Science.gov

Sample records for abiotic uvi reduction

  1. Abiotic reductive immobilization of U(VI) by biogenic mackinawite.

    PubMed

    Veeramani, Harish; Scheinost, Andreas C; Monsegue, Niven; Qafoku, Nikolla P; Kukkadapu, Ravi; Newville, Matt; Lanzirotti, Antonio; Pruden, Amy; Murayama, Mitsuhiro; Hochella, Michael F

    2013-03-05

    During subsurface bioremediation of uranium-contaminated sites, indigenous metal and sulfate-reducing bacteria may utilize a variety of electron acceptors, including ferric iron and sulfate that could lead to the formation of various biogenic minerals in situ. Sulfides, as well as structural and adsorbed Fe(II) associated with biogenic Fe(II)-sulfide phases, can potentially catalyze abiotic U(VI) reduction via direct electron transfer processes. In the present work, the propensity of biogenic mackinawite (Fe 1+x S, x = 0 to 0.11) to reduce U(VI) abiotically was investigated. The biogenic mackinawite produced by Shewanella putrefaciens strain CN32 was characterized by employing a suite of analytical techniques including TEM, SEM, XAS, and Mössbauer analyses. Nanoscale and bulk analyses (microscopic and spectroscopic techniques, respectively) of biogenic mackinawite after exposure to U(VI) indicate the formation of nanoparticulate UO2. This study suggests the relevance of sulfide-bearing biogenic minerals in mediating abiotic U(VI) reduction, an alternative pathway in addition to direct enzymatic U(VI) reduction.

  2. Abiotic Reductive Immobilization of U(VI) by Biogenic Mackinawite

    SciTech Connect

    Veeramani, Harish; Scheinost, Andreas; Monsegue, Niven; Qafoku, Nikolla; Kukkadapu, Ravi K.; Newville, Mathew; Lanzirotti, Anthony; Pruden, Amy; Murayama, Mitsuhiro; Hochella, Michael F.

    2013-03-01

    During subsurface bioremediation of uranium-contaminated sites, indigenous metal and sulfate-reducing bacteria may utilize a variety of electron acceptors, including ferric iron and sulfate that could lead to the formation of various biogenic minerals in-situ. Sulfides, as well as structural and adsorbed Fe(II) associated with biogenic Fe(II)-sulfide phases, can potentially catalyze abiotic U6+ reduction via direct electron transfer processes. In the present work, the propensity of biogenic mackinawite (Fe1+xS, x = 0 to 0.11) to reduce U6+ abiotically was investigated. The biogenic mackinawite produced by Shewanella putrefaciens strain CN32 was characterized by employing a suite of analytical techniques including TEM, SEM, XAS and Mössbauer analyses. Nanoscale and bulk analyses (microscopic and spectroscopic techniques, respectively) of biogenic mackinawite after exposure to U6+ indicate the formation of nanoparticulate UO2. This study suggests the relevance of Fe(II) and sulfide bearing biogenic minerals in mediating abiotic U6+ reduction, an alternative pathway in addition to direct enzymatic U6+ reduction.

  3. Abiotic U(VI) Reduction by Sorbed Fe(II) on Natural Sediments

    SciTech Connect

    Fox, Patricia M.; Davis, James A.; Kukkadapu, Ravi K.; Singer, David M.; Bargar, John R.; Williams, Kenneth H.

    2013-09-15

    Laboratory experiments were performed as a function of aqueous Fe(II) concentration to determine the uptake and oxidation of Fe(II), and Fe(II)-mediated abiotic reduction of U(VI) by aquifer sediments from the Rifle IFRC field site in Colorado, USA. Mössbauer analysis of the sediments spiked with aqueous 57Fe(II) showed that 57Fe(II) was oxidized on the mineral surfaces to 57Fe(III) and most likely formed a nano-particulate Fe(III)-oxide or ferrihydrite-like phase. The extent of 57Fe oxidation decreased with increasing 57Fe(II) uptake, such that 100 % was oxidized at 7.3 μmol/g Fe and 52 % at 39.6 μmol/g Fe, indicating that the sediments had a finite capacity for oxidation of Fe(II). Abiotic U(VI) reduction was observed by XANES spectroscopy only when the Fe(II) uptake was greater than approximately 20 μmol/g and surface-bound Fe(II) was present. The level of U(VI) reduction increased with increasing Fe(II)- loading above this level to a maximum of 18 and 36 % U(IV) at pH 7.2 (40.7 μmol/g Fe) and 8.3 (56.1 μmol/g Fe), respectively in the presence of 400 ppm CO2. Greater U(VI) reduction was observed in CO2 free systems [up to 44 and 54 % at pH 7.2 (17.3 μmol/g Fe) and 8.3 (54.8 μmol/g Fe), respectively] compared to 400 ppm CO2 systems, presumably due to differences in aqueous U(VI) speciation. While pH affects the amount of Fe(II) uptake onto the solid phase, with greater Fe(II) uptake at higher pH, similar amounts of U(VI) reduction were observed at pH 7.2 and 8.3 for a similar Fe(II) uptake. Thus, it appears that abiotic U(VI) reduction is controlled primarily by Fe(II) concentration and aqueous U(VI) speciation. The range of Fe(II) loadings tested in this study are within the range observed in bioreduced sediments, suggesting that Fe(II)-mediated abiotic U(VI) reduction may indeed play a role in field settings.

  4. U(VI) reduction to mononuclear U(VI) by desulfitobacterium spp.

    SciTech Connect

    Fletcher, K. E.; Boyanov, M. I.; Thomas, S. H.; Wu, Q.; Kemner, K. M.; Loffler, F. E.

    2010-06-15

    The bioreduction of U(VI) to U(IV) affects uranium mobility and fate in contaminated subsurface environments and is best understood in Gram-negative model organisms such as Geobacter and Shewanella spp. This study demonstrates that U(VI) reduction is a common trait of Gram-positive Desulfitobacterium spp. Five different Desulfitobacterium isolates reduced 100 {mu}M U(VI) to U(IV) in <10 days, whereas U(VI) remained soluble in abiotic and heat-killed controls. U(VI) reduction in live cultures was confirmed using X-ray absorption near-edge structure (XANES) analysis. Interestingly, although bioreduction of U(VI) is almost always reported to yield the uraninite mineral (UO{sub 2}), extended X-ray absorption fine structure (EXAFS) analysis demonstrated that the U(IV) produced in the Desulfitobacterium cultures was not UO{sub 2}. The EXAFS data indicated that the U(IV) product was a phase or mineral composed of mononuclear U(IV) atoms closely surrounded by light element shells. This atomic arrangement likely results from inner-sphere bonds between U(IV) and C/N/O- or P/S-containing ligands, such as carbonate or phosphate. The formation of a distinct U(IV) phase warrants further study because the characteristics of the reduced material affect uranium stability and fate in the contaminated subsurface.

  5. Reduction of U(VI) Complexes by Anthraquinone Disulfonate: Experiment and Molecular Modeling

    SciTech Connect

    Ainsworth, C.C.; Wang, Z.; Rosso, K.M.; Wagnon, K.; Fredrickson, J.K.

    2004-03-17

    Past studies demonstrate that complexation will limit abiotic and biotic U(VI) reduction rates and the overall extent of reduction. However, the underlying basis for this behavior is not understood and presently unpredictable across species and ligand structure. The central tenets of these investigations are: (1) reduction of U(VI) follows the electron-transfer (ET) mechanism developed by Marcus; (2) the ET rate is the rate-limiting step in U(VI) reduction and is the step that is most affected by complexation; and (3) Marcus theory can be used to unify the apparently disparate U(VI) reduction rate data and as a computational tool to construct a predictive relationship.

  6. Kinetics of Abiotic Uranium(VI) Reduction by Sulfide

    NASA Astrophysics Data System (ADS)

    Hyun, S.; Davis, J. A.; Hayes, K. F.

    2010-12-01

    Uranium(VI) reduction is an important process affecting the radionuclide’s fate under sulfate reducing conditions. In this work, kinetics of abiotic U(VI) reduction by dissolved sulfide was studied using a batch reactor. The effects of solution pH, dissolved carbonate, Ca(II), U(VI), and S(-II) concentration on the reduction kinetics were tested. The ranges of these experimental variables were designed to cover the variation in groundwater chemistry observed at the Old Rifle uranium mill tailings site (Colorado, USA). Dissolved U concentration was monitored as a function of time using inductively coupled plasma-mass spectrometry to measure the rate of U(VI) reduction. Solid phase reduction products were identified using X-ray diffraction, transmission electron microscopy, and X-ray absorption spectroscopy. The results showed that changes in the experimental variables significantly affected U(VI) reduction kinetics by dissolved sulfide. U(VI) reduction occurred under circumneutral pH while no reduction was observed under alkaline conditions. The reduction rate was slowed by increased dissolved carbonate concentration. One solid phase reduction product was identified as nanoscale uraninite (UO2+x(s)). Thermodynamic modeling showed that the dissolved U(VI) aqueous species changed as a function of solution conditions correlated with the change in the reduction rate. These results show that U(VI) aqueous speciation is important in determining abiotic U(VI) reduction kinetics by dissolved sulfide. This study also illustrates the potential importance of dissolved sulfide in field-scale modeling of U reactive transport, and is expected to contribute to the understanding of long-term effects of biostimulation on U transport at the Rifle site.

  7. Kinetics of Microbial Reduction of Solid Phase U(VI)

    SciTech Connect

    Liu, Chongxuan; Jeon, Byong Hun; Zachara, John M.; Wang, Zheming; Dohnalkova, Alice; Fredrickson, Jim K.

    2006-10-01

    Sodium boltwoodite (NaUO2SiO3OH ?1.5H2O) was used to assess the kinetics of microbial reduction of solid phase U(VI) by a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1. The bioreduction kinetics was studied with Na-boltwoodite in suspension or within alginate beads. Concentrations of U(VI)tot and cell number were varied to evaluate the coupling of U(VI) dissolution, diffusion, and microbial activity. Batch experiments were performed in a non-growth medium with lactate as electron donor at pH 6.8 buffered with PIPES. Microscopic and spectroscopic analyses with transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and laser-induced fluorescence spectroscopy (LIFS) collectively indicated that solid phase U(VI) was first dissolved and diffused out of grain interiors before it was reduced on bacterial surfaces and/or within the periplasm. The kinetics of solid phase U(VI) bioreduction was well described by a coupled model of bicarbonate-promoted dissolution of Na-boltwoodite, intraparticle uranyl diffusion, and Monod type bioreduction kinetics with respect to dissolved U(VI) concentration. The results demonstrated the intimate coupling of biological, chemical, and physical processes in microbial reduction of solid phase U(VI).

  8. Can microbially-generated hydrogen sulfide account for the rates of U(VI) reduction by a sulfate-reducing bacterium?

    SciTech Connect

    Boonchayaanant, Benjaporn; Gu, Baohua; Wang, Wei; Ortiz, Monica E; Criddle, Craig

    2010-01-01

    In situ remediation of uranium contaminated soil and groundwater is attractive because a diverse range of microbial and abiotic processes reduce soluble and mobile U(VI) to sparingly soluble and immobile U(IV). Often these processes are linked. Sulfate-reducing bacteria (SRB), for example, enzymatically reduce U(VI) to U(IV), but they also produce hydrogen sulfide that can itself reduce U(VI). This study evaluated the relative importance of these processes for Desulfovibrio aerotolerans, a SRB isolated from a U(VI)-contaminated site. For the conditions evaluated, the observed rate of SRB-mediated U(VI) reduction can be explained by the abiotic reaction of U(VI) with the microbially-generated H{sub 2}S. The presence of trace ferrous iron appeared to enhance the extent of hydrogen sulfide-mediated U(VI) reduction at 5 mM bicarbonate, but had no clear effect at 15 mM. During the hydrogen sulfide-mediated reduction of U(VI), a floc formed containing uranium and sulfur. U(VI) sequestered in the floc was not available for further reduction.

  9. Modeling the inhibition of the bacteral reduction of U(VI) by beta-MnO2(s).

    PubMed

    Liu, Chongxuan; Zachara, John M; Fredrickson, James K; Kennedy, David W; Dohnalkova, Alice

    2002-04-01

    Pyrolusite (beta-MnO2(s)) was used to assess the influence of a competitive electron acceptor on the kinetics of reduction of aqueous uranyl carbonate by a dissimilatory metal-reducing bacterium (DMRB), Shewanella putrefaciens strain CN32. The enzymatic reduction of U(VI) and beta-MnO2(s) and the abiotic redox reaction between beta-MnO2(s) and biogenic uraninite (UO2(s)) were independently investigated to allow for interpretation of studies of U(VI) bioreduction in the presence of beta-MnO2(s). Uranyl bioreduction to UO2(s) by CN32 with H2 as the electron donor followed Monod kinetics, with a maximum specific reduction rate of 110 M/h/10(8) cells/mL and a half-saturation constant of 370 microM. The bioreduction rate of beta-MnO2(s) by CN32 was described by a pseudo-first-order model with respect to beta-MnO2(s) surface sites, with a rate constant of 7.92 x 10(-2) h(-1)/10(8) cells/mL. Uraninite that precipitated as a result of microbial U(VI) reduction was abiotically reoxidized to U(VI) by beta-MnO2(s), with concomitant reduction to Mn(II). The oxidation of biogenic UO2(s) coupled with beta-MnO2(s) reduction was well-described by an electrochemical model. However, a simple model that coupled the bacterial reduction of U(VI) and beta-MnO2(s) with an abiotic redox reaction between UO2(s) and beta-MnO2(s) failed to describe the mass loss of U(VI) in the presence of beta-MnO2(s). Transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) revealed that the particle size and spatial distribution of the biogenic UO2(s) changed dynamically in systems with, as compared to without, beta-MnO2(s)). These observations suggested that the surface properties and localization of UO2(s) in relation to the cell and beta-MnO2(s) surfaces was an important factor controlling the abiotic oxidation of UO2(s) and, thus, the overall rate and extent of U(VI) bioreduction. The coupled model that was modified to account for the "effective" contact surface area between UO2

  10. Chemical reduction of U(VI) by Fe(II) at the solid-water interface using natural and synthetic Fe(III) oxides.

    PubMed

    Jeon, Byong-Hun; Dempsey, Brian A; Burgos, William D; Barnett, Mark O; Roden, Eric E

    2005-08-01

    Abiotic reduction of 0.1 mM U(VI) by Fe(II) in the presence of synthetic iron oxides (biogenic magnetite, goethite, and hematite) and natural Fe(III) oxide-containing solids was investigated in pH 6.8 artificial groundwater containing 10 mM NaHCO3. In most experiments, more than 95% of added U(VI) was sorbed to solids. U(VI) was rapidly and extensively (> or = 80%) reduced in the presence of synthetic Fe(III) oxides and highly Fe(II) oxide-enriched (18-35 wt % Fe) Atlantic coastal plain sediments. In contrast, long-term (20-60 d) U(VI) reduction was less than 30% in suspensions of six other natural solids with relatively low Fe(III) oxide content (1-5 wt % Fe). Fe(II) sorption site density was severalfold lower on these natural solids (0.2-1.1 Fe(II) nm(-2)) compared tothe synthetic Fe(lII) oxides (1.6-3.2 Fe(II) nm(-2)), which may explain the poor U(VI) reduction in the natural solid-containing systems. Addition of the reduced form of the electron shuttling compound anthrahydroquinone-2,6-disulfonate (AH2DS; final concentration 2.5 mM) to the natural solid suspensions enhanced the rate and extent of U(VI) reduction, suggesting that AH2DS reduced U(VI) at surface sites where reaction of U(VI) with sorbed Fe(II) was limited. This study demonstrates that abiotic, Fe(II)-driven U(VI) reduction is likely to be less efficient in natural soils and sediments than would be inferred from studies with synthetic Fe(III) oxides.

  11. Enhanced microbial reduction of Cr(VI) and U(VI) by different natural organic matter fractions

    NASA Astrophysics Data System (ADS)

    Gu, Baohua; Chen, Jie

    2003-10-01

    Although direct microbial reduction of Cr(VI) and U(VI) is known, few studies have examined the kinetics and the underlying mechanisms of the reduction of these contaminants by different natural organic matter (NOM) fractions in the presence or absence of microorganisms. In this study, NOM was found to chemically reduce Cr(VI) at pH 3, but the reduction rates were negligible at pH ˜7. The abiotic reduction of U(VI) by NOM was not observed, possibly because of the presence of small amounts of nitrate in the reactant solution. However, all NOM fractions, particularly the soil humic acid (HA), enhanced the bioreduction of Cr(VI) or U(VI) in the presence of Shewanella putrefaciens CN32. The reduction rates varied greatly among NOM fractions with different chemical and structural properties: the polyphenolic-rich NOM-PP fraction appeared to be the most reactive in abiotically reducing Cr(VI) at a low pH, but soil HA was more effective in mediating the microbial reduction of Cr(VI) and U(VI) under anaerobic, circumneutral pH conditions. These observations are attributed to an increased solubility and conformational changes of the soil HA with pH and, more importantly, its relatively high contents of polycondensed and conjugated aromatic organic moieties. An important implication of this study is that, depending on chemical and structural properties, different NOM components may play different roles in enhancing the bioreduction of Cr(VI) and U(VI) by microorganisms. Polycondensed aromatic humic materials may be particularly useful in mediating the bioreduction and rapid immobilization of these contaminant metals in soil.

  12. U(VI) reduction at the nano, meso and meter scale: concomitant transition from simpler to more complex biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Veeramani, H.; Hochella, M. F.

    2012-12-01

    Reduction of aqueous hexavalent U(VI) to the sparingly soluble nanoparticulate mineral uraninite [UO2] represents a promising strategy for the in situ immobilization of uranium in contaminated subsurface sediments and groundwater. Studies related to uranium reduction have been extensively carried out at various scales ranging from nano to meso to the meter scale with varying degrees of success. While nanoscale processes involving simple two-electron transfer reactions such as enzymatic microbial U(VI) reduction results in biogenic UO2 formation, mesoscale processes involving minerals and U(VI) are a step up in complexity and have shown varying results ranging from partial uranium reduction to the formation of mixed U(IV)/U(V) species. Although nano- and meso-scale biogeochemical processes have been helpful in predicting the contaminant dynamics at the meter scale, their occurrence is not necessarily apparent in soils and aquifers given the enormous volume of contaminated groundwater to be remediated, among other factors. The formation and long-term stability of biologically reduced uranium at the meter scale is also determined in addition by the complex interplay of aqueous geochemistry, hydrology, soil and sediment mineralogy and microbial community dynamics. For instance, indigenous subsurface microbes often encounter multiple electron acceptors in heterogeneous environments during biostimulation and can catalyze the formation of various reactive biogenic minerals. In such cases, abiotic interactions between U(VI) and reactive biogenic minerals is potentially important because the success of a remediation strategy is contingent upon the speciation of reduced uranium. This presentation will give an overview of uranium reduction ranging from simple nanoscale biological processes to increasingly complex meso and meter scale processes involving abiotic interactions between aqueous uranium and nano-biogenic minerals and the effect of mineralogy and aqueous

  13. Model-based Analysis of Mixed Uranium(VI) Reduction by Biotic and Abiotic Pathways During in Situ Bioremediation

    SciTech Connect

    Zhao, Jiao; Scheibe, Timothy D.; Mahadevan, Radhakrishnan

    2013-10-24

    Uranium bioremediation has emerged as a potential strategy of cleanup of radionuclear contamination worldwide. An integrated geochemical & microbial community model is a promising approach to predict and provide insights into the bioremediation of a complicated natural subsurface. In this study, an integrated column-scale model of uranium bioremediation was developed, taking into account long-term interactions between biotic and abiotic processes. It is also combined with a comprehensive thermodynamic analysis to track the fate and cycling of biogenic species. As compared with other bioremediation models, the model increases the resolution of the connection of microbial community to geochemistry and establishes direct quantitative correlation between overall community evolution and geochemical variation, thereby accurately predicting the community dynamics under different sedimentary conditions. The thermodynamic analysis examined a recently identified homogeneous reduction of U(VI) by Fe(II) under dynamic sedimentary conditions across time and space. It shows that the biogenic Fe(II) from Geobacter metabolism can be removed rapidly by the biogenic sulphide from sulfate reducer metabolism, hence constituting one of the reasons that make the abiotic U(VI) reduction thermodynamically infeasible in the subsurface. Further analysis indicates that much higher influent concentrations of both Fe(II) and U(VI) than normal are required to for abiotic U(VI) reduction to be thermodynamically feasible, suggesting that the abiotic reduction cannot be an alternative to the biotic reduction in the remediation of uranium contaminated groundwater.

  14. Effects of Bacillus subtilis on the reduction of U(VI) by nano-Fe0

    NASA Astrophysics Data System (ADS)

    Ding, Congcong; Cheng, Wencai; Sun, Yubing; Wang, Xiangke

    2015-09-01

    The effects of Bacillus subtilis (B. subtilis, a typical model bacterium) on the reduction of U(VI) by nanoscale zero-valent iron (nano-Fe0) were investigated using batch techniques. The reaction products were analysed using spectroscopic techniques, and a kinetics model was developed to elucidate the mechanisms of U(VI) reduction by nano-Fe0. The presence of B. subtilis enhanced the U(VI) sorption rate at pH 3.5-9.5 but inhibited the reduction rate of U(VI) to U(IV) at pH > 4.5. According to the FTIR and XRD analysis, the reduction of U(VI) to U(IV) was inhibited due to the formation of inner-sphere surface complexes between the oxygen-containing functional groups of B. subtilis or extracellular polymeric substances with the Fe(II)/Fe(III) generated by nano-Fe0, which blocked electron transport from the Fe0 core to U(VI). Based on the EXAFS analysis, a fitting of U-Fe shell at ∼3.44 Å revealed inner-sphere bidentate complexes between uranyl and the oxide film of nano-Fe0. For the nano-Fe0 + B. subtilis system, the U-Fe shell (at ∼3.44 Å) and the U-C/P shell (at ∼2.90 Å) further indicated the formation of inner-sphere surface complexes. The kinetics model supported that U(VI) reduction was triggered by U(VI) sorption on the oxide shell of nano-Fe0. The XPS and XANES analyses showed that reductive precipitation was the main mechanism of U(VI) removal by nano-Fe0, whereas the sorption process dominated the removal of U(VI) in the presence of B. subtilis, which was further demonstrated by TEM images.

  15. Influence of Dynamical Conditions on the Reduction of UVI at the Magnetite-Solution Interface

    SciTech Connect

    Ilton, Eugene S.; Boily, Jean F.; Buck, Edgar C.; Skomurski, Frances N.; Rosso, Kevin M.; Cahill, Christopher L.; Bargar, John R.; Felmy, Andrew R.

    2010-01-14

    The heterogeneous reduction of UVI to UIV by ferrous iron is a potentially key process influencing the fate and transport of U in the environment. The reactivity of both sorbed and structural FeII has been studied for numerous substrates, including magnetite. The results from UVI-magnetite experiments have been variable, ranging from no reduction to clear evidence for the formation of UIV. In this contribution, we used XAS and high resolution (+cryogenic) XPS to study the interaction of UVI with nano-particulate magnetite. The results indicated that UVI was partially reduced to UV with no evidence of UIV. However, thermodynamic calculations indicated that mixed-valence U phases with average oxidation states below (V) should have been stable, indicating that the system was not in redox equilibrium. A reaction pathway that involves incorporation of U and stabilization of UV and UVI in secondary phases is invoked to explain the observations.

  16. Characterization of U(VI) reduction in contaminated sediments with slow-degrading electron donor source

    NASA Astrophysics Data System (ADS)

    Wu, W.; Watson, D. B.; Zhang, G.; Mehlhorn, T.; Lowe, K.; Earles, J.; Phillips, J.; Kelly, S. D.; Boyanov, M.; Kemner, K. M.; Schadt, C.; Criddle, C. S.; Jardine, P. M.; Brooks, S. C.

    2011-12-01

    In order to select sustainable, high efficiency and cost effective electron donor source, oleate and emulsified vegetable oil (EVO) were tested uranium (VI) reduction in comparison with ethanol in microcosms using uranium contaminated sediments and groundwater from the US DOE Oak Ridge Integrated Field Research Challenge (ORIFRC) site. The effect of initial sulfate concentration on U(VI) reduction was also tested. Both oleate and EVO were effective electron donor sources for U(VI) reduction. Accumulation of acetate as a major product and the removal of aqueous U(VI) were observed and were associated with sulfate reduction. Both oleate and EVO supported U(VI) reduction but at slower rates with a comparable but slightly lower extent of reduction than ethanol. X-ray absorption near-edge spectroscopy (XANES) analysis confirmed reduction of U(VI) to U(IV). The extent of U(VI) reduction in solid phase was negatively influenced by aqueous calcium concentration. The majority of electrons of the three substrates were consumed by sulfate reduction, Fe(III) reduction, and methanogenesis. Initial U(VI) concentration in the aqueous phase increased with increased sulfate concentration (1 versus 5 mM), likely due to U(VI) desorption from the solid phase. At the higher initial sulfate concentration more U(VI) was reduced and fewer electrons were used in methanogenesis. Analysis of bacterial and archeal populations using 16S rRNA gene libraries showed a significant increase in Deltaproteobacteria after biostimulation. The microbial community structures developed with oleate and EVO were significantly distinct from those developed with ethanol. Bacteria similar to Desulforegula spp. was predominant for oleate and EVO degradation but were not observed in ethanol-amended microcosms. Known U(VI)-reducing bacteria in the microcosms amended with the three electron donor sources included iron(III) reducing Geobacter spp. but in lower abundances than sulfate-reducing Desulfovibrio spp. The

  17. Inhibition of U(VI) reduction by synthetic and natural pyrite.

    PubMed

    Yang, Zhuanwei; Kang, Mingliang; Ma, Bin; Xie, Jinglin; Chen, Fanrong; Charlet, Laurent; Liu, Chunli

    2014-09-16

    Reductive precipitation is an effective method of attenuating the mobility of uranium (U) in subsurface environments. The reduction of U(VI) by synthetic and naturally occurring pyrite was investigated at pH 3.0-9.5. In contrast to thermodynamic calculations that were used to predict UO2(s) precipitation, a mixed U(IV) and U(VI) product (e.g., U3O8/U4O9/U3O7) was only observed at pH 6.21-8.63 and 4.52-4.83 for synthetic and natural pyrite, respectively. Under acidic conditions, the reduction of UO2(2+) by surface-associated Fe(2+) may not be favored because the mineral surface is nearly neutral or not negative enough. At high pH, the sorption of negatively charged U(VI) species is not favored on the negatively charged mineral surface. Thus, the redox reaction is not favored. Trace elements generally contained within the natural pyrite structure can affect the reactivity of pyrite and lead to a different result between the natural and synthetic pyrite. Because UO2(s) is extremely redox-sensitive toward U(VI), the observed UO2+x(s) phase reduction product indicates a surface reaction that is largely controlled by reaction kinetics and pyrite surface chemistry. These factors may explain why most laboratory experiments have observed incomplete U(VI) reduction on Fe(II)-bearing minerals.

  18. Sediment studies of the biological factors controlling the reduction of U(VI).

    SciTech Connect

    Lovley, derek, R.

    2004-08-04

    Studies were conducted primarily with sediments, both in laboratory incubations and in a field experiment, with supporting studies with pure cultures. To our knowledge the sediment studies were the first on microbial U(VI) reduction in actual uranium-contaminated subsurface sediments, under conditions that mimic those found in situ. Important findings included: (1) U(VI) reduction is a biotic process in subsurface sediments. (2) U(VI) reduction can be stimulated most effectively with the addition of acetate. Although it had been speculated that microbial U(VI) reduction might be capable of this type of environmental remediation ever since the discovery of microbial U(VI) reduction, this had not been previously demonstrated under environmentally relevant conditions. (3) U(VI) is reduced concurrently with Fe(III) and prior to sulfate reduction. U(VI) and Fe(III) reduction proceeded concurrently, accompanied by a dramatic enrichment in organisms in the Geobacteraceae. Sulfate-reducing microorganisms do not appear to be important components of the microbial community reducing U(VI) in these subsurface sediments. (4) Nitrate has important influences on U(VI) reduction. Nitrate inhibits the reduction of metals until nitrate is depleted. Fe(III)-reducing microorganisms such as Geobacter metallireducens and Desulfitobacterium species can oxidize Fe(II) with the reduction of nitrate which is an important consideration because our previous studies have demonstrated that freshly precipitated Fe(III) oxides can reoxidize U(IV) to U(VI). The discovery that G. metallireducens can ''run backwards'' and oxidize U(IV) when nitrate is present reveals another mechanism preventing precipitation of U(IV) in the presence of nitrate as well as potential novel strategy for removing uranium from the subsurface after a site has been remediated. (5) Importance of understanding Fe(III) forms available for microbial reduction. Fe(III) is orders of magnitude more abundant than U(VI) as an

  19. Reduction of U(VI) to U(IV) by indigenous bacteria in contaminated ground water

    NASA Astrophysics Data System (ADS)

    Abdelouas, A.; Lu, Yongming; Lutze, W.; Nuttall, H. E.

    1998-12-01

    We report on bio-catalyzed reduction and immobilization of U(VI) species (0.25 mg/l to 235 mg/l) in ground water in the presence of high concentrations of nitrate, sulfate and carbonate. We studied ground water from the uranium mill tailings site near Tuba City, Arizona (USA). Experiments with the ground water were conducted in the presence of the Navajo sandstone host rock. Uranium in solution is complexed by carbonate. Two indigenous denitrifying bacteria were identified Pseudomonas aeruginosa and P. stutzeri, and one sulfate reducing bacterium, Shewanella putrefaciens, also known as Fe(III)-reducer. S. putrefaciens can use U(VI) as an electron acceptor, instead of Fe(III). Ethanol was used as the organic carbon source. Microbially mediated reactions are sequential in the order of decreasing redox intensity. Metabolic reduction of nitrate to gaseous species (N 2, N 2O) was complete within 1 week at 16°C. The sulfate concentration remained constant. Some of the U(VI) coprecipitated with aragonite/calcite or was adsorbed on biomass during denitrification. Subsequently, the enzymatically catalyzed reduction of U(VI) to U(IV) was complete within 3 weeks but was accompanied by reduction of sulfate to sulfide. U(IV) precipitated as a uraninite solid solution (U, Ca)O 2, adhering to the bacteria. The final concentration in solution was ≤1 μg/l. U(VI) was not reduced by sulfide. Complexation of U(VI) by carbonate made its reduction by sulfide even slower than in pure water. The bio-catalyzed reaction is the faster process under the conditions given by the composition of the ground water.

  20. U(VI) Sorption and Reduction Kinetics on the Magnetite (111) Surface

    SciTech Connect

    Singer, David M.; Chatman, Shawn M.; Ilton, Eugene S.; Rosso, Kevin M.; Banfield, Jillian F.; Waychunas, Glenn A.

    2012-04-03

    Sorption of contaminants onto mineral surfaces is an important process that can restrict their transport in the environment. In the current study, uranium (U) uptake on magnetite (111) was measured as a function of time and solution composition (pH, [CO3]T, [Ca]) under continuous batch-flow conditions. We observed, in real-time and in situ, adsorption and reduction of U(VI) and subsequent growth of UO2 nanoprecipitates using atomic force microscopy (AFM) and newly developed batch-flow U LIII-edge grazing-incidence X-ray absorption spectroscopy near-edge structure (GI-XANES) spectroscopy. U(VI) reduction occurred with and without CO3 present, and coincided with nucleation and growth of UO2 particles. When Ca and CO3 were both present no U(VI) reduction occurred and the U surface loading was lower. In situ batch-flow AFM data indicated that UO2 particles achieved a maximum height of 4–5 nm after about 8 h of exposure, however, aggregates continued to grow laterally after 8 h reaching up to about 300 nm in diameter. The combination of techniques indicated that U uptake is divided into three-stages; (1) initial adsorption of U(VI), (2) reduction of U(VI) to UO2 nanoprecipitates at surface-specific sites after 2–3 h of exposure, and (3) completion of U(VI) reduction after ~6–8 h. U(VI) reduction also corresponded to detectable increases in Fe released to solution and surface topography changes. Redox reactions are proposed that explicitly couple the reduction of U(VI) to enhanced release of Fe(II) from magnetite. Although counterintuitive, the proposed reaction stoichiometry was shown to be largely consistent with the experimental results. In addition to providing molecular-scale details about U sorption on magnetite, this work also presents novel advances for collecting surface sensitive molecular-scale information in real-time under batch-flow conditions.

  1. Remediation of uranium contaminated soils with bicarbonate extraction and microbial U(VI) reduction

    USGS Publications Warehouse

    Philips , Elizabeth J.P.; Landa, Edward R.; Lovely, Derek R.

    1995-01-01

    A process for concentrating uranium from contaminated soils in which the uranium is first extracted with bicarbonate and then the extracted uranium is precipitated with U(VI)-reducing microorganisms was evaluated for a variety of uranuum-contaminated soils. Bicarbonate (100 mM) extracted 20–94% of the uranium that was extracted with nitric acid. The U(VI)-reducing microorganism,Desulfovibrio desulfuricans reduced the U(VI) to U(IV) in the bicarbonate extracts. In some instances unidentified dissolved extracted components, presumably organics, gave the extract a yellow color and inhibited U(VI) reduction and/or the precipitation of U(IV). Removal of the dissolved yellow material with the addition of hydrogen peroxide alleviated this inhibition. These results demonstrate that bicarbonate extraction of uranium from soil followed by microbial U(VI) reduction might be an effective mechanism for concentrating uranium from some contaminated soils.

  2. Role of U(VI) Reduction by Geobacter species

    SciTech Connect

    Lovely, Derrick

    2008-12-23

    Previous work had suggested that Acholeplasma palmae has a higher capacity for uranium sorption than other bacteria studied. Sorption studies were performed with cells in suspension in various solutions containing uranium, and results were used to generate uranium-biosorption isotherms. Results from this study showed that the U(VI) sorption capacity of G. uraniireducens was relatively similar in simple solutions, such as sodium chloride or bicarbonate. However, this ability to sorb uranium significantly decreased in groundwater. This suggested that certain chemicals present in the groundwater were inhibiting the ability of cell components of Geobacter to adsorb uranium. It was hypothesized that uranium removal would also be diminished in the bicarbonate solution. However, this did not seem to be the case, as uranium was as easily removed in the bicarbonate solution as in the sodium chloride solution.

  3. Elucidating Geochemical and Biogeochemical U(VI) Reduction Via Soil Sterilization at Oak Ridge, Tennessee

    NASA Astrophysics Data System (ADS)

    Bank, T. L.; Jardine, P. M.; Phelps, T. J.; Ginder-Vogel, M. A.; Fendorf, S. E.; Baldwin, M. E.

    2005-12-01

    The adsorption and reduction of U(VI) onto sterilized and nonsterilized soil from the Oak Ridge Reservation was studied to distinguish biogeochemical versus geochemical effects on metal reduction. The Oak Ridge soil under investigation is a saprolite sequence of interbedded weathered shale and limestone obtained at the capillary fringe with a pH near 7.6. Experiments were conducted on unaltered soils as well as subsamples of the soil that were pre-treated to remove free oxides and/or organic matter. Soils were sterilized by either steam sterilization at 1210C or by γ-irradiation using a Cobalt-60 source with a γ-ray dosage of 20kGy. Sterile and nonsterile U(VI) batch experiments were completed aerobically over a reaction time of 400 hours. The reactions were buffered using 25mM HEPES and NaHCO3. Initial U(VI) concentrations ranged from 0.5 to 10 ppm. The effects of sterilization on bacterial population, soil mineralogy, pH, ζ-potential, cation exchange capacity, redox potential, and soil organic matter (SOM) were identified. Sterilization by irradiation was >99.99% efficient and steam sterilization was approximately 99% efficient. Major mineralogy, soil pH, and clay mineral ζ-potential were unaffected by the sterilization techniques. The cation exchange capacity of the irradiated soils decreased from 40 to 30 cmolc/kg. Sterilization by irradiation caused some degradation of the SOM, as determined by UV-VIS, however the results were practically insignificant due to the small quantity of SOM in the Oak Ridge soil (<0.1%). The redox potential of the soil before and after sterilization is being tested. Results indicate that the removal of U(VI) from solution onto untreated soils was significantly increased in soil sterilized by γ-irradiation compared to nonsterilized soil and suggests that geochemical processes, rather than biogeochemical processes, controlled U(VI) sorption/reduction in these soils. Results of experiments completed using soils pre-treated with H2

  4. Reduction of U(VI) and Toxic Metals by Desulfovibrio Cytochrome c3

    SciTech Connect

    Wall, Judy D.

    2003-06-01

    The project, ''Reduction of U(VI) and toxic metals by Desulfovibrio cytochrome c3'', is designed to obtain spectroscopic information for or against a functional interaction of cytochrome c3 and uranium in the whole cells. That is, is the cytochrome c3 the uranium reductase? Our approach has been to start with purified cytochrome and determine any unique spectral disturbances during electron flow to U(VI). Then we will attempt to identify these signals emanating from cells actively reducing uranium. This project is being carried out in collaboration with Dr. William Woodruff at the Los Alamos National Laboratory where the spectral experiments are being carried out.

  5. U(VI) reduction by diverse outer surface c-type cytochromes of Geobacter sulfurreducens.

    PubMed

    Orellana, Roberto; Leavitt, Janet J; Comolli, Luis R; Csencsits, Roseann; Janot, Noemie; Flanagan, Kelly A; Gray, Arianna S; Leang, Ching; Izallalen, Mounir; Mester, Tünde; Lovley, Derek R

    2013-10-01

    Early studies with Geobacter sulfurreducens suggested that outer-surface c-type cytochromes might play a role in U(VI) reduction, but it has recently been suggested that there is substantial U(VI) reduction at the surface of the electrically conductive pili known as microbial nanowires. This phenomenon was further investigated. A strain of G. sulfurreducens, known as Aro-5, which produces pili with substantially reduced conductivity reduced U(VI) nearly as well as the wild type, as did a strain in which the gene for PilA, the structural pilin protein, was deleted. In order to reduce rates of U(VI) reduction to levels less than 20% of the wild-type rates, it was necessary to delete the genes for the five most abundant outer surface c-type cytochromes of G. sulfurreducens. X-ray absorption near-edge structure spectroscopy demonstrated that whereas 83% ± 10% of the uranium associated with wild-type cells correspond to U(IV) after 4 h of incubation, with the quintuple mutant, 89% ± 10% of uranium was U(VI). Transmission electron microscopy and X-ray energy dispersion spectroscopy revealed that wild-type cells did not precipitate uranium along pili as previously reported, but U(IV) was precipitated at the outer cell surface. These findings are consistent with those of previous studies, which have suggested that G. sulfurreducens requires outer-surface c-type cytochromes but not pili for the reduction of soluble extracellular electron acceptors.

  6. U(VI) Reduction by Diverse Outer Surface c-Type Cytochromes of Geobacter sulfurreducens

    PubMed Central

    Leavitt, Janet J.; Comolli, Luis R.; Csencsits, Roseann; Janot, Noemie; Flanagan, Kelly A.; Gray, Arianna S.; Leang, Ching; Izallalen, Mounir; Mester, Tünde; Lovley, Derek R.

    2013-01-01

    Early studies with Geobacter sulfurreducens suggested that outer-surface c-type cytochromes might play a role in U(VI) reduction, but it has recently been suggested that there is substantial U(VI) reduction at the surface of the electrically conductive pili known as microbial nanowires. This phenomenon was further investigated. A strain of G. sulfurreducens, known as Aro-5, which produces pili with substantially reduced conductivity reduced U(VI) nearly as well as the wild type, as did a strain in which the gene for PilA, the structural pilin protein, was deleted. In order to reduce rates of U(VI) reduction to levels less than 20% of the wild-type rates, it was necessary to delete the genes for the five most abundant outer surface c-type cytochromes of G. sulfurreducens. X-ray absorption near-edge structure spectroscopy demonstrated that whereas 83% ± 10% of the uranium associated with wild-type cells correspond to U(IV) after 4 h of incubation, with the quintuple mutant, 89% ± 10% of uranium was U(VI). Transmission electron microscopy and X-ray energy dispersion spectroscopy revealed that wild-type cells did not precipitate uranium along pili as previously reported, but U(IV) was precipitated at the outer cell surface. These findings are consistent with those of previous studies, which have suggested that G. sulfurreducens requires outer-surface c-type cytochromes but not pili for the reduction of soluble extracellular electron acceptors. PMID:23934497

  7. INVESTIGATION OF THE TRANSFORMATION OF URANIUM UNDER IRON-REDUCING CONDITIONS: REDUCTION OF UVI BY BIOGENIC FEII/FEIII HYDROXIDE (GREEN RUST)

    SciTech Connect

    O'Loughlin, Edward J.; Scherer, Michelle M.; Kemner, Kenneth M.

    2006-12-31

    The recent identification of green rusts (GRs) as products of the reduction of FeIII oxyhydroxides by dissimilatory iron-reducing bacteria, coupled with the ability of synthetic (GR) to reduce UVI species to insoluble UO2, suggests that biogenic green rusts (BioGRs) may play an important role in the speciation (and thus mobility) of U in FeIII-reducing environments. The objective of our research was to examine the potential for BioGR to affect the speciation of U under FeIII-reducing conditions. To meet this objective, we designed and executed a hypothesis-driven experimental program to identify key factors leading to the formation of BioGRs as products of dissimilatory FeIII reduction, to determine the key factors controlling the reduction of UVI to UIV by GRs, and to identify the resulting U-bearing mineral phases. The results of this research significantly increase our understanding of the coupling of biotic and abiotic processes with respect to the speciation of U in iron-reducing environments. In particular, the reduction of UVI to UIV by BioGR with the subsequent formation of U-bearing mineral phases may be effective for immobilizing U in suboxic subsurface environments. This information has direct applications to contaminant transport modeling and bioremediation engineering for natural or enhanced in situ remediation of subsurface contamination.

  8. Microbial reduction of U(VI) under alkaline conditions: implications for radioactive waste geodisposal.

    PubMed

    Williamson, Adam J; Morris, Katherine; Law, Gareth T W; Rizoulis, Athanasios; Charnock, John M; Lloyd, Jonathan R

    2014-11-18

    Although there is consensus that microorganisms significantly influence uranium speciation and mobility in the subsurface under circumneutral conditions, microbiologically mediated U(VI) redox cycling under alkaline conditions relevant to the geological disposal of cementitious intermediate level radioactive waste, remains unexplored. Here, we describe microcosm experiments that investigate the biogeochemical fate of U(VI) at pH 10-10.5, using sediments from a legacy lime working site, stimulated with an added electron donor, and incubated in the presence and absence of added Fe(III) as ferrihydrite. In systems without added Fe(III), partial U(VI) reduction occurred, forming a U(IV)-bearing non-uraninite phase which underwent reoxidation in the presence of air (O2) and to some extent nitrate. By contrast, in the presence of added Fe(III), U(VI) was first removed from solution by sorption to the Fe(III) mineral, followed by bioreduction and (bio)magnetite formation coupled to formation of a complex U(IV)-bearing phase with uraninite present, which also underwent air (O2) and partial nitrate reoxidation. 16S rRNA gene pyrosequencing showed that Gram-positive bacteria affiliated with the Firmicutes and Bacteroidetes dominated in the post-reduction sediments. These data provide the first insights into uranium biogeochemistry at high pH and have significant implications for the long-term fate of uranium in geological disposal in both engineered barrier systems and the alkaline, chemically disturbed geosphere.

  9. Influence of Reactive Transport on the Reduction of U(VI) in the Presence of Fe(III) and Nitrate: Implications for U(VI) Immobilization by Bioremediation / Biobarriers- Final Report

    SciTech Connect

    B.D. Wood

    2007-01-01

    Subsurface contamination by metals and radionuclides represent some of the most challenging remediation problems confronting the Department of Energy (DOE) complex. In situ remediation of these contaminants by dissimilatory metal reducing bacteria (DMRB) has been proposed as a potential cost effective remediation strategy. The primary focus of this research is to determine the mechanisms by which the fluxes of electron acceptors, electron donors, and other species can be controlled to maximize the transfer of reductive equivalents to the aqueous and solid phases. The proposed research is unique in the NABIR portfolio in that it focuses on (i) the role of flow and transport in the initiation of biostimulation and the successful sequestration of metals and radionuclides [specifically U(VI)], (ii) the subsequent reductive capacity and stability of the reduced sediments produced by the biostimulation process, and (iii) the potential for altering the growth of biomass in the subsurface by the addition of specific metabolic uncoupling compounds. A scientifically-based understanding of these phenomena are critical to the ability to design successful bioremediation schemes. The laboratory research will employ Shewanella putrefaciens (CN32), a facultative DMRB that can use Fe(III) oxides as a terminal electron acceptor. Sediment-packed columns will be inoculated with this organism, and the reduction of U(VI) by the DMRB will be stimulated by the addition of a carbon and energy source in the presence of Fe(III). Separate column experiments will be conducted to independently examine: (1) the importance of the abiotic reduction of U(VI) by biogenic Fe(II); (2) the influence of the transport process on Fe(III) reduction and U(VI) immobilization, with emphasis on methods for controlling the fluxes of aqueous species to maximize uranium reduction; (3) the reductive capacity of biologically-reduced sediments (with respect to re-oxidation by convective fluxes of O2 and NO3-) and

  10. Reduction of U(VI) incorporated in the structure of hematite.

    PubMed

    Ilton, Eugene S; Pacheco, Juan S Lezama; Bargar, John R; Shi, Zhi; Liu, Juan; Kovarik, Libor; Engelhard, Mark H; Felmy, Andrew R

    2012-09-04

    U(VI) doped hematite was synthesized and exposed to two different organic reductants with E(0) of 0.23 and 0.70 V. A combination of HAADF-TEM and EXAFS provided evidence that uranium was incorporated in hematite in uranate, likely octahedral coordination. XPS indicated that structurally incorporated U(VI) was reduced to U(V), whereas non-incorporated U(VI) was reduced to U(IV). Specifically, the experiments indicate that U(V) was the dominant oxidation state of uranium in hematite around Eh -0.24 to -0.28 V and pH 7.7-8.6 for at least up to 5 weeks of reaction time. U(V), but not U(IV), was also detected in hematite at Eh +0.21 V (pH 7.1-7.3). The results support the hypothesis, based on previous experimental and theoretical work, that the stability field of U(V) is widened relative to U(IV) and U(VI) in uranate coordination environments where the coordination number of U is less than 8.

  11. Reduction of U(VI) Incorporated in the Structure of Hematite

    SciTech Connect

    Ilton, Eugene S.; Lazama Pacheco, Juan S.; Bargar, John R.; Shi, Zhi; Liu, Juan; Kovarik, Libor; Engelhard, Mark H.; Felmy, Andrew R.

    2012-09-04

    U(VI) doped hematite was synthesized and exposed to two different organic reductants with E0 of 0.23 and 0.70 V. A combination of HAADF-TEM and EXAFS provided evidence that uranium was incorporated in hematite in uranate, likely octahedral coordination. XPS indicated that structurally incorporated U(VI) was reduced to U(V), whereas adsorbed U(VI) was reduced to U(IV). Specifically, the experiments indicate that U(V) was the dominant oxidation state of uranium in hematite around Eh -0.24 to -0.28 V and pH 7.7-8.6 for at least up to 5 weeks of reaction time. U(V), but not U(IV), was also detected in hematite at Eh +0.21 V (pH 7.1-7.3). The results support the hypothesis, based on previous experimental and theoretical work, that the stability field of U(V) is widened relative to U(IV) and U(VI) in uranate coordination environments where the coordination number of U is less than 8.

  12. Efficient sorption and reduction of U(VI) on zero-valent iron-polyaniline-graphene aerogel ternary composite.

    PubMed

    Chen, Lili; Feng, Shaojie; Zhao, Donglin; Chen, Shaohua; Li, Feifei; Chen, Changlun

    2017-03-15

    In this work, zero-valent iron-polyaniline-graphene aerogel composite (Fe-PANI-GA) was prepared and applied in the removal of U(VI) from aqueous solutions by batch sorption experiments. The experimental results showed that the Fe-PANI-GA composite had an excellent removal capacity for the removal of U(VI) in acidic solutions. The results also showed that the maximum removal capacity of the Fe-PANI-GA toward U(VI) was 350.47mg/g at pH 5.5. The sorption kinetics data were well-described by pseudo-second-order. The sorption isotherms of U(VI) fitted well with Langmuir isotherm and exhibited better removal efficiency with the increase of temperature. The thermodynamic parameters (ΔG, ΔS, ΔH) indicated that the sorption of U(VI) on the Fe-PANI-GA was an endothermic and spontaneous process. Moreover, removal mechanisms were studied based on the results of XRD, FTIR and XPS. Both U(VI) sorption and partially reductive precipitation of U(VI) to U(IV) contributed to the removal of U(VI) on Fe-PANI-GA. Therefore, Fe-PANI-GA was an economic and effective material for the removal of uranium from nuclear waste in practical application.

  13. Pilot-scale in situ bioremedation of uranium in a highly contaminated aquifer. 2. Reduction of u(VI) and geochemical control of u(VI) bioavailability.

    PubMed

    Wu, Wei-Min; Carley, Jack; Gentry, Terry; Ginder-Vogel, Matthew A; Fienen, Michael; Mehlhorn, Tonia; Yan, Hui; Caroll, Sue; Pace, Molly N; Nyman, Jennifer; Luo, Jian; Gentile, Margaret E; Fields, Matthew W; Hickey, Robert F; Gu, Baohua; Watson, David; Cirpka, Olaf A; Zhou, Jizhong; Fendorf, Scott; Kitanidis, Peter K; Jardine, Philip M; Criddle, Craig S

    2006-06-15

    In situ microbial reduction of soluble U(VI) to sparingly soluble U(IV) was evaluated at the site of the former S-3 Ponds in Area 3 of the U.S. Department of Energy Natural and Accelerated Bioremediation Research Field Research Center, Oak Ridge, TN. After establishing conditions favorable for bioremediation (Wu, et al. Environ. Sci. Technol. 2006, 40, 3988-3995), intermittent additions of ethanol were initiated within the conditioned inner loop of a nested well recirculation system. These additions initially stimulated denitrification of matrix-entrapped nitrate, but after 2 months, aqueous U levels fell from 5 to approximately 1 microM and sulfate reduction ensued. Continued additions sustained U(VI) reduction over 13 months. X-ray near-edge absorption spectroscopy (XANES) confirmed U(VI) reduction to U(IV) within the inner loop wells, with up to 51%, 35%, and 28% solid-phase U(IV) in sediment samples from the injection well, a monitoring well, and the extraction well, respectively. Microbial analyses confirmed the presence of denitrifying, sulfate-reducing, and iron-reducing bacteria in groundwater and sediments. System pH was generally maintained at less than 6.2 with low bicarbonate level (0.75-1.5 mM) and residual sulfate to suppress methanogenesis and minimize uranium mobilization. The bioavailability of sorbed U(VI) was manipulated by addition of low-level carbonate (< 5 mM) followed by ethanol (1-1.5 mM). Addition of low levels of carbonate increased the concentration of aqueous U, indicating an increased rate of U desorption due to formation of uranyl carbonate complexes. Upon ethanol addition, aqueous U(VI) levels fell, indicating that the rate of microbial reduction exceeded the rate of desorption. Sulfate levels simultaneously decreased, with a corresponding increase in sulfide. When ethanol addition ended but carbonate addition continued, soluble U levels increased, indicating faster desorption than reduction. When bicarbonate addition stopped

  14. Uranium isotopic fractionation factors during U(VI) reduction by bacterial isolates

    NASA Astrophysics Data System (ADS)

    Basu, Anirban; Sanford, Robert A.; Johnson, Thomas M.; Lundstrom, Craig C.; Löffler, Frank E.

    2014-07-01

    We experimentally determined the magnitude of uranium isotopic fractionation induced by U(VI) reduction by metal reducing bacterial isolates. Our results indicate that microbial U(VI) reduction induces isotopic fractionation; heavier isotopes (i.e., 238U) partition into the solid U(IV) products. The magnitudes of isotopic fractionation (expressed as ε = 1000‰ * (α-1)) for 238U/235U were 0.68‰ ± 0.05‰ and 0.99‰ ± 0.12‰ for Geobacter sulfurreducens strain PCA and strain IFRC-N, respectively. The ε values for Anaeromyxobacter dehalogenans strain FRC-W, strain FRC-R5, a novel Shewanella isolate, and Desulfitobacterium sp. strain Viet1 were 0.72‰ ± 0.15‰, 0.99‰ ± 0.12‰, 0.96‰ ± 0.16‰ and 0.86‰ ± 0.06‰, respectively. Our results show that the maximum ε values of ∼1.0‰ were obtained with low biomass (∼107 cells/mL) and low electron donor concentrations (∼500 μM). These results provide an initial assessment of 238U/235U shifts induced by microbially-mediated U(VI) reduction, which is needed as 238U/235U data are increasingly applied as redox indicators in various geochemical settings.

  15. Nature and Reactivity of Sediment-Associated Spiked Fe(II) Toward Abiotic Uranium Reduction

    NASA Astrophysics Data System (ADS)

    Kukkadapu, R.; Fox, P. M.; Davis, J.

    2011-12-01

    Uranium (U) is a priority contaminant at U.S. Department of Energy Uranium Mill Tailings Remedial Action (UMTRA) sites. Mobility of U in contaminated aquifers is governed by a complex assortment of site-specific biogeochemical and hydrological properties, sediment Fe-mineralogy, and redox status. There is a particular interest in understanding factors governing U attenuation to Fe-mineralogy under natural conditions. Thus, the goal of this work is to investigate geochemical effects of Fe redox state on U mobility under conditions relevant to the Rifle aquifer, an UMTRA site. Particularly, the focus is to gain insights into the degree and mechanism of Fe(II) uptake by Rifle sediments that exhibit complex Fe-mineralogy composed of various Fe-oxides and Fe-containing clays and on the possibility of abiotic U(VI) reduction by adsorbed Fe(II) and secondary Fe(II) minerals. Earlier field studies where Fe(II)-amended groundwater was injected into the Rifle aquifer indicated: a) Fe(II) uptake by Rifle sediments is extensive and b) abiotic U(VI) reduction by Fe(II) may be important at pH 8.3. Batch reactions between Rifle sediment and 57Fe(II) (57Fe isotope is a Mossbauer sensitive nuclide with a natural abundance of 2%) under conditions relevant to the Rifle aquifer indicated that, depending on the solution conditions: a) a large fraction of the spiked 57Fe(II) (55-100%) is oxidized to 57Fe(III) on sediment surfaces and, at pH 7.2, the degree of oxidation decreased as Fe(II) loading increased; b) the 57Fe(II)-oxidation is coupled to the transformation of an intrinsic ferrihydrite-like mineral to a nanoparticulate, Fe(II)/57Fe(III)-like mineral phase, and c) increasing pH from 7.2 to 8.3 and including carbonate in the medium has little or no effect on percent oxidation or mineral transformation. Preliminary X-ray absorption near edge structure (XANES) spectroscopy studies suggested that 20-30% of abiotic U(VI) reduction occurred, both at pH 7.2 and 8.3, in the sediments

  16. Aqueous Complexation Reactions Governing the Rate and Extent of Biogeochemical U(VI) Reduction

    SciTech Connect

    Scott C. Brooks; Wenming Dong; Sue Carroll; Jim Fredrickson; Ken Kemner; Shelly Kelly

    2006-06-01

    The proposed research will elucidate the principal biogeochemical reactions that govern the concentration, chemical speciation, and reactivity of the redox-sensitive contaminant uranium. The results will provide an improved understanding and predictive capability of the mechanisms that govern the biogeochemical reduction of uranium in subsurface environments. In addition, the work plan is designed to: (1) Generate fundamental scientific understanding on the relationship between U(VI) chemical speciation and its susceptibility to biogeochemical reduction reactions. ? Elucidate the controls on the rate and extent of contaminant reactivity. (2) Provide new insights into the aqueous and solid speciation of U(VI)/U(IV) under representative groundwater conditions.

  17. Aqueous Complexation Reactions Governing the Rate and Extent of Biogeochemical U(VI) Reduction

    SciTech Connect

    Scott C. Brooks; Wenming Dong; Sue Carroll; James K. Fredrickson; Kenneth M. Kemner; Shelly D. Kelly

    2006-06-01

    The proposed research will elucidate the principal biogeochemical reactions that govern the concentration, chemical speciation, and reactivity of the redox-sensitive contaminant uranium. The results will provide an improved understanding and predictive capability of the mechanisms that govern the biogeochemical reduction of uranium in subsurface environments. In addition, the work plan is designed to: (1) Generate fundamental scientific understanding on the relationship between U(VI) chemical speciation and its susceptibility to biogeochemical reduction reactions. (2) Elucidate the controls on the rate and extent of contaminant reactivity. (3) Provide new insights into the aqueous and solid speciation of U(VI)/U(IV) under representative groundwater conditions.

  18. Electrochemical and spectroscopic evidence on the one-electron reduction of U(VI) to U(V) on magnetite

    SciTech Connect

    Yuan, Ke; Ilton, Eugene S.; Antonio, Mark R.; Li, Zhongrui; Cook, Peter J.; Becker, Udo

    2015-05-19

    Reduction of U(VI) to U(IV) on mineral surfaces has been considered as a one-step two electron process. However, stabilized U(V), with no evidence of U(IV), found in recent studies indicates U(VI) can undergo a one electron reduction to U(V) without further progression to U(IV). We investigated the mechanisms of uranium reduction by reducing U(VI) electrochemically on a magnetite electrode at pH 3.4 . The one electron reduction of U(VI) was first confirmed using the cyclic voltammetry method. Formation of nano-size uranium precipitates on the surface of magnetite at reducing potentials and dissolution of the solids at oxidizing potentials were observed by in situ electrochemical AFM. XPS analysis of the magnetite electrodes polarized in uranium solutions at voltages from 0.1 ~ 0.9 V (vs. Ag/AgCl) showed the presence of only U(V) and U(VI). The highest amount of U(V) relative to U(VI) was prepared at 0.7 V, where the longest average U–Oaxial distance of 2.05 ± 0.01 Å was evident in the same sample revealed by EXAFS analysis. The results demonstrate that the electrochemical reduction of U(VI) on magnetite only yields U(V), even at a potential of 0.9 V, which favors the one-electron reduction mechanism. U(V) did not disproportionate but stabilized on magnetite through precipitation of mixed-valence state U(VI)/U(V) solids.

  19. Reduction of U(VI) by Fe(II) in the presence of hydrous ferric oxide and hematite: effects of solid transformation, surface coverage, and humic acid.

    PubMed

    Jang, Je-Hun; Dempsey, Brian A; Burgos, William D

    2008-04-01

    Fe(II) was added to U(VI)-spiked suspensions of hydrous ferric oxide (HFO) or hematite to compare the redox behaviors of uranium in the presence of two different Fe(III) (oxyhydr)oxides. Experiments were conducted with low or high initial sorption density of U(VI) and in the presence or absence of humic acid (HA). About 80% of U(VI) was reduced within 3 days for low sorbed U(VI) conditions, with either hematite or HFO. The {Fe(3+)} in the low U(VI) experiments at 3 days, based on measured Fe(II) and U(VI) and the assumed presence of amorphous UO(2(s)), was consistent with control by HFO for either initial Fe(III) (oxyhydr)oxide. After about 1 day, partial re-oxidation to U(VI) was observed in the low sorbed U(VI) experiments in the absence of HA, without equivalent increase of dissolved U(VI). No reduction of U(VI) was observed in the high sorbed U(VI) experiments; it was hypothesized that the reduction required sorption proximity of U(VI) and Fe(II). Addition of 5mg/L HA slowed the reduction with HFO and had less effect with hematite. Mössbauer spectroscopy (MBS) of (57)Fe(II)-enriched samples identified the formation of goethite, hematite, and non-stoichiometric magnetite from HFO, and the formation of HFO, hydrated hematite, and non-stoichiometric magnetite from hematite.

  20. Microbial Community Changes in Response to Ethanol or Methanol Amendments for U(VI) Reduction

    SciTech Connect

    Vishnivetskaya, Tatiana A; Brandt, Craig C; Madden, Andrew; Drake, Meghan M; Kostka, Joel; Akob, Denise M.; Kusel, Kirsten; Palumbo, Anthony Vito

    2010-01-01

    Microbial community responses to ethanol, methanol and methanol + humics amendments in relationship to uranium bioremediation were studied in laboratory microcosm experiments using sediments and ground water from a uranium-contaminated site in Oak Ridge, Tennessee. Ethanol addition always resulted in uranium reduction at rate of 0.8-1.0 mol l-1 d-1 while methanol addition did so occasionally at rate 0.95 mol l-1 d-1. The type of carbon source added, the duration of incubation, and the sampling site influenced the bacterial community structure upon incubation. Analysis of 16S rRNA gene clone libraries indicated (1) bacterial communities found in ethanol- and methanol-amended samples with U(VI) reduction were similar due to presence of -Proteobacteria, and -Proteobacteria (members of the families Burkholderiaceae, Comamonadaceae, Oxalobacteraceae, and Rhodocyclaceae); (2) methanol-amended samples without U(VI) reduction exhibited the lowest diversity and the bacterial community contained 69.2-92.8% of the family Methylophilaceae; and (3) the addition of humics resulted in an increase of phylogenetic diversity of -Proteobacteria (Rodoferax, Polaromonas, Janthinobacterium, Methylophilales, unclassified) and Firmicutes (Desulfosporosinus, Clostridium).

  1. The effect of U(VI) bioreduction kinetics on subsequent reoxidation of biogenic U(IV)

    SciTech Connect

    Senko, John M.; Kelly, Shelly D.; Dohnalkova, Alice; Mcdonough, J. T.; Kemner, Kenneth M.; Burgos, William D.

    2007-10-01

    Microbially mediated in situ reduction of soluble U(VI) to insoluble U(IV) (as UO2) has been proposed as a means of preventing the migration of that radionuclide with groundwater, but preventing the oxidative resolubilization of U has proven difficult. We hypothesized that relatively slow rates of U(VI) bioreduction would yield larger UO2 precipitates that would be more resistant to oxidation than those produced by rapid U(VI) bioreduction. We manipulated U(VI) bioreduction rates by varying the density of Shewanella putrefaciens CN32 added to U(VI) containing solutions with lactate as an electron donor. Characterization of biogenic UO2 particles by extended X-ray absorption fine-structure spectroscopy and transmission electron microscopy revealed that UO2 nanoparticles formed by relatively slow rates of U(VI) reduction were larger and more highly aggregated than those formed by relatively rapid U(VI) reduction. UO2 particles formed at various rates were incubated under a variety of abiotically and biologically oxidizing conditions. In all cases, UO2 that was formed by relatively slow U(VI) reduction was oxidized at a slower rate and to a lesser extent than UO2 formed by relatively rapid U(VI) bioreduction, suggesting that the stability of UO2 in situ may be enhanced by stimulation of relatively slow rates of U(VI) reduction.

  2. Biogeochemical controls on the product of microbial U(VI) reduction.

    PubMed

    Stylo, Malgorzata; Alessi, Daniel S; Shao, Paul PaoYun; Lezama-Pacheco, Juan S; Bargar, John R; Bernier-Latmani, Rizlan

    2013-01-01

    Biologically mediated immobilization of radionuclides in the subsurface is a promising strategy for the remediation of uranium-contaminated sites. During this process, soluble U(VI) is reduced by indigenous microorganisms to sparingly soluble U(IV). The crystalline U(IV) phase uraninite, or UO2, is the preferable end-product of bioremediation due to its relatively high stability and low solubility in comparison to biomass-associated nonuraninite U(IV) species that have been reported in laboratory and under field conditions. The goal of this study was to delineate the geochemical conditions that promote the formation of nonuraninite U(IV) versus uraninite and to decipher the mechanisms of its preferential formation. U(IV) products were prepared under varying geochemical conditions and characterized with X-ray absorption spectroscopy (XAS), scanning transmission X-ray microscopy (STXM), and various wet chemical methods. We report an increasing fraction of nonuraninite U(IV) species with decreasing initial U concentration. Additionally, the presence of several common groundwater solutes (sulfate, silicate, and phosphate) promote the formation of nonuraninite U(IV). Our experiments revealed that the presence of those solutes promotes the formation of bacterial extracellular polymeric substances (EPS) and increases bacterial viability, suggesting that the formation of nonuraninite U(IV) is due to a biological response to solute presence during U(VI) reduction. The results obtained from this laboratory-scale research provide insight into biogeochemical controls on the product(s) of uranium reduction during bioremediation of the subsurface.

  3. Acceleration of Microbially Mediated U(VI) Reduction at a Uranium Mill Tailings Site, Colorado Plateau

    SciTech Connect

    Phil Long; Todd Anderson; Aaron Peacock; Steve Heald; Yun-Juan Chang; Dick Dayvault; Derek R. Lovley; C.T. Resch; Helen Vrionis; Irene Ortiz-Bernad; D.C. White

    2004-03-17

    A second field-scale electron donor amendment experiment was conducted in 2003 at the Old Rifle Uranium Mill Tailings Remedial Action (UMTRA) site in Rifle, Colorado. The objective of the 2003 experiment (done in collaboration with the U.S. Department of Energy's UMTRA Groundwater Project) was to test the hypothesis that amendment of increased concentration of electron donor would result in an increased export of electron donor down gradient which in turn would create a larger zone of down-gradient U(VI) bioreduction sustained over a longer time period relative to the 2002 experiment (Anderson et al. 2003). During the first experiment (2002), {approx}3 mM acetate was amended to subsurface over a period of 3 months in a 15m by 18m by 2.5m volume comprised of 3 upgradient monitoring wells, 20 injection wells, and 15 down-gradient monitoring wells. After an initial one-month phase of metal reduction, bioavailable oxidized Fe was consumed near the injection gallery and the dominant terminal electron accepting process became sulfate reduction, rapidly consuming the injected acetate. For the 2003 experiment, we amended sufficient acetate ({approx}10 mM) to consume available sulfate and export acetate down-gradient where bioavailable oxidized Fe was still present. Data from the experiment indicate that acetate was exported further down gradient, resulting in a larger zone of microbial U(VI) reduction than for the 2002 experiment. Geohydrologic, geochemical, and microbiological data collected during the course of both experiments enable assessment of relative importance of a number of factors controlling the experimental outcomes. Companion posters by Anderson et al. and White et al. provide additional results.

  4. Abiotic nitrogen reduction on the early Earth.

    PubMed

    Brandes, J A; Boctor, N Z; Cody, G D; Cooper, B A; Hazen, R M; Yoder, H S

    1998-09-24

    The production of organic precursors to life depends critically on the form of the reactants. In particular, an environment dominated by N2 is far less efficient in synthesizing nitrogen-bearing organics than a reducing environment rich in ammonia. Relatively reducing lithospheric conditions on the early Earth have been presumed to favour the generation of an ammonia-rich atmosphere, but this hypothesis has not been studied experimentally. Here we demonstrate mineral-catalysed reduction of N2, NO2- and NO3- to ammonia at temperatures between 300 and 800 degrees C and pressures of 0.1-0.4 GPa-conditions typical of crustal and oceanic hydrothermal systems. We also show that only N2 is stable above 800 degrees C, thus precluding significant atmospheric ammonia formation during hot accretion. We conclude that mineral-catalysed N2 reduction might have provided a significant source of ammonia to the Hadean ocean. These results also suggest that, whereas nitrogen in the Earth's early atmosphere was present predominantly as N2, exchange with oceanic, hydrothermally derived ammonia could have provided a significant amount of the atmospheric ammonia necessary to resolve the early-faint-Sun paradox.

  5. Isotopic and geochemical tracers for U(VI) reduction and U mobility at an in situ recovery U mine

    DOE PAGES

    Basu, Anirban; Brown, Shaun T.; Christensen, John N.; ...

    2015-05-19

    In situ recovery (ISR) uranium (U) mining mobilizes U in its oxidized hexavalent form (U(VI)) by oxidative dissolution of U from the roll-front U deposits. Post-mining natural attenuation of residual U(VI) at ISR mines is a potential remediation strategy. Detection and monitoring of naturally occurring reducing subsurface environments are important for successful implementation of this remediation scheme. We used the isotopic tracers ²³⁸U/²³⁵U (δ²³⁸U), ²³⁴U/²³⁸U activity ratio, and ³⁴S/³²S (δ³⁴S), and geochemical measurements of U ore and groundwater collected from 32 wells located within, upgradient, and downgradient of a roll-front U deposit to detect U(VI) reduction and U mobility atmore » an ISR mining site at Rosita, TX, USA. The δ²³⁸U in Rosita groundwater varies from 0.61‰ to -2.49‰, with a trend toward lower δ²³⁸U in downgradient wells. The concurrent decrease in U(VI) concentration and δ²³⁸U with an ε of 0.48‰ ± 0.08‰ is indicative of naturally occurring reducing environments conducive to U(VI) reduction. Additionally, characteristic ²³⁴U/²³⁸U activity ratio and δ³⁴S values may also be used to trace the mobility of the ore zone groundwater after mining has ended. These results support the use of U isotope-based detection of natural attenuation of U(VI) at Rosita and other similar ISR mining sites.« less

  6. Influence of Mn oxides on the reduction of U(VI) by the metal-reducing bacterium Shewanella putrefaciens

    SciTech Connect

    Fredrickson, Jim K.; Zachara, John M.; Kennedy, David W.; Liu, Chongxuan; Duff, Martine C.; Hunter, David; Dohnalkova, Alice

    2002-09-16

    Dissimilatory metal-reducing bacteria (DMRB) enzymatically reduce Fe(III), Mn(III/IV), U(VI), and other polyvalent metals during anaerobic respiration. Previous investigations of the bacterial reduction of U(VI) in the presence of goethite (a-FeOOH) found that, in spite of potential competition as an electron acceptor, goethite had little impact on the bacterial reduction of U(VI) to insoluble U(IV). Mn(III/IV) oxides are also electron acceptors for DMRB but are stronger oxidants than Fe(III) oxides. Differences in the solubility of oxidized Mn and U challenges predictions of their biogeochemical behavior during redox cycling. The potential for Mn oxides to modify the biogeochemical behavior of U during reduction by a subsurface bacterium Shewanella putrefaciens CN32 was investigated using synthetic Mn(III/IV) oxides [pyrolusite ({beta}-MnO{sub 2}), bixbyite (Mn{sub 2}O{sub 3}) and K{sup +}-birnessite (K{sub 4}Mn{sub 14}O{sub 27} {center_dot} 8H{sub 2}O)]. In the absence of bacteria, pyrolusite and bixbyite oxidized biogenic uraninite (UO{sub 2}(s)) to soluble U(VI) species, with bixbyite being the most rapid oxidant. The Mn(III/IV) oxides lowered the bioreduction rate of U(VI) relative to rates in their absence, or in the presence of gibbsite [Al(OH){sub 3}] added as a non-redox reactive surface. Evolved Mn(II) increased with increasing initial U(VI) concentration in the biotic experiments, indicating that valence cycling of U facilitated the reduction of Mn(III/IV). Despite an excess of the Mn oxide, 43-100% of the initial U was bioreduced after extended incubation. Analysis of thin sections of bacterial-Mn oxide suspensions revealed that the reduced U resided in the periplasmic space of the bacterial cells. In the absence of Mn(III/IV) oxides, UO{sub 2}(s) accumulated as copius fine-grained particles external to the cell. These results indicate that the presence of Mn(III/IV) oxides may impede the biological reduction of U(VI) in subsoils and sediments?.

  7. Influence of dynamical conditions on the reduction of U(VI) at the magnetite-solution interface.

    PubMed

    Ilton, Eugene S; Boily, Jean-François; Buck, Edgar C; Skomurski, Frances N; Rosso, Kevin M; Cahill, Christopher L; Bargar, John R; Felmy, Andrew R

    2010-01-01

    The heterogeneous reduction of U(VI) to U(IV) by ferrous iron is believed to be a key process influencing the fate and transport of U in the environment. The reactivity of both sorbed and structural Fe(II) has been studied for numerous substrates, including magnetite. Published results from U(VI)-magnetite experiments have been variable, ranging from no reduction to clear evidence for the formation of U(IV). In this contribution, we used XAS and high resolution (+/-cryogenic) XPS to study the interaction of U(VI) with nanoparticulate magnetite. The results indicated that U(VI) was partially reduced to U(V) with no evidence of U(IV). However, thermodynamic calculations indicated that U phases with average oxidation states below (V) should have been stable, indicating that the system was not in redox equilibrium. A reaction pathway that involves incorporation and stabilization of U(V) and U(VI) into secondary phases is invoked to explain the observations. The results suggest an important and previously unappreciated role of U(V) in the fate and transport of uranium in the environment.

  8. Quantitative separation of monomeric U(IV) from UO2 in products of U(VI) reduction

    PubMed Central

    Alessi, Daniel S.; Uster, Benjamin; Veeramani, Harish; Suvorova, Elena I.; Lezama-Pacheco, Juan S.; Stubbs, Joanne E.; Bargar, John R.; Bernier-Latmani, Rizlan

    2012-01-01

    The reduction of soluble hexavalent uranium to tetravalent uranium can be catalyzed by bacteria and minerals. The end-product of this reduction is often the mineral uraninite, which was long assumed to be the only product of U(VI) reduction. However, recent studies report the formation of other species including an adsorbed U(IV) species, operationally referred to as monomeric U(IV). The discovery of monomeric U(IV) is important because the species is likely to be more labile and more susceptible to reoxidation than uraninite. Because there is a need to distinguish between these two U(IV) species, we propose here a wet chemical method of differentiating monomeric U(IV) from uraninite in environmental samples. To calibrate the method, U(IV) was extracted from known mixtures of uraninite and monomeric U(IV) and testted using X-ray absorption spectroscopy (XAS). Monomeric U(IV) was efficiently removed from biomass and Fe(II)-bearing phases by bicarbonate extraction, without affecting uraninite stability. After confirming that the method effectively separates monomeric U(IV) and uraninite, it is further evaluated for a system containing those reduced U species and adsorbed U(VI). The method provides a rapid complement, and in some cases alternative, to XAS analyses for quantifying monomeric U(IV), uraninite, and adsorbed U(VI) species in environmental samples. PMID:22540966

  9. Quantitative separation of monomeric U(IV) from UO2 in products of U(VI) reduction.

    PubMed

    Alessi, Daniel S; Uster, Benjamin; Veeramani, Harish; Suvorova, Elena I; Lezama-Pacheco, Juan S; Stubbs, Joanne E; Bargar, John R; Bernier-Latmani, Rizlan

    2012-06-05

    The reduction of soluble hexavalent uranium to tetravalent uranium can be catalyzed by bacteria and minerals. The end-product of this reduction is often the mineral uraninite, which was long assumed to be the only product of U(VI) reduction. However, recent studies report the formation of other species including an adsorbed U(IV) species, operationally referred to as monomeric U(IV). The discovery of monomeric U(IV) is important because the species is likely to be more labile and more susceptible to reoxidation than uraninite. Because there is a need to distinguish between these two U(IV) species, we propose here a wet chemical method of differentiating monomeric U(IV) from uraninite in environmental samples. To calibrate the method, U(IV) was extracted from known mixtures of uraninite and monomeric U(IV) and tested using X-ray absorption spectroscopy (XAS). Monomeric U(IV) was efficiently removed from biomass and Fe(II)-bearing phases by bicarbonate extraction, without affecting uraninite stability. After confirming that the method effectively separates monomeric U(IV) and uraninite, it is further evaluated for a system containing those reduced U species and adsorbed U(VI). The method provides a rapid complement, and in some cases alternative, to XAS analyses for quantifying monomeric U(IV), uraninite, and adsorbed U(VI) species in environmental samples.

  10. Interactions between Biological and Abiotic Pathways in the Reduction of Chlorinated Solvents

    EPA Science Inventory

    While biologically mediated reductive dechlorination continues to be a significant focus of chlorinated solvent remediation, there has been an increased interest in abiotic reductive processes for the remediation of chlorinated solvents. In situ chemical reduction (ISCR) uses zer...

  11. Metaproteomics Identifies the Protein Machinery Involved in Metal and Radionuclide Reduction in Subsurface Microbiomes and Elucidates Mechanisms and U(VI) Reduction Immobilization

    SciTech Connect

    Pfiffner, Susan M.; Löffler, Frank; Ritalahti, Kirsti; Sayler, Gary; Layton, Alice; Hettich, Robert

    2015-08-31

    The overall goal for this funded project was to develop and exploit environmental metaproteomics tools to identify biomarkers for monitoring microbial activity affecting U speciation at U-contaminated sites, correlate metaproteomics profiles with geochemical parameters and U(VI) reduction activity (or lack thereof), elucidate mechanisms contributing to U(VI) reduction, and provide remediation project managers with additional information to make science-based site management decisions for achieving cleanup goals more efficiently. Although significant progress has been made in elucidating the microbiology contribution to metal and radionuclide reduction, the cellular components, pathway(s), and mechanisms involved in U trans-formation remain poorly understood. Recent advances in (meta)proteomics technology enable detailed studies of complex samples, including environmental samples, which differ between sites and even show considerable variability within the same site (e.g., the Oak Ridge IFRC site). Additionally, site-specific geochemical conditions affect microbial activity and function, suggesting generalized assessment and interpretations may not suffice. This research effort integrated current understanding of the microbiology and biochemistry of U(VI) reduction and capitalize on advances in proteomics technology made over the past few years. Field-related analyses used Oak Ridge IFRC field ground water samples from locations where slow-release substrate biostimulation has been implemented to accelerate in situ U(VI) reduction rates. Our overarching hypothesis was that the metabolic signature in environmental samples, as deciphered by the metaproteome measurements, would show a relationship with U(VI) reduction activity. Since metaproteomic and metagenomic characterizations were computationally challenging and time-consuming, we used a tiered approach that combines database mining, controlled laboratory studies, U(VI) reduction activity measurements, phylogenetic

  12. The Use of Chemical Probes for the Characterization of the Predominant Abiotic Reductants in Anaerobic Sediments

    EPA Science Inventory

    Identifying the predominant chemical reductants and pathways for electron transfer in anaerobic systems is paramount to the development of environmental fate models that incorporate pathways for abiotic reductive transformations. Currently, such models do not exist. In this chapt...

  13. Dynamic Succession of Groundwater Functional Microbial Communities in Response to Emulsified Vegetable Oil Amendment during Sustained In Situ U(VI) Reduction

    PubMed Central

    Zhang, Ping; Wu, Wei-Min; Van Nostrand, Joy D.; Deng, Ye; He, Zhili; Gihring, Thomas; Zhang, Gengxin; Schadt, Chris W.; Watson, David; Jardine, Phil; Criddle, Craig S.; Brooks, Scott; Marsh, Terence L.; Tiedje, James M.; Arkin, Adam P.

    2015-01-01

    A pilot-scale field experiment demonstrated that a one-time amendment of emulsified vegetable oil (EVO) reduced groundwater U(VI) concentrations for 1 year in a fast-flowing aquifer. However, little is known about how EVO amendment stimulates the functional gene composition, structure, and dynamics of groundwater microbial communities toward prolonged U(VI) reduction. In this study, we hypothesized that EVO amendment would shift the functional gene composition and structure of groundwater microbial communities and stimulate key functional genes/groups involved in EVO biodegradation and reduction of electron acceptors in the aquifer. To test these hypotheses, groundwater microbial communities after EVO amendment were analyzed using a comprehensive functional gene microarray. Our results showed that EVO amendment stimulated sequential shifts in the functional composition and structure of groundwater microbial communities. Particularly, the relative abundance of key functional genes/groups involved in EVO biodegradation and the reduction of NO3−, Mn(IV), Fe(III), U(VI), and SO42− significantly increased, especially during the active U(VI) reduction period. The relative abundance for some of these key functional genes/groups remained elevated over 9 months. Montel tests suggested that the dynamics in the abundance, composition, and structure of these key functional genes/groups were significantly correlated with groundwater concentrations of acetate, NO3−, Mn(II), Fe(II), U(VI), and SO42−. Our results suggest that EVO amendment stimulated dynamic succession of key functional microbial communities. This study improves our understanding of the composition, structure, and function changes needed for groundwater microbial communities to sustain a long-term U(VI) reduction. PMID:25862231

  14. Dynamic Succession of Groundwater Functional Microbial Communities in Response to Emulsified Vegetable Oil Amendment during Sustained In Situ U(VI) Reduction.

    PubMed

    Zhang, Ping; Wu, Wei-Min; Van Nostrand, Joy D; Deng, Ye; He, Zhili; Gihring, Thomas; Zhang, Gengxin; Schadt, Chris W; Watson, David; Jardine, Phil; Criddle, Craig S; Brooks, Scott; Marsh, Terence L; Tiedje, James M; Arkin, Adam P; Zhou, Jizhong

    2015-06-15

    A pilot-scale field experiment demonstrated that a one-time amendment of emulsified vegetable oil (EVO) reduced groundwater U(VI) concentrations for 1 year in a fast-flowing aquifer. However, little is known about how EVO amendment stimulates the functional gene composition, structure, and dynamics of groundwater microbial communities toward prolonged U(VI) reduction. In this study, we hypothesized that EVO amendment would shift the functional gene composition and structure of groundwater microbial communities and stimulate key functional genes/groups involved in EVO biodegradation and reduction of electron acceptors in the aquifer. To test these hypotheses, groundwater microbial communities after EVO amendment were analyzed using a comprehensive functional gene microarray. Our results showed that EVO amendment stimulated sequential shifts in the functional composition and structure of groundwater microbial communities. Particularly, the relative abundance of key functional genes/groups involved in EVO biodegradation and the reduction of NO3 (-), Mn(IV), Fe(III), U(VI), and SO4 (2-) significantly increased, especially during the active U(VI) reduction period. The relative abundance for some of these key functional genes/groups remained elevated over 9 months. Montel tests suggested that the dynamics in the abundance, composition, and structure of these key functional genes/groups were significantly correlated with groundwater concentrations of acetate, NO3 (-), Mn(II), Fe(II), U(VI), and SO4 (2-). Our results suggest that EVO amendment stimulated dynamic succession of key functional microbial communities. This study improves our understanding of the composition, structure, and function changes needed for groundwater microbial communities to sustain a long-term U(VI) reduction.

  15. Isotopic and geochemical tracers for U(VI) reduction and U mobility at an in situ recovery U mine

    SciTech Connect

    Basu, Anirban; Brown, Shaun T.; Christensen, John N.; DePaolo, Donald J.; Reimus, Paul W.; Heikoop, Jeffrey M.; Woldegabriel, Giday; Simmons, Ardyth M.; House, Brian M.; Hartmann, Matt; Maher, Kate

    2015-05-19

    In situ recovery (ISR) uranium (U) mining mobilizes U in its oxidized hexavalent form (U(VI)) by oxidative dissolution of U from the roll-front U deposits. Post-mining natural attenuation of residual U(VI) at ISR mines is a potential remediation strategy. Detection and monitoring of naturally occurring reducing subsurface environments are important for successful implementation of this remediation scheme. We used the isotopic tracers ²³⁸U/²³⁵U (δ²³⁸U), ²³⁴U/²³⁸U activity ratio, and ³⁴S/³²S (δ³⁴S), and geochemical measurements of U ore and groundwater collected from 32 wells located within, upgradient, and downgradient of a roll-front U deposit to detect U(VI) reduction and U mobility at an ISR mining site at Rosita, TX, USA. The δ²³⁸U in Rosita groundwater varies from 0.61‰ to -2.49‰, with a trend toward lower δ²³⁸U in downgradient wells. The concurrent decrease in U(VI) concentration and δ²³⁸U with an ε of 0.48‰ ± 0.08‰ is indicative of naturally occurring reducing environments conducive to U(VI) reduction. Additionally, characteristic ²³⁴U/²³⁸U activity ratio and δ³⁴S values may also be used to trace the mobility of the ore zone groundwater after mining has ended. These results support the use of U isotope-based detection of natural attenuation of U(VI) at Rosita and other similar ISR mining sites.

  16. Fe(III) Reduction and U(VI) Immobilization by Paenibacillus sp. Strain 300A, Isolated from Hanford 300A Subsurface Sediments

    SciTech Connect

    Ahmed, B.; Cao, B.; McLean, Jeffrey S.; Ica, Tuba; Dohnalkova, Alice; Istanbullu, Ozlem; Paksoy, Akin; Fredrickson, Jim K.; Beyenal, Haluk

    2012-11-07

    A facultative iron-reducing (Fe(III)-reducing) Paenibacillus sp. strain was isolated from Hanford 300A subsurface sediment biofilms that was capable of reducing soluble Fe(III) complexes (Fe(III)-NTA and Fe(III)-citrate) but unable to reduce poorly crystalline ferrihydrite (Fh). However, Paenibacillus sp. 300A was capable of reducing Fh in the presence of low concentrations (2 µM) of either of electron transfer mediators (ETMs) flavin mononucleotide (FMN) or anthraquinone-2,6-disulfonate (AQDS). Maximum initial Fh reduction rates were observed at catalytic concentrations (<10 µM) of either FMN or AQDS. Higher FMN concentrations inhibited Fh reduction, while increased AQDS concentrations did not. We found that Paenibacillus sp. 300A also could reduce Fh in the presence of natural ETMs from Hanford 300A subsurface sediments. In the absence of ETMs, Paenibacillus sp. 300A was capable of immobilizing U(VI) through both reduction and adsorption. The relative contributions of adsorption and microbial reduction to U(VI) removal from the aqueous phase were ~7:3 in PIPES and ~1:4 in bicarbonate buffer. Our study demonstrated that Paenibacillus sp. 300A catalyzes Fe(III) reduction and U(VI) immobilization and that these reactions benefit from externally added or naturally existing ETMs in 300A subsurface sediments.

  17. Effect of abiotic factors on the mercury reduction process by humic acids in aqueous systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mercury (Hg) in the environment can have serious toxic effects on a variety of living organisms, and is a pollutant of concern worldwide. The reduction of mercury from the toxic Hg2+ form to Hg0 is especially important. One pathway for this reduction to occur is through an abiotic process with humic...

  18. Reduction of U(VI) and Toxic Metals by Desulfovibrio Cytochrome C3

    SciTech Connect

    Wall, Judy D

    2013-04-11

    The central objective of our proposed research was twofold: 1) to investigate the structure-function relationship of Desulfovibrio desulfuricans (now Desulfovibrio alaskensis G20) cytochrome c3 with uranium and 2) to elucidate the mechanism for uranium reduction in vitro and in vivo. Physiological analysis of a mutant of D. desulfuricans with a mutation of the gene encoding the type 1 tetraheme cytochrome c3 had demonstrated that uranium reduction was negatively impacted while sulfate reduction was not if lactate were the electron donor. This was thought to be due to the presence of a branched pathway of electron flow from lactate leading to sulfate reduction. Our experimental plan was to elucidate the structural and mechanistic details of uranium reduction involving cytochrome c3.

  19. Development of U isotope fractionation as an indictor or U(VI) reduction in uranium plumes

    SciTech Connect

    Lundstrom, Craig; Johnson, Thomas

    2016-02-16

    This is the final report for a university research project that advanced development of a new technology for identifying chemical reduction of uranium contamination in groundwater at the Rifle Field Challenge site. Reduction changes mobile hexavalent uranium into immobile U(IV). The stable isotope ratio (238U/235U) measurements of U using multicollector ICP-mass spectrometry were performed to understand the chemical reduction and sorption processes during various field experiments. In addition laboratory experiments were performed to better understand the isotopic fractionations. The main objectives of this project were completed during the project period and two peer-reviewed articles were published to disseminate the information gained.

  20. Linear free energy relationships for the biotic and abiotic reduction of nitroaromatic compounds.

    PubMed

    Luan, Fubo; Gorski, Christopher A; Burgos, William D

    2015-03-17

    Nitroaromatic compounds (NACs) are ubiquitous environmental contaminants that are susceptible to biological and abiotic reduction. Prior works have found that for the abiotic reduction of NACs, the logarithm of the NACs’ rate constants correlate with one-electron reduction potential values of the NACs (EH,NAC1) according to linear free energy relationships (LFERs). Here, we extend the application of LFERs to the bioreduction of NACs and to the abiotic reduction of NACs by bioreduced (and pasteurized) iron-bearing clay minerals. A linear correlation (R2=0.96) was found between the NACs’ bioreduction rate constants (kobs) and EH,NAC1 values. The LFER slope of log kobs versus EH,NAC1/(2.303RT/F) was close to one (0.97), which implied that the first electron transfer to the NAC was the rate-limiting step of bioreduction. LFERs were also established between NAC abiotic reduction rate constants by bioreduced iron-bearing clay minerals (montmorillonite SWy-2 and nontronite NAu-2). The second-order NAC reduction rate constants (k) by bioreduced SWy-2 and NAu-2 were well correlated to EH,NAC1 (R2=0.97 for both minerals), consistent with bioreduction results. However, the LFER slopes of log k versus EH,NAC1/(2.303RT/F) were significantly less than one (0.48–0.50) for both minerals, indicating that the first electron transfer to the NAC was not the rate-limiting step of abiotic reduction. Finally, we demonstrate that the rate of 4-acetylnitrobenzene reduction by bioreduced SWy-2 and NAu-2 correlated to the reduction potential of the clay (EH,clay, R2=0.95 for both minerals), indicating that the clay reduction potential also influences its reactivity.

  1. Aqueous complexation reactions governing the rate and extent of biogeochemical U(VI) reduction

    SciTech Connect

    Kemner, K.M.; Kelly, S.D.; Brooks, Scott C.; Dong, Wenming; Carroll, Sue; Fredrickson, James K.

    2006-06-01

    The proposed research will elucidate the principal biogeochemical reactions that govern the concentration, chemical speciation, and reactivity of the redox-sensitive contaminant uranium. The results will provide an improved understanding and predictive capability of the mechanisms that govern the biogeochemical reduction of uranium in subsurface environments.

  2. Abiotic reduction reactions of anthropogenic organic chemicals in anaerobic systems: A critical review

    NASA Astrophysics Data System (ADS)

    Macalady, Donald L.; Tratnyek, Paul G.; Grundl, Timothy J.

    1986-02-01

    This review is predicated upon the need for a detailed process-level understanding of factors influencing the reduction of anthropogenic organic chemicals in natural aquatic systems. In particular, abiotic reductions of anthropogenic organic chemicals are reviewed. The most important reductive reaction is alkyl dehalogenation (replacement of chloride with hydrogen) which occurs in organisms, sediments, sewage sludge, and reduced iron porphyrin model systems. An abiotic mechanism involving a free radical intermediate has been proposed. The abstraction of vicinal dihalides (also termed dehalogenation) is another reduction that may have an abiotic component in natural systems. Reductive dehalogenation of aryl halides has recently been reported and further study of this reaction is needed. Several other degradation reactions of organohalides that occur in anaerobic environments are mentioned, the most important of which is dehydrohalogenation. The reduction of nitro groups to amines has also been thoroughly studied. The reactions can occur abiotically, and are affected by the redox conditions of the experimental system. However, a relationship between nitro-reduction rate and measured redox potential has not been clearly established. Reductive dealkylation of the N- and O-heteroatom of hydrocarbon pollutants has been observed but not investigated in detail. Azo compounds can be reduced to their hydrazo derivatives and a thorough study of this reaction indicates that it can be caused by extracellular electron transfer agents. Quinone-hydroquinone couples are important reactive groups in humic materials and similar structures in resazurin and indigo carmine make them useful as models for environmental redox conditions. The interconversion of sulfones, sulfoxides, and sulfides is a redox process and is implicated in the degradation of several pesticides though the reactions need more study. Two reductive heterocyclic cleavage reactions are also mentioned. Finally, several

  3. Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing soil minerals. 2. Green rust.

    PubMed

    Lee, Woojin; Batchelor, Bill

    2002-12-15

    Abiotic reductive dechlorination of chlorinated ethylenes by the sulfate form of green rust (GR(SO4)) was examined in batch reactors. Dechlorination kinetics were described by a modified Langmuir-Hinshelwood model. The rate constant for reductive dechlorination of chlorinated ethylenes at reactive GR(SO4) surfaces was in the range of 0.592 (+/-4.4%) to 1.59 (+/-6.3%) day(-1). The specific reductive capacity of GR(SO4) for target organics was in the range of 9.86 (+/-10.1%) to 18.0 (+/-4.3%) microM/g and sorption coefficient was in the range of 0.53 (+/-2.4%) to 1.22 (+/-4.3%) mM(-1). Surface area-normalized pseudo-first-order initial rate constants for chlorinated ethylenes by GR(SO4) were 3.4 to 8.2 times greater than those by pyrite. Chlorinated ethylenes were mainly transformed to acetylene, and no detectable amounts of chlorinated intermediates were observed. The rate constants for the reductive dechlorination of trichloroethylene (TCE) increased as pH increased (6.8 to 10.1) but were independent of solid concentration and initial TCE concentration. Magnetite and/or maghemite were produced by the oxidation of GR(SO4) by TCE. These findings are relevant to the understanding of the role of abiotic reductive dechlorination during natural attenuation in environments that contain GR(SO4).

  4. Iron-mediated microbial oxidation and abiotic reduction of organic contaminants under anoxic conditions.

    PubMed

    Tobler, Nicole B; Hofstetter, Thomas B; Straub, Kristina L; Fontana, Daniela; Schwarzenbach, René P

    2007-11-15

    In anoxic environments, the oxidation of organic compounds, such as BTEX fuel components, by dissimilatory Fe(III) reduction can generate reactive mineral-bound Fe(II) species, which in turn are able to reduce other classes of organic and inorganic groundwater contaminants. In this study, we designed and evaluated an anaerobic batch reactor that mimicks iron-reducing conditions to investigate the factors that favor the coupling of microbial toluene oxidation and abiotic reduction of nitroaromatic contaminants. We investigated the influence of different Fe(III)-bearing minerals and combinations thereof on the coupling of these two processes. Results from laboratory model systems show that complete oxidation of toluene to CO2 by Geobacter metallireducens in the presence of Fe(III)-bearing minerals leads to the formation of mineral-bound Fe(II) species capable of the reduction of 4-nitroacetophenone. Whereas significant microbial toluene oxidation was only observed in the presence of amorphous Fe(III) phases, reduction of nitroaromatic compounds only proceeded with Fe(II) species bound to crystalline Fe(III) oxides. Our results suggest that in anoxic soils and sediments containing amorphous and crystalline iron phases simultaneously, coupling of microbial oxidation and abiotic reduction of organic compounds may allow for concurrent natural attenuation of different contaminant classes.

  5. Interaction of abiotic and microbial processes in hexachloroethane reduction in groundwater

    USGS Publications Warehouse

    Roberts, A. Lynn; Gschwend, Philip M.

    1994-01-01

    In order to gain insight into mechanisms of hexachloroethane reduction, hexa- and pentachloroethane transformation rates were measured in anaerobic groundwater samples. For samples spiked with pentachloroethane, disappearance of pentachloroethane was accompanied by tetrachloroethylene production. Transformation rates were similar in unpoisoned and in HgCl2-poisoned samples, and rates were within ±20% of predictions based on measured pH and second-order dehydrochlorination rate constants determined in clean laboratory systems, indicating that the fate of pentachloroethane in this system is dominated by abiotic reactions. No hexachloroethane transformation was observed in HgCl2-poisoned samples, whereas in unpoisoned samples, hexachloroethane disappearance was accompanied by production of tetrachloroethylene as well as traces of pentachloroethane. Although only minor amounts of pentachloroethane accumulated, as much as 30% of the hexachloroethane transformation pathway proceeds via a pentachloroethane intermediate. This suggests that the microbial reduction of hexachloroethane proceeds at least in part through a free-radical mechanism. To the extent that hexachloroethane reduction to tetrachloroethylene occurs through a pentachloroethane intermediate, the first step in the sequence, the microbially-mediated step, is the slow step; the subsequent abiotic dehydrohalogenation step occurs much more rapidly.

  6. Archaeal (Per)Chlorate Reduction at High Temperature: An Interplay of Biotic and Abiotic Reactions

    NASA Astrophysics Data System (ADS)

    Liebensteiner, Martin G.; Pinkse, Martijn W. H.; Schaap, Peter J.; Stams, Alfons J. M.; Lomans, Bart P.

    2013-04-01

    Perchlorate and chlorate anions [(per)chlorate] exist in the environment from natural and anthropogenic sources, where they can serve as electron acceptors for bacteria. We performed growth experiments combined with genomic and proteomic analyses of the hyperthermophile Archaeoglobus fulgidus that show (per)chlorate reduction also extends into the archaeal domain of life. The (per)chlorate reduction pathway in A. fulgidus relies on molybdo-enzymes that have similarity with bacterial enzymes; however, chlorite is not enzymatically split into chloride and oxygen. Evidence suggests that it is eliminated by an interplay of abiotic and biotic redox reactions involving sulfur compounds. Biological (per)chlorate reduction by ancient archaea at high temperature may have prevented accumulation of perchlorate in early terrestrial environments and consequently given rise to oxidizing conditions on Earth before the rise of oxygenic photosynthesis.

  7. Biogeochemical Modeling of In Situ U(VI) Reduction and Immobilization with Emulsified Vegetable Oil as the Electron Donor at a Field Site in Oak Ridge, Tennessee

    NASA Astrophysics Data System (ADS)

    Tang, G.; Parker, J.; Wu, W.; Schadt, C. W.; Watson, D. B.; Brooks, S. C.; Orifrc Team

    2011-12-01

    A comprehensive biogeochemical model was developed to quantitatively describe the coupled hydrologic, geochemical and microbiological processes that occurred following injection of emulsified vegetable oil (EVO) as the electron donor to immobilize U(VI) at the Oak Ridge Integrated Field Research Challenge site (ORIFRC) in Tennessee. The model couples the degradation of EVO, production and oxidation of long-chain fatty acids (LCFA), glycerol, hydrogen and acetate, reduction of nitrate, manganese, ferrous iron, sulfate and uranium, and methanoganesis with growth of multiple microbial groups. The model describes the evolution of geochemistry and microbial populations not only in the aqueous phase as typically observed, but also in the mineral phase and therefore enables us to evaluate the applicability of rates from the literature for field scale assessment, estimate the retention and degradation rates of EVO and LCFA, and assess the influence of the coupled processes on fate and transport of U(VI). Our results suggested that syntrophic bacteria or metal reducers might catalyze LCFA oxidation in the downstream locations when sulfate was consumed, and competition between methanogens and others for electron donors and slow growth of methanogen might contribute to the sustained reducing condition. Among the large amount of hydrologic, geochemical and microbiological parameter values, the initial biomass, and the interactions (e.g., inhibition) of the microbial functional groups, and the rate and extent of Mn and Fe oxide reduction appear as the major sources of uncertainty. Our model provides a platform to conduct numerical experiments to study these interactions, and could be useful for further iterative experimental and modeling investigations into the bioreductive immobiliztion of radionuclide and metal contaminants in the subsurface.

  8. Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing soil minerals. 1. Pyrite and magnetite.

    PubMed

    Lee, Woojin; Batchelor, Bill

    2002-12-01

    Abiotic reductive dechlorination of chlorinated ethylenes (tetrachloroethylene (PCE), trichloroethylene (TCE), cis-dichloroethylene (cis-DCE), and vinyl chloride (VC)) by pyrite and magnetite was characterized in a batch reactor system. Dechlorination kinetics was adequately described by a modified Langmuir-Hinshelwood model that includes the effect of a decreasing reductive capacity of soil mineral. The kinetic rate constant for the reductive dechlorination of target organics at reactive sites of soil minerals was in the range of 0.185 (+/- 0.023) to 1.71 (+/- 0.06) day(-1). The calculated specific reductive capacity of soil minerals for target organics was in the range of 0.33 (+/- 0.02) to 2.26 (+/- 0.06) microM/g and sorption coefficient was in the range of 0.181 (+/- 0.006) to 0.7 (+/- 0.022) mM(-1). Surface area-normalized pseudo-first-order initial rate constants for target organics by pyrite were found to be 23.5 to 40.3 times greater than those by magnetite. Target organics were mainly transformed to acetylene and small amount of chlorinated intermediates, which suggests that beta-elimination was the main dechlorination pathway. The dechlorination of VC followed a hydrogenolysis pathway to produce ethylene and ethane. The addition of Fe(II) increased the dechlorination rate of cis-DCE and VC in magnetite suspension by nearly a factor of 10. The results obtained in this research provide basic knowledge to better predict the fate of chlorinated ethylenes and to understand the potential of abiotic processes in natural attenuation.

  9. Abiotic nitrogen fixation on terrestrial planets: reduction of NO to ammonia by FeS.

    PubMed

    Summers, David P; Basa, Ranor C B; Khare, Bishun; Rodoni, David

    2012-02-01

    Understanding the abiotic fixation of nitrogen and how such fixation can be a supply of prebiotic nitrogen is critical for understanding both the planetary evolution of, and the potential origin of life on, terrestrial planets. As nitrogen is a biochemically essential element, sources of biochemically accessible nitrogen, especially reduced nitrogen, are critical to prebiotic chemistry and the origin of life. Loss of atmospheric nitrogen can result in loss of the ability to sustain liquid water on a planetary surface, which would impact planetary habitability and hydrological processes that shape the surface. It is known that NO can be photochemically converted through a chain of reactions to form nitrate and nitrite, which can be subsequently reduced to ammonia. Here, we show that NO can also be directly reduced, by FeS, to ammonia. In addition to removing nitrogen from the atmosphere, this reaction is particularly important as a source of reduced nitrogen on an early terrestrial planet. By converting NO directly to ammonia in a single step, ammonia is formed with a higher product yield (~50%) than would be possible through the formation of nitrate/nitrite and subsequent conversion to ammonia. In conjunction with the reduction of NO, there is also a catalytic disproportionation at the mineral surface that converts NO to NO₂ and N₂O. The NO₂ is then converted to ammonia, while the N₂O is released back in the gas phase, which provides an abiotic source of nitrous oxide.

  10. Real-Time Manganese Phase Dynamics during Biological and Abiotic Manganese Oxide Reduction.

    PubMed

    Johnson, Jena E; Savalia, Pratixa; Davis, Ryan; Kocar, Benjamin D; Webb, Samuel M; Nealson, Kenneth H; Fischer, Woodward W

    2016-04-19

    Manganese oxides are often highly reactive and easily reduced, both abiotically, by a variety of inorganic chemical species, and biologically during anaerobic respiration by microbes. To evaluate the reaction mechanisms of these different reduction routes and their potential lasting products, we measured the sequence progression of microbial manganese(IV) oxide reduction mediated by chemical species (sulfide and ferrous iron) and the common metal-reducing microbe Shewanella oneidensis MR-1 under several endmember conditions, using synchrotron X-ray spectroscopic measurements complemented by X-ray diffraction and Raman spectroscopy on precipitates collected throughout the reaction. Crystalline or potentially long-lived phases produced in these experiments included manganese(II)-phosphate, manganese(II)-carbonate, and manganese(III)-oxyhydroxides. Major controls on the formation of these discrete phases were alkalinity production and solution conditions such as inorganic carbon and phosphate availability. The formation of a long-lived Mn(III) oxide appears to depend on aqueous Mn(2+) production and the relative proportion of electron donors and electron acceptors in the system. These real-time measurements identify mineralogical products during Mn(IV) oxide reduction, contribute to understanding the mechanism of various Mn(IV) oxide reduction pathways, and assist in interpreting the processes occurring actively in manganese-rich environments and recorded in the geologic record of manganese-rich strata.

  11. Mechanism of Uranium Reduction and Immobilization in Desulfovibrio vulgaris Biofilms.

    PubMed

    Stylo, Malgorzata; Neubert, Nadja; Roebbert, Yvonne; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-09-01

    The prevalent formation of noncrystalline U(IV) species in the subsurface and their enhanced susceptibility to reoxidation and remobilization, as compared to crystalline uraninite, raise concerns about the long-term sustainability of the bioremediation of U-contaminated sites. The main goal of this study was to resolve the remaining uncertainty concerning the formation mechanism of noncrystalline U(IV) in the environment. Controlled laboratory biofilm systems (biotic, abiotic, and mixed biotic-abiotic) were probed using a combination of U isotope fractionation and X-ray absorption spectroscopy (XAS). Regardless of the mechanism of U reduction, the presence of a biofilm resulted in the formation of noncrystalline U(IV). Our results also show that biotic U reduction is the most effective way to immobilize and reduce U. However, the mixed biotic-abiotic system resembled more closely an abiotic system: (i) the U(IV) solid phase lacked a typically biotic isotope signature and (ii) elemental sulfur was detected, which indicates the oxidation of sulfide coupled to U(VI) reduction. The predominance of abiotic U reduction in our systems is due to the lack of available aqueous U(VI) species for direct enzymatic reduction. In contrast, in cases where bicarbonate is present at a higher concentration, aqueous U(VI) species dominate, allowing biotic U reduction to outcompete the abiotic processes.

  12. Reduction of ferrihydrite with adsorbed and coprecipitated organic matter: microbial reduction by Geobacter bremensis vs. abiotic reduction by Na-dithionite

    NASA Astrophysics Data System (ADS)

    Eusterhues, K.; Hädrich, A.; Neidhardt, J.; Küsel, K.; Keller, T. F.; Jandt, K. D.; Totsche, K. U.

    2014-09-01

    Ferrihydrite is a widespread poorly crystalline Fe oxide which becomes easily coated by natural organic matter in the environment. This mineral-bound organic matter entirely changes the mineral surface properties and therefore the reactivity of the original mineral. Here, we investigated 2-line ferrihydrite, ferrihydrite with adsorbed organic matter, and ferrihydrite coprecipitated with organic matter for microbial and abiotic reduction of Fe(III). Ferrihydrite-organic matter associations with different organic matter loadings were reduced either by Geobacter bremensis or abiotically by Na-dithionite. Both types of experiments showed decreasing initial Fe-reduction rates and decreasing degrees of reduction with increasing amounts of mineral-bound organic matter. At similar organic matter loadings, coprecipitated ferrihydrites were more reactive than ferrihydrites with adsorbed organic matter. The difference can be explained by the smaller crystal size and poor crystallinity of such coprecipitates. At small organic matter loadings the poor crystallinity of coprecipitates led to even faster Fe-reduction rates than found for pure ferrihydrite. The amount of mineral-bound organic matter also affected the formation of secondary minerals: goethite was only found after reduction of organic matter-free ferrihydrite and siderite was only detected when ferrihydrites with relatively low amounts of mineral-bound organic matter were reduced. We conclude that direct contact of G. bremensis to the Fe oxide mineral surface was inhibited by attached organic matter. Consequently, mineral-bound organic matter shall be taken into account as a factor in slowing down reductive dissolution.

  13. Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing phyllosilicates.

    PubMed

    Lee, Woojin; Batchelor, Bill

    2004-09-01

    Abiotic reductive dechlorination of chlorinated ethylenes (tetrachloroethylene (PCE), trichloroethylene (TCE), cis-dichloroethylene (c-DCE), and vinylchloride (VC)) by iron-bearing phyllosilicates (biotite, vermiculite, and montmorillonite) was characterized to obtain better understanding of the behavior of these contaminants in systems undergoing remediation by natural attenuation and redox manipulation. Batch experiments were conducted to evaluate dechlorination kinetics and some experiments were conducted with addition of Fe(II) to simulate impact of microbial iron reduction. A modified Langmuir-Hinshelwood kinetic model adequately described reductive dechlorination kinetics of target organics by the iron-bearing phyllosilicates. The rate constants stayed between 0.08 (+/-10.4%) and 0.401 (+/-8.1%) day(-1) and the specific initial reductive capacity of iron-bearing phyllosilicates for chlorinated ethylenes stayed between 0.177 (+/-6.1%) and 1.06 (+/-7.1%) microM g(-1). The rate constants for the reductive dechlorination of TCE at reactive biotite surface increased as pH (5.5-8.5) and concentration of sorbed Fe(II) (0-0.15 mM g(-1)) increased. The appropriateness of the model is supported by the fact that the rate constants were independent of solid concentration (0.0085-0.17 g g(-1)) and initial TCE concentration (0.15-0.60 mM). Biotite had the greatest rate constant among the phyllosilicates both with and without Fe(II) addition. The rate constants were increased by a factor of 1.4-2.5 by Fe(II) addition. Between 1.8% and 36% of chlorinated ethylenes removed were partitioned to the phyllosilicates. Chloride was produced as a product of degradation and no chlorinated intermediates were observed throughout the experiment.

  14. Contribution of extracellular polymeric substances from Shewanella sp. HRCR-1 biofilms to U(VI) immobilization.

    PubMed

    Cao, Bin; Ahmed, Bulbul; Kennedy, David W; Wang, Zheming; Shi, Liang; Marshall, Matthew J; Fredrickson, Jim K; Isern, Nancy G; Majors, Paul D; Beyenal, Haluk

    2011-07-01

    The goal of this study was to quantify the contribution of extracellular polymeric substances (EPS) to U(VI) immobilization by Shewanella sp. HRCR-1. Through comparison of U(VI) immobilization using cells with bound EPS (bEPS) and cells with minimal EPS, we show that (i) bEPS from Shewanella sp. HRCR-1 biofilms contribute significantly to U(VI) immobilization, especially at low initial U(VI) concentrations, through both sorption and reduction; (ii) bEPS can be considered a functional extension of the cells for U(VI) immobilization and they likely play more important roles at lower initial U(VI) concentrations; and (iii) the U(VI) reduction efficiency is dependent upon the initial U(VI) concentration and decreases at lower concentrations. To quantify the relative contributions of sorption and reduction to U(VI) immobilization by EPS fractions, we isolated loosely associated EPS (laEPS) and bEPS from Shewanella sp. HRCR-1 biofilms grown in a hollow fiber membrane biofilm reactor and tested their reactivity with U(VI). We found that, when reduced, the isolated cell-free EPS fractions could reduce U(VI). Polysaccharides in the EPS likely contributed to U(VI) sorption and dominated the reactivity of laEPS, while redox active components (e.g., outer membrane c-type cytochromes), especially in bEPS, possibly facilitated U(VI) reduction.

  15. Réduction enzymatique de U(VI) dans des eaux souterraines

    NASA Astrophysics Data System (ADS)

    Abdelouas, Abdesselam; Lutze, Werner; Nuttall, Eric; Gong, Weiliang; Fritz, Bertrand; Crovisier, Jean-Louis

    1999-03-01

    The use of enzymatic reduction of U(VI) in remediation of groundwater contaminated with UCVI) is receiving considerable attention. Certain strains of bacteria can combine the oxidation of an organic compound to the reduction of U(VI) to U(IV), which precipitates as uraninite. In the present study, we tested the reduction of U(VI) in groundwaters with various origins and compositions. In all groundwaters U(VI) was reduced by sulfate reducing bacteria that had been activated by ethanol and trimetaphosphate. The reduction rate of U(VI) depends on sulfate concentration in water and the abundance of bacteria in the system. This work shows that bacteria capable of U(VI) reduction are ubiquitous in nature, and suggests the possibility of a large application of the enzymatic reduction of U(VI) for in situ clean up of groundwaters contaminated with uranium.

  16. Reduction of ferrihydrite with adsorbed and coprecipitated organic matter: microbial reduction by Geobacter bremensis vs. abiotic reduction by Na-dithionite

    NASA Astrophysics Data System (ADS)

    Eusterhues, K.; Hädrich, A.; Neidhardt, J.; Küsel, K.; Keller, T. F.; Jandt, K. D.; Totsche, K. U.

    2014-04-01

    Ferrihydrite (Fh) is a widespread poorly crystalline Fe oxide which becomes easily coated by natural organic matter (OM) in the environment. This mineral-bound OM entirely changes the mineral surface properties and therefore the reactivity of the original mineral. Here, we investigated the reactivity of 2-line Fh, Fh with adsorbed OM and Fh coprecipitated with OM towards microbial and abiotic reduction of Fe(III). As a surrogate for dissolved soil OM we used a water extract of a Podzol forest floor. Fh-OM associations with different OM-loadings were reduced either by Geobacter bremensis or abiotically by Na-dithionite. Both types of experiments showed decreasing initial Fe reduction rates and decreasing degrees of reduction with increasing amounts of mineral-bound OM. At similar OM-loadings, coprecipitated Fhs were more reactive than Fhs with adsorbed OM. The difference can be explained by the smaller crystal size and poor crystallinity of such coprecipitates. At small OM loadings this led to even faster Fe reduction rates than found for pure Fh. The amount of mineral-bound OM also affected the formation of secondary minerals: goethite was only found after reduction of OM-free Fh and siderite was only detected when Fhs with relatively low amounts of mineral-bound OM were reduced. We conclude that direct contact of G. bremensis to the Fe oxide mineral surface was inhibited when blocked by OM. Consequently, mineral-bound OM shall be taken into account besides Fe(II) accumulation as a further widespread mechanism to slow down reductive dissolution.

  17. Electrical Signatures Associated with Abiotic and In Vitro Dissimilatory Iron Reduction

    NASA Astrophysics Data System (ADS)

    Regberg, A. B.; Brantley, S. L.; Singha, K.; Tien, M.

    2007-05-01

    Several researchers have described anomalous electrical signatures associated with bacterial activity in anoxic zones in aquifers containing organic contaminants. It is thought that these signals can be attributed to (bio)geochemical changes caused by the oxidation of organic contaminants and the reduction of associated species like iron oxides. We report laboratory observations of changes in electrical conductivity (EC) that can be attributed to specific (bio)geochemical reactions involving reductive dissolution of iron oxides enzymatically and nonenzymatically. Abiotic reduction of ferrihydrite by ascorbic acid in batch experiments causes a cumulative 20- 40% increase in measured conductivity, (EC increases by ~300 μ S/cm). This change can be attributed to a decrease in conductivity (Δ EC) from increasing proton activity (Δ pH = 3.25 --> 5.07, Δ EC = -200 μ S/cm) and an increase in dissolved Fe(II) (Δ [Fe] = 2.2 - 3.3 mM, Δ EC = 400 -700 μ S/cm). Conductivity is presumably unaffected by Fe(II) sorbed to the ferrihydrite. Rates calculated from this method are comparable to literature rates for similar experiments. In a similar in vitro system, total membrane fractions from Shewanella oneidensis MR-1 were used to reduce ferrihydrite in the presence of formate and HEPES buffer. A 10 - 15% increase in conductivity was observed in the batch experiment (Δ EC = ~280 μ S/cm). This Δ EC is attributed to an increase in the concentration of de-protonated HEPES as well as carbonate ion as formate is oxidized. Fe(II) released in this system is quickly sorbed onto the ferrihydrite surface and is not thought to change conductivity. Despite the sorption of iron in these in vitro experiments, conductivity changes measurably and documents the rate of the reaction. Accessory changes like buffer de- protonation play an important role in interpreting the electrical signals caused by dissimilatory iron reduction. In order to accurately interpret field data it is necessary

  18. Contribution of Extracellular Polymeric Substances from Shewanella sp. HRCR-1 Biofilms to U(VI) Immobilization

    SciTech Connect

    Cao, Bin; Ahmed, B.; Kennedy, David W.; Wang, Zheming; Shi, Liang; Marshall, Matthew J.; Fredrickson, Jim K.; Isern, Nancy G.; Majors, Paul D.; Beyenal, Haluk

    2011-06-05

    The goal of this study was to quantify the contribution of extracellular polymeric substances (EPS) in U(VI) immobilization by Shewanella sp. HRCR-1. Through comparison of U(VI) immobilization using cells with bound EPS (bEPS) and cells without EPS, we showed that i) bEPS from Shewanella sp. HRCR-1 biofilms contributed significantly to U(VI) immobilization, especially at low initial U(VI) concentrations, through both sorption and reduction; ii) bEPS could be considered as a functional extension of the cells for U(VI) immobilization and they likely play more important roles at initial U(VI) concentrations; and iii) U(VI) reduction efficiency was found to be dependent upon initial U(VI) concentration and the efficiency decreased at lower concentrations. To quantify relative contribution of sorption and reduction in U(VI) immobilization by EPS fractions, we isolated loosely associated EPS (laEPS) and bEPS from Shewanella sp. HRCR-1 biofilms grown in a hollow fiber membrane biofilm reactor and tested their reactivity with U(V). We found that, when in reduced form, the isolated cell-free EPS fractions could reduce U(VI). Polysaccharides in the EPS likely contributed to U(VI) sorption and dominated reactivity of laEPS while redox active components (e.g., outer membrane c-type cytochromes), especially in bEPS, might facilitate U(VI) reduction.

  19. CHARACTERIZING THE ABIOTIC REDUCTANTS FOR NITROAROMATIC COMPOUNDS AS A FUNCTION OF REDOX ZONATION IN ANOXIC SEDIMENTS

    EPA Science Inventory

    Reductive transformation is the dominant reaction pathway for the degradation of nitroaromatic compounds in anaerobic environments (Larson and Weber, 1994). Proposed reductants cover a spectrum ranging from reduced rninerals and organic matter to microbial enzyme systems. Transfo...

  20. Technetium Reduction and Permanent Sequestration by Abiotic and Biotic Formation of Low-Solubility Sulfide Mineral Phases

    SciTech Connect

    Tratnyek, Paul G.; Tebo, Bradley M.; Fan, Dimin; Anitori, Roberto; Szecsody, Jim; Jansik, Danielle

    2015-11-14

    One way to minimize the mobility of the TcVII oxyanion pertechnetate (TcO4-) is to effect reduction under sulfidogenic conditions (generated abiotically by Fe0 or biotically) to form TcSx, which is significantly slower to oxidize than TcIVO2. In sediment systems, TcSx and other precipitates may oxidize more slowly due to oxygen diffusion limitations to these low permeability precipitate zones. In addition, the TcO4- reduction rate may be more rapid in the presence of sediment because of additional reductive surface phases. This project aims to provide a fundamental understanding of the feasibility of immobilization of TcO4- as TcSx in the vadose zone or groundwater by application nano zero-valent iron (nZVI), and sulfide or sulfate. Biotic batch experiments have used the sulfate-reducing bacterium (SRB) Desulfotomaculum reducens. The iron sulfide mineral mackinawite was generated under these conditions, while vivianite was formed in nZVI only controls. The sulfide/bacteria-containing system consistently reduced aqueous pertechnetate rapidly (> 95% in the first hour), a rate similar to that for the sulfide-free, nZVI only system. Reduced Tc (aged for 3 months) generated in both SRB/nZVI systems was highly resistant to reoxidation. In reduced samples, Tc was found associated with solid phases containing Fe and S (D. reducens/nZVI) or Fe (nZVI only). Experiments using D. reducens without nZVI provided some additional insights. Firstly, stationary phase cultures were able to slowly reduce pertechnetate. Secondly, addition of pertechnetate at the beginning of cell growth (lag phase) resulted in a faster rate of Tc reduction, possibly indicating a direct (e.g. enzymatic) role for D. reducens in Tc reduction. Abiotic batch experiments were conducted with Na2S as the sulfide source. Pertechnetate reduction was

  1. Nitrogen Assimilation, Abiotic Stress and Glucose 6-Phosphate Dehydrogenase: The Full Circle of Reductants.

    PubMed

    Esposito, Sergio

    2016-05-11

    Glucose 6 phosphate dehydrogenase (G6PDH; EC 1.1.1.49) is well-known as the main regulatory enzyme of the oxidative pentose phosphate pathway (OPPP) in living organisms. Namely, in Planta, different G6PDH isoforms may occur, generally localized in cytosol and plastids/chloroplasts. These enzymes are differently regulated by distinct mechanisms, still far from being defined in detail. In the last decades, a pivotal function for plant G6PDHs during the assimilation of nitrogen, providing reductants for enzymes involved in nitrate reduction and ammonium assimilation, has been described. More recently, several studies have suggested a main role of G6PDH to counteract different stress conditions, among these salinity and drought, with the involvement of an ABA depending signal. In the last few years, this recognized vision has been greatly widened, due to studies clearly showing the non-conventional subcellular localization of the different G6PDHs, and the peculiar regulation of the different isoforms. The whole body of these considerations suggests a central question: how do the plant cells distribute the reductants coming from G6PDH and balance their equilibrium? This review explores the present knowledge about these mechanisms, in order to propose a scheme of distribution of reductants produced by G6PDH during nitrogen assimilation and stress.

  2. Nitrogen Assimilation, Abiotic Stress and Glucose 6-Phosphate Dehydrogenase: The Full Circle of Reductants

    PubMed Central

    Esposito, Sergio

    2016-01-01

    Glucose 6 phosphate dehydrogenase (G6PDH; EC 1.1.1.49) is well-known as the main regulatory enzyme of the oxidative pentose phosphate pathway (OPPP) in living organisms. Namely, in Planta, different G6PDH isoforms may occur, generally localized in cytosol and plastids/chloroplasts. These enzymes are differently regulated by distinct mechanisms, still far from being defined in detail. In the last decades, a pivotal function for plant G6PDHs during the assimilation of nitrogen, providing reductants for enzymes involved in nitrate reduction and ammonium assimilation, has been described. More recently, several studies have suggested a main role of G6PDH to counteract different stress conditions, among these salinity and drought, with the involvement of an ABA depending signal. In the last few years, this recognized vision has been greatly widened, due to studies clearly showing the non-conventional subcellular localization of the different G6PDHs, and the peculiar regulation of the different isoforms. The whole body of these considerations suggests a central question: how do the plant cells distribute the reductants coming from G6PDH and balance their equilibrium? This review explores the present knowledge about these mechanisms, in order to propose a scheme of distribution of reductants produced by G6PDH during nitrogen assimilation and stress. PMID:27187489

  3. Abiotic reduction reactions of dichloroacetamide safeners: transformations of "inert" agrochemical constituents.

    PubMed

    Sivey, John D; Roberts, A Lynn

    2012-02-21

    Safeners are so-called "inert" constituents of herbicide formulations added to protect crops from the toxic effects of herbicides. We examined the reactivity of three dichloroacetamide safeners and 12 structural analogues [all neutral compounds of the form Cl(2)CXC(═O)NRR'; X = H, Cl; R-groups include alkyl, branched alkyl, n-allyl, and cyclic moieties] in one homogeneous and two heterogeneous reductant systems: solutions of Cr(H(2)O)(6)(2+), suspensions of Fe(II)-amended goethite, and suspensions of Fe(II)-amended hematite. Analyses of reaction products indicate each safener can undergo stepwise hydrogenolysis (replacement of chlorine by hydrogen) in each system at near-neutral pH. The first hydrogenolysis step generates compounds similar (in one case, identical) to herbicide active ingredients. Rates of product formation and (when reactions were sufficiently fast) parent loss were quantified; reaction rates in heterogeneous systems spanned 2 orders of magnitude and were strongly influenced by R-group structure. The length of n-alkyl R-groups exerted opposite effects on hydrogenolysis rates in homogeneous versus heterogeneous systems: as R-group size increased, reduction rates in heterogeneous systems increased, whereas reduction rates in the homogeneous system decreased. Branched alkyl R-groups decreased hydrogenolysis rates relative to their straight-chain homologues in both homogeneous and heterogeneous systems. Reaction rates in heterogeneous systems can be described via polyparameter linear free energy relationships employing molecular parameters likely to influence dichloroacetamide adsorption. The propensity of dichloroacetamide safeners to undergo reductive transformations into herbicide-like products challenges their classification as "inert" agrochemical ingredients.

  4. Abiotic reduction of nitroaromatic contaminants by iron(II) complexes with organothiol ligands.

    PubMed

    Naka, Daisuke; Kim, Dongwook; Carbonaro, Richard F; Strathmann, Timothy J

    2008-06-01

    Complexation of Fe(II) by dissolved and surface-bound ligands can significantly modify the metal's redox reactivity, and recent work reveals that Fe(II) complexes with selected classes of organic ligands are potent reductants that may contribute to the natural attenuation of subsurface contaminants. In the present study, we investigated the reactivity of Fe(II)-organothiol ligand complexes with nitroaromatic contaminants (NACs; ArNO(2)). Experimental results show that NACs are unreactive in Fe(2+)-only and ligand-only solutions but are reduced to the corresponding aniline compounds (ArNH(2)) in solutions containing both Fe(II) and a number of organothiol ligands. Observed reaction rates are highly dependent on the structure of the Fe(II)-complexing ligand, solution composition, Fe(II) speciation, and NAC structure. For two model ligands, cysteine and thioglycolic acid, observed pseudo-first order rate constants for 4-chloronitrobenzene reduction (k(obs); 1/s) are linearly correlated with the concentration of the respective 1:2 Fe(II)- organothiol complexes (FeL(2)(2-)), and k(obs) measurements are accurately predicted by k(obs) = k(FeL(2-)(2))[FeL(2-)(2)], where k(FeL(2-)(2)) = 1.70 (+/-0.59) 1/M/s and 26.0 (+/-4.8) 1/M/s for cysteine and thioglycolic acid, respectively. The high reactivity of these Fe(II) complexes is attributed to a lowering of the standard one-electron reduction potential of the Fe(III)/Fe(II) redox couple on complexation by organothiol ligands. The relative reactivity of a series of substituted NACs with individual Fe(II) complexes can be described by linear free-energy relationships with the apparent one-electron reduction potentials of the NACs. Tests also show that organothiol ligands can further promote NAC reduction indirectly by re-reducing the Fe(III) that forms when Fe(II) complexes are oxidized by reactions with the NACs.

  5. Stable Isotope Systematics of Abiotic Nitrite Reduction Coupled with Anaerobic Iron Oxidation: The Role of Reduced Clays and Fe-bearing Minerals

    NASA Astrophysics Data System (ADS)

    Grabb, K. C.; Buchwald, C.; Hansel, C. M.; Wankel, S. D.

    2014-12-01

    Under anaerobic conditions, it is widely assumed that nitrate (NO3-) and nitrite (NO2-) reduction is primarily the result of microbial respiration. However, it has also been shown that abiotic reduction of nitrate and nitrite by reduced iron (Fe(II)), whether mineral-bound or surface-associated, may also occur under certain environmentally relevant conditions. With a range of experimental conditions, we investigated the nitrogen and oxygen stable isotope systematics of abiotic nitrite reduction by Fe(II) in an effort to characterize biotic and abiotic processes in the environment. While homogenous reactions between NO2- and Fe(II) in artificial seawater showed little reduction, heterogeneous reactions involving Fe-containing minerals showed considerable nitrite loss. Specifically, rapid nitrite reduction was observed in experiments that included reduced clays (illite, Na-montmorillonite, and nontronite) and those that exhibited iron oxide formation (ferrihydrite, magnetite and/or green rust). While these iron oxides and clay minerals offer both a source of reduced iron in the mineral matrix as well as a surface for Fe(II) activation, control experiments with corundum as a non-Fe containing mineral surface showed little NO2- loss, implicating a more dominant role of structural Fe in the clays during nitrite reduction. The isotope effects for 15N and 18O (15ɛ and 18ɛ) ranged from 5 to 14‰ for 15ɛ and 5 to 17‰ for 18ɛ and were typically coupled such that 15ɛ ~ 18ɛ. Reactions below pH 7 were slower and the 18ɛ was affected by oxygen atom exchange with water. Although little data exist for comparison with the dual isotopes of microbial NO2- reduction, these data serve as a benchmark for evaluating the role of abiotic processes in N reduction, particularly in sediment systems low in organic carbon and high in iron.

  6. Reduction of photosynthetic sensitivity in response to abiotic stress in tomato is mediated by a new generation plant activator

    PubMed Central

    2013-01-01

    Background Yield losses as a result of abiotic stress factors present a significant challenge for the future of global food production. While breeding technologies provide potential to combat negative stress-mediated outcomes over time, interventions which act to prime plant tolerance to stress, via the use of phytohormone-based elicitors for example, could act as a valuable tool for crop protection. However, the translation of fundamental biology into functioning solution is often constrained by knowledge-gaps. Results Photosynthetic and transcriptomic responses were characterised in young tomato (Solanum lycopersicum L.) seedlings in response to pre-treatment with a new plant health activator technology, ‘Alethea’, followed by a subsequent 100 mM salinity stress. Alethea is a novel proprietary technology composed of three key constituent compounds; the hitherto unexplored compound potassium dihydrojasmonate, an analogue of jasmonic acid; sodium benzoate, a carboxylic acid precursor to salicylic acid, and the α-amino acid L-arginine. Salinity treatment led to a maximal 47% reduction in net photosynthetic rate 8 d following NaCl treatment, yet in Alethea pre-treated seedlings, sensitivity to salinity stress was markedly reduced during the experimental period. Microarray analysis of leaf transcriptional responses showed that while salinity stress and Alethea individually impacted on largely non-overlapping, distinct groups of genes, Alethea pre-treatment substantially modified the response to salinity. Alethea affected the expression of genes related to biotic stress, ethylene signalling, cell wall synthesis, redox signalling and photosynthetic processes. Since Alethea had clear effects on photosynthesis/chloroplastic function at the physiological and molecular levels, we also investigated the ability of Alethea to protect various crop species against methyl viologen, a potent generator of oxidative stress in chloroplasts. Alethea pre-treatment produced

  7. Reaction of U-VI with titanium-substituted magnetite: Influence of Ti on U-IV speciation

    SciTech Connect

    Latta, Drew; Pearce, Carolyn I.; Rosso, Kevin M.; Kemner, Kenneth M.; Boyanov, Maxim I.

    2013-07-01

    Reduction of hexavalent uranium (UVI) to less soluble tetravalent uranium (UIV) through enzymatic or abiotic redox reactions has the potential to alter U mobility in subsurface environments. As a ubiquitous natural mineral, magnetite (Fe3O4) is of interest because of its ability to act as a rechargeable reductant for UVI. Natural magnetites are often impure with titanium, and structural Fe3+ replacement by TiIV yields a proportional increase in the relative Fe2+ content in the metal sublattice to maintain bulk charge neutrality. In the absence of oxidation, the Ti content sets the initial bulk Fe2+/Fe3+ ratio (R). Here, we demonstrate that Ti-doped magnetites (Fe3 xTixO4) reduce UVI to UIV. The UVI-Fe2+ redox reactivity was found to be controlled directly by R, but was otherwise independent of Ti content (xTi). However, in contrast to previous studies with pure magnetite where UVI was reduced to nanocrystalline uraninite (UO2), the presence of structural Ti (xTi = 0.25 0.53) results in the formation of UIV species that lack the bidentate U-O2-U bridges of uraninite. Extended x-ray absorption fine structure spectroscopic analysis indicated that the titanomagnetite-bound UIV phase has a novel UIV-Ti binding geometry, different from the coordination of UIV in the mineral brannerite (UIVTi2O6). The observed UIV-Ti coordination at a distance of 3.43 Å suggests a binuclear corner-sharing adsorption/incorporation UIV complex with the solid phase. Furthermore, we explored the effect of oxidation (decreasing R) and solids-to-solution ratio on the reduced UIV phase. The formation of the non-uraninite UIV-Ti phase appears to be controlled by availability of surface Ti sites, rather than R. Our work highlights a previously unrecognized role of Ti in the environmental chemistry of UIV and suggests that further work to characterize the long-term stability of UIV phases formed in the presence of Ti is warranted.

  8. Speciation-dependent microbial reduction of uranium within iron-coated sands.

    PubMed

    Neiss, Jim; Stewart, Brandy D; Nico, Peter S; Fendorf, Scott

    2007-11-01

    Transport of uranium within surface and subsurface environments is predicated largely on its redox state. Uranyl reduction may transpire through either biotic (enzymatic) or abiotic pathways; in either case, reduction of U(VI) to U(IV) results in the formation of sparingly soluble UO2 precipitates. Biological reduction of U(VI), while demonstrated as prolific under both laboratory and field conditions, is influenced by competing electron acceptors (such as nitrate, manganese oxides, or iron oxides) and uranyl speciation. Formation of Ca-UO2-CO3 ternary complexes, often the predominate uranyl species in carbonate-bearing soils and sediments, decreases the rate of dissimilatory U(VI) reduction. The combined influence of uranyl speciation within a mineralogical matrix comparable to natural environments and under hydrodynamic conditions, however, remains unresolved. We therefore examined uranyl reduction by Shewanella putrefaciens within packed mineral columns of ferrihydrite-coated quartz sand under conditions conducive or nonconducive to Ca-UO2-CO3 species formation. The results are dramatic. In the absence of Ca, where uranyl carbonato complexes dominate, U(VI) reduction transpires and consumes all of the U(VI) within the influent solution (0.166 mM) over the first 2.5 cm of the flow field for the entirety of the 54 d experiment. Over 2 g of U is deposited during this reaction period, and despite ferrihydrite being a competitive electron acceptor, uranium reduction appears unabated for the duration of our experiments. By contrast, in columns with 4 mM Ca in the influent solution (0.166 mM uranyl), reduction (enzymatic or surface-bound Fe(III) mediated) appears absent and breakthrough occurs within 18 d (at a flow rate of 3 pore volumes per day). Uranyl speciation, and in particular the formation of ternary Ca-UO2-CO3 complexes, has a profound impact on U(VI) reduction and thus transport within anaerobic systems.

  9. Uranium Isotopic Fractionation Induced by U(VI) Adsorption onto Common Aquifer Minerals.

    PubMed

    Jemison, N E; Johnson, T M; Shiel, A E; Lundstrom, C C

    2016-11-15

    Uranium groundwater contamination due to U mining and processing affects numerous sites globally. Bioreduction of soluble, mobile U(VI) to U(IV)-bearing solids is potentially a very effective remediation strategy. Uranium isotopes ((238)U/(235)U) have been utilized to track the progress of microbial reduction, with laboratory and field studies finding a ∼1‰ isotopic fractionation, with the U(IV) product enriched in (238)U. However, the isotopic fractionation produced by adsorption may complicate the use of (238)U/(235)U to trace microbial reduction. A previous study found that adsorption of U(VI) onto Mn oxides produced a -0.2‰ fractionation with the adsorbed U(VI) depleted in (238)U. In this study, adsorption to quartz, goethite, birnessite, illite, and aquifer sediments induced an average isotopic fractionation of -0.15‰ with the adsorbed U(VI) isotopically lighter than coexisting aqueous U(VI). In bicarbonate-bearing matrices, the fractionation depended little on the nature of the sorbent, with only birnessite producing an atypically large fractionation. In the case of solutions with ionic strengths much lower than those of typical groundwater, less isotopic fractionation was produced than U(VI) solutions with greater ionic strength. Studies using U isotope data to assess U(VI) reduction must consider adsorption as a lesser, but significant isotope fractionation process.

  10. Reaction of U(VI) with titanium-substituted magnetite: influence of Ti on U(IV) speciation.

    PubMed

    Latta, Drew E; Pearce, Carolyn I; Rosso, Kevin M; Kemner, Kenneth M; Boyanov, Maxim I

    2013-05-07

    Reduction of hexavalent uranium (U(VI)) to less soluble tetravalent uranium (U(IV)) through enzymatic or abiotic redox reactions has the potential to alter U mobility in subsurface environments. As a ubiquitous natural mineral, magnetite (Fe3O4) is of interest because of its ability to act as a rechargeable reductant for U(VI). Natural magnetites are often impure with titanium, and structural Fe(3+) replacement by Ti(IV) yields a proportional increase in the relative Fe(2+) content in the metal sublattice to maintain bulk charge neutrality. In the absence of oxidation, the Ti content sets the initial bulk Fe(2+)/Fe(3+) ratio (R). Here, we demonstrate that Ti-doped magnetites (Fe3 - xTixO4) reduce U(VI) to U(IV). The U(VI)-Fe(2+) redox reactivity was found to be controlled directly by R but was otherwise independent of Ti content (xTi). However, in contrast to previous studies with pure magnetite where U(VI) was reduced to nanocrystalline uraninite (UO2), the presence of structural Ti (xTi = 0.25-0.53) results in the formation of U(IV) species that lack the bidentate U-O2-U bridges of uraninite. Extended X-ray absorption fine structure spectroscopic analysis indicated that the titanomagnetite-bound U(IV) phase has a novel U(IV)-Ti binding geometry different from the coordination of U(IV) in the mineral brannerite (U(IV)Ti2O6). The observed U(IV)-Ti coordination at a distance of 3.43 Å suggests a binuclear corner-sharing adsorption/incorporation U(IV) complex with the solid phase. Furthermore, we explored the effect of oxidation (decreasing R) and solids-to-solution ratio on the reduced U(IV) phase. The formation of the non-uraninite U(IV)-Ti phase appears to be controlled by availability of surface Ti sites rather than R. Our work highlights a previously unrecognized role of Ti in the environmental chemistry of U(IV) and suggests that further work to characterize the long-term stability of U(IV) phases formed in the presence of Ti is warranted.

  11. Uranium(VI) reduction by iron(II) monosulfide mackinawite.

    PubMed

    Hyun, Sung Pil; Davis, James A; Sun, Kai; Hayes, Kim F

    2012-03-20

    Reaction of aqueous uranium(VI) with iron(II) monosulfide mackinawite in an O(2) and CO(2) free model system was studied by batch uptake measurements, equilibrium modeling, and L(III) edge U X-ray absorption spectroscopy (XAS). Batch uptake measurements showed that U(VI) removal was almost complete over the wide pH range between 5 and 11 at the initial U(VI) concentration of 5 × 10(-5) M. Extraction by a carbonate/bicarbonate solution indicated that most of the U(VI) removed from solution was reduced to nonextractable U(IV). Equilibrium modeling using Visual MINTEQ suggested that U was in equilibrium with uraninite under the experimental conditions. X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy showed that the U(IV) phase associated with mackinawite was uraninite. Oxidation experiments with dissolved O(2) were performed by injecting air into the sealed reaction bottles containing mackinawite samples reacted with U(VI). Dissolved U measurement and XAS confirmed that the uraninite formed from the U(VI) reduction by mackinawite did not oxidize or dissolve under the experimental conditions. This study shows that redox reactions between U(VI) and mackinawite may occur to a significant extent, implying an important role of the ferrous sulfide mineral in the redox cycling of U under sulfate reducing conditions. This study also shows that the presence of mackinawite protects uraninite from oxidation by dissolved O(2). The findings of this study suggest that uraninite formation by abiotic reduction by the iron sulfide mineral under low temperature conditions is an important process in the redistribution and sequestration of U in the subsurface environments at U contaminated sites.

  12. Biotic and a-biotic Mn and Fe cycling in deep sediments across a gradient of sulfate reduction rates along the California margin

    NASA Astrophysics Data System (ADS)

    Schneider-Mor, A.; Steefel, C.; Maher, K.

    2011-12-01

    The coupling between the biological and a-biotic processes controlling trace metals in deep marine sediments are not well understood, although the fluxes of elements and trace metals across the sediment-water interface can be a major contribution to ocean water. Four marine sediment profiles (ODP leg 167 sites 1011, 1017, 1018 and 1020)were examined to evaluate and quantify the biotic and abiotic reaction networks and fluxes that occur in deep marine sediments. We compared biogeochemical processes across a gradient of sulfate reduction (SR) rates with the objective of studying the processes that control these rates and how they affect major elements as well as trace metal redistribution. The rates of sulfate reduction, methanogenesis and anaerobic methane oxidation (AMO) were constrained using a multicomponent reactive transport model (CrunchFlow). Constraints for the model include: sediment and pore water concentrations, as well as %CaCO3, %biogenic silica, wt% carbon and δ13C of total organic carbon (TOC), particulate organic matter (POC) and mineral associated carbon (MAC). The sites are distinguished by the depth of AMO: a shallow zone is observed at sites 1018 (9 to 19 meters composite depth (mcd)) and 1017 (19 to 30 mcd), while deeper zones occur at sites 1011 (56 to 76 mcd) and 1020 (101 to 116 mcd). Sulfate reduction rates at the shallow AMO sites are on the order 1x10-16 mol/L/yr, much faster than rates in the deeper zone sulfate reduction (1-3x10-17 mol/L/yr), as expected. The dissolved metal ion concentrations varied between the sites, with Fe (0.01-7 μM) and Mn (0.01-57 μM) concentrations highest at Site 1020 and lowest at site 1017. The highest Fe and Mn concentrations occurred at various depths, and were not directly correlated with the rates of sulfate reduction and the maximum alkalinity values. The main processes that control cycling of Fe are the production of sulfide from sulfate reduction and the distribution of Fe-oxides. The Mn distribution

  13. Long-term diffusion of U(VI) in bentonite: Dependence on density.

    PubMed

    Joseph, Claudia; Mibus, Jens; Trepte, Paul; Müller, Christa; Brendler, Vinzenz; Park, Dan M; Jiao, Yongqin; Kersting, Annie B; Zavarin, Mavrik

    2017-01-01

    As a contribution to the safety assessment of nuclear waste repositories, U(VI) diffusion through the potential buffer material MX-80 bentonite was investigated at three clay dry densities over six years. Synthetic MX-80 model pore water was used as background electrolyte. Speciation calculations showed that Ca2UO2(CO3)3(aq) was the main U(VI) species. The in- and out-diffusion of U(VI) was investigated separately. U(VI) diffused about 3mm, 1.5mm, and 1mm into the clay plug at ρ=1.3, 1.6, and 1.9g/cm(3), respectively. No through-diffusion of the U(VI) tracer was observed. However, leaching of natural uranium contained in the clay occurred and uranium was detected in all receiving reservoirs. As expected, the effective and apparent diffusion coefficients, De and Da, decreased with increasing dry density. The Da values for the out-diffusion of natural U(VI) were in good agreement with previously determined values. Surprisingly, Da values for the in-diffusion of U(VI) were about two orders of magnitude lower than values obtained in short-term in-diffusion experiments reported in the literature. Some potential reasons for this behavior that were evaluated are changes of the U(VI) speciation within the clay (precipitation, reduction) or changes of the clay porosity and pore connectivity with time. By applying Archie's law and the extended Archie's law, it was estimated that a significantly smaller effective porosity must be present for the long-term in-diffusion of U(VI). The results suggest that long-term studies of key transport phenomena may reveal additional processes that can directly impact long-term repository safety assessments.

  14. Long-term diffusion of U(VI) in bentonite: Dependence on density

    DOE PAGES

    Joseph, Claudia; Mibus, Jens; Trepte, Paul; ...

    2016-10-12

    As a contribution to the safety assessment of nuclear waste repositories, U(VI) diffusion through the potential buffer material MX-80 bentonite was investigated at three clay dry densities over six years. Synthetic MX-80 model pore water was used as background electrolyte. Speciation calculations showed that Ca2UO2(CO3)3(aq) was the main U(VI) species. The in- and out-diffusion of U(VI) was investigated separately. U(VI) diffused about 3 mm, 1.5 mm, and 1 mm into the clay plug at ρ = 1.3, 1.6, and 1.9 g/cm3, respectively. No through-diffusion of the U(VI) tracer was observed. However, leaching of natural uranium contained in the clay occurredmore » and uranium was detected in all receiving reservoirs. As expected, the effective and apparent diffusion coefficients, De and Da, decreased with increasing dry density. The Da values for the out-diffusion of natural U(VI) were in good agreement with previously determined values. Surprisingly, Da values for the in-diffusion of U(VI) were about two orders of magnitude lower than values obtained in short-term in-diffusion experiments reported in the literature. Some potential reasons for this behavior that were evaluated are changes of the U(VI) speciation within the clay (precipitation, reduction) or changes of the clay porosity and pore connectivity with time. By applying Archie's law and the extended Archie's law, it was estimated that a significantly smaller effective porosity must be present for the long-term in-diffusion of U(VI). Finally, the results suggest that long-term studies of key transport phenomena may reveal additional processes that can directly impact long-term repository safety assessments.« less

  15. UVIS CTE Monitor: Star Clusters

    NASA Astrophysics Data System (ADS)

    Noeske, Kai

    2010-09-01

    *** NOTE 2: 2ND CHANGE MAR 26 2011: VISIT 13 HAD FAILED. APPROVED FOR REPETITION. ****** NEW VISIT 14 IS IDENTICAL TO FORMER VISIT 13, WITH EXCEPTIONS THAT SOME SUBEXPOSURES ARE REMOVED. ****** SEE OBSERVING DESCRIPTION FOR DETAILS. ****** NOTE: THIS IS A CHANGED PHASE II PROPOSAL AFTER VISITS 1,2,7 HAD BEEN EXECUTED ****** CHANGES BECAME NECESSARY AFTER ANALYSIS OF INCOMING CALIBRATION DATA FROM 12379 AND 12348 ****** THIS REVISED PHASE II {submission 14FEB2011} ADDS THE EVALUATION OF CHARGE INJECTION***The changes amount to:1} dropping the 3rd epoch {August 2011} of external CTE monitoring {3 orbits}2} simplifying the CTE monitor observations in the second epoch {March 2011}, freeing up 1 orbit3} using the freed up orbits from 1} and 2}, together with two additional external orbits that we were granted, to thoroughly assess the data quality of charge - injected data under realistic observing setups.These charge-injected observations will be obtained during the 2nd epoch of the CTE monitor program, in the March 2011 window.------ Original Text prior to 14 Feb 2011 below this line -----------This program extends the Cycle 17 external CTE calibration {CAL/WFC3 ID 11924} program for WFC3/UVIS over Cycle 18. Targets are {i} the sparse cluster NGC 6791 observed in Cycle 17, to continue a consistent set of observations that allows to isolate the time evolution of the CTE, and {ii} a denser field in 47 Tuc {NGC 104}. The latter will provide data to measure the dependence of the CTE on field crowding. It will also provide a consistent comparison between the CTE evolution of WFC3/UVIS and that of ACS/WFC at the same time into the flight {1 year}, because ACS/WFC CTE data were based on 47 Tuc observations. Additional observations of 47 Tuc in the CVZ will provide a wide range of background levels to measure the background dependence of the UVIS CTE.Goals are {i} the continued monitoring of the time evolution of the WFC3/UVIS CTE, {ii} establishing the detector X

  16. MICROSCALE METABOLIC, REDOX AND ABIOTIC REACTIONS IN HANFORD 300 AREA SUBSURFACE SEDIMENTS

    SciTech Connect

    Beyenal, Haluk; McLEan, Jeff; Majors, Paul; Fredrickson, Jim

    2013-11-14

    The Hanford 300 Area is a unique site due to periodic hydrologic influence of river water resulting in changes in groundwater elevation and flow direction. This area is also highly subject to uranium remobilization, the source of which is currently believed to be the region at the base of the vadose zone that is subject to period saturation due to the changes in the water levels in the Columbia River. We found that microbial processes and redox and abiotic reactions which operate at the microscale were critical to understanding factors controlling the macroscopic fate and transport of contaminants in the subsurface. The combined laboratory and field research showed how microscale conditions control uranium mobility and how biotic, abiotic and redox reactions relate to each other. Our findings extended the current knowledge to examine U(VI) reduction and immobilization using natural 300 Area communities as well as selected model organisms on redox-sensitive and redox-insensitive minerals. Using innovative techniques developed specifically to probe biogeochemical processes at the microscale, our research expanded our current understanding of the roles played by mineral surfaces, bacterial competition, and local biotic, abiotic and redox reaction rates on the reduction and immobilization of uranium.

  17. Fate of Adsorbed U(VI) during Sulfidization of Lepidocrocite and Hematite

    PubMed Central

    2017-01-01

    The impact on U(VI) adsorbed to lepidocrocite (γ-FeOOH) and hematite (α-Fe2O3) was assessed when exposed to aqueous sulfide (S(-II)aq) at pH 8.0. With both minerals, competition between S(-II) and U(VI) for surface sites caused instantaneous release of adsorbed U(VI). Compared to lepidocrocite, consumption of S(-II)aq proceeded slower with hematite, but yielded maximum dissolved U concentrations that were more than 10 times higher, representing about one-third of the initially adsorbed U. Prolonged presence of S(-II)aq in experiments with hematite in combination with a larger release of adsorbed U(VI), enhanced the reduction of U(VI): after 24 h of reaction about 60–70% of U was in the form of U(IV), much higher than the 25% detected in the lepidocrocite suspensions. X-ray absorption spectra indicated that U(IV) in both hematite and lepidocrocite suspensions was not in the form of uraninite (UO2). Upon exposure to oxygen only part of U(IV) reoxidized, suggesting that monomeric U(IV) might have become incorporated in newly formed iron precipitates. Hence, sulfidization of Fe oxides can have diverse consequences for U mobility: in short-term, desorption of U(VI) increases U mobility, while reduction to U(IV) and its possible incorporation in Fe transformation products may lead to long-term U immobilization. PMID:28121137

  18. Fate of Adsorbed U(VI) during Sulfidization of Lepidocrocite and Hematite.

    PubMed

    Alexandratos, Vasso G; Behrends, Thilo; Van Cappellen, Philippe

    2017-02-21

    The impact on U(VI) adsorbed to lepidocrocite (γ-FeOOH) and hematite (α-Fe2O3) was assessed when exposed to aqueous sulfide (S(-II)aq) at pH 8.0. With both minerals, competition between S(-II) and U(VI) for surface sites caused instantaneous release of adsorbed U(VI). Compared to lepidocrocite, consumption of S(-II)aq proceeded slower with hematite, but yielded maximum dissolved U concentrations that were more than 10 times higher, representing about one-third of the initially adsorbed U. Prolonged presence of S(-II)aq in experiments with hematite in combination with a larger release of adsorbed U(VI), enhanced the reduction of U(VI): after 24 h of reaction about 60-70% of U was in the form of U(IV), much higher than the 25% detected in the lepidocrocite suspensions. X-ray absorption spectra indicated that U(IV) in both hematite and lepidocrocite suspensions was not in the form of uraninite (UO2). Upon exposure to oxygen only part of U(IV) reoxidized, suggesting that monomeric U(IV) might have become incorporated in newly formed iron precipitates. Hence, sulfidization of Fe oxides can have diverse consequences for U mobility: in short-term, desorption of U(VI) increases U mobility, while reduction to U(IV) and its possible incorporation in Fe transformation products may lead to long-term U immobilization.

  19. Bicarbonate impact on U(VI) bioreduction in a shallow alluvial aquifer

    NASA Astrophysics Data System (ADS)

    Long, Philip E.; Williams, Kenneth H.; Davis, James A.; Fox, Patricia M.; Wilkins, Michael J.; Yabusaki, Steven B.; Fang, Yilin; Waichler, Scott R.; Berman, Elena S. F.; Gupta, Manish; Chandler, Darrell P.; Murray, Chris; Peacock, Aaron D.; Giloteaux, Ludovic; Handley, Kim M.; Lovley, Derek R.; Banfield, Jillian F.

    2015-02-01

    Field-scale biostimulation and desorption tracer experiments conducted in a uranium (U) contaminated, shallow alluvial aquifer have provided insight into the coupling of microbiology, biogeochemistry, and hydrogeology that control U mobility in the subsurface. Initial experiments successfully tested the concept that Fe-reducing bacteria such as Geobacter sp. could enzymatically reduce soluble U(VI) to insoluble U(IV) during in situ electron donor amendment (Anderson et al., 2003; Williams et al., 2011). In parallel, in situ desorption tracer tests using bicarbonate amendment demonstrated rate-limited U(VI) desorption (Fox et al., 2012). These results and prior laboratory studies underscored the importance of enzymatic U(VI)-reduction and suggested the ability to combine desorption and bioreduction of U(VI). Here we report the results of a new field experiment in which bicarbonate-promoted uranium desorption and acetate amendment were combined and compared to an acetate amendment-only experiment in the same experimental plot. Results confirm that bicarbonate amendment to alluvial aquifer sediments desorbs U(VI) and increases the abundance of Ca-uranyl-carbonato complexes. At the same time, the rate of acetate-promoted enzymatic U(VI) reduction was greater in the presence of added bicarbonate in spite of the increased dominance of Ca-uranyl-carbonato aqueous complexes. A model-simulated peak rate of U(VI) reduction was ∼3.8 times higher during acetate-bicarbonate treatment than under acetate-only conditions. Lack of consistent differences in microbial community structure between acetate-bicarbonate and acetate-only treatments suggest that a significantly higher rate of U(VI) reduction in the bicarbonate-impacted sediment may be due to a higher intrinsic rate of microbial reduction induced by elevated concentrations of the bicarbonate oxyanion. The findings indicate that bicarbonate amendment may be useful in improving the engineered bioremediation of uranium in

  20. Bicarbonate Impact on U(VI) Bioreduction in a Shallow Alluvial Aquifer

    SciTech Connect

    Long, Philip E.; Williams, Kenneth H.; Davis, James A.; Fox, Patricia M.; Wilkins, Michael J.; Yabusaki, Steven B.; Fang, Yilin; Waichler, Scott R.; Berman, Elena S.; Gupta, Manish; Chandler, Darrell P.; Murray, Christopher J.; Peacock, Aaron D.; Giloteaux, L.; Handley, Kim M.; Lovley, Derek R.; Banfield, Jillian F.

    2015-02-01

    Field-scale biostimulation and desorption tracer experiments conducted in a uranium (U) contaminated, shallow alluvial aquifer have provided insight into the coupling of microbiology, biogeochemistry, and hydrogeology that control U mobility in the subsurface. Initial experiments successfully tested the concept that Fe-reducing bacteria such as Geobacter sp. could enzymatically reduce soluble U(VI) to insoluble U(IV) during in situ electron donor amendment (Anderson et al. 2003, Williams et al. 2011). In parallel, in situ desorption tracer tests using bicarbonate amendment demonstrated rate-limited U(VI) desorption (Fox et al. 2012). These results and prior laboratory studies underscored the importance of enzymatic U(VI)-reduction and suggested the ability to combine desorption and bioreduction of U(VI). Here we report the results of a new field experiment in which bicarbonate-promoted uranium desorption and acetate amendment were combined and compared to an acetate amendment-only experiment in the same experimental plot. Results confirm that bicarbonate amendment to alluvial aquifer desorbs U(VI) and increases the abundance of Ca-uranyl-carbonato complexes. At the same time, that the rate of acetate-promoted enzymatic U(VI) reduction was greater in the presence of added bicarbonate in spite of the increased dominance of Ca-uranyl-carbonato aqueous complexes. A model-simulated peak rate of U(VI) reduction was ~3.8 times higher during acetate-bicarbonate treatment than under acetate-only conditions. Lack of consistent differences in microbial community structure between acetate-bicarbonate and acetate-only treatments suggest that a significantly higher rate of U(VI) reduction the bicarbonate-impacted sediment may be due to a higher intrinsic rate of microbial reduction induced by elevated concentrations of the bicarbonate oxyanion. The findings indicate that bicarbonate amendment may be useful in improving the engineered bioremediation of uranium in aquifers.

  1. Combined abiotic and biotic in-situ reduction of hexavalent chromium in groundwater using nZVI and whey: A remedial pilot test.

    PubMed

    Němeček, Jan; Pokorný, Petr; Lacinová, Lenka; Černík, Miroslav; Masopustová, Zuzana; Lhotský, Ondřej; Filipová, Alena; Cajthaml, Tomáš

    2015-12-30

    The paper describes a pilot remediation test combining two Cr(VI) geofixation methods - chemical reduction by nanoscale zero-valent iron (nZVI) and subsequent biotic reduction supported by whey. Combination of the methods exploited the advantages of both - a rapid decrease in Cr(VI) concentrations by nZVI, which prevented further spreading of the contamination and facilitated subsequent use of the cheaper biological method. Successive application of whey as an organic substrate to promote biotic reduction of Cr(VI) after application of nZVI resulted in a further and long-term decrease in the Cr(VI) contents in the groundwater. The effect of biotic reduction was observed even in a monitoring well located at a distance of 22 m from the substrate injection wells after 10 months. The results indicated a reciprocal effect of both the phases - nZVI oxidized to Fe(III) during the abiotic phase was microbially reduced back to Fe(II) and acted as a reducing agent for Cr(VI) even when the microbial density was already low due to the consumed substrate. Community analysis with pyrosequencing of the 16S rRNA genes further confirmed partial recycling of nZVI in the form of Fe(II), where the results showed that the Cr(VI) reducing process was mediated mainly by iron-reducing and sulfate-reducing bacteria.

  2. Reduction of nitrogen compounds in oceanic basement and its implications for HCN formation and abiotic organic synthesis

    PubMed Central

    2009-01-01

    Hydrogen cyanide is an excellent organic reagent and is central to most of the reaction pathways leading to abiotic formation of simple organic compounds containing nitrogen, such as amino acids, purines and pyrimidines. Reduced carbon and nitrogen precursor compounds for the synthesis of HCN may be formed under off-axis hydrothermal conditions in oceanic lithosphere in the presence of native Fe and Ni and are adsorbed on authigenic layer silicates and zeolites. The native metals as well as the molecular hydrogen reducing CO2 to CO/CH4 and NO3-/NO2- to NH3/NH4+ are a result of serpentinization of mafic rocks. Oceanic plates are conveyor belts of reduced carbon and nitrogen compounds from the off-axis hydrothermal environments to the subduction zones, where compaction, dehydration, desiccation and diagenetic reactions affect the organic precursors. CO/CH4 and NH3/NH4+ in fluids distilled out of layer silicates and zeolites in the subducting plate at an early stage of subduction will react upon heating and form HCN, which is then available for further organic reactions to, for instance, carbohydrates, nucleosides or even nucleotides, under alkaline conditions in hydrated mantle rocks of the overriding plate. Convergent margins in the initial phase of subduction must, therefore, be considered the most potent sites for prebiotic reactions on Earth. This means that origin of life processes are, perhaps, only possible on planets where some kind of plate tectonics occur. PMID:19849830

  3. Reduction of nitrogen compounds in oceanic basement and its implications for HCN formation and abiotic organic synthesis.

    PubMed

    Holm, Nils G; Neubeck, Anna

    2009-10-22

    Hydrogen cyanide is an excellent organic reagent and is central to most of the reaction pathways leading to abiotic formation of simple organic compounds containing nitrogen, such as amino acids, purines and pyrimidines. Reduced carbon and nitrogen precursor compounds for the synthesis of HCN may be formed under off-axis hydrothermal conditions in oceanic lithosphere in the presence of native Fe and Ni and are adsorbed on authigenic layer silicates and zeolites. The native metals as well as the molecular hydrogen reducing CO2 to CO/CH4 and NO3-/NO2- to NH3/NH4+ are a result of serpentinization of mafic rocks. Oceanic plates are conveyor belts of reduced carbon and nitrogen compounds from the off-axis hydrothermal environments to the subduction zones, where compaction, dehydration, desiccation and diagenetic reactions affect the organic precursors. CO/CH4 and NH3/NH4+ in fluids distilled out of layer silicates and zeolites in the subducting plate at an early stage of subduction will react upon heating and form HCN, which is then available for further organic reactions to, for instance, carbohydrates, nucleosides or even nucleotides, under alkaline conditions in hydrated mantle rocks of the overriding plate. Convergent margins in the initial phase of subduction must, therefore, be considered the most potent sites for prebiotic reactions on Earth. This means that origin of life processes are, perhaps, only possible on planets where some kind of plate tectonics occur.

  4. Identification of abiotic and biotic reductive dechlorination in a chlorinated ethene plume after thermal source remediation by means of isotopic and molecular biology tools

    NASA Astrophysics Data System (ADS)

    Badin, Alice; Broholm, Mette M.; Jacobsen, Carsten S.; Palau, Jordi; Dennis, Philip; Hunkeler, Daniel

    2016-09-01

    Thermal tetrachloroethene (PCE) remediation by steam injection in a sandy aquifer led to the release of dissolved organic carbon (DOC) from aquifer sediments resulting in more reduced redox conditions, accelerated PCE biodegradation, and changes in microbial populations. These changes were documented by comparing data collected prior to the remediation event and eight years later. Based on the premise that dual C-Cl isotope slopes reflect ongoing degradation pathways, the slopes associated with PCE and TCE suggest the predominance of biotic reductive dechlorination near the source area. PCE was the predominant chlorinated ethene near the source area prior to thermal treatment. After thermal treatment, cDCE became predominant. The biotic contribution to these changes was supported by the presence of Dehalococcoides sp. DNA (Dhc) and Dhc targeted rRNA close to the source area. In contrast, dual C-Cl isotope analysis together with the almost absent VC 13C depletion in comparison to cDCE 13C depletion suggested that cDCE was subject to abiotic degradation due to the presence of pyrite, possible surface-bound iron (II) or reduced iron sulphides in the downgradient part of the plume. This interpretation is supported by the relative lack of Dhc in the downgradient part of the plume. The results of this study show that thermal remediation can enhance the biodegradation of chlorinated ethenes, and that this effect can be traced to the mobilisation of DOC due to steam injection. This, in turn, results in more reduced redox conditions which favor active reductive dechlorination and/or may lead to a series of redox reactions which may consecutively trigger biotically induced abiotic degradation. Finally, this study illustrates the valuable complementary application of compound-specific isotopic analysis combined with molecular biology tools to evaluate which biogeochemical processes are taking place in an aquifer contaminated with chlorinated ethenes.

  5. WFC3/UVIS Sky Backgrounds

    NASA Astrophysics Data System (ADS)

    Baggett, Sylvia; Anderson, Jay

    2012-06-01

    This report summarizes the on-orbit background levels present in WFC3/UVIS full-frame images. The results are based on nearly all standard readout images taken since the installation of WFC3 on HST in May 2009, with a relatively small number of exclusions e.g. images with obvious anomalous backgrounds (such as extended targets filling the field of view) or those taken with the quad filters (different bandpass in each amp). Comparisons are provided to estimates from the Exposure Time Calculator (ETC). We anticipate these results to be helpful in fine-tuning the level of post-flash required to achieve the optimum balance of charge transfter efficiency (CTE) loss mitigation versus noise penalty. Observers considering the use of post-flash should refer to the White Paper (MacKenty & Smith 2012) on the CTE WWW page (http://www.stsci.edu/hst/wfc3/ins_performance/CTE/).

  6. Mechanical investigation of U(VI) on pyrrhotite by batch, EXAFS and modeling techniques.

    PubMed

    Liu, Haibo; Zhu, Yuke; Xu, Bin; Li, Ping; Sun, Yubing; Chen, Tianhu

    2017-01-15

    The interaction mechanism of U(VI) on pyrrhotite was demonstrated by batch, spectroscopic and modeling techniques. Pyrite was selected as control group in this study. The removal of U(VI) on pyrite and pyrrhotite significantly decreased with increasing ionic strength from 0.001 to 0.1mol/L at pH 2.0-6.0, whereas the no effect of ionic strength was observed at pH >6.0. The maximum removal capacity of U(VI) on pyrite and pyrrhotite calculated from Langmuir model was 10.20 and 21.34mgg(-1) at pH 4.0 and 333K, respectively. The XPS analysis indicated the U(VI) was primarily adsorbed on pyrrhotite and pyrite and then approximately 15.5 and 9.8% of U(VI) were reduced to U(IV) by pyrrhotite and pyrite after 20 days, respectively. Based on the XANES analysis, the adsorption edge of uranium-containing pyrrhotite located between U(IV)O2(s) and U(VI)O2(2+) spectra. The EXAFS analysis demonstrated the inner-sphere surface complexation of U(VI) on pyrrhotite due to the occurrence of U-S shell, whereas the U-U shell revealed the reductive co-precipitates of U(VI) on pyrrhotite/pyrite with increasing reaction times. The surface complexation modeling showed that outer- and inner-surface complexation dominated the U(VI) removal at pH<4 and pH>5.0, respectively. The findings presented herein play a crucial role in the removal of radionuclides on iron sulfide in environmental cleanup applications.

  7. Growth of Desulfovibrio vulgaris when respiring U(VI) and characterization of biogenic uraninite.

    PubMed

    Zhou, Chen; Vannela, Raveender; Hyun, Sung Pil; Hayes, Kim F; Rittmann, Bruce E

    2014-06-17

    The capacity of Desulfovibrio vulgaris to reduce U(VI) was studied previously with nongrowth conditions involving a high biomass concentration; thus, bacterial growth through respiration of U(VI) was not proven. In this study, we conducted a series of batch tests on U(VI) reduction by D. vulgaris at a low initial biomass (10 to 20 mg/L of protein) that could reveal biomass growth. D. vulgaris grew with U(VI) respiration alone, as well as with simultaneous sulfate reduction. Patterns of growth kinetics and solids production were affected by sulfate and Fe(2+). Biogenic sulfide nonenzymatically reduced 76% of the U(VI) and greatly enhanced the overall reduction rate in the absence of Fe(2+) but was rapidly scavenged by Fe(2+) to form FeS in the presence of Fe(2+). Biogenic U solids were uraninite (UO2) nanocrystallites associated with 20 mg/g biomass as protein. The crystallite thickness of UO2 was 4 to 5 nm without Fe(2+) but was <1.4 nm in the presence of Fe(2+), indicating poor crystallization inhibited by adsorbed Fe(2+) and other amorphous Fe solids, such as FeS or FeCO3. This work fills critical gaps in understanding the metabolic utilization of U by microorganisms and formation of UO2 solids in bioremediation sites.

  8. Constraining the role of iron in environmental nitrogen transformations: Dual stable isotope systematics of abiotic NO2- reduction by Fe(II) and its production of N2O

    NASA Astrophysics Data System (ADS)

    Buchwald, Carolyn; Grabb, Kalina; Hansel, Colleen M.; Wankel, Scott D.

    2016-08-01

    Despite mounting evidence for biogeochemical interactions between iron and nitrogen, our understanding of their environmental importance remains limited. Here we present an investigation of abiotic nitrite (NO2-) reduction by Fe(II) or 'chemodenitrification', and its relevance to the production of nitrous oxide (N2O), specifically focusing on dual (N and O) isotope systematics under a variety of environmental conditions. We observe a range of kinetic isotope effects that are regulated by reaction rates, with faster rates at higher pH (∼8), higher concentrations of Fe(II) and in the presence of mineral surfaces. A clear non-linear relationship between rate constant and kinetic isotope effects of NO2- reduction was evident (with larger isotope effects at slower rates) and is interpreted as reflecting the dynamics of Fe(II)-N reaction intermediates. N and O isotopic composition of product N2O also suggests a complex network of parallel and/or competing pathways. Our findings suggest that NO2- reduction by Fe(II) may represent an important abiotic source of environmental N2O, especially in iron-rich environments experiencing dynamic redox variations. This study provides a multi-compound, multi-isotope framework for evaluating the environmental occurrence of abiotic NO2- reduction and N2O formation, helping future studies constrain the relative roles of abiotic and biological N2O production pathways.

  9. Iron Reduction and Radionuclide Immobilization: Kinetic, Thermodynamic and Hydrologic controls & Reaction-Based Modeling - Final Report

    SciTech Connect

    William D. Burgos

    2004-06-18

    Our research focused on (1) microbial reduction of Fe(III) and U(VI) individually, and concomitantly in natural sediments, (2) Fe(III) oxide surface chemistry, specifically with respect to reactions with Fe(II)and U(VI), (3) the influence of humic substances on Fe(III) and U(VI) bioreduction, and on U(VI) complexation, and (4) the development of reaction-based reactive transport biogeochemical models to numerically simulate our experimental results. We have continued our investigations on microbial reduction of Fe(III) oxides. Modeling our earlier experimental results required assumption of a hydrated surface for hematite, more reactive than predicted based on theoretical solubility (Burgos et al.2002). Subsequent studies with Shewanella putrefaciens and Geobacter sulfurreducens confirmed the rates of Fe(III) bioreduction depend on oxide surface area rather than oxide thermodynamic properties (Roden,2003a,b;2004; Burgos et al,2003). We examined the potential for bioreduction of U(VI) by Geobacter sulfurreducens in the presence of synthetic Fe(III) oxides and natural Fe(III) oxide-containing solids (Jeon et al,2004a,b) in which more than 95% of added U(VI) was sorbed to mineral surfaces. The results showed a significant portion of solid-associated U(VI) was resistant to both enzymatic and abiotic (Fe(II)-driven) reduction, but the rate and extent of bioreduction of U(VI) was increased due to the addition of anthraquinone-2,6-disulfonate (AQDS). We conducted long-term semicontinuous culture and column experiments on coupled Fe(III) oxide/U(VI) reduction. These experiments were conducted with natural subsurface sediment from the Oyster site in Virginia, whose Fe content and microbial reducibility are comparable to ORNL FRC sediments (Jeon et al, 2004b). The results conclusively demonstrated the potential for sustained removal of U(VI) from solution via DMRB activity in excess of the U(VI) sorption capacity of the natural mineral assemblages. Jang (2004) demonstrated

  10. Anaerobic bioremediation of hexavalent uranium in groundwater by reductive precipitation with methanogenic granular sludge.

    PubMed

    Tapia-Rodriguez, Aida; Luna-Velasco, Antonia; Field, Jim A; Sierra-Alvarez, Reyes

    2010-04-01

    Uranium has been responsible for extensive contamination of groundwater due to releases from mill tailings and other uranium processing waste. Past evidence has confirmed that certain bacteria can enzymatically reduce soluble hexavalent uranium (U(VI)) to insoluble tetravalent uranium (U(IV)) under anaerobic conditions in the presence of appropriate electron donors. This paper focuses on the evaluation of anaerobic granular sludge as a source of inoculum for the bioremediation of uranium in water. Batch experiments were performed with several methanogenic anaerobic granular sludge samples and different electron donors. Abiotic controls consisting of heat-killed inoculum and non-inoculated treatments confirmed the biological removal process. In this study, unadapted anaerobic granular sludge immediately reduced U(VI), suggesting an intrinsic capacity of the sludge to support this process. The high biodiversity of anaerobic granular sludge most likely accounts for the presence of specific microorganisms capable of reducing U(VI). Oxidation by O(2) was shown to resolubilize the uranium. This observation combined with X-ray diffraction evidence of uraninite confirmed that the removal during anaerobic treatment was due to reductive precipitation. The anaerobic removal activity could be sustained after several respikes of U(VI). The U(VI) removal was feasible without addition of electron donors, indicating that the decay of endogenous biomass substrates was contributing electron equivalents to the process. Addition of electron donors, such as H(2) stimulated the removal of U(VI) to varying degrees. The stimulation was greater in sludge samples with lower endogenous substrate levels. The present work reveals the potential application of anaerobic granular sludge for continuous bioremediation schemes to treat uranium-contaminated water.

  11. A kinetic pressure effect on the experimental abiotic reduction of aqueous CO2 to methane from 1 to 3.5 kbar at 300 °C

    NASA Astrophysics Data System (ADS)

    Lazar, Codi; Cody, George D.; Davis, Jeffrey M.

    2015-02-01

    Aqueous abiotic methane concentrations in a range of geologic settings are below levels expected for equilibrium with coexisting CO2 and H2, indicating that kinetics can control the speciation of reduced carbon-bearing fluids. Previous studies have suggested that mineral catalysts or gas-phase reactions may increase the rate of methanogenesis. Here, we report on experiments that indicate pressure can also accelerate aqueous reduction of CO2 to CH4. Four series of cold-seal hydrothermal experiments were performed from 1 to 3.5 kbar at 300 °C for two weeks and analyzed using gas chromatography/mass spectrometry. The starting fluids were 10-20-μL solutions of 70-mmolal 13C-labeled formic acid (H13COOH) contained in welded gold capsules. Increasing pressure (P) resulted in a systematic, reproducible log-linear increase in 13CH4 yields. The pressure effect could be quantified the log-linear slope, Δlog[13CH4]/ΔP (log mmolal per kbar). The mean slope was 0.66 ± 0.05 (±1s.e.), indicating that 13CH4 yields increased by an average factor of 40-50 over a P range of 2.5 kbar. Pressure-independent variations in [13CH4] were observed as scatter about the log-linear regressions and as variations in the y-intercepts of the regressions. These variations were attributed to trace amounts of catalytic Fe along the inner capsule wall that remained despite cleaning the Au capsules in nitric acid prior to each experimental series. The mechanism for the pressure-dependent effect was interpreted to result from one or more of the following three processes: reduction of a metastable reaction intermediate such as methanol, formation of Fe-carbonyl complexes in the fluid, and/or heterogeneous catalysis by Fe. The results suggest that pressure may influence aqueous abiotic CH4 yields in certain geological environments, particularly when the relative effects of other kinetic factors such as temperature are diminished, e.g., in cool forearcs or other settings with a steep geothermal

  12. The Integrated Field-Scale Subsurface Research Challenge Site (IFC) at Rifle, Colorado: Preliminary Results on Microbiological, Geochemical and Hydrologic Processes Controlling Iron Reduction and Uranium Mobility

    NASA Astrophysics Data System (ADS)

    Long, P. E.; Banfield, J.; Bush, R.; Campbell, K.; Chandler, D. P.; Davis, J. A.; Dayvault, R.; Druhan, J.; Elifantz, H.; Englert, A.; Hettich, R. L.; Holmes, D.; Hubbard, S.; Icenhower, J.; Jaffe, P. R.; Kerkhof, L. J.; Kukkadapu, R. K.; Lesher, E.; Lipton, M.; Lovley, D.; Morris, S.; Morrison, S.; Mouser, P.; Newcomer, D.; N'guessan, L.; Peacock, A.; Qafoku, N.; Resch, C. T.; Spane, F.; Spaulding, B.; Steefel, C.; Verberkmoes, N.; Wilkins, M.; Williams, K. H.; Yabusaki, S. B.

    2007-12-01

    The IFC at Rifle, Colorado was recently funded by the U.S. Department of Energy to address knowledge gaps in 1) geochemical and microbial controls on stimulated U(VI) bioreduction by iron-reducers, 2) U(VI) sorption under Fe-reducing conditions, 3) post-biostimulation U(VI) stability and removal, and 4) rates of natural bioreduction of U(VI). The over-arching goal of the project is to develop a mechanistic understanding of bioreductive and abiotic processes that control uranium mobility targeting new knowledge that can be translated into scientifically defensible flow and reactive transport process models. The Rifle IFC will conduct a focused set of field and lab experiments that use recently developed sciences of proteogenomics and stable isotope probing to track microbial metabolic status during acetate amendment. This information will be linked to changes in Fe redox status and sulfide minerals, with field-scale changes detected by non-invasive hydrogeophysics, including 3-D resistivity tomography. A key goal of the project is to combine abiotic sorption processes under reducing conditions with biotic processes controlling U(VI) reduction. The initial field-scale experiment for the Rifle IFC was conducted during the summer of 2007 with the objectives of collecting simultaneous metagenomic and proteomic samples during acetate amendment and to assess the impact of intentionally decreasing electron donor concentration on the metabolic processes of iron reducers. The 2007 experiment replicated previous field experiments, producing dominance of Geobacter sp. in groundwater within 10 days after the start of acetate amendment. The experiment also confirmed the importance of heterogeneities in controlling the flux of electron donor and the impact of naturally reduced zones on the duration of Fe reduction.

  13. Reduction of uranium by Desulfovibrio desulfuricans

    USGS Publications Warehouse

    Lovley, D.R.; Phillips, E.J.P.

    1992-01-01

    The possibility that sulfate-reducing microorganisms contribute to U(VI) reduction in sedimentary environments was investigated. U(VI) was reduced to U(IV) when washed cells of sulfate-grown Desulfovibrio desulfuricans were suspended in a bicarbonate buffer with lactate or H2 as the electron donor. There was no U(VI) reduction in the absence of an electron donor or when the cells were killed by heat prior to the incubation. The rates of U(VI) reduction were comparable to those in respiratory Fe(III)-reducing microorganisms. Azide or prior exposure of the cells to air did not affect the ability of D. desulfuricans to reduce U(VI). Attempts to grow D. desulfuricans with U(VI) as the electron acceptor were unsuccessful. U(VI) reduction resulted in the extracellular precipitation of the U(IV) mineral uraninite. The presence of sulfate had no effect on the rate of U(VI) reduction. Sulfate and U(VI) were reduced simultaneously. Enzymatic reduction of U(VI) by D. desulfuricans was much faster than nonenzymatic reduction of U(VI) by sulfide, even when cells of D. desulfuricans were added to provide a potential catalytic surface for the nonenzymatic reaction. The results indicate that enzymatic U(VI) reduction by sulfate-reducing microorganisms may be responsible for the accumulation of U(IV) in sulfidogenic environments. Furthermore, since the reduction of U(VI) to U(IV) precipitates uranium from solution, D. desulfuricans might be a useful organisms for recovering uranium from contaminated waters and waste streams.

  14. Long-term diffusion of U(VI) in bentonite: Dependence on density

    SciTech Connect

    Joseph, Claudia; Mibus, Jens; Trepte, Paul; Muller, Christa; Brendler, Vinzenz; Park, Dan M.; Jiao, Yongqin; Kersting, Annie B.; Zavarin, Mavrik

    2016-10-12

    As a contribution to the safety assessment of nuclear waste repositories, U(VI) diffusion through the potential buffer material MX-80 bentonite was investigated at three clay dry densities over six years. Synthetic MX-80 model pore water was used as background electrolyte. Speciation calculations showed that Ca2UO2(CO3)3(aq) was the main U(VI) species. The in- and out-diffusion of U(VI) was investigated separately. U(VI) diffused about 3 mm, 1.5 mm, and 1 mm into the clay plug at ρ = 1.3, 1.6, and 1.9 g/cm3, respectively. No through-diffusion of the U(VI) tracer was observed. However, leaching of natural uranium contained in the clay occurred and uranium was detected in all receiving reservoirs. As expected, the effective and apparent diffusion coefficients, De and Da, decreased with increasing dry density. The Da values for the out-diffusion of natural U(VI) were in good agreement with previously determined values. Surprisingly, Da values for the in-diffusion of U(VI) were about two orders of magnitude lower than values obtained in short-term in-diffusion experiments reported in the literature. Some potential reasons for this behavior that were evaluated are changes of the U(VI) speciation within the clay (precipitation, reduction) or changes of the clay porosity and pore connectivity with time. By applying Archie's law and the extended Archie's law, it was estimated that a significantly smaller effective porosity must be present for the long-term in-diffusion of U(VI). Finally, the results suggest that long-term studies of key transport phenomena may reveal additional processes that can directly impact long-term repository safety assessments.

  15. Microbial reduction of uranium

    USGS Publications Warehouse

    Lovley, D.R.; Phillips, E.J.P.; Gorby, Y.A.; Landa, E.R.

    1991-01-01

    REDUCTION of the soluble, oxidized form of uranium, U(VI), to insoluble U(IV) is an important mechanism for the immobilization of uranium in aquatic sediments and for the formation of some uranium ores1-10. U(VI) reduction has generally been regarded as an abiological reaction in which sulphide, molecular hydrogen or organic compounds function as the reductant1,2,5,11. Microbial involvement in U(VI) reduction has been considered to be limited to indirect effects, such as microbial metabolism providing the reduced compounds for abiological U(VI) reduction and microbial cell walls providing a surface to stimulate abiological U(VI) reduction1,12,13. We report here, however, that dissimilatory Fe(III)-reducing microorganisms can obtain energy for growth by electron transport to U(VI). This novel form of microbial metabolism can be much faster than commonly cited abiological mechanisms for U(VI) reduction. Not only do these findings expand the known potential terminal electron acceptors for microbial energy transduction, they offer a likely explanation for the deposition of uranium in aquatic sediments and aquifers, and suggest a method for biological remediation of environments contaminated with uranium.

  16. Constraining the role of iron in environmental nitrogen transformations. Dual stable isotope systematics of abiotic NO2- reduction by Fe(II) and its production of N2O

    SciTech Connect

    Johnston, David; Wankel, Scott David; Buchwald, Carolyn; Hansel, Colleen

    2015-09-16

    Redox reactions involving nitrogen and iron have been shown to have important implications for mobilization of priority contaminants. Thus, an understanding of the linkages between their biogeochemical cycling is critical for predicting subsurface mobilization of radionuclides such as uranium. Despite mounting evidence for biogeochemical interactions between iron and nitrogen, our understanding of their environmental importance remains limited. Here we present an investigation of abiotic nitrite (NO2-) reduction by Fe(II) or ‘chemodenitrification,’ and its relevance to the production of nitrous oxide (N2O), specifically focusing on dual (N and O) isotope systematics under a variety of environmentally relevant conditions. We observe a range of kinetic isotope effects that are regulated by reaction rates, with faster rates at higher pH (~8), higher concentrations of Fe(II) and in the presence of mineral surfaces. A clear non-linear relationship between rate constant and kinetic isotope effects of NO2- reduction was evident (with larger isotope effects at slower rates) and is interpreted as reflecting the dynamics of Fe(II)-N reaction intermediates. N and O isotopic composition of product N2O also suggests a complex network of parallel and/or competing pathways. Our findings suggest that NO2- reduction by Fe(II) may represent an important abiotic source of environmental N2O, especially in iron-rich environments experiencing dynamic redox variations. This study provides a multi-compound, multi-isotope framework for evaluating the environmental occurrence of abiotic NO2- reduction and N2O formation, helping future studies constrain the relative roles of abiotic and biological N2O production pathways.

  17. Sorption of U(VI) to G. uraniireducens and A. palmae under Old Rifle Conditions

    NASA Astrophysics Data System (ADS)

    Leavitt, J.; Cabaniss, S.; Howe, K.; Comolli, L.; Long, P.; Stucker, V.

    2011-12-01

    Microbial reduction as a remediation method for uranium contaminated Department of Energy (DOE) sites has been explored with promising results. Although transport models have been improved to include variations in geochemical concentration, reductive microbial processes and adsorption of uranium to minerals, they do not incorporate the presence of microbes as possible sorption surfaces that may influence the overall transport of uranium. Our overall objective is to examine U(VI) sorption to biomass by determining partition coefficients between U(VI) and the microbial species of Geobacter uraniireducens and Acholeplasma palmae. Once these partition coefficients are obtained, they will be incorporated into a thermodynamic model with the geochemical parameters of the Old Rifle Site. Preliminary results indicate that U(VI) sorbs 1000X more strongly to bacteria under atmospheric pCO2 conditions than under 2% pCO2 conditions. U(VI) sorption to the surface of G. uraniireducens is 4X stronger than to the surface of A. Palmae and in high-DIC waters is comparable in strength to reported U(VI)-mineral surface sorption. While the concentration of G. uraniireducens during and after remediation results in relatively small sorption site density, the possibility persists that sorption to G. uraniireducens may retard uranium transport at the geochemical gradients which exist in nature.

  18. U(VI) bioreduction with emulsified vegetable oil as the electron donor--microcosm tests and model development.

    PubMed

    Tang, Guoping; Wu, Wei-Min; Watson, David B; Parker, Jack C; Schadt, Christopher W; Shi, Xiaoqing; Brooks, Scott C

    2013-04-02

    We conducted microcosm tests and biogeochemical modeling to study U(VI) reduction in contaminated sediments amended with emulsified vegetable oil (EVO). Indigenous microorganisms in the sediments degraded EVO and stimulated Fe(III), U(VI), and sulfate reduction, and methanogenesis. Acetate concentration peaked in 100-120 days in the EVO microcosms versus 10-20 days in the oleate microcosms, suggesting that triglyceride hydrolysis was a rate-limiting step in EVO degradation and subsequent reactions. Acetate persisted 50 days longer in oleate- and EVO- than in ethanol-amended microcosms, indicating that acetate-utilizing methanogenesis was slower in the oleate and EVO than ethanol microcosms. We developed a comprehensive biogeochemical model to couple EVO hydrolysis, production, and oxidation of long-chain fatty acids (LCFA), glycerol, acetate, and hydrogen, reduction of Fe(III), U(VI) and sulfate, and methanogenesis with growth and decay of multiple functional microbial groups. By estimating EVO, LCFA, and glycerol degradation rate coefficients, and introducing a 100 day lag time for acetoclastic methanogenesis for oleate and EVO microcosms, the model approximately matched observed sulfate, U(VI), and acetate concentrations. Our results confirmed that EVO could stimulate U(VI) bioreduction in sediments and the slow EVO hydrolysis and acetate-utilizing methanogens growth could contribute to longer term bioreduction than simple substrates (e.g., ethanol, acetate, etc.) in the subsurface.

  19. Thermodynamic controls on the microbial reduction of iron-bearing nontronite and uranium.

    PubMed

    Luan, Fubo; Gorski, Christopher A; Burgos, William D

    2014-01-01

    Iron-bearing phyllosilicate minerals help establish the hydrogeological and geochemical conditions of redox transition zones because of their small size, limited hydraulic conductivity, and redox buffering capacity. The bioreduction of soluble U(VI) to sparingly soluble U(IV) can promote the reduction of clay-Fe(III) through valence cycling. The reductive precipitation of U(VI) to uraninite was previously reported to occur only after a substantial percentage of clay-Fe(III) had been reduced. Using improved analytical techniques, we show that concomitant bioreduction of both U(VI) and clay-Fe(III) by Shewanella putrefaciens CN32 can occur. Soluble electron shuttles were previously shown to enhance both the rate and extent of clay-Fe(III) bioreduction. Using extended incubation periods, we show that electron shuttles enhance only the rate of reduction (overcoming a kinetic limitation) and not the final extent of reduction (a thermodynamic limitation). The first 20% of clay-Fe(III) in nontronite NAu-2 was relatively "easy" (i.e., rapid) to bioreduce; the next 15% of clay-Fe(III) was "harder" (i.e., kinetically limited) to bioreduce, and the remaining 65% of clay-Fe(III) was effectively biologically unreducible. In abiotic experiments with NAu-2 and biogenic uraninite, 16.4% of clay-Fe(III) was reduced in the presence of excess uraninite. In abiotic experiments with NAu-2 and reduced anthraquinone 2,6-disulfonate (AH2DS), 18.5-19.1% of clay-Fe(III) was reduced in the presence of excess and variable concentrations of AH2DS. A thermodynamic model based on published values of the nonstandard state reduction potentials at pH 7.0 (E'H) showed that the abiotic reactions between NAu-2 and uraninite had reached an apparent equilibrium. This model also showed that the abiotic reactions between NAu-2 and AH2DS had reached an apparent equilibrium. The final extent of clay-Fe(III) reduction correlated well with the standard state reduction potential at pH 7.0 (E°'H) of all of the

  20. Cassini UVIS Auroral Observations in 2016

    NASA Astrophysics Data System (ADS)

    Pryor, Wayne R.; Jouchoux, Alain; Esposito, Larry W.; Radioti, Aikaterini; Grodent, Denis; Gustin, Jacques; Gerard, Jean-Claude; Lamy, Laurent; Badman, Sarah; Bunce, Emma; Cecconi, Baptiste; Clarke, John T.; Crary, Frank; Dougherty, Michele; Dyudina, Ulyana A.; Kurth, William; Mitchell, Don; Nichols, Jonathan; Prange, Renee; Schippers, Patricia; Zarka, Philippe; Cassini UVIS Team

    2016-10-01

    In June of 2016, the Cassini Saturn orbiter began a series of high inclination orbits that will continue until September 2017 when the mission ends as Cassini enters the Saturn atmosphere. These orbits present excellent views of Saturn's polar regions suitable for auroral imaging at the closest distances to date, with the additional prospect of simultaneous particle and fields measurements within the sources of Saturn Kilometric Radiation (SKR) associated with ultraviolet auroral emissions and/or acceleration regions likely coinciding with them. We will present new Cassini Ultraviolet Imaging Spectrograph (UVIS) auroral images, spectra and movies obtained during the summer and fall of 2016 and put them in the context of auroral data collected since Cassini orbit insertion in 2004. Included in the new data will be UVIS south polar observations obtained simultaneously with Hubble Space Telescope observations of the north polar region on June 29, 2016 and August 19, 2016.

  1. Reduction and immobilization of radionuclides and toxic metal ions using combined zero valent iron and anaerobic bacteria. 1998 annual progress report

    SciTech Connect

    Weathers, L.

    1998-06-01

    'Previous research findings indicate that both zero valent iron and sulfate reducing bacteria (SRB) can yield significant decreases in Cr(VI) or U(VI) concentrations due to abiotic and microbial reduction, respectively. The major hypothesis associated with this research project is that a combined abiotic-biological system can synergistically combine both processes to maximize metal ion reduction in an engineered permeable reactive barrier. The overall goal of this project is to design a combined abiotic/microbial, reactive, permeable, in-situ barrier with sufficient reductive potential to prevent downgradient migration of toxic metal ions. The field-scale application of this technology would utilize anaerobic digester sludge, Fe(O) particles for supporting anaerobic biofilms, and suitable aquifer material for construction of the barrier. Successful completion of this goal requires testing of the two hypotheses listed above by evaluating: (1) the rates of abiotic metal ion reduction, and (2) the rates of microbial metal ion reduction in microbial and combined abiotic/microbial reduction systems under a range of environmental conditions. This report summarizes work after one and one-half years of a three year project. Abiotic studies: The thrust of the abiotic research conducted to date has been to determine the rates of Cr(VI) reduction in batch reactors and to evaluate the role of aquifer materials on those rates. Experiments have been conducted to determine the rates of reduction by Fe(II) and Fe(O). The parameters that have been evaluated are the effect of pH and the presence of sulfide and aquifer material.'

  2. U(VI) behaviour in hyperalkaline calcite systems

    NASA Astrophysics Data System (ADS)

    Smith, Kurt F.; Bryan, Nicholas D.; Swinburne, Adam N.; Bots, Pieter; Shaw, Samuel; Natrajan, Louise S.; Mosselmans, J. Frederick W.; Livens, Francis R.; Morris, Katherine

    2015-01-01

    The behaviour of U(VI) in hyperalkaline fluid/calcite systems was studied over a range of U(VI) concentrations (5.27 × 10-5 μM to 42.0 μM) and in two high pH systems, young and old synthetic cement leachate in batch sorption experiments. These systems were selected to be representative of young- (pH 13.3) and old-stage (pH 10.5) leachate evolution within a cementitious geological disposal facility. Batch sorption experiments, modelling, extended X-ray absorption fine structure spectroscopy, electron microscopy, small angle X-ray scattering and luminescence spectroscopy were used to define the speciation of U(VI) across the systems of study. At the lowest concentrations (5.27 × 10-5 μM 232U(VI)) significant U removal was observed for both old and young cement leachates, and this was successfully modelled using a first order kinetic adsorption modelling approach. At higher concentrations (>4.20 μM) in the young cement leachate, U(VI) showed no interaction with the calcite surface over an 18 month period. Small angle X-ray scattering techniques indicated that at high U concentrations (42.0 μM) and after 18 months, the U(VI) was present in a colloidal form which had little interaction with the calcite surface and consisted of both primary and aggregated particles with a radius of 7.6 ± 1.1 and 217 ± 24 Å, respectively. In the old cement leachate, luminescence spectroscopy identified two surface binding sites for U(VI) on calcite: in the system with 0.21 μM U(VI), a liebigite-like Ca2UO2(CO3)3 surface complex was identified; at higher U(VI) concentrations (0.42 μM), a second binding site of undetermined coordination was identified. At elevated U(VI) concentrations (>2.10 μM) in old cement leachate, both geochemical data and luminescence spectroscopy suggested that surface mediated precipitation was controlling U(VI) behaviour. A focused ion beam mill was used to create a section across the U(VI) precipitate-calcite interface. Transmission electron

  3. Uranium isotopes fingerprint biotic reduction.

    PubMed

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-05-05

    Knowledge of paleo-redox conditions in the Earth's history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U), i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth's crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. Additionally, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.

  4. Uranium isotopes fingerprint biotic reduction

    DOE PAGES

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; ...

    2015-04-20

    Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U),more » i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. In addition, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.« less

  5. Uranium isotopes fingerprint biotic reduction

    SciTech Connect

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J.; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-04-20

    Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U), i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. In addition, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.

  6. Uranium isotopes fingerprint biotic reduction

    PubMed Central

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J.; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-01-01

    Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U), i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. Additionally, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium. PMID:25902522

  7. Role of U(VI) Adsorption in U(VI) Reduction by Geobacter Species.

    SciTech Connect

    None, None

    2009-03-09

    Previous work had suggested that Acholeplasma palmae has a higher capacity for uranium sorption than other bacteria studied. Sorption studies were performed with cells in suspension in various solutions containing uranium and results were used to generate uranium-biosorption isotherms.

  8. UVIS 2.0: Ultraviolet Flats

    NASA Astrophysics Data System (ADS)

    Mack, J.

    2017-03-01

    Improved UV flat fields were delivered on February 23, 2016 for the four bluest WFC3 filters. These new reference files correct for sensitivity residuals in a crosshatch pattern on spatial scales of 50-100 pixels. The residuals are a result of in-flight temperature differences affecting the detector's spatial response, which was derived from ground test data at a warmer operating temperature. Photometry of white dwarf standards stepped across the UVIS detector shows a linear correlation between the flat field response and the measured flux residual, which is used to model the correction. With the 2016 flats, the photometric repeatability is now 3.0% peak-to-peak (0.7% rms) compared to 6.7% peak-to-peak (1.8% rms) with the original 2011 flats, excluding the left edge of the detector (x<300 pixels) in F275W where photometry is 1% higher than the rest of the frame. The UV filters have color terms of several percent, and the new chip-dependent calibration is intended to produce uniform count rate across the two chips for blue sources. When using the inverse sensitivity values delivered in February 2016, offsets in the UV count rate between chips of up to 2% are found for hot stars, and even more for cool stars. A revised calibration delivered in November 2016 corrects the offset for blue sources, allowing for more accurate drizzled data products when combining pixels from different UVIS chips.

  9. WFC3 UVIS Detector: Improved Flat Fields

    NASA Astrophysics Data System (ADS)

    Dahlen, Tomas; Mack, J.; Sabbi, E.; WFC3 Team

    2012-01-01

    We describe the improved flat field calibration for a set of UVIS broad-band filters that were delivered to MAST in August 2011. The total change peak-to-peak with respect to the previous pipeline flats ranges from 3.6% to 5.6%, increasing with wavelength. The flat-fields previously used in the pipeline were obtained during ground testing and contained a large reflection ghost (or flare) that affected 40% of the field. A simplified geometric model of the internal light reflections has been used to remove the flare from the ground flats. Residual low-frequency structures caused by differences in the ground-based and in-flight optical paths were then computed using photometry of Omega Centauri, observed at various roll angles and with large dithered steps. Furthermore, photometry in a range of apertures has been used to study the UVIS PSF in detail. For radii smaller than 0.4" (10 pixels) the PSF is strongly dependent on both the detector position and on the telescope focus at the time of observation. Therefore, the new pipeline flat fields have been normalized to "infinite" aperture by applying local aperture corrections to 10 pixels, making them more generally applicable.

  10. Reduction kinetics of aqueous U(VI) in acidic chloride brines to uraninite by methane, hydrogen or C-graphite under hydrothermal conditions: Implications for the genesis of unconformity-related uranium ore deposits

    NASA Astrophysics Data System (ADS)

    Dargent, Maxime; Truche, Laurent; Dubessy, Jean; Bessaque, Gilles; Marmier, Hervé

    2015-10-01

    The formation of hydrothermal uranium ore deposits involves the reduction of dissolved U(VI)(aq) to uraninite. However, the nature of the reducing agent and the kinetics of such a process are currently unknown. These questions are addressed through dedicated experiments performed under conditions relevant for the genesis of unconformity-related uranium (URU) deposits. We tested the efficiency of the following potential reductants supposed to be involved in the reaction: H2, CH4, C-graphite and dissolved Fe(II). Results demonstrate the great efficiency of H2, CH4 and C-graphite to reduce U(VI)(aq) into uraninite in acidic chloride brines, unlike dissolved Fe(II). Times needed for H2 (1.4 bar), CH4 (2.4 bar) and C-graphite (water/carbon mass ratio = 10) to reduce 1 mM of U(VI)(aq) in an acidic brine (1 m LiCl, pH ≈ 1 fixed by HCl) to uraninite at 200 °C are 12 h, 3 days and 4 months, respectively. The effects of temperature (T) between 100 °C and 200 °C, H2 partial pressure (0.14, 1.4, and 5.4 bar), salinity (0.1, 1 and 3.2 m LiCl) and pH at 25 °C (0.8 and 3.3) on the reduction rate were also investigated. Results show that increasing temperature and H2 partial pressure increase the reaction rate, whereas increasing salinity or pH have the reverse effect. The reduction of uranyl to uraninite follows an apparent zero-order with respect to time, whatever the considered electron donor. From the measured rate constants, the following values of activation energy (Ea), depending on the nature of the electron donor, have been derived: EaC-graphite = 155 ± 3 kJ mol-1, EaCH4 = 143 ± 6 kJ mol-1, and EaH2 = 124 ± 15 kJ mol-1 at T < 150 °C and 32 ± 6 kJ mol-1 at T > 150 °C. An empirical relationship between the reaction rate, the hydrogen partial pressure, the uranyl speciation, and the temperature is also proposed. This allows an estimation of the time of formation of a giant U ore deposit such as McArthur River (Canada). The duration of the mineralizing event is

  11. Uranyl-chlorite sorption/desorption: Evaluation of different U(VI) sequestration processes

    NASA Astrophysics Data System (ADS)

    Singer, David M.; Maher, Kate; Brown, Gordon E., Jr.

    2009-10-01

    compositions, although it under-predicts U(VI) sorption by up to 10% at the highest U(VI) sorption loadings and at low pH in the CO 3-Ca-bearing system. After long-term exposure of chlorite to U(VI) under anaerobic conditions at 90 °C, XANES spectra of these samples indicate 25% U(IV) in the CO 3-Ca-free system and CO 3-bearing system samples, whereas no U(IV) was detected in the CO 3-Ca-bearing system sample. Analysis of the EXAFS spectra, TEM images, and EDS spectra indicated the presence of X-ray amorphous nanoparticulate UO 2. The presence of Ca in solution prohibited U(VI) reduction in our long-term sorption experiments.

  12. Enhanced U(VI) bioreduction by alginate-immobilized uranium-reducing bacteria in the presence of carbon nanotubes and anthraquinone-2,6-disulfonate.

    PubMed

    Wang, Weida; Feng, Yali; Tang, Xinhua; Li, Haoran; Du, Zhuwei; Yi, Aifei; Zhang, Xu

    2015-05-01

    Uranium-reducing bacteria were immobilized with sodium alginate, anthraquinone-2,6-disulfonate (AQDS), and carbon nanotubes (CNTs). The effects of different AQDS-CNTs contents, U(IV) concentrations, and metal ions on U(IV) reduction by immobilized beads were examined. Over 97.5% U(VI) (20 mg/L) was removed in 8 hr when the beads were added to 0.7% AQDS-CNTs, which was higher than that without AQDS-CNTs. This result may be attributed to the enhanced electron transfer by AQDS and CNTs. The reduction of U(VI) occurred at initial U(VI) concentrations of 10 to 100 mg/L and increased with increasing AQDS-CNT content from 0.1% to 1%. The presence of Fe(III), Cu(II) and Mn(II) slightly increased U(VI) reduction, whereas Cr(VI), Ni(II), Pb(II), and Zn(II) significantly inhibited U(VI) reduction. After eight successive incubation-washing cycles or 8 hr of retention time (HRT) for 48 hr of continuous operation, the removal efficiency of uranium was above 90% and 92%, respectively. The results indicate that the AQDS-CNT/AL/cell beads are suitable for the treatment of uranium-containing wastewaters.

  13. Influence of calcium on microbial reduction of solid phase uranium(VI).

    PubMed

    Liu, Chongxuan; Jeon, Byong-Hun; Zachara, John M; Wang, Zheming

    2007-08-15

    The effect of calcium on the dissolution and microbial reduction of a representative solid phase uranyl [U(VI)], sodium boltwoodite (NaUO(2)SiO(3)OH . 1.5H(2)O), was investigated to evaluate the rate-limiting step of microbial reduction of the solid phase U(VI). Microbial reduction experiments were performed in a culture of a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1, in a bicarbonate medium with lactate as electron donor at pH 6.8 buffered with PIPES. Calcium increased the rate of Na-boltwoodite dissolution and U(VI) bioavailability by increasing its solubility through the formation of a ternary aqueous calcium-uranyl-carbonate species. The ternary species, however, decreased the rates of microbial reduction of aqueous U(VI). Laser-induced fluorescence spectroscopy (LIFS) and transmission electron microscopy (TEM) collectively revealed that microbial reduction of solid phase U(VI) was a sequentially coupled process of Na-boltwoodite dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) to U(IV) that accumulated on bacterial surfaces/periplasm. Under studied experimental conditions, the overall rate of microbial reduction of solid phase U(VI) was limited by U(VI) dissolution reactions in solutions without calcium and limited by microbial reduction in solutions with calcium. Generally, the overall rate of microbial reduction of solid phase U(VI) was determined by the coupling of solid phase U(VI) dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) that were all affected by calcium.

  14. Updated WFC3/UVIS Chip Dependent SYNPHOT/PYSYNPHOT Files

    NASA Astrophysics Data System (ADS)

    Deustua, S. E.

    2016-05-01

    The purpose of this ISR is to document the changes to WFC3/UVIS component files that are used with SYNPHOT and PYSYNPHOT as a result of the implementation of the detector dependent photometric calibration in February 2016.

  15. The adsorption behavior of U(VI) on granite.

    PubMed

    Fan, Q H; Hao, L M; Wang, C L; Zheng, Z; Liu, C L; Wu, W S

    2014-03-01

    The effects of pH, counter ions and temperature on the adsorption of U(VI) on Beishan granite (BsG) were investigated in the presence and absence of fulvic acid (FA) and humic acid (HA). The adsorption edge of U(VI) on BsG suggested that U(VI) adsorption was mainly controlled by ion exchange and outer-sphere complexation at low pH, whereas inner-sphere complex was the dominant adsorption species in the pH range of 4.0-9.0. Above pH 9.0, Na2U2O7 might play an important role in the rise of U(VI) adsorption again. Counter ions such as Cl(-), SO4(2-) and PO4(3-) can provoke U(VI) adsorption on BsG to some extent, which was directly correlated to the complexing ability of U(VI)-ligand. More noticeably, the large enhancement of U(VI) adsorption in the presence of phosphate can be attributed to the ternary complex formation (BsG-PO4-UO2), precipitation ((UO2)3(PO4)2(s)) and secondary phase (Na-autunite). Both FA and HA can slightly increase U(VI) adsorption at low pH, whereas they strongly inhibited U(VI) adsorption at high pH range. Artificial synthesized granite (AsG) prepared in the laboratory is impossible to use as an analogue of natural granite because of the large difference in the adsorption and surface properties.

  16. Cassini UVIS Observations Show Active Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Esposito, L.; Colwell, J. E.; UVIS Team

    2004-12-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) is part of the remote sensing payload of the NASA/ESA Cassini spacecraft. This spectrograph includes channels for extreme UV and far UV spectroscopic imaging, high speed photometry of stellar occultations, solar EUV occultation, and a hydrogen/deuterium absorption cell. We report our initial results from UVIS observations of Saturn's rings. Dynamic interactions between neutrals, ions, rings, moons and meteoroids produce a highly structured and time variable Saturn system Oxygen in the Saturn system dominates the magnetosphere. Observed fluctuations indicate close interactions with plasma sources. Stochastic events in the E ring may be the ultimate source. The spectral signature of water ice is seen on Phoebe and in Saturn's rings. Water ice is mixed non-uniformly with darker constituents. The high structure of the UV ring reflectance argues that collisional transport dominates ballistic transport in darkening the rings. Our preliminary results support the idea that rings are recycled fragments of moons: the current processes are more important than history and initial conditions. The spectra along the UVIS SOI radial scan indicate varying amounts of water ice. In the A ring, the ice fraction increases outward to a maximum at the outer edge. This large-scale variation is consistent with initially pure ice that has suffered meteoritic bombardment over the age of the Solar system (Cuzzi and Estrada 1998). We also see variations over scales of 1000 - 3000 km, which cannot be explained by this mechanism. Ballistic transport of spectrally neutral extrinsic pollutants from meteoroids striking the rings has a typical throw distance of 6000 km (Durisen et al 1989), too long to explain this finer structure. We propose a class of smaller renewal events, in which a small moon residing within the rings is shattered by an external impactor (Colwell and Esposito 1993, Barbara and Esposito 2002, Esposito and Colwell 2003). The

  17. Reductive immobilization of uranium(VI) by amorphous iron sulfide.

    PubMed

    Hua, Bin; Deng, Baolin

    2008-12-01

    Batch experiments were used to evaluate the reductive immobilization of hexavalent uranium (U(VI)) by synthesized, amorphous iron sulfide (FeS) in the anoxic environment. The tests were initiated by spiking 168.0 microM U(VI) to 0.18 g/L FeS suspensions under a CO2-free condition with pH varied from 5.99 to 10.17. The immobilization rate of U(VI) was determined by monitoring the changes of aqueous U(VI) concentration, and the reduction rate of U(VI) associated with FeS was determined by the difference between the total spiked U(VI) and the extractable amount of U(VI) by 25 mM NaHCO3 solution. The results showed that a rapid removal of U(VI) from the aqueous phase occurred within 1 h under all pH conditions accompanied by a simultaneous release of Fe(ll), whereas the reduction of U(VI) associated with FeS took hours to over a week for completion. The reduction rate was greatly increased with decreasing pH within the examined pH range. Product analysis by X-ray photoelectron spectroscopy showed the formation of U3O8/4O9/UO2, polysulfide, and ferric iron.

  18. Biotic and Abiotic Reduction and Solubilization of Pu(IV)O2•xH2O(am) as Affected by Anthraquinone-2,6-disulfonate (AQDS) and Ethylenediaminetetraacetate (EDTA)

    SciTech Connect

    Plymale, Andrew E.; Bailey, Vanessa L.; Fredrickson, Jim K.; Heald, Steve M.; Buck, Edgar C.; Shi, Liang; Wang, Zheming; Resch, Charles T.; Moore, Dean A.; Bolton, Harvey

    2012-01-24

    In the presence of hydrogen (H{sub 2}), the synthetic chelating agent ethylenediaminetetraacetate (EDTA), and the electron shuttle anthraquinone-2,6-disulfonate (AQDS), the dissimilatory metal-reducing bacteria (DMRB) Shewanella oneidensis and Geobacter sulfurreducens both reductively solubilized 100% of added 0.5 mM plutonium (IV) hydrous oxide (Pu(IV)O{sub 2} {lg_bullet} xH{sub 2}O{sub (am)}) in {approx}24 h at pH 7 in a non-complexing buffer. In the absence of AQDS, bioreduction was much slower ({approx}22 days) and less extensive ({approx}83-94%). In the absence of DMRB but under comparable conditions, 89% (without AQDS) to 98% (with AQDS) of added 0.5 mM PuO{sub 2} {lg_bullet} xH{sub 2}O{sub (am)} was reductively solubilized over 418 days. Under comparable conditions but in the absence of EDTA, <0.001% of the 0.5 mM PuO{sub 2} {lg_bullet} xH{sub 2}O{sub (am)} was solubilized, with or without bacteria. However, Pu(aq) increased by as much as an order of magnitude in some EDTA-free treatments, both biotic and abiotic, and increases in solubility were associated with the production of both Pu(OH)3(am) and Pu(III)(aq). Incubation with DMRB in the absence of EDTA increased the polymeric and crystalline content of the PuO{sub 2} {lg_bullet} xH{sub 2}O{sub (am)} and also decreased Pu solubility in 6-N HCl. Results from an in vitro assay demonstrated electron transfer to PuO{sub 2} {lg_bullet} xH{sub 2}O{sub (am)} from the S. oneidensis outer-membrane c-type cytochrome MtrC, and EDTA increased the oxidation of MtrC by PuO{sub 2} {lg_bullet} xH{sub 2}O{sub (am)}. Our results suggest that PuO{sub 2} {lg_bullet} xH{sub 2}O{sub (am)} biotic and abiotic reduction and solubilization may be important in anoxic, reducing environments, especially where complexing ligands and electron shuttling compounds are present.

  19. Redox Interactions of Tc(VII), U(VI), and Np(V) with Microbially Reduced Biotite and Chlorite.

    PubMed

    Brookshaw, Diana R; Pattrick, Richard A D; Bots, Pieter; Law, Gareth T W; Lloyd, Jonathan R; Mosselmans, J Fredrick W; Vaughan, David J; Dardenne, Kathy; Morris, Katherine

    2015-11-17

    Technetium, uranium, and neptunium are contaminants that cause concern at nuclear facilities due to their long half-life, environmental mobility, and radiotoxicity. Here we investigate the impact of microbial reduction of Fe(III) in biotite and chlorite and the role that this has in enhancing mineral reactivity toward soluble TcO4(-), UO2(2+), and NpO2(+). When reacted with unaltered biotite and chlorite, significant sorption of U(VI) occurred in low carbonate (0.2 mM) buffer, while U(VI), Tc(VII), and Np(V) showed low reactivity in high carbonate (30 mM) buffer. On reaction with the microbially reduced minerals, all radionuclides were removed from solution with U(VI) reactivity influenced by carbonate. Analysis by X-ray absorption spectroscopy (XAS) confirmed reductive precipitation to poorly soluble U(IV) in low carbonate conditions and both Tc(VII) and Np(V) in high carbonate buffer were also fully reduced to poorly soluble Tc(IV) and Np(IV) phases. U(VI) reduction was inhibited under high carbonate conditions. Furthermore, EXAFS analysis suggested that in the reaction products, Tc(IV) was associated with Fe, Np(IV) formed nanoparticulate NpO2, and U(IV) formed nanoparticulate UO2 in chlorite and was associated with silica in biotite. Overall, microbial reduction of the Fe(III) associated with biotite and chlorite primed the minerals for reductive scavenging of radionuclides: this has clear implications for the fate of radionuclides in the environment.

  20. Diagnosing Abiotic Degradation

    EPA Science Inventory

    The abiotic degradation of chlorinated solvents in ground water can be difficult to diagnose. Under current practice, most of the “evidence” is negative; specifically the apparent disappearance of chlorinated solvents with an accumulation of vinyl chloride, ethane, ethylene, or ...

  1. Final Report for "Toward Quantifying Kinetics of Biotic and Abiotic Metal Reduction with Electrical Geophysical Methods" DE-FG02-08ER64520

    SciTech Connect

    Singha, Kamini; Brantley, Susan

    2012-06-07

    Although changes in the bulk electrical conductivity in aquifers have been attributed to microbial activity, electrical conductivity has never been used to infer biogeochemical reaction rates quantitatively. To explore the use of electrical conductivity to measure reaction rates, we conducted iron oxide reduction experiments of increasing biological complexity. To quantify reaction rates, we proposed composite reactions that incorporated the stiochiometry of five different types of reactions: redox, acid-based, sorption, dissolution/precipitation, and biosynthesis. In batch and column experiments, such reaction stiochiometries inferred from a few chemical measurements allowed quantification of the Fe-oxide reduction rate based on changes in electrical conductivity. The relationship between electrical conductivity and fluid chemistry did not hold during the latter stages of the column experiment when electrical conductivity increased while fluid chemistry remained constant. Growth of an electrically conductive biofilm could explain this late stage electrical conductivity increase. This work demonstrates that measurements of electrical conductivity and flow rate, combined with a few direct chemical measurements, can be used to quantify biogeochemical reaction rates in controlled laboratory situations and may be able to detect the presence of biofilms.

  2. Influence of Calcium on Microbial Reduction of Solid Phase Uranium (VI)

    SciTech Connect

    Liu, Chongxuan; Jeon, Byong-Hun; Zachara, John M.; Wang, Zheming

    2007-06-27

    The effect of calcium on microbial reduction of a solid phase U(VI), sodium boltwoodite (NaUO2SiO3OH ∙1.5H2O), was evaluated in a culture of a dissimilatory metal-reducing bacterium (DMRB), Shewanella oneidensis strain MR-1. Batch experiments were performed in a non-growth bicarbonate medium with lactate as electron donor at pH 7 buffered with PIPES. Calcium increased both the rate and extent of Na-boltwoodite dissolution by increasing its solubility through the formation of a ternary aqueous calcium-uranyl-carbonate species. The ternary species, however, decreased the rates of microbial reduction of aqueous U(VI). Laser-induced fluorescence spectroscopy (LIFS) and transmission electron microscopy (TEM) revealed that microbial reduction of solid phase U(VI) is a sequentially coupled process of Na-boltwoodite dissolution, U(VI) aqueous speciation, and microbial reduction of dissolved U(VI) to U(IV) that accumulated on bacterial surfaces/periplasm. The overall rates of microbial reduction of solid phase U(VI) can be described by the coupled rates of dissolution and microbial reduction that were both influenced by calcium. The results demonstrated that dissolved U(VI) concentration during microbial reduction was a complex function of solid phase U(VI) dissolution kinetics, aqueous U(VI) speciation, and microbial activity.

  3. Proposal for a modification of the UVI risk scale.

    PubMed

    Zaratti, Francesco; Piacentini, Rubén D; Guillén, Héctor A; Cabrera, Sergio H; Liley, J Ben; McKenzie, Richard L

    2014-07-01

    The standardisation of UV information to the public through the UV Index (UVI) has been hugely beneficial since its endorsement by multiple international agencies more than 10 years ago. It has now gained widespread acceptance, and UVI values are available throughout the world from satellite instruments, ground-based measurements, and from forecasts based on model calculations. These have been useful for atmospheric scientists, health professionals (skin and eye specialists), and the general public. But the descriptors and health messages associated with the UVI scale are targeted towards European skin types and UV regimes, and are not directly applicable to the population living closer to the equator, especially for those in the high-altitude Altiplano region of South America. This document arose from discussions at the Latin American Society of Photobiology and Photomedicine's Congress, which was held in Arequipa, Peru, in November 2013. A major outcome of the meeting was the Arequipa Accord, which is intended as a unifying document to ensure co-ordination of UV and health research decisions in Latin America. A plank of that agreement was the need to tailor the UVI scale to make it more relevant to the region and its population. Here we make some suggestions to improve the international applicability of the UVI scale.

  4. Reductive Sequestration Of Pertechnetate (99TcO4–) By Nano Zerovalent Iron (nZVI) Transformed By Abiotic Sulfide

    SciTech Connect

    Fan, Dimin; Anitori, Roberto; Tebo, Bradley M.; Tratnyek, Paul G.; Lezama Pacheco, Juan S.; Kukkadapu, Ravi K.; Engelhard, Mark H.; Bowden, Mark E.; Kovarik, Libor; Arey, Bruce W.

    2013-04-24

    Under anoxic conditions, soluble 99TcO4– can be reduced to less soluble TcO2•nH2O, but the oxide is highly susceptible to reoxidation. Here we investigate an alternative strategy for remediation of Tc-contaminated groundwater whereby sequestration as Tc sulfide is favored by sulfidic conditions stimulated by nano zero-valent iron (nZVI). nZVI was pre-exposed to increasing concentrations of sulfide in simulated Hanford groundwater for 24 hrs to mimic the stages of aquifer sulfate reduction and onset of biotic sulfidogenesis. Solid-phase characterizations of the sulfidated nZVI confirmed the formation of nanocrystalline FeS phases, but higher S/Fe ratios (>0.112) did not result in the formation of significantly more FeS. The kinetics of Tc sequestration by these materials showed faster Tc removal rates with increasing S/Fe between S/Fe = 0–0.056, but decreasing Tc removal rates with S/Fe > 0.224. The more favorable Tc removal kinetics at low S/Fe could be due to a higher affinity of TcO4– for FeS (over iron oxides), and electron microscopy confirmed that the majority of the Tc was associated with FeS phases. The inhibition of Tc removal at high S/Fe appears to have been caused by excess HS–. X-ray absorption spectroscopy revealed that as S/Fe increased, Tc speciation shifted from TcO2•nH2O to TcS2. The most substantial change of Tc speciation occurred at low S/Fe, coinciding with the rapid increase of Tc removal rate. This agreement further confirms the importance of FeS in Tc sequestration.

  5. Abiotic origin of biopolymers

    NASA Technical Reports Server (NTRS)

    Oro, J.; Stephen-Sherwood, E.

    1976-01-01

    A variety of methods have been investigated in different laboratories for the polymerization of amino acids and nucleotides under abiotic conditions. They include (1) thermal polymerization; (2) direct polymerization of certain amino acid nitriles, amides, or esters; (3) polymerization using polyphosphate esters; (4) polymerization under aqueous or drying conditions at moderate temperatures using a variety of simple catalysts or condensing agents like cyanamide, dicyandiamide, or imidazole; and (5) polymerization under similar mild conditions but employing activated monomers or abiotically synthesized high-energy compounds such as adenosine 5'-triphosphate (ATP). The role and significance of these methods for the synthesis of oligopeptides and oligonucleotides under possible primitive-earth conditions is evaluated. It is concluded that the more recent approach involving chemical processes similar to those used by contemporary living organisms appears to offer a reasonable solution to the prebiotic synthesis of these biopolymers.

  6. Potential for nonenzymatic reduction of Fe(III) via electron shuttling in subsurface sediments

    USGS Publications Warehouse

    Nevin, Kelly P.; Lovely, Derek R.

    2000-01-01

    The potential for various substances to serve as electron shuttles between Fe(III)-reducing microorganisms and insoluble Fe(III) oxides in aquifer sediments was evaluated in order to determine whether abiological mechanisms might play a role in the apparent microbial reduction of Fe(III) in subsurface sediments. Humic substances (humics) and the humics analogue, anthraquinone-2,6-disulfonate (AQDS), which were previously found to stimulate microbial reduction of synthetic poorly crystalline Fe(III) oxide under laboratory conditions, were found to also stimulate the reduction of aquifer Fe(III) oxides by indigenous microorganisms. Electron shuttling via biological reduction of U(VI) or S° followed by abiological reduction of Fe(III) by U(IV) or sulfide enhanced the reduction of synthetic Fe(III) oxide in cell suspensions, but these potential electron shuttles did not stimulate Fe(III) reduction when they were added to aquifer sediments. These results emphasize the importance of evaluating potential mechanisms for Fe(III) reduction with natural Fe(III) oxides, under environmentally relevant conditions. The finding that humics and other extracellular quinones can serve as electron shuttles to the Fe(III) oxides found in subsurface environments suggests that some Fe(III) reduction which was previously considered to be the result of direct enzymatic reduction of Fe(III) oxides may instead result from abiotic reduction of Fe(III) by microbially reduced humics or other microbially generated hydroquinones.

  7. The effect of temperature on the speciation of U(VI) in sulfate solutions

    SciTech Connect

    Rao, Linfeng; Tian, Guoxin

    2008-09-15

    Sulfate, one of the inorganic constituents that could be present in the nuclear waste repository, forms complexes with U(VI) and affects its migration in the environment. Results show that the complexation of U(VI) with sulfate is enhanced by the increase in temperature. The effect of temperature on the complexation and speciation of U(VI) in sulfate solutions is discussed.

  8. Kinetic Desorption and Sorption of U(VI) During Reactive Transport in a Contaminated Hanford Sediment

    SciTech Connect

    Qafoku, Nik; Zachara, John M.; Liu, Chongxuan; Gassman, Paul L.; Qafoku, Odeta; Smith, Steven C.

    2005-05-12

    Column experiments were conducted to investigate U(VI) desorption and sorption kinetics in a sand-textured, contaminated (22.7 µmol kg-1) capillary fringe sediment that had experienced long-term exposure to U(VI). The clay fraction mineralogy of the sediment was dominated by montmorillonite, muscovite, vermiculite, and chlorite. Saturated column experiments were performed under mildly alkaline/calcareous conditions representative of the Hanford site where uranyl–carbonate and calcium–uranyl–carbonate complexes dominate aqueous speciation. A U(VI) free solution was used to study U(VI) desorption in columns where different flow rates were applied. Uranium(VI) sorption was studied after the desorption of labile contaminant U(VI) using different U(VI) concentrations in the leaching solution. Strong kinetic behavior was observed for both U(VI) desorption and sorption. Although U(VI) is semi–mobile in mildly alkaline, calcareous subsurface environments, our results showed substantial U(VI) sorption, significant retardation during transport, and atypical breakthrough curves with extended tailing. A distributed rate model was applied to describe the effluent data and to allow comparisons between the desorption rate of contaminant U(VI) with the rate of short-term U(VI) sorption. Desorption was the slower process. Our results suggest that U(VI) release and transport in the vadose zone and aquifer system from which the sediment was obtained are kinetically controlled.

  9. UVIS 2.0 Chip-dependent Inverse Sensitivity Values

    NASA Astrophysics Data System (ADS)

    Deustua, S. E.; Mack, J.; Bowers, A. S.; Baggett, S.; Bajaj, V.; Dahlen, T.; Durbin, M.; Gosmeyer, C.; Gunning, H.; Hammer, D.; Hartig, G.; Khandrika, H.; MacKenty, J.; Ryan, R.; Sabbi, E.; Sosey, M.

    2016-11-01

    We analyze 6 years of standard star observations acquired with the WFC3/UVIS imager between 2009 and 2015. Observations of the three white dwarf standard stars, GD 153, GD 71, and G191B2B were obtained at multiple dither positions near the center of the array and in all four-corner subarrays. Departing from previous practice, chip-dependent inverse sensitivities are computed at r=10 pixels (0.3962 arcsec) for the 42 full frame filters (excluding the 20 quad filters); and these data also provide encircled energy fractions as a function of filter. Chip-dependent inverse sensitivities differ on average by 3% from previous computations, primarily due to drizzling errors. UVIS2 science data are scaled to UVIS1 by the inverse sensitivity ratio so that only a single photflam value is needed for the full detector. We describe the UVIS 2.0 (chip-dependent) philosophy and discuss our results in the context of prior photometric calculations. An updated version of CALWF3 (version 3.3) is required to process the new chip-dependent solutions.

  10. UVIS 2.0: Chip-Dependent Flats

    NASA Astrophysics Data System (ADS)

    Mack, J.; Dahlen, T.; Sabbi, E.; Bowers, A. S.

    2016-03-01

    An improved set of flat fields was delivered to the HST archive on February 23, 2016 as part of the UVIS 2.0 photometric calibration. This new methodology treats the two UVIS chips as separate detectors when computing the flats and zeropoints. The most significant difference in the new flats is that each chip is now normalized by its median value, removing any inherent sensitivity offsets from the flats themselves. Instead, the new software (CALWF3 version 3.3) corrects for this effect by scaling the UVIS2 science extension by the sensitivity ratio between chips, as determined from observations of white dwarf standards. For the majority of filters, the maximum change in the flat field is less than 1%. For the UV filters, the flats are based on ground test data obtained in ambient conditions. These have been updated to correct for 3% sensitivity variations in a crosshatch pattern on scales of 50-100 pixels across both chips. To improve cosmetics in calibrated images, the new flats contain additional corrections for bad rows and columns and new data quality flags for slight vignetting in the outer corner of UVIS1 (amp A).

  11. Réduction de U(VI) par le fer métallique: application à la dépollution des eaux

    NASA Astrophysics Data System (ADS)

    Abdelouas, Abdesselam; Lutze, Werner; Nuttall, Eric; Gong, Weiliang

    1999-03-01

    We investigated the possibility of U(VI) reduction by zero-valent iron (Fe 0). We conducted batch experiments with granular iron and solutions containing 0.25 and 9.3 mg L -1 U(VI) at 24 °C. The solution pH ranges between 2 and 9. In all experiments uranium removal was complete within several hours to several days regardless of the pH value. The reduced uranium precipitated as poorly crystallized hydrated uraninite, UO 2. nH 2O. The reduction of U(VI) to U(IV) by Fe 0 was found to be the principal mechanism of U removal from the solution. Other mechanisms such as U(VI) sorption on the newly formed Fe(III) hydroxides are insignificant. These results show that zero-valent iron can be used to remediate U-contaminated waters from uranium mines and mill tailings sites, the pH of which usually ranges between 2 and 9.

  12. Effect of Phosphate on U(VI) Sorption to Montmorillonite: Ternary Complexation and Precipitation Barriers

    SciTech Connect

    Troyer, Lyndsay D.; Maillot, Fabien; Wang, Zheming; Wang, Zimeng; Mehta, Vrajesh; Giammar, Daniel; Catalano, Jeffrey G.

    2016-02-15

    Phosphate addition is a potential treatment method to lower the solubility of U(VI) in soil and groundwater systems by causing U(VI) phosphate precipitation as well as enhancing adsorption. Previous work has shown that iron oxide surfaces may facilitate the nucleation of U(VI) phosphate minerals and, that under weakly acidic conditions, phosphate also enhances U(VI) adsorption to such phases. Like iron oxides, clays are important reactive phases in the subsurface but little is known about the interaction of U(VI) and phosphate with these minerals. The effect of aqueous phosphate on U(VI) binding to Wyoming montmorillonite (SWy-2) in air-equilibrated systems was investigated. Equilibrium U(VI) uptake to montmorillonite was determined at pH 4, 6 and 8 at discrete initial phosphate concentrations between 0 and 100 μM. The observed behavior of U(VI) indicates a transition from adsorption to precipitation with increasing total uranium and phosphate concentrations at all pH values. At the highest phosphate concentration examined at each pH value, a barrier to U(VI) phosphate nucleation is observed. At lower concentrations, phosphate has no effect on macroscopic U(VI) adsorption. To assess the mechanisms of U(VI)-phosphate interactions on smectite surfaces, U(VI) speciation was investigated under selected conditions using laser-induced fluorescence spectroscopy (LIFS) and extended X-ray absorption fine-structure (EXAFS) spectroscopy. Samples above the precipitation threshold display EXAFS and LIFS spectral signatures consistent with the autunite family of U(VI) phosphate minerals. However, at lower U(VI) concentrations, changes in LIFS spectra upon phosphate addition suggest that U(VI)-phosphate ternary surface complexes form on the montmorillonite surface at pH 4 and 6 despite the lack of a macroscopic effect on adsorption. The speciation of solid-associated U(VI) below the precipitation threshold at pH 8 is dominated by U(VI)-carbonate surface complexes. This work

  13. CASSINI UVIS STELLAR OCCULTATION OBSERVATIONS OF SATURN's RINGS

    SciTech Connect

    Colwell, J. E.; Jerousek, R. G.; Pettis, D.; Bradley, E. T.; Esposito, L. W.; Sremcevic, M.

    2010-12-15

    The Cassini spacecraft's Ultraviolet Imaging Spectrograph (UVIS) includes a high-speed photometer (HSP) that has observed more than 100 stellar occultations by Saturn's rings. Here, we document a standardized technique applied to the UVIS-HSP ring occultation datasets delivered to the Planetary Data System as higher level data products. These observations provide measurements of ring structure that approaches the scale of the largest common ring particles ({approx}5 m). The combination of multiple occultations at different viewing geometries enables reconstruction of the three-dimensional structure of the rings. This inversion of the occultation data depends on accurate calibration of the data so that occultations of different stars taken at different times and under different viewing conditions can be combined to retrieve ring structure. We provide examples of the structure of the rings as seen from several occultations at different incidence angles to the rings, illustrating changes in the apparent structure with viewing geometry.

  14. Reduction of uranium by cytochrome c3 of Desulfovibrio vulgaris

    USGS Publications Warehouse

    Lovley, D.R.; Widman, P.K.; Woodward, J.C.; Phillips, E.J.P.

    1993-01-01

    The mechanism for U(VI) reduction by Desulfovibrio vulgaris (Hildenborough) was investigated. The H2-dependent U(VI) reductase activity in the soluble fraction of the cells was lost when the soluble fraction was passed over a cationic exchange column which extracted cytochrome c3. Addition of cytochrome c3 back to the soluble fraction that had been passed over the cationic exchange column restored the U(VI)-reducing capacity. Reduced cytochrome c3 was oxidized by U(VI), as was a c-type cytochrome(s) in whole-cell suspensions. When cytochrome c3 was combined with hydrogenase, its physiological electron donor, U(VI) was reduced in the presence of H2. Hydrogenase alone could not reduce U(VI). Rapid U(VI) reduction was followed by a subsequent slow precipitation of the U(IV) mineral uraninite. Cytochrome c3 reduced U(VI) in a uranium-contaminated surface water and groundwater. Cytochrome c3 provides the first enzyme model for the reduction and biomineralization of uranium in sedimentary environments. Furthermore, the finding that cytochrome c3 can catalyze the reductive precipitation of uranium may aid in the development of fixed-enzyme reactors and/or organisms with enhanced U(VI)-reducing capacity for the bioremediation of uranium- contaminated waters and waste streams.

  15. Reduction of uranium by cytochrome c3 of Desulfovibrio vulgaris.

    PubMed Central

    Lovley, D R; Widman, P K; Woodward, J C; Phillips, E J

    1993-01-01

    The mechanism for U(VI) reduction by Desulfovibrio vulgaris (Hildenborough) was investigated. The H2-dependent U(VI) reductase activity in the soluble fraction of the cells was lost when the soluble fraction was passed over a cationic exchange column which extracted cytochrome c3. Addition of cytochrome c3 back to the soluble fraction that had been passed over the cationic exchange column restored the U(VI)-reducing capacity. Reduced cytochrome c3 was oxidized by U(VI), as was a c-type cytochrome(s) in whole-cell suspensions. When cytochrome c3 was combined with hydrogenase, its physiological electron donor, U(VI) was reduced in the presence of H2. Hydrogenase alone could not reduce U(VI). Rapid U(VI) reduction was followed by a subsequent slow precipitation of the U(IV) mineral uraninite. Cytochrome c3 reduced U(VI) in a uranium-contaminated surface water and groundwater. Cytochrome c3 provides the first enzyme model for the reduction and biomineralization of uranium in sedimentary environments. Furthermore, the finding that cytochrome c3 can catalyze the reductive precipitation of uranium may aid in the development of fixed-enzyme reactors and/or organisms with enhanced U(VI)-reducing capacity for the bioremediation of uranium-contaminated waters and waste streams. PMID:8285665

  16. WFC3 TV2 Testing: UVIS Channel Glint

    NASA Astrophysics Data System (ADS)

    Brown, Thomas M.

    2007-10-01

    The UVIS spare detector (UVIS build 2) was housed in WFC3 during the most recent epoch of thermal vaccum ground testing. We scanned the chip gap with a HeNe laser, to look for scattering from any material in the CCD chip gap or the edges of the CCD chips themselves. Although we found no such scattering issues, we did find a significant glint problem involving reflection from the surface of the CCD to the CCD housing and back down to the CCD. The glint appears as a large streak, ~10,000 pixels in area, containing anywhere from 1% to 30% of the energy within the source itself, depending upon the wavelength and position of the source. Approximately 10% of the detector area leads to glint when a source is placed in that area. Although any one glint comprises a tiny fraction of the detector area, the glint sweeps over a large area as the source is moved, implying that approximately 15% of the detector could be significantly illuminated by glint when observing a crowded field. As a result, the UVIS detectors currently not installed in the instrument have been modified to mask the surfaces responsible for the glint, to avoid this issue on orbit.

  17. Abiotic degradation of plastic films

    NASA Astrophysics Data System (ADS)

    Ángeles-López, Y. G.; Gutiérrez-Mayen, A. M.; Velasco-Pérez, M.; Beltrán-Villavicencio, M.; Vázquez-Morillas, A.; Cano-Blanco, M.

    2017-01-01

    Degradable plastics have been promoted as an option to mitigate the environmental impacts of plastic waste. However, there is no certainty about its degradability under different environmental conditions. The effect of accelerated weathering (AW), natural weathering (NW) and thermal oxidation (TO) on different plastics (high density polyethylene, HDPE; oxodegradable high density polyethylene, HDPE-oxo; compostable plastic, Ecovio ® metalized polypropylene, PP; and oxodegradable metalized polypropylene, PP-oxo) was studied. Plastics films were exposed to AW per 110 hours; to NW per 90 days; and to TO per 30 days. Plastic films exposed to AW and NW showed a general loss on mechanical properties. The highest reduction in elongation at break on AW occurred to HDPE-oxo (from 400.4% to 20.9%) and was higher than 90% for HDPE, HDPE-oxo, Ecovio ® and PP-oxo in NW. No substantial evidence of degradation was found on plastics exposed to TO. Oxo-plastics showed higher degradation rates than their conventional counterparts, and the compostable plastic was resistant to degradation in the studied abiotic conditions. This study shows that degradation of plastics in real life conditions will vary depending in both, their composition and the environment.

  18. Abiotic stresses and endophyte effects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abiotic stresses consist of nonorganismal, nonpathogenic factors that inhibit plant function. Tall fescue [Lolium arundinaceum (Schreb.) Darbysh.] is widely symbiotic with a naturally occurring endophytic fungus [Neotyphodium coenophialum (Morgan-Jones and Gams) Glenn, Bacon, and Hanlin], which con...

  19. Abiotic tooth enamel

    NASA Astrophysics Data System (ADS)

    Yeom, Bongjun; Sain, Trisha; Lacevic, Naida; Bukharina, Daria; Cha, Sang-Ho; Waas, Anthony M.; Arruda, Ellen M.; Kotov, Nicholas A.

    2017-03-01

    Tooth enamel comprises parallel microscale and nanoscale ceramic columns or prisms interlaced with a soft protein matrix. This structural motif is unusually consistent across all species from all geological eras. Such invariability—especially when juxtaposed with the diversity of other tissues—suggests the existence of a functional basis. Here we performed ex vivo replication of enamel-inspired columnar nanocomposites by sequential growth of zinc oxide nanowire carpets followed by layer-by-layer deposition of a polymeric matrix around these. We show that the mechanical properties of these nanocomposites, including hardness, are comparable to those of enamel despite the nanocomposites having a smaller hard-phase content. Our abiotic enamels have viscoelastic figures of merit (VFOM) and weight-adjusted VFOM that are similar to, or higher than, those of natural tooth enamels—we achieve values that exceed the traditional materials limits of 0.6 and 0.8, respectively. VFOM values describe resistance to vibrational damage, and our columnar composites demonstrate that light-weight materials of unusually high resistance to structural damage from shocks, environmental vibrations and oscillatory stress can be made using biomimetic design. The previously inaccessible combinations of high stiffness, damping and light weight that we achieve in these layer-by-layer composites are attributed to efficient energy dissipation in the interfacial portion of the organic phase. The in vivo contribution of this interfacial portion to macroscale deformations along the tooth’s normal is maximized when the architecture is columnar, suggesting an evolutionary advantage of the columnar motif in the enamel of living species. We expect our findings to apply to all columnar composites and to lead to the development of high-performance load-bearing materials.

  20. Abiotic tooth enamel.

    PubMed

    Yeom, Bongjun; Sain, Trisha; Lacevic, Naida; Bukharina, Daria; Cha, Sang-Ho; Waas, Anthony M; Arruda, Ellen M; Kotov, Nicholas A

    2017-03-01

    Tooth enamel comprises parallel microscale and nanoscale ceramic columns or prisms interlaced with a soft protein matrix. This structural motif is unusually consistent across all species from all geological eras. Such invariability-especially when juxtaposed with the diversity of other tissues-suggests the existence of a functional basis. Here we performed ex vivo replication of enamel-inspired columnar nanocomposites by sequential growth of zinc oxide nanowire carpets followed by layer-by-layer deposition of a polymeric matrix around these. We show that the mechanical properties of these nanocomposites, including hardness, are comparable to those of enamel despite the nanocomposites having a smaller hard-phase content. Our abiotic enamels have viscoelastic figures of merit (VFOM) and weight-adjusted VFOM that are similar to, or higher than, those of natural tooth enamels-we achieve values that exceed the traditional materials limits of 0.6 and 0.8, respectively. VFOM values describe resistance to vibrational damage, and our columnar composites demonstrate that light-weight materials of unusually high resistance to structural damage from shocks, environmental vibrations and oscillatory stress can be made using biomimetic design. The previously inaccessible combinations of high stiffness, damping and light weight that we achieve in these layer-by-layer composites are attributed to efficient energy dissipation in the interfacial portion of the organic phase. The in vivo contribution of this interfacial portion to macroscale deformations along the tooth's normal is maximized when the architecture is columnar, suggesting an evolutionary advantage of the columnar motif in the enamel of living species. We expect our findings to apply to all columnar composites and to lead to the development of high-performance load-bearing materials.

  1. The role of nanopores on U(VI) sorption and redox behavior in U(VI)-contaminated subsurface sediments

    SciTech Connect

    Xu, Huifang; Roden, Eric E.; Kemner, Kenneth M.; Jung, Hun-Bok; Konishi, Hiromi; Boyanov, Maxim; Sun, Yubing; Mishra, Bhoopesh

    2013-10-16

    Most reactive surfaces in clay-dominated sediments are present within nanopores (pores of nm dimension). The behavior of geological fluids and minerals in nanopores is significantly different from those in normal non-nanoporous environments. The effect of nanopore surfaces on U(VI) sorption/desorption and reduction is likely to be significant in clay-rich subsurface environments. Our research results from both model nanopore system and natural sediments from both model system (synthetic nanopore alumina) and sediments from the ORNL Field Research Center prove that U(VI) sorption on nanopore surfaces can be greatly enhanced by nanopore confinement environments. The results from the project provide advanced mechanistic, quantitative information on the physiochemical controls on uranium sorption and redox behavior in subsurface sediments. The influence of nanopore surfaces on coupled uranium sorption/desorption and reduction processes is significant in virtually all subsurface environments, because most reactive surfaces are in fact nanopore surfaces. The results will enhance transfer of our laboratory-based research to a major field research initiative where reductive uranium immobilization is being investigated. Our results will also provide the basic science for developing in-situ colloidal barrier of nanoporous alumina in support of environmental remediation and long term stewardship of DOE sites.

  2. Discovery Of B Ring Propellers In Cassini UVIS, And ISS

    NASA Astrophysics Data System (ADS)

    Sremcevic, Miodrag; Stewart, G. R.; Albers, N.; Esposito, L. W.

    2012-10-01

    We present evidence for the existence of propellers in Saturn's B ring by combining data from Cassini Ultraviolet Imaging Spectrograph (UVIS) and Imaging Science Subsystem (ISS) experiments. We identify two propeller populations: (1) tens of degrees wide propellers in the dense B ring core, and (2) smaller, more A ring like, propellers populating the inner B ring. The prototype of the first population is an object observed at 18 different epochs between 2005 and 2010. The ubiquitous propeller "S" shape is seen both in UVIS occultations as an optical depth depletion and in ISS as a 40 degrees wide bright stripe in unlit geometries and dark in lit geometries. Combining the available Cassini data we infer that the object is a partial gap embedded in the high optical depth region of the B ring. The gap moves at orbital speed consistent with its radial location. From the radial separation of the propeller wings we estimate that the embedded body, which causes the propeller structure, is about 1.5km in size located at a=112,921km. The UVIS occultations indicate an asymmetric propeller "S" shape. Since the object is located at an edge between high and relatively low optical depth, this asymmetry is most likely a consequence of the strong surface mass density gradient. We estimate that there are possibly dozen up to 100 other propeller objects in Saturn's B ring. The location of the discovered body, at an edge of a dense ringlet within the B ring, suggests a novel mechanism for the up to now illusive B ring irregular large-scale structure of alternating high and low optical depth ringlets. We propose that this B ring irregular structure may have its cause in the presence of many embedded bodies that shepherd the individual B ring ringlets.

  3. Bioreduction of U(VI) in the presence of phosphate

    NASA Astrophysics Data System (ADS)

    Boyanov, M. I.; Mishra, B.; Latta, D. E.; Rui, X.; Kwon, M.-J.; Fletcher, K. E.; Loeffler, F. E.; O'Loughlin, E. J.; Kemner, K. M.

    2012-04-01

    Phosphate/phosphoryl moieties are ubiquitous in biological and environmental systems and can potentially affect the speciation of uranium during natural attenuation or stimulated bioremediation processes. The reactivity between U(VI) and phosphate has been studied extensively, but the significant influence of phosphate groups on the formation of reduced U(IV) species has only recently been recognized. We will compare and contrast the bioreduction of dissolved and solid-phase U(VI) by Gram-positive and Gram-negative metal-reducing bacteria (Shewanella, Anaeromyxobacter, Geobacter, and Desulfitobacterium) in the presence and absence of phosphate, from the perspective of solid-phase U speciation as determined by U L-edge x-ray absorption spectroscopy (XANES and EXAFS). In all cases examined, the presence of phosphate at concentrations of P/U > 1 led to the formation of reduced, inner-sphere complexed U(IV)-phosphate species that prevented the lowest-solubility U(IV) mineral uraninite (UO2) from forming over at least several months. In the absence of phosphate, nanoparticulate uraninite or complexed non-uraninite U(IV) species were observed (depending on the system and conditions), suggesting that the interplay between the chemical conditions at the location of electron transfer to U(VI) control the U(IV) product and subsequently the stability of reduced U. The importance of non-uraninite U(IV) species will be discussed in the context of their predominance in biostimulated sediments from the Oak Ridge field site in the United States.

  4. Saturn's variable thermosphere from Cassini/UVIS occultations

    NASA Astrophysics Data System (ADS)

    Koskinen, T. T.; Sandel, B. R.; Yelle, R. V.; Strobel, D. F.; Müller-Wodarg, I. C. F.; Erwin, J. T.

    2015-11-01

    We retrieved the density and temperature profiles in Saturn's thermosphere from 26 stellar occultations observed by the Cassini/UVIS instrument. These results expand upon and complement the previous analysis of 15 Cassini/UVIS solar occultations by Saturn's upper thermosphere. We find that the exospheric temperatures based on the stellar occultations agree with the solar occultations and range from 380 K to 590 K. These temperatures are also consistent with the recent re-analysis of the Voyager/UVS occultations. The retrieved density profiles support our earlier inference that the shape of the atmosphere at low pressures is consistent with a meridional trend of increasing temperatures with absolute latitude. This implies a high-latitude heat source, such as auroral heating, although the existing circulation models that include auroral heating still underestimate the equatorial temperatures by overestimating the meridional temperature gradient. This suggests either that the circulation models are somehow incomplete or there is some other heat source at low to mid latitudes that is relatively less efficient than high-latitude heating. We also find evidence for the expansion of the exobase by about 500 km between 2006 and 2011 near the equator, followed by possible contraction after 2011. The expansion appears to be caused by significant warming of the lower thermosphere that anti-correlates with solar activity and may be connected to changes in global circulation. Lastly, we note that our density profiles are in good general agreement with the Voyager/UVS data. In particular, the Voyager density profiles are most consistent with the Cassini/UVIS stellar occultations from late 2008 and early 2009 that roughly coincide in season with the Voyager flybys.

  5. A first principles investigation of electron transfer between Fe(II) and U(VI) on insulating Al- vs. semiconducting Fe-oxide surfaces via the proximity effect

    NASA Astrophysics Data System (ADS)

    Taylor, S. D.; Marcano, M. C.; Becker, U.

    2017-01-01

    This study investigates how the intrinsic chemical and electronic properties of mineral surfaces and their associated electron transfer (ET) pathways influence the reduction of U(VI) by surface-associated Fe(II). Density functional theory (DFT), including the Hubbard U correction to the exchange-correlation functional, was used to investigate sorption/redox reactions and ET mechanisms between Fe(II) and U(VI) coadsorbed on isostructural, periodic (0 0 1) surfaces of the insulator corundum (α-Al2O3) vs. the semiconductor hematite (α-Fe2O3). Furthermore, the coadsorbed Fe(II) and U(VI) ions are spatially separated from one another on the surfaces (⩾5.9 Å) to observe whether electronic-coupling through the semiconducting hematite surface facilitates ET between the adsorbates, a phenomenon known as the proximity effect. The calculations show that the different chemical and electronic properties between the isostructural corundum and hematite (0 0 1) surfaces lead to considerably different ET mechanisms between Fe(II) and U(VI). ET on the insulating corundum (0 0 1) surface is limited by the adsorbates' structural configuration. When Fe(II) and U(VI) are spatially separated and do not directly interact with one another (e.g. via an inner-sphere complex), U(VI) reduction by Fe(II) cannot occur as there is no physical pathway enabling ET between the adsorbates. In contrast to the insulating corundum (0 0 1) surface, the hematite (0 0 1) surface can potentially participate in ET reactions due to the high number of electron acceptor sites from the Fe d-states near the Fermi level at the hematite surface. The adsorption of Fe(II) also introduces d-states near the Fermi level as well as shifts unoccupied d-states of the Fe cations at the hematite surface to lower energies, making the surface more conductive. In turn, electronic coupling through the surface can link the spatially separated adsorbates to one another and provide distinct ET pathways for an electron from Fe

  6. Transient groundwater chemistry near a river: Effects on U(VI) transport in laboratory column experiments

    SciTech Connect

    Yin, Jun; Haggerty, Roy; Stoliker, Deborah L.; Kent, Douglas B.; Istok, Jonathan D.; Greskowiak, Janek; Zachara, John M.

    2011-04-05

    In the 300 Area of a U(VI)-contaminated aquifer at Hanford, Washington, USA, inorganic carbon and major cations, which have large impacts on U(VI) transport, change on an hourly and seasonal basis near the Columbia River. Batch and column experiments were conducted to investigate the factors controlling U(VI) adsorption/desorption by changing chemical conditions over time. Low alkalinity and low Ca concentrations (Columbia River water) enhanced adsorption and reduced aqueous concentrations. Conversely, high alkalinity and high Ca concentrations (Hanford groundwater) reduced adsorption and increased aqueous concentrations of U(VI). An equilibrium surface complexation model calibrated using laboratory batch experiments accounted for the decrease in U(VI) adsorption observed with increasing (bi)carbonate concentrations and other aqueous chemical conditions. In the column experiment, alternating pulses of river and groundwater caused swings in aqueous U(VI) concentration. A multispecies multirate surface complexation reactive transport model simulated most of the major U(VI) changes in two column experiments. The modeling results also indicated that U(VI) transport in the studied sediment could be simulated by using a single kinetic rate without loss of accuracy in the simulations. Moreover, the capability of the model to predict U(VI) transport in Hanford groundwater under transient chemical conditions depends significantly on the knowledge of real-time change of local groundwater chemistry.

  7. Transient groundwater chemistry near a river: Effects on U(VI) transport in laboratory column experiments

    NASA Astrophysics Data System (ADS)

    Yin, Jun; Haggerty, Roy; Stoliker, Deborah L.; Kent, Douglas B.; Istok, Jonathan D.; Greskowiak, Janek; Zachara, John M.

    2011-04-01

    In the 300 Area of a U(VI)-contaminated aquifer at Hanford, Washington, USA, inorganic carbon and major cations, which have large impacts on U(VI) transport, change on an hourly and seasonal basis near the Columbia River. Batch and column experiments were conducted to investigate the factors controlling U(VI) adsorption/desorption by changing chemical conditions over time. Low alkalinity and low Ca concentrations (Columbia River water) enhanced adsorption and reduced aqueous concentrations. Conversely, high alkalinity and high Ca concentrations (Hanford groundwater) reduced adsorption and increased aqueous concentrations of U(VI). An equilibrium surface complexation model calibrated using laboratory batch experiments accounted for the decrease in U(VI) adsorption observed with increasing (bi)carbonate concentrations and other aqueous chemical conditions. In the column experiment, alternating pulses of river and groundwater caused swings in aqueous U(VI) concentration. A multispecies multirate surface complexation reactive transport model simulated most of the major U(VI) changes in two column experiments. The modeling results also indicated that U(VI) transport in the studied sediment could be simulated by using a single kinetic rate without loss of accuracy in the simulations. Moreover, the capability of the model to predict U(VI) transport in Hanford groundwater under transient chemical conditions depends significantly on the knowledge of real-time change of local groundwater chemistry.

  8. Transient groundwater chemistry near a river: Effects on U(VI) transport in laboratory column experiments

    USGS Publications Warehouse

    Yin, Jun; Haggerty, Roy; Stoliker, Deborah L.; Kent, Douglas B.; Istok, Jonathan D.; Greskowiak, Janek; Zachara, John M.

    2011-01-01

    In the 300 Area of a U(VI)-contaminated aquifer at Hanford, Washington, USA, inorganic carbon and major cations, which have large impacts on U(VI) transport, change on an hourly and seasonal basis near the Columbia River. Batch and column experiments were conducted to investigate the factors controlling U(VI) adsorption/desorption by changing chemical conditions over time. Low alkalinity and low Ca concentrations (Columbia River water) enhanced adsorption and reduced aqueous concentrations. Conversely, high alkalinity and high Ca concentrations (Hanford groundwater) reduced adsorption and increased aqueous concentrations of U(VI). An equilibrium surface complexation model calibrated using laboratory batch experiments accounted for the decrease in U(VI) adsorption observed with increasing (bi)carbonate concentrations and other aqueous chemical conditions. In the column experiment, alternating pulses of river and groundwater caused swings in aqueous U(VI) concentration. A multispecies multirate surface complexation reactive transport model simulated most of the major U(VI) changes in two column experiments. The modeling results also indicated that U(VI) transport in the studied sediment could be simulated by using a single kinetic rate without loss of accuracy in the simulations. Moreover, the capability of the model to predict U(VI) transport in Hanford groundwater under transient chemical conditions depends significantly on the knowledge of real-time change of local groundwater chemistry.

  9. Transient groundwater chemistry near a river: Effects on U(VI) transport in laboratory column experiments

    USGS Publications Warehouse

    Yin, J.; Haggerty, R.; Stoliker, D.L.; Kent, D.B.; Istok, J.D.; Greskowiak, J.; Zachara, J.M.

    2011-01-01

    In the 300 Area of a U(VI)-contaminated aquifer at Hanford, Washington, USA, inorganic carbon and major cations, which have large impacts on U(VI) transport, change on an hourly and seasonal basis near the Columbia River. Batch and column experiments were conducted to investigate the factors controlling U(VI) adsorption/desorption by changing chemical conditions over time. Low alkalinity and low Ca concentrations (Columbia River water) enhanced adsorption and reduced aqueous concentrations. Conversely, high alkalinity and high Ca concentrations (Hanford groundwater) reduced adsorption and increased aqueous concentrations of U(VI). An equilibrium surface complexation model calibrated using laboratory batch experiments accounted for the decrease in U(VI) adsorption observed with increasing (bi)carbonate concentrations and other aqueous chemical conditions. In the column experiment, alternating pulses of river and groundwater caused swings in aqueous U(VI) concentration. A multispecies multirate surface complexation reactive transport model simulated most of the major U(VI) changes in two column experiments. The modeling results also indicated that U(VI) transport in the studied sediment could be simulated by using a single kinetic rate without loss of accuracy in the simulations. Moreover, the capability of the model to predict U(VI) transport in Hanford groundwater under transient chemical conditions depends significantly on the knowledge of real-time change of local groundwater chemistry. Copyright 2011 by the American Geophysical Union.

  10. U(VI) transport under the condition of water table fluctuations

    NASA Astrophysics Data System (ADS)

    Yin, J.; Haggerty, R.; Rockhold, M. L.; Kent, D. B.; Istok, J. D.; Zachara, J. M.

    2010-12-01

    U(VI) transport at the 300 Area Hanford IFRC site, WA appears to be strongly related to water table fluctuations resulting from rapid changes of Column River stage. In the “smear zone” (zone through which the water table sweeps) at the IFRC site, sediment can experience more than one saturation cycle every day. This unique phenomenon complicates the current understanding of U(VI) transport because the smear zone is likely a persistent source of long-term U(VI) contamination. In our study, two comparison column (4.28 cm × 44.4 cm) experiments are conducted to exam the U(VI) desorption affected by occasional, partially unsaturated conditions. In the experiment, one column remains saturated and the other one experiences three saturation-desaturation cycles. Less than 8 mm composite sediments collected from the Hanford IFRC site are packed into the column. TDRs and tensiometers are built into the column to measure both water contents and metric potentials at different depths. U-free synthetic ground water (SGW) is used to desorb U(VI) in both columns. In the experiment, both columns are initially saturated and SGW is injected in at a constant rate to desorb U(VI). Three stop flow events are embedded into desorption. Before each stop flow event, one of the columns is freely drained and the sediment represents the smear zone with the water table at the bottom of the column. After each stop flow, the column is re-saturated and regular desorption continues in both columns. During desorption and drainage, the pH in the effluent is continuously monitored. In addition, U(VI), major ions and alkalinity are measured in all samples. Previous studies show that aqueous U(VI) concentration increases due to the kinetic behavior of U(VI) desorption. If the column remains unsaturated during the stop flow, it is expected that the kinetic behavior of U(VI) will cause a much higher U(VI) concentration in less mobile pore water . Therefore, a lower U(VI) spike and a longer U(VI) tail

  11. Thermodynamic Insight into the Solvation and Complexation Behavior of U(VI) in Ionic Liquid: Binding of CMPO with U(VI) Studied by Optical Spectroscopy and Calorimetry.

    PubMed

    Wu, Qi; Sun, Taoxiang; Meng, Xianghai; Chen, Jing; Xu, Chao

    2017-03-06

    The complexation of U(VI) with octylphenyl-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO, denoted as L) in ionic liquid (IL) C4mimNTf2 was investigated by UV-vis absorption spectrophotometry and isothermal titration calorimetry. Spectro-photometric titration suggests that three successive complexes, UO2Lj(2+) (j = 1-3), formed both in "dry" (water content < 250 ppm) and "wet" (water content ≈ 12 500 ppm) ionic liquid. However, the thermodynamic parameters are distinctly different in the two ILs. In dry IL, the complexation strength between CMPO and U(VI) is much stronger, with stability constants of the respective complexes more than 1 order of magnitude higher than that in wet IL. Energetically, the complexation of U(VI) with CMPO in dry IL is mainly driven by negative enthalpies. In contrast, the complexation in wet IL is overwhelmingly driven by highly positive entropies as a result of the release of a large amount of water molecules from the solvation sphere of U(VI). Moreover, comparisons between the fitted absorption spectra of complexes in wet IL and that of extractive samples from solvent extraction have identified the speciation involved in the extraction of U(VI) by CMPO in ionic liquid. The results from this study not only offer a thermodynamic insight into the complexation behavior of U(VI) with CMPO in IL but also provide valuable information for understanding the extraction behavior in the corresponding solvent extraction system.

  12. uVis Studio: an integrated development environment for visualization

    NASA Astrophysics Data System (ADS)

    Pantazos, Kostas; Kuhail, Mohammad A.; Lauesen, Soren; Xu, Shangjin

    2013-01-01

    A toolkit facilitates the visualization development process. The process can be further enhanced by integrating the toolkits in development environments. This paper describes how the uVis toolkit, a formula-based visualiza- tion toolkit, has been extended with a development environment, called uVis Studio. Instead of programming, developers apply a Drag-Drop-Set-View-Interact approach. Developers bind controls to data, and the Studio gives immediate visual feedback in the Design Panel. This is a novel feature, called What-You-Bind-Is-What- You-Get. The Studio also provides Modes that allow developers to interact and view the visualization from the end-user's perspective without switching workspace, and Auto-Completion; a feature of the Property Grid that provides suggestions not only for the formula language syntax but also for the tables, the table elds and the relationships in the database. We conducted a usability study with six developers to evaluate if the Studio and its features enhance cognition and facilitate the visualization development. The results show that developers appreciated the Drag-Drop-Set- View-Interact approach, the What-You-Bind-Is-What-You-Get, the Auto-Completion and the Modes. Several usability problems were identified, and some suggestions for improvement include: new panels, better presentation of the Modes, and better error messages.

  13. WFC3 UVIS High-resolution Imaging Performance

    NASA Astrophysics Data System (ADS)

    Gilliland, R. L.; Rajan, A.

    2011-01-01

    The sharp and stable point spread function of HST and WFC3 allows for the detection of stellar companions at small offsets from target stars. Deep images obtained through six UVIS filters are used to assess this ability to detect faint companions of brighter targets. Analogous capabilities from the ground make use of Adaptive Optics and Speckle imaging. We contrast the capabilities of HST/WFC3 with several existing AO systems for imaging of V 12 stars for which detection of faint companions as close as possible is desired, and to a delta-magnitude of 10. The observations under comparison are motivated by high-resolution imaging applications for the Kepler Mission to constrain the existence of fainter background stars which, if eclipsing binaries, could mimic transits. The HST/WFC3 observations are found to be superior in the comparisons made to Keck, MMT and Palomar AO and WIYN Speckle systems in terms of delta-magnitude limits outside of about 0.3 arcseconds. In a metric of fraction of phase space that can be probed for delta-magnitude to 10 companions out to 2 arcsecs the UVIS imaging out performs all other approaches by a factor > 5.

  14. Ultraviolet Observations of Phoebe from the Cassini UVIS

    NASA Technical Reports Server (NTRS)

    Hendrix, Amanda R.; Hansen, Candice J.

    2007-01-01

    Observations of Saturn's distant moon Phoebe were made at far-ultraviolet (FUV) (1100-1900 A) and extreme-ultraviolet (EUV) (600-1100 A) wavelengths by the Cassini Ultraviolet Imaging Spectrograph (UVIS) during the Cassini spacecraft flyby on June 11, 2004. These are the first UV spectra of Phoebe and the first detection of water ice on a Solar System surface using FUV wavelengths. The characteristics of water ice in the FUV are presented, and Hapke models are used to interpret the spectra in terms of composition and grain size; the use of both areal and intimate mixing models is explored. Non-ice species used in these models include carbon, ice tholin, Triton tholin, poly-HCN and kerogen. Satisfactory disk-integrated fits are obtained for intimate mixtures of approx.10% H2O plus a non-ice species. Spatially resolved regions of higher (approx.20%) and lower (approx.5%) H2O ice concentrations are also detected. Phoebe does not display any evidence of volatile activity. Upper limits on atomic oxygen and carbon are 5 x 10(exp 11) and 2 x 10(exp 12) atoms/sq. cm, respectively, for solar photon scattering. The UVIS detection of water ice on Phoebe, and the ice amounts detected, are consistent with IR measurements and contribute to the evidence for a Phoebe origin in the outer Solar System rather than in the main asteroid belt.

  15. Ultraviolet observations of Phoebe from the Cassini UVIS

    NASA Astrophysics Data System (ADS)

    Hendrix, Amanda R.; Hansen, Candice J.

    2008-02-01

    Observations of Saturn's distant moon Phoebe were made at far-ultraviolet (FUV) (1100-1900 Å) and extreme-ultraviolet (EUV) (600-1100 Å) wavelengths by the Cassini Ultraviolet Imaging Spectrograph (UVIS) during the Cassini spacecraft flyby on June 11, 2004. These are the first UV spectra of Phoebe and the first detection of water ice on a Solar System surface using FUV wavelengths. The characteristics of water ice in the FUV are presented, and Hapke models are used to interpret the spectra in terms of composition and grain size; the use of both areal and intimate mixing models is explored. Non-ice species used in these models include carbon, ice tholin, Triton tholin, poly-HCN and kerogen. Satisfactory disk-integrated fits are obtained for intimate mixtures of ˜10% H 2O plus a non-ice species. Spatially resolved regions of higher ( ˜20%) and lower ( ˜5%) H 2O ice concentrations are also detected. Phoebe does not display any evidence of volatile activity. Upper limits on atomic oxygen and carbon are 5×10 and 2×10 atoms/cm, respectively, for solar photon scattering. The UVIS detection of water ice on Phoebe, and the ice amounts detected, are consistent with IR measurements and contribute to the evidence for a Phoebe origin in the outer Solar System rather than in the main asteroid belt.

  16. Investigation of U(VI) adsorption in quartz-chlorite mineral mixtures.

    PubMed

    Wang, Zheming; Zachara, John M; Shang, Jianying; Jeon, Choong; Liu, Juan; Liu, Chongxuan

    2014-07-15

    A batch and cryogenic laser-induced time-resolved luminescence spectroscopy investigation of U(VI) adsorbed on quartz-chlorite mixtures with variable mass ratios have been performed under field-relevant uranium concentrations (5×10(-7) M and 5×10(-6) M) in pH 8.1 synthetic groundwater. The U(VI) adsorption Kd values steadily increased as the mass fraction of chlorite increased, indicating preferential sorption to chlorite. For all mineral mixtures, U(VI) adsorption Kd values were lower than that calculated from the assumption of component additivity possibly caused by surface modifications stemming from chlorite dissolution; The largest deviation occurred when the mass fractions of the two minerals were equal. U(VI) adsorbed on quartz and chlorite displayed characteristic individual luminescence spectra that were not affected by mineral mixing. The spectra of U(VI) adsorbed within the mixtures could be simulated by one surface U(VI) species on quartz and two on chlorite. The luminescence intensity decreased in a nonlinear manner as the adsorbed U(VI) concentration increased with increasing chlorite mass fraction-likely due to ill-defined luminescence quenching by both structural Fe/Cr in chlorite, and trace amounts of solubilized and reprecipitated Fe/Cr in the aqueous phase. However, the fractional spectral intensities of U(VI) adsorbed on quartz and chlorite followed the same trend of fractional adsorbed U(VI) concentration in each mineral phase with approximate linear correlations, offering a method to estimate of U(VI) concentration distribution between the mineral components with luminescence spectroscopy.

  17. Investigation of U(VI) Adsorption in Quartz-Chlorite Mineral Mixtures

    SciTech Connect

    Wang, Zheming; Zachara, John M.; Shang, Jianying; Jeon, Choong; Liu, Juan; Liu, Chongxuan

    2014-08-25

    A batch and cryogenic laser-induced time-resolved fluorescence spectroscopy investigation of U(VI) adsorbed on quartz-chlorite mixtures with variable mass ratios have been performed under field-relevant uranium concentrations (5x10-7 M and 5x10-6 M) in pH 8.1 synthetic groundwater. The U(VI) adsorption Kd values steadily increased as the mass fraction of chlorite increased, indicating preferential sorption to chlorite. For all mineral mixtures, U(VI) adsorption Kd values were lower than that calculated from the assumption of component additivity; The largest deviation occurred when the mass fractions of the two minerals were equal. U(VI) adsorbed on quartz and chlorite displayed characteristic individual fluorescence spectra that were not affected by mineral mixing. The spectra of U(VI) adsorbed within the mixtures could be simulated by one surface U(VI) species on quartz and two on chlorite. The fluorescence intensity decreased in a nonlinear manner as the adsorbed U(VI) concentration increased with increasing chlorite mass fraction – likely due to ill-defined fluorescence quenching by both structural Fe/Cr in chlorite, and trace amounts of solubilized and re-precipitated Fe/Cr in the aqueous phase. However, the fractional spectral intensities of U(VI) adsorbed on quartz and chlorite followed the same trend of fractional adsorbed U(VI) concentration in each mineral phase; approximate linear correlations in the quartz:chlorite mass ratio ranges of 0.0 - 0.2 and 0.2 - 1.0, offering a method to estimate of U(VI) concentration distribution between the mineral components.

  18. EUV spectroscopy of the Venus dayglow with UVIS on Cassini

    NASA Astrophysics Data System (ADS)

    Gérard, J.-C.; Hubert, B.; Gustin, J.; Shematovich, V. I.; Bisikalo, D.; Gladstone, G. R.; Esposito, L. W.

    2011-01-01

    We analyze EUV spatially-resolved dayglow spectra obtained at 0.37 nm resolution by the UVIS instrument during the Cassini flyby of Venus on 24 June 1999, a period of high solar activity level. Emissions from OI, OII, NI, CI and CII and CO have been identified and their disc average intensity has been determined. They are generally somewhat brighter than those determined from the observations made with the HUT spectrograph at a lower activity level, We present the brightness distribution along the foot track of the UVIS slit of the OII 83.4 nm, OI 98.9 nm, Lyman-ß + OI 102.5 nm and NI 120.0 nm multiplets, and the CO C-X and B-X Hopfield-Birge bands. We make a detailed comparison of the intensities of the 834 nm, 989 nm, 120.0 nm multiplets and CO B-X band measured along the slit foot track on the disc with those predicted by an airglow model previously used to analyze Venus and Mars ultraviolet spectra. This model includes the treatment of multiple scattering for the optically thick OI, OII and NI multiplets. It is found that the observed intensity of the OII emission at 83.4 nm is higher than predicted by the model. An increase of the O + ion density relative to the densities usually measured by Pioneer Venus brings the observations and the modeled values into better agreement. The calculated intensity variation of the CO B-X emission along the track of the UVIS slit is in fair agreement with the observations. The intensity of the OI 98.9 nm emission is well predicted by the model if resonance scattering of solar radiation by O atoms is included as a source. The calculated brightness of the NI 120 nm multiplet is larger than observed by a factor of ˜2-3 if photons from all sources encounter multiple scattering. The discrepancy reduces to 30-80% if the photon electron impact and photodissociation of N 2 sources of N( 4S) atoms are considered as optically thin. Overall, we find that the O, N 2 and CO densities from the empirical VTS3 model provide satisfactory

  19. Cassini UVIS highest resolution occultations of Saturn's rings

    NASA Astrophysics Data System (ADS)

    Sremcevic, Miodrag; Esposito, L. W.; Colwell, J.

    2013-10-01

    Since the beginning of the Cassini mission in 2004 the UVIS instrument has recorded >100 stellar occultations of Saturn's rings. Despite achieved radial resolutions of <1m true resolution is limited by the orbital motion of particles. These can move by almost 20m during a 1ms integration period, effectively smearing the ring profile. In order to achieve superior true resolution we designed a special type of observations, dubbed tracking occultations, where the spacecraft velocity projected onto the rings cancels the orbital motion of ring particles. The ring particles are thus nearly motionless in the field of view of UVIS instrument and essentially tracked. So far Cassini UVIS has recorded two "tracking" occultations of mid-A ring, one of the inner A ring, and one of the so called A ring ramp (a transition region between Cassini division and A ring). The occultations have at least 2m true resolution limited only by diffraction. The two mid-A ring occultations for the first time directly resolve the self-gravity (SG) Toomre like wakes. The SG wakes show as a train of opaque regions (tau>1.5) and nearly transparent gaps (tau<0.05). The observed opaque wakes can be as large as 200m, while transparent gaps are somewhat shorter (L<100m). The opaque and transparent regions are interspersed with material in an intermittent state (0.05

  20. Study of sorption-retarded U(VI) diffusion in Hanford silt/clay material

    SciTech Connect

    Bai, Jing; Liu, Chongxuan; Ball, William P.

    2009-10-15

    A diffusion cell method was developed to measure the effective aqueous diffusion coefficient for U(VI) under strictly controlled chemical conditions within the inter-particle pores of silt/clay sediment from the DOE Hanford site, WA. "Inward-flux” diffusion studies were conducted in which U(VI) concentrations in both aqueous and solid phases were measured as a function of distance into the cell under conditions of constant concentration at the cell boundaries. A sequential extraction method was developed to measure sorbed U(VI) content in the solid phase, while accounting for the non-negligible extractable background U(VI). U(VI) diffusion data were found to be consistent with a model that assumed that: 1) a single effective aqueous diffusion coefficient could be used to simulate the coupled diffusion of various aqueous U(VI) species, and 2) the local equilibrium assumption (LEA) is appropriate for modeling the effects of sorption under the given experimental conditions. An effective aqueous diffusion coefficient (De) of 1.6x10^-6 cm2/s was obtained under conditions of pH 8.0 and calcite saturation that are relevant to the subsurface conditions at some regions of the Hanford site. The developed experimental techniques provide a practical approach for measuring effective aqueous U(VI) diffusivity in sorptive porous media.

  1. ROS Regulation During Abiotic Stress Responses in Crop Plants.

    PubMed

    You, Jun; Chan, Zhulong

    2015-01-01

    Abiotic stresses such as drought, cold, salt and heat cause reduction of plant growth and loss of crop yield worldwide. Reactive oxygen species (ROS) including hydrogen peroxide (H2O2), superoxide anions (O2 (•-)), hydroxyl radical (OH•) and singlet oxygen ((1)O2) are by-products of physiological metabolisms, and are precisely controlled by enzymatic and non-enzymatic antioxidant defense systems. ROS are significantly accumulated under abiotic stress conditions, which cause oxidative damage and eventually resulting in cell death. Recently, ROS have been also recognized as key players in the complex signaling network of plants stress responses. The involvement of ROS in signal transduction implies that there must be coordinated function of regulation networks to maintain ROS at non-toxic levels in a delicate balancing act between ROS production, involving ROS generating enzymes and the unavoidable production of ROS during basic cellular metabolism, and ROS-scavenging pathways. Increasing evidence showed that ROS play crucial roles in abiotic stress responses of crop plants for the activation of stress-response and defense pathways. More importantly, manipulating ROS levels provides an opportunity to enhance stress tolerances of crop plants under a variety of unfavorable environmental conditions. This review presents an overview of current knowledge about homeostasis regulation of ROS in crop plants. In particular, we summarize the essential proteins that are involved in abiotic stress tolerance of crop plants through ROS regulation. Finally, the challenges toward the improvement of abiotic stress tolerance through ROS regulation in crops are discussed.

  2. ROS Regulation During Abiotic Stress Responses in Crop Plants

    PubMed Central

    You, Jun; Chan, Zhulong

    2015-01-01

    Abiotic stresses such as drought, cold, salt and heat cause reduction of plant growth and loss of crop yield worldwide. Reactive oxygen species (ROS) including hydrogen peroxide (H2O2), superoxide anions (O2•-), hydroxyl radical (OH•) and singlet oxygen (1O2) are by-products of physiological metabolisms, and are precisely controlled by enzymatic and non-enzymatic antioxidant defense systems. ROS are significantly accumulated under abiotic stress conditions, which cause oxidative damage and eventually resulting in cell death. Recently, ROS have been also recognized as key players in the complex signaling network of plants stress responses. The involvement of ROS in signal transduction implies that there must be coordinated function of regulation networks to maintain ROS at non-toxic levels in a delicate balancing act between ROS production, involving ROS generating enzymes and the unavoidable production of ROS during basic cellular metabolism, and ROS-scavenging pathways. Increasing evidence showed that ROS play crucial roles in abiotic stress responses of crop plants for the activation of stress-response and defense pathways. More importantly, manipulating ROS levels provides an opportunity to enhance stress tolerances of crop plants under a variety of unfavorable environmental conditions. This review presents an overview of current knowledge about homeostasis regulation of ROS in crop plants. In particular, we summarize the essential proteins that are involved in abiotic stress tolerance of crop plants through ROS regulation. Finally, the challenges toward the improvement of abiotic stress tolerance through ROS regulation in crops are discussed. PMID:26697045

  3. Comparing approaches for simulating the reactive transport of U(VI) in ground water

    USGS Publications Warehouse

    Curtis, G.P.; Kohler, M.; Davis, J.A.

    2009-01-01

    The reactive transport of U(VI) in a well-characterized shallow alluvial aquifer at a former U(VI) mill located near Naturita, CO, was predicted for comparative purposes using a surface complexation model (SCM) and a constant K d approach to simulate U(VI) adsorption. The ground water at the site had U(VI) concentrations that ranged from 0.01 to 20 ??M, alkalinities that ranged from 2.5 to 18 meq/L, and a nearly constant pH of 7.1. The SCM used to simulate U(VI) adsorption was previously determined independently using laboratory batch adsorption experiments. Simulations obtained using the SCM approach were compared with simulations that used a constant K d approach to simulate adsorption using previously determined site-specific K d values. In both cases, the ground water flow and transport models used a conceptual model that was previously calibrated to a chloride plume present at the site. Simulations with the SCM approach demonstrated that the retardation factor varied temporally and spatially because of the differential transport of alkalinity and dissolved U(VI) and the nonlinearity of the U(VI) adsorption. The SCM model also simulated a prolonged slow decline in U(VI) concentration, which was not simulated using a constant K d model. Simulations using the SCM approach and the constant K d approach were similar after 20 years of transport but diverged significantly after 60 years. The simulations demonstrate the need for site-specific geochemical information on U(VI) adsorption to produce credible simulations of future transport. ?? 2009 Springer-Verlag.

  4. Abiotic methane formation during experimental serpentinization of olivine.

    PubMed

    McCollom, Thomas M

    2016-12-06

    Fluids circulating through actively serpentinizing systems are often highly enriched in methane (CH4). In many cases, the CH4 in these fluids is thought to derive from abiotic reduction of inorganic carbon, but the conditions under which this process can occur in natural systems remain unclear. In recent years, several studies have reported abiotic formation of CH4 during experimental serpentinization of olivine at temperatures at or below 200 °C. However, these results seem to contradict studies conducted at higher temperatures (300 °C to 400 °C), where substantial kinetic barriers to CH4 synthesis have been observed. Here, the potential for abiotic formation of CH4 from dissolved inorganic carbon during olivine serpentinization is reevaluated in a series of laboratory experiments conducted at 200 °C to 320 °C. A (13)C-labeled inorganic carbon source was used to unambiguously determine the origin of CH4 generated in the experiments. Consistent with previous high-temperature studies, the results indicate that abiotic formation of CH4 from reduction of dissolved inorganic carbon during the experiments is extremely limited, with nearly all of the observed CH4 derived from background sources. The results indicate that the potential for abiotic synthesis of CH4 in low-temperature serpentinizing environments may be much more limited than some recent studies have suggested. However, more extensive production of CH4 was observed in one experiment performed under conditions that allowed an H2-rich vapor phase to form, suggesting that shallow serpentinization environments where a separate gas phase is present may be more favorable for abiotic synthesis of CH4.

  5. Abiotic methane formation during experimental serpentinization of olivine

    NASA Astrophysics Data System (ADS)

    McCollom, Thomas M.

    2016-12-01

    Fluids circulating through actively serpentinizing systems are often highly enriched in methane (CH4). In many cases, the CH4 in these fluids is thought to derive from abiotic reduction of inorganic carbon, but the conditions under which this process can occur in natural systems remain unclear. In recent years, several studies have reported abiotic formation of CH4 during experimental serpentinization of olivine at temperatures at or below 200 °C. However, these results seem to contradict studies conducted at higher temperatures (300 °C to 400 °C), where substantial kinetic barriers to CH4 synthesis have been observed. Here, the potential for abiotic formation of CH4 from dissolved inorganic carbon during olivine serpentinization is reevaluated in a series of laboratory experiments conducted at 200 °C to 320 °C. A 13C-labeled inorganic carbon source was used to unambiguously determine the origin of CH4 generated in the experiments. Consistent with previous high-temperature studies, the results indicate that abiotic formation of CH4 from reduction of dissolved inorganic carbon during the experiments is extremely limited, with nearly all of the observed CH4 derived from background sources. The results indicate that the potential for abiotic synthesis of CH4 in low-temperature serpentinizing environments may be much more limited than some recent studies have suggested. However, more extensive production of CH4 was observed in one experiment performed under conditions that allowed an H2-rich vapor phase to form, suggesting that shallow serpentinization environments where a separate gas phase is present may be more favorable for abiotic synthesis of CH4.

  6. HST WFC3/UVIS: charge transfer efficiency monitoring and mitigation

    NASA Astrophysics Data System (ADS)

    Baggett, Sylvia M.; Sosey, Megan L.; Anderson, Jay; Gosmeyer, Catherine; Bourque, Matthew; Bajaj, Varun; Khandrika, Harish G.; Martlin, Catherine; Kozhurina-Platais, Vera; Sabbi, Elena; WFC3 Team

    2016-01-01

    The harsh low-earth orbit environment is known to damage CCD devices and the HST WFC3/UVIS camera is no exception. One consequence of the radiation damage is charge-transfer efficiency (CTE) loss over time. We summarize the level of the CTE losses, the effect on science data, and the pre- and post-observation mitigation options available. Among them is the pixel-based CTE correction, which has been incorporated into the HST automatic data processing pipeline. The pipeline now provides both standard and CTE-corrected data products; observers with older data can re-retrieve their images via the the Mikulski Archive for Space Telescopes (MAST) to obtain the new products.

  7. Reduction of Uranium(VI) Phosphate during Growth of the Thermophilic Bacterium Thermoterrabacterium ferrireducens

    PubMed Central

    Khijniak, T. V.; Slobodkin, A. I.; Coker, V.; Renshaw, J. C.; Livens, F. R.; Bonch-Osmolovskaya, E. A.; Birkeland, N.-K.; Medvedeva-Lyalikova, N. N.; Lloyd, J. R.

    2005-01-01

    The thermophilic, gram-positive bacterium Thermoterrabacterium ferrireducens coupled organotrophic growth to the reduction of sparingly soluble U(VI) phosphate. X-ray powder diffraction and X-ray absorption spectroscopy analysis identified the electron acceptor in a defined medium as U(VI) phosphate [uramphite; (NH4)(UO2)(PO4) · 3H2O], while the U(IV)-containing precipitate formed during bacterial growth was identified as ningyoite [CaU(PO4)2 · H2O]. This is the first report of microbial reduction of a largely insoluble U(VI) compound. PMID:16204572

  8. Modeling of Erythemal Dose Rate (UVI) and its Relationship to Column Ozone and Cloud Reflectivity

    NASA Astrophysics Data System (ADS)

    Herceg, D.; Minschwaner, K.

    2005-12-01

    Understanding the relationship between column ozone, cloud reflectivity, and surface ultraviolet has become an important issue in the last 25 years. We will show correlations between solar zenith angle, erythemal dose rate (UVI), cloud reflection, and column ozone, using ground based observation made at Socorro, New Mexico from 1997 to 2004. We will also use data retrieved from the Earth Probe TOMS satellite instrument which overpassed the observing site during the same time period. Through this correlation, we can take accurate ozone, and reflectivity data from satellites such as EP-TOMS and NIMBUS 7 to model past UVI trends dating back 25 years. Finally, we may then examine the trends in UVI, column ozone, and cloud reflectivity to understand the relationship of column ozone and cloud reflectivity to UVI.

  9. Laser spectroscopic studies of interactions of U(VI) withbacterial phosphate species

    SciTech Connect

    Knopp, Roger; Panak, Petra J.; Wray, Lewis A.; Renninger, NeilS.; Keasling, Jay D.; Nitsche, Heino

    2002-03-14

    We investigated the interactions of U(VI) with two bacterialphosphate species: Gram-positive B. sphaericus and Gram-negative P.aeruginosa. The Gram-positive B. sphaericus was investigated using Ramanspectroscopy and time-resolved laser-induced fluorescence spectroscopy(TRLFS). We found that living cells, spores, and intact heat-killed cellscomplexed U(VI) (pH 4.5) through phosphate groups bound to theirsurfaces, while decomposed cells released H2PO4- and precipitated U(VI)as UO2(H2PO4)2. TRLFS of U(VI) showed that Gram-negative P.aeruginosa-genetically engineered to accumulate polyphosphate,subsequently degrade it, and secrete phosphate-precipitated U(VI)quantitatively at pH 4.5. The same bacterial strain, not induced tosecrete phosphate, sorbed only a small amount of U(VI).

  10. Upscaling of U(VI) Desorption and Transport Using Decimeter-Scale Tanks

    SciTech Connect

    Rodriguez, Derrick

    2014-12-22

    Experimental work was used to validate modeling studies and develop multicontinuum models of U(VI) transport in a contaminated aquifer. At the bench scale, it has been shown that U(VI) desorption is rate-limited and that rates are dependent on the bicarbonate concentration. Two decimeter-scale experiments were conducted in order to help establish rigorous upscaling approaches that could be tested at the tracer test and plume scales.

  11. Modeling of the structure-specific kinetics of abiotic, dark reduction of Hg(II) complexed by O/N and S functional groups in humic acids while accounting for time-dependent structural rearrangement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Redox transformations involving electron transfer from natural organic matter (NOM) are important for the mercury (Hg) biogeochemical cycle. In the water column light drives the reduction of Hg(II) to Hg(0), whereas in soils and sediments dark reduction of Hg(II) is of greater importance. The object...

  12. Discovery of B ring propellers in Cassini UVIS and ISS

    NASA Astrophysics Data System (ADS)

    Sremcevic, M.; Stewart, G.; Albers, N.; Esposito, L. W.

    2011-12-01

    One of the successes of the planetary ring theory has been the theoretical prediction of gravitational signatures of bodies embedded in the rings, and their subsequent detection in Cassini data. Bodies within the rings perturb the nearby ring material, and the orbital shear forms a two-armed structure -- dubbed a ``propeller'' -- which is centered at the embedded body. Although direct evidence of the present body or moonlet is still lacking, the observations of their propeller signatures has proved as an indispensable method to extend our knowledge about ring structure and dynamics. So far, propellers have been successfully detected within Saturn's A ring in two populations: a group of small and numerous propellers interior to the Encke gap forming belts, and by far less numerous but larger propellers exterior to Pan's orbit. Although there have been hints of propellers present within the B ring, or even C ring, their detection is less certain (e.g. neither has a single propeller been seen twice, nor has the ubiquitous two armed structure been observed). In this paper we present evidence for the existence of propellers in Saturn's B ring by combining data from Cassini Ultraviolet Imaging Spectrograph (UVIS) and Imaging Science Subsystem (ISS) experiments. A single object is observed for 5 years of Cassini data. The object is seen as a very elongated bright stripe (40 degrees wide) in unlit Cassini images, and dark stripe in lit geometries. In total we report observing the feature in images at 18 different epochs between 2005 and 2010. In UVIS occultations we observe the feature as an optical depth depletion in 14 out of 93 occultation cuts at corrotating longitudes compatible with imaging data. Combining the available Cassini data we infer that the object is a partial gap located at a=112,921km embedded in the high optical depth region of the B ring. The gap moves at Kepler speed appropriate for its radial location. Radial offsets of the gap locations in UVIS

  13. Enzymatic iron and uranium reduction by sulfate-reducing bacteria

    USGS Publications Warehouse

    Lovley, D.R.; Roden, E.E.; Phillips, E.J.P.; Woodward, J.C.

    1993-01-01

    The potential for sulfate-reducing bacteria (SRB) to enzymatically reduce Fe(III) and U(VI) was investigated. Five species of Desulfovibrio as well as Desulfobacterium autotrophicum and Desulfobulbus propionicus reduced Fe(III) chelated with nitrilotriacetic acid as well as insoluble Fe(III) oxide. Fe(III) oxide reduction resulted in the accumulation of magnetite and siderite. Desulfobacter postgatei reduced the chelated Fe(III) but not Fe(III) oxide. Desulfobacter curvatus, Desulfomonile tiedjei, and Desulfotomaculum acetoxidans did not reduce Fe(III). Only Desulfovibrio species reduced U(VI). U(VI) reduction resulted in the precipitation of uraninite. None of the SRB that reduced Fe(III) or U(VI) appeared to conserve enough energy to support growth from this reaction. However, Desulfovibrio desulfuricans metabolized H2 down to lower concentrations with Fe(III) or U(VI) as the electron acceptor than with sulfate, suggesting that these metals may be preferred electron acceptors at the low H2 concentrations present in most marine sediments. Molybdate did not inhibit Fe(III) reduction by D. desulfuricans. This indicates that the inability of molybdate to inhibit Fe(III) reduction in marine sediments does not rule out the possibility that SRB are important catalysts for Fe(III) reduction. The results demonstrate that although SRB were previously considered to reduce Fe(III) and U(VI) indirectly through the production of sulfide, they may also directly reduce Fe(III) and U(VI) through enzymatic mechanisms. These findings, as well as our recent discovery that the So-reducing microorganism Desulfuromonas acetoxidans can reduce Fe(III), demonstrate that there are close links between the microbial sulfur, iron, and uranium cycles in anaerobic marine sediments. ?? 1993.

  14. Biological reduction of uranium in groundwater and subsurface soil.

    PubMed

    Abdelouas, A; Lutze, W; Gong, W; Nuttall, E H; Strietelmeier, B A; Travis, B J

    2000-04-24

    Biological reduction of uranium is one of the techniques currently studied for in situ remediation of groundwater and subsurface soil. We investigated U(VI) reduction in groundwaters and soils of different origin to verify the presence of bacteria capable of U(VI) reduction. The groundwaters originated from mill tailings sites with U concentrations as high as 50 mg/l, and from other sites where uranium is not a contaminant, but was added in the laboratory to reach concentrations up to 11 mg/l. All waters contained nitrate and sulfate. After oxygen and nitrate reduction, U(VI) was reduced by sulfate-reducing bacteria, whose growth was stimulated by ethanol and trimetaphosphate. Uranium precipitated as hydrated uraninite (UO2 x xH2O). In the course of reduction of U(VI), Mn(IV) and Fe(III) from the soil were reduced as well. During uraninite precipitation a comparatively large mass of iron sulfides formed and served as a redox buffer. If the excess of iron sulfide is large enough, uraninite will not be oxidized by oxygenated groundwater. We show that bacteria capable of reducing U(VI) to U(IV) are ubiquitous in nature. The uranium reducers are primarily sulfate reducers and are stimulated by adding nutrients to the groundwater.

  15. Monitoring the WFC3/UVIS Relative Gain with Internal Flatfields

    NASA Astrophysics Data System (ADS)

    Fowler, J.; Baggett, S.

    2017-03-01

    The WFC3/UVIS gain stability has been monitored twice yearly. This project provides a new examination of gain stability, making use of the existing internal flatfield observations taken every three days (for the Bowtie monitor) for a regular look at relative gain stability. Amplifiers are examined for consistency both in comparison to each other and over time, by normalizing the B, C, and D amplifiers to A, and then plotting statistics for each of the three normalized amplifiers with time. We find minimal trends in these statistics, with a 0.02 - 0.2% change in mean amplifier ratio over 7.5 years. The trends in the amplifiers are well-behaved with the exception of the B/A ratio, which shows increased scatter in mean, median, and standard deviation. The cause of the scatter remains unclear though we find it is not dependent upon detector defects, filter features, or shutter effects, and is only observable after pixel flagging (both from the data quality arrays and outlier values) has been applied.

  16. Abiotic Organic Chemistry in Hydrothermal Systems.

    NASA Astrophysics Data System (ADS)

    Simoneit, B. R.; Rushdi, A. I.

    2004-12-01

    Abiotic organic chemistry in hydrothermal systems is of interest to biologists, geochemists and oceanographers. This chemistry consists of thermal alteration of organic matter and minor prebiotic synthesis of organic compounds. Thermal alteration has been extensively documented to yield petroleum and heavy bitumen products from contemporary organic detritus. Carbon dioxide, carbon monoxide, ammonia and sulfur species have been used as precursors in prebiotic synthesis experiments to organic compounds. These inorganic species are common components of hot spring gases and marine hydrothermal systems. It is of interest to further test their reactivities in reductive aqueous thermolysis. We have synthesized organic compounds (lipids) in aqueous solutions of oxalic acid, and with carbon disulfide or ammonium bicarbonate at temperatures from 175-400° C. The synthetic lipids from oxalic acid solutions consisted of n-alkanols, n-alkanoic acids, n-alkyl formates, n-alkanones, n-alkenes and n-alkanes, typically to C30 with no carbon number preferences. The products from CS2 in acidic aqueous solutions yielded cyclic thioalkanes, alkyl polysulfides, and thioesters with other numerous minor compounds. The synthesis products from oxalic acid and ammonium bicarbonate solutions were homologous series of n-alkyl amides, n-alkyl amines, n-alkanes and n-alkanoic acids, also to C30 with no carbon number predominance. Condensation (dehydration) reactions also occur under elevated temperatures in aqueous medium as tested by model reactions to form amide, ester and nitrile bonds. It is concluded that the abiotic formation of aliphatic lipids, condensation products (amides, esters, nitriles, and CS2 derivatives (alkyl polysulfides, cyclic polysulfides) is possible under hydrothermal conditions and warrants further studies.

  17. Resupply Mechanism to a Contaminated Aquifer: A Laboratory Study of U(VI) Desorption from Capillary Fringe Sediments

    SciTech Connect

    Um, Wooyong; Zachara, John M.; Liu, Chongxuan; Moore, Dean A.; Rod, Kenton A.

    2010-09-15

    Contaminated capillary fringe sediments are believed to function as long term source of U(VI) to Hanford’s 300 Area groundwater uranium plume that discharges to the Columbia River. The deep vadose zone at this site experiences seasonal water table elevation and water compositional changes in response to Columbia River stage. Batch and column desorption experiments of U(VI) were performed on two mildly contaminated sediments from this system that vary in hydrologic position to ascertain their U(VI) release behavior and factors controlling it. Solid phase characterization of the sediments was performed to identify mineralogic and chemical factors controlling U(VI) desorption. The desorption behavior of U(VI) was different from the two sediments in spite of similar chemical and textural characteristics, and non-carbonate mineralogy. Adsorption strength and sorbed U(VI) lability was higher in the near-river sediment 11D. Inland sediment 39B displayed low sorbed U(VI) lability (~ 10%) and measurable solid-phase carbonate content. Kinetic desorption was observed that was attributed to regeneration of labile U(VI) in 11D, and carbonate mineral dissolution in 39B. The desorption reaction was best described as an equilibrium surface complexation reaction. The noted differences in desorption behavior appear to result from U(VI) contamination and hydrologic history, as well as sediment carbonate content. Insights are provided on the dynamic adsorption/desorption behavior of contaminants in linked groundwater-river systems.

  18. Proteome of Geobacter sulfurreducens in the presence of U(VI).

    PubMed

    Orellana, Roberto; Hixson, Kim K; Murphy, Sean; Mester, Tünde; Sharma, Manju L; Lipton, Mary S; Lovley, Derek R

    2014-12-01

    Geobacter species often play an important role in the in situ bioremediation of uranium-contaminated groundwater, but little is known about how these microbes avoid uranium toxicity. To evaluate this further, the proteome of Geobacter sulfurreducens exposed to 100 µM U(VI) acetate was compared to control cells not exposed to U(VI). Of the 1363 proteins detected from these cultures, 203 proteins had higher abundance during exposure to U(VI) compared with the control cells and 148 proteins had lower abundance. U(VI)-exposed cultures expressed lower levels of proteins involved in growth, protein and amino acid biosynthesis, as well as key central metabolism enzymes as a result of the deleterious effect of U(VI) on the growth of G. sulfurreducens. In contrast, proteins involved in detoxification, such as several efflux pumps belonging to the RND (resistance-nodulation-cell division) family, and membrane protection, and other proteins, such as chaperones and proteins involved in secretion systems, were found in higher abundance in cells exposed to U(VI). Exposing G. sulfurreducens to U(VI) resulted in a higher abundance of many proteins associated with the oxidative stress response, such as superoxide dismutase and superoxide reductase. A strain in which the gene for superoxide dismutase was deleted grew more slowly than the WT strain in the presence of U(VI), but not in its absence. The results suggested that there is no specific mechanism for uranium detoxification. Rather, multiple general stress responses are induced, which presumably enable Geobacter species to tolerate high uranium concentrations.

  19. Macroscopic and Microscopic Investigation of U(VI) and Eu(III) Adsorption on Carbonaceous Nanofibers.

    PubMed

    Sun, Yubing; Wu, Zhen-Yu; Wang, Xiangxue; Ding, Congcong; Cheng, Wencai; Yu, Shu-Hong; Wang, Xiangke

    2016-04-19

    The adsorption mechanism of U(VI) and Eu(III) on carbonaceous nanofibers (CNFs) was investigated using batch, IR, XPS, XANES, and EXAFS techniques. The pH-dependent adsorption indicated that the adsorption of U(VI) on the CNFs was significantly higher than the adsorption of Eu(III) at pH < 7.0. The maximum adsorption capacity of the CNFs calculated from the Langmuir model at pH 4.5 and 298 K for U(VI) and Eu(III) were 125 and 91 mg/g, respectively. The CNFs displayed good recyclability and recoverability by regeneration experiments. Based on XPS and XANES analyses, the enrichment of U(VI) and Eu(III) was attributed to the abundant adsorption sites (e.g., -OH and -COOH groups) of the CNFs. IR analysis further demonstrated that -COOH groups were more responsible for U(VI) adsorption. In addition, the remarkable reducing agents of the R-CH2OH groups were responsible for the highly efficient adsorption of U(VI) on the CNFs. The adsorption mechanism of U(VI) on the CNFs at pH 4.5 was shifted from inner- to outer-sphere surface complexation with increasing initial concentration, whereas the surface (co)precipitate (i.e., schoepite) was observed at pH 7.0 by EXAFS spectra. The findings presented herein play an important role in the removal of radionuclides on inexpensive and available carbon-based nanoparticles in environmental cleanup applications.

  20. Periplasmic Cytochrome c(3) of Desulfovibrio vulgaris Is Directly Involved in H2-Mediated Metal but Not Sulfate Reduction

    SciTech Connect

    Elias, Dwayne A.; Suflita, Joseph M.; McInerney, Michael J.; Krumholz, Lee R.

    2004-01-01

    Kinetic parameters and the role of cytochrome c3 in sulfate, Fe(III), and U(VI) reduction were investigated in Desulfovibrio vulgaris Hildenborough. While sulfate reduction followed Michaelis-Menten kinetics (Km 220 uM), loss of Fe(III) and U(VI) was first-order at all concentrations tested. Initial reduction rates of all electron acceptors were similar for cells grown with H2 and sulfate, while cultures grown using lactate and sulfate had similar rates of metal loss but lower sulfate reduction activities. The similarities in metal, but not sulfate, reduction with H2 and lactate suggest divergent pathways. Respiration assays and reduced minus oxidized spectra were carried out to determine c-type cytochrome involvement in electron acceptor reduction. c-type cytochrome oxidation was immediate with Fe(III) and U(VI) in the presence of H2, lactate, or pyruvate. Sulfidogenesis occurred with all three electron donors and effectively oxidized the c-type cytochrome in lactate or pyruvate-reduced, but not H2-reduced cells. Correspondingly, electron acceptor competition assays with lactate or pyruvate as electron donors showed that Fe(III) inhibited U(VI) reduction, and U(VI) inhibited sulfate loss. However, sulfate reduction was slowed but not halted when H2 was the electron donor in the presence of Fe(III) or U(VI). U(VI) loss was still impeded by Fe(III) when H2 was used. Hence, we propose a modified pathway for the reduction of sulfate, Fe(III), and U(VI) which helps explain why these bacteria cannot grow using these metals. We further propose that cytochrome c3 is an electron carrier involved in lactate and pyruvate oxidation and is the reductase for alternate electron acceptors with higher redox potentials than sulfate.

  1. Periplasmic Cytochrome c3 of Desulfovibrio vulgaris Is Directly Involved in H2-Mediated Metal but Not Sulfate Reduction

    PubMed Central

    Elias, Dwayne A.; Suflita, Joseph M.; McInerney, Michael J.; Krumholz, Lee R.

    2004-01-01

    Kinetic parameters and the role of cytochrome c3 in sulfate, Fe(III), and U(VI) reduction were investigated in Desulfovibrio vulgaris Hildenborough. While sulfate reduction followed Michaelis-Menten kinetics (Km = 220 μM), loss of Fe(III) and U(VI) was first-order at all concentrations tested. Initial reduction rates of all electron acceptors were similar for cells grown with H2 and sulfate, while cultures grown using lactate and sulfate had similar rates of metal loss but lower sulfate reduction activities. The similarities in metal, but not sulfate, reduction with H2 and lactate suggest divergent pathways. Respiration assays and reduced minus oxidized spectra were carried out to determine c-type cytochrome involvement in electron acceptor reduction. c-type cytochrome oxidation was immediate with Fe(III) and U(VI) in the presence of H2, lactate, or pyruvate. Sulfidogenesis occurred with all three electron donors and effectively oxidized the c-type cytochrome in lactate- or pyruvate-reduced, but not H2-reduced cells. Correspondingly, electron acceptor competition assays with lactate or pyruvate as electron donors showed that Fe(III) inhibited U(VI) reduction, and U(VI) inhibited sulfate loss. However, sulfate reduction was slowed but not halted when H2 was the electron donor in the presence of Fe(III) or U(VI). U(VI) loss was still impeded by Fe(III) when H2 was used. Hence, we propose a modified pathway for the reduction of sulfate, Fe(III), and U(VI) which helps explain why these bacteria cannot grow using these metals. We further propose that cytochrome c3 is an electron carrier involved in lactate and pyruvate oxidation and is the reductase for alternate electron acceptors with higher redox potentials than sulfate. PMID:14711670

  2. Acceleration of Field-Scale Bioreduction of U(VI) in a Shallow Alluvial Aquifer: Temporal and Spatial Evolution of Biogeochemistry

    SciTech Connect

    Long, Phil

    2005-04-20

    Uranium mill tailings sites provide access to uranium-contaminated groundwater at sites that are shallow and low hazard, making it possible to address the following scientific objectives: (1) Determine the dominant electron accepting processes at field sites with long-term metal/rad contamination; (2) Define the biogeochemical transformations that may be important to either natural or accelerated bioremediation under field conditions; and (3) Examine the potential for using biostimulation (electron donor addition) to accelerate reduction of U(VI) to U(IV) at the field scale.

  3. Using Cassini UVIS Data to Constrain Enceladus' Libration State

    NASA Technical Reports Server (NTRS)

    Hurford, Terry A.; Helfenstein, P.; Hansen, C.

    2010-01-01

    Given the non-spherical shape of Enceladus, the satellite may experience gravitational torques that will cause it to physically librate as it orbits Saturn. Physical libration would produce a diurnal oscillation in the longitude of Enceladus' tidal bulge, which could have a profound effect on the diurnal stresses experienced by the surface of the satellite. Although Cassini ISS has placed an observational upper limit on Enceladus' libration amplitude, stall amplitude librations may have geologically significant consequences. For example, a physical libration will affect heat production along the tiger stripes as produced by tidal shear heating and a previous study has explored possible libration states that provided better matches to Cassini CIRS observations of heat along the tiger stripes. Cassini UVIS stellar occultations provided measurements of the column density of the Enceladus plume at two different points in Enceladus' orbit and find comparable column density values. This column density may be a reflection of the amount of the tiger stripe rifts in tension and able to vent volatiles and a physical libration will also affect the fraction of tiger stripe in tension at different points in the orbit. We have modeled the expected fraction of tiger stripes in tension under different libration conditions. Without libration the amount of tiger stripe rifts in tension at both paints in the orbit would not be comparable and therefore may not allow comparable amounts of volatiles to escape. However, we identify libration conditions that do allow comparable amounts of the tiger stripes to be in tension at each point in the orbit, which might lead to comparable column densities. The librations identified coincide with possible librations states identified in the earlier study, which used Cassini CIRS observations.

  4. Classification of F Ring Features Observed Using Cassini UVIS

    NASA Astrophysics Data System (ADS)

    Meinke, Bonnie K.; Esposito, L. W.; Albers, N.

    2009-09-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) has observed 39 statistically significant F ring features in 103 occultations since July 2004. This work triples the number of features reported by Esposito et al. (2008). As the number of statistically significant features has grown, we are now able to classify them for the purposes of cataloging. We define three categories: moonlet, core, and icicle, which categorize the shapes of features seen to date in the occultation profiles of the F ring. With complete signal attenuation for a radial distance of 600 m, the feature observed in the Alp Leo Rev 9 occultation is the only moonlet observed. A myriad of icicles have been observed, which partially block stellar signal for 30 m to 1 km along the radial expanse of the occultation. The density enhancements responsible for such signal attenuations are likely due to transient clumping of material, evidence that aggregations of material are ubiquitous in the F ring. Finally, the large variety of core region shapes displays how even the general shape of the F ring is ever-changing due to continuous perturbations from internal and external objects. The core region of the F ring usually has a smooth U-shape to it, but particle-size segregation and narrow channeling of material lead to the core region taking the shape of Ws and Vs. These three categories show that F ring behavior is highly variable with time and space and that the locations of certain features correlate to proximity to Prometheus. Our lengthy observing campaign reveals possible states and possible causes of the observed structure. This research was supported by the Cassini Project.

  5. A representative retinoid X receptor antagonist UVI3003 induced teratogenesis in zebrafish embryos.

    PubMed

    Zheng, Liang; Xu, Ting; Li, Daoji; Zhou, Junliang

    2015-03-01

    Retinoid X receptor (RXR) interfering activity has been detected in different water resources. To study RXR disruptor-induced toxicological effects on vertebrates, embryos of zebrafish (Danio rerio) were exposed to a representative RXR antagonist UVI3003. Results showed that the teratogenic index (LC50 /EC50 ) of UVI3003 was as high as 5.4. UVI3003 induced multiple malformations of embryos, including deformed fins, reduced brains, small jaws, bent tails and edema in hearts, the degree of which became more severe with increasing exposure concentration. Although no significant difference was observed in the hatching rates between the exposure group and control, the whole body length was significantly reduced by 6.5% and 8.9% when exposed to 200 and 300 µg l(-1) of UVI3003, respectively. The heart rate also significantly decreased by 8.8-50.2% during exposure. Further experiments revealed that the pharyngula stage was the most sensitive development phase in terms of embryo response to UVI3003. The results demonstrated severe teratogenicity of RXR antagonist in zebrafish embryos and provided important data for ecotoxicological evaluation of RXR antagonists.

  6. U(VI) Sequestration in Hydroxyapatite Produced by Microbial Glycerol 3-Phosphate Metabolism▿ †

    PubMed Central

    Shelobolina, Evgenya S.; Konishi, Hiromi; Xu, Huifang; Roden, Eric E.

    2009-01-01

    Previous studies have demonstrated the potential for removal of U(VI) from solution via precipitation of U(VI)-bearing calcium-phosphate (Ca-P) minerals coupled to microbial hydrolysis of glycerol phosphate compounds. We evaluated this process in circumneutral-pH groundwater from Area 2 of the U.S. Department of Energy Field Research Center at Oak Ridge National Laboratory. Area 2 groundwater contains high concentrations of dissolved calcium (ca. 4 mM), and thus, release of phosphate during glycerol phosphate metabolism has the potential to create conditions favorable for U(VI) sequestration in Ca-P minerals. Microbial enumeration and isolation studies verified the presence of aerobic and nitrate-reducing glycerol 3-phosphate (G3P)-metabolizing microorganisms in Area 2 sediments. Coprecipitation of U(VI) with Ca-P minerals coupled to microbial G3P hydrolysis was demonstrated in artificial groundwater under aerobic and nitrate-reducing conditions. Transmission electron microscopy analysis and mineral-washing experiments demonstrated that U(VI) was incorporated into the structure of the insoluble Ca-P mineral hydroxyapatite [Ca5(PO4)3OH]. Our results support the idea that U(VI) can be effectively removed from solution in contaminated aquifers through stimulation of microbial organophosphate metabolism. PMID:19633115

  7. Bioreduction of U(VI) and stability of immobilized uranium under suboxic conditions.

    PubMed

    Hu, Nan; Ding, De-xin; Li, Shi-mi; Tan, Xiang; Li, Guang-yue; Wang, Yong-dong; Xu, Fei

    2016-04-01

    In order to study the bioreduction of U(VI) and stability of immobilized uranium under suboxic conditions, microcosm were amended with ethanol, lactate and glucose, and incubated under suboxic conditions. During the incubation, total dissolved U in amended microcosms decreased from 0.95 mg/L to 0.03 mg/L. Pyrosequencing results showed that, the proportion of anaerobic microorganisms capable of reducing U(VI) under suboxic conditions was small compared with that under anoxic conditions; the proportion of aerobic and facultative anaerobic microorganisms capable of consuming the dissolved oxygen was large; and some of the facultative anaerobic microorganisms could reduce U(VI). These results indicated that different microbial communities were responsible for the bioreduction of U(VI) under suboxic and anoxic conditions. After the electron donors were exhausted, total dissolved U in the amended microcosms remained unchanged, while the U(VI)/U(IV) ratio in the solid phase of sediments increased obviously. This implied that the performance of bioreduction of the U(VI) can be maintained under suboxic condition.

  8. Determining Individual Mineral Contributions To U(VI) Adsorption In A Contaminated Aquifer Sediment: A Fluorescence Spectroscopy Study

    SciTech Connect

    Wang, Zheming; Zachara, John M.; Boily, Jean F.; Xia, Yuanxian; Resch, Charles T.; Moore, Dean A.; Liu, Chongxuan

    2011-05-15

    The adsorption and speciation of U(VI) was investigated on contaminated, fine grained sediment materials from the Hanford 300 area (SPP1 GWF) in simulated groundwater using cryogenic laser-induced U(VI) fluorescence spectroscopy combined with chemometric analysis. A series of reference minerals (montmorillonite, illite, Michigan chlorite, North Carolina chlorite, California clinochlore, quartz and synthetic 6-line ferrihydrite) was used for comparison that represents the mineralogical constituents of SPP1 GWF. Surface area-normalized Kd values were measured at U(VI) concentrations of 5x10-7 mol L-1 and 5x10-6 mol L-1, respectively, that displayed the following affinity series: 6-line-ferrihydrite > North Carolina chlorite ≈ California clinochlore > Michigan chlorite ≈ quartz > montmorillonite ≈ illite ≈ SPP1 GWF. Both time-resolved spectra and asynchronous two-dimensional (2D) correlation analysis of SPP1 GWF at different delay times indicated that two major adsorbed U(VI) species were present in the sediment that resembled U(VI) adsorbed on quartz and phyllosilicates. Simulations of the normalized fluorescence spectra confirmed that the speciation of SPP1 GWF was best represented by a linear combination of U(VI) adsorbed on quartz (90%) and phyllosilicates (10%). However, the fluorescence quantum yield for U(VI) adsorbed on phyllosilicates was lower than quartz and, consequently, its fractional contribution to speciation may be underestimated. Spectral comparison with literature data suggested that U(VI) exists primarily as inner-sphere U(VI) complexes with surface silanol groups on quartz while U(VI) on phyllosilicates was consistent with the formation of surface U(VI) tricarbonate complexes.

  9. Sorption and desorption of perchlorate and U(VI) by strong-base anion-exchange resins.

    PubMed

    Gu, Baohua; Ku, Yee-Kyoung; Brown, Gilbert M

    2005-02-01

    This study investigated the sorption affinity and capacity of six strong-base anion-exchange (SBA) resins for both uranium [U(VI)] and perchlorate (ClO4-) in simulated groundwater containing varying concentrations of sulfate (SO4(2-)). Additionally, desorption of U(VI) from spent resins was studied to separate U(VI) from resins with sorbed ClO4- for waste segregation and minimization. Results indicate that all SBA resins investigated in this study strongly sorb U(VI). The gel-type polyacrylic resin (Purolite A850) showed the highest sorption affinity and capacityfor U(VI) butwasthe least effective in sorbing ClO4-. The presence of SO4(2-) had little impact on the sorption of U(VI) but significantly affected the sorption of ClO4-, particularly on monofunctional SBA resins. A dilute acid wash was found to be effective in desorbing U(VI) but ineffective in desorbing ClO4- from bifunctional resins (Purolite A530E and WBR109). A single wash removed approximately 75% of sorbed U(VI) but only approximately 0.1% of sorbed ClO4- from the bifunctional resins. On the other hand, only 21.4% of sorbed U(VI) but approximately 34% of sorbed ClO4- was desorbed from the Purolite A850 resin. This study concludes that bifunctional resins could be used effectively to treatwater contaminated with ClO4- and traces of U(VI), and dilute acid washes could minimize hazardous wastes by separating sorbed U(VI) from ClO4- prior to the regeneration of the spent resin loaded with ClO4-.

  10. Enrichment of Members of the Family Geobacteraceae Associated with Stimulation of Dissimilatory Metal Reduction in Uranium-Contaminated Aquifer Sediments

    PubMed Central

    Holmes, Dawn E.; Finneran, Kevin T.; O'Neil, Regina A.; Lovley, Derek R.

    2002-01-01

    Stimulating microbial reduction of soluble U(VI) to insoluble U(IV) shows promise as a strategy for immobilizing uranium in uranium-contaminated subsurface environments. In order to learn more about which microorganisms might be involved in U(VI) reduction in situ, the changes in the microbial community when U(VI) reduction was stimulated with the addition of acetate were monitored in sediments from three different uranium-contaminated sites in the floodplain of the San Juan River in Shiprock, N.Mex. In all three sediments U(VI) reduction was accompanied by concurrent Fe(III) reduction and a dramatic enrichment of microorganisms in the family Geobacteraceae, which are known U(VI)- and Fe(III)-reducing microorganisms. At the point when U(VI) reduction and Fe(III) reduction were nearing completion, Geobacteraceae accounted for ca. 40% of the 16S ribosomal DNA (rDNA) sequences recovered from the sediments with bacterial PCR primers, whereas Geobacteraceae accounted for fewer than 5% of the 16S rDNA sequences in control sediments that were not amended with acetate and in which U(VI) and Fe(III) reduction were not stimulated. Between 55 and 65% of these Geobacteraceae sequences were most similar to sequences from Desulfuromonas species, with the remainder being most closely related to Geobacter species. Quantitative analysis of Geobacteraceae sequences with most-probable-number PCR and TaqMan analyses indicated that the number of Geobacteraceae sequences increased from 2 to 4 orders of magnitude over the course of U(VI) and Fe(III) reduction in the acetate-amended sediments from the three sites. No increase in Geobacteraceae sequences was observed in control sediments. In contrast to the predominance of Geobacteraceae sequences, no sequences related to other known Fe(III)-reducing microorganisms were detected in sediments. These results compare favorably with an increasing number of studies which have demonstrated that Geobacteraceae are important components of the

  11. Abiotic pyrite formation produces a large Fe isotope fractionation.

    PubMed

    Guilbaud, Romain; Butler, Ian B; Ellam, Rob M

    2011-06-24

    The iron isotope composition of sedimentary pyrite has been proposed as a potential proxy to trace microbial metabolism and the redox evolution of the oceans. We demonstrate that Fe isotope fractionation accompanies abiotic pyrite formation in the absence of Fe(II) redox change. Combined fractionation factors between Fe(II)(aq), mackinawite, and pyrite permit the generation of pyrite with Fe isotope signatures that nearly encapsulate the full range of sedimentary δ(56)Fe(pyrite) recorded in Archean to modern sediments. We propose that Archean negative Fe isotope excursions reflect partial Fe(II)(aq) utilization during abiotic pyrite formation rather than microbial dissimilatory Fe(III) reduction. Late Proterozoic to modern sediments may reflect greater Fe(II)(aq) utilization and variations in source composition.

  12. Diffusion of U(VI) in Opalinus Clay: Influence of temperature and humic acid

    NASA Astrophysics Data System (ADS)

    Joseph, C.; Van Loon, L. R.; Jakob, A.; Steudtner, R.; Schmeide, K.; Sachs, S.; Bernhard, G.

    2013-05-01

    The diffusion of U(VI) (c0 = 1 × 10-6 mol/L) in compacted Opalinus Clay from the Mont Terri underground laboratory, Switzerland, was studied in the absence and presence of humic acid (10 mg/L) at two different temperatures (25 °C, 60 °C) under anaerobic conditions. As background electrolyte synthetic Opalinus Clay pore water (pH 7.6, I = 0.36 mol/L) was used. The diffusion-accessible porosity, ɛ, was determined for each Opalinus Clay bore core sample by through-diffusion experiments with tritiated water (HTO) before the U(VI) diffusion experiments were carried out. The values for the effective diffusion and distribution coefficients De and Kd obtained for U(VI) and humic acid at 25 °C as well as at 60 °C showed that humic acid has no significant influence on the U(VI) diffusion. The diffusion profiles of humic acid in Opalinus Clay at 25 and 60 °C indicate the contributions of two different humic acid particle size fractions (<1 kDa and 10-100 kDa). The small-sized humic acid fraction diffused through the whole Opalinus Clay samples at both temperatures within the 3 month duration of the U(VI) diffusion experiments. At 60 °C, diffusion profiles of two different U(VI) species were observed. In a separate experiment the U(VI) speciation in the source reservoir solution at 60 °C was analyzed by laser-induced fluorescence spectroscopy, photon correlation spectroscopy and scanning electron microscopy with an energy dispersive X-ray detector. The two diffusion profiles could be attributed to an unknown colloidal and a known aquatic U(VI) species (Ca2UO2(CO3)3(aq)). The diffusion results showed that the interaction of U(VI) and of the large-sized humic acid colloid fraction with the clay is stronger at 60 °C. An increase of Kd from 0.025 ± 0.003 m3/kg at 25 °C to 0.25 ± 0.05 m3/kg for U(VI)colloidal at 60 °C was determined. In addition, the value for De of U(VI) increased with increasing temperature. Using the De values at 25 and 60 °C, a preliminary

  13. Comparing different Ultraviolet Imaging Spectrograph (UVIS) occultation observations using modeling of water vapor jets

    NASA Astrophysics Data System (ADS)

    Portyankina, Ganna; Esposito, Larry W.; Hansen, Candice; Aye, Klaus-Michael

    2016-10-01

    Motivation: On March 11, 2016 the Cassini UVIS observed its 6th star occultation by Enceladus' plume. This observation was aimed to determine variability in the total gas flux from the Enceladus' southern polar region. The analysis of the received data suggests that the total gas flux is moderately increased comparing to the average gas flux observed by UVIS from 2005 to 2011 [1]. However, UVIS detected variability in individual jets. In particular, Baghdad 1 is more collimated in 2016 than in 2005, meaning its gas escapes at higher velocity.Model and fits: We use 3D DSMC model for water vapor jets to compare different UVIS occultation observations from 2005 to 2016. The model traces test articles from jets' sources [2] into space and results in coordinates and velocities for a set of test particles. We convert particle positions into the particle number density and integrate along UVIS line of sight (LoS) for each time step of the UVIS observation using precise observational geometry derived from SPICE [3]. We integrate all jets that are crossed by the LoS and perform constrained least-squares fit of resulting modeled opacities to the observed data to solved for relative strengths of jets. The geometry of each occultation is specific, for example, during solar occultation in 2010 UVIS LoS was almost parallel to tiger stripes, which made it possible to distinguish jets venting from different tiger stripes. In 2011 Eps Orionis occultation LoS was perpendicular to tiger stripes and thus many of the jets were geometrically overlapping. Solar occultation provided us with the largest inventory of active jets - our model fit detects at least 43 non-zero jet contributions. Stellar occultations generally have lower temporal resolution and observe only a sub-set of these jets: 2011 Eps Orionis needs minimum 25 non-zero jets to fit UVIS data. We will discuss different occultations and models fits, including the most recent Epsilon Orionis occultation of 2016.[1] Hansen et al

  14. Using High Performance Computing to Understand Roles of Labile and Nonlabile U(VI) on Hanford 300 Area Plume Longevity

    SciTech Connect

    Lichtner, Peter C.; Hammond, Glenn E.

    2012-07-28

    Evolution of a hexavalent uranium [U(VI)] plume at the Hanford 300 Area bordering the Columbia River is investigated to evaluate the roles of labile and nonlabile forms of U(VI) on the longevity of the plume. A high fidelity, three-dimensional, field-scale, reactive flow and transport model is used to represent the system. Richards equation coupled to multicomponent reactive transport equations are solved for times up to 100 years taking into account rapid fluctuations in the Columbia River stage resulting in pulse releases of U(VI) into the river. The peta-scale computer code PFLOTRAN developed under a DOE SciDAC-2 project is employed in the simulations and executed on ORNL's Cray XT5 supercomputer Jaguar. Labile U(VI) is represented in the model through surface complexation reactions and its nonlabile form through dissolution of metatorbernite used as a surrogate mineral. Initial conditions are constructed corresponding to the U(VI) plume already in place to avoid uncertainties associated with the lack of historical data for the waste stream. The cumulative U(VI) flux into the river is compared for cases of equilibrium and multirate sorption models and for no sorption. The sensitivity of the U(VI) flux into the river on the initial plume configuration is investigated. The presence of nonlabile U(VI) was found to be essential in explaining the longevity of the U(VI) plume and the prolonged high U(VI) concentrations at the site exceeding the EPA MCL for uranium.

  15. Development of a biomarker for Geobacter activity and strain composition; Proteogenomic analysis of the citrate synthase protein during bioremediation of U(VI)

    PubMed Central

    Wilkins, Michael J.; Callister, Stephen J.; Miletto, Marzia; Williams, Kenneth H.; Nicora, Carrie D.; Lovley, Derek R.; Long, Philip E.; Lipton, Mary S.

    2011-01-01

    Summary Monitoring the activity of target microorganisms during stimulated bioremediation is a key problem for the development of effective remediation strategies. At the US Department of Energy's Integrated Field Research Challenge (IFRC) site in Rifle, CO, the stimulation of Geobacter growth and activity via subsurface acetate addition leads to precipitation of U(VI) from groundwater as U(IV). Citrate synthase (gltA) is a key enzyme in Geobacter central metabolism that controls flux into the TCA cycle. Here, we utilize shotgun proteomic methods to demonstrate that the measurement of gltA peptides can be used to track Geobacter activity and strain evolution during in situ biostimulation. Abundances of conserved gltA peptides tracked Fe(III) reduction and changes in U(VI) concentrations during biostimulation, whereas changing patterns of unique peptide abundances between samples suggested sample‐specific strain shifts within the Geobacter population. Abundances of unique peptides indicated potential differences at the strain level between Fe(III)‐reducing populations stimulated during in situ biostimulation experiments conducted a year apart at the Rifle IFRC. These results offer a novel technique for the rapid screening of large numbers of proteomic samples for Geobacter species and will aid monitoring of subsurface bioremediation efforts that rely on metal reduction for desired outcomes. PMID:21255372

  16. Development of a biomarker for Geobacter activity and strain composition; Proteogenomic analysis of the citrate synthase protein during bioremediation of U(VI).

    SciTech Connect

    Wilkins, Michael J.; Callister, Stephen J.; Miletto, Marzia; Williams, Kenneth H.; Nicora, Carrie D.; Lovely, Derek R.; Long, Philip E.; Lipton, Mary S.

    2011-01-01

    Monitoring the activity of target microorganisms during stimulated bioremediation is a key problem for the development of effective remediation strategies. At the U.S. Department of Energy’s Integrated Field Research Challenge (IFRC) site in Rifle, CO, the stimulation of Geobacter growth and activity via subsurface acetate addition leads to precipitation of U(VI) from groundwater as U(IV). Citrate synthase (gltA) is a key enzyme in Geobacter central metabolism that controls flux into the TCA cycle. Here, we utilize shotgun proteomic methods to demonstrate that the measurement of gltA peptides can be used to track Geobacter activity and strain evolution during in situ biostimulation. Abundances of conserved gltA peptides tracked Fe(III) reduction and changes in U(VI) concentrations during biostimulation, whereas changing patterns of unique peptide abundances between samples suggested sample-specific strain shifts within the Geobacter population. Abundances of unique peptides indicated potential differences at the strain level between Fe(III)-reducing populations stimulated during in situ biostimulation experiments conducted a year apart at the Rifle IFRC. These results offer a novel technique for the rapid screening of large numbers of proteomic samples for Geobacter species and will aid monitoring of subsurface bioremediation efforts that rely on metal reduction for desired outcomes.

  17. Development of a biomarker for Geobacter activity and strain composition; proteogenomic analysis of the citrate synthase protein during bioremediation of U(VI).

    PubMed

    Wilkins, Michael J; Callister, Stephen J; Miletto, Marzia; Williams, Kenneth H; Nicora, Carrie D; Lovley, Derek R; Long, Philip E; Lipton, Mary S

    2011-01-01

    Monitoring the activity of target microorganisms during stimulated bioremediation is a key problem for the development of effective remediation strategies. At the US Department of Energy's Integrated Field Research Challenge (IFRC) site in Rifle, CO, the stimulation of Geobacter growth and activity via subsurface acetate addition leads to precipitation of U(VI) from groundwater as U(IV). Citrate synthase (gltA) is a key enzyme in Geobacter central metabolism that controls flux into the TCA cycle. Here, we utilize shotgun proteomic methods to demonstrate that the measurement of gltA peptides can be used to track Geobacter activity and strain evolution during in situ biostimulation. Abundances of conserved gltA peptides tracked Fe(III) reduction and changes in U(VI) concentrations during biostimulation, whereas changing patterns of unique peptide abundances between samples suggested sample-specific strain shifts within the Geobacter population. Abundances of unique peptides indicated potential differences at the strain level between Fe(III)-reducing populations stimulated during in situ biostimulation experiments conducted a year apart at the Rifle IFRC. These results offer a novel technique for the rapid screening of large numbers of proteomic samples for Geobacter species and will aid monitoring of subsurface bioremediation efforts that rely on metal reduction for desired outcomes.

  18. Development of a biomarker for Geobacter activity and strain composition: Proteogenomic analysis of the citrate synthase protein during bioremediation of U(VI)

    SciTech Connect

    Wilkins, M.J.; Callister, S.J.; Miletto, M.; Williams, K.H.; Nicora, C.D.; Lovley, D.R.; Long, P.E.; Lipton, M.S.

    2010-02-15

    Monitoring the activity of target microorganisms during stimulated bioremediation is a key problem for the development of effective remediation strategies. At the US Department of Energy's Integrated Field Research Challenge (IFRC) site in Rifle, CO, the stimulation of Geobacter growth and activity via subsurface acetate addition leads to precipitation of U(VI) from groundwater as U(IV). Citrate synthase (gltA) is a key enzyme in Geobacter central metabolism that controls flux into the TCA cycle. Here, we utilize shotgun proteomic methods to demonstrate that the measurement of gltA peptides can be used to track Geobacter activity and strain evolution during in situ biostimulation. Abundances of conserved gltA peptides tracked Fe(III) reduction and changes in U(VI) concentrations during biostimulation, whereas changing patterns of unique peptide abundances between samples suggested sample-specific strain shifts within the Geobacter population. Abundances of unique peptides indicated potential differences at the strain level between Fe(III)-reducing populations stimulated during in situ biostimulation experiments conducted a year apart at the Rifle IFRC. These results offer a novel technique for the rapid screening of large numbers of proteomic samples for Geobacter species and will aid monitoring of subsurface bioremediation efforts that rely on metal reduction for desired outcomes.

  19. MOF catalysis of Fe(II)-to-Fe(III) reaction for an ultrafast and one-step generation of the Fe2O3@MOF composite and uranium(vi) reduction by iron(ii) under ambient conditions.

    PubMed

    Xiong, Yang Yang; Li, Jian Qiang; Yan, Chang Sheng; Gao, Heng Ya; Zhou, Jian Ping; Gong, Le Le; Luo, Ming Biao; Zhang, Le; Meng, Pan Pan; Luo, Feng

    2016-08-07

    Herein, we demonstrate that Zn-MOF-74 enables the ultrafast and one-step generation of the Fe2O3@MOF composite once Zn-MOF-74 contacts with FeSO4 solution. This unique reaction can be further applied in catalysis of U(vi) reduction by Fe(ii) under ambient conditions. The results provide a highly renovated strategy for U(vi) reduction by Fe(ii) just under ambient conditions, which completely subvert all established methods about U(vi) reduction by Fe(ii) in which O2- and CO2-free conditions are absolutely required.

  20. Atmospheric modelling for NOMAD-UVIS on board the ExoMars Trace Gas Orbiter mission

    NASA Astrophysics Data System (ADS)

    Dawson, D. G.; Patel, M. R.; Lewis, S. R.

    2012-09-01

    The Ultraviolet and Visible Spectrometer (UVIS) instrument development process requires the construction of an atmospheric model to provide synthetic UV transmission spectra. We discuss the requirements of the model to enable observational limits to be found, and the potential for certain atmospheric parameters to be further constrained.

  1. Characterization of U(VI) Sorption-Desorption Processes and Model Upscaling

    SciTech Connect

    Bai, Jing; Dong, Wenming; Ball, William P.

    2006-10-12

    The objectives of the overall collaborative EMSP effort (with which this project is associated) were to characterize sorption and desorption processes of U(VI) on pristine and contaminated Hanford sediments over a range of sediment facies and materials properties and to relate such characterization both to fundamental molecular-scale understanding and field-scale models of geochemistry and mass transfer. The research was intended to provide new insights on the mechanisms of U(VI) retardation at Hanford, and to allow the development of approaches by which laboratory-developed geochemical models could be upscaled for defensible field-scale predictions of uranium transport in the environment. Within this broader context, objectives of the JHU-based project were to test hypotheses regarding the coupled roles of adsorption and impermeable-zone diffusion in controlling the fate and transport of U(VI) species under conditions of comparatively short-term exposure. In particular, this work tested the following hypotheses: (1) the primary adsorption processes in the Hanford sediment over the pH range of 7 to 10 are surface complexation reactions of aqueous U(VI) hydroxycarbonate and carbonate complexes with amphoteric edge sites on detrital phyllosilicates in the silt/clay size fraction; (2) macroscopic adsorption intensity (at given aqueous conditions) is a function of mineral composition and aquatic chemistry; and (3) equilibrium sorption and desorption to apply in short-term, laboratory-spiked pristine sediments; and (4) interparticle diffusion can be fully understood in terms of a model that couples molecular diffusion of uranium species in the porewater with equilibrium sorption under the relevant aqueous conditions. The primary focus of the work was on developing and applying both models and experiments to test the applicability of "local equilibrium" assumptions in the modeling interpretation of sorption retarded interparticle diffusion, as relevant to processes of U(VI

  2. Probing the interaction of U(vi) with phosphonate-functionalized mesoporous silica using solid-state NMR spectroscopy.

    PubMed

    Uribe, Eva C; Mason, Harris E; Shusterman, Jennifer A; Bruchet, Anthony; Nitsche, Heino

    2016-06-21

    The fundamental interaction of U(vi) with diethylphosphatoethyl triethoxysilane functionalized SBA-15 mesoporous silica is studied by macroscopic batch experiments and solid-state NMR spectroscopy. DPTS-functionalized silica has been shown to extract U(vi) from nitric acid solutions at or above pH 3. Extraction is dependent on pH and ionic strength. Single-pulse (31)P NMR on U(vi) contacted samples revealed that U(vi) only interacts with a fraction of the ligands present on the surface. At pH 4 the U(vi) extraction capacity of the material is limited to 27-37% of the theoretical capacity, based on ligand loading. We combined single pulse (31)P NMR on U(vi)-contacted samples with batch studies to measure a ligand-to-metal ratio of approximately 2 : 1 at pH 3 and 4. Batch studies and cross-polarization NMR measurements reveal that U(vi) binds to deprotonated phosphonate and/or silanol sites. We use (31)P-(31)P DQ-DRENAR NMR studies to compare the average dipolar coupling between phosphorus spins for both U(vi)-complexed and non-complexed ligand environments. These measurements reveal that U(vi) extraction is not limited by inadequate surface distribution of ligands, but rather by low stability of the surface phosphonate complex.

  3. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants

    PubMed Central

    Khan, M. Iqbal R.; Fatma, Mehar; Per, Tasir S.; Anjum, Naser A.; Khan, Nafees A.

    2015-01-01

    Abiotic stresses (such as metals/metalloids, salinity, ozone, UV-B radiation, extreme temperatures, and drought) are among the most challenging threats to agricultural system and economic yield of crop plants. These stresses (in isolation and/or combination) induce numerous adverse effects in plants, impair biochemical/physiological and molecular processes, and eventually cause severe reductions in plant growth, development and overall productivity. Phytohormones have been recognized as a strong tool for sustainably alleviating adverse effects of abiotic stresses in crop plants. In particular, the significance of salicylic acid (SA) has been increasingly recognized in improved plant abiotic stress-tolerance via SA-mediated control of major plant-metabolic processes. However, the basic biochemical/physiological and molecular mechanisms that potentially underpin SA-induced plant-tolerance to major abiotic stresses remain least discussed. Based on recent reports, this paper: (a) overviews historical background and biosynthesis of SA under both optimal and stressful environments in plants; (b) critically appraises the role of SA in plants exposed to major abiotic stresses; (c) cross-talks potential mechanisms potentially governing SA-induced plant abiotic stress-tolerance; and finally (d) briefly highlights major aspects so far unexplored in the current context. PMID:26175738

  4. Uranium(VI) reduction by nanoscale zero-valent iron in anoxic batch systems: The role of Fe(II) and Fe(III)

    SciTech Connect

    Yan, Sen; Chen, Yongheng; Xiang, Wu; Bao, Zhengyu; Liu, Chongxuan; Deng, Baolin

    2014-12-01

    The role of Fe(II) and Fe(III) on U(VI) reduction by nanoscale zerovalent iron (nanoFe0) was investigated using two iron chelators 1,10-phenanthroline and triethanolamine (TEA) under a CO2-free anoxic condition. The results showed U(VI) reduction was strongly inhibited by 1,10-phenanthroline and TEA in a pH range from 6.92 to 9.03. For instance, at pH 6.92 the observed U(VI) reduction rates decreased by 80.7% and 82.3% in the presence of 1,10-phenanthroline and TEA, respectively. The inhibition was attributed to the formation of stable complexes between 1,10-phenanthroline and Fe(II) or TEA and Fe(III). In the absence of iron chelators, U(VI) reduction can be enhanced by surface-bound Fe(II) on nanoFe0. Our results suggested that Fe(III) and Fe(II) probably acted as an electron shuttle to mediate the transfer of electrons from nanoFe0 to U(VI), therefore a combined system with Fe(II), Fe(III) and nanoFe0 can facilitate the U(VI) reductive immobilization in the contaminated groundwater.

  5. Comparison of U(VI) adsorption onto nanoscale zero-valent iron and red soil in the presence of U(VI)-CO3/Ca-U(VI)-CO3 complexes.

    PubMed

    Zhang, Zhibin; Liu, Jun; Cao, Xiaohong; Luo, Xuanping; Hua, Rong; Liu, Yan; Yu, Xiaofeng; He, Likai; Liu, Yunhai

    2015-12-30

    The influence of U(VI)-CO3 and Ca-U(VI)-CO3 complexes on U(VI) adsorption onto red soil and nanoscale zero-valent iron (NZVI) was investigated using batch adsorption and fixed-bed column experiments to simulate the feasibility of NZVI as the reactive medium in permeable- reactive barriers (PRB) for in situ remediation of uranium-contaminated red soils. The adsorption capacity (qe) and distribution constant (Kd) of NZVI and red soil decreased with increasing pH, dissolved carbonate and calcium concentrations, but the qe and Kd values of NZVI were 5-10 times higher than those of red soil. The breakthrough pore volume (PV) values increased with the decrease of pH, dissolved carbonate and calcium concentration; however, the breakthrough PV values of the PRB column filled with 5% NZVI were 2.0-3.5 times higher than the 100% red soil column. The U(VI)-CO3 complexes adsorbed onto the surface of red soil/NZVI (≡SOH) to form SO-UO2CO3(-) or SO-UO2 (CO3)2(3-). XPS and XRD analysis further confirmed the reduction of U(VI) to U(IV) and the formation of FeOOH on NZVI surfaces. The findings of this study are significant to the remediation of uranium-contaminated red soils and the consideration of practical U(VI) species in the natural environment.

  6. Abiotic Reductive Dechlorination of Tetrachloroethylene and Trichloroethylene in Anaerobic Environments

    DTIC Science & Technology

    2009-01-15

    the Presence of Chloride Green Rust (GR- Cl), pyrite , Sulfate Green Rust (GR-SO4), and Magnetite at pH 8. Lines Represent a Pseudo first-order Model...Rust (GR- Cl), Pyrite , Sulfate Green Rust (GR-SO4), and Magnetite at pH 8. Lines Represent a Pseudo first-order Model fit. The Insets Show Reaction...Rust (GR-Cl) and Pyrite at pH 8. Lines Represent a Rayleigh Model Fit. Uncertainties are 95% Confidence Intervals Calculated by Nonlinear Regression

  7. ABIOTIC REDUCTION AND DETOXIFICATION OF CHROMATE PRESENT IN SOILS

    EPA Science Inventory

    Theoretical and experimental research has supported the assertion that Cr(III) species are the most stable, immobile, and nontoxic forms of chromium and that they may form rapidly when adequate reducing agents are introduced in an oxidized soil environment. The objective of this ...

  8. Upscaling of U(VI) Desorption and Transport from Decimeter-Scale Heterogeneity to Plume-Scale Modeling

    SciTech Connect

    Curtis, Gary P.; Kohler, Matthias; Kannappan, Ramakrishnan; Briggs, Martin; Day-Lewis, Fred

    2015-02-24

    Scientifically defensible predictions of field scale U(VI) transport in groundwater requires an understanding of key processes at multiple scales. These scales range from smaller than the sediment grain scale (less than 10 μm) to as large as the field scale which can extend over several kilometers. The key processes that need to be considered include both geochemical reactions in solution and at sediment surfaces as well as physical transport processes including advection, dispersion, and pore-scale diffusion. The research summarized in this report includes both experimental and modeling results in batch, column and tracer tests. The objectives of this research were to: (1) quantify the rates of U(VI) desorption from sediments acquired from a uranium contaminated aquifer in batch experiments;(2) quantify rates of U(VI) desorption in column experiments with variable chemical conditions, and(3) quantify nonreactive tracer and U(VI) transport in field tests.

  9. DEMONSTRATION BULLETIN: METAL-ENHANCED ABIOTIC DEGRADATION TECHNOLOGY - ENVIROMETAL TECHNOLOGIES, INC.

    EPA Science Inventory

    EnviroMetal Technologies, Inc. (ETI), of Guelph, ON, Canada, has developed the metal-enhanced abiotic degradation technology to treat halogenated volatile organic compounds (VOC) in water. A reactive, zero-valent, granular iron medium causes reductive dehalogenation of VOCs yield...

  10. The Effect of Variable Geochemical Conditions on the Reactive Transport of U(VI) in Small Scale Tracer Tests

    NASA Astrophysics Data System (ADS)

    Curtis, G. P.; Fox, P.; Kohler, M.; Davis, J. A.

    2005-12-01

    Small-scale tracer tests were conducted to evaluate the effect of variable geochemical conditions on the reactive transport of U(VI). The tracer tests were conducted in a shallow alluvial aquifer downgradient from a former uranium mill and a tailings disposal area near Naturita, CO. The U(VI) concentration in the groundwater at the tracer test site was approximately 5 μM, the alkalinity was 8.5 meq/L and the pH was approximately 7.1. Previous studies at the site demonstrated the U(VI) was most sensitive to the alkalinity and least sensitive to the pH values relative to the range of measured values. Uranium migration tests were conducted on a scale of 1-2.5 m and considered variable U(VI) and alkalinity and included Br as an inert tracer. The tracer tests demonstrated that the sediment readily released U(VI) even after many years of contact with the contaminated groundwater suggesting the U(VI) migration is controlled by adsorption reactions. Reactive transport simulations used a surface complexation model developed independently from laboratory bench scale studies to simulate adsorption. The reactive transport simulations gave good predictions of the observed breakthrough of U(VI) when the advection and dispersion parameters were fitted to Br breakthrough. Field studies also included several single well push-pull tests that were conducted at increased and decreased U(VI) and alkalinity values. Reactive transport simulations of these experiments will be presented and compared with the tracer tests simulations.

  11. A mutation in the uvi4 gene promotes progression of endo-reduplication and confers increased tolerance towards ultraviolet B light.

    PubMed

    Hase, Yoshihiro; Trung, Khuat Huu; Matsunaga, Tsukasa; Tanaka, Atsushi

    2006-04-01

    We have isolated and characterized a new ultraviolet B (UV-B)-resistant mutant, uvi4 (UV-B-insensitive 4), of Arabidopsis. The fresh weight (FW) of uvi4 plants grown under supplemental UV-B light was more than twice that of the wild-type. No significant difference was found in their ability to repair the UV-B-induced cyclobutane pyrimidine dimers, or in the amount of UV-B absorptive compounds, both of which are well-known factors that contribute to UV sensitivity. Positional cloning revealed that the UVI4 gene encodes a novel basic protein of unknown function. We found that the hypocotyl cells in uvi4 undergo one extra round of endo-reduplication. The uvi4 mutation also promoted the progression of endo-reduplication during leaf development. The UVI4 gene is expressed mainly in actively dividing cells. In the leaves of P(UVI4)::GUS plants, the GUS signal disappeared in basipetal fashion as the leaf developed. The total leaf blade area was not different between uvi4 and the wild-type through leaf development, while the average cell area in the adaxial epidermis was considerably larger in uvi4, suggesting that the uvi4 leaves have fewer but larger epidermal cells. These results suggest that UVI4 is necessary for the maintenance of the mitotic state, and the loss of UVI4 function stimulated endo-reduplication. Tetraploid Arabidopsis was hyper-resistant to UV-B compared to diploid Arabidopsis, suggesting that the enhanced polyploidization is responsible for the increased UV-B tolerance of the uvi4 mutant.

  12. Influence of ammonium availability on expression of nifD and amtB genes during biostimulation of a U(VI) contaminated aquifer: implications for U(VI) removal and monitoring the metabolic state of Geobacteraceae

    SciTech Connect

    Mouser, Paula J.; N'Guessan, A. Lucie; Elifantz, Hila; Holmes, Dawn E.; Williams, Kenneth H; Wilkins, Michael J.; Long, Philip E.; Lovley, Derek R.

    2009-03-25

    The influence of ammonium availability on bacterial community structure and the physiological status of Geobacter species during in situ bioremediation of uranium-contaminated groundwater was evaluated. Ammonium concentrations varied by 2 orders of magnitude (<4 to 400 ?M) across the study site. Analysis of 16S rRNA sequences suggested that ammonium may have been one factor influencing the community composition prior to acetate amendment with Rhodoferax species predominating over Geobacter species with higher ammonium and Dechloromonas species dominating at the site with lowest ammonium. However, once acetate was added and dissimilatory metal reduction was stimulated, Geobacter species became the predominant organisms at all locations. Rates of U(VI) reduction appeared to be more related to acetate concentrations rather than ammonium levels. In situ mRNA transcript abundance of the nitrogen fixation gene, nifD, and the ammonium transporter gene, amtB, in Geobacter species indicated that ammonium was the primary source of nitrogen during uranium reduction. The abundance of amtB was inversely correlated to ammonium levels, whereas nifD transcript levels were similar across all sites examined. These results suggest that nifD and amtB expression are closely regulated in response to ammonium availability to ensure an adequate supply of nitrogen while conserving cell resources. Thus, quantifying nifD and amtB transcript expression appears to be a useful approach for monitoring the nitrogen-related physiological status of subsurface Geobacter species. This study also emphasizes the need for more detailed analysis of geochemical and physiological interactions at the field scale in order to adequately model subsurface microbial processes during bioremediation.

  13. Probing the interaction of U(VI) with phosphonate-functionalized mesoporous silica using solid-state NMR spectroscopy

    DOE PAGES

    Uribe, Eva C.; Mason, Harris E.; Shusterman, Jennifer A.; ...

    2016-05-30

    The fundamental interaction of U(VI) with diethylphosphatoethyl triethoxysilane functionalized SBA-15 mesoporous silica is studied by macroscopic batch experiments and solid-state NMR spectroscopy. DPTS-functionalized silica has been shown to extract U(VI) from nitric acid solutions at or above pH 3. Extraction is dependent on pH and ionic strength. Single-pulse 31P NMR on U(VI) contacted samples revealed that U(VI)only interacts with a fraction of the ligands present on the surface. At pH 4 the U(VI) extraction capacity of the material is limited to 27–37% of the theoretical capacity, based on ligand loading. We combined single pulse 31P NMR on U(VI)-contacted samples withmore » batch studies to measure a ligand-to-metal ratio of approximately 2 : 1 at pH 3 and 4. Batch studies and cross-polarization NMR measurements reveal that U(VI) binds to deprotonated phosphonate and/or silanol sites. We use 31P–31P DQ-DRENAR NMR studies to compare the average dipolar coupling between phosphorus spins for both U(VI)-complexed and non-complexed ligand environments. Furthermore, these measurements reveal that U(VI) extraction is not limited by inadequate surface distribution of ligands, but rather by low stability of the surface phosphonate complex.« less

  14. U(VI) bioreduction with emulsified vegetable oil as the electron donor-Model application to a field test

    SciTech Connect

    Tang, Guoping; Watson, David B; Wu, Wei-min; Schadt, Christopher Warren; Parker, Jack C; Brooks, Scott C

    2013-01-01

    A one-time 2-hour emulsified vegetable oil (EVO) injection in a fast flowing aquifer decreased U discharge to a stream for over a year. Using a comprehensive biogeochemical model developed in the companion article based on microcosm tests, we approximately matched the observed acetate, nitrate, Fe, U, and sulfate concentrations, and described the major evolution trends of multiple microbial functional groups in the field test. While the lab-determined parameters were generally applicable in the field-scale simulation, the EVO hydrolysis rate constant was estimated to be an order of magnitude greater in the field than in the microcosms. The model predicted substantial biomass (sulfate reducers) and U(IV) accumulation near the injection wells and along the side boundaries of the treatment zone where electron donors (long-chain fatty acids) from the injection wells met electron acceptors (sulfate) from the surrounding environment. While EVO retention and hydrolysis characteristics were expected to control treatment longevity, modeling results indicated that electron acceptors such as sulfate may not only compete for electrons but also play a conducive role in degrading complex substrates and enhancing U(VI) reduction and immobilization. As a result, the spacing of the injection wells could be optimized for effective sustainable bioremediation.

  15. Observation of CI FUV emissions from the Venus thermosphere using Cassini-UVIS

    NASA Astrophysics Data System (ADS)

    Hubert, B. A.; Gerard, J. M.; Bisikalo, D. V.; Shematovich, V. I.; Gladstone, R.

    2011-12-01

    The Cassini spacecraft was launched on 15 October 1997. On its long journey to Saturn, the spacecraft took a gravitational assist to gain energy from Venus on 24 June 1999. The UVIS instrument on board Cassini obtained a series of FUV spectra during this flyby, while the solar F10.7 index was larger than 200 at Earth orbit. The UVIS instrument obtained ultraviolet spectra of Venus with a still unmatched spectral resolution of ~0.37 nm. We developed a least squares fit method able to extract the intensity of most of the emissions present in the instrument passband, that has already been used to quantify the CO Fourth Positive spectral system and oxygen emissions, among others. We identify several emissions of the carbon atom in the UVIS spectra, and estimate their intensity. In particular, we extract the intensity of the CI - 126.1, 156.1 and 165.7 nm multiplets, for every dayglow spectra recorded by UVIS along the Cassini track. These intensities are compared with a full radiative transfer modeling of these emissions, that includes the known photochemical sources of photons and resonant scattering of sunlight. The carbon density profile of the Venus thermosphere has never been directly measured and is taken from a photochemical model. We find a serious disagreement between observation and modeling that can be accounted for by applying a correction factor to the carbon column. This needed correction factor is found to increase monotonically as the solar zenith angle decreases, suggesting a possible photochemical origin to the disagreement, possibly involving the photochemistry of molecular oxygen to which the carbon density is highly sensitive.

  16. Boreal winter comparison of auroral images from Polar UVI and IMAGE FUV

    NASA Astrophysics Data System (ADS)

    Spann, J. F.; Germany, G.; Maddox, W.; Fillingim, M.; Parks, G.; Mende, S.

    2004-12-01

    Same-scene images made with Polar UVI and IMAGE FUV are compared for the boreal winter of 2000-2001. The results of the comparison are used to determine whether the use of both instruments could lead to a better evaluation of the average precipitation and total energy input than with either one individually. These results are a part of a broader investigation to quantitatively compare conjugate images using both instruments and to correlate observed asymmetries with solar wind and seasonal parameters.

  17. Cryogenic Laser Induced Fluorescence Characterization of U(VI) in Hanford Vadose Zone Pore Waters

    SciTech Connect

    Wang, Zheming; Zachara, John M.; Yantasee, Wassana; Gassman, Paul L.; Liu, Chongxuan; Joly, Alan G.

    2004-11-01

    Ambient and liquid helium temperature laser-induced time-resolved uranyl fluorescence spectroscopy was applied to study the speciation of aqueous uranyl solutions containing carbonate and phosphate and two porewater samples obtained by ultra-centrifugation of U(VI)-contaminated sediments. The significantly enhanced fluorescence signal intensity and spectral resolution found at liquid helium temperature allowed, for the first time, direct fluorescence spectroscopic observation of the higher aqueous uranyl complexes with carbonate: UO2(CO3)22-, UO2(CO3)34- and (UO2)2(OH)3CO3-. The porewater samples were non-fluorescent at room temperature. However, at liquid helium temperature, both porewater samples displayed strong, well-resolved fluorescence spectra. Comparisons of the spectroscopic characteristics of the porewaters with those of the standard uranyl-carbonate complexes confirmed that U(VI) in the porewaters existed primarily as UO2(CO3)34-. A small amount of the dicalcium-urano-tricarbonate complex, Ca2UO2(CO3)3, was also observed that was consistent with thermodynamic calculation. The U(VI)-carbonate complex is apparently the mobile species responsible for the subsurface migration of U(VI), even though the majority of the in-ground U(VI) inventory at the site from which the samples were obtained exists as intragrain U(VI)-silicate precipitates.

  18. HST/WFC3: Evolution of the UVIS Channel's Charge Transfer Efficiency

    NASA Astrophysics Data System (ADS)

    Gosmeyer, Catherine; Baggett, Sylvia M.; Anderson, Jay; WFC3 Team

    2016-06-01

    The Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) contains both an IR and a UVIS channel. After more than six years on orbit, the UVIS channel performance remains stable; however, on-orbit radiation damage has caused the charge transfer efficiency (CTE) of UVIS's two CCDs to degrade. This degradation is seen as vertical charge 'bleeding' from sources during readout and its effect evolves as the CCDs age. The WFC3 team has developed software to perform corrections that push the charge back to the sources, although it cannot recover faint sources that have been bled out entirely. Observers can mitigate this effect in various ways such as by placing sources near the amplifiers, observing bright targets, and by increasing the total background to at least 12 electrons, either by using a broader filter, lengthening exposure time, or post-flashing. We present results from six years of calibration data to re-evaluate the best level of total background for mitigating CTE loss and to re-verify that the pixel-based CTE correction software is performing optimally over various background levels. In addition, we alert observers that CTE-corrected products are now available for retrieval from MAST as part of the CALWF3 v3.3 pipeline upgrade.

  19. Uranium Redox Transformations after U(VI) Coprecipitation with Magnetite Nanoparticles.

    PubMed

    Pidchenko, Ivan; Kvashnina, Kristina O; Yokosawa, Tadahiro; Finck, Nicolas; Bahl, Sebastian; Schild, Dieter; Polly, Robert; Bohnert, Elke; Rossberg, André; Göttlicher, Jörg; Dardenne, Kathy; Rothe, Jörg; Schäfer, Thorsten; Geckeis, Horst; Vitova, Tonya

    2017-02-21

    Uranium redox states and speciation in magnetite nanoparticles coprecipitated with U(VI) for uranium loadings varying from 1000 to 10 000 ppm are investigated by X-ray absorption spectroscopy (XAS). It is demonstrated that the U M4 high energy resolution X-ray absorption near edge structure (HR-XANES) method is capable to clearly characterize U(IV), U(V), and U(VI) existing simultaneously in the same sample. The contributions of the three different uranium redox states are quantified with the iterative transformation factor analysis (ITFA) method. U L3 XAS and transmission electron microscopy (TEM) reveal that initially sorbed U(VI) species recrystallize to nonstoichiometric UO2+x nanoparticles within 147 days when stored under anoxic conditions. These U(IV) species oxidize again when exposed to air. U M4 HR-XANES data demonstrate strong contribution of U(V) at day 10 and that U(V) remains stable over 142 days under ambient conditions as shown for magnetite nanoparticles containing 1000 ppm U. U L3 XAS indicates that this U(V) species is protected from oxidation likely incorporated into octahedral magnetite sites. XAS results are supported by density functional theory (DFT) calculations. Further characterization of the samples include powder X-ray diffraction (pXRD), scanning electron microscopy (SEM) and Fe 2p X-ray photoelectron spectroscopy (XPS).

  20. An Assessment of U(VI) removal from groundwater using biochar produced from hydrothermal carbonization.

    PubMed

    Kumar, Sandeep; Loganathan, Vijay A; Gupta, Ram B; Barnett, Mark O

    2011-10-01

    The ever-increasing growth of biorefineries is expected to produce huge amounts of lignocellulosic biochar as a byproduct. The hydrothermal carbonization (HTC) process to produce biochar from lignocellulosic biomass is getting more attention due to its inherent advantage of using wet biomass. In the present study, biochar was produced from switchgrass at 300 °C in subcritical water and characterized using X-ray diffraction, fourier transform infra-red spectroscopy, scanning electron micrcoscopy, and thermogravimetric analysis. The physiochemical properties indicated that biochar could serve as an excellent adsorbent to remove uranium from groundwater. A batch adsorption experiment at the natural pH (~3.9) of biochar indicated an H-type isotherm. The adsorption data was fitted using a Langmuir isotherm model and the sorption capacity was estimated to be ca. 2.12 mg of U g(-1) of biochar. The adsorption process was highly dependent on the pH of the system. An increase towards circumneutral pH resulted in the maximum adsorption of ca. 4 mg U g(-1) of biochar. The adsorption mechanism of U(VI) onto biochar was strongly related to its pH-dependent aqueous speciation. The results of the column study indicate that biochar could be used as an effective adsorbent for U(VI), as a reactive barrier medium. Overall, the biochar produced via HTC is environmentally benign, carbon neutral, and efficient in removing U(VI) from groundwater.

  1. Pathways for abiotic organic synthesis at submarine hydrothermal fields

    PubMed Central

    McDermott, Jill M.; Seewald, Jeffrey S.; German, Christopher R.; Sylva, Sean P.

    2015-01-01

    Arguments for an abiotic origin of low-molecular weight organic compounds in deep-sea hot springs are compelling owing to implications for the sustenance of deep biosphere microbial communities and their potential role in the origin of life. Theory predicts that warm H2-rich fluids, like those emanating from serpentinizing hydrothermal systems, create a favorable thermodynamic drive for the abiotic generation of organic compounds from inorganic precursors. Here, we constrain two distinct reaction pathways for abiotic organic synthesis in the natural environment at the Von Damm hydrothermal field and delineate spatially where inorganic carbon is converted into bioavailable reduced carbon. We reveal that carbon transformation reactions in a single system can progress over hours, days, and up to thousands of years. Previous studies have suggested that CH4 and higher hydrocarbons in ultramafic hydrothermal systems were dependent on H2 generation during active serpentinization. Rather, our results indicate that CH4 found in vent fluids is formed in H2-rich fluid inclusions, and higher n-alkanes may likely be derived from the same source. This finding implies that, in contrast with current paradigms, these compounds may form independently of actively circulating serpentinizing fluids in ultramafic-influenced systems. Conversely, widespread production of formate by ΣCO2 reduction at Von Damm occurs rapidly during shallow subsurface mixing of the same fluids, which may support anaerobic methanogenesis. Our finding of abiogenic formate in deep-sea hot springs has significant implications for microbial life strategies in the present-day deep biosphere as well as early life on Earth and beyond. PMID:26056279

  2. Pathways for abiotic organic synthesis at submarine hydrothermal fields.

    PubMed

    McDermott, Jill M; Seewald, Jeffrey S; German, Christopher R; Sylva, Sean P

    2015-06-23

    Arguments for an abiotic origin of low-molecular weight organic compounds in deep-sea hot springs are compelling owing to implications for the sustenance of deep biosphere microbial communities and their potential role in the origin of life. Theory predicts that warm H2-rich fluids, like those emanating from serpentinizing hydrothermal systems, create a favorable thermodynamic drive for the abiotic generation of organic compounds from inorganic precursors. Here, we constrain two distinct reaction pathways for abiotic organic synthesis in the natural environment at the Von Damm hydrothermal field and delineate spatially where inorganic carbon is converted into bioavailable reduced carbon. We reveal that carbon transformation reactions in a single system can progress over hours, days, and up to thousands of years. Previous studies have suggested that CH4 and higher hydrocarbons in ultramafic hydrothermal systems were dependent on H2 generation during active serpentinization. Rather, our results indicate that CH4 found in vent fluids is formed in H2-rich fluid inclusions, and higher n-alkanes may likely be derived from the same source. This finding implies that, in contrast with current paradigms, these compounds may form independently of actively circulating serpentinizing fluids in ultramafic-influenced systems. Conversely, widespread production of formate by ΣCO2 reduction at Von Damm occurs rapidly during shallow subsurface mixing of the same fluids, which may support anaerobic methanogenesis. Our finding of abiogenic formate in deep-sea hot springs has significant implications for microbial life strategies in the present-day deep biosphere as well as early life on Earth and beyond.

  3. Adsorption of U(VI) on sericite in the presence of Bacillus subtilis: A combined batch, EXAFS and modeling techniques

    NASA Astrophysics Data System (ADS)

    Sun, Yubing; Zhang, Rui; Ding, Congcong; Wang, Xiangxue; Cheng, Wencai; Chen, Changlun; Wang, Xiangke

    2016-05-01

    The effect of Bacillus subtilis (B. subtilis) on the adsorption of U(VI) onto sericite was investigated using batch, EXAFS and modeling techniques. The batch adsorption indicated that the increased adsorption of U(VI) on sericite + B. subtilis systems at pH < 5.0 was predominantly attributed to the formation of inner-sphere complexes between U(VI) and surface functional groups of B. subtilis, whereas the inhibited adsorption was observed at pH > 6.0 due to the combination of deprotonated carboxyl groups of B. subtilis with the hydroxyl of sericite. The slightly enhanced adsorption of U(VI) on sericite + B. subtilis with increasing CO2 contents at pH < 6.0 was ascribed to the electrostatic attraction between positively charged U(VI) species (UO22+ species) and negatively charged surface of sericite + B. subtilis, whereas the U(VI) adsorption sharply decreased at pH > 7.0 owing to electrostatic repulsion between negatively charged sericite + B. subtilis and negatively charged U(VI) species such as UO2(OH)3- or UO2(CO3)22- species. According to EXAFS analysis, the increased adsorption mechanism of U(VI) on sericite + B. subtilis at pH 4.0 was attributed to the formation of U-P shell, whereas the bidentate inner-sphere surface complexes was also observed at pH 7.0 due to the formation of U-C shell (2.92 Å) and/or U-Si/Al (3.18 Å) shell. Under the range of allowable error, the pH-dependent and isothermal adsorption of U(VI) on sericite + B. subtilis can be fitted by surface complexation modeling using ion exchange and surface complexation reaction by using equilibrium parameters obtained from each binary systems. These findings are important to understand the fate and transport of U(VI) on the mineral-bacteria ternary systems in the near-surface environment.

  4. Uranium(VI) Reduction by Nanoscale Zerovalent Iron in Anoxic Batch Systems

    SciTech Connect

    Yan, Sen; Hua, Bin; Bao, Zhengyu; Yang, John; Liu, Chongxuan; Deng, Baolin

    2010-11-17

    This study investigated the influences of pH, bicarbonate, and calcium on U(VI) adsorption and reduction by synthetic nanosize zero valent iron (nano Fe0) particles under an anoxic condition. The results showed that about 87.1%, 82.7% and 78.3% of U(VI) could be reduced within 96 hours in the presence of 10 mM bicarbonate at pHs 6.92, 8.03 and 9.03, respectively. The rates of U(VI) reduction and adsorption by nano Fe0, however, varied significantly with increasing pH and concentrations of bicarbonate and/or calcium. Solid phase analysis by X-ray photoelectron spectroscopy confirmed the formation of UO2 and iron (hydr)oxides as a result of the redox interactions between adsorbed U(VI) and nano Fe0. This study highlights the potential important role of groundwater chemical composition in controlling the rates of U(VI) reductive immobilization using nano Fe0 in subsurface environments.

  5. Abiotic Bromination of Soil Organic Matter.

    PubMed

    Leri, Alessandra C; Ravel, Bruce

    2015-11-17

    Biogeochemical transformations of plant-derived soil organic matter (SOM) involve complex abiotic and microbially mediated reactions. One such reaction is halogenation, which occurs naturally in the soil environment and has been associated with enzymatic activity of decomposer organisms. Building on a recent finding that naturally produced organobromine is ubiquitous in SOM, we hypothesized that inorganic bromide could be subject to abiotic oxidations resulting in bromination of SOM. Through lab-based degradation treatments of plant material and soil humus, we have shown that abiotic bromination of particulate organic matter occurs in the presence of a range of inorganic oxidants, including hydrogen peroxide and assorted forms of ferric iron, producing both aliphatic and aromatic forms of organobromine. Bromination of oak and pine litter is limited primarily by bromide concentration. Fresh plant material is more susceptible to bromination than decayed litter and soil humus, due to a labile pool of mainly aliphatic compounds that break down during early stages of SOM formation. As the first evidence of abiotic bromination of particulate SOM, this study identifies a mechanistic source of the natural organobromine in humic substances and the soil organic horizon. Formation of organobromine through oxidative treatments of plant material also provides insights into the relative stability of aromatic and aliphatic components of SOM.

  6. RBM25 Mediates Abiotic Responses in Plants

    PubMed Central

    Cheng, Chunhong; Wang, Zhijuan; Yuan, Bingjian; Li, Xia

    2017-01-01

    Alternative splicing (AS) of pre-mRNAs is one of the most important post-transcriptional regulations that enable a single gene to code for multiple proteins resulting in the biodiversity of proteins in eukaryotes. Recently, we have shown that an Arabidopsis thaliana RNA recognition motif-containing protein RBM25 is a novel splicing factor to modulate plant response to ABA during seed germination and post-germination through regulating HAB1 pre-mRNA AS. Here, we show that RBM25 is preferentially expressed in stomata and vascular tissues in Arabidopsis and is induced by ABA and abiotic stresses. Loss-of-function mutant is highly tolerant to drought and sensitive to salt stress. Bioinformatic analysis and expression assays reveal that Arabidopsis RBM25 is induced by multiple abiotic stresses, suggesting a crucial role of RBM25 in Arabidopsis responses to adverse environmental conditions. Furthermore, we provide a comprehensive characterization of the homologous genes of Arabidopsis RBM25 based on the latest plant genome sequences and public microarray databases. Fourteen homologous genes are identified in different plant species which show similar structure in gene and protein. Notably, the promoter analysis reveals that RBM25 homologs are likely controlled by the regulators involved in multiple plant growth and abiotic stresses, such as drought and unfavorable temperature. The comparative analysis of general and unique cis regulatory elements of the RBM25 homologs highlights the conserved and unique molecular processes that modulate plant response to abiotic stresses through RBM25-mediated alternative splicing. PMID:28344583

  7. RBM25 Mediates Abiotic Responses in Plants.

    PubMed

    Cheng, Chunhong; Wang, Zhijuan; Yuan, Bingjian; Li, Xia

    2017-01-01

    Alternative splicing (AS) of pre-mRNAs is one of the most important post-transcriptional regulations that enable a single gene to code for multiple proteins resulting in the biodiversity of proteins in eukaryotes. Recently, we have shown that an Arabidopsis thaliana RNA recognition motif-containing protein RBM25 is a novel splicing factor to modulate plant response to ABA during seed germination and post-germination through regulating HAB1 pre-mRNA AS. Here, we show that RBM25 is preferentially expressed in stomata and vascular tissues in Arabidopsis and is induced by ABA and abiotic stresses. Loss-of-function mutant is highly tolerant to drought and sensitive to salt stress. Bioinformatic analysis and expression assays reveal that Arabidopsis RBM25 is induced by multiple abiotic stresses, suggesting a crucial role of RBM25 in Arabidopsis responses to adverse environmental conditions. Furthermore, we provide a comprehensive characterization of the homologous genes of Arabidopsis RBM25 based on the latest plant genome sequences and public microarray databases. Fourteen homologous genes are identified in different plant species which show similar structure in gene and protein. Notably, the promoter analysis reveals that RBM25 homologs are likely controlled by the regulators involved in multiple plant growth and abiotic stresses, such as drought and unfavorable temperature. The comparative analysis of general and unique cis regulatory elements of the RBM25 homologs highlights the conserved and unique molecular processes that modulate plant response to abiotic stresses through RBM25-mediated alternative splicing.

  8. Influence of (calcium-)uranyl-carbonate complexation on U(VI) sorption on Ca- and Na-bentonites.

    PubMed

    Meleshyn, A; Azeroual, M; Reeck, T; Houben, G; Riebe, B; Bunnenberg, C

    2009-07-01

    The influence of uranyl-carbonate and calcium-uranyl-carbonate complexations on the kinetics of U(VI) (approximately 3.4 x 10(-3) mol L(-1)) sorption from NaNO3 and Ca(NO3)2 solutions on Na- and Ca-bentonites at circumneutral ambient conditions was investigated. Complexation of U(VI) in Ca2UO2(CO3)3(aq) aqueous species, dominating the U(VI) speciation in Ca(NO3)2 solution, reduces its adsorption on bentonite by a factor of 2-3 in comparison with that in (UO2)2CO3(OH)3- species, dominating in NaNO3 solution, within the studied period of time (21 days). As a result of the dissolution of accessory calcite, Ca2UO2(CO3)3(aq) can be formed in the initially Ca-free solution in contact with either Na- or Ca-bentonite. U(VI) adsorption on Na-bentonite is a factor of approximately 2 higher than that on Ca-bentonite for solutions with the Ca2UO2(CO3)3(aq) complex dominating aqueous U(VI) speciation. This favors use of Na-bentonite over that of Ca-bentonite in final disposal of radioactive waste. Furthermore, the observed strong correlation between U(VI) adsorption and Mg release as a result of montmorillonite dissolution indicates in agreement with previous findings that under the applied conditions U(VI) is adsorbed on the edge surface of montmorillonite, which is a major mineral phase of the studied clays.

  9. Evaluation of abiotic fate mechanisms in soil slurry bioreactor treatment

    SciTech Connect

    Glaser, J.A.; McCauley, P.T.; Dosani, M.A.

    1995-10-01

    Biological treatment of contaminated soil slurries may offer a viable technology for soil bioremediation. Slurry bioreactor treatment of soils, however, has not sufficiently progressed to be a durable, reliable, and cost-effective treatment option. Critical to the evaluation of slurry bioreactors is a better description of pollutant mass transfer during the treatment phase. Losses attributable to abiotic means are generally overlooked in field application of the technology. Discussions with EPA regional personnel and inspection of active soil slurry bioreactor operations have identified operational problems such as foaming which could result in possible abiotic loss. Field bioslurry operations have adopted various approaches to reduce foaming: (1) the addition of defoaming agents, (2) the reduction of rotational speed of the agitator, and (3) the reduction of gas flow through the bioreactor system. We have conducted two bench-scale slurry bioreactor treatability studies, at the U.S. EPA Testing & Evaluation Facility in Cincinnati, Ohio, which were designed to investigate some of the operating factors leading to foam formation and identify the most advantageous means to deal with foaming. The initial study has been previously presented as a general treatability study for treatment of creosote contamination in a soil. During this study, foaming became a major problem for operation. The foaming conditions were mitigated by use of defoamer and, in the more extreme cases, through reduction of the mixer rotational speed and gas flow. A subsequent study which was devoted specifically to investigating the causes and conditions of foaming using a different batch of soil from the same site as the earlier study showed little foaming at the very beginning of the study.

  10. Influence of abiotic factors on the antimicrobial activity of chitosan.

    PubMed

    Tavaria, Freni K; Costa, Eduardo M; Gens, Eduardo J; Malcata, Francisco Xavier; Pintado, Manuela E

    2013-12-01

    In an effort to bypass the adverse secondary effects attributed to the traditional therapeutic approaches used to treat skin disorders (such as atopic dermatitis), alternative antimicrobials have recently been suggested. One such antimicrobial is chitosan, owing to the already proved biological properties associated with its use. However, the influence of abiotic factors on such activities warrants evaluation. This research effort assessed the antimicrobial activity of chitosan upon skin microorganisms (Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli) in vitro when subject to a combination of different abiotic factors such as pH, ionic strength, organic acids and free fatty acids. Free fatty acids, ionic strength and pH significantly affected chitosan's capability of reducing the viable numbers of S. aureus. This antimicrobial action was potentiated in the presence of palmitic acid and a lower ionic strength (0.2% NaCl), while a higher ionic strength (0.4% NaCl) favored chitosan's action upon the reduction of viable numbers of S. epidermidis and E. coli. Although further studies are needed, these preliminary results advocate that chitosan can in the future be potentially considered as an antimicrobial of choice when handling symptoms associated with atopic dermatitis.

  11. Chemical Reactivity Probes for Assessing Abiotic Natural Attenuation by Reducing Iron Minerals.

    PubMed

    Fan, Dimin; Bradley, Miranda J; Hinkle, Adrian W; Johnson, Richard L; Tratnyek, Paul G

    2016-02-16

    Increasing recognition that abiotic natural attenuation (NA) of chlorinated solvents can be important has created demand for improved methods to characterize the redox properties of the aquifer materials that are responsible for abiotic NA. This study explores one promising approach: using chemical reactivity probes (CRPs) to characterize the thermodynamic and kinetic aspects of contaminant reduction by reducing iron minerals. Assays of thermodynamic CRPs were developed to determine the reduction potentials (ECRP) of suspended minerals by spectrophotometric determination of equilibrium CRP speciation and calculations using the Nernst equation. ECRP varied as expected with mineral type, mineral loading, and Fe(II) concentration. Comparison of ECRP with reduction potentials measured potentiometrically using a Pt electrode (EPt) showed that ECRP was 100-150 mV more negative than EPt. When EPt was measured with small additions of CRPs, the systematic difference between EPt and ECRP was eliminated, suggesting that these CRPs are effective mediators of electron transfer between mineral and electrode surfaces. Model contaminants (4-chloronitrobenzene, 2-chloroacetophenone, and carbon tetrachloride) were used as kinetic CRPs. The reduction rate constants of kinetic CRPs correlated well with the ECRP for mineral suspensions. Using the rate constants compiled from literature for contaminants and relative mineral reduction potentials based on ECRP measurements, qualitatively consistent trends were obtained, suggesting that CRP-based assays may be useful for estimating abiotic NA rates of contaminants in groundwater.

  12. Effect of Subgrid Heterogeneity on Scaling Geochemical and Biogeochemical Reactions: A Case of U(VI) Desorption

    SciTech Connect

    Liu, Chongxuan; Shang, Jianying; Shan, Huimei; Zachara, John M.

    2014-02-04

    The effect of subgrid heterogeneity in sediment properties on the rate of uranyl[U(VI)] desorption was investigated using a sediment collected from the US Department of Energy Hanford site. The sediment was sieved into 7 grain size fractions that each exhibited different U(VI) desorption properties. Six columns were assembled using the sediment with its grain size fractions arranged in different spatial configurations to mimic subgrid heterogeneity in reactive transport properties. The apparent rate of U(VI) desorption varied significantly in the columns. Those columns with sediment structures leading to preferential transport had much lower rates of U(VI) desorption than those with relatively homogeneous transport. Modeling analysis indicated that the U(VI) desorption model and parameters characterized from well-mixed reactors significantly over-predicted the measured U(VI) desorption in the columns with preferential transport. A dual domain model, which operationally separates reactive transport properties into two subgrid domains improved the predictions significantly. A similar effect of subgrid heterogeneity, albeit at a less degree, was observed for denitrification, which also occurred in the columns. The results imply that subgrid heterogeneity is an important consideration in extrapolating reaction rates from the laboratory to field.

  13. Transport of U(VI) through sediments amended with phosphate to induce in situ uranium immobilization.

    PubMed

    Mehta, Vrajesh S; Maillot, Fabien; Wang, Zheming; Catalano, Jeffrey G; Giammar, Daniel E

    2015-02-01

    Phosphate amendments can be added to U(VI)-contaminated subsurface environments to promote in situ remediation. The primary objective of this study was to evaluate the impacts of phosphate addition on the transport of U(VI) through contaminated sediments. In batch experiments using sediments (<2 mm size fraction) from a site in Rifle, Colorado, U(VI) only weakly adsorbed due to the dominance of the aqueous speciation by Ca-U(VI)-carbonate complexes. Column experiments with these sediments were performed with flow rates that correspond to a groundwater velocity of 1.1 m/day. In the absence of phosphate, the sediments took up 1.68-1.98 μg U/g of sediments when the synthetic groundwater influent contained 4 μM U(VI). When U(VI)-free influents were then introduced with and without phosphate, substantially more uranium was retained within the column when phosphate was present in the influent. Sequential extractions of sediments from the columns revealed that uranium was uniformly distributed along the length of the columns and was primarily in forms that could be extracted by ion exchange and contact with a weak acid. Laser induced fluorescence spectroscopy (LIFS) analysis along with sequential extraction results suggest adsorption as the dominant uranium uptake mechanism. The response of dissolved uranium concentrations to stopped-flow events and the comparison of experimental data with simulations from a simple reactive transport model indicated that uranium adsorption to and desorption from the sediments was not always at local equilibrium.

  14. Saturn's F ring as seen by Cassini UVIS: Kinematics and statistics

    NASA Astrophysics Data System (ADS)

    Albers, Nicole; Sremčević, Miodrag; Colwell, Joshua E.; Esposito, Larry W.

    2012-01-01

    We present a new orbital model of Saturn's F ring core based on 93 occultations by the Cassini Ultraviolet Imaging Spectrograph (UVIS) and the Voyager radio and stellar occultations. We demonstrate that the core, despite its intrinsic variability, is well-described as an inclined, freely precessing ellipse. We find that post-fit residuals with a root-mean-square of 24 km are genuine, representing the well-known non-Keplerian features observed in the ring. Over the nearly 4 years of UVIS observations we find the residual variance to increase, coincident with the apse anti-alignment of Prometheus and F ring core in December 2009. This increase in dynamical F ring core temperature most likely reflects the ever-stronger perturbations by Prometheus. Our results are in good agreement with Earth-based and HST observations as well as Voyager imaging. Cassini UVIS stellar occultations resolve the F ring at unprecedented resolutions of a few meters and we identify the F ring core and inner and outer strands. We infer their normal optical depth and full width at half maximum (FWHM) and show that core and strands form distinct morphological groups. Typically, a strand is about ten times wider than the core (average FWHM is ˜10 km) while having a ten times smaller optical depth. Unlike in pre-Cassini occultations the F ring core displays significant optical depth with in some cases >3. In many cases we find a narrow optically thick component (˜ few km and τ > 0.5) embedded in the F ring core. Entertaining the possibility that this is the actual, "true" F ring core then UVIS results suggest that this "true" core is highly non-continuous. In addition, we report the detection of a previously unknown structure - dubbed the "secondary" as it visually resembles the F ring core. Its morphology is similar to that of the core in optical depth and FWHM and it displays individual opaque features. Despite its core-like appearance, we show that its kinematics is consistent with that of

  15. Winter Comparison of Auroral Images from Polar UVI and IMAGE FUV

    NASA Technical Reports Server (NTRS)

    Spann, James F.; Germany, Glynn; Maddox, Will

    2004-01-01

    Same-scene images made with Polar UVI and IMAGE Fuv are compared for the period between 2000 and 2001. The comparison indicates that the use of both instruments may lead to a better evaluation of the average precipitation than with either one individually. The evaluation of total energy input is however, not improved With use of both measurements. These results are a part of a larger investigation to quantitatively compare conjugate images using both instruments and to correlate observed asymmetries with solar wind and seasonal parameters.

  16. Sub-cm Particles in Saturn's Rings from VIMS, UVIS, and RSS occultations

    NASA Astrophysics Data System (ADS)

    Jerousek, Richard Gregory; Colwell, Josh E.; Hedman, Matthew M.; Marouf, Essam A.; Esposito, Larry W.; Nicholson, Philip D.; French, Richard G.

    2016-10-01

    Particles sizes in Saturn's rings roughly follow a truncated power law. One way to determine the governing parameters of the size distribution is through the analysis of differential optical depths (Zebker et al. 1983). Non-axisymmetric self-gravity wakes complicate this approach when optical depth measurements at different wavelengths are not made at same viewing geometry. Using occultations spanning a wide range of viewing angles and from multiple instruments onboard Cassini (the Ultraviolet Imaging Spectrograph (UVIS), the Visual and Infrared Mapping Spectrometer (VIMS), and the Radio Science Subsystem (RSS)), we forward-model the properties of the self-gravity wakes in Saturn's A and B rings while simultaneously constraining the parameters of the cm - sub-cm particle size distribution. In the absence of wakes, and in regions where particles smaller than ~ 8.86 mm are present, VIMS stellar occultations measure larger optical depths than UVIS stellar occultations due to the diffraction of 2.9 μm light out of the small (0.25 × 0.5 mrad) VIMS field of view compared with UVIS which measures shorter wavelength (0.15 μm) light over a much larger (6.4 × 6.0 mrad) field of view. This excess optical depth combined with RSS X-band (λ = 3.6 cm) optical depths provides a way to probe both the power law slope and the minimum particle size. In the A and B rings where self-gravity wakes are prevalent, we use the wake model of Colwell et al. (2006, 2007) with an additional free parameter representing the excess optical depth which would be measured through the gaps between opaque wakes, by VIMS compared to UVIS. In the B ring and inner A ring we find and absence of sub-cm particles and power law slopes of q ~ 2.8. In the trans-Encke region, where there are a multitude of satellite driven resonances, we find an increasing abundance of sub-cm particles as the outer edge of the A ring is approached. In the C Ring and the Cassini Division, where self-gravity wakes are absent

  17. Small particles and self-gravity wakes in Saturn's rings from UVIS and VIMS stellar occultations

    NASA Astrophysics Data System (ADS)

    Jerousek, Richard G.; Colwell, Joshua E.; Esposito, Larry W.; Nicholson, Philip D.; Hedman, Matthew M.

    2016-11-01

    The distribution of particle sizes in Saturn's rings roughly follows a truncated inverse power-law. Though it is well known that differential optical depths provide a way to probe the parameters of size distribution (i.e. Zebker et al. [1985] Icarus, 64, 531-548), the technique is complicated by the presence of self-gravity wakes which introduce a geometric dependence to the observed optical depth. Here we present a method of extracting information about the size distribution of the particles in the gaps between the self-gravity wakes. The Cassini Visual and Infrared Mapping Spectrometer (VIMS) occultations measure starlight at an effective wavelength of 2.9 μm falling onto a single pixel with angular dimensions 0.25 mrad × 0.5 mrad while Cassini Ultraviolet Imaging Spectrograph (UVIS) occultations measure starlight at a much smaller effective wavelength of 0.15 μm and over a field of view with larger angular dimensions of 6.0 mrad × 6.4 mrad. Starlight diffracted out of the VIMS pixel by particles smaller than 1.22λVIMS/2θ ∼8.86 mm, is not replaced by neighboring particles, while the UVIS instrument, with its larger field of view and smaller effective wavelength, collects all of the light diffracted by particles larger than 1.22λVIMS/2θ ∼0.025 mm. Consequently, measurements by VIMS overstate the optical depth in regions where sub-centimeter-sized particles are present. Using the rectangular cross section wake model of (Colwell et al. [2006], Geophys. Res. Lett., 33, L07201) and (Colwell et al. [2007] Icarus, 190, 127-144) with a new parameter to represent the excess VIMS optical depth not seen by UVIS, we combine VIMS and UVIS occultations for the first time for particle size analysis. We find a significant fraction of sub-cm particles only in the outermost portion of the A ring, and in the B1 region of the B ring. In the Trans-Encke region, we find a trend of increasing abundance of sub-cm particles as the outer edge of the A Ring is approached

  18. Modeling of the Enceladus water vapor jets for interpreting UVIS star and solar occultation observations

    NASA Astrophysics Data System (ADS)

    Portyankina, Ganna; Esposito, Larry W.; Aye, Klaus-Michael; Hansen, Candice J.

    2015-11-01

    One of the most spectacular discoveries of the Cassini mission is jets emitting from the southern pole of Saturn’s moon Enceladus. The composition of the jets is water vapor and salty ice grains with traces of organic compounds. Jets, merging into a wide plume at a distance, are observed by multiple instruments on Cassini. Recent observations of the visible dust plume by the Cassini Imaging Science Subsystem (ISS) identified as many as 98 jet sources located along “tiger stripes” [Porco et al. 2014]. There is a recent controversy on the question if some of these jets are “optical illusion” caused by geometrical overlap of continuous source eruptions along the “tiger stripes” in the field of view of ISS [Spitale et al. 2015]. The Cassini’s Ultraviolet Imaging Spectrograph (UVIS) observed occultations of several stars and the Sun by the water vapor plume of Enceladus. During the solar occultation separate collimated gas jets were detected inside the background plume [Hansen et al., 2006 and 2011]. These observations directly provide data about water vapor column densities along the line of sight of the UVIS instrument and could help distinguish between the presence of only localized or also continuous sources. We use Monte Carlo simulations and Direct Simulation Monte Carlo (DSMC) to model the plume of Enceladus with multiple (or continuous) jet sources. The models account for molecular collisions, gravitational and Coriolis forces. The models result in the 3-D distribution of water vapor density and surface deposition patterns. Comparison between the simulation results and column densities derived from UVIS observations provide constraints on the physical characteristics of the plume and jets. The specific geometry of the UVIS observations helps to estimate the production rates and velocity distribution of the water molecules emitted by the individual jets.Hansen, C. J. et al., Science 311:1422-1425 (2006); Hansen, C. J. et al, GRL 38:L11202 (2011

  19. Adsorption characteristics of U(VI) on Fe(III)Cr(III) (oxy)hydroxides synthesized at different temperatures.

    PubMed

    Ahn, Hyangsig; Jo, Ho Young; Lee, Young Jae; Kim, Geon-Young

    2016-07-01

    In this study, the adsorption behavior of U(VI) on (oxy)hydroxides synthesized at different temperatures (25 and 75 °C) was investigated. Four (oxy)hydroxides were synthesized by drying slurries of Fe(III) and Fe(III)Cr(III) (oxy)hydroxide in a vacuum desiccator (25 °C) or in an oven (75 °C). Batch adsorption tests were conducted using the (oxy)hydroxides thus synthesized and groundwater containing uranium ions. In general, the U(VI) removal fraction significantly increased with increasing pH from 3 to 5, remained constant with increasing pH from 5 to 9, and decreased at pH greater than 9, regardless of the type of (oxy)hydroxides and solid-to-liquid ratio. The effect of pH on the U(VI) removal fraction was more significant at a low solid-to-liquid ratio. The oven-dried Fe(III) (oxy)hydroxide exhibited a U(VI) removal fraction lower than that of the vacuum-dried one, whereas the oven-dried Fe(III)Cr(III) (oxy)hydroxide exhibited a U(VI) removal fraction higher than that exhibited by the vacuum-dried one. X-ray photoelectron spectroscopy (XPS) analysis results indicated that the difference in the U(VI) removal fraction is attributed to the dissolution and precipitation of the Fe(III) (oxy)hydroxide during oven drying and dehydration of the Fe(III)Cr(III) (oxy)hydroxide during oven drying.

  20. Surface complexation modeling of U(VI) adsorption by aquifer sediments from a former mill tailings site at Rifle, Colorado

    SciTech Connect

    Hyun, S. P.; Fox, Patricia M.; Davis, James A.; Campbell, Kate M.; Hayes, Kim F.; Long, Philip E.

    2009-12-15

    U(VI) adsorption by two aquifer sediment samples was studied under oxic conditions as a function of pH, U(VI), Ca, and dissolved carbonate concentration. Background-A (BKG-A) sediment was collected upstream of a former uranium mill-tailings site at Rifle, Colorado, and Little Rusty Composite (LRC) was collected on site but with low U contamination. Batch adsorption experiments were performed using artificial groundwater solutions prepared to simulate the field groundwater composition in equilibrium with specific partial pressures of carbon dioxide. To encompass the geochemical conditions of the alluvial aquifer at the site, the experimental conditions ranged from 6.8×10-8 to 10-5 M in [U(VI)]tot, 7.2 to 8.0 in pH, 3.0×10-3 to 6.0×10-3 M in [Ca2+], and 0.05 to 2.6% in partial pressure of carbon dioxide. The sediment was extracted with a dilute bicarbonate/carbonate solution to determine the background labile U(VI) already present in the sediment. A semi-empirical surface complexation model was developed to describe U(VI) adsorption using FITEQL4. The non-electrostatic, generalized composite surface complexation model successfully simulated U(VI) adsorption over the range of groundwater conditions at the Old Rifle site, using a two-site, two-reaction fitting scheme. The sensitivity of model parameters to background U(VI) concentration on the two samples was evaluated. U(VI) adsorption experiments were also performed using a sand fraction of BKG-A separated through repeated sonication and wet-sieving. Surface area normalized Kd for the bulk and sand fraction indicated similar reactivity for both. The surface complexation model developed in this work is expected to contribute to the prediction of fate and transport of U(VI) in the alluvial aquifer at the Old Rifle site, and to assist in the simulation of biostimulation field experiments performed at the site.

  1. Inhibition Mechanism of Uranyl Reduction Induced by Calcium-Carbonato Complexes

    NASA Astrophysics Data System (ADS)

    Jones, M. E.; Bargar, J.; Fendorf, S. E.

    2015-12-01

    Uranium mobility in the subsurface is controlled by the redox state and chemical speciation, generally as minimally soluble U(IV) or soluble U(VI) species. In the presence of even low carbonate concentrations the uranyl-carbonato complex quickly becomes the dominant aqueous species; they are, in fact, the primary aqueous species in most groundwaters. Calcium in groundwater leads to ternary calcium-uranyl-carbonato complexes that limit the rate and extent of U(VI) reduction. This decrease in reduction rate has been attributed to surface processes, thermodynamic limitations, and kinetic factors. Here we present a new mechanism for the inhibition of ferrous iron reduction of uranyl-carbonato species in the presence of calcium. A series of experiments under variable Ca conditions were preformed to determine the role of Ca in the inhibition of U reduction by ferrous iron. Calcium ions in the Ca2UO2(CO3)3 complex sterically prevent the interaction of Fe(II) with U(VI), in turn preventing the Fe(II)-U(VI) distance required for electron transfer. The mechanism described here helps to predict U redox transformations in suboxic environments and clarifies the role of Ca in the fate and mobility of U. Electrochemical measurements further show the decrease of the U(VI) to U(V) redox potential of the uranyl-carbonato complex with decreasing pH suggesting the first electron transfer is critical determining the rate and extent of uranium reduction.

  2. Cassini UVIS Observations of the Io Plasma Torus. 4; Modeling Temporal and Azimuthal Variability

    NASA Technical Reports Server (NTRS)

    Steffl, A. J.; Delamere, P. A.; Bagenal, F.

    2008-01-01

    In this fourth paper in a series, we present a model of the remarkable temporal and azimuthal variability of the Io plasma torus observed during the Cassini encounter with Jupiter. Over a period of three months, the Cassini Ultraviolet Imaging Spectrograph (UVIS) observed a dramatic variaton in the average torus composition. Superimposed on this long-term variation, is a 10.07-hour periodicity caused by azimuthal variation in plasma composition subcorotating relative to System III longitude. Quite surprisingly, the amplitude of the azimuthal variation appears to be modulated at the beat frequency between the System III period and the observed 10.07-hour period. Previously, we have successfully modeled the months-long compositional change by supposing a factor of three increase in the amount of material supplied to Io's extended neutral clouds. Here, we extend our torus chemistry model to include an azimuthal dimension. We postulate the existence of two azimuthal variations in the number of superthermal electrons in the torus: a primary variation that subcorotates with a period of 10.07 hours and a secondary variation that remains fixed in System III longitude. Using these two hot electron variations, our model can reproduce the observed temporal and azimuthal variations observed by Cassini UVIS.

  3. Analysis of Dragon's Breath and Scattered Light Detector Anomalies on WFC3/UVIS

    NASA Astrophysics Data System (ADS)

    Fowler, Julia; Markwardt, Larissa; Bourque, Matthew; Anderson, Jay

    2017-02-01

    We summarize the examination of the light anomalies known as Dragon's Breath and Scattered Light for the UVIS channel of Wide Field Camera 3 (WFC3) of the Hubble Space Telescope (HST). We present three methods for WFC3 users to help avoid these effects during observation planning. We analyzed all of the full-frame wide and long pass filters with exposure times ≥ 300 seconds, comprising ∼13% of WFC3/UVIS on-orbit data (∼20% of all full-frame data, and ∼35% of all full-frame ≥300 second exposures.) We find that stars producing Dragon's Breath peak at specific orientations to the detector and V-band magnitudes. The bulk of these stars fall along the vertical and horizontal edges, within ∼490 pixels of the image frame. The corners of the detector show significantly fewer instances of Dragon's Breath and Scattered Light, though still a few occurrences. Furthermore, matching stars outside the field of the image to V-band magnitude data from the Hubble Guide Star Catalog II (GSC-II) shows that stars causing the anomaly consistently peak around a V-band magnitude of 11.9 or 14.6, whereas the general trend of objects lying outside the field instead peaks around a magnitude of 16.5 within our exposure time and filter selection.

  4. WFC3/UVIS Dark Calibration: Monitoring Results and Improvements to Dark Reference Files

    NASA Astrophysics Data System (ADS)

    Bourque, M.; Baggett, S.

    2016-04-01

    The Wide Field Camera 3 (WFC3) UVIS detector possesses an intrinsic signal during exposures, even in the absence of light, known as dark current. A daily monitor program is employed every HST cycle to characterize and measure this current as well as to create calibration files which serve to subtract the dark current from science data. We summarize the results of the daily monitor program for all on-orbit data. We also introduce a new algorithm for generating the dark reference files that provides several improvements to their overall quality. Key features to the new algorithm include correcting the dark frames for Charge Transfer Efficiency (CTE) losses, using an anneal-cycle average value to measure the dark current, and generating reference files on a daily basis. This new algorithm is part of the release of the CALWF3 v3.3 calibration pipeline on February 23, 2016 (also known as "UVIS 2.0"). Improved dark reference files have been regenerated and re-delivered to the Calibration Reference Data System (CRDS) for all on-orbit data. Observers with science data taken prior to the release of CALWF3 v3.3 may request their data through the Mikulski Archive for Space Telescopes (MAST) to obtain the improved products.

  5. TITAN’S UPPER ATMOSPHERE FROM CASSINI/UVIS SOLAR OCCULTATIONS

    SciTech Connect

    Capalbo, Fernando J.; Bénilan, Yves; Yelle, Roger V.; Koskinen, Tommi T.

    2015-12-01

    Titan’s atmosphere is composed mainly of molecular nitrogen, methane being the principal trace gas. From the analysis of 8 solar occultations measured by the Extreme Ultraviolet channel of the Ultraviolet Imaging Spectrograph (UVIS) on board Cassini, we derived vertical profiles of N{sub 2} in the range 1100–1600 km and vertical profiles of CH{sub 4} in the range 850–1300 km. The correction of instrument effects and observational effects applied to the data are described. We present CH{sub 4} mole fractions, and average temperatures for the upper atmosphere obtained from the N{sub 2} profiles. The occultations correspond to different times and locations, and an analysis of variability of density and temperature is presented. The temperatures were analyzed as a function of geographical and temporal variables, without finding a clear correlation with any of them, although a trend of decreasing temperature toward the north pole was observed. The globally averaged temperature obtained is (150 ± 1) K. We compared our results from solar occultations with those derived from other UVIS observations, as well as studies performed with other instruments. The observational data we present confirm the atmospheric variability previously observed, add new information to the global picture of Titan’s upper atmosphere composition, variability, and dynamics, and provide new constraints to photochemical models.

  6. Spectroscopic studies of U(VI) sorption at the kaolinite-water interface. Final report

    SciTech Connect

    Thompson, H.A.; Parks, G.A.; Brown, G.E. Jr.

    1994-06-01

    Efficient use of U as a resource and safe handling, recycling and disposal of U-containing wastes require an understanding of the factors controlling the fate of U, where fate refers to the destination of U, typically expressed as an environmental medium or a process phase. The sorption process constitutes a change in elemental fate. Partitioning of an element from solution to a solid phase, or sorption, can be divided into three broad categories: adsorption, surface precipitation, and absorption. Extended X-ray absorption fine structure (EXAFS), a type of X-ray absorption spectroscopy (XAS), offers the possibility for distinguishing among different modes of sorption by characterizing the atomic environment of the sorbing element. In this study, the authors use EXAFS to determine the structure of U(VI) sorption complexes at the kaolinite-water interface. In Chapter One, they present an overview of selected aspects of U structural chemistry as a basis for considering the structural environment of U at the solid-water interface. To evaluate the utility of XAS for characterization of the structural environment of U(VI) at the solid-water interface, they have carried out an in-depth analysis of XAS data from U(VI)-containing solid and solution model compounds, which they describe in Chapter Two. In Chapter three, they consider sorption of U by kaolinite as a means of effecting the removal of U from surface collection pond waters on the Rocky Flats Plant site in northern Colorado.

  7. Molecular nitrogen and methane density retrievals from Cassini UVIS dayglow observations of Titan's upper atmosphere

    NASA Astrophysics Data System (ADS)

    Stevens, Michael H.; Evans, J. Scott; Lumpe, Jerry; Westlake, Joseph H.; Ajello, Joseph M.; Bradley, E. Todd; Esposito, Larry W.

    2015-02-01

    We retrieve number densities of molecular nitrogen (N2) and methane (CH4) from Titan's upper atmosphere using the UV dayglow. We use Cassini Ultraviolet Imaging Spectrograph (UVIS) limb observations from 800 to 1300 km of the N I 1493 Å and N II 1085 Å multiplets, both produced directly from photofragmentation of N2. UVIS N2 and CH4 densities are in agreement with measurements from Cassini's Ion Neutral Mass Spectrometer (INMS) from the same flyby if INMS densities are scaled up by a factor of 3.0 as reported in previous studies. Analysis of three Cassini flybys of Titan shows that (1) the CH4 homopause on Titan is between 900 and 1100 km, (2) upper atmospheric temperatures vary by less than 10 K over 6 h at the same geographic location and (3) from 1100 to 1700 local solar time temperatures also vary by less than 10 K. The capability of retrieving the global-scale composition from these data complements existing techniques and significantly advances the study of upper atmospheric variability at Titan and for any other atmosphere with a detectable UV dayglow.

  8. Cassini UVIS observations of Titan ultraviolet airglow intensity dependence with solar zenith angle

    NASA Astrophysics Data System (ADS)

    Royer, E. M.; Ajello, J. M.; Holsclaw, G. M.; West, R. A.; Esposito, L. W.; Bradley, E. T.

    2017-01-01

    The Cassini Ultraviolet Imaging Spectrometer (UVIS) observed the airglow (dayglow and nightglow) of Titan over a range of solar zenith angles (SZA) from 14 to 150° on five separate observations obtained between 2008 and 2012. The modeling of the solar cycle normalized UVIS observations indicates that a Chapman layer function provides a satisfactory fit to the intensity of the EUV and FUV airglow molecular emissions of the N2 Lyman-Birge-Hopfield band system (LBH a1Πg→X1>∑g+), the Carroll-Yoshino band system (c4'1>∑u+→X1>∑g+), and of several atomic multiplets of nitrogen (NI, II) as a function of SZA. This result shows that the strongest contribution to the Titan dayglow occurs by processes (photoelectrons and photodissociation) involving the solar EUV flux rather than magnetospheric particle precipitation that dominates emission excitation in the nightglow.

  9. Kinetics of uranium(VI) reduction by hydrogen sulfide in anoxic aqueous systems.

    PubMed

    Hua, Bin; Xu, Huifang; Terry, Jeff; Deng, Baolin

    2006-08-01

    Aqueous U(VI) reduction by hydrogen sulfide was investigated by batch experiments and speciation modeling; product analysis by transmission electron microscopy (TEM) was also performed. The molar ratio of U(VI) reduced to sulfide consumed, and the TEM result suggested that the reaction stoichiometry could be best represented by UO2(2+) + HS- = UO2+ S* + H+. At pH 6.89 and total carbonate concentration ([CO32-]T) of 4.0 mM, the reaction took place according to the following kinetics: -d[U(VI)]/dt = 0.0103[U(VI)][S2-]T0.54 where [U(VI)] is the concentration of hexavalent uranium, and [S2-]T is the total concentration of sulfide. The kinetics of U(VI) reduction was found to be largely controlled by [CO32-]T (examined from 0.0 to 30.0 mM) and pH (examined from 6.37 to 9.06). The reduction was almost completely inhibited with the following [CO32-]T and pH combinations: [(> or = 15.0 mM, pH 6.89); (> or = 4.0 mM, pH 8.01); and (> or = 2.0 mM, pH 9.06)]. By comparing the experimental results with the calculated speciation of U(VI), it was found that there was a strong correlation between the measured initial reaction rates and the calculated total concentrations of uranium-hydroxyl species; we, therefore, concluded that uranium-hydroxyl species were the ones being reduced by sulfide, not the dominant U-carbonate species present in many carbonate-containing systems.

  10. The Composition and Structure of Enceladus' Plume from a Cassini UVIS Observation of a Solar Occultation

    NASA Astrophysics Data System (ADS)

    Hansen, C. J.; Shemansky, D. E.; Esposito, L. W.; Stewart, I.; Hendrix, A. R.

    2010-12-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed an occultation of the sun by Enceladus’ water vapor plume on May 18, 2010. UVIS used its extreme ultraviolet (EUV) channel for this new observation, to detect absorptions in the wavelength range 55 to 110 nm. Molecular nitrogen and water vapor have absorptions in this range. The N2 b(3,0) line is at 97.2 nm, extinguishing the solar H Lyman gamma emission. Cassini’s Ion and Neutral Mass Spectrometer (INMS) detected a species with an atomic mass of 28 amu, which could be CO, C2H4 or N2 [1, 2]. Definitive UVIS detection of N2 was important to clear up this ambiguity, and this was an important goal of the observation, as the presence or lack of N2 is key to models of the geochemistry in the interior [3, 4, 5]. UVIS did not detect N2 and we set an upper limit for the column density of 3 x 10^13 cm^-2. The absorption features in the spectrum are best fit by a water vapor column density of 0.9 x 10^16 cm^-2. This column density is in family with previous UVIS measurements from stellar occultations in 2005 and 2007 at far ultraviolet wavelengths, suggesting that Enceladus’ activity has been stable for the last 5 years [6, 7]. We used fluctuations in the signal to probe the structure of the gas jets again, as was analyzed in the 2007 occultation of zeta Orionis [7]. Gas jets are correlated to the dust jets detected by Cassini’s Imaging Science Subsystem [8]. The path of the sun cut through the jets horizontally at an altitude above the limb of ~15 km at the closest point. The resolution of the solar occultation is higher than the stellar occultation, and collimation of the gas jets observed in the solar occultation is greater than estimated in 2007. The observed collimation allows us to derive a mach number of ~4 for the ratio of the vertical velocity in the jet to the thermal velocity of the plume gas. The new opportunity afforded by this solar occultation is used to further model the structure and

  11. Incorporation of Np(V) and U(VI) in carbonate and sulfate minerals crystallized from aqueous solution

    NASA Astrophysics Data System (ADS)

    Balboni, Enrica; Morrison, Jessica M.; Wang, Zheming; Engelhard, Mark H.; Burns, Peter C.

    2015-02-01

    The neptunyl Np(V)O2+ and uranyl U(VI)O22+ ions are soluble in groundwater, although their interaction with minerals in the subsurface may impact their mobility. One mechanism for the immobilization of actinyl ions in the subsurface is co-precipitation in low-temperature minerals that form naturally, or that are induced to form as part of a remediation strategy. Important differences in the crystal-chemical behavior of the Np(V) neptunyl and U(VI) uranyl ions suggest their behavior towards incorporation into growing crystals may differ significantly. Using a selection of low-temperature minerals synthesized in aqueous systems under ambient conditions, this study examines the factors that impact the structural incorporation of the Np(V) neptunyl and U(VI) uranyl ions in carbonate and sulfate minerals. Calcite (CaCO3), aragonite (CaCO3), gypsum (CaSO4·2H2O), strontianite (SrCO3), cerussite (PbCO3), celestine (SrSO4), and anglesite (PbSO4) were synthesized from aqueous solutions containing either 400-1000 ppm of U(VI) or Np(V) relative to the divalent cation present in the system. The synthetic products were investigated by inductively coupled plasma mass spectrometry, luminescence and time resolved luminescence spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. Amongst the carbonate minerals, calcite significantly favors Np(V) incorporation over U(VI). U(VI) and Np(V) are incorporated in aragonite and strontianite in similar amounts, whereas cerussite did not incorporate either U(VI) or Np(V) under the synthesis conditions. The sulfate minerals weakly interact with the actinyl ions, relative to the carbonate minerals. Incorporation of U(VI) and Np(V) in celestine was observed at the level of a few tens of ppm; anglesite and gypsum did not incorporate detectable U(VI) or Np(V). Luminescence spectra of the uranyl incorporated in aragonite and strontianite are consistent with a uranyl unit coordinated by three bidentate CO32- groups

  12. Abiotic Immobilization of Nitrate in Forest Soils: a Double Label Approach

    NASA Astrophysics Data System (ADS)

    Maclean, R. W.; Ollinger, S. V.; Hobbie, E. A.; Frey, S. D.; Dail, D. B.

    2007-12-01

    Mechanisms of soil nitrogen (N) retention remain a key uncertainty in the terrestrial N cycle. During recent work at the Harvard Forest Chronic N Experiment, 15N added to soils as ammonia nitrate was observed to be rapidly immobilized after addition to soil on a time scale of minutes. In published results it was hypothesized that the rapid time of immobilization could be explained by abiotic immobilization of both ammonia and nitrate. The possibility of abiotic immobilization of nitrate has been studied since the first half of the 20th century, mainly using ideal compounds and soil sterilization techniques. However, critics of these studies have argued that while in vitro studies may indicate the possibility of an abiotic reaction, they cannot demonstrate its plausibility in soils. Soil sterilization methods have been criticized, because they are not effective enough to eliminate biotic interactions within an experimental treatment. Isotopic tracer studies have also been used but also have problems differentiating biotic and abiotic reactions. This study is an attempt to demonstrate abiotic immobilization of nitrate in soil samples through the use of double labeled nitrate (15N18O3- ). The resolution of this method depends on the biochemistry of microbial immobilization of nitrate; reduction of nitrate to nitrite, then ammonia and glutamine before incorporation into microbial biomass. Reduction of 15N18O3- before microbial utilization of the 15N implies that retention of both heavy isotopes in the soil can only occur through abiotic reaction of 15N18Ox species. In biotic immobilization the 18O is lost to the system in water. While nitrate has proven unreactive in soils, its reduced product, nitrite, is known to be readily reactive with various soil compounds. Nitrite can be introduced into the soil environment naturally by both 'leakiness' in nitrification and denitrification and may possibly be generated abiotically through methods such as the proposed Ferrous

  13. Massive production of abiotic methane during subduction evidenced in metamorphosed ophicarbonates from the Italian Alps

    PubMed Central

    Vitale Brovarone, Alberto; Martinez, Isabelle; Elmaleh, Agnès; Compagnoni, Roberto; Chaduteau, Carine; Ferraris, Cristiano; Esteve, Imène

    2017-01-01

    Alteration of ultramafic rocks plays a major role in the production of hydrocarbons and organic compounds via abiotic processes on Earth and beyond and contributes to the redistribution of C between solid and fluid reservoirs over geological cycles. Abiotic methanogenesis in ultramafic rocks is well documented at shallow conditions, whereas natural evidence at greater depths is scarce. Here we provide evidence for intense high-pressure abiotic methanogenesis by reduction of subducted ophicarbonates. Protracted (≥0.5–1 Ma), probably episodic infiltration of reduced fluids in the ophicarbonates and methanogenesis occurred from at least ∼40 km depth to ∼15–20 km depth. Textural, petrological and isotopic data indicate that methane reached saturation triggering the precipitation of graphitic C accompanied by dissolution of the precursor antigorite. Continuous infiltration of external reducing fluids caused additional methane production by interaction with the newly formed graphite. Alteration of high-pressure carbonate-bearing ultramafic rocks may represent an important source of abiotic methane, with strong implications for the mobility of deep C reservoirs. PMID:28223715

  14. Massive production of abiotic methane during subduction evidenced in metamorphosed ophicarbonates from the Italian Alps

    NASA Astrophysics Data System (ADS)

    Vitale Brovarone, Alberto; Martinez, Isabelle; Elmaleh, Agnès; Compagnoni, Roberto; Chaduteau, Carine; Ferraris, Cristiano; Esteve, Imène

    2017-02-01

    Alteration of ultramafic rocks plays a major role in the production of hydrocarbons and organic compounds via abiotic processes on Earth and beyond and contributes to the redistribution of C between solid and fluid reservoirs over geological cycles. Abiotic methanogenesis in ultramafic rocks is well documented at shallow conditions, whereas natural evidence at greater depths is scarce. Here we provide evidence for intense high-pressure abiotic methanogenesis by reduction of subducted ophicarbonates. Protracted (>=0.5-1 Ma), probably episodic infiltration of reduced fluids in the ophicarbonates and methanogenesis occurred from at least ~40 km depth to ~15-20 km depth. Textural, petrological and isotopic data indicate that methane reached saturation triggering the precipitation of graphitic C accompanied by dissolution of the precursor antigorite. Continuous infiltration of external reducing fluids caused additional methane production by interaction with the newly formed graphite. Alteration of high-pressure carbonate-bearing ultramafic rocks may represent an important source of abiotic methane, with strong implications for the mobility of deep C reservoirs.

  15. Massive production of abiotic methane during subduction evidenced in metamorphosed ophicarbonates from the Italian Alps.

    PubMed

    Vitale Brovarone, Alberto; Martinez, Isabelle; Elmaleh, Agnès; Compagnoni, Roberto; Chaduteau, Carine; Ferraris, Cristiano; Esteve, Imène

    2017-02-22

    Alteration of ultramafic rocks plays a major role in the production of hydrocarbons and organic compounds via abiotic processes on Earth and beyond and contributes to the redistribution of C between solid and fluid reservoirs over geological cycles. Abiotic methanogenesis in ultramafic rocks is well documented at shallow conditions, whereas natural evidence at greater depths is scarce. Here we provide evidence for intense high-pressure abiotic methanogenesis by reduction of subducted ophicarbonates. Protracted (≥0.5-1 Ma), probably episodic infiltration of reduced fluids in the ophicarbonates and methanogenesis occurred from at least ∼40 km depth to ∼15-20 km depth. Textural, petrological and isotopic data indicate that methane reached saturation triggering the precipitation of graphitic C accompanied by dissolution of the precursor antigorite. Continuous infiltration of external reducing fluids caused additional methane production by interaction with the newly formed graphite. Alteration of high-pressure carbonate-bearing ultramafic rocks may represent an important source of abiotic methane, with strong implications for the mobility of deep C reservoirs.

  16. Oxylipins and plant abiotic stress resistance.

    PubMed

    Savchenko, T V; Zastrijnaja, O M; Klimov, V V

    2014-04-01

    Oxylipins are signaling molecules formed enzymatically or spontaneously from unsaturated fatty acids in all aerobic organisms. Oxylipins regulate growth, development, and responses to environmental stimuli of organisms. The oxylipin biosynthesis pathway in plants includes a few parallel branches named after first enzyme of the corresponding branch as allene oxide synthase, hydroperoxide lyase, divinyl ether synthase, peroxygenase, epoxy alcohol synthase, and others in which various biologically active metabolites are produced. Oxylipins can be formed non-enzymatically as a result of oxygenation of fatty acids by free radicals and reactive oxygen species. Spontaneously formed oxylipins are called phytoprostanes. The role of oxylipins in biotic stress responses has been described in many published works. The role of oxylipins in plant adaptation to abiotic stress conditions is less studied; there is also obvious lack of available data compilation and analysis in this area of research. In this work we analyze data on oxylipins functions in plant adaptation to abiotic stress conditions, such as wounding, suboptimal light and temperature, dehydration and osmotic stress, and effects of ozone and heavy metals. Modern research articles elucidating the molecular mechanisms of oxylipins action by the methods of biochemistry, molecular biology, and genetics are reviewed here. Data on the role of oxylipins in stress signal transduction, stress-inducible gene expression regulation, and interaction of these metabolites with other signal transduction pathways in cells are described. In this review the general oxylipin-mediated mechanisms that help plants to adjust to a broad spectrum of stress factors are considered, followed by analysis of more specific responses regulated by oxylipins only under certain stress conditions. New approaches to improvement of plant resistance to abiotic stresses based on the induction of oxylipin-mediated processes are discussed.

  17. Low temperature equilibrium isotope fractionation and isotope exchange kinetics between U(IV) and U(VI)

    NASA Astrophysics Data System (ADS)

    Wang, Xiangli; Johnson, Thomas M.; Lundstrom, Craig C.

    2015-06-01

    Measurements of the uranium (U) isotope ratio 238U/235U provide an emerging redox proxy in environmental and paleoredox studies, but many key parameters concerning U isotope fractionation are still poorly constrained. Here we report the equilibrium isotopic fractionation between dissolved U(IV) and dissolved U(VI), and rates of isotope exchange between solid-phase U(IV) and dissolved U(VI). We conducted one experiment at high concentration [35 mM U(IV) and 32 mM U(VI)] and low pH (0.2) in hydrochloric acid media at room temperature to determine the equilibrium isotopic fractionation between dissolved U(IV) and dissolved U(VI). Isotopic equilibrium was reached in about 19 days under such experimental conditions. The equilibrium isotope fractionation was determined to be 1.64 ± 0.16‰, with U(IV) being enriched in 238U relative to U(VI). Applicability of the determined equilibrium fractionation is discussed. We also conducted a set of experiments to determine isotopic exchange rates between dissolved U(VI) and nanouraninite U(IV) under conditions closer to those in natural system, with lower concentrations and neutral pH. The exchange rate was found to conform to the rate law R = k[U(VI)]adsorbed, in which R is the isotopic exchange rate (μM day-1); k is the rate constant determined to be 0.21 day-1; and [U(VI)]adsorbed is the concentration of U(VI) adsorbed to nanouraninite (μM). Our results, combined with consideration of the variables controlling U(VI)-U(IV) contact in natural settings, indicate that the timescale for significant isotope equilibration varies depending on environmental conditions, mostly uranium concentrations. In natural uncontaminated sediments with low uranium concentrations, equilibration is expected to occur on a timescale of hundreds to thousands of years. In contrast, in U-contaminated aquifers with high U concentrations, significant equilibration could occur on timescales of weeks to years.

  18. Structural basis for the inhibition of AKR1B10 by the C3 brominated TTNPB derivative UVI2008.

    PubMed

    Ruiz, Francesc X; Crespo, Isidro; Álvarez, Susana; Porté, Sergio; Giménez-Dejoz, Joan; Cousido-Siah, Alexandra; Mitschler, André; de Lera, Ángel R; Parés, Xavier; Podjarny, Alberto; Farrés, Jaume

    2017-02-01

    UVI2008, a retinoic acid receptor (RAR) β/γ agonist originated from C3 bromine addition to the parent RAR pan-agonist 4-[(E)-2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)-1-propenyl]benzoic acid (TTNPB), is also a selective inhibitor of aldo-keto reductase family member 1B10 (AKR1B10). Thus, it might become a lead drug for the design of compounds targeting both activities, as an AKR1B10 inhibitor and RAR agonist, which could constitute a novel therapeutic approach against cancer and skin-related diseases. Herein, the X-ray structure of the methylated Lys125Arg/Val301Leu AKR1B10 (i.e. AKME2MU) holoenzyme in complex with UVI2008 was determined at 1.5 Å resolution, providing an explanation for UVI2008 selectivity against AKR1B10 (IC50 = 6.1 μM) over the closely related aldose reductase (AR, IC50 = 70 μM). The carboxylic acid group of UVI2008 is located in the anion-binding pocket, at hydrogen-bond distance of catalytically important residues Tyr49 and His111. The inhibitor bromine atom can only fit in the wider active site of AKR1B10, mainly because of the native Trp112 side-chain orientation, not possible in AR. In AKR1B10, Trp112 native conformation, and thus UVI2008 binding, is facilitated through interaction with Gln114. IC50 analysis of the corresponding Thr113Gln mutant in AR confirmed this hypothesis. The elucidation of the binding mode of UVI2008 to AKR1B10, along with the previous studies on the retinoid specificity of AKR1B10 and on the stilbene retinoid scaffold conforming UVI2008, could indeed be used to foster the drug design of bifunctional antiproliferative compounds.

  19. Sulfidization of lepidocrocite and its effect on uranium phase distribution and reduction

    NASA Astrophysics Data System (ADS)

    Alexandratos, Vasso G.; Behrends, Thilo; Van Cappellen, Philippe

    2014-10-01

    Sulfidization of iron oxyhydroxides can be accompanied by a release of adsorbed uranium, thus enhancing the mobility of uranium in systems undergoing a shift in redox conditions. We investigated the phase distribution and redox state of uranium in batch experiments, in which lepidocrocite with adsorbed U(VI) was reacted with sulfide. The amount of added sulfide was varied in the experiments performed, at pH 8 and ionic strength of 0.1 M. Sulfide, when not added in excess, was removed from solution within less than 1 h of reaction time. Consumption of dissolved sulfide was accompanied by reduction of Fe(III) and formation of iron sulfide. Each addition of sulfide led to an instantaneous release of uranium into solution. This release is most likely caused by the exchange of hydroxide groups at the lepidocrocite surface by thiol groups which have a lower tendency to bind uranium. Along with the consumption of dissolved sulfide, part of the released uranium became reassociated with the solid phase. This can be explained by a reversal of the ligand exchange process at the solid surfaces. However, steady state concentrations of dissolved uranium remained higher than before sulfide addition, indicating that the product of lepidocrocite sulfidization has a lower affinity for uranium than the starting material. Reduction of U(VI) also contributed to the transfer of dissolved uranium back to the solid phase. X-ray absorption spectroscopy revealed that reduction of U(VI) occurred in all experiments. The extent of U(VI) reduction depended on sulfide addition, however, formation of UO2 occurred within a period of 48 h only when sulfide was added in excess. This suggests that the presence of dissolved sulfide is a prerequisite for fast reduction of U(VI) and formation of UO2. This would imply that the fast reaction of lepidocrocite with sulfide outcompetes reduction of U(VI) and, by this, kinetically inhibits the thermodynamically more favorable reduction of U(VI) to uraninite

  20. Simulating adsorption of U(VI) under transient groundwater flow and hydrochemistry: Physical versus chemical nonequilibrium model

    USGS Publications Warehouse

    Greskowiak, J.; Hay, M.B.; Prommer, H.; Liu, C.; Post, V.E.A.; Ma, R.; Davis, J.A.; Zheng, C.; Zachara, J.M.

    2011-01-01

    Coupled intragrain diffusional mass transfer and nonlinear surface complexation processes play an important role in the transport behavior of U(VI) in contaminated aquifers. Two alternative model approaches for simulating these coupled processes were analyzed and compared: (1) the physical nonequilibrium approach that explicitly accounts for aqueous speciation and instantaneous surface complexation reactions in the intragrain regions and approximates the diffusive mass exchange between the immobile intragrain pore water and the advective pore water as multirate first-order mass transfer and (2) the chemical nonequilibrium approach that approximates the diffusion-limited intragrain surface complexation reactions by a set of multiple first-order surface complexation reaction kinetics, thereby eliminating the explicit treatment of aqueous speciation in the intragrain pore water. A model comparison has been carried out for column and field scale scenarios, representing the highly transient hydrological and geochemical conditions in the U(VI)-contaminated aquifer at the Hanford 300A site, Washington, USA. It was found that the response of U(VI) mass transfer behavior to hydrogeochemically induced changes in U(VI) adsorption strength was more pronounced in the physical than in the chemical nonequilibrium model. The magnitude of the differences in model behavior depended particularly on the degree of disequilibrium between the advective and immobile phase U(VI) concentrations. While a clear difference in U(VI) transport behavior between the two models was noticeable for the column-scale scenarios, only minor differences were found for the Hanford 300A field scale scenarios, where the model-generated disequilibrium conditions were less pronounced as a result of frequent groundwater flow reversals. Copyright 2011 by the American Geophysical Union.

  1. Surface complexation modeling of U(VI) adsorption by aquifer sediments from a former mill tailings site at Rifle, Colorado.

    PubMed

    Hyun, Sung Pil; Fox, Patricia M; Davis, James A; Campbell, Kate M; Hayes, Kim F; Long, Philip E

    2009-12-15

    A study of U(VI) adsorption by aquifer sediment samples from a former uranium mill tailings site at Rifle, Colorado, was conducted under oxic conditions as a function of pH, U(VI), Ca, and dissolved carbonate concentration. Batch adsorption experiments were performed using <2 mm size sediment fractions, a sand-sized fraction, and artificial groundwater solutions prepared to simulate the field groundwater composition. To encompass the geochemical conditions of the alluvial aquifer at the site, the experimental conditions ranged from 6.8 x 10(-8) to 10(-5) M in [U(VI)](tot), 7.2 to 8.0 in pH, 3.0 x 10(-3) to 6.0 x 10(-3) M in [Ca(2+)], and 0.05 to 2.6% in partial pressure of carbon dioxide. Surface area normalized U(VI) adsorption K(d) values for the sand and <2 mm sediment fraction were similar, suggesting a similar reactive surface coating on both fractions. A two-site two-reaction, nonelectrostatic generalized composite surface complexation model was developed and successfully simulated the U(VI) adsorption data. The model successfully predicted U(VI) adsorption observed from a multilevel sampling well installed at the site. A comparison of the model with the one developed previously for a uranium mill tailings site at Naturita, Colorado, indicated that possible calcite nonequilibrium of dissolved calcium concentration should be evaluated. The modeling results also illustrate the importance of the range of data used in deriving the best fit model parameters.

  2. Surface complexation modeling of U(VI) adsorption by aquifer sediments from a former mill tailings site at Rifle, Colorado

    USGS Publications Warehouse

    Hyun, S.P.; Fox, P.M.; Davis, J.A.; Campbell, K.M.; Hayes, K.F.; Long, P.E.

    2009-01-01

    A study of U(VI) adsorption by aquifer sediment samples from a former uranium mill tailings site at Rifle, Colorado, was conducted under oxic conditions as a function of pH, U(VI), Ca, and dissolved carbonate concentration. Batch adsorption experiments were performed using <2mm size sediment fractions, a sand-sized fraction, and artificial groundwater solutions prepared to simulate the field groundwater composition. To encompass the geochemical conditions of the alluvial aquifer at the site, the experimental conditions ranged from 6.8 ?? 10-8 to 10-5 M in [U(VI)]tot, 7.2 to 8.0 in pH, 3.0 ?? 10-3 to 6.0 ?? 10 -3 M in [Ca2+], and 0.05 to 2.6% in partial pressure of carbon dioxide. Surface area normalized U(VI) adsorption Kd values for the sand and <2 mm sediment fraction were similar, suggesting a similar reactive surface coating on both fractions. A two-site two-reaction, nonelectrostatic generalized composite surface complexation model was developed and successfully simulated the U(VI) adsorption data. The model successfully predicted U(VI) adsorption observed from a multilevel sampling well installed at the site. A comparison of the model with the one developed previously for a uranium mill tailings site at Naturita, Colorado, indicated that possible calcite nonequilibrium of dissolved calcium concentration should be evaluated. The modeling results also illustrate the importance of the range of data used in deriving the best fit model parameters. ?? 2009 American Chemical Society.

  3. SERDP ER-1421 Abiotic and Biotic Mechanisms Controlling In Situ Remediation of NDMA: Final Report

    SciTech Connect

    Szecsody, James E.; McKinley, James P.; Crocker, Fiona H.; Breshears, Andrew T.; Devary, Brooks J.; Fredrickson, Herbert L.; Thompson, Karen T.

    2009-09-30

    This laboratory-scale project was initiated to investigate in situ abiotic/biotic mineralization of NDMA. Under iron-reducing conditions, aquifer sediments showed rapid abiotic NDMA degradation to dimethylamine (DMA), nitrate, formate, and finally, CO2. These are the first reported experiments of abiotic NDMA mineralization. The NDMA reactivity of these different iron phases showed that adsorbed ferrous iron was the dominant reactive phase that promoted NDMA reduction, and other ferrous phases present (siderite, iron sulfide, magnetite, structural ferrous iron in 2:1 clays) did not promote NDMA degradation. In contrast, oxic sediments that were biostimulated with propane promoted biomineralization of NDMA by a cometabolic monooxygenase enzyme process. Other monooxygenase enzyme processes were not stimulated with methane or toluene additions, and acetylene addition did not block mineralization. Although NDMA mineralization extent was the highest in oxic, biostimulated sediments (30 to 82%, compared to 10 to 26% for abiotic mineralization in reduced sediments), large 1-D column studies (high sediment/water ratio of aquifers) showed 5.6 times higher NDMA mineralization rates in reduced sediment (half-life 410 ± 147 h) than oxic biomineralization (half life 2293 ± 1866 h). Sequential reduced/oxic biostimulated sediment mineralization (half-life 3180 ± 1094 h) was also inefficient compared to reduced sediment. These promising laboratory-scale results for NDMA mineralization should be investigated at field scale. Future studies of NDMA remediation should focus on the comparison of this in situ abiotic NDMA mineralization (iron-reducing environments) to ex situ biomineralization, which has been shown successful in other studies.

  4. Charge transfer efficiency in HST WFC3/UVIS: monitoring and mitigation

    NASA Astrophysics Data System (ADS)

    Baggett, Sylvia M.; Anderson, Jay; Sosey, Megan L.; Bourque, Matthew; Martlin, Catherine; Kurtz, Heather; Shanahan, Clare; Kozhurina-Platais, Vera; Sabbi, Elena; WFC3 Team

    2017-01-01

    The UVIS channel of the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) contains a 4096x4096 pixel e2v CCD array. The detectors have been performing well on-orbit but as expected, are exhibiting the cumulative effects of radiation damage. The result is a growing hot pixel population and declining charge transfer efficiency. We summarize the progression of the CTE losses, their effects on science data, and discuss two of the primary mitigation options: post-flash and a pixel-based CTE correction. The latter is now part of the automated WFC3 calibration pipeline in the Mikulski Archive for Space Telescopes (MAST), providing observers with both standard and CTE-corrected data products.

  5. Cassini UVIS Observations of the Io Plasma Torus. 3; Observations of Temporal and Azimuthal Variability

    NASA Technical Reports Server (NTRS)

    Steffl, A. J.; Delamere, P. A.; Bagenal, F.

    2006-01-01

    In this third paper in a series presenting observations by the Cassini Ultraviolet Imaging Spectrometer (UVIS) of the Io plasma torus, we show remarkable, though subtle, spatio-temporal variations in torus properties. The Io torus is found to exhibit significant, near sinusoidal variations in ion composition as a functions of azimuthal position. The azimuthal variation in composition is such that the mixing ratio of S II us strongly correlated with the mixing ratio of S III and the equatorial electron density and strongly anti-correlated with the mixing ratios of both S IV and O II and the equatorial electron temperature. Surprisingly, the azimuthal variation in ion composition is observed to have a period of 10.07 h -- 1.5% longer than the System III rotation period of Jupiter, yet 1.3% shorter than the System UV period defined by [Brown, M. E., 1995. J. Geophys. Res. 100, 21683-21696]. Although the amplitude of the azimuthal variation of S III and O II remained in the range of 2-5%, the amplitude of the S II and S IV compositional variation ranged between 5 and 25% during the UVIS observations. Furthermore, the amplitude of the azimuthal variations of S II and S IV appears to be modulated by its location in System III longitude, such that when the region of maximum S II mixing ration (minimum S IV mixing ratio) is aligned with a System III longitude of 200 deg +/-, the amplitude is a factor of 4 greater than when the variation is anti-aligned. This behavior can explain numerous, often apparently contradictory, observations of variations in the properties of the Io plasma torus with the System III and System IV coordinate systems.

  6. WFC3/UVIS External CTE Monitor: Single-Chip CTE Measurements

    NASA Astrophysics Data System (ADS)

    Gosmeyer, C. M.; Baggett, S.

    2016-12-01

    We present the first results of single-chip measurements of charge transfer efficiency (CTE) in the UVIS channel of the Hubble Space Telescope Wide Field Camera 3 (HST/WFC3). This test was performed in Cycle 20 in two visits. In the first visit a field in the star cluster NGC 6583 was observed. In a second visit, the telescope returned to the field, but rotated by 180 degrees and with a shift in pointing that allowed the same stars to be imaged, near and far from the amplifiers, on the same chip of the two-chip UVIS field of-view. This dataset enables a measurement of CTE loss on each separate chip. The current CTE monitor measures CTE loss as an average of the two chips because it dithers by a chip-height to obtain observations of the same sources near and far from the amplifiers, instead of the more difficult to-schedule 180-degree rotation. We find that CTE loss is worse on Chip 1 than on Chip 2 across all cases for which we had data: short and long exposures and w! ith and without the pixel-based CTE correction. In the best case, for long exposures with the CTE correction applied, the max difference between the two chip's flux losses is 3%/2048 pixels. This case should apply for most science observations where the background is 12 e-/pixel. In the worst case of low-background short exposures, e.g. those without post-flash, the max difference between the two chips is 17% flux loss/2048 pixels. Uncertainties are <0.01% flux loss/2048 pixels. Because of the two chips' different CTE loss rates, we will consider adding this test as part of the routine yearly monitor and creating a chip-specific CTE correction software.

  7. Ionospheric Convection in the Postnoon Auroral Oval: SuperDARN and Polar UVI Observations

    NASA Technical Reports Server (NTRS)

    Kozlovsky, A.; Koustov, A.; Lyatsky, W.; Kangas, J.; Parks, G.; Chua, D.

    2002-01-01

    Super Dual Auroral Radar Network (SuperDARN) observations, ultraviolet imaging from the Polar satellite (UVI), and particle precipitation data from DMSP satellites have been used to investigate the electrodynamics of the postnoon auroral oval in the Northern hemisphere. We show that: (1) For negative IMF By, the convection reversal (CR) was co-located with the maximum of auroral luminosity, but during positive IMF By the convection reversal was poleward of the auroral oval up to several degrees in latitude; (2) Postnoon auroral oval was associated with a large-scale upward field-aligned current (FAC) of the order of 6x10(exp -7). A m(exp -2) in magnitude (the FAC was inferred from the SuperDARN and UVI data). For negative IMF By, maximum of the auroral intensity coincides in latitude with the maximum of the upward field-aligned current. However, for positive IMF By. the maximum of the upward FAC was shifted to the poleward edge of the auroral oval; (3) In response to the IMF By turning from positive to negative, the maximum of the auroral luminosity did not change its position noticeably, but the position of the convection reversal changed considerably from 80-81 degs to about 76 degs MLAT, and the maximum of FAC moved from 77-78 degs to about 76 degs MLAT. Thus, after IMF By turns negative, both the FAC maximum and CR tend to coincide with the auroral maximum; (4) The IMF Bz positive deflection was followed by a decrease in both field-aligned current intensity and auroral luminosity. However, the decrease in the auroral luminosity lags behind the FAC decrease by about 12 min. Firstly, these observations allow us to suggest that the IMF By-related electric field can penetrate into the closed magnetosphere and produce convection and FAC changes in the region of the postnoon auroral oval. Secondly, we suggest that the interchange instability is a promising mechanism for the postnoon auroras.

  8. Similarity of the Surface Reactivity of Hydrous Ferric Oxide and Hematite: Sorption and Redox of U(VI) and Fe(II)

    SciTech Connect

    Je-Hun Jang; Dempsey, Brian A.; Burgos, William D.; Yeh, George; Roden, Eric

    2004-03-17

    Hydrous Ferric Oxide (HFO) vs. Hematite--Thermodynamically distinctive bulk phases, but the surfaces could be similar due to hydration of the interface. Hypothesis--The surface of HFO is energetically similar to the surface of hematite. Objective--Compare the reactions of HFO and hematite with U(VI) and Fe(II). Experimental--The reactions of interests were (1) preparation of sub-micron hematite, (2) sorption of U(VI), and (3) redox of U(VI) and Fe(II) with HFO or hematite.

  9. Abiotic Methane Synthesis: Caveats and New Results

    NASA Astrophysics Data System (ADS)

    Zou, R.; Sharma, A.

    2005-12-01

    The role of mineral interaction with geochemical fluids under hydrothermal conditions has invoked models of geochemical synthesis of organic molecules at deep crustal conditions. Since Thomas Gold's (1992) hypothesis of the possibility of an abiotic organic synthesis, there have been several reports of hydrocarbon formation under high pressure and temperature conditions. Several previous experimental studies have recognized that small amounts of methane (and other light HC compounds) can be synthesized via catalysis by transition metals: Fe, Ni (Horita and Berndt, 1999 Science) and Cr (Foustavous and Seyfried, 2004 Science). In light of these pioneering experiments, an investigation of the feasibility of abiotic methane synthesis at higher pressure conditions in deep geological setting and the possible role of catalysis warrants a closer look. We conducted three sets of experiments in hydrothermal diamond anvil cell using FeO nanopowder, CaCO 3 and water at 300° - 600° C and 0.5 - 5 GPa : (a) with stainless steel gasket, (b) gold-lined gasket, and (c) gold-lined gasket with added Fe and Ni nanopowder. The reactions were monitored in-situ using micro-Raman spectroscopy with 532nm and 632nm lasers. The solids phases were characterized in-situ using synchrotron X-ray diffraction at CHESS-Cornell and quenched products with an electron microprobe. Interestingly, a variable amount of hydrocarbon was observed only in runs with stainless steel gasket and with Fe, Ni nanoparticles. Experiments with gold-lined reactors did not show any hydrocarbon formation. Added high resolution microscopy of the products and their textural relationship within the diamond cell with Raman spectroscopy data show that the hydrocarbon (methane and other light fractions) synthesis is a direct result of transition metal catalysis, rather than wustite - calcium carbonate reaction as recently reported by Scott et al (2004, PNAS). The author will further present new results highlighting abiotic

  10. Generation of RNA in abiotic conditions.

    NASA Astrophysics Data System (ADS)

    di Mauro, Ernesto

    Generation of RNA in abiotic conditions. Ernesto Di Mauro Dipartimento di Genetica Bi-ologia Molecolare, Universit` "Sapienza" Roma, Italy. a At least four conditions must be satisfied for the spontaneous generation of (pre)-genetic poly-mers: 1) availability of precursors that are activated enough to spontaneously polymerize. Preliminary studies showed that (a) nucleic bases and acyclonucleosides can be synthesized from formamide H2NCOH by simply heating with prebiotically available mineral catalysts [last reviewed in (1)], and that b) nucleic bases can be phosphorylated in every possible posi-tion [2'; 3'; 5'; cyclic 2',3'; cyclic 3',5' (2)]. The higher stability of the cyclic forms allows their accumulation. 2) A polymerization mechanism. A reaction showing the formation of RNA polymers starting from prebiotically plausible precursors (3',5' cyclic GMP and 3', 5'cyclic AMP) was recently reported (3). Polymerization in these conditions is thermodynamically up-hill and an equilibrium is attained that limits the maximum length of the polymer produced to about 40 nucleotides for polyG and 100 nucleotides for polyA. 3) Ligation of the synthesized oligomers. If this type of reaction could occur according to a terminal-joining mechanism and could generate canonical 3',5' phosphodiester bonds, exponential growth would be obtained of the generated oligomers. This type of reaction has been reported (4) , limited to homogeneous polyA sequences and leading to the production of polyA dimers and tetramers. What is still missing are: 4) mechanisms that provide the proof of principle for the generation of sequence complexity. We will show evidence for two mechanisms providing this proof of principle for simple complementary sequences. Namely: abiotic sequence complementary-driven terminal ligation and sequence-complementary terminal growth. In conclusion: all the steps leading to the generation of RNA in abiotic conditions are satisfied. (1) R Saladino, C Crestini, F

  11. Cell wall remodeling under abiotic stress

    PubMed Central

    Tenhaken, Raimund

    2015-01-01

    Plants exposed to abiotic stress respond to unfavorable conditions on multiple levels. One challenge under drought stress is to reduce shoot growth while maintaining root growth, a process requiring differential cell wall synthesis and remodeling. Key players in this process are the formation of reactive oxygen species (ROS) and peroxidases, which initially cross-link phenolic compounds and glycoproteins of the cell walls causing stiffening. The function of ROS shifts after having converted all the peroxidase substrates in the cell wall. If ROS-levels remain high during prolonged stress, OH°-radicals are formed which lead to polymer cleavage. In concert with xyloglucan modifying enzymes and expansins, the resulting cell wall loosening allows further growth of stressed organs. PMID:25709610

  12. Abiotic formation of oligonucleotides on basalt surfaces

    NASA Astrophysics Data System (ADS)

    Otroshchenko, V. A.; Vasilyeva, N. V.; Kopilov, A. M.

    1985-06-01

    The complication and further evolution of abiotic syntheses products occurred under environmental influences at the prebiological stage. From this point of view, the influence of some types of irradiation on the organic molecules adsorbed on the surfaces of volcanic rocks, appeared to be of great importance. In this connection, the effect of gamma rays on the AMP molecules adsorbed on mineral surfaces such as cinders and ashes has been studied. It has been shown that they can polymerize with the formation of oligonucleotides. The treatment of oligomers obtained by venom phosphodiesterase has shown that a polymeric product has mainly 3' 5' and 2' 5' bonds between nucleotides. The results obtained have been discussed from the evolutionary aspect.

  13. ABIOTIC IN SITU TECHNOLOGIES FOR GROUNDWATER REMEDIATION CONFERENCE: PROCEEDINGS

    EPA Science Inventory

    The USEPA conference on Abiotic In Situ Technologies for Groundwater Remediation was held in Dallas, TX, 8/31-9/2/99. The goal of the meeting was to disseminate current information on abiotic in situ groundwater treatment echnologies. Although much information is being provided a...

  14. The Stable Isotope Fractionation of Abiotic Reactions: A Benchmark in the Detection of Life

    NASA Technical Reports Server (NTRS)

    Summers, David P.

    2003-01-01

    mil to as low as -60 % (potentially comparable to that which accompanies the biosynthesis of organic matter). We need to understand what kind of fractionations are observed with reactions under the non-reducing or mildly reducing conditions now thought to be present on the early Earth. While nitrogen is receiving increased attention as a tool for these kinds of analyses, almost nothing is known about the isotope fractionation that one would expect for abiotic sources of fixed/reduced nitrogen. This project will measure the fixation from a series of abiotic reactions that may have been present on the early Earth (and other terrestrial planets) and produced organic material that could have ended up in the rock record. The work will look at a number of reactions, under a non- reducing, or mildly reducing, atmosphere, covering sources of prebiotic organic C & N from shock heating, to photochemistry, to hydrothermal reactions. Some reactions that we plan to study are; Shock heating of a non-reducing atmosphere to produce CO and NO (in collaboration with Chris McKay), formation of formaldehyde (and related compounds) from COY the formation of ammonia from nitrogen oxides (ultimately from NO) by ferrous iron reduction, and the hydrothermal synthesis of compounds including the hydrocarboxylation/hydrocarbonylation reaction (in collaboration with George Cody), reactions of oxalate to form hydrocarbons and other oxygenated compounds and the formation of lipids from oxalic/formic acid (in collaboration with Tom McCollom), and reactions of carbon monoxide & carbon dioxide with N2, ammonia or nitritehitrate to form hydrogen cyanide, nitriles, ammonia/amines and nitrous

  15. Improved abiotic stress tolerance of bermudagrass by exogenous small molecules.

    PubMed

    Chan, Zhulong; Shi, Haitao

    2015-01-01

    As a widely used warm-season turfgrass in landscapes and golf courses, bermudagrass encounters multiple abiotic stresses during the growth and development. Physiology analysis indicated that abiotic stresses induced the accumulation of ROS and decline of photosynthesis, resulting in increased cell damage and inhibited growth. Proteomic and metabolomic approaches showed that antioxidant enzymes and osmoprotectant contents (sugar, sucrose, dehydrin, proline) were extensively changed under abiotic stress conditions. Exogenous application of small molecules, such as ABA, NO, CaCl2, H2S, polyamine and melatonin, could effectively alleviate damages caused by multiple abiotic stresses, including drought, salt, heat and cold. Based on high through-put RNA seq analysis, genes involved in ROS, transcription factors, hormones, and carbohydrate metabolisms were largely enriched. The data indicated that small molecules induced the accumulation of osmoprotectants and antioxidants, kept cell membrane integrity, increased photosynthesis and kept ion homeostasis, which protected bermudagrass from damages caused by abiotic stresses.

  16. Abiotic stresses induce different localizations of anthocyanins in Arabidopsis

    PubMed Central

    Kovinich, Nik; Kayanja, Gilbert; Chanoca, Alexandra; Otegui, Marisa S; Grotewold, Erich

    2015-01-01

    Anthocyanins are induced in plants in response to abiotic stresses such as drought, high salinity, excess light, and cold, where they often correlate with enhanced stress tolerance. Numerous roles have been proposed for anthocyanins induced during abiotic stresses including functioning as ROS scavengers, photoprotectants, and stress signals. We have recently found different profiles of anthocyanins in Arabidopsis (Arabidopsis thaliana) plants exposed to different abiotic stresses, suggesting that not all anthocyanins have the same function. Here, we discuss these findings in the context of other studies and show that anthocyanins induced in Arabidopsis in response to various abiotic stresses have different localizations at the organ and tissue levels. These studies provide a basis to clarify the role of particular anthocyanin species during abiotic stress. PMID:26179363

  17. Uranium Reduction by Clostridia

    SciTech Connect

    Francis, A.J.; Dodge, Cleveland J.; Gillow, Jeffrey B.

    2006-04-05

    The FRC groundwater and sediment contain significant concentrations of U and Tc and are dominated by low pH, and high nitrate and Al concentrations where dissimilatory metal reducing bacterial activity may be limited. The presence of Clostridia in Area 3 at the FRC site has been confirmed and their ability to reduce uranium under site conditions will be determined. Although the phenomenon of uranium reduction by Clostridia has been firmly established, the molecular mechanisms underlying such a reaction are not very clear. The authors are exploring the hypothesis that U(VI) reduction occurs through hydrogenases and other enzymes (Matin and Francis). Fundamental knowledge of metal reduction using Clostridia will allow us to exploit naturally occurring processes to attenuate radionuclide and metal contaminants in situ in the subsurface. The outline for this report are as follows: (1) Growth of Clostridium sp. under normal culture conditions; (2) Fate of metals and radionuclides in the presence of Clostridia; (3) Bioreduction of uranium associated with nitrate, citrate, and lepidocrocite; and (4) Utilization of Clostridium sp. for immobilization of uranium at the FRC Area 3 site.

  18. Interactions between Silicon Oxide Nanoparticles (SONPs) and U(VI) Contaminations: Effects of pH, Temperature and Natural Organic Matters

    PubMed Central

    Wu, Hanyu; Li, Ping; Pan, Duoqiang; Yin, Zhuoxin; Fan, Qiaohui; Wu, Wangsuo

    2016-01-01

    The interactions between contaminations of U(VI) and silicon oxide nanoparticles (SONPs), both of which have been widely used in modern industry and induced serious environmental challenge due to their high mobility, bioavailability, and toxicity, were studied under different environmental conditions such as pH, temperature, and natural organic matters (NOMs) by using both batch and spectroscopic approaches. The results showed that the accumulation process, i.e., sorption, of U(VI) on SONPs was strongly dependent on pH and ionic strength, demonstrating that possible outer- and/or inner-sphere complexes were controlling the sorption process of U(VI) on SONPs in the observed pH range. Humic acid (HA), one dominated component of NOMs, bounded SONPs can enhance U(VI) sorption below pH~4.5, whereas restrain at high pH range. The reversible sorption of U(VI) on SONPs possibly indicated that the outer-sphere complexes were prevalent at pH 5. However, an irreversible interaction of U(VI) was observed in the presence of HA (Fig 1). It was mainly due to the ternary SONPs-HA-U(VI) complexes (Type A Complexes). After SONPs adsorbed U(VI), the particle size in suspension was apparently increased from ~240 nm to ~350 nm. These results showed that toxicity of both SONPs and U(VI) will decrease to some extent after the interaction in the environment. These findings are key for providing useful information on the possible mutual interactions among different contaminants in the environment. PMID:26930197

  19. Interactions between Silicon Oxide Nanoparticles (SONPs) and U(VI) Contaminations: Effects of pH, Temperature and Natural Organic Matters.

    PubMed

    Wu, Hanyu; Li, Ping; Pan, Duoqiang; Yin, Zhuoxin; Fan, Qiaohui; Wu, Wangsuo

    2016-01-01

    The interactions between contaminations of U(VI) and silicon oxide nanoparticles (SONPs), both of which have been widely used in modern industry and induced serious environmental challenge due to their high mobility, bioavailability, and toxicity, were studied under different environmental conditions such as pH, temperature, and natural organic matters (NOMs) by using both batch and spectroscopic approaches. The results showed that the accumulation process, i.e., sorption, of U(VI) on SONPs was strongly dependent on pH and ionic strength, demonstrating that possible outer- and/or inner-sphere complexes were controlling the sorption process of U(VI) on SONPs in the observed pH range. Humic acid (HA), one dominated component of NOMs, bounded SONPs can enhance U(VI) sorption below pH~4.5, whereas restrain at high pH range. The reversible sorption of U(VI) on SONPs possibly indicated that the outer-sphere complexes were prevalent at pH 5. However, an irreversible interaction of U(VI) was observed in the presence of HA (Fig 1). It was mainly due to the ternary SONPs-HA-U(VI) complexes (Type A Complexes). After SONPs adsorbed U(VI), the particle size in suspension was apparently increased from ~240 nm to ~350 nm. These results showed that toxicity of both SONPs and U(VI) will decrease to some extent after the interaction in the environment. These findings are key for providing useful information on the possible mutual interactions among different contaminants in the environment.

  20. Simultaneous reduction of arsenic(V) and uranium(VI) by mackinawite: role of uranyl arsenate precipitate formation.

    PubMed

    Troyer, Lyndsay D; Tang, Yuanzhi; Borch, Thomas

    2014-12-16

    Uranium (U) and arsenic (As) often occur together naturally and, as a result, can be co-contaminants at sites of uranium mining and processing, yet few studies have examined the simultaneous redox dynamics of U and As. This study examines the influence of arsenate (As(V)) on the reduction of uranyl (U(VI)) by the redox-active mineral mackinawite (FeS). As(V) was added to systems containing 47 or 470 μM U(VI) at concentrations ranging from 0 to 640 μM. In the absence of As(V), U was completely removed from solution and fully reduced to nano-uraninite (nano-UO2). While the addition of As(V) did not reduce U uptake, at As(V) concentrations above 320 μM, the reduction of U(VI) was limited due to the formation of a trögerite-like uranyl arsenate precipitate. The presence of U also significantly inhibited As(V) reduction. While less U(VI) reduction to nano-UO2 may take place in systems with high As(V) concentrations, formation of trögerite-like mineral phases may be an acceptable reclamation end point due to their high stability under oxic conditions.

  1. Incorporation of Np(V) and U(VI) in Carbonate and Sulfate Minerals Crystallized from Aqueous Solution

    SciTech Connect

    Balboni, Enrica; Morrison, Jessica M.; Wang, Zheming; Engelhard, Mark H.; Burns, Peter C.

    2015-02-15

    The neptunyl Np(V)O2 + and uranyl U(VI)O2 2+ ions are soluble in groundwater, although their interaction with minerals in the subsurface may impact their mobility. One mechanism for the immobilization of actinyl ions in the subsurface is coprecipitation in low-temperature minerals that form naturally, or that are induced to form as part of a remediation strategy. Important differences in the crystal-chemical behavior of the Np(V) neptunyl and U(VI) uranyl ions suggest their behavior towards incorporation into growing crystals may differ significantly. Using a selection of low temperature minerals synthesized in aqueous systems under ambient conditions, this study examines the factors that impact the structural incorporation of the Np(V) neptunyl and U(VI) uranyl ions in carbonate and sulfate minerals.

  2. Reduction of Hexavalent Uranium from Organic Complexes by Sulfate- and Iron-Reducing Bacteria

    PubMed Central

    Ganesh, R.; Robinson, K. G.; Reed, G. D.; Sayler, G. S.

    1997-01-01

    The influence of organic-hexavalent-uranium [U(VI)] complexation on U(VI) reduction by a sulfate-reducing bacterium (Desulfovibrio desulfuricans) and an iron-reducing bacterium (Shewanella alga) was evaluated. Four aliphatic ligands (acetate, malonate, oxalate, and citrate) and an aromatic ligand (tiron [4,5-dihydroxy-1,3-benzene disulfonic acid]) were used to study complexed-uranium bioavailability. The trends in uranium reduction varied with the nature and the amount of U(VI)-organic complex formed and the type of bacteria present. D. desulfuricans rapidly reduced uranium from a monodentate aliphatic (acetate) complex. However, reduction from multidentate aliphatic complexes (malonate, oxalate, and citrate) was slower. A decrease in the amount of organic-U(VI) complex in solution significantly increased the rate of reduction. S. alga reduced uranium more rapidly from multidentate aliphatic complexes than from monodentate aliphatic complexes. The rate of reduction decreased with a decrease in the amount of multidentate complexes present. Uranium from an aromatic (tiron) complex was readily available for reduction by D. desulfuricans, while an insignificant level of U(VI) from the tiron complex was reduced by S. alga. These results indicate that selection of bacteria for rapid uranium reduction will depend on the organic composition of waste streams. PMID:16535729

  3. Coupled Biogeochemical Processes Governing the Stability of Bacteriogenic Uraninite and Release of U(VI) in Heterogeneous Media: Molecular to Meter Scales

    SciTech Connect

    Bargar, John R.

    2006-11-15

    In-situ reductive biotransformation of subsurface U(VI) to U(IV) (as ?UO2?) has been proposed as a bioremediation method to immobilize uranium at contaminated DOE sites. The chemical stability of bacteriogenic ?UO2? is the seminal issue governing its success as an in-situ waste form in the subsurface. The structure and properties of chemically synthesized UO2+x have been investigated in great detail. It has been found to exhibit complex structural disorder, with nonstoichiometry being common, hence the designation ?UO2+x?, where 0 < x < 0.25. Little is known about the structures and properties of the important bacteriogenic analogs, which are believed to occur as nanoparticles in the environment. Chemically synthesized UO2+x exhibits an open fluorite structure and is known to accommodate significant doping of divalent cations. The extent to which bacteriogenic UO2+x incorporates common ground water cations (e.g., Ca2+) has not been investigated, and little is known about nonstoichiometry and structure defects in the bacteriogenic material. Particle size, nonstoichiometry, and doping may significantly alter the reactivity, and hence stability, of bacteriogenic UO2+x in the subsurface. The presence of associated sulfide minerals, and solid phase oxidants such as bacteriogenic Mn oxides may also affect the longevity of bacteriogenic UO2 in the subsurface.

  4. In vivo chelation of Am(III), Pu(IV), Np(V), and U(VI) in mice by TREN-(Me-3,2-HOPO)

    SciTech Connect

    Durbin, P.W.; Kullgren, B.; Xu, J.; Raymond, K.N.

    1993-08-01

    Octadentate 3,4,3-LI(1,2-HOPO), composed of the acidic hydroxypyridine isomer, 1,2-HOPO, is the most effective ligand yet prepared for in vivo chelation of Pu(IV) and Am(III), but it is difficult to prepare and acutely toxic. Hexadentate TREN-(Me-3,2-HOPO), composed of the less acidic Me-3,2-HOPO isomer, can be produced in relatively large quantities. TREN-(Me-3,2-HOPO) (30 {mu}mol.kg{sup {minus}1} injected intraperitoneally in mice 3 min to 1 h after intravenous injection of an actinide) removed significant body Pu(IV), Am(III), Np(V), or U(VI) (compared with controls), and those actinide reductions were significantly greater than were obtained with CaNa{sub 3}-DTPA. TREN-(Me-3,2-HOPO) was almost as effective for reducing body PU(IV) as 3,4,3-LI(1,2-HOPO). TREN-(Me-3,2-HOPO) is of low acute toxicity in mice and its clinical potential, as a practical compromise between the effectiveness of 3,4,3-LI(1,2-HOPO) and the safety of CaNa{sub 3}-DTPA, merits further investigation.

  5. Radiative transfer modelling for the NOMAD-UVIS instrument on the ExoMars Trace Gas Orbiter mission

    NASA Astrophysics Data System (ADS)

    Dawson, D. G.; Patel, M. R.; Lewis, S. R.; Mason, J. P.; Irwin, P. G. J.

    2013-09-01

    The NOMAD (Nadir and Occultation for MArs Discovery) instrument is a 3-channel (2 IR, 1 UV/Vis) spectrometer due to fly on the 2016 ExoMars Trace Gas Orbiter mission. A radiative transfer model for Mars has been developed providing synthetic spectra to simulate observations of the UVIS channel in both solar occultation and nadir viewing geometries. This will allow for the characterization and mitigation of the influence of dust on retrievals of ozone abundance.

  6. Enhanced U(VI) release from autunite mineral by aerobic Arthrobacter sp. in the presence of aqueous bicarbonate

    SciTech Connect

    Katsenovich, Yelena P.; Carvajal, Denny A.; Wellman, Dawn M.; Lagos, Leonel E.

    2012-05-01

    The bacterial effect on U(VI) release from the autunite mineral (Ca[(UO2)(PO4)]2•3H2O) was investigated to provide a more comprehensive understanding of the important microbiological processes affecting autunite stability within subsurface bicarbonate-bearing environments. Experiments were performed in a culture of the Arthrobacter oxydans G975 strain, herein referred to as G975, a soil bacterium previously isolated from Hanford Site soil. 91 mg of autunite powder and 50 mL of phosphorous-limiting sterile media were amended with bicarbonate (ranging between 1 and 10 mM) in glass reactor bottles and inoculated with the G975 strain after the dissolution of autunite was at steady state. SEM observations indicated that G975 formed a biofilm on the autunite surface and penetrated the mineral cleavages. The mineral surface colonization by bacteria tended to increase concomitantly with bicarbonate concentrations. Additionally, a sterile culture-ware with inserts was used in non-contact dissolution experiments where autunite and bacteria cells were kept separately. The data suggest that G975 bacteria is able to enhance the release of U(VI) from autunite without direct contact with the mineral. In the presence of bicarbonate, the damage to bacterial cells caused by U(VI) toxicity was reduced, yielding similar values for total organic carbon (TOC) degradation and cell density compared to U(VI)-free controls. The presence of active bacterial cells greatly enhanced the release of U(VI) from autunite in bicarbonate-amended media.

  7. Enhanced U(VI) release from autunite mineral by aerobic Arthrobacter sp. in the presence of aqueous bicarbonate

    SciTech Connect

    Katsenovich, Yelena; Carvajal, Denny A.; Wellman, Dawn M.; Lagos, Leonel

    2012-04-20

    The bacterial effect on U(VI) leaching from the autunite mineral (Ca[(UO{sub 2})(PO{sub 4})]{sub 2} {center_dot} 3H{sub 2}O) was investigated to provide a more comprehensive understanding into important microbiological processes affecting autunite stability within subsurface bicarbonate-bearing environments. Experiments were performed in a culture of G975 Arthrobacter oxydans strain, herein referred to as G975, a soil bacterium previously isolated from Hanford Site soil. 91 mg of autunite powder and 50 mL of phosphorus-limiting sterile media were amended with bicarbonate ranging between 1-10 mM in glass reactor bottles and inoculated with G975 strain after the dissolution of autunite was at steady state. SEM observations indicated G975 formed a biofilm on the autunite surface and penetrated the mineral cleavages. The mineral surface colonization by bacteria tended to increase concomitantly with bicarbonate concentrations. Additionally, a sterile cultureware with inserts was used in non-contact bioleaching experiments where autunite and bacteria cells were kept separately. The data suggest the G975 bacteria is able to enhance U(VI) leaching from autunite without the direct contact with the mineral. In the presence of bicarbonate, the damage to bacterial cells caused by U(VI) toxicity was reduced, yielding similar values for total organic carbon (TOC) degradation and cell density compared to U(VI)-free controls. The presence of active bacterial cells greatly enhanced the U(VI) bioleaching from autunite in bicarbonate-amended media.

  8. Coupled biotic-abiotic oxidation of organic matter by biogenic MnO_{2}

    NASA Astrophysics Data System (ADS)

    Gonzalez, Julia; Peña, Jasquelin

    2016-04-01

    Some reactive soil minerals are strongly implicated in stabilising organic matter. However, others can play an active role in the oxidation of organic molecules. In natural systems, layer-type manganese oxide minerals (MnO2) typically occur as biomineral assemblages consisting of mineral particles and microbial biomass. Both the mineral and biological fractions of the assemblage can be powerful oxidants of organic C. The biological compartment relies on a set of enzymes to drive oxidative transformations of reduced C-substrates, whereas MnO2 minerals are strong, less specific abiotic oxidants that are assumed to rely on interfacial interactions between C-substrates and the mineral surface. This project aims to understand the coupling between microbial C mineralization and abiotic C oxidation mediated by MnO2 in bacterial-MnO2 assemblages. Specifically, under conditions of high C turnover, microbial respiration can significantly alter local pH, dissolved oxygen and pool of available reductants, which may modify rates and mechanism of C oxidation by biotic and abiotic components. We first investigated changes in the solution chemistry of Pseudomonas putida suspensions exposed to varying concentrations of glucose, chosen to represent readily bioavailable substrates in soils. Glucose concentrations tested ranged between 0 and 5.5mM and changes in pH, dissolved oxygen and dissolved organic and inorganic carbon were tracked over 48h. We then combined literature review and wet-chemical experiments to compile the pH dependence of rates of organic substrate oxidation by MnO2, including glucose. Our results demonstrate a strong pH dependence for these abiotic reactions. In assemblages of P. putida - MnO2, kinetic limitations for abiotic C oxidation by MnO2 are overcome by changes in biogeochemical conditions that result from bacterial C metabolism. When extrapolated to a soil solution confronted to an input of fresh dissolved organic matter, bacterial C metabolism of the

  9. The abiotic degradation of soil organic matter to oxalic acid

    NASA Astrophysics Data System (ADS)

    Studenroth, Sabine; Huber, Stefan; Schöler, H. F.

    2010-05-01

    The abiotic degradation of soil organic matter to volatile organic compounds was studied intensely over the last years (Keppler et al., 2000; Huber et al., 2009). It was shown that soil organic matter is oxidised due to the presence of iron (III), hydrogen peroxide and chloride and thereby produces diverse alkyl halides, which are emitted into the atmosphere. The formation of polar halogenated compounds like chlorinated acetic acids which are relevant toxic environmental substances was also found in soils and sediments (Kilian et al., 2002). The investigation of the formation of other polar halogenated and non-halogenated compounds like diverse mono- and dicarboxylic acids is going to attain more and more importance. Due to its high acidity oxalic acid might have impacts on the environment e.g., nutrient leaching, plant diseases and negative influence on microbial growth. In this study, the abiotic formation of oxalic acid in soil is examined. For a better understanding of natural degradation processes mechanistic studies were conducted using the model compound catechol as representative for structural elements of the humic substances and its reaction with iron (III) and hydrogen peroxide. Iron is one of the most abundant elements on earth and hydrogen peroxide is produced by bacteria or through incomplete reduction of oxygen. To find suitable parameters for an optimal reaction and a qualitative and quantitative analysis method the following reaction parameters are varied: concentration of iron (III) and hydrogen peroxide, time dependence, pH-value and influence of chloride. Analysis of oxalic acid was performed employing an ion chromatograph equipped with a conductivity detector. The time dependent reaction shows a relatively fast formation of oxalic acid, the optimum yield is achieved after 60 minutes. Compared to the concentration of catechol an excess of hydrogen peroxide as well as a low concentration of iron (III) are required. In absence of chloride the

  10. The mechanism of uranium transformation from U(VI) into nano-uramphite by two indigenous Bacillus thuringiensis strains.

    PubMed

    Pan, Xiaohong; Chen, Zhi; Chen, Fanbing; Cheng, Yangjian; Lin, Zhang; Guan, Xiong

    2015-10-30

    The mechanism of uranium transformation from U(VI) into nano-uramphite by two indigenous Bacillus thuringiensis strains was investigated in the present work. Our data showed that the bacteria isolated from uranium mine possessed highly accumulation ability to U(VI), and the maximum accumulation capacity was around 400 mg U/g biomass (dry weight). X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FT-IR) analyzes indicated that the U(VI) was adsorbed on the bacterial surface firstly through coordinating with phosphate, CH2 and amide groups, and then needle-like amorphous uranium compounds were formed. With the extension of time, the extracellular crystalline substances were disappeared, but some particles were appeared in the intracellular region, and these particles were characterized as tetragonal-uramphite. Moreover, the disrupted experiment indicated that the cell-free extracts had better uranium-immobilization ability than cell debris. Our findings provided the understanding of the uranium transformation process from amorphous uranium to crystalline uramphite, which would be useful in the regulation of uranium immobilization process.

  11. Complexation of U(VI) with 1-Hydroxyethane-1,1-diphosphonicAcid (HEDPA) in Acidic to Basic Solutions

    SciTech Connect

    Reed, W A; Rao, L; Zanonato, P; Garnov, A; Powell, B A; Nash, K L

    2007-01-24

    Complexation of U(VI) with 1-hydroxyethane-1,1-diphosphonic acid (HEDPA) in acidic to basic solutions has been studied with multiple techniques. A number of 1:1 (UO{sub 2}H{sub 3}L), 1:2 (UO{sub 2}H{sub j}L{sub 2} where j = 4, 3, 2, 1, 0 and -1) and 2:2 ((UO{sub 2}){sub 2}H{sub j}L{sub 2} where j = 1, 0 and -1) complexes form, but the 1:2 complexes are the major species in a wide pH range. Thermodynamic parameters (formation constants, enthalpy and entropy of complexation) were determined by potentiometry and calorimetry. Data indicate that the complexation of U(VI) with HEDPA is exothermic, favored by the enthalpy of complexation. This is in contrast to the complexation of U(VI) with dicarboxylic acids in which the enthalpy term usually is unfavorable. Results from electrospray ionization mass spectrometry (ESI-MS) and {sup 31}P NMR have confirmed the presence of 1:1, 1:2 and 2:2 U(VI)-HEDPA complexes.

  12. Recent Molecular Advances on Downstream Plant Responses to Abiotic Stress

    PubMed Central

    dos Reis, Sávio Pinho; Lima, Aline Medeiros; de Souza, Cláudia Regina Batista

    2012-01-01

    Abiotic stresses such as extremes of temperature and pH, high salinity and drought, comprise some of the major factors causing extensive losses to crop production worldwide. Understanding how plants respond and adapt at cellular and molecular levels to continuous environmental changes is a pre-requisite for the generation of resistant or tolerant plants to abiotic stresses. In this review we aimed to present the recent advances on mechanisms of downstream plant responses to abiotic stresses and the use of stress-related genes in the development of genetically engineered crops. PMID:22942725

  13. Polyamines and abiotic stress tolerance in plants

    PubMed Central

    Gill, Sarvajeet Singh

    2010-01-01

    Environmental stresses including climate change, especially global warming, are severely affecting plant growth and productivity worldwide. It has been estimated that two-thirds of the yield potential of major crops are routinely lost due to the unfavorable environmental factors. On the other hand, the world population is estimated to reach about 10 billion by 2050, which will witness serious food shortages. Therefore, crops with enhanced vigour and high tolerance to various environmental factors should be developed to feed the increasing world population. Maintaining crop yields under adverse environmental stresses is probably the major challenge facing modern agriculture where polyamines can play important role. Polyamines (PAs)(putrescine, spermidine and spermine) are group of phytohormone-like aliphatic amine natural compounds with aliphatic nitrogen structure and present in almost all living organisms including plants. Evidences showed that polyamines are involved in many physiological processes, such as cell growth and development and respond to stress tolerance to various environmental factors. In many cases the relationship of plant stress tolerance was noted with the production of conjugated and bound polyamines as well as stimulation of polyamine oxidation. Therefore, genetic manipulation of crop plants with genes encoding enzymes of polyamine biosynthetic pathways may provide better stress tolerance to crop plants. Furthermore, the exogenous application of PAs is also another option for increasing the stress tolerance potential in plants. Here, we have described the synthesis and role of various polyamines in abiotic stress tolerance in plants. PMID:20592804

  14. Abiotic stress and the plant circadian clock

    PubMed Central

    Sanchez, Alfredo; Shin, Jieun

    2011-01-01

    In this review, we focus on the interaction between the circadian clock of higher plants to that of metabolic and physiological processes that coordinate growth and performance under a predictable, albeit changing environment. In this, the phytochrome and cryptochrome photoreceptors have shown to be important, but not essential for oscillator control under diurnal cycles of light and dark. From this foundation, we will examine how emerging findings have firmly linked the circadian clock, as a central mediator in the coordination of metabolism, to maintain homeostasis. This occurs by oscillator synchronization of global transcription, which leads to a dynamic control of a host of physiological processes. These include the determination of the levels of primary and secondary metabolites, and the anticipation of future environmental stresses, such as mid-day drought and midnight coldness. Interestingly, metabolic and stress cues themselves appear to feedback on oscillator function. In such a way, the circadian clock of plants and abiotic-stress tolerance appear to be firmly interconnected processes. PMID:21325898

  15. Experimental Study of U(VI) Release Kinetics from Aquifer Sediments from a Former Uranium Mill Tailings Site (Rifle, Colorado, USA)

    NASA Astrophysics Data System (ADS)

    Hyun, S.; Campbell, K. M.; Hayes, K. F.; Davis, J. A.

    2007-12-01

    Uranium(VI) release kinetics from aquifer sediments from a former uranium mill tailings site in Rifle, Colorado was studied to understand uranium distribution within the sediments. The sediments were sampled at depths of 3.5-3.8 m in December 2004. The samples were air-dried, sieved, and the <2 mm fraction was collected and used in this study. Total uranium content in the sediments, determined by gamma-radiometry, was 4.1 μg/g sediment. The labile fraction of U(VI) in the sediments was determined using carbonate/bicarbonate extractions, which should cause complete desorption of U(VI) in the absence of mass transfer limitations. Carbonate/bicarbonate extraction of the sediments showed very slow release kinetics, with only 12 % of the labile U(VI) in the sediments being released during the first 96 hours of extraction. This is much less than found in a previous study at a different mill tailings site (Naturita, Colorado), in which more than 80 % of labile U(VI) was released during the same period of extraction. Up to two months of carbonate/bicarbonate extraction released 1 μg U(VI) per gram of Rifle sediment, which is 25 % of the total U in the sediment. Extraction with an artificial groundwater prepared to simulate the field groundwater chemistry showed 0.26 μg U/g sediment was released during the initial 94 hours of extraction, with a gradual increase of released U(VI) with time, while other major and minor elements (except Si) rapidly reached steady-state concentrations during the first few hours of reaction. Two hypotheses are under consideration to explain the slow U(VI) release kinetics: 1) colloidal clay fraction particles cementing larger grains of the sediments are creating nanoscale interparticle pores that act as a diffusion barrier to U(VI) desorption, and 2) a U(IV) solid phase exists whose oxidation and dissolution control the U(VI) release rate. To test the hypotheses, oxidation and extraction of the sediments have been conducted using oxidants

  16. WFC3/UVIS External CTE Monitor: 2016 Updates on Coefficients and Analysis Pipeline

    NASA Astrophysics Data System (ADS)

    Gosmeyer, C. M.; Baggett, S.

    2017-03-01

    The evolution of the charge transfer efficiency (CTE) of Hubble’s WFC3/UVIS detector has been monitored since 2009, using observations of star clusters NGC 104 and NGC 6791. We present here results from an updated analysis pipeline with an improved cross-identification of sources and a new capability to study CTE loss mitigation by use of flash levels 6 - 116 e-/pix. We measure flux loss due to CTE degradation as a function of source brightness, observation date, background level, and vertical distance from the readout amplifier with a 2nd degree polynomial, whose coefficients are provided to allow observers to estimate flux corrections for their point-source photometry. Current flux losses for images with the recommended minimum 12 e-/pix background are 5 - 15%, depending on source brightness. These losses are further reduced via use of the CTE-corrected images now available from the Mikulski Archive for Space Telescopes. Within its overall growth, there appears to be a flattening in the CTE degradation rate that may be correlated with the Solar cycle maximum. The data reported here span from October 2009 to August 2016 and were calibrated with calwf3 v3.3.

  17. Solution thermodynamics and structures of biscatecholamide complexes of Fe(III) and U(VI)

    SciTech Connect

    Gohdes, J.W.; Reilly, S.D.; Pecha, A.W.; Neu, M.P.

    1996-12-31

    We have studied the solution and solid-state complexes of a bis-catecholamide ligand, 2-LICAMS, with Fe(III) and U(VI). The first protonation constant was found to be pK{sub al} = 14.2(3) using {sup 1}H NMR titrations. Subsequent protonation constants were determined by potentiometric titration in 0.1 M TMAOTf at 25{degrees}C to be pK{sub a2} = 11.2(1), pK{sub 13} =6.5(1), pK{sub a4}= 5.9(1). Ligand-metal formation constants, {Beta}{sub mlh}, were found to be log {beta}{sub 110} = 31.4(2), log {beta}{sub 111} = 31.7(2), log {beta}{sub 112} = 34.9(2), and log {beta}11.1 = 18.0(1) for uranium(VI). To discriminate between monomeric or dimeric species models which both fit the potentiometric titration data, we isolated the hydroxide species and determined its single-crystal X-ray structure and EXAFS. The structure consists of a dimeric, bis-hydroxide bridged iron core which is spanned by two ligands. This study of solution equilibria indicates a higher stability for iron complexes of 2-LICAMS relative to uranyl complexes.

  18. U(VI) oxygen polyhedra as pillars for building frameworks from uranophane-type layers

    NASA Astrophysics Data System (ADS)

    Jouffret, Laurent; Rivenet, Murielle; Abraham, Francis

    2010-03-01

    Solid state chemistry of uranyl-containing inorganic compounds has been enriched recently by a multiplication of papers dealing with two and three dimensional inorganic materials. This paper is a review of the compounds structurally based on uranophane-type layers in uranyl silicates, phosphates, arsenates and vanadates systems. Depending on the nature and size of the metallic or organic cation used as charge compensators or structure directing agents, various geometric isomers are obtained and described herein. The cations occupy either the interlayer space between uranophane-type sheets or different types of cavities created by a three dimensional inorganic framework built from uranophane layers pillared by U(VI) and oxygen polyhedra. The number of UO6 or UO7 pillars by [(UO2)(XO4)] structural block units of the layer give a series of compounds with the following general formula A2y/n{(UO2)1-y[(UO2)(XO4)]2} with y=0,1/3,1/2 and 1.

  19. Interaction of U(VI) with Schizophyllum commune studied by microscopic and spectroscopic methods.

    PubMed

    Günther, Alix; Raff, Johannes; Merroun, Mohamed Larbi; Rossberg, André; Kothe, Erika; Bernhard, Gert

    2014-08-01

    Biosorption of actinides like uranium by fungal cells can play an important role in the mobilization or immobilization of these elements in nature. Sorption experiments of U(VI) with Schizophyllum commune at different initial uranium concentrations and varying metal speciation showed high uranium sorption capacities in the pH range of 4–7. A combination of high angle annular dark-field and scanning transmission electron microscopy analysis (HAADF-STEM) showed that living mycelium cells accumulate uranium at the cell wall and intracellular. For the first time the fluorescence properties of uranium accumulates were investigated by means of time-resolved laser-induced fluorescence spectroscopy (TRLFS) beside the determination of corresponding structural parameters using X-ray absorption fine structure spectroscopy (EXAFS). While the oxidation state of uranium remained unchanged during sorption, uranium speciation changed significantly. Extra and intracellular phosphate groups are mainly responsible for uranium binding. TRLFS spectra clearly show differences between the emission properties of dissolved species in the initial mineral medium and of uranium species on fungi. The latter were proved to be organic and inorganic uranyl phosphates formed depending on the uranyl initial concentration and in some cases on pH.

  20. Investigation of interaction between U(VI) and carbonaceous nanofibers by batch experiments and modeling study.

    PubMed

    Zhang, Rui; Chen, Changlun; Li, Jie; Wang, Xiangke

    2015-12-15

    Carbonaceous nanofibers (CNFs) were synthesized using tellurium nanowires as a template and using glucose as carbon source by the hydrothermal carbonization method. The sorption capacity and mechanism of U(VI) on CNFs were investigated by a combination of batch sorption experiments, the double layer model (DLM) and X-ray photoelectron spectroscopy (XPS). The sorption edges were modeled well by considering the following surface complexes: SOUO2(+), SOUO2OH, SOUO2(OH)2(-) and SOUO2(OH)3(2-) on the strong site as well as XOUO2OH and XOUO2(+) on the weak one (S and X represent surface). The sorption isotherms could be well fitted by the DLM parameters. The difference between type A (SOUO2OH and XOUO2OH) and type B (SOUO2(+) and XOUO2(+)) was observed in XPS because the former species are of low binding energy while the latter are of high one. Desorption and recycle experiments showed that CNFs had good reusability and stability in the present of common sodium salts within five rounds. When co-existing with montmorillonite, CNFs could extract the sorbed uranium onto their surface by a pseudo-second order kinetic process. As a new sort of environmental functional nanomaterials, CNFs should be paid more attention in the area of separation and wastewater remediation.

  1. Circadian regulation of abiotic stress tolerance in plants

    PubMed Central

    Grundy, Jack; Stoker, Claire; Carré, Isabelle A.

    2015-01-01

    Extremes of temperatures, drought and salinity cause widespread crop losses throughout the world and impose severe limitations on the amount of land that can be used for agricultural purposes. Hence, there is an urgent need to develop crops that perform better under such abiotic stress conditions. Here, we discuss intriguing, recent evidence that circadian clock contributes to plants’ ability to tolerate different types of environmental stress, and to acclimate to them. The clock controls expression of a large fraction of abiotic stress-responsive genes, as well as biosynthesis and signaling downstream of stress response hormones. Conversely, abiotic stress results in altered expression and differential splicing of the clock genes, leading to altered oscillations of downstream stress-response pathways. We propose a range of mechanisms by which this intimate coupling between the circadian clock and environmental stress-response pathways may contribute to plant growth and survival under abiotic stress. PMID:26379680

  2. Abiotic stress responses in plant roots: a proteomics perspective

    PubMed Central

    Ghosh, Dipanjana; Xu, Jian

    2014-01-01

    Abiotic stress conditions adversely affect plant growth, resulting in significant decline in crop productivity. To mitigate and recover from the damaging effects of such adverse environmental conditions, plants have evolved various adaptive strategies at cellular and metabolic levels. Most of these strategies involve dynamic changes in protein abundance that can be best explored through proteomics. This review summarizes comparative proteomic studies conducted with roots of various plant species subjected to different abiotic stresses especially drought, salinity, flood, and cold. The main purpose of this article is to highlight and classify the protein level changes in abiotic stress response pathways specifically in plant roots. Shared as well as stressor-specific proteome signatures and adaptive mechanism(s) are simultaneously described. Such a comprehensive account will facilitate the design of genetic engineering strategies that enable the development of broad-spectrum abiotic stress-tolerant crops. PMID:24478786

  3. Contributions of Fe Minerals to Abiotic Dechlorination

    EPA Science Inventory

    Most applications of enhanced in situ bioremediation are based on biological reductive dechlorination. Anaerobic metabolism can also produce reactive minerals that allow for in situ biogeochemical transformation of chlorinated organic contaminants such as PCE, TCE, and cis-DCE. ...

  4. Nucleotide Selectivity in Abiotic RNA Polymerization Reactions.

    PubMed

    Coari, Kristin M; Martin, Rebecca C; Jain, Kopal; McGown, Linda B

    2017-02-03

    In order to establish an RNA world on early Earth, the nucleotides must form polymers through chemical rather than biochemical reactions. The polymerization products must be long enough to perform catalytic functions, including self-replication, and to preserve genetic information. These functions depend not only on the length of the polymers, but also on their sequences. To date, studies of abiotic RNA polymerization generally have focused on routes to polymerization of a single nucleotide and lengths of the homopolymer products. Less work has been done the selectivity of the reaction toward incorporation of some nucleotides over others in nucleotide mixtures. Such information is an essential step toward understanding the chemical evolution of RNA. To address this question, in the present work RNA polymerization reactions were performed in the presence of montmorillonite clay catalyst. The nucleotides included the monophosphates of adenosine, cytosine, guanosine, uridine and inosine. Experiments included reactions of mixtures of an imidazole-activated nucleotide (ImpX) with one or more unactivated nucleotides (XMP), of two or more ImpX, and of XMP that were activated in situ in the polymerization reaction itself. The reaction products were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the lengths and nucleotide compositions of the polymerization products. The results show that the extent of polymerization, the degree of heteropolymerization vs. homopolymerization, and the composition of the polymeric products all vary among the different nucleotides and depend upon which nucleotides and how many different nucleotides are present in the mixture.

  5. Nucleotide Selectivity in Abiotic RNA Polymerization Reactions

    NASA Astrophysics Data System (ADS)

    Coari, Kristin M.; Martin, Rebecca C.; Jain, Kopal; McGown, Linda B.

    2017-02-01

    In order to establish an RNA world on early Earth, the nucleotides must form polymers through chemical rather than biochemical reactions. The polymerization products must be long enough to perform catalytic functions, including self-replication, and to preserve genetic information. These functions depend not only on the length of the polymers, but also on their sequences. To date, studies of abiotic RNA polymerization generally have focused on routes to polymerization of a single nucleotide and lengths of the homopolymer products. Less work has been done the selectivity of the reaction toward incorporation of some nucleotides over others in nucleotide mixtures. Such information is an essential step toward understanding the chemical evolution of RNA. To address this question, in the present work RNA polymerization reactions were performed in the presence of montmorillonite clay catalyst. The nucleotides included the monophosphates of adenosine, cytosine, guanosine, uridine and inosine. Experiments included reactions of mixtures of an imidazole-activated nucleotide (ImpX) with one or more unactivated nucleotides (XMP), of two or more ImpX, and of XMP that were activated in situ in the polymerization reaction itself. The reaction products were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify the lengths and nucleotide compositions of the polymerization products. The results show that the extent of polymerization, the degree of heteropolymerization vs. homopolymerization, and the composition of the polymeric products all vary among the different nucleotides and depend upon which nucleotides and how many different nucleotides are present in the mixture.

  6. Detection of Abiotic Methane in Terrestrial Continental Hydrothermal Systems: Implications for Methane on Mars

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Niles, Paul B.; Gibson, Everett K., Jr.; Romanek, Christopher S.; Zhang, Chuanlun L.; Bissada, Kadry K.

    2008-01-01

    The recent detection of methane in the Martian atmosphere and the possibility that its origin could be attributed to biological activity, have highlighted the importance of understanding the mechanisms of methane formation and its usefulness as a biomarker. Much debate has centered on the source of the methane in hydrothermal fluids, whether it is formed biologically by microorganisms, diagenetically through the decomposition of sedimentary organic matter, or inorganically via reduction of CO2 at high temperatures. Ongoing research has now shown that much of the methane present in sea-floor hydrothermal systems is probably formed through inorganic CO2 reduction processes at very high temperatures (greater than 400 C). Experimental results have indicated that methane might form inorganically at temperatures lower still, however these results remain controversial. Currently, methane in continental hydrothermal systems is thought to be formed mainly through the breakdown of sedimentary organic matter and carbon isotope equilibrium between CO2 and CH4 is thought to be rarely present if at all. Based on isotopic measurements of CO2 and CH4 in two continental hydrothermal systems, we suggest that carbon isotope equilibration exists at temperatures as low as 155 C. This would indicate that methane is forming through abiotic CO2 reduction at lower temperatures than previously thought and could bolster arguments for an abiotic origin of the methane detected in the martian atmosphere.

  7. An omics approach to understand the plant abiotic stress.

    PubMed

    Debnath, Mousumi; Pandey, Mukeshwar; Bisen, P S

    2011-11-01

    Abiotic stress can lead to changes in development, productivity, and severe stress and may even threaten survival of plants. Several environmental stresses cause drastic changes in the growth, physiology, and metabolism of plants leading to the increased accumulation of secondary metabolites. As medicinal plants are important sources of drugs, steps are taken to understand the effect of stress on the physiology, biochemistry, genomic, proteomic, and metabolic levels. The molecular responses of plants to abiotic stress are often considered as a complex process. They are mainly based on the modulation of transcriptional activity of stress-related genes. Many genes have been induced under stress conditions. The products of stress-inducible genes protecting against these stresses includes the enzymes responsible for the synthesis of various osmoprotectants. Genetic engineering of tolerance to abiotic stresses help in molecular understanding of pathways induced in response to one or more of the abiotic stresses. Systems biology and virtual experiments allow visualizing and understanding how plants work to overcome abiotic stress. This review discusses the omic approach to understand the plant response to abiotic stress with special emphasis on medicinal plant.

  8. A Spectroscopic Study of the effect of Ligand Complexation on the Reduction of Uranium(VI) by Anthraquinone-2,6-disulfonate (AH2DS)

    SciTech Connect

    Wang, Zheming; Wagnon, Ken B.; Ainsworth, Calvin C.; Liu, Chongxuan; Rosso, Kevin M.; Fredrickson, Jim K.

    2008-11-03

    In this project, the reduction rate of uranyl complexes with hydroxide, carbonate, EDTA, and Desferriferrioxamine B (DFB) by anthraquinone-2,6-disulfonate (AH2DS), a potential electron shuttle for microbial reduction of metal ions (Newman and Kolter 2000), is studied by stopped-flow kinetics techniques under anoxic atmosphere. The apparent reaction rates varied with ligand type, solution pH, and U(VI) concentration. For each ligand, a single largest kobs within the studied pH range was observed, suggesting the influence of pH-dependent speciation on the U(VI) reduction rate. The maximum reaction rate found in each case followed the order of OH- > CO32- > EDTA > DFB, consistent with the same trend of the thermodynamic stability of the uranyl complexes and ionic sizes of the ligands. Increasing the stability of uranyl complexes and ligand size decreased the maximum reduction rate. The pH-dependent rates were modeled using a second-order rate expression that was assumed to be dependent on a single U(VI) complex and AH2DS species. By quantitatively comparing the calculated and measured apparent rate constants as a function of pH, species AHDS3- was suggested as the primary reductant in all cases examined. Species UO2CO3(aq) , UO2HEDTA-, and (UO2)2(OH)22+ were suggested as the principal electron acceptors among the U(VI) species mixture in carbonate, EDTA, and hydroxyl systems, respectively.

  9. Tolerance and bioaccumulation of U(VI) by Bacillus mojavensis and its solid phase preconcentration by Bacillus mojavensis immobilized multiwalled carbon nanotube.

    PubMed

    Özdemir, Sadin; Oduncu, M Kadir; Kilinc, Ersin; Soylak, Mustafa

    2017-02-01

    In this study, uranium(VI) tolerance and bioaccumulation were investigated by using thermo -tolerant Bacillus mojavensis. The level of U(VI) was measured by UV-VIS spectrophotometry. The minimum inhibition concentration (MIC) value of U(VI) was experimented. Bacterial growth was not affected in the presence of 1.0 and 2.5 mg/L U(VI) at 36 h and the growth was partially affected in the presence of 5 mg/L U(VI) at 24 h. What was obtained from this study is that there was diversity in the various periods of the growth phases of metal bioaccumulation capacity, which was shown by B. mojavensis. The maximum bioaccumulation capacities were found to be 12.8, 22.7, and 48.2 mg/g dried bacteria, at 24th hours at concentration of 1.0, 2.5 and 5 mg/L U(VI), respectively. In addition to these, U(VI) has been preconcentrated on B. mojavensis immobilized MWCNT. Several factors such as pH, flow rate of solution, amount of biosorbent and support materials, eluent type, concentration and volume, the matrix interference effect on retention have been studied, and extraction conditions were optimized. Preconcentration factor was achieved as 60. Under the optimized conditions, the limit of detection (LOD) and quantification (LOQ) were calculated as 0.74 and 2.47 μg/L. The biosorption capacity of immobilized B. mojavensis was calculated for U(VI) as 25.8 mg/g. The results demonstrated that the immobilized biosorbent column could be reused at least 30 cycles of biosorption and desorption with the higher than 95% recovery. FT-IR and SEM analysis were performed to understand the surface properties of B. mojavensis.

  10. Novel Insights Into Microbial Uranium Reduction and Immobilization

    NASA Astrophysics Data System (ADS)

    Loeffler, F. E.; Fletcher, K.; Thomas, S.; Kemner, K. M.; Boyanov, M.; Sanford, R.

    2010-12-01

    Many ferric iron- and manganese oxide-reducing bacteria affect the oxidation state and complexation of toxic radionuclides in subsurface environments. Relevant to uranium (U) speciation are bacteria that reduce predominantly water-soluble and mobile U(VI) to U(IV), which has reduced solubility and typically forms the uraninite (UO2) mineral. Gram-negative model organisms including Shewanella spp., Geobacter spp., and more recently Anaeromyxobacter spp. use U(VI) as growth-supporting electron acceptor; however, the biomass yields are lower than predicted based on the theoretical free energy changes associated with U(VI)-to-U(IV) reduction. Recent findings demonstrated that U(VI) reduction is not limited to Gram-negative bacteria, and members of the genus Desulfitobacterium, which are commonly found in soil and subsurface environments, share the ability to reduce U(VI). Interestingly, extended X-ray absorption fine structure (EXAFS) analysis demonstrated that the U(IV) produced in cultures of five Desulfitobacterium spp. was not UO2 but rather a phase or mineral composed of mononuclear U(IV) atoms. Since the properties of the reduced product influence U(IV) fate, knowledge of the diversity of U reduction mechanisms and the stability of the end products is desirable for controlling and predicting U fate. For example, UO2 is susceptible to reoxidation by oxidants, and oxic/anoxic interface processes are controlling the stability of the precipitated material. In other words, metal reducers that thrive at the oxic/anoxic interface are likely key players affecting long-term U fate. Anaeromyxobacter spp. are facultative microaerophiles and grow with oxygen as electron acceptor at partial pressures equal to or below 0.18 atm. Thus, Anaeromyxobacter are uniquely adapted to life at the oxic-anoxic interface where they consume oxygen and take advantage of oxidized metal species including U(VI) as electron acceptors. The application of 16S rRNA gene-targeted qPCR approaches

  11. Effects of aqueous uranyl speciation on the kinetics of microbial uranium reduction

    NASA Astrophysics Data System (ADS)

    Belli, Keaton M.; DiChristina, Thomas J.; Van Cappellen, Philippe; Taillefert, Martial

    2015-05-01

    The ability to predict the success of the microbial reduction of soluble U(VI) to highly insoluble U(IV) as an in situ bioremediation strategy is complicated by the wide range of geochemical conditions at contaminated sites and the strong influence of aqueous uranyl speciation on the bioavailability and toxicity of U(VI) to metal-reducing bacteria. To determine the effects of aqueous uranyl speciation on uranium bioreduction kinetics, incubations and viability assays with Shewanella putrefaciens strain 200 were conducted over a range of pH and dissolved inorganic carbon (DIC), Ca2+, and Mg2+ concentrations. A speciation-dependent kinetic model was developed to reproduce the observed time series of total dissolved uranium concentration over the range of geochemical conditions tested. The kinetic model yielded the highest rate constant for the reduction of uranyl non-carbonate species (i.e., the 'free' hydrated uranyl ion, uranyl hydroxides, and other minor uranyl complexes), indicating that they represent the most readily reducible fraction of U(VI) despite being the least abundant uranyl species in solution. The presence of DIC, Ca2+, and Mg2+ suppressed the formation of more bioavailable uranyl non-carbonate species and resulted in slower bioreduction rates. At high concentrations of bioavailable U(VI), however, uranium toxicity to S. putrefaciens inhibited bioreduction, and viability assays confirmed that the concentration of non-carbonate uranyl species best predicts the degree of toxicity. The effect of uranium toxicity was accounted for by incorporating the free ion activity model of metal toxicity into the bioreduction rate law. Overall, these results demonstrate that, in the absence of competing terminal electron acceptors, uranium bioreduction kinetics can be predicted over a wide range of geochemical conditions based on the bioavailability and toxicity imparted on U(VI) by solution composition. These findings also imply that the concentration of uranyl non

  12. Towards a More Complete Picture: Dissimilatory Metal Reduction by Anaeromyxobacter Species

    SciTech Connect

    Loeffler, Frank E.

    2004-06-01

    We investigate the physiological requirements of available Anaeromyxobacter isolates, and assess their distribution and abundance in the environment, including DOE sites. The performers on this project include Frank Loeffler (PI), Robert Sanford (Co-PI), Qingzhong Wu (postdoc), Sara Henry (graduate student) and Cornell Gayle (undergraduate student). Year-1 efforts focused on method and tool development to address the research objectives. First, we compared different analytical assays (based on fluorescent light emission and calorimetric methods) to quantify U(VI) in cultures of Anaeromyxobacter dehalogenans strain 2CP-C. The assays were optimized to reflect specific culture conditions, and we found that a laser-excited spectrofluorescence assay provided reproducible and accurate information on the amount of U(VI) reduced in bacterial cultures. To demonstrate the ability of Anaeromyxobacter dehalogenans strain 2CP-C to reduce U(VI), washed suspensions of fumarate-grown cells were prepared. These experiments confirmed that the rapid reduction of U(VI) to U(IV) depended on the presence of live cells, and no U(VI) reduction occurred in cell-free controls. Additional experiments explored the ability of three different Anaeromyxobacter strains to grow with the mineral hematite, an insoluble form of ferric iron, as electron acceptor. All strain grew equally well with soluble ferric iron (provided as ferric citrate) but distinct differences were observed between strains when grown with hematite. All strains tested shared a 16S rRNA gene similarity of >99.5%, suggesting that closely related strains may differ in their ability to access insoluble forms of ferric iron.

  13. Evolution of the Microbial Community Structure and Iron Reduction Rate in a Column Biostimulation Experiment During the Transition From Iron to Sulfate Reduction

    NASA Astrophysics Data System (ADS)

    Jaffe, P. R.; Elbishlawi, H.; Hettich, R. L.; Kerkhof, L.; Komlos, J.; Kukkadapu, R. P.; Lipton, M. S.; Long, P. E.; McGuinness, L.; Moon, H.; Peacock, A. D.; Verberkmoes, N. C.; Williams, K. H.

    2007-12-01

    During the biostimulation of iron reducers for the purpose of concurrent biological reduction of U(VI), it has been postulated that iron reduction proceeds while bioavailable iron is present, after which the system switches to sulfate reduction if sulfate is present. Field experiments from the Rifle Integrated Field Challenge (IFC) site in Colorado showing that the onset of sulfate reduction has been associated with decreased removal of U(VI) from groundwater support this hypothesis. However, column experiments using sediments from the Rifle site and synthetic groundwater with comparable (7 mM) sulfate levels as in the field, showed that the onset of sulfate reduction occurred within a month with no negative effect on U(VI) reduction. Separate column experiments using low (9 uM) sulfate concentrations showed that iron reduction can be maintained for over 200 days with no indication of iron limitations. To address the discrepancy between field and column experiments, an experiment is being conducted to determine the activity of iron reducers before and after the onset of sulfate reduction. Since Fe(II) buildup is difficult to quantify in the presence of sulfate reduction, the sediments were augmented with Fe- 57 goethite. Minute changes in the Fe-57 goethite can be detected via Mössbauer spectroscopy. Ten columns (2.5 cm internal diameter and 15 cm in length), loaded with sediment from the Rifle site, have been set up and are being operated at 17 °C. Groundwater from the Rifle site, amended with 3mM acetate and 20 μM U(VI), is pumped through the columns at a rate of 0.035 ml/min. Column effluent concentrations are being monitored for acetate, Fe(II), U(VI), and sulfate. Columns are sacrificed at 10 day intervals and the sediment samples are analyzed for Fe(II), U(IV), and acid volatile sulfides using standard analytical procedures. Changes in Fe-57 goethite measured using Mössbauer spectroscopy during biostimulation of the native microorganisms at 10-day

  14. Mechanisms and Dynamics of Abiotic and Biotic Interactions at Environmental Interfaces

    SciTech Connect

    Roso, Kevin M.

    2006-06-01

    The Stanford EMSI (SEMSI) was established in 2004 through joint funding by the National Science Foundation and the OBER-ERSD. It encompasses a number of universities and national laboratories. The PNNL component of the SEMSI is funded by ERSD and is the focus of this report. This component has the objective of providing theory support to the SEMSI by bringing computational capabilities and expertise to bear on important electron transfer problems at mineral/water and mineral/microbe interfaces. PNNL staff member Dr. Kevin Rosso, who is also ''matrixed'' into the Environmental Molecular Sciences Laboratory (EMSL) at PNNL, is a co-PI on the SEMSI project and the PNNL lead. The EMSL computational facilities being applied to the SEMSI project include the 11.8 teraflop massively-parallel supercomputer. Science goals of this EMSL/SEMSI partnership include advancing our understanding of: (1) The kinetics of U(VI) and Cr(VI) reduction by aqueous and solid-phase Fe(II), (2) The structure of mineral surfaces in equilibrium with solution, and (3) Mechanisms of bacterial electron transfer to iron oxide surfaces via outer-membrane cytochromes.

  15. Statistical study of Saturn's auroral electron properties with Cassini/UVIS FUV spectral images

    NASA Astrophysics Data System (ADS)

    Gustin, J.; Grodent, D.; Radioti, A.; Pryor, W.; Lamy, L.; Ajello, J.

    2017-03-01

    About 2000 FUV spectra of different regions of Saturn's aurora, obtained with Cassini/UVIS from December 2007 to October 2014 have been examined. Two methods have been employed to determine the mean energy of the precipitating electrons. The first is based on the absorption of the auroral emission by hydrocarbons and the second uses the ratio between the brightness of the Lyman-α line and the H2 total UV emission (Lyα/H2), which is directly related to via a radiative transfer formalism. In addition, two atmospheric models obtained recently from UVIS polar occultations have been employed for the first time. It is found that the atmospheric model related to North observations near 70° latitude provides the results most consistent with constraints previously published. On a global point of view, the two methods provide comparable results, with mostly in the 7-17 keV range with the hydrocarbon method and in the 1-11 keV range with the Lyα/H2 method. Since hydrocarbons have been detected on ∼20% of the auroral spectra, the Lyα/H2 technique is more effective to describe the primary auroral electrons, as it is applicable to all spectra and allows an access to the lowest range of energies (≤5 keV), unreachable by the hydrocarbon method. The distribution of is found fully compatible with independent HST/ACS constraints (emission peak in the 840-1450 km range) and FUSE findings (emission peaking at pressure level ≤0.2 μbar). In addition, exhibits enhancements in the 3 LT-10 LT sector, consistent with SKR intensity measurements. An energy flux-electron energy diagram built from all the data points strongly suggests that acceleration by field-aligned potentials as described by Knight's theory is a main mechanism responsible for electron precipitation creating the aurora. Assuming a fixed electron temperature of 0.1 keV, a best-fit equatorial electron source population density of 3 × 103 m-3 is derived, which matches very well to the plasma

  16. Saturn's B Ring and Cassini Division from Cassini RSS, VIMS, and UVIS Occultations

    NASA Astrophysics Data System (ADS)

    French, Richard; Colwell, Joshua; Nicholson, Phillip; Hedman, Matthew; Marouf, Essam; Rappaport, Nicole J.; McGhee, Colleen; Batista, A.; de Silva, A.; Flores, S.; Geiling, N.; Graves, K.; Guo, L.; Kee, L. Huang. Y.; Larson, K.; Moreno, J.; Mowla, L.; Nelson, E.; Pang, Z.; Sanchez, T.; Stephens, K.; Strother, C.; Judd, K.; Snyderman, R.; Stroud, D.; Youngblood, A.

    Saturn's B ring demarcates the inner edge of the dynamically fascinating Cassini Division, replete with eccentric and circular ringlets and gaps. We present kinematical models for ringlets and gaps in the Cassini Division, and the outer edge of the B ring, from more than 100 individual Cassini occultations using RSS, VIMS, and UVIS instruments. Recent investigations of the B ring outer edge and Cassini Division features, using two decades of Earth-based and spacecraft occultation measurements, show hints of regularity amidst the complexity of the region. Hedman et al. (2010), using Cassini VIMS stellar occultation data and Cassini RSS and historical data from French et al. (2010), found a quasi-regular spacing of ringlets and gaps, with inner edges of gaps measurably non-circular and outer edges nearly circular. They proposed a dynamical mechanism whereby the non-circular B ring edge resonantly controls the structure of the Cassini Division gaps. The shape of the B ring edge is dominated by an m=2 mode, controlled by Mimas, although the dynamical interaction is still poorly understood. Cassini ISS images show the presence of multiple modes, possibly transient (Spitale et al. 2010). The long time series of the present data set, densely sampling the Cassini orbital tour from 2005-2009, coupled with the Voyager 1 and 2 data from 1980 and 1981, the widely-observed 28 Sgr stellar occultation of 1989, and Hubble Space Telescope stellar occultations in 1991 and 1995, provide the opportunity to determine the orbital elements and precession rates of the non-circular Cassini Division features, and to compare multi-mode libration and circulation models for the B ring edge. These are essential ingredients for detailed tests of dynamical models for the structure of the Cassini Division and its possible connection to the B ring.

  17. Influence of phosphate and silica on U(VI) precipitation from acidic and neutralized wastewaters

    SciTech Connect

    Kanematsu, Masakazu; Perdrial, Nicolas; Um, Wooyong; Chorover, Jon; O'Day, Peggy A.

    2014-06-03

    Uranium speciation and physical-chemical characteristics were studied in solids precipitated from synthetic acidic to circumneutral wastewaters in the presence and absence of dissolved silica and phosphate to examine thermodynamic and kinetic controls on phase formation. Composition of synthetic wastewater was based on disposal sites 216-U-8 and 216-U-12 Cribs at the Hanford site (WA, USA). In the absence of dissolved silica or phosphate, crystalline or amorphous uranyl oxide hydrates, either compreignacite or meta-schoepite, precipitated at pH 5 or 7 after 30 d of reaction, in agreement with thermodynamic calculations. In the presence of 1 mM dissolved silica representative of groundwater concentrations, amorphous phases dominated by compreignacite precipitated rapidly at pH 5 or 7 as a metastable phase and formation of poorly-crystalline boltwoodite, the thermodynamically stable uranyl silicate phase, was slow. In the presence of phosphate (3 mM), meta-ankoleite initially precipitated as the primary phase at pH 3, 5, or 7 regardless of the presence of 1 mM dissolved silica. Analysis of precipitates by U LIII-edge EXAFS indicated that “autunite-type” sheets of meta-ankoleite transformed to “phosphuranylite-type” sheets after 30 d of reaction, probably due to Ca substitution in the structure. Low solubility of uranyl phosphate phases limits dissolved U(VI) concentrations but differences in particle size, crystallinity, and precipitate composition vary with pH and base cation concentration, which will influence the thermodynamic and kinetic stability of these phases.

  18. UVIS ring occultations show F ring feature location and optical depth correlated with Prometheus

    NASA Astrophysics Data System (ADS)

    Meinke, Bonnie K.; Esposito, L. W.; Albers, N.

    2010-05-01

    We find 24 statistically significant features in the F ring occultations using the High Speed Photometer (HSP) channel of the Cassini Ultraviolet Imaging Spectrograph (UVIS). These features are likely transient clumps of material embedded in the ring, each of which attenuates stellar signal during an occultation because the ring material is more densely packed at that location. In fact, two of these features are opaque, indicating they may be solid moonlets. Two trends are evident in the azimuthal location of these 24 F ring features with respect to that of Prometheus. First, the orbital locations of these features are mostly opposite Prometheus, as 11 of the 24 occupy the orbital region separated from Prometheus by 180° ± 20°. Second, average feature optical depth is maximum near the antipode of Prometheus in orbit. Our hypothesis is that these results show aggregation and disaggregation of clumps after Prometheus passes by. As Prometheus passes interior to the F ring, it encounters material once every synodic period, 68 days. Optical depth indicates density of ring material along the line of sight, so as material clumps together, we expect to see higher optical depths. Thus we infer that the encounter stimulates clumping of material that reaches a maximum 180° downstream. This may reinforce similar evidence that Ring-Moon interaction stimulates clumping in the F ring region from Cassini imaging (Beurle, et al., 2010) and at the B ring edge (Esposito, et al., 2010). Esposito, et al. (2010) suggest that the combined mass and velocity evolution of the ring system resembles a predator/prey model. This research was supported by the Cassini Project.

  19. Upscaling of U(VI) Desorption and Transport Using Decimeter-Scale Tanks

    SciTech Connect

    Rodriguez, Derrick

    2014-12-22

    Two decimeter-scale 2D experiments were conducted in the proposed research. To the extent possible, the first experiment (2.44 m x 0.61 m x 10 cm) was be packed to reproduce the observed distributions of sediment size fractions in the subsurface at the tracer test site. Four size fractions of sediment (<125m, 125-250m, 250m to 2 mm, >2mm) were packed in the tank and the size fractions were placed in a sediment structure imitating pattern rather than the block pattern used in the previous experiments conducted with Naturita sediment. The second tank used the same total amount of sediment and proportions of the three size fractions used in the first experiment but was packed at larger geostatistical correlation lengths to evaluate how the scale of heterogeneity affects the upscaling results. This experiment was conducted with the goal of trying to determine how the upscaling would be affected by the diffusion path length associated with low permeability zones. The initial conditions in the tanks were based on observed field conditions. The influent was a synthetic groundwater that mimicked uncontaminated groundwater observed at the Naturita site. Samples were collected from side and end ports of the tank and were analyzed for U(VI), alkalinity, pH and major ions as was done in previous experiments. Each decimeter scale experiment was run for approximately 6 months and the experiments were run in parallel. Extensive premodeling occurred for both tanks and lasted the first year of the project.

  20. Biomineralization of U(VI) phosphate promoted by microbially-mediated phytate hydrolysis in contaminated soils

    NASA Astrophysics Data System (ADS)

    Salome, Kathleen R.; Beazley, Melanie J.; Webb, Samuel M.; Sobecky, Patricia A.; Taillefert, Martial

    2017-01-01

    The bioreduction of uranium may immobilize a significant fraction of this toxic contaminant in reduced environments at circumneutral pH. In oxic and low pH environments, however, the low solubility of U(VI)-phosphate minerals also makes them good candidates for the immobilization of U(VI) in the solid phase. As inorganic phosphate is generally scarce in soils, the biomineralization of U(VI)-phosphate minerals via microbially-mediated organophosphate hydrolysis may represent the main immobilization process of uranium in these environments. In this study, contaminated sediments were incubated aerobically in two pH conditions to examine whether phytate, a naturally-occurring and abundant organophosphate in soils, could represent a potential phosphorous source to promote U(VI)-phosphate biomineralization by natural microbial communities. While phytate hydrolysis was not evident at pH 7.0, nearly complete hydrolysis was observed both with and without electron donor at pH 5.5, suggesting indigenous microorganisms express acidic phytases in these sediments. While the rate of hydrolysis of phytate generally increased in the presence of uranium, the net rate of inorganic phosphate production in solution was decreased and inositol phosphate intermediates were generated in contrast to similar incubations conducted without uranium. These findings suggest uranium stress enhanced the phytate-metabolism of the microbial community, while simultaneously inhibiting phosphatase production and/or activity by the indigenous population. Finally, phytate hydrolysis drastically decreased uranium solubility, likely due to formation of ternary sorption complexes, U(VI)-phytate precipitates, and U(VI)-phosphate minerals. Overall, the results of this study provide evidence for the ability of natural microbial communities to liberate phosphate from phytate in acidic sediments, possibly as a detoxification mechanism, and demonstrate the potential utility of phytate-promoted uranium

  1. Analysis of Cassini UVIS Extreme and Far Ultraviolet Observations of Saturn’s Atmosphere

    NASA Astrophysics Data System (ADS)

    Parkinson, Christopher D.; Koskinen, Tommi; Gronoff, Guillaume; Yung, Yuk L.; Esposito, Larry

    2015-11-01

    The atmosphere of Saturn is mainly composed of H2 and neutral atomic helium. The study of He 584 Å and H Lyman-α brightnesses is interesting as the EUV and FUV (Extreme and Far Ultraviolet) planetary airglow have the potential to yield useful information about mixing and other important parameters in its thermosphere. Time variation, asymmetries, and polar enhancement of the airglow are also possible and analysis already performed using the public archived Cassini mission data sets have shown we can solve some of the outstanding problems associated with these phenomena for Saturn.Specifically, we have (1) examined epochal eddy mixing disparities in the Saturnian upper atmosphere and quantify temporal mixing variations that may have occurred in the upper atmosphere of Saturn, as may be evidenced in Cassini mission data, (2) quantified any enhanced mixing in the auroral regions of Saturn, and (3) performed a robust study of Saturnian H Lyman-α brightness with the view to discover any longitudinal H Lyman-α planetary asymmetry or “bulge” across the disc such as was discovered by Voyager at Jupiter, indicative of the distribution of atomic H and accounting for the observed flux and any variations from the normal temperature profile.We have analyzed Cassini UVIS EUV and FUV airglow data from Saturn using sophisticated photochemical and radiative transfer models to investigate unexplained differences in the dynamical processes operating within its upper atmosphere. Powerful analysis techniques allow us to extract information on atmospheric mixing, temperatures, and temporal changes due to the solar and seasonal cycles from the variations in distribution and intensity of airglow emissions that result. We report on results of these efforts to date.

  2. Polyamines and abiotic stress in plants: a complex relationship1

    PubMed Central

    Minocha, Rakesh; Majumdar, Rajtilak; Minocha, Subhash C.

    2014-01-01

    The physiological relationship between abiotic stress in plants and polyamines was reported more than 40 years ago. Ever since there has been a debate as to whether increased polyamines protect plants against abiotic stress (e.g., due to their ability to deal with oxidative radicals) or cause damage to them (perhaps due to hydrogen peroxide produced by their catabolism). The observation that cellular polyamines are typically elevated in plants under both short-term as well as long-term abiotic stress conditions is consistent with the possibility of their dual effects, i.e., being protectors from as well as perpetrators of stress damage to the cells. The observed increase in tolerance of plants to abiotic stress when their cellular contents are elevated by either exogenous treatment with polyamines or through genetic engineering with genes encoding polyamine biosynthetic enzymes is indicative of a protective role for them. However, through their catabolic production of hydrogen peroxide and acrolein, both strong oxidizers, they can potentially be the cause of cellular harm during stress. In fact, somewhat enigmatic but strong positive relationship between abiotic stress and foliar polyamines has been proposed as a potential biochemical marker of persistent environmental stress in forest trees in which phenotypic symptoms of stress are not yet visible. Such markers may help forewarn forest managers to undertake amelioration strategies before the appearance of visual symptoms of stress and damage at which stage it is often too late for implementing strategies for stress remediation and reversal of damage. This review provides a comprehensive and critical evaluation of the published literature on interactions between abiotic stress and polyamines in plants, and examines the experimental strategies used to understand the functional significance of this relationship with the aim of improving plant productivity, especially under conditions of abiotic stress. PMID:24847338

  3. The Sorption Processes of U(VI) onto SiO2 in the Presence of Phosphate: from Binary Surface Species to Precipitation.

    PubMed

    Comarmond, M Josick; Steudtner, Robin; Stockmann, Madlen; Heim, Karsten; Müller, Katharina; Brendler, Vinzenz; Payne, Timothy E; Foerstendorf, Harald

    2016-11-01

    The ternary system containing aqueous U(VI), aqueous phosphate and solid SiO2 was comprehensively investigated using a batch sorption technique, in situ attenuated total reflection Fourier-transform infrared (ATR FT-IR) spectroscopy, time-resolved luminescence spectroscopy (TRLS), and surface complexation modeling (SCM). The batch sorption studies on silica gel (10 g/L) in the pH range 2.5 to 5 showed no significant increase in U(VI) uptake in the presence of phosphate at equimolar concentration of 20 μM, but significant increase in U(VI) uptake was observed for higher phosphate concentrations. In situ infrared and luminescence spectroscopic studies evidence the formation of two binary U(VI) surface species in the absence of phosphate, whereas after prolonged sorption in the presence of phosphate, the formation of a surface precipitate, most likely an autunite-like phase, is strongly suggested. From SCM, excellent fitting results were obtained exclusively considering two binary uranyl surface species and the formation of a solid uranyl phosphate phase. Ternary surface complexes were not needed to explain the data. The results of this study indicate that the sorption of U(VI) on SiO2 in the presence of inorganic phosphate initially involves binary surface-sorption species and evolves toward surface precipitation.

  4. Complexation of U(VI) with benzoic acid at variable temperatures (298-353 K): thermodynamics and crystal structures of U(VI)/benzoate complexes.

    PubMed

    Yang, Yanqiu; Teat, Simon J; Zhang, Zhicheng; Luo, Shunzhong; Rao, Linfeng

    2016-01-07

    Thermodynamics of the U(VI) complexation with benzoic acid (HL) was studied by spectrophotometry at varied temperatures (298-353 K) with constant ionic strength (1.05 mol kg(-1) NaClO4). Two U(VI) benzoate complexes, UO2L(+) and UO2(OH)L(aq), were identified and their formation constants determined. The formation of both complexes is endothermic and driven exclusively by entropy. Two types of U(VI)/benzoate complex crystals were synthesized from aqueous solutions at different pH and ligand/metal ratios. Their structures were determined by single-crystal X-ray diffractometry. One structure is a 1 : 3 U(VI) benzoate complex (Na[UO2(C7H5O2)3]·2H2O), each benzoate holding a bidentate coordination mode to U(VI) in the equatorial plane of UO2(2+). The other is a U(VI) hydroxobenzoate complex with unique μ3-OH bridging ([(UO2)2(C7H5O2)2(μ3-OH)2]·4H2O). In the structure, each UO2(2+) ion holds five coordination oxygens in its equatorial plane, two carboxylate oxygens from two benzoate ligands and three oxygens from three μ3-OH groups.

  5. Coupling microbial catabolic actions with abiotic redox processes: a new recipe for persistent organic pollutant (POP) removal.

    PubMed

    Jeon, Jong-Rok; Murugesan, Kumarasamy; Nam, In-Hyun; Chang, Yoon-Seok

    2013-01-01

    The continuous release of toxic persistent organic pollutants (POPs) into the environment has raised a need for effective cleanup methods. The tremendous natural diversity of microbial catabolic mechanisms suggests that catabolic routes may be applied to the remediation of POP-contaminated fields. A large number of the recalcitrant xenobiotics have been shown to be removable via the natural catabolic mechanisms of microbes, and detailed biochemical studies of the catabolic methods, together with the development of sophisticated genetic engineering, have led to the use of synthetic microbes for the bioremediation of POPs. However, the steric effects of substituted halogen moieties, microbe toxicity, and the low bioavailability of POPs still deteriorate the efficiency of removal strategies based on natural and synthetic catabolic mechanisms. Recently, abiotic redox processes that induce rapid reductive dehalogenation, hydroxyl radical-based oxidation, or electron shuttling have been reasonably coupled with microbial catabolic actions, thereby compensating for the drawbacks of biotic processes in POP removal. In this review, we first compare the pros and cons of individual methodologies (i.e., the natural and synthetic catabolism of microbes and the abiotic processes involving zero-valent irons, advanced oxidation processes, and small organic stimulants) for POP removal. We then highlight recent trends in coupling the biotic-abiotic methodologies and discuss how the processes are both feasible and superior to individual methodologies for POP cleanup. Cost-effective and environmentally sustainable abiotic redox actions could enhance the microbial bioremediation potential for POPs.

  6. Abiotic Stresses Downregulate Key Genes Involved in Nitrogen Uptake and Assimilation in Brassica juncea L.

    PubMed Central

    Goel, Parul; Singh, Anil Kumar

    2015-01-01

    Abiotic stresses such as salinity, drought and extreme temperatures affect nitrogen (N) uptake and assimilation in plants. However, little is known about the regulation of N pathway genes at transcriptional level under abiotic stress conditions in Brassica juncea. In the present work, genes encoding nitrate transporters (NRT), ammonium transporters (AMT), nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT), glutamate dehydrogenase (GDH), asparagines synthetase (ASN) were cloned from Brassica juncea L. var. Varuna. The deduced protein sequences were analyzed to predict their subcellular localization, which confirmed localization of all the proteins in their respective cellular organelles. The protein sequences were also subjected to conserved domain identification, which confirmed presence of characteristic domains in all the proteins, indicating their putative functions. Moreover, expression of these genes was studied after 1h and 24h of salt (150 mM NaCl), osmotic (250 mM Mannitol), cold (4°C) and heat (42°C) stresses. Most of the genes encoding nitrate transporters and enzymes responsible for N assimilation and remobilization were found to be downregulated under abiotic stresses. The expression of BjAMT1.2, BjAMT2, BjGS1.1, BjGDH1 and BjASN2 was downregulated after 1hr, while expression of BjNRT1.1, BjNRT2.1, BjNiR1, BjAMT2, BjGDH1 and BjASN2 was downregulated after 24h of all the stress treatments. However, expression of BjNRT1.1, BjNRT1.5 and BjGDH2 was upregulated after 1h of all stress treatments, while no gene was found to be upregulated after 24h of stress treatments, commonly. These observations indicate that expression of most of the genes is adversely affected under abiotic stress conditions, particularly under prolonged stress exposure (24h), which may be one of the reasons of reduction in plant growth and development under abiotic stresses. PMID:26605918

  7. The interactive biotic and abiotic processes of DDT transformation under dissimilatory iron-reducing conditions.

    PubMed

    Jin, Xin; Wang, Fang; Gu, Chenggang; Yang, Xinglun; Kengara, Fredrick O; Bian, Yongrong; Song, Yang; Jiang, Xin

    2015-11-01

    The objective of the study was to elucidate the biotic and abiotic processes under dissimilatory iron reducing conditions involved in reductive dechlorination and iron reduction. DDT transformation was investigated in cultures of Shewanella putrefaciens 200 with/without α-FeOOH. A modified first-order kinetics model was developed and described DDT transformation well. Both the α-FeOOH reduction rate and the dechlorination rate of DDT were positively correlated to the biomass. Addition of α-FeOOH enhanced reductive dechlorination of DDT by favoring the cell survival and generating Fe(II) which was absorbed on the surface of bacteria and iron oxide. 92% of the absorbed Fe(II) was Na-acetate (1M) extractable. However, α-FeOOH also played a negative role of competing for electrons as reflected by the dechlorination rate of DDT was inhibited when increasing the α-FeOOH from 1 g L(-1) to 5 g L(-1). DDT was measured to be toxic to S. putrefaciens 200. The metabolites DDD, DDE and DDMU were recalcitrant to S. putrefaciens 200. The results suggested that iron oxide was not the key factor to promote the dissipation of DDX (DDT and the metabolites), whereas the one-electron reduction potential (E1) of certain organochlorines is the main factor and that the E1 higher than the threshold of the reductive driving forces of DIRB probably ensures the occur of reductive dechlorination.

  8. Plant cell organelle proteomics in response to abiotic stress.

    PubMed

    Hossain, Zahed; Nouri, Mohammad-Zaman; Komatsu, Setsuko

    2012-01-01

    Proteomics is one of the finest molecular techniques extensively being used for the study of protein profiling of a given plant species experiencing stressed conditions. Plants respond to a stress by alteration in the pattern of protein expression, either by up-regulating of the existing protein pool or by the synthesizing novel proteins primarily associated with plants antioxidative defense mechanism. Improved protein extraction protocols and advance techniques for identification of novel proteins have been standardized in different plant species at both cellular and whole plant level for better understanding of abiotic stress sensing and intracellular stress signal transduction mechanisms. In contrast, an in-depth proteome study of subcellular organelles could generate much detail information about the intrinsic mechanism of stress response as it correlates the possible relationship between the protein abundance and plant stress tolerance. Although a wealth of reviews devoted to plant proteomics are available, review articles dedicated to plant cell organelle proteins response under abiotic stress are very scanty. In the present review, an attempt has been made to summarize all significant contributions related to abiotic stresses and their impacts on organelle proteomes for better understanding of plants abiotic stress tolerance mechanism at protein level. This review will not only provide new insights into the plants stress response mechanisms, which are necessary for future development of genetically engineered stress tolerant crop plants for the benefit of humankind, but will also highlight the importance of studying changes in protein abundance within the cell organelles in response to abiotic stress.

  9. Comparison of sorption behavior of Th(IV) and U(VI) on modified impregnated resin containing quinizarin with that conventional prepared impregnated resin.

    PubMed

    Hosseini, Mohammad Saeid; Hosseini-Bandegharaei, Ahmad

    2011-06-15

    This paper reports the results obtained by studying the ion-exchange properties of a new solvent impregnated resin (SIR), which was prepared by impregnation of quinizarin (1,4-dihydroxyanthraquinone, QNZ) on Amberlite XAD-16 after nitration of the benzene rings present in its structure. The sorption behavior of Th(IV) and U(VI) on/in the modified SIR was compared with that of the SIR prepared via the conventional method. It was observed that sorption capacity and sorption rate of the modified SIR are significantly greater than the conventional one. The modified SIR was then applied to the extraction of Th(IV) and U(VI) ions at the presence of many co-existence metal ions. The results obtained denote on successful application of this new SIR to analysis of natural water samples spiked to Th(IV) and U(VI) ions.

  10. The impact of abiotic factors on cellulose synthesis.

    PubMed

    Wang, Ting; McFarlane, Heather E; Persson, Staffan

    2016-01-01

    As sessile organisms, plants require mechanisms to sense and respond to changes in their environment, including both biotic and abiotic factors. One of the most common plant adaptations to environmental changes is differential regulation of growth, which results in growth either away from adverse conditions or towards more favorable conditions. As cell walls shape plant growth, this differential growth response must be accompanied by alterations to the plant cell wall. Here, we review the impact of four abiotic factors (osmotic conditions, ionic stress, light, and temperature) on the synthesis of cellulose, an important component of the plant cell wall. Understanding how different abiotic factors influence cellulose production and addressing key questions that remain in this field can provide crucial information to cope with the need for increased crop production under the mounting pressures of a growing world population and global climate change.

  11. Integrated metabolomics for abiotic stress responses in plants.

    PubMed

    Nakabayashi, Ryo; Saito, Kazuki

    2015-04-01

    Plants are considered to biosynthesize specialized (traditionally called secondary) metabolites to adapt to environmental stresses such as biotic and abiotic stresses. The majority of specialized metabolites induced by abiotic stress characteristically exhibit antioxidative activity in vitro, but their function in vivo is largely yet to be experimentally confirmed. In this review, we highlight recent advances in the identification of the role of abiotic stress-responsive specialized metabolites with an emphasis on flavonoids. Integrated 'omics' analysis, centered on metabolomics with a series of plant resources differing in their flavonoid accumulation, showed experimentally that flavonoids play a major role in antioxidation in vivo. In addition, the results also suggest the role of flavonoids in the vacuole. To obtain more in-depth insights, chemical and biological challenges need to be addressed for the identification of unknown specialized metabolites and their in vivo functions.

  12. Environmental Selenium Transformations: Distinguishing Abiotic and Biotic Factors Influencing Se Redox Transformations

    NASA Astrophysics Data System (ADS)

    Rosenfeld, C.; Kenyon, J.; James, B. R.; Santelli, C. M.

    2014-12-01

    Worldwide, selenium (Se) is proving to be a significant environmental concern, with many anthropogenic activities (e.g. coal mining and combustion, phosphate mining and agricultural irrigation) releasing potentially hazardous concentrations into surface and subsurface ecosystems. The US EPA is currently considering aquatic Se regulations, however no guidelines exist for excess soil Se, despite its ability to act as a persistent Se source. Various abiotic and biological processes mediate Se oxidation/reduction (redox) transformations in soils, thus influencing its solubility and bioavailability. In this research we assess (1) the ability of metal-transforming fungal species to aerobically reduce Se (Se (IV and/or VI) to Se(0)), and (2) the relative contribution of biotic and abiotic pathways for aerobic Se transformation. The primary objective of this research is to determine what abiotic and biotic factors enhance or restrict Se bioavailability. Results indicate that fungal-mediated Se reduction may be quite widespread, with at least 7 out of 10 species of known Mn(II)-oxidizing fungi isolated from metal impacted environments also identified as capable of aerobically reducing Se(IV) and/or Se(VI) to Se(0). Increasing concentrations of selenite (SeO32-; Se(IV)) and selenate (SeO42-; Se(VI)) generally reduced fungal growth rates, although selenate was more likely to inhibit fungal growth than selenite. To study oxidation, Se(0) was combined with Mn(III/IV) (hydr)oxides (henceforth referred to as Mn oxides), Se-transforming fungi (Alternaria alternata), and oxalic acid to mimic Se biogeochemistry at the plant-soil interface. Increased pH in the presence of fungi (7.2 with fungi, 6.8 without fungi after 24 days) was observed. Additionally, a slight decrease in redox potential was measured for incubations without Mn oxides (236 mV with Mn oxides, 205 mV without Mn oxides after 24 days), indicating that Mn oxides may enhance Se oxidation. Elemental Se oxidation rates to

  13. Abiotic systems for the catalytic treatment of solvent-contaminated water

    SciTech Connect

    Betterton, E.A.; Arnold, R.G.; Liu, Zhijie; Hollan, N.

    1996-12-31

    Three abiotic systems are described that catalyze the reductive dehalogenation of heavily halogenated environmental pollutants, including carbon tetrachloride, trichloroethene, and perchloroethene. These systems include (a) an electrolytic reactor in which the potential on the working electrode (cathode) is fixed by using a potentiostat, (b) a light-driven system consisting of a semiconductor and (covalently attached) macrocycle that can accept light transmitted via an optical fiber, and a light-driven, two-solvent (isopropanol/acetone) system that promotes dehalogenation reactions via an unknown mechanism. Each is capable of accelerating reductive dehalogenation reactions to very high rates under laboratory conditions. Typically, millimolar concentrations of aqueous-phase targets can be dehalogenated in minutes to hours. The description of each system includes the elements of reaction mechanism (to the extent known), typical kinetic data, and a discussion of the feasibility of applying this technology for the in situ destruction of hazardous compounds. 14 refs., 11 figs., 2 tabs.

  14. Strategies to ameliorate abiotic stress-induced plant senescence.

    PubMed

    Gepstein, Shimon; Glick, Bernard R

    2013-08-01

    The plant senescence syndrome resembles, in many molecular and phenotypic aspects, plant responses to abiotic stresses. Both processes have an enormous negative global agro-economic impact and endanger food security worldwide. Premature plant senescence is the main cause of losses in grain filling and biomass yield due to leaf yellowing and deteriorated photosynthesis, and is also responsible for the losses resulting from the short shelf life of many vegetables and fruits. Under abiotic stress conditions the yield losses are often even greater. The primary challenge in agricultural sciences today is to develop technologies that will increase food production and sustainability of agriculture especially under environmentally limiting conditions. In this chapter, some of the mechanisms involved in abiotic stress-induced plant senescence are discussed. Recent studies have shown that crop yield and nutritional values can be altered as well as plant stress tolerance through manipulating the timing of senescence. It is often difficult to separate the effects of age-dependent senescence from stress-induced senescence since both share many biochemical processes and ultimately result in plant death. The focus of this review is on abiotic stress-induced senescence. Here, a number of the major approaches that have been developed to ameliorate some of the effects of abiotic stress-induced plant senescence are considered and discussed. Some approaches mimic the mechanisms already used by some plants and soil bacteria whereas others are based on development of new improved transgenic plants. While there may not be one simple strategy that can effectively decrease all losses of crop yield that accrue as a consequence of abiotic stress-induced plant senescence, some of the strategies that are discussed already show great promise.

  15. Nitric oxide signaling in plant responses to abiotic stresses.

    PubMed

    Qiao, Weihua; Fan, Liu-Min

    2008-10-01

    Nitric oxide (NO) plays important roles in diverse physiological processes in plants. NO can provoke both beneficial and harmful effects, which depend on the concentration and location of NO in plant cells. This review is focused on NO synthesis and the functions of NO in plant responses to abiotic environmental stresses. Abiotic stresses mostly induce NO production in plants. NO alleviates the harmfulness of reactive oxygen species, and reacts with other target molecules, and regulates the expression of stress responsive genes under various stress conditions.

  16. Starch as a determinant of plant fitness under abiotic stress.

    PubMed

    Thalmann, Matthias; Santelia, Diana

    2017-03-09

    I. II. III. IV. V. VI. References SUMMARY: Abiotic stresses, such as drought, high salinity and extreme temperatures, pose one of the most important constraints to plant growth and productivity in many regions of the world. A number of investigations have shown that plants, including several important crops, remobilize their starch reserve to release energy, sugars and derived metabolites to help mitigate the stress. This is an essential process for plant fitness with important implications for plant productivity under challenging environmental conditions. In this Tansley insight, we evaluate the current literature on starch metabolism in response to abiotic stresses, and discuss the key enzymes involved and how they are regulated.

  17. Sorption behavior of U(VI) on phyllite: experiments and modeling.

    PubMed

    Arnold, T; Zorn, T; Zänker, H; Bernhard, G; Nitsche, H

    2001-02-01

    The sorption of U(VI) onto low-grade metamorphic rock phyllite was modeled with the diffuse double layer model (DDLM) using the primary mineralogical constituents of phyllite, i.e. quartz, chlorite, muscovite, and albite, as input components, and as additional component, the poorly ordered Fe oxide hydroxide mineral, ferrihydrite. Ferrihydrite forms during the batch sorption experiment as a weathering product of chlorite. In this process, Fe(II), leached from the chlorite, oxidizes to Fe(III), hydrolyses and precipitates as ferrihydrite. The formation of ferrihydrite during the batch sorption experiment was identified by Mössbauer spectroscopy, showing a 2.8% increase of Fe(III) in the phyllite powder. The ferrihydrite was present as Fe nanoparticles or agglomerates with diameters ranging from 6 to 25 nm, with indications for even smaller particles. These Fe colloids were detected in centrifugation experiments of a ground phyllite suspension using various centrifugal forces. The basis for the successful interpretation of the experimental sorption data of uranyl(VI) on phyllite were: (1) the determination of surface complex formation constants of uranyl with quartz, chlorite, muscovite, albite, and ferrihydrite in individual batch sorption experiments, (2) the determination of surface acidity constants of quartz, chlorite, muscovite, and albite obtained from separate acid-base titration, (3) the determination of surface site densities of quartz, chlorite, muscovite, and albite evaluated independently of each other with adsorption isotherms, and (4) the quantification of the secondary phase ferrihydrite, which formed during the batch sorption experiments with phyllite. The surface complex formation constants and the protolysis constants were optimized by using the experimentally obtained data sets and the computer code FITEQL. Surface site densities were evaluated from adsorption isotherms at pH 6.5. The uranyl(VI) sorption onto phyllite was accurately modeled with

  18. Deriving the Structure and Composition of Enceladus’ Plume from Cassini UVIS Observations

    NASA Astrophysics Data System (ADS)

    Hansen, Candice; Esposito, Larry; Colwell, Josh; Hendrix, Amanda; Portyankina, Ganna; Shemansky, Don; West, Robert

    2015-11-01

    Cassini’s Ultraviolet Imaging Spectrograph (UVIS) has observed 4 stellar and one solar occultation by Enceladus’ water vapor plume. The July 2005 occultation observation established that water is the primary constituent of the plume [1], and allowed us to calculate the flux of water coming from the plume; the 2007 occultation showed super-sonic jets of gas imbedded within the plume [2]. The solar occultation observation set upper limits for N2 as a constituent of the plume and provided higher resolution data on the jets [3]. On 19 October 2011, epsilon and zeta Orionis were simultaneously occulted by the plume. The stars were in separate pixels on the detector, separated by 24 mrad, or ~20 km, with the lower altitude star (epsilon Orionis) 18 km above the limb at its closest point. The profile at two altitudes shows evidence for a new gas jet location, possibly between dust jet #50 and #51 identified in [4].Results from the assemblage of these data sets, with implications for the composition and vertical structure of the plume and jets, will be described. Gas being expelled from the “tiger stripe” fissures is largely on a vertical escape trajectory away from Enceladus. Upper limits are set for water vapor near the limb at latitudes well away from the south pole at 3 x 1015 cm-2. Upper limits are set for the amount of ethylene and H2 in the plume, two species of interest to the chemistry of the plume [5]. No hydrogen or oxygen emission features have been observed from Enceladus’ water vapor plume, in contrast to the purported plumes at Europa, probably due to the very different plasma environment at Saturn. Data have now been processed consistently for all occultations with slightly different results for water vapor supply to the Saturn magnetosphere than previously reported. Overall, eruptive activity has been steady to within ~20% from 2005 to 2011.References: [1] Hansen, C. J. et al., Science 311:1422 (2006). Hansen, C. J. et al., Nature 456:477 (2008

  19. Sorption behavior of U(VI) on phyllite: experiments and modeling

    NASA Astrophysics Data System (ADS)

    Arnold, Thuro; Zorn, T.; Zänker, H.; Bernhard, G.; Nitsche, H.

    2001-02-01

    The sorption of U(VI) onto low-grade metamorphic rock phyllite was modeled with the diffuse double layer model (DDLM) using the primary mineralogical constituents of phyllite, i.e. quartz, chlorite, muscovite, and albite, as input components, and as additional component, the poorly ordered Fe oxide hydroxide mineral, ferrihydrite. Ferrihydrite forms during the batch sorption experiment as a weathering product of chlorite. In this process, Fe(II), leached from the chlorite, oxidizes to Fe(III), hydrolyses and precipitates as ferrihydrite. The formation of ferrihydrite during the batch sorption experiment was identified by Mössbauer spectroscopy, showing a 2.8% increase of Fe(III) in the phyllite powder. The ferrihydrite was present as Fe nanoparticles or agglomerates with diameters ranging from 6 to 25 nm, with indications for even smaller particles. These Fe colloids were detected in centrifugation experiments of a ground phyllite suspension using various centrifugal forces. The basis for the successful interpretation of the experimental sorption data of uranyl(VI) on phyllite were: (1) the determination of surface complex formation constants of uranyl with quartz, chlorite, muscovite, albite, and ferrihydrite in individual batch sorption experiments, (2) the determination of surface acidity constants of quartz, chlorite, muscovite, and albite obtained from separate acid-base titration, (3) the determination of surface site densities of quartz, chlorite, muscovite, and albite evaluated independently of each other with adsorption isotherms, and (4) the quantification of the secondary phase ferrihydrite, which formed during the batch sorption experiments with phyllite. The surface complex formation constants and the protolysis constants were optimized by using the experimentally obtained data sets and the computer code FITEQL. Surface site densities were evaluated from adsorption isotherms at pH 6.5. The uranyl(VI) sorption onto phyllite was accurately modeled with

  20. Equilibrium, kinetic and thermodynamic studies on the removal of U(VI) by low cost agricultural waste.

    PubMed

    Kausar, Abida; Bhatti, Haq Nawaz; MacKinnon, Gillian

    2013-11-01

    In this research, biosorption efficiency of different agro-wastes was evaluated with rice husk showing maximum biosorption capacity among the selected biosorbents. Optimization of native, SDS-treated and immobilized rice husk adsorption parameters including pH, biosorbent amount, contact time, initial U(VI) concentration and temperature for maximum U(VI) removal was investigated. Maximum biosorption capacity for native (29.56 mg g(-1)) and immobilized biomass (17.59 mg g(-1)) was observed at pH 4 while SDS-treated biomass showed maximum removal (28.08 mg g(-1)) at pH 5. The Langmuir sorption isotherm model correlated best with the U(IV) biosorption equilibrium data for the 10-100 mg L(-1) concentration range. The kinetics of the reaction followed pseudo-second order kinetic model. Thermodynamic parameters like free energy (ΔG(0)) and enthalpy (ΔH°) confirmed the spontaneous and exothermic nature of the process. Experiments to determine the regeneration capacity of the selected biosorbents and the effect of competing metal ions on biosorption capacity were also conducted. The biomass was characterized using scanning electron microscopy, surface area analysis, Fourier transformed infra-red spectroscopy and thermal gravimetric analysis. The study proved that rice husk has potential to treat uranium in wastewater.

  1. Spectrophotometric Investigation of U(VI) Chloride Complexation in the NaCl/NaClO{sub 4} System

    SciTech Connect

    Paviet-Hartmann, P.; Lin, M.R.; Runde, W.H.

    1998-11-30

    Post closure radioactive release scenarios from geologic salt formation, such as the WIPP (Waste Isolation Pilot Plant)(USA) include hydrologic transport of radionuclides through a chloride saturated aquifer. Consequently, the understanding of actinide solution chemistry in brines is essential for modeling requiring accurate knowledge of the interaction between AnO{sub 2}{sup 2+} and chloride ions. Complexation constants of two U(VI) chloride species, UO{sub 2}Cl{sup +} and UO{sub 2}Cl{sub 2}{sup 0}, have been intensively studied for about 40 years using different methods. However, large uncertainties reflect the general difficulty in determining accurate stability constants of weak complexes. In order to model the behavior of U(VI) in brines, we studied the formation of its chloride complexes by UV-Vis spectroscopy as a function of the NaCl concentration at 25 C. The experiments were performed at constant ionic strength by varying the concentration ratio of NaCl and NaClO{sub 4}. Deconvolution resulted in single component absorption spectra for UO{sub 2}Cl{sup +} and UO{sub 2}Cl{sub 2}{sup 0}. The apparent stability constants of UO{sub 2}Cl{sup +} and UO{sub 2}Cl{sub 2}{sup 0} are at different ionic strengths and the experimental data are used to parameterize using the SIT approach.

  2. Spectrophotometric investigation of U(VI) chloride complexation in the NaCl/NaClO{sub 4} system

    SciTech Connect

    Paviet-Hartmann, P.; Lin, M.R.; Runde, W.H.

    1999-02-01

    The option of a nuclear waste disposal in deep salt formations such as Gorleben in Germany, and the WIPP (Waste Isolation Pilot Plant) in southeastern New Mexico, US has generated, over the last ten years, interests in thermodynamic data of radioactive trace elements in concentrated electrolyte solutions. Furthermore, post closure radioactive release scenarios from geologic salt formation, such as the WIPP include hydrologic transport of radionuclides through a chloride saturated aquifer. Consequently, the understanding of actinide solution chemistry in brines is essential for modeling requiring accurate knowledge of the interaction between AnO{sub 2}{sup 2+} and chloride ions. The goal is to develop models capable of predicting their behavior in natural multicomponent brines of high concentration. Complexation constants of two U(VI) chloride species, UO{sub 2}Cl{sup +} and UO{sub 2}Cl{sub 2}{sup 0}, have been intensively studied for about 40 years using different methods. However, large uncertainties reflect the general difficulty in determining accurate stability constants of weak complexes. In order to model the behavior of U(VI) in brines, the authors studied the formation of its chloride complexes by UV-Vis spectroscopy as a function of the NaCl concentration at 25 C.

  3. Aqueous U(VI) interaction with magnetite nanoparticles in a mixed flow reactor system: HR-XANES study

    NASA Astrophysics Data System (ADS)

    Pidchenko, I.; Heberling, F.; Kvashnina, KO; Finck, N.; Schild, D.; Bohnert, E.; Schäfer, T.; Rothe, J.; Geckeis, H.; Vitova, T.

    2016-05-01

    The redox variations and changes in local atomic environment of uranium (U) interacted with the magnetite nanoparticles were studied in a proof of principle experiment by the U L3 and M4 edges high energy resolution X-ray absorption near edge structure (HR-XANES) technique. We designed and applied a mixed flow reactor (MFR) set-up to maintain dynamic flow conditions during U-magnetite interactions. Formation of hydrolyzed, bi- and poly-nuclear U species were excluded by slow continuous injection of U(VI) (10-6 M) and pH control integrated in the MFR set-up. The applied U HR-XANES technique is more sensitive to minor changes in the U redox states and bonding compared to the conventional XANES method. Major U(VI) contribution in uranyl type of bonding is found in the magnetite nanoparticles after three days operation time of the MFR. Indications for shortening of the U-Oaxial bond length for the magnetite compared to the maghemite system are present too.

  4. Evaluating reaction pathways of hydrothermal abiotic organic synthesis at elevated temperatures and pressures using carbon isotopes

    NASA Astrophysics Data System (ADS)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.

    2015-04-01

    Experiments were performed to better understand the role of environmental factors on reaction pathways and corresponding carbon isotope fractionations during abiotic hydrothermal synthesis of organic compounds using piston cylinder apparatus at 750 °C and 5.5 kbars. Chemical compositions of experimental products and corresponding carbon isotopic values were obtained by a Pyrolysis-GC-MS-IRMS system. Alkanes (methane and ethane), straight-chain saturated alcohols (ethanol and n-butanol) and monocarboxylic acids (formic and acetic acids) were generated with ethanol being the only organic compound with higher δ13C than CO2. CO was not detected in experimental products owing to the favorable water-gas shift reaction under high water pressure conditions. The pattern of δ13C values of CO2, carboxylic acids and alkanes are consistent with their equilibrium isotope relationships: CO2 > carboxylic acids > alkanes, but the magnitude of the fractionation among them is higher than predicted isotope equilibrium values. In particular, the isotopic fractionation between CO2 and CH4 remained constant at ∼31‰, indicating a kinetic effect during CO2 reduction processes. No "isotope reversal" of δ13C values for alkanes or carboxylic acids was observed, which indicates a different reaction pathway than what is typically observed during Fischer-Tropsch synthesis under gas phase conditions. Under constraints imposed in experiments, the anomalous 13C isotope enrichment in ethanol suggests that hydroxymethylene is the organic intermediate, and that the generation of other organic compounds enriched in 12C were facilitated by subsequent Rayleigh fractionation of hydroxymethylene reacting with H2 and/or H2O. Carbon isotope fractionation data obtained in this study are instrumental in assessing the controlling factors on abiotic formation of organic compounds in hydrothermal systems. Knowledge on how environmental conditions affect reaction pathways of abiotic synthesis of organic

  5. A proposed abiotic reaction scheme for hydroxylamine and monochloramine under chloramination relevant drinking water conditions.

    PubMed

    Wahman, David G; Speitel, Gerald E; Machavaram, Madhav V

    2014-09-01

    Drinking water monochloramine (NH2Cl) use may promote ammonia-oxidizing bacteria (AOB). AOB use (i) ammonia monooxygenase for biological ammonia (NH3) oxidation to hydroxylamine (NH2OH) and (ii) hydroxylamine oxidoreductase for NH2OH oxidation to nitrite. NH2Cl and NH2OH may react, providing AOB potential benefits and detriments. The NH2Cl/NH2OH reaction would benefit AOB by removing the disinfectant (NH2Cl) and releasing their growth substrate (NH3), but the NH2Cl/NH2OH reaction would also provide a possible additional inactivation mechanism besides direct NH2Cl reaction with cells. Because biological NH2OH oxidation supplies the electrons required for biological NH3 oxidation, the NH2Cl/NH2OH reaction provides a direct mechanism for NH2Cl to inhibit NH3 oxidation, starving the cell of reductant by preventing biological NH2OH oxidation. To investigate possible NH2Cl/NH2OH reaction implications on AOB, an understanding of the underlying abiotic reaction is first required. The present study conducted a detailed literature review and proposed an abiotic NH2Cl/NH2OH reaction scheme (RS) for chloramination relevant drinking water conditions (μM concentrations, air saturation, and pH 7-9). Next, RS literature based kinetics and end-products were evaluated experimentally between pHs 7.7 and 8.3, representing (i) the pH range for future experiments with AOB and (ii) mid-range pHs typically found in chloraminated drinking water. In addition, a (15)N stable isotope experiment was conducted to verify nitrous oxide and nitrogen gas production and their nitrogen source. Finally, the RS was slightly refined using the experimental data and an AQUASIM implemented kinetic model. A chloraminated drinking water relevant RS is proposed and provides the abiotic reaction foundation for future AOB biotic experiments.

  6. An Integrated Assessment of Geochemical and Community Structure Determinants of Metal Reduction Rates in Subsurface Sediments

    SciTech Connect

    Joel E. Kostka

    2008-03-24

    This project represented a joint effort between Oak Ridge National Laboratory (ORNL), the University of Tennessee (UT), and Florida State University (FSU). ORNL served as the lead in-stitution with Dr. A.V. Palumbo responsible for project coordination, integration, and deliver-ables. In situ uranium bioremediation is focused on biostimulating indigenous microorganisms through a combination of pH neutralization and the addition of large amounts of electron donor. Successful biostimulation of U(VI) reduction has been demonstrated in the field and in the laboratory. However, little data is available on the dynamics of microbial populations capable of U(VI) reduction, and the differences in the microbial community dynamics between proposed electron donors have not been explored. In order to elucidate the potential mechanisms of U(VI) reduction for optimization of bioremediation strategies, structure-function relationships of microbial populations were investigated in microcosms of subsurface materials cocontaminated with radionuclides and nitrate from the Oak Ridge Field Research Center (ORFRC), Oak Ridge, Tennessee.

  7. Genetic mapping of abiotic stress responses in sorghum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to rich genetic diversity for tolerance to various abiotic stress conditions, sorghum is an ideal system for genetic mapping and elucidation of genome regions that confer such response among cereal crops. Coupled with the development of DNA marker technologies and most recently the sequencing o...

  8. ABIOTIC DEGRADATION OF TRICHLOROETHYLENE UNDER THERMAL REMEDIATION CONDITIONS

    EPA Science Inventory

    The degradation of TCE (C2HCl3) to carbon dioxide (CO2) and chloride (Cl-) has been reported to occur during thermal remediation of subsurface environments. The overall goal of this study was to evaluate abiotic degradation of TCE at el...

  9. Integrating omic approaches for abiotic stress tolerance in soybean

    PubMed Central

    Deshmukh, Rupesh; Sonah, Humira; Patil, Gunvant; Chen, Wei; Prince, Silvas; Mutava, Raymond; Vuong, Tri; Valliyodan, Babu; Nguyen, Henry T.

    2014-01-01

    Soybean production is greatly influenced by abiotic stresses imposed by environmental factors such as drought, water submergence, salt, and heavy metals. A thorough understanding of plant response to abiotic stress at the molecular level is a prerequisite for its effective management. The molecular mechanism of stress tolerance is complex and requires information at the omic level to understand it effectively. In this regard, enormous progress has been made in the omics field in the areas of genomics, transcriptomics, and proteomics. The emerging field of ionomics is also being employed for investigating abiotic stress tolerance in soybean. Omic approaches generate a huge amount of data, and adequate advancements in computational tools have been achieved for effective analysis. However, the integration of omic-scale information to address complex genetics and physiological questions is still a challenge. In this review, we have described advances in omic tools in the view of conventional and modern approaches being used to dissect abiotic stress tolerance in soybean. Emphasis was given to approaches such as quantitative trait loci (QTL) mapping, genome-wide association studies (GWAS), and genomic selection (GS). Comparative genomics and candidate gene approaches are also discussed considering identification of potential genomic loci, genes, and biochemical pathways involved in stress tolerance mechanism in soybean. This review also provides a comprehensive catalog of available online omic resources for soybean and its effective utilization. We have also addressed the significance of phenomics in the integrated approaches and recognized high-throughput multi-dimensional phenotyping as a major limiting factor for the improvement of abiotic stress tolerance in soybean. PMID:24917870

  10. Reactive oxygen species signaling in plants under abiotic stress.

    PubMed

    Choudhury, Shuvasish; Panda, Piyalee; Sahoo, Lingaraj; Panda, Sanjib Kumar

    2013-04-01

    Abiotic stresses like heavy metals, drought, salt, low temperature, etc. are the major factors that limit crop productivity and yield. These stresses are associated with production of certain deleterious chemical entities called reactive oxygen species (ROS), which include hydrogen peroxide (H₂O₂), superoxide radical (O₂(-)), hydroxyl radical (OH(-)), etc. ROS are capable of inducing cellular damage by degradation of proteins, inactivation of enzymes, alterations in the gene and interfere in various pathways of metabolic importance. Our understanding on ROS in response to abiotic stress is revolutionized with the advancements in plant molecular biology, where the basic understanding on chemical behavior of ROS is better understood. Understanding the molecular mechanisms involved in ROS generation and its potential role during abiotic stress is important to identify means by which plant growth and metabolism can be regulated under acute stress conditions. ROS mediated oxidative stress, which is the key to understand stress related toxicity have been widely studied in many plants and the results in those studies clearly revealed that oxidative stress is the main symptom of toxicity. Plants have their own antioxidant defense mechanisms to encounter ROS that is of enzymic and non-enzymic nature . Coordinated activities of these antioxidants regulate ROS detoxification and reduces oxidative load in plants. Though ROS are always regarded to impart negative impact on plants, some reports consider them to be important in regulating key cellular functions; however, such reports in plant are limited. Molecular approaches to understand ROS metabolism and signaling have opened new avenues to comprehend its critical role in abiotic stress. ROS also acts as secondary messenger that signals key cellular functions like cell proliferation, apoptosis and necrosis. In higher eukaryotes, ROS signaling is not fully understood. In this review we summarize our understanding on ROS

  11. Abiotic ozone and oxygen in atmospheres similar to prebiotic Earth

    SciTech Connect

    Domagal-Goldman, Shawn D.; Segura, Antígona; Claire, Mark W.; Robinson, Tyler D.; Meadows, Victoria S.

    2014-09-10

    The search for life on planets outside our solar system will use spectroscopic identification of atmospheric biosignatures. The most robust remotely detectable potential biosignature is considered to be the detection of oxygen (O{sub 2}) or ozone (O{sub 3}) simultaneous to methane (CH{sub 4}) at levels indicating fluxes from the planetary surface in excess of those that could be produced abiotically. Here we use an altitude-dependent photochemical model with the enhanced lower boundary conditions necessary to carefully explore abiotic O{sub 2} and O{sub 3} production on lifeless planets with a wide variety of volcanic gas fluxes and stellar energy distributions. On some of these worlds, we predict limited O{sub 2} and O{sub 3} buildup, caused by fast chemical production of these gases. This results in detectable abiotic O{sub 3} and CH{sub 4} features in the UV-visible, but no detectable abiotic O{sub 2} features. Thus, simultaneous detection of O{sub 3} and CH{sub 4} by a UV-visible mission is not a strong biosignature without proper contextual information. Discrimination between biological and abiotic sources of O{sub 2} and O{sub 3} is possible through analysis of the stellar and atmospheric context—particularly redox state and O atom inventory—of the planet in question. Specifically, understanding the spectral characteristics of the star and obtaining a broad wavelength range for planetary spectra should allow more robust identification of false positives for life. This highlights the importance of wide spectral coverage for future exoplanet characterization missions. Specifically, discrimination between true and false positives may require spectral observations that extend into infrared wavelengths and provide contextual information on the planet's atmospheric chemistry.

  12. Microbiological and abiotic processes in modelling longer-term marine corrosion of steel.

    PubMed

    Melchers, Robert E

    2014-06-01

    Longer term exposure of mild steel in natural (biotic) waters progresses as a bimodal function of time, both for corrosion mass loss and for pit depth. Recent test results, however, found this also for immersion in clean fresh, almost pure and triply distilled waters. This shows chlorides or microbiological activity is not essential for the electrochemical processes producing bimodal behaviour. It is proposed that the first mode is aerobic corrosion that eventually produces a non-homogeneous corroded surface and rust coverage sufficient to allow formation of anoxic niches. Within these, aggressive autocatalytic reduction then occurs under anoxic abiotic conditions, caused by sulfide species originating from the MnS inclusions typical in steels. This is consistent with Wranglen's model for abiotic anoxic crevice and pitting corrosion without external aggressive ions. In biotic conditions, metabolites from anaerobic bacterial activity within and near the anoxic niches provides additional (sulfide) species to contribute to the severity of corrosion. Limited observational evidence that supports this hypothesis is given but further investigation is required to determine all contributor(s) to the cathodic current for the electrochemical reaction. The results are important for estimating the contribution of microbiological corrosion in infrastructure applications.

  13. Quest for Environmentally-Benign Ligands for Actinide Separations: Thermodynamic, Spectroscopic, and Structural Characterization of U(VI) Complexes with Oxa-Diamide and Related Ligands

    SciTech Connect

    Advanced Light Source; Tian, Guoxin; Rao, Linfeng; Teat, Simon J.; Liu, Guokui

    2009-01-05

    Complexation of U(VI) with N,N,N{prime},N{prime}-tetramethyl-3-oxa-glutaramide (TMOGA) and N,N-dimethyl-3-oxa-glutaramic acid (DMOGA) was studied in comparison with their dicarboxylate analog, oxydiacetic acid (ODA). Thermodynamic parameters, including stability constants, enthalpy and entropy of complexation, were determined by spectrophotometry, potentiometry and calorimetry. Single-crystal X-ray diffractometry, EXAFS spectroscopy, FT-IR absorption and laser-induced luminescence spectroscopy were used to obtain structural information on the U(VI) complexes. Like ODA, TMOGA and DMOGA form tridentate U(VI) complexes, with three oxygen atoms (the amide, ether and/or carboxylate oxygen) coordinating to the linear UO{sub 2}{sup 2+} cation via the equatorial plane. The stability constants, enthalpy and entropy of complexation all decrease in the order ODA > DMOGA > TMOGA, showing that the complexation is entropy driven and the substitution of a carboxylate group with an amide group reduces the strength of complexation with U(VI) due to the decrease in the entropy of complexation. The trend in the thermodynamic stability of the complexes correlates very well with the structural and spectroscopic data obtained by single crystal XRD, FT-IR and laser-induced luminescence spectroscopy.

  14. Surface Engineering of PAMAM-SDB Chelating Resin with Diglycolamic Acid (DGA) Functional Group for Efficient Sorption of U(VI) and Th(IV) from Aqueous Medium.

    PubMed

    Ilaiyaraja, P; Deb, A K Singha; Ponraju, D; Ali, Sk Musharaf; Venkatraman, B

    2017-04-15

    A novel chelating resin obtained via growth of PAMAM dendron on surface of styrene divinyl benzene resin beads, followed by diglycolamic acid functionalization of the dendrimer terminal. Batch experiments were conducted to study the effects of pH, nitric acid concentration, amount of adsorbent, shaking time, initial metal ion concentration and temperature on U(VI) and Th(IV) adsorption efficiency. Diglycolamic acid terminated PAMAM dendrimer functionalized styrene divinylbenzene chelating resin (DGA-PAMAM-SDB) is found to be an efficient candidate for the removal of U(VI) and Th(IV) ions from aqueous (pH >4) and nitric acid media (>3M). The sorption equilibrium could be reached within 60min, and the experimental data fits with pseudo-second-order model. Langmuir sorption isotherm model correlates well with sorption equilibrium data. The maximum U(VI) and Th(IV) sorption capacity onto DGA-PAMAMG5-SDB was estimated to be about 682 and 544.2mgg(-1) respectively at 25°C. The interaction of actinides and chelating resin is reversible and hence, the resin can be regenerated and reused. DFT calculation on the interaction of U(VI) and Th(IV) ions with chelating resin validates the experimental findings.

  15. Surface catalysis of uranium(VI) reduction by iron(II)

    NASA Astrophysics Data System (ADS)

    Liger, Emmanuelle; Charlet, Laurent; Van Cappellen, Philippe

    1999-10-01

    Colloidal hematite (α-Fe2O3) is used as model solid to investigate the kinetic effect of specific adsorption interactions on the chemical reduction of uranyl (UVIO22+) by ferrous iron. Acid-base titrations and Fe(II) and uranyl adsorption experiments are performed on hematite suspensions, under O2- and CO2-free conditions. The results are explained in terms of a constant capacitance surface complexation model of the hematite-aqueous solution interface. Two distinct Fe(II) surface complexes are required to reproduce the data: (≡FeIIIOFeII)+ (or ≡FeIIIOFeII(OH2)n+) and ≡FeIIIOFeIIOH0 (or ≡FeIIIOFeII(OH2)n-1OH0). The latter complex represents a significant fraction of total adsorbed Fe(II) at pH > 6.5. Uranyl binding to the hematite particles is characterized by a sharp adsorption edge between pH 4 and pH 5.5. Because of the absence of competing aqueous carbonate complexes, uranyl remains completely adsorbed at pH > 7. A single mononuclear surface complex accounts for the adsorption of uranyl over the entire range of experimental conditions. Although thermodynamically feasible, no reaction between uranyl and Fe(II) is observed in homogeneous solution at pH 7.5, for periods of up to three days. In hematite suspensions, however, surface-bound uranyl reacts on a time scale of hours. Based on Fourier Transformed Infrared spectra, chemical reduction of U(VI) is inferred to be the mechanism responsible for the disappearance of uranyl. The kinetics of uranyl reduction are quantified by measuring the decrease with time of the concentration of U(VI) extractable from the hematite particles by NaHCO3. In the presence of excess Fe(II), the initial rate of U(VI) reduction exhibits a first-order dependence on the concentration of adsorbed uranyl. The pseudo-first-order rate constant varies with pH (range, 6-7.5) and the total (dissolved + adsorbed) concentration of Fe(II) (range, 2-160 μM). When analyzing the rate data in terms of the calculated surface speciation, the

  16. Effect of Humic Substances on the Trapping and Transformations of U(VI) by Ferrihydrite

    NASA Astrophysics Data System (ADS)

    Dublet, G.; Brown, G. E.; Bargar, J.; Fendorf, S. E.; Janot, N.

    2013-12-01

    The Old Rifle DOE site in Colorado was a major site for milling uranium ore. U concentrations up to 1.8 uM persist in the Rifle aquifer, even after 'cleaning' the waste source of contaminations [1]. Understanding the behavior of U(VI) in this anthropogenically perturbed system is crucial for controlling the level of U contamination. Direct investigations of U speciation at this site have shown that U is associated with a wide variety of minerals as well as with natural organic matter (NOM) [2]. NOM has multiple functional groups which can be highly reactive with respect to aqueous metal ions, including actinides. Such interactions result in the formation of organo-mineral-metal (ternary) complexes and catalyze redox transformations; in addition, they can enhance mineral dissolution and metal transport [3,4,5]. In the complex soil/sediment system, aqueous, mineral, and organic phases are intimately mixed and their interactions are difficult to characterize by direct investigation [1]. The nanoparticulate iron hydroxide ferrihydrite (Fh), which is ubiquitous in many natural soils and highly reactive toward metal ions, is expected to significantly influence the fate of U in natural soils and is abundant in the subsurface at the Rifle site. NOM is also abundant at this site; however, little is known about the effect of NOM associated with ferrihydrite on the fate of U in such subsurface environments. To date, simple model systems composed mainly of two components (Fh and NOM) [6], (U and NOM or simple organic molecules) [7], or (Fh and U) [8,9], and more rarely composed of three components [10,11] have been studied in an effort to understand interactions among these components. In order to extend this earlier work to ternary systems, we have carried out batch reactions of U, a humic acid standard - Eliott soil humic acid (ESHA), and Fh under conditions that mimic those in the subsurface at Rifle. We have used U L3- and Fe K-edge XANES and EXAFS spectroscopy coupled

  17. Scattering properties of Saturn's rings in the far ultraviolet from Cassini UVIS spectra

    NASA Astrophysics Data System (ADS)

    Bradley, E. Todd; Colwell, Joshua E.; Esposito, Larry W.

    2013-07-01

    We use Cassini UVIS data to determine the scattering properties of Saturn's ring particles in the FUV. We have replaced the scattering function from the classical Chandrasekhar single scattering radiative transfer equation for reflectance with a ring wake model for the A and B rings derived from stellar occultations. The free parameters in this model are the ring particle Bond albedo, AB, and the ring particle asymmetry parameter, g, which equals the cosine of the most probable scattering angle of a photon from a ring particle. The spectrum of Saturn's rings from 140 to 190 nm shows an absorption feature due to water ice shortward of 165 nm. We compare our model values for I/F to lit-side data at 155 nm and at 180 nm for regions in both the A and B rings. We used the unmodified Chandrasekhar model for the C ring and Cassini Division, and in all cases we determined AB and g in the FUV for the first time. Values of AB vary between 0.04 and 0.091 at 180 nm and between 0.012 and 0.019 at 155 nm. The variations across the ring of AB at 180 nm is consistent with a greater abundance of non-ice contaminant in the C ring and Cassini Division and a minimum in contaminant abundance in the outer B ring. There is little variation in AB at 155 nm across the rings, which suggests that the reflectance of the water ice and non-water ice material shortward of the 165 nm absorption edge are about the same. Values of g vary between -0.68 and -0.78 at 180 nm and between -0.63 and -0.77 at 155 nm showing that the ring particles are highly backscattering in the FUV. We find that the wavelength of the absorption feature varies with ring region and viewing geometry indicating a different photon mean path length, L, through the outer layer of the ring particle (Bradley, E.T., Colwell, J.E., Esposito, L.W., Cuzzi, J.N., Tollerud, H., Chambers, L. [2010]. Icarus 206 (2), 458-466). We compared I/F from 152 to 185 nm to a radiative transfer spectral model developed by Shkuratov et al

  18. Determination of kinetic coefficients for the simultaneous reduction of sulfate and uranium by Desulfovibrio desulfuricans bacteria

    SciTech Connect

    Tucker, M.D.

    1995-05-01

    Uranium contamination of groundwaters and surface waters near abandoned mill tailings piles is a serious concern in many areas of the western United States. Uranium usually exists in either the U(IV) or the U(VI) oxidation state. U(VI) is soluble in water and, as a result, is very mobile in the environment. U(IV), however, is generally insoluble in water and, therefore, is not subject to aqueous transport. In recent years, researchers have discovered that certain anaerobic microorganisms, such as the sulfate-reducing bacteria Desulfovibrio desulfuricans, can mediate the reduction of U(VI) to U(IV). Although the ability of this microorganism to reduce U(VI) has been studied in some detail by previous researchers, the kinetics of the reactions have not been characterized. The purpose of this research was to perform kinetic studies on Desulfovibrio desulficans bacteria during simultaneous reduction of sulfate and uranium and to determine the phase in which uranium exists after it has been reduced and precipitated from solution. The studies were conducted in a laboratory-scale chemostat under substrate-limited growth conditions with pyruvate as the substrate. Kinetic coefficients for substrate utilization and cell growth were calculated using the Monod equation. The maximum rate of substrate utilization (k) was determined to be 4.70 days{sup {minus}1} while the half-velocity constant (K{sub s}) was 140 mg/l COD. The yield coefficient (Y) was determined to be 0.17 mg cells/mg COD while the endogenous decay coefficient (k{sub d}) was calculated as 0.072 days{sup {minus}1}. After reduction, U(IV) Precipitated from solution in the uraninite (UO{sub 2}) phase. Uranium removal efficiency as high as 90% was achieved in the chemostat.

  19. The effect of organic and inorganic aqueous uranium speciation on U(VI) bioavailability to an aquatic invertebrate

    NASA Astrophysics Data System (ADS)

    Fuller, C.; Croteau, M. N.; Campbell, K. M.; Cain, D.; Aiken, G.

    2015-12-01

    Growing world-wide demand for uranium (U) as an energy source has raised concerns of the human and ecological risks of U extraction and processing in the United States. Because of limited information on the relationship between U speciation and bioavailability, particularly in aquatic animals, we are characterizing U uptake by a model freshwater invertebrate (the snail Lymnaea stagnalis). This species grazes on biofilms and is thus key in the trophic transfer of contaminants through aquatic food webs. We determined the bioavailability of dissolved U(VI) over a range of water hardness, pH (6 to 8), and the presence of dissolved natural organic matter (NOM) as a competing ligand, to test the effect of aqueous speciation on uptake. Bioavailability was assessed using U uptake rate constants (kuw) derived from a kinetic bioaccumulation model. Dissolved U (1 to 1000 nM) was bioavailable over the range of geochemical conditions tested with kuw (L/g/d) decreasing with increasing dissolved Ca and with increasing pH. For example, kuw decreased from 1.6 to 0.3 as dissolved Ca was increased from 0.04 to 1.5 mM, suggesting competition between bioavailable U(VI) species and strong ternary calcium uranyl carbonato complexes. At pH 7.5 in synthetic moderately hard freshwater, kuw decreased from 0.22 in the absence of NOM to 0.07 in the presence of a hydrophobic acid NOM isolate of high aromaticity (SUVA = 5) consistent with strong aqueous complexation of U(VI) by the NOM. The co-variance of U uptake and aqueous U species distribution is being analyzed to determine which U species are bioavailable. U speciation in systems with NOM is calculated using conditional U-NOM binding constants derived by equilibrium dialysis ligand exchange methodology. The bioavailability of dietborne U is being tested since dietary metal uptake prevails for many aquatic species. These experiments include addition of ferrihydrite with U sorbed, both in the presence and absence of NOM, and mixed with diet.

  20. Spectroscopic study on the role of TiO{sub 2} in the adsorption of Eu(III) and U(VI) on silica surfaces in aqueous solutions

    SciTech Connect

    Im, Hee-Jung Park, Kyoung Kyun; Jung, Euo Chang

    2014-10-15

    Highlights: • Enhanced adsorption of Eu(III) and U(VI) onto TiO{sub 2}-coated silica. • Enhanced Eu(III) luminescence and lifetime on TiO{sub 2}-coated silica. • Energy transfer from TiO{sub 2} of TiO{sub 2}-coated silica to Eu(III) in solutions. - Abstract: To determine the effects of TiO{sub 2} on the adsorption of actinides onto mineral surfaces in groundwater, silica was partially coated with TiO{sub 2}, and Eu(III) and U(VI) were individually adsorbed from separate 0.1 mM concentration solutions. The TiO{sub 2}-coated silica showed higher Eu(III) and U(VI) adsorption capacities for increasing amounts of TiO{sub 2} coated on the silica surfaces, and thus the existence of TiO{sub 2} can decrease the mobility of Eu(III) and U(VI) contaminants. In luminescence studies, it was found that TiO{sub 2} considerably enhanced the luminescence of the adsorbed Eu(III) indicating that TiO{sub 2}–Eu(III) forms surface complexes which may decrease the number of water molecules at the inner sphere of Eu(III), but this was not observed for U(VI). An energy transfer from the TiO{sub 2} to the Eu(III) was confirmed in this case of amorphous TiO{sub 2}-coated silica in Eu(III) solutions, and an increase of the luminescence lifetime of Eu(III) for increasing concentrations of coated TiO{sub 2} was also observed.

  1. Mechanisms of plant-plant interactions: concealment from herbivores is more important than abiotic-stress mediation in an African savannah.

    PubMed

    Louthan, Allison M; Doak, Daniel F; Goheen, Jacob R; Palmer, Todd M; Pringle, Robert M

    2014-04-07

    Recent work on facilitative plant-plant interactions has emphasized the importance of neighbours' amelioration of abiotic stress, but the facilitative effects of neighbours in reducing plant apparency to herbivores have received less attention. Whereas theory on stress reduction predicts that competition should be more important in less stressful conditions, with facilitation becoming more important in harsh environments, apparency theory suggests that facilitation should be greater in the presence of herbivores, where it is disadvantageous to be conspicuous regardless of abiotic stress level. We tested the relative strength of neighbours' stress reduction versus apparency reduction on survival, growth, reproduction and lifetime fitness of Hibiscus meyeri, a common forb in central Kenya, using neighbour removals conducted inside and outside large-herbivore exclosures replicated in arid and mesic sites. In the absence of herbivores, neighbours competed with H. meyeri in mesic areas and facilitated H. meyeri in arid areas, as predicted by stress-reduction mechanisms. By contrast, neighbours facilitated H. meyeri in the presence of herbivory, regardless of aridity level, consistent with plant apparency. Our results show that the facilitative effects arising from plant apparency are stronger than the effects arising from abiotic stress reduction in this system, suggesting that plant-apparency effects may be particularly important in systems with extant large-herbivore communities.

  2. Measuring Particle Sizes from Diffraction Spikes at Saturn’s Ring Edges with Cassini UVIS Stellar Occultations

    NASA Astrophysics Data System (ADS)

    Becker, Tracy M.; Colwell, J. E.; Esposito, L. W.

    2013-10-01

    The sharp edges that define many of the boundaries in Saturn’s rings enable the detection of diffracted starlight by small particles during stellar occultations. As the occulted star is revealed in a gap or beyond the outer edge of the rings, the direct stellar signal is augmented by an additional signal due to the scattered light from the particles in the nearby edge. The Ultraviolet Imaging Spectrograph (UVIS) on Cassini has detected strong diffraction signals throughout Saturn’s A ring in 50-75% of the one hundred and thirty stellar occultations analyzed thus far. We measure the radial extent and the strength of the diffraction signals at the Encke Gap edges, the Keeler Gap edges, and the outer edge of the A ring in the UVIS occultation data. The radial extent of the signal is determined by the size of the smallest particles and the number of those particles determines the amplitude of the signal. We therefore use the measurements to place a lower limit on the particle size and to constrain the fractional optical depth due to these small particles. The diffraction signals extend radially from several meters to tens of kilometers beyond the ring edges, indicating significant populations of centimeter and millimeter-sized particles. We find more prominent diffraction signals in the Keeler Gap edges and the outer edge of the A ring than in the Encke Gap edges which suggests a decrease in particle size toward the outer edge of the A ring. We will present the results of a study of the small particle population at ring edges with azimuthal distance from the embedded ringmoons Pan (Encke Gap) and Daphnis (Keeler Gap) and the conclusions from our analysis of the size and abundance of particles in these three regions of the outer A ring.

  3. POLAR-UVI and other Coordinated Observations of a Traveling Convection Vortex Event Observed on 24 July 1996

    NASA Technical Reports Server (NTRS)

    Clauer, C. R.; Baker, J. B.; Ridley, A. J.; Sitar, R. J.; Papitashvili, V. O.; Cumnock, J.; Spann, J. F., Jr.; Brittnacher, M. J.; Parks, G. K.

    1997-01-01

    Coordinated analysis of data from the POLAR UVI instrument, ground magnetometers, incoherent scatter radar, solar wind monitors IMP-8 and WIND, and DMSP satellite is focused on a traveling convection vortex (TCV) event on 24 July 1966. Starting at 10:48 UT, ground magnetometers in Greenland and eastern Canada measure pulsations consistent with the passing overhead of a series of alternating TCV field-aligned current pairs. Sondrestrom incoherent scatter radar measures strong modulation of the strength and direction of ionospheric plasma flow, The magnetometer pulsations grow in magnitude over the next hour, peaking in intensity at 11:39 UT, at which time the UVI instrument measures a localized intensification of auroral emissions over central and western Greenland. Subsequent images show the intensification grow in strength and propagate westward (tailward) until approximately 11:58 UT at which time the emissions fade. These observations are consistent with the westward passage of two pairs of moderately intense TCVs over central Greenland followed by a third very intense TCV pair. The intensification of auroral emissions at 11:39 UT is associated with the trailing vortex of the third TCV pair, thought to be the result of an upward field-aligned current. Measurements of the solar wind suggest that a pressure change may be responsible for triggering the first two pairs of TCVS, and that a subsequent sudden change in orientation of the IMF may have produced the intensification of the third TCV pair and the associated aurora] brightening. DMSP particle data indicate that the TCVs occur on field lines which map to the boundary plasma sheet or outer edge of the low latitude boundary layer.

  4. Biotic and abiotic controls on co-occurring nitrogen cycling processes in shallow Arctic shelf sediments

    NASA Astrophysics Data System (ADS)

    McTigue, N. D.; Gardner, W. S.; Dunton, K. H.; Hardison, A. K.

    2016-10-01

    The processes that convert bioavailable inorganic nitrogen to inert nitrogen gas are prominent in continental shelf sediments and represent a critical global sink, yet little is known of these pathways in the Arctic where 18% of the world's continental shelves are located. Moreover, few data from the Arctic exist that separate loss processes like denitrification and anaerobic ammonium oxidation (anammox) from recycling pathways like dissimilatory nitrate reduction to ammonium (DNRA) or source pathways like nitrogen fixation. Here we present measurements of these co-occurring processes using 15N tracers. Denitrification was heterogeneous among stations and an order of magnitude greater than anammox and DNRA, while nitrogen fixation was undetectable. No abiotic factors correlated with interstation variability in biogeochemical rates; however, bioturbation potential explained most of the variation. Fauna-enhanced denitrification is a potentially important but overlooked process on Arctic shelves and highlights the role of the Arctic as a significant global nitrogen sink.

  5. Biotic and abiotic controls on co-occurring nitrogen cycling processes in shallow Arctic shelf sediments

    PubMed Central

    McTigue, N. D.; Gardner, W. S.; Dunton, K. H.; Hardison, A. K.

    2016-01-01

    The processes that convert bioavailable inorganic nitrogen to inert nitrogen gas are prominent in continental shelf sediments and represent a critical global sink, yet little is known of these pathways in the Arctic where 18% of the world's continental shelves are located. Moreover, few data from the Arctic exist that separate loss processes like denitrification and anaerobic ammonium oxidation (anammox) from recycling pathways like dissimilatory nitrate reduction to ammonium (DNRA) or source pathways like nitrogen fixation. Here we present measurements of these co-occurring processes using 15N tracers. Denitrification was heterogeneous among stations and an order of magnitude greater than anammox and DNRA, while nitrogen fixation was undetectable. No abiotic factors correlated with interstation variability in biogeochemical rates; however, bioturbation potential explained most of the variation. Fauna-enhanced denitrification is a potentially important but overlooked process on Arctic shelves and highlights the role of the Arctic as a significant global nitrogen sink. PMID:27782213

  6. SERDP ER-1376 Enhancement of In Situ Bioremediation of Energetic Compounds by Coupled Abiotic/Biotic Processes:Final Report for 2004 - 2006

    SciTech Connect

    Szecsody, James E.; Comfort, Steve; Fredrickson, Herbert L.; Boparai, Hardiljeet K.; Devary, Brooks J.; Thompson, Karen T.; Phillips, Jerry L.; Crocker, Fiona H.; Girvin, Donald C.; Resch, Charles T.; Shea, Patrick; Fischer, Ashley E.; Durkin, Lisa M.

    2007-08-07

    This project was initiated by SERDP to quantify processes and determine the effectiveness of abiotic/biotic mineralization of energetics (RDX, HMX, TNT) in aquifer sediments by combinations of biostimulation (carbon, trace nutrient additions) and chemical reduction of sediment to create a reducing environment. Initially it was hypothesized that a balance of chemical reduction of sediment and biostimulation would increase the RDX, HMX, and TNT mineralization rate significantly (by a combination of abiotic and biotic processes) so that this abiotic/biotic treatment may be a more efficient for remediation than biotic treatment alone in some cases. Because both abiotic and biotic processes are involved in energetic mineralization in sediments, it was further hypothesized that consideration for both abiotic reduction and microbial growth was need to optimize the sediment system for the most rapid mineralization rate. Results show that there are separate optimal abiotic/biostimulation aquifer sediment treatments for RDX/HMX and for TNT. Optimal sediment treatment for RDX and HMX (which have chemical similarities and similar degradation pathways) is mainly chemical reduction of sediment, which increased the RDX/HMX mineralization rate 100 to150 times (relative to untreated sediment), with additional carbon or trace nutrient addition, which increased the RDX/HMX mineralization rate an additional 3 to 4 times. In contrast, the optimal aquifer sediment treatment for TNT involves mainly biostimulation (glucose addition), which stimulates a TNT/glucose cometabolic degradation pathway (6.8 times more rapid than untreated sediment), degrading TNT to amino-intermediates that irreversibly sorb (i.e., end product is not CO2). The TNT mass migration risk is minimized by these transformation reactions, as the triaminotoluene and 2,4- and 2,6-diaminonitrotoluene products that irreversibly sorb are no longer mobile in the subsurface environment. These transformation rates are increased

  7. Microbial Populations Stimulated for Hexavalent Uranium Reduction in Uranium Mine Sediment

    PubMed Central

    Suzuki, Yohey; Kelly, Shelly D.; Kemner, Kenneth M.; Banfield, Jillian F.

    2003-01-01

    Uranium-contaminated sediment and water collected from an inactive uranium mine were incubated anaerobically with organic substrates. Stimulated microbial populations removed U almost entirely from solution within 1 month. X-ray absorption near-edge structure analysis showed that U(VI) was reduced to U(IV) during the incubation. Observations by transmission electron microscopy, selected area diffraction pattern analysis, and energy-dispersive X-ray spectroscopic analysis showed two distinct types of prokaryotic cells that precipitated only a U(IV) mineral uraninite (UO2) or both uraninite and metal sulfides. Prokaryotic cells associated with uraninite and metal sulfides were inferred to be sulfate-reducing bacteria. Phylogenetic analysis of 16S ribosomal DNA obtained from the original and incubated sediments revealed that microbial populations were changed from microaerophilic Proteobacteria to anaerobic low-G+C gram-positive sporeforming bacteria by the incubation. Forty-two out of 94 clones from the incubated sediment were related to sulfate-reducing Desulfosporosinus spp., and 23 were related to fermentative Clostridium spp. The results suggest that, if in situ bioremediation were attempted in the uranium mine ponds, Desulfosporosinus spp. would be a major contributor to U(VI) and sulfate reduction and Clostridium spp. to U(VI) reduction. PMID:12620814

  8. Hormone balance and abiotic stress tolerance in crop plants.

    PubMed

    Peleg, Zvi; Blumwald, Eduardo

    2011-06-01

    Plant hormones play central roles in the ability of plants to adapt to changing environments, by mediating growth, development, nutrient allocation, and source/sink transitions. Although ABA is the most studied stress-responsive hormone, the role of cytokinins, brassinosteroids, and auxins during environmental stress is emerging. Recent evidence indicated that plant hormones are involved in multiple processes. Cross-talk between the different plant hormones results in synergetic or antagonic interactions that play crucial roles in response of plants to abiotic stress. The characterization of the molecular mechanisms regulating hormone synthesis, signaling, and action are facilitating the modification of hormone biosynthetic pathways for the generation of transgenic crop plants with enhanced abiotic stress tolerance.

  9. An abiotic analogue of the nuclear pore complex hydrogel.

    PubMed

    Bird, Sean P; Baker, Lane A

    2011-09-12

    We describe an abiotic hydrogel that mimics selectivity of the nuclear pore complex. Copolymerization of peptide tetramers (phenylalanine-serine-phenylalanine-glycine, FSFG) with acrylamide results in hydrophobic interactions significant enough to allow the formation of freestanding hydrogel structures. Incorporation of FSFG motifs also renders the hydrogels selective. Selective binding of importins and nuclear transport receptor-cargo complexes is qualitatively demonstrated and compared with polyacrylamide, hydrogels prepared from a control peptide, and hydrogels prepared from the nuclear pore complex protein Nsp1. These abiotic hydrogels will enable further studies of the unique transport mechanisms of the nuclear pore complex and provide an interesting paradigm for the future development of synthetic platforms for separations and selective interfaces.

  10. Abiotic mediation of a mutualism drives herbivore abundance.

    PubMed

    Mooney, Emily H; Phillips, Joseph S; Tillberg, Chadwick V; Sandrow, Cheryl; Nelson, Annika S; Mooney, Kailen A

    2016-01-01

    Species abundance is typically determined by the abiotic environment, but the extent to which such effects occur through the mediation of biotic interactions, including mutualisms, is unknown. We explored how light environment (open meadow vs. shaded understory) mediates the abundance and ant tending of the aphid Aphis helianthi feeding on the herb Ligusticum porteri. Yearly surveys consistently found aphids to be more than 17-fold more abundant on open meadow plants than on shaded understory plants. Manipulations demonstrated that this abundance pattern was not due to the direct effects of light environment on aphid performance, or indirectly through host plant quality or the effects of predators. Instead, open meadows had higher ant abundance and per capita rates of aphid tending and, accordingly, ants increased aphid population growth in meadow but not understory environments. The abiotic environment thus drives the abundance of this herbivore exclusively through the mediation of a protection mutualism.

  11. Experiments on the abiotic amplification of optical activity

    NASA Technical Reports Server (NTRS)

    Bonner, W. A.; Blair, N. E.; Dirbas, F. M.

    1981-01-01

    Experiments concerning the physical mechanisms for the abiotic generation and chemical mechanisms for the amplification of optical activity in biological compounds are reviewed. Attention is given to experiments involving the determination of the differential adsorption of racemic amino acids on d- and l-quartz, the asymmetric photolysis of racemic amino acids by circularly polarized light, and the asymmetric radiolysis of solid amino acids by longitudinally polarized electrons, and the enantiomeric enrichments thus obtained are noted. Further experiments on the amplification of the chirality in the polymerization of D, L-amino acid mixtures and the hydrolysis of D-, L-, and D, L-polypeptides are discussed. It is suggested that a repetitive cycle of partial polymerization-hydrolyses may account for the abiotic genesis of optically enriched polypeptides on the primitive earth.

  12. Transcriptional networks-crops, clocks, and abiotic stress.

    PubMed

    Gehan, Malia A; Greenham, Kathleen; Mockler, Todd C; McClung, C Robertson

    2015-04-01

    Several factors affect the yield potential and geographical range of crops including the circadian clock, water availability, and seasonal temperature changes. In order to sustain and increase plant productivity on marginal land in the face of both biotic and abiotic stresses, we need to more efficiently generate stress-resistant crops through marker-assisted breeding, genetic modification, and new genome-editing technologies. To leverage these strategies for producing the next generation of crops, future transcriptomic data acquisition should be pursued with an appropriate temporal design and analyzed with a network-centric approach. The following review focuses on recent developments in abiotic stress transcriptional networks in economically important crops and will highlight the utility of correlation-based network analysis and applications.

  13. SUMO, a heavyweight player in plant abiotic stress responses.

    PubMed

    Castro, Pedro Humberto; Tavares, Rui Manuel; Bejarano, Eduardo R; Azevedo, Herlânder

    2012-10-01

    Protein post-translational modifications diversify the proteome and install new regulatory levels that are crucial for the maintenance of cellular homeostasis. Over the last decade, the ubiquitin-like modifying peptide small ubiquitin-like modifier (SUMO) has been shown to regulate various nuclear processes, including transcriptional control. In plants, the sumoylation pathway has been significantly implicated in the response to environmental stimuli, including heat, cold, drought, and salt stresses, modulation of abscisic acid and other hormones, and nutrient homeostasis. This review focuses on the emerging importance of SUMO in the abiotic stress response, summarizing the molecular implications of sumoylation and emphasizing how high-throughput approaches aimed at identifying the full set of SUMO targets will greatly enhance our understanding of the SUMO-abiotic stress association.

  14. Arbuscular mycorrhizal fungal responses to abiotic stresses: A review.

    PubMed

    Lenoir, Ingrid; Fontaine, Joël; Lounès-Hadj Sahraoui, Anissa

    2016-03-01

    The majority of plants live in close collaboration with a diversity of soil organisms among which arbuscular mycorrhizal fungi (AMF) play an essential role. Mycorrhizal symbioses contribute to plant growth and plant protection against various environmental stresses. Whereas the resistance mechanisms induced in mycorrhizal plants after exposure to abiotic stresses, such as drought, salinity and pollution, are well documented, the knowledge about the stress tolerance mechanisms implemented by the AMF themselves is limited. This review provides an overview of the impacts of various abiotic stresses (pollution, salinity, drought, extreme temperatures, CO2, calcareous, acidity) on biodiversity, abundance and development of AMF and examines the morphological, biochemical and molecular mechanisms implemented by AMF to survive in the presence of these stresses.

  15. Sustainability of Long-Term Abiotic Attenuation of Chlorinated Ethenes

    DTIC Science & Technology

    2007-09-28

    that contribute to abiotic transformations is critical to assess the feasibility of natural attenuation and promote the rationale design of...anaerobic glovebox. The resulting slurry was mixed for three days and then decanted into polypropylene centrifuge bottles. These bottles were...tightly sealed and centrifuged at 8000 rpm for 10 minutes. The supernatant in the bottles was discarded, and fresh nitrogen-purged deionized water was

  16. Biotic-Abiotic Nanoscale Interactions in Biological Fuel Cells

    DTIC Science & Technology

    2014-03-28

    Force Office of Scientific Research 875 North Randolph Street 4027 Arlington VA 22203 email: Patrick.Bradshaw@afosr.af.mil phone : 703-588-8492...Science Center 215C Los Angeles, CA 90089-0484 email: mnaggar@usc.edu phone : 213-740-2394 2 Biotic-Abiotic Nanoscale Interactions in...aggregation – collaboration with Naval Research Lab. 2.4 As part of an international collaboration, we reported on filamentous bacteria mediating centimeter

  17. Changes in biotic and abiotic processes following mangrove clearing

    NASA Astrophysics Data System (ADS)

    Granek, Elise; Ruttenberg, Benjamin I.

    2008-12-01

    Mangrove forests, important tropical coastal habitats, are in decline worldwide primarily due to removal by humans. Changes to mangrove systems can alter ecosystem properties through direct effects on abiotic factors such as temperature, light and nutrient supply or through changes in biotic factors such as primary productivity or species composition. Despite the importance of mangroves as transitional habitats between land and sea, little research has examined changes that occur when they are cleared. We examined changes in a number of biotic and abiotic factors following the anthropogenic removal of red mangroves ( Rhizophora mangle) in the Panamanian Caribbean, including algal biomass, algal diversity, algal grazing rates, light penetration, temperature, sedimentation rates and sediment organic content. In this first study examining multiple ecosystem-level effects of mangrove disturbance, we found that areas cleared of mangroves had higher algal biomass and richness than intact mangrove areas. This increase in algal biomass and richness was likely due to changes in abiotic factors (e.g. light intensity, temperature), but not biotic factors (fish herbivory). Additionally the algal and cyanobacterial genera dominating mangrove-cleared areas were rare in intact mangroves and included a number of genera that compete with coral for space on reefs. Interestingly, sedimentation rates did not differ between intact and cleared areas, but the sediments that accumulated in intact mangroves had higher organic content. These findings are the first to demonstrate that anthropogenic clearing of mangroves changes multiple biotic and abiotic processes in mangrove forests and that some of these changes may influence adjacent habitats such as coral reefs and seagrass beds. Additional research is needed to further explore the community and ecosystem-level effects of mangrove clearing and their influence on adjacent habitats, but it is clear that mangrove conservation is an

  18. Wheat EST resources for functional genomics of abiotic stress

    PubMed Central

    Houde, Mario; Belcaid, Mahdi; Ouellet, François; Danyluk, Jean; Monroy, Antonio F; Dryanova, Ani; Gulick, Patrick; Bergeron, Anne; Laroche, André; Links, Matthew G; MacCarthy, Luke; Crosby, William L; Sarhan, Fathey

    2006-01-01

    Background Wheat is an excellent species to study freezing tolerance and other abiotic stresses. However, the sequence of the wheat genome has not been completely characterized due to its complexity and large size. To circumvent this obstacle and identify genes involved in cold acclimation and associated stresses, a large scale EST sequencing approach was undertaken by the Functional Genomics of Abiotic Stress (FGAS) project. Results We generated 73,521 quality-filtered ESTs from eleven cDNA libraries constructed from wheat plants exposed to various abiotic stresses and at different developmental stages. In addition, 196,041 ESTs for which tracefiles were available from the National Science Foundation wheat EST sequencing program and DuPont were also quality-filtered and used in the analysis. Clustering of the combined ESTs with d2_cluster and TGICL yielded a few large clusters containing several thousand ESTs that were refractory to routine clustering techniques. To resolve this problem, the sequence proximity and "bridges" were identified by an e-value distance graph to manually break clusters into smaller groups. Assembly of the resolved ESTs generated a 75,488 unique sequence set (31,580 contigs and 43,908 singletons/singlets). Digital expression analyses indicated that the FGAS dataset is enriched in stress-regulated genes compared to the other public datasets. Over 43% of the unique sequence set was annotated and classified into functional categories according to Gene Ontology. Conclusion We have annotated 29,556 different sequences, an almost 5-fold increase in annotated sequences compared to the available wheat public databases. Digital expression analysis combined with gene annotation helped in the identification of several pathways associated with abiotic stress. The genomic resources and knowledge developed by this project will contribute to a better understanding of the different mechanisms that govern stress tolerance in wheat and other cereals. PMID

  19. Titania may produce abiotic oxygen atmospheres on habitable exoplanets

    NASA Astrophysics Data System (ADS)

    Narita, Norio; Enomoto, Takafumi; Masaoka, Shigeyuki; Kusakabe, Nobuhiko

    2015-12-01

    The search for habitable exoplanets in the Universe is actively ongoing in the field of astronomy. The biggest future milestone is to determine whether life exists on such habitable exoplanets. In that context, oxygen in the atmosphere has been considered strong evidence for the presence of photosynthetic organisms. In this paper, we show that a previously unconsidered photochemical mechanism by titanium (IV) oxide (titania) can produce abiotic oxygen from liquid water under near ultraviolet (NUV) lights on the surface of exoplanets. Titania works as a photocatalyst to dissociate liquid water in this process. This mechanism offers a different source of a possibility of abiotic oxygen in atmospheres of exoplanets from previously considered photodissociation of water vapor in upper atmospheres by extreme ultraviolet (XUV) light. Our order-of-magnitude estimation shows that possible amounts of oxygen produced by this abiotic mechanism can be comparable with or even more than that in the atmosphere of the current Earth, depending on the amount of active surface area for this mechanism. We conclude that titania may act as a potential source of false signs of life on habitable exoplanets.Reference:Narita N. et al.,Scientific Reports 5, Article number: 13977 (2015)http://www.nature.com/articles/srep13977

  20. Titania may produce abiotic oxygen atmospheres on habitable exoplanets.

    PubMed

    Narita, Norio; Enomoto, Takafumi; Masaoka, Shigeyuki; Kusakabe, Nobuhiko

    2015-09-10

    The search for habitable exoplanets in the Universe is actively ongoing in the field of astronomy. The biggest future milestone is to determine whether life exists on such habitable exoplanets. In that context, oxygen in the atmosphere has been considered strong evidence for the presence of photosynthetic organisms. In this paper, we show that a previously unconsidered photochemical mechanism by titanium (IV) oxide (titania) can produce abiotic oxygen from liquid water under near ultraviolet (NUV) lights on the surface of exoplanets. Titania works as a photocatalyst to dissociate liquid water in this process. This mechanism offers a different source of a possibility of abiotic oxygen in atmospheres of exoplanets from previously considered photodissociation of water vapor in upper atmospheres by extreme ultraviolet (XUV) light. Our order-of-magnitude estimation shows that possible amounts of oxygen produced by this abiotic mechanism can be comparable with or even more than that in the atmosphere of the current Earth, depending on the amount of active surface area for this mechanism. We conclude that titania may act as a potential source of false signs of life on habitable exoplanets.

  1. Abiotic Deposition of Fe Complexes onto Leptothrix Sheaths.

    PubMed

    Kunoh, Tatsuki; Hashimoto, Hideki; McFarlane, Ian R; Hayashi, Naoaki; Suzuki, Tomoko; Taketa, Eisuke; Tamura, Katsunori; Takano, Mikio; El-Naggar, Mohamed Y; Kunoh, Hitoshi; Takada, Jun

    2016-06-03

    Bacteria classified in species of the genus Leptothrix produce extracellular, microtubular, Fe-encrusted sheaths. The encrustation has been previously linked to bacterial Fe oxidases, which oxidize Fe(II) to Fe(III) and/or active groups of bacterial exopolymers within sheaths to attract and bind aqueous-phase inorganics. When L. cholodnii SP-6 cells were cultured in media amended with high Fe(II) concentrations, Fe(III) precipitates visibly formed immediately after addition of Fe(II) to the medium, suggesting prompt abiotic oxidation of Fe(II) to Fe(III). Intriguingly, these precipitates were deposited onto the sheath surface of bacterial cells as the population was actively growing. When Fe(III) was added to the medium, similar precipitates formed in the medium first and were abiotically deposited onto the sheath surfaces. The precipitates in the Fe(II) medium were composed of assemblies of globular, amorphous particles (ca. 50 nm diameter), while those in the Fe(III) medium were composed of large, aggregated particles (≥3 µm diameter) with a similar amorphous structure. These precipitates also adhered to cell-free sheaths. We thus concluded that direct abiotic deposition of Fe complexes onto the sheath surface occurs independently of cellular activity in liquid media containing Fe salts, although it remains unclear how this deposition is associated with the previously proposed mechanisms (oxidation enzyme- and/or active group of organic components-involved) of Fe encrustation of the Leptothrix sheaths.

  2. Abiotic carbonate dissolution traps carbon in a semiarid desert

    PubMed Central

    Fa, Keyu; Liu, Zhen; Zhang, Yuqing; Qin, Shugao; Wu, Bin; Liu, Jiabin

    2016-01-01

    It is generally considered that desert ecosystems release CO2 to the atmosphere, but recent studies in drylands have shown that the soil can absorb CO2 abiotically. However, the mechanisms and exact location of abiotic carbon absorption remain unclear. Here, we used soil sterilization, 13CO2 addition, and detection methods to trace 13C in the soil of the Mu Us Desert, northern China. After 13CO2 addition, a large amount of 13CO2 was absorbed by the sterilised soil, and 13C was found enriched both in the soil gaseous phase and dissolved inorganic carbon (DIC). Further analysis indicated that about 79.45% of the total 13C absorbed by the soil was trapped in DIC, while the amount of 13C in the soil gaseous phase accounted for only 0.22% of the total absorbed 13C. However, about 20.33% of the total absorbed 13C remained undetected. Our results suggest that carbonate dissolution might occur predominately, and the soil liquid phase might trap the majority of abiotically absorbed carbon. It is possible that the trapped carbon in the soil liquid phase leaches into the groundwater; however, further studies are required to support this hypothesis. PMID:27020762

  3. Titania may produce abiotic oxygen atmospheres on habitable exoplanets

    PubMed Central

    Narita, Norio; Enomoto, Takafumi; Masaoka, Shigeyuki; Kusakabe, Nobuhiko

    2015-01-01

    The search for habitable exoplanets in the Universe is actively ongoing in the field of astronomy. The biggest future milestone is to determine whether life exists on such habitable exoplanets. In that context, oxygen in the atmosphere has been considered strong evidence for the presence of photosynthetic organisms. In this paper, we show that a previously unconsidered photochemical mechanism by titanium (IV) oxide (titania) can produce abiotic oxygen from liquid water under near ultraviolet (NUV) lights on the surface of exoplanets. Titania works as a photocatalyst to dissociate liquid water in this process. This mechanism offers a different source of a possibility of abiotic oxygen in atmospheres of exoplanets from previously considered photodissociation of water vapor in upper atmospheres by extreme ultraviolet (XUV) light. Our order-of-magnitude estimation shows that possible amounts of oxygen produced by this abiotic mechanism can be comparable with or even more than that in the atmosphere of the current Earth, depending on the amount of active surface area for this mechanism. We conclude that titania may act as a potential source of false signs of life on habitable exoplanets. PMID:26354078

  4. Cell Wall Metabolism in Response to Abiotic Stress.

    PubMed

    Le Gall, Hyacinthe; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-02-16

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions.

  5. Abiotic Deposition of Fe Complexes onto Leptothrix Sheaths

    PubMed Central

    Kunoh, Tatsuki; Hashimoto, Hideki; McFarlane, Ian R.; Hayashi, Naoaki; Suzuki, Tomoko; Taketa, Eisuke; Tamura, Katsunori; Takano, Mikio; El-Naggar, Mohamed Y.; Kunoh, Hitoshi; Takada, Jun

    2016-01-01

    Bacteria classified in species of the genus Leptothrix produce extracellular, microtubular, Fe-encrusted sheaths. The encrustation has been previously linked to bacterial Fe oxidases, which oxidize Fe(II) to Fe(III) and/or active groups of bacterial exopolymers within sheaths to attract and bind aqueous-phase inorganics. When L. cholodnii SP-6 cells were cultured in media amended with high Fe(II) concentrations, Fe(III) precipitates visibly formed immediately after addition of Fe(II) to the medium, suggesting prompt abiotic oxidation of Fe(II) to Fe(III). Intriguingly, these precipitates were deposited onto the sheath surface of bacterial cells as the population was actively growing. When Fe(III) was added to the medium, similar precipitates formed in the medium first and were abiotically deposited onto the sheath surfaces. The precipitates in the Fe(II) medium were composed of assemblies of globular, amorphous particles (ca. 50 nm diameter), while those in the Fe(III) medium were composed of large, aggregated particles (≥3 µm diameter) with a similar amorphous structure. These precipitates also adhered to cell-free sheaths. We thus concluded that direct abiotic deposition of Fe complexes onto the sheath surface occurs independently of cellular activity in liquid media containing Fe salts, although it remains unclear how this deposition is associated with the previously proposed mechanisms (oxidation enzyme- and/or active group of organic components-involved) of Fe encrustation of the Leptothrix sheaths. PMID:27271677

  6. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants

    PubMed Central

    Sah, Saroj K.; Reddy, Kambham R.; Li, Jiaxu

    2016-01-01

    Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression. PMID:27200044

  7. Cell Wall Metabolism in Response to Abiotic Stress

    PubMed Central

    Gall, Hyacinthe Le; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-01-01

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions. PMID:27135320

  8. Optimizing Metalloporphyrin-Catalyzed Reduction Reactions for In Situ Remediation of DOE Contaminants

    SciTech Connect

    Schlautman, Mark A.

    2013-07-14

    Past activities have resulted in a legacy of contaminated soil and groundwater at Department of Energy facilities nationwide. Uranium and chromium are among the most frequently encountered and highest-priority metal and radionuclide contaminants at DOE installations. Abiotic chemical reduction of uranium and chromium at contaminated DOE sites can be beneficial because the reduced metal species are less soluble in water, less mobile in the environment, and less toxic to humans and ecosystems. Although direct biological reduction has been reported for U(VI) and Cr(VI) in laboratory studies and at some field sites, the reactions can sometimes be slow or even inhibited due to unfavorable environmental conditions. One promising approach for the in-situ remediation of DOE contaminants is to develop electron shuttle catalysts that can be delivered precisely to the specific subsurface locations where contaminants reside. Previous research has shown that reduction of oxidized organic and inorganic contaminants often can be catalyzed by electron shuttle systems. Metalloporphyrins and their derivatives are well known electron shuttles for many biogeochemical systems, and thus were selected to study their catalytic capabilities for the reduction of chromium and uranium in the presence of reducing agents. Zero valent iron (ZVI) was chosen as the primary electron donor in most experimental systems. Research proceeded in three phases and the key findings of each phase are reported here. Phase I examined Cr(VI) reduction and utilized micro- and nano-sized ZVI as the electron donors. Electron shuttle catalysts tested were cobalt- and iron-containing metalloporphyrins and Vitamin B12. To aid in the recycle and reuse of the nano-sized ZVI and soluble catalysts, sol-gels and calcium-alginate gel beads were tested as immobilization/support matrices. Although the nano-sized ZVI could be incorporated within the alginate gel beads, preliminary attempts to trap it in sol-gels were not

  9. Abiotic Versus Biotic Weathering Of Olivine As Possible Biosignatures

    NASA Technical Reports Server (NTRS)

    Longazo, Teresa G.; Wentworth, Susan J.; Clemett, Simon J.; Southam, Gordon; McKay, David S.

    2001-01-01

    We are investigating the weathering of silicate minerals by both purely inorganic, and biologically mediated processes using field-emission scanning electron microscopy (FESEM) and energy dispersive x-ray spectroscopy (EDS). By resolving surface textures and chemical compositions of weathered surfaces at the sub-micron scale we hope to be able to distinguish abiotic from biotic weathering processes and so establish a new biosignature applicable to the study of astromaterials including but not limited to the Martian meteorites. Sterilized olivine grains (San Carlos, Arizona) no more than 1-2 mm in their longest dimension were optically assayed to be uniform in color and free of inclusions were selected as weathering subjects. Prior to all experiments surface morphologies and Fe/Mg ratios were determined for each grain using FE-SEM and EDS. Experiments were divided into two categories abiotic and biotic and were compared with "naturally" weathered samples. For the preliminary experiments, two trials (open and closed to the ambient laboratory environment) were performed under abiotic conditions, and three trials under biotic conditions (control, day 1 and day 2). The open system abiotic trials used sterile grains heated at 98 C and 200 C for both 24 and 48 hours in 1L double distilled de-ionized water. The closed system abiotic trials were conducted under the same conditions but in a sealed two layer steel/Teflon "bomb" apparatus. The biotic trials used sterile grains mounted in a flow-through device attached to a wellhead on the Columbia River aquifer. Several discolored, altered, grains were selected to document "natural" weathering surface textures for comparison with the experimental samples. Preliminary results indicate there are qualitative differences in weathered surface textures among all the designed experiments. The olivine grains in abiotic trials displayed etching, pitting, denticulate margins, dissolution and clay formation. The scale of the features

  10. Extraction of Am(III), Eu(III) and U(VI) from perchloric acid and mixtures of acids by dialkyl-(diaryl) [diethylcarbamoylmethyl] phosphine oxides

    SciTech Connect

    Chmutova, M.K.; Litvina, M.N.; Nesterova, N.P.; Myasoedov, B.F.; Kabachnik, M.I.

    1992-07-01

    Extraction of Am(III), and Eu(III) and U(VI) from perchloric acid solutions by dialkyl(diaryl) [diethyl-carbamoylmethyl] phosphine oxides (CMPO) has been investigated. It has been shown that elements are extracted more effectively from perchloric acid solutions than from nitric acid. An `anomalous aryl effect` increases sufficiently in perchloric media as compared with nitric media. Solvate numbers of elements also increase in perchloric acid, they being extremely high for aryl-substituted reagents and not so high for alkyl-substituted compounds. It has been shown that in HNO{sub 3} and HClO{sub 4} solutions the value of `anomalous aryl effect` directly depends on the difference in values of element solvate numbers in complexes with aryl- and alkyl-substituted CMPO. Am(III), Eu(III) and U(VI) are not practically extracted from phosphoric and sulphuric acids by CMPO solutions. 16 refs., 7 figs., 3 tabs.

  11. HST/WFC3 Characteristics: gain, post-flash stability, UVIS low-sensitivity pixels, persistence, IR flats and bad pixel table

    NASA Astrophysics Data System (ADS)

    Gunning, Heather C.; Baggett, Sylvia; Gosmeyer, Catherine M.; Long, Knox S.; Ryan, Russell E.; MacKenty, John W.; Durbin, Meredith

    2015-08-01

    The Wide Field Camera 3 (WFC3) is a fourth-generation imaging instrument on the Hubble Space Telescope (HST). Installed in May 2009, WFC3 is comprised of two observational channels covering wavelengths from UV/Visible (UVIS) to infrared (IR); both have been performing well on-orbit. We discuss the gain stability of both WFC3 channel detectors from ground testing through present day. For UVIS, we detail a low-sensitivity pixel population that evolves during the time between anneals, but is largely reset by the annealing procedure. We characterize the post-flash LED lamp stability, used and recommended to mitigate CTE effects for observations with less than 12e-/pixel backgrounds. We present mitigation options for IR persistence during and after observations. Finally, we give an overview on the construction of the IR flats and provide updates on the bad pixel table.

  12. Influence of Dissolved Organic Matter and Fe (II) on the Abiotic Reduction of Pentachloronitrobenzene

    EPA Science Inventory

    Nitroaromatic pesticides (NAPs) are hydrophobic contaminants that can accumulate in sediments by the deposition of suspended solids from surface waters. Fe(II) and dissolved organic matter (DOM), present in suboxic and anoxic zones of freshwater sediments, can transform NAPs in n...

  13. Coumarin-modified microporous-mesoporous Zn-MOF-74 showing ultra-high uptake capacity and photo-switched storage/release of U(VI) ions.

    PubMed

    Zhang, Le; Wang, Lin Lin; Gong, Le Le; Feng, Xue Feng; Luo, Ming Biao; Luo, Feng

    2016-07-05

    Driven by an energy crisis but consequently puzzled by various environmental problems, uranium, as the basic material of nuclear energy, is now receiving extensive attentions. In contrast to numerous sorbents applied in this field, metal-organic framework (MOFs), as a renovated material platform, has only recently been developed. How to improve the adsorption capacity of MOF materials towards U(VI) ions, as well as taking advantage of the nature of these MOFs to design photo-switched behaviour for photo-triggered storage/release of U(VI) ions are at present urgent problems and great challenges to be solved. Herein, we show a simple and facile method to target the goal. Through coordination-based post-synthetic strategy, microporous- mesoporous Zn-MOF-74 was easily functionalized by grafting coumarin on coordinatively unsaturated Zn(II) centers, yielding a series of coumarin-modified Zn-MOF-74 materials. The obtained samples displayed ultra-high adsorption capacity for U(VI) ions from water at pH value of 4 with maximum adsorption capacities as high as 360 mg/g (the record value in MOFs) and a remarkable photo-switched capability of 50 mg/g at pH value of 4. To the best of knowledge, and in contrast to the well-known photo-switched behaviour towards CO2, dye (propidium iodide), as well as fluorescence observed in MOFs, this is the first study that shows a photo-switched behaviour towards radioactive U(VI) ions in aqueous solution.

  14. Distinguishing Biotic from Abiotic Phosphate Oxygen Isotopic Signatures

    NASA Astrophysics Data System (ADS)

    Blake, R.; Moyer, C.; Colman, A.; Liang, Y.; Dogru, D.

    2006-05-01

    On earth, phosphate has a strong biological oxygen isotope signature due to its concentration and intense cycling by living organisms as an essential nutrient. Phosphate does not undergo oxygen isotope exchange with water at low temperature without enzymatic catalysis, making the oxygen isotope ratio (18O/16O) of phosphate, δ18OP, an attractive biosignature in the search for early and extraterrestrial life. Recent laboratory and field studies have demonstrated that the δ18OP value of dissolved inorganic phosphate (PO4) records specific microbial activity and enzymatic reaction pathways in both laboratory cultures and natural waters/sediments (Blake et al., 2005; Colman et al 2005; Liang and Blake, 2005). Phosphate oxygen isotope biosignatures may be distinguished from abiotic signatures by: (1) evaluating the degree of temperature-dependent PO4-water oxygen isotope exchange in aqueous systems and deviation from equilibrium; and (2) evolution from an abiotic P reservoir signature towards a biotic P reservoir signature. Important abiotic processes potentially affecting phosphate δ18OP values include dissolution/precipitation, adsorption/desorption, recrystallization of PO4 mineral phases, diagenesis and metamorphism. For most of these processes, the recording, retention and alteration of δ18OP biosignatures have not been evaluated. Deep-sea hydrothermal vent fields are an ideal system in which to study the preservation and alteration of δ18OP biosignatures, as well as potential look-alikes produced by heat-promoted PO4 -water oxygen isotope exchange. Results from recent studies of δ18OP biosignatures in hydrothermal deposits near 9 and 21 degrees N. EPR and at Loihi seamount will be presented.

  15. Kinetic Controls on the Desorption/Dissolution of Sorbed U(VI) and their Influence on Reactive Transport

    SciTech Connect

    Zachara, John M.; Chongxuan Liu; Qafoku, Nikolla P.; McKinley, James P.; Catalano, Jeffrey G.; Brown, Gordon E., Jr.; Davis, James A.

    2006-04-05

    source to groundwater. (2) Measure desorption/dissolution rates of sorbed U(VI), quantify controlling factors, and develop descriptive kinetic models to provide a scientific basis to forecast U(VI) fluxes to groundwater, future plume dynamics, and long-term contaminant attenuation. (3) Establish reaction networks and determine geochemically/ physically realistic reaction parameters to drive state-of-the-art reactive transport modeling of U in vadose zone pore fluids and groundwater.

  16. Multi-Instrument Analysis of a Traveling Convection Vortex Event on July 24, 1996 Coordinated with the Polar UVI

    NASA Technical Reports Server (NTRS)

    Sitar, R. J.; Clauer, C. R.; Baker, J. B.; Ridley, A. J.; Cumnock, J.; Germany, G. A.; Spann, J. F., Jr.; Brittnacher, M. J.; Parks, G. K.

    1998-01-01

    We present the analysis of a coordinated set of observations from the POLAR Ultraviolet Imager (UVI), ground magnetometers, incoherent scatter radar, solar wind monitors, DMSP and GOES satellites, focused on a traveling convection vortex (TCV) event on 24th July 1996. Starting at approximately 10:48 UT, around magnetometers in Greenland and northern Canada observe pulsations consistent with the passing overhead of a series of alternating TCV filed-aligned current pairs. Azimuthal scans by the Sondrestrom incoherent scatter radar located near Kangerlussuaq (formerly Sondrestrom), Greenland, at this time show strong modulation in the strength and direction of ionospheric plasma flow. The magnetometer pulsations grow in magnitude over the next hour, peaking in intensity at 11:39 UT, at which time images form the UVI instrument show a localized intensification of auroral emissions over central and western Greenland. Subsequent images show the intensification grow in strength and propagate westward (tailward) until approximately 11:58 UT at which time the intensification fades. These observations are consistent with the westward passage of two pairs of moderately intense TCVs over central Greenland followed by a third very intense TCV pair. The intensification of auroral emissions at 11:39 UT is associated with the trailing vortex of the third TCV pair, thought to be the result of an upward field aligned current. The modulated flow observed by the radar is the result of the strong electric fields associated with the impulsive TCV related field aligned current systems as they pass through the field of view of the radar. Measurements of the solar wind from the V;IND and IMP-8 spacecraft suggest that a pressure change may be responsible for triggering the first two pairs of TCVS, and that a subsequent sudden change in the orientation of the interplanetary magnetic field may have produced the intensification of the third TCV pair and the associated auroral brightening

  17. Coupled Abiotic-Biotic Degradation of Bisphenol A

    NASA Astrophysics Data System (ADS)

    Im, J.; Prevatte, C.; Campagna, S. R.; Loeffler, F.

    2014-12-01

    Bisphenol A (BPA) is a ubiquitous environmental contaminant with weak estrogenic activity. BPA is readily biodegradable with oxygen available, but is recalcitrant to microbial degradation under anoxic conditions. However, BPA is susceptible to abiotic transformation under anoxic conditions. To better understand the fate of BPA in anoxic environments, the kinetics of BPA transformation by manganese oxide (d-MnO2) were investigated. BPA was rapidly transformed by MnO2 with a pseudo-first-order rate constant of 0.413 min-1. NMR and LC-MS analyses identified 4-hydroxycumyl alcohol (HCA) as a major intermediate. Up to 64% of the initial amount of BPA was recovered as HCA within 5 min, but the conversion efficiency decreased with time, suggesting that HCA was further degraded by MnO2. Further experiments confirmed that HCA was also susceptible to transformation by MnO2, albeit at 5-fold lower rates than BPA transformation. Mass balance approaches suggested that HCA was the major BPA transformation intermediate, but other compounds may also be formed. The abiotic transformation of BPA by MnO2 was affected by pH, and 10-fold higher transformation rates were observed at pH 4.5 than at pH 10. Compared to BPA, HCA has a lower octanol-water partitioning coefficient (Log Kow) of 0.76 vs 2.76 for BPA and a higher aqueous solubility of 2.65 g L-1 vs 0.31 g L-1 for BPA, suggesting higher mobility of HCA in the environment. Microcosms established with freshwater sediment materials collected from four geographically distinct locations and amended with HCA demonstrated rapid HCA biodegradation under oxic, but not under anoxic conditions. These findings suggest that BPA is not inert under anoxic conditions and abiotic reactions with MnO2 generate HCA, which has increased mobility and is susceptible to aerobic degradation. Therefore, coupled abiotic-biotic processes can affect the fate and longevity of BPA in terrestrial environments.

  18. Abiotic gas formation drives nitrogen loss from a desert ecosystem.

    PubMed

    McCalley, Carmody K; Sparks, Jed P

    2009-11-06

    In arid environments such as deserts, nitrogen is often the most limiting nutrient for biological activity. The majority of the ecosystem nitrogen flux is typically thought to be driven by production and loss of reactive nitrogen species by microorganisms in the soil. We found that high soil-surface temperatures (greater than 50 degrees C), driven by solar radiation, are the primary cause of nitrogen loss in Mojave Desert soils. This abiotic pathway not only enables the balancing of arid ecosystem nitrogen budgets, but also changes our view of global nitrogen cycling and the predicted impact of climate change and increased temperatures on nitrogen bioavailability.

  19. Carbon and chlorine isotope analysis to identify abiotic degradation pathways of 1,1,1-trichloroethane.

    PubMed

    Palau, Jordi; Shouakar-Stash, Orfan; Hunkeler, Daniel

    2014-12-16

    This study investigates dual C-Cl isotope fractionation during 1,1,1-TCA transformation by heat-activated persulfate (PS), hydrolysis/dehydrohalogenation (HY/DH) and Fe(0). Compound-specific chlorine isotope analysis of 1,1,1-TCA was performed for the first time, and transformation-associated isotope fractionation ε bulk C and ε bulk Cl values were -4.0 ± 0.2‰ and no chlorine isotope fractionation with PS, -1.6 ± 0.2‰ and -4.7 ± 0.1‰ for HY/DH, -7.8 ± 0.4‰ and -5.2 ± 0.2‰ with Fe(0). Distinctly different dual isotope slopes (Δδ13C/Δδ37Cl): ∞ with PS, 0.33 ± 0.04 for HY/DH and 1.5 ± 0.1 with Fe(0) highlight the potential of this approach to identify abiotic degradation pathways of 1,1,1-TCA in the field. The trend observed with PS agreed with a C-H bond oxidation mechanism in the first reaction step. For HY/DH and Fe(0) pathways, different slopes were obtained although both pathways involve cleavage of a C-Cl bond in their initial reaction step. In contrast to the expected larger primary carbon isotope effects relative to chlorine for C-Cl bond cleavage, ε bulk C < ε bulk Cl was observed for HY/DH and in a similar range for reduction by Fe(0), suggesting the contribution of secondary chlorine isotope effects. Therefore, different magnitude of secondary chlorine isotope effects could at least be partly responsible for the distinct slopes between HY/DH and Fe(0) pathways. Following this dual isotope approach, abiotic transformation processes can unambiguously be identified and quantified.

  20. Biotic and Abiotic Transformation of a Volatile Organics Plume in a Semi-Arid Vadose Zone

    SciTech Connect

    Studer, J.E.; Singletary, M.A.; Miller, D.R.

    1999-04-08

    An evaluation of biotic and abiotic attenuation processes potentially important to chlorinated and non-chlorinated volatile organic compound (VOC) fate and transport in the 148 meter thick vadose zone beneath the Chemical Waste Landfill (CWL) was conducted. A unique feature of this evaluation is the comparison of two estimates of VOC mass present in the soil gas, pore-water, and solid phases (but not including mass as non-aqueous phase liquid [NAPL]) of the vadose zone in 1993. One estimate, 1,800 kg, was obtained from vadose zone transport modeling that incorporated molecular diffusion and volatilization to the atmosphere, but not biotic or chemical processes. The other estimate, 2,120 kg, was obtained from the sum of VOC mass physically removed during soil vapor extraction and an estimate of VOC mass remaining in the vadose zone in 1998, both adjusted to exclude NAPL mass. This comparison indicates that biogeochemical processes were at best slightly important to historical VOC plume development. Some evidence of aerobic degradation of non-chlorinated VOCs and abiotic transformation of 1,1,1-Trichloroethane was identified. Despite potentially amenable site conditions, no evidence was found of cometabolic and anaerobic transformation pathways. Relying principally on soil-gas analytical results, an upper-bound estimate of 21% mass reduction due to natural biogeochemical processes was developed. Although available information for the CWL indicates that natural attenuation processes other than volatilization to the atmosphere did not effective y enhance groundwater protection, these processes could be important in significantly reducing groundwater contamination and exposure risks at other sites. More laboratory and field research is required to improve our collective ability to characterize and exploit natural VOC attenuation processes, especially with respect to the combination of relatively thick and dry vadose zones and chlorinated VOCs.

  1. Hydrothermal synthesis of (C6N2H14)2(UVI2UIVO4F12), a mixed-valent one-dimensional uranium oxyfluoride.

    PubMed

    Allen, S; Barlow, S; Halasyamani, P S; Mosselmans, J F; O'Hare, D; Walker, S M; Walton, R I

    2000-08-21

    A new hybrid organic-inorganic mixed-valent uranium oxyfluoride, (C6N2H14)2(U3O4F12), UFO-17, has been synthesized under hydrothermal conditions using uranium dioxide as the uranium source, hydrofluoric acid as mineralizer, and 1,4-diazabicyclo[2.2.2]octane as template. The single-crystal X-ray structure was determined. Crystals of UFO-17 belonged to the orthorhombic space group Cmcm (no. 63), with a = 14.2660(15) A, b = 24.5130(10) A, c = 7.201(2) A, and Z = 4. The structure reveals parallel uranium-containing chains of two types: one type is composed of edge-sharing UO2F5 units; the other has a backbone of edge-sharing UF8 units, each sharing an edge with a pendant UO2F5 unit. Bond-valence calculations suggest the UF8 groups contain UIV, while the UO2F5 groups contain UVI. EXAFS data give results consistent with the single-crystal X-ray structure determination, while comparison of the uranium LIII-edge XANES of UFO-17 with that of related UIV and UVI compounds supports the oxidation-state assignment. Variable-temperature magnetic susceptibility measurements on UFO-17 and a range of related hybrid organic-inorganic uranium(IV) and uranium(VI) fluorides and oxyfluorides further support the formulation of UFO-17 as a mixed-valent UIV/UVI compound.

  2. Liquid-liquid extraction of Pu(IV), U(VI) and Am(III) using malonamide in room temperature ionic liquid as diluent.

    PubMed

    Rout, Alok; Venkatesan, K A; Srinivasan, T G; Vasudeva Rao, P R

    2012-06-30

    The extraction behavior of U(VI), Pu(IV) and Am(III) from nitric acid medium by a solution of N,N-dimethyl-N,N-dioctyl-2-(2-hexyloxyethyl)malonamide (DMDOHEMA) in the room temperature ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (C(4)mimNTf(2)), was studied. The distribution ratio of these actinides in DMDOHEMA/C(4)mimNTf(2) was measured as a function of various parameters such as the concentration of nitric acid, DMDOHEMA, NTf(2)(-), alkyl chain length of ionic liquid. The extraction of actinides in the absence of DMDOHEMA was insignificant and the distribution ratio achieved in conjunction with C(4)mimNTf(2), was remarkable. The separation factor of U(VI) and Pu(IV) achieved with the use of DMDOHEMA, ionic liquid was compared with Am(III) and other fission products. The stoichiometry of the metal-solvate was determined to be 1:2 for U(VI) and Pu(IV) and 1:3 for Am(III).

  3. Preparation, characterization and application of NaHCO3 leached bulk U(VI) imprinted polymers endowed with γ-MPS coated magnetite in contaminated water.

    PubMed

    Tavengwa, Nikita Tawanda; Cukrowska, Ewa; Chimuka, Luke

    2014-02-28

    A new type of ion imprinted polymer (IIP) embedded with γ-methacryloxypropyltrimethoxysilane (γ-MPS) coated magnetic particles for selective extraction of uranyl ions was synthesized by bulk polymerization. The performance of the magnetic sorbent on the extraction of U(VI) was evaluated by various parameters which included the influence of pH, amount of the magnetic polymers, contact time and initial U(VI) concentration. The adsorption capacity of the magnetic polymers was found to be 1.1 and 0.95mgg(-1) for the IIP and its control ion non-imprinted polymer (NIP), respectively. The optimum amount of the sorbent was 50mg for an initial concentration of 2.5mgL(-1). The prepared magnetic imprinted sorbent displayed an uptake with a time of 45min considered optimum. The magnetic polymer displayed good selectivity and exhibited good reusability. Studies from binary mixtures of metal ions in aqueous solutions showed that the magnetic adsorbent selectivity following the order: U(VI)>Ni(II)>Pb(II). Experimental results illustrated the potential application of magnetic ion imprinted polymer sorbents for selective removal of U(VI) from contaminated water.

  4. Small RNAs in Plant Responses to Abiotic Stresses: Regulatory Roles and Study Methods

    PubMed Central

    Ku, Yee-Shan; Wong, Johanna Wing-Hang; Mui, Zeta; Liu, Xuan; Hui, Jerome Ho-Lam; Chan, Ting-Fung; Lam, Hon-Ming

    2015-01-01

    To survive under abiotic stresses in the environment, plants trigger a reprogramming of gene expression, by transcriptional regulation or translational regulation, to turn on protective mechanisms. The current focus of research on how plants cope with abiotic stresses has transitioned from transcriptomic analyses to small RNA investigations. In this review, we have summarized and evaluated the current methodologies used in the identification and validation of small RNAs and their targets, in the context of plant responses to abiotic stresses. PMID:26501263

  5. Spectrophotometric and Calorimetric Studies of U(VI) Complexation with Sulfate at 25-70oC

    SciTech Connect

    Tian, Guoxin; Rao, Linfeng

    2008-10-30

    Sulfate, one of the inorganic constituents in the groundwater of nuclear waste repository, could affect the migration of radioactive materials by forming complexes. Spectrophotometric and microcalorimetric titrations were performed to identify the U(VI)/sulfate complexes and determine the equilibrium constants and enthalpy of complexation at 25-70 C. Results show that U(VI) forms moderately strong complexes with sulfate, i.e., UO{sub 2}SO{sub 4}(aq) and UO{sub 2}(SO{sub 4}){sub 2}{sup 2-}, in this temperature range and the complexes become stronger as the temperature is increased: 2-fold and 10-fold increases in the stability constants of UO{sub 2}SO{sub 4}(aq) and UO{sub 2}(SO{sub 4}{sub 2}{sup 2-}), respectively, when the temperature is increased from 25 C to 70 C. The complexation is endothermic and entropy-driven, showing typical characteristics of inner-sphere complexation and 'hard acid'/'hard base' interactions. The thermodynamic trends are discussed in terms of dehydration of both the cation (UO{sub 2}{sup 2+}) and the anion (SO{sub 4}{sup 2-}) as well as the effect of temperature on the structure of water.

  6. Distortion of the pixel grid in HST WFC3/UVIS and ACS/WFC CCD detectors and its astrometric correction

    NASA Astrophysics Data System (ADS)

    Kozhurina-Platais, Vera; Mackenty, John; Golimovski, David; Sirianni, Marco; Borncamp, David; Anderson, Jay; Grogin, Norman

    2016-07-01

    The geometric distortion of the CCD detectors used in the Hubble Space TelescopeWide Field Camera 3 (WFC3) and Advanced Camera for Surveys (ACS) instruments is characterized by both large and fine-scale distortions. The large-scale distortion, due to the complexity of the HST optical assembly, can be modeled by a high-order polynomial. The majority of fine-distortion is inherent to the CCD detectors themselves, which manifests itself as fine-scale, correlated systematic offsets in the residuals from the best-fit polynomial solution. Such systematic offsets across the CCD chip introduce astrometric errors at the level of about 0.1 pix (up to 1.5 μm within the 15 μm pixels). These fine-scale and low-amplitude distortions apparently arise from the spatial irregularities in the pixel grid. For the WFC3/UVIS CCD chips, there is a clear pattern of periodic skew in the lithographic-mask stencil imprinted onto the detector. Similar irregularities in the pixel grid of ACS/WFC CCD chips are even more pronounced by the narrow (68×2048 pixel) lithographic-mask stencil. To remove these distortions, a 2-D correction in the form of a look-up table has been developed using HST images of very dense stellar fields. The post-correction of fine-scale astrometric errors can be removed down to the level of 0.01 pix (0.15 μm) or better.

  7. Calcium-Mediated Abiotic Stress Signaling in Roots

    PubMed Central

    Wilkins, Katie A.; Matthus, Elsa; Swarbreck, Stéphanie M.; Davies, Julia M.

    2016-01-01

    Roots are subjected to a range of abiotic stresses as they forage for water and nutrients. Cytosolic free calcium is a common second messenger in the signaling of abiotic stress. In addition, roots take up calcium both as a nutrient and to stimulate exocytosis in growth. For calcium to fulfill its multiple roles must require strict spatio-temporal regulation of its uptake and efflux across the plasma membrane, its buffering in the cytosol and its sequestration or release from internal stores. This prompts the question of how specificity of signaling output can be achieved against the background of calcium’s other uses. Threats to agriculture such as salinity, water availability and hypoxia are signaled through calcium. Nutrient deficiency is also emerging as a stress that is signaled through cytosolic free calcium, with progress in potassium, nitrate and boron deficiency signaling now being made. Heavy metals have the capacity to trigger or modulate root calcium signaling depending on their dose and their capacity to catalyze production of hydroxyl radicals. Mechanical stress and cold stress can both trigger an increase in root cytosolic free calcium, with the possibility of membrane deformation playing a part in initiating the calcium signal. This review addresses progress in identifying the calcium transporting proteins (particularly channels such as annexins and cyclic nucleotide-gated channels) that effect stress-induced calcium increases in roots and explores links to reactive oxygen species, lipid signaling, and the unfolded protein response. PMID:27621742

  8. Abiotic factors influence plant storage lipid accumulation and composition.

    PubMed

    Singer, Stacy D; Zou, Jitao; Weselake, Randall J

    2016-02-01

    The demand for plant-derived oils has increased substantially over the last decade, and is sure to keep growing. While there has been a surge in research efforts to produce plants with improved oil content and quality, in most cases the enhancements have been small. To add further complexity to this situation, substantial differences in seed oil traits among years and field locations have indicated that plant lipid biosynthesis is also influenced to a large extent by multiple environmental factors such as temperature, drought, light availability and soil nutrients. On the molecular and biochemical levels, the expression and/or activities of fatty acid desaturases, as well as diacylglycerol acyltransferase 1, have been found to be affected by abiotic factors, suggesting that they play a role in the lipid content and compositional changes seen under abiotic stress conditions. Unfortunately, while only a very small number of strategies have been developed as of yet to minimize these environmental effects on the production of storage lipids, it is clear that this feat will be of the utmost importance for developing superior oil crops with the capability to perform in a consistent manner in field conditions in the future.

  9. RNA helicases: diverse roles in prokaryotic response to abiotic stress.

    PubMed

    Owttrim, George W

    2013-01-01

    Similar to proteins, RNA molecules must fold into the correct conformation and associate with protein complexes in order to be functional within a cell. RNA helicases rearrange RNA secondary structure and RNA-protein interactions in an ATP-dependent reaction, performing crucial functions in all aspects of RNA metabolism. In prokaryotes, RNA helicase activity is associated with roles in housekeeping functions including RNA turnover, ribosome biogenesis, translation and small RNA metabolism. In addition, RNA helicase expression and/or activity are frequently altered during cellular response to abiotic stress, implying they perform defined roles during cellular adaptation to changes in the growth environment. Specifically, RNA helicases contribute to the formation of cold-adapted ribosomes and RNA degradosomes, implying a role in alleviation of RNA secondary structure stabilization at low temperature. A common emerging theme involves RNA helicases acting as scaffolds for protein-protein interaction and functioning as molecular clamps, holding RNA-protein complexes in specific conformations. This review highlights recent advances in DEAD-box RNA helicase association with cellular response to abiotic stress in prokaryotes.

  10. Influence of abiotic stress signals on secondary metabolites in plants

    PubMed Central

    Ramakrishna, Akula; Ravishankar, Gokare Aswathanarayana

    2011-01-01

    Plant secondary metabolites are unique sources for pharmaceuticals, food additives, flavors, and industrially important biochemicals. Accumulation of such metabolites often occurs in plants subjected to stresses including various elicitors or signal molecules. Secondary metabolites play a major role in the adaptation of plants to the environment and in overcoming stress conditions. Environmental factors viz. temperature, humidity, light intensity, the supply of water, minerals, and CO2 influence the growth of a plant and secondary metabolite production. Drought, high salinity, and freezing temperatures are environmental conditions that cause adverse effects on the growth of plants and the productivity of crops. Plant cell culture technologies have been effective tools for both studying and producing plant secondary metabolites under in vitro conditions and for plant improvement. This brief review summarizes the influence of different abiotic factors include salt, drought, light, heavy metals, frost etc. on secondary metabolites in plants. The focus of the present review is the influence of abiotic factors on secondary metabolite production and some of important plant pharmaceuticals. Also, we describe the results of in vitro cultures and production of some important secondary metabolites obtained in our laboratory. PMID:22041989

  11. Abiotic stress and control of grain number in cereals.

    PubMed

    Dolferus, Rudy; Ji, Xuemei; Richards, Richard A

    2011-10-01

    Grain number is the only yield component that is directly associated with increased grain yield in important cereal crops like wheat. Historical yield studies show that increases in grain yield are always accompanied by an increase in grain number. Adverse weather conditions can cause severe fluctuations in grain yield and substantial yield losses in cereal crops. The problem is global and despite its impact on world food production breeding and selection approaches have only met with limited success. A specific period during early reproductive development, the young microspore stage of pollen development, is extremely vulnerable to abiotic stress in self-fertilising cereals (wheat, rice, barley, sorghum). A better understanding of the physiological and molecular processes that lead to stress-induced pollen abortion may provide us with the key to finding solutions for maintaining grain number under abiotic stress conditions. Due to the complexity of the problem, stress-proofing our main cereal crops will be a challenging task and will require joint input from different research disciplines.

  12. Abiotic Racemization Kinetics of Amino Acids in Marine Sediments

    PubMed Central

    Steen, Andrew D.; Jørgensen, Bo Barker; Lomstein, Bente Aa.

    2013-01-01

    The ratios of d- versus l-amino acids can be used to infer the sources and composition of sedimentary organic matter. Such inferences, however, rely on knowing the rates at which amino acids in sedimentary organic matter racemize abiotically between the d- and the l-forms. Based on a heating experiment, we report kinetic parameters for racemization of aspartic acid, glutamic acid, serine, and alanine in bulk sediment from Aarhus Bay, Denmark, taken from the surface, 30 cm, and 340 cm depth below seafloor. Extrapolation to a typical cold deep sea sediment temperature of 3°C suggests racemization rate constants of 0.50×10−5–11×10−5 yr−1. These results can be used in conjunction with measurements of sediment age to predict the ratio of d:l amino acids due solely to abiotic racemization of the source material, deviations from which can indicate the abundance and turnover of active microbial populations. PMID:23951211

  13. Effects of aqueous uranyl speciation on the kinetics of microbial uranium reduction

    DOE PAGES

    Belli, Keaton M.; DiChristina, Thomas J.; Van Cappellen, Philippe; ...

    2015-02-16

    The ability to predict the success of the microbial reduction of soluble U(VI) to highly insoluble U(IV) as an in situ bioremediation strategy is complicated by the wide range of geochemical conditions at contaminated sites and the strong influence of aqueous uranyl speciation on the bioavailability and toxicity of U(VI) to metal-reducing bacteria. In order to determine the effects of aqueous uranyl speciation on uranium bioreduction kinetics, incubations and viability assays with Shewanella putrefaciens strain 200 were conducted over a range of pH and dissolved inorganic carbon (DIC), Ca2+, and Mg2+ concentrations. A speciation-dependent kinetic model was developed to reproducemore » the observed time series of total dissolved uranium concentration over the range of geochemical conditions tested. The kinetic model yielded the highest rate constant for the reduction of uranyl non-carbonate species (i.e., the ‘free’ hydrated uranyl ion, uranyl hydroxides, and other minor uranyl complexes), indicating that they represent the most readily reducible fraction of U(VI) despite being the least abundant uranyl species in solution. In the presence of DIC, Ca2+, and Mg2+ is suppressed during the formation of more bioavailable uranyl non-carbonate species and resulted in slower bioreduction rates. At high concentrations of bioavailable U(VI), however, uranium toxicity to S. putrefaciens inhibited bioreduction, and viability assays confirmed that the concentration of non-carbonate uranyl species best predicts the degree of toxicity. The effect of uranium toxicity was accounted for by incorporating the free ion activity model of metal toxicity into the bioreduction rate law. These results demonstrate that, in the absence of competing terminal electron acceptors, uranium bioreduction kinetics can be predicted over a wide range of geochemical conditions based on the bioavailability and toxicity imparted on U(VI) by solution composition. Finally, these findings also imply

  14. Effects of aqueous uranyl speciation on the kinetics of microbial uranium reduction

    SciTech Connect

    Belli, Keaton M.; DiChristina, Thomas J.; Van Cappellen, Philippe; Taillefert, Martial

    2015-02-16

    The ability to predict the success of the microbial reduction of soluble U(VI) to highly insoluble U(IV) as an in situ bioremediation strategy is complicated by the wide range of geochemical conditions at contaminated sites and the strong influence of aqueous uranyl speciation on the bioavailability and toxicity of U(VI) to metal-reducing bacteria. In order to determine the effects of aqueous uranyl speciation on uranium bioreduction kinetics, incubations and viability assays with Shewanella putrefaciens strain 200 were conducted over a range of pH and dissolved inorganic carbon (DIC), Ca2+, and Mg2+ concentrations. A speciation-dependent kinetic model was developed to reproduce the observed time series of total dissolved uranium concentration over the range of geochemical conditions tested. The kinetic model yielded the highest rate constant for the reduction of uranyl non-carbonate species (i.e., the ‘free’ hydrated uranyl ion, uranyl hydroxides, and other minor uranyl complexes), indicating that they represent the most readily reducible fraction of U(VI) despite being the least abundant uranyl species in solution. In the presence of DIC, Ca2+, and Mg2+ is suppressed during the formation of more bioavailable uranyl non-carbonate species and resulted in slower bioreduction rates. At high concentrations of bioavailable U(VI), however, uranium toxicity to S. putrefaciens inhibited bioreduction, and viability assays confirmed that the concentration of non-carbonate uranyl species best predicts the degree of toxicity. The effect of uranium toxicity was accounted for by incorporating the free ion activity model of metal toxicity into the bioreduction rate law. These results demonstrate that, in the absence of competing terminal electron acceptors, uranium bioreduction kinetics can be predicted over a wide range of geochemical conditions based on the bioavailability and toxicity imparted on U(VI) by solution composition

  15. Abiotic Formation of Methyl Halides in the Terrestrial Environment

    NASA Astrophysics Data System (ADS)

    Keppler, F.

    2011-12-01

    Methyl chloride and methyl bromide are the most abundant chlorine and bromine containing organic compounds in the atmosphere. Since both compounds have relatively long tropospheric lifetimes they can effectively transport halogen atoms from the Earth's surface, where they are released, to the stratosphere and following photolytic oxidation form reactive halogen gases that lead to the chemical destruction of ozone. Methyl chloride and methyl bromide account for more than 20% of the ozone-depleting halogens delivered to the stratosphere and are predicted to grow in importance as the chlorine contribution to the stratosphere from anthropogenic CFCs decline. Today methyl chloride and methyl bromide originate mainly from natural sources with only a minor fraction considered to be of anthropogenic origin. However, until as recently as 2000 most of the methyl chloride and methyl bromide input to the atmosphere was considered to originate from the oceans, but investigations in recent years have clearly demonstrated that terrestrial sources such as biomass burning, wood-rotting fungi, coastal salt marshes, tropical vegetation and organic matter degradation must dominate the atmospheric budgets of these trace gases. However, many uncertainties still exist regarding strengths of both sources and sinks, as well as the mechanisms of formation of these naturally occurring halogenated gases. A better understanding of the atmospheric budget of both methyl chloride and methyl bromide is therefore required for reliable prediction of future ozone depletion. Biotic and abiotic methylation processes of chloride and bromide ion are considered to be the dominant pathways of formation of these methyl halides in nature. In this presentation I will focus on abiotic formation processes in the terrestrial environment and the potential parameters that control their emissions. Recent advances in our understanding of the abiotic formation pathway of methyl halides will be discussed. This will

  16. Microbial reduction of iodate

    USGS Publications Warehouse

    Councell, T.B.; Landa, E.R.; Lovley, D.R.

    1997-01-01

    The different oxidation species of iodine have markedly different sorption properties. Hence, changes in iodine redox states can greatly affect the mobility of iodine in the environment. Although a major microbial role has been suggested in the past to account for these redox changes, little has been done to elucidate the responsible microorganisms or the mechanisms involved. In the work presented here, direct microbial reduction of iodate was demonstrated with anaerobic cell suspensions of the sulfate reducing bacterium Desulfovibrio desulfuricans which reduced 96% of an initial 100 ??M iodate to iodide at pH 7 in 30 mM NaHCO3 buffer, whereas anaerobic cell suspensions of the dissimilatory Fe(III)-reducing bacterium Shewanella putrefaciens were unable to reduce iodate in 30 mM NaHCO3 buffer (pH 7). Both D. desulfuricans and S. putrefaciens were able to reduce iodate at pH 7 in 10 mM HEPES buffer. Both soluble ferrous iron and sulfide, as well as iron monosulfide (FeS) were shown to abiologically reduce iodate to iodide. These results indicate that ferric iron and/or sulfate reducing bacteria are capable of mediating both direct, enzymatic, as well as abiotic reduction of iodate in natural anaerobic environments. These microbially mediated reactions may be important factors in the fate and transport of 129I in natural systems.

  17. The abiotic degradation of methyl parathion in anoxic sulfur-containing system mediated by natural organic matter.

    PubMed

    Liao, Xiaoping; Zhang, Caixiang; Wang, Yanxin; Tang, Mi

    2017-06-01

    Although the kinetics and transformation of methyl parathion have been investigated extensively, its abiotic degradation mechanism in anoxic sulfur-containing groundwater system is still not clear. In this work, the abiotic degradation of methyl parathion in anoxic sulfur-containing system mediated by natural organic matter (NOM) was investigated in batch experiments. It was found that the removal of methyl parathion (up to 80.7%) was greatly improved in sulfide containing NOM compared to those in sulfide alone (with 15.5%) and in NOM alone (almost negligible). Various sulfur species presented significant differences in behaviors methyl parathion degradation, but followed by the pseudo-first-order model well. No facilitated degradation of methyl parathion was observed in sulfite (SO3(2-)) or thiosulfate (S2O3(2-)) containing NOM such as anthraquinone. Although elemental sulfur (S(0)) and cysteine could further improve the degradation rate of methyl parahtion, their impacts was very limited. The removal efficiency of methyl parathion in anoxic sulfur-containing system were related remarkably with NOM concentration and solution pH. Based on the transformation products identified by gas chromatography-mass spectrometer (GC/MS) and liquid chromatography high resolution mass spectrometer (LC/HRMS), both the nitro group reduction and hydrolysis (SN@C) processes by sulfide (HS(-)) were further proved to be two predominant reaction mechanisms for the abiotic degradation of methyl parathion in anoxic sulfur-containing system. The results of this study help to understand the natural attenuation of methyl parathion under anoxic sulfide-containing groundwater system mediated by NOM.

  18. Endophytic fungi: resource for gibberellins and crop abiotic stress resistance.

    PubMed

    Khan, Abdul Latif; Hussain, Javid; Al-Harrasi, Ahmed; Al-Rawahi, Ahmed; Lee, In-Jung

    2015-03-01

    The beneficial effects of endophytes on plant growth are important for agricultural ecosystems because they reduce the need for fertilizers and decrease soil and water pollution while compensating for environmental perturbations. Endophytic fungi are a novel source of bioactive secondary metabolites; moreover, recently they have been found to produce physiologically active gibberellins as well. The symbiosis of gibberellins producing endophytic fungi with crops can be a promising strategy to overcome the adverse effects of abiotic stresses. The association of such endophytes has not only increased plant biomass but also ameliorated plant-growth during extreme environmental conditions. Endophytic fungi represent a trove of unexplored biodiversity and a frequently overlooked component of crop ecology. The present review describes the role of gibberellins producing endophytic fungi, suggests putative mechanisms involved in plant endophyte stress interactions and discusses future prospects in this field.

  19. Histone variants and chromatin assembly in plant abiotic stress responses.

    PubMed

    Zhu, Yan; Dong, Aiwu; Shen, Wen-Hui

    2013-01-01

    Genome organization into nucleosomes and higher-order chromatin structures has profound implications for the regulation of gene expression, DNA replication and repair. The structure of chromatin can be remodeled by several mechanisms; among others, nucleosome assembly/disassembly and replacement of canonical histones with histone variants constitute important ones. In this review, we provide a brief description on the current knowledge about histone chaperones involved in nucleosome assembly/disassembly and histone variants in Arabidopsis thaliana. We discuss recent advances in revealing crucial functions of histone chaperones, nucleosome assembly/disassembly and histone variants in plant response to abiotic stresses. It appears that chromatin structure remodeling may provide a flexible, global and stable means for the regulation of gene transcription to help plants more effectively cope with environmental stresses. This article is part of a Special Issue entitled: Histone chaperones and chromatin assembly.

  20. An Abiotic Glass-Bead Collector Exhibiting Active Transport

    NASA Astrophysics Data System (ADS)

    Goto, Youhei; Kanda, Masato; Yamamoto, Daigo; Shioi, Akihisa

    2015-09-01

    Animals relocate objects as needed by active motion. Active transport is ubiquitous in living organisms but has been difficult to realize in abiotic systems. Here we show that a self-propelled droplet can gather scattered beads toward one place on a floor and sweep it clean. This is a biomimetic active transport with loadings and unloadings, because the transport was performed by a carrier and the motion of the carrier was maintained by the energy of the chemical reaction. The oil droplet produced fluctuation of the local number density of the beads on the floor, followed by its autocatalytic growth. This mechanism may inspire the technologies based on active transport wherein chemical and physical substances migrate as in living organisms.

  1. Spectral induced polarization signatures of abiotic FeS precipitation

    SciTech Connect

    Ntarlagiannis, D.; Doherty, R.; Williams, K. H.

    2010-01-15

    In recent years, geophysical methods have been shown to be sensitive to microbial induced mineralization processes. The spectral induced polarization (SIP) method appears to be very promising for monitoring mineralization and microbial processes. With this work, we study the links of mineralization and SIP signals, in the absence of microbial activity. We recorded the SIP response during abiotic FeS precipitation. We show that the SIP signals are diagnostic of FeS mineralization and can be differentiated from SIP signals from bio-mineralization processes. More specifically the imaginary conductivity shows almost linear dependence on the amount of FeS precipitating out of solution, above the threshold value 0.006 gr under our experimental conditions. This research has direct implications for the use of the SIP method as a monitoring, and decision making, tool for sustainable remediation of metals in contaminated soils and groundwater.

  2. Temporal dynamics of biotic and abiotic drivers of litter decomposition.

    PubMed

    García-Palacios, Pablo; Shaw, E Ashley; Wall, Diana H; Hättenschwiler, Stephan

    2016-05-01

    Climate, litter quality and decomposers drive litter decomposition. However, little is known about whether their relative contribution changes at different decomposition stages. To fill this gap, we evaluated the relative importance of leaf litter polyphenols, decomposer communities and soil moisture for litter C and N loss at different stages throughout the decomposition process. Although both microbial and nematode communities regulated litter C and N loss in the early decomposition stages, soil moisture and legacy effects of initial differences in litter quality played a major role in the late stages of the process. Our results provide strong evidence for substantial shifts in how biotic and abiotic factors control litter C and N dynamics during decomposition. Taking into account such temporal dynamics will increase the predictive power of decomposition models that are currently limited by a single-pool approach applying control variables uniformly to the entire decay process.

  3. Landrace Germplasm for Improving Yield and Abiotic Stress Adaptation.

    PubMed

    Dwivedi, Sangam L; Ceccarelli, Salvatore; Blair, Matthew W; Upadhyaya, Hari D; Are, Ashok K; Ortiz, Rodomiro

    2016-01-01

    Plant landraces represent heterogeneous, local adaptations of domesticated species, and thereby provide genetic resources that meet current and new challenges for farming in stressful environments. These local ecotypes can show variable phenology and low-to-moderate edible yield, but are often highly nutritious. The main contributions of landraces to plant breeding have been traits for more efficient nutrient uptake and utilization, as well as useful genes for adaptation to stressful environments such as water stress, salinity, and high temperatures. We propose that a systematic landrace evaluation may define patterns of diversity, which will facilitate identifying alleles for enhancing yield and abiotic stress adaptation, thus raising the productivity and stability of staple crops in vulnerable environments.

  4. A Chrysanthemum Heat Shock Protein Confers Tolerance to Abiotic Stress

    PubMed Central

    Song, Aiping; Zhu, Xirong; Chen, Fadi; Gao, Haishun; Jiang, Jiafu; Chen, Sumei

    2014-01-01

    Heat shock proteins are associated with protection against various abiotic stresses. Here, the isolation of a chrysanthemum cDNA belonging to the HSP70 family is reported. The cDNA, designated CgHSP70, encodes a 647-residue polypeptide, of estimated molecular mass 70.90 kDa and pI 5.12. A sub-cellular localization assay indicated that the cDNA product is deposited in the cytoplasm and nucleus. The performance of Arabidopsis thaliana plants constitutively expressing CgHSP70 demonstrated that the gene enhances tolerance to heat, drought and salinity. When CgHSP70 was stably over-expressed in chrysanthemum, the plants showed an increased peroxidase (POD) activity, higher proline content and inhibited malondialdehyde (MDA) content. After heat stress, drought or salinity the transgenic plants were better able to recover, demonstrating CgHSP70 positive effect. PMID:24663057

  5. Carbon isotopic fractionation of CFCs during abiotic and biotic degradation.

    PubMed

    Archbold, Marie E; Elliot, Trevor; Kalin, Robert M

    2012-02-07

    Carbon stable isotope ((13)C) fractionation in chlorofluorocarbon (CFC) compounds arising from abiotic (chemical) degradation using zero-valent iron (ZVI) and biotic (landfill gas attenuation) processes is investigated. Batch tests (at 25 °C) for CFC-113 and CFC-11 using ZVI show quantitative degradation of CFC-113 to HCFC-123a and CFC-1113 following pseudo-first-order kinetics corresponding to a half-life (τ(1/2)) of 20.5 h, and a ZVI surface-area normalized rate constant (k(SA)) of -(9.8 ± 0.5) × 10(-5) L m(-2) h(-1). CFC-11 degraded to trace HCFC-21 and HCFC-31 following pseudo-first-order kinetics corresponding to τ(1/2) = 17.3 h and k(SA) = -(1.2 ± 0.5) × 10(-4) L m(-2) h(-1). Signif