Science.gov

Sample records for abl kinase inhibitor

  1. Design of substrate-based BCR-ABL kinase inhibitors using the cyclotide scaffold

    PubMed Central

    Huang, Yen-Hua; Henriques, Sónia T.; Wang, Conan K.; Thorstholm, Louise; Daly, Norelle L.; Kaas, Quentin; Craik, David J.

    2015-01-01

    The constitutively active tyrosine kinase BCR-ABL is the underlying cause of chronic myeloid leukemia (CML). Current CML treatments rely on the long-term use of tyrosine kinase inhibitors (TKIs), which target the ATP binding site of BCR-ABL. Over the course of treatment, 20–30% of CML patients develop TKI resistance, which is commonly attributed to point mutations in the drug-binding region. We design a new class of peptide inhibitors that target the substrate-binding site of BCR-ABL by grafting sequences derived from abltide, the optimal substrate of Abl kinase, onto a cell-penetrating cyclotide MCoTI-II. Three grafted cyclotides show significant Abl kinase inhibition in vitro in the low micromolar range using a novel kinase inhibition assay. Our work also demonstrates that a reengineered MCoTI-II with abltide sequences grafted in both loop 1 and 6 inhibits the activity of [T315I]Abl in vitro, a mutant Abl kinase harboring the “gatekeeper” mutation which is notorious for being multidrug resistant. Results from serum stability and cell internalization studies confirm that the MCoTI-II scaffold provides enzymatic stability and cell-penetrating properties to the lead molecules. Taken together, our study highlights that reengineered cyclotides incorporating abltide-derived sequences are promising substrate-competitive inhibitors for Abl kinase and the T315I mutant. PMID:26264857

  2. Efficacy of ponatinib against ABL tyrosine kinase inhibitor-resistant leukemia cells

    SciTech Connect

    Okabe, Seiichi Tauchi, Tetsuzo; Tanaka, Yuko; Ohyashiki, Kazuma

    2013-06-07

    Highlights: •Efficacy of ponatinib against ABL tyrosine kinase inhibitor-resistant leukemia cells okabe et al. •Imatinib or nilotinib resistance was involved Src family kinase. •The BCR-ABL point mutation (E334V) was highly resistant to imatinib or nilotinib. •Ponatinib was a powerful strategy against imatinib or nilotinib resistant Ph-positive cells. -- Abstract: Because a substantial number of patients with chronic myeloid leukemia acquire resistance to ABL tyrosine kinase inhibitors (TKIs), their management remains a challenge. Ponatinib, also known as AP24534, is an oral multi-targeted TKI. Ponatinib is currently being investigated in a pivotal phase 2 clinical trial. In the present study, we analyzed the molecular and functional consequences of ponatinib against imatinib- or nilotinib-resistant (R) K562 and Ba/F3 cells. The proliferation of imatinib- or nilotinib-resistant K562 cells did not decrease after treatment with imatinib or nilotinib. Src family kinase Lyn was activated. Point mutation Ba/F3 cells (E334 V) were also highly resistant to imatinib and nilotinib. Treatment with ponatinib for 72 h inhibited the growth of imatinib- and nilotinib-resistant cells. The phosphorylation of BCR-ABL, Lyn, and Crk-L was reduced. This study demonstrates that ponatinib has an anti-leukemia effect by reducing ABL and Lyn kinase activity and this information may be of therapeutic relevance.

  3. Combination of the ABL kinase inhibitor imatinib with the Janus kinase 2 inhibitor TG101348 for targeting residual BCR-ABL-positive cells

    PubMed Central

    2014-01-01

    Background The ABL kinase inhibitor imatinib is highly effective in treating most, but not all, patients with chronic myeloid leukemia (CML). This is because residual CML cells are generally present in the bone marrow microenvironment and are refractory to imatinib. Hematopoietic cytokine receptor signaling is mediated by Janus kinases (JAKs) and their downstream transcription factor, signal transducer and activator of transcription (STAT). TG101348 (SAR302503) is an oral inhibitor of JAK2. Methods We investigated the efficacy of imatinib and TG101348 using the break point cluster region-c-Abelson (BCR-ABL)-positive cell line and primary CML samples wherein leukemia cells were protected by a feeder cell line (HS-5). Results Imatinib treatment resulted in partial inhibition of cell growth in HS-5-conditioned medium. Furthermore, combined treatment with imatinib and TG101348 abrogated the protective effects of HS-5-conditioned medium on K562 cells. Phosphorylation of Crk-L, a BCR-ABL substrate, decreased considerably, while apoptosis increased. In addition, the combined treatment of CD34-positive primary samples resulted in considerably increased cytotoxicity, decreased Crk-L phosphorylation, and increased apoptosis. We also investigated TG101348 activity against feeder cells and observed that STAT5 phosphorylation, granulocyte macrophage colony-stimulating factor, and interleukin 6 levels decreased, indicating reduced cytokine production in HS-5 cells treated with TG101348. Conclusions These results showed that JAK inhibitors may enhance the cytotoxic effect of imatinib against residual CML cells and that a combined approach may be a powerful strategy against the stroma-associated drug resistance of Philadelphia chromosome-positive cells. PMID:24775308

  4. Identification of novel inhibitors of BCR-ABL tyrosine kinase via virtual screening.

    PubMed

    Peng, Hui; Huang, Niu; Qi, Jing; Xie, Ping; Xu, Chen; Wang, Jianxiang; Yang, Chunzheng

    2003-11-01

    Inhibition of BCR-ABL tyrosine kinase activity has shown to be essential for the treatment of chronic myelogenous leukemia (CML). However, drug resistance has quickly arisen in recent clinical trials for STI571 (Gleevec), which is the first approved drug of CML by inhibiting ABL tyrosine kinase. It is desirable to develop new types of ABL tyrosine kinase inhibitors that may overcome this drug resistance problem. Here we present the discovery of novel inhibitors targeted at the catalytic domain of ABL tyrosine kinase by using three-dimensional database searching techniques. From a database containing 200,000 commercially available compounds, the top 1000 compounds with the best DOCK energy score were selected and subjected to structural diversity and drug likeness analysis, 15 compounds were submitted for biological assay. Eight out of the 15 showed inhibitory activity against K562 cells with IC(50) value ranging from 10 to 200 microM. Two promising compounds showed inhibition in further ABL tyrosine phosphorylation assay. It is anticipated that those two compounds can serve as lead compounds for further drug design and optimization. PMID:14552760

  5. A Cell-Based Assay for Measuring Endogenous BcrAbl Kinase Activity and Inhibitor Resistance.

    PubMed

    Ouellette, Steven B; Noel, Brett M; Parker, Laurie L

    2016-01-01

    Kinase enzymes are an important class of drug targets, particularly in cancer. Cell-based kinase assays are needed to understand how potential kinase inhibitors act on their targets in a physiologically relevant context. Current cell-based kinase assays rely on antibody-based detection of endogenous substrates, inaccurate disease models, or indirect measurements of drug action. Here we expand on previous work from our lab to introduce a 96-well plate compatible approach for measuring cell-based kinase activity in disease-relevant human chronic myeloid leukemia cell lines using an exogenously added, multi-functional peptide substrate. Our cellular models natively express the BcrAbl oncogene and are either sensitive or have acquired resistance to well-characterized BcrAbl tyrosine kinase inhibitors. This approach measures IC50 values comparable to established methods of assessing drug potency, and its robustness indicates that it can be employed in drug discovery applications. This medium-throughput assay could bridge the gap between single target focused, high-throughput in vitro assays and lower-throughput cell-based follow-up experiments. PMID:27598410

  6. Explaining why Gleevec is a specific and potent inhibitor of Abl kinase

    PubMed Central

    Lin, Yen-Lin; Meng, Yilin; Jiang, Wei; Roux, Benoît

    2013-01-01

    Tyrosine kinases present attractive drug targets for specific types of cancers. Gleevec, a well-known therapeutic agent against chronic myelogenous leukemia, is an effective inhibitor of Abl tyrosine kinase. However, Gleevec fails to inhibit closely homologous tyrosine kinases, such as c-Src. Because many structural features of the binding site are conserved, the molecular determinants responsible for binding specificity are not immediately apparent. Some have attributed the difference in binding specificity of Gleevec to subtle variations in ligand–protein interactions (binding affinity control), whereas others have proposed that it is the conformation of the DFG motif, in which ligand binding is only accessible to Abl and not to c-Src (conformational selection control). To address this issue, the absolute binding free energy was computed using all-atom molecular dynamics simulations with explicit solvent. The results of the free energy simulations are in good agreement with experiments, thereby enabling a meaningful decomposition of the binding free energy to elucidate the factors controlling Gleevec’s binding specificity. The latter is shown to be controlled by a conformational selection mechanism and also by differences in key van der Waals interactions responsible for the stabilization of Gleevec in the binding pocket of Abl. PMID:23319661

  7. Structural Mechanism of the Pan-BCR-ABL Inhibitor Ponatinib (AP24534): Lessons for Overcoming Kinase Inhibitor Resistance

    SciTech Connect

    Zhou, Tianjun; Commodore, Lois; Huang, Wei-Sheng; Wang, Yihan; Thomas, Mathew; Keats, Jeff; Xu, Qihong; Rivera, Victor M.; Shakespeare, William C.; Clackson, Tim; Dalgarno, David C.; Zhu, Xiaotian

    2012-01-20

    The BCR-ABL inhibitor imatinib has revolutionized the treatment of chronic myeloid leukemia. However, drug resistance caused by kinase domain mutations has necessitated the development of new mutation-resistant inhibitors, most recently against the T315I gatekeeper residue mutation. Ponatinib (AP24534) inhibits both native and mutant BCR-ABL, including T315I, acting as a pan-BCR-ABL inhibitor. Here, we undertook a combined crystallographic and structure-activity relationship analysis on ponatinib to understand this unique profile. While the ethynyl linker is a key inhibitor functionality that interacts with the gatekeeper, virtually all other components of ponatinib play an essential role in its T315I inhibitory activity. The extensive network of optimized molecular contacts found in the DFG-out binding mode leads to high potency and renders binding less susceptible to disruption by single point mutations. The inhibitory mechanism exemplified by ponatinib may have broad relevance to designing inhibitors against other kinases with mutated gatekeeper residues.

  8. Activity of the Aurora Kinase inhibitor VX-680 against Bcr/Abl positive acute lymphoblastic leukemias

    PubMed Central

    Fei, Fei; Stoddart, Sonia; Groffen, John; Heisterkamp, Nora

    2010-01-01

    The emergence of resistance to tyrosine kinase inhibitors due to point mutations in Bcr/Abl is a challenging problem for Philadelphia-chromosome positive (Ph-positive) acute lymphoblastic leukemia (ALL) patients, especially for those with the T315I mutation, against which neither nilotinib or dasatinib shows significant activity. VX-680 is a pan-Aurora kinase inhibitor active against all Bcr/Abl proteins but has not been extensively examined in preclinical models of Ph-positive ALL. Here, we have tested VX-680 for treatment of Bcr/Abl positive ALL when leukemic cells are protected by the presence of stroma. Under these conditions, VX-680 showed significant effects on primary human Ph-positive ALL cells both with and without the T315I mutation, including ablation of tyrosine phosphorylation downstream of Bcr/Abl, decreased viability and induction of apoptosis. However, drug treatment of human Ph-positive ALL cells for 3 days followed by drug removal allowed the outgrowth of abnormal cells 21 days later, and upon culture of mouse Bcr/Abl ALL cells on stroma with lower concentrations of VX-680, drug-resistant cells emerged. Combined treatment of human ALL cells lacking the T315I mutation with both VX-680 and dasatinib caused significantly more cytotoxicity than each drug alone. We suggest that use of VX-680 together with a second effective drug as first-line treatment for Ph-positive ALL is likely to be safer and more useful than second-line treatment with VX-680 as monotherapy for drug-resistant T315I Ph-positive ALL. PMID:20388735

  9. Current status of ABL tyrosine kinase inhibitors stop studies for chronic myeloid leukemia

    PubMed Central

    2016-01-01

    ABL tyrosine kinase inhibitors (TKIs) dramatically improves chronic myeloid leukemia (CML) prognosis and most CML patients are now able to lead lives that are equivalent to those of healthy individuals. However, high cost to CML patients of long-term treatment and adverse effects (AEs) remain problems. At the setout, a clinical study involving the discontinuation of imatinib was conducted in France. Then, several stop studies of first-generation (imatinib) and second-generation ABL TKIs (dasatinib, nilotinib), which induce earlier response than imatinib, have also been started. These studies revealed that almost half of CML patients who are treated with ABL TKIs and achieve a certain period of sustained deep molecular response can stop ABL TKIs safely and obtain treatment free remission (TFR). AEs of ABL TKIs withdrawal and predicting factors for successful discontinuation including immunity are becoming clear gradually through these studies. It is important to conduct a comprehensive examination of the results of studies with a wide variety of protocols in order to determine which discontinuation method results in the highest probability of TFR in clinical settings. PMID:27583255

  10. Current status of ABL tyrosine kinase inhibitors stop studies for chronic myeloid leukemia.

    PubMed

    Kimura, Shinya

    2016-01-01

    ABL tyrosine kinase inhibitors (TKIs) dramatically improves chronic myeloid leukemia (CML) prognosis and most CML patients are now able to lead lives that are equivalent to those of healthy individuals. However, high cost to CML patients of long-term treatment and adverse effects (AEs) remain problems. At the setout, a clinical study involving the discontinuation of imatinib was conducted in France. Then, several stop studies of first-generation (imatinib) and second-generation ABL TKIs (dasatinib, nilotinib), which induce earlier response than imatinib, have also been started. These studies revealed that almost half of CML patients who are treated with ABL TKIs and achieve a certain period of sustained deep molecular response can stop ABL TKIs safely and obtain treatment free remission (TFR). AEs of ABL TKIs withdrawal and predicting factors for successful discontinuation including immunity are becoming clear gradually through these studies. It is important to conduct a comprehensive examination of the results of studies with a wide variety of protocols in order to determine which discontinuation method results in the highest probability of TFR in clinical settings. PMID:27583255

  11. Bosutinib: a dual SRC/ABL kinase inhibitor for the treatment of chronic myeloid leukemia.

    PubMed

    Keller, Gunhild; Schafhausen, Philippe; Brummendorf, Tim H

    2009-10-01

    The tyrosine kinase inhibitor imatinib mesylate (IM) set new standards in the treatment of chronic myeloid leukemia (CML). However, emergence of resistance to IM became a major therapeutic challenge. Bosutinib (SKI-606), a 7-alkoxy-3-quinolinecarbonitrile, functions as a dual inhibitor of SRC and ABL kinases, and preclinical studies demonstrated a high antiproliferative activity in human and murine CML cell lines. In ongoing Phase I/II clinical trials, bosutinib yielded promising results revealing high clinical efficacy, good tolerability and reduced toxicity in IM-resistant or -intolerant CML patients. In this article, we provide an overview on the mechanism of action, and the preclinical and currently available clinical data for bosutinib. Owing to its favorable toxicity profile and its high antileukemic activity, bosutinib is a promising novel treatment option for patients with CML. A recently initiated, randomized open-label Phase III clinical study will clarify its role in first-line therapy of Philadelphia chromosome-positive chronic-phase CML. PMID:21083014

  12. A role for FOXO1 in BCR-ABL1-independent tyrosine kinase inhibitor resistance in chronic myeloid leukemia.

    PubMed

    Wagle, M; Eiring, A M; Wongchenko, M; Lu, S; Guan, Y; Wang, Y; Lackner, M; Amler, L; Hampton, G; Deininger, M W; O'Hare, T; Yan, Y

    2016-07-01

    Chronic myeloid leukemia (CML) patients who relapse on imatinib due to acquired ABL1 kinase domain mutations are successfully treated with second-generation ABL1-tyrosine kinase inhibitors (ABL-TKIs) such as dasatinib, nilotinib or ponatinib. However, ~40% of relapsed patients have uncharacterized BCR-ABL1 kinase-independent mechanisms of resistance. To identify these mechanisms of resistance and potential treatment options, we generated ABL-TKI-resistant K562 cells through prolonged sequential exposure to imatinib and dasatinib. Dual-resistant K562 cells lacked BCR-ABL1 kinase domain mutations, but acquired other genomic aberrations that were characterized by next-generation sequencing and copy number analyses. Proteomics showed that dual-resistant cells had elevated levels of FOXO1, phospho-ERK and BCL-2, and that dasatinib no longer inhibited substrates of the PI3K/AKT pathway. In contrast to parental cells, resistant cells were sensitive to growth inhibition and apoptosis induced by the class I PI3K inhibitor, GDC-0941 (pictilisib), which also induced FOXO1 nuclear translocation. FOXO1 was elevated in a subset of primary specimens from relapsed CML patients lacking BCR-ABL1 kinase domain mutations, and these samples were responsive to GDC-0941 treatment ex vivo. We conclude that elevated FOXO1 contributes to BCR-ABL1 kinase-independent resistance experienced by these CML patients and that PI3K inhibition coupled with BCR-ABL1 inhibition may represent a novel therapeutic approach. PMID:27044711

  13. A role for FOXO1 in BCR–ABL1-independent tyrosine kinase inhibitor resistance in chronic myeloid leukemia

    PubMed Central

    Wagle, M; Eiring, A M; Wongchenko, M; Lu, S; Guan, Y; Wang, Y; Lackner, M; Amler, L; Hampton, G; Deininger, M W; O'Hare, T; Yan, Y

    2016-01-01

    Chronic myeloid leukemia (CML) patients who relapse on imatinib due to acquired ABL1 kinase domain mutations are successfully treated with second-generation ABL1-tyrosine kinase inhibitors (ABL-TKIs) such as dasatinib, nilotinib or ponatinib. However, ~40% of relapsed patients have uncharacterized BCR–ABL1 kinase-independent mechanisms of resistance. To identify these mechanisms of resistance and potential treatment options, we generated ABL-TKI-resistant K562 cells through prolonged sequential exposure to imatinib and dasatinib. Dual-resistant K562 cells lacked BCR–ABL1 kinase domain mutations, but acquired other genomic aberrations that were characterized by next-generation sequencing and copy number analyses. Proteomics showed that dual-resistant cells had elevated levels of FOXO1, phospho-ERK and BCL-2, and that dasatinib no longer inhibited substrates of the PI3K/AKT pathway. In contrast to parental cells, resistant cells were sensitive to growth inhibition and apoptosis induced by the class I PI3K inhibitor, GDC-0941 (pictilisib), which also induced FOXO1 nuclear translocation. FOXO1 was elevated in a subset of primary specimens from relapsed CML patients lacking BCR–ABL1 kinase domain mutations, and these samples were responsive to GDC-0941 treatment ex vivo. We conclude that elevated FOXO1 contributes to BCR–ABL1 kinase-independent resistance experienced by these CML patients and that PI3K inhibition coupled with BCR–ABL1 inhibition may represent a novel therapeutic approach. PMID:27044711

  14. Kinase Domain Point Mutations in Ph+ Acute Lymphoblastic Leukemia (ALL) Emerge Following Therapy with BCR-ABL Kinase Inhibitors

    PubMed Central

    Jones, Dan; Thomas, Deborah; Yin, C. Cameron; O'Brien, Susan; Cortes, Jorge E.; Jabbour, Elias; Breeden, Megan; Giles, Francis J.; Zhao, Weiqiang; Kantarjian, Hagop M.

    2008-01-01

    Background BCR-ABL kinase domain (KD) mutations are detected in approximately 45% of imatinib-resistant CML. Patterns of KD mutations in Philadelphia chromosome (Ph)+ acute lymphoblastic leukemia (ALL) are less well-studied. Methods We assessed KD mutations in relapsed Ph+ ALL following treatments that included one or more kinase inhibitors (n = 24) or no prior KI therapy (n = 12). Results ABL KD mutations were detected by direct sequencing in 15 of 17 (88%) relapsed Ph+ ALL with prior imatinib (n = 16) or dasatinib (n = 1) treatment, and in 6 of 7 (86%) resistant/relapsed tumors treated with 2 or more KIs, compared with 0 of 12 relapsed Ph+ ALL never treated with KI. A restricted set of mutations was seen, mostly Y253H and T315I, detected on average 13 months following KI initiation, and mutations were not detected in the initial tumor samples prior to KI therapy in 12 patients assessed. Using a more sensitive pyrosequencing method, we did not detect mutations at codons 315 and 253 in the diagnostic samples from these 12 patients or in 30 Ph+ ALL patients who never relapsed. Conclusions ABL KD mutations, especially at codons 315 and 253, emerge upon relapse in the vast majority of patients with Ph+ ALL receiving maintenance KI therapy. Ongoing KI exposure may thus alter the patterns of relapse and favor outgrowth of clones with KI-resistant mutations. PMID:18615627

  15. Intracellular Retention of ABL Kinase Inhibitors Determines Commitment to Apoptosis in CML Cells

    PubMed Central

    Dziadosz, Marek; Schnöder, Tina; Heidel, Florian; Schemionek, Mirle; Melo, Junia V.; Kindler, Thomas; Müller-Tidow, Carsten; Koschmieder, Steffen; Fischer, Thomas

    2012-01-01

    Clinical development of imatinib in CML established continuous target inhibition as a paradigm for successful tyrosine kinase inhibitor (TKI) therapy. However, recent reports suggested that transient potent target inhibition of BCR-ABL by high-dose TKI (HD-TKI) pulse-exposure is sufficient to irreversibly commit cells to apoptosis. Here, we report a novel mechanism of prolonged intracellular TKI activity upon HD-TKI pulse-exposure (imatinib, dasatinib) in BCR-ABL-positive cells. Comprehensive mechanistic exploration revealed dramatic intracellular accumulation of TKIs which closely correlated with induction of apoptosis. Cells were rescued from apoptosis upon HD-TKI pulse either by repetitive drug wash-out or by overexpression of ABC-family drug transporters. Inhibition of ABCB1 restored sensitivity to HD-TKI pulse-exposure. Thus, our data provide evidence that intracellular drug retention crucially determines biological activity of imatinib and dasatinib. These studies may refine our current thinking on critical requirements of TKI dose and duration of target inhibition for biological activity of TKIs. PMID:22815843

  16. Synthesis and biological evaluation of analogues of the kinase inhibitor nilotinib as Abl and Kit inhibitors

    PubMed Central

    Duveau, Damien Y.; Hu, Xin; Walsh, Martin J.; Shukla, Suneet; Skoumbourdis, Amanda P.; Boxer, Matthew B.; Ambudkar, Suresh V.; Shen, Min; Thomas, Craig J.

    2013-01-01

    The importance of the trifluoromethyl group in the polypharmacological profile of nilotinib was investigated. Molecular editing of nilotinib led to the design, synthesis and biological evaluation of analogues where the trifluoromethyl group was replaced by a proton, fluorine and a methyl group. While these analogues were less active than nilotinib toward Abl, their activity toward Kit was comparable, with the monofluorinated analogue being the most active. Docking of nilotinib and of analogues 2a–c to the binding pocket of Abl and of Kit showed that the lack of shape complementarity in Kit is compensated by the stabilizing effect from its juxtamembrane region. PMID:23273517

  17. Novel aspects of therapy with the dual Src and Abl kinase inhibitor bosutinib in chronic myeloid leukemia.

    PubMed

    Keller-V Amsberg, Gunhild; Brümmendorf, Tim H

    2012-09-01

    The dual Src/Abl kinase inhibitor bosutinib (SKI-606) targets the tyrosine kinase brc-abl, the key enzyme in the development of chronic myeloid leukemia (CML). In clinical trials, bosutinib yielded promising results with regard to efficacy, tolerability and toxicity in first-, second- and third-line therapy of CML patients. Remarkably, bosutinib is able to overcome most imatinib-resistant BCR-ABL1-1 mutations except V299L and T315I. Mostly, low-to-moderate grade gastrointestinal toxicitis are the most common treatment-emergent adverse events observed under bosutinib. Unlike other tyrosine kinase inhibitors approved for CML treatment to date, bosutinib shows only minimal inhibitory activity against c-KIT and the PDGF receptor. This may be causative for its favorable hematologic toxicity profile. In this review, the authors give an overview on the mechanism of action and currently available preclinical and clinical data for bosutinib in CML. PMID:23098112

  18. Inhibition of Aurora Kinase B Is Important for Biologic Activity of the Dual Inhibitors of BCR-ABL and Aurora Kinases R763/AS703569 and PHA-739358 in BCR-ABL Transformed Cells

    PubMed Central

    Illert, Anna L.; Seitz, Anna K.; Rummelt, Christoph; Kreutmair, Stefanie; Engh, Richard A.; Goodstal, Samantha; Peschel, Christian; Duyster, Justus; von Bubnoff, Nikolas

    2014-01-01

    ABL tyrosine kinase inhibitors (TKI) like Imatinib, Dasatinib and Nilotinib are the gold standard in conventional treatment of CML. However, the emergence of resistance remains a major problem. Alternative therapeutic strategies of ABL TKI-resistant CML are urgently needed. We asked whether dual inhibition of BCR-ABL and Aurora kinases A-C could overcome resistance mediated by ABL kinase mutations. We therefore tested the dual ABL and Aurora kinase inhibitors PHA-739358 and R763/AS703569 in Ba/F3- cells ectopically expressing wild type (wt) or TKI-resistant BCR-ABL mutants. We show that both compounds exhibited strong anti-proliferative and pro-apoptotic activity in ABL TKI resistant cell lines including cells expressing the strongly resistant T315I mutation. Cell cycle analysis indicated polyploidisation, a consequence of continued cell cycle progression in the absence of cell division by Aurora kinase inhibition. Experiments using drug resistant variants of Aurora B indicated that PHA-739358 acts on both, BCR-ABL and Aurora Kinase B, whereas Aurora kinase B inhibition might be sufficient for the anti-proliferative activity observed with R763/AS703569. Taken together, our data demonstrate that dual ABL and Aurora kinase inhibition might be used to overcome ABL TKI resistant CML. PMID:25426931

  19. Structure-Activity Relationship Studies of Mitogen Activated Protein Kinase Interacting Kinase (MNK) 1 and 2 and BCR-ABL1 Inhibitors Targeting Chronic Myeloid Leukemic Cells.

    PubMed

    Cherian, Joseph; Nacro, Kassoum; Poh, Zhi Ying; Guo, Samantha; Jeyaraj, Duraiswamy A; Wong, Yun Xuan; Ho, Melvyn; Yang, Hai Yan; Joy, Joma Kanikadu; Kwek, Zekui Perlyn; Liu, Boping; Wee, John Liang Kuan; Ong, Esther H Q; Choong, Meng Ling; Poulsen, Anders; Lee, May Ann; Pendharkar, Vishal; Ding, Li Jun; Manoharan, Vithya; Chew, Yun Shan; Sangthongpitag, Kanda; Lim, Sharon; Ong, S Tiong; Hill, Jeffrey; Keller, Thomas H

    2016-04-14

    Clinically used BCR-ABL1 inhibitors for the treatment of chronic myeloid leukemia do not eliminate leukemic stem cells (LSC). It has been shown that MNK1 and 2 inhibitors prevent phosphorylation of eIF4E and eliminate the self-renewal capacity of LSCs. Herein, we describe the identification of novel dual MNK1 and 2 and BCR-ABL1 inhibitors, starting from the known kinase inhibitor 2. Initial structure-activity relationship studies resulted in compound 27 with loss of BCR-ABL1 inhibition. Further modification led to orally bioavailable dual MNK1 and 2 and BCR-ABL1 inhibitors 53 and 54, which are efficacious in a mouse xenograft model and also reduce the level of phosphorylated eukaryotic translation initiation factor 4E in the tumor tissues. Kinase selectivity of these compounds is also presented. PMID:27011159

  20. ABL tyrosine kinase inhibitor-induced pulmonary alveolar proteinosis in chronic myeloid leukemia.

    PubMed

    Yoshimura, Mariko; Kojima, Kensuke; Tomimasu, Rika; Fukushima, Noriyasu; Hayashi, Shinichiro; Sueoka, Eisaburo; Kimura, Shinya

    2014-12-01

    Pulmonary alveolar proteinosis (PAP) is a rare disease characterized by the accumulation of eosinophilic periodic acid Schiff-positive material in the intra-alveolar and bronchiolar spaces. Tyrosine kinase inhibitors, including imatinib, nilotinib, and dasatinib, have shown excellent efficacy in the treatment of chronic myeloid leukemia (CML). We report a case of acquired PAP in a patient with CML receiving tyrosine kinase inhibitors. A 67-year-old man with CML presented with progressive back pain 5 months after starting imatinib treatment. Acquired PAP was diagnosed based on physical, radiographic, and histopathological findings. The presence of granulocyte-macrophage colony-stimulating autoantibodies suggested that autoimmune mechanisms were involved in the pathogenesis. Interestingly, PAP developed in association with imatinib and dasatinib administration, but not with nilotinib treatment. The patient died of refractory leukemia in lymphoid blast crisis with a newly emerged T315I mutation. Although the incidence is very rare, imatinib and dasatinib associated with PAP development has been reported. Meanwhile, PAP in nilotinib-treated patients has not been reported. Our observation in one patient receiving multiple TKIs suggests that nilotinib may be safer than imatinib or dasatinib in avoiding the development or exacerbation of PAP. PMID:25212679

  1. Structure and Dynamic Regulation of Abl Kinases*

    PubMed Central

    Panjarian, Shoghag; Iacob, Roxana E.; Chen, Shugui; Engen, John R.; Smithgall, Thomas E.

    2013-01-01

    The c-abl proto-oncogene encodes a unique protein-tyrosine kinase (Abl) distinct from c-Src, c-Fes, and other cytoplasmic tyrosine kinases. In normal cells, Abl plays prominent roles in cellular responses to genotoxic stress as well as in the regulation of the actin cytoskeleton. Abl is also well known in the context of Bcr-Abl, the oncogenic fusion protein characteristic of chronic myelogenous leukemia. Selective inhibitors of Bcr-Abl, of which imatinib is the prototype, have had a tremendous impact on clinical outcomes in chronic myelogenous leukemia and revolutionized the field of targeted cancer therapy. In this minireview, we focus on the structural organization and dynamics of Abl kinases and how these features influence inhibitor sensitivity. PMID:23316053

  2. β-Catenin is required for intrinsic but not extrinsic BCR-ABL1 kinase-independent resistance to tyrosine kinase inhibitors in chronic myeloid leukemia

    PubMed Central

    Eiring, Anna M.; Khorashad, Jamshid S.; Anderson, David J.; Yu, Fan; Redwine, Hannah M.; Mason, Clinton C.; Reynolds, Kimberly R.; Clair, Phillip M.; Gantz, Kevin C.; Zhang, Tian Y.; Pomicter, Anthony D.; Kraft, Ira L.; Bowler, Amber D.; Johnson, Kara; Mac Partlin, Mary; O’Hare, Thomas; Deininger, Michael W.

    2015-01-01

    Activation of nuclear β-catenin and expression of its transcriptional targets promotes chronic myeloid leukemia (CML) progression, tyrosine kinase inhibitor (TKI) resistance, and leukemic stem cell self-renewal. We report that nuclear β-catenin plays a role in leukemia cell-intrinsic but not -extrinsic BCR-ABL1 kinase-independent TKI resistance. Upon imatinib inhibition of BCR-ABL1 kinase activity, β-catenin expression was maintained in intrinsically resistant cells grown in suspension culture and sensitive cells cultured in direct contact (DC) with bone marrow (BM) stromal cells. Thus, TKI resistance uncouples β-catenin expression from BCR-ABL1 kinase activity. In β-catenin reporter assays, intrinsically resistant cells showed increased transcriptional activity versus parental TKI-sensitive controls, and this was associated with restored expression of β-catenin target genes. In contrast, DC with BM stromal cells promoted TKI resistance, but had little effects on Lef/Tcf reporter activity and no consistent effects on cytoplasmic β-catenin levels, arguing against a role for β-catenin in extrinsic TKI resistance. N-cadherin or H-cadherin blocking antibodies abrogated DC-based resistance despite increasing Lef/Tcf reporter activity, suggesting that factors other than β-catenin contribute to extrinsic, BM-derived TKI resistance. Our data indicate that, while nuclear β-catenin enhances survival of intrinsically TKI-resistant CML progenitors, it is not required for extrinsic resistance mediated by the BM microenvironment. PMID:26202934

  3. Molecular Determinants Underlying Binding Specificities of the ABL Kinase Inhibitors: Combining Alanine Scanning of Binding Hot Spots with Network Analysis of Residue Interactions and Coevolution

    PubMed Central

    Tse, Amanda; Verkhivker, Gennady M.

    2015-01-01

    Quantifying binding specificity and drug resistance of protein kinase inhibitors is of fundamental importance and remains highly challenging due to complex interplay of structural and thermodynamic factors. In this work, molecular simulations and computational alanine scanning are combined with the network-based approaches to characterize molecular determinants underlying binding specificities of the ABL kinase inhibitors. The proposed theoretical framework unveiled a relationship between ligand binding and inhibitor-mediated changes in the residue interaction networks. By using topological parameters, we have described the organization of the residue interaction networks and networks of coevolving residues in the ABL kinase structures. This analysis has shown that functionally critical regulatory residues can simultaneously embody strong coevolutionary signal and high network centrality with a propensity to be energetic hot spots for drug binding. We have found that selective (Nilotinib) and promiscuous (Bosutinib, Dasatinib) kinase inhibitors can use their energetic hot spots to differentially modulate stability of the residue interaction networks, thus inhibiting or promoting conformational equilibrium between inactive and active states. According to our results, Nilotinib binding may induce a significant network-bridging effect and enhance centrality of the hot spot residues that stabilize structural environment favored by the specific kinase form. In contrast, Bosutinib and Dasatinib can incur modest changes in the residue interaction network in which ligand binding is primarily coupled only with the identity of the gate-keeper residue. These factors may promote structural adaptability of the active kinase states in binding with these promiscuous inhibitors. Our results have related ligand-induced changes in the residue interaction networks with drug resistance effects, showing that network robustness may be compromised by targeted mutations of key mediating

  4. Molecular Determinants Underlying Binding Specificities of the ABL Kinase Inhibitors: Combining Alanine Scanning of Binding Hot Spots with Network Analysis of Residue Interactions and Coevolution.

    PubMed

    Tse, Amanda; Verkhivker, Gennady M

    2015-01-01

    Quantifying binding specificity and drug resistance of protein kinase inhibitors is of fundamental importance and remains highly challenging due to complex interplay of structural and thermodynamic factors. In this work, molecular simulations and computational alanine scanning are combined with the network-based approaches to characterize molecular determinants underlying binding specificities of the ABL kinase inhibitors. The proposed theoretical framework unveiled a relationship between ligand binding and inhibitor-mediated changes in the residue interaction networks. By using topological parameters, we have described the organization of the residue interaction networks and networks of coevolving residues in the ABL kinase structures. This analysis has shown that functionally critical regulatory residues can simultaneously embody strong coevolutionary signal and high network centrality with a propensity to be energetic hot spots for drug binding. We have found that selective (Nilotinib) and promiscuous (Bosutinib, Dasatinib) kinase inhibitors can use their energetic hot spots to differentially modulate stability of the residue interaction networks, thus inhibiting or promoting conformational equilibrium between inactive and active states. According to our results, Nilotinib binding may induce a significant network-bridging effect and enhance centrality of the hot spot residues that stabilize structural environment favored by the specific kinase form. In contrast, Bosutinib and Dasatinib can incur modest changes in the residue interaction network in which ligand binding is primarily coupled only with the identity of the gate-keeper residue. These factors may promote structural adaptability of the active kinase states in binding with these promiscuous inhibitors. Our results have related ligand-induced changes in the residue interaction networks with drug resistance effects, showing that network robustness may be compromised by targeted mutations of key mediating

  5. BCR-ABL mutations in chronic myeloid leukemia treated with tyrosine kinase inhibitors and impact on survival.

    PubMed

    Pagnano, Katia Borgia Barbosa; Bendit, Israel; Boquimpani, Carla; De Souza, Carmino Antonio; Miranda, Eliana C M; Zalcberg, Ilana; Larripa, Irene; Nardinelli, Luciana; Silveira, Rosana Antunes; Fogliatto, Laura; Spector, Nelson; Funke, Vaneuza; Pasquini, Ricardo; Hungria, Vania; Chiattone, Carlos Sérgio; Clementino, Nelma; Conchon, Monika; Moiraghi, Elena Beatriz; Lopez, Jose Luis; Pavlovsky, Carolina; Pavlovsky, Miguel A; Cervera, Eduardo E; Meillon, Luis Antonio; Simões, Belinda; Hamerschlak, Nelson; Bozzano, Alicia Helena Magarinos; Mayta, Ernesto; Cortes, Jorge; Bengió, Raquel M

    2015-01-01

    This is the largest Latin American study of BCR-ABL mutations in chronic myeloid leukemia (CML) patients, resistant to imatinib (IM). In 195/467 (41%) patients, mutations were detected. The most frequent mutation was T315I (n = 31, 16%). Progression-free (PFS) and overall survival (OS) at 5 years were lower in patients with BCR-ABL mutations (43% vs. 65%, p = 0.07 and 47% vs. 72%, p = 0.03, respectively) and in those with the T315I mutation (p = 0.003 and p = 0.03). OS and PFS were superior in subgroup who switched to second generation inhibitors (SGIs) after IM failure (OS: 50% vs. 39% p = 0.01; PFS: 48% vs. 30% p = 0.02). BCR-ABL mutations conferred a significant poor prognosis in CML patients. PMID:26288116

  6. Early BCR-ABL1 Reduction Is Predictive of Better Event-free Survival in Patients With Newly Diagnosed Chronic Myeloid Leukemia Treated With Any Tyrosine Kinase Inhibitor.

    PubMed

    Fava, Carmen; Rege-Cambrin, Giovanna; Dogliotti, Irene; Gottardi, Enrico; Berchialla, Paola; Di Gioacchino, Bruno; Crasto, Francesca; Lorenzatti, Roberta; Volpengo, Alessandro; Daraio, Filomena; Fantino, Cristina; Saglio, Giuseppe

    2016-08-01

    An early molecular response has a strong predictive value in chronic myeloid leukemia (CML). Recently, the halving time (velocity of early BCR-ABL1 transcript elimination) has been shown to represent an additional prognostic index. Our objective was the evaluation of the prognostic significance of the 3-month point in our population. We retrospectively collected BCR-ABL1 transcript data at different time points, events, and survival data of patients with CML treated at the Division of Hematology, San Luigi Hospital, University of Turin, Turin, Italy. Of 71 patients diagnosed from January 2005 to March 2015 in our center and treated with front-line tyrosine kinase inhibitors (imatinib, nilotinib and dasatinib), we selected those who had undergone a molecular evaluation at 3 months. The event-free survival (EFS) by the median follow-up time was the primary endpoint. The data from 50 patients with CML chronic phase were analyzed. Overall, 34 of the 50 patients (68%) had a transcript ≤ 10% at 3 months. Of those in the > 10% group, 63% had experienced an event compared with 12% in the ≤ 10% group by the median follow-up point (P < .001). The halving time threshold for discriminating between EFS was 17 days. None of the patients with a transcript > 10% at 3 months had a halving time of ≤ 17 days. Patients with BCR-ABL1 ≤ 10% and a halving time of ≤ 17 days had significantly better EFS than that of patients with BCR-ABL1 ≤ 10% and a halving time > 17 days and of patients with BCR-ABL1 > 10% (96% group 1 vs. 60% group 2 vs. 27% group 3; P < .001). Irrespective of the tyrosine kinase inhibitor used, the prognosis was significantly superior for patients with BCR-ABL1 ≤ 10% and halving time of ≤ 17 days. Our data revealed that the use of ABL1 as a control gene is reliable for the determination of the halving time in the clinical setting and highlight the importance of measuring the BCR-ABL1 transcript at CML diagnosis. PMID:27131622

  7. The sensitivity of chronic myeloid leukemia CD34 cells to Bcr-Abl tyrosine kinase inhibitors is modulated by ceramide levels.

    PubMed

    Wang, Jiaqiao; Hu, June; Jin, Zhiliang; Wan, Huihui

    2016-08-01

    Despite BCR-ABL tyrosine kinase inhibitors (TKIs) improved outcome of patients with chronic myeloid leukemia (CML), resistance still develops when progresses to blast phase (BP). The mechanisms underlying resistance to TKIs are not well understood. In this study, we analyzed ceramide levels in CD34 cells derived from BP-CML patients and healthy donor bone marrow (BM) using liquid chromatography mass spectrometry. We found that ceramide level was significantly lower in BP-CML CD34 compared with normal BM counterparts. BP-CML CD34 ceramide(low) were more resistant to BCR-ABL TKIs compared to BP-CML CD34 ceramide(normal). Both mRNA and proteins levels of sphingomyelin synthase 1 and 2 are lower in BP-CML CD34 ceramide(low) compared to normal BM CD34 cells, suggesting that these two ceramide synthesis enzymes maybe the mechanism of how ceramide level is suppressed. Importantly, up-regulation of cellular ceramide level induces apoptosis of multiple CML cell lines and BP-CML CD34 progenitors. Combination of BCR-ABL TKIs with ceramide analog is synergistic in targeting BP-CML 34 progenitors. Collectively, our work provides evidence that down-regulation of ceramide level is involved in the resistance of BP-CML CD34 progenitors to TKIs treatment. Targeting ceramide metabolism together with BCR-ABL inhibition makes it an attractive addition to the armamentarium in BP-CML treatment. PMID:27244255

  8. Integrating in vitro sensitivity and dose-response slope is predictive of clinical response to ABL kinase inhibitors in chronic myeloid leukemia.

    PubMed

    Vainstein, Vladimir; Eide, Christopher A; O'Hare, Thomas; Shukron, Ofir; Druker, Brian J

    2013-11-01

    BCR-ABL mutations result in clinical resistance to ABL tyrosine kinase inhibitors (TKIs) in chronic myeloid leukemia (CML). Although in vitro 50% inhibitory concentration (IC(50)) values for specific mutations have been suggested to guide TKI choice in the clinic, the quantitative relationship between IC(50) and clinical response has never been demonstrated. We used Hill's equation for in vitro response of Ba/F3 cells transduced with various BCR-ABL mutants to determine IC(50) and the slope of the dose-response curve. We found that slope variability between mutants tracked with in vitro TKI resistance, provides particular additional interpretive value in cases where in vitro IC(50) and clinical response are disparate. Moreover, unlike IC(50) alone, higher inhibitory potential at peak concentration (IPP), which integrates IC(50), slope, and peak concentration (Cmax), correlated with improved complete cytogenetic response (CCyR) rates in CML patients treated with dasatinib. Our findings suggest a metric integrating in vitro and clinical data may provide an improved tool for BCR-ABL mutation-guided TKI selection. PMID:24062017

  9. Switching to second-generation tyrosine kinase inhibitor improves the response and outcome of frontline imatinib-treated patients with chronic myeloid leukemia with more than 10% of BCR-ABL/ABL ratio at 3 months.

    PubMed

    Casado, Luis-Felipe; García-Gutiérrez, José-Valentín; Massagué, Isabel; Giraldo, Pilar; Pérez-Encinas, Manuel; de Paz, Raquel; Martínez-López, Joaquín; Bautista, Guiomar; Osorio, Santiago; Requena, María-José; Palomera, Luis; Peñarrubia, María-Jesús; Calle, Carmen; Hernández-Rivas, José-Ángel; Burgaleta, Carmen; Maestro, Begoña; García-Ormeña, Nuria; Steegmann, Juan-Luis

    2015-07-01

    Chronic myeloid leukemia patients display heterogeneous responses to imatinib. Survival depends on baseline clinical characteristics (including prognostic scoring systems) and on early response (such as >10% BCR-ABL/ABL ratio at 3 months of therapy). The results of switching to second-generation tyrosine kinase inhibitors (2GTKIs) may contain a bias since, in the majority of these studies, patients who switch treatment due to intolerance or failure are censored or excluded. We analyzed the Spanish Registry data on switching in an intention-to-treat analysis of patients in standard clinical practice. Switching to 2GTKIs improves responses from 45% to 75% of complete cytogenetic response (CCyR) and from 15% to 45% of major molecular response (MMR) in the group without molecular response 1 (MR1) at 3 months and from 70% to 87% in CCyR and from 52% to 87% in MMR in the group with MR1. The final response rate is poorer in the group with no MR1 at 3 months. Nevertheless, the differences in the rates of response were not translated into differences in major events (transformations or deaths), and the final progression-free survival and overall survival were similar. PMID:25756742

  10. Switching to second-generation tyrosine kinase inhibitor improves the response and outcome of frontline imatinib-treated patients with chronic myeloid leukemia with more than 10% of BCR-ABL/ABL ratio at 3 months

    PubMed Central

    Casado, Luis-Felipe; García-Gutiérrez, José-Valentín; Massagué, Isabel; Giraldo, Pilar; Pérez-Encinas, Manuel; de Paz, Raquel; Martínez-López, Joaquín; Bautista, Guiomar; Osorio, Santiago; Requena, María-José; Palomera, Luis; Peñarrubia, María-Jesús; Calle, Carmen; Hernández-Rivas, José-Ángel; Burgaleta, Carmen; Maestro, Begoña; García-Ormeña, Nuria; Steegmann, Juan-Luis

    2015-01-01

    Chronic myeloid leukemia patients display heterogeneous responses to imatinib. Survival depends on baseline clinical characteristics (including prognostic scoring systems) and on early response (such as >10% BCR-ABL/ABL ratio at 3 months of therapy). The results of switching to second-generation tyrosine kinase inhibitors (2GTKIs) may contain a bias since, in the majority of these studies, patients who switch treatment due to intolerance or failure are censored or excluded. We analyzed the Spanish Registry data on switching in an intention-to-treat analysis of patients in standard clinical practice. Switching to 2GTKIs improves responses from 45% to 75% of complete cytogenetic response (CCyR) and from 15% to 45% of major molecular response (MMR) in the group without molecular response 1 (MR1) at 3 months and from 70% to 87% in CCyR and from 52% to 87% in MMR in the group with MR1. The final response rate is poorer in the group with no MR1 at 3 months. Nevertheless, the differences in the rates of response were not translated into differences in major events (transformations or deaths), and the final progression-free survival and overall survival were similar. PMID:25756742

  11. Next-generation sequencing for sensitive detection of BCR-ABL1 mutations relevant to tyrosine kinase inhibitor choice in imatinib-resistant patients

    PubMed Central

    Soverini, Simona; De Benedittis, Caterina; Polakova, Katerina Machova; Linhartova, Jana; Castagnetti, Fausto; Gugliotta, Gabriele; Papayannidis, Cristina; Mancini, Manuela; Klamova, Hana; Salvucci, Marzia; Crugnola, Monica; Iurlo, Alessandra; Albano, Francesco; Russo, Domenico; Rosti, Gianantonio; Cavo, Michele; Baccarani, Michele; Martinelli, Giovanni

    2016-01-01

    In chronic myeloid leukemia (CML) and Philadelphia-positive (Ph+) acute lymphoblastic leukemia (ALL) patients who fail imatinib treatment, BCR-ABL1 mutation profiling by Sanger sequencing (SS) is recommended before changing therapy since detection of specific mutations influences second-generation tyrosine kinase inhibitor (2GTKI) choice. We aimed to assess i) in how many patients who relapse on second-line 2GTKI therapy next generation sequencing (NGS) may track resistant mutations back to the sample collected at the time of imatinib resistance, before 2GTKI start (switchover sample) and ii) whether low level mutations identified by NGS always undergo clonal expansion. To this purpose, we used NGS to retrospectively analyze 60 imatinib-resistant patients (CML, n = 45; Ph+ ALL, n = 15) who had failed second-line 2GTKI therapy and had acquired BCR-ABL1 mutations (Group 1) and 25 imatinib-resistant patients (CML, n = 21; Ph+ ALL, n = 4) who had responded to second-line 2GTKI therapy, for comparison (Group 2). NGS uncovered that in 26 (43%) patients in Group 1, the 2GTKI-resistant mutations that triggered relapse were already detectable at low levels in the switchover sample (median mutation burden, 5%; range 1.1%–18.4%). Importantly, none of the low level mutations detected by NGS in switchover samples failed to expand whenever the patient received the 2GTKI to whom they were insensitive. In contrast, no low level mutation that was resistant to the 2GTKI the patients subsequently received was detected in the switchover samples from Group 2. NGS at the time of imatinib failure reliably identifies clinically relevant mutations, thus enabling a more effective therapeutic tailoring. PMID:26980736

  12. Normal ABL1 is a tumor suppressor and therapeutic target in human and mouse leukemias expressing oncogenic ABL1 kinases.

    PubMed

    Dasgupta, Yashodhara; Koptyra, Mateusz; Hoser, Grazyna; Kantekure, Kanchan; Roy, Darshan; Gornicka, Barbara; Nieborowska-Skorska, Margaret; Bolton-Gillespie, Elisabeth; Cerny-Reiterer, Sabine; Müschen, Markus; Valent, Peter; Wasik, Mariusz A; Richardson, Christine; Hantschel, Oliver; van der Kuip, Heiko; Stoklosa, Tomasz; Skorski, Tomasz

    2016-04-28

    Leukemias expressing constitutively activated mutants of ABL1 tyrosine kinase (BCR-ABL1, TEL-ABL1, NUP214-ABL1) usually contain at least 1 normal ABL1 allele. Because oncogenic and normal ABL1 kinases may exert opposite effects on cell behavior, we examined the role of normal ABL1 in leukemias induced by oncogenic ABL1 kinases. BCR-ABL1-Abl1(-/-) cells generated highly aggressive chronic myeloid leukemia (CML)-blast phase-like disease in mice compared with less malignant CML-chronic phase-like disease from BCR-ABL1-Abl1(+/+) cells. Additionally, loss of ABL1 stimulated proliferation and expansion of BCR-ABL1 murine leukemia stem cells, arrested myeloid differentiation, inhibited genotoxic stress-induced apoptosis, and facilitated accumulation of chromosomal aberrations. Conversely, allosteric stimulation of ABL1 kinase activity enhanced the antileukemia effect of ABL1 tyrosine kinase inhibitors (imatinib and ponatinib) in human and murine leukemias expressing BCR-ABL1, TEL-ABL1, and NUP214-ABL1. Therefore, we postulate that normal ABL1 kinase behaves like a tumor suppressor and therapeutic target in leukemias expressing oncogenic forms of the kinase. PMID:26864341

  13. A peptide biosensor for detecting intracellular Abl kinase activity using MALDI-TOF MS

    PubMed Central

    Placzek, Ekaterina A.; Plebanek, Michael P.; Lipchik, Andrew M.; Kidd, Stephanie R.; Parker, Laurie L.

    2009-01-01

    Many cancers are characterized by changes in protein phosphorylation as a result of kinase dysregulation. Disruption of Abl kinase signaling through the Philadelphia chromosome (causing the Bcr-Abl mutation) in chronic myeloid leukemia (CML) has provided a paradigm for development of kinase inhibitor drugs such as the specific inhibitor imatinib (also known as STI571 or Gleevec). However, since patients are treated indefinitely with this drug to maintain remission, resistance is increasingly becoming an issue. While there are many ways to detect kinase activity, most lack the ability to ‘multiplex’ the analysis (to detect more than one substrate simultaneously). Here we report a novel biosensor for detecting Abl kinase activity and sensitivity to inhibitor in live, intact cells overexpressing a CML model Abl kinase construct. This straightforward methodology could eventually provide a new tool for detecting kinase activity and inhibitor drug response in cancer cells that overexpress oncogenic kinases. PMID:19818327

  14. Analysis of Imatinib and Sorafenib Binding to p38 Compared with c-Abl and b-Raf Provides Structural Insights for Understanding the Selectivity of Inhibitors Targeting the DFG-Out Form of Protein Kinases

    SciTech Connect

    Namboodiri, H.; Bukhtiyarova, M; Ramcharan, J; Karpusas, M; Lee, Y; Springman, E

    2010-01-01

    Protein kinases c-Abl, b-Raf, and p38{alpha} are recognized as important targets for therapeutic intervention. c-Abl and b-Raf are major targets of marketed oncology drugs Imatinib (Gleevec) and Sorafenib (Nexavar), respectively, and BIRB-796 is a p38{alpha} inhibitor that reached Phase II clinical trials. A shared feature of these drugs is the fact that they bind to the DFG-out forms of their kinase targets. Although the discovery of this class of kinase inhibitors has increased the level of emphasis on the design of DFG-out inhibitors, the structural determinants for their binding and stabilization of the DFG-out conformation remain unclear. To improve our understanding of these determinants, we determined cocrystal structures of Imatinib and Sorafenib with p38{alpha}. We also conducted a detailed analysis of Imatinib and Sorafenib binding to p38{alpha} in comparison with BIRB-796, including binding kinetics, binding interactions, the solvent accessible surface area (SASA) of the ligands, and stabilization of key structural elements of the protein upon ligand binding. Our results yield an improved understanding of the structural requirements for stabilizing the DFG-out form and a rationale for understanding the genesis of ligand selectivity among DFG-out inhibitors of protein kinases.

  15. Identification of novel tyrosine kinase inhibitors for drug resistant T315I mutant BCR-ABL: a virtual screening and molecular dynamics simulations study

    NASA Astrophysics Data System (ADS)

    Banavath, Hemanth Naick; Sharma, Om Prakash; Kumar, Muthuvel Suresh; Baskaran, R.

    2014-11-01

    BCR-ABL tyrosine kinase plays a major role in the pathogenesis of chronic myeloid leukemia (CML) and is a proven target for drug development. Currently available drugs in the market are effective against CML; however, side-effects and drug-resistant mutations in BCR-ABL limit their full potential. Using high throughput virtual screening approach, we have screened several small molecule databases and docked against wild-type and drug resistant T315I mutant BCR-ABL. Drugs that are currently available, such as imatinib and ponatinib, were also docked against BCR-ABL protein to set a cutoff value for our screening. Selected lead compounds were further evaluated for chemical reactivity employing density functional theory approach, all selected ligands shows HLG value > 0.09900 and the binding free energy between protein-ligand complex interactions obtained was rescored using MM-GBSA. The selected compounds showed least ΔG score -71.53 KJ/mol to maximum -126.71 KJ/mol in both wild type and drug resistant T315I mutant BCR-ABL. Following which, the stability of the docking complexes were evaluated by molecular dynamics simulation (MD) using GROMACS4.5.5. Results uncovered seven lead molecules, designated with Drug-Bank and PubChem ids as DB07107, DB06977, ST013616, DB04200, ST007180 ST019342, and DB01172, which shows docking scores higher than imatinib and ponatinib.

  16. The SH2 domain of Abl kinases regulates kinase autophosphorylation by controlling activation loop accessibility

    NASA Astrophysics Data System (ADS)

    Lamontanara, Allan Joaquim; Georgeon, Sandrine; Tria, Giancarlo; Svergun, Dmitri I.; Hantschel, Oliver

    2014-11-01

    The activity of protein kinases is regulated by multiple molecular mechanisms, and their disruption is a common driver of oncogenesis. A central and almost universal control element of protein kinase activity is the activation loop that utilizes both conformation and phosphorylation status to determine substrate access. In this study, we use recombinant Abl tyrosine kinases and conformation-specific kinase inhibitors to quantitatively analyse structural changes that occur after Abl activation. Allosteric SH2-kinase domain interactions were previously shown to be essential for the leukemogenesis caused by the Bcr-Abl oncoprotein. We find that these allosteric interactions switch the Abl activation loop from a closed to a fully open conformation. This enables the trans-autophosphorylation of the activation loop and requires prior phosphorylation of the SH2-kinase linker. Disruption of the SH2-kinase interaction abolishes activation loop phosphorylation. Our analysis provides a molecular mechanism for the SH2 domain-dependent activation of Abl that may also regulate other tyrosine kinases.

  17. Abl Kinases Regulate HGF/Met Signaling Required for Epithelial Cell Scattering, Tubulogenesis and Motility

    PubMed Central

    Li, Ran; Knight, Jennifer F.; Park, Morag; Pendergast, Ann Marie

    2015-01-01

    Tight regulation of receptor tyrosine kinases (RTKs) is crucial for normal development and homeostasis. Dysregulation of RTKs signaling is associated with diverse pathological conditions including cancer. The Met RTK is the receptor for hepatocyte growth factor (HGF) and is dysregulated in numerous human tumors. Here we show that Abl family of non-receptor tyrosine kinases, comprised of Abl (ABL1) and Arg (ABL2), are activated downstream of the Met receptor, and that inhibition of Abl kinases dramatically suppresses HGF-induced cell scattering and tubulogenesis. We uncover a critical role for Abl kinases in the regulation of HGF/Met-dependent RhoA activation and RhoA-mediated actomyosin contractility and actin cytoskeleton remodeling in epithelial cells. Moreover, treatment of breast cancer cells with Abl inhibitors markedly decreases Met-driven cell migration and invasion. Notably, expression of a transforming mutant of the Met receptor in the mouse mammary epithelium results in hyper-activation of both Abl and Arg kinases. Together these data demonstrate that Abl kinases link Met activation to Rho signaling and Abl kinases are required for Met-dependent cell scattering, tubulogenesis, migration, and invasion. Thus, inhibition of Abl kinases might be exploited for the treatment of cancers driven by hyperactivation of HGF/Met signaling. PMID:25946048

  18. [Kinase inhibitors and their resistance].

    PubMed

    Togashi, Yosuke; Nishio, Kazuto

    2015-08-01

    Kinase cascades are involved in all stages of tumorigenesis through modulation of transformation and differentiation, cell-cycle progression, and motility. Advances in molecular targeted drug development allow the design and synthesis of inhibitors targeting cancer-associated signal transduction pathways. Potent selective inhibitors with low toxicity can benefit patients especially with several malignancies harboring an oncogenic driver addictive signal. This article evaluates information on solid tumor-related kinase signals and inhibitors, including receptor tyrosine kinase or serine/threonine kinase signals that lead to successful application in clinical settings. In addition, the resistant mechanisms to the inhibitors is summarized. PMID:26281685

  19. Efficacy and Pharmacologic Data of Second-Generation Tyrosine Kinase Inhibitor Nilotinib in BCR-ABL-Positive Leukemia Patients with Central Nervous System Relapse after Allogeneic Stem Cell Transplantation

    PubMed Central

    Reinwald, Mark; Schleyer, Eberhard; Kiewe, Philipp; Blau, Igor Wolfgang; Burmeister, Thomas; Pursche, Stefan; Neumann, Martin; Notter, Michael; Thiel, Eckhard; Hofmann, Wolf-Karsten; Kolb, Hans-Jochem; Burdach, Stefan; Bender, Hans-Ulrich

    2014-01-01

    Central nervous system (CNS) involvement is a severe complication of BCR-ABL-positive leukemia after allogenic stem cell transplantation (alloSCT) associated with fatal outcome. Although second-generation tyrosine-kinase inhibitors (TKI) such as nilotinib have shown activity in systemic BCR-ABL+ disease, little data exists on their penetration and efficacy within the CNS. Four patients (3 male, 1 female; age 15–49) with meningeal relapse after alloSCT and subsequent treatment with nilotinib were identified. A total of 17 cerebrospinal fluid (csf) and serum samples were assessed for nilotinib concentration and patient outcome was recorded. Nilotinib concentrations showed a low median csf/plasma ratio of 0.53% (range 0.23–1.5%), yet pronounced clinical efficacy was observed with long-lasting responses (>1 year) in three patients. Comparison with historical data showed a trend towards superior efficacy of nilotinib versus imatinib. Despite poor csf penetration, nilotinib showed significant clinical activity in CNS relapse of BCR-ABL+ leukemias. As nilotinib has a high protein-binding affinity, the low-protein concentration in csf could translate into a relatively higher amount of free and therefore active nilotinib in csf as compared to blood, possibly explaining the observed efficacy. Thus, treatment with a 2nd generation TKI warrants further investigation and should be considered in cases of CNS relapse of BCR-ABL-positive leukemia after alloSCT. PMID:25025064

  20. Discovery of 2-((3-Amino-4-methylphenyl)amino)-N-(2-methyl-5-(3-(trifluoromethyl)benzamido)phenyl)-4-(methylamino)pyrimidine-5-carboxamide (CHMFL-ABL-053) as a Potent, Selective, and Orally Available BCR-ABL/SRC/p38 Kinase Inhibitor for Chronic Myeloid Leukemia.

    PubMed

    Liang, Xiaofei; Liu, Xiaochuan; Wang, Beilei; Zou, Fengming; Wang, Aoli; Qi, Shuang; Chen, Cheng; Zhao, Zheng; Wang, Wenchao; Qi, Ziping; Lv, Fengchao; Hu, Zhenquan; Wang, Li; Zhang, Shanchun; Liu, Qingsong; Liu, Jing

    2016-03-10

    Starting from a dihydropyrimidopyrimidine core scaffold based compound 27 (GNF-7), we discovered a highly potent (ABL1: IC50 of 70 nM) and selective (S score (1) = 0.02) BCR-ABL inhibitor 18a (CHMFL-ABL-053). Compound 18a did not exhibit apparent inhibitory activity against c-KIT kinase, which is the common target of currently clinically used BCR-ABL inhibitors. Through significant suppression of the BCR-ABL autophosphorylation (EC50 about 100 nM) and downstream mediators such as STAT5, Crkl, and ERK's phosphorylation, 18a inhibited the proliferation of CML cell lines K562 (GI50 = 14 nM), KU812 (GI50 = 25 nM), and MEG-01 (GI50 = 16 nM). A pharmacokinetic study revealed that 18a had over 4 h of half-life and 24% bioavailability in rats. A 50 mg/kg/day dosage treatment could almost completely suppress tumor progression in the K562 cells inoculated xenograft mouse model. As a potential useful drug candidate for CML, 18a is under extensive preclinical safety evaluation now. PMID:26789553

  1. Targeting cancer with kinase inhibitors

    PubMed Central

    Gross, Stefan; Rahal, Rami; Stransky, Nicolas; Lengauer, Christoph; Hoeflich, Klaus P.

    2015-01-01

    Kinase inhibitors have played an increasingly prominent role in the treatment of cancer and other diseases. Currently, more than 25 oncology drugs that target kinases have been approved, and numerous additional therapeutics are in various stages of clinical evaluation. In this Review, we provide an in-depth analysis of activation mechanisms for kinases in cancer, highlight recent successes in drug discovery, and demonstrate the clinical impact of selective kinase inhibitors. We also describe the substantial progress that has been made in designing next-generation inhibitors to circumvent on-target resistance mechanisms, as well as ongoing strategies for combining kinase inhibitors in the clinic. Last, there are numerous prospects for the discovery of novel kinase targets, and we explore cancer immunotherapy as a new and promising research area for studying kinase biology. PMID:25932675

  2. Structural Basis for Autoinhibition of c-Abl Tyrosine Kinase

    SciTech Connect

    Nagar, Bhushan; Hantschel, Oliver; Young, Matthew A.; Scheffzek,Klaus; Veach, Darren; Bornmann, William; Clarkson, Bayard; Superti-Furga,Giulio; Kuriyan, John

    2003-03-21

    c-Abl is normally regulated by an autoinhibitory mechanism, the disruption of which leads to chronic myelogenous leukemia. The details of this mechanism have been elusive because c-Abl lacks aphosphotyrosine residue that triggers the assembly of the autoinhibited form of the closely related Src kinases by internally engaging the SH2 domain. Crystal structures of c-Abl show that the N-terminal myristoyl modification of c-Abl 1b binds to the kinase domain and induces conformational changes that allow the SH2 and SH3 domains to dock onto it. Autoinhibited c-Abl forms an assembly that is strikingly similar to that of inactive Src kinases but with specific differences that explain the differential ability of the drug STI-571/Gleevec/imatinib (STI-571)to inhibit the catalytic activity of Abl, but not that of c-Src.

  3. Structure of the ABL2/ARG kinase in complex with dasatinib

    PubMed Central

    Ha, Byung Hak; Simpson, Mark Adam; Koleske, Anthony J.; Boggon, Titus J.

    2015-01-01

    ABL2/ARG (ABL-related gene) belongs to the ABL (Abelson tyrosine-protein kinase) family of tyrosine kinases. ARG plays important roles in cell morphogenesis, motility, growth and survival, and many of these biological roles overlap with the cellular functions of the ABL kinase. Chronic myeloid leukemia (CML) is associated with constitutive ABL kinase activation resulting from fusion between parts of the breakpoint cluster region (BCR) and ABL1 genes. Similarly, fusion of the ETV6 (Tel) and ARG genes drives some forms of T-cell acute lymphoblastic leukemia (T-ALL) and acute myeloid leukemia (AML). Dasatinib is a tyrosine kinase inhibitor used for the treatment of CML by inhibiting ABL, and while it also inhibits ARG, there is currently no structure of ARG in complex with dasatinib. Here, the co-crystal structure of the mouse ARG catalytic domain with dasatinib at 2.5 Å resolution is reported. Dasatinib-bound ARG is found in the DFG-in conformation although it is nonphos­phorylated on the activation-loop tyrosine. In this structure the glycine-rich P-loop is found in a relatively open conformation compared with other known ABL family–inhibitor complex structures. PMID:25849507

  4. Targeting Abl Kinases to Regulate Vascular Leak During Sepsis and ARDS

    PubMed Central

    Rizzo, Alicia N.; Aman, Jurjan; van Nieuw Amerongen, Geerten P.; Dudek, Steven M.

    2015-01-01

    The vascular endothelium separates circulating fluid and inflammatory cells from the surrounding tissues. Vascular leak occurs in response to wide-spread inflammatory processes, such as sepsis and Acute Respiratory Distress Syndrome (ARDS), due to the formation of gaps between endothelial cells (EC). Although these disorders are leading causes of mortality in the ICU, no medical therapies exist to restore EC barrier function. Recent evidence highlights a key role for the Abl family of non-receptor tyrosine kinases in regulating vascular barrier integrity. These kinases have well-described roles in cancer progression and neuronal morphogenesis, but their functions in the vasculature have remained enigmatic until recently. The Abl family kinases, c-Abl (Abl1) and Abl related gene (Arg, Abl2), phosphorylate several cytoskeletal effectors that mediate vascular permeability, including myosin light chain kinase, cortactin, vinculin, and β-catenin. They also regulate cell-cell and cell-matrix junction dynamics, and the formation of actin-based cellular protrusions in multiple cell types. Additionally, both c-Abl and Arg are activated by hyperoxia and contribute to oxidant-induced EC injury. These numerous roles of Abl kinases in EC and the current clinical usage of imatinib and other Abl kinase inhibitors have spurred recent interest in repurposing these drugs for the treatment of vascular barrier dysfunction. This review will describe the structure and function of Abl kinases with an emphasis on their roles in mediating vascular barrier integrity. We will also provide a critical evaluation of the potential for exploiting Abl kinase inhibition as a novel therapy for inflammatory vascular leak syndromes. PMID:25814671

  5. Targeting the SH2-Kinase Interface in Bcr-Abl Inhibits Leukemogenesis

    SciTech Connect

    Grebien, Florian; Hantschel, Oliver; Wojcik, John; Kaupe, Ines; Kovacic, Boris; Wyrzucki, Arkadiusz M.; Gish, Gerald D.; Cerny-Reiterer, Sabine; Koide, Akiko; Beug, Hartmut; Pawson, Tony; Valent, Peter; Koide, Shohei; Superti-Furga, Giulio

    2012-10-25

    Chronic myelogenous leukemia (CML) is caused by the constitutively active tyrosine kinase Bcr-Abl and treated with the tyrosine kinase inhibitor (TKI) imatinib. However, emerging TKI resistance prevents complete cure. Therefore, alternative strategies targeting regulatory modules of Bcr-Abl in addition to the kinase active site are strongly desirable. Here, we show that an intramolecular interaction between the SH2 and kinase domains in Bcr-Abl is both necessary and sufficient for high catalytic activity of the enzyme. Disruption of this interface led to inhibition of downstream events critical for CML signaling and, importantly, completely abolished leukemia formation in mice. Furthermore, disruption of the SH2-kinase interface increased sensitivity of imatinib-resistant Bcr-Abl mutants to TKI inhibition. An engineered Abl SH2-binding fibronectin type III monobody inhibited Bcr-Abl kinase activity both in vitro and in primary CML cells, where it induced apoptosis. This work validates the SH2-kinase interface as an allosteric target for therapeutic intervention.

  6. ABL kinase mutation and relapse in 4 pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia cases.

    PubMed

    Aoe, Michinori; Shimada, Akira; Muraoka, Michiko; Washio, Kana; Nakamura, Yoshimi; Takahashi, Takahide; Imada, Masahide; Watanabe, Toshiyuki; Okada, Ken; Nishiuchi, Ritsuo; Miyamura, Takako; Chayama, Kosuke; Shibakura, Misako; Oda, Megumi; Morishima, Tsuneo

    2014-01-01

    The tyrosine kinase inhibitor (TKI) imatinib mesylate (IM) revolutionized the treatment of Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph-ALL), which had showed poor prognosis before the dawn of IM treatment. However, if Ph-ALL patients showed IM resistance due to ABL kinase mutation, second-generation TKI, dasatinib or nilotinib, was recommended. We treated 4 pediatric Ph-ALL patients with both IM and bone marrow transplantation (BMT); however, 3 relapsed. We retrospectively examined the existence of ABL kinase mutation using PCR and direct sequencing methods, but there was no such mutation in all 4 diagnostic samples. Interestingly, two relapsed samples from patients who were not treated with IM before relapse did not show ABL kinase mutation and IM was still effective even after relapse. On the other hand, one patient who showed resistance to 3 TKI acquired dual ABL kinase mutations, F359C at the IM-resistant phase and F317I at the dasatinib-resistant phase, simultaneously. In summary, Ph-ALL patients relapsed with or without ABL kinase mutation. Furthermore, ABL kinase mutation was only found after IM treatment, so an IM-resistant clone might have been selected during the IM treatment and intensive chemotherapy. The appropriate combination of TKI and BMT must be discussed to cure Ph-ALL patients. PMID:24652384

  7. c-Abl Activates Janus Kinase 2 in Normal Hematopoietic Cells*

    PubMed Central

    Tao, Wenjing; Leng, Xiaohong; Chakraborty, Sandip N.; Ma, Helen; Arlinghaus, Ralph B.

    2014-01-01

    Jak2 is involved in cytokine growth factor-stimulated signal transduction, but the mechanism of its activation is largely unknown. Here, we investigated Jak2 activation in a normal hematopoietic cell line, 32D mouse myeloid cells. The bimolecular fluorescence complementation studies showed that c-Abl formed a stable complex with Jak2 in live cells. Co-immunoprecipitation results showed that c-Abl bound to the βc chain of IL-3/IL-5/GM-CSF receptors. The kinase activities of both c-Abl and Jak2 were stimulated by IL-3 in 32D cells. Decreasing c-Abl protein expression in 32D cells by inducible shRNA decreased Jak2 activity and resulted in the failure of Jak2 activation in response to IL-3. Treatment of IL-3 and serum-starved 32D cells with 1 μm imatinib mysylate inhibited IL-3 stimulated kinase activities of both c-Abl and Jak2. In addition, the kinase-deficient Bcr-Abl mutant (p210K1172R) was defective for activation of Jak2 in 32D cells and impaired IL-3 independent growth, which was rescued by overexpression of c-Abl (+Abl). IL-3 efficiently inhibited apoptosis of 32Dp210K/R+Abl cells induced by imatinib mysylate but not Jak2 kinase inhibitor TG101209. In summary, our findings provide evidence that the kinase function of c-Abl and its C-terminal CT4 region is crucial for its interaction with Jak2 and its activation. c-Abl kinase activity induced by IL-3 is required for IL-3-stimulated Jak2 and Jak1 activation. Our findings reveal a novel regulatory role of c-Abl in Jak2 activation induced by IL-3 cytokine growth factor in 32D hematopoietic cells. PMID:24923444

  8. Danusertib, a potent pan-Aurora kinase and ABL kinase inhibitor, induces cell cycle arrest and programmed cell death and inhibits epithelial to mesenchymal transition involving the PI3K/Akt/mTOR-mediated signaling pathway in human gastric cancer AGS and NCI-N78 cells

    PubMed Central

    Yuan, Chun-Xiu; Zhou, Zhi-Wei; Yang, Yin-Xue; He, Zhi-Xu; Zhang, Xueji; Wang, Dong; Yang, Tianxing; Pan, Si-Yuan; Chen, Xiao-Wu; Zhou, Shu-Feng

    2015-01-01

    Gastric cancer is the second leading cause of cancer-related death worldwide, with a poor response to current chemotherapy. Danusertib is a pan-inhibitor of the Aurora kinases and a third-generation Bcr-Abl tyrosine kinase inhibitor with potent anticancer effects, but its antitumor effect and underlying mechanisms in the treatment of human gastric cancer are unknown. This study aimed to investigate the effects of danusertib on cell growth, apoptosis, autophagy, and epithelial to mesenchymal transition and the molecular mechanisms involved in human gastric cancer AGS and NCI-N78 cells. The results showed that danusertib had potent growth-inhibitory, apoptosis-inducing, and autophagy-inducing effects on AGS and NCI-N78 cells. Danusertib arrested AGS and NCI-N78 cells in G2/M phase, with downregulation of expression of cyclin B1 and cyclin-dependent kinase 1 and upregulation of expression of p21 Waf1/Cip1, p27 Kip1, and p53. Danusertib induced mitochondria-mediated apoptosis, with an increase in expression of proapoptotic protein and a decrease in antiapoptotic proteins in both cell lines. Danusertib induced release of cytochrome c from the mitochondria to the cytosol and triggered activation of caspase 9 and caspase 3 in AGS and NCI-N78 cells. Further, danusertib induced autophagy, with an increase in expression of beclin 1 and conversion of microtubule-associated protein 1A/1B-light chain 3 (LC3-I) to LC3-II in both cell lines. Inhibition of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) and p38 mitogen-activated protein kinase pathways as well as activation of 5′ AMP-activated protein kinase contributed to the proautophagic effect of danusertib in AGS and NCI-N78 cells. SB202191 and wortmannin enhanced the autophagy-inducing effect of danusertib in AGS and NCI-N78 cells. In addition, danusertib inhibited epithelial to mesenchymal transition with an increase in expression of E-cadherin and a decrease in expression

  9. Inhibition of isoprenylcysteine carboxylmethyltransferase augments BCR-ABL1 tyrosine kinase inhibition-induced apoptosis in chronic myeloid leukemia.

    PubMed

    Sun, Wen Tian; Xiang, Wei; Ng, Bee Ling; Asari, Kartini; Bunte, Ralph M; Casey, Patrick J; Wang, Mei; Chuah, Charles

    2016-03-01

    Despite the success of BCR-ABL1 tyrosine kinase inhibitors in patients with chronic myeloid leukemia (CML), resistance to tyrosine kinase inhibitors remains a therapeutic challenge. One strategy used to overcome resistance is combination of existing BCR-ABL1 tyrosine kinase inhibitors with agents that target alternative pathways. We report that inhibition of isoprenylcysteine carboxylmethyltransferase (Icmt), a key enzyme in the protein prenylation pathway, with the selective inhibitor cysmethynil enhances the effect of BCR-ABL1 tyrosine kinase inhibitors in killing CML cells. Cysmethynil augments tyrosine kinase inhibitor-induced apoptosis in both BCR-ABL1 wild type and BCR-ABL1 kinase domain mutant-expressing cell lines. Importantly, the enhanced apoptosis observed with the combination of cysmethynil and imatinib is significant only in primary CML CD34+ progenitor cells, not normal cord blood progenitor cells. The combination was also selective in inhibiting colony formation in CML CD34+ cells. The enhanced apoptosis appears to be due to combination of immediate and persistent inhibition of MAPK signaling. Consistent with in vitro studies, cysmethynil and imatinib, in combination, enhance the in vivo effects of either drug used alone. We found that simultaneous inhibition of BCR-ABL1 and Icmt may represent a potential therapeutic strategy for CML. PMID:26706195

  10. Pharmacogenetics of BCR/ABL Inhibitors in Chronic Myeloid Leukemia.

    PubMed

    Polillo, Marialuisa; Galimberti, Sara; Baratè, Claudia; Petrini, Mario; Danesi, Romano; Di Paolo, Antonello

    2015-01-01

    Chronic myeloid leukemia was the first haematological neoplasia that benefited from a targeted therapy with imatinib nearly 15 years ago. Since then, several studies have investigated the role of genes, their variants (i.e., polymorphisms) and their encoded proteins in the pharmacokinetics and pharmacodynamics of BCR-ABL1 tyrosine kinase activity inhibitors (TKIs). Transmembrane transporters seem to influence in a significant manner the disposition of TKIs, especially that of imatinib at both cellular and systemic levels. In particular, members of the ATP-binding cassette (ABC) family (namely ABCB1 and ABCG2) together with solute carrier (SLC) transporters (i.e., SLC22A1) are responsible for the differences in drug pharmacokinetics. In the case of the newer TKIs, such as nilotinib and dasatinib, the substrate affinity of these drugs for transporters is variable but lower than that measured for imatinib. In this scenario, the investigation of genetic variants as possible predictive markers has led to some discordant results. With the partial exception of imatinib, these discrepancies seem to limit the application of discovered biomarkers in the clinical settings. In order to overcome these issues, larger prospective confirmative trials are needed. PMID:26402671

  11. Pharmacogenetics of BCR/ABL Inhibitors in Chronic Myeloid Leukemia

    PubMed Central

    Polillo, Marialuisa; Galimberti, Sara; Baratè, Claudia; Petrini, Mario; Danesi, Romano; Di Paolo, Antonello

    2015-01-01

    Chronic myeloid leukemia was the first haematological neoplasia that benefited from a targeted therapy with imatinib nearly 15 years ago. Since then, several studies have investigated the role of genes, their variants (i.e., polymorphisms) and their encoded proteins in the pharmacokinetics and pharmacodynamics of BCR-ABL1 tyrosine kinase activity inhibitors (TKIs). Transmembrane transporters seem to influence in a significant manner the disposition of TKIs, especially that of imatinib at both cellular and systemic levels. In particular, members of the ATP-binding cassette (ABC) family (namely ABCB1 and ABCG2) together with solute carrier (SLC) transporters (i.e., SLC22A1) are responsible for the differences in drug pharmacokinetics. In the case of the newer TKIs, such as nilotinib and dasatinib, the substrate affinity of these drugs for transporters is variable but lower than that measured for imatinib. In this scenario, the investigation of genetic variants as possible predictive markers has led to some discordant results. With the partial exception of imatinib, these discrepancies seem to limit the application of discovered biomarkers in the clinical settings. In order to overcome these issues, larger prospective confirmative trials are needed. PMID:26402671

  12. Receptor Tyrosine Kinase and Tyrosine Kinase Inhibitors

    PubMed Central

    Mirshafiey, Abbas; Ghalamfarsa, Ghasem; Asghari, Babak

    2014-01-01

    Receptor tyrosine kinases (RTKs) are essential components of signal transduction pathways that mediate cell-to-cell communication and their function as relay points for signaling pathways. They have a key role in numerous processes that control cellular proliferation and differentiation, regulate cell growth and cellular metabolism, and promote cell survival and apoptosis. Recently, the role of RTKs including TCR, FLT-3, c-Kit, c-Fms, PDGFR, ephrin, neurotrophin receptor, and TAM receptor in autoimmune disorder, especially rheumatoid arthritis and multiple sclerosis has been suggested. In multiple sclerosis pathogenesis, RTKs and their tyrosine kinase enzymes are selective important targets for tyrosine kinase inhibitor (TKI) agents. TKIs, compete with the ATP binding site of the catalytic domain of several tyrosine kinases, and act as small molecules that have a favorable safety profile in disease treatment. Up to now, the efficacy of TKIs in numerous animal models of MS has been demonstrated, but application of these drugs in human diseases should be tested in future clinical trials. PMID:25337443

  13. The Structure of Dasatinib (BNS-354825) Bound to Activated ABL Kinase Domain Elucidates its Inhibitory Activity Against Imatinib-Resistant ABL Mutants

    SciTech Connect

    Tokarski,J.; Newitt, J.; Chang, C.; Cheng, J.; Wittekind, M.; Kiefer, S.; Kish, K.; Lee, F.; Borzilerri, R.; et al.

    2006-01-01

    Chronic myeloid leukemia (CML) is caused by the constitutively activated tyrosine kinase breakpoint cluster (BCR)-ABL. Current frontline therapy for CML is imatinib, an inhibitor of BCR-ABL. Although imatinib has a high rate of clinical success in early phase CML, treatment resistance is problematic, particularly in later stages of the disease, and is frequently mediated by mutations in BCR-ABL. Dasatinib (BMS-354825) is a multitargeted tyrosine kinase inhibitor that targets oncogenic pathways and is a more potent inhibitor than imatinib against wild-type BCR-ABL. It has also shown preclinical activity against all but one of the imatinib-resistant BCR-ABL mutants tested to date. Analysis of the crystal structure of dasatinib-bound ABL kinase suggests that the increased binding affinity of dasatinib over imatinib is at least partially due to its ability to recognize multiple states of BCR-ABL. The structure also provides an explanation for the activity of dasatinib against imatinib-resistant BCR-ABL mutants.

  14. Multi-kinase inhibitors, AURKs and cancer.

    PubMed

    Cicenas, Jonas; Cicenas, Erikas

    2016-05-01

    Inhibitors that impact function of kinases are valuable both for the biological research as well as therapy of kinase-associated diseases, such as different cancers. There are quite a number of inhibitors, which are quite specific for certain kinases and several of them are either already approved for the cancer therapy or are in clinical studies of various phases. However, that does not mean that each single kinase inhibitor is suitable for targeted therapy. Some of them are not effective others might be toxic or fail some other criteria for the use in vivo. On the other hand, even in case of successful therapy, many responders eventually develop resistance to the inhibitors. The limitations of various single kinase inhibitors can be fought using compounds which target multiple kinases. This tactics can increase effectiveness of the inhibitors by the synergistic effect or help to diminish the likelihood of drug resistance. To date, several families of kinases are quite popular targets of the inhibition in cancers, such as tyrosine kinases, cycle-dependent kinases, mitogen-activated protein kinases, phosphoinositide 3-kinases as well as their pathway "players" and aurora kinases. Aurora kinases play an important role in the control of the mitosis and are often altered in diverse human cancers. Here, we will describe the most interesting multi-kinase inhibitors which inhibit aurora kinases among other targets and their use in preclinical and clinical cancer studies. PMID:27038473

  15. Activity-based kinase profiling of approved tyrosine kinase inhibitors.

    PubMed

    Kitagawa, Daisuke; Yokota, Koichi; Gouda, Masaki; Narumi, Yugo; Ohmoto, Hiroshi; Nishiwaki, Eiji; Akita, Kensaku; Kirii, Yasuyuki

    2013-02-01

    The specificities of nine approved tyrosine kinase inhibitors (imatinib, dasatinib, nilotinib, gefitinib, erlotinib, lapatinib, sorafenib, sunitinib, and pazopanib) were determined by activity-based kinase profiling using a large panel of human recombinant active kinases. This panel consisted of 79 tyrosine kinases, 199 serine/threonine kinases, three lipid kinases, and 29 disease-relevant mutant kinases. Many potential targets of each inhibitor were identified by kinase profiling at the K(m) for ATP. In addition, profiling at a physiological ATP concentration (1 mm) was carried out, and the IC(50) values of the inhibitors against each kinase were compared with the estimated plasma-free concentration (calculated from published pharmacokinetic parameters of plasma C(trough) and C(max) values). This analysis revealed that the approved kinase inhibitors were well optimized for their target kinases. This profiling also implicates activity at particular off-target kinases in drug side effects. Thus, large-scale kinase profiling at both K(m) and physiological ATP concentrations could be useful in characterizing the targets and off-targets of kinase inhibitors. PMID:23279183

  16. A potent and highly specific FN3 monobody inhibitor of the Abl SH2 domain

    SciTech Connect

    Wojcik, John; Hantschel, Oliver; Grebien, Florian; Kaupe, Ines; Bennett, Keiryn L.; Barkinge, John; Jones, Richard B.; Koide, Akiko; Superti-Furga, Giulio; Koide, Shohei

    2010-09-02

    Interactions between Src homology 2 (SH2) domains and phosphotyrosine sites regulate tyrosine kinase signaling networks. Selective perturbation of these interactions is challenging due to the high homology among the 120 human SH2 domains. Using an improved phage-display selection system, we generated a small antibody mimic (or 'monobody'), termed HA4, that bound to the Abelson (Abl) kinase SH2 domain with low nanomolar affinity. SH2 protein microarray analysis and MS of intracellular HA4 interactors showed HA4's specificity, and a crystal structure revealed how this specificity is achieved. HA4 disrupted intramolecular interactions of Abl involving the SH2 domain and potently activated the kinase in vitro. Within cells, HA4 inhibited processive phosphorylation activity of Abl and also inhibited STAT5 activation. This work provides a design guideline for highly specific and potent inhibitors of a protein interaction domain and shows their utility in mechanistic and cellular investigations.

  17. shRNA library screening identifies nucleocytoplasmic transport as a mediator of BCR-ABL1 kinase-independent resistance.

    PubMed

    Khorashad, Jamshid S; Eiring, Anna M; Mason, Clinton C; Gantz, Kevin C; Bowler, Amber D; Redwine, Hannah M; Yu, Fan; Kraft, Ira L; Pomicter, Anthony D; Reynolds, Kimberly R; Iovino, Anthony J; Zabriskie, Matthew S; Heaton, William L; Tantravahi, Srinivas K; Kauffman, Michael; Shacham, Sharon; Chenchik, Alex; Bonneau, Kyle; Ullman, Katharine S; O'Hare, Thomas; Deininger, Michael W

    2015-03-12

    The mechanisms underlying tyrosine kinase inhibitor (TKI) resistance in chronic myeloid leukemia (CML) patients lacking explanatory BCR-ABL1 kinase domain mutations are incompletely understood. To identify mechanisms of TKI resistance that are independent of BCR-ABL1 kinase activity, we introduced a lentiviral short hairpin RNA (shRNA) library targeting ∼5000 cell signaling genes into K562(R), a CML cell line with BCR-ABL1 kinase-independent TKI resistance expressing exclusively native BCR-ABL1. A customized algorithm identified genes whose shRNA-mediated knockdown markedly impaired growth of K562(R) cells compared with TKI-sensitive controls. Among the top candidates were 2 components of the nucleocytoplasmic transport complex, RAN and XPO1 (CRM1). shRNA-mediated RAN inhibition or treatment of cells with the XPO1 inhibitor, KPT-330 (Selinexor), increased the imatinib sensitivity of CML cell lines with kinase-independent TKI resistance. Inhibition of either RAN or XPO1 impaired colony formation of CD34(+) cells from newly diagnosed and TKI-resistant CML patients in the presence of imatinib, without effects on CD34(+) cells from normal cord blood or from a patient harboring the BCR-ABL1(T315I) mutant. These data implicate RAN in BCR-ABL1 kinase-independent imatinib resistance and show that shRNA library screens are useful to identify alternative pathways critical to drug resistance in CML. PMID:25573989

  18. ABL kinases promote breast cancer osteolytic metastasis by modulating tumor-bone interactions through TAZ and STAT5 signaling

    PubMed Central

    Wang, Jun; Rouse, Clay; Jasper, Jeff S.; Pendergast, Ann Marie

    2016-01-01

    Bone metastases occur in up to 70% of advanced breast cancer. For most patients with breast cancer, bone metastases are predominantly osteolytic. Interactions between tumor cells and stromal cells in the bone microenvironment drive osteolytic bone metastasis, a process that requires the activation of osteoclasts, cells that break down bone. Here, we report that ABL kinases promoted metastasis of breast cancer cells to bone by regulating the crosstalk between tumor and the bone microenvironment. ABL kinases protected tumor cells from apoptosis induced by TRAIL (TNF-related apoptosis-inducing ligand), activated the transcription factor STAT5, and promoted osteolysis through the STAT5-dependent expression of genes encoding the osteoclast activating factors interleukin 6 (IL6) and matrix metalloproteinase-1 (MMP1). Furthermore, ABL kinases increased the abundance of the Hippo pathway mediator TAZ and the expression of TAZ-dependent target genes that promote bone metastasis. Knockdown of ABL kinases or treatment with ABL-specific allosteric inhibitor impaired osteolytic metastasis of breast cancer cells in mice. These findings revealed a role for ABL kinases in regulating tumor-bone interactions and provide a rationale for targeting both tumor and the bone microenvironment with ABL-specific inhibitors. PMID:26838548

  19. ABL kinases promote breast cancer osteolytic metastasis by modulating tumor-bone interactions through TAZ and STAT5 signaling.

    PubMed

    Wang, Jun; Rouse, Clay; Jasper, Jeff S; Pendergast, Ann Marie

    2016-02-01

    Bone metastases occur in up to 70% of advanced breast cancer. For most patients with breast cancer, bone metastases are predominantly osteolytic. Interactions between tumor cells and stromal cells in the bone microenvironment drive osteolytic bone metastasis, a process that requires the activation of osteoclasts, cells that break down bone. We report that ABL kinases promoted metastasis of breast cancer cells to bone by regulating the crosstalk between tumor cells and the bone microenvironment. ABL kinases protected tumor cells from apoptosis induced by TRAIL (TNF-related apoptosis-inducing ligand), activated the transcription factor STAT5, and promoted osteolysis through the STAT5-dependent expression of genes encoding the osteoclast-activating factors interleukin-6 (IL-6) and matrix metalloproteinase 1 (MMP1). Furthermore, in breast cancer cells, ABL kinases increased the abundance of the Hippo pathway mediator TAZ and the expression of TAZ-dependent target genes that promote bone metastasis. Knockdown of ABL kinases or treatment with ABL-specific allosteric inhibitor impaired osteolytic metastasis of breast cancer cells in mice. These findings revealed a role for ABL kinases in regulating tumor-bone interactions and provide a rationale for using ABL-specific inhibitors to limit breast cancer metastasis to bone. PMID:26838548

  20. Assaying Bcr-Abl kinase activity and inhibition in whole cell extracts by phosphorylation of substrates immobilized on agarose beads

    PubMed Central

    Wu, Ding; Nair-Gill, Evan; Sher, Dorie A.; Parker, Laurie L.; Campbell, Jennifer M.; Siddiqui, Mariah; Stock, Wendy; Kron, Stephen J.

    2015-01-01

    There is a current and increasing demand for simple, robust, nonradioactive assays of protein tyrosine kinase activity with applications for clinical diagnosis and high-throughput screening of potential molecularly targeted therapeutic agents. One significant challenge is to detect and measure the activity of specific kinases with key roles in cell signaling as an approach to distinguish normal cells from cancer cells and as a means of evaluating targeted drug efficacy and resistance in cancer cells. Here, we describe a method in which kinase substrates fused to glutathione-S-transferase and immobilized on glutathione agarose beads are phosphorylated, eluted, and then assayed to detect kinase activity. The activity of recombinant, purified c-Abl kinase or Bcr-Abl kinase in whole cell extracts can be detected with equivalent specificity, sensitivity, and reproducibility. Similarly, inhibition of recombinant c-Abl or Bcr-Abl in cells or cell extracts by imatinib mesylate and other Bcr-Abl targeted kinase inhibitors is readily assayed. This simple kinase assay is sufficiently straightforward and robust for use in clinical laboratories and is potentially adaptable to high-throughput assay formats. PMID:16236241

  1. GNF-2 Inhibits Dengue Virus by Targeting Abl Kinases and the Viral E Protein.

    PubMed

    Clark, Margaret J; Miduturu, Chandra; Schmidt, Aaron G; Zhu, Xuling; Pitts, Jared D; Wang, Jinhua; Potisopon, Supanee; Zhang, Jianming; Wojciechowski, Amy; Hann Chu, Justin Jang; Gray, Nathanael S; Yang, Priscilla L

    2016-04-21

    Dengue virus infects more than 300 million people annually, yet there is no widely protective vaccine or drugs against the virus. Efforts to develop antivirals against classical targets such as the viral protease and polymerase have not yielded drugs that have advanced to the clinic. Here, we show that the allosteric Abl kinase inhibitor GNF-2 interferes with dengue virus replication via activity mediated by cellular Abl kinases but additionally blocks viral entry via an Abl-independent mechanism. To characterize this newly discovered antiviral activity, we developed disubstituted pyrimidines that block dengue virus entry with structure-activity relationships distinct from those driving kinase inhibition. We demonstrate that biotin- and fluorophore-conjugated derivatives of GNF-2 interact with the dengue glycoprotein, E, in the pre-fusion conformation that exists on the virion surface, and that this interaction inhibits viral entry. This study establishes GNF-2 as an antiviral compound with polypharmacological activity and provides "lead" compounds for further optimization efforts. PMID:27105280

  2. Development of Alkyne-Containing Pyrazolopyrimidines To Overcome Drug Resistance of Bcr-Abl Kinase.

    PubMed

    Liu, Xu; Kung, Alvin; Malinoski, Brock; Prakash, G K Surya; Zhang, Chao

    2015-12-10

    Despite the success of imatinib at inhibiting Bcr-Abl and treating chronic myelogenous leukemia (CML), resistance to the therapy occurs over time in patients. In particular, the resistance to imatinib caused by the gatekeeper mutation T315I in Bcr-Abl remains a challenge in the clinic. Inspired by the successful development of ponatinib to curb drug resistance, we hypothesize that the incorporation of an alkyne linker in other heterocyclic scaffolds can also achieve potent inhibition of Bcr-Abl(T315I) by allowing for simultaneous occupancy of both the active site and the allosteric pocket in the Abl kinase domain. Herein, we describe the design, synthesis, and characterization of a series of alkyne-containing pyrazolopyrimidines as Bcr-Abl inhibitors. Our results demonstrate that some alkyne-containing pyrazolopyrimidines potently inhibit not only Abl(T315I) in vitro but also Bcr-Abl(T315I) in cells. These pyrazolopyrimidines can serve as lead compounds for future development of novel targeted therapy to overcome drug resistance of CML. PMID:26562217

  3. Phosphorylation by the c-Abl protein tyrosine kinase inhibits parkin's ubiquitination and protective function

    PubMed Central

    Ko, Han Seok; Lee, Yunjong; Shin, Joo-Ho; Karuppagounder, Senthilkumar S.; Gadad, Bharathi Shrikanth; Koleske, Anthony J.; Pletnikova, Olga; Troncoso, Juan C.; Dawson, Valina L.; Dawson, Ted M.

    2010-01-01

    Mutations in PARK2/Parkin, which encodes a ubiquitin E3 ligase, cause autosomal recessive Parkinson disease (PD). Here we show that the nonreceptor tyrosine kinase c-Abl phosphorylates tyrosine 143 of parkin, inhibiting parkin's ubiquitin E3 ligase activity and protective function. c-Abl is activated by dopaminergic stress and by dopaminergic neurotoxins, 1-methyl-4-phenylpyridinium (MPP+) in vitro and in vivo by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), leading to parkin inactivation, accumulation of the parkin substrates aminoacyl-tRNA synthetase-interacting multifunctional protein type 2 (AIMP2) (p38/JTV-1) and fuse-binding protein 1 (FBP1), and cell death. STI-571, a c-Abl-family kinase inhibitor, prevents the phosphorylation of parkin, maintaining parkin in a catalytically active and protective state. STI-571’s protective effects require parkin, as shRNA knockdown of parkin prevents STI-571 protection. Conditional knockout of c-Abl in the nervous system also prevents the phosphorylation of parkin, the accumulation of its substrates, and subsequent neurotoxicity in response to MPTP intoxication. In human postmortem PD brain, c-Abl is active, parkin is tyrosine-phosphorylated, and AIMP2 and FBP1 accumulate in the substantia nigra and striatum. Thus, tyrosine phosphorylation of parkin by c-Abl is a major posttranslational modification that inhibits parkin function, possibly contributing to pathogenesis of sporadic PD. Moreover, inhibition of c-Abl may be a neuroprotective approach in the treatment of PD. PMID:20823226

  4. BCL6 enables Ph+ acute lymphoblastic leukemia cells to survive BCR-ABL1 kinase inhibition

    PubMed Central

    Duy, Cihangir; Hurtz, Christian; Shojaee, Seyedmehdi; Cerchietti, Leandro; Geng, Huimin; Swaminathan, Srividya; Klemm, Lars; Kweon, Soo-mi; Nahar, Rahul; Braig, Melanie; Park, Eugene; Kim, Yong-mi; Hofmann, Wolf-Karsten; Herzog, Sebastian; Jumaa, Hassan; Koeffler, H Phillip; Yu, J. Jessica; Heisterkamp, Nora; Graeber, Thomas G.; Wu, Hong; Ye, B. Hilda; Melnick, Ari; Müschen, Markus

    2011-01-01

    Tyrosine kinase inhibitors (TKI) are widely used to treat patients with leukemia driven by BCR-ABL11 and other oncogenic tyrosine kinases2,3. Recent efforts focused on the development of more potent TKI that also inhibit mutant tyrosine kinases4,5. However, even effective TKI typically fail to eradicate leukemia-initiating cells6–8, which often cause recurrence of leukemia after initially successful treatment. Here we report on the discovery of a novel mechanism of drug-resistance, which is based on protective feedback signaling of leukemia cells in response to TKI-treatment. We identified BCL6 as a central component of this drug-resistance pathway and demonstrate that targeted inhibition of BCL6 leads to eradication of drug-resistant and leukemia-initiating subclones. BCL6 is a known proto-oncogene that is often translocated in diffuse large B cell lymphoma (DLBCL)9. In response to TKI-treatment, BCR-ABL1 acute lymphoblastic leukemia (ALL) cells upregulate BCL6 protein levels by ~90-fold, i.e. to similar levels as in DLBCL (Fig. 1a). Upregulation of BCL6 in response to TKI-treatment represents a novel defense mechanism, which enables leukemia cells to survive TKI-treatment: Previous work suggested that TKI-mediated cell death is largely p53-independent. Here we demonstrate that BCL6 upregulation upon TKI-treatment leads to transcriptional inactivation of the p53 pathway. BCL6-deficient leukemia cells fail to inactivate p53 and are particularly sensitive to TKI-treatment. BCL6−/− leukemia cells are poised to undergo cellular senescence and fail to initiate leukemia in serial transplant recipients. A combination of TKI-treatment and a novel BCL6 peptide inhibitor markedly increased survival of NOD/SCID mice xenografted with patient-derived BCR-ABL1 ALL cells. We propose that dual targeting of oncogenic tyrosine kinases and BCL6-dependent feedback (Supplementary Fig. 1) represents a novel strategy to eradicate drug-resistant and leukemia-initiating subclones in

  5. Mutations in the BCR-ABL1 Kinase Domain and Elsewhere in Chronic Myeloid Leukemia.

    PubMed

    Soverini, Simona; de Benedittis, Caterina; Mancini, Manuela; Martinelli, Giovanni

    2015-06-01

    Chronic myeloid leukemia (CML) has been the first human malignancy to be associated, more than 50 years ago, with a consistent chromosomal abnormality--the t(9;22)(q34;q11) chromosomal translocation. The resulting BCR-ABL1 fusion gene, encoding a tyrosine kinase with deregulated activity, has a central role in the pathogenesis of CML. Ancestral or additional genetic events necessary for CML to develop have long been hypothesized but never really demonstrated. CML can successfully be treated with tyrosine kinase inhibitors (TKIs). Mutations in the BCR-ABL1 kinase domain might arise, however, that confer resistance to 1 or more of the currently available TKIs. Hence, the critical role of BCR-ABL1 mutation screening for optimal therapeutic management, with the current gold standard technique, conventional sequencing, likely to be replaced soon by ultra-deep sequencing. Mutations in genes other than BCR-ABL1 include ASXL1, TET2, RUNX1, DNMT3A, EZH2, and TP53 in chronic phase patients and RUNX1, ASXL1, IKZF1, WT1, TET2, NPM1, IDH1, IDH2, NRAS, KRAS, CBL, TP53, CDKN2A, RB1, and GATA-2 mutations in advanced phase patients. The latter also display additional cytogenetic abnormalities, including submicroscopic regions of gain or loss that only single nucleotide polymorphism arrays or array comparative genomic hybridization can detect. Whether whole genome/exome sequencing studies will uncover novel mutations relevant for pathogenesis, progression, and risk-adapted therapy is still unclear. PMID:26297264

  6. Structural Analysis of DFG-in and DFG-out Dual Src-Abl Inhibitors Sharing a Common Vinyl Purine Template

    SciTech Connect

    Zhou, Tianjun; Commodore, Lois; Huang, Wei-Sheng; Wang, Yihan; Sawyer, Tomi K.; Shakespeare, William C.; Clackson, Tim; Zhu, Xiaotian; Dalgarno, David C.

    2010-09-30

    Bcr-Abl is the oncogenic protein tyrosine kinase responsible for chronic myeloid leukemia (CML). Treatment of the disease with imatinib (Gleevec) often results in drug resistance via kinase mutations at the advanced phases of the disease, which has necessitated the development of new mutation-resistant inhibitors, notably against the T315I gatekeeper mutation. As part of our efforts to discover such mutation resistant Abl inhibitors, we have focused on optimizing purine template kinase inhibitors, leading to the discovery of potent DFG-in and DFG-out series of Abl inhibitors that are also potent Src inhibitors. Here we present crystal structures of Abl bound by two such inhibitors, based on a common N9-arenyl purine, and that represent both DFG-in and -out binding modes. In each structure the purine template is bound deeply in the adenine pocket and the novel vinyl linker forms a non-classical hydrogen bond to the gatekeeper residue, Thr315. Specific template substitutions promote either a DFG-in or -out binding mode, with the kinase binding site adjusting to optimize molecular recognition. Bcr-Abl T315I mutant kinase is resistant to all currently marketed Abl inhibitors, and is the focus of intense drug discovery efforts. Notably, our DFG-out inhibitor, AP24163, exhibits modest activity against this mutant, illustrating that this kinase mutant can be inhibited by DFG-out class inhibitors. Furthermore our DFG-out inhibitor exhibits dual Src-Abl activity, absent from the prototypical DFG-out inhibitor, imatinib as well as its analog, nilotinib. The data presented here provides structural guidance for the further design of novel potent DFG-out class inhibitors against Src, Abl and Abl T315I mutant kinases.

  7. Ocular Toxicity of Tyrosine Kinase Inhibitors

    PubMed Central

    Davis, Mary Elizabeth

    2016-01-01

    Purpose/Objectives To review common tyrosine kinase inhibitors, as well as their ocular side effects and management. Data Sources A comprehensive literature search was conducted using cINahl®, Pubmed, and cochrane databases for articles published since 2004 with the following search terms: ocular toxicities, tyrosine kinase inhibitors, ophthalmology, adverse events, eye, and vision. Data Synthesis Tyrosine kinase inhibitors can cause significant eye toxicity. Conclusions Given the prevalence of new tyrosine kinase inhibitor therapies and the complexity of possible pathogenesis of ocular pathology, oncology nurses can appreciate the occurrence of ocular toxicities and the role of nursing in the management of these problems. Implications for Nursing Knowledge of the risk factors and etiology of ocular toxicity of targeted cancer therapies can guide nursing assessment, enhance patient education, and improve care management. Including a review of eye symptoms and vision issues in nursing assessment can enhance early detection and treatment of ocular toxicity. PMID:26906134

  8. The STAT5 inhibitor pimozide decreases survival of chronic myelogenous leukemia cells resistant to kinase inhibitors

    PubMed Central

    Nelson, Erik A.; Walker, Sarah R.; Weisberg, Ellen; Bar-Natan, Michal; Barrett, Rosemary; Gashin, Laurie B.; Terrell, Shariya; Klitgaard, Josephine L.; Santo, Loredana; Addorio, Martha R.; Ebert, Benjamin L.; Griffin, James D.

    2011-01-01

    The transcription factor STAT5 is an essential mediator of the pathogenesis of chronic myelogenous leukemia (CML). In CML, the BCR/ABL fusion kinase causes the constitutive activation of STAT5, thereby driving the expression of genes promoting survival. BCR/ABL kinase inhibitors have become the mainstay of therapy for CML, although CML cells can develop resistance through mutations in BCR/ABL. To overcome this problem, we used a cell-based screen to identify drugs that inhibit STAT-dependent gene expression. Using this approach, we identified the psychotropic drug pimozide as a STAT5 inhibitor. Pimozide decreases STAT5 tyrosine phosphorylation, although it does not inhibit BCR/ABL or other tyrosine kinases. Furthermore, pimozide decreases the expression of STAT5 target genes and induces cell cycle arrest and apoptosis in CML cell lines. Pimozide also selectively inhibits colony formation of CD34+ bone marrow cells from CML patients. Importantly, pimozide induces similar effects in the presence of the T315I BCR/ABL mutation that renders the kinase resistant to presently available inhibitors. Simultaneously inhibiting STAT5 with pimozide and the kinase inhibitors imatinib or nilotinib shows enhanced effects in inhibiting STAT5 phosphorylation and in inducing apoptosis. Thus, targeting STAT5 may be an effective strategy for the treatment of CML and other myeloproliferative diseases. PMID:21233313

  9. Pharmacological inhibitors of cyclin-dependent kinases.

    PubMed

    Knockaert, Marie; Greengard, Paul; Meijer, Laurent

    2002-09-01

    Cyclin-dependent kinases (CDKs) regulate the cell division cycle, apoptosis, transcription and differentiation in addition to functions in the nervous system. Deregulation of CDKs in various diseases has stimulated an intensive search for selective pharmacological inhibitors of these kinases. More than 50 inhibitors have been identified, among which >20 have been co-crystallized with CDK2. These inhibitors all target the ATP-binding pocket of the catalytic site of the kinase. The actual selectivity of most known CDK inhibitors, and thus the underlying mechanism of their cellular effects, is poorly known. Pharmacological inhibitors of CDKs are currently being evaluated for therapeutic use against cancer, alopecia, neurodegenerative disorders (e.g. Alzheimer's disease, amyotrophic lateral sclerosis and stroke), cardiovascular disorders (e.g. atherosclerosis and restenosis), glomerulonephritis, viral infections (e.g. HCMV, HIV and HSV) and parasitic protozoa (Plasmodium sp. and Leishmania sp.). PMID:12237154

  10. Aurora Kinase Inhibitors: Current Status and Outlook

    PubMed Central

    Bavetsias, Vassilios; Linardopoulos, Spiros

    2015-01-01

    The Aurora kinase family comprises of cell cycle-regulated serine/threonine kinases important for mitosis. Their activity and protein expression are cell cycle regulated, peaking during mitosis to orchestrate important mitotic processes including centrosome maturation, chromosome alignment, chromosome segregation, and cytokinesis. In humans, the Aurora kinase family consists of three members; Aurora-A, Aurora-B, and Aurora-C, which each share a conserved C-terminal catalytic domain but differ in their sub-cellular localization, substrate specificity, and function during mitosis. In addition, Aurora-A and Aurora-B have been found to be overexpressed in a wide variety of human tumors. These observations led to a number of programs among academic and pharmaceutical organizations to discovering small molecule Aurora kinase inhibitors as anti-cancer drugs. This review will summarize the known Aurora kinase inhibitors currently in the clinic, and discuss the current and future directions. PMID:26734566

  11. Off-Target Effects of BCR-ABL and JAK2 Inhibitors.

    PubMed

    Green, Myke R; Newton, Michael D; Fancher, Karen M

    2016-02-01

    The advent of targeted oncolytic agents has created a revolution in the treatment of malignancies. Perhaps best exemplified in myeloproliferative neoplasms (MPN), the tyrosine kinase inhibitors, including inhibitors of BCR-ABL tyrosine kinase and JAK2, have dramatically changed outcomes in persons with MPN. However, clinically relevant dosing of these adenosine triphosphate-mimetic agents in humans leads to inhibition of numerous tyrosine kinases beyond those touted by drug manufacturers and studied in landmark clinical trials. These so-called off-target effects have been linked to both clinical efficacy and toxicity. Rational drug development and serendipitous discovery of drug molecules allows the clinician to select targeted oncolytic agents to treat a specific clinical diagnosis and/or avoid exacerbation of concomitant disease states due to effects upon signaling pathways. Understanding the off-target binding and effects upon signaling pathway of the agents approved for the treatment of MPN will empower the clinician to adroitly select pharmacotherapy, predict toxicities, and utilize these agents in clinical practice for indications beyond MPN. PMID:24351780

  12. Fluorescence Polarization Screening Assays for Small Molecule Allosteric Modulators of ABL Kinase Function

    PubMed Central

    Grover, Prerna; Shi, Haibin; Baumgartner, Matthew; Camacho, Carlos J.; Smithgall, Thomas E.

    2015-01-01

    The ABL protein-tyrosine kinase regulates intracellular signaling pathways controlling diverse cellular processes and contributes to several forms of cancer. The kinase activity of ABL is repressed by intramolecular interactions involving its regulatory Ncap, SH3 and SH2 domains. Small molecules that allosterically regulate ABL kinase activity through its non-catalytic domains may represent selective probes of ABL function. Here we report a screening assay for chemical modulators of ABL kinase activity that target the regulatory interaction of the SH3 domain with the SH2-kinase linker. This fluorescence polarization (FP) assay is based on a purified recombinant ABL protein consisting of the N-cap, SH3 and SH2 domains plus the SH2-kinase linker (N32L protein) and a short fluorescein-labeled probe peptide that binds to the SH3 domain. In assay development experiments, we found that the probe peptide binds to the recombinant ABL N32L protein in vitro, producing a robust FP signal that can be competed with an excess of unlabeled peptide. The FP signal is not observed with control N32L proteins bearing either an inactivating mutation in the SH3 domain or enhanced SH3:linker interaction. A pilot screen of 1200 FDA-approved drugs identified four compounds that specifically reduced the FP signal by at least three standard deviations from the untreated controls. Secondary assays showed that one of these hit compounds, the antithrombotic drug dipyridamole, enhances ABL kinase activity in vitro to a greater extent than the previously described ABL agonist, DPH. Docking studies predicted that this compound binds to a pocket formed at the interface of the SH3 domain and the linker, suggesting that it activates ABL by disrupting this regulatory interaction. These results show that screening assays based on the non-catalytic domains of ABL can identify allosteric small molecule regulators of kinase function, providing a new approach to selective drug discovery for this important

  13. The Endocytic Fate of the Transferrin Receptor Is Regulated by c-Abl Kinase.

    PubMed

    Cao, Hong; Schroeder, Barbara; Chen, Jing; Schott, Micah B; McNiven, Mark A

    2016-08-01

    Clathrin-mediated endocytosis of transferrin (Tf) and its cognate receptor (TfR1) is a central pathway supporting the uptake of trophic iron. It has generally been assumed that this is a constitutive process. However, we have reported that the non-receptor tyrosine kinase, Src, is activated by Tf to facilitate the internalization of the Tf-TfR1 ligand-receptor complex. As an extension of these findings, we have tested whether subsequent trafficking steps might be regulated by additional kinase-dependent cascades, and we observed a significant endocytic block by inhibiting c-Abl kinase by a variety of methods. Importantly, Tf internalization was reduced significantly in all of these cell models and could be restored by re-expression of WT c-Abl. Surprisingly, this attenuated Tf-TfR1 endocytosis was due to a substantial drop in both the surface and total cellular receptor levels. Additional studies with the LDL receptor showed a similar effect. Surprisingly, immunofluorescence microscopy of imatinib-treated cells revealed a marked colocalization of internalized TfR1 with late endosomes/lysosomes, whereas attenuating the lysosome function with several inhibitors reduced this receptor loss. Importantly, inhibition of c-Abl resulted in a striking redistribution of the chaperone Hsc70 from a diffuse cytosolic localization to an association with the TfR1 at the late endosome-lysosome. Pharmacological inhibition of Hsc70 ATPase activity in cultured cells by the drug VER155008 prevents this chaperone-receptor interaction, resulting in an accumulation of the TfR1 in the early endosome. Thus, inhibition of c-Abl minimizes receptor recycling pathways and results in chaperone-dependent trafficking of the TfR1 to the lysosome for degradation. These findings implicate a novel role for c-Abl and Hsc70 as an unexpected regulator of Hsc70-mediated transport of trophic receptor cargo between the early and late endosomal compartments. PMID:27226592

  14. Evaluation of deoxyhypusine synthase inhibitors targeting BCR-ABL positive leukemias.

    PubMed

    Ziegler, Patrick; Chahoud, Tuhama; Wilhelm, Thomas; Pällman, Nora; Braig, Melanie; Wiehle, Valeska; Ziegler, Susanne; Schröder, Marcus; Meier, Chris; Kolodzik, Adrian; Rarey, Matthias; Panse, Jens; Hauber, Joachim; Balabanov, Stefan; Brümmendorf, Tim H

    2012-12-01

    Effective inhibition of BCR-ABL tyrosine kinase activity with Imatinib represents a breakthrough in the treatment of patients with chronic myeloid leukemia (CML). However, more than 30 % of patients with CML in chronic phase do not respond adequately to Imatinib and the drug seems not to affect the quiescent pool of BCR-ABL positive leukemic stem and progenitor cells. Therefore, despite encouraging clinical results, Imatinib can still not be considered a curative treatment option in CML. We recently reported downregulation of eukaryotic initiation factor 5A (eIF5A) in Imatinib treated K562 cells. Furthermore, the inhibition of eIF5A by siRNA in combination with Imatinib has been shown to exert synergistic cytotoxic effects on BCR-ABL positive cell lines. Based on the structure of known deoxyhypusine synthase (DHS) inhibitors such as CNI-1493, a drug design approach was applied to develop potential compounds targeting DHS. Here we report the biological evaluation of selected novel (DHSI-15) as compared to established (CNI-1493, deoxyspergualin) DHS inhibitors. We show that upon the compounds tested, DHSI-15 and deoxyspergualin exert strongest antiproliferative effects on BCR-ABL cells including Imatinib resistant mutants. However, this effect did not seem to be restricted to BCR-ABL positive cell lines or primary cells. Both compounds are able to induce apoptosis/necrosis during long term incubation of BCR-ABL positive BA/F3 derivates. Pharmacological synergism can be observed for deoxyspergualin and Imatinib, but not for DHSI-15 and Imatinib. Finally we show that deoxyspergualin is able to inhibit proliferation of CD34+ progenitor cells from CML patients. We conclude that inhibition of deoxyhypusine synthase (DHS) can be supportive for the anti-proliferative treatment of leukemia and merits further investigation including other cancers. PMID:22415796

  15. Bosutinib: a novel second-generation tyrosine kinase inhibitor.

    PubMed

    Isfort, Susanne; Keller-v Amsberg, Gunhild; Schafhausen, Philippe; Koschmieder, Steffen; Brümmendorf, Tim H

    2014-01-01

    Bosutinib (SKI-606) is a 4-anilino-3-quinoline carbonitrile, which acts as a dual inhibitor of Src and ABL kinases. In addition, the BCR-ABL fusion gene product, a constitutively activated tyrosine kinase which is crucial for the development of chronic myeloid leukemia (CML), is highly sensitive to bosutinib. Interestingly, distinctly lower concentrations of bosutinib are required to ablate BCR-ABL phosphorylation when compared to the first-generation tyrosine kinase inhibitor imatinib (IM). Bosutinib is a potent inhibitor of CML cell proliferation in vitro and has demonstrated promising activity in CML patients resistant or intolerant to IM as well as in newly diagnosed patients with chronic phase CML (CML-CP). Remarkably, bosutinib has been found to be capable of overcoming the majority of IM-resistant BCR-ABL mutations. Bosutinib has the potency to induce deep and fast responses in second- and third-/fourth-line treatment, and as a consequence, the drug has recently been licensed for patients previously treated with one or more tyrosine kinase inhibitor(s) and for whom imatinib, nilotinib, and dasatinib are not considered appropriate treatment options. Due to its potency and differing toxicity profile, it promises to be a good therapeutic option for a defined cohort of patients. The most common side effects are gastrointestinal with most of the patients suffering from nausea, vomiting, or diarrhea. For the most part, these gastrointestinal symptoms occur early after treatment initiation, are manageable, and often self-limiting. Continuous monitoring of liver enzymes upon treatment initiation is necessary during bosutinib treatment. In addition to CML treatment, bosutinib has shown some efficacy in selected patients suffering from advanced-stage solid tumors. In conclusion, bosutinib is a promising novel small molecule inhibitor approved now for targeted therapy of CML and in clinical development for other malignancies. PMID:24756786

  16. c-Abl Tyrosine Kinase Adopts Multiple Active Conformational States in Solution

    PubMed Central

    2016-01-01

    Protein tyrosine kinases of the Abl family have diverse roles in normal cellular regulation and drive several forms of leukemia as oncogenic fusion proteins. In the crystal structure of the inactive c-Abl kinase core, the SH2 and SH3 domains dock onto the back of the kinase domain, resulting in a compact, assembled state. This inactive conformation is stabilized by the interaction of the myristoylated N-cap with a pocket in the C-lobe of the kinase domain. Mutations that perturb these intramolecular interactions result in kinase activation. Here, we present X-ray scattering solution structures of multidomain c-Abl kinase core proteins modeling diverse active states. Surprisingly, the relative positions of the regulatory N-cap, SH3, and SH2 domains in an active myristic acid binding pocket mutant (A356N) were virtually identical to those of the assembled wild-type kinase core, indicating that Abl kinase activation does not require dramatic reorganization of the downregulated core structure. In contrast, the positions of the SH2 and SH3 domains in a clinically relevant imatinib-resistant gatekeeper mutant (T315I) appear to be reconfigured relative to their positions in the wild-type protein. Our results demonstrate that c-Abl kinase activation can occur either with (T315I) or without (A356N) global allosteric changes in the core, revealing the potential for previously unrecognized signaling diversity. PMID:27166638

  17. Chronic myeloid leukemia stem cells are not dependent on Bcr-Abl kinase activity for their survival

    PubMed Central

    Hamilton, Ashley; Helgason, G. Vignir; Schemionek, Mirle; Zhang, Bin; Myssina, Svetlana; Allan, Elaine K.; Nicolini, Franck E.; Müller-Tidow, Carsten; Bhatia, Ravi; Brunton, Valerie G.; Koschmieder, Steffen

    2012-01-01

    Recent evidence suggests chronic myeloid leukemia (CML) stem cells are insensitive to kinase inhibitors and responsible for minimal residual disease in treated patients. We investigated whether CML stem cells, in a transgenic mouse model of CML-like disease or derived from patients, are dependent on Bcr-Abl. In the transgenic model, after retransplantation, donor-derived CML stem cells in which Bcr-Abl expression had been induced and subsequently shut off were able to persist in vivo and reinitiate leukemia in secondary recipients on Bcr-Abl reexpression. Bcr-Abl knockdown in human CD34+ CML cells cultured for 12 days in physiologic growth factors achieved partial inhibition of Bcr-Abl and downstream targets p-CrkL and p-STAT5, inhibition of proliferation and colony forming cells, but no reduction of input cells. The addition of dasatinib further inhibited p-CrkL and p-STAT5, yet only reduced input cells by 50%. Complete growth factor withdrawal plus dasatinib further reduced input cells to 10%; however, the surviving fraction was enriched for primitive leukemic cells capable of growth in a long-term culture-initiating cell assay and expansion on removal of dasatinib and addition of growth factors. Together, these data suggest that CML stem cell survival is Bcr-Abl kinase independent and suggest curative approaches in CML must focus on kinase-independent mechanisms of resistance. PMID:22184410

  18. ABL Tyrosine Kinase Inhibition Variable Effects on the Invasive Properties of Different Triple Negative Breast Cancer Cell Lines

    PubMed Central

    Chevalier, Clément; Cannet, Aude; Descamps, Simon; Sirvent, Audrey; Simon, Valérie; Roche, Serge; Benistant, Christine

    2015-01-01

    The non-receptor tyrosine kinase ABL drives myeloid progenitor expansion in human chronic myeloid leukemia. ABL inhibition by the tyrosine kinase inhibitor nilotinib is a first-line treatment for this disease. Recently, ABL has also been implicated in the transforming properties of solid tumors, including triple negative (TN) breast cancer. TN breast cancers are highly metastatic and several cell lines derived from these tumors display high invasive activity in vitro. This feature is associated with the activation of actin-rich membrane structures called invadopodia that promote extracellular matrix degradation. Here, we investigated nilotinib effect on the invasive and migratory properties of different TN breast cancer cell lines. Nilotinib decreased both matrix degradation and invasion in the TN breast cancer cell lines MDA-MB 231 and MDA-MB 468. However, and unexpectedly, nilotinib increased by two-fold the invasive properties of the TN breast cancer cell line BT-549 and of Src-transformed fibroblasts. Both display much higher levels of ABL kinase activity compared to MDA-MB 231. Similar effects were obtained by siRNA-mediated down-regulation of ABL expression, confirming ABL central role in this process. ABL anti-tumor effect in BT-549 cells and Src-transformed fibroblasts was not dependent on EGF secretion, as recently reported in neck and squamous carcinoma cells. Rather, we identified the TRIO-RAC1 axis as an important downstream element of ABL activity in these cancer cells. In conclusion, the observation that TN breast cancer cell lines respond differently to ABL inhibitors could have implications for future therapies. PMID:25803821

  19. ABL tyrosine kinase inhibition variable effects on the invasive properties of different triple negative breast cancer cell lines.

    PubMed

    Chevalier, Clément; Cannet, Aude; Descamps, Simon; Sirvent, Audrey; Simon, Valérie; Roche, Serge; Benistant, Christine

    2015-01-01

    The non-receptor tyrosine kinase ABL drives myeloid progenitor expansion in human chronic myeloid leukemia. ABL inhibition by the tyrosine kinase inhibitor nilotinib is a first-line treatment for this disease. Recently, ABL has also been implicated in the transforming properties of solid tumors, including triple negative (TN) breast cancer. TN breast cancers are highly metastatic and several cell lines derived from these tumors display high invasive activity in vitro. This feature is associated with the activation of actin-rich membrane structures called invadopodia that promote extracellular matrix degradation. Here, we investigated nilotinib effect on the invasive and migratory properties of different TN breast cancer cell lines. Nilotinib decreased both matrix degradation and invasion in the TN breast cancer cell lines MDA-MB 231 and MDA-MB 468. However, and unexpectedly, nilotinib increased by two-fold the invasive properties of the TN breast cancer cell line BT-549 and of Src-transformed fibroblasts. Both display much higher levels of ABL kinase activity compared to MDA-MB 231. Similar effects were obtained by siRNA-mediated down-regulation of ABL expression, confirming ABL central role in this process. ABL anti-tumor effect in BT-549 cells and Src-transformed fibroblasts was not dependent on EGF secretion, as recently reported in neck and squamous carcinoma cells. Rather, we identified the TRIO-RAC1 axis as an important downstream element of ABL activity in these cancer cells. In conclusion, the observation that TN breast cancer cell lines respond differently to ABL inhibitors could have implications for future therapies. PMID:25803821

  20. Interferon-α Revisited: Individualized Treatment Management Eased the Selective Pressure of Tyrosine Kinase Inhibitors on BCR-ABL1 Mutations Resulting in a Molecular Response in High-Risk CML Patients

    PubMed Central

    Polivkova, Vaclava; Rohon, Peter; Klamova, Hana; Cerna, Olga; Divoka, Martina; Curik, Nikola; Zach, Jan; Novak, Martin; Marinov, Iuri; Soverini, Simona; Faber, Edgar; Machova Polakova, Katerina

    2016-01-01

    Bone marrow transplantation or ponatinib treatment are currently recommended strategies for management of patients with chronic myeloid leukemia (CML) harboring the T315I mutation and compound or polyclonal mutations. However, in some individual cases, these treatment scenarios cannot be applied. We used an alternative treatment strategy with interferon-α (IFN-α) given solo, sequentially or together with TKI in a group of 6 cases of high risk CML patients, assuming that the TKI-independent mechanism of action may lead to mutant clone repression. IFN-α based individualized therapy decreases of T315I or compound mutations to undetectable levels as assessed by next-generation deep sequencing, which was associated with a molecular response in 4/6 patients. Based on the observed results from immune profiling, we assumed that the principal mechanism leading to the success of the treatment was the immune activation induced with dasatinib pre-treatment followed by restoration of immunological surveillance after application of IFN-α therapy. Moreover, we showed that sensitive measurement of mutated BCR-ABL1 transcript levels augments the safety of this individualized treatment strategy. PMID:27214026

  1. Interferon-α Revisited: Individualized Treatment Management Eased the Selective Pressure of Tyrosine Kinase Inhibitors on BCR-ABL1 Mutations Resulting in a Molecular Response in High-Risk CML Patients.

    PubMed

    Polivkova, Vaclava; Rohon, Peter; Klamova, Hana; Cerna, Olga; Divoka, Martina; Curik, Nikola; Zach, Jan; Novak, Martin; Marinov, Iuri; Soverini, Simona; Faber, Edgar; Machova Polakova, Katerina

    2016-01-01

    Bone marrow transplantation or ponatinib treatment are currently recommended strategies for management of patients with chronic myeloid leukemia (CML) harboring the T315I mutation and compound or polyclonal mutations. However, in some individual cases, these treatment scenarios cannot be applied. We used an alternative treatment strategy with interferon-α (IFN-α) given solo, sequentially or together with TKI in a group of 6 cases of high risk CML patients, assuming that the TKI-independent mechanism of action may lead to mutant clone repression. IFN-α based individualized therapy decreases of T315I or compound mutations to undetectable levels as assessed by next-generation deep sequencing, which was associated with a molecular response in 4/6 patients. Based on the observed results from immune profiling, we assumed that the principal mechanism leading to the success of the treatment was the immune activation induced with dasatinib pre-treatment followed by restoration of immunological surveillance after application of IFN-α therapy. Moreover, we showed that sensitive measurement of mutated BCR-ABL1 transcript levels augments the safety of this individualized treatment strategy. PMID:27214026

  2. Inhibition of the Raf-1 kinase by cyclic AMP agonists causes apoptosis of v-abl-transformed cells.

    PubMed Central

    Weissinger, E M; Eissner, G; Grammer, C; Fackler, S; Haefner, B; Yoon, L S; Lu, K S; Bazarov, A; Sedivy, J M; Mischak, H; Kolch, W

    1997-01-01

    Here we investigate the role of the Raf-1 kinase in transformation by the v-abl oncogene. Raf-1 can activate a transforming signalling cascade comprising the consecutive activation of Mek and extracellular-signal-regulated kinases (Erks). In v-abl-transformed cells the endogenous Raf-1 protein was phosphorylated on tyrosine and displayed high constitutive kinase activity. The activities of the Erks were constitutively elevated in both v-raf- and v-abl-transformed cells. In both cell types the activities of Raf-1 and v-raf were almost completely suppressed after activation of the cyclic AMP-dependent kinase (protein kinase A [PKA]), whereas the v-abl kinase was not affected. Raf inhibition substantially diminished the activities of Erks in v-raf-transformed cells but not in v-abl-transformed cells, indicating that v-abl can activate Erks by a Raf-1-independent pathway. PKA activation induced apoptosis in v-abl-transformed cells while reverting v-raf transformation without severe cytopathic effects. Overexpression of Raf-1 in v-abl-transformed cells partially protected the cells from apoptosis induced by PKA activation. In contrast to PKA activators, a Mek inhibitor did not induce apoptosis. The diverse biological responses correlated with the status of c-myc gene expression. v-abl-transformed cells featured high constitutive levels of expression of c-myc, which were not reduced following PKA activation. Myc activation has been previously shown to be essential for transformation by oncogenic Abl proteins. Using estrogen-regulated c-myc and temperature-sensitive Raf-1 mutants, we found that Raf-1 activation could protect cells from c-myc-induced apoptosis. In conclusion, these results suggest (i) that Raf-1 participates in v-abl transformation via an Erk-independent pathway by providing a survival signal which complements c-myc in transformation, and (ii) that cAMP agonists might become useful for the treatment of malignancies where abl oncogenes are involved, such as

  3. Indispensable functions of ABL and PDGF receptor kinases in epithelial adherence of attaching/effacing pathogens under physiological conditions.

    PubMed

    Manthey, Carolin F; Calabio, Christine B; Wosinski, Anna; Hanson, Elaine M; Vallance, Bruce A; Groisman, Alex; Martín, Martín G; Wang, Jean Y J; Eckmann, Lars

    2014-07-15

    Enteropathogenic Escherichia coli (EPEC) and Citrobacter rodentium are attaching-and-effacing (A/E) pathogens that cause intestinal inflammation and diarrhea. The bacteria adhere to the intestinal epithelium, destroy microvilli, and induce actin-filled membranous pedestals but do not invade the mucosa. Adherence leads to activation of several host cell kinases, including FYN, n-SRC, YES, ABL, and ARG, phosphorylation of the bacterial translocated intimin receptor, and actin polymerization and pedestal formation in cultured cells. However, marked functional redundancy appears to exist between kinases, and their physiological importance in A/E pathogen infections has remained unclear. To address this question, we employed a novel dynamic in vitro infection model that mimics transient and short-term interactions in the intestinal tract. Screening of a kinase inhibitor library and RNA interference experiments in vitro revealed that ABL and platelet-derived growth factor (PDGF) receptor (PDGFR) kinases, as well as p38 MAP kinase, have unique, indispensable roles in early attachment of EPEC to epithelial cells under dynamic infection conditions. Studies with mutant EPEC showed that the attachment functions of ABL and PDGFR were independent of the intimin receptor but required bacterial bundle-forming pili. Furthermore, inhibition of ABL and PDGFR with imatinib protected against infection of mice with modest loads of C. rodentium, whereas the kinases were dispensable for high inocula or late after infection. These results indicate that ABL and PDGFR have indispensable roles in early A/E pathogen attachment to intestinal epithelial cells and for in vivo infection with limiting inocula but are not required for late intimate bacterial attachment or high inoculum infections. PMID:24848114

  4. KIDFamMap: a database of kinase-inhibitor-disease family maps for kinase inhibitor selectivity and binding mechanisms.

    PubMed

    Chiu, Yi-Yuan; Lin, Chih-Ta; Huang, Jhang-Wei; Hsu, Kai-Cheng; Tseng, Jen-Hu; You, Syuan-Ren; Yang, Jinn-Moon

    2013-01-01

    Kinases play central roles in signaling pathways and are promising therapeutic targets for many diseases. Designing selective kinase inhibitors is an emergent and challenging task, because kinases share an evolutionary conserved ATP-binding site. KIDFamMap (http://gemdock.life.nctu.edu.tw/KIDFamMap/) is the first database to explore kinase-inhibitor families (KIFs) and kinase-inhibitor-disease (KID) relationships for kinase inhibitor selectivity and mechanisms. This database includes 1208 KIFs, 962 KIDs, 55 603 kinase-inhibitor interactions (KIIs), 35 788 kinase inhibitors, 399 human protein kinases, 339 diseases and 638 disease allelic variants. Here, a KIF can be defined as follows: (i) the kinases in the KIF with significant sequence similarity, (ii) the inhibitors in the KIF with significant topology similarity and (iii) the KIIs in the KIF with significant interaction similarity. The KIIs within a KIF are often conserved on some consensus KIDFamMap anchors, which represent conserved interactions between the kinase subsites and consensus moieties of their inhibitors. Our experimental results reveal that the members of a KIF often possess similar inhibition profiles. The KIDFamMap anchors can reflect kinase conformations types, kinase functions and kinase inhibitor selectivity. We believe that KIDFamMap provides biological insights into kinase inhibitor selectivity and binding mechanisms. PMID:23193279

  5. KIDFamMap: a database of kinase-inhibitor-disease family maps for kinase inhibitor selectivity and binding mechanisms

    PubMed Central

    Chiu, Yi-Yuan; Lin, Chih-Ta; Huang, Jhang-Wei; Hsu, Kai-Cheng; Tseng, Jen-Hu; You, Syuan-Ren; Yang, Jinn-Moon

    2013-01-01

    Kinases play central roles in signaling pathways and are promising therapeutic targets for many diseases. Designing selective kinase inhibitors is an emergent and challenging task, because kinases share an evolutionary conserved ATP-binding site. KIDFamMap (http://gemdock.life.nctu.edu.tw/KIDFamMap/) is the first database to explore kinase-inhibitor families (KIFs) and kinase-inhibitor-disease (KID) relationships for kinase inhibitor selectivity and mechanisms. This database includes 1208 KIFs, 962 KIDs, 55 603 kinase-inhibitor interactions (KIIs), 35 788 kinase inhibitors, 399 human protein kinases, 339 diseases and 638 disease allelic variants. Here, a KIF can be defined as follows: (i) the kinases in the KIF with significant sequence similarity, (ii) the inhibitors in the KIF with significant topology similarity and (iii) the KIIs in the KIF with significant interaction similarity. The KIIs within a KIF are often conserved on some consensus KIDFamMap anchors, which represent conserved interactions between the kinase subsites and consensus moieties of their inhibitors. Our experimental results reveal that the members of a KIF often possess similar inhibition profiles. The KIDFamMap anchors can reflect kinase conformations types, kinase functions and kinase inhibitor selectivity. We believe that KIDFamMap provides biological insights into kinase inhibitor selectivity and binding mechanisms. PMID:23193279

  6. NUP214-ABL1-mediated cell proliferation in T-cell acute lymphoblastic leukemia is dependent on the LCK kinase and various interacting proteins

    PubMed Central

    De Keersmaecker, Kim; Porcu, Michaël; Cox, Luk; Girardi, Tiziana; Vandepoel, Roel; de Beeck, Joyce Op; Gielen, Olga; Mentens, Nicole; Bennett, Keiryn L.; Hantschel, Oliver

    2014-01-01

    The NUP214-ABL1 fusion protein is a constitutively active protein tyrosine kinase that is found in 6% of patients with T-cell acute lymphoblastic leukemia and that promotes proliferation and survival of T-lymphoblasts. Although NUP214-ABL1 is sensitive to ABL1 kinase inhibitors, development of resistance to these compounds is a major clinical problem, underlining the need for additional drug targets in the sparsely studied NUP214-ABL1 signaling network. In this work, we identify and validate the SRC family kinase LCK as a protein whose activity is absolutely required for the proliferation and survival of T-cell acute lymphoblastic leukemia cells that depend on NUP214-ABL1 activity. These findings underscore the potential of SRC kinase inhibitors and of the dual ABL1/SRC kinase inhibitors dasatinib and bosutinib for the treatment of NUP214-ABL1-positive T-cell acute lymphoblastic leukemia. In addition, we used mass spectrometry to identify protein interaction partners of NUP214-ABL1. Our results strongly support that the signaling network of NUP214-ABL1 is distinct from that previously reported for BCR-ABL1. Moreover, we found that three NUP214-ABL1-interacting proteins, MAD2L1, NUP155, and SMC4, are strictly required for the proliferation and survival of NUP214-ABL1-positive T-cell acute lymphoblastic leukemia cells. In conclusion, this work identifies LCK, MAD2L1, NUP155 and SMC4 as four new potential drug targets in NUP214-ABL1-positive T-cell acute lymphoblastic leukemia. PMID:23872305

  7. HS-438, a new inhibitor of imatinib-resistant BCR-ABL T315I mutation in chronic myeloid leukemia.

    PubMed

    Yun, Sun-Mi; Jung, Kyung Hee; Kim, Soo Jung; Fang, Zhenghuan; Son, Mi Kwon; Yan, Hong Hua; Lee, Hyunseung; Kim, JinHee; Shin, Sanghye; Hong, Sungwoo; Hong, Soon-Sun

    2014-06-28

    Imatinib is a selective breakpoint cluster region-Abelson (BCR-ABL) tyrosine kinase inhibitor (TKI) that has significantly improved the prognosis of patients with chronic myeloid leukemia (CML). However, T315I gene mutations of the BCR-ABL kinase domain have been shown to confer resistance to imatinib. In the present study, we synthesized a novel BCR-ABL inhibitor, HS-438, and identified its anti-leukemic effects in vitro and in vivo. We found that HS-438 strongly inhibited the expression of BCR-ABL signaling pathways in wild-type BCR-ABL (BaF3/WT) cells as well as T315I-mutated BCR-ABL (BaF3/T315I) cells with resistance to imatinib. HS-438 induced cell cycle arrest, particularly during the G0/G1 cell cycle phase, and induced apoptosis. In BaF3/T315I xenograft models, HS-438 significantly delayed tumor growth, unlike imatinib. In summary, we suggest that HS-438 may be a novel drug candidate with the therapeutic potential to target BCR-ABL and overcome imatinib resistance in patients with CML. PMID:24657654

  8. AP24534, a Pan-BCR-ABL Inhibitor for Chronic Myeloid Leukemia, Potently Inhibits the T315I Mutant and Overcomes Mutation-Based Resistance

    SciTech Connect

    O’Hare, Thomas; Shakespeare, William C.; Zhu, Xiaotian; Eide, Christopher A.; Rivera, Victor M.; Wang, Frank; Adrian, Lauren T.; Zhou, Tianjun; Huang, Wei-Sheng; Xu, Qihong; Metcalf, III, Chester A.; Tyner, Jeffrey W.; Loriaux, Marc M.; Corbin, Amie S.; Wardwell, Scott; Ning, Yaoyu; Keats, Jeffrey A.; Wang, Yihan; Sundaramoorthi, Raji; Thomas, Mathew; Zhou, Dong; Snodgrass, Joseph; Commodore, Lois; Sawyer, Tomi K.; Dalgarno, David C.; Deininger, Michael W.N.; Druker, Brian J.; Clackson, Tim

    2010-09-07

    Inhibition of BCR-ABL by imatinib induces durable responses in many patients with chronic myeloid leukemia (CML), but resistance attributable to kinase domain mutations can lead to relapse and a switch to second-line therapy with nilotinib or dasatinib. Despite three approved therapeutic options, the cross-resistant BCR-ABL{sup T315I} mutation and compound mutants selected on sequential inhibitor therapy remain major clinical challenges. We report design and preclinical evaluation of AP24534, a potent, orally available multitargeted kinase inhibitor active against T315I and other BCR-ABL mutants. AP24534 inhibited all tested BCR-ABL mutants in cellular and biochemical assays, suppressed BCR-ABL{sup T315I}-driven tumor growth in mice, and completely abrogated resistance in cell-based mutagenesis screens. Our work supports clinical evaluation of AP24534 as a pan-BCR-ABL inhibitor for treatment of CML.

  9. Combinations of Kinase Inhibitors Protecting Myoblasts against Hypoxia

    PubMed Central

    Kang, Yunyi; Tierney, Matthew; Ong, Edison; Zhang, Linda; Piermarocchi, Carlo; Sacco, Alessandra; Paternostro, Giovanni

    2015-01-01

    Cell-based therapies to treat skeletal muscle disease are limited by the poor survival of donor myoblasts, due in part to acute hypoxic stress. After confirming that the microenvironment of transplanted myoblasts is hypoxic, we screened a kinase inhibitor library in vitro and identified five kinase inhibitors that protected myoblasts from cell death or growth arrest in hypoxic conditions. A systematic, combinatorial study of these compounds further improved myoblast viability, showing both synergistic and additive effects. Pathway and target analysis revealed CDK5, CDK2, CDC2, WEE1, and GSK3β as the main target kinases. In particular, CDK5 was the center of the target kinase network. Using our recently developed statistical method based on elastic net regression we computationally validated the key role of CDK5 in cell protection against hypoxia. This method provided a list of potential kinase targets with a quantitative measure of their optimal amount of relative inhibition. A modified version of the method was also able to predict the effect of combinations using single-drug response data. This work is the first step towards a broadly applicable system-level strategy for the pharmacology of hypoxic damage. PMID:26042811

  10. Tyrosine Kinase Inhibitors and Diabetes: A Novel Treatment Paradigm?

    PubMed

    Fountas, Athanasios; Diamantopoulos, Leonidas-Nikolaos; Tsatsoulis, Agathocles

    2015-11-01

    Deregulation of protein tyrosine kinase (PTK) activity is implicated in various proliferative conditions. Multi-target tyrosine kinase inhibitors (TKIs) are increasingly used for the treatment of different malignancies. Recently, several clinical cases of the reversal of both type 1 and 2 diabetes mellitus (T1DM, T2DM) during TKI administration have been reported. Experimental in vivo and in vitro studies have elucidated some of the mechanisms behind this effect. For example, inhibition of Abelson tyrosine kinase (c-Abl) results in β cell survival and enhanced insulin secretion, while platelet-derived growth factor receptor (PDGFR) and epidermal growth factor receptor (EGFR) inhibition leads to improvement in insulin sensitivity. In addition, inhibition of vascular endothelial growth factor receptor 2 (VEGFR2) reduces the degree of islet cell inflammation (insulitis). Therefore, targeting several PTKs may provide a novel approach for correcting the pathophysiologic disturbances of diabetes. PMID:26492832

  11. Combined targeting of BCL-2 and BCR-ABL tyrosine kinase eradicates chronic myeloid leukemia stem cells.

    PubMed

    Carter, Bing Z; Mak, Po Yee; Mu, Hong; Zhou, Hongsheng; Mak, Duncan H; Schober, Wendy; Leverson, Joel D; Zhang, Bin; Bhatia, Ravi; Huang, Xuelin; Cortes, Jorge; Kantarjian, Hagop; Konopleva, Marina; Andreeff, Michael

    2016-09-01

    BCR-ABL tyrosine kinase inhibitors (TKIs) are effective against chronic myeloid leukemia (CML), but they rarely eliminate CML stem cells. Disease relapse is common upon therapy cessation, even in patients with complete molecular responses. Furthermore, once CML progresses to blast crisis (BC), treatment outcomes are dismal. We hypothesized that concomitant targeting of BCL-2 and BCR-ABL tyrosine kinase could overcome these limitations. We demonstrate increased BCL-2 expression at the protein level in bone marrow cells, particularly in Lin(-)Sca-1(+)cKit(+) cells of inducible CML in mice, as determined by CyTOF mass cytometry. Further, selective inhibition of BCL-2, aided by TKI-mediated MCL-1 and BCL-XL inhibition, markedly decreased leukemic Lin(-)Sca-1(+)cKit(+) cell numbers and long-term stem cell frequency and prolonged survival in a murine CML model. Additionally, this combination effectively eradicated CD34(+)CD38(-), CD34(+)CD38(+), and quiescent stem/progenitor CD34(+) cells from BC CML patient samples. Our results suggest that BCL-2 is a key survival factor for CML stem/progenitor cells and that combined inhibition of BCL-2 and BCR-ABL tyrosine kinase has the potential to significantly improve depth of response and cure rates of chronic-phase and BC CML. PMID:27605552

  12. Activation of tyrosinase kinase and microfilament-binding functions of c-abl by bcr sequences in bcr/abl fusion proteins.

    PubMed Central

    McWhirter, J R; Wang, J Y

    1991-01-01

    Chronic myelogenous leukemia and one type of acute lymphoblastic leukemia are characterized by a 9;22 chronosome translocation in which 5' sequences of the bcr gene become fused to the c-abl proto-oncogene. The resulting chimeric genes encode bcr/abl fusion proteins which have deregulated tyrosine kinase activity and appear to play an important role in induction of these leukemias. A series of bcr/abl genes were constructed in which nested deletions of the bcr gene were fused to the c-abl gene. The fusion proteins encoded by these genes were assayed for autophosphorylation in vivo and for differences in subcellular localization. Our results demonstrate that bcr sequences activate two functions of c-abl; the tyrosine kinase activity and a previously undescribed microfilament-binding function. Two regions of bcr which activate these functions to different degrees have been mapped: amino acids 1 to 63 were strongly activating and amino acids 64 to 509 were weakly activating. The tyrosine kinase and microfilament-binding functions were not interdependent, as a kinase defective bcr/abl mutant still associated with actin filaments and a bcr/abl mutant lacking actin association still had deregulated kinase activity. Modification of actin filament functions by the bcr/abl tyrosine kinase may be an important event in leukemogenesis. Images PMID:1705008

  13. High-Throughput Kinase Profiling: A More Efficient Approach towards the Discovery of New Kinase Inhibitors

    PubMed Central

    Miduturu, Chandrasekhar V.; Deng, Xianming; Kwiatkowski, Nicholas; Yang, Wannian; Brault, Laurent; Filippakopoulos, Panagis; Chung, Eunah; Yang, Qingkai; Schwaller, Juerg; Knapp, Stefan; King, Randall W.; Lee, Jiing-Dwan; Herrgard, Sanna; Zarrinkar, Patrick; Gray, Nathanael S.

    2011-01-01

    SUMMARY Selective protein kinase inhibitors have only been developed against a small number of kinase targets. Here we demonstrate that “high-throughput kinase profiling” is an efficient method for the discovery of lead compounds for established as well as unexplored kinase targets. We screened a library of 118 compounds constituting two distinct scaffolds (furan-thiazolidinediones and pyrimido-diazepines) against a panel of 353 kinases. A distinct kinase selectivity profile was observed for each scaffold. Selective inhibitors were identified with submicromolar cellular activity against PIM1, ERK5, ACK1, MPS1/PLK1–3 and Aurora A,B kinases. In addition, we identified potent inhibitors for so far unexplored kinases such as DRAK1, HIPK2 and DCAMKL1 that await further evaluation. This inhibitor-centric approach permits comprehensive assessment of a scaffold of interest and represents an efficient and general strategy for identifying new selective kinase inhibitors. PMID:21802008

  14. Janus kinase inhibitors for rheumatoid arthritis.

    PubMed

    Yamaoka, Kunihiro

    2016-06-01

    Treatment of autoimmune diseases, such as rheumatoid arthritis (RA), has advanced substantially over the past decade with the development of biologics targeting inflammatory cytokines. Recent progress in treating RA has been achieved with janus kinase (JAK) inhibitors (Jakinibs), an orally available disease-modifying anti-rheumatic drug targeting the intracellular kinase JAK and with similar efficacy to biologics. The first Jakinib approved for RA was tofacitinib, which exerted superiority to methotrexate and non-inferiority to tumor necrosis factor (TNF) inhibitors. In recent years, the Jakinib baricitinib has demonstrated superiority to both methotrexate and a TNF inhibitor, adalimumab. Given these promising findings, Jakinibs are expected to represent the next generation compounds for treating RA, and a number of Jakinibs are currently in clinical trials. Jakinibs can differ substantially in their selectivity against JAKs; tofacitinib and baricitinib target multiple JAKs, whereas the most recently developed Jakinibs target only a single JAK. The influence of Jakinib selectivity on efficacy and side effects is of great interest, requiring further careful observation. PMID:26994322

  15. Can kinomics and proteomics bridge the gap between pediatric cancers and newly designed kinase inhibitors?

    PubMed

    van der Sligte, Naomi E; Kampen, Kim R; de Bont, Eveline S J M

    2015-10-01

    The introduction of kinase inhibitors in cancer medicine has transformed chronic myeloid leukemia from a fatal disease into a leukemia subtype with a favorable prognosis by interfering with the constitutively active kinase BCR-ABL. This success story has resulted in the development of multiple kinase inhibitors. We are currently facing significant limitations in implementing these kinase inhibitors into the clinic for the treatment of pediatric malignancies. As many hallmarks of cancer are known to be regulated by intracellular protein signaling networks, we suggest focusing on these networks to improve the implementation of kinase inhibitors. This viewpoint will provide a short overview of currently used strategies for the implementation of kinase inhibitors as well as reasons why kinase inhibitors have unfortunately not yet been widely used for the treatment of pediatric cancers. We argue that by using a future personalized medicine strategy combining kinomics, proteomics, and drug screen approaches, the gap between pediatric cancers and the use of kinase inhibitors may be bridged. PMID:26321002

  16. c-Abl kinase regulates the protein binding activity of c-Crk.

    PubMed Central

    Feller, S M; Knudsen, B; Hanafusa, H

    1994-01-01

    c-Crk is a proto-oncogene product composed largely of Src homology (SH) 2 and 3 domains. We have identified a kinase activity, which binds to the first Crk SH3 domain and phosphorylates c-Crk on tyrosine 221 (Y221), as c-Abl. c-Abl has a strong preference for c-Crk, when compared with common tyrosine kinase substrates. The phosphorylation of c-Crk Y221 creates a binding site for the Crk SH2 domain. Bacterially expressed c-Crk protein lacks phosphorylation on Y221 and can bind specifically to several proteins, while mammalian c-Crk, which is phosphorylated on tyrosine, remains uncomplexed. The protein binding activity of c-Crk is therefore likely regulated by a mechanism similar to that of the Src family kinases. v-Crk is truncated before c-Crk Y221 and forms constitutive complexes with c-Abl and other proteins. Our results suggest that c-Abl regulates c-Crk function and that it could be involved in v-Crk transformation. Images PMID:8194526

  17. Rapid Discovery and Structure-Activity Relationships of Pyrazolopyrimidines That Potently Suppress Breast Cancer Cell Growth via SRC Kinase Inhibition with Exceptional Selectivity over ABL Kinase.

    PubMed

    Fraser, Craig; Dawson, John C; Dowling, Reece; Houston, Douglas R; Weiss, Jason T; Munro, Alison F; Muir, Morwenna; Harrington, Lea; Webster, Scott P; Frame, Margaret C; Brunton, Valerie G; Patton, E Elizabeth; Carragher, Neil O; Unciti-Broceta, Asier

    2016-05-26

    Novel pyrazolopyrimidines displaying high potency and selectivity toward SRC family kinases have been developed by combining ligand-based design and phenotypic screening in an iterative manner. Compounds were derived from the promiscuous kinase inhibitor PP1 to search for analogs that could potentially target a broad spectrum of kinases involved in cancer. Phenotypic screening against MCF7 mammary adenocarcinoma cells generated target-agnostic structure-activity relationships that biased subsequent designs toward breast cancer treatment rather than to a particular target. This strategy led to the discovery of two potent antiproliferative leads with phenotypically distinct anticancer mode of actions. Kinase profiling and further optimization resulted in eCF506, the first small molecule with subnanomolar IC50 for SRC that requires 3 orders of magnitude greater concentration to inhibit ABL. eCF506 exhibits excellent water solubility, an optimal DMPK profile and oral bioavailability, halts SRC-associated neuromast migration in zebrafish embryos without inducing life-threatening heart defects, and inhibits SRC phosphorylation in tumor xenografts in mice. PMID:27115835

  18. Rapid Discovery and Structure–Activity Relationships of Pyrazolopyrimidines That Potently Suppress Breast Cancer Cell Growth via SRC Kinase Inhibition with Exceptional Selectivity over ABL Kinase

    PubMed Central

    2016-01-01

    Novel pyrazolopyrimidines displaying high potency and selectivity toward SRC family kinases have been developed by combining ligand-based design and phenotypic screening in an iterative manner. Compounds were derived from the promiscuous kinase inhibitor PP1 to search for analogs that could potentially target a broad spectrum of kinases involved in cancer. Phenotypic screening against MCF7 mammary adenocarcinoma cells generated target-agnostic structure–activity relationships that biased subsequent designs toward breast cancer treatment rather than to a particular target. This strategy led to the discovery of two potent antiproliferative leads with phenotypically distinct anticancer mode of actions. Kinase profiling and further optimization resulted in eCF506, the first small molecule with subnanomolar IC50 for SRC that requires 3 orders of magnitude greater concentration to inhibit ABL. eCF506 exhibits excellent water solubility, an optimal DMPK profile and oral bioavailability, halts SRC-associated neuromast migration in zebrafish embryos without inducing life-threatening heart defects, and inhibits SRC phosphorylation in tumor xenografts in mice. PMID:27115835

  19. A temperature sensitive p210 BCR-ABL mutant defines the primary consequences of BCR-ABL tyrosine kinase expression in growth factor dependent cells.

    PubMed Central

    Kabarowski, J H; Allen, P B; Wiedemann, L M

    1994-01-01

    The Philadelphia translocation commonly observed in chronic myeloid leukaemia (CML) and a proportion of cases of acute leukaemia results in the creation of a chimeric fusion protein, BCR-ABL. The fusion protein exhibits an elevated tyrosine kinase activity as compared to normal ABL. Using a temperature sensitive mutant of p210 BCR-ABL (ts-p210) we find that the primary effect of BCR-ABL expression in an IL-3 dependent cell line is to prolong survival following growth factor withdrawal; only a small proportion of cells remain viable and rapidly evolve to complete growth factor independence. During passage in the presence of IL-3 at the temperature permissive for kinase activity, ts-p210 expressing cultures become dominated by completely growth factor independent cells within 10-30 days. There is also a significant difference between BCR-ABL and IL-3 mediated signalling with respect to the MAP kinase pathway; in contrast to IL-3 stimulation or v-ABL expression, BCR-ABL does not signal ERK 2 (MAP 2 kinase) activation, underlining the apparent inability of BCR-ABL to deliver an immediate proliferative signal in Ba/F3 cells. Our data suggest that growth factor independence does not simply reflect the convergence of BCR-ABL and IL-3 mediated signalling pathways and its development, at least in Ba/F3 cells, requires prolonged exposure to BCR-ABL kinase activity. We suggest that the myeloid expansion characteristic of CML may result from the prolongation of survival of myeloid progenitor cells under conditions of limiting growth factor rather than their uncontrolled proliferation. Images PMID:7813429

  20. Discovery and Characterization of a Cell-Permeable, Small-Molecule c-Abl Kinase Activator that Binds to the Myristoyl Binding Site

    SciTech Connect

    Yang, Jingsong; Campobasso, Nino; Biju, Mangatt P.; Fisher, Kelly; Pan, Xiao-Qing; Cottom, Josh; Galbraith, Sarah; Ho, Thau; Zhang, Hong; Hong, Xuan; Ward, Paris; Hofmann, Glenn; Siegfried, Brett; Zappacosta, Francesca; Washio, Yoshiaki; Cao, Ping; Qu, Junya; Bertrand, Sophie; Wang, Da-Yuan; Head, Martha S.; Li, Hu; Moores, Sheri; Lai, Zhihong; Johanson, Kyung; Burton, George; Erickson-Miller, Connie; Simpson, Graham; Tummino, Peter; Copeland, Robert A.; Oliff, Allen

    2014-10-02

    c-Abl kinase activity is regulated by a unique mechanism involving the formation of an autoinhibited conformation in which the N-terminal myristoyl group binds intramolecularly to the myristoyl binding site on the kinase domain and induces the bending of the {alpha}I helix that creates a docking surface for the SH2 domain. Here, we report a small-molecule c-Abl activator, DPH, that displays potent enzymatic and cellular activity in stimulating c-Abl activation. Structural analyses indicate that DPH binds to the myristoyl binding site and prevents the formation of the bent conformation of the {alpha}I helix through steric hindrance, a mode of action distinct from the previously identified allosteric c-Abl inhibitor, GNF-2, that also binds to the myristoyl binding site. DPH represents the first cell-permeable, small-molecule tool compound for c-Abl activation.

  1. Inhibition of c-Abl Kinase Activity Renders Cancer Cells Highly Sensitive to Mitoxantrone

    PubMed Central

    Tuomela, Johanna; Sandholm, Jouko; Aittokallio, Kaappo; Siljamäki, Elina; Kallio, Marko; Kähäri, Veli-Matti; Hietanen, Sakari

    2014-01-01

    Although c-Abl has increasingly emerged as a key player in the DNA damage response, its role in this context is far from clear. We studied the effect of inhibition of c-Abl kinase activity by imatinib with chemotherapy drugs and found a striking difference in cell survival after combined mitoxantrone (MX) and imatinib treatment compared to a panel of other chemotherapy drugs. The combinatory treatment induced apoptosis in HeLa cells and other cancer cell lines but not in primary fibroblasts. The difference in MX and doxorubicin was related to significant augmentation of DNA damage. Transcriptionally active p53 accumulated in cells in which human papillomavirus E6 normally degrades p53. The combination treatment resulted in caspase activation and apoptosis, but this effect did not depend on either p53 or p73 activity. Despite increased p53 activity, the cells arrested in G2 phase became defective in this checkpoint, allowing cell cycle progression. The effect after MX treatment depended partially on c-Abl: Short interfering RNA knockdown of c-Abl rendered HeLa cells less sensitive to MX. The effect of imatinib was decreased by c-Abl siRNA suggesting a role for catalytically inactive c-Abl in the death cascade. These findings indicate that MX has a unique cytotoxic effect when the kinase activity of c-Abl is inhibited. The treatment results in increased DNA damage and c-Abl–dependent apoptosis, which may offer new possibilities for potentiation of cancer chemotherapy. PMID:25148385

  2. Activation of tyrosine kinase c-Abl contributes to α-synuclein-induced neurodegeneration.

    PubMed

    Brahmachari, Saurav; Ge, Preston; Lee, Su Hyun; Kim, Donghoon; Karuppagounder, Senthilkumar S; Kumar, Manoj; Mao, Xiaobo; Shin, Joo Ho; Lee, Yunjong; Pletnikova, Olga; Troncoso, Juan C; Dawson, Valina L; Dawson, Ted M; Ko, Han Seok

    2016-08-01

    Aggregation of α-synuclein contributes to the formation of Lewy bodies and neurites, the pathologic hallmarks of Parkinson disease (PD) and α-synucleinopathies. Although a number of human mutations have been identified in familial PD, the mechanisms that promote α-synuclein accumulation and toxicity are poorly understood. Here, we report that hyperactivity of the nonreceptor tyrosine kinase c-Abl critically regulates α-synuclein-induced neuropathology. In mice expressing a human α-synucleinopathy-associated mutation (hA53Tα-syn mice), deletion of the gene encoding c-Abl reduced α-synuclein aggregation, neuropathology, and neurobehavioral deficits. Conversely, overexpression of constitutively active c-Abl in hA53Tα-syn mice accelerated α-synuclein aggregation, neuropathology, and neurobehavioral deficits. Moreover, c-Abl activation led to an age-dependent increase in phosphotyrosine 39 α-synuclein. In human postmortem samples, there was an accumulation of phosphotyrosine 39 α-synuclein in brain tissues and Lewy bodies of PD patients compared with age-matched controls. Furthermore, in vitro studies show that c-Abl phosphorylation of α-synuclein at tyrosine 39 enhances α-synuclein aggregation. Taken together, this work establishes a critical role for c-Abl in α-synuclein-induced neurodegeneration and demonstrates that selective inhibition of c-Abl may be neuroprotective. This study further indicates that phosphotyrosine 39 α-synuclein is a potential disease indicator for PD and related α-synucleinopathies. PMID:27348587

  3. Structural investigation of protein kinase C inhibitors

    NASA Technical Reports Server (NTRS)

    Barak, D.; Shibata, M.; Rein, R.

    1991-01-01

    The phospholipid and Ca2+ dependent protein kinase (PKC) plays an essential role in a variety of cellular events. Inhibition of PKC was shown to arrest growth in tumor cell cultures making it a target for possible antitumor therapy. Calphostins are potent inhibitors of PKC with high affinity for the enzyme regulatory site. Structural characteristics of calphostins, which confer the inhibitory activity, are investigated by comparing their optimized structures with the existing models for PKC activation. The resulting model of inhibitory activity assumes interaction with two out of the three electrostatic interaction sites postulated for activators. The model shows two sites of hydrophobic interaction and enables the inhibitory activity of gossypol to be accounted for.

  4. Tyrosine kinase inhibitors and the thyroid.

    PubMed

    Sherman, Steven I

    2009-12-01

    Protein tyrosine kinase inhibitors (TKIs) have emerged as significant targets for novel cancer therapies. For patients with differentiated or medullary carcinomas unresponsive to conventional treatments, multiple novel therapies primarily targeting angiogenesis have entered clinical trials. Partial response rates up to 30% have been reported in single-agent studies, but prolonged disease stabilisation is more commonly seen. The most successful agents target the vascular endothelial growth factor receptors. Sorafenib and sunitinib have had promising preliminary results reported and are being used selectively for patients who do not qualify for clinical trials. Treatment for patients with metastatic or advanced thyroid carcinoma now emphasises clinical trial opportunities for novel agents with considerable promise. Adverse effects on thyroid function and thyroid hormone metabolism have also been seen with several TKIs, necessitating prospective thyroid function testing for all patients starting therapy. PMID:19942148

  5. CagA Phosphorylation in Helicobacter pylori-Infected B Cells Is Mediated by the Nonreceptor Tyrosine Kinases of the Src and Abl Families.

    PubMed

    Krisch, Linda M; Posselt, Gernot; Hammerl, Peter; Wessler, Silja

    2016-09-01

    CagA is one of the most important virulence factors of the human pathogen Helicobacter pylori CagA expression can be associated with the induction of severe gastric disorders such as gastritis, ulceration, gastric cancer, or mucosa-associated lymphoid tissue (MALT) lymphoma. After translocation through a type IV secretion system into epithelial cells, CagA is tyrosine phosphorylated by kinases of the Src and Abl families, leading to drastic cell elongation and motility. While the functional role of CagA in epithelial cells is well investigated, knowledge about CagA phosphorylation and its associated signal transduction pathways in B cells is only marginal. Here, we established the B cell line MEC1 derived from a B cell chronic lymphocytic leukemia (B-CLL) patient as a new infection model to study the signal transduction in B cells controlled by H. pylori We observed that CagA was rapidly injected, strongly tyrosine phosphorylated, and cleaved into a 100-kDa N-terminal and a 40-kDa C-terminal fragment. To identify upstream signal transduction pathways of CagA phosphorylation in MEC1 cells, pharmacological inhibitors were employed to specifically target Src and Abl kinases. We observed that CagA phosphorylation was strongly inhibited upon treatment with an Src inhibitor and slightly diminished when the Abl kinase inhibitor imatinib mesylate (Gleevec) was applied. The addition of dasatinib to block c-Abl and Src kinases led to a complete loss of CagA phosphorylation. In conclusion, these results demonstrate an important role for Src and Abl tyrosine kinases in CagA phosphorylation in B cells, which represent druggable targets in H. pylori-mediated gastric MALT lymphoma. PMID:27382024

  6. CagA Phosphorylation in Helicobacter pylori-Infected B Cells Is Mediated by the Nonreceptor Tyrosine Kinases of the Src and Abl Families

    PubMed Central

    Krisch, Linda M.; Posselt, Gernot; Hammerl, Peter

    2016-01-01

    CagA is one of the most important virulence factors of the human pathogen Helicobacter pylori. CagA expression can be associated with the induction of severe gastric disorders such as gastritis, ulceration, gastric cancer, or mucosa-associated lymphoid tissue (MALT) lymphoma. After translocation through a type IV secretion system into epithelial cells, CagA is tyrosine phosphorylated by kinases of the Src and Abl families, leading to drastic cell elongation and motility. While the functional role of CagA in epithelial cells is well investigated, knowledge about CagA phosphorylation and its associated signal transduction pathways in B cells is only marginal. Here, we established the B cell line MEC1 derived from a B cell chronic lymphocytic leukemia (B-CLL) patient as a new infection model to study the signal transduction in B cells controlled by H. pylori. We observed that CagA was rapidly injected, strongly tyrosine phosphorylated, and cleaved into a 100-kDa N-terminal and a 40-kDa C-terminal fragment. To identify upstream signal transduction pathways of CagA phosphorylation in MEC1 cells, pharmacological inhibitors were employed to specifically target Src and Abl kinases. We observed that CagA phosphorylation was strongly inhibited upon treatment with an Src inhibitor and slightly diminished when the Abl kinase inhibitor imatinib mesylate (Gleevec) was applied. The addition of dasatinib to block c-Abl and Src kinases led to a complete loss of CagA phosphorylation. In conclusion, these results demonstrate an important role for Src and Abl tyrosine kinases in CagA phosphorylation in B cells, which represent druggable targets in H. pylori-mediated gastric MALT lymphoma. PMID:27382024

  7. Discovery of a Potent And Selective Aurora Kinase Inhibitor

    SciTech Connect

    Oslob, J.D.; Romanowski, M.J.; Allen, D.A.; Baskaran, S.; Bui, M.; Elling, R.A.; Flanagan, W.M.; Fung, A.D.; Hanan, E.J.; Harris, S.; Heumann, S.A.; Hoch, U.; Jacobs, J.W.; Lam, J.; Lawrence, C.E.; McDowell, R.S.; Nannini, M.A.; Shen, W.; Silverman, J.A.; Sopko, M.M.; Tangonan, B.T.

    2009-05-21

    This communication describes the discovery of a novel series of Aurora kinase inhibitors. Key SAR and critical binding elements are discussed. Some of the more advanced analogues potently inhibit cellular proliferation and induce phenotypes consistent with Aurora kinase inhibition. In particular, compound 21 (SNS-314) is a potent and selective Aurora kinase inhibitor that exhibits significant activity in pre-clinical in vivo tumor models.

  8. Virtual Target Screening: Validation Using Kinase Inhibitors

    PubMed Central

    Santiago, Daniel N.; Pevzner, Yuri; Durand, Ashley A.; Tran, MinhPhuong; Scheerer, Rachel R.; Daniel, Kenyon; Sung, Shen-Shu; Woodcock, H. Lee; Guida, Wayne C.; Brooks, Wesley H.

    2012-01-01

    Computational methods involving virtual screening could potentially be employed to discover new biomolecular targets for an individual molecule of interest (MOI). However, existing scoring functions may not accurately differentiate proteins to which the MOI binds from a larger set of macromolecules in a protein structural database. An MOI will most likely have varying degrees of predicted binding affinities to many protein targets. However, correctly interpreting a docking score as a hit for the MOI docked to any individual protein can be problematic. In our method, which we term “Virtual Target Screening (VTS)”, a set of small drug-like molecules are docked against each structure in the protein library to produce benchmark statistics. This calibration provides a reference for each protein so that hits can be identified for an MOI. VTS can then be used as tool for: drug repositioning (repurposing), specificity and toxicity testing, identifying potential metabolites, probing protein structures for allosteric sites, and testing focused libraries (collection of MOIs with similar chemotypes) for selectivity. To validate our VTS method, twenty kinase inhibitors were docked to a collection of calibrated protein structures. Here we report our results where VTS predicted protein kinases as hits in preference to other proteins in our database. Concurrently, a graphical interface for VTS was developed. PMID:22747098

  9. The selectivity of protein kinase inhibitors: a further update

    PubMed Central

    Bain, Jenny; Plater, Lorna; Elliott, Matt; Shpiro, Natalia; Hastie, C. James; Mclauchlan, Hilary; Klevernic, Iva; Arthur, J. Simon C.; Alessi, Dario R.; Cohen, Philip

    2007-01-01

    The specificities of 65 compounds reported to be relatively specific inhibitors of protein kinases have been profiled against a panel of 70–80 protein kinases. On the basis of this information, the effects of compounds that we have studied in cells and other data in the literature, we recommend the use of the following small-molecule inhibitors: SB 203580/SB202190 and BIRB 0796 to be used in parallel to assess the physiological roles of p38 MAPK (mitogen-activated protein kinase) isoforms, PI-103 and wortmannin to be used in parallel to inhibit phosphatidylinositol (phosphoinositide) 3-kinases, PP1 or PP2 to be used in parallel with Src-I1 (Src inhibitor-1) to inhibit Src family members; PD 184352 or PD 0325901 to inhibit MKK1 (MAPK kinase-1) or MKK1 plus MKK5, Akt-I-1/2 to inhibit the activation of PKB (protein kinase B/Akt), rapamycin to inhibit TORC1 [mTOR (mammalian target of rapamycin)–raptor (regulatory associated protein of mTOR) complex], CT 99021 to inhibit GSK3 (glycogen synthase kinase 3), BI-D1870 and SL0101 or FMK (fluoromethylketone) to be used in parallel to inhibit RSK (ribosomal S6 kinase), D4476 to inhibit CK1 (casein kinase 1), VX680 to inhibit Aurora kinases, and roscovitine as a pan-CDK (cyclin-dependent kinase) inhibitor. We have also identified harmine as a potent and specific inhibitor of DYRK1A (dual-specificity tyrosine-phosphorylated and -regulated kinase 1A) in vitro. The results have further emphasized the need for considerable caution in using small-molecule inhibitors of protein kinases to assess the physiological roles of these enzymes. Despite being used widely, many of the compounds that we analysed were too non-specific for useful conclusions to be made, other than to exclude the involvement of particular protein kinases in cellular processes. PMID:17850214

  10. In-silico identification of inhibitors against mutated BCR-ABL protein of chronic myeloid leukemia: a virtual screening and molecular dynamics simulation study.

    PubMed

    Kumar, Himansu; Raj, Utkarsh; Gupta, Saurabh; Varadwaj, Pritish Kumar

    2016-10-01

    Aberrant and proliferative expression of the oncogene BCR-ABL in the bone marrow cells had been proven as the prime cause of chronic myeloid leukemia (CML). It has been established that tyrosine kinase domain of BCR-ABL protein is a potential therapeutic target for the treatment of CML. Imatinib is considered as a first-generation drug that can inhibit the enzymatic action by inhibiting the ATP binding with BCR-ABL protein. Later on, insensitivity of CML cells towards Imatinib has been observed may be due to mutation in tyrosine kinase domain of the ABL receptor. Subsequently, some other second-generation drugs have also been reported viz. Baustinib, Nilotinib, Dasatinib, Ponatinib, Bafetinib, etc., which can able to combat against mutated domain of ABL tyrosine kinase protein. By taking into account of bioavailability and resistance developed, there is an utmost need to find some more inhibitors for the mutated ABL tyrosine kinase protein. For virtual screening, a data-set has been generated by collecting the all available drug like natural compounds from ZINC and Drug Bank databases. Comparative docking analysis was also carried out on the active site of ABL tyrosine kinase receptor with reported reference inhibitors. Molecular dynamics simulation of the best screened interacting complex was done for 50 ns to validate the stability of the system. These selected inhibitors were further validated and analyzed through pharmacokinetics properties and series of ADMET parameters by in silico methods. Considering the above said parameters proposed molecules are concluded as potential leads for drug designing pipeline against CML. PMID:26479578

  11. Differential inhibitor sensitivity between human kinases VRK1 and VRK2.

    PubMed

    Vázquez-Cedeira, Marta; Barcia-Sanjurjo, Iria; Sanz-García, Marta; Barcia, Ramiro; Lazo, Pedro A

    2011-01-01

    Human vaccinia-related kinases (VRK1 and VRK2) are atypical active Ser-Thr kinases implicated in control of cell cycle entry, apoptosis and autophagy, and affect signalling by mitogen activated protein kinases (MAPK). The specific structural differences in VRK catalytic sites make them suitable candidates for development of specific inhibitors. In this work we have determined the sensitivity of VRK1 and VRK2 to kinase inhibitors, currently used in biological assays or in preclinical studies, in order to discriminate between the two proteins as well as with respect to the vaccinia virus B1R kinase. Both VRK proteins and vaccinia B1R are poorly inhibited by inhibitors of different types targeting Src, MEK1, B-Raf, JNK, p38, CK1, ATM, CHK1/2 and DNA-PK, and most of them have no effect even at 100 µM. Despite their low sensitivity, some of these inhibitors in the low micromolar range are able to discriminate between VRK1, VRK2 and B1R. VRK1 is more sensitive to staurosporine, RO-31-8220 and TDZD8. VRK2 is more sensitive to roscovitine, RO 31-8220, Cdk1 inhibitor, AZD7762, and IC261. Vaccinia virus B1R is more sensitive to staurosporine, KU55933, and RO 31-8220, but not to IC261. Thus, the three kinases present a different pattern of sensitivity to kinase inhibitors. This differential response to known inhibitors can provide a structural framework for VRK1 or VRK2 specific inhibitors with low or no cross-inhibition. The development of highly specific VRK1 inhibitors might be of potential clinical use in those cancers where these kinases identify a clinical subtype with a poorer prognosis, as is the case of VRK1 in breast cancer. PMID:21829721

  12. Glycogen synthase kinase-3 inhibitors: Rescuers of cognitive impairments

    PubMed Central

    King, Margaret K.; Pardo, Marta; Cheng, Yuyan; Downey, Kimberlee; Jope, Richard S.; Beurel, Eléonore

    2013-01-01

    Impairment of cognitive processes is a devastating outcome of many diseases, injuries, and drugs affecting the central nervous system (CNS). Most often, very little can be done by available therapeutic interventions to improve cognitive functions. Here we review evidence that inhibition of glycogen synthase kinase-3 (GSK3) ameliorates cognitive deficits in a wide variety of animal models of CNS diseases, including Alzheimer's disease, Fragile X syndrome, Down syndrome, Parkinson's disease, spinocerebellar ataxia type 1, traumatic brain injury, and others. GSK3 inhibitors also improve cognition following impairments caused by therapeutic interventions, such as cranial irradiation for brain tumors. These findings demonstrate that GSK3 inhibitors are able to ameliorate cognitive impairments caused by a diverse array of diseases, injury, and treatments. The improvements in impaired cognition instilled by administration of GSK3 inhibitors appear to involve a variety of different mechanisms, such as supporting long-term potentiation and diminishing long-term depression, promotion of neurogenesis, reduction of inflammation, and increasing a number of neuroprotective mechanisms. The potential for GSK3 inhibitors to repair cognitive deficits associated with many conditions warrants further investigation of their potential for therapeutic interventions, particularly considering the current dearth of treatments available to reduce loss of cognitive functions. PMID:23916593

  13. Kinase inhibitor profiling reveals unexpected opportunities to inhibit disease-associated mutant kinases

    PubMed Central

    Duong-Ly, Krisna C.; Devarajan, Karthik; Liang, Shuguang; Horiuchi, Kurumi Y.; Wang, Yuren; Ma, Haiching; Peterson, Jeffrey R.

    2016-01-01

    Summary Small-molecule kinase inhibitors have typically been designed to inhibit wild-type kinases rather than the mutant forms that frequently arise in diseases such as cancer. Mutations can have serious clinical implications by increasing kinase catalytic activity or conferring therapeutic resistance. To identify opportunities to repurpose inhibitors against disease-associated mutant kinases, we conducted a large-scale functional screen of 183 known kinase inhibitors against 76 recombinant, mutant kinases. The results revealed lead compounds with activity against clinically important mutant kinases including ALK, LRRK2, RET, and EGFR as well as unexpected opportunities for repurposing FDA-approved kinase inhibitors as leads for additional indications. Furthermore, using T674I PDGFRα as an example, we show how single-dose screening data can provide predictive structure-activity data to guide subsequent inhibitor optimization. This study provides a resource for the development of inhibitors against numerous disease-associated mutant kinases and illustrates the potential of unbiased profiling as an approach to compound-centric inhibitor development. PMID:26776524

  14. In Vitro Characterization of Derrone as an Aurora Kinase Inhibitor.

    PubMed

    Hoang, Nhung Thi My; Phuong, Thuong Thien; Nguyen, Trang Thi Nhu; Tran, Yen Thi Hai; Nguyen, Anh Thi Ngoc; Nguyen, Thanh Lai; Bui, Khanh Thi Van

    2016-06-01

    Among mitotic kinases, Aurora kinases are the most widely studied, since their expression is restricted to mitosis. They play a key role in chromosome segregation and cell polyploidy. Aurora kinases are important therapeutic targets, and several research groups have directed their efforts toward the identification of kinase inhibitors. The aim of this study is to screen and characterize Aurora kinase inhibitors from natural substances extracted from plants that are used in the Vietnamese pharmacopoeia. We have characterized in vitro Derrone, extracted from Erythrina orientalis L. MURR, as a novel Aurora kinase inhibitor. This compound exhibited an ability to inhibit the phosphorylation of histone H3 at ser10 both in kinase assay and at the cellular level. The compound was more effective against Aurora kinase B, with a lower IC50 value as compared to Aurora A. Moreover, it impaired the mitotic spindle checkpoint and led to endoreduplication in cancer cells, a phenomenon caused by an Aurora B inhibitor. Interestingly, using the xCelligence system and real-time cell analysis (RTCA) software, we set up a comparison of cell proliferation profiles between cancer cells treated with Derrone and VX680-a well-known Aurora kinase inhibitor-and we found that these profiles exhibited considerable similarity in cell morphology, growth, and death. Additionally, Derrone significantly inhibited the formation and growth of MCF7 tumor spheroids. PMID:26983907

  15. Quinalizarin as a potent, selective and cell-permeable inhibitor of protein kinase CK2.

    PubMed

    Cozza, Giorgio; Mazzorana, Marco; Papinutto, Elena; Bain, Jenny; Elliott, Matthew; di Maira, Giovanni; Gianoncelli, Alessandra; Pagano, Mario A; Sarno, Stefania; Ruzzene, Maria; Battistutta, Roberto; Meggio, Flavio; Moro, Stefano; Zagotto, Giuseppe; Pinna, Lorenzo A

    2009-08-01

    Emodin (1,3,8-trihydroxy-6-methyl-anthraquinone) is a moderately potent and poorly selective inhibitor of protein kinase CK2, one of the most pleiotropic serine/threonine protein kinases, implicated in neoplasia and in other global diseases. By virtual screening of the MMS (Molecular Modeling Section) database, we have now identified quinalizarin (1,2,5,8-tetrahydroxyanthraquinone) as an inhibitor of CK2 that is more potent and selective than emodin. CK2 inhibition by quinalizarin is competitive with respect to ATP, with a Ki value of approx. 50 nM. Tested at 1 microM concentration on a panel of 75 protein kinases, quinalizarin drastically inhibits only CK2, with a promiscuity score (11.1), which is the lowest ever reported so far for a CK2 inhibitor. Especially remarkable is the ability of quinalizarin to discriminate between CK2 and a number of kinases, notably DYRK1a (dual-specificity tyrosine-phosphorylated and -regulated kinase), PIM (provirus integration site for Moloney murine leukaemia virus) 1, 2 and 3, HIPK2 (homeodomain-interacting protein kinase-2), MNK1 [MAPK (mitogen-activated protein kinase)-interacting kinase 1], ERK8 (extracellular-signal-regulated kinase 8) and PKD1 (protein kinase D 1), which conversely tend to be inhibited as drastically as CK2 by commercially available CK2 inhibitors. The determination of the crystal structure of a complex between quinalizarin and CK2alpha subunit highlights the relevance of polar interactions in stabilizing the binding, an unusual characteristic for a CK2 inhibitor, and disclose other structural features which may account for the narrow selectivity of this compound. Tested on Jurkat cells, quinalizarin proved able to inhibit endogenous CK2 and to induce apoptosis more efficiently than the commonly used CK2 inhibitors TBB (4,5,6,7-tetrabromo-1H-benzotriazole) and DMAT (2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole). PMID:19432557

  16. Identification and characterization of a novel chemotype MEK inhibitor able to alter the phosphorylation state of MEK1/2.

    PubMed

    Yoshida, Takayuki; Kakegawa, Junya; Yamaguchi, Takayuki; Hantani, Yoshiji; Okajima, Nobuyuki; Sakai, Toshiyuki; Watanabe, Yoshihiro; Nakamura, Motonao

    2012-12-01

    A small molecule compound, JTP-74057/GSK1120212/trametinib, had been discovered as a very potent antiproliferative agent able to induce the accumulation of CDK inhibitor p15INK4b. To conduct its drug development rationally as an anticancer agent, molecular targets of this compound were identified as MEK1/2 using compound-affinity chromatography. It was shown that JTP-74057 directly bound to MEK1 and MEK2 and allosterically inhibited their kinase activities, and that its inhibitory characteristics were similar to those of the known and different chemotype of MEK inhibitors PD0325901 and U0126. It was further shown that JTP-74057 induced rapid and sustained dephosphorylation of phosphorylated MEK in HT-29 colon and other cancer cell lines, while this decrease in phosphorylated MEK was not observed in PD0325901-treated cancer cells. Physicochemical analyses revealed that JTP-74057 preferentially binds to unphosphorylated MEK (u-MEK) in unique characteristics of both high affinity based on extremely low dissociation rates and ability stabilizing u-MEK with high thermal shift, which were markedly different from PD0325901. These findings indicate that JTP-74057 is a novel MEK inhibitor able to sustain MEK to be an unphosphorylated form resulting in pronounced suppression of the downstream signaling pathways involved in cellular proliferation. PMID:23237773

  17. Global Effects of Kinase Inhibitors on Signaling Networks Revealed by Quantitative Phosphoproteomics*

    PubMed Central

    Pan, Cuiping; Olsen, Jesper V.; Daub, Henrik; Mann, Matthias

    2009-01-01

    Aberrant signaling causes many diseases, and manipulating signaling pathways with kinase inhibitors has emerged as a promising area of drug research. Most kinase inhibitors target the conserved ATP-binding pocket; therefore specificity is a major concern. Proteomics has previously been used to identify the direct targets of kinase inhibitors upon affinity purification from cellular extracts. Here we introduce a complementary approach to evaluate the effects of kinase inhibitors on the entire cell signaling network. We used triple labeling SILAC (stable isotope labeling by amino acids in cell culture) to compare cellular phosphorylation levels for control, epidermal growth factor stimulus, and growth factor combined with kinase inhibitors. Of thousands of phosphopeptides, less than 10% had a response pattern indicative of targets of U0126 and SB202190, two widely used MAPK inhibitors. Interestingly, 83% of the growth factor-induced phosphorylation events were affected by either or both inhibitors, showing quantitatively that early signaling processes are predominantly transmitted through the MAPK cascades. In contrast to MAPK inhibitors, dasatinib, a clinical drug directed against BCR-ABL, which is the cause of chronic myelogenous leukemia, affected nearly 1,000 phosphopeptides. In addition to the proximal effects on ABL and its immediate targets, dasatinib broadly affected the downstream MAPK pathways. Pathway mapping of regulated sites implicated a variety of cellular functions, such as chromosome remodeling, RNA splicing, and cytoskeletal organization, some of which have been described in the literature before. Our assay is streamlined and generic and could become a useful tool in kinase drug development. PMID:19651622

  18. Therapeutic drug monitoring and tyrosine kinase inhibitors

    PubMed Central

    Herviou, Pauline; Thivat, Emilie; Richard, Damien; Roche, Lucie; Dohou, Joyce; Pouget, Mélanie; Eschalier, Alain; Durando, Xavier; Authier, Nicolas

    2016-01-01

    The therapeutic activity of drugs can be optimized by establishing an individualized dosage, based on the measurement of the drug concentration in the serum, particularly if the drugs are characterized by an inter-individual variation in pharmacokinetics that results in an under- or overexposure to treatment. In recent years, several tyrosine kinase inhibitors (TKIs) have been developed to block intracellular signaling pathways in tumor cells. These oral drugs are candidates for therapeutic drug monitoring (TDM) due to their high inter-individual variability for therapeutic and toxic effects. Following a literature search on PubMed, studies on TKIs and their pharmacokinetic characteristics, plasma quantification and inter-individual variability was studied. TDM is commonly used in various medical fields, including cardiology and psychiatry, but is not often applied in oncology. Plasma concentration monitoring has been thoroughly studied for imatinib, in order to evaluate the usefulness of TDM. The measurement of plasma concentration can be performed by various analytical techniques, with liquid chromatography-mass spectrometry being the reference method. This method is currently used to monitor the efficacy and tolerability of imatinib treatments. Although TDM is already being used for imatinib, additional studies are required in order to improve this practice with the inclusion of other TKIs. PMID:27446421

  19. Protein kinase inhibitors against malignant lymphoma

    PubMed Central

    D’Cruz, Osmond J; Uckun, Fatih M

    2013-01-01

    Introduction Tyrosine kinases (TKs) are intimately involved in multiple signal transduction pathways regulating survival, activation, proliferation and differentiation of lymphoid cells. Deregulation or overexpression of specific oncogenic TKs is implicated in maintaining the malignant phenotype in B-lineage lymphoid malignancies. Several novel targeted TK inhibitors (TKIs) have recently emerged as active in the treatment of relapsed or refractory B-cell lymphomas that inhibit critical signaling pathways, promote apoptotic mechanisms or modulate the tumor microenvironment. Areas covered In this review, the authors summarize the clinical outcomes of newer TKIs in various B-cell lymphomas from published and ongoing clinical studies and abstracts from major cancer and hematology conferences. Expert opinion Multiple clinical trials have demonstrated that robust antitumor activity can be obtained with TKIs directed toward specific oncogenic TKs that are genetically deregulated in various subtypes of B-cell lymphomas. Clinical success of targeting TKIs is dependent upon on identifying reliable molecular and clinical markers associated with select cohorts of patients. Further understanding of the signaling pathways should stimulate the identification of novel molecular targets and expand the development of new therapeutic options and individualized therapies. PMID:23496343

  20. Kinases inhibitors in lung cancer: From benchside to bedside.

    PubMed

    Singh, Pankaj Kumar; Singh, Harpreet; Silakari, Om

    2016-08-01

    Lung cancer still remains one of the major causes of cancer related mortality around the globe. Various different molecular targets have been discovered till date for targeting lung cancer. But not every new molecular target has a successfully designed inhibitor; moreover conventional chemotherapeutics have their own limitations such as toxicity and lack of selectivity. Thus, kinases still remain the most effective molecular target in lung cancer therapy. Also, once-shunned kinase inhibitors have recently acquired renewed interest after the development and approval of irreversible kinase inhibitors (such as afatinib) that form covalent bonds with cysteine (or other nucleophilic residues) in the ATP-binding pocket of the kinases. Irreversible kinase inhibitors have a number of potential advantages over conventional reversible kinase inhibitors including prolonged pharmacodynamics, suitability for rational design, high potency etc. This review reveals the current knowledge of all the chemical scaffolds, approved and/or investigational, utilized as inhibitors in lung cancer. It also explains the rationale of designing these along with possible interactions with their targets, biological data and possible problems associated with these inhibitors. PMID:27393082

  1. A new “angle” on kinase inhibitor design: Prioritizing amphosteric activity above kinase inhibition

    PubMed Central

    Meyerowitz, Justin G; Weiss, William A; Gustafson, W Clay

    2015-01-01

    The MYCN oncoprotein has remained an elusive target for decades. We recently reported a new class of kinase inhibitors designed to disrupt the conformation of Aurora kinase A enough to block its kinase-independent interaction with MYCN, resulting in potent degradation of MYCN. These studies provide proof-of-principle for a new method of targeting enzyme activity-independent functions of kinases and other enzymes. PMID:27308435

  2. BCR first exon sequences specifically activate the BCR/ABL tyrosine kinase oncogene of Philadelphia chromosome-positive human leukemias

    SciTech Connect

    Muller, A.J.; Witte, O.N. ); Young, J.C.; Pendergast, A.; Pondel, M. ); Landau, N.R.; Littman, D.R. )

    1991-04-01

    The c-abl proto-oncogene encodes a cytoplasmic tyrosine kinase which is homologous to the src gene product in its kinase domain and in the upstream kinase regulatory domains SH2 (src homology region 2) and SH3 (src homology region 3). The murine v-abl oncogene product has lost the SH3 domain as a consequence of N-terminal fusion of gag sequences. Deletion of the SH3 domain is sufficient to render the murine c-abl proto-oncogene product transforming when myristylated N-terminal membrane localization sequences are also present. In contrast, the human BCR/ABL oncogene of the Philadelphia chromosome translocation has an intact SH3 domain and its product is not myristylated at the N terminus. To analyze the contribution of BCR-encoded sequences to BCR/ABL-mediated transformation, the effects of a series of deletions and substitutions were assessed in fibroblast and hematopoietic-cell transformation assays. BCR first-exon sequences specifically potentiate transformation and tyrosine kinase activation when they are fused to the second exon of otherwise intact c-ABL. This suggests that BCR-encoded sequences specifically interfere with negative regulation of the ABL-encoded tyrosine kinase, which would represent a novel mechanism for the activation of nonreceptor tyrosine kinase-encoding proto-oncogenes.

  3. In silico design of protein kinase inhibitors: successes and failures.

    PubMed

    Dubinina, Galina G; Chupryna, Oleksandr O; Platonov, Maxim O; Borisko, Petro O; Ostrovska, Galina V; Tolmachov, Andriy O; Shtil, Alexander A

    2007-03-01

    Protein kinases are among the most exploited targets in modern drug discovery due to key roles these enzymes play in human diseases including cancer. The in silico approach, an important part of rational design of protein kinase inhibitors, is founded on vast information about 3D structures of these enzymes. This review summarizes general structural features of the kinase inhibitors and the studies applied toward a large scale chemical database for virtual screening. Analyzed are the ways of validating the modern docking tools and their combinations with different scoring functions. In particular, we discuss the kinase flexibility as a reason for failures of the docking procedure. Finally, evidence is provided for the main patterns of kinase-inhibitor interactions and creation of the hinge-region-directed 2D filters. PMID:17348826

  4. [Side effect management of tyrosine kinase inhibitors in urology : Hypertension].

    PubMed

    Sikic, D; Meidenbauer, N; Lieb, V; Keck, B

    2016-07-01

    Tyrosine kinase inhibitors like sunitinib, sorafenib, pazopanib or axintinib are regarded the standard of care in the systemic therapy of metastatic renal cell carcinoma. However, the many side effects associated with this therapy pose challenges for the treating physician and the patient. This review offers an overview of the classification and the treatment of hypertension, which is one of the major side effects induced by all tyrosine kinase inhibitors, in order to improve treatment efficacy and patient compliance. PMID:27146871

  5. BCR-ABL1 compound mutations combining key kinase domain positions confer clinical resistance to ponatinib in Ph chromosome-positive leukemia.

    PubMed

    Zabriskie, Matthew S; Eide, Christopher A; Tantravahi, Srinivas K; Vellore, Nadeem A; Estrada, Johanna; Nicolini, Franck E; Khoury, Hanna J; Larson, Richard A; Konopleva, Marina; Cortes, Jorge E; Kantarjian, Hagop; Jabbour, Elias J; Kornblau, Steven M; Lipton, Jeffrey H; Rea, Delphine; Stenke, Leif; Barbany, Gisela; Lange, Thoralf; Hernández-Boluda, Juan-Carlos; Ossenkoppele, Gert J; Press, Richard D; Chuah, Charles; Goldberg, Stuart L; Wetzler, Meir; Mahon, Francois-Xavier; Etienne, Gabriel; Baccarani, Michele; Soverini, Simona; Rosti, Gianantonio; Rousselot, Philippe; Friedman, Ran; Deininger, Marie; Reynolds, Kimberly R; Heaton, William L; Eiring, Anna M; Pomicter, Anthony D; Khorashad, Jamshid S; Kelley, Todd W; Baron, Riccardo; Druker, Brian J; Deininger, Michael W; O'Hare, Thomas

    2014-09-01

    Ponatinib is the only currently approved tyrosine kinase inhibitor (TKI) that suppresses all BCR-ABL1 single mutants in Philadelphia chromosome-positive (Ph(+)) leukemia, including the recalcitrant BCR-ABL1(T315I) mutant. However, emergence of compound mutations in a BCR-ABL1 allele may confer ponatinib resistance. We found that clinically reported BCR-ABL1 compound mutants center on 12 key positions and confer varying resistance to imatinib, nilotinib, dasatinib, ponatinib, rebastinib, and bosutinib. T315I-inclusive compound mutants confer high-level resistance to TKIs, including ponatinib. In vitro resistance profiling was predictive of treatment outcomes in Ph(+) leukemia patients. Structural explanations for compound mutation-based resistance were obtained through molecular dynamics simulations. Our findings demonstrate that BCR-ABL1 compound mutants confer different levels of TKI resistance, necessitating rational treatment selection to optimize clinical outcome. PMID:25132497

  6. Quercetin: a pleiotropic kinase inhibitor against cancer.

    PubMed

    Russo, Gian Luigi; Russo, Maria; Spagnuolo, Carmela; Tedesco, Idolo; Bilotto, Stefania; Iannitti, Roberta; Palumbo, Rosanna

    2014-01-01

    Increased consumption of fruits and vegetables can represent an easy strategy to significantly reduce the incidence of cancer. From this observation, derived mostly from epidemiological data, the new field of chemoprevention has emerged in the primary and secondary prevention of cancer. Chemoprevention is defined as the use of natural or synthetic compounds able to stop, reverse, or delay the process of tumorigenesis in its early stages. A large number of phytochemicals are potentially capable of simultaneously inhibiting and modulating several key factors regulating cell proliferation in cancer cells. Quercetin is a flavonoid possessing potential chemopreventive properties. It is a functionally pleiotropic molecule, possessing multiple intracellular targets, affecting different cell signaling processes usually altered in cancer cells, with limited toxicity on normal cells. Simultaneously targeting multiple pathways may help to kill malignant cells and slow down the onset of drug resistance. Among the different substrates triggered by quercetin, we have reviewed the ability of the molecule to inhibit protein kinases involved in deregulated cell growth in cancer cells. PMID:24114481

  7. The Potential Role of Aurora Kinase Inhibitors in Haematological Malignancies

    PubMed Central

    Farag, Sherif S.

    2011-01-01

    Summary Aurora kinases play an important role in the control of the cell cycle and have been implicated in tumourigenesis in a number of cancers. Among the haematological malignancies, overexpression of Aurora kinases has been reported in acute myeloid leukaemia, chronic myeloid leukaemia, acute lymphoblastic leukaemia, multiple myeloma, aggressive non-Hodgkin lymphoma and Hodgkin lymphoma. A large number of Aurora kinase inhibitors are currently in different stages of clinical development. In addition to varying in their selectivity for the different Aurora kinases, some also have activity directed at other cellular kinases involved in important molecular pathways in cancer cells. This review summarizes the biology of Aurora kinases and discusses why they may be good therapeutic targets in different haematological cancers. We describe preclinical data that has served as the rationale for investigating Aurora kinase inhibitors in different haematological malignancies, and summarize published results from early phase clinical trials. While the anti-tumour effects of Aurora kinase inhibitors appear promising, we highlight important issues for future clinical research and suggest that the optimal use of these inhibitors is likely to be in combination with cytotoxic agents already in use for the treatment of various haematological cancers. PMID:21980926

  8. Formation of long and winding nuclear F-actin bundles by nuclear c-Abl tyrosine kinase

    SciTech Connect

    Aoyama, Kazumasa; Yuki, Ryuzaburo; Horiike, Yasuyoshi; Kubota, Sho; Yamaguchi, Noritaka; Morii, Mariko; Ishibashi, Kenichi; Nakayama, Yuji; Kuga, Takahisa; Hashimoto, Yuuki; Tomonaga, Takeshi; Yamaguchi, Naoto

    2013-12-10

    The non-receptor-type tyrosine kinase c-Abl is involved in actin dynamics in the cytoplasm. Having three nuclear localization signals (NLSs) and one nuclear export signal, c-Abl shuttles between the nucleus and the cytoplasm. Although monomeric actin and filamentous actin (F-actin) are present in the nucleus, little is known about the relationship between c-Abl and nuclear actin dynamics. Here, we show that nuclear-localized c-Abl induces nuclear F-actin formation. Adriamycin-induced DNA damage together with leptomycin B treatment accumulates c-Abl into the nucleus and increases the levels of nuclear F-actin. Treatment of c-Abl-knockdown cells with Adriamycin and leptomycin B barely increases the nuclear F-actin levels. Expression of nuclear-targeted c-Abl (NLS-c-Abl) increases the levels of nuclear F-actin even without Adriamycin, and the increased levels of nuclear F-actin are not inhibited by inactivation of Abl kinase activity. Intriguingly, expression of NLS-c-Abl induces the formation of long and winding bundles of F-actin within the nucleus in a c-Abl kinase activity-dependent manner. Furthermore, NLS-c-AblΔC, which lacks the actin-binding domain but has the full tyrosine kinase activity, is incapable of forming nuclear F-actin and in particular long and winding nuclear F-actin bundles. These results suggest that nuclear c-Abl plays critical roles in actin dynamics within the nucleus. - Highlights: • We show the involvement of c-Abl tyrosine kinase in nuclear actin dynamics. • Nuclear F-actin is formed by nuclear-localized c-Abl and its kinase-dead version. • The c-Abl actin-binding domain is prerequisite for nuclear F-actin formation. • Formation of long nuclear F-actin bundles requires nuclear c-Abl kinase activity. • We discuss a role for nuclear F-actin bundle formation in chromatin regulation.

  9. VEGF receptor kinase inhibitors: phthalazines, anthranilamides and related structures.

    PubMed

    Dumas, Jacques; Dixon, Julie A

    2005-06-01

    Inhibition of vascular endothelial growth factor receptor (VEGFR) signalling, using either antibodies or small molecule inhibitors of the VEGFR kinase domain, has become a major area of research in oncology. The phthalazine PTK787/ZK222584, first published in the literature in 1998, is one of the most advanced VEGFR inhibitors in the clinic. This paper provides an update on the patenting activity related to the phthalazine class. In addition, newer kinase inhibitor pharmacophores derived from this class (e.g., anthranilamides) will be reviewed. PMID:20141503

  10. The Aurora kinase inhibitors in cancer research and therapy.

    PubMed

    Cicenas, Jonas

    2016-09-01

    Compounds that affect enzymatic function of kinases are valuable for the understanding of the complex biochemical processes in cells. Aurora kinases (AURKs) play a key role in the control of the mitosis. These kinases are frequently deregulated in different human cancers: overexpression, amplifications, translocations and deletions were reported in many cancer cell lines as well as patient tissues. These findings steered a rigorous hunt for small-molecule AURK inhibitors not only for research purposes as well as for therapeutic uses. In this review, we describe a number of AURK inhibitors and their use in cancer research and/or therapy. We hope to assist researchers and clinicians in deciding which inhibitor is most appropriate for their specific purpose. The review will also provide a broad overview of the clinical studies performed with some of these inhibitors (if such studies have been performed). PMID:26932147

  11. NMR reveals the allosteric opening and closing of Abelson tyrosine kinase by ATP-site and myristoyl pocket inhibitors

    PubMed Central

    Skora, Lukasz; Mestan, Jürgen; Fabbro, Doriano; Jahnke, Wolfgang; Grzesiek, Stephan

    2013-01-01

    Successful treatment of chronic myelogenous leukemia is based on inhibitors binding to the ATP site of the deregulated breakpoint cluster region (Bcr)–Abelson tyrosine kinase (Abl) fusion protein. Recently, a new type of allosteric inhibitors targeting the Abl myristoyl pocket was shown in preclinical studies to overcome ATP-site inhibitor resistance arising in some patients. Using NMR and small-angle X-ray scattering, we have analyzed the solution conformations of apo Abelson tyrosine kinase (c-Abl) and c-Abl complexes with ATP-site and allosteric inhibitors. Binding of the ATP-site inhibitor imatinib leads to an unexpected open conformation of the multidomain SH3-SH2-kinase c-Abl core, whose relevance is confirmed by cellular assays on Bcr-Abl. The combination of imatinib with the allosteric inhibitor GNF-5 restores the closed, inactivated state. Our data provide detailed insights on the poorly understood combined effect of the two inhibitor types, which is able to overcome drug resistance. PMID:24191057

  12. Role of calcium-dependent protein kinases in chronic myeloid leukemia: combined effects of PKC and BCR-ABL signaling on cellular alterations during leukemia development

    PubMed Central

    Mencalha, André L; Corrêa, Stephany; Abdelhay, Eliana

    2014-01-01

    Calcium-dependent protein kinases (PKCs) function in a myriad of cellular processes, including cell-cycle regulation, proliferation, hematopoietic stem cell differentiation, apoptosis, and malignant transformation. PKC inhibitors, when targeted to these pathways, have demonstrated efficacy against several types of solid tumors as well as leukemia. Chronic myeloid leukemia (CML) represents 20% of all adult leukemia. The aberrant Philadelphia chromosome has been reported as the main cause of CML development in hematopoietic stem cells, due to the formation of the BCR-ABL oncogene. PKCs and BCR-ABL coordinate several signaling pathways that are crucial to cellular malignant transformation. Experimental and clinical evidence suggests that pharmacological approaches using PKC inhibitors may be effective in the treatment of CML. This mini review summarizes articles from the National Center for Biotechnology Information website that have shown evidence of the involvement of PKC in CML. PMID:25045273

  13. Tyrosine Kinase Inhibitors and Vascular Toxicity: Impetus for a Classification System?

    PubMed

    Herrmann, Joerg

    2016-06-01

    The introduction of molecularly targeted therapies with tyrosine kinase inhibitors has revolutionized cancer therapy and has contributed to a steady decline in cancer-related mortality since the late 1990s. However, not only cardiac but also vascular toxicity has been reported for these agents, some as expected on-target effects (e.g., VEGF receptor inhibitors) and others as unanticipated events (e.g., BCR-Abl inhibitors). A sound understanding of these cardiovascular toxic effects is critical to advance mechanistic insight into vascular disease and clinical care. From a conceptual standpoint, there might be value in defining type I (permanent) and type II (transient) vascular toxicity. This review will focus on the tyrosine kinase inhibitors in current clinical use and their associated vascular side effects. PMID:27099141

  14. Mini-review: bmx kinase inhibitors for cancer therapy.

    PubMed

    Jarboe, John S; Dutta, Shilpa; Velu, Sadanandan E; Willey, Christopher D

    2013-09-01

    Kinase inhibitors are among the fastest growing class of anti-cancer therapies. One family of kinases that has recently gained attention as a target for treating malignant disorders is the Tec kinase family. Evidence has been published that one member of this family; the Bmx kinase, may play a role in the pathogenesis of glioblastoma, prostate, breast and lung cancer. Bmx has also shown potential as an anti-vascular therapy in combination with radiation or as a sensitizer to chemotherapeutic agents. Therefore, several companies such as Pharmacyclics, Avila Therapeutics, Merck and Co., Metaproteomics, IRM, and Moerae Matrix have developed compounds or peptides that function as Bmx kinase inhibitors. These companies have subsequently been issued patents for these inhibitors. Additionally, it has been shown that current clinical stage EGFR inhibitors can irreversibly inhibit Bmx, suggesting these compounds might be rapidly moved to clinical trials for other malignancies. This review will discuss current patents issued since 2009 that contain data specifically on inhibition of the Bmx kinase, and will also discuss the scientific literature that suggests their potential application as therapeutics in the treatment of the aforementioned malignancies. PMID:23198769

  15. Design, Synthesis and Inhibitory Activity of Photoswitchable RET Kinase Inhibitors

    NASA Astrophysics Data System (ADS)

    Ferreira, Rubén; Nilsson, Jesper R.; Solano, Carlos; Andréasson, Joakim; Grøtli, Morten

    2015-05-01

    REarranged during Transfection (RET) is a transmembrane receptor tyrosine kinase required for normal development and maintenance of neurons of the central and peripheral nervous systems. Deregulation of RET and hyperactivity of the RET kinase is intimately connected to several types of human cancers, most notably thyroid cancers, making it an attractive therapeutic target for small-molecule kinase inhibitors. Novel approaches, allowing external control of the activity of RET, would be key additions to the signal transduction toolbox. In this work, photoswitchable RET kinase inhibitors based on azo-functionalized pyrazolopyrimidines were developed, enabling photonic control of RET activity. The most promising compound displays excellent switching properties and stability with good inhibitory effect towards RET in cell-free as well as live-cell assays and a significant difference in inhibitory activity between its two photoisomeric forms. As the first reported photoswitchable small-molecule kinase inhibitor, we consider the herein presented effector to be a significant step forward in the development of tools for kinase signal transduction studies with spatiotemporal control over inhibitor concentration in situ.

  16. Design, Synthesis and Inhibitory Activity of Photoswitchable RET Kinase Inhibitors

    PubMed Central

    Ferreira, Rubén; Nilsson, Jesper R.; Solano, Carlos; Andréasson, Joakim; Grøtli, Morten

    2015-01-01

    REarranged during Transfection (RET) is a transmembrane receptor tyrosine kinase required for normal development and maintenance of neurons of the central and peripheral nervous systems. Deregulation of RET and hyperactivity of the RET kinase is intimately connected to several types of human cancers, most notably thyroid cancers, making it an attractive therapeutic target for small-molecule kinase inhibitors. Novel approaches, allowing external control of the activity of RET, would be key additions to the signal transduction toolbox. In this work, photoswitchable RET kinase inhibitors based on azo-functionalized pyrazolopyrimidines were developed, enabling photonic control of RET activity. The most promising compound displays excellent switching properties and stability with good inhibitory effect towards RET in cell-free as well as live-cell assays and a significant difference in inhibitory activity between its two photoisomeric forms. As the first reported photoswitchable small-molecule kinase inhibitor, we consider the herein presented effector to be a significant step forward in the development of tools for kinase signal transduction studies with spatiotemporal control over inhibitor concentration in situ. PMID:25944708

  17. Allosteric Small-Molecule Inhibitors of the AKT Kinase

    NASA Astrophysics Data System (ADS)

    Dalafave, D. S.

    This research addresses computational design of small druglike molecules for possible anticancer applications. AKT and SGK are kinases that control important cellular functions. They are highly homologous, having similar activators and targets. Cancers with increased SGK activity may develop resistance to AKT-specific inhibitors. Our goal was to design new molecules that would bind both AKT and SGK, thus preventing the development of drug resistance. Most kinase inhibitors target the kinase ATP-binding site. However, the high similarity in this site among kinases makes it difficult to target specifically. Furthermore, mutations in this site can cause resistance to ATP-competitive kinase inhibitors. We used existing AKT inhibitors as initial templates to design molecules that could potentially bind the allosteric sites of both AKT and SGK. Molecules with no implicit toxicities and optimal drug-like properties were used for docking studies. Binding energies of the stable complexes that the designed molecules formed with AKT and SGK were calculated. Possible applications of the designed putative inhibitors against cancers with overexpressed AKT/SGK is discussed.

  18. LRRK2 and ubiquitination: implications for kinase inhibitor therapy

    PubMed Central

    Melrose, Heather L.

    2015-01-01

    Pathogenic mutations and risk variants in LRRK2 (leucine-rich repeat kinase 2) represent the most common genetic cause of familial and sporadic PD (Parkinson's disease). LRRK2 protein is widely expressed throughout the brain and the periphery. Structurally, LRRK2 contains several functional domains, including a dual enzymatic core consisting of a kinase and GTPase domain. Disease-linked variants are found in both these enzymatic domains as well as in the COR [C-terminal of ROC (Ras of complex proteins)] and WD40 protein–protein binding domain. The kinase domain is widely believed to be linked to toxicity, and thus the thrust of pharmaceutical effort has focused on developing LRRK2 kinase inhibitors. However, recent data have suggested that inhibition of LRRK2 activity results in reduced LRRK2 levels and peripheral side effects, which are similar to those observed in homozygous LRRK2-knockout and LRRK2 kinase-dead rodent models. In a recent issue of the Biochemical Journal, a study led by Nichols reveals that dephosphorylation of LRRK2 cellular phosphorylation sites (Ser910/Ser935/Ser955/Ser973) triggers its ubiquitination and subsequent degradation and thus may account for the loss of function phenotypes observed in peripheral tissues in LRRK2-knockout/kinase-dead or inhibitor-treated rodents and primates. Albeit negative from a kinase inhibitor standpoint, the data open new avenues for LRRK2 biology and therapeutic approaches to counteract LRRK2 toxicity. PMID:26341487

  19. Recent advances in the development of sphingosine kinase inhibitors.

    PubMed

    Pitman, Melissa R; Costabile, Maurizio; Pitson, Stuart M

    2016-09-01

    Sphingosine kinase (SK) 1 and 2 are lipid kinases that catalyse the formation of sphingosine 1-phosphate (S1P), a potent signalling molecule with a wide array of cellular effects. SK1 and 2 have been shown to be up-regulated in tumours and their genetic ablation or inhibition has been shown to slow tumour growth as well as sensitise cancer cells to chemotherapeutics. The SKs have been extensively studied, with a plethora of inhibitors developed that target the sphingosine-binding pocket of the enzyme, some with nanomolar affinities. Recently, inhibitors targeting the ATP pocket of SK have also been described. Here we discuss the development of these new small molecule SK inhibitors, summarise the recent discovery of off-targets effects of many current SK inhibitors, and provide an overview of the usefulness of these inhibitors as in vitro tools and therapeutic agents. PMID:27297359

  20. Computational study of Gleevec and G6G reveals molecular determinants of kinase inhibitor selectivity

    SciTech Connect

    Lin, Yen -Lin; Meng, Yilin; Huang, Lei; Roux, Benoît

    2014-10-22

    Gleevec is a potent inhibitor of Abl tyrosine kinase but not of the highly homologous c-Src kinase. Because the ligand binds to an inactive form of the protein in which an Asp-Phe-Gly structural motif along the activation loop adopts a so-called DFG-out conformation, it was suggested that binding specificity was controlled by a “conformational selection” mechanism. In this context, the binding affinity displayed by the kinase inhibitor G6G poses an intriguing challenge. Although it possesses a chemical core very similar to that of Gleevec, G6G is a potent inhibitor of both Abl and c-Src kinases. Both inhibitors bind to the DFG-out conformation of the kinases, which seems to be in contradiction with the conformational selection mechanism. To address this issue and display the hidden thermodynamic contributions affecting the binding selectivity, molecular dynamics free energy simulations with explicit solvent molecules were carried out. Relative to Gleevec, G6G forms highly favorable van der Waals dispersive interactions upon binding to the kinases via its triazine functional group, which is considerably larger than the corresponding pyridine moiety in Gleevec. Upon binding of G6G to c-Src, these interactions offset the unfavorable free energy cost of the DFG-out conformation. When binding to Abl, however, G6G experiences an unfavorable free energy penalty due to steric clashes with the phosphate-binding loop, yielding an overall binding affinity that is similar to that of Gleevec. Such steric clashes are absent when G6G binds to c-Src, due to the extended conformation of the phosphate-binding loop.

  1. Computational study of Gleevec and G6G reveals molecular determinants of kinase inhibitor selectivity

    DOE PAGESBeta

    Lin, Yen -Lin; Meng, Yilin; Huang, Lei; Roux, Benoît

    2014-10-22

    Gleevec is a potent inhibitor of Abl tyrosine kinase but not of the highly homologous c-Src kinase. Because the ligand binds to an inactive form of the protein in which an Asp-Phe-Gly structural motif along the activation loop adopts a so-called DFG-out conformation, it was suggested that binding specificity was controlled by a “conformational selection” mechanism. In this context, the binding affinity displayed by the kinase inhibitor G6G poses an intriguing challenge. Although it possesses a chemical core very similar to that of Gleevec, G6G is a potent inhibitor of both Abl and c-Src kinases. Both inhibitors bind to themore » DFG-out conformation of the kinases, which seems to be in contradiction with the conformational selection mechanism. To address this issue and display the hidden thermodynamic contributions affecting the binding selectivity, molecular dynamics free energy simulations with explicit solvent molecules were carried out. Relative to Gleevec, G6G forms highly favorable van der Waals dispersive interactions upon binding to the kinases via its triazine functional group, which is considerably larger than the corresponding pyridine moiety in Gleevec. Upon binding of G6G to c-Src, these interactions offset the unfavorable free energy cost of the DFG-out conformation. When binding to Abl, however, G6G experiences an unfavorable free energy penalty due to steric clashes with the phosphate-binding loop, yielding an overall binding affinity that is similar to that of Gleevec. Such steric clashes are absent when G6G binds to c-Src, due to the extended conformation of the phosphate-binding loop.« less

  2. Fitness Conferred by BCR-ABL Kinase Domain Mutations Determines the Risk of Pre-Existing Resistance in Chronic Myeloid Leukemia

    PubMed Central

    Skaggs, Brian; Gorre, Mercedes; Sawyers, Charles L.; Michor, Franziska

    2011-01-01

    Chronic myeloid leukemia (CML) is the first human malignancy to be successfully treated with a small molecule inhibitor, imatinib, targeting a mutant oncoprotein (BCR-ABL). Despite its successes, acquired resistance to imatinib leads to reduced drug efficacy and frequent progression of disease. Understanding the characteristics of pre-existing resistant cells is important for evaluating the benefits of first-line combination therapy with second generation inhibitors. However, due to limitations of assay sensitivity, determining the existence and characteristics of resistant cell clones at the start of therapy is difficult. Here we combined a mathematical modeling approach using branching processes with experimental data on the fitness changes (i.e., changes in net reproductive rate) conferred by BCR-ABL kinase domain mutations to investigate the likelihood, composition, and diversity of pre-existing resistance. Furthermore, we studied the impact of these factors on the response to tyrosine kinase inhibitors. Our approach predicts that in most patients, there is at most one resistant clone present at the time of diagnosis of their disease. Interestingly, patients are no more likely to harbor the most aggressive, pan-resistant T315I mutation than any other resistance mutation; however, T315I cells on average establish larger-sized clones at the time of diagnosis. We established that for patients diagnosed late, the relative benefit of combination therapy over monotherapy with imatinib is significant, while this benefit is modest for patients with a typically early diagnosis time. These findings, after pre-clinical validation, will have implications for the clinical management of CML: we recommend that patients with advanced-phase disease be treated with combination therapy with at least two tyrosine kinase inhibitors. PMID:22140458

  3. Aminofurazans as potent inhibitors of AKT kinase

    SciTech Connect

    Rouse, Meagan B.; Seefeld, Mark A.; Leber, Jack D.; McNulty, Kenneth C.; Sun, Lihui; Miller, William H.; Zhang, ShuYun; Minthorn, Elisabeth A.; Concha, Nestor O.; Choudhry, Anthony E.; Schaber, Michael D.; Heerding, Dirk A.

    2009-06-24

    AKT inhibitors containing an imidazopyridine aminofurazan scaffold have been optimized. We have previously disclosed identification of the AKT inhibitor GSK690693, which has been evaluated in clinical trials in cancer patients. Herein we describe recent efforts focusing on investigating a distinct region of this scaffold that have afforded compounds (30 and 32) with comparable activity profiles to that of GSK690693.

  4. Fragment-based design of kinase inhibitors: a practical guide.

    PubMed

    Erickson, Jon A

    2015-01-01

    Fragment-based drug design has become an important strategy for drug design and development over the last decade. It has been used with particular success in the development of kinase inhibitors, which are one of the most widely explored classes of drug targets today. The application of fragment-based methods to discovering and optimizing kinase inhibitors can be a complicated and daunting task; however, a general process has emerged that has been highly fruitful. Here a practical outline of the fragment process used in kinase inhibitor design and development is laid out with specific examples. A guide to the overall process from initial discovery through fragment screening, including the difficulties in detection, to the computational methods available for use in optimization of the discovered fragments is reported. PMID:25709040

  5. Phospho-kinase profile of colorectal tumors guides in the selection of multi-kinase inhibitors

    PubMed Central

    Montero, Juan Carlos; Corrales-Sanchez, Verónica; Morales, Jorge Carlos; Núñez, Luz-Elena; Morís, Francisco; Pandiella, Atanasio; Ocaña, Alberto

    2015-01-01

    Protein kinases play a central role in the oncogenesis of colorectal tumors and are attractive druggable targets. Detection of activated kinases within a tumor could open avenues for drug selection and optimization of new kinase inhibitors. By using a phosphokinase arrays with human colorectal tumors we identified activated kinases, including the Epidermal Growth Factor Receptor (EGFR), components of the PI3K/mTOR pathway (AKT and S6), and STAT, among others. A pharmacological screening with kinase inhibitors against these proteins helped us to identify a new kinase inhibitor, termed EC-70124 that showed the highest anti-proliferative activity in cell lines. EC-70124 also inhibited cell migration and biochemical experiments demonstrated its effect targeting the PI3K/mTOR pathway. This drug also arrested cells at G2/M and induced apoptosis. Experiments in combination with standard chemotherapy used in the clinical setting indicated a synergistic effect. EC-70124 also reduced tumor growth in vivo and inhibited pS6 in the implanted tumors. In conclusion, by studying the kinase profile of colorectal tumors, we identified relevant activated pathways, and a new multi-kinase compound with significant antitumor properties. PMID:26418718

  6. Phospho-kinase profile of colorectal tumors guides in the selection of multi-kinase inhibitors.

    PubMed

    Serrano-Heras, Gemma; Cuenca-López, María Dolores; Montero, Juan Carlos; Corrales-Sanchez, Verónica; Morales, Jorge Carlos; Núñez, Luz-Elena; Morís, Francisco; Pandiella, Atanasio; Ocaña, Alberto

    2015-10-13

    Protein kinases play a central role in the oncogenesis of colorectal tumors and are attractive druggable targets. Detection of activated kinases within a tumor could open avenues for drug selection and optimization of new kinase inhibitors. By using a phosphokinase arrays with human colorectal tumors we identified activated kinases, including the Epidermal Growth Factor Receptor (EGFR), components of the PI3K/mTOR pathway (AKT and S6), and STAT, among others. A pharmacological screening with kinase inhibitors against these proteins helped us to identify a new kinase inhibitor, termed EC-70124 that showed the highest anti-proliferative activity in cell lines. EC-70124 also inhibited cell migration and biochemical experiments demonstrated its effect targeting the PI3K/mTOR pathway. This drug also arrested cells at G2/M and induced apoptosis. Experiments in combination with standard chemotherapy used in the clinical setting indicated a synergistic effect. EC-70124 also reduced tumor growth in vivo and inhibited pS6 in the implanted tumors. In conclusion, by studying the kinase profile of colorectal tumors, we identified relevant activated pathways, and a new multi-kinase compound with significant antitumor properties. PMID:26418718

  7. The Tyrosine Kinase c-Abl Promotes Homeodomain-interacting Protein Kinase 2 (HIPK2) Accumulation and Activation in Response to DNA Damage.

    PubMed

    Reuven, Nina; Adler, Julia; Porat, Ziv; Polonio-Vallon, Tilman; Hofmann, Thomas G; Shaul, Yosef

    2015-07-01

    The non-receptor tyrosine kinase c-Abl is activated in response to DNA damage and induces p73-dependent apoptosis. Here, we investigated c-Abl regulation of the homeodomain-interacting protein kinase 2 (HIPK2), an important regulator of p53-dependent apoptosis. c-Abl phosphorylated HIPK2 at several sites, and phosphorylation by c-Abl protected HIPK2 from degradation mediated by the ubiquitin E3 ligase Siah-1. c-Abl and HIPK2 synergized in activating p53 on apoptotic promoters in a reporter assay, and c-Abl was required for endogenous HIPK2 accumulation and phosphorylation of p53 at Ser(46) in response to DNA damage by γ- and UV radiation. Accumulation of HIPK2 in nuclear speckles and association with promyelocytic leukemia protein (PML) in response to DNA damage were also dependent on c-Abl activity. At high cell density, the Hippo pathway inhibits DNA damage-induced c-Abl activation. Under this condition, DNA damage-induced HIPK2 accumulation, phosphorylation of p53 at Ser(46), and apoptosis were attenuated. These data demonstrate a new mechanism for the induction of DNA damage-induced apoptosis by c-Abl and illustrate network interactions between serine/threonine and tyrosine kinases that dictate cell fate. PMID:25944899

  8. Seeding collaborations to advance kinase science with the GSK Published Kinase Inhibitor Set (PKIS).

    PubMed

    Drewry, David H; Willson, Timothy M; Zuercher, William J

    2014-01-01

    To catalyze research on historically untargeted protein kinases, we created the PKIS, an annotated set of 367 small molecule kinase inhibitors. The set has been widely distributed to academic collaborators as an open access tool. It has been used to identify chemical starting points for development of chemical probes for orphan kinases and to investigate kinase signaling in high content phenotypic assays. Access to the set comes with few restrictions other than the requirement that assay results be released into the public domain for the benefit of the entire research community. Examples from the efforts of several collaborators are summarized. PMID:24283969

  9. Redundant kinase activation and resistance of EGFR-tyrosine kinase inhibitors

    PubMed Central

    Luo, Min; Fu, Li-Wu

    2014-01-01

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have shown dramatic effects against that tumors harboring EGFR activating mutations in the EGFR intracytoplasmic tyrosine kinase domain and resulted in cell apoptosis. Unfortunately, a number of patients ultimately developed resistance by multiple mechanisms. Thus, elucidation of the mechanism of resistance to EGFR-TKIs can provide strategies for blocking or reversing the situation. Recent studies suggested that redundant kinase activation plays pivotal roles in escaping from the effects of EGFR-TKIs. Herein, we aimed to characterize several molecular events involved in the resistance to EGFR-TKIs mediated by redundant kinase activation. PMID:25520855

  10. Cyclin dependent kinase (CDK) inhibitors as anticancer drugs.

    PubMed

    Sánchez-Martínez, Concepción; Gelbert, Lawrence M; Lallena, María José; de Dios, Alfonso

    2015-09-01

    Sustained proliferative capacity is a hallmark of cancer. In mammalian cells proliferation is controlled by the cell cycle, where cyclin-dependent kinases (CDKs) regulate critical checkpoints. CDK4 and CDK6 are considered highly validated anticancer drug targets due to their essential role regulating cell cycle progression at the G1 restriction point. This review provides an overview of recent advances on cyclin dependent kinase inhibitors in general with special emphasis on CDK4 and CDK6 inhibitors and compounds under clinical evaluation. Chemical structures, structure activity relationships, and relevant preclinical properties will be described. PMID:26115571

  11. The azaindole framework in the design of kinase inhibitors.

    PubMed

    Mérour, Jean-Yves; Buron, Frédéric; Plé, Karen; Bonnet, Pascal; Routier, Sylvain

    2014-01-01

    This review article illustrates the growing use of azaindole derivatives as kinase inhibitors and their contribution to drug discovery and innovation. The different protein kinases which have served as targets and the known molecules which have emerged from medicinal chemistry and Fragment-Based Drug Discovery (FBDD) programs are presented. The various synthetic routes used to access these compounds and the chemical pathways leading to their synthesis are also discussed. An analysis of their mode of binding based on X-ray crystallography data gives structural insights for the design of more potent and selective inhibitors. PMID:25460315

  12. Adenosine kinase inhibitors attenuate opiate withdrawal via adenosine receptor activation.

    PubMed

    Kaplan, G B; Coyle, T S

    1998-11-27

    Previous studies have demonstrated a role for adenosine in mediating opiate effects. This study examines the effects of indirect activation of adenosine receptors, via treatment with adenosine kinase inhibitors, on the expression of opiate withdrawal in mice. Mice receive chronic morphine treatment via implantation of subcutaneous morphine pellets (75 mg) for 72 h. Mice then receive parenteral treatment with adenosine kinase inhibitors, either 5'-amino-5'-deoxyadenosine (2, 5, 20, 40 mg/kg, intraperitoneal or i.p.) or iodotubericidin (1, 2, 5 mg/kg, i.p.), followed by naloxone injection and opiate withdrawal signs are measured over 20 min. Both adenosine kinase inhibitors significantly reduce the following opiate withdrawal signs in a dose-dependent manner compared to vehicle: withdrawal jumps, teeth chattering, forepaw tremors, and forepaw treads. Additionally, 5'-amino-5'-deoxyadenosine significantly reduces withdrawal-induced diarrhea and weight loss. Effects of 5'-amino-5'-deoxyadenosine (40 mg/kg) on opiate withdrawal signs appear to be mediated via adenosine receptor activation as they are reversed by pretreatment by adenosine receptor antagonist caffeine (20 mg, i.p.) but not by selective phosphodiesterase inhibitor Ro 20-1724 (10 mg/kg, i.p.). Adenosine receptor activation via adenosine kinase inhibitor treatment attenuates opiate withdrawal and these agents may be generally useful in the treatment of drug withdrawal syndromes. PMID:9865523

  13. Novel cinnoline-based inhibitors of LRRK2 kinase activity.

    PubMed

    Garofalo, Albert W; Adler, Marc; Aubele, Danielle L; Bowers, Simeon; Franzini, Maurizio; Goldbach, Erich; Lorentzen, Colin; Neitz, R Jeffrey; Probst, Gary D; Quinn, Kevin P; Santiago, Pam; Sham, Hing L; Tam, Danny; Truong, Anh P; Ye, Xiaocong M; Ren, Zhao

    2013-01-01

    Leucine rich repeat kinase 2 (LRRK2) has been implicated in the pathogenesis of Parkinson's disease (PD). Inhibition of LRRK2 kinase activity is a therapeutic approach that may lead to new treatments for PD. Herein we report the discovery of a series of cinnoline-3-carboxamides that are potent against both wild-type and mutant LRRK2 kinase activity in biochemical assays. These compounds are also shown to be potent inhibitors in a cellular assay and to have good to excellent CNS penetration. PMID:23219325

  14. Polo-like kinase inhibitors in hematologic malignancies.

    PubMed

    Talati, Chetasi; Griffiths, Elizabeth A; Wetzler, Meir; Wang, Eunice S

    2016-02-01

    Polo-like kinases (Plk) are key regulators of the cell cycle and multiple aspects of mitosis. Two agents that inhibit the Plk signaling pathway have shown promising activity in patients with hematologic malignancies and are currently in phase III trials. Volasertib is a Plk inhibitor under evaluation combined with low-dose cytarabine in older patients with acute myeloid leukemia (AML) ineligible for intensive induction therapy. Rigosertib, a dual inhibitor of the Plk and phosphatidylinositol 3-kinase pathways, is under investigation in patients with myelodysplastic syndrome (MDS) who have failed azacitidine or decitabine treatment. The prognosis for patients with AML, who are ineligible for intensive induction therapy, and for those with MDS refractory/relapsed after a hypomethylating agent, remains poor. Novel approaches, such as Plk inhibitors, are urgently needed for these patients. Here, we provide a comprehensive overview of the current state of development of Plk inhibitors for the treatment of hematologic malignancies. PMID:26597019

  15. Protein-Protein Interaction for the De Novo Design of Cyclin-Dependent Kinase Peptide Inhibitors.

    PubMed

    Arumugasamy, Karthiga; Tripathi, Sunil Kumar; Singh, Poonam; Singh, Sanjeev Kumar

    2016-01-01

    The homology of the inhibitor binding site regions on the surface of cyclin-dependent kinases (CDKs) makes actual CDK inhibitors unable to bind specifically to their molecular targets. Most of them are ATP competitive inhibitors with low specificity that also affect the phosphorylation mechanisms of other nontarget kinases giving rise to harmful side effects. So, the search of specific and potent inhibitors able to bind to the desired CDK target is still a pending issue. Structure based drug design minimized the erroneous binding and increased the affinity of the inhibitor interaction. In the case of CDKs their activation and regulation mechanisms mainly depend on protein-protein interactions (PPIs). The design of drugs targeting these PPIs makes feasible and promising towards the discovery of new and specific CDK inhibitors. Development of peptide inhibitors for a target protein is an emerging approach in computer aided drug designing. This chapter describes in detail methodology for use of the VitAL-Viterbi algorithm for de novo peptide design of CDK2 inhibitors. PMID:26231708

  16. Ribavirin Inhibits the Activity of mTOR/eIF4E, ERK/Mnk1/eIF4E Signaling Pathway and Synergizes with Tyrosine Kinase Inhibitor Imatinib to Impair Bcr-Abl Mediated Proliferation and Apoptosis in Ph+ Leukemia

    PubMed Central

    Gong, Yuping; Shi, Rui; Yang, Xi; Naren, Duolan; Yan, Tianyou

    2015-01-01

    The eukaryotic translation initiation factor 4E (eIF4E), which is the main composition factor of eIF4F translation initiation complex, influences the growth of tumor through modulating cap-dependent protein translation. Previous studies reported that ribavirin could suppress eIF4E-controlled translation and reduce the synthesis of onco-proteins. Here, we investigated the anti-leukemic effects of ribavirin alone or in combination with tyrosine kinase inhibitor imatinib in Philadelphia chromosome positive (Ph+) leukemia cell lines SUP-B15 (Ph+ acute lymphoblastic leukemia cell line, Ph+ ALL) and K562 (chronic myelogenous leukemia cell line, CML). Our results showed that ribavirin had anti-proliferation effect; it down-regulated the phosphorylation levels of Akt, mTOR, 4EBP1, and eIF4E proteins in the mTOR/eIF4E signaling pathway, and MEK, ERK, Mnk1 and eIF4E proteins in ERK/Mnk1/eIF4E signaling pathway; reduced the expression of Mcl-1 (a translation substrates of eIF4F translation initiation complex) at protein synthesis level not mRNA transcriptional level; and induced cell apoptosis in both SUP-B15 and K562. 7-Methyl-guanosine cap affinity assay further demonstrated that ribavirin remarkably increased the eIF4E binding to 4EBP1 and decreased the combination of eIF4E with eIF4G, consequently resulting in a major inhibition of eIF4F complex assembly. The combination of ribavirin with imatinib enhanced antileukemic effects mentioned above, indicating that two drugs have synergistic anti-leukemic effect. Consistent with the cell lines, similar results were observed in Ph+ acute lymphoblastic primary leukemic blasts; however, the anti-proliferative role of ribavirin in other types of acute primary leukemic blasts was not obvious, which indicated that the anti-leukemic effect of ribavirin was different in cell lineages. PMID:26317515

  17. Old Tyrosine Kinase Inhibitors and Newcomers in Gastrointestinal Cancer Treatment.

    PubMed

    Erika, Giordani; Federica, Zoratto; Martina, Strudel; Anselmo, Papa; Luigi, Rossi; Marina, Minozzi; Davide, Caruso; Eleonora, Zaccarelli; Monica, Verrico; Silverio, Tomao

    2016-01-01

    Gastrointestinal cancer treatment is based more on molecular biology that has provided increasing knowledge about cancer pathogenesis on which targeted therapy is being developed. Precisely, targeted therapy is defined as a "type of treatment that uses drugs, such as monoclonal antibodies or tyrosine kinase inhibitors, to identify and attack specific cancer cells". Nowadays, the United States Food and Drug Administration has approved many targeted therapies for gastrointestinal cancer treatment, as many are in various phases of development as well. In a previous review we discussed the main monoclonal antibodies used and studied in gastrointestinal cancer. In addition to monoclonal antibodies, tyrosine kinase inhibitors represent another class of targeted therapy and following the approval of imatinib for gastrointestinal stromal tumours, other tyrosine kinase inhibitors have been approved for gastrointestinal cancers treatment such as sunitinib, regoragenib, sorafenib and erlotinib. Moving forward, the purpose of this review is to focus on the efficacy data of main tyrosine kinase inhibitors commonly used in the personalized treatment of each gastrointestinal tumour and to provide a comprehensive overview about experimental targeted therapies ongoing in this setting. PMID:26278713

  18. Role of tyrosine-kinase inhibitors in myeloproliferative neoplasms: comparative lessons learned.

    PubMed

    Pinilla-Ibarz, Javier; Sweet, Kendra L; Corrales-Yepez, Gabriela M; Komrokji, Rami S

    2016-01-01

    An important pathogenetic distinction in the classification of myeloproliferative neoplasms (MPNs) is the presence or absence of the BCR-ABL fusion gene, which encodes a unique oncogenic tyrosine kinase. The BCR-ABL fusion, caused by the formation of the Philadelphia chromosome (Ph) through translocation, constitutes the disease-initiating event in chronic myeloid leukemia. The development of successive BCR-ABL-targeted tyrosine-kinase inhibitors has led to greatly improved outcomes in patients with chronic myeloid leukemia, including high rates of complete hematologic, cytogenetic, and molecular responses. Such levels of treatment success have long been elusive for patients with Ph-negative MPNs, because of the difficulties in identifying specific driver proteins suitable as drug targets. However, in recent years an improved understanding of the complex pathobiology of classic Ph-negative MPNs, characterized by variable, overlapping multimutation profiles, has prompted the development of better and more broadly targeted (to pathway rather than protein) treatment options, particularly JAK inhibitors. In classic Ph-negative MPNs, overactivation of JAK-dependent signaling pathways is a central pathogenic mechanism, and mutually exclusive mutations in JAK2, MPL, and CALR linked to aberrant JAK activation are now recognized as key drivers of disease progression in myelofibrosis (MF). In clinical trials, the JAK1/JAK2 inhibitor ruxolitinib - the first therapy approved for MF worldwide - improved disease-related splenomegaly and symptoms independent of JAK2 (V617F) mutational status, and prolonged survival compared with placebo or standard therapy in patients with advanced MF. In separate trials, ruxolitinib also provided comprehensive hematologic control in patients with another Ph-negative MPN - polycythemia vera. However, complete cytogenetic or molecular responses with JAK inhibitors alone are normally not observed, underscoring the need for novel combination

  19. Selective Mycobacterium tuberculosis Shikimate Kinase Inhibitors as Potential Antibacterials

    PubMed Central

    Gordon, Sara; Simithy, Johayra; Goodwin, Douglas C; Calderón, Angela I

    2015-01-01

    Owing to the persistence of tuberculosis (TB) as well as the emergence of multidrug-resistant and extensively drug-resistant (XDR) forms of the disease, the development of new antitubercular drugs is crucial. Developing inhibitors of shikimate kinase (SK) in the shikimate pathway will provide a selective target for antitubercular agents. Many studies have used in silico technology to identify compounds that are anticipated to interact with and inhibit SK. To a much more limited extent, SK inhibition has been evaluated by in vitro methods with purified enzyme. Currently, there are no data on in vivo activity of Mycobacterium tuberculosis shikimate kinase (MtSK) inhibitors available in the literature. In this review, we present a summary of the progress of SK inhibitor discovery and evaluation with particular attention toward development of new antitubercular agents. PMID:25861218

  20. Selective Mycobacterium tuberculosis Shikimate Kinase Inhibitors as Potential Antibacterials.

    PubMed

    Gordon, Sara; Simithy, Johayra; Goodwin, Douglas C; Calderón, Angela I

    2015-01-01

    Owing to the persistence of tuberculosis (TB) as well as the emergence of multidrug-resistant and extensively drug-resistant (XDR) forms of the disease, the development of new antitubercular drugs is crucial. Developing inhibitors of shikimate kinase (SK) in the shikimate pathway will provide a selective target for antitubercular agents. Many studies have used in silico technology to identify compounds that are anticipated to interact with and inhibit SK. To a much more limited extent, SK inhibition has been evaluated by in vitro methods with purified enzyme. Currently, there are no data on in vivo activity of Mycobacterium tuberculosis shikimate kinase (MtSK) inhibitors available in the literature. In this review, we present a summary of the progress of SK inhibitor discovery and evaluation with particular attention toward development of new antitubercular agents. PMID:25861218

  1. Prolonged and tunable residence time using reversible covalent kinase inhibitors

    PubMed Central

    Bradshaw, J. Michael; McFarland, Jesse M.; Paavilainen, Ville O.; Bisconte, Angelina; Tam, Danny; Phan, Vernon T.; Romanov, Sergei; Finkle, David; Shu, Jin; Patel, Vaishali; Ton, Tony; Li, Xiaoyan; Loughhead, David G.; Nunn, Philip A.; Karr, Dane E.; Gerritsen, Mary E.; Funk, Jens Oliver; Owens, Timothy D.; Verner, Erik; Brameld, Ken A.; Hill, Ronald J.; Goldstein, David M.; Taunton, Jack

    2015-01-01

    Drugs with prolonged, on-target residence time often show superior efficacy, yet general strategies for optimizing drug-target residence time are lacking. Here, we demonstrate progress toward this elusive goal by targeting a noncatalytic cysteine in Bruton's tyrosine kinase (BTK) with reversible covalent inhibitors. Utilizing an inverted orientation of the cysteine-reactive cyanoacrylamide electrophile, we identified potent and selective BTK inhibitors that demonstrate biochemical residence times spanning from minutes to 7 days. An inverted cyanoacrylamide with prolonged residence time in vivo remained bound to BTK more than 18 hours after clearance from the circulation. The inverted cyanoacrylamide strategy was further utilized to discover fibroblast growth factor receptor (FGFR) kinase inhibitors with residence times of several days, demonstrating generalizability of the approach. Targeting noncatalytic cysteines with inverted cyanoacrylamides may serve as a broadly applicable platform that facilitates “residence time by design”, the ability to modulate and improve the duration of target engagement in vivo. PMID:26006010

  2. Design and synthesis of novel selective anaplastic lymphoma kinase inhibitors.

    PubMed

    Michellys, Pierre-Yves; Chen, Bei; Jiang, Tao; Jin, Yunho; Lu, Wenshuo; Marsilje, Thomas H; Pei, Wei; Uno, Tetsuo; Zhu, Xuefeng; Wu, Baogen; Nguyen, Truc Ngoc; Bursulaya, Badry; Lee, Christian; Li, Nanxin; Kim, Sungjoon; Tuntland, Tove; Liu, Bo; Sun, Frank; Steffy, Auzon; Hood, Tami

    2016-02-01

    Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase belonging to the insulin receptor superfamily. Expression of ALK in normal human tissues is only found in a subset of neural cells, however it is involved in the genesis of several cancers through genetic aberrations involving translocation of the kinase domain with multiple fusion partners (e.g., NPM-ALK in anaplastic large cell lymphoma ALCL or EML4-ALK in non-small cell lung cancer) or activating mutations in the full-length receptor resulting in ligand-independent constitutive activation (e.g., neuroblastoma). Here we are reporting the discovery of novel and selective anaplastic lymphoma kinase inhibitors from specific modifications of the 2,4-diaminopyridine core present in TAE684 and LDK378. Synthesis, structure activity relationships (SAR), absorption, distribution, metabolism, and excretion (ADME) profile, and in vivo efficacy in a mouse xenograft model of anaplastic large cell lymphoma are described. PMID:26750252

  3. Clinical experience with aurora kinase inhibitors: a review.

    PubMed

    Boss, David S; Beijnen, Jos H; Schellens, Jan H M

    2009-08-01

    The aurora kinase family of serine/threonine kinases comprises three members, designated auroras A, B, and C. Auroras A and B are essential components of the mitotic pathway, ensuring proper chromosome assembly, formation of the mitotic spindle, and cytokinesis. The role of aurora C is less clear. Overexpression of aurora A and B has been observed in several tumor types, and has been linked with a poor prognosis of cancer patients. Several small molecules targeting aurora kinases A and B or both have been evaluated preclinically and in early phase I trials. In this review we aim to summarize the most recent advances in the development of aurora kinase inhibitors, with a focus on the clinical data. PMID:19684075

  4. Predictive Models for Fast and Effective Profiling of Kinase Inhibitors.

    PubMed

    Bora, Alina; Avram, Sorin; Ciucanu, Ionel; Raica, Marius; Avram, Stefana

    2016-05-23

    In this study we developed two-dimensional pharmacophore-based random forest models for the effective profiling of kinase inhibitors. One hundred seven prediction models were developed to address distinct kinases spanning over all kinase groups. Rigorous external validation demonstrates excellent virtual screening and classification potential of the predictors and, more importantly, the capacity to prioritize novel chemical scaffolds in large chemical libraries. The models built upon more diverse and more potent compounds tend to exert the highest predictive power. The analysis of ColBioS-FlavRC (Collection of Bioselective Flavonoids and Related Compounds) highlighted several potentially promiscuous derivatives with undesirable selectivity against kinases. The prediction models can be downloaded from www.chembioinf.ro . PMID:27064988

  5. FMS-like tyrosine kinase 3 (FLT3) inhibitors: Molecular docking and experimental studies.

    PubMed

    Mashkani, Baratali; Tanipour, Mohammad Hossein; Saadatmandzadeh, Mohammad; Ashman, Leonie K; Griffith, Renate

    2016-04-01

    Activating mutations in FMS-like tyrosine kinase 3 (FLT3) occur in 25% of acute lymphoid and 30% of acute myeloid leukaemia cases. Therefore, FLT3 is a potential therapeutic target for small molecule kinase inhibitors. In this study, protein-ligand interactions between FLT3 and kinase inhibitors (CEP701, PKC412, sunitinib, imatinib and dasatinib) were obtained through homology modelling and molecular docking. A cellular system for experimental testing of the inhibitors was also established by expressing wildtype and internal tandem duplication mutant FLT3 (FLT3-WT and FLT3-ITD) in FDC-P1 cells. Imatinib and dasatinib could not be docked into any of the FLT3 models, consistent with their lack of activity in the experimental assays. CEP701, PKC412 and sunitinib interacted with the ATP-binding pocket of FLT3, forming H-bonds with Cys694 and Glu692. Based on the EC50 values in the cell proliferation assay, CEP701 was the most potent inhibitor; sunitinib and PKC412 were ranked second and third, respectively. Sunitinib was the most selective inhibitor, followed by PKC421 and CEP701. The potency of sunitinib and to a lesser extent CEP701 in inhibition of FLT3 autophosphorylation was lower than the cell proliferation inhibition, indicating that inhibition of FLT3 downstream proteins may contribute to the cellular effects. It was shown in this study that the docking procedure was able to differentiate FLT3 inhibitors from ineffective compounds. Additionally, interaction with the phosphate binding region in the ATP-binding pocket increased potency at the cost of selectivity. These findings can be applied in designing highly effective and selective inhibitors for FLT3 and other related kinases. PMID:26896780

  6. Indolinones as promising scaffold as kinase inhibitors: a review.

    PubMed

    Prakash, C R; Raja, S

    2012-02-01

    Kinases are probably the most important signaling enzymes, which represent about 20% of the druggable genome. Currently, more than 150 kinases are known. So, kinase inhibition therapy has become a very important area of drug research since most of our diseases are related to intra or intercellular signaling by kinases. Indole alkaloids are extensively studied for their biological activities in several pharmaceutical areas, including, for example, antitumor. Among this chemical family, indolinone displays very promising antitumor properties by inhibiting various kinase families. These small molecules have a low molecular weight and most of them bind to protein kinases competing with ATP for the ATP-binding site. This review focuses on the indolinone based drugs approved for the treatment of cancer, drugs under clinical trial and then chemical diversity of various synthetic analogues of indolinone and their metabolites as various kinase inhibitors. This review also focused on structural activity relationship (SAR), mechanisms of action and biological targets through which indolinone and its derivatives display their antitumor activity. PMID:22372601

  7. Inhibitors of glycogen synthase 3 kinase

    DOEpatents

    Schultz, Peter; Ring, David B.; Harrison, Stephen D.; Bray, Andrew M.

    2006-05-30

    Compounds of formula 1: ##STR00001## wherein R.sub.1 is alkyl, cycloalkyl, aryl, aralkyl, heteroaryl, or heteroaralkyl, substituted with 0 3 substituents selected from lower alkyl, halo, hydroxy, lower alkoxy, amino, lower alkyl-amino, and nitro; R.sub.2 is hydroxy, amino, or lower alkoxy; R.sub.3 is H, lower alkyl, lower acyl, lower alkoxy-acyl, or amino-acyl; R.sub.4 is H or lower alkyl; and pharmaceutically acceptable salts and esters thereof; are effective inhibitors of GSK3.

  8. Inhibitors of glycogen synthase 3 kinase

    DOEpatents

    Schultz, Peter; Ring, David B.; Harrison, Stephen D.; Bray, Andrew M.

    2000-01-01

    Compounds of formula 1: ##STR1## wherein R.sub.1 is alkyl, cycloalkyl, aryl, aralkyl, heteroaryl, or heteroaralkyl, substituted with 0-3 substituents selected from lower alkyl, halo, hydroxy, lower alkoxy, amino, lower alkyl-amino, and nitro; R.sub.2 is hydroxy, amino, or lower alkoxy; R.sub.3 is H, lower alkyl, lower acyl, lower alkoxy-acyl, or amnino-acyl; R.sub.4 is H or lower alkyl; and pharmaceutically acceptable salts and esters thereof; are effective inhibitors of GSK3.

  9. Resistance to farnesyltransferase inhibitors in Bcr/Abl-positive lymphoblastic leukemia by increased expression of a novel ABC transporter homolog ATP11a

    PubMed Central

    Zhang, Bin; Groffen, John; Heisterkamp, Nora

    2005-01-01

    Resistance to cytotoxic drugs frequently emerges during treatment of leukemia with conventional chemotherapy. New classes of anticancer drugs, such as the farnesyltransferase inhibitors (FTIs), show therapeutic promise, but whether cells will easily develop resistance against them is not known. Here, we grew breakpoint cluster region/Abelson murine leukemia (Bcr/Abl) P190 lymphoblasts on stroma and made them resistant to the FTI SCH66336/lonafarnib to model emerging drug resistance in a patient. These cells exhibited greatly increased (> 100-fold) expression levels of a novel ATP (adenosine triphosphate)-binding cassette (ABC) transporter-homologous gene, ATP11A. We showed that overexpression of this gene provided protection against the effects of SCH66336, whereas knockdown of endogenous ATP11a using small interfering RNA (siRNA) made cells more sensitive to this drug. The lymphoblasts that were resistant to this FTI were also more resistant to FTI-276 and to GGTI-298, 2 other structurally similar inhibitors. Surprisingly, the cells were also able to survive higher concentrations of imatinib mesylate, the Bcr/Abl tyrosine kinase inhibitor. However, the cells remained sensitive to vincristine. Our results show that elevated levels of ATP11a can protect malignant lymphoblastic leukemia cells against several novel small molecule signal transduction inhibitors. A determination of the expression levels of this gene may have prognostic value when treatment with such classes of drugs is contemplated. (Blood. 2005;106: 1355-1361) PMID:15860663

  10. Discovery and Characterization of Non-ATP Site Inhibitors of the Mitogen Activated Protein (MAP) Kinases

    SciTech Connect

    Comess, Kenneth M.; Sun, Chaohong; Abad-Zapatero, Cele; Goedken, Eric R.; Gum, Rebecca J.; Borhani, David W.; Argiriadi, Maria; Groebe, Duncan R.; Jia, Yong; Clampit, Jill E.; Haasch, Deanna L.; Smith, Harriet T.; Wang, Sanyi; Song, Danying; Coen, Michael L.; Cloutier, Timothy E.; Tang, Hua; Cheng, Xueheng; Quinn, Christopher; Liu, Bo; Xin, Zhili; Liu, Gang; Fry, Elizabeth H.; Stoll, Vincent; Ng, Teresa I.; Banach, David; Marcotte, Doug; Burns, David J.; Calderwood, David J.; Hajduk, Philip J.

    2012-03-02

    Inhibition of protein kinases has validated therapeutic utility for cancer, with at least seven kinase inhibitor drugs on the market. Protein kinase inhibition also has significant potential for a variety of other diseases, including diabetes, pain, cognition, and chronic inflammatory and immunologic diseases. However, as the vast majority of current approaches to kinase inhibition target the highly conserved ATP-binding site, the use of kinase inhibitors in treating nononcology diseases may require great selectivity for the target kinase. As protein kinases are signal transducers that are involved in binding to a variety of other proteins, targeting alternative, less conserved sites on the protein may provide an avenue for greater selectivity. Here we report an affinity-based, high-throughput screening technique that allows nonbiased interrogation of small molecule libraries for binding to all exposed sites on a protein surface. This approach was used to screen both the c-Jun N-terminal protein kinase Jnk-1 (involved in insulin signaling) and p38{alpha} (involved in the formation of TNF{alpha} and other cytokines). In addition to canonical ATP-site ligands, compounds were identified that bind to novel allosteric sites. The nature, biological relevance, and mode of binding of these ligands were extensively characterized using two-dimensional {sup 1}H/{sup 13}C NMR spectroscopy, protein X-ray crystallography, surface plasmon resonance, and direct enzymatic activity and activation cascade assays. Jnk-1 and p38{alpha} both belong to the MAP kinase family, and the allosteric ligands for both targets bind similarly on a ledge of the protein surface exposed by the MAP insertion present in the CMGC family of protein kinases and distant from the active site. Medicinal chemistry studies resulted in an improved Jnk-1 ligand able to increase adiponectin secretion in human adipocytes and increase insulin-induced protein kinase PKB phosphorylation in human hepatocytes, in

  11. Ruxolitinib: An Oral Janus Kinase 1 and Janus Kinase 2 Inhibitor in the Management of Myelofibrosis

    PubMed Central

    Verstovsek, Srdan

    2016-01-01

    Myelofibrosis (MF), polycythemia vera (PV), and essential thrombocythemia (ET) are referred to as the classic Philadelphia chromosome (BCR-ABL1)-negative myeloproliferative neoplasms. Although each has distinct pathologic features, all 3 display alterations in Janus kinase (JAK) signal transduction activator of transcription signaling. Myelofibrosis is the most serious of the 3, associated with shortened survival (median survival, 5–7 years); bone marrow failure with anemia; progressive splenomegaly; and chronic, burdensome symptoms, including fatigue, night sweats, itching, abdominal discomfort, loss of appetite/early satiety, unintentional weight loss, and bone, chest, and abdominal pain. Treatments for MF have been mainly palliative, with the exception of allogeneic stem cell transplantation, which, although potentially curative, is feasible only in a small subpopulation of patients. In November 2011, ruxolitinib, an inhibitor of JAK1 and JAK2, was approved by the US Food and Drug Administration for the treatment of intermediate- or high-risk MF, including primary MF, post-PV MF, and post-ET MF. In clinical trials, ruxolitinib was shown to reduce spleen volume and improve MF-related symptoms and quality-of-life measures. Evidence also suggests that ruxolitinib therapy has a survival advantage over placebo and best available therapy. Thrombocytopenia and anemia were the most common adverse events with treatment. Ongoing trials are assessing the efficacy and safety of ruxolitinib therapy in patients with PV and ET. PMID:23391678

  12. Imatinib Analogs as Potential Agents for PET Imaging of Bcr-Abl/c-KIT Expression at a Kinase Level

    PubMed Central

    Peng, Zhenghong; Maxwell, David S.; Sun, Duoli; Bhanu Prasad, Basvoju A.; Pal, Ashutosh; Wang, Shimei; Balatoni, Julius; Ghosh, Pradip; Lim, Seok T.; Volgin, Andrei; Shavrin, Aleksander; Alauddin, Mian M.; Gelovani, Juri G.; Bornmann, William G.

    2014-01-01

    We synthesized two series of imatinib mesylate (STI-571) analogs to develop a Bcr-Abl and c-KIT receptor-specific labeling agent for positron emission tomography (PET) imaging to measure Bcr-Abl and c-KIT expression levels in a mouse model. The methods of molecular modeling, synthesis of STI-571 and its analogs, in vitro kinase assays, and radiolabeling are described. Molecular modeling revealed that these analogs bind the same Bcr-Abl and c-KIT binding sites as those bound by STI-571. The analogs potently inhibit the tyrosine kinase activity of Bcr-Abl and c-KIT, similarly to STI-571. [18F]-labeled STI-571 was prepared with high specific activity (75 GBq/μmol) by nucleophilic displacement and an average radiochemical yield of 12%. [131I]-labeled STI-571 was prepared with high purity (>95%) and an average radiochemical yield of 23%. The uptake rates of [18F]-STI-571 in K562 cells expressing Abl and in U87WT cells overexpressing c-KIT were significantly higher than those in the U87 cell and could be inhibited by STI-71 (confirming the specificity of uptake). PET scans of K562 and U87WT tumor-bearing mice with [18F]-STI-571 as a contrast agent showed visible tumor uptake and tumor-to-non-target contrast. PMID:24280068

  13. Comprehensive kinase profile of pacritinib, a nonmyelosuppressive Janus kinase 2 inhibitor

    PubMed Central

    Singer, Jack W; Al-Fayoumi, Suliman; Ma, Haiching; Komrokji, Rami S; Mesa, Ruben; Verstovsek, Srdan

    2016-01-01

    Pacritinib, potent inhibitor of Janus kinase 2 (JAK2), JAK2V617F, and fms-like receptor tyrosine kinase 3, is in Phase III development in myelofibrosis. Among type 1 inhibitors, pacritinib shows a lack of myelosuppression at doses that both inhibit JAK2/signal transducer and activator of transcription 3 pathway and demonstrate clinical efficacy. To elucidate these mechanisms and identify other disease targets, a kinome analysis screened 439 recombinant kinases at 100 nM pacritinib concentration. For kinases with >50% inhibition, pacritinib was titrated from 1 to 100 nM. JAK2, JAK2V617F, FLT3, colony-stimulating factor 1 receptor, and interleukin-1 receptor-associated kinase 1 achieved half-maximal inhibitory concentrations <50 nM. Pacritinib did not inhibit JAK1 (82% control at 100 nM). Lack of myelosuppression may stem from inhibiting JAK2 without affecting JAK1 and reducing hematopoietic inhibitory cytokines by suppressing interleukin-1 receptor-associated kinase 1 or colony-stimulating factor 1 receptor. The pacritinib kinome suggests therapeutic utility in acute myeloid leukemia, myelodysplastic syndrome, chronic myelomonocytic leukemia, solid tumors, and inflammatory conditions. PMID:27574472

  14. Comprehensive kinase profile of pacritinib, a nonmyelosuppressive Janus kinase 2 inhibitor.

    PubMed

    Singer, Jack W; Al-Fayoumi, Suliman; Ma, Haiching; Komrokji, Rami S; Mesa, Ruben; Verstovsek, Srdan

    2016-01-01

    Pacritinib, potent inhibitor of Janus kinase 2 (JAK2), JAK2V617F, and fms-like receptor tyrosine kinase 3, is in Phase III development in myelofibrosis. Among type 1 inhibitors, pacritinib shows a lack of myelosuppression at doses that both inhibit JAK2/signal transducer and activator of transcription 3 pathway and demonstrate clinical efficacy. To elucidate these mechanisms and identify other disease targets, a kinome analysis screened 439 recombinant kinases at 100 nM pacritinib concentration. For kinases with >50% inhibition, pacritinib was titrated from 1 to 100 nM. JAK2, JAK2V617F, FLT3, colony-stimulating factor 1 receptor, and interleukin-1 receptor-associated kinase 1 achieved half-maximal inhibitory concentrations <50 nM. Pacritinib did not inhibit JAK1 (82% control at 100 nM). Lack of myelosuppression may stem from inhibiting JAK2 without affecting JAK1 and reducing hematopoietic inhibitory cytokines by suppressing interleukin-1 receptor-associated kinase 1 or colony-stimulating factor 1 receptor. The pacritinib kinome suggests therapeutic utility in acute myeloid leukemia, myelodysplastic syndrome, chronic myelomonocytic leukemia, solid tumors, and inflammatory conditions. PMID:27574472

  15. Rho-associated kinase inhibitors: a novel glaucoma therapy.

    PubMed

    Inoue, Toshihiro; Tanihara, Hidenobu

    2013-11-01

    The rho-associated kinase (ROCK) signaling pathway is activated via secreted bioactive molecules or via integrin activation after extracellular matrix binding. These lead to polymerization of actin stress fibers and formation of focal adhesions. Accumulating evidence suggests that actin cytoskeleton-modulating signals are involved in aqueous outflow regulation. Aqueous humor contains various biologically active factors, some of which are elevated in glaucomatous eyes. These factors affect aqueous outflow, in part, through ROCK signaling modulation. Various drugs acting on the cytoskeleton have also been shown to increase aqueous outflow by acting directly on outflow tissue. In vivo animal studies have shown that the trabecular meshwork (TM) actin cytoskeleton in glaucomatous eyes is more disorganized and more randomly oriented than in non-glaucomatous control eyes. In a previous study, we introduced ROCK inhibitors as a potential glaucoma therapy by showing that a selective ROCK inhibitor significantly lowered rabbit IOP. Rho-associated kinase inhibitors directly affect the TM and Schlemm's canal (SC), differing from the target sight of other glaucoma drugs. The TM is affected earlier and more strongly than ciliary muscle cells by ROCK inhibitors, largely because of pharmacological affinity differences stemming from regulatory mechanisms. Additionally, ROCK inhibitors disrupt tight junctions, result in F-actin depolymerization, and modulate intracellular calcium level, effectively increasing SC-cell monolayer permeability. Perfusion of an enucleated eye with a ROCK inhibitor resulted in wider empty spaces in the juxtacanalicular (JCT) area and more giant vacuoles in the endothelial cells of SC, while the endothelial lining of SC was intact. Interestingly, ROCK inhibitors also increase retinal blood flow by relaxing vascular smooth muscle cells, directly protecting neurons against various stresses, while promoting wound healing. These additional effects may help

  16. Targeting Angiogenesis in Colorectal Cancer: Tyrosine Kinase Inhibitors.

    PubMed

    Kircher, Sheetal Mehta; Nimeiri, Halla S; Benson, Al B

    2016-01-01

    Colorectal cancer is commonly diagnosed throughout the world, and treatment options have greatly expanded over the last 2 decades. Targeting angiogenesis has been a major focus of study in a variety of malignancy types. Targeting angiogenesis has been achieved by several mechanisms in colorectal cancer, including use of antiangiogenic small molecule tyrosine kinase inhibitors (TKIs). There have been many attempts and failures to prove efficacy of TKIs in the treatment of colorectal cancer including sorafenib, sunitinib, vatalanib, and tivozanib. Regorafenib was the first TKI to demonstrate efficacy and is an orally active inhibitor of angiogenic (including the vascular endothelial growth factor receptors 1, 2, and 3), stromal, and oncogenic receptor tyrosine kinases. There are ongoing investigations of both regorafenib and ninetanib; however, there remains a critical need to better understand novel combinations with TKIs that could prove more efficacious than available options. PMID:27341596

  17. Endocrine side effects of broad-acting kinase inhibitors

    PubMed Central

    Lodish, Maya B.; Stratakis, Constantine A.

    2011-01-01

    Targeted therapy in oncology consists of drugs that specifically interfere with abnormal signaling pathways that are dysregulated in cancer cells. Tyrosine kinase inhibitors (TKIs) take advantage of unique oncogenes that are activated in certain types of cancer, and also target common mechanisms of growth, invasion, metastasis, and angiogenesis. However, many kinase inhibitors for cancer therapy are somewhat nonselective, and most have additional mechanisms of action at the cellular level which are not completely understood. The use of these agents has increased our knowledge of important side effects, of which the practicing clinician must be aware. Recently proposed endocrine-related side effects of these agents include alterations in thyroid function, bone metabolism, linear growth, gonadal function, fetal development, and glucose metabolism, and adrenal function. This review summarizes the most recent data on the endocrine side effects of TKIs. PMID:20603395

  18. Novel Bruton’s tyrosine kinase inhibitors currently in development

    PubMed Central

    D’Cruz, Osmond J; Uckun, Fatih M

    2013-01-01

    Bruton’s tyrosine kinase (Btk) is intimately involved in multiple signal-transduction pathways regulating survival, activation, proliferation, and differentiation of B-lineage lymphoid cells. Btk is overexpressed and constitutively active in several B-lineage lymphoid malignancies. Btk has emerged as a new antiapoptotic molecular target for treatment of B-lineage leukemias and lymphomas. Preclinical and early clinical results indicate that Btk inhibitors may be useful in the treatment of leukemias and lymphomas. PMID:23493945

  19. Protein kinase C-δ inhibitor, Rottlerin inhibits growth and survival of mycobacteria exclusively through Shikimate kinase.

    PubMed

    Pandey, Sapna; Chatterjee, Aditi; Jaiswal, Swati; Kumar, Sanjay; Ramachandran, Ravishankar; Srivastava, Kishore K

    2016-09-16

    The molecular bases of disease provide exceptional prospect to translate research findings into new drugs. Nevertheless, to develop new and novel chemical entities takes huge amount of time and efforts, mainly due to the stringent processes. Therefore, drug repurposing is one of such strategies which is being used in recent times to identify new pharmacophores. The essential first step in discovery of the specific inhibitor with low toxicity is the identification and elucidation of pathways exclusive to target pathogen. One such target is the shikimate pathway, which is essential for algae, higher plants, bacteria and fungi. Since, this enzyme system is absent in higher eukaryotes and in mammals, the enzymes involved in the pathway provide an attractive target for the development of potentially selective and non toxic antimicrobial agents. Since, so far there is no specific inhibitor which is able to restrain mycobacterial shikimate pathway; we expanded the use of a known kinase inhibitor; Rottlerin, in order to predict the prototype in discovering the specific molecules against this enzyme. For the first time we have shown that Rottlerin inhibits extracellular mycobacteria by affecting Shikimate Kinase (SK) and this effect is further enhanced during the intracellular infection due to the added effect of PKC- δ down-regulation. The molecular docking of Rottlerin with both the mycobacterial SKs, corroborated the inhibition data, and revealed that the effects of SK, in slow and in fast grower mycobacteria are due to the changes in affinity of binding with the drug. PMID:27498028

  20. Phosphatidylinositol 3-kinase inhibitors block differentiation of skeletal muscle cells.

    PubMed

    Kaliman, P; Viñals, F; Testar, X; Palacín, M; Zorzano, A

    1996-08-01

    Skeletal muscle differentiation involves myoblast alignment, elongation, and fusion into multinucleate myotubes, together with the induction of regulatory and structural muscle-specific genes. Here we show that two phosphatidylinositol 3-kinase inhibitors, LY294002 and wortmannin, blocked an essential step in the differentiation of two skeletal muscle cell models. Both inhibitors abolished the capacity of L6E9 myoblasts to form myotubes, without affecting myoblast proliferation, elongation, or alignment. Myogenic events like the induction of myogenin and of glucose carrier GLUT4 were also blocked and myoblasts could not exit the cell cycle, as measured by the lack of mRNA induction of p21 cyclin-dependent kinase inhibitor. Overexpresssion of MyoD in 10T1/2 cells was not sufficient to bypass the myogenic differentiation blockade by LY294002. Upon serum withdrawal, 10T1/2-MyoD cells formed myotubes and showed increased levels of myogenin and p21. In contrast, LY294002-treated cells exhibited none of these myogenic characteristics and maintained high levels of Id, a negative regulator of myogenesis. These data indicate that whereas phosphatidylinositol 3-kinase is not indispensable for cell proliferation or in the initial events of myoblast differentiation, i.e. elongation and alignment, it appears to be essential for terminal differentiation of muscle cells. PMID:8702591

  1. Identification of quinones as novel PIM1 kinase inhibitors.

    PubMed

    Schroeder, Richard L; Goyal, Navneet; Bratton, Melyssa; Townley, Ian; Pham, Nancy A; Tram, Phan; Stone, Treasure; Geathers, Jasmine; Nguyen, Kathy; Sridhar, Jayalakshmi

    2016-07-01

    PIM1 is a proto-oncogene encoding the serine/threonine PIM1 kinase. PIM1 kinase plays important roles in regulating aspects of cell cycle progression, apoptosis resistance, and has been implicated in the development of such malignancies as prostate cancer and acute myeloid leukemia among others. Knockout of PIM1 kinase in mice has been shown to be non-lethal without any obvious phenotypic changes, making it an attractive therapeutic target. Our investigation of anthraquinones as kinase inhibitors revealed a series of quinone analogs showing high selectivity for inhibition of the PIM kinases. Molecular modeling studies were used to identify key interactions and binding poses of these compounds within the PIM1 binding pocket. Compounds 1, 4, 7 and 9 inhibited the growth of DU-145 prostate cancer cell lines with a potency of 8.21μM, 4.06μM, 3.21μM and 2.02μM. PMID:27173800

  2. Characterization of irreversible kinase inhibitors by directly detecting covalent bond formation: a tool for dissecting kinase drug resistance.

    PubMed

    Klüter, Sabine; Simard, Jeffrey R; Rode, Haridas B; Grütter, Christian; Pawar, Vijaykumar; Raaijmakers, Hans C A; Barf, Tjeerd A; Rabiller, Matthias; van Otterlo, Willem A L; Rauh, Daniel

    2010-12-10

    Targeting protein kinases in cancer therapy with irreversible small-molecule inhibitors is moving to the forefront of kinase-inhibitor research and is thought to be an effective means of overcoming mutation-associated drug resistance in epidermal growth factor receptor kinase (EGFR). We generated a detection technique that allows direct measurements of covalent bond formation without relying on kinase activity, thereby allowing the straightforward investigation of the influence of steric clashes on covalent inhibitors in different resistant kinase mutants. The obtained results are discussed together with structural biology and biochemical studies of catalytic activity in both wild-type and gatekeeper mutated kinase variants to draw conclusions about the impact of steric hindrance and increased catalytic activity in drug-resistant kinase variants. PMID:21080395

  3. Antitumoral activity of allosteric inhibitors of protein kinase CK2

    PubMed Central

    Sautel, Céline F.; Teillet, Florence; Barette, Caroline; Lafanechere, Laurence; Receveur-Brechot, Veronique; Cochet, Claude

    2011-01-01

    Introduction Due to its physiological role into promoting cell survival and its dysregulation in most cancer cells, protein kinase CK2 is a relevant physiopathological target for development of chemical inhibitors. We report the discovery of azonaphthalene derivatives, as a new family of highly specific CK2 inhibitors. First, we demonstrated that CK2 inhibition (IC50= 0.4 μM) was highly specific, reversible and non ATP-competitive. Small Angle X-ray Scattering experiments showed that this inhibition was due to large conformational change of CK2α upon binding of these inhibitors. We showed that several compounds of the family were cell-potent CK2 inhibitors promoting cell cycle arrest of human glioblastoma U373 cells. Finally, in vitro and in vivo assays showed that these compounds could decrease U373 cell tumor mass by 83% emphasizing their efficacy against these apoptosis-resistant tumors. In contrast, Azonaphthalene derivatives inactive on CK2 activity showed no effect in colony formation and tumor regression assays. These findings illustrate the emergence of nonclassical CK2 inhibitors and provide exciting opportunities for the development of novel allosteric CK2 inhibitors. Background CK2 is an emerging therapeutic target and ATP-competitive inhibitors have been identified. CK2 is endowed with specific structural features providing alternative strategies for inhibition. Results Azonaphthalene compounds are allosteric CK2 inhibitors showing antitumor activity. Conclusion CK2 may be targeted allosterically. Significance These inhibitors provide a foundation for a new paradigm for specific CK2 inhibition. PMID:22184283

  4. Pharmacological cyclin dependent kinase inhibitors: Implications for colorectal cancer

    PubMed Central

    Balakrishnan, Archana; Vyas, Arpita; Deshpande, Kaivalya; Vyas, Dinesh

    2016-01-01

    Colorectal cancer accounts for a significant proportion of cancer deaths worldwide. The need to develop more chemotherapeutic agents to combat this disease is critical. Cyclin dependent kinases (CDKs), along with its binding partner cyclins, serve to control the growth of cells through the cell cycle. A new class of drugs, termed CDK inhibitors, has been studied in preclinical and now clinical trials. These inhibitors are believed to act as an anti-cancer drug by blocking CDKs to block the uncontrolled cellular proliferation that is hallmark of cancers like colorectal cancer. CDK article provides overview of the emerging drug class of CDK inhibitors and provides a list of ones that are currently in clinical trials. PMID:26900281

  5. BCR-ABL kinase domain mutations, including 2 novel mutations in imatinib resistant Malaysian chronic myeloid leukemia patients-Frequency and clinical outcome.

    PubMed

    Elias, Marjanu Hikmah; Baba, Abdul Aziz; Azlan, Husin; Rosline, Hassan; Sim, Goh Ai; Padmini, Menon; Fadilah, S Abdul Wahid; Ankathil, Ravindran

    2014-04-01

    Discovery of imatinib mesylate (IM) as the targeted BCR-ABL protein tyrosine kinase inhibitor (TKI) has resulted in its use as the frontline therapy for chronic myeloid leukemia (CML) across the world. Although high response rates are observed in CML patients who receive IM treatment, a significant number of patients develop resistance to IM. Resistance to IM in patients has been associated with a heterogeneous array of mechanisms of which point mutations within the ABL tyrosine kinase domain (TKD) are the frequently documented. The types and frequencies of mutations reported in different population studies have shown wide variability. We screened 125 Malaysian CML patients on IM therapy who showed either TKI refractory or resistance to IM to investigate the frequency and pattern of BCR-ABL kinase domain mutations among Malaysian CML patients undergoing IM therapy and to determine the clinical significance. Mutational screening using denaturing high performance liquid chromatography (dHPLC) followed by DNA sequencing was performed on 125 IM resistant Malaysian CML patients. Mutations were detected in 28 patients (22.4%). Fifteen different types of mutations (T315I, E255K, G250E, M351T, F359C, G251E, Y253H, V289F, E355G, N368S, L387M, H369R, A397P, E355A, D276G), including 2 novel mutations were identified, with T315I as the predominant type of mutation. The data generated from clinical and molecular parameters studied were correlated with the survival of CML patients. Patients with Y253H, M351T and E355G TKD mutations showed poorer prognosis compared to those without mutation. Interestingly, when the prognostic impact of the observed mutations was compared inter-individually, E355G and Y253H mutations were associated with more adverse prognosis and shorter survival (P=0.025 and 0.005 respectively) than T315I mutation. Results suggest that apart from those mutations occurring in the three crucial regions (catalytic domain, P-loop and activation-loop), other rare

  6. Design and synthesis of constrained analogs of LCRF-0004 as potent RON tyrosine kinase inhibitors.

    PubMed

    Raeppel, Stéphane L; Therrien, Eric; Raeppel, Franck

    2015-09-01

    New fused bicyclic lactam head groups as rigidified analogs of thieno[3,2-b]pyridine-based kinase inhibitor LCRF-0004 were designed and synthesized. Depending on the functionalities and the size of these bicyclic head groups, potent inhibitors of RON tyrosine kinase with various level of selectivity against c-Met tyrosine kinase were obtained. PMID:26112445

  7. Beyond trastuzumab: small molecule tyrosine kinase inhibitors in HER-2-positive breast cancer.

    PubMed

    Roy, Vivek; Perez, Edith A

    2009-11-01

    HER-2 is a transmembrane, tyrosine kinase (TK) receptor whose overexpression is associated with adverse prognosis in breast cancer. The biological effects of HER-2 are mediated by kinase activity causing phosphorylation of tyrosine residues in the cytoplasmic domain of the receptor molecule, leading to activation of downstream growth-promoting pathways. Antibody-mediated inhibition by trastuzumab as well as TK inhibition are clinically effective anti-HER-2 strategies. Kinase inhibitors offer some potential therapeutic advantages over antibody-based therapies. Being small molecules, TK inhibitors (TKIs) have oral bioavailability and ability to cross the blood-brain barrier. Because of their different mode of action, TKIs may be able to overcome some of the mechanisms of trastuzumab resistance. Preclinical, and limited clinical data also suggest that TKIs and trastuzumab have synergistic activity. Lapatinib is the only TKI available for clinical use at present, but several molecules with anti-HER-2 activity have been identified and are undergoing evaluation. These differ in the spectrum of kinases that they inhibit, potency of HER-2 inhibition, pharmacokinetic properties, and toxicity profiles, and are at various stages of clinical development. In this article we summarize selected HER-2 TKIs approved for clinical use or in development for which clinical data are available. PMID:19887469

  8. ROS1 Kinase Inhibitors for Molecular-Targeted Therapies.

    PubMed

    Al-Sanea, M M; Abdelazem, A Z; Park, B S; Yoo, K H; Sim, T; Kwon, Y J; Lee, S H

    2016-01-01

    ROS1 is a pivotal transmembrane receptor protein tyrosine kinase which regulates several cellular processes like apoptosis, survival, differentiation, proliferation, cell migration, and transformation. There is increasing evidence supporting that ROS1 plays an important role in different malignancies including glioblastoma, colorectal cancer, gastric adenocarcinoma, inflammatory myofibroblastic tumor, ovarian cancer, angiosarcoma, and non small cell lung cancer; thus, ROS1 has become a potential drug discovery target. ROS1 shares about 49% sequence homology with ALK primary structure; therefore, wide range of ALK kinase inhibitors have shown in vitro inhibitory activity against ROS1 kinase. After Crizotinib approval by FDA for the management of ALK-rearranged lung cancer, ROS1-positive tumors have been focused. Although significant advancements have been achieved in understanding ROS1 function and its signaling pathways plus recent discovery of small molecules modulating ROS1 protein, a vital need of medicinal chemistry efforts is still required to produce selective and potent ROS1 inhibitors as an important therapeutic strategy for different human malignancies. This review focuses on the current knowledge about different scaffolds targeting ROS1 rearrangements, methods to synthesis, and some biological data about the most potent compounds that have delivered various scaffold structures. PMID:26438251

  9. Discovery of a Highly Selective STK16 Kinase Inhibitor.

    PubMed

    Liu, Feiyang; Wang, Jinhua; Yang, Xingxing; Li, Binhua; Wu, Hong; Qi, Shuang; Chen, Cheng; Liu, Xiaochuan; Yu, Kailin; Wang, Wenchao; Zhao, Zheng; Wang, Aoli; Chen, Yongfei; Wang, Li; Gray, Nathanael S; Liu, Jing; Zhang, Xin; Liu, Qingsong

    2016-06-17

    STK16, a serine/threonine protein kinase, is ubiquitously expressed and is conserved among all eukaryotes. STK16 has been implicated to function in a variety of cellular processes such as VEGF and cargo secretion, but the pathways through which these effects are mediated remain to be elucidated. Through screening of our focused library of kinase inhibitors, we discovered a highly selective ATP competitive inhibitor, STK16-IN-1, which exhibits potent inhibitory activity against STK16 kinase (IC50: 0.295 μM) with excellent selectivity across the kinome as assessed using the KinomeScan profiling assay (S score (1) = 0.0). In MCF-7 cells, treatment with STK16-IN-1 results in a reduction in cell number and accumulation of binucleated cells, which can be recapitulated by RNAi knockdown of STK16. Co-treatment of STK16-IN-1 with chemotherapeutics such as cisplatin, doxorubicin, colchicine, and paclitaxel results in a slight potentiation of the antiproliferative effects of the chemotherapeutics. STK16-IN-1 provides a useful tool compound for further elucidating the biological functions of STK16. PMID:27082499

  10. Some implications of receptor kinase signaling pathway for development of multitargeted kinase inhibitors.

    PubMed

    Mitrasinovic, Petar M

    2013-03-01

    Epidermal growth factor receptors (EGFRs) belong to the ErbB family of receptor tyrosine kinases (TKs). Based on the role of EGFR signaling pathway in malignant progression of various types of tumors, a growing interest in the use of EGFR-TK inhibitors as probes for molecular imaging of EGFR-overexpressing tumors via positron emission tomography (PET) and single photon emission computed tomography (SPECT) is being notable. On one side, such noninvasive and repetitive monitoring of the activity of EGFR at the kinase level is intended to provide a direct measure of EGFR occupancy and inhibition by EGFR-targeting drugs. On the other side, all oncologic imaging tracers are molecularly targeted radiopharmaceuticals, which are strongly dependent on the tumor biochemistry including increased metabolism, hyperproliferation, angiogenesis, hypoxia, apoptosis, and specific tumor biomarkers (tumor specific antigens and tumor-specific receptors). The present article is an attempt to reconcile these two vital standpoints influencing the choice of appropriate radiolabeled agents for PET and SPECT imaging aimed to support the development of a new generation of multi-targeted kinase inhibitors in the time ahead, because the routine accomplishment of drug selectivity for particular protein kinases is a substantial challenge. PMID:23278847

  11. Growth inhibition by tyrosine kinase inhibitors in mesothelioma cell lines.

    PubMed

    Nutt, Joyce E; O'Toole, Kieran; Gonzalez, David; Lunec, John

    2009-06-01

    Clinical outcome following chemotherapy for malignant pleural mesothelioma is poor and improvements are needed. This preclinical study investigates the effect of five tyrosine kinase inhibitors (PTK787, ZD6474, ZD1839, SU6668 and SU11248) on the growth of three mesothelioma cell lines (NCI H226, NCI H28 and MSTO 211H), the presence of growth factor receptors and inhibition of their downstream signalling pathways. GI50 values were determined: ZD6474 and SU11248, mainly VEGFR2 inhibitors, gave the lowest GI50 across all cell lines (3.5-6.9 microM) whereas ZD1839 gave a GI50 in this range only in H28 cells. All cell lines were positive for EGFR, but only H226 cells were positive for VEGFR2 by Western blotting. ZD6474 and ZD1839 inhibited EGF-induced phosphorylation of EGFR, AKT and ERK, whereas VEGF-induced phosphorylation of VEGFR2 was completely inhibited with 0.1 microM SU11248. VEGFR2 was detected in tumour samples by immunohistochemistry. VEGFR2 tyrosine kinase inhibitors warrant further investigation in mesothelioma. PMID:19318229

  12. Treatment of human pre-B acute lymphoblastic leukemia with the Aurora kinase inhibitor PHA-739358 (Danusertib)

    PubMed Central

    2012-01-01

    Background Treatment of Philadelphia chromosome-positive acute lymphoblastic leukemias (Ph-positive ALL) with clinically approved inhibitors of the Bcr/Abl tyrosine kinase frequently results in the emergence of a leukemic clone carrying the T315I mutation in Bcr/Abl, which confers resistance to these drugs. PHA-739358, an Aurora kinase inhibitor, was reported to inhibit the Bcr/Abl T315I mutant in CML cells but no preclinical studies have examined this in detail in human ALL. Results We compared the sensitivity of human Bcr/Abl T315I, Bcr/Abl wild type and non-Bcr/Abl ALL cells to this drug. PHA-739358 inhibited proliferation and induced apoptosis independently of Bcr/Abl, the T315I mutation, or presence of the tumor suppressor p53, but the degree of effectiveness varied between different ALL samples. Since short-term treatment with a single dose of drug only transiently inhibited proliferation, we tested combination treatments of PHA-739358 with the farnesyltransferase inhibitor Lonafarnib, with vincristine and with dasatinib. All combinations reduced viability and cell numbers compared to treatment with a single drug. Clonogenic assays showed that 25 nM PHA-739358 significantly reduced the colony growth potential of Ph-positive ALL cells, and combined treatment with a second drug abrogated colony growth in this assay. PHA-739358 further effectively blocked Bcr/Abl tyrosine kinase activity and Aurora kinase B in vivo, and mice transplanted with human Bcr/Abl T315I ALL cells treated with a 3x 7-day cycle of PHA-739358 as mono-treatment had significantly longer survival. Conclusions PHA-739358 represents an alternative drug for the treatment of both Ph-positive and negative ALL, although combined treatment with a second drug may be needed to eradicate the leukemic cells. PMID:22721004

  13. Receptor tyrosine kinase inhibitors: Are they real tumor killers?

    PubMed

    Gaumann, Andreas K A; Kiefer, Friedemann; Alfer, Joachim; Lang, Sven A; Geissler, Edward K; Breier, Georg

    2016-02-01

    Inhibiting tumor growth by targeting the tumor vasculature was first proposed by Judah Folkman almost 40 years ago. Since then, different approaches and numerous drugs and agents have been developed to achieve this goal, either with the aim of inhibiting tumor neoangiogenesis or normalizing the tumor vasculature. Among the most promising therapeutic targets are receptor tyrosine kinases (RTKs), some of which are predominantly expressed on tumor endothelial cells, although they are sometimes also present on tumor cells. The majority of RTK inhibitors investigated over the past two decades competes with ATP at the active site of the kinase and therefore block the phosphorylation of intracellular targets. Some of these drugs have been approved for therapy, whereas others are still in clinical trials. Here, we discuss the scientific basis, current status, problems and future prospects of RTK inhibition in anti-tumor therapy. PMID:25716346

  14. Tailoring Tyrosine Kinase Inhibitors to Fit the Lung Cancer Genome

    PubMed Central

    Looyenga, Brendan D; Cherni, Irene; MacKeigan, Jeffrey P; Weiss, Glen J

    2011-01-01

    Tyrosine kinase inhibitors (TKIs) have been in use as cancer therapeutics for nearly a decade, and their utility in targeting specific malignancies with defined genetic lesions has proven to be remarkably effective. Recent efforts to characterize the spectrum of genetic lesions found in non-small cell lung carcinoma (NSCLC) have provided important insights into the molecular basis of this disease and have also revealed a wide array of tyrosine kinases that might be effectively targeted for rationally designed therapies. The findings of these studies, however, also provide a cautionary tale about the limitations of single-agent therapies, which fail to account for the genetic heterogeneity and pathway redundancy that characterize advanced NSCLC. Emergence of drug resistance mechanisms to specific TKIs, such as gefitinib and erlotinib, suggests that more sophisticated chemotherapeutic paradigms that target multiple pathways at the same time will be required to effectively treat this disease. PMID:21461169

  15. A road map to evaluate the proteome-wide selectivity of covalent kinase inhibitors.

    PubMed

    Lanning, Bryan R; Whitby, Landon R; Dix, Melissa M; Douhan, John; Gilbert, Adam M; Hett, Erik C; Johnson, Theodore O; Joslyn, Chris; Kath, John C; Niessen, Sherry; Roberts, Lee R; Schnute, Mark E; Wang, Chu; Hulce, Jonathan J; Wei, Baoxian; Whiteley, Laurence O; Hayward, Matthew M; Cravatt, Benjamin F

    2014-09-01

    Kinases are principal components of signal transduction pathways and the focus of intense basic and drug discovery research. Irreversible inhibitors that covalently modify non-catalytic cysteines in kinase active sites have emerged as valuable probes and approved drugs. Many protein classes, however, have functional cysteines, and therefore understanding the proteome-wide selectivity of covalent kinase inhibitors is imperative. Here, we accomplish this objective using activity-based protein profiling coupled with quantitative MS to globally map the targets, both specific and nonspecific, of covalent kinase inhibitors in human cells. Many of the specific off-targets represent nonkinase proteins that, notably, have conserved active site cysteines. We define windows of selectivity for covalent kinase inhibitors and show that, when these windows are exceeded, rampant proteome-wide reactivity and kinase target-independent cell death conjointly occur. Our findings, taken together, provide an experimental road map to illuminate opportunities and surmount challenges for the development of covalent kinase inhibitors. PMID:25038787

  16. Inhibitors that stabilize a closed RAF kinase domain conformation induce dimerization

    PubMed Central

    Lavoie, Hugo; Thevakumaran, Neroshan; Gavory, Gwenaëlle; Li, John; Padeganeh, Abbas; Guiral, Sébastien; Duchaine, Jean; Mao, Daniel Y. L.; Bouvier, Michel; Sicheri, Frank; Therrien, Marc

    2016-01-01

    RAF kinases play a prominent role in cancer. Their mode of activation is complex, but critically requires dimerization of their kinase domains. Unexpectedly, several ATP-competitive RAF inhibitors were recently found to promote dimerization and transactivation of RAF kinases in a RAS-dependent manner and as a result undesirably stimulate RAS/ERK-mediated cell growth. The mechanism by which these inhibitors induce RAF kinase domain dimerization remains unclear. Here we describe BRET-based biosensors for the extended RAF family enabling the detection of RAF dimerization in living cells. Notably, we demonstrate the utility of these tools for profiling kinase inhibitors that selectively modulate RAF dimerization as well as for probing structural determinants of RAF dimerization in vivo. Our findings, which appear generalizable to other kinase families allosterically regulated by kinase domain dimerization, suggest a model whereby ATP-competitive inhibitors mediate RAF dimerization by stabilizing a rigid closed conformation of the kinase domain. PMID:23685672

  17. Crystal structure of the FLT3 kinase domain bound to the inhibitor quizartinib (AC220)

    SciTech Connect

    Zorn, Julie A.; Wang, Qi; Fujimura, Eric; Barros, Tiago; Kuriyan, John; Boggon, Titus J.

    2015-04-02

    More than 30% of acute myeloid leukemia (AML) patients possess activating mutations in the receptor tyrosine kinase FMS-like tyrosine kinase 3 or FLT3. A small-molecule inhibitor of FLT3 (known as quizartinib or AC220) that is currently in clinical trials appears promising for the treatment of AML. Here, we report the co-crystal structure of the kinase domain of FLT3 in complex with quizartinib. FLT3 with quizartinib bound adopts an “Abl-like” inactive conformation with the activation loop stabilized in the “DFG-out” orientation and folded back onto the kinase domain. This conformation is similar to that observed for the uncomplexed intracellular domain of FLT3 as well as for related receptor tyrosine kinases, except for a localized induced fit in the activation loop. The co-crystal structure reveals the interactions between quizartinib and the active site of FLT3 that are key for achieving its high potency against both wild-type FLT3 as well as a FLT3 variant observed in many AML patients. This co-complex further provides a structural rationale for quizartinib-resistance mutations.

  18. Crystal structure of the FLT3 kinase domain bound to the inhibitor quizartinib (AC220)

    DOE PAGESBeta

    Zorn, Julie A.; Wang, Qi; Fujimura, Eric; Barros, Tiago; Kuriyan, John; Boggon, Titus J.

    2015-04-02

    More than 30% of acute myeloid leukemia (AML) patients possess activating mutations in the receptor tyrosine kinase FMS-like tyrosine kinase 3 or FLT3. A small-molecule inhibitor of FLT3 (known as quizartinib or AC220) that is currently in clinical trials appears promising for the treatment of AML. Here, we report the co-crystal structure of the kinase domain of FLT3 in complex with quizartinib. FLT3 with quizartinib bound adopts an “Abl-like” inactive conformation with the activation loop stabilized in the “DFG-out” orientation and folded back onto the kinase domain. This conformation is similar to that observed for the uncomplexed intracellular domain ofmore » FLT3 as well as for related receptor tyrosine kinases, except for a localized induced fit in the activation loop. The co-crystal structure reveals the interactions between quizartinib and the active site of FLT3 that are key for achieving its high potency against both wild-type FLT3 as well as a FLT3 variant observed in many AML patients. This co-complex further provides a structural rationale for quizartinib-resistance mutations.« less

  19. Design, synthesis and structure-activity relationships of novel biarylamine-based Met kinase inhibitors

    SciTech Connect

    Williams, David K; Chen, Xiao-Tao; Tarby, Christine; Kaltenbach, Robert; Cai, Zhen-Wei; Tokarski, John S; An, Yongmi; Sack, John S; Wautlet, Barri; Gullo-Brown, Johnni; Henley, Benjamin J; Jeyaseelan, Robert; Kellar, Kristen; Manne, Veeraswamy; Trainor, George L; Lombardo, Louis J; Fargnoli, Joseph; Borzilleri, Robert M

    2010-09-03

    Biarylamine-based inhibitors of Met kinase have been identified. Lead compounds demonstrate nanomolar potency in Met kinase biochemical assays and significant activity in the Met-driven GTL-16 human gastric carcinoma cell line. X-ray crystallography revealed that these compounds adopt a bioactive conformation, in the kinase domain, consistent with that previously seen with 2-pyridone-based Met kinase inhibitors. Compound 9b demonstrated potent in vivo antitumor activity in the GTL-16 human tumor xenograft model.

  20. Evidence that Autophosphorylation of the Major Sporulation Kinase in Bacillus subtilis Is Able To Occur in trans

    PubMed Central

    Devi, Seram Nganbiton; Kiehler, Brittany; Haggett, Lindsey

    2015-01-01

    ABSTRACT Entry into sporulation in Bacillus subtilis is governed by a multicomponent phosphorelay, a complex version of a two-component system which includes at least three histidine kinases (KinA to KinC), two phosphotransferases (Spo0F and Spo0B), and a response regulator (Spo0A). Among the three histidine kinases, KinA is known as the major sporulation kinase; it is autophosphorylated with ATP upon starvation and then transfers a phosphoryl group to the downstream components in a His-Asp-His-Asp signaling pathway. Our recent study demonstrated that KinA forms a homotetramer, not a dimer, mediated by the N-terminal domain, as a functional unit. Furthermore, when the N-terminal domain was overexpressed in the starving wild-type strain, sporulation was impaired. We hypothesized that this impairment of sporulation could be explained by the formation of a nonfunctional heterotetramer of KinA, resulting in the reduced level of phosphorylated Spo0A (Spo0A∼P), and thus, autophosphorylation of KinA could occur in trans. To test this hypothesis, we generated a series of B. subtilis strains expressing homo- or heterogeneous KinA protein complexes consisting of various combinations of the phosphoryl-accepting histidine point mutant protein and the catalytic ATP-binding domain point mutant protein. We found that the ATP-binding-deficient protein was phosphorylated when the phosphorylation-deficient protein was present in a 1:1 stoichiometry in the tetramer complex, while each of the mutant homocomplexes was not phosphorylated. These results suggest that ATP initially binds to one protomer within the tetramer complex and then the γ-phosphoryl group is transmitted to another in a trans fashion. We further found that the sporulation defect of each of the mutant proteins is complemented when the proteins are coexpressed in vivo. Taken together, these in vitro and in vivo results reinforce the evidence that KinA autophosphorylation is able to occur in a trans fashion

  1. Role of tyrosine-kinase inhibitors in myeloproliferative neoplasms: comparative lessons learned

    PubMed Central

    Pinilla-Ibarz, Javier; Sweet, Kendra L; Corrales-Yepez, Gabriela M; Komrokji, Rami S

    2016-01-01

    An important pathogenetic distinction in the classification of myeloproliferative neoplasms (MPNs) is the presence or absence of the BCR–ABL fusion gene, which encodes a unique oncogenic tyrosine kinase. The BCR–ABL fusion, caused by the formation of the Philadelphia chromosome (Ph) through translocation, constitutes the disease-initiating event in chronic myeloid leukemia. The development of successive BCR–ABL-targeted tyrosine-kinase inhibitors has led to greatly improved outcomes in patients with chronic myeloid leukemia, including high rates of complete hematologic, cytogenetic, and molecular responses. Such levels of treatment success have long been elusive for patients with Ph-negative MPNs, because of the difficulties in identifying specific driver proteins suitable as drug targets. However, in recent years an improved understanding of the complex pathobiology of classic Ph-negative MPNs, characterized by variable, overlapping multimutation profiles, has prompted the development of better and more broadly targeted (to pathway rather than protein) treatment options, particularly JAK inhibitors. In classic Ph-negative MPNs, overactivation of JAK-dependent signaling pathways is a central pathogenic mechanism, and mutually exclusive mutations in JAK2, MPL, and CALR linked to aberrant JAK activation are now recognized as key drivers of disease progression in myelofibrosis (MF). In clinical trials, the JAK1/JAK2 inhibitor ruxolitinib – the first therapy approved for MF worldwide – improved disease-related splenomegaly and symptoms independent of JAK2V617F mutational status, and prolonged survival compared with placebo or standard therapy in patients with advanced MF. In separate trials, ruxolitinib also provided comprehensive hematologic control in patients with another Ph-negative MPN – polycythemia vera. However, complete cytogenetic or molecular responses with JAK inhibitors alone are normally not observed, underscoring the need for novel

  2. Toward the rational design of protein kinase casein kinase-2 inhibitors.

    PubMed

    Sarno, Stefania; Moro, Stefano; Meggio, Flavio; Zagotto, Giuseppe; Dal Ben, Diego; Ghisellini, Paola; Battistutta, Roberto; Zanotti, Giuseppe; Pinna, Lorenzo A

    2002-01-01

    Casein kinase-2 (CK2) probably is the most pleiotropic member of the protein kinase family, with more than 200 substrates known to date. Unlike the great majority of protein kinases, which are tightly regulated enzymes, CK2 is endowed with high constitutive activity, a feature that is suspected to underlie its oncogenic potential and possible implication in viral infections. This makes CK2 an attractive target for anti-neoplastic and antiviral drugs. Here, we present an overview of our present knowledge about CK2 inhibitors, with special reference to the information drawn from two recently solved crystal structures of CK2alpha in complex with emodin and with 4,5,6,7-tetrabromo-2-azabenzimidazole (TBB), this latter being the most specific CK2 inhibitor known to date. A comparison with a series of anthraquinone and xanthenone derivatives highlights the crucial relevance of the hydroxyl group at position 3 for inhibition by emodin, and discloses the possibility of increasing the inhibitory potency by placing an electron withdrawing group at position 5. We also present mutational data corroborating the relevance of two hydrophobic residues unique to CK2, Val66 and Ile174, for the interactions with emodin and TBB, but not with the flavonoid inhibitors quercetin and fisetin. In particular, the CK2alpha mutant V66A displays 27- and 11-fold higher IC(50) values with emodin and TBB, respectively, as compared with the wild-type, while the IC(50) value with quercetin is unchanged. The data presented pave the road toward the rational design of more potent and selective inhibitors of CK2 and the generation of CK2 mutants refractory to inhibition, useful to probe the implication of CK2 in specific cellular functions. PMID:12191608

  3. Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors.

    PubMed

    Tan, Li; Wang, Jun; Tanizaki, Junko; Huang, Zhifeng; Aref, Amir R; Rusan, Maria; Zhu, Su-Jie; Zhang, Yiyun; Ercan, Dalia; Liao, Rachel G; Capelletti, Marzia; Zhou, Wenjun; Hur, Wooyoung; Kim, NamDoo; Sim, Taebo; Gaudet, Suzanne; Barbie, David A; Yeh, Jing-Ruey Joanna; Yun, Cai-Hong; Hammerman, Peter S; Mohammadi, Moosa; Jänne, Pasi A; Gray, Nathanael S

    2014-11-11

    The human FGF receptors (FGFRs) play critical roles in various human cancers, and several FGFR inhibitors are currently under clinical investigation. Resistance usually results from selection for mutant kinases that are impervious to the action of the drug or from up-regulation of compensatory signaling pathways. Preclinical studies have demonstrated that resistance to FGFR inhibitors can be acquired through mutations in the FGFR gatekeeper residue, as clinically observed for FGFR4 in embryonal rhabdomyosarcoma and neuroendocrine breast carcinomas. Here we report on the use of a structure-based drug design to develop two selective, next-generation covalent FGFR inhibitors, the FGFR irreversible inhibitors 2 (FIIN-2) and 3 (FIIN-3). To our knowledge, FIIN-2 and FIIN-3 are the first inhibitors that can potently inhibit the proliferation of cells dependent upon the gatekeeper mutants of FGFR1 or FGFR2, which confer resistance to first-generation clinical FGFR inhibitors such as NVP-BGJ398 and AZD4547. Because of the conformational flexibility of the reactive acrylamide substituent, FIIN-3 has the unprecedented ability to inhibit both the EGF receptor (EGFR) and FGFR covalently by targeting two distinct cysteine residues. We report the cocrystal structure of FGFR4 with FIIN-2, which unexpectedly exhibits a "DFG-out" covalent binding mode. The structural basis for dual FGFR and EGFR targeting by FIIN3 also is illustrated by crystal structures of FIIN-3 bound with FGFR4 V550L and EGFR L858R. These results have important implications for the design of covalent FGFR inhibitors that can overcome clinical resistance and provide the first example, to our knowledge, of a kinase inhibitor that covalently targets cysteines located in different positions within the ATP-binding pocket. PMID:25349422

  4. Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors

    PubMed Central

    Tan, Li; Wang, Jun; Tanizaki, Junko; Huang, Zhifeng; Aref, Amir R.; Rusan, Maria; Zhu, Su-Jie; Zhang, Yiyun; Ercan, Dalia; Liao, Rachel G.; Capelletti, Marzia; Zhou, Wenjun; Hur, Wooyoung; Kim, NamDoo; Sim, Taebo; Gaudet, Suzanne; Barbie, David A.; Yeh, Jing-Ruey Joanna; Yun, Cai-Hong; Hammerman, Peter S.; Mohammadi, Moosa; Jänne, Pasi A.; Gray, Nathanael S.

    2014-01-01

    The human FGF receptors (FGFRs) play critical roles in various human cancers, and several FGFR inhibitors are currently under clinical investigation. Resistance usually results from selection for mutant kinases that are impervious to the action of the drug or from up-regulation of compensatory signaling pathways. Preclinical studies have demonstrated that resistance to FGFR inhibitors can be acquired through mutations in the FGFR gatekeeper residue, as clinically observed for FGFR4 in embryonal rhabdomyosarcoma and neuroendocrine breast carcinomas. Here we report on the use of a structure-based drug design to develop two selective, next-generation covalent FGFR inhibitors, the FGFR irreversible inhibitors 2 (FIIN-2) and 3 (FIIN-3). To our knowledge, FIIN-2 and FIIN-3 are the first inhibitors that can potently inhibit the proliferation of cells dependent upon the gatekeeper mutants of FGFR1 or FGFR2, which confer resistance to first-generation clinical FGFR inhibitors such as NVP-BGJ398 and AZD4547. Because of the conformational flexibility of the reactive acrylamide substituent, FIIN-3 has the unprecedented ability to inhibit both the EGF receptor (EGFR) and FGFR covalently by targeting two distinct cysteine residues. We report the cocrystal structure of FGFR4 with FIIN-2, which unexpectedly exhibits a “DFG-out” covalent binding mode. The structural basis for dual FGFR and EGFR targeting by FIIN3 also is illustrated by crystal structures of FIIN-3 bound with FGFR4 V550L and EGFR L858R. These results have important implications for the design of covalent FGFR inhibitors that can overcome clinical resistance and provide the first example, to our knowledge, of a kinase inhibitor that covalently targets cysteines located in different positions within the ATP-binding pocket. PMID:25349422

  5. Combined effects of EGFR tyrosine kinase inhibitors and vATPase inhibitors in NSCLC cells

    SciTech Connect

    Jin, Hyeon-Ok; Hong, Sung-Eun; Kim, Chang Soon; Park, Jin-Ah; Kim, Jin-Hee; Kim, Ji-Young; Kim, Bora; Chang, Yoon Hwan; Hong, Seok-Il; Hong, Young Jun; Park, In-Chul; Lee, Jin Kyung

    2015-08-15

    Despite excellent initial clinical responses of non-small cell lung cancer (NSCLC) patients to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), many patients eventually develop resistance. According to a recent report, vacuolar H + ATPase (vATPase) is overexpressed and is associated with chemotherapy drug resistance in NSCLC. We investigated the combined effects of EGFR TKIs and vATPase inhibitors and their underlying mechanisms in the regulation of NSCLC cell death. We found that combined treatment with EGFR TKIs (erlotinib, gefitinib, or lapatinib) and vATPase inhibitors (bafilomycin A1 or concanamycin A) enhanced synergistic cell death compared to treatments with each drug alone. Treatment with bafilomycin A1 or concanamycin A led to the induction of Bnip3 expression in an Hif-1α dependent manner. Knock-down of Hif-1α or Bnip3 by siRNA further enhanced cell death induced by bafilomycin A1, suggesting that Hif-1α/Bnip3 induction promoted resistance to cell death induced by the vATPase inhibitors. EGFR TKIs suppressed Hif-1α and Bnip3 expression induced by the vATPase inhibitors, suggesting that they enhanced the sensitivity of the cells to these inhibitors by decreasing Hif-1α/Bnip3 expression. Taken together, we conclude that EGFR TKIs enhance the sensitivity of NSCLC cells to vATPase inhibitors by decreasing Hif-1α/Bnip3 expression. We suggest that combined treatment with EGFR TKIs and vATPase inhibitors is potentially effective for the treatment of NSCLC. - Highlights: • Co-treatment with EGFR TKIs and vATPase inhibitors induces synergistic cell death • EGFR TKIs enhance cell sensitivity to vATPase inhibitors via Hif-1α downregulation • Co-treatment of these inhibitors is potentially effective for the treatment of NSCLC.

  6. Tyrosine kinase inhibitors: New class of antimalarials on the horizon?

    PubMed

    Pathak, Vrushali; Colah, Roshan; Ghosh, Kanjaksha

    2015-08-01

    Development of the antimalarial drug resistant strains has currently become a major public health challenge. There is an urgent need to develop new antimalarial drugs. Tyrosine kinase inhibitors (TKIs) are receiving increasing attention as anticancer therapy. It has revolutionarised the management of CML to say the least. TKIs are also increasingly being implicated in complicated but vital life cycle of malaria parasite. Hence we tested two commonly used but different classes of TKIs (imatinib and sorafenib) in-vitro for their antimalarial activity and possible synergistic activity with existing antimalarial drug. Antimalarial activity was tested with the help of modified WHO microtest technique in-vitro for five different Plasmodium falciparum laboratory strains (3D7, Dd2, 7G8, MRC2, PKL9). Imatinib and sorafenib showed a promising antimalarial activity with all the strains. These compounds caused dose dependent inhibition of parasite maturation. The isobologram analysis of the interactions of these TKIs with standard antimalarial drug, artesunate revealed distinct patterns of synergism, additivity and antagonism at different ratios. Imatinib showed worthwhile synergism with artesunate indicating imatinib and other tyrosine kinase inhibitors may have significant antimalarial activity and can be used in combination therapy. PMID:26142327

  7. Crystal structure of inhibitor of ;#954;B kinase [beta

    SciTech Connect

    Xu, Guozhou; Lo, Yu-Chih; Li, Qiubai; Napolitano, Gennaro; Wu, Xuefeng; Jiang, Xuliang; Dreano, Michel; Karin, Michael; Wu, Hao

    2011-07-26

    Inhibitor of {kappa}B (I{kappa}B) kinase (IKK) phosphorylates I{kappa}B proteins, leading to their degradation and the liberation of nuclear factor {kappa}B for gene transcription. Here we report the crystal structure of IKK{beta} in complex with an inhibitor, at a resolution of 3.6 {angstrom}. The structure reveals a trimodular architecture comprising the kinase domain, a ubiquitin-like domain (ULD) and an elongated, {alpha}-helical scaffold/dimerization domain (SDD). Unexpectedly, the predicted leucine zipper and helix-loop-helix motifs do not form these structures but are part of the SDD. The ULD and SDD mediate a critical interaction with I{kappa}B{alpha} that restricts substrate specificity, and the ULD is also required for catalytic activity. The SDD mediates IKK{beta} dimerization, but dimerization per se is not important for maintaining IKK{beta} activity and instead is required for IKK{beta} activation. Other IKK family members, IKK{alpha}, TBK1 and IKK-i, may have a similar trimodular architecture and function.

  8. Identification of Novel Small Molecule Inhibitors of Oncogenic RET Kinase

    PubMed Central

    Moccia, Marialuisa; Liu, Qingsong; Guida, Teresa; Federico, Giorgia; Brescia, Annalisa; Zhao, Zheng; Choi, Hwan Geun; Deng, Xianming; Tan, Li; Wang, Jinhua; Billaud, Marc; Gray, Nathanael S.

    2015-01-01

    Oncogenic mutation of the RET receptor tyrosine kinase is observed in several human malignancies. Here, we describe three novel type II RET tyrosine kinase inhibitors (TKI), ALW-II-41-27, XMD15-44 and HG-6-63-01, that inhibit the cellular activity of oncogenic RET mutants at two digit nanomolar concentration. These three compounds shared a 3-trifluoromethyl-4-methylpiperazinephenyl pharmacophore that stabilizes the ‘DFG-out’ inactive conformation of RET activation loop. They blocked RET-mediated signaling and proliferation with an IC50 in the nM range in fibroblasts transformed by the RET/C634R and RET/M918T oncogenes. They also inhibited autophosphorylation of several additional oncogenic RET-derived point mutants and chimeric oncogenes. At a concentration of 10 nM, ALW-II-41-27, XMD15-44 and HG-6-63-01 inhibited RET kinase and signaling in human thyroid cancer cell lines carrying oncogenic RET alleles; they also inhibited proliferation of cancer, but not non-tumoral Nthy-ori-3-1, thyroid cells, with an IC50 in the nM range. The three compounds were capable of inhibiting the ‘gatekeeper’ V804M mutant which confers substantial resistance to established RET inhibitors. In conclusion, we have identified a type II TKI scaffold, shared by ALW-II-41-27, XMD15-44 and HG-6-63-01, that may be used as novel lead for the development of novel agents for the treatment of cancers harboring oncogenic activation of RET. PMID:26046350

  9. An evaluation of indirubin analogues as phosphorylase kinase inhibitors.

    PubMed

    Begum, Jaida; Skamnaki, Vassiliki T; Moffatt, Colin; Bischler, Nicolas; Sarrou, Josephine; Skaltsounis, Alexios-Leandros; Leonidas, Demetres D; Oikonomakos, Nikos G; Hayes, Joseph M

    2015-09-01

    Phosphorylase kinase (PhK) has been linked with a number of conditions such as glycogen storage diseases, psoriasis, type 2 diabetes and more recently, cancer (Camus et al., 2012 [6]). However, with few reported structural studies on PhK inhibitors, this hinders a structure based drug design approach. In this study, the inhibitory potential of 38 indirubin analogues have been investigated. 11 of these ligands had IC50 values in the range 0.170-0.360μM, with indirubin-3'-acetoxime (1c) the most potent. 7-Bromoindirubin-3'-oxime (13b), an antitumor compound which induces caspase-independent cell-death (Ribas et al., 2006 [20]) is revealed as a specific inhibitor of PhK (IC50=1.8μM). Binding assay experiments performed using both PhK-holo and PhK-γtrnc confirmed the inhibitory effects to arise from binding at the kinase domain (γ subunit). High level computations using QM/MM-PBSA binding free energy calculations were in good agreement with experimental binding data, as determined using statistical analysis, and support binding at the ATP-binding site. The value of a QM description for the binding of halogenated ligands exhibiting σ-hole effects is highlighted. A new statistical metric, the 'sum of the modified logarithm of ranks' (SMLR), has been defined which measures performance of a model for both the "early recognition" (ranking earlier/higher) of active compounds and their relative ordering by potency. Through a detailed structure activity relationship analysis considering other kinases (CDK2, CDK5 and GSK-3α/β), 6'(Z) and 7(L) indirubin substitutions have been identified to achieve selective PhK inhibition. The key PhK binding site residues involved can also be targeted using other ligand scaffolds in future work. PMID:26364215

  10. Src kinase inhibitors induce apoptosis and mediate cell cycle arrest in lymphoma cells.

    PubMed

    Nowak, Daniel; Boehrer, Simone; Hochmuth, Simone; Trepohl, Bettina; Hofmann, Wencke; Hoelzer, Dieter; Hofmann, Wolf-Karsten; Mitrou, Paris S; Ruthardt, Martin; Chow, Kai Uwe

    2007-10-01

    Src kinases are involved in multiple cellular contexts such as proliferation, adhesion, tumor invasiveness, angiogenesis, cell cycle control and apoptosis. We here demonstrate that three newly developed dual selective Src/Abl kinase inhibitors (SrcK-I) (AZM559756, AZD0530 and AZD0424) are able to induce apoptosis and cell cycle arrest in BCR-ABL, c-KIT and platelet-derived growth factor-negative lymphoma cell lines. Treatment of DOHH-2, WSU-NHL, Raji, Karpas-299, HUT78 and Jurkat cells with SrcK-I revealed that the tested substances were effective on these parameters in the cell lines DOHH-2 and WSU-NHL, whereas the other tested cell lines remained unaffected. Phosphorylation of Lyn and in particular Lck were affected most heavily by treatment with the SrcK-I. Extrinsic as well as intrinsic apoptosis pathways were activated and elicited unique expressional patterns of apoptosis-relevant proteins such as downregulation of survivin, Bcl-XL and c-FLIP. Protein levels of c-abl were downregulated and Akt phosphorylation was decreased by treatment with SrcK-I. Basal expression levels of c-Myc were notably lower in sensitive cell lines as compared with nonsensitive cell lines, possibly providing an explanation for sensitivity versus resistance against these novel substances. This study provides the first basis for establishing novel SrcK-I as weapons in the arsenal against lymphoma cells. PMID:17704648

  11. HPLC-DAD protein kinase inhibitor analysis in human serum.

    PubMed

    Dziadosz, Marek; Lessig, Rüdiger; Bartels, Heidemarie

    2012-04-15

    We here describe an HPLC-DAD method to analyse different protein kinase inhibitors. Potential applications of this method are pharmacokinetic studies and therapeutic drug monitoring. Optimised chromatography conditions resulted in a very good separation of seven inhibitors (vatalanib, bosutinib, canertinib, tandutinib, pazopanib, dasatinib - internal standard and erlotinib). The good sensitivity makes this method competitive with LC/MS/MS. The separation was performed with a Lichrospher 100-5 RP8, 250 mm × 4 mm column maintained at 30 ± 1 °C, and with a mobile phase of 0.05 M H(3)PO(4)/KH(2)PO(4) (pH=2.3)-acetonitrile (7:3, v/v) at a flow rate of 0.7 mL/min. A simple and fast sample preparation sequence with liquid-liquid extraction led to good recoveries (73-90%) of all analytes. The recovery hardly reached 50% only for pazopanib. This method can also be used for targeted protein kinase inhibitor quantification. A perfect linearity in the validated range (20-10,000 ng/mL) and an LOQ of 20 ng/mL were achieved. The relative standard deviations and accuracies of all examined drug concentrations gave values much lower than 15% both for between- and within-batch calculations. All analysed PKIs were stable for 6 months in a 1mg/mL dimethyl sulfoxide stock solution. Vatalanib, bosutinib and erlotinib were also stable in human serum in the whole examined concentration range. PMID:22425385

  12. Protein kinase inhibitors in the treatment of inflammatory and autoimmune diseases

    PubMed Central

    Patterson, H; Nibbs, R; McInnes, I; Siebert, S

    2014-01-01

    Protein kinases mediate protein phosphorylation, which is a fundamental component of cell signalling, with crucial roles in most signal transduction cascades: from controlling cell growth and proliferation to the initiation and regulation of immunological responses. Aberrant kinase activity is implicated in an increasing number of diseases, with more than 400 human diseases now linked either directly or indirectly to protein kinases. Protein kinases are therefore regarded as highly important drug targets, and are the subject of intensive research activity. The success of small molecule kinase inhibitors in the treatment of cancer, coupled with a greater understanding of inflammatory signalling cascades, has led to kinase inhibitors taking centre stage in the pursuit for new anti-inflammatory agents for the treatment of immune-mediated diseases. Herein we discuss the main classes of kinase inhibitors; namely Janus kinase (JAK), mitogen-activated protein kinase (MAPK) and spleen tyrosine kinase (Syk) inhibitors. We provide a mechanistic insight into how these inhibitors interfere with kinase signalling pathways and discuss the clinical successes and failures in the implementation of kinase-directed therapeutics in the context of inflammatory and autoimmune disorders. PMID:24313320

  13. Small-molecule inhibitors of IκB kinase (IKK) and IKK-related kinases.

    PubMed

    Llona-Minguez, Sabin; Baiget, Jessica; Mackay, Simon P

    2013-07-01

    The transcription factors NF-κB and IFN control important signaling cascades and mediate the expression of a number of important pro-inflammatory cytokines, adhesion molecules, growth factors and anti-apoptotic survival proteins. IκB kinase (IKK) and IKK-related kinases (IKKε and TBK1) are key regulators of these biological pathways and, as such, modulators of these enzymes may be useful in the treatment of inflammatory diseases and cancer. We have reviewed the most recent IKK patent literature (2008-2012), added publications of interest overlooked in previous patent reviews and identified all the players involved in small-molecule inhibitors of the IKKs. This will provide the reader with a decisive summary of the IKK arena, a field that has reached maturity over a decade of research. PMID:24237125

  14. Cheminfomatic-based Drug Discovery of Human Tyrosine Kinase Inhibitors.

    PubMed

    Reid, Terry-Elinor; Fortunak, Joseph M; Wutoh, Anthony; Simon Wang, Xiang

    2016-01-01

    Receptor Tyrosine Kinases (RTKs) are essential components for regulating cell-cell signaling and communication events in cell growth, proliferation, differentiation, survival and metabolism. Deregulation of RTKs and their associated signaling pathways can lead to a wide variety of human diseases such as immunodeficiency, diabetes, arterosclerosis, psoriasis and cancer. Thus RTKs have become one of the most important drug targets families in recent decade. Pharmaceutical companies have dedicated their research efforts towards the discovery of small-molecule inhibitors of RTKs, many of which had been approved by the U.S. Food and Drug Administration (US FDA) or are currently in clinical trials. The great successes in the development of small-molecule inhibitors of RTKs are largely attributed to the use of modern cheminformatic approaches to identifying lead scaffolds. Those include the quantitative structure-activity relationship (QSAR) modeling, as well as the structure-, and ligand-based pharmacophore modeling techniques in this case. Herein we inspected the literature thoroughly in an effort to conduct a comparative analysis of major findings regarding the essential structure-activity relationships (SARs)/pharmacophore features of known active RTK inhibitors, most of which were collected from cheminformatic modeling approaches. PMID:26369823

  15. Bruton's tyrosine kinase inhibitors in chronic lymphocytic leukemia and lymphoma.

    PubMed

    Varma, Gaurav; Johnson, Tyler P; Advani, Ranjana H

    2016-07-01

    The development of Bruton's tyrosine kinase (BTK) inhibitors and their introduction into clinical practice represent a major advance in the treatment of chronic lymphocytic leukemia (CLL) and other B-cell lymphomas. Although ibrutinib is the only BTK inhibitor that has been approved by the US Food and Drug Administration, several others are under investigation. Ibrutinib is currently approved for use in relapsed/refractory CLL, CLL with 17p deletion (del[17p]), relapsed or refractory mantle cell lymphoma, and Waldenström macroglobulinemia. Although it is clear that ibrutinib has altered treatment paradigms and outcomes in these diseases, several questions remain regarding (1) its role in frontline vs salvage therapy; (2) its use as a single agent vs in combination with biologic agents, other small molecules, or traditional chemoimmunotherapy; (3) the optimal duration of treatment; and (4) the treatment of patients who cannot tolerate or have disease resistant to ibrutinib. Because sparse clinical data are available on other BTK inhibitors, it is unclear at present whether their clinical efficacy and toxicity will differ from those of ibrutinib. PMID:27379948

  16. Mutations in G protein beta subunits promote transformation and kinase inhibitor resistance

    PubMed Central

    Yoda, Akinori; Adelmant, Guillaume; Tamburini, Jerome; Chapuy, Bjoern; Shindoh, Nobuaki; Yoda, Yuka; Weigert, Oliver; Kopp, Nadja; Wu, Shuo-Chieh; Kim, Sunhee S.; Liu, Huiyun; Tivey, Trevor; Christie, Amanda L.; Elpek, Kutlu G.; Card, Joseph; Gritsman, Kira; Gotlib, Jason; Deininger, Michael W.; Makishima, Hideki; Turley, Shannon J.; Javidi-Sharifi, Nathalie; Maciejewski, Jaroslaw P.; Jaiswal, Siddhartha; Ebert, Benjamin L.; Rodig, Scott J.; Tyner, Jeffrey W.; Marto, Jarrod A.; Weinstock, David M.; Lane, Andrew A.

    2014-01-01

    Activating mutations of G protein alpha subunits (Gα) occur in 4–5% of all human cancers1 but oncogenic alterations in beta subunits (Gβ) have not been defined. Here we demonstrate that recurrent mutations in the Gβ proteins GNB1 and GNB2 confer cytokine-independent growth and activate canonical G protein signaling. Multiple mutations in GNB1 affect the protein interface that binds Gα subunits as well as downstream effectors, and disrupt Gα-Gβγ interactions. Different mutations in Gβ proteins clustered to some extent based on lineage; for example, all eleven GNB1 K57 mutations were in myeloid neoplasms while 7 of 8 GNB1 I80 mutations were in B cell neoplasms. Expression of patient-derived GNB1 alleles in Cdkn2a-deficient bone marrow followed by transplantation resulted in either myeloid or B cell malignancies. In vivo treatment with the dual PI3K/mTOR inhibitor BEZ235 suppressed GNB1-induced signaling and markedly increased survival. In several human tumors, GNB1 mutations co-occurred with oncogenic kinase alterations, including BCR/ABL, JAK2 V617F and BRAF V600K. Co-expression of patient-derived GNB1 alleles with these mutant kinases resulted in inhibitor resistance in each context. Thus, GNB1 and GNB2 mutations confer transformed and resistance phenotypes across a range of human tumors and may be targetable with inhibitors of G protein signaling. PMID:25485910

  17. Management of Chronic Myeloid Leukemia Patients Resistant to Tyrosine Kinase Inhibitors Treatment

    PubMed Central

    Wieczorek, Agnieszka; Uharek, Lutz

    2015-01-01

    Chronic myeloid leukemia (CML) is a myeloproliferative disorder associated with a characteristic chromosomal translocation called the Philadelphia chromosome. This oncogene is generated by the fusion of breakpoint cluster region (BCR) and Abelson leukemia virus (ABL) genes and encodes a novel fusion gene translating into a protein with constitutive tyrosine kinase activity. The discovery and introduction of tyrosine kinase inhibitors (TKIs) irreversibly changed the landscape of CML treatment, leading to dramatic improvement in long-term survival rates. The majority of patients with CML in the chronic phase have a life expectancy comparable with that of healthy age-matched individuals. Although an enormous therapeutic improvement has been accomplished, there are still some unresolved issues in the treatment of patients with CML. One of the most important problems is based on the fact that TKIs can efficiently target proliferating mature cells but do not eradicate leukemic stem cells, allowing persistence of the malignant clone. Owing to the resistance mechanisms arising during the course of the disease, treatment with most of the approved BCR-ABL1 TKIs may become ineffective in a proportion of patients. This article highlights the different molecular mechanisms of acquired resistance being developed during treatment with TKIs as well as the pharmacological strategies to overcome it. Moreover, it gives an overview of novel drugs and therapies that are aiming in overcoming drug resistance, loss of response, and kinase domain mutations. PMID:26917943

  18. Identification of “Preferred” Human Kinase Inhibitors for Sleeping Sickness Lead Discovery. Are Some Kinases Better than Others for Inhibitor Repurposing?

    PubMed Central

    2016-01-01

    A kinase-targeting cell-based high-throughput screen (HTS) against Trypanosoma brucei was recently reported, and this screening set included the Published Kinase Inhibitor Set (PKIS). From the PKIS was identified 53 compounds with pEC50 ≥ 6. Utilizing the published data available for the PKIS, a statistical analysis of these active antiparasitic compounds was performed, allowing identification of a set of human kinases having inhibitors that show a high likelihood for blocking T. brucei cellular proliferation in vitro. This observation was confirmed by testing other established inhibitors of these human kinases and by mining past screening campaigns at GlaxoSmithKline. Overall, although the parasite targets of action are not known, inhibitors of this set of human kinases displayed an enhanced hit rate relative to a random kinase-targeting HTS campaign, suggesting that repurposing efforts should focus primarily on inhibitors of these specific human kinases. We therefore term this statistical analysis-driven approach “preferred lead repurposing”. PMID:26998514

  19. The Next Wave of EGFR Tyrosine Kinase Inhibitors Enter the Clinic.

    PubMed

    Politi, Katerina; Ayeni, Deborah; Lynch, Thomas

    2015-06-01

    The T790M mutation in EGFR accounts for approximately half of all lung cancer cases with acquired resistance to the current clinical EGFR tyrosine kinase inhibitors. In tyrosine kinase inhibitor-resistant lung tumors, rociletinib and AZD9291 are highly active when T790M is present and modestly active when T790M is absent. PMID:26058074

  20. Discovery of CX-6258. A Potent, Selective, and Orally Efficacious pan-Pim Kinases Inhibitor.

    PubMed

    Haddach, Mustapha; Michaux, Jerome; Schwaebe, Michael K; Pierre, Fabrice; O'Brien, Sean E; Borsan, Cosmin; Tran, Joe; Raffaele, Nicholas; Ravula, Suchitra; Drygin, Denis; Siddiqui-Jain, Adam; Darjania, Levan; Stansfield, Ryan; Proffitt, Chris; Macalino, Diwata; Streiner, Nicole; Bliesath, Joshua; Omori, May; Whitten, Jeffrey P; Anderes, Kenna; Rice, William G; Ryckman, David M

    2012-02-01

    Structure-activity relationship analysis in a series of 3-(5-((2-oxoindolin-3-ylidene)methyl)furan-2-yl)amides identified compound 13, a pan-Pim kinases inhibitor with excellent biochemical potency and kinase selectivity. Compound 13 exhibited in vitro synergy with chemotherapeutics and robust in vivo efficacy in two Pim kinases driven tumor models. PMID:24900437

  1. Mechanisms of resistance to EGFR tyrosine kinase inhibitors

    PubMed Central

    Huang, Lihua; Fu, Liwu

    2015-01-01

    Since the discovery that non-small cell lung cancer (NSCLC) is driven by epidermal growth factor receptor (EGFR) mutations, the EGFR tyrosine kinase inhibitors (EGFR-TKIs, e.g., gefitinib and elrotinib) have been effectively used for clinical treatment. However, patients eventually develop drug resistance. Resistance to EGFR-TKIs is inevitable due to various mechanisms, such as the secondary mutation (T790M), activation of alternative pathways (c-Met, HGF, AXL), aberrance of the downstream pathways (K-RAS mutations, loss of PTEN), impairment of the EGFR-TKIs-mediated apoptosis pathway (BCL2-like 11/BIM deletion polymorphism), histologic transformation, ATP binding cassette (ABC) transporter effusion, etc. Here we review and summarize the known resistant mechanisms to EGFR-TKIs and provide potential targets for development of new therapeutic strategies. PMID:26579470

  2. Combined effects of EGFR tyrosine kinase inhibitors and vATPase inhibitors in NSCLC cells.

    PubMed

    Jin, Hyeon-Ok; Hong, Sung-Eun; Kim, Chang Soon; Park, Jin-Ah; Kim, Jin-Hee; Kim, Ji-Young; Kim, Bora; Chang, Yoon Hwan; Hong, Seok-Il; Hong, Young Jun; Park, In-Chul; Lee, Jin Kyung

    2015-08-15

    Despite excellent initial clinical responses of non-small cell lung cancer (NSCLC) patients to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), many patients eventually develop resistance. According to a recent report, vacuolar H+ ATPase (vATPase) is overexpressed and is associated with chemotherapy drug resistance in NSCLC. We investigated the combined effects of EGFR TKIs and vATPase inhibitors and their underlying mechanisms in the regulation of NSCLC cell death. We found that combined treatment with EGFR TKIs (erlotinib, gefitinib, or lapatinib) and vATPase inhibitors (bafilomycin A1 or concanamycin A) enhanced synergistic cell death compared to treatments with each drug alone. Treatment with bafilomycin A1 or concanamycin A led to the induction of Bnip3 expression in an Hif-1α dependent manner. Knock-down of Hif-1α or Bnip3 by siRNA further enhanced cell death induced by bafilomycin A1, suggesting that Hif-1α/Bnip3 induction promoted resistance to cell death induced by the vATPase inhibitors. EGFR TKIs suppressed Hif-1α and Bnip3 expression induced by the vATPase inhibitors, suggesting that they enhanced the sensitivity of the cells to these inhibitors by decreasing Hif-1α/Bnip3 expression. Taken together, we conclude that EGFR TKIs enhance the sensitivity of NSCLC cells to vATPase inhibitors by decreasing Hif-1α/Bnip3 expression. We suggest that combined treatment with EGFR TKIs and vATPase inhibitors is potentially effective for the treatment of NSCLC. PMID:25981168

  3. Discovery of a Selective Aurora A Kinase Inhibitor by Virtual Screening.

    PubMed

    Kilchmann, Falco; Marcaida, Maria J; Kotak, Sachin; Schick, Thomas; Boss, Silvan D; Awale, Mahendra; Gönczy, Pierre; Reymond, Jean-Louis

    2016-08-11

    Here we report the discovery of a selective inhibitor of Aurora A, a key regulator of cell division and potential anticancer target. We used the atom category extended ligand overlap score (xLOS), a 3D ligand-based virtual screening method recently developed in our group, to select 437 shape and pharmacophore analogs of reference kinase inhibitors. Biochemical screening uncovered two inhibitor series with scaffolds unprecedented among kinase inhibitors. One of them was successfully optimized by structure-based design to a potent Aurora A inhibitor (IC50 = 2 nM) with very high kinome selectivity for Aurora kinases. This inhibitor locks Aurora A in an inactive conformation and disrupts binding to its activator protein TPX2, which impairs Aurora A localization at the mitotic spindle and induces cell division defects. This phenotype can be rescued by inhibitor-resistant Aurora A mutants. The inhibitor furthermore does not induce Aurora B specific effects in cells. PMID:27391133

  4. Small Molecule Substrate Phosphorylation Site Inhibitors of Protein Kinases: Approaches and Challenges

    PubMed Central

    2015-01-01

    Protein kinases are important mediators of cellular communication and attractive drug targets for many diseases. Although success has been achieved with developing ATP-competitive kinase inhibitors, the disadvantages of ATP-competitive inhibitors have led to increased interest in targeting sites outside of the ATP binding pocket. Kinase inhibitors with substrate-competitive, ATP-noncompetitive binding modes are promising due to the possibility of increased selectivity and better agreement between biochemical and in vitro potency. However, the difficulty of identifying these types of inhibitors has resulted in significantly fewer small molecule substrate phosphorylation site inhibitors being reported compared to ATP-competitive inhibitors. This review surveys reported substrate phosphorylation site inhibitors and methods that can be applied to the discovery of such inhibitors, including a discussion of the challenges inherent to these screening methods. PMID:25494294

  5. Bumped kinase inhibitor prohibits egression in Babesia bovis.

    PubMed

    Pedroni, Monica J; Vidadala, Rama Subba Rao; Choi, Ryan; Keyloun, Katelyn R; Reid, Molly C; Murphy, Ryan C; Barrett, Lynn K; Van Voorhis, Wesley C; Maly, Dustin J; Ojo, Kayode K; Lau, Audrey O T

    2016-01-15

    Babesiosis is a global zoonotic disease acquired by the bite of a Babesia-infected Ixodes tick or through blood transfusion with clinical relevance affecting humans and animals. In this study, we evaluated a series of small molecule compounds that have previously been shown to target specific apicomplexan enzymes in Plasmodium, Toxoplasma and Cryptosporidium. The compounds, bumped kinase inhibitors (BKIs), have strong therapeutic potential targeting apicomplexa-specific calcium dependent protein kinases (CDPKs). We investigated if BKIs also show inhibitory activities against piroplasms such as Babesia. Using a subset of BKIs that have promising inhibitory activities to Plasmodium and Toxoplasma, we determined that their actions ranged from 100% and no inhibition against Babesia bovis blood stages. One specific BKI, RM-1-152, showed complete inhibition against B. bovis within 48h and was the only BKI that showed noticeable phenotypic changes to the parasites. Focusing our study on this BKI, we further demonstrated that RM-1-152 has Babesia-static activity and involves the prohibition of merozoite egress while replication and re-invasion of host cells are unaffected. The distinct, abnormal phenotype induced by RM-1-152 suggests that this BKI can be used to investigate less studied cellular processes such as egression in piroplasm. PMID:26790733

  6. Aurora Kinases and Potential Medical Applications of Aurora Kinase Inhibitors: A Review

    PubMed Central

    Gavriilidis, Paschalis; Giakoustidis, Alexandros; Giakoustidis, Dimitrios

    2015-01-01

    Aurora kinases (AKs) represent a novel group of serine/threonine kinases. They were originally described in 1995 by David Glover in the course of studies of mutant alleles characterized with unusual spindle pole configuration in Drosophila melanogaster. Thus far, three AKs A, B, and C have been discovered in human healthy and neoplastic cells. Each one locates in different subcellular locations and they are all nuclear proteins. AKs are playing an essential role in mitotic events such as monitoring of the mitotic checkpoint, creation of bipolar mitotic spindle and alignment of centrosomes on it, also regulating centrosome separation, bio-orientation of chromosomes and cytokinesis. Any inactivation of them can have catastrophic consequences on mitotic events of spindle formation, alignment of centrosomes and cytokinesis, resulting in apoptosis. Overexpression of AKs has been detected in diverse solid and hematological cancers and has been linked with a dismal prognosis. After discovery and identification of the first aurora kinase inhibitor (AKI) ZM447439 as a potential drug for targeted therapy in cancer treatment, approximately 30 AKIs have been introduced in cancer treatment. PMID:26345296

  7. A mitogen-activated protein kinase kinase inhibitor induced compound skin toxicity with oedema in metastatic malignant melanoma.

    PubMed

    Thomas, C L; Mortimer, P S; Larkin, J M; Basu, T N; Gore, M E; Fearfield, L

    2016-04-01

    We report three cases of skin toxicity associated with oral mitogen-activated protein kinase kinase (MEK) inhibitor treatment for metastatic malignant melanoma (MM). All three patients developed oedema, and a single patient experienced eyelash trichomegaly. This is the first known report of eyelash trichomegaly secondary to MEK inhibitor use. We also discuss possible mechanisms for MEK inhibitor-associated oedema development. This series supports the role of the dermatologist in the screening and management of patients in the rapidly developing oncology setting, as new targeted agents can give rise to marked skin toxicity. PMID:26411345

  8. Structural Mechanisms Determining Inhibition of the Collagen Receptor DDR1 by Selective and Multi-Targeted Type II Kinase Inhibitors

    PubMed Central

    Canning, Peter; Tan, Li; Chu, Kiki; Lee, Sam W.; Gray, Nathanael S.; Bullock, Alex N.

    2014-01-01

    The discoidin domain receptors (DDRs), DDR1 and DDR2, form a unique subfamily of receptor tyrosine kinases that are activated by the binding of triple-helical collagen. Excessive signaling by DDR1 and DDR2 has been linked to the progression of various human diseases, including fibrosis, atherosclerosis and cancer. We report the inhibition of these unusual receptor tyrosine kinases by the multi-targeted cancer drugs imatinib and ponatinib, as well as the selective type II inhibitor DDR1-IN-1. Ponatinib is identified as the more potent molecule, which inhibits DDR1 and DDR2 with an IC50 of 9 nM. Co-crystal structures of human DDR1 reveal a DFG-out conformation (DFG, Asp-Phe-Gly) of the kinase domain that is stabilized by an unusual salt bridge between the activation loop and αD helix. Differences to Abelson kinase (ABL) are observed in the DDR1 P-loop, where a β-hairpin replaces the cage-like structure of ABL. P-loop residues in DDR1 that confer drug resistance in ABL are therefore accommodated outside the ATP pocket. Whereas imatinib and ponatinib bind potently to both the DDR and ABL kinases, the hydrophobic interactions of the ABL P-loop appear poorly satisfied by DDR1-IN-1 suggesting a structural basis for its DDR1 selectivity. Such inhibitors may have applications in clinical indications of DDR1 and DDR2 overexpression or mutation, including lung cancer. PMID:24768818

  9. Comparative analysis of the human and zebrafish kinomes: focus on the development of kinase inhibitors

    PubMed Central

    Wlodarchak, Nathan; Tariq, Rehan; Striker, Rob

    2016-01-01

    Targeting kinases with semi-selective kinase inhibitors is one of the most successful drug development strategies of the 21st century. Zebrafish have become an increasingly useful model for pharmaceutical development. Water-soluble compounds can be screened for zebrafish phenotypes in a high throughput format against a living vertebrate, and cell-signaling events can be imaged in transparent living fish. Despite zebrafish being a more relevant model than more distantly related systems such as the well-annotated kinome of yeast and drosophila, there is no comparative analysis of the human and zebrafish kinome. Furthermore most approved kinase inhibitors, often called ‘DFG in’ ATP competitive inhibitors, act on conserved active site residues in the kinase. Since the active site residues can be identified by examining the primary sequence, primary sequence identity can be a rough guide as to whether a particular inhibitor will have activity against another kinase. There is a need to evaluate the utility of zebrafish as a drug development model for active site inhibitors of kinases. Here we offer a systematic comparison of the catalytic domains of classical human kinases with the catalytic domains of all annotated zebrafish kinases. We found a high degree of identity between the catalytic domains of most human kinases and their zebrafish homologs, and we ranked 504 human kinase catalytic domains by order of similarity. We found only 23 human kinases with no easily recognizable homologous zebrafish catalytic domain. On the other hand we found 78 zebrafish kinase catalytic domains with no close human counterpart. These ‘additional kinase active sites’ could represent potential mediators of zebrafish toxicity that may not be relevant to human kinase inhibitors. We used two clinically approved human kinase inhibitors, one targeting a highly homologous target and one targeting a lesser homologous target, and we compared the known human kinase target structures with

  10. Genetic determinants of aromatase inhibitor-related arthralgia: the B-ABLE cohort study.

    PubMed

    Garcia-Giralt, Natalia; Rodríguez-Sanz, María; Prieto-Alhambra, Daniel; Servitja, Sonia; Torres-Del Pliego, Elisa; Balcells, Susana; Albanell, Joan; Grinberg, Daniel; Diez-Perez, Adolfo; Tusquets, Ignasi; Nogués, Xavier

    2013-07-01

    A major side effect of aromatase inhibitor (AI) therapy is AI-related arthralgia (AIA), which often leads to therapy discontinuation. We aimed to identify genetic variants associated with AIA and therapy discontinuation in the first year of AI treatment. Our prospective cohort study included 343 postmenopausal women with early breast cancer starting AI therapy. Single nucleotide polymorphisms (SNPs) in candidate genes involved in estrogen and vitamin D signaling were selected. Univariate and multivariate linear/logistic regressions were fitted in order to asses the association between studied SNPs and AIA intensity (visual analogic scale score) at 3 and 12 months of follow-up, worsening pain, and therapy discontinuation. We also tested for a priori-defined interactions by introducing multiplicative terms in the regression equations. SNPs in CYP17A1 and VDR genes appeared significantly associated with AIA (P = 0.003, P = 0.012, respectively). One SNP in CYP27B1 gene was related to therapy discontinuation [P = 0.02; OR 0.29 (0.09-0.99)]. We revealed interactions between CYP27B1 and both CYP17A1 (P = 0.01) and VDR SNPs (P = 0.06). Furthermore, an additive effect on pain intensity was shown for unfavorable alleles, with two points higher mean absolute pain increase and up to 5.3-fold higher risk of worsening pain compared to favorable genotypes. SNPs in CYP17A1, VDR, and CYP27B1 genes predict the risk of AIA. Their determination would be useful to trigger the monitoring strategies in women at risk of therapy discontinuation. PMID:23868189

  11. A chemoproteomic method for identifying cellular targets of covalent kinase inhibitors

    PubMed Central

    Chen, Ying-Chu; Zhang, Chao

    2016-01-01

    Protein kinases are attractive drug targets for numerous human diseases including cancers, diabetes and neurodegeneration. A number of kinase inhibitors that covalently target a cysteine residue in their target kinases have recently entered use in the cancer clinic. Despite the advantages of covalent kinases inhibitors, their inherent reactivity can lead to non-specific binding to other cellular proteins and cause off- target effects in cells. It is thus essential to determine the identity of these off targets in order to fully account for the phenotype and to improve the selectivity and efficacy of covalent inhibitors. Herein we present a detailed protocol for a chemoproteomic method to enrich and identify cellular targets of covalent kinase inhibitors. PMID:27551330

  12. Protein kinase small molecule inhibitors for rheumatoid arthritis: Medicinal chemistry/clinical perspectives

    PubMed Central

    Malemud, Charles J; Blumenthal, David E

    2014-01-01

    Medicinal chemistry strategies have contributed to the development, experimental study of and clinical trials assessment of the first type of protein kinase small molecule inhibitor to target the Janus kinase/Signal Transducers and Activators of Transcription (JAK/STAT) signaling pathway. The orally administered small molecule inhibitor, tofacitinib, is the first drug to target the JAK/STAT pathway for entry into the armamentarium of the medical therapy of rheumatoid arthritis. The introduction of tofacitinib into general rheumatologic practice coupled with increasing understanding that additional cellular signal transduction pathways including the mitogen-activated protein kinase and phosphatidylinositide-3-kinase/Akt/mammalian target of rapamycin pathways as well as spleen tyrosine kinase also contribute to immune-mediated inflammatory in rheumatoid arthritis makes it likely that further development of orally administered protein kinase small molecule inhibitors for rheumatoid arthritis will occur in the near future. PMID:25232525

  13. Benzothiophene inhibitors of MK2. Part 2: Improvements in kinase selectivity and cell potency

    SciTech Connect

    Anderson, David R.; Meyers, Marvin J.; Kurumbail, Ravi G.; Caspers, Nicole; Poda, Gennadiy I.; Long, Scott A.; Pierce, Betsy S.; Mahoney, Matthew W.; Mourey, Robert J.; Parikh, Mihir D.; Pfizer

    2010-10-01

    Optimization of kinase selectivity for a set of benzothiophene MK2 inhibitors provided analogs with potencies of less than 500 nM in a cell based assay. The selectivity of the inhibitors can be rationalized by examination of X-ray crystal structures of inhibitors bound to MK2.

  14. Novel mutant-selective EGFR kinase inhibitors against EGFR T790M

    SciTech Connect

    Zhou, Wenjun; Ercan, Dalia; Chen, Liang; Yun, Cai-Hong; Li, Danan; Capelletti, Marzia; Cortot, Alexis B.; Chirieac, Lucian; Iacob, Roxana E.; Padera, Robert; Engen, John R.; Wong, Kwok-Kin; Eck, Michael J.; Gray, Nathanael S.; Jänne, Pasi A.

    2010-01-12

    The clinical efficacy of epidermal growth factor receptor (EGFR) kinase inhibitors in EGFR-mutant non-small-cell lung cancer (NSCLC) is limited by the development of drug-resistance mutations, including the gatekeeper T790M mutation. Strategies targeting EGFR T790M with irreversible inhibitors have had limited success and are associated with toxicity due to concurrent inhibition of wild-type EGFR. All current EGFR inhibitors possess a structurally related quinazoline-based core scaffold and were identified as ATP-competitive inhibitors of wild-type EGFR. Here we identify a covalent pyrimidine EGFR inhibitor by screening an irreversible kinase inhibitor library specifically against EGFR T790M. These agents are 30- to 100-fold more potent against EGFR T790M, and up to 100-fold less potent against wild-type EGFR, than quinazoline-based EGFR inhibitors in vitro. They are also effective in murine models of lung cancer driven by EGFR T790M. Co-crystallization studies reveal a structural basis for the increased potency and mutant selectivity of these agents. These mutant-selective irreversible EGFR kinase inhibitors may be clinically more effective and better tolerated than quinazoline-based inhibitors. Our findings demonstrate that functional pharmacological screens against clinically important mutant kinases represent a powerful strategy to identify new classes of mutant-selective kinase inhibitors.

  15. Combined HSP90 and kinase inhibitor therapy: Insights from The Cancer Genome Atlas.

    PubMed

    Schwartz, Harvey; Scroggins, Brad; Zuehlke, Abbey; Kijima, Toshiki; Beebe, Kristin; Mishra, Alok; Neckers, Len; Prince, Thomas

    2015-09-01

    The merging of knowledge from genomics, cellular signal transduction and molecular evolution is producing new paradigms of cancer analysis. Protein kinases have long been understood to initiate and promote malignant cell growth and targeting kinases to fight cancer has been a major strategy within the pharmaceutical industry for over two decades. Despite the initial success of kinase inhibitors (KIs), the ability of cancer to evolve resistance and reprogram oncogenic signaling networks has reduced the efficacy of kinase targeting. The molecular chaperone HSP90 physically supports global kinase function while also acting as an evolutionary capacitor. The Cancer Genome Atlas (TCGA) has compiled a trove of data indicating that a large percentage of tumors overexpress or possess mutant kinases that depend on the HSP90 molecular chaperone complex. Moreover, the overexpression or mutation of parallel activators of kinase activity (PAKA) increases the number of components that promote malignancy and indirectly associate with HSP90. Therefore, targeting HSP90 is predicted to complement kinase inhibitors by inhibiting oncogenic reprogramming and cancer evolution. Based on this hypothesis, consideration should be given by both the research and clinical communities towards combining kinase inhibitors and HSP90 inhibitors (H90Ins) in combating cancer. The purpose of this perspective is to reflect on the current understanding of HSP90 and kinase biology as well as promote the exploration of potential synergistic molecular therapy combinations through the utilization of The Cancer Genome Atlas. PMID:26070366

  16. Kinase Pathway Dependence in Primary Human Leukemias Determined by Rapid Inhibitor Screening

    PubMed Central

    Tyner, Jeffrey W.; Yang, Wayne F.; Bankhead, Armand; Fan, Guang; Fletcher, Luke B.; Bryant, Jade; Glover, Jason M.; Chang, Bill H.; Spurgeon, Stephen E.; Fleming, William H.; Kovacsovics, Tibor; Gotlib, Jason R.; Oh, Stephen T.; Deininger, Michael W.; Zwaan, C. Michel; Den Boer, Monique L.; van den Heuvel-Eibrink, Marry M.; O’Hare, Thomas; Druker, Brian J.; Loriaux, Marc M.

    2012-01-01

    Kinases are dysregulated in most cancer but the frequency of specific kinase mutations is low, indicating a complex etiology in kinase dysregulation. Here we report a strategy to rapidly identify functionally important kinase targets, irrespective of the etiology of kinase pathway dysregulation, ultimately enabling a correlation of patient genetic profiles to clinically effective kinase inhibitors. Our methodology assessed the sensitivity of primary leukemia patient samples to a panel of 66 small-molecule kinase inhibitors over 3 days. Screening of 151 leukemia patient samples revealed a wide diversity of drug sensitivities, with 70% of the clinical specimens exhibiting hypersensitivity to one or more drugs. From this data set, we developed an algorithm to predict kinase pathway dependence based on analysis of inhibitor sensitivity patterns. Applying this algorithm correctly identified pathway dependence in proof-of-principle specimens with known oncogenes, including a rare FLT3 mutation outside regions covered by standard molecular diagnostic tests. Interrogation of all 151 patient specimens with this algorithm identified a diversity of gene targets and signaling pathways that could aid prioritization of deep sequencing data sets, permitting a cumulative analysis to understand kinase pathway dependence within leukemia subsets. In a proof-of-principle case, we showed that in vitro drug sensitivity could predict both a clinical response and the development of drug resistance. Taken together, our results suggested that drug target scores derived from a comprehensive kinase inhibitor panel could predict pathway dependence in cancer cells while simultaneously identifying potential therapeutic options. PMID:23087056

  17. Discovery of Bivalent Kinase Inhibitors via Enzyme-Templated Fragment Elaboration

    PubMed Central

    2015-01-01

    We have employed novel fragment-based screening methodology to discover bivalent kinase inhibitors with improved selectivity. Starting from a low molecular weight promiscuous kinase inhibitor, we appended a thiol for subsequent reaction with a library of acrylamide electrophiles. Enzyme-templated screening was performed to identify acrylamides that assemble into bivalent inhibitors of c-Src kinase. Upon identification of acrylamide fragments that improve the binding affinity of our lead thiol, we characterized the resulting bivalent inhibitors and identified a series of kinase inhibitors with improved potency and selectivity compared to the thiol-containing precursor. Provided that protein can be prepared free of endogenous reactive cysteines, our methodology is general and could be applied to nearly any enzyme of interest. PMID:26286460

  18. Differential effects on cell motility, embryonic stem cell self-renewal and senescence by diverse Src kinase family inhibitors

    SciTech Connect

    Tamm, Christoffer Galito, Sara Pijuan Anneren, Cecilia

    2012-02-15

    The Src family of non-receptor tyrosine kinases (SFKs) has been shown to play an intricate role in embryonic stem (ES) cell maintenance. In the present study we have focused on the underlying molecular mechanisms responsible for the vastly different effects induced by various commonly used SFK inhibitors. We show that several diverse cell types, including fibroblasts completely lacking SFKs, cannot undergo mitosis in response to SU6656 and that this is caused by an unselective inhibition of Aurora kinases. In contrast, PP2 and PD173952 block motility immediately upon exposure and forces cells to grow in dense colonies. The subsequent halt in proliferation of fibroblast and epithelial cells in the center of the colonies approximately 24 h post-treatment appears to be caused by cell-to-cell contact inhibition rather than a direct effect of SFK kinase inhibition. Interestingly, in addition to generating more homogenous and dense ES cell cultures, without any diverse effect on proliferation, PP2 and PD173652 also promote ES cell self-renewal by reducing the small amount of spontaneous differentiation typically observed under standard ES cell culture conditions. These effects could not be mirrored by the use of Gleevec, a potent inhibitor of c-Abl and PDGFR kinases that are also inhibited by PP2. -- Highlights: Black-Right-Pointing-Pointer SFK inhibitor SU6656 induces senescence in mouse ES cells. Black-Right-Pointing-Pointer SU6656 inhibits mitosis in a SFK-independent manner via cross-selectivity for Aurora kinases. Black-Right-Pointing-Pointer SFK inhibitor PP2 impairs cell motility in various cell lines, including mouse ES cells. Black-Right-Pointing-Pointer Ensuing impeded motility, PP2 inhibits proliferation of various cells lines except for mouse ES cells. Black-Right-Pointing-Pointer SFK inhibitors PP2 and PD173952 impede spontaneous differentiation in standard mouse ES culture maintenance.

  19. One isoform of Arg/Abl2 tyrosine kinase is nuclear and the other seven cytosolic isoforms differently modulate cell morphology, motility and the cytoskeleton

    SciTech Connect

    Bianchi, Cristina; Torsello, Barbara; Di Stefano, Vitalba; Zipeto, Maria A.; Facchetti, Rita; Bombelli, Silvia; Perego, Roberto A.

    2013-08-01

    The non-receptor tyrosine kinase Abelson related gene (Arg/Abl2) regulates cell migration and morphogenesis by modulating the cytoskeleton. Arg promotes actin-based cell protrusions and spreading, and inhibits cell migration by attenuating stress fiber formation and contractility via activation of the RhoA inhibitor, p190RhoGAP, and by regulating focal adhesion dynamics also via CrkII phosphorylation. Eight full-length Arg isoforms with different N- and C-termini are endogenously expressed in human cells. In this paper, the eight Arg isoforms, subcloned in the pFLAG-CMV2 vector, were transfected in COS-7 cells in order to study their subcellular distribution and role in cell morphology, migration and cytoskeletal modulation. The transfected 1BSCTS Arg isoform has a nuclear distribution and phosphorylates CrkII in the nucleus, whilst the other isoforms are detected in the cytoplasm. The 1BLCTL, 1BSCTL, 1ASCTS isoforms were able to significantly decrease stress fibers, induce cell shrinkage and filopodia-like protrusions with a significant increase in p190RhoGAP phosphorylation. In contrast, 1ALCTL, 1ALCTS, 1ASCTL and 1BLCTS isoforms do not significantly decrease stress fibers and induce the formation of retraction tail-like protrusions. The 1BLCTL and 1ALCTL isoforms have different effects on cell migration and focal adhesions. All these data may open new perspectives to study the mechanisms of cell invasiveness. -Highlights: • Each of the eight Arg isoforms was transfected in COS-7 cells. • Only the 1BSCTS Arg isoform has a nuclear distribution in transfected cells. • The cytoplasmic isoforms and F-actin colocalize cortically and in cell protrusions. • Arg isoforms differently phosphorylate p190RhoGAP and CrkII. • Arg isoforms differently modulate stress fibers, cell protrusions and motility.

  20. Protein kinase inhibitors in plants of the myrtaceae, proteaceae, and leguminosae.

    PubMed

    Larkin, M; Brazier, J; Ternai, B; Polya, G M

    1993-12-01

    Methanolic extracts of leaves, flowers, stems, bark, and other parts of representative plants of the Myrtaceae, specifically of the EUCALYPTUS, MELALEUCA, THRYPTOMENA, CALLISTOMEN, ACMENA, AND ANGOPHORA genera, variously contain high levels of inhibitors of plant Ca (2+)-dependent protein kinase (CDPK) and of Ca (2+)-calmodulin-dependent myosin light chain kinase (MLCK). In terms of the protein kinase inhibition unit (PKIU), defined as the amount in the standard protein kinase assays causing 50% inhibition of protein kinase activity, these inhibitor levels ranged from the non-detectable to 179,000 PKIU (gram fresh weight) (-1) [(g FW) (-1)] and there was no consistent pattern of inhibitor distribution. A variety of other plants tested had low or non-detectable levels of CDPK and MLCK inhibitors. Plants of the EUCALYPTUS, MELALEUCA, ANGOPHORA, and GREVILLEA genera contained inhibitors of the catalytic subunit of the cyclic AMP-dependent protein kinase (cAK), inhibitor levels ranging from 20,000 to 9,600,000 PKIU (g FW) (-1). In general, cAK inhibitor levels found in the Myrtaceae were mostly much higher than levels of CDPK and MLCK inhibitors and reversed phase HPLC of such plant extracts revealed a multiplicity of components associated with cAK inhibitory activity. These IN VITRO screening procedures enable rapid detection and quantitation of levels of bioactive plant defence compounds with medicinal potential. PMID:17230363

  1. Discovery, Biological Evaluation and Structure-Activity Relationship of Amidine-Based Sphingosine Kinase Inhibitors

    PubMed Central

    Mathews, Thomas P.; Kennedy, Andrew J.; Kharel, Yugesh; Kennedy, Perry C.; Nicoara, Oana; Sunkara, Manjula; Morris, Andrew J.; Wamhoff, Brian R.; Lynch, Kevin R.; Macdonald, Timothy L.

    2010-01-01

    Sphingosine 1-phosphate (S1P), a potent phospholipid growth and trophic factor, is synthesized in vivo by two sphingosine kinases. Thus these kinases have been proposed as important drug targets for treatment of hyper-proliferative diseases and inflammation. We report here a new class of amidine-based sphingosine analogs that are competitive inhibitors of sphingosine kinases exhibiting varying degrees of enzyme selectivity. These inhibitors display KI values in the submicromolar range for both sphingosine kinases and, in cultured vascular smooth muscle cells, decrease S1P levels and initiate growth arrest. PMID:20205392

  2. Are tyrosine kinase inhibitors promising for the treatment of systemic sclerosis and other fibrotic diseases?

    PubMed

    Beyer, Christian; Distler, Jörg H W; Distler, Oliver

    2010-01-01

    Tissue fibrosis causes organ failure and death in patients with systemic sclerosis (SSc), but clearly effective anti-fibrotic therapies are not available. The tyrosine kinase inhibitor (TKI) imatinib, which blocks the pro-fibrotic c-Abl kinase and PDGF receptor, is currently evaluated in clinical proof-of-concept trials for the treatment of patients with SSc. In experimental models, imatinib efficiently prevented and reduced tissue fibrosis. First clinical case studies demonstrated anti-fibrotic effects of imatinib in selected patients with SSc and other fibrotic diseases, and observational studies in sclerotic chronic graft-versus-host disease showed promising results. Besides imatinib, the two novel TKIs of c-Abl and PDGF receptor nilotinib and dasatinib have recently proven efficacy in experimental models of SSc. The potential of TKIs of the VEGF receptor (e.g., semaxinib, vatalanib, sutent, and sorafenib) and the EGF receptor (e.g., erlotinib, gefitinib, lapatinib, and canertinib) as anti-fibrotic treatments are also discussed in this review. Prior to clinical use, however, controlled trials need to address efficacy as well as tolerability of TKIs in patients with different fibrotic diseases. PMID:20419513

  3. Protein kinase c inhibitor attenuates cyanide toxicity in vivo

    SciTech Connect

    Maduh, E.U.; Nealley, E.W.; Song, H.; Wang, P.C.; Baskin, S.I.

    1995-12-31

    We have examined the effect of pretreatment with a potent protein kinase C (PKC) inhibitor, l-(5-isoquinoline sulfonyl)-2-methylpiperazine (H-7), against metabolic alterations induced by sodium cyanide (NaCN), 4.2 mg/kg, in brain of anesthetized male micropigs (6-10 kg). Brain high energy phosphates were analyzed using a 3/P nuclear magnetic resonance (NMR) spectroscopic surface coil in a 4.7 Tesla horizontal bore magnet. H-7, I mg/kg, was given intravenously (i.v.) 30 min before NaCN challenge (H-7 + CN). Prior to NaCN, H-7, or H-7 + CN administration, baseline 31P resonance spectra of 1-min duration were acquired for 5-10 min, and continued for an additional 60 min following i.v. NaCN injection, each animal serving as its own control. Peaks were identified as phosphomonoester (PME), inorganic phosphate (Pi), phosphodiester (PDE), phosphocreatine (PCr) and adenosine triphosphate (ATP), based on their respective chemical shifts. Without H-7 pretreatment, NaCN effects were marked by a rising Pi and a declining PCr peak 2 min after injection, with only 2/5 of the animals surviving the 60 min experiment. Through a pretreatment period of 30 min, H-7 did not affect baseline cell energy profile as reflected by the 31P-NMR spectra, but in its presence, those changes (i.e. diminishing PCr and rising Pi peaks) elicited by NaCN were markedly blunted; 4/5 of the animals in this group survived the NaCN challenge. It is proposed that H-7, a pharmacologic inhibitor of PKC, may be useful in CN antagonism, underscoring the role of PKC in cyanide intoxication.

  4. Structure of Human G Protein-Coupled Receptor Kinase 2 in Complex with the Kinase Inhibitor Balanol

    SciTech Connect

    Tesmer, John J.G.; Tesmer, Valerie M.; Lodowski, David T.; Steinhagen, Henning; Huber, Jochen

    2010-07-19

    G protein-coupled receptor kinase 2 (GRK2) is a pharmaceutical target for the treatment of cardiovascular diseases such as congestive heart failure, myocardial infarction, and hypertension. To better understand how nanomolar inhibition and selectivity for GRK2 might be achieved, we have determined crystal structures of human GRK2 in complex with G{beta}{gamma} in the presence and absence of the AGC kinase inhibitor balanol. The selectivity of balanol among human GRKs is assessed.

  5. Checkpoint kinase inhibitors: SAR and radioprotective properties of a series of 2-arylbenzimidazoles.

    PubMed

    Arienti, Kristen L; Brunmark, Anders; Axe, Frank U; McClure, Kelly; Lee, Alice; Blevitt, Jon; Neff, Danielle K; Huang, Liming; Crawford, Shelby; Pandit, Chennagiri R; Karlsson, Lars; Breitenbucher, J Guy

    2005-03-24

    The discovery of a series of novel, potent, and highly selective inhibitors of the DNA damage control kinase chk2 is disclosed. Here we report the first SAR study around inhibitors of this kinase. High-throughput screening of purified human chk2 led to the identification of a novel series of 2-arylbenzimidazole inhibitors of the kinase. Optimization was facilitated using homology models of chk2 and docking of inhibitors, leading to the highly potent 2-arylbenzimidazole 2h (IC(50) 15 nM). Compound 2h is an ATP-competitive inhibitor of chk2 that dose dependently protects human CD4(+) and CD8(+) T-cells from apoptosis due to ionizing radiation. This work suggests that a selective small molecule inhibitor of chk2 could be a useful adjuvant to radiotherapy, increasing the therapeutic window of such treatment. PMID:15771432

  6. A roadmap to evaluate the proteome-wide selectivity of covalent kinase inhibitors

    PubMed Central

    Dix, Melissa M.; Douhan, John; Gilbert, Adam M.; Hett, Erik C.; Johnson, Theodore O.; Joslyn, Chris; Kath, John C.; Niessen, Sherry; Roberts, Lee R.; Schnute, Mark E.; Wang, Chu; Hulce, Jonathan J.; Wei, Baoxian; Whiteley, Laurence O.; Hayward, Matthew M.; Cravatt, Benjamin F.

    2014-01-01

    Kinases are principal components of signal transduction pathways and the focus of intense basic and drug discovery research. Irreversible inhibitors that covalently modify non-catalytic cysteines in kinase active-sites have emerged as valuable probes and approved drugs. Many protein classes, however, possess functional cysteines and therefore understanding the proteome-wide selectivity of covalent kinase inhibitors is imperative. Here, we accomplish this objective using activity-based protein profiling coupled with quantitative mass spectrometry to globally map the targets, both specific and non-specific, of covalent kinase inhibitors in human cells. Many of the specific off-targets represent non-kinase proteins that, interestingly, possess conserved, active-site cysteines. We define windows of selectivity for covalent kinase inhibitors and show that, when these windows are exceeded, rampant proteome-wide reactivity and kinase target-independent cell death conjointly occur. Our findings, taken together, provide an experimental roadmap to illuminate opportunities and surmount challenges for the development of covalent kinase inhibitors. PMID:25038787

  7. Pim kinases modulate resistance to FLT3 tyrosine kinase inhibitors in FLT3-ITD acute myeloid leukemia

    PubMed Central

    Green, Alexa S.; Maciel, Thiago T.; Hospital, Marie-Anne; Yin, Chae; Mazed, Fetta; Townsend, Elizabeth C.; Pilorge, Sylvain; Lambert, Mireille; Paubelle, Etienne; Jacquel, Arnaud; Zylbersztejn, Florence; Decroocq, Justine; Poulain, Laury; Sujobert, Pierre; Jacque, Nathalie; Adam, Kevin; So, Jason C. C.; Kosmider, Olivier; Auberger, Patrick; Hermine, Olivier; Weinstock, David M.; Lacombe, Catherine; Mayeux, Patrick; Vanasse, Gary J.; Leung, Anskar Y.; Moura, Ivan C.; Bouscary, Didier; Tamburini, Jerome

    2015-01-01

    ABSTRACT Fms-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) is frequently detected in acute myeloid leukemia (AML) patients and is associated with a dismal long-term prognosis. FLT3 tyrosine kinase inhibitors provide short-term disease control, but relapse invariably occurs within months. Pim protein kinases are oncogenic FLT3-ITD targets expressed in AML cells. We show that increased Pim kinase expression is found in relapse samples from AML patients treated with FLT3 inhibitors. Ectopic Pim-2 expression induces resistance to FLT3 inhibition in both FLT3-ITD–induced myeloproliferative neoplasm and AML models in mice. Strikingly, we found that Pim kinases govern FLT3-ITD signaling and that their pharmacological or genetic inhibition restores cell sensitivity to FLT3 inhibitors. Finally, dual inhibition of FLT3 and Pim kinases eradicates FLT3-ITD+ cells including primary AML cells. Concomitant Pim and FLT3 inhibition represents a promising new avenue for AML therapy. PMID:26601252

  8. Have adjuvant tyrosine kinase inhibitors lost their shine?

    PubMed Central

    Sabari, Joshua K.

    2016-01-01

    Despite broad advances in molecularly targeted therapies, lung cancer remains the leading cause of cancer related mortality in the United States. Epidermal growth factor receptor (EGFR) mutations occur in approximately 17% of advanced non-small cell lung cancer (NSCLC) in the US population. The remarkable efficacy of small-molecule EGFR tyrosine kinase inhibitors (TKIs) in this unique subset of patients has revolutionized the therapeutic approach to lung cancer. The success of these agents in the metastatic setting leads to the logical question of what role these drugs may have in the adjuvant setting for patients with earlier stage disease. RADIANT, an international randomized, double-blind, placebo controlled phase III study in patients with completely resected stage IB to IIIA NSLC whose tumors expressed EGFR by IHC and EGFR amplification by FISH, attempted to answer the question of whether erlotinib would improve disease free survival and overall survival in the adjuvant setting. While RADIANT does not conclude for or against adjuvant use of EGFR-TKIs, all data points towards benefit in a selected population. As clinicians, we must continue to enroll to potentially practice changing therapeutic neoadjuvant and adjuvant chemotherapy studies internationally. PMID:27568486

  9. Have adjuvant tyrosine kinase inhibitors lost their shine?

    PubMed

    Sabari, Joshua K; Chaft, Jamie E

    2016-08-01

    Despite broad advances in molecularly targeted therapies, lung cancer remains the leading cause of cancer related mortality in the United States. Epidermal growth factor receptor (EGFR) mutations occur in approximately 17% of advanced non-small cell lung cancer (NSCLC) in the US population. The remarkable efficacy of small-molecule EGFR tyrosine kinase inhibitors (TKIs) in this unique subset of patients has revolutionized the therapeutic approach to lung cancer. The success of these agents in the metastatic setting leads to the logical question of what role these drugs may have in the adjuvant setting for patients with earlier stage disease. RADIANT, an international randomized, double-blind, placebo controlled phase III study in patients with completely resected stage IB to IIIA NSLC whose tumors expressed EGFR by IHC and EGFR amplification by FISH, attempted to answer the question of whether erlotinib would improve disease free survival and overall survival in the adjuvant setting. While RADIANT does not conclude for or against adjuvant use of EGFR-TKIs, all data points towards benefit in a selected population. As clinicians, we must continue to enroll to potentially practice changing therapeutic neoadjuvant and adjuvant chemotherapy studies internationally. PMID:27568486

  10. Trichomonas vaginalis thymidine kinase: purification, characterization and search for inhibitors.

    PubMed Central

    Strosselli, S; Spadari, S; Walker, R T; Basnak, I; Focher, F

    1998-01-01

    We report that a thymidine kinase (TK) activity is present in Trichomonas vaginalis and can be separated from the deoxyribonucleoside phosphotransferase. T. vaginalis TK, purified 11200-fold to apparent homogeneity, has a molecular mass of 31500 Da. It phosphorylates not only thymidine (Km 0.18 microM) but also deoxycytidine (Km 0.88 microM) and deoxyuridine (Km 0.14 microM). In contrast with T. vaginalis deoxyribonucleoside phosphotransferase, the TK activity is strongly inhibited by novel deoxyuridine analogues such as 5-methyl-4'-thio-2'-deoxyuridine (MTdU) (Ki 20 nM) and 5-iodo-4'-thio-2'-deoxyuridine (ITdU) (Ki 24 nM). MTdU and ITdU are phosphorylated by T. vaginalis TK in vitro. In vivo they inhibit [3H]thymidine incorporation in T. vaginalis cultured cells and T. vaginalis growth (IC50 7.5 and 24 microM respectively; minimal lethal dose 100 microM). Thus the TK inhibitors described here demonstrate the key role of T. vaginalis TK for protozoal growth and viability and indicate TK as a new target for the design of antitrichomonal drugs. PMID:9693096

  11. Identification of inhibitors of checkpoint kinase 1 through template screening.

    PubMed

    Matthews, Thomas P; Klair, Suki; Burns, Samantha; Boxall, Kathy; Cherry, Michael; Fisher, Martin; Westwood, Isaac M; Walton, Michael I; McHardy, Tatiana; Cheung, Kwai-Ming J; Van Montfort, Rob; Williams, David; Aherne, G Wynne; Garrett, Michelle D; Reader, John; Collins, Ian

    2009-08-13

    Checkpoint kinase 1 (CHK1) is an oncology target of significant current interest. Inhibition of CHK1 abrogates DNA damage-induced cell cycle checkpoints and sensitizes p53 deficient cancer cells to genotoxic therapies. Using template screening, a fragment-based approach to small molecule hit generation, we have identified multiple CHK1 inhibitor scaffolds suitable for further optimization. The sequential combination of in silico low molecular weight template selection, a high concentration biochemical assay and hit validation through protein-ligand X-ray crystallography provided 13 template hits from an initial in silico screening library of ca. 15000 compounds. The use of appropriate counter-screening to rule out nonspecific aggregation by test compounds was essential for optimum performance of the high concentration bioassay. One low molecular weight, weakly active purine template hit was progressed by iterative structure-based design to give submicromolar pyrazolopyridines with good ligand efficiency and appropriate CHK1-mediated cellular activity in HT29 colon cancer cells. PMID:19572549

  12. MEK kinase 1 is essential for Bcr-Abl-induced STAT3 and self-renewal activity in embryonic stem cells.

    PubMed

    Nakamura, Yukinori; Yujiri, Toshiaki; Nawata, Ryouhei; Tagami, Kozo; Tanizawa, Yukio

    2005-11-17

    BCR-ABL oncogene, the molecular hallmark of chronic myelogenous leukemia, arises in a primitive hematopoietic stem cell that has the capacity for both differentiation and self-renewal. Its product, Bcr-Abl protein, has been shown to activate signal transducers and activators of transcription 3 (STAT3) and to promote self-renewal in embryonic stem (ES) cells, even in the absence of leukemia inhibitory factor (LIF). MEK kinase 1 (MEKK1) is a 196-kDa mitogen-activated protein kinase (MAPK) kinase kinase involved in Bcr-Abl signal transduction. To investigate the role of MEKK1 in Bcr-Abl-induced transformation of stem cells, p210 Bcr-Abl was stably transfected into wild-type (WT(p210)) and MEKK1-/- (MEKK1-/-(p210)) ES cells. Bcr-Abl enhanced MEKK1 expression in ES transfectants, as it does in other Bcr-Abl-transformed cells. In the absence of LIF, WT(p210) cells showed constitutive STAT3 activation and formed rounded, compact colonies having strong alkaline phosphatase activity, a characteristic phenotype of undifferentiated ES cells. MEKK1-/-(p210) cells, by contrast, showed less STAT3 activity than WT(p210) cells and formed large, flattened colonies having weak alkaline phosphatase activity, a phenotype of differentiated ES cells. These results indicate that MEKK1 plays a key role in Bcr-Abl-induced STAT3 activation and in ES cells' capacity for LIF-independent self-renewal, and may thus be involved in Bcr-Abl-mediated leukemogenesis in stem cells. PMID:16044153

  13. Discovery of Clinical Candidate CEP-37440, a Selective Inhibitor of Focal Adhesion Kinase (FAK) and Anaplastic Lymphoma Kinase (ALK).

    PubMed

    Ott, Gregory R; Cheng, Mangeng; Learn, Keith S; Wagner, Jason; Gingrich, Diane E; Lisko, Joseph G; Curry, Matthew; Mesaros, Eugen F; Ghose, Arup K; Quail, Matthew R; Wan, Weihua; Lu, Lihui; Dobrzanski, Pawel; Albom, Mark S; Angeles, Thelma S; Wells-Knecht, Kevin; Huang, Zeqi; Aimone, Lisa D; Bruckheimer, Elizabeth; Anderson, Nathan; Friedman, Jay; Fernandez, Sandra V; Ator, Mark A; Ruggeri, Bruce A; Dorsey, Bruce D

    2016-08-25

    Analogues structurally related to anaplastic lymphoma kinase (ALK) inhibitor 1 were optimized for metabolic stability. The results from this endeavor not only led to improved metabolic stability, pharmacokinetic parameters, and in vitro activity against clinically derived resistance mutations but also led to the incorporation of activity for focal adhesion kinase (FAK). FAK activation, via amplification and/or overexpression, is characteristic of multiple invasive solid tumors and metastasis. The discovery of the clinical stage, dual FAK/ALK inhibitor 27b, including details surrounding SAR, in vitro/in vivo pharmacology, and pharmacokinetics, is reported herein. PMID:27527804

  14. Clinical impact of ABL1 kinase domain mutations and IKZF1 deletion in adults under age 60 with Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL): molecular analysis of CALGB (Alliance) 10001 and 9665.

    PubMed

    DeBoer, Rebecca; Koval, Gregory; Mulkey, Flora; Wetzler, Meir; Devine, Steven; Marcucci, Guido; Stone, Richard M; Larson, Richard A; Bloomfield, Clara D; Geyer, Susan; Mullighan, Charles G; Stock, Wendy

    2016-10-01

    Recent studies have identified oncogenic lesions in Philadelphia chromosome-positive (Ph+)  acute lymphoblastic leukemia (ALL) and ABL1 kinase mutations that confer resistance to tyrosine kinase inhibitors. We sought to determine the prevalence and clinical impact of these lesions in patients on CALGB 10001, a previously reported Phase II study of imatinib, chemotherapy, and hematopoietic cell transplant in adult Ph + ALL. Of the 58 enrolled, 22 relapsed. By direct sequencing, an ABL1 kinase mutation known to induce imatinib resistance was present at relapse in 13 of 20. Using quantitative PCR assays, the mutations were detectable at diagnosis or early during treatment in most (62%) relapsed patients. Aberrations in IKZF1, CDKN2A/B, and PAX5 were assessed in 28 samples using SNP arrays and genomic DNA sequencing. Of these, 22 (79%) had IKZF1 deletion. The combination of IKZF1 deletion and p210 BCR-ABL1 (p < 0.0001), high white blood cell count (p = 0.021), and minimal residual disease (p = 0.013) were associated with worse disease-free survival. PMID:26892479

  15. Protein-ligand crystal structures can guide the design of selective inhibitors of the FGFR tyrosine kinase.

    PubMed

    Norman, Richard A; Schott, Anne-Kathrin; Andrews, David M; Breed, Jason; Foote, Kevin M; Garner, Andrew P; Ogg, Derek; Orme, Jonathon P; Pink, Jennifer H; Roberts, Karen; Rudge, David A; Thomas, Andrew P; Leach, Andrew G

    2012-06-14

    The design of compounds that selectively inhibit a single kinase is a significant challenge, particularly for compounds that bind to the ATP site. We describe here how protein-ligand crystal structure information was able both to rationalize observed selectivity and to guide the design of more selective compounds. Inhibition data from enzyme and cellular screens and the crystal structures of a range of ligands tested during the process of identifying selective inhibitors of FGFR provide a step-by-step illustration of the process. Steric effects were exploited by increasing the size of ligands in specific regions in such a way as to be tolerated in the primary target and not in other related kinases. Kinases are an excellent target class to exploit such approaches because of the conserved fold and small side chain mobility of the active form. PMID:22612866

  16. Mutations in G protein β subunits promote transformation and kinase inhibitor resistance.

    PubMed

    Yoda, Akinori; Adelmant, Guillaume; Tamburini, Jerome; Chapuy, Bjoern; Shindoh, Nobuaki; Yoda, Yuka; Weigert, Oliver; Kopp, Nadja; Wu, Shuo-Chieh; Kim, Sunhee S; Liu, Huiyun; Tivey, Trevor; Christie, Amanda L; Elpek, Kutlu G; Card, Joseph; Gritsman, Kira; Gotlib, Jason; Deininger, Michael W; Makishima, Hideki; Turley, Shannon J; Javidi-Sharifi, Nathalie; Maciejewski, Jaroslaw P; Jaiswal, Siddhartha; Ebert, Benjamin L; Rodig, Scott J; Tyner, Jeffrey W; Marto, Jarrod A; Weinstock, David M; Lane, Andrew A

    2015-01-01

    Activating mutations in genes encoding G protein α (Gα) subunits occur in 4-5% of all human cancers, but oncogenic alterations in Gβ subunits have not been defined. Here we demonstrate that recurrent mutations in the Gβ proteins GNB1 and GNB2 confer cytokine-independent growth and activate canonical G protein signaling. Multiple mutations in GNB1 affect the protein interface that binds Gα subunits as well as downstream effectors and disrupt Gα interactions with the Gβγ dimer. Different mutations in Gβ proteins clustered partly on the basis of lineage; for example, all 11 GNB1 K57 mutations were in myeloid neoplasms, and seven of eight GNB1 I80 mutations were in B cell neoplasms. Expression of patient-derived GNB1 variants in Cdkn2a-deficient mouse bone marrow followed by transplantation resulted in either myeloid or B cell malignancies. In vivo treatment with the dual PI3K-mTOR inhibitor BEZ235 suppressed GNB1-induced signaling and markedly increased survival. In several human tumors, mutations in the gene encoding GNB1 co-occurred with oncogenic kinase alterations, including the BCR-ABL fusion protein, the V617F substitution in JAK2 and the V600K substitution in BRAF. Coexpression of patient-derived GNB1 variants with these mutant kinases resulted in inhibitor resistance in each context. Thus, GNB1 and GNB2 alterations confer transformed and resistance phenotypes across a range of human tumors and may be targetable with inhibitors of G protein signaling. PMID:25485910

  17. Structure-based discovery of the first allosteric inhibitors of cyclin-dependent kinase 2

    PubMed Central

    Rastelli, Giulio; Anighoro, Andrew; Chripkova, Martina; Carrassa, Laura; Broggini, Massimo

    2014-01-01

    Allosteric targeting of protein kinases via displacement of the structural αC helix with type III allosteric inhibitors is currently gaining a foothold in drug discovery. Recently, the first crystal structure of CDK2 with an open allosteric pocket adjacent to the αC helix has been described, prospecting new opportunities to design more selective inhibitors, but the structure has not yet been exploited for the structure-based design of type III allosteric inhibitors. In this work we report the results of a virtual screening campaign that resulted in the discovery of the first-in-class type III allosteric ligands of CDK2. Using a combination of docking and post-docking analyses made with our tool BEAR, 7 allosteric ligands (hit rate of 20%) with micromolar affinity for CDK2 were identified, some of them inhibiting the growth of breast cancer cell lines in the micromolar range. Competition experiments performed in the presence of the ATP-competitive inhibitor staurosporine confirmed that the 7 ligands are truly allosteric, in agreement with their design. Of these, compound 2 bound CDK2 with an EC50 value of 3 μM and inhibited the proliferation of MDA-MB231 and ZR-75–1 breast cancer cells with IC50 values of approximately 20 μM, while compound 4 had an EC50 value of 71 μM and IC50 values around 4 μM. Remarkably, the most potent compound 4 was able to selectively inhibit CDK2-mediated Retinoblastoma phosphorylation, confirming that its mechanism of action is fully compatible with a selective inhibition of CDK2 phosphorylation in cells. Finally, hit expansion through analog search of the most potent inhibitor 4 revealed an additional ligand 4g with similar in vitro potency on breast cancer cells. PMID:24911186

  18. Benzobisthiazoles Represent a Novel Scaffold for Kinase Inhibitors of CLK Family Members

    PubMed Central

    2015-01-01

    Protein kinases are essential regulators of most cellular processes and are involved in the etiology and progression of multiple diseases. The cdc2-like kinases (CLKs) have been linked to various neurodegenerative disorders, metabolic regulation, and virus infection, and the kinases have been recognized as potential drug targets. Here, we have developed a screening workflow for the identification of potent CLK2 inhibitors and identified compounds with a novel chemical scaffold structure, the benzobisthiazoles, that has not been previously reported for kinase inhibitors. We propose models for binding of these compounds to CLK family proteins and key residues in CLK2 that are important for the compound interactions and the kinase activity. We identified structural elements within the benzobisthiazole that determine CLK2 and CLK3 inhibition, thus providing a rationale for selectivity assays. In summary, our results will inform structure-based design of CLK family inhibitors based on the novel benzobisthiazole scaffold. PMID:26701387

  19. A unified approach to the important protein kinase inhibitor balanol and a proposed analogue

    PubMed Central

    Saha, Tapan; Maitra, Ratnava

    2013-01-01

    Summary A common approach to the important protein kinase inhibitor (−)-balanol and an azepine-ring-modified balanol derivative has been developed using an efficient fragment coupling protocol which proceeded in good overall yield. PMID:24454570

  20. General Ser/Thr Kinases Pharmacophore Approach for Selective Kinase Inhibitors Search as Exemplified by Design of Potent and Selective Aurora A Inhibitors.

    PubMed

    Vasilevich, Natalya I; Aksenova, Elena A; Kazyulkin, Denis N; Afanasyev, Ilya I

    2016-07-01

    A general pharmachophore model for various types of Ser/Thr kinases was developed. Search for the molecules fitting to this pharmacophore among ASINEX proprietary library revealed a number of compounds, which were tested and appeared to possess some activity against several Ser/Thr kinases such as Aurora A, Aurora B and Haspin. The possibility of performing the fine-tuning of the general Ser/Thr pharmacophore to desired types of kinase to get active and selective inhibitors was exemplified by Aurora A kinase. As a result, several hits in 3-5 nm range of activity against Aurora A kinase with rather good selectivity and ADME properties were obtained. PMID:26825399

  1. An inhibitor of Janus kinase 2 prevents polycythemia in mice.

    PubMed

    Mathur, Anjili; Mo, Jan-Rung; Kraus, Manfred; O'Hare, Erin; Sinclair, Peter; Young, Jonathan; Zhao, Shuxia; Wang, Yuxun; Kopinja, Johnny; Qu, Xianlu; Reilly, John; Walker, Deborah; Xu, Lin; Aleksandrowicz, Daniel; Marshall, Gary; Scott, Martin L; Kohl, Nancy E; Bachman, Eric

    2009-08-15

    Polycythemia vera (PV) is a myeloproliferative disorder characterized by increased red cell mass and splenomegaly in the absence of secondary causes [Tefferi A., Spivak J.L., Polycythemia vera: scientific advances and current practice. Semin Hematol 2005;42(4):206-20.]. Recently, several laboratories have discovered that the vast majority of patients with PV carry a single, activating mutation (V617F) in the pseudokinase domain of Janus kinase 2 (Jak2) [Zhao R, Xing S, Li Z, Fu X, Li Q, Krantz SB, et al., Identification of an acquired JAK2 mutation in polycythemia vera. J Biol Chem 2005;280(24):22788-92; James C, Ugo V, Le Couédic JP, Staerk J, Delhommeau F, Lacout C, et al., A unique clonal JAK2 mutation leading to constitutive signalling causes polycythemia vera. Nature 2005;434(7037):1144-8; Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, et al., A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005;352(17):1779-90; Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ, et al., Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005;7(4):387-97.]. This discovery has spurred interest in developing therapies for PV via inhibition of Jak2. We induced polycythemia in mice by administering high dose recombinant erythropoietin (Epo) and determined that administration recapitulates almost all of the major and minor diagnostic features of human PV. We then tested a selective, small molecule inhibitor of Jak2 (Jak2i) and showed that this treatment prevents polycythemia. This prevention of polycythemia was accompanied by lower hematocrits, reduced spleen sizes and reductions in Stat5 phosphorylation (pStat5). Surprisingly, Epo rapidly (<1h) induces mobilization of activated erythroid precursors into the blood, thus allowing drug-response relationships to guide discovery. We conclude that inhibition of Jak2

  2. Discovery of orally active pyrrolopyridine- and aminopyridine-based Met kinase inhibitors

    SciTech Connect

    Cai, Zhen-Wei; Wei, Donna; Schroeder, Gretchen M.; Cornelius, Lyndon A.M.; Kim, Kyoung; Chen, Xiao-Tao; Schmidt, Robert J.; Williams, David K.; Tokarski, John S.; An, Yongmi; Sack, John S.; Manne, Veeraswamy; Kamath, Amrita; Zhang, Yueping; Marathe, Punit; Hunt, John T.; Lombardo, Louis J.; Fargnoli, Joseph; Borzilleri, Robert M.

    2008-09-10

    A series of acylurea analogs derived from pyrrolopyridine and aminopyridine scaffolds were identified as potent inhibitors of Met kinase activity. The SAR at various positions of the two kinase scaffolds was investigated. These studies led to the discovery of compounds 3b and 20b, which demonstrated favorable pharmacokinetic properties in mice and significant antitumor activity in a human gastric carcinoma xenograft model.

  3. Novel Anthraquinone-based Derivatives as Potent Inhibitors for Receptor Tyrosine Kinases

    PubMed Central

    Stasevych, M.; Zvarych, V.; Lunin, V.; Halenova, T.; Savchuk, O.; Dudchak, O.; Vovk, M.; Novikov, V.

    2015-01-01

    The influence of new derivatives of 9,10-anthraquinone with benzoylthiourea, thiazole, triazole and amino acid fragments on the activity of membrane-associated tyrosine kinases was investigated. Inhibitors of protein tyrosine kinase activity of the membrane fraction, as promising agents to search for new potential anticancer agents among the studied compounds, were discovered. PMID:26798182

  4. MAP KINASE ERK 1/2 INHIBITORS INDUCE DYSMORPHOLOGY IN MOUSE WHOLE EMBRYO CULTURE

    EPA Science Inventory

    ROSEN, M.B. and E. S. HUNTER. Reproductive Toxicology Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina. MAP kinase Erk1/2 inhibitors induce dysmorphology in mouse whole embryo culture.

    MAP Kinase signal transduction is associated with a variety ...

  5. Hypothermia-induced hyperphosphorylation: a new model to study tau kinase inhibitors

    PubMed Central

    Bretteville, Alexis; Marcouiller, François; Julien, Carl; El Khoury, Noura B.; Petry, Franck R.; Poitras, Isabelle; Mouginot, Didier; Lévesque, Georges; Hébert, Sébastien S.; Planel, Emmanuel

    2012-01-01

    Tau hyperphosphorylation is one hallmark of Alzheimer's disease (AD) pathology. Pharmaceutical companies have thus developed kinase inhibitors aiming to reduce tau hyperphosphorylation. One obstacle in screening for tau kinase inhibitors is the low phosphorylation levels of AD-related phospho-epitopes in normal adult mice and cultured cells. We have shown that hypothermia induces tau hyperphosphorylation in vitro and in vivo. Here, we hypothesized that hypothermia could be used to assess tau kinase inhibitors efficacy. Hypothermia applied to models of biological gradual complexity such as neuronal-like cells, ex vivo brain slices and adult non-transgenic mice leads to tau hyperphosphorylation at multiple AD-related phospho-epitopes. We show that Glycogen Synthase Kinase-3 inhibitors LiCl and AR-A014418, as well as roscovitine, a cyclin-dependent kinase 5 inhibitor, decrease hypothermia-induced tau hyperphosphorylation, leading to different tau phosphorylation profiles. Therefore, we propose hypothermia-induced hyperphosphorylation as a reliable, fast, convenient and inexpensive tool to screen for tau kinase inhibitors. PMID:22761989

  6. New applications for known drugs: Human glycogen synthase kinase 3 inhibitors as modulators of Aspergillus fumigatus growth.

    PubMed

    Sebastián, Víctor; Manoli, Maria-Tsampika; Pérez, Daniel I; Gil, Carmen; Mellado, Emilia; Martínez, Ana; Espeso, Eduardo A; Campillo, Nuria E

    2016-06-30

    Invasive aspergillosis (IA) is one of the most severe forms of fungi infection. IA disease is mainly due to Aspergillus fumigatus, an air-borne opportunistic pathogen. Mortality rate caused by IA is still very high (50-95%), because of difficulty in early diagnostics and reduced antifungal treatment options, thus new and efficient drugs are necessary. The aim of this work is, using Aspergillus nidulans as non-pathogen model, to develop efficient drugs to treat IA. The recent discovered role of glycogen synthase kinase-3 homologue, GskA, in A. fumigatus human infection and our previous experience on human GSK-3 inhibitors focus our attention on this kinase as a target for the development of antifungal drugs. With the aim to identify effective inhibitors of colonial growth of A. fumigatus we use A. nidulans as an accurate model for in vivo and in silico studies. Several well-known human GSK-3β inhibitors were tested for inhibition of A. nidulans colony growth. Computational tools as docking studies and binding site prediction was used to explain the different biological profile of the tested inhibitors. Three of the five tested hGSK3β inhibitors are able to reduce completely the colonial growth by covalent bind to the enzyme. Therefore these compounds may be useful in different applications to eradicate IA. PMID:27131621

  7. Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors

    PubMed Central

    Wilson, Timothy R.; Fridlyand, Jane; Yan, Yibing; Penuel, Elicia; Burton, Luciana; Chan, Emily; Peng, Jing; Lin, Eva; Wang, Yulei; Sosman, Jeff; Ribas, Antoni; Li, Jiang; Moffat, John; Sutherlin, Daniel P.; Koeppen, Hartmut; Merchant, Mark; Neve, Richard; Settleman, Jeff

    2013-01-01

    Mutationally activated kinases define a clinically validated class of targets for cancer drug therapy1. However, the efficacy of kinase inhibitors in patients whose tumours harbour such alleles is invariably limited by innate or acquired drug resistance2,3. The identification of resistance mechanisms has revealed a recurrent theme—the engagement of survival signals redundant to those transduced by the targeted kinase4. Cancer cells typically express multiple receptor tyrosine kinases (RTKs) that mediate signals that converge on common critical downstream cell-survival effectors—most notably, phosphatidylinositol-3-OH kinase (PI(3)K) and mitogen-activated protein kinase (MAPK)5. Consequently, an increase in RTK-ligand levels, through autocrine tumour-cell production, paracrine contribution from tumour stroma6 or systemic production, could confer resistance to inhibitors of an oncogenic kinase with a similar signalling output. Here, using a panel of kinase-‘addicted’ human cancer cell lines, we found that most cells can be rescued from drug sensitivity by simply exposing them to one or more RTK ligands. Among the findings with clinical implications was the observation that hepatocyte growth factor (HGF) confers resistance to the BRAF inhibitor PLX4032 (vemurafenib) in BRAF-mutant melanoma cells. These observations highlight the extensive redundancy of RTK-transduced signalling in cancer cells and the potentially broad role of widely expressed RTK ligands in innate and acquired resistance to drugs targeting oncogenic kinases. PMID:22763448

  8. Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors.

    PubMed

    Wilson, Timothy R; Fridlyand, Jane; Yan, Yibing; Penuel, Elicia; Burton, Luciana; Chan, Emily; Peng, Jing; Lin, Eva; Wang, Yulei; Sosman, Jeff; Ribas, Antoni; Li, Jiang; Moffat, John; Sutherlin, Daniel P; Koeppen, Hartmut; Merchant, Mark; Neve, Richard; Settleman, Jeff

    2012-07-26

    Mutationally activated kinases define a clinically validated class of targets for cancer drug therapy. However, the efficacy of kinase inhibitors in patients whose tumours harbour such alleles is invariably limited by innate or acquired drug resistance. The identification of resistance mechanisms has revealed a recurrent theme—the engagement of survival signals redundant to those transduced by the targeted kinase. Cancer cells typically express multiple receptor tyrosine kinases (RTKs) that mediate signals that converge on common critical downstream cell-survival effectors—most notably, phosphatidylinositol-3-OH kinase (PI(3)K) and mitogen-activated protein kinase (MAPK). Consequently, an increase in RTK-ligand levels, through autocrine tumour-cell production, paracrine contribution from tumour stroma or systemic production, could confer resistance to inhibitors of an oncogenic kinase with a similar signalling output. Here, using a panel of kinase-'addicted' human cancer cell lines, we found that most cells can be rescued from drug sensitivity by simply exposing them to one or more RTK ligands. Among the findings with clinical implications was the observation that hepatocyte growth factor (HGF) confers resistance to the BRAF inhibitor PLX4032 (vemurafenib) in BRAF-mutant melanoma cells. These observations highlight the extensive redundancy of RTK-transduced signalling in cancer cells and the potentially broad role of widely expressed RTK ligands in innate and acquired resistance to drugs targeting oncogenic kinases. PMID:22763448

  9. A review of a novel, Bruton's tyrosine kinase inhibitor, ibrutinib.

    PubMed

    Lee, Chung-Shien; Rattu, Mohammad A; Kim, Sara S

    2016-02-01

    Ibrutinib, a Bruton's kinase inhibitor, was granted an accelerated approval by the US Food and Drug Administration in November, 2013, for the treatment of relapsed or refractory mantle cell lymphoma and subsequently for the treatment of relapsed refractory chronic lymphocytic leukemia in February, 2014. In the pivotal phase 2 study of 111 patients with relapsed or refractory mantle cell lymphoma, the overall response rate in patients who received ibrutinib 560 mg daily was 68%. The median progression-free survival was 13.9 months, and the overall survival was 58% at 18 months. In a recently published phase 3 trial (RESONATE) that compared ibrutinib and ofatumumab for the treatment of relapsed and refractory chronic lymphocytic leukemia or small lymphocytic lymphoma, ibrutinib at the daily dosage of 420 mg demonstrated a significantly higher overall response rate (43% in ibrutinib vs. 4% in ofatumumab) and a significantly improved overall survival at 12 months (90% ibrutinib vs. 81% ofatumumab). Similar clinical benefits were shown regardless of del (17 p). Ibrutinib was well tolerated, and dose-limiting toxicity was not observed. Ibrutinib has shown durable remission, improved progression-free survival and overall survival, and favorable safety profile in indolent B-cell lymphoid malignancies. Ibrutinib, as a monotherapy, is an effective treatment modality as a salvage therapy for treatment of mantle cell lymphoma and chronic lymphocytic leukemia / small lymphocytic lymphoma, particularly in older patients (age ≥70 years) who are not a candidate for intensive chemotherapy and/or those with del (17 p). In patients with chronic lymphocytic leukemia and del (17 p), the current practice guideline recommends ibrutinib as an upfront treatment option. Current on-going trials will further define its role as upfront therapy and/or as a combination therapy in indolent B-cell lymphoid malignancies. PMID:25425007

  10. Virtual screening of selective multitarget kinase inhibitors by combinatorial support vector machines.

    PubMed

    Ma, X H; Wang, R; Tan, C Y; Jiang, Y Y; Lu, T; Rao, H B; Li, X Y; Go, M L; Low, B C; Chen, Y Z

    2010-10-01

    Multitarget agents have been increasingly explored for enhancing efficacy and reducing countertarget activities and toxicities. Efficient virtual screening (VS) tools for searching selective multitarget agents are desired. Combinatorial support vector machines (C-SVM) were tested as VS tools for searching dual-inhibitors of 11 combinations of 9 anticancer kinase targets (EGFR, VEGFR, PDGFR, Src, FGFR, Lck, CDK1, CDK2, GSK3). C-SVM trained on 233-1,316 non-dual-inhibitors correctly identified 26.8%-57.3% (majority >36%) of the 56-230 intra-kinase-group dual-inhibitors (equivalent to the 50-70% yields of two independent individual target VS tools), and 12.2% of the 41 inter-kinase-group dual-inhibitors. C-SVM were fairly selective in misidentifying as dual-inhibitors 3.7%-48.1% (majority <20%) of the 233-1,316 non-dual-inhibitors of the same kinase pairs and 0.98%-4.77% of the 3,971-5,180 inhibitors of other kinases. C-SVM produced low false-hit rates in misidentifying as dual-inhibitors 1,746-4,817 (0.013%-0.036%) of the 13.56 M PubChem compounds, 12-175 (0.007%-0.104%) of the 168 K MDDR compounds, and 0-84 (0.0%-2.9%) of the 19,495-38,483 MDDR compounds similar to the known dual-inhibitors. C-SVM was compared to other VS methods Surflex-Dock, DOCK Blaster, kNN and PNN against the same sets of kinase inhibitors and the full set or subset of the 1.02 M Zinc clean-leads data set. C-SVM produced comparable dual-inhibitor yields, slightly better false-hit rates for kinase inhibitors, and significantly lower false-hit rates for the Zinc clean-leads data set. Combinatorial SVM showed promising potential for searching selective multitarget agents against intra-kinase-group kinases without explicit knowledge of multitarget agents. PMID:20712327

  11. Design, Synthesis, and Structure-Activity Relationships of Pyridine-Based Rho Kinase (ROCK) Inhibitors.

    PubMed

    Green, Jeremy; Cao, Jingrong; Bandarage, Upul K; Gao, Huai; Court, John; Marhefka, Craig; Jacobs, Marc; Taslimi, Paul; Newsome, David; Nakayama, Tomoko; Shah, Sundeep; Rodems, Steve

    2015-06-25

    The Rho kinases (ROCK1 and ROCK2) are highly homologous serine/threonine kinases that act on substrates associated with cellular motility, morphology, and contraction and are of therapeutic interest in diseases associated with cellular migration and contraction, such as hypertension, glaucoma, and erectile dysfunction. Beginning with compound 4, an inhibitor of ROCK1 identified through high-throughput screening, systematic exploration of SAR, and application of structure-based design, led to potent and selective ROCK inhibitors. Compound 37 represents significant improvements in inhibition potency, kinase selectivity, and CYP inhibition and possesses pharmacokinetics suitable for in vivo experimentation. PMID:26039570

  12. Bivalent Inhibitors of c-Src Tyrosine Kinase That Bind a Regulatory Domain.

    PubMed

    Johnson, Taylor K; Soellner, Matthew B

    2016-07-20

    We have developed a general methodology to produce bivalent kinase inhibitors for c-Src that interact with the SH2 and ATP binding pockets. Our approach led to a highly selective bivalent inhibitor of c-Src. We demonstrate impressive selectivity for c-Src over homologous kinases. Exploration of the unexpected high level of selectivity yielded insight into the inherent flexibility of homologous kinases. Finally, we demonstrate that our methodology is modular and both the ATP-competitive fragment and conjugation chemistry can be swapped. PMID:27266260

  13. Tyrosine Kinase Inhibitors in Ph+ Chronic Myeloid Leukemia Therapy: a Review.

    PubMed

    Shah, Krupa; Parikh, Sonia; Rawal, Rakesh

    2016-01-01

    Chronic myeloid leukaemia (CML) is a clonal myeloproliferative hematopoietic stem cell disorder. Deregulated BCRABL fusion tyrosine kinase activity is the main cause of CML disease pathogenesis, making BCRABL an ideal target for inhibition. Current tyrosine kinase inhibitors (TKIs) designed to inhibit BCRABL oncoprotein activity, have completely transformed the prognosis of CML. Interruption of TKI treatment leads to minimal residual disease reside (MRD), thought to reside in TKIinsensitive leukaemia stem cells which remain a potential reservoir for disease relapse. This highlights the need to develop new therapeutic strategies for CML either as small molecule master TKIs or phytopharmaceuticals derived from nature to achieve chronic molecular remission. This review outlines the past, present and future therapeutic approaches for CML including coverage of relevant mechanisms, whether ABL dependent or independent, and epigenetic factors responsible for developing resistance against TKIs. Appearance of mutant clones along the course of therapy either preexisting or induced due to therapy is still a challenge for the clinician. A proposed invitro model of generating colony forming units from CML stem cells derived from diagnostic samples seems to be achievable in the era of high throughput technology which can take care of single cell genomic profiling. PMID:27509925

  14. Exploiting the repertoire of CK2 inhibitors to target DYRK and PIM kinases.

    PubMed

    Cozza, Giorgio; Sarno, Stefania; Ruzzene, Maria; Girardi, Cristina; Orzeszko, Andrzej; Kazimierczuk, Zygmunt; Zagotto, Giuseppe; Bonaiuto, Emanuela; Di Paolo, Maria Luisa; Pinna, Lorenzo A

    2013-07-01

    Advantage has been taken of the relative promiscuity of commonly used inhibitors of protein kinase CK2 to develop compounds that can be exploited for the selective inhibition of druggable kinases other than CK2 itself. Here we summarize data obtained by altering the scaffold of CK2 inhibitors to give rise to novel selective inhibitors of DYRK1A and to a powerful cell permeable dual inhibitor of PIM1 and CK2. In the former case one of the new compounds, C624 (naphto [1,2-b]benzofuran-5,9-diol) displays a potency comparable to that of the first-in-class DYRK1A inhibitor, harmine, lacking however the drawback of drastically inhibiting monoamine oxidase-A (MAO-A) as harmine does. On the other hand the promiscuous CK2 inhibitor 4,5,6,7-tetrabromo-1H-benzimidazole (TBI,TBBz) has been derivatized with a sugar moiety to generate a 1-(β-D-2'-deoxyribofuranosyl)-4,5,6,7-tetrabromo-1H-benzimidazole (TDB) compound which inhibits PIM1 and CK2 with comparably high efficacy (IC50 values<100nM) and remarkable selectivity. TDB, unlike other dual PIM1/CK2 inhibitors described in the literature is readily cell permeable and displays a cytotoxic effect on cancer cells consistent with concomitant inhibition of both its onco-kinase targets. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012). PMID:23360763

  15. Investigation of potential glycogen synthase kinase 3 inhibitors using pharmacophore mapping and virtual screening.

    PubMed

    Dessalew, Nigus; Bharatam, Prasad V

    2006-09-01

    Glycogen synthase kinase-3 is a serine/threonine kinase that has attracted significant drug discovery attention in recent years. To investigate the identification of new potential glycogen synthase kinase-3 inhibitors, a pharmacophore mapping study was carried out using a set of 21 structurally diverse glycogen synthase kinase-3 inhibitors. A hypothesis containing four features: two hydrophobic, one hydrogen bond donor and another hydrogen bond acceptor was found to be the best from the 10 common feature hypotheses produced by HipHop module of Catalyst. The best hypothesis has a high cost of 156.592 and higher best fit values were obtained for the 21 inhibitors using this best hypothesis than the other HipHop hypotheses. The best hypothesis was then used to screen electronically the NCI2000 database. The hits obtained were docked into glycogen synthase kinase-3beta active site. A total of five novel potential leads were proposed after: (i) visual examination of how well they dock into the glycogen synthase kinase-3beta-binding site, (ii) comparative analysis of their FlexX, G-Score, PMF-Score, ChemScore and D-Scores values, (iii) comparison of their best fit value with the known inhibitors and (iv) examination of the how the hits retain interactions with the important amino acid residues of glycogen synthase kinase-3beta-binding site. PMID:17062013

  16. Structural basis for induced-fit binding of Rho-kinase to the inhibitor Y-27632.

    PubMed

    Yamaguchi, Hiroto; Miwa, Yukiko; Kasa, Miyuki; Kitano, Ken; Amano, Mutsuki; Kaibuchi, Kozo; Hakoshima, Toshio

    2006-09-01

    Rho-kinase is a main player in the regulation of cytoskeletal events and a promising drug target in the treatment of both vascular and neurological disorders. Here we report the crystal structure of the Rho-kinase catalytic domain in complex with the specific inhibitor Y-27632. Comparison with the structure of PKA bound to this inhibitor revealed a potential induced-fit binding mode that can be accommodated by the phosphate binding loop. This binding mode resembles to that observed in the Rho-kinase-fasudil complex. A structural database search indicated that a pocket underneath the phosphate-binding loop is present that favors binding to a small aromatic ring. Introduction of such a ring group might spawn a new modification scheme of pre-existing protein kinase inhibitors for improved binding capability. PMID:16891330

  17. The lack of target specificity of small molecule anticancer kinase inhibitors is correlated with their ability to damage myocytes in vitro

    SciTech Connect

    Hasinoff, Brian B. Patel, Daywin

    2010-12-01

    Many new targeted small molecule anticancer kinase inhibitors are actively being developed. However, the clinical use of some kinase inhibitors has been shown to result in cardiotoxicity. In most cases the mechanisms by which they exert their cardiotoxicity are not well understood. We have used large scale profiling data on 8 FDA-approved tyrosine kinase inhibitors and 10 other kinase inhibitors to a panel of 317 kinases in order to correlate binding constants and kinase inhibitor binding selectivity scores with kinase inhibitor-induced damage to neonatal rat cardiac myocytes. The 18 kinase inhibitors that were the subject of this study were: canertinib, dasatinib, dovitinib, erlotinib, flavopiridol, gefitinib, imatinib, lapatinib, midostaurin, motesanib, pazopanib, sorafenib, staurosporine, sunitinib, tandutinib, tozasertib, vandetanib and vatalanib. The combined tyrosine kinase and serine-threonine kinase selectivity scores were highly correlated with the myocyte-damaging effects of the kinase inhibitors. This result suggests that myocyte damage was due to a lack of target selectivity to binding of both tyrosine kinases and serine-threonine kinases, and was not due to binding to either group specifically. Finally, the strength of kinase inhibitor binding for 290 kinases was examined for correlations with myocyte damage. Kinase inhibitor binding was significantly correlated with myocyte damage for 12 kinases. Thus, myocyte damage may be multifactorial in nature with the inhibition of a number of kinases involved in producing kinase inhibitor-induced myocyte damage.

  18. The lack of target specificity of small molecule anticancer kinase inhibitors is correlated with their ability to damage myocytes in vitro.

    PubMed

    Hasinoff, Brian B; Patel, Daywin

    2010-12-01

    Many new targeted small molecule anticancer kinase inhibitors are actively being developed. However, the clinical use of some kinase inhibitors has been shown to result in cardiotoxicity. In most cases the mechanisms by which they exert their cardiotoxicity are not well understood. We have used large scale profiling data on 8 FDA-approved tyrosine kinase inhibitors and 10 other kinase inhibitors to a panel of 317 kinases in order to correlate binding constants and kinase inhibitor binding selectivity scores with kinase inhibitor-induced damage to neonatal rat cardiac myocytes. The 18 kinase inhibitors that were the subject of this study were: canertinib, dasatinib, dovitinib, erlotinib, flavopiridol, gefitinib, imatinib, lapatinib, midostaurin, motesanib, pazopanib, sorafenib, staurosporine, sunitinib, tandutinib, tozasertib, vandetanib and vatalanib. The combined tyrosine kinase and serine-threonine kinase selectivity scores were highly correlated with the myocyte-damaging effects of the kinase inhibitors. This result suggests that myocyte damage was due to a lack of target selectivity to binding of both tyrosine kinases and serine-threonine kinases, and was not due to binding to either group specifically. Finally, the strength of kinase inhibitor binding for 290 kinases was examined for correlations with myocyte damage. Kinase inhibitor binding was significantly correlated with myocyte damage for 12 kinases. Thus, myocyte damage may be multifactorial in nature with the inhibition of a number of kinases involved in producing kinase inhibitor-induced myocyte damage. PMID:20832415

  19. Targeting the RAS pathway by mitogen-activated protein kinase inhibitors.

    PubMed

    Kiessling, Michael K; Rogler, Gerhard

    2015-01-01

    Targeting of oncogenic driver mutations with small-molecule inhibitors resulted in powerful treatment options for cancer patients in recent years. The RAS (rat sarcoma) pathway is among the most frequently mutated pathways in human cancer. Whereas targeting mutant Kirsten RAS (KRAS) remains difficult, mutant B rapidly accelerated fibrosarcoma (BRAF) kinase is an established drug target in cancer. Now data show that neuroblastoma RAS (NRAS) and even Harvey RAS (HRAS) mutations could be predictive markers for treatment with mitogen-activated protein kinase (MEK) inhibitors. This review discusses recent preclinical and clinical studies of MEK inhibitors in BRAF and RAS mutant cancer. PMID:26691679

  20. Electrochemical screening of the indole/quinolone derivatives as potential protein kinase CK2 inhibitors.

    PubMed

    Martić, Sanela; Tackenburg, Stefanie; Bilokin, Yaroslav; Golub, Andriy; Bdzhola, Volodymyr; Yarmoluk, Sergiy; Kraatz, Heinz-Bernhard

    2012-02-15

    An electrochemical method based on the bioorganometallic Fc-ATP cosubstrate for kinase-catalyzed phosphorylation reactions was used for monitoring casein kinase 2 (CK2) phosphorylations in the absence and presence of five indole/quinolone-based potential inhibitors. Fc-phosphorylation of immobilized peptide RRRDDDSDDD on Au surfaces resulted in a current density at approximately 460 ± 10 mV. An electrochemical redox signal was significantly decreased in the presence of inhibitors. In addition, the electrochemical signal was concentration dependent with respect to the potential inhibitors 1 to 5, which proved to be viable CK2 drug targets with estimated IC₅₀ values in the nanomolar range. PMID:22178909

  1. Effect of kinase inhibitors on the therapeutic properties of monoclonal antibodies.

    PubMed

    Duong, Minh Ngoc; Matera, Eva-Laure; Mathé, Doriane; Evesque, Anne; Valsesia-Wittmann, Sandrine; Clémenceau, Béatrice; Dumontet, Charles

    2015-01-01

    Targeted therapies of malignancies currently consist of therapeutic monoclonal antibodies and small molecule kinase inhibitors. The combination of these novel agents raises the issue of potential antagonisms. We evaluated the potential effect of 4 kinase inhibitors, including the Bruton tyrosine kinase inhibitor ibrutinib, and 3 PI3K inhibitors idelalisib, NVP-BEZ235 and LY294002, on the effects of the 3 monoclonal antibodies, rituximab and obinutuzumab (directed against CD20) and trastuzumab (directed against HER2). We found that ibrutinib potently inhibits antibody-dependent cell-mediated cytotoxicity exerted by all antibodies, with a 50% inhibitory concentration of 0.2 microM for trastuzumab, 0.5 microM for rituximab and 2 microM for obinutuzumab, suggesting a lesser effect in combination with obinutuzumab than with rituximab. The 4 kinase inhibitors were found to inhibit phagocytosis by fresh human neutrophils, as well as antibody-dependent cellular phagocytosis induced by the 3 antibodies. Conversely co-administration of ibrutinib with rituximab, obinutuzumab or trastuzumab did not demonstrate any inhibitory effect of ibrutinib in vivo in murine xenograft models. In conclusion, some kinase inhibitors, in particular, ibrutinib, are likely to exert inhibitory effects on innate immune cells. However, these effects do not compromise the antitumor activity of monoclonal antibodies in vivo in the models that were evaluated. PMID:25523586

  2. Purine inhibitors of protein kinases, G proteins and polymerases

    DOEpatents

    Gray, Nathanael S.; Schultz, Peter; Kim, Sung-Hou; Meijer, Laurent

    2001-07-03

    The present invention relates to purine analogs that inhibit, inter alia, protein kinases, G-proteins and polymerases. In addition, the present invention relates to methods of using such purine analogs to inhibit protein kinases, G-proteins, polymerases and other cellular processes and to treat cellular proliferative diseases.

  3. Discovery of mammalian target of rapamycin (mTOR) kinase inhibitor CC-223.

    PubMed

    Mortensen, Deborah S; Perrin-Ninkovic, Sophie M; Shevlin, Graziella; Zhao, Jingjing; Packard, Garrick; Bahmanyar, Sogole; Correa, Matthew; Elsner, Jan; Harris, Roy; Lee, Branden G S; Papa, Patrick; Parnes, Jason S; Riggs, Jennifer R; Sapienza, John; Tehrani, Lida; Whitefield, Brandon; Apuy, Julius; Bisonette, René R; Gamez, James C; Hickman, Matt; Khambatta, Godrej; Leisten, Jim; Peng, Sophie X; Richardson, Samantha J; Cathers, Brian E; Canan, Stacie S; Moghaddam, Mehran F; Raymon, Heather K; Worland, Peter; Narla, Rama Krishna; Fultz, Kimberly E; Sankar, Sabita

    2015-07-01

    We report here the synthesis and structure-activity relationship (SAR) of a novel series of mammalian target of rapamycin (mTOR) kinase inhibitors. A series of 4,6- or 1,7-disubstituted-3,4-dihydropyrazino[2,3-b]pyrazine-2(1H)-ones were optimized for in vivo efficacy. These efforts resulted in the identification of compounds with excellent mTOR kinase inhibitory potency, with exquisite kinase selectivity over the related lipid kinase PI3K. The improved PK properties of this series allowed for exploration of in vivo efficacy and ultimately the selection of CC-223 for clinical development. PMID:26083478

  4. Differential Sensitivity of Glioma- versus Lung Cancer-specific EGFR mutations to EGFR Kinase Inhibitors

    PubMed Central

    Vivanco, Igor; Robins, H. Ian; Rohle, Daniel; Campos, Carl; Grommes, Christian; Nghiemphu, Phioanh Leia; Kubek, Sara; Oldrini, Barbara; Chheda, Milan G.; Yannuzzi, Nicolas; Tao, Hui; Zhu, Shaojun; Iwanami, Akio; Kuga, Daisuke; Dang, Julie; Pedraza, Alicia; Brennan, Cameron W.; Heguy, Adriana; Liau, Linda M.; Lieberman, Frank; Yung, W.K. Alfred; Gilbert, Mark R.; Reardon, David A.; Drappatz, Jan; Wen, Patrick Y.; Lamborn, Kathleen R.; Chang, Susan M.; Prados, Michael D.; Fine, Howard A.; Horvath, Steve; Wu, Nian; Lassman, Andrew B.; DeAngelis, Lisa M.; Yong, William H.; Kuhn, John G.; Mischel, Paul S.; Mehta, Minesh P.; Cloughesy, Timothy F.; Mellinghoff, Ingo K.

    2012-01-01

    Activation of the epidermal growth factor receptor (EGFR) in glioblastoma (GBM) occurs through mutations or deletions in the extracellular (EC) domain. Unlike lung cancers with EGFR kinase domain (KD) mutations, GBMs respond poorly to the EGFR inhibitor erlotinib. Using RNAi, we show that GBM cells carrying EGFR EC mutations display EGFR addiction. In contrast to KD mutants found in lung cancer, glioma-specific EGFR EC mutants are poorly inhibited by EGFR inhibitors that target the active kinase conformation (e.g., erlotinib). Inhibitors which bind to the inactive EGFR conformation, on the other hand, potently inhibit EGFR EC mutants and induce cell death in EGFR mutant GBM cells. Our results provide first evidence for single kinase addiction in GBM, and suggest that the disappointing clinical activity of first-generation EGFR inhibitors in GBM versus lung cancer may be attributed to the different conformational requirements of mutant EGFR in these two cancer types. PMID:22588883

  5. Pharmacophore modeling studies of type I and type II kinase inhibitors of Tie2.

    PubMed

    Xie, Qing-Qing; Xie, Huan-Zhang; Ren, Ji-Xia; Li, Lin-Li; Yang, Sheng-Yong

    2009-02-01

    In this study, chemical feature based pharmacophore models of type I and type II kinase inhibitors of Tie2 have been developed with the aid of HipHop and HypoRefine modules within Catalyst program package. The best HipHop pharmacophore model Hypo1_I for type I kinase inhibitors contains one hydrogen-bond acceptor, one hydrogen-bond donor, one general hydrophobic, one hydrophobic aromatic, and one ring aromatic feature. And the best HypoRefine model Hypo1_II for type II kinase inhibitors, which was characterized by the best correlation coefficient (0.976032) and the lowest RMSD (0.74204), consists of two hydrogen-bond donors, one hydrophobic aromatic, and two general hydrophobic features, as well as two excluded volumes. These pharmacophore models have been validated by using either or both test set and cross validation methods, which shows that both the Hypo1_I and Hypo1_II have a good predictive ability. The space arrangements of the pharmacophore features in Hypo1_II are consistent with the locations of the three portions making up a typical type II kinase inhibitor, namely, the portion occupying the ATP binding region (ATP-binding-region portion, AP), that occupying the hydrophobic region (hydrophobic-region portion, HP), and that linking AP and HP (bridge portion, BP). Our study also reveals that the ATP-binding-region portion of the type II kinase inhibitors plays an important role to the bioactivity of the type II kinase inhibitors. Structural modifications on this portion should be helpful to further improve the inhibitory potency of type II kinase inhibitors. PMID:19138543

  6. Molecular monitoring and mutations in chronic myeloid leukemia: how to get the most out of your tyrosine kinase inhibitor.

    PubMed

    Baccarani, Michele; Soverini, Simona; De Benedittis, Caterina

    2014-01-01

    The course of chronic myeloid leukemia (CML) and the response to treatment with tyrosine kinase inhibitors (TKIs) are best monitored and assessed using two molecular tests: the first is real-time quantitative reverse transcription-polymerase chain reaction (RQ-PCR), which measures the size of residual disease that is expressed as BCR-ABL1% (the ratio between BCR-ABL1 and a control gene) and the other is mutational analysis by Sanger sequencing, which checks for the presence of BCR-ABL1 kinase domain point mutations. Both tests are technically demanding and require a high level of specialization and standardization. RQ-PCR, when performed on a regular basis, allows for the defining of molecular response (MR) levels as log reduction from a standardized baseline: major molecular response (MMR or MR(3)) that is the best predictor of survival; and the deeper molecular response (MR(4), MR(4.5), and MR(5)) that is necessary to enroll a patient in a trial aiming at treatment-free remission (TFR). Mutational analysis, to be performed in case of failure or warning by Sanger sequencing, allows for screening of the BCR-ABL1 kinase domain for mutations conferring resistance to TKIs. Since different mutations have different degrees of sensitivity to each of the currently available TKI, the knowledge of BCR-ABL1 kinase domain-mutation status is necessary for subsequent treatment choice. Optimal patient management requires that MR and mutational information be rationally interpreted at both the technical and at the biologic level, and put into context-therapeutic decisions also take into account other factors, such as age, comorbidities, side effects, compliance, and treatment-related complications. PMID:24857074

  7. Crystal structure of a human cyclin-dependent kinase 6 complexwith a flavonol inhibitor, Fisetin

    SciTech Connect

    Lu, Heshu; Chang, Debbie J.; Baratte, Blandine; Meijer, Laurent; Schulze-Gahmen, Ursula

    2005-01-10

    Cyclin-dependent kinases (CDKs) play a central role in cell cycle control, apoptosis, transcription and neuronal functions. They are important targets for the design of drugs with anti-mitotic and/or anti-neurodegenerative effects. CDK4 and CDK6 form a subfamily among the CDKs in mammalian cells, as defined by sequence similarities. Compared to CDK2 and CDK5, structural information on CDK4 and CDK6 is sparse. We describe here the crystal structure of human CDK6 in complex with a viral cyclin and a flavonol inhibitor, fisetin. Fisetin binds to the active form of CDK6, forming hydrogen bonds with the side chains of residues in the binding pocket that undergo large conformational changes during CDK activation by cyclin binding. The 4-keto group and the 3-hydroxyl group of fisetin are hydrogen bonded with the backbone in the hinge region between the N-terminal and C-terminal kinase domain, as has been observed for many CDK inhibitors. However, CDK2 and HCK kinase in complex with other flavone inhibitors such as quercetin and flavopiridol showed a different binding mode with the inhibitor rotated by about 180. The structural information of the CDK6-fisetin complex is correlated with the binding affinities of different flavone inhibitors for CDK6. This complex structure is the first description of an inhibitor complex with a kinase from the CDK4/6 subfamily and can provide a basis for selecting and designing inhibitor compounds with higher affinity and specificity.

  8. Ability of the Met Kinase Inhibitor Crizotinib and New Generation EGFR Inhibitors to Overcome Resistance to EGFR Inhibitors

    PubMed Central

    Nanjo, Shigeki; Yamada, Tadaaki; Nishihara, Hiroshi; Takeuchi, Shinji; Sano, Takako; Nakagawa, Takayuki; Ishikawa, Daisuke; Zhao, Lu; Ebi, Hiromichi; Yasumoto, Kazuo; Matsumoto, Kunio; Yano, Seiji

    2013-01-01

    Purpose Although EGF receptor tyrosine kinase inhibitors (EGFR-TKI) have shown dramatic effects against EGFR mutant lung cancer, patients ultimately develop resistance by multiple mechanisms. We therefore assessed the ability of combined treatment with the Met inhibitor crizotinib and new generation EGFR-TKIs to overcome resistance to first-generation EGFR-TKIs. Experimental Design Lung cancer cell lines made resistant to EGFR-TKIs by the gatekeeper EGFR-T790M mutation, Met amplification, and HGF overexpression and mice with tumors induced by these cells were treated with crizotinib and a new generation EGFR-TKI. Results The new generation EGFR-TKI inhibited the growth of lung cancer cells containing the gatekeeper EGFR-T790M mutation, but did not inhibit the growth of cells with Met amplification or HGF overexpression. In contrast, combined therapy with crizotinib plus afatinib or WZ4002 was effective against all three types of cells, inhibiting EGFR and Met phosphorylation and their downstream molecules. Crizotinib combined with afatinib or WZ4002 potently inhibited the growth of mouse tumors induced by these lung cancer cell lines. However, the combination of high dose crizotinib and afatinib, but not WZ4002, triggered severe adverse events. Conclusions Our results suggest that the dual blockade of mutant EGFR and Met by crizotinib and a new generation EGFR-TKI may be promising for overcoming resistance to reversible EGFR-TKIs but careful assessment is warranted clinically. PMID:24386407

  9. Long-Term Side Effects of Tyrosine Kinase Inhibitors in Chronic Myeloid Leukemia.

    PubMed

    Caldemeyer, Lauren; Dugan, Michael; Edwards, John; Akard, Luke

    2016-04-01

    Most patients with chronic myeloid leukemia have deep and durable responses when treated with BCR-ABL1 tyrosine kinase inhibitors (TKIs). Imatinib (the first approved TKI), nilotinib, and dasatinib are used in newly diagnosed, relapsed or intolerant patients, while bosutinib and ponatinib are used only in relapsed or intolerant patients. Previously the drug of choice was related to the likelihood of response and, to a small extent, patient comorbidities. The long-term toxicities, particularly cardiopulmonary side effects, are now impacting treatment choice, making patient comorbidities of significant concern. About 10 % of patients do not tolerate their initial BCR-ABL1 TKI and an increasing number are developing long-term side effects, particularly with the second generation drugs. Side effects of the five drugs reviewed here highlight the differences between cardiovascular, pulmonary, gastrointestinal, and endocrine toxicities, as well as possible second malignancies. There is increasing evidence that patients whose disease is controlled by TKI's will have greater impact on their quality of life from comorbidities or drug adverse events than from the disease itself. Research into management of long-term toxicities is needed. PMID:26922746

  10. Outcome of Treatment of CML with 2nd Generation Tyrosine Kinase Inhibitors After Imatinib Failure

    PubMed Central

    Cornelison, A. Megan; Kantarjian, Hagop; Cortes, Jorge; Jabbour, Elias

    2015-01-01

    Although imatinib revolutionized the management of chronic myeloid leukemia (CML), recent data indicate a transformation in the treatment approach likely in the near future. For patients who fail with standard-dose imatinib therapy, imatinib dose escalation is a second-line option. However, high-dose imatinib is not an appropriate approach for patients experiencing drug toxicity, and there remain questions over the durability of responses achieved with this strategy. Alternative second-line options include the newer tyrosine kinase inhibitors (TKIs) like dasatinib and nilotinib. A substantial amount of long-term data for these agents is available. Although both are potent and specific BCR-ABL TKIs, dasatinib and nilotinib exhibit unique pharmacological profiles and response patterns relative to different patient characteristics, such as disease stage and BCR-ABL mutational status. The superiority of second generation TKIs over imatinib in newly diagnosed disease has been recognized as well. They induce high and rapid rates of cytogenetic and molecular response, with less progression to advanced forms of disease in comparison with imatinib. Several investigational agents specific for those patients with the T315I mutation remain under evaluation. The future of CML therapy may include early use of these potent agents to help more patients achieve molecular remission and potentially be a path to a CML cure. PMID:22035738

  11. Tyrosine Kinase Inhibitor-Associated Cardiovascular Toxicity in Chronic Myeloid Leukemia.

    PubMed

    Moslehi, Javid J; Deininger, Michael

    2015-12-10

    For most patients with chronic myeloid leukemia, tyrosine kinase inhibitors (TKIs) have turned a fatal disease into a manageable chronic condition. Imatinib, the first BCR-ABL1 TKI granted regulatory approval, has been surpassed in terms of molecular responses by the second-generation TKIs nilotinib, dasatinib, and bosutinib. Recently, ponatinib was approved as the only TKI with activity against the T315I mutation. Although all TKIs are associated with nonhematologic adverse events (AEs), experience with imatinib suggested that toxicities are typically manageable and apparent early during drug development. Recent reports of cardiovascular AEs with nilotinib and particularly ponatinib and of pulmonary arterial hypertension with dasatinib have raised concerns about long-term sequelae of drugs that may be administered for decades. Here, we review what is currently known about the cardiovascular toxicities of BCR-ABL1 TKIs, discuss potential mechanisms underlying cardiovascular AEs, and elucidate discrepancies between the reporting of such AEs between oncology and cardiovascular trials. Whenever possible, we provide practical recommendations, but we concede that cause-directed interventions will require better mechanistic understanding. We suggest that chronic myeloid leukemia heralds a fundamental shift in oncology toward effective but mostly noncurative long-term therapies. Realizing the full potential of these treatments will require a proactive rational approach to minimize long-term cardiovascular and cardiometabolic toxicities. PMID:26371140

  12. A rapid assay for assessment of sphingosine kinase inhibitors and substrates

    PubMed Central

    Kharel, Yugesh; Mathews, Thomas P.; Kennedy, Andrew J.; Houck, Joseph D.; Macdonald, Timohy L.; Lynch, Kevin R.

    2011-01-01

    Sphingosine kinases catalyze the transfer of phosphate from ATP to sphingosine to generate sphingosine 1-phosphate, an important bioactive lipid molecule that mediates a diverse range of cell signaling processes. The conventional assay of sphingosine kinase enzymatic activity uses [γ-32P]ATP and sphingosine as substrates with the radiolabeled S1P product recovered by organic extraction, displayed by thin-layer chromatography and quantified by liquid scintillation counting. While this assay is sensitive and accurate, it is slow and labor intensive and thus precludes the simultaneous screening of more than a few inhibitor compounds. Herein we describe a 96 well assay for sphingosine kinases that is rapid and reproducible. Our method, which takes advantage of the limited solubility of S1P, detects radioactive S1P adhering to the plate by scintillation proximity counting. Our procedure obviates extraction into organic solvents, post-reaction transfers and chromatography. Further, our assay enables assessment of both inhibitors and substrates, and can detect endogenous sphingosine kinase activity in cell and tissue extracts. The sphingosine kinase kinetic parameter, Km, and the Ki values of inhibitors determined with our assay and the conventional assay were indistinguishable. These results document that our assay is well suited for the screening of chemical libraries of sphingosine kinase inhibitors. PMID:21216217

  13. Molecular Mechanism of Selectivity among G Protein-Coupled Receptor Kinase 2 Inhibitors

    SciTech Connect

    Thal, David M.; Yeow, Raymond Y.; Schoenau, Christian; Huber, Jochen; Tesmer, John J.G.

    2012-07-11

    G protein-coupled receptors (GPCRs) are key regulators of cell physiology and control processes ranging from glucose homeostasis to contractility of the heart. A major mechanism for the desensitization of activated GPCRs is their phosphorylation by GPCR kinases (GRKs). Overexpression of GRK2 is strongly linked to heart failure, and GRK2 has long been considered a pharmaceutical target for the treatment of cardiovascular disease. Several lead compounds developed by Takeda Pharmaceuticals show high selectivity for GRK2 and therapeutic potential for the treatment of heart failure. To understand how these drugs achieve their selectivity, we determined crystal structures of the bovine GRK2-G{beta}{gamma} complex in the presence of two of these inhibitors. Comparison with the apoGRK2-G{beta}{gamma} structure demonstrates that the compounds bind in the kinase active site in a manner similar to that of the AGC kinase inhibitor balanol. Both balanol and the Takeda compounds induce a slight closure of the kinase domain, the degree of which correlates with the potencies of the inhibitors. Based on our crystal structures and homology modeling, we identified five amino acids surrounding the inhibitor binding site that we hypothesized could contribute to inhibitor selectivity. However, our results indicate that these residues are not major determinants of selectivity among GRK subfamilies. Rather, selectivity is achieved by the stabilization of a unique inactive conformation of the GRK2 kinase domain.

  14. Repurposing Kinase Inhibitors as Antiviral Agents to Control Influenza A Virus Replication.

    PubMed

    Perwitasari, Olivia; Yan, Xiuzhen; O'Donnell, Jason; Johnson, Scott; Tripp, Ralph A

    2015-12-01

    Influenza A virus (IAV) infection causes seasonal epidemics of contagious respiratory illness that causes substantial morbidity and some mortality. Regular vaccination is the principal strategy for controlling influenza virus, although vaccine efficacy is variable. IAV antiviral drugs are available; however, substantial drug resistance has developed to two of the four currently FDA-approved antiviral drugs. Thus, new therapeutic approaches are being sought to reduce the burden of influenza-related disease. A high-throughput screen using a human kinase inhibitor library was performed targeting an emerging IAV strain (H7N9) in A549 cells. The inhibitor library contained 273 structurally diverse, active cell permeable kinase inhibitors with known bioactivity and safety profiles, many of which are at advanced stages of clinical development. The current study shows that treatment of human A549 cells with kinase inhibitors dinaciclib, flavopiridol, or PIK-75 exhibits potent antiviral activity against H7N9 IAV as well as other IAV strains. Thus, targeting host kinases can provide a broad-spectrum therapeutic approach against IAV. These findings provide a path forward for repurposing existing kinase inhibitors safely as potential antivirals, particularly those that can be tested in vivo and ultimately for clinical use. PMID:26192013

  15. Targeting Cyclin-Dependent Kinases in Human Cancers: From Small Molecules to Peptide Inhibitors

    PubMed Central

    Peyressatre, Marion; Prével, Camille; Pellerano, Morgan; Morris, May C.

    2015-01-01

    Cyclin-dependent kinases (CDK/Cyclins) form a family of heterodimeric kinases that play central roles in regulation of cell cycle progression, transcription and other major biological processes including neuronal differentiation and metabolism. Constitutive or deregulated hyperactivity of these kinases due to amplification, overexpression or mutation of cyclins or CDK, contributes to proliferation of cancer cells, and aberrant activity of these kinases has been reported in a wide variety of human cancers. These kinases therefore constitute biomarkers of proliferation and attractive pharmacological targets for development of anticancer therapeutics. The structural features of several of these kinases have been elucidated and their molecular mechanisms of regulation characterized in depth, providing clues for development of drugs and inhibitors to disrupt their function. However, like most other kinases, they constitute a challenging class of therapeutic targets due to their highly conserved structural features and ATP-binding pocket. Notwithstanding, several classes of inhibitors have been discovered from natural sources, and small molecule derivatives have been synthesized through rational, structure-guided approaches or identified in high throughput screens. The larger part of these inhibitors target ATP pockets, but a growing number of peptides targeting protein/protein interfaces are being proposed, and a small number of compounds targeting allosteric sites have been reported. PMID:25625291

  16. Purine inhibitors of protein kinases, G proteins and polymerases

    DOEpatents

    Gray, Nathanael S.; Schultz, Peter; Kim, Sung-Hou; Meijer, Laurent

    2004-10-12

    The present invention relates to 2-N-substituted 6-(4-methoxybenzylamino)-9-isopropylpurines that inhibit, inter alia, protein kinases, G-proteins and polymerases. In addition, the present invention relates to methods of using such 2-N-substituted 6-(4-methoxybenzylamino)-9-isopropylpurines to inhibit protein kinases, G-proteins, polymerases and other cellular processes and to treat cellular proliferative diseases.

  17. BIM expression in treatment naïve cancers predicts responsiveness to kinase inhibitors

    PubMed Central

    Faber, Anthony; Corcoran, Ryan B.; Ebi, Hiromichi; Sequist, Lecia V.; Waltman, Belinda A.; Chung, Euiheon; Incio, Joao; Digumarthy, Subba R.; Pollack, Sarah F.; Song, Youngchul; Muzikansky, Alona; Lifshits, Eugene; Roberge, Sylvie; Coffman, Erik J.; Benes, Cyril; Gómez, Henry; Baselga, Jose; Arteaga, Carlos L.; Rivera, Miguel N.; Dias-Santagata, Dora; Jain, Rakesh K.; Engelman, Jeffrey A.

    2011-01-01

    Cancers with specific genetic mutations are susceptible to selective kinase inhibitors. However, there is wide spectrum of benefit among cancers harboring the same sensitizing genetic mutations. Herein, we measured apoptotic rates among cell lines sharing the same driver oncogene following treatment with the corresponding kinase inhibitor. There was a wide range of kinase inhibitor-induced apoptosis despite comparable inhibition of the target and associated downstream signaling pathways. Surprisingly, pre-treatment RNA levels of the BH3-only pro-apoptotic BIM strongly predicted the capacity of EGFR, HER2, and PI3K inhibitors to induce apoptosis in EGFR mutant, HER2 amplified, and PIK3CA mutant cancers, respectively, but BIM levels did not predict responsiveness to standard chemotherapies. Furthermore, BIM RNA levels in EGFR mutant lung cancer specimens predicted response and duration of clinical benefit from EGFR inhibitors. These findings suggest assessment of BIM levels in treatment naïve tumor biopsies may indicate the degree of benefit from single-agent kinase inhibitors in multiple oncogene-addiction paradigms. PMID:22145099

  18. Antitumor activity of a small-molecule inhibitor of the histone kinase Haspin

    PubMed Central

    Huertas, D; Soler, M; Moreto, J; Villanueva, A; Martinez, A; Vidal, A; Charlton, M; Moffat, D; Patel, S; McDermott, J; Owen, J; Brotherton, D; Krige, D; Cuthill, S; Esteller, M

    2012-01-01

    The approval of histone deacetylase inhibitors for treatment of lymphoma subtypes has positioned histone modifications as potential targets for the development of new classes of anticancer drugs. Histones also undergo phosphorylation events, and Haspin is a protein kinase the only known target of which is phosphorylation of histone H3 at Thr3 residue (H3T3ph), which is necessary for mitosis progression. Mitotic kinases can be blocked by small drugs and several clinical trials are underway with these agents. As occurs with Aurora kinase inhibitors, Haspin might be an optimal candidate for the pharmacological development of these compounds. A high-throughput screening for Haspin inhibitors identified the CHR-6494 compound as being one promising such agent. We demonstrate that CHR-6494 reduces H3T3ph levels in a dose-dependent manner and causes a mitotic catastrophe characterized by metaphase misalignment, spindle abnormalities and centrosome amplification. From the cellular standpoint, the identified small-molecule Haspin inhibitor causes arrest in G2/M and subsequently apoptosis. Importantly, ex vivo assays also demonstrate its anti-angiogenetic features; in vivo, it shows antitumor potential in xenografted nude mice without any observed toxicity. Thus, CHR-6494 is a first-in-class Haspin inhibitor with a wide spectrum of anticancer effects that merits further preclinical research as a new member of the family of mitotic kinase inhibitors. PMID:21804608

  19. Active Site Inhibitors Protect Protein Kinase C from Dephosphorylation and Stabilize Its Mature Form*

    PubMed Central

    Gould, Christine M.; Antal, Corina E.; Reyes, Gloria; Kunkel, Maya T.; Adams, Ryan A.; Ziyar, Ahdad; Riveros, Tania; Newton, Alexandra C.

    2011-01-01

    Conformational changes acutely control protein kinase C (PKC). We have previously shown that the autoinhibitory pseudosubstrate must be removed from the active site in order for 1) PKC to be phosphorylated by its upstream kinase phosphoinositide-dependent kinase 1 (PDK-1), 2) the mature enzyme to bind and phosphorylate substrates, and 3) the mature enzyme to be dephosphorylated by phosphatases. Here we show an additional level of conformational control; binding of active site inhibitors locks PKC in a conformation in which the priming phosphorylation sites are resistant to dephosphorylation. Using homogeneously pure PKC, we show that the active site inhibitor Gö 6983 prevents the dephosphorylation by pure protein phosphatase 1 (PP1) or the hydrophobic motif phosphatase, pleckstrin homology domain leucine-rich repeat protein phosphatase (PHLPP). Consistent with results using pure proteins, treatment of cells with the competitive inhibitors Gö 6983 or bisindolylmaleimide I, but not the uncompetitive inhibitor bisindolylmaleimide IV, prevents the dephosphorylation and down-regulation of PKC induced by phorbol esters. Pulse-chase analyses reveal that active site inhibitors do not affect the net rate of priming phosphorylations of PKC; rather, they inhibit the dephosphorylation triggered by phorbol esters. These data provide a molecular explanation for the recent studies showing that active site inhibitors stabilize the phosphorylation state of protein kinases B/Akt and C. PMID:21715334

  20. Structural insight into selectivity and resistance profiles of ROS1 tyrosine kinase inhibitors

    PubMed Central

    Davare, Monika A.; Vellore, Nadeem A.; Wagner, Jacob P.; Eide, Christopher A.; Goodman, James R.; Drilon, Alexander; Deininger, Michael W.; O’Hare, Thomas; Druker, Brian J.

    2015-01-01

    Oncogenic ROS1 fusion proteins are molecular drivers in multiple malignancies, including a subset of non-small cell lung cancer (NSCLC). The phylogenetic proximity of the ROS1 and anaplastic lymphoma kinase (ALK) catalytic domains led to the clinical repurposing of the Food and Drug Administration (FDA)-approved ALK inhibitor crizotinib as a ROS1 inhibitor. Despite the antitumor activity of crizotinib observed in both ROS1- and ALK-rearranged NSCLC patients, resistance due to acquisition of ROS1 or ALK kinase domain mutations has been observed clinically, spurring the development of second-generation inhibitors. Here, we profile the sensitivity and selectivity of seven ROS1 and/or ALK inhibitors at various levels of clinical development. In contrast to crizotinib’s dual ROS1/ALK activity, cabozantinib (XL-184) and its structural analog foretinib (XL-880) demonstrate a striking selectivity for ROS1 over ALK. Molecular dynamics simulation studies reveal structural features that distinguish the ROS1 and ALK kinase domains and contribute to differences in binding site and kinase selectivity of the inhibitors tested. Cell-based resistance profiling studies demonstrate that the ROS1-selective inhibitors retain efficacy against the recently reported CD74-ROS1G2032R mutant whereas the dual ROS1/ALK inhibitors are ineffective. Taken together, inhibitor profiling and stringent characterization of the structure–function differences between the ROS1 and ALK kinase domains will facilitate future rational drug design for ROS1- and ALK-driven NSCLC and other malignancies. PMID:26372962

  1. Prediction of kinase inhibitor response using activity profiling, in vitro screening, and elastic net regression

    PubMed Central

    2014-01-01

    Background Many kinase inhibitors have been approved as cancer therapies. Recently, libraries of kinase inhibitors have been extensively profiled, thus providing a map of the strength of action of each compound on a large number of its targets. These profiled libraries define drug-kinase networks that can predict the effectiveness of untested drugs and elucidate the roles of specific kinases in different cellular systems. Predictions of drug effectiveness based on a comprehensive network model of cellular signalling are difficult, due to our partial knowledge of the complex biological processes downstream of the targeted kinases. Results We have developed the Kinase Inhibitors Elastic Net (KIEN) method, which integrates information contained in drug-kinase networks with in vitro screening. The method uses the in vitro cell response of single drugs and drug pair combinations as a training set to build linear and nonlinear regression models. Besides predicting the effectiveness of untested drugs, the KIEN method identifies sets of kinases that are statistically associated to drug sensitivity in a given cell line. We compared different versions of the method, which is based on a regression technique known as elastic net. Data from two-drug combinations led to predictive models, and we found that predictivity can be improved by applying logarithmic transformation to the data. The method was applied to the A549 lung cancer cell line, and we identified specific kinases known to have an important role in this type of cancer (TGFBR2, EGFR, PHKG1 and CDK4). A pathway enrichment analysis of the set of kinases identified by the method showed that axon guidance, activation of Rac, and semaphorin interactions pathways are associated to a selective response to therapeutic intervention in this cell line. Conclusions We have proposed an integrated experimental and computational methodology, called KIEN, that identifies the role of specific kinases in the drug response of a given

  2. Recent advances in the development of Aurora kinases inhibitors in hematological malignancies

    PubMed Central

    Choudary, Iqra; Barr, Paul M.; Friedberg, Jonathan

    2015-01-01

    Over the last two decades, since the discovery of Drosophila mutants in 1995, much effort has been made to understand Aurora kinase biology. Three mammalian subtypes have been identified thus far which include the Aurora A, B and C kinases. These regulatory proteins specifically work at the cytoskeleton and chromosomal structures between the kinetochores and have vital functions in the early phases of the mitotic cell cycle. Today, there are multiple phase I and phase II clinical trials as well as numerous preclinical studies taking place looking at Aurora kinase inhibitors in both hematologic and solid malignancies. This review focuses on the preclinical and clinical development of Aurora kinase inhibitors in hematological malignancy and discusses their therapeutic potential. PMID:26622997

  3. An isoform-selective, small-molecule inhibitor targets the autoregulatory mechanism of p21-activated kinase

    PubMed Central

    Deacon, Sean W.; Beeser, Alexander; Fukui, Jami A.; Rennefahrt, Ulrike E. E.; Myers, Cynthia; Chernoff, Jonathan; Peterson, Jeffrey R.

    2015-01-01

    SUMMARY Autoregulatory domains found within kinases may provide more unique targets for chemical inhibitors than the conserved ATP-binding pocket targeted by most inhibitors. The kinase Pak1 contains an autoinhibitory domain that suppresses the catalytic activity of its kinase domain. Pak1 activators relieve this autoinhibition and initiate conformational rearrangements and autophosphorylation events leading to kinase activation. We developed a screen for allosteric inhibitors targeting Pak1 activation and identified the inhibitor IPA-3. Remarkably, pre-activated Pak1 is resistant to IPA-3. IPA-3 also inhibits activation of related Pak isoforms regulated by autoinhibition, but not more distantly related Paks, nor >200 other kinases tested. Pak1 inhibition by IPA-3 in live cells supports a critical role for Pak in PDGF-stimulated Erk activation. These studies illustrate a novel strategy for kinase inhibition and introduce a highly selective, cell-permeable chemical inhibitor of Pak. PMID:18420139

  4. Method for distinguishing normal and transformed cells using G1 kinase inhibitors

    DOEpatents

    Crissman, Harry A.; Gadbois, Donna M.; Tobey, Robert A.; Bradbury, E. Morton

    1993-01-01

    A G.sub.1 phase kinase inhibitor is applied in a low concentration to a population of normal and transformed mammalian cells. The concentration of G.sub.1 phase kinase inhibitor is selected to reversibly arrest normal mammalian cells in the G.sub.1 cell cycle without arresting growth of transformed cells. The transformed cells may then be selectively identified and/or cloned for research or diagnostic purposes. The transformed cells may also be selectively killed by therapeutic agents that do not affect normal cells in the G.sub.1 phase, suggesting that such G.sub.1 phase kinase inhibitors may form an effective adjuvant for use with chemotherapeutic agents in cancer therapy for optimizing the killing dose of chemotherapeutic agents while minimizing undesirable side effects on normal cells.

  5. Method for distinguishing normal and transformed cells using G1 kinase inhibitors

    SciTech Connect

    Crissman, H.A.; Gadbois, D.M.; Tobey, R.A.; Bradbury, E.M.

    1991-12-31

    A G{sub 1} phase kinase inhibitor is applied in a low concentration to a population of normal and transformed mammalian cells. The concentration of G{sub 1} phase kinase inhibitor is selected to reversibly arrest normal mammalian cells in the G{sub 1} cell cycle without arresting growth of transformed cells. The transformed cells may then be selectively identified and/or cloned for research or diagnostic purposes. The transformed cells may also be selectively killed by therapeutic agents that do not affect normal cells in the G{sub 1} phase, suggesting that such G{sub 1} phase kinase inhibitors may form an effective adjuvant for use with chemotherapeutic agents in cancer therapy for optimizing the killing dose of chemotherapeutic agents while minimizing undesirable side effects on normal cells.

  6. Benzofuran Small Molecules as Potential Inhibitors of Human Protein Kinases. A Review.

    PubMed

    Kwiecień, Halina; Goszczyńska, Agata; Rokosz, Paulina

    2016-01-01

    Kinases are known to regulate the majority of human cellular processes such as communication, division, metabolism, survival and apoptosis therefore they can be promising targets in cancer diseases, viral infection and in other disorders. Small molecules acting as selective human protein kinase inhibitors are very attractive pharmacological targets. This review presents a number of examples of biologically active natural and synthetic benzo[b]furans and their derivatives, such as benzo[b]furan-2- and 3-ones, benzo[b]furan-2- and 3-carboxylic acids, as well as benzo[c]furans as potential inhibitors of various human protein kinases. The pathways of function and implication of the inhibitors in cancer and other diseases are discussed. PMID:26648467

  7. Method for distinguishing normal and transformed cells using G1 kinase inhibitors

    DOEpatents

    Crissman, H.A.; Gadbois, D.M.; Tobey, R.A.; Bradbury, E.M.

    1993-02-09

    A G[sub 1] phase kinase inhibitor is applied in a low concentration to a population of normal and transformed mammalian cells. The concentration of G[sub 1] phase kinase inhibitor is selected to reversibly arrest normal mammalian cells in the G[sub 1] cell cycle without arresting growth of transformed cells. The transformed cells may then be selectively identified and/or cloned for research or diagnostic purposes. The transformed cells may also be selectively killed by therapeutic agents that do not affect normal cells in the G[sub 1] phase, suggesting that such G[sub 1] phase kinase inhibitors may form an effective adjuvant for use with chemotherapeutic agents in cancer therapy for optimizing the killing dose of chemotherapeutic agents while minimizing undesirable side effects on normal cells.

  8. Cyclin-dependent kinases inhibitors as potential anticancer, antineurodegenerative, antiviral and antiparasitic agents.

    PubMed

    Meijer, Laurent

    2000-04-01

    Cyclin-dependent kinases (CDKs) play a key role in the cell division cycle, in neuronal functions, in transcription and in apoptosis. Intensive screening with these kinases as targets has lead to the identification of highly selective and potent small - molecule inhibitors. Co-crystallization with CDK2 shows that these flat heterocyclic hydrophobic compounds bind through two or three hydrogen bonds with the side chains of two amino acids located in the ATP-binding pocket of the kinase. These inhibitors are anti-proliferative; they arrest cells in G1 and in G2/M phase. Furthermore they facilitate or even trigger apoptosis in proliferating cells while they protect neuronal cells and thymocytes from apoptosis. The potential use of these inhibitors is being extensively evaluated for cancer chemotherapy and also in other therapeutic areas: neurology (Alzheimer's disease), cardiovascular (restenosis, angiogenesis), nephrology (glomerulonephritis), parasitology (Plasmodium, Trypanosoma, Toxoplasma, etc.) and virology (cytomegalovirus, HIV, herpes virus). Copyright 2000 Harcourt Publishers Ltd. PMID:11498372

  9. A Covalent Cysteine-Targeting Kinase Inhibitor of Ire1 Permits Allosteric Control of Endoribonuclease Activity.

    PubMed

    Waller, Daniel D; Jansen, Gregor; Golizeh, Makan; Martel-Lorion, Chloe; Dejgaard, Kurt; Shiao, Tze Chieh; Mancuso, John; Tsantrizos, Youla S; Roy, René; Sebag, Michael; Sleno, Lekha; Thomas, David Y

    2016-05-01

    The unfolded protein response (UPR) initiated by the transmembrane kinase/ribonuclease Ire1 has been implicated in a variety of diseases. Ire1, with its unique position in the UPR, is an ideal target for the development of therapies; however, the identification of specific kinase inhibitors is challenging. Recently, the development of covalent inhibitors has gained great momentum because of the irreversible deactivation of the target. We identified and determined the mechanism of action of the Ire1-inhibitory compound UPRM8. MS analysis revealed that UPRM8 inhibition occurs by covalent adduct formation at a conserved cysteine at the regulatory DFG+2 position in the Ire1 kinase activation loop. Mutational analysis of the target cysteine residue identified both UPRM8-resistant and catalytically inactive Ire1 mutants. We describe a novel covalent inhibition mechanism of UPRM8, which can serve as a lead for the rational design and optimization of inhibitors of human Ire1. PMID:26792008

  10. Synthesis and biological evaluation of 4-quinazolinones as Rho kinase inhibitors.

    PubMed

    Fang, Xingang; Chen, Yen Ting; Sessions, E Hampton; Chowdhury, Sarwat; Vojkovsky, Tomas; Yin, Yan; Pocas, Jennifer R; Grant, Wayne; Schröter, Thomas; Lin, Li; Ruiz, Claudia; Cameron, Michael D; LoGrasso, Philip; Bannister, Thomas D; Feng, Yangbo

    2011-03-15

    Rho kinase (ROCK) is an attractive therapeutic target for various diseases including glaucoma, hypertension, and spinal cord injury. Herein, we report the development of a series of ROCK-II inhibitors based on 4-quinazolinone and quinazoline scaffolds. SAR studies at three positions of the quinazoline core led to the identification of analogs with high potency against ROCK-II and good selectivity over protein kinase A (PKA). PMID:21349713

  11. Slow Inhibition and Conformation Selective Properties of Extracellular Signal-Regulated Kinase 1 and 2 Inhibitors

    PubMed Central

    Rudolph, Johannes; Xiao, Yao; Pardi, Arthur; Ahn, Natalie G.

    2016-01-01

    The mitogen-activated protein (MAP) kinase pathway is a target for anticancer therapy, validated using inhibitors of B-Raf and MAP kinase kinase (MKK) 1 and 2. Clinical outcomes show a high frequency of acquired resistance in patient tumors, involving upregulation of activity of the MAP kinase, extracellular signal-regulated kinase (ERK) 1 and 2. Thus, inhibitors for ERK1/2 are potentially important for targeted therapeutics against cancer. The structures and potencies of different ERK inhibitors have been published, but their kinetic mechanisms have not been characterized. Here we perform enzyme kinetic studies on six representative ERK inhibitors, with potencies varying from 100 pM to 20 μM. Compounds with significant biological activity (IC50 < 100 nM) that inhibit in the subnanomolar range (Vertex-11e and SCH772984) display slow-onset inhibition and represent the first inhibitors of ERK2 known to demonstrate slow dissociation rate constants (values of 0.2 and 1.1 h−1, respectively). Furthermore, we demonstrate using kinetic competition assays that Vertex-11e binds with differing affinities to ERK2 in its inactive, unphosphorylated and active, phosphorylated forms. Finally, two-dimensional heteronuclear multiple-quantum correlation nuclear magnetic resonance experiments reveal that distinct conformational states are formed in complexes of Vertex-11e with inactive and active ERK2. Importantly, two conformers interconvert in equilibrium in the active ERK2 apoenzyme, but Vertex-11e strongly shifts the equilibrium completely to one conformer. Thus, a high-affinity, slow dissociation inhibitor stabilizes different enzyme conformations depending on the activity state of ERK2 and reveals properties of conformational selection toward the active kinase. PMID:25350931

  12. Chemical Proteomics Reveals Ferrochelatase as a Common Off-target of Kinase Inhibitors.

    PubMed

    Klaeger, Susan; Gohlke, Bjoern; Perrin, Jessica; Gupta, Vipul; Heinzlmeir, Stephanie; Helm, Dominic; Qiao, Huichao; Bergamini, Giovanna; Handa, Hiroshi; Savitski, Mikhail M; Bantscheff, Marcus; Médard, Guillaume; Preissner, Robert; Kuster, Bernhard

    2016-05-20

    Many protein kinases are valid drug targets in oncology because they are key components of signal transduction pathways. The number of clinical kinase inhibitors is on the rise, but these molecules often exhibit polypharmacology, potentially eliciting desired and toxic effects. Therefore, a comprehensive assessment of a compound's target space is desirable for a better understanding of its biological effects. The enzyme ferrochelatase (FECH) catalyzes the conversion of protoporphyrin IX into heme and was recently found to be an off-target of the BRAF inhibitor Vemurafenib, likely explaining the phototoxicity associated with this drug in melanoma patients. This raises the question of whether FECH binding is a more general feature of kinase inhibitors. To address this, we applied a chemical proteomics approach using kinobeads to evaluate 226 clinical kinase inhibitors for their ability to bind FECH. Surprisingly, low or submicromolar FECH binding was detected for 29 of all compounds tested and isothermal dose response measurements confirmed target engagement in cells. We also show that Vemurafenib, Linsitinib, Neratinib, and MK-2461 reduce heme levels in K562 cells, verifying that drug binding leads to a loss of FECH activity. Further biochemical and docking experiments identified the protoporphyrin pocket in FECH as one major drug binding site. Since the genetic loss of FECH activity leads to photosensitivity in humans, our data strongly suggest that FECH inhibition by kinase inhibitors is the molecular mechanism triggering photosensitivity in patients. We therefore suggest that a FECH assay should generally be part of the preclinical molecular toxicology package for the development of kinase inhibitors. PMID:26863403

  13. Targeting kinases with anilinopyrimidines: discovery of N-phenyl-N’-[4-(pyrimidin-4-ylamino)phenyl]urea derivatives as selective inhibitors of class III receptor tyrosine kinase subfamily

    PubMed Central

    Gandin, Valentina; Ferrarese, Alessandro; Dalla Via, Martina; Marzano, Cristina; Chilin, Adriana; Marzaro, Giovanni

    2015-01-01

    Kinase inhibitors are attractive drugs/drug candidates for the treatment of cancer. The most recent literature has highlighted the importance of multi target kinase inhibitors, although a correct balance between specificity and non-specificity is required. In this view, the discovery of multi-tyrosine kinase inhibitors with subfamily selectivity is a challenging goal. Herein we present the synthesis and the preliminary kinase profiling of a set of novel 4-anilinopyrimidines. Among the synthesized compounds, the N-phenyl-N’-[4-(pyrimidin-4-ylamino)phenyl]urea derivatives selectively targeted some members of class III receptor tyrosine kinase family. Starting from the structure of hit compound 19 we synthesized a further compound with an improved affinity toward the class III receptor tyrosine kinase members and endowed with a promising antitumor activity both in vitro and in vivo in a murine solid tumor model. Molecular modeling simulations were used in order to rationalize the behavior of the title compounds. PMID:26568452

  14. Selective Phosphorylation Inhibitor of Delta Protein Kinase C-Pyruvate Dehydrogenase Kinase Protein-Protein Interactions: Application for Myocardial Injury in Vivo.

    PubMed

    Qvit, Nir; Disatnik, Marie-Hélène; Sho, Eiketsu; Mochly-Rosen, Daria

    2016-06-22

    Protein kinases regulate numerous cellular processes, including cell growth, metabolism, and cell death. Because the primary sequence and the three-dimensional structure of many kinases are highly similar, the development of selective inhibitors for only one kinase is challenging. Furthermore, many protein kinases are pleiotropic, mediating diverse and sometimes even opposing functions by phosphorylating multiple protein substrates. Here, we set out to develop an inhibitor of a selective protein kinase phosphorylation of only one of its substrates. Focusing on the pleiotropic delta protein kinase C (δPKC), we used a rational approach to identify a distal docking site on δPKC for its substrate, pyruvate dehydrogenase kinase (PDK). We reasoned that an inhibitor of PDK's docking should selectively inhibit the phosphorylation of only PDK without affecting phosphorylation of the other δPKC substrates. Our approach identified a selective inhibitor of PDK docking to δPKC with an in vitro Kd of ∼50 nM and reducing cardiac injury IC50 of ∼5 nM. This inhibitor, which did not affect the phosphorylation of other δPKC substrates even at 1 μM, demonstrated that PDK phosphorylation alone is critical for δPKC-mediated injury by heart attack. The approach we describe is likely applicable for the identification of other substrate-specific kinase inhibitors. PMID:27218445

  15. Cardiovascular and pulmonary adverse events in patients treated with BCR-ABL inhibitors: Data from the FDA Adverse Event Reporting System.

    PubMed

    Cortes, Jorge; Mauro, Michael; Steegmann, Juan Luis; Saglio, Giuseppe; Malhotra, Rachpal; Ukropec, Jon A; Wallis, Nicola T

    2015-04-01

    Rare but serious cardiovascular and pulmonary adverse events (AEs) have been reported in patients with chronic myeloid leukemia treated with BCR-ABL inhibitors. Clinical trial data may not reflect the full AE profile of BCR-ABL inhibitors because of stringent study entry criteria, relatively small sample size, and limited duration of follow-up. To determine the utility of the FDA AE Reporting System (FAERS) surveillance database for identifying AEs possibly associated with the BCR-ABL inhibitors imatinib, dasatinib, and nilotinib in the postmarketing patient population, we conducted Multi-Item Gamma Poisson Shrinker disproportionality analyses of FAERS reports on AEs in relevant system organ classes. Signals consistent with the known safety profiles of these agents as well as signals for less well-described AEs were detected. Bone marrow necrosis, conjunctival hemorrhage, and peritoneal fluid retention events were uniquely associated with imatinib. AEs that most commonly reached the threshold for dasatinib consisted of terms relating to hemorrhage and fluid retention, including pleural effusion and pericardial effusion. Most terms that reached the threshold solely with nilotinib were related to peripheral and cardiac vascular events. Although this type of analysis cannot determine AE incidence or establish causality, these findings elucidate the AEs reported in patients treated with BCR-ABL inhibitors across multiple clinical trials and in the community setting for all approved and nonapproved indications, suggesting drug-AE associations warrant further investigation. These findings emphasize the need to consider patient comorbidities when selecting amongst BCR-ABL inhibitors. PMID:25580915

  16. A computational workflow for the design of irreversible inhibitors of protein kinases.

    PubMed

    Del Rio, Alberto; Sgobba, Miriam; Parenti, Marco Daniele; Degliesposti, Gianluca; Forestiero, Rosetta; Percivalle, Claudia; Conte, Pier Franco; Freccero, Mauro; Rastelli, Giulio

    2010-03-01

    Design of irreversible inhibitors is an emerging and relatively less explored strategy for the design of protein kinase inhibitors. In this paper, we present a computational workflow that was specifically conceived to assist such design. The workflow takes the form of a multi-step procedure that includes: the creation of a database of already known reversible inhibitors of protein kinases, the selection of the most promising scaffolds that bind one or more desired kinase templates, the modification of the scaffolds by introduction of chemically reactive groups (suitable cysteine traps) and the final evaluation of the reversible and irreversible protein-ligand complexes with molecular dynamics simulations and binding free energy predictions. Most of these steps were automated. In order to prove that this is viable, the workflow was tested on a database of known inhibitors of ERK2, a protein kinase possessing a cysteine in the ATP site. The modeled ERK2-ligand complexes and the values of the estimated binding free energies of the putative ligands provide useful indicators of their aptitude to bind reversibly and irreversibly to the protein kinase. Moreover, the computational data are used to rank the ligands according to their computed binding free energies and their ability to bind specific protein residues in the reversible and irreversible complexes, thereby providing a useful decision-making tool for each step of the design. In this work we present the overall procedure and the first proof of concept results. PMID:20306284

  17. De novo design of VEGFR-2 tyrosine kinase inhibitors based on a linked-fragment approach.

    PubMed

    Liu, Yi-Zhou; Wang, Xiao-Li; Wang, Xin-Ying; Yu, Ri-Lei; Liu, Dong-Qing; Kang, Cong-Min

    2016-09-01

    Vascular endothelial growth factor receptor-2 (VEGFR-2) tyrosine kinase inhibitors have been demonstrated to possess substantial antitumor activity. VEGFR-2 tyrosine kinase inhibitors are crucial for development of antitumor drugs. Based on the crystal structure of VEGFR-2 tyrosine kinase, a linked-fragment strategy was employed to design novel VEGFR-2 tyrosine kinase inhibitors, and 1000 compounds were generated in this process. Absorption, distribution, metabolism, excretion and toxicity (ADMET) were used to screen the 1000 compounds, and 59 compounds were acceptable. Scaffold hopping was then used for further screening, and only four compounds were obtained in this way. Then, the binding energy of the four molecules to VEGFR-2 tyrosine kinase was calculated using molecular docking, and their values were found to be lower than that of Sorafenib. Finally, molecular dynamics simulations were performed on the complex of the compound with the lowest binding energy with VEGFR-2 tyrosine kinase, and the binding model was analyzed. At the end, four chemical entities with novel structures were obtained, and were suggested for experimental testing in future studies. PMID:27558799

  18. Structural Bioinformatics-Based Prediction of Exceptional Selectivity of p38 MAP Kinase Inhibitor PH-797804

    SciTech Connect

    Xing, Li; Shieh, Huey S.; Selness, Shaun R.; Devraj, Rajesh V.; Walker, John K.; Devadas, Balekudru; Hope, Heidi R.; Compton, Robert P.; Schindler, John F.; Hirsch, Jeffrey L.; Benson, Alan G.; Kurumbail, Ravi G.; Stegeman, Roderick A.; Williams, Jennifer M.; Broadus, Richard M.; Walden, Zara; Monahan, Joseph B.; Pfizer

    2009-07-24

    PH-797804 is a diarylpyridinone inhibitor of p38{alpha} mitogen-activated protein (MAP) kinase derived from a racemic mixture as the more potent atropisomer (aS), first proposed by molecular modeling and subsequently confirmed by experiments. On the basis of structural comparison with a different biaryl pyrazole template and supported by dozens of high-resolution crystal structures of p38{alpha} inhibitor complexes, PH-797804 is predicted to possess a high level of specificity across the broad human kinase genome. We used a structural bioinformatics approach to identify two selectivity elements encoded by the TXXXG sequence motif on the p38{alpha} kinase hinge: (i) Thr106 that serves as the gatekeeper to the buried hydrophobic pocket occupied by 2,4-difluorophenyl of PH-797804 and (ii) the bidentate hydrogen bonds formed by the pyridinone moiety with the kinase hinge requiring an induced 180{sup o} rotation of the Met109-Gly110 peptide bond. The peptide flip occurs in p38{alpha} kinase due to the critical glycine residue marked by its conformational flexibility. Kinome-wide sequence mining revealed rare presentation of the selectivity motif. Corroboratively, PH-797804 exhibited exceptionally high specificity against MAP kinases and the related kinases. No cross-reactivity was observed in large panels of kinase screens (selectivity ratio of >500-fold). In cellular assays, PH-797804 demonstrated superior potency and selectivity consistent with the biochemical measurements. PH-797804 has met safety criteria in human phase I studies and is under clinical development for several inflammatory conditions. Understanding the rationale for selectivity at the molecular level helps elucidate the biological function and design of specific p38{alpha} kinase inhibitors.

  19. Structure-Based Design of Type II Inhibitors Applied to Maternal Embryonic Leucine Zipper Kinase.

    PubMed

    Johnson, Christopher N; Adelinet, Christophe; Berdini, Valerio; Beke, Lijs; Bonnet, Pascal; Brehmer, Dirk; Calo, Frederick; Coyle, Joseph E; Day, Phillip J; Frederickson, Martyn; Freyne, Eddy J E; Gilissen, Ron A H J; Hamlett, Christopher C F; Howard, Steven; Meerpoel, Lieven; Mevellec, Laurence; McMenamin, Rachel; Pasquier, Elisabeth; Patel, Sahil; Rees, David C; Linders, Joannes T M

    2015-01-01

    A novel Type II kinase inhibitor chemotype has been identified for maternal embryonic leucine zipper kinase (MELK) using structure-based ligand design. The strategy involved structural characterization of an induced DFG-out pocket by protein-ligand X-ray crystallography and incorporation of a slender linkage capable of bypassing a large gate-keeper residue, thus enabling design of molecules accessing both hinge and induced pocket regions. Optimization of an initial hit led to the identification of a low-nanomolar, cell-penetrant Type II inhibitor suitable for use as a chemical probe for MELK. PMID:25589926

  20. Structure-Based Design of Type II Inhibitors Applied to Maternal Embryonic Leucine Zipper Kinase

    PubMed Central

    2014-01-01

    A novel Type II kinase inhibitor chemotype has been identified for maternal embryonic leucine zipper kinase (MELK) using structure-based ligand design. The strategy involved structural characterization of an induced DFG-out pocket by protein–ligand X-ray crystallography and incorporation of a slender linkage capable of bypassing a large gate-keeper residue, thus enabling design of molecules accessing both hinge and induced pocket regions. Optimization of an initial hit led to the identification of a low-nanomolar, cell-penetrant Type II inhibitor suitable for use as a chemical probe for MELK. PMID:25589926

  1. Targeting the TGF-β receptor with kinase inhibitors for scleroderma therapy.

    PubMed

    Cong, Lin; Xia, Zhi-Kuan; Yang, Rong-Ya

    2014-09-01

    Scleroderma (systemic sclerosis) is a connective tissue disease that affects various organ systems; the treatment of scleroderma is still difficult and remains a challenge to the clinician. Recently, kinase inhibitors have shown great potential against fibrotic diseases and, specifically, the transforming growth factor-β receptor (TGF-βR) was found as a new and promising target for scleroderma therapy. In the current study, we propose that the large pool of existing kinase inhibitors could be exploited for inhibiting the TGF-βR to suppress scleroderma. In this respect, we developed a modeling protocol to systematically profile the inhibitory activities of 169 commercially available kinase inhibitors against the TGF-βR, from which five promising candidates were selected and tested using a standard kinase assay protocol. Consequently, two molecular entities, namely the PKB inhibitor MK-2206 and the mTOR C1/C2 inhibitor AZD8055, showed high potency when bound to the TGF-βR, with IC50 values of 97 and 86 nM, respectively, which are close to those of the recently developed TGF-βR selective inhibitors SB525334 and LY2157299 (IC50 = 14.3 and 56 nM, respectively). We also performed atomistic molecular dynamics simulations and post-molecular mechanics/Poisson-Boltzmann surface area analyses to dissect the structural basis and energetic properties of intermolecular interactions between the TGF-βR kinase domain and these potent compounds, highlighting intensive nonbonded networks across the tightly packed interface of non-cognate TGF-βR-inhibitor complexes. PMID:24917246

  2. Preclinical testing of selective Aurora kinase inhibitors on a medullary thyroid carcinoma-derived cell line.

    PubMed

    Tuccilli, Chiara; Baldini, Enke; Prinzi, Natalie; Morrone, Stefania; Sorrenti, Salvatore; Filippini, Angelo; Catania, Antonio; Alessandrini, Stefania; Rendina, Roberta; Coccaro, Carmela; D'Armiento, Massimino; Ulisse, Salvatore

    2016-05-01

    Deregulated expression of the Aurora kinases (Aurora-A, B, and C) is thought to be involved in cell malignant transformation and genomic instability in several cancer types. Over the last decade, a number of small-molecule inhibitors of Aurora kinases have been developed, which have proved to efficiently restrain malignant cell growth and tumorigenicity. Regarding medullary thyroid carcinoma (MTC), we previously showed the efficacy of a pan-Aurora kinase inhibitor (MK-0457) in impairing growth and survival of the MTC-derived cell line TT. In the present study, we sought to establish if one of the Aurora kinases might represent a preferential target for MTC therapy. The effects of selective inhibitors of Aurora-A (MLN8237) and Aurora-B (AZD1152) were analyzed on TT cell proliferation, apoptosis, cell cycle, and ploidy. The two inhibitors reduced TT cell proliferation in a time- and dose-dependent manner, with IC50 of 19.0 ± 2.4 nM for MLN8237 and 401.6 ± 44.1 nM for AZD1152. Immunofluorescence experiments confirmed that AZD1152 inhibited phosphorylation of histone H3 (Ser10) by Aurora-B, while it did not affect Aurora-A autophosphorylation. MLN8237 inhibited Aurora-A autophosphorylation as expected, but at concentrations required to achieve the maximum antiproliferative effects it also abolished H3 (Ser10) phosphorylation. Cytofluorimetry experiments showed that both inhibitors induced accumulation of cells in G2/M phase and increased the subG0/G1 fraction and polyploidy. Finally, both inhibitors triggered apoptosis. We demonstrated that inhibition of either Aurora-A or Aurora-B has antiproliferative effects on TT cells, and thus it would be worthwhile to further investigate the therapeutical potential of Aurora kinase inhibitors in MTC treatment. PMID:26215279

  3. Are Accurins the cure for Aurora kinase inhibitors?

    PubMed

    Bearss, David J

    2016-02-10

    A nanoparticle formulation of an Aurora B inhibitor increases antitumor efficacy and reduces toxicity, which may be a precedent for the use of this technology with other small molecules (Ashton et al., this issue). PMID:26865564

  4. Inhibitors of cellular kinases with broad-spectrum antiviral activity for hemorrhagic fever viruses.

    PubMed

    Mohr, Emma L; McMullan, Laura K; Lo, Michael K; Spengler, Jessica R; Bergeron, Éric; Albariño, César G; Shrivastava-Ranjan, Punya; Chiang, Cheng-Feng; Nichol, Stuart T; Spiropoulou, Christina F; Flint, Mike

    2015-08-01

    Host cell kinases are important for the replication of a number of hemorrhagic fever viruses. We tested a panel of kinase inhibitors for their ability to block the replication of multiple hemorrhagic fever viruses. OSU-03012 inhibited the replication of Lassa, Ebola, Marburg and Nipah viruses, whereas BIBX 1382 dihydrochloride inhibited Lassa, Ebola and Marburg viruses. BIBX 1382 blocked both Lassa and Ebola virus glycoprotein-dependent cell entry. These compounds may be used as tools to understand conserved virus-host interactions, and implicate host cell kinases that may be targets for broad spectrum therapeutic intervention. PMID:25986249

  5. Severe toxicity of skin rash, fever and diarrhea associated with imatinib: case report and review of skin toxicities associated with tyrosine kinase inhibitors

    PubMed Central

    Huang, Xuan; Patel, Samir; Ahmed, Nasir; Seiter, Karen; Liu, Delong

    2008-01-01

    Chronic myeloid leukemia (CML) is characterized by a Philadelphia chromosome which contains an oncogene, bcr-abl. This oncogene encodes a tyrosine kinase which is constitutively activated. Imatinib, a tyrosine kinase inhibitor (TKI), has been widely used in the treatment of CML. Dasatinib and nilotinib were recently approved for the treatment of CML. Other TKIs, such as bosutinib, erlotinib, and sunitinib, are under study for the treatment of CML as well as other hematologic and solid malignancies. Skin rash has been reported as one of the most common side effects of the TKIs. Here we present a case of severe skin rash together with unusual symptoms of high fever and diarrhea induced by imatinib in a CML patient. The dermatologic toxicities from a variety of tyrosine kinase inhibitors are reviewed and general principles of management are also discussed. PMID:19920908

  6. Selective inhibitors of Cyclin-G associated kinase (GAK) as anti-HCV agents

    PubMed Central

    Kovackova, Sona; Chang, Lei; Bekerman, Elena; Neveu, Gregory; Barouch-Bentov, Rina; Chaikuad, Apirat; Heroven, Christina; Šála, Michal; De Jonghe, Steven; Knapp, Stefan; Einav, Shirit; Herdewijn, Piet

    2015-01-01

    Cyclin-G associated kinase (GAK) emerged as a promising drug target for the treatment of viral infections. However, no potent and selective GAK inhibitors have been reported in the literature to date. This paper describes the discovery of isothiazolo[5,4-b]pyridines as selective GAK inhibitors, with the most potent congeners displaying low nanomolar binding affinity for GAK. Co-crystallization experiments revealed that these compounds behaved as classic type I ATP-competitive kinase inhibitors. In addition, we have demonstrated that these compounds exhibit a potent activity against hepatitis C virus (HCV) by inhibiting two temporally distinct steps in the HCV lifecycle (i.e. viral entry and assembly). Hence, these GAK inhibitors represent chemical probes to study GAK function in different disease areas where GAK has been implicated (including viral infection, cancer and Parkinson's disease). PMID:25822739

  7. Methods Of Using Chemical Libraries To Search For New Kinase Inhibitors

    DOEpatents

    Gray, Nathanael S. , Schultz, Peter , Wodicka, Lisa , Meijer, Laurent , Lockhart, David J.

    2003-06-03

    The generation of selective inhibitors for specific protein kinases would provide new tools for analyzing signal transduction pathways and possibly new therapeutic agents. We have invented an approach to the development of selective protein kinase inhibitors based on the unexpected binding mode of 2,6,9-trisubstituted purines to the ATP binding site of human CDK2. The most potent inhibitor, purvalanol B (IC.sub.50 =6 nM), binds with a 30-fold greater affinity than the known CDK2 inhibitor, flavopiridol. The cellular effects of this class of compounds were examined and compared to those of flavopiridol by monitoring changes in mRNA expression levels for all genes in treated cells of Saccharomyces cerevisiae using high-density oligonucleotide probe arrays.

  8. Reciprocal regulation of Abl kinase by Crk Y251 and Abi1 controls invasive phenotypes in glioblastoma

    PubMed Central

    Kumar, Sushil; Lu, Bin; Dixit, Updesh; Hossain, Sajjad; Liu, Yongzhang; Li, Jing; Hornbeck, Peter; Zheng, Weiming; Sowalsky, Adam G.; Kotula, Leszek; Birge, Raymond B.

    2015-01-01

    Crk is the prototypical member of a class of Src homology 2 (SH2) and Src homology 3 (SH3) domain-containing adaptor proteins that positively regulate cell motility via the activation of Rac1 and, in certain tumor types such as GBM, can promote cell invasion and metastasis by mechanisms that are not well understood. Here we demonstrate that Crk, via its phosphorylation at Tyr251, promotes invasive behavior of tumor cells, is a prominent feature in GBM, and correlating with aggressive glioma grade IV staging and overall poor survival outcomes. At the molecular level, Tyr251 phosphorylation of Crk is negatively regulated by Abi1, which competes for Crk binding to Abl and attenuates Abl transactivation. Together, these results show that Crk and Abi1 have reciprocal biological effects and act as a molecular rheostat to control Abl activation and cell invasion. Finally, these data suggest that Crk Tyr251 phosphorylation regulate invasive cell phenotypes and may serve as a biomarker for aggressive GBM. PMID:26473374

  9. mTOR kinase inhibitors synergize with histone deacetylase inhibitors to kill B-cell acute lymphoblastic leukemia cells.

    PubMed

    Beagle, Brandon R; Nguyen, Duc M; Mallya, Sharmila; Tang, Sarah S; Lu, Mengrou; Zeng, Zhihong; Konopleva, Marina; Vo, Thanh-Trang; Fruman, David A

    2015-02-10

    High activity of the mechanistic target of rapamycin (mTOR) is associated with poor prognosis in pre-B-cell acute lymphoblastic leukemia (B-ALL), suggesting that inhibiting mTOR might be clinically useful. However, emerging data indicate that mTOR inhibitors are most effective when combined with other target agents. One strategy is to combine with histone deacetylase (HDAC) inhibitors, since B-ALL is often characterized by epigenetic changes that silence the expression of pro-apoptotic factors. Here we tested combinations of mTOR and pan-HDAC inhibitors on B-ALL cells, including both Philadelphia chromosome-positive (Ph+) and non-Ph cell lines. We found that mTOR kinase inhibitors (TOR-KIs) synergize with HDAC inhibitors to cause apoptosis in B-ALL cells and the effect is greater when compared to rapamycin plus HDAC inhibitors. The combination of TOR-KIs with the clinically approved HDAC inhibitor vorinostat increased apoptosis in primary pediatric B-ALL cells in vitro. Mechanistically, TOR-KI and HDAC inhibitor combinations increased expression of pro-death genes, including targets of the Forkhead Box O (FOXO) transcription factors, and increased sensitivity to apoptotic triggers at the mitochondria. These findings suggest that targeting epigenetic factors can unmask the cytotoxic potential of TOR-KIs towards B-ALL cells. PMID:25576920

  10. The Src-family tyrosine kinase inhibitor PP1 interferes with the activation of ribosomal protein S6 kinases.

    PubMed Central

    Shah, O Jameel; Kimball, Scot R; Jefferson, Leonard S

    2002-01-01

    Considerable biochemical and pharmacological evidence suggests that the activation of ribosomal protein S6 kinases (S6Ks) by activated receptor tyrosine kinases involves multiple co-ordinated input signals. However, the identities of many of these inputs remain poorly described, and their precise involvement in S6K activation has been the subject of great investigative effort. In the present study, we have shown that 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP1), a selective inhibitor of the Src family of non-receptor tyrosine kinases, interferes with the activation of 70 and 85 kDa S6K gene products (p70S6K1 and p85S6K1) by insulin, insulin-like growth factor 1, sodium orthovanadate and activated alleles of phosphoinositide 3-kinase and H-Ras. PP1 also impedes the activation of AKT/protein kinase B and the extracellular signal-regulated protein kinases 1 and 2 by these various stimuli. Insulin-like growth factor 1 was observed to induce a sustained increase in c-Src autophosphorylation as revealed using anti-phospho-Y416 antisera, but this effect was absent from the cells treated with PP1. To conclude, an activated allele of p70S6K1 is compared with the wild-type allele, resistant to inhibition by PP1 when co-expressed with phosphoinositide-dependent kinase 1 (PDK1), suggesting that PP1 affects p70S6K1 via a PDK1-independent pathway. Thus activation of Src may supply a necessary signal for the activation of p70S6K1 and possibly other S6Ks. PMID:12014987

  11. Structural differences between wild type and double mutant EGFR modulated by third-generation kinase inhibitors

    PubMed Central

    Lowder, Melissa A.; Doerner, Amy E.; Schepartz, Alanna

    2015-01-01

    Mutations in the EGFR kinase domain are implicated in non-small cell lung cancer. Of particular interest is the drug-resistant double mutant (L858R/T790M, DM EGFR), which is not inhibited selectively by any approved kinase inhibitor. Here we apply bipartite tetracysteine display to demonstrate that DM and WT EGFR differ in structure outside the kinase domain. The structural difference is located within the cytoplasmic juxtamembrane segment (JM) that links the kinase domain with the extracellular and transmembrane regions and is essential for EGFR activation. We show further that third-generation DM EGFR-selective TKIs alter JM structure via allostery to restore the conformation found when WT EGFR is activated by the growth factors EGF and HB-EGF. This work suggests that the oncogenic activity of DM EGFR may extend beyond kinase activity per se to include kinase-independent activities. As JM structure may provide a biomarker for these kinase-independent functions, these insights could guide the development of allosteric, DM-selective inhibitors. PMID:25973741

  12. Development of Specific, Irreversible Inhibitors for a Receptor Tyrosine Kinase EphB3.

    PubMed

    Kung, Alvin; Chen, Ying-Chu; Schimpl, Marianne; Ni, Feng; Zhu, Jianfa; Turner, Maurice; Molina, Henrik; Overman, Ross; Zhang, Chao

    2016-08-24

    Erythropoietin-producing human hepatocellular carcinoma (Eph) receptor tyrosine kinases (RTKs) regulate a variety of dynamic cellular events, including cell protrusion, migration, proliferation, and cell-fate determination. Small-molecule inhibitors of Eph kinases are valuable tools for dissecting the physiological and pathological roles of Eph. However, there is a lack of small-molecule inhibitors that are selective for individual Eph isoforms due to the high homology within the family. Herein, we report the development of the first potent and specific inhibitors of a single Eph isoform, EphB3. Through structural bioinformatic analysis, we identified a cysteine in the hinge region of the EphB3 kinase domain, a feature that is not shared with any other human kinases. We synthesized and characterized a series of electrophilic quinazolines to target this unique, reactive feature in EphB3. Some of the electrophilic quinazolines selectively and potently inhibited EphB3 both in vitro and in cells. Cocrystal structures of EphB3 in complex with two quinazolines confirmed the covalent linkage between the protein and the inhibitors. A "clickable" version of an optimized inhibitor was created and employed to verify specific target engagement in the whole proteome and to probe the extent and kinetics of target engagement of existing EphB3 inhibitors. Furthermore, we demonstrate that the autophosphorylation of EphB3 within the juxtamembrane region occurs in trans using a specific inhibitor. These exquisitely specific inhibitors will facilitate the dissection of EphB3's role in various biological processes and disease contribution. PMID:27478969

  13. A Pentacyclic Aurora Kinase Inhibitor (AKI-001) With High in Vivo Potency And Oral Bioavailability

    SciTech Connect

    Rawson, T.E.; Ruth, M.; Blackwood, E.; Burdick, D.; Corson, L.; Dotson, J.; Drummond, J.; Fields, C.; Georges, G.J.; Goller, B.; Halladay, J.; Hunsaker, T.; Kleinheinz, T.; Krell, H.-W.; Li, J.; Liang, J.; Limberg, A.; McNutt, A.; Moffat, J.; Phillips, G.; Ran, Y.

    2009-05-21

    Aurora kinase inhibitors have attracted a great deal of interest as a new class of antimitotic agents. We report a novel class of Aurora inhibitors based on a pentacyclic scaffold. A prototype pentacyclic inhibitor 32 (AKI-001) derived from two early lead structures improves upon the best properties of each parent and compares favorably to a previously reported Aurora inhibitor, 39 (VX-680). The inhibitor exhibits low nanomolar potency against both Aurora A and Aurora B enzymes, excellent cellular potency (IC{sub 50} < 100 nM), and good oral bioavailability. Phenotypic cellular assays show that both Aurora A and Aurora B are inhibited at inhibitor concentrations sufficient to block proliferation. Importantly, the cellular activity translates to potent inhibition of tumor growth in vivo. An oral dose of 5 mg/kg QD is well tolerated and results in near stasis (92% TGI) in an HCT116 mouse xenograft model.

  14. Cellular impedance assays for predictive preclinical drug screening of kinase inhibitor cardiovascular toxicity.

    PubMed

    Lamore, Sarah D; Kamendi, Harriet W; Scott, Clay W; Dragan, Yvonne P; Peters, Matthew F

    2013-10-01

    Cardiovascular (CV) toxicity is a leading contributor to drug attrition. Implementing earlier testing has successfully reduced human Ether-à-go-go-Related Gene-related arrhythmias. How- ever, analogous assays targeting functional CV effects remain elusive. Demand to address this gap is particularly acute for kinase inhibitors (KIs) that suffer frequent CV toxicity. The drug class also presents some particularly challenging requirements for assessing functional CV toxicity. Specifically, an assay must sense a downstream response that integrates diverse kinase signaling pathways. In addition, sufficient throughput is essential for handling inherent KI nonselectivity. A new opportunity has emerged with cellular impedance technology, which detects spontaneous beating cardiomyocytes. Impedance assays sense morphology changes downstream of cardiomyocyte contraction. To evaluate cardiomyocyte impedance assays for KI screening, we investigated two distinct KI classes where CV toxicity was discovered late and target risks remain unresolved. Microtubule-associated protein/microtubule affinity regulating kinase (MARK) inhibitors decrease blood pressure in dogs, whereas checkpoint kinase (Chk) inhibitors (AZD7762, SCH900776) exhibit dose-limiting CV toxicities in clinical trials. These in vivo effects manifested in vitro as cardiomyocyte beat cessation. MARK effects were deemed mechanism associated because beat inhibition potencies correlated with kinase inhibition, and gene knockdown and microtubule-targeting agents suppressed beating. MARK inhibitor impedance and kinase potencies aligned with rat blood pressure effects. Chk inhibitor effects were judged off-target because Chk and beat inhibition potencies did not correlate and knockdowns did not alter beating. Taken together, the data demonstrate that cardiomyocyte impedance assays can address three unmet needs-detecting KI functional cardiotoxicity in vitro, determining mechanism of action, and supporting safety structure

  15. Discovery and Characterization of a Biologically Active Non-ATP-Competitive p38 MAP Kinase Inhibitor.

    PubMed

    Wilson, Brice A P; Alam, Muhammad S; Guszczynski, Tad; Jakob, Michal; Shenoy, Shilpa R; Mitchell, Carter A; Goncharova, Ekaterina I; Evans, Jason R; Wipf, Peter; Liu, Gang; Ashwell, Jonathan D; O'Keefe, Barry R

    2016-03-01

    Mitogen-activated protein kinase (MAPK) p38 is part of a broad and ubiquitously expressed family of MAPKs whose activity is responsible for mediating an intracellular response to extracellular stimuli through a phosphorylation cascade. p38 is central to this signaling node and is activated by upstream kinases while being responsible for activating downstream kinases and transcription factors via phosphorylation. Dysregulated p38 activity is associated with numerous autoimmune disorders and has been implicated in the progression of several types of cancer. A number of p38 inhibitors have been tested in clinical trials, with none receiving regulatory approval. One characteristic shared by all of the compounds that failed clinical trials is that they are all adenosine triphosphate (ATP)-competitive p38 inhibitors. Seeing this lack of mechanistic diversity as an opportunity, we screened ~32,000 substances in search of novel p38 inhibitors. Among the inhibitors discovered is a compound that is both non-ATP competitive and biologically active in cell-based models for p38 activity. This is the first reported discovery of a non-ATP-competitive p38 inhibitor that is active in cells and, as such, may enable new pharmacophore designs for both therapeutic and basic research to better understand and exploit non-ATP-competitive inhibitors of p38 activity. PMID:26538432

  16. LIM kinase inhibitors disrupt mitotic microtubule organization and impair tumor cell proliferation

    PubMed Central

    Mardilovich, Katerina; Baugh, Mark; Crighton, Diane; Kowalczyk, Dominika; Gabrielsen, Mads; Munro, June; Croft, Daniel R.; Lourenco, Filipe; James, Daniel; Kalna, Gabriella; McGarry, Lynn; Rath, Oliver; Shanks, Emma; Garnett, Mathew J.; McDermott, Ultan; Brookfield, Joanna; Charles, Mark; Hammonds, Tim; Olson, Michael F.

    2015-01-01

    The actin and microtubule cytoskeletons are critically important for cancer cell proliferation, and drugs that target microtubules are widely-used cancer therapies. However, their utility is compromised by toxicities due to dose and exposure. To overcome these issues, we characterized how inhibition of the actin and microtubule cytoskeleton regulatory LIM kinases could be used in drug combinations to increase efficacy. A previously-described LIMK inhibitor (LIMKi) induced dose-dependent microtubule alterations that resulted in significant mitotic defects, and increased the cytotoxic potency of microtubule polymerization inhibitors. By combining LIMKi with 366 compounds from the GSK Published Kinase Inhibitor Set, effective combinations were identified with kinase inhibitors including EGFR, p38 and Raf. These findings encouraged a drug discovery effort that led to development of CRT0105446 and CRT0105950, which potently block LIMK1 and LIMK2 activity in vitro, and inhibit cofilin phosphorylation and increase αTubulin acetylation in cells. CRT0105446 and CRT0105950 were screened against 656 cancer cell lines, and rhabdomyosarcoma, neuroblastoma and kidney cancer cells were identified as significantly sensitive to both LIMK inhibitors. These large-scale screens have identified effective LIMK inhibitor drug combinations and sensitive cancer types. In addition, the LIMK inhibitory compounds CRT0105446 and CRT0105950 will enable further development of LIMK-targeted cancer therapy. PMID:26540348

  17. Identification of ponatinib and other known kinase inhibitors with potent MEKK2 inhibitory activity.

    PubMed

    Ahmad, Syed; Johnson, Gary L; Scott, John E

    2015-08-01

    The kinase MEKK2 (MAP3K2) may play an important role in tumor growth and metastasis for several cancer types. Thus, targeting MEKK2 may represent a novel strategy for developing more effective therapies for cancer. In order to identify small molecules with MEKK2 inhibitory activity, we screened a collection of known kinase inhibitors using a high throughput MEKK2 intrinsic ATPase enzyme assay and confirmed activity of the most potent hits with this primary assay. We also confirmed activities of these known kinase inhibitors with an MEKK2 transphosphorylation slot blot assay using MKK6 as a substrate. We observed a good correlation in potencies between the two orthogonal MEKK2 kinase activity assay formats for this set of inhibitors. We report that ponatinib, AT9283, AZD7762, JNJ-7706621, PP121 and hesperadin had potent MEKK2 enzyme inhibitory activities ranging from 4.7 to 60 nM IC50. Ponatinib is an FDA-approved drug that potently inhibited MEKK2 enzyme activity with IC50 values of 10-16 nM. AT9283 is currently in clinical trials and produced MEKK2 IC50 values of 4.7-18 nM. This set of known kinase inhibitors represents some of the most potent in vitro MEKK2 inhibitors reported to date and may be useful as research tools. Although these compounds are not selective for MEKK2, the structures of these compounds give insight into pharmacophores that potently inhibit MEKK2 and could be used as initial leads to design highly selective inhibitors of MEKK2. PMID:26056008

  18. Pharmacophore modeling study based on known spleen tyrosine kinase inhibitors together with virtual screening for identifying novel inhibitors.

    PubMed

    Xie, Huan-Zhang; Li, Lin-Li; Ren, Ji-Xia; Zou, Jun; Yang, Li; Wei, Yu-Quan; Yang, Sheng-Yong

    2009-04-01

    In this investigation, chemical features based 3D pharmacophore models were developed based on the known inhibitors of Spleen tyrosine kinase (Syk) with the aid of hiphop and hyporefine modules within catalyst. The best quantitative pharmacophore model, Hypo1, was used as a 3D structural query for retrieving potential inhibitors from chemical databases including Specs, NCI, MayBridge, and Chinese Nature Product Database (CNPD). The hit compounds were subsequently subjected to filtering by Lipinski's rule of five and docking studies to refine the retrieved hits. Finally 30 compounds were selected from the top ranked hit compounds and conducted an in vitro kinase inhibitory assay. Six compounds showed a good inhibitory potency against Syk, which have been selected for further investigation. PMID:19254842

  19. Tyrosine Kinase Inhibitors Early in the Disease Course: Lessons From Chronic Myelogenous Leukemia.

    PubMed

    Yilmaz, Musa; Jabbour, Elias

    2015-12-01

    The landscape of chronic myeloid leukemia (CML) management has changed with the advent of tyrosine kinase inhibitors (TKIs) targeting the BCR-ABL1 oncoprotein. Imatinib mesylate, followed by nilotinib and dasatinib, has been approved for newly diagnosed patients. Since none of these TKIs show survival superiority, the drug choice is a challenge. Even so, the rate of deeper and earlier responses is higher with second-generation TKIs than it is with imatinib, and, in general, better response is associated with a survival advantage, regardless of TKI type being used. Patients should be monitored carefully for response, and treatment failure should prompt a timely switch to another TKI. Side effect profile and drug cost are other important considerations in therapy choice. In several clinical studies, achieving undetectable and durable disease status allowed some patients to discontinue the TKI and enjoy long-term treatment-free remission. Cure for CML may be possible with TKIs alone or TKIs in combination with other investigational therapies. However, due to lack of long-term outcome data and absence of consensus for the definition of optimal response and time to stop TKIs, discontinuation is discouraged outside of a clinical trial. PMID:26615132

  20. The Tyrosine Kinase Inhibitor Sunitinib Affects Ovulation but Not Ovarian Reserve in Mouse: A Preclinical Study

    PubMed Central

    Bernard, Valérie; Bouilly, Justine; Kramer, Piet; Carré, Nadège; Schlumberger, Martin; Visser, Jenny A.; Young, Jacques; Binart, Nadine

    2016-01-01

    The aim of the study was to evaluate ovarian toxicity of tyrosine kinase inhibitor (TKI) sunitinib, since only scarce data are available on gonadal function after this treatment. Six-week-old female mice received orally, once daily, vehicle or sunitinib (50 mg/kg/d) during 5 weeks. Fertility parameters were analyzed from ovulation to litter assessment. Sunitinib exposure significantly reduced (i) corpora lutea number per ovary (1.1 ± 0.38 in sunitinib group versus 4 ± 0.79 in control group, p<0.01) and (ii) serum Anti Müllerian hormone (AMH) levels in sunitinib treated mice (12.01 ± 1.16) compared to control mice (14.33 ± 0.87 ng/ml, p< 0.05). However, primordial and growing follicles numbers per ovary were not different in both groups. After treatment withdrawal, female mice in both groups were able to obtain litters. These data could be helpful to counsel clinicians and patients, when fertility preservation methods are discussed, before TKI treatment in girls and young women. PMID:27035144

  1. The Tyrosine Kinase Inhibitor Sunitinib Affects Ovulation but Not Ovarian Reserve in Mouse: A Preclinical Study.

    PubMed

    Bernard, Valérie; Bouilly, Justine; Kramer, Piet; Carré, Nadège; Schlumberger, Martin; Visser, Jenny A; Young, Jacques; Binart, Nadine

    2016-01-01

    The aim of the study was to evaluate ovarian toxicity of tyrosine kinase inhibitor (TKI) sunitinib, since only scarce data are available on gonadal function after this treatment. Six-week-old female mice received orally, once daily, vehicle or sunitinib (50 mg/kg/d) during 5 weeks. Fertility parameters were analyzed from ovulation to litter assessment. Sunitinib exposure significantly reduced (i) corpora lutea number per ovary (1.1 ± 0.38 in sunitinib group versus 4 ± 0.79 in control group, p<0.01) and (ii) serum Anti Müllerian hormone (AMH) levels in sunitinib treated mice (12.01 ± 1.16) compared to control mice (14.33 ± 0.87 ng/ml, p< 0.05). However, primordial and growing follicles numbers per ovary were not different in both groups. After treatment withdrawal, female mice in both groups were able to obtain litters. These data could be helpful to counsel clinicians and patients, when fertility preservation methods are discussed, before TKI treatment in girls and young women. PMID:27035144

  2. Photodynamic treatment (ALA-PDT) suppresses the expression of the oncogenic Bcr-Abl kinase and affects the cytoskeleton organization in K562 cells.

    PubMed

    Pluskalová, Michaela; Peslová, Gabriela; Grebenová, Dana; Halada, Petr; Hrkal, Zbynek

    2006-06-01

    K562 is the chronic myelogenous leukemia (CML)-derived cell line that expresses high levels of chimeric oncoprotein Bcr-Abl. The deregulated (permanent) kinase activity of Bcr-Abl leads to continuous proliferation of K562 cells and their resistance to the apoptosis promotion by conventional drugs. The photodynamic treatment (PDT) based on the application of 5-aminolevulinic acid (ALA) and irradiation with blue light (ALA-PDT) resulted in the suppression of K562 cells proliferation. It was followed by a necrosis-like cell death [K. Kuzelová, D. Grebenová, M. Pluskalová, I. Marinov, Z. Hrkal, J. Photochem. Photobiol. B 73 (2004) 67-78]. ALA-PDT led to the perturbation of the Hsp90/p23 multichaperone complex of which the Bcr-Abl is the client protein. Bcr-Abl protein was suppressed whereas the bcr-abl mRNA level was not affected. Further on, we observed several changes in the cytoskeleton organization. We detected ALA-PDT-mediated disruption of filamental actin structure using FITC-Phalloidin staining. In connection with this we uncovered certain cytoskeleton organizing proteins involved in the cell response to the treatment. Among these proteins, Septin2, which plays a role in maintaining actin bundles, was suppressed. Another one, PDZ-LIM domain protein 1 (CLP36) was altered. This protein acts as an adaptor molecule for LIM-kinase which phosphorylates and thus inactivates cofilin. Cofilin was indeed dephosphorylated and could thus be activated and operate as an actin-depolymerizing factor. We propose the scheme of molecular response of K562 cells to ALA-PDT. PMID:16495075

  3. The cardiotoxicity and myocyte damage caused by small molecule anticancer tyrosine kinase inhibitors is correlated with lack of target specificity

    SciTech Connect

    Hasinoff, Brian B.

    2010-04-15

    The use of the new anticancer tyrosine kinase inhibitors (TKI) has revolutionized the treatment of certain cancers. However, the use of some of these results in cardiotoxicity. Large-scale profiling data recently made available for the binding of 7 of the 9 FDA-approved tyrosine kinase inhibitors to a panel of 317 kinases has allowed us to correlate kinase inhibitor binding selectivity scores with TKI-induced damage to neonatal rat cardiac myocytes. The tyrosine kinase selectivity scores, but not the serine-threonine kinase scores, were highly correlated with the myocyte damaging effects of the TKIs. Additionally, we showed that damage to myocytes gave a good rank order correlation with clinical cardiotoxicity. Finally, strength of TKI binding to colony-stimulating factor 1 receptor (CSF1R) was highly correlated with myocyte damage, thus possibly implicating this kinase in contributing to TKI-induced cardiotoxicity.

  4. Changes of epidermal cell morphology and keratin expression induced by inhibitors of protein kinase C.

    PubMed

    Hegemann, L; Wevers, A; Bonnekoh, B; Mahrle, G

    1992-03-01

    Several lines of evidence show protein kinase C as being involved in various regulatory processes in keratinocyte biology, e.g. proliferation and differentiation. In the present study, we investigated the effects of three different inhibitors of protein kinase C, staurosporine, CP 46'665-1, and tiflucarbine, on cell morphology and keratin expression in a non-tumorigenic human keratinocyte cell line (HaCaT cells). Staurosporine, being the most potent inhibitor of protein kinase C activity in vitro, and CP 46'665-1 induced morphological transformation to a fibroblast-like cell shape. In contrast, no changes in cell morphology were observed after exposure to tiflucarbine. The investigation of keratin expression in HaCaT cells grown in the presence of the different compounds revealed the following changes: After 72 h of cultivation, keratins 8 and 18 were still expressed in treated cells, whereas expression of keratin 13 was decreased as compared to control cells. Immunoblotting to detect vimentin demonstrated its absence in treated and control cells. Since tiflucarbine is known as a dual protein kinase C/calmodulin inhibitor whereas staurosporine and CP 46'665-1 do not antagonize calmodulin function, it might be possible that not only protein kinase C but also calmodulin is involved in the process leading to the morphological changes. PMID:1376142

  5. Molecular Pathways: Molecular Basis for Sensitivity and Resistance to JAK Kinase Inhibitors

    PubMed Central

    Meyer, Sara C.; Levine, Ross L.

    2014-01-01

    Janus kinases (JAK) are the mediators of a variety of cytokine signals via their cognate receptors that result in activation of intracellular signaling pathways. Alterations in JAK1, JAK2, JAK3 and TYK2 signaling contribute to different disease states, and dysregulated JAK-STAT signaling is associated with hematological malignancies, autoimmune disorders and immune-deficient conditions. Genetic alterations of JAK2 occur in the majority of patients with myeloproliferative neoplasms (MPN) and occur in a subset of patients with acute leukemias. JAK-mediated signaling critically relies on STAT transcription factors, and on activation of the MAPK and PI3K/Akt signaling axes. Hyperactive JAK at the apex of these potent oncogenic signaling pathways therefore represents an important target for small molecule kinase inhibitors in different disease states. The JAK1/2 inhibitor ruxolitinib and the JAK3 inhibitor tofacitinib were recently approved for the treatment of myelofibrosis and rheumatoid arthritis, respectively and additional ATP-competitive JAK inhibitors are in clinical development. Although these agents show clinical activity, the ability of these JAK inhibitors to induce clinical/molecular remissions in hematological malignancies appears limited and resistance upon chronic drug exposure is seen. Alternative modes of targeting JAK2 such as allosteric kinase inhibition or HSP-90 inhibition are under evaluation as is the use of histone deacetylase inhibitors. Combination therapy approaches integrating inhibition of STAT, PI3K/Akt and MAPK pathways with JAK kinase inhibitors might be critical to overcome malignancies characterized by dysregulated JAK signaling. PMID:24583800

  6. Rapid evolution of 6-phenylpurine inhibitors of protein kinase B through structure-based design.

    PubMed

    Donald, Alastair; McHardy, Tatiana; Rowlands, Martin G; Hunter, Lisa-Jane K; Davies, Thomas G; Berdini, Valerio; Boyle, Robert G; Aherne, G Wynne; Garrett, Michelle D; Collins, Ian

    2007-05-17

    6-phenylpurines were identified as novel, ATP-competitive inhibitors of protein kinase B (PKB/Akt) from a fragment-based screen and were rapidly progressed to potent compounds using iterative protein-ligand crystallography with a PKA-PKB chimeric protein. An elaborated lead compound showed cell growth inhibition and effects on cellular signaling pathways characteristic of PKB inhibition. PMID:17451235

  7. Design of Targeted Inhibitors of Polo-like Kinase 1 (Plk1)

    NASA Astrophysics Data System (ADS)

    Dalafave, D. S.

    2011-03-01

    Computational design of small molecule inhibitors of Polo-like Kinase 1 (Plk1) is presented. Plk1, which regulates cell cycle, is often overexpressed in cancers. Its downregulation was shown to inhibit cancer progression. Most inhibitors of kinases' interact with the highly conserved ATP binding site. This makes the development of Plk1-specific inhibitors challenging, since different kinases have similar ATP sites. However, Plk1 also contains the polo-box domain (PBD), which is absent from other kinases. In this study, the PBD site was used as a target for designed Plk1 inhibitors. Common structural features of experimentally known Plk1 ligands were first identified. The information was used to design putative small molecules that specifically bonded Plk1. Druglikeness and possible toxicities of the designed molecules were determined. Molecules with no implied toxicities and optimal druglikeness were used for docking studies. The docking studies identified several molecules that made stable complexes with the Plk1 PBD site. Possible utilization of the designed molecules in drugs against cancers with overexpressed Plk1 is discussed.

  8. Inhibitors of Glycogen Synthase Kinase 3 with Exquisite Kinome-Wide Selectivity and Their Functional Effects.

    PubMed

    Wagner, Florence F; Bishop, Joshua A; Gale, Jennifer P; Shi, Xi; Walk, Michelle; Ketterman, Joshua; Patnaik, Debasis; Barker, Doug; Walpita, Deepika; Campbell, Arthur J; Nguyen, Shannon; Lewis, Michael; Ross, Linda; Weïwer, Michel; An, W Frank; Germain, Andrew R; Nag, Partha P; Metkar, Shailesh; Kaya, Taner; Dandapani, Sivaraman; Olson, David E; Barbe, Anne-Laure; Lazzaro, Fanny; Sacher, Joshua R; Cheah, Jaime H; Fei, David; Perez, Jose; Munoz, Benito; Palmer, Michelle; Stegmaier, Kimberly; Schreiber, Stuart L; Scolnick, Edward; Zhang, Yan-Ling; Haggarty, Stephen J; Holson, Edward B; Pan, Jen Q

    2016-07-15

    The mood stabilizer lithium, the first-line treatment for bipolar disorder, is hypothesized to exert its effects through direct inhibition of glycogen synthase kinase 3 (GSK3) and indirectly by increasing GSK3's inhibitory serine phosphorylation. GSK3 comprises two highly similar paralogs, GSK3α and GSK3β, which are key regulatory kinases in the canonical Wnt pathway. GSK3 stands as a nodal target within this pathway and is an attractive therapeutic target for multiple indications. Despite being an active field of research for the past 20 years, many GSK3 inhibitors demonstrate either poor to moderate selectivity versus the broader human kinome or physicochemical properties unsuitable for use in in vitro systems or in vivo models. A nonconventional analysis of data from a GSK3β inhibitor high-throughput screening campaign, which excluded known GSK3 inhibitor chemotypes, led to the discovery of a novel pyrazolo-tetrahydroquinolinone scaffold with unparalleled kinome-wide selectivity for the GSK3 kinases. Taking advantage of an uncommon tridentate interaction with the hinge region of GSK3, we developed highly selective and potent GSK3 inhibitors, BRD1652 and BRD0209, which demonstrated in vivo efficacy in a dopaminergic signaling paradigm modeling mood-related disorders. These new chemical probes open the way for exclusive analyses of the function of GSK3 kinases in multiple signaling pathways involved in many prevalent disorders. PMID:27128528

  9. HALOACETIC ACIDS AND KINASE INHIBITORS PERTURB MOUSE NEURAL CREST CELLS IN VITRO

    EPA Science Inventory

    HUNTER, E.S.1, J. SMITH2, J. ANDREWS1. 1 Reproductive Toxicology Division, NHEERL, US EPA, Research Triangle Park and 2 Department of Cell and Developmental Biology, UNC-CH, Chapel Hill, North Carolina. Haloacetic acids and kinase inhibitors perturb mouse neural crest cells in vi...

  10. COMPARATIVE PATHOGENESIS OF HALOACETIC ACID AND PROTEIN KINASE INHIBITOR EMBRYOTOXICITY IN MOUSE WHOLE EMBRYO CULTURE

    EPA Science Inventory

    Comparative pathogenesis of haloacetic acid and protein kinase inhibitor embryotoxicity in mouse whole embryo culture.

    Ward KW, Rogers EH, Hunter ES 3rd.

    Curriculum in Toxicology, University of North Carolina at Chapel Hill, 27599-7270, USA.

    Haloacetic acids ...

  11. Structure-based design of isoquinoline-5-sulfonamide inhibitors of protein kinase B.

    PubMed

    Collins, Ian; Caldwell, John; Fonseca, Tatiana; Donald, Alastair; Bavetsias, Vassilios; Hunter, Lisa-Jane K; Garrett, Michelle D; Rowlands, Martin G; Aherne, G Wynne; Davies, Thomas G; Berdini, Valerio; Woodhead, Steven J; Davis, Deborah; Seavers, Lisa C A; Wyatt, Paul G; Workman, Paul; McDonald, Edward

    2006-02-15

    Structure-based drug design of novel isoquinoline-5-sulfonamide inhibitors of PKB as potential antitumour agents was investigated. Constrained pyrrolidine analogues that mimicked the bound conformation of linear prototypes were identified and investigated by co-crystal structure determinations with the related protein PKA. Detailed variation in the binding modes between inhibitors with similar overall conformations was observed. Potent PKB inhibitors from this series inhibited GSK3beta phosphorylation in cellular assays, consistent with inhibition of PKB kinase activity in cells. PMID:16249095

  12. A High-Throughput Screen Reveals New Small-Molecule Activators and Inhibitors of Pantothenate Kinases

    PubMed Central

    2016-01-01

    Pantothenate kinase (PanK) is a regulatory enzyme that controls coenzyme A (CoA) biosynthesis. The association of PanK with neurodegeneration and diabetes suggests that chemical modifiers of PanK activity may be useful therapeutics. We performed a high throughput screen of >520000 compounds from the St. Jude compound library and identified new potent PanK inhibitors and activators with chemically tractable scaffolds. The HTS identified PanK inhibitors exemplified by the detailed characterization of a tricyclic compound (7) and a preliminary SAR. Biophysical studies reveal that the PanK inhibitor acts by binding to the ATP–enzyme complex. PMID:25569308

  13. Chronic Myeloid Leukemia in the Era of Tyrosine Kinase Inhibitors: An Evolving Paradigm of Molecularly Targeted Therapy.

    PubMed

    Ali, Mohamed A M

    2016-08-01

    Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm, characterized by the unrestrained expansion of pluripotent hematopoietic stem cells. CML was the first malignancy in which a unique chromosomal abnormality was identified and a pathophysiologic association was suggested. The hallmark of CML is a reciprocal chromosomal translocation between the long arms of chromosomes 9 and 22, t(9; 22)(q34; q11), creating a derivative 9q+ and a shortened 22q-. The latter, known as the Philadelphia (Ph) chromosome, harbors the breakpoint cluster region-abelson (BCR-ABL) fusion gene, encoding the constitutively active BCR-ABL tyrosine kinase that is necessary and sufficient for initiating CML. The successful implementation of tyrosine kinase inhibitors (TKIs) for the treatment of CML remains a flagship for molecularly targeted therapy in cancer. TKIs have changed the clinical course of CML; however, some patients nonetheless demonstrate primary or secondary resistance to such therapy and require an alternative therapeutic strategy. Therefore, the assessment of early response to treatment with TKIs has become an important tool in the clinical monitoring of CML patients. Although mutations in the BCR-ABL have proven to be the most prominent mechanism of resistance to TKIs, other mechanisms-either rendering the leukemic cells still dependent on BCR-ABL activity or supporting oncogenic properties of the leukemic cells independent of BCR-ABL signaling-have been identified. This article provides an overview of the current understanding of CML pathogenesis; recommendations for diagnostic tools, treatment strategies, and management guidelines; and highlights the BCR-ABL-dependent and -independent mechanisms that contribute to the development of resistance to TKIs. PMID:27220498

  14. Novel morpholin-3-one fused quinazoline derivatives as EGFR tyrosine kinase inhibitors.

    PubMed

    Qin, Xuemei; Lv, Yongjuan; Liu, Peng; Li, Zhipeng; Hu, Liming; Zeng, Chengchu; Yang, Leifu

    2016-03-15

    A series of novel morpholin-3-one-fused quinazoline derivatives were designed, synthesized and evaluated as EGFR tyrosine kinase inhibitors. Nineteen compounds showed significant inhibitory activities against EGFR(wt) kinase (IC50<1 μM). Compound a8 demonstrated the most potent inhibitory activity toward EGFR(wt) (IC50=53.1 nM). Compound a7 and a8 showed excellent inhibitory activities against mutant EGFR(T790M/L858R) and strong antiproliferative activity against H358 and A549 cell lines. Finally, molecular docking studies were performed to predict the possible binding mode of the target compounds. It is believed that this work would be very useful for designing a new series of tyrosine kinase inhibitors targeting EGFR. PMID:26879314

  15. Risk of Infectious Complications in Hemato-Oncological Patients Treated with Kinase Inhibitors

    PubMed Central

    Reinwald, Mark; Boch, Tobias; Hofmann, Wolf-Karsten; Buchheidt, Dieter

    2015-01-01

    Infectious complications are a major cause of morbidity and mortality in patients with hemato-oncological diseases. Although disease-related immunosuppression represents one factor, aggressive treatment regimens, such as chemotherapy, stem cell transplantation, or antibody treatment, account for a large proportion of infectious side effects. With the advent of targeted therapies affecting specific kinases in malignant diseases, the outcome of patients has further improved. Nonetheless, dependent on the specific pathway targeted or off-target activity of the kinase inhibitor, therapy-associated infectious complications may occur. We review the most common and approved kinase inhibitors targeting a variety of hemato-oncological malignancies for their immunosuppressive potential and evaluate their risk of infectious side effects based on preclinical evidence and clinical data in order to raise awareness of the potential risks involved. PMID:27127405

  16. Phosphoproteomics data classify hematological cancer cell lines according to tumor type and sensitivity to kinase inhibitors

    PubMed Central

    2013-01-01

    Background Tumor classification based on their predicted responses to kinase inhibitors is a major goal for advancing targeted personalized therapies. Here, we used a phosphoproteomic approach to investigate biological heterogeneity across hematological cancer cell lines including acute myeloid leukemia, lymphoma, and multiple myeloma. Results Mass spectrometry was used to quantify 2,000 phosphorylation sites across three acute myeloid leukemia, three lymphoma, and three multiple myeloma cell lines in six biological replicates. The intensities of the phosphorylation sites grouped these cancer cell lines according to their tumor type. In addition, a phosphoproteomic analysis of seven acute myeloid leukemia cell lines revealed a battery of phosphorylation sites whose combined intensities correlated with the growth-inhibitory responses to three kinase inhibitors with remarkable correlation coefficients and fold changes (> 100 between the most resistant and sensitive cells). Modeling based on regression analysis indicated that a subset of phosphorylation sites could be used to predict response to the tested drugs. Quantitative analysis of phosphorylation motifs indicated that resistant and sensitive cells differed in their patterns of kinase activities, but, interestingly, phosphorylations correlating with responses were not on members of the pathway being targeted; instead, these mainly were on parallel kinase pathways. Conclusion This study reveals that the information on kinase activation encoded in phosphoproteomics data correlates remarkably well with the phenotypic responses of cancer cells to compounds that target kinase signaling and could be useful for the identification of novel markers of resistance or sensitivity to drugs that target the signaling network. PMID:23628362

  17. Anti-proliferative effects of protein kinase C inhibitors in human keratinocytes.

    PubMed

    Hegemann, L; Bonnekoh, B; van Rooijen, L A; Mahrle, G

    1992-07-01

    Various lines of evidence indicate that protein kinase C, a key enzyme in transmembraneous signal transduction, is involved in the regulation of keratinocyte proliferation. In the present study we have investigated the effects of various structurally unrelated protein kinase C inhibitors on the proliferation of HaCa T cells, a non-tumorigenic human keratinocyte cell line. All protein kinase C inhibitors dose-dependently inhibited cell proliferation as assessed by the incorporation of radioactively labelled thymidine and amino acids as well as the increase in total protein content in keratinocytes. The potencies of the drugs to inhibit cell proliferation were strongly correlated to their inhibitory potency on purified protein kinase C, displaying a correlation coefficient of 0.97. Methotrexate, an anti-proliferative drug, was found not to inhibit protein kinase C. Therefore, our data provide evidence that protein kinase C is crucially involved in the regulation of keratinocyte proliferation but is not the only target of anti-proliferative drug action. PMID:1390454

  18. AZD7762, a novel checkpoint kinase inhibitor, drives checkpoint abrogation and potentiates DNA-targeted therapies.

    PubMed

    Zabludoff, Sonya D; Deng, Chun; Grondine, Michael R; Sheehy, Adam M; Ashwell, Susan; Caleb, Benjamin L; Green, Stephen; Haye, Heather R; Horn, Candice L; Janetka, James W; Liu, Dongfang; Mouchet, Elizabeth; Ready, Shannon; Rosenthal, Judith L; Queva, Christophe; Schwartz, Gary K; Taylor, Karen J; Tse, Archie N; Walker, Graeme E; White, Anne M

    2008-09-01

    Insights from cell cycle research have led to the hypothesis that tumors may be selectively sensitized to DNA-damaging agents resulting in improved antitumor activity and a wider therapeutic margin. The theory relies on the observation that the majority of tumors are deficient in the G1-DNA damage checkpoint pathway resulting in reliance on S and G2 checkpoints for DNA repair and cell survival. The S and G2 checkpoints are regulated by checkpoint kinase 1, a serine/threonine kinase that is activated in response to DNA damage; thus, inhibition of checkpoint kinase 1 signaling impairs DNA repair and increases tumor cell death. Normal tissues, however, have a functioning G1 checkpoint signaling pathway allowing for DNA repair and cell survival. Here, we describe the preclinical profile of AZD7762, a potent ATP-competitive checkpoint kinase inhibitor in clinical trials. AZD7762 has been profiled extensively in vitro and in vivo in combination with DNA-damaging agents and has been shown to potentiate response in several different settings where inhibition of checkpoint kinase results in the abrogation of DNA damage-induced cell cycle arrest. Dose-dependent potentiation of antitumor activity, when AZD7762 is administered in combination with DNA-damaging agents, has been observed in multiple xenograft models with several DNA-damaging agents, further supporting the potential of checkpoint kinase inhibitors to enhance the efficacy of both conventional chemotherapy and radiotherapy and increase patient response rates in a variety of settings. PMID:18790776

  19. Discovery of a Selective Inhibitor of Oncogenic B-Raf Kinase With Potent Antimelanoma Activity

    SciTech Connect

    Tsai, J.; Lee, J.T.; Wang, W.; Zhang, J.; Cho, H.; Mamo, S.; Bremer, R.; Gillette, S.; Kong, J.; Haass, N.K.; Sproesser, K.; Li, L.; Smalley, K.S.M.; Fong, D.; Zhu, Y.-L.; Marimuthu, A.; Nguyen, H.; Lam, B.; Liu, J.; Cheung, I.; Rice, J.

    2009-05-26

    BRAF{sup V600E} is the most frequent oncogenic protein kinase mutation known. Furthermore, inhibitors targeting 'active' protein kinases have demonstrated significant utility in the therapeutic repertoire against cancer. Therefore, we pursued the development of specific kinase inhibitors targeting B-Raf, and the V600E allele in particular. By using a structure-guided discovery approach, a potent and selective inhibitor of active B-Raf has been discovered. PLX4720, a 7-azaindole derivative that inhibits B-Raf{sup V600E} with an IC{sub 50} of 13 nM, defines a class of kinase inhibitor with marked selectivity in both biochemical and cellular assays. PLX4720 preferentially inhibits the active B-Raf{sup V600E} kinase compared with a broad spectrum of other kinases, and potent cytotoxic effects are also exclusive to cells bearing the V600E allele. Consistent with the high degree of selectivity, ERK phosphorylation is potently inhibited by PLX4720 in B-Raf{sup V600E}-bearing tumor cell lines but not in cells lacking oncogenic B-Raf. In melanoma models, PLX4720 induces cell cycle arrest and apoptosis exclusively in B-Raf{sup V600E}-positive cells. In B-Raf{sup V600E}-dependent tumor xenograft models, orally dosed PLX4720 causes significant tumor growth delays, including tumor regressions, without evidence of toxicity. The work described here represents the entire discovery process, from initial identification through structural and biological studies in animal models to a promising therapeutic for testing in cancer patients bearing B-Raf{sup V600E}-driven tumors.

  20. Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity

    PubMed Central

    Tsai, James; Lee, John T.; Wang, Weiru; Zhang, Jiazhong; Cho, Hanna; Mamo, Shumeye; Bremer, Ryan; Gillette, Sam; Kong, Jun; Haass, Nikolas K.; Sproesser, Katrin; Li, Ling; Smalley, Keiran S. M.; Fong, Daniel; Zhu, Yong-Liang; Marimuthu, Adhirai; Nguyen, Hoa; Lam, Billy; Liu, Jennifer; Cheung, Ivana; Rice, Julie; Suzuki, Yoshihisa; Luu, Catherine; Settachatgul, Calvin; Shellooe, Rafe; Cantwell, John; Kim, Sung-Hou; Schlessinger, Joseph; Zhang, Kam Y. J.; West, Brian L.; Powell, Ben; Habets, Gaston; Zhang, Chao; Ibrahim, Prabha N.; Hirth, Peter; Artis, Dean R.; Herlyn, Meenhard; Bollag, Gideon

    2008-01-01

    BRAFV600E is the most frequent oncogenic protein kinase mutation known. Furthermore, inhibitors targeting “active” protein kinases have demonstrated significant utility in the therapeutic repertoire against cancer. Therefore, we pursued the development of specific kinase inhibitors targeting B-Raf, and the V600E allele in particular. By using a structure-guided discovery approach, a potent and selective inhibitor of active B-Raf has been discovered. PLX4720, a 7-azaindole derivative that inhibits B-RafV600E with an IC50 of 13 nM, defines a class of kinase inhibitor with marked selectivity in both biochemical and cellular assays. PLX4720 preferentially inhibits the active B-RafV600E kinase compared with a broad spectrum of other kinases, and potent cytotoxic effects are also exclusive to cells bearing the V600E allele. Consistent with the high degree of selectivity, ERK phosphorylation is potently inhibited by PLX4720 in B-RafV600E-bearing tumor cell lines but not in cells lacking oncogenic B-Raf. In melanoma models, PLX4720 induces cell cycle arrest and apoptosis exclusively in B-RafV600E-positive cells. In B-RafV600E-dependent tumor xenograft models, orally dosed PLX4720 causes significant tumor growth delays, including tumor regressions, without evidence of toxicity. The work described here represents the entire discovery process, from initial identification through structural and biological studies in animal models to a promising therapeutic for testing in cancer patients bearing B-RafV600E-driven tumors. PMID:18287029

  1. A Novel Triazolopyridine-Based Spleen Tyrosine Kinase Inhibitor That Arrests Joint Inflammation

    PubMed Central

    Ferguson, Gregory D.; Delgado, Mercedes; Plantevin-Krenitsky, Veronique; Jensen-Pergakes, Kristen; Bates, R. J.; Torres, Sanaa; Celeridad, Maria; Brown, Heather; Burnett, Kelven; Nadolny, Lisa; Tehrani, Lida; Packard, Garrick; Pagarigan, Barbra; Haelewyn, Jason; Nguyen, Trish; Xu, Li; Tang, Yang; Hickman, Matthew; Baculi, Frans; Pierce, Steven; Miyazawa, Keiji; Jackson, Pilgrim; Chamberlain, Philip; LeBrun, Laurie; Xie, Weilin; Bennett, Brydon; Blease, Kate

    2016-01-01

    Autoantibodies and the immunoreceptors to which they bind can contribute to the pathogenesis of autoimmune diseases such as rheumatoid arthritis (RA). Spleen Tyrosine Kinase (Syk) is a non-receptor tyrosine kinase with a central role in immunoreceptor (FcR) signaling and immune cell functionality. Syk kinase inhibitors have activity in antibody-dependent immune cell activation assays, in preclinical models of arthritis, and have progressed into clinical trials for RA and other autoimmune diseases. Here we describe the characterization of a novel triazolopyridine-based Syk kinase inhibitor, CC-509. This compound is a potent inhibitor of purified Syk enzyme, FcR-dependent and FcR-independent signaling in primary immune cells, and basophil activation in human whole blood. CC-509 is moderately selective across the kinome and against other non-kinase enzymes or receptors. Importantly, CC-509 was optimized away from and has modest activity against cellular KDR and Jak2, kinases that when inhibited in a preclinical and clinical setting may promote hypertension and neutropenia, respectively. In addition, CC-509 is orally bioavailable and displays dose-dependent efficacy in two rodent models of immune-inflammatory disease. In passive cutaneous anaphylaxis (PCA), CC-509 significantly inhibited skin edema. Moreover, CC-509 significantly reduced paw swelling and the tissue levels of pro-inflammatory cytokines RANTES and MIP-1α in the collagen-induced arthritis (CIA) model. In summary, CC-509 is a potent, moderately selective, and efficacious inhibitor of Syk that has a differentiated profile when compared to other Syk compounds that have progressed into the clinic for RA. PMID:26756335

  2. Effects of BP-14, a novel cyclin-dependent kinase inhibitor, on anaplastic thyroid cancer cells.

    PubMed

    Allegri, Lorenzo; Baldan, Federica; Mio, Catia; Puppin, Cinzia; Russo, Diego; Kryštof, Vladimir; Damante, Giuseppe

    2016-04-01

    Anaplastic thyroid carcinoma (ATC) is an extremely aggressive human malignancy characterized by a marked degree of invasiveness, absense of features of thyroid differentiation and resistance to current medical treatment. It is well known that ATCs are characterized by deregulation of genes related to cell cycle regulation, i.e., cyclin-dependent kinases (CDKs) and endogenous cyclin-dependent kinase inhibitors (CDKIs). Therefore, in the present study, the effect of a novel exogenous cyclin-dependent kinase inhibitor, BP-14, was investigated in three human ATC cell lines. The ATC-derived cell lines FRO, SW1736 and 8505C were treated with BP-14 alone or in combination with the mTOR inhibitor everolimus. In all ATC cell lines, treatment with BP-14 decreased cell viability and, in two of them, BP-14 modified expression of genes involved in epithelial-mesenchymal transition. Thus, our data indicate that BP-14 is a potential new compound effective against ATC. Combined treatment with BP-14 and the mTOR inhibitor everolimus had a strong synergistic effect on cell viability in all three cell lines, suggesting that the combined used of CDK and mTOR inhibitors may be a useful strategy for ATC treatment. PMID:26884249

  3. An Aminopyridazine Inhibitor of Death Associated Protein Kinase Attenuates Hypoxia-Ischemia Induced Brain Damage

    SciTech Connect

    Velentza, A.V.; Wainwright, M.S.; Zasadzki, M.; Mirzoeva, S.; Haiech, J.; Focia, P.J.; Egli, M.; Watterson, D.M.

    2010-03-08

    Death associated protein kinase (DAPK) is a calcium and calmodulin regulated enzyme that functions early in eukaryotic programmed cell death, or apoptosis. To validate DAPK as a potential drug discovery target for acute brain injury, the first small molecule DAPK inhibitor was synthesized and tested in vivo. A single injection of the aminopyridazine-based inhibitor administered 6 h after injury attenuated brain tissue or neuronal biomarker loss measured, respectively, 1 week and 3 days later. Because aminopyridazine is a privileged structure in neuropharmacology, we determined the high-resolution crystal structure of a binary complex between the kinase domain and a molecular fragment of the DAPK inhibitor. The co-crystal structure describes a structural basis for interaction and provides a firm foundation for structure-assisted design of lead compounds with appropriate molecular properties for future drug development.

  4. 3-Phosphoinositide-Dependent protein Kinase-1 (PDK1) inhibitors: A review from patent literature

    PubMed Central

    Barile, Elisa; De, Surya K.; Pellecchia, Maurizio

    2016-01-01

    PDK1 (3-Phosphoinositide-dependent kinase 1) is a key member of the AGC protein kinase family. It plays an important role in a variety of cellular functions, leading to the activation of the PI3K signaling pathway, an event often associated with the onset and progression of several human cancers. Numerous recent observations suggest that PDK1 inhibitors may provide novel opportunities for the development of effective classes of therapeutics. On these premises, recent years have witnessed an increased effort by medicinal chemists to develop novel scaffolds to derive potent and selective PDK1 inhibitors. The intent of this review is to update the reader on the recent patent literature covering applications published between June 2008 and September 2011 that report on PDK1 inhibitors. PMID:24236780

  5. 5-imino-1,2,4-thiadiazoles: first small molecules as substrate competitive inhibitors of glycogen synthase kinase 3.

    PubMed

    Palomo, Valle; Perez, Daniel I; Perez, Concepcion; Morales-Garcia, Jose A; Soteras, Ignacio; Alonso-Gil, Sandra; Encinas, Arantxa; Castro, Ana; Campillo, Nuria E; Perez-Castillo, Ana; Gil, Carmen; Martinez, Ana

    2012-02-23

    Cumulative evidence strongly supports that glycogen synthase kinase-3 (GSK-3) is a pathogenic molecule when it is up-dysregulated, emerging as an important therapeutic target in severe unmet human diseases. GSK-3 specific inhibitors might be promising effective drugs for the treatment of devastating pathologies such as neurodegenerative diseases, stroke, and mood disorders. As GSK-3 has the ability to phosphorylate primed substrates, small molecules able to bind to this site should be perfect drug candidates, able to partially block the activity of the enzyme over some specific substrates. Here, we report substituted 5-imino-1,2,4-thiadiazoles as the first small molecules able to inhibit GSK-3 in a substrate competitive manner. These compounds are cell permeable, able to decrease inflammatory activation and to selectively differentiate neural stem cells. Overall, 5-imino-1,2,4-thiadiazoles are presented here as new molecules able to decrease neuronal cell death and to increase endogenous neurogenesis blocking the GSK-3 substrate site. PMID:22257026

  6. Small tyrosine kinase inhibitors interrupt EGFR signaling by interacting with erbB3 and erbB4 in glioblastoma cell lines

    SciTech Connect

    Carrasco-Garcia, Estefania; Saceda, Miguel; Grasso, Silvina; Rocamora-Reverte, Lourdes; Conde, Mariano; Gomez-Martinez, Angeles; Garcia-Morales, Pilar; Ferragut, Jose A.; Martinez-Lacaci, Isabel

    2011-06-10

    Signaling through the epidermal growth factor receptor (EGFR) is relevant in glioblastoma. We have determined the effects of the EGFR inhibitor AG1478 in glioblastoma cell lines and found that U87 and LN-229 cells were very sensitive to this drug, since their proliferation diminished and underwent a marked G{sub 1} arrest. T98 cells were a little more refractory to growth inhibition and A172 cells did not undergo a G{sub 1} arrest. This G{sub 1} arrest was associated with up-regulation of p27{sup kip1}, whose protein turnover was stabilized. EGFR autophosphorylation was blocked with AG1478 to the same extent in all the cell lines. Other small-molecule EGFR tyrosine kinase inhibitors employed in the clinic, such as gefitinib, erlotinib and lapatinib, were able to abrogate proliferation of glioblastoma cell lines, which underwent a G{sub 1} arrest. However, the EGFR monoclonal antibody, cetuximab had no effect on cell proliferation and consistently, had no effect on cell cycle either. Similarly, cetuximab did not inhibit proliferation of U87 {Delta}EGFR cells or primary glioblastoma cell cultures, whereas small-molecule EGFR inhibitors did. Activity of downstream signaling molecules of EGFR such as Akt and especially ERK1/2 was interrupted with EGFR tyrosine kinase inhibitors, whereas cetuximab treatment could not sustain this blockade over time. Small-molecule EGFR inhibitors were able to prevent phosphorylation of erbB3 and erbB4, whereas cetuximab only hindered EGFR phosphorylation, suggesting that EGFR tyrosine kinase inhibitors may mediate their anti-proliferative effects through other erbB family members. We can conclude that small-molecule EGFR inhibitors may be a therapeutic approach for the treatment of glioblastoma patients.

  7. Transcription and translation are primary targets of Pim kinase inhibitor SGI-1776 in mantle cell lymphoma

    PubMed Central

    Yang, Qingshan; Chen, Lisa S.; Neelapu, Sattva S.; Miranda, Roberto N.; Medeiros, L. Jeffrey

    2012-01-01

    Proviral integration site for Moloney murine leukemia virus (Pim) kinases are serine/threonine/tyrosine kinases and oncoproteins that promote tumor progression. Three isoforms of Pim kinases have been identified and are known to phosphorylate numerous substrates, with regulatory functions in transcription, translation, cell cycle, and survival pathways. These kinases are involved in production, proliferation, and survival of normal B cells and are overexpressed in B-cell malignancies such as mantle cell lymphoma (MCL). SGI-1776 is a small mol-ecule and Pim kinase inhibitor with selectivity for Pim-1. We hypothesize that Pim kinase function can be inhibited by SGI-1776 in MCL and that inhibition of phosphorylation of downstream substrates will disrupt transcriptional, translational, and cell cycle processes and promote cell death. SGI-1776 treatment in 4 MCL cell lines resulted in apoptosis induction. Phosphorylation of transcription (c-Myc) and translation targets (4E-BP1), tested in Jeko-1 and Mino, was declined. Consistent with these data, Mcl-1 and cyclin D1 protein levels were decreased. Importantly, similar to cell line data, MCL primary cells but not normal cells showed similar inhibition of substrate phosphorylation and cytotoxicity from SGI-1776 treatment. Genetic knockdown of Pim-1/Pim-2 affected similar proteins in MCL cell lines. Collectively these data demonstrate Pim kinases as therapeutic targets in MCL. PMID:22955922

  8. Novel irreversible EGFR tyrosine kinase inhibitor 324674 sensitizes human colon carcinoma HT29 and SW480 cells to apoptosis by blocking the EGFR pathway

    SciTech Connect

    Yu, Zhiwei; Cui, Binbin; Jin, Yinghu; Chen, Haipeng; Wang, Xishan

    2011-08-12

    Highlights: {yields} This article described the effects of the EGFR tyrosine kinase inhibitor on the cell proliferation and the apoptosis induction of the colon carcinoma cell lines. {yields} Demonstrated that 326474 is a more potent EGFR inhibitor on colon cancer cells than other three TKIs. {yields} It can be important when considering chemotherapy for colonic cancer patients. -- Abstract: Background: Epidermal growth factor receptor (EGFR) is widely expressed in multiple solid tumors including colorectal cancer by promoting cancer cell growth and proliferation. Therefore, the inhibition of EGFR activity may establish a clinical strategy of cancer therapy. Methods: In this study, using human colon adenocarcinoma HT29 and SW480 cells as research models, we compared the efficacy of four EGFR inhibitors in of EGFR-mediated pathways, including the novel irreversible inhibitor 324674, conventional reversible inhibitor AG1478, dual EGFR/HER2 inhibitor GW583340 and the pan-EGFR/ErbB2/ErbB4 inhibitor. Cell proliferation was assessed by MTT analysis, and apoptosis was evaluated by the Annexin-V binding assay. EGFR and its downstream signaling effectors were examined by western blotting analysis. Results: Among the four inhibitors, the irreversible EGFR inhibitor 324674 was more potent at inhibiting HT29 and SW480 cell proliferation and was able to efficiently induce apoptosis at lower concentrations. Western blotting analysis revealed that AG1478, GW583340 and pan-EGFR/ErbB2/ErbB4 inhibitors failed to suppress EGFR activation as well as the downstream mitogen-activated protein kinase (MAPK) and PI3K/AKT/mTOR (AKT) pathways. In contrast, 324674 inhibited EGFR activation and the downstream AKT signaling pathway in a dose-dependent manner. Conclusion: Our studies indicated that the novel irreversible EGFR inhibitor 324674 may have a therapeutic application in colon cancer therapy.

  9. The antiproliferative activity of kinase inhibitors in chronic myeloid leukemia cells is mediated by FOXO transcription factors.

    PubMed

    Pellicano, Francesca; Scott, Mary T; Helgason, G Vignir; Hopcroft, Lisa E M; Allan, Elaine K; Aspinall-O'Dea, Mark; Copland, Mhairi; Pierce, Andrew; Huntly, Brian J P; Whetton, Anthony D; Holyoake, Tessa L

    2014-09-01

    Chronic myeloid leukemia (CML) is initiated and maintained by the tyrosine kinase BCR-ABL which activates a number of signal transduction pathways, including PI3K/AKT signaling and consequently inactivates FOXO transcription factors. ABL-specific tyrosine kinase inhibitors (TKIs) induce minimal apoptosis in CML progenitor cells, yet exert potent antiproliferative effects, through as yet poorly understood mechanisms. Here, we demonstrate that in CD34+ CML cells, FOXO1 and 3a are inactivated and relocalized to the cytoplasm by BCR-ABL activity. TKIs caused a decrease in phosphorylation of FOXOs, leading to their relocalization from cytoplasm (inactive) to nucleus (active), where they modulated the expression of key FOXO target genes, such as Cyclin D1, ATM, CDKN1C, and BCL6 and induced G1 arrest. Activation of FOXO1 and 3a and a decreased expression of their target gene Cyclin D1 were also observed after 6 days of in vivo treatment with dasatinib in a CML transgenic mouse model. The over-expression of FOXO3a in CML cells combined with TKIs to reduce proliferation, with similar results seen for inhibitors of PI3K/AKT/mTOR signaling. While stable expression of an active FOXO3a mutant induced a similar level of quiescence to TKIs alone, shRNA-mediated knockdown of FOXO3a drove CML cells into cell cycle and potentiated TKI-induced apoptosis. These data demonstrate that TKI-induced G1 arrest in CML cells is mediated through inhibition of the PI3K/AKT pathway and reactivation of FOXOs. This enhanced understanding of TKI activity and induced progenitor cell quiescence suggests that new therapeutic strategies for CML should focus on manipulation of this signaling network. PMID:24806995

  10. Kinase Inhibitors that Increase the Sensitivity of Methicillin Resistant Staphylococcus aureus to β-Lactam Antibiotics

    PubMed Central

    Vornhagen, Jay; Burnside, Kellie; Whidbey, Christopher; Berry, Jessica; Qin, Xuan; Rajagopal, Lakshmi

    2015-01-01

    Staphylococcus aureus are Gram-positive bacteria that are the leading cause of recurrent infections in humans that include pneumonia, bacteremia, osteomyelitis, arthritis, endocarditis, and toxic shock syndrome. The emergence of methicillin resistant S. aureus strains (MRSA) has imposed a significant concern in sustained measures of treatment against these infections. Recently, MRSA strains deficient in expression of a serine/threonine kinase (Stk1 or PknB) were described to exhibit increased sensitivity to β-lactam antibiotics. In this study, we screened a library consisting of 280 drug-like, low-molecular-weight compounds with the ability to inhibit protein kinases for those that increased the sensitivity of wild-type MRSA to β-lactams and then evaluated their toxicity in mice. We report the identification of four kinase inhibitors, the sulfonamides ST085384, ST085404, ST085405, and ST085399 that increased sensitivity of WT MRSA to sub-lethal concentrations of β-lactams. Furthermore, these inhibitors lacked alerting structures commonly associated with toxic effects, and toxicity was not observed with ST085384 or ST085405 in vivo in a murine model. These results suggest that kinase inhibitors may be useful in therapeutic strategies against MRSA infections. PMID:26506394

  11. ACTIVATION OF PERK KINASE IN NEURAL CELLS BY PROTEASOME INHIBITOR TREATMENT

    PubMed Central

    Zhang, Le; Ebenezer, Philip J; Dasuri, Kalavathi; Bruce-Keller, Annadora J.; Fernandez-Kim, Sun Ok; Liu, Ying; Keller, Jeffrey N.

    2010-01-01

    Inhibition of the proteasome proteolytic pathway occurs as the result of normal aging, as well as in a variety of neurodegenerative conditions, and is believed to promote cellular toxicity in each of these conditions through diverse mechanisms. In the present study we examined whether proteasome inhibition alters the protein kinase (PKR)-like ER kinase (PERK). Our studies demonstrate that proteasome inhibitors induce the transient activation of PERK in both primary rat neurons as well as the N2a neural cell line. Experiments with siRNA to PERK demonstrated that the modulation of PERK was not significant involved in regulating toxicity, ubiquitinated protein levels, or ribosome perturbations in response to proteasome inhibitor treatment. Surprisingly, PERK was observed to be involved in the upregulation of p38 kinase following proteasome inhibitor treatment. Taken together, these data demonstrate the ability of proteasome inhibition to activate PERK and demonstrate evidence for novel cross talk between PERK and the activation of p38 kinase in neural cells following proteasome inhibition. Taken together, these data have implications for understanding the basis by which proteasome inhibition alters neural homeostasis, and the basis by which cell signaling cascades are regulated by proteasome inhibition. PMID:19860852

  12. Kinase Inhibitors that Increase the Sensitivity of Methicillin Resistant Staphylococcus aureus to β-Lactam Antibiotics.

    PubMed

    Vornhagen, Jay; Burnside, Kellie; Whidbey, Christopher; Berry, Jessica; Qin, Xuan; Rajagopal, Lakshmi

    2015-01-01

    Staphylococcus aureus are Gram-positive bacteria that are the leading cause of recurrent infections in humans that include pneumonia, bacteremia, osteomyelitis, arthritis, endocarditis, and toxic shock syndrome. The emergence of methicillin resistant S. aureus strains (MRSA) has imposed a significant concern in sustained measures of treatment against these infections. Recently, MRSA strains deficient in expression of a serine/threonine kinase (Stk1 or PknB) were described to exhibit increased sensitivity to β-lactam antibiotics. In this study, we screened a library consisting of 280 drug-like, low-molecular-weight compounds with the ability to inhibit protein kinases for those that increased the sensitivity of wild-type MRSA to β-lactams and then evaluated their toxicity in mice. We report the identification of four kinase inhibitors, the sulfonamides ST085384, ST085404, ST085405, and ST085399 that increased sensitivity of WT MRSA to sub-lethal concentrations of β-lactams. Furthermore, these inhibitors lacked alerting structures commonly associated with toxic effects, and toxicity was not observed with ST085384 or ST085405 in vivo in a murine model. These results suggest that kinase inhibitors may be useful in therapeutic strategies against MRSA infections. PMID:26506394

  13. Characterization of interactions and pharmacophore development for DFG-out inhibitors to RET tyrosine kinase.

    PubMed

    Gao, Chunxia; Grøtli, Morten; Eriksson, Leif A

    2015-07-01

    RET (rearranged during transfection) tyrosine kinase is a promising target for several human cancers. Abt-348, Birb-796, Motesanib and Sorafenib are DFG-out multi-kinase inhibitors that have been reported to inhibit RET activity with good IC50 values. Although the DFG-out conformation has attracted great interest in the design of type II inhibitors, the structural requirements for binding to the RET DFG-out conformation remains unclear. Herein, the DFG-out conformation of RET was determined by homology modelling, the four inhibitors were docked, and the binding modes investigated by molecular dynamics simulation. Binding free energies were calculated using the molecular mechanics/Poisson-Bolzmann surface area (MM/PBSA) method. The trends in predicted binding free affinities correlated well with experimental data and were used to explain the activity difference of the studied inhibitors. Per-residue energy decomposition analyses provided further information on specific interaction properties. Finally, we also conducted a detailed e-pharmacophore modelling of the different RET-inhibitor complexes, explaining the common and specific pharmacophore features of the different complexes. The results reported herein will be useful in future rational design of novel DFG-out RET inhibitors. PMID:26044359

  14. Naturally Occurring Mutations in the MPS1 Gene Predispose Cells to Kinase Inhibitor Drug Resistance.

    PubMed

    Gurden, Mark D; Westwood, Isaac M; Faisal, Amir; Naud, Sébastien; Cheung, Kwai-Ming J; McAndrew, Craig; Wood, Amy; Schmitt, Jessica; Boxall, Kathy; Mak, Grace; Workman, Paul; Burke, Rosemary; Hoelder, Swen; Blagg, Julian; Van Montfort, Rob L M; Linardopoulos, Spiros

    2015-08-15

    Acquired resistance to therapy is perhaps the greatest challenge to effective clinical management of cancer. With several inhibitors of the mitotic checkpoint kinase MPS1 in preclinical development, we sought to investigate how resistance against these inhibitors may arise so that mitigation or bypass strategies could be addressed as early as possible. Toward this end, we modeled acquired resistance to the MPS1 inhibitors AZ3146, NMS-P715, and CCT251455, identifying five point mutations in the kinase domain of MPS1 that confer resistance against multiple inhibitors. Structural studies showed how the MPS1 mutants conferred resistance by causing steric hindrance to inhibitor binding. Notably, we show that these mutations occur in nontreated cancer cell lines and primary tumor specimens, and that they also preexist in normal lymphoblast and breast tissues. In a parallel piece of work, we also show that the EGFR p.T790M mutation, the most common mutation conferring resistance to the EGFR inhibitor gefitinib, also preexists in cancer cells and normal tissue. Our results therefore suggest that mutations conferring resistance to targeted therapy occur naturally in normal and malignant cells and these mutations do not arise as a result of the increased mutagenic plasticity of cancer cells. PMID:26202014

  15. Identification and Structure-Function Analysis of Subfamily Selective G Protein-Coupled Receptor Kinase Inhibitors

    SciTech Connect

    Homan, Kristoff T.; Larimore, Kelly M.; Elkins, Jonathan M.; Szklarz, Marta; Knapp, Stefan; Tesmer, John J.G.

    2015-02-13

    Selective inhibitors of individual subfamilies of G protein-coupled receptor kinases (GRKs) would serve as useful chemical probes as well as leads for therapeutic applications ranging from heart failure to Parkinson’s disease. To identify such inhibitors, differential scanning fluorimetry was used to screen a collection of known protein kinase inhibitors that could increase the melting points of the two most ubiquitously expressed GRKs: GRK2 and GRK5. Enzymatic assays on 14 of the most stabilizing hits revealed that three exhibit nanomolar potency of inhibition for individual GRKs, some of which exhibiting orders of magnitude selectivity. Most of the identified compounds can be clustered into two chemical classes: indazole/dihydropyrimidine-containing compounds that are selective for GRK2 and pyrrolopyrimidine-containing compounds that potently inhibit GRK1 and GRK5 but with more modest selectivity. The two most potent inhibitors representing each class, GSK180736A and GSK2163632A, were cocrystallized with GRK2 and GRK1, and their atomic structures were determined to 2.6 and 1.85 Å spacings, respectively. GSK180736A, developed as a Rho-associated, coiled-coil-containing protein kinase inhibitor, binds to GRK2 in a manner analogous to that of paroxetine, whereas GSK2163632A, developed as an insulin-like growth factor 1 receptor inhibitor, occupies a novel region of the GRK active site cleft that could likely be exploited to achieve more selectivity. However, neither compound inhibits GRKs more potently than their initial targets. This data provides the foundation for future efforts to rationally design even more potent and selective GRK inhibitors.

  16. Identification and structure-function analysis of subfamily selective G protein-coupled receptor kinase inhibitors.

    PubMed

    Homan, Kristoff T; Larimore, Kelly M; Elkins, Jonathan M; Szklarz, Marta; Knapp, Stefan; Tesmer, John J G

    2015-01-16

    Selective inhibitors of individual subfamilies of G protein-coupled receptor kinases (GRKs) would serve as useful chemical probes as well as leads for therapeutic applications ranging from heart failure to Parkinson's disease. To identify such inhibitors, differential scanning fluorimetry was used to screen a collection of known protein kinase inhibitors that could increase the melting points of the two most ubiquitously expressed GRKs: GRK2 and GRK5. Enzymatic assays on 14 of the most stabilizing hits revealed that three exhibit nanomolar potency of inhibition for individual GRKs, some of which exhibiting orders of magnitude selectivity. Most of the identified compounds can be clustered into two chemical classes: indazole/dihydropyrimidine-containing compounds that are selective for GRK2 and pyrrolopyrimidine-containing compounds that potently inhibit GRK1 and GRK5 but with more modest selectivity. The two most potent inhibitors representing each class, GSK180736A and GSK2163632A, were cocrystallized with GRK2 and GRK1, and their atomic structures were determined to 2.6 and 1.85 Å spacings, respectively. GSK180736A, developed as a Rho-associated, coiled-coil-containing protein kinase inhibitor, binds to GRK2 in a manner analogous to that of paroxetine, whereas GSK2163632A, developed as an insulin-like growth factor 1 receptor inhibitor, occupies a novel region of the GRK active site cleft that could likely be exploited to achieve more selectivity. However, neither compound inhibits GRKs more potently than their initial targets. This data provides the foundation for future efforts to rationally design even more potent and selective GRK inhibitors. PMID:25238254

  17. Discovery of Pyrrolopyridine−Pyridone Based Inhibitors of Met Kinase: Synthesis, X-ray Crystallographic Analysis, and Biological Activities

    SciTech Connect

    Kim, Kyoung Soon; Zhang, Liping; Schmidt, Robert; Cai, Zhen-Wei; Wei, Donna; Williams, David K.; Lombardo, Louis J.; Trainor, George L.; Xie, Dianlin; Zhang, Yaquan; An, Yongmi; Sack, John S.; Tokarski, John S.; Darienzo, Celia; Kamath, Amrita; Marathe, Punit; Zhang, Yueping; Lippy, Jonathan; Jeyaseelan, Sr., Robert; Wautlet, Barri; Henley, Benjamin; Gullo-Brown, Johnni; Manne, Veeraswamy; Hunt, John T.; Fargnoli, Joseph; Borzilleri, Robert M.

    2008-10-02

    Conformationally constrained 2-pyridone analogue 2 is a potent Met kinase inhibitor with an IC50 value of 1.8 nM. Further SAR of the 2-pyridone based inhibitors of Met kinase led to potent 4-pyridone and pyridine N-oxide inhibitors such as 3 and 4. The X-ray crystallographic data of the inhibitor 2 bound to the ATP binding site of Met kinase protein provided insight into the binding modes of these inhibitors, and the SAR of this series of analogues was rationalized. Many of these analogues showed potent antiproliferative activities against the Met dependent GTL-16 gastric carcinoma cell line. Compound 2 also inhibited Flt-3 and VEGFR-2 kinases with IC{sub 50} values of 4 and 27 nM, respectively. It possesses a favorable pharmacokinetic profile in mice and demonstrates significant in vivo antitumor activity in the GTL-16 human gastric carcinoma xenograft model.

  18. The discovery of 2-substituted phenol quinazolines as potent RET kinase inhibitors with improved KDR selectivity.

    PubMed

    Newton, Rebecca; Bowler, Katherine A; Burns, Emily M; Chapman, Philip J; Fairweather, Emma E; Fritzl, Samantha J R; Goldberg, Kristin M; Hamilton, Niall M; Holt, Sarah V; Hopkins, Gemma V; Jones, Stuart D; Jordan, Allan M; Lyons, Amanda J; Nikki March, H; McDonald, Neil Q; Maguire, Laura A; Mould, Daniel P; Purkiss, Andrew G; Small, Helen F; Stowell, Alexandra I J; Thomson, Graeme J; Waddell, Ian D; Waszkowycz, Bohdan; Watson, Amanda J; Ogilvie, Donald J

    2016-04-13

    Deregulation of the receptor tyrosine kinase RET has been implicated in medullary thyroid cancer, a small percentage of lung adenocarcinomas, endocrine-resistant breast cancer and pancreatic cancer. There are several clinically approved multi-kinase inhibitors that target RET as a secondary pharmacology but additional activities, most notably inhibition of KDR, lead to dose-limiting toxicities. There is, therefore, a clinical need for more specific RET kinase inhibitors. Herein we report our efforts towards identifying a potent and selective RET inhibitor using vandetanib 1 as the starting point for structure-based drug design. Phenolic anilinoquinazolines exemplified by 6 showed improved affinities towards RET but, unsurprisingly, suffered from high metabolic clearance. Efforts to mitigate the metabolic liability of the phenol led to the discovery that a flanking substituent not only improved the hepatocyte stability, but could also impart a significant gain in selectivity. This culminated in the identification of 36; a potent RET inhibitor with much improved selectivity against KDR. PMID:26874741

  19. QSAR and molecular docking studies on oxindole derivatives as VEGFR-2 tyrosine kinase inhibitors.

    PubMed

    Kang, Cong-Min; Liu, Dong-Qing; Zhao, Xu-Hao; Dai, Ying-Jie; Cheng, Jia-Gao; Lv, Ying-Tao

    2016-01-01

    The three-dimensional quantitative structure-activity relationships (3D-QSAR) were established for 30 oxindole derivatives as vascular endothelial growth factor receptor-2 (VEGFR-2) tyrosine kinase inhibitors by using comparative molecular field analysis (CoMFA) and comparative similarity indices analysis comparative molecular similarity indices analysis (CoMSIA) techniques. With the CoMFA model, the cross-validated value (q(2)) was 0.777, the non-cross-validated value (R(2)) was 0.987, and the external cross-validated value ([Formula: see text]) was 0.72. And with the CoMSIA model, the corresponding q(2), R(2) and [Formula: see text] values were 0.710, 0.988 and 0.78, respectively. Docking studies were employed to bind the inhibitors into the active site to determine the probable binding conformation. The binding mode obtained by molecular docking was in good agreement with the 3D-QSAR results. Based on the QSAR models and the docking binding mode, a set of new VEGFR-2 tyrosine kinase inhibitors were designed, which showed excellent predicting inhibiting potencies. The result revealed that both QSAR models have good predictive capability to guide the design and structural modification of homologic compounds. It is also helpful for further research and development of new VEGFR-2 tyrosine kinase inhibitors. PMID:26416217

  20. Molecular Detection of BCR-ABL in Chronic Myeloid Leukemia.

    PubMed

    Qin, Ya-Zhen; Huang, Xiao-Jun

    2016-01-01

    All chronic myeloid leukemia (CML) patients have the BCR-ABL fusion gene. The constitutively activated BCR-ABL tyrosine kinase is a critical pathogenetic event in CML. Tyrosine kinase inhibitors (TKIs), such as imatinib, are synthesized small molecules that primarily target BCR-ABL tyrosine kinases and have become a first-line treatment for CML. Detection of BCR-ABL transcript level by real-time quantitative polymerase chain reaction (RQ-PCR) is a clinical routine for evaluating TKI treatment efficacy and predicting long-term response. Furthermore, because they are a main TKI resistance mechanism, the BCR-ABL tyrosine kinase domain (TKD) point mutations that are detected by Sanger sequencing can help clinicians make decisions on subsequent treatment selections. Here, we present protocols for the two abovementioned molecular methods for CML analysis. PMID:27581134

  1. A class of selective antibacterials derived from a protein kinase inhibitor pharmacophore

    PubMed Central

    Miller, J. Richard; Dunham, Steve; Mochalkin, Igor; Banotai, Craig; Bowman, Matthew; Buist, Susan; Dunkle, Bill; Hanna, Debra; Harwood, H. James; Huband, Michael D.; Karnovsky, Alla; Kuhn, Michael; Limberakis, Chris; Liu, Jia Y.; Mehrens, Shawn; Mueller, W. Thomas; Narasimhan, Lakshmi; Ogden, Adam; Ohren, Jeff; Prasad, J. V. N. Vara; Shelly, John A.; Skerlos, Laura; Sulavik, Mark; Thomas, V. Hayden; VanderRoest, Steve; Wang, LiAnn; Wang, Zhigang; Whitton, Amy; Zhu, Tong; Stover, C. Kendall

    2009-01-01

    As the need for novel antibiotic classes to combat bacterial drug resistance increases, the paucity of leads resulting from target-based antibacterial screening of pharmaceutical compound libraries is of major concern. One explanation for this lack of success is that antibacterial screening efforts have not leveraged the eukaryotic bias resulting from more extensive chemistry efforts targeting eukaryotic gene families such as G protein-coupled receptors and protein kinases. Consistent with a focus on antibacterial target space resembling these eukaryotic targets, we used whole-cell screening to identify a series of antibacterial pyridopyrimidines derived from a protein kinase inhibitor pharmacophore. In bacteria, the pyridopyrimidines target the ATP-binding site of biotin carboxylase (BC), which catalyzes the first enzymatic step of fatty acid biosynthesis. These inhibitors are effective in vitro and in vivo against fastidious Gram-negative pathogens including Haemophilus influenzae. Although the BC active site has architectural similarity to those of eukaryotic protein kinases, inhibitor binding to the BC ATP-binding site is distinct from the protein kinase-binding mode, such that the inhibitors are selective for bacterial BC. In summary, we have discovered a promising class of potent antibacterials with a previously undescribed mechanism of action. In consideration of the eukaryotic bias of pharmaceutical libraries, our findings also suggest that pursuit of a novel inhibitor leads for antibacterial targets with active-site structural similarity to known human targets will likely be more fruitful than the traditional focus on unique bacterial target space, particularly when structure-based and computational methodologies are applied to ensure bacterial selectivity. PMID:19164768

  2. Design, validation and efficacy of bisubstrate inhibitors specifically affecting ecto-CK2 kinase activity.

    PubMed

    Cozza, Giorgio; Zanin, Sofia; Sarno, Stefania; Costa, Elena; Girardi, Cristina; Ribaudo, Giovanni; Salvi, Mauro; Zagotto, Giuseppe; Ruzzene, Maria; Pinna, Lorenzo A

    2015-11-01

    By derivatizing the purely competitive CK2 inhibitor N1-(4,5,6,7-tetrabromo-1H-benzimidazol-2-yl)-propane-1,3-diamine (K137) at its 3-amino position with a peptidic fragment composed of three or four glutamic or aspartic acid residues, a new family of bisubstrate inhibitors has been generated whose ability to simultaneously interact with both the ATP and the phosphoacceptor substrate-binding sites has been probed by running mixed competition kinetics and by mutational mapping of the kinase residues implicated in substrate recognition. The most effective bisubstrate inhibitor, K137-E4, interacts with three functional regions of the kinase: the hydrophobic pocket close to the ATP-binding site, the basic residues of the p+1 loop that recognizes the acidic determinant at position n+1 and the basic residues of α-helixC that recognize the acidic determinant at position n+3. Compared with the parent inhibitor (K137), K137-E4 is severalfold more potent (IC50 25 compared with 130 nM) and more selective, failing to inhibit any other kinase as drastically as CK2 out of 140 enzymes, whereas 35 kinases are inhibited more potently than CK2 by K137. K137-E4 is unable to penetrate the cell and to inhibit endogenous CK2, its pro-apoptotic efficacy being negligible compared with cell-permeant inhibitors; however, it readily inhibits ecto-CK2 on the outer cell surface, reducing the phosphorylation of several external phosphoproteins. Inhibition of ecto-CK2 by K137-E4 is accompanied by a slower migration of cancer cells as judged by wound healing assays. On the basis of the cellular responses to K137-E4, we conclude that ecto-CK2 is implicated in cell motility, whereas its contribution to the pro-survival role of CK2 is negligible. PMID:26349539

  3. A class of selective antibacterials derived from a protein kinase inhibitor pharmacophore

    SciTech Connect

    Miller, J. Richard; Dunham, Steve; Mochalkin, Igor; Banotai, Craig; Bowman, Matthew; Buist, Susan; Dunkle, Bill; Hanna, Debra; Harwood, H. James; Huband, Michael D.; Karnovsky, Alla; Kuhn, Michael; Limberakis, Chris; Liu, Jia Y.; Mehrens, Shawn; Mueller, W. Thomas; Narasimhan, Lakshmi; Ogden, Adam; Ohren, Jeff; Prasad, J.V.N. Vara; Shelly, John A.; Skerlos, Laura; Sulavik, Mark; Thomas, V. Hayden; VanderRoest, Steve; Wang, LiAnn; Wang, Zhigang; Whitton, Amy; Zhu, Tong; Stover, C. Kendall

    2009-06-25

    As the need for novel antibiotic classes to combat bacterial drug resistance increases, the paucity of leads resulting from target-based antibacterial screening of pharmaceutical compound libraries is of major concern. One explanation for this lack of success is that antibacterial screening efforts have not leveraged the eukaryotic bias resulting from more extensive chemistry efforts targeting eukaryotic gene families such as G protein-coupled receptors and protein kinases. Consistent with a focus on antibacterial target space resembling these eukaryotic targets, we used whole-cell screening to identify a series of antibacterial pyridopyrimidines derived from a protein kinase inhibitor pharmacophore. In bacteria, the pyridopyrimidines target the ATP-binding site of biotin carboxylase (BC), which catalyzes the first enzymatic step of fatty acid biosynthesis. These inhibitors are effective in vitro and in vivo against fastidious Gram-negative pathogens including Haemophilus influenzae. Although the BC active site has architectural similarity to those of eukaryotic protein kinases, inhibitor binding to the BC ATP-binding site is distinct from the protein kinase-binding mode, such that the inhibitors are selective for bacterial BC. In summary, we have discovered a promising class of potent antibacterials with a previously undescribed mechanism of action. In consideration of the eukaryotic bias of pharmaceutical libraries, our findings also suggest that pursuit of a novel inhibitor leads for antibacterial targets with active-site structural similarity to known human targets will likely be more fruitful than the traditional focus on unique bacterial target space, particularly when structure-based and computational methodologies are applied to ensure bacterial selectivity.

  4. Using ovality to predict nonmutagenic, orally efficacious pyridazine amides as cell specific spleen tyrosine kinase inhibitors.

    PubMed

    Lucas, Matthew C; Bhagirath, Niala; Chiao, Eric; Goldstein, David M; Hermann, Johannes C; Hsu, Pei-Yuan; Kirchner, Stephan; Kennedy-Smith, Joshua J; Kuglstatter, Andreas; Lukacs, Christine; Menke, John; Niu, Linghao; Padilla, Fernando; Peng, Ying; Polonchuk, Liudmila; Railkar, Aruna; Slade, Michelle; Soth, Michael; Xu, Daigen; Yadava, Preeti; Yee, Calvin; Zhou, Mingyan; Liao, Cheng

    2014-03-27

    Inhibition of spleen tyrosine kinase has attracted much attention as a mechanism for the treatment of cancers and autoimmune diseases such as asthma, rheumatoid arthritis, and systemic lupus erythematous. We report the structure-guided optimization of pyridazine amide spleen tyrosine kinase inhibitors. Early representatives of this scaffold were highly potent and selective but mutagenic in an Ames assay. An approach that led to the successful identification of nonmutagenic examples, as well as further optimization to compounds with reduced cardiovascular liabilities is described. Select pharmacokinetic and in vivo efficacy data are presented. PMID:24520947

  5. Identification and Validation of Inhibitor-Responsive Kinase Substrates using a New Paradigm to Measure Kinase-Specific Protein Phosphorylation Index

    PubMed Central

    Li, Xiang; Rao, Varsha; Jin, Jin; Guan, Bin; Anderes, Kenna L.; Bieberich, Charles J.

    2012-01-01

    Regulation of all cellular processes requires dynamic regulation of protein phosphorylation. We have developed an unbiased system to globally quantify the phosphorylation index for substrates of a specific kinase by independently quantifying phosphorylated and total substrate molecules in a reverse in-gel kinase assay. Non-phosphorylated substrate molecules are first quantified in the presence and absence of a specific stimulus. Total substrate molecules are then measured after complete chemical de-phosphorylation, and a ratio of phosphorylated to total substrate is derived. To demonstrate the utility of this approach, we profiled and quantified changes in phosphorylation index for Protein Kinase CK2 substrates that respond to a small-molecule inhibitor. A broad range of inhibitor-induced changes in phosphorylation was observed in cultured cells. Differences among substrates in the kinetics of phosphorylation change were also revealed. Comparison of CK2 inhibitor-induced changes in phosphorylation in cultured cells and in mouse peripheral blood lymphocytes in vivo revealed distinct kinetic and depth-of-response profiles. This technology provides a new approach to facilitate functional analyses of kinase-specific phosphorylation events. This strategy can be used to dissect the role of phosphorylation in cellular events, to facilitate kinase inhibitor target validation studies, and to inform in vivo analyses of kinase inhibitor drug efficacy. PMID:22663298

  6. Part-1: Design, synthesis and biological evaluation of novel bromo-pyrimidine analogs as tyrosine kinase inhibitors.

    PubMed

    Munikrishnappa, Chandrashekar Suradhenupura; Puranik, Sangamesh B; Kumar, G V Suresh; Prasad, Y Rajendra

    2016-08-25

    A novel series of 5-bromo-pyrimidine derivatives (5a-l, 6a-h, 9a-m and 10a-d) were synthesized through multi step reactions starting from 5-bromo-2,4-dichloro pyrimidine. The newly synthesized compounds were characterized using elemental analysis and spectral data (IR, (1)H NMR, (13)C NMR and LC-MS) analysis. The titled compounds were evaluated for their in vitro cytotoxic activity against tumor cell lines panel consisted of HCT116 (human colon cancer cell line), A549 (human lung cancer cell line), K562 (human chronic myeloid leukemia cell line), U937 (human acute monocytic myeloid leukemia cell line), and L02 (human normal cell line) by using MTT assay Mosmann's method. As most of the compounds are highly potent against K562 cells, all the synthesized compounds were evaluated for Bcr/Abl tyrosine kinase inhibitory activity by using well-established ADP-Glo assay method. Dasatinib was utilized as positive control to validate in both biological evaluations. The biological activity revealed that the compounds 5c, 5e, 6g, 9e, 9f and 10c were potent Bcr/Abl kinase inhibitors among the titled compounds. Thus these compounds may be promising lead compounds to be developed as an alternative for current Dasatinib therapy. PMID:27155464

  7. Bruton's tyrosine kinase inhibitors for the treatment of rheumatoid arthritis.

    PubMed

    Whang, Jennifer A; Chang, Betty Y

    2014-08-01

    The function and role of Bruton's tyrosine kinase (BTK) in human B cell development was demonstrated by its association with X-linked agammaglobulinemia (XLA) manifested by a substantial reduction in immunoglobulins and B cells. BTK has a crucial role in pre-B cell receptor (BCR) and BCR signaling during normal B cell development and activation. Aberrant BCR signaling is associated with autoimmune diseases, such as rheumatoid arthritis (RA). In addition, BTK is also expressed in myeloid cell populations, including monocytes, macrophages, neutrophils and mast cells. These innate cells infiltrate the synovial cavity and produce inflammatory cytokines, aggravating arthritic symptoms. In myeloid cell populations, BTK functions downstream of the Fcγ receptors (FcγR) and Fcɛ receptors (FcɛR). In the absence of BTK, FcR-mediated functions, such as cytokine production, are impaired. In addition, Xid mice, which have a mutation in BTK, have decreased susceptibility to developing collagen-induced arthritis (CIA). Given that BTK is involved in multiple signaling pathways downstream of the BCR and FcR, it is an attractive therapeutic target for RA. PMID:24721226

  8. [Literature review and presentation of our own research results regarding the effects on bone of tyrosine kinase inhibitors imatinib and nilotinib used in the treatment of oncohematological diseases].

    PubMed

    Kirschner, Gyöngyi; Balla, Bernadett; Kósa, János; Horváth, Péter; Kövesdi, Andrea; Lakatos, Gergely; Takács, István; Nagy, Zsolt; Tóbiás, Bálint; Árvai, Kristóf; Lakatos, Péter

    2016-09-01

    Tyrosine kinase inhibitors are widely used for treatment of certain oncohematological diseases. Several clinical studies have confirmed that specific BCR-ABL tyrosine kinase inhibitors alter the physiological process of bone tissue in a complex and unclearly identified manner. Since these treatments are being given to more and more patients, and the therapy takes decades or lasts even lifelong, it is justifiable to obtain more detailed knowledge of the molecular background of these mechanisms. In this article the authors summarize preliminary research results and human clinical observations on imatinib and nilotinib which are related to bone metabolism, and present the results of their own experiments in in vitro osteoblast cultures. Based on the presented results, the effects of imatinib and nilotinib on bone cells depend on the concentration of imatinib and nilotinib, the maturation stage of the cells and the distribution ratio of receptor tyrosine kinase signaling pathways. In this study the authors firstly prepared a stop-gap, comprehensive review in the Hungarian literature, regarding the effects of tyrosine kinase inhibitors on bone metabolism. In addition they firstly performed whole transcriptome analysis on osteoblasts in order to obtain a better understanding of the cellular molecular mechanisms. Orv. Hetil., 2016, 157(36), 1429-1437. PMID:27596510

  9. A Coiled-Coil Enabled Split-Luciferase Three-Hybrid System: Applied Toward Profiling Inhibitors of Protein Kinases

    PubMed Central

    Jester, Benjamin W.; Cox, Kurt J.; Gaj, Alicia; Shomin, Carolyn D.; Porter, Jason R.; Ghosh, Indraneel

    2010-01-01

    The 518 protein kinases encoded in the human genome are exquisitely regulated and their aberrant function(s) are often associated with human disease. Thus, in order to advance therapeutics and to probe signal transduction cascades there is considerable interest in the development of inhibitors that can selectively target protein kinases. However, identifying specific compounds against such a large array of protein kinases is difficult to routinely achieve utilizing traditional activity assays, where purified protein kinases are necessary. Toward a simple, rapid, and practical method for identifying specific inhibitors, we describe the development and application of a split-protein methodology utilizing a coiled-coil assisted three-hybrid system. In this approach, a protein kinase of interest is attached to the C-terminal fragment of split-firefly luciferase and the coiled-coil Fos, which is specific for the coiled-coil Jun, is attached to the N-terminal fragment. Upon addition of Jun conjugated to a pan-kinase inhibitor such as staurosporine, a three-hybrid complex is established with concomitant reassembly of the split-luciferase enzyme. An inhibitor can be potentially identified by the commensurate loss in split-luciferase activity by displacement of the modified staurosporine. We demonstrate that this new three-hybrid approach is potentially general by testing protein kinases from the different kinase families. To interrogate whether this method allows for screening inhibitors, we tested six different protein kinases against a library of 80 known protein kinase inhibitors. Finally, we demonstrate that this three-hybrid system can potentially provide a rapid method for structure/function analysis as well as aid in the identification of allosteric inhibitors. PMID:20669947

  10. Inflammatory Signaling by NOD-RIPK2 Is Inhibited by Clinically Relevant Type II Kinase Inhibitors

    PubMed Central

    Canning, Peter; Ruan, Qui; Schwerd, Tobias; Hrdinka, Matous; Maki, Jenny L.; Saleh, Danish; Suebsuwong, Chalada; Ray, Soumya; Brennan, Paul E.; Cuny, Gregory D.; Uhlig, Holm H.; Gyrd-Hansen, Mads; Degterev, Alexei; Bullock, Alex N.

    2015-01-01

    Summary RIPK2 mediates pro-inflammatory signaling from the bacterial sensors NOD1 and NOD2, and is an emerging therapeutic target in autoimmune and inflammatory diseases. We observed that cellular RIPK2 can be potently inhibited by type II inhibitors that displace the kinase activation segment, whereas ATP-competitive type I inhibition was only poorly effective. The most potent RIPK2 inhibitors were the US Food and Drug Administration-approved drugs ponatinib and regorafenib. Their mechanism of action was independent of NOD2 interaction and involved loss of downstream kinase activation as evidenced by lack of RIPK2 autophosphorylation. Notably, these molecules also blocked RIPK2 ubiquitination and, consequently, inflammatory nuclear factor κB signaling. In monocytes, the inhibitors selectively blocked NOD-dependent tumor necrosis factor production without affecting lipopolysaccharide-dependent pathways. We also determined the first crystal structure of RIPK2 bound to ponatinib, and identified an allosteric site for inhibitor development. These results highlight the potential for type II inhibitors to treat indications of RIPK2 activation as well as inflammation-associated cancers. PMID:26320862

  11. Mixed lineage kinases activate MEK independently of RAF to mediate resistance to RAF inhibitors

    PubMed Central

    Marusiak, Anna A.; Edwards, Zoe C.; Hugo, Willy; Trotter, Eleanor W.; Girotti, Maria R.; Stephenson, Natalie L.; Kong, Xiangju; Gartside, Michael G.; Fawdar, Shameem; Hudson, Andrew; Breitwieser, Wolfgang; Hayward, Nicholas K.; Marais, Richard; Lo, Roger S.; Brognard, John

    2014-01-01

    RAF inhibitor therapy yields significant reductions in tumour burden in the majority of V600E-positive melanoma patients; however, resistance occurs within 2–18 months. Here we demonstrate that the mixed lineage kinases (MLK1–4) are MEK kinases that reactivate the MEK/ERK pathway in the presence of RAF inhibitors. Expression of MLK1–4 mediates resistance to RAF inhibitors and promotes survival in V600E-positive melanoma cell lines. Furthermore, we observe upregulation of the MLKs in 9 of 21 melanoma patients with acquired drug resistance. Consistent with this observation, MLKs promote resistance to RAF inhibitors in mouse models and contribute to acquired resistance in a cell line model. Lastly, we observe that a majority of MLK1 mutations identified in patients are gain-of-function mutations. In summary, our data demonstrate a role for MLKs as direct activators of the MEK/ERK pathway with implications for melanomagenesis and resistance to RAF inhibitors. PMID:24849047

  12. Inflammatory Signaling by NOD-RIPK2 Is Inhibited by Clinically Relevant Type II Kinase Inhibitors.

    PubMed

    Canning, Peter; Ruan, Qui; Schwerd, Tobias; Hrdinka, Matous; Maki, Jenny L; Saleh, Danish; Suebsuwong, Chalada; Ray, Soumya; Brennan, Paul E; Cuny, Gregory D; Uhlig, Holm H; Gyrd-Hansen, Mads; Degterev, Alexei; Bullock, Alex N

    2015-09-17

    RIPK2 mediates pro-inflammatory signaling from the bacterial sensors NOD1 and NOD2, and is an emerging therapeutic target in autoimmune and inflammatory diseases. We observed that cellular RIPK2 can be potently inhibited by type II inhibitors that displace the kinase activation segment, whereas ATP-competitive type I inhibition was only poorly effective. The most potent RIPK2 inhibitors were the US Food and Drug Administration-approved drugs ponatinib and regorafenib. Their mechanism of action was independent of NOD2 interaction and involved loss of downstream kinase activation as evidenced by lack of RIPK2 autophosphorylation. Notably, these molecules also blocked RIPK2 ubiquitination and, consequently, inflammatory nuclear factor κB signaling. In monocytes, the inhibitors selectively blocked NOD-dependent tumor necrosis factor production without affecting lipopolysaccharide-dependent pathways. We also determined the first crystal structure of RIPK2 bound to ponatinib, and identified an allosteric site for inhibitor development. These results highlight the potential for type II inhibitors to treat indications of RIPK2 activation as well as inflammation-associated cancers. PMID:26320862

  13. Crystal Structure of Checkpoint Kinase 2 in Complex with Nsc 109555, a Potent and Selective Inhibitor

    SciTech Connect

    Lountos, George T.; Tropea, Joseph E.; Zhang, Di; Jobson, Andrew G.; Pommier, Yves; Shoemaker, Robert H.; Waugh, David S.

    2009-03-05

    Checkpoint kinase 2 (Chk2), a ser/thr kinase involved in the ATM-Chk2 checkpoint pathway, is activated by genomic instability and DNA damage and results in either arrest of the cell cycle to allow DNA repair to occur or apoptosis if the DNA damage is severe. Drugs that specifically target Chk2 could be beneficial when administered in combination with current DNA-damaging agents used in cancer therapy. Recently, a novel inhibitor of Chk2, NSC 109555, was identified that exhibited high potency (IC{sub 50} = 240 nM) and selectivity. This compound represents a new chemotype and lead for the development of novel Chk2 inhibitors that could be used as therapeutic agents for the treatment of cancer. To facilitate the discovery of new analogs of NSC 109555 with even greater potency and selectivity, we have solved the crystal structure of this inhibitor in complex with the catalytic domain of Chk2. The structure confirms that the compound is an ATP-competitive inhibitor, as the electron density clearly reveals that it occupies the ATP-binding pocket. However, the mode of inhibition differs from that of the previously studied structure of Chk2 in complex with debromohymenialdisine, a compound that inhibits both Chk1 and Chk2. A unique hydrophobic pocket in Chk2, located very close to the bound inhibitor, presents an opportunity for the rational design of compounds with higher binding affinity and greater selectivity.

  14. Tyrosine kinase inhibitor NVP-BGJ398 functionally improves FGFR3-related dwarfism in mouse model.

    PubMed

    Komla-Ebri, Davide; Dambroise, Emilie; Kramer, Ina; Benoist-Lasselin, Catherine; Kaci, Nabil; Le Gall, Cindy; Martin, Ludovic; Busca, Patricia; Barbault, Florent; Graus-Porta, Diana; Munnich, Arnold; Kneissel, Michaela; Di Rocco, Federico; Biosse-Duplan, Martin; Legeai-Mallet, Laurence

    2016-05-01

    Achondroplasia (ACH) is the most frequent form of dwarfism and is caused by gain-of-function mutations in the fibroblast growth factor receptor 3-encoding (FGFR3-encoding) gene. Although potential therapeutic strategies for ACH, which aim to reduce excessive FGFR3 activation, have emerged over many years, the use of tyrosine kinase inhibitor (TKI) to counteract FGFR3 hyperactivity has yet to be evaluated. Here, we have reported that the pan-FGFR TKI, NVP-BGJ398, reduces FGFR3 phosphorylation and corrects the abnormal femoral growth plate and calvaria in organ cultures from embryos of the Fgfr3Y367C/+ mouse model of ACH. Moreover, we demonstrated that a low dose of NVP-BGJ398, injected subcutaneously, was able to penetrate into the growth plate of Fgfr3Y367C/+ mice and modify its organization. Improvements to the axial and appendicular skeletons were noticeable after 10 days of treatment and were more extensive after 15 days of treatment that started from postnatal day 1. Low-dose NVP-BGJ398 treatment reduced intervertebral disc defects of lumbar vertebrae, loss of synchondroses, and foramen-magnum shape anomalies. NVP-BGJ398 inhibited FGFR3 downstream signaling pathways, including MAPK, SOX9, STAT1, and PLCγ, in the growth plates of Fgfr3Y367C/+ mice and in cultured chondrocyte models of ACH. Together, our data demonstrate that NVP-BGJ398 corrects pathological hallmarks of ACH and support TKIs as a potential therapeutic approach for ACH. PMID:27064282

  15. Mechanisms of resistance in patients with chronic myeloid leukemia treated with tyrosine kinase inhibitors.

    PubMed

    Perekhrestenko, T; Diachenko, M; Sviezhentseva, I; Gordienko, A; Bilko, D

    2015-03-01

    Up to date, two major mechanisms have been proposed as an explanation for myeloid cells expansion in chronic myeloid leukemia (CML). One is a reduced susceptibility of hematopoietic stem or progenitor cells to apoptosis, while the other one is an increased activity within the hematopoietic progenitor cell population. The aim of the study was to identify specific features of functional activity, proliferation rates and differentiation potential of CML hematopoietic progenitor cells of patients treated with tyrosine kinase inhibitors (TKI) by identifying number of Ki-67, Bcl-2 and CD34 positive cells in bone marrow, as well as in vitro colony-forming unit assay in patients with different response to the TKI therapy. Our results indicated that there was a significant decline in proliferation activity of HSCs and HPCs in group of patients with optimal response to the TKI therapy. Correlation analysis, performed on individual basis for patients independently of response to the TKI therapy demonstrated that there was a negative correlation (ρ=0.7648) between the number of Ki67+ and CD34+ cells. As to colony to cluster ratio our results showed, that there is a correlation (ρ=0.6783) between CCR index and number of bone marrow cells with Philadelphia chromosome. It was indicated, that index of maturation correlates with level of bone marrow cells, containing Philadelphia chromosome, so as with percentage of CD34+, Bcl-2+, Pgp-170+ and Ki67+ cells in bone marrow of CML patients. In summary, obtained results suggest that different mechanisms (bcr-abl dependent and independent) may be involved in CML progression process in the same time. Disease prognosis should be preferably carried out on an individual basis. PMID:25879558

  16. Tyrosine kinase inhibitor NVP-BGJ398 functionally improves FGFR3-related dwarfism in mouse model

    PubMed Central

    Dambroise, Emilie; Kramer, Ina; Benoist-Lasselin, Catherine; Kaci, Nabil; Le Gall, Cindy; Martin, Ludovic; Busca, Patricia; Barbault, Florent; Graus-Porta, Diana; Munnich, Arnold; Kneissel, Michaela; Di Rocco, Federico; Biosse-Duplan, Martin

    2016-01-01

    Achondroplasia (ACH) is the most frequent form of dwarfism and is caused by gain-of-function mutations in the fibroblast growth factor receptor 3–encoding (FGFR3-encoding) gene. Although potential therapeutic strategies for ACH, which aim to reduce excessive FGFR3 activation, have emerged over many years, the use of tyrosine kinase inhibitor (TKI) to counteract FGFR3 hyperactivity has yet to be evaluated. Here, we have reported that the pan-FGFR TKI, NVP-BGJ398, reduces FGFR3 phosphorylation and corrects the abnormal femoral growth plate and calvaria in organ cultures from embryos of the Fgfr3Y367C/+ mouse model of ACH. Moreover, we demonstrated that a low dose of NVP-BGJ398, injected subcutaneously, was able to penetrate into the growth plate of Fgfr3Y367C/+ mice and modify its organization. Improvements to the axial and appendicular skeletons were noticeable after 10 days of treatment and were more extensive after 15 days of treatment that started from postnatal day 1. Low-dose NVP-BGJ398 treatment reduced intervertebral disc defects of lumbar vertebrae, loss of synchondroses, and foramen-magnum shape anomalies. NVP-BGJ398 inhibited FGFR3 downstream signaling pathways, including MAPK, SOX9, STAT1, and PLCγ, in the growth plates of Fgfr3Y367C/+ mice and in cultured chondrocyte models of ACH. Together, our data demonstrate that NVP-BGJ398 corrects pathological hallmarks of ACH and support TKIs as a potential therapeutic approach for ACH. PMID:27064282

  17. Potent, selective and orally bioavailable leucine-rich repeat kinase 2 (LRRK2) inhibitors.

    PubMed

    Greshock, Thomas J; Sanders, John M; Drolet, Robert E; Rajapakse, Hemaka A; Chang, Ronald K; Kim, Boyoung; Rada, Vanessa L; Tiscia, Heather E; Su, Hua; Lai, Ming-Tain; Sur, Sylvie M; Sanchez, Rosa I; Bilodeau, Mark T; Renger, John J; Kern, Jonathan T; McCauley, John A

    2016-06-01

    Familial Parkinson's disease cases have recently been associated with the leucine rich repeat kinase 2 (LRRK2) gene. It has been hypothesized that inhibition of the LRRK2 protein may have the potential to alter disease pathogenesis. A dihydrobenzothiophene series of potent, selective, orally bioavailable LRRK2 inhibitors were identified from a high-throughput screen of the internal Merck sample collection. Initial SAR studies around the core established the series as a tractable small molecule lead series of LRRK2 inhibitors for potential treatment of Parkinson's disease. It was also found that incorporation of a lactam into the core drastically improved the CNS and DMPK properties of these small molecules. PMID:27106707

  18. Epidermal growth factor receptor tyrosine kinase inhibitors for non-small cell lung cancer

    PubMed Central

    Asami, Kazuhiro; Atagi, Shinji

    2014-01-01

    First-generation epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), including gefitinib and erlotinib, have proven to be highly effective agents for advanced non-small cell lung cancer (NSCLC) in patients harboring an activating EGFR mutation such as the exon 19 deletion mutation and L858R. Although those reversible small molecular targeted agents provide a significant response and survival benefit, all responders eventually acquire resistance. Second-generation EGFR-targeting agents, such as irreversible EGFR/HER2 tyrosine kinase inhibitors and pan-HER TKIs, may improve survival further and be useful for patients who acquired resistance to first-generation EGFR-TKIs. This review discusses novel therapeutic strategies for EGFR-mutated advanced NSCLC using first- and second-generation EGFR-TKIs. PMID:25302168

  19. A Caged Ret Kinase Inhibitor and its Effect on Motoneuron Development in Zebrafish Embryos

    PubMed Central

    Bliman, David; Nilsson, Jesper R.; Kettunen, Petronella; Andréasson, Joakim; Grøtli, Morten

    2015-01-01

    Proto-oncogene tyrosine-protein kinase receptor RET is implicated in the development and maintenance of neurons of the central and peripheral nervous systems. Attaching activity-compromising photocleavable groups (caging) to inhibitors could allow for external spatiotemporally controlled inhibition using light, potentially providing novel information on how these kinase receptors are involved in cellular processes. Here, caged RET inhibitors were obtained from 3-substituted pyrazolopyrimidine-based compounds by attaching photolabile groups to the exocyclic amino function. The most promising compound displayed excellent inhibitory effect in cell-free, as well as live-cell assays upon decaging. Furthermore, inhibition could be efficiently activated with light in vivo in zebrafish embryos and was shown to effect motoneuron development. PMID:26300345

  20. Treating inflammation with the Janus kinase inhibitor CP-690,550.

    PubMed

    Vijayakrishnan, Lalitha; Venkataramanan, R; Gulati, Palak

    2011-01-01

    Commonly used immunosuppressants possess several significant dose-limiting toxicities, prompting the search for agents whose mechanisms of action are limited to immune cells. Inhibition of Janus Kinase 3 (JAK3), a hematopoetic cell-restricted tyrosine kinase, represents an attractive target for immunosuppression owing to its limited distribution in tissue and specific role in lymphoid homeostasis. CP-690,550, a JAK3 inhibitor undergoing clinical trials for the treatment of transplant rejection and autoimmune disorders, has shown efficacy similar to comparator immunosuppressants. However, its inhibition of the more ubiquitous JAK family members, JAK1 and JAK2, is a probable cause of drug-related adverse events (e.g. overt immunosuppression, anemia). Here, we argue that CP-690,550 represents only a starting point in the search for a safer small molecule immunosuppressant, and that an isozyme-selective JAK3 inhibitor identified by rational drug design might be substantially safer. PMID:21144599

  1. N,N-Dimethylsphingosine is a potent competitive inhibitor of sphingosine kinase but not of protein kinase C: modulation of cellular levels of sphingosine 1-phosphate and ceramide.

    PubMed

    Edsall, L C; Van Brocklyn, J R; Cuvillier, O; Kleuser, B; Spiegel, S

    1998-09-15

    Sphingosine 1-phosphate (SPP), a lipid second messenger formed by the action of sphingosine kinase, has been implicated in regulating diverse biological processes, including growth, survival, and differentiation. N,N-Dimethylsphingosine (DMS) inhibits sphingosine kinase and has been used to investigate the biological roles of SPP; however, little is known of the mechanism of inhibition of sphingosine kinase by DMS. In addition, DMS has been shown to inhibit protein kinase C in vitro. Here we report that DMS is a competitive inhibitor of sphingosine kinase from U937 monoblastic leukemia cells, Swiss 3T3 fibroblasts, and PC12 pheochromocytoma cells. DMS decreases basal levels of SPP and prevents increases in SPP in response to physiological stimuli known to activate sphingosine kinase. DMS also effectively increases cellular levels of ceramide in a variety of cell types, and resetting of the ceramide/SPP rheostat may account for the pro-apoptotic effects of DMS. Moreover, DMS, at concentrations which effectively inhibit sphingosine kinase, has no effect on protein kinase C activity or its membrane translocation. Thus, DMS acts as a specific competitive inhibitor of sphingosine kinase in diverse cell types and is a useful tool to elucidate the role of SPP as an intracellular second messenger. PMID:9737868

  2. Effect of various protein kinase inhibitors on the induction of milk protein gene expression by prolactin.

    PubMed

    Bayat-Sarmadi, M; Houdebine, L M

    1993-03-01

    Prolactin has many known functions and one of them is to induce the expression of milk protein gene expression in the mammary gland. Specific membrane receptors have been recently characterized but the transduction mechanism involved in the transfer of the prolactin signal to milk protein genes remains unknown. In the present work, it is shown that several protein kinase inhibitors block prolactin action on milk protein genes. Primary rabbit mammary cells were cultured for several days on floating collagen gel in a serum-free medium. Prolactin and the inhibitors of protein kinase were then added to the culture medium. After 1 day, the concentration of alpha s1-casein in the culture medium was measured using a specific radioimmunoassay. The concentration of several mRNAs in cell extracts was also evaluated using Northern blot analysis. alpha s1-Casein secretion and alpha s1-casein mRNA accumulation were induced by prolactin. This induction was blocked by staurosporine, sphingosine, quercetin, genistein and to some extent by o-hydroxyphenyl acetate, but not by H7, polymyxin B, benzylsuccinate and lavendustin A. The concentration of the mRNA coding for transferrin, which is abundantly secreted in rabbit milk independently of prolactin action, was only moderately altered by the inhibitors. The concentration of two house-keeping mRNAs, beta-actin and glyceraldehyde 3-phosphate dehydrogenase, was lowered only by genistein after 1 day but not after 4 h of culture. These data show for the first time that a Ser/Thre kinase, which is not kinase C, and possibly a tyrosine kinase is involved in the transduction of the prolactin message from the receptor to the milk protein genes. PMID:8472863

  3. Discovery of Isonicotinamides as Highly Selective, Brain Penetrable, and Orally Active Glycogen Synthase Kinase-3 Inhibitors.

    PubMed

    Luo, Guanglin; Chen, Ling; Burton, Catherine R; Xiao, Hong; Sivaprakasam, Prasanna; Krause, Carol M; Cao, Yang; Liu, Nengyin; Lippy, Jonathan; Clarke, Wendy J; Snow, Kimberly; Raybon, Joseph; Arora, Vinod; Pokross, Matt; Kish, Kevin; Lewis, Hal A; Langley, David R; Macor, John E; Dubowchik, Gene M

    2016-02-11

    GSK-3 is a serine/threonine kinase that has numerous substrates. Many of these proteins are involved in the regulation of diverse cellular functions, including metabolism, differentiation, proliferation, and apoptosis. Inhibition of GSK-3 may be useful in treating a number of diseases including Alzheimer's disease (AD), type II diabetes, mood disorders, and some cancers, but the approach poses significant challenges. Here, we present a class of isonicotinamides that are potent, highly kinase-selective GSK-3 inhibitors, the members of which demonstrated oral activity in a triple-transgenic mouse model of AD. The remarkably high kinase selectivity and straightforward synthesis of these compounds bode well for their further exploration as tool compounds and therapeutics. PMID:26751161

  4. Anilinoquinazoline inhibitors of the RET kinase domain-Elaboration of the 7-position.

    PubMed

    Jordan, Allan M; Begum, Habiba; Fairweather, Emma; Fritzl, Samantha; Goldberg, Kristin; Hopkins, Gemma V; Hamilton, Niall M; Lyons, Amanda J; March, H Nikki; Newton, Rebecca; Small, Helen F; Vishwanath, Swamy; Waddell, Ian D; Waszkowycz, Bohdan; Watson, Amanda J; Ogilvie, Donald J

    2016-06-01

    We have previously reported a series of anilinoquinazoline derivatives as potent and selective biochemical inhibitors of the RET kinase domain. However, these derivatives displayed diminished cellular potency. Herein we describe further optimisation of the series through modification of their physicochemical properties, delivering improvements in cell potency. However, whilst cellular selectivity against key targets could be maintained, combining cell potency and acceptable pharmacokinetics proved challenging. PMID:27086121

  5. Optimization of microtubule affinity regulating kinase (MARK) inhibitors with improved physical properties.

    PubMed

    Sloman, David L; Noucti, Njamkou; Altman, Michael D; Chen, Dapeng; Mislak, Andrea C; Szewczak, Alexander; Hayashi, Mansