can effectively transport halogen atoms from the Earth's surface, where they are released, to the stratosphere and following photolytic oxidation form reactive halogen gases that lead to the chemical destruction of ozone. Methyl chloride and methyl bromide account for more than 20% of the ozone-depleting halogens delivered to the stratosphere and are predicted to grow in importance as the chlorine contribution to the stratosphere from anthropogenic CFCs decline. Today methyl chloride and methyl bromide originate mainly from natural sources with only a minor fraction considered to be of anthropogenic origin. However, until as recently as 2000 most of the methyl chloride and methyl bromide input to the atmosphere was considered to originate from the oceans, but investigations in recent years have clearly demonstrated that terrestrial sources such as biomass burning, wood-rotting fungi, coastal salt marshes, tropical vegetation and organic matter degradation must dominate the atmospheric budgets of these trace gases. However, many uncertainties still exist regarding strengths of both sources and sinks, as well as the mechanisms of formation of these naturally occurring halogenated gases. A better understanding of the atmospheric budget of both methyl chloride and methyl bromide is therefore required for reliable prediction of future ozone depletion. Biotic and abiotic methylation processes of chloride and bromide ion are considered to be the dominant pathways of formation of these methyl halides in nature. In this presentation I will focus on abiotic formation processes in the terrestrial environment and the potential parameters that control their emissions. Recent advances in our understanding of the abiotic formation pathway of methyl halides will be discussed. This will

  9. Nitrogen isotopic fractionation during abiotic synthesis of organic solid particles

    NASA Astrophysics Data System (ADS)

    Kuga, Maïa; Carrasco, Nathalie; Marty, Bernard; Marrocchi, Yves; Bernard, Sylvain; Rigaudier, Thomas; Fleury, Benjamin; Tissandier, Laurent

    2014-05-01

    The formation of organic compounds is generally assumed to result from abiotic processes in the Solar System, with the exception of biogenic organics on Earth. Nitrogen-bearing organics are of particular interest, notably for prebiotic perspectives but also for overall comprehension of organic formation in the young Solar System and in planetary atmospheres. We have investigated abiotic synthesis of organics upon plasma discharge, with special attention to N isotope fractionation. Organic aerosols were synthesized from N2-CH4 and N2-CO gaseous mixtures using low-pressure plasma discharge experiments, aimed at simulating chemistry occurring in Titan's atmosphere and in the protosolar nebula, respectively. The nitrogen content, the N speciation and the N isotopic composition were analyzed in the resulting organic aerosols. Nitrogen is efficiently incorporated into the synthesized solids, independently of the oxidation degree, of the N2 content of the starting gas mixture, and of the nitrogen speciation in the aerosols. The aerosols are depleted in 15N by 15-25‰ relative to the initial N2 gas, whatever the experimental setup is. Such an isotopic fractionation is attributed to mass-dependent kinetic effect(s). Nitrogen isotope fractionation upon electric discharge cannot account for the large N isotope variations observed among Solar System objects and reservoirs. Extreme N isotope signatures in the Solar System are more likely the result of self-shielding during N2 photodissociation, exotic effect during photodissociation of N2 and/or low temperature ion-molecule isotope exchange. Kinetic N isotope fractionation may play a significant role in the Titan's atmosphere. On the Titan's night side, 15N-depletion resulting from electron driven reactions may counterbalance photo-induced 15N enrichments occurring on the day's side. We also suggest that the low δ15N values of Archaean organic matter (Beaumont and Robert, 1999) are partly the result of abiotic synthesis of

  10. Microbial populations stimulated for hexavalent uranium reduction in uranium mine sediment.

    SciTech Connect

    Suzuki, Y.; Kelly, S. D.; Kemner, K. M.; Banfield, J. F.; Environmental Research; Univ. of Wisconsin-Madison; Univ. of California-Berkeley

    2003-03-01

    Uranium-contaminated sediment and water collected from an inactive uranium mine were incubated anaerobically with organic substrates. Stimulated microbial populations removed U almost entirely from solution within 1 month. X-ray absorption near-edge structure analysis showed that U(VI) was reduced to U(IV) during the incubation. Observations by transmission electron microscopy, selected area diffraction pattern analysis, and energy-dispersive X-ray spectroscopic analysis showed two distinct types of prokaryotic cells that precipitated only a U(IV) mineral uraninite (UO{sub 2}) or both uraninite and metal sulfides. Prokaryotic cells associated with uraninite and metal sulfides were inferred to be sulfate-reducing bacteria. Phylogenetic analysis of 16S ribosomal DNA obtained from the original and incubated sediments revealed that microbial populations were changed from microaerophilic Proteobacteria to anaerobic low-G+C gram-positive sporeforming bacteria by the incubation. Forty-two out of 94 clones from the incubated sediment were related to sulfate-reducing Desulfosporosinus spp., and 23 were related to fermentative Clostridium spp. The results suggest that, if in situ bioremediation were attempted in the uranium mine ponds, Desulfosporosinus spp. would be a major contributor to U(VI) and sulfate reduction and Clostridium spp. to U(VI) reduction.

  11. Microbial Populations Stimulated for Hexavalent Uranium Reduction in Uranium Mine Sediment

    PubMed Central

    Suzuki, Yohey; Kelly, Shelly D.; Kemner, Kenneth M.; Banfield, Jillian F.

    2003-01-01

    Uranium-contaminated sediment and water collected from an inactive uranium mine were incubated anaerobically with organic substrates. Stimulated microbial populations removed U almost entirely from solution within 1 month. X-ray absorption near-edge structure analysis showed that U(VI) was reduced to U(IV) during the incubation. Observations by transmission electron microscopy, selected area diffraction pattern analysis, and energy-dispersive X-ray spectroscopic analysis showed two distinct types of prokaryotic cells that precipitated only a U(IV) mineral uraninite (UO2) or both uraninite and metal sulfides. Prokaryotic cells associated with uraninite and metal sulfides were inferred to be sulfate-reducing bacteria. Phylogenetic analysis of 16S ribosomal DNA obtained from the original and incubated sediments revealed that microbial populations were changed from microaerophilic Proteobacteria to anaerobic low-G+C gram-positive sporeforming bacteria by the incubation. Forty-two out of 94 clones from the incubated sediment were related to sulfate-reducing Desulfosporosinus spp., and 23 were related to fermentative Clostridium spp. The results suggest that, if in situ bioremediation were attempted in the uranium mine ponds, Desulfosporosinus spp. would be a major contributor to U(VI) and sulfate reduction and Clostridium spp. to U(VI) reduction. PMID:12620814

  12. An Abiotic Glass-Bead Collector Exhibiting Active Transport

    NASA Astrophysics Data System (ADS)

    Goto, Youhei; Kanda, Masato; Yamamoto, Daigo; Shioi, Akihisa

    2015-09-01

    Animals relocate objects as needed by active motion. Active transport is ubiquitous in living organisms but has been difficult to realize in abiotic systems. Here we show that a self-propelled droplet can gather scattered beads toward one place on a floor and sweep it clean. This is a biomimetic active transport with loadings and unloadings, because the transport was performed by a carrier and the motion of the carrier was maintained by the energy of the chemical reaction. The oil droplet produced fluctuation of the local number density of the beads on the floor, followed by its autocatalytic growth. This mechanism may inspire the technologies based on active transport wherein chemical and physical substances migrate as in living organisms.

  13. Temporal dynamics of biotic and abiotic drivers of litter decomposition.

    PubMed

    García-Palacios, Pablo; Shaw, E Ashley; Wall, Diana H; Hättenschwiler, Stephan

    2016-05-01

    Climate, litter quality and decomposers drive litter decomposition. However, little is known about whether their relative contribution changes at different decomposition stages. To fill this gap, we evaluated the relative importance of leaf litter polyphenols, decomposer communities and soil moisture for litter C and N loss at different stages throughout the decomposition process. Although both microbial and nematode communities regulated litter C and N loss in the early decomposition stages, soil moisture and legacy effects of initial differences in litter quality played a major role in the late stages of the process. Our results provide strong evidence for substantial shifts in how biotic and abiotic factors control litter C and N dynamics during decomposition. Taking into account such temporal dynamics will increase the predictive power of decomposition models that are currently limited by a single-pool approach applying control variables uniformly to the entire decay process. PMID:26947573

  14. Spectral induced polarization signatures of abiotic FeS precipitation

    SciTech Connect

    Ntarlagiannis, D.; Doherty, R.; Williams, K. H.

    2010-01-15

    In recent years, geophysical methods have been shown to be sensitive to microbial induced mineralization processes. The spectral induced polarization (SIP) method appears to be very promising for monitoring mineralization and microbial processes. With this work, we study the links of mineralization and SIP signals, in the absence of microbial activity. We recorded the SIP response during abiotic FeS precipitation. We show that the SIP signals are diagnostic of FeS mineralization and can be differentiated from SIP signals from bio-mineralization processes. More specifically the imaginary conductivity shows almost linear dependence on the amount of FeS precipitating out of solution, above the threshold value 0.006 gr under our experimental conditions. This research has direct implications for the use of the SIP method as a monitoring, and decision making, tool for sustainable remediation of metals in contaminated soils and groundwater.

  15. Endophytic fungi: resource for gibberellins and crop abiotic stress resistance.

    PubMed

    Khan, Abdul Latif; Hussain, Javid; Al-Harrasi, Ahmed; Al-Rawahi, Ahmed; Lee, In-Jung

    2015-03-01

    The beneficial effects of endophytes on plant growth are important for agricultural ecosystems because they reduce the need for fertilizers and decrease soil and water pollution while compensating for environmental perturbations. Endophytic fungi are a novel source of bioactive secondary metabolites; moreover, recently they have been found to produce physiologically active gibberellins as well. The symbiosis of gibberellins producing endophytic fungi with crops can be a promising strategy to overcome the adverse effects of abiotic stresses. The association of such endophytes has not only increased plant biomass but also ameliorated plant-growth during extreme environmental conditions. Endophytic fungi represent a trove of unexplored biodiversity and a frequently overlooked component of crop ecology. The present review describes the role of gibberellins producing endophytic fungi, suggests putative mechanisms involved in plant endophyte stress interactions and discusses future prospects in this field. PMID:23984800

  16. Quest for Environmentally-Benign Ligands for Actinide Separations: Thermodynamic, Spectroscopic, and Structural Characterization of U(VI) Complexes with Oxa-Diamide and Related Ligands

    SciTech Connect

    Advanced Light Source; Tian, Guoxin; Rao, Linfeng; Teat, Simon J.; Liu, Guokui

    2009-01-05

    Complexation of U(VI) with N,N,N{prime},N{prime}-tetramethyl-3-oxa-glutaramide (TMOGA) and N,N-dimethyl-3-oxa-glutaramic acid (DMOGA) was studied in comparison with their dicarboxylate analog, oxydiacetic acid (ODA). Thermodynamic parameters, including stability constants, enthalpy and entropy of complexation, were determined by spectrophotometry, potentiometry and calorimetry. Single-crystal X-ray diffractometry, EXAFS spectroscopy, FT-IR absorption and laser-induced luminescence spectroscopy were used to obtain structural information on the U(VI) complexes. Like ODA, TMOGA and DMOGA form tridentate U(VI) complexes, with three oxygen atoms (the amide, ether and/or carboxylate oxygen) coordinating to the linear UO{sub 2}{sup 2+} cation via the equatorial plane. The stability constants, enthalpy and entropy of complexation all decrease in the order ODA > DMOGA > TMOGA, showing that the complexation is entropy driven and the substitution of a carboxylate group with an amide group reduces the strength of complexation with U(VI) due to the decrease in the entropy of complexation. The trend in the thermodynamic stability of the complexes correlates very well with the structural and spectroscopic data obtained by single crystal XRD, FT-IR and laser-induced luminescence spectroscopy.

  17. Oxidation of Black Carbon by Biotic and Abiotic Processes

    SciTech Connect

    Cheng, Chih-hsin; Lehmann, Johannes C.; Thies, Janice E.; Burton, Sarah D.; Engelhard, Mark H.

    2006-11-01

    The objectives of this study were to quantify the relative importance of either biotic or abiotic oxidation of biomass-derived black carbon (BC) and to characterize the surface properties and charge characteristics of oxidized particulate BC. We incubated BC and BC-soil mixtures at two different temperatures (30 C and 70 C) with and without microbial inoculation, nutrient additions, or manure amendments for four months. Abiotic processes were more important for oxidation of BC than biotic processes during this short-term incubation, as inoculation with microorganisms did not change any of the measured parameters. Black C incubated at both 30 C and 70 C without microbial activity showed dramatic decreases in pH (in water) from 5.4 to 5.2 and 3.4, as well as increases in cation exchange capacity (CEC at pH 7) by 53% and 538% and in oxygen (O) contents by 4% and 38%, respectively. Boehm titration and Fourier transform infrared (FTIR) spectroscopy suggested that the formation of carboxylic functional groups was the reason for the enhanced CEC during oxidation. The analyses of BC surface properties by X-ray photoelectron spectroscopy (XPS) indicated that the oxidation of BC particles initiated on the surface. Incubation at 30 C only enhanced oxidation on particle surfaces, while oxidation during incubation at 70 C penetrated into the interior of particles. Such short-term oxidation of BC has great significance for the stability of BC in soils as well as for its effects on soil fertility and biogeochemistry.

  18. Effect of Humic Substances on the Trapping and Transformations of U(VI) by Ferrihydrite

    NASA Astrophysics Data System (ADS)

    Dublet, G.; Brown, G. E.; Bargar, J.; Fendorf, S. E.; Janot, N.

    2013-12-01

    The Old Rifle DOE site in Colorado was a major site for milling uranium ore. U concentrations up to 1.8 uM persist in the Rifle aquifer, even after 'cleaning' the waste source of contaminations [1]. Understanding the behavior of U(VI) in this anthropogenically perturbed system is crucial for controlling the level of U contamination. Direct investigations of U speciation at this site have shown that U is associated with a wide variety of minerals as well as with natural organic matter (NOM) [2]. NOM has multiple functional groups which can be highly reactive with respect to aqueous metal ions, including actinides. Such interactions result in the formation of organo-mineral-metal (ternary) complexes and catalyze redox transformations; in addition, they can enhance mineral dissolution and metal transport [3,4,5]. In the complex soil/sediment system, aqueous, mineral, and organic phases are intimately mixed and their interactions are difficult to characterize by direct investigation [1]. The nanoparticulate iron hydroxide ferrihydrite (Fh), which is ubiquitous in many natural soils and highly reactive toward metal ions, is expected to significantly influence the fate of U in natural soils and is abundant in the subsurface at the Rifle site. NOM is also abundant at this site; however, little is known about the effect of NOM associated with ferrihydrite on the fate of U in such subsurface environments. To date, simple model systems composed mainly of two components (Fh and NOM) [6], (U and NOM or simple organic molecules) [7], or (Fh and U) [8,9], and more rarely composed of three components [10,11] have been studied in an effort to understand interactions among these components. In order to extend this earlier work to ternary systems, we have carried out batch reactions of U, a humic acid standard - Eliott soil humic acid (ESHA), and Fh under conditions that mimic those in the subsurface at Rifle. We have used U L3- and Fe K-edge XANES and EXAFS spectroscopy coupled

  19. Saturn's Rings Particle and Clump Sizes from Cassini UVIS Occultation Statistics (Invited)

    NASA Astrophysics Data System (ADS)

    Colwell, J. E.; Cooney, J.; Esposito, L. W.; Sremcevic, M.

    2013-12-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) has observed stellar occultations by Saturn's rings with sampling intervals of 1 and 2 ms using its High Speed Photometer (HSP). At this high measurement tempo, the radial separation between subsequent points is typically ~10 m. This enables us to study differences in the statistical properties of the occultation data over small radial scales in the rings. Two regions that lead to the same mean stellar signal (identical optical depth) may have very different variances in that same signal. If each area in the rings sampled by an individual measurement has the same distribution of particles, then the stellar signal received from each area will be the same, and the variance in the data will be entirely due to Poisson counting statistics. If, however, there are significant fluctuations in the number of particles from one area to the next, then the variance will be much larger, though the mean signal received for all points could be the same. There will be large fluctuations from point to point in the number of particles blocking the stellar signal for a given optical depth if the number of particles in each sampled area is small which in turn corresponds to larger particle sizes for a given optical depth. The variance in the data is thus proportional to the mean cross-sectional area of the particles or clumps of particles. This idea was first applied to Saturn's rings with data from the Voyager PPS stellar occultation by Showalter and Nicholson (1990, Icarus 87, 285-306). The Cassini HSP data are obtained at a much higher spatial resolution enabling us to study differences in effective particle sizes over much smaller spatial scales in the rings. The excess variance observed in the HSP stellar occultations reveals different particle populations or clump sizes in different ring regions. The C ring plateaus exhibit smaller (by a factor of 2) sizes than the background C ring. The inner B ring is characterized by smaller

  20. The effect of organic and inorganic aqueous uranium speciation on U(VI) bioavailability to an aquatic invertebrate

    NASA Astrophysics Data System (ADS)

    Fuller, C.; Croteau, M. N.; Campbell, K. M.; Cain, D.; Aiken, G.

    2015-12-01

    Growing world-wide demand for uranium (U) as an energy source has raised concerns of the human and ecological risks of U extraction and processing in the United States. Because of limited information on the relationship between U speciation and bioavailability, particularly in aquatic animals, we are characterizing U uptake by a model freshwater invertebrate (the snail Lymnaea stagnalis). This species grazes on biofilms and is thus key in the trophic transfer of contaminants through aquatic food webs. We determined the bioavailability of dissolved U(VI) over a range of water hardness, pH (6 to 8), and the presence of dissolved natural organic matter (NOM) as a competing ligand, to test the effect of aqueous speciation on uptake. Bioavailability was assessed using U uptake rate constants (kuw) derived from a kinetic bioaccumulation model. Dissolved U (1 to 1000 nM) was bioavailable over the range of geochemical conditions tested with kuw (L/g/d) decreasing with increasing dissolved Ca and with increasing pH. For example, kuw decreased from 1.6 to 0.3 as dissolved Ca was increased from 0.04 to 1.5 mM, suggesting competition between bioavailable U(VI) species and strong ternary calcium uranyl carbonato complexes. At pH 7.5 in synthetic moderately hard freshwater, kuw decreased from 0.22 in the absence of NOM to 0.07 in the presence of a hydrophobic acid NOM isolate of high aromaticity (SUVA = 5) consistent with strong aqueous complexation of U(VI) by the NOM. The co-variance of U uptake and aqueous U species distribution is being analyzed to determine which U species are bioavailable. U speciation in systems with NOM is calculated using conditional U-NOM binding constants derived by equilibrium dialysis ligand exchange methodology. The bioavailability of dietborne U is being tested since dietary metal uptake prevails for many aquatic species. These experiments include addition of ferrihydrite with U sorbed, both in the presence and absence of NOM, and mixed with diet.

  1. Spectroscopic study on the role of TiO{sub 2} in the adsorption of Eu(III) and U(VI) on silica surfaces in aqueous solutions

    SciTech Connect

    Im, Hee-Jung Park, Kyoung Kyun; Jung, Euo Chang

    2014-10-15

    Highlights: • Enhanced adsorption of Eu(III) and U(VI) onto TiO{sub 2}-coated silica. • Enhanced Eu(III) luminescence and lifetime on TiO{sub 2}-coated silica. • Energy transfer from TiO{sub 2} of TiO{sub 2}-coated silica to Eu(III) in solutions. - Abstract: To determine the effects of TiO{sub 2} on the adsorption of actinides onto mineral surfaces in groundwater, silica was partially coated with TiO{sub 2}, and Eu(III) and U(VI) were individually adsorbed from separate 0.1 mM concentration solutions. The TiO{sub 2}-coated silica showed higher Eu(III) and U(VI) adsorption capacities for increasing amounts of TiO{sub 2} coated on the silica surfaces, and thus the existence of TiO{sub 2} can decrease the mobility of Eu(III) and U(VI) contaminants. In luminescence studies, it was found that TiO{sub 2} considerably enhanced the luminescence of the adsorbed Eu(III) indicating that TiO{sub 2}–Eu(III) forms surface complexes which may decrease the number of water molecules at the inner sphere of Eu(III), but this was not observed for U(VI). An energy transfer from the TiO{sub 2} to the Eu(III) was confirmed in this case of amorphous TiO{sub 2}-coated silica in Eu(III) solutions, and an increase of the luminescence lifetime of Eu(III) for increasing concentrations of coated TiO{sub 2} was also observed.

  2. Abiotic Stresses Antagonize the Rice Defence Pathway through the Tyrosine-Dephosphorylation of OsMPK6

    PubMed Central

    Kishi-Kaboshi, Mitsuko; Matsushita, Akane; Jiang, Chang-Jie; Goto, Shingo; Takahashi, Akira; Hirochika, Hirohiko; Takatsuji, Hiroshi

    2015-01-01

    Plants, as sessile organisms, survive environmental changes by prioritizing their responses to the most life-threatening stress by allocating limited resources. Previous studies showed that pathogen resistance was suppressed under abiotic stresses. Here, we show the mechanism underlying this phenomenon. Phosphorylation of WRKY45, the central transcription factor in salicylic-acid (SA)-signalling-dependent pathogen defence in rice, via the OsMKK10-2–OsMPK6 cascade, was required to fully activate WRKY45. The activation of WRKY45 by benzothiadiazole (BTH) was reduced under low temperature and high salinity, probably through abscisic acid (ABA) signalling. An ABA treatment dephosphorylated/inactivated OsMPK6 via protein tyrosine phosphatases, OsPTP1/2, leading to the impaired activation of WRKY45 and a reduction in Magnaporthe oryzae resistance, even after BTH treatment. BTH induced a strong M. oryzae resistance in OsPTP1/2 knockdown rice, even under cold and high salinity, indicating that OsPTP1/2 is the node of SA-ABA signalling crosstalk and its down-regulation makes rice disease resistant, even under abiotic stresses. These results points to one of the directions to further improve crops by managing the tradeoffs between different stress responses of plants. PMID:26485146

  3. Plant abiotic stress diagnostic by laser induced chlorophyll fluorescence spectral analysis of in vivo leaf tissue of biofuel species

    NASA Astrophysics Data System (ADS)

    Gouveia-Neto, Artur S.; Silva, Elias A., Jr.; Costa, Ernande B.; Bueno, Luciano A.; Silva, Luciana M. H.; Granja, Manuela M. C.; Medeiros, Maria J. L.; Câmara, Terezinha J. R.; Willadino, Lilia G.

    2010-02-01

    Laser induced fluorescence is exploited to evaluate the effect of abiotic stresses upon the evolution and characteristics of in vivo chlorophyll emission spectra of leaves tissues of brazilian biofuel plants species(Saccharum officinarum and Jatropha curcas). The chlorophyll fluorescence spectra of 20 min predarkened intact leaves were studied employing several excitation wavelengths in the UV-VIS spectral region. Red(Fr) and far-red (FFr) chlorophyll fluorescence emission signals around 685 nm and 735 nm, respectively, were analyzed as a function of the stress intensity and the time of illumination(Kautsky effect). The Chl fluorescence ratio Fr/FFr which is a valuable nondestructive indicator of the chlorophyll content of leaves was investigated during a period of time of 30 days. The dependence of the Chl fluorescence ratio Fr/FFr upon the intensity of the abiotic stress(salinity) was examined. The results indicated that the salinity plays a major hole in the chlorophyll concentration of leaves in both plants spieces, with a significant reduction in the chlorophyll content for NaCl concentrations in the 25 - 200 mM range. The laser induced chlorophyll fluorescence analysis allowed detection of damage caused by salinity in the early stages of the plants growing process, and can be used as an early-warning indicator of salinity stress

  4. High-Precision Proper Motion Measurements of the Stars in the Field of SN 1572 with WFC3/UVIS

    NASA Astrophysics Data System (ADS)

    Ruiz-Lapuente, Pilar

    2011-10-01

    We propose to refine the space-velocity measurements of the stars in the central region of SNR 1572, one of the historical Galactic Type Ia supernova remnants. A single-orbit visit with the WFC3/UVIS would allow, in combination with the previous ACS/WFC images obtained in 2003-2005, an astrometric precision of less than 0.05 mas, almost one order of magnitude better than our previous result. Precise knowledge of the kinematics of all of the stars in the region is crucial for determining which one might be the surviving binary companion of the supernova. A precise reconstruction of the parameters of the binary system that gave rise to the supernova would then be possible, complementing the existing observations both from the ground and with the HST, which span the last fourteen years.

  5. AtMYB12 regulates flavonoids accumulation and abiotic stress tolerance in transgenic Arabidopsis thaliana.

    PubMed

    Wang, Feibing; Kong, Weili; Wong, Gary; Fu, Lifeng; Peng, Rihe; Li, Zhenjun; Yao, Quanhong

    2016-08-01

    In plants, transcriptional regulation is the most important tool for modulating flavonoid biosynthesis. The AtMYB12 gene from Arabidopsis thaliana has been shown to regulate the expression of key enzyme genes involved in flavonoid biosynthesis, leading to the increased accumulation of flavonoids. In this study, the codon-optimized AtMYB12 gene was chemically synthesized. Subcellular localization analysis in onion epidermal cells indicated that AtMYB12 was localized to the nucleus. Its overexpression significantly increased accumulation of flavonoids and enhanced salt and drought tolerance in transgenic Arabidopsis plants. Real-time quantitative PCR (qRT-PCR) analysis showed that overexpression of AtMYB12 resulted in the up-regulation of genes involved in flavonoid biosynthesis, abscisic acid (ABA) biosynthesis, proline biosynthesis, stress responses and ROS scavenging under salt and drought stresses. Further analyses under salt and drought stresses showed significant increases of ABA, proline content, superoxide dismutase (SOD) and peroxidase (POD) activities, as well as significant reduction of H2O2 and malonaldehyde (MDA) content. The results demonstrate the explicit role of AtMYB12 in conferring salt and drought tolerance by increasing the levels of flavonoids and ABA in transgenic Arabidopsis. The AtMYB12 gene has the potential to be used to enhance tolerance to abiotic stresses in plants. PMID:27033553

  6. Abiotic and biotic controls of organic matter cycling in a managed stream

    NASA Astrophysics Data System (ADS)

    Edmonds, Jennifer W.; Grimm, Nancy B.

    2011-06-01

    Urbanization often alters the physical, chemical, and biological structure of aquatic ecosystems embedded within them, creating managed ecosystems with different structure and functioning as compared to their unmanaged counterparts. Our work focused on patterns in dissolved organic carbon (DOC) along a managed stream in Phoenix, Arizona. We documented longitudinal changes in DOC concentrations and quality (defined as chemical complexity and measured as specific ultraviolet absorbance at 254 nm, SUVA) along a 66 km stream dominated by treated wastewater effluent. DOC concentrations along the stream declined by an average of 64%, and chemical complexity increased substantially. We posed four hypotheses to explain changes in downstream water chemistry; including hydrologic dilution, microbial mineralization, abiotic sorption to suspended sediments, and photodegradation by ultraviolet (UV) radiation. Only the second and fourth hypotheses represent permanent removal mechanisms. Our data most strongly supported predictions from the dilution hypothesis and microbial mineralization as an explanation for the changes in DOC chemistry. Surface-subsurface water linkages were important but altered from unmanaged streams, as deep groundwater was used to augment surface flows. Variation in the use of groundwater was linked to human decision making and engineering related to water management. Reduction in geomorphic complexity increased the importance of dilution in explaining patterns but also increased the importance of UV oxidation as a mechanism influencing DOC chemistry. Our findings suggest urban stream management has shifted dependence on microbially mediated C removal mechanisms to hydrologic dilution to reduce output concentrations. This shift lowers contaminant removal potential and increases dependence on limited groundwater resources.

  7. Microbial reduction of iodate

    USGS Publications Warehouse

    Councell, T.B.; Landa, E.R.; Lovley, D.R.

    1997-01-01

    The different oxidation species of iodine have markedly different sorption properties. Hence, changes in iodine redox states can greatly affect the mobility of iodine in the environment. Although a major microbial role has been suggested in the past to account for these redox changes, little has been done to elucidate the responsible microorganisms or the mechanisms involved. In the work presented here, direct microbial reduction of iodate was demonstrated with anaerobic cell suspensions of the sulfate reducing bacterium Desulfovibrio desulfuricans which reduced 96% of an initial 100 ??M iodate to iodide at pH 7 in 30 mM NaHCO3 buffer, whereas anaerobic cell suspensions of the dissimilatory Fe(III)-reducing bacterium Shewanella putrefaciens were unable to reduce iodate in 30 mM NaHCO3 buffer (pH 7). Both D. desulfuricans and S. putrefaciens were able to reduce iodate at pH 7 in 10 mM HEPES buffer. Both soluble ferrous iron and sulfide, as well as iron monosulfide (FeS) were shown to abiologically reduce iodate to iodide. These results indicate that ferric iron and/or sulfate reducing bacteria are capable of mediating both direct, enzymatic, as well as abiotic reduction of iodate in natural anaerobic environments. These microbially mediated reactions may be important factors in the fate and transport of 129I in natural systems.

  8. Review of recent transgenic studies on abiotic stress tolerance and future molecular breeding in potato

    PubMed Central

    Kikuchi, Akira; Huynh, Huu Duc; Endo, Tsukasa; Watanabe, Kazuo

    2015-01-01

    Global warming has become a major issue within the last decade. Traditional breeding programs for potato have focused on increasing productivity and quality and disease resistance, thus, modern cultivars have limited tolerance of abiotic stresses. The introgression of abiotic stress tolerance into modern cultivars is essential work for the future. Recently, many studies have investigated abiotic stress using transgenic techniques. This manuscript focuses on the study of abiotic stress, in particular drought, salinity and low temperature, during this century. Dividing studies into these three stress categories for this review was difficult. Thus, based on the study title and the transgene property, transgenic studies were classified into five categories in this review; oxidative scavengers, transcriptional factors, and above three abiotic categories. The review focuses on studies that investigate confer of stress tolerance and the identification of responsible factors, including wild relatives. From a practical application perspective, further evaluation of transgenic potato with abiotic stress tolerance is required. Although potato plants, including wild species, have a large potential for abiotic stress tolerance, exploration of the factors responsible for conferring this tolerance is still developing. Molecular breeding, including genetic engineering and conventional breeding using DNA markers, is expected to develop in the future. PMID:25931983

  9. Multiple sulfur isotopes fractionations associated with abiotic sulfur transformations in Yellowstone National Park geothermal springs

    PubMed Central

    2014-01-01

    Background The paper presents a quantification of main (hydrogen sulfide and sulfate), as well as of intermediate sulfur species (zero-valent sulfur (ZVS), thiosulfate, sulfite, thiocyanate) in the Yellowstone National Park (YNP) hydrothermal springs and pools. We combined these measurements with the measurements of quadruple sulfur isotope composition of sulfate, hydrogen sulfide and zero-valent sulfur. The main goal of this research is to understand multiple sulfur isotope fractionation in the system, which is dominated by complex, mostly abiotic, sulfur cycling. Results Water samples from six springs and pools in the Yellowstone National Park were characterized by pH, chloride to sulfate ratios, sulfide and intermediate sulfur species concentrations. Concentrations of sulfate in pools indicate either oxidation of sulfide by mixing of deep parent water with shallow oxic water, or surface oxidation of sulfide with atmospheric oxygen. Thiosulfate concentrations are low (<6 μmol L-1) in the pools with low pH due to fast disproportionation of thiosulfate. In the pools with higher pH, the concentration of thiosulfate varies, depending on different geochemical pathways of thiosulfate formation. The δ34S values of sulfate in four systems were close to those calculated using a mixing line of the model based on dilution and boiling of a deep hot parent water body. In two pools δ34S values of sulfate varied significantly from the values calculated from this model. Sulfur isotope fractionation between ZVS and hydrogen sulfide was close to zero at pH < 4. At higher pH zero-valent sulfur is slightly heavier than hydrogen sulfide due to equilibration in the rhombic sulfur–polysulfide – hydrogen sulfide system. Triple sulfur isotope (32S, 33S, 34S) fractionation patterns in waters of hydrothermal pools are more consistent with redox processes involving intermediate sulfur species than with bacterial sulfate reduction. Small but resolved differences in ∆33S among

  10. Carbon isotopic fractionation of CFCs during abiotic and biotic degradation.

    PubMed

    Archbold, Marie E; Elliot, Trevor; Kalin, Robert M

    2012-02-01

    Carbon stable isotope ((13)C) fractionation in chlorofluorocarbon (CFC) compounds arising from abiotic (chemical) degradation using zero-valent iron (ZVI) and biotic (landfill gas attenuation) processes is investigated. Batch tests (at 25 °C) for CFC-113 and CFC-11 using ZVI show quantitative degradation of CFC-113 to HCFC-123a and CFC-1113 following pseudo-first-order kinetics corresponding to a half-life (τ(1/2)) of 20.5 h, and a ZVI surface-area normalized rate constant (k(SA)) of -(9.8 ± 0.5) × 10(-5) L m(-2) h(-1). CFC-11 degraded to trace HCFC-21 and HCFC-31 following pseudo-first-order kinetics corresponding to τ(1/2) = 17.3 h and k(SA) = -(1.2 ± 0.5) × 10(-4) L m(-2) h(-1). Significant kinetic isotope effects of ε(‰) = -5.0 ± 0.3 (CFC-113) and -17.8 ± 4.8 (CFC-11) were observed. Compound-specific carbon isotope analyses also have been used here to characterize source signatures of CFC gases (HCFC-22, CFC-12, HFC-134a, HCFC-142b, CFC-114, CFC-11, CFC-113) for urban (UAA), rural/remote (RAA), and landfill (LAA) ambient air samples, as well as in situ surface flux chamber (FLUX; NO FLUX) and landfill gas (LFG) samples at the Dargan Road site, Northern Ireland. The latter values reflect biotic degradation and isotopic fractionation in LFG production, and local atmospheric impact of landfill emissions through the cover. Isotopic fractionations of Δ(13)C ∼ -13‰ (HCFC-22), Δ(13)C ∼ -35‰ (CFC-12) and Δ(13)C ∼ -15‰ (CFC-11) were observed for LFG in comparison to characteristic solvent source signatures, with the magnitude of the isotopic effect for CFC-11 apparently similar to the kinetic isotope effect for (abiotic) ZVI degradation. PMID:22191586

  11. Final report - Reduction of mercury in saturated subsurface sediments and its potential to mobilize mercury in its elemental form

    SciTech Connect

    Bakray, Tamar

    2013-06-13

    The goal of our project was to investigate Hg(II) reduction in the deep subsurface. We focused on microbial and abiotic pathways of reduction and explored how it affected the toxicity and mobility of Hg in this unique environment. The project’s tasks included: 1. Examining the role of mer activities in the reduction of Hg(II) in denitrifying enrichment cultures; 2. Investigating the biotic/abiotic reduction of Hg(II) under iron reducing conditions; 3. Examining Hg(II) redox transformations under anaerobic conditions in subsurface sediments from DOE sites.

  12. Influence of Electron Donor Type and Concentration on Microbial Population Structure During Uranium Reduction and Remobilization

    NASA Astrophysics Data System (ADS)

    Daly, R. A.; Brodie, E. L.; Kim, Y.; Wan, J.; Tokunaga, T.; Desantis, T. Z.; Andersen, G. L.; Hazen, T. C.; Firestone, M. K.

    2007-12-01

    Enhanced reductive precipitation of U(VI) through stimulation of indigenous microorganisms is an attractive, low- cost strategy for in-situ remediation of contaminated groundwaters and sediments. The rate of organic carbon (OC) supply determines not only the amount of electron donor available for bioreduction of U(VI), but also affects the resulting concentration of aqueous (bi)carbonate generated by microbial respiration. Increased (bi)carbonate concentrations drive aqueous U(VI) concentrations to higher levels and make U(IV) oxidation under reducing conditions favorable. We designed a long-term column study to investigate the effects of different OC forms and supply rates on the stability of bioreduced U and on the structure and dynamics of the microbial communities. OC was supplied as acetate or lactate at four different concentrations and columns were sampled at three time points. In the columns receiving high OC supply the time points correspond to a phases of net U-reduction, U(IV) reoxidation and U(VI) remobilization, and stable levels of U mobilization. DNA was extracted from column sediments, 16S rRNA genes were amplified and the communities analyzed using a high-density phylogenetic microarray (PhyloChip). Lactate and acetate supplied at equivalent rates had a similar impact on uranium mobility with higher OC resulting in re-oxidation of U(IV) after an initial period of U(VI) reduction. Similarly, organic carbon (OC) supply rate, not OC form, had the largest impact on microbial community structure. The diversity (richness) of bacterial and archaeal communities increased over time with those receiving lactate having higher initial richness. Known U-reducing bacteria were present in all columns and time points, however the dynamics of these organisms varied with both organic carbon supply rate and form. This data demonstrates that the initial rate of electron donor supply during heavy metal remediation strongly impacts microbial community development

  13. Influence of Mn oxides on the reduction of uranium(VI) by the metal-reducing bacterium Shewanella putrefaciens

    NASA Astrophysics Data System (ADS)

    Fredrickson, James K.; Zachara, John M.; Kennedy, David W.; Liu, Chongxuan; Duff, Martine C.; Hunter, Douglas B.; Dohnalkova, Alice

    2002-09-01

    The potential for Mn oxides to modify the biogeochemical behavior of U during reduction by the subsurface bacterium Shewanella putrefaciens strain CN32 was investigated using synthetic Mn(III/IV) oxides (pyrolusite [β-MnO 2], bixbyite [Mn 2O 3] and K +-birnessite [K 4Mn 14O 27 · 8H 2O]). In the absence of bacteria, pyrolusite and bixbyite oxidized biogenic uraninite (UO 2[s]) to soluble U(VI) species, with bixbyite being the most rapid oxidant. The Mn(III/IV) oxides lowered the bioreduction rate of U(VI) relative to rates in their absence or in the presence of gibbsite (Al[OH] 3) added as a non-redox-reactive surface. Evolved Mn(II) increased with increasing initial U(VI) concentration in the biotic experiments, indicating that valence cycling of U facilitated the reduction of Mn(III/IV). Despite an excess of the Mn oxide, 43 to 100% of the initial U was bioreduced after extended incubation. Analysis of thin sections of bacterial Mn oxide suspensions revealed that the reduced U resided in the periplasmic space of the bacterial cells. However, in the absence of Mn(III/IV) oxides, UO 2(s) accumulated as copious fine-grained particles external to the cell. These results indicate that the presence of Mn(III/IV) oxides may impede the biological reduction of U(VI) in subsoils and sediments. However, the accumulation of U(IV) in the cell periplasm may physically protect reduced U from oxidation, promoting at least a temporal state of redox disequilibria.

  14. A Model of Continental Growth and Mantle Degassing Comparing Biotic and Abiotic Worlds

    NASA Astrophysics Data System (ADS)

    Höning, D.; Hansen-Goos, H.; Spohn, T.

    2012-12-01

    While examples for interaction of the biosphere with the atmosphere can be easily cited (e.g., production and consumption of O2), interaction between the biosphere and the solid planet and its interior is much less established. It has been argued (e.g., Rosing et al. 2006; Sleep et al, 2012) that the formation of continents could be a consequence of bioactivity harvesting solar energy through photosynthesis to help build the continents and that the mantle should carry a chemical biosignature. We present an interaction model that includes mantle convection, mantle water vapor degassing at mid-oceanic ridges and regassing through subduction zones, continental crust formation and erosion and water storage and transport in a porous oceanic crust that includes hydrous mineral phases. The mantle viscosity in this model depends on the water concentration in the mantle. We use boundary layer theory of mantle convection to parameterize the mantle convection flow rate and assume that the plate speed equals the mantle flow rate. The biosphere enters the calculation through the assumption that the continental erosion rate is enhanced by a factor of several through bioactivity and through an assumed reduction of the kinetic barrier to diagenetic and metamorphic reactions (e.g., Kim et al. 2004) in the sedimentary basins in subduction zones that would lead to increased water storage capacities. We further include a stochastic model of continent-to-continent interactions that limits the effective total length of subduction zones. We use present day parameters of the Earth and explore a phase plane spanned by the percentage of surface coverage of the Earth by continents and the total water content of the mantle. We vary the ratio of the erosion rate in a postulated abiotic Earth to the present Earth, as well as the activation barrier to diagenetic and metamorphic reactions that affect the water storage capacity of the subducting crust. We find stable and unstable fixed points in

  15. Effects of aqueous complexation on reductive precipitation of uranium by Shewanella putrefaciens

    PubMed Central

    Haas, Johnson R; Northup, Abraham

    2004-01-01

    We have examined the effects of aqueous complexation on rates of dissimilatory reductive precipitation of uranium by Shewanella putrefaciens. Uranium(VI) was supplied as sole terminal electron acceptor to Shewanella putrefaciens (strain 200R) in defined laboratory media under strictly anaerobic conditions. Media were amended with different multidentate organic acids, and experiments were performed at different U(VI) and ligand concentrations. Organic acids used as complexing agents were oxalic, malonic, succinic, glutaric, adipic, pimelic, maleic, citric, and nitrilotriacetic acids, tiron, EDTA, and Aldrich humic acid. Reductive precipitation of U(VI), resulting in removal of insoluble amorphous UO2 from solution, was measured as a function of time by determination of total dissolved U. Reductive precipitation was measured, rather than net U(VI) reduction to U(IV), to assess overall U removal rates from solution, which may be used to gauge the influence of chelation on microbial U mineralization. Initial linear rates of U reductive precipitation were found to correlate with stability constants of 1:1 aqueous U(VI):ligand and U(IV):ligand complexes. In the presence of strongly complexing ligands (e.g., NTA, Tiron, EDTA), UO2 precipitation did not occur. Our results are consistent with ligand-retarded precipitation of UO2, which is analogous to ligand-assisted solid phase dissolution but in reverse: ligand exchange with the U4+ aquo cation acts as a rate-limiting reaction moderating coordination of water molecules with U4+, which is a necessary step in UO2 precipitation. Ligand exchange kinetics governing dissociation rates of ligands from U(VI)-organic complexes may also influence overall UO2 production rates, although the magnitude of this effect is unclear relative to the effects of U(IV)-organic complexation. Our results indicate that natural microbial-aqueous systems containing abundant organic matter can inhibit the formation of biogenic amorphous UO2.

  16. Circadian Redox Signaling in Plant Immunity and Abiotic Stress

    PubMed Central

    Spoel, Steven H.

    2014-01-01

    Abstract Significance: Plant crops are critically important to provide quality food and bio-energy to sustain a growing human population. Circadian clocks have been shown to deliver an adaptive advantage to plants, vastly increasing biomass production by efficient anticipation to the solar cycle. Plant stress, on the other hand, whether biotic or abiotic, prevents crops from reaching maximum productivity. Recent Advances: Stress is associated with fluctuations in cellular redox and increased phytohormone signaling. Recently, direct links between circadian timekeeping, redox fluctuations, and hormone signaling have been identified. A direct implication is that circadian control of cellular redox homeostasis influences how plants negate stress to ensure growth and reproduction. Critical Issues: Complex cellular biochemistry leads from perception of stress via hormone signals and formation of reactive oxygen intermediates to a physiological response. Circadian clocks and metabolic pathways intertwine to form a confusing biochemical labyrinth. Here, we aim to find order in this complex matter by reviewing current advances in our understanding of the interface between these networks. Future Directions: Although the link is now clearly defined, at present a key question remains as to what extent the circadian clock modulates redox, and vice versa. Furthermore, the mechanistic basis by which the circadian clock gates redox- and hormone-mediated stress responses remains largely elusive. Antioxid. Redox Signal. 20, 3024–3039. PMID:23941583

  17. Abiotic photophosphorylation model based on abiogenic flavin and pteridine pigments.

    PubMed

    Telegina, Taisiya A; Kolesnikov, Michael P; Vechtomova, Yulia L; Buglak, Andrey A; Kritsky, Mikhail S

    2013-05-01

    A model for abiotic photophosphorylation of adenosine diphosphate by orthophosphate with the formation of adenosine triphosphate was studied. The model was based on the photochemical activity of the abiogenic conjugates of pigments with the polymeric material formed after thermolysis of amino acid mixtures. The pigments formed showed different fluorescence parameters depending on the composition of the mixture of amino acid precursors. Thermolysis of the mixture of glutamic acid, glycine, and lysine (8:3:1) resulted in a predominant formation of a pigment fraction which had the fluorescence maximum at 525 nm and the excitation band maxima at 260, 375, and 450 nm and was identified as flavin. When glycine in the initial mixture was replaced with alanine, a product formed whose fluorescence parameters were typical to pteridines (excitation maximum at 350 nm, emission maximum at 440 nm). When irradiated with the quasi-monochromatic light (over the range 325-525 nm), microspheres in which flavin pigments were prevailing showed a maximum photophosphorylating activity at 375 and 450 nm, and pteridine-containing chromoproteinoid microspheres were most active at 350 nm. The positions and the relative height of maxima in the action spectra correlate with those in the excitation spectra of the pigments, which point to the involvement of abiogenic flavins and pteridines in photophosphorylation. PMID:23689512

  18. Wheat proteomics: proteome modulation and abiotic stress acclimation

    PubMed Central

    Komatsu, Setsuko; Kamal, Abu H. M.; Hossain, Zahed

    2014-01-01

    Cellular mechanisms of stress sensing and signaling represent the initial plant responses to adverse conditions. The development of high-throughput “Omics” techniques has initiated a new era of the study of plant molecular strategies for adapting to environmental changes. However, the elucidation of stress adaptation mechanisms in plants requires the accurate isolation and characterization of stress-responsive proteins. Because the functional part of the genome, namely the proteins and their post-translational modifications, are critical for plant stress responses, proteomic studies provide comprehensive information about the fine-tuning of cellular pathways that primarily involved in stress mitigation. This review summarizes the major proteomic findings related to alterations in the wheat proteomic profile in response to abiotic stresses. Moreover, the strengths and weaknesses of different sample preparation techniques, including subcellular protein extraction protocols, are discussed in detail. The continued development of proteomic approaches in combination with rapidly evolving bioinformatics tools and interactive databases will facilitate understanding of the plant mechanisms underlying stress tolerance. PMID:25538718

  19. Abiotic environmental factors influencing blowfly colonisation patterns in the field.

    PubMed

    George, Kelly A; Archer, Melanie S; Toop, Tes

    2013-06-10

    The accuracy of minimum post-mortem interval (mPMI) estimates usually hinges upon the ability of forensic entomologists to predict the conditions under which calliphorids will colonise bodies. However, there can be delays between death and colonisation due to poorly understood abiotic and biotic factors, hence the need for a mPMI. To quantify the importance of various meteorological and light-level factors, beef liver baits were placed in the field (Victoria, Australia) on 88 randomly selected days over 3 years in all seasons and observed every 60-90 min for evidence of colonisation. Baits were exposed during daylight, and the following parameters were measured: barometric pressure, light intensity, wind speed, ambient temperature, relative humidity and rainfall. Collected data were analysed using backward LR logistic regression to produce an equation of colonisation probability. This type of analysis removes factors with the least influence on colonisation in successive steps until all remaining variables significantly increase the accuracy of predicting colonisation presence or absence. Ambient temperature was a positive predictor variable (an increase in temperature increased the probability of calliphorid colonisation). Relative humidity was a negative predictor variable (an increase in humidity decreased the probability of calliphorid colonisation). Barometric pressure, light intensity, wind speed and rainfall did not enhance the accuracy of the probability model; however, analysis of species activity patterns suggests that heavy rainfall and strong wind speeds inhibit calliphorid colonisation. PMID:23683914

  20. Comparative study of biogenic and abiotic iron-containing materials

    NASA Astrophysics Data System (ADS)

    Cherkezova-Zheleva, Z.; Shopska, M.; Paneva, D.; Kovacheva, D.; Kadinov, G.; Mitov, I.

    2016-12-01

    Series of iron-based biogenic materials prepared by cultivation of Leptothrix group of bacteria in different feeding media ( Sphaerotilus-Leptothrix group of bacteria isolation medium, Adler, Lieske and silicon-iron-glucose-peptone) were studied. Control samples were obtained in the same conditions and procedures but the nutrition media were not infected with bacteria, i.e. they were sterile. Room and low temperature Mössbauer spectroscopy, powder X-ray diffraction (XRD), and infrared spectroscopy (IRS) were used to reveal the composition and physicochemical properties of biomass and respective control samples. Comparative analysis showed differences in their composition and dispersity of present phases. Sample composition included different ratio of nanodimensional iron oxyhydroxide and oxide phases. Relaxation phenomena such as superparamagnetism or collective magnetic excitation behaviour were registered for some of them. The experimental data showed that the biogenic materials were enriched in oxyhydroxides of high dispersion. Catalytic behaviour of a selected biomass and abiotic material were studied in the reaction of CO oxidation. In situ diffuse-reflectance (DR) IRS was used to monitor the phase transformations in the biomass and CO conversion.

  1. Identification of Cassava MicroRNAs under Abiotic Stress.

    PubMed

    Ballén-Taborda, Carolina; Plata, Germán; Ayling, Sarah; Rodríguez-Zapata, Fausto; Becerra Lopez-Lavalle, Luis Augusto; Duitama, Jorge; Tohme, Joe

    2013-01-01

    The study of microRNAs (miRNAs) in plants has gained significant attention in recent years due to their regulatory role during development and in response to biotic and abiotic stresses. Although cassava (Manihot esculenta Crantz) is tolerant to drought and other adverse conditions, most cassava miRNAs have been predicted using bioinformatics alone or through sequencing of plants challenged by biotic stress. Here, we use high-throughput sequencing and different bioinformatics methods to identify potential cassava miRNAs expressed in different tissues subject to heat and drought conditions. We identified 60 miRNAs conserved in other plant species and 821 potential cassava-specific miRNAs. We also predicted 134 and 1002 potential target genes for these two sets of sequences. Using real time PCR, we verified the condition-specific expression of 5 cassava small RNAs relative to a non-stress control. We also found, using publicly available expression data, a significantly lower expression of the predicted target genes of conserved and nonconserved miRNAs under drought stress compared to other cassava genes. Gene Ontology enrichment analysis along with condition specific expression of predicted miRNA targets, allowed us to identify several interesting miRNAs which may play a role in stress-induced posttranscriptional regulation in cassava and other plants. PMID:24328029

  2. Identification of Cassava MicroRNAs under Abiotic Stress

    PubMed Central

    Ballén-Taborda, Carolina; Plata, Germán; Ayling, Sarah; Rodríguez-Zapata, Fausto; Tohme, Joe

    2013-01-01

    The study of microRNAs (miRNAs) in plants has gained significant attention in recent years due to their regulatory role during development and in response to biotic and abiotic stresses. Although cassava (Manihot esculenta Crantz) is tolerant to drought and other adverse conditions, most cassava miRNAs have been predicted using bioinformatics alone or through sequencing of plants challenged by biotic stress. Here, we use high-throughput sequencing and different bioinformatics methods to identify potential cassava miRNAs expressed in different tissues subject to heat and drought conditions. We identified 60 miRNAs conserved in other plant species and 821 potential cassava-specific miRNAs. We also predicted 134 and 1002 potential target genes for these two sets of sequences. Using real time PCR, we verified the condition-specific expression of 5 cassava small RNAs relative to a non-stress control. We also found, using publicly available expression data, a significantly lower expression of the predicted target genes of conserved and nonconserved miRNAs under drought stress compared to other cassava genes. Gene Ontology enrichment analysis along with condition specific expression of predicted miRNA targets, allowed us to identify several interesting miRNAs which may play a role in stress-induced posttranscriptional regulation in cassava and other plants. PMID:24328029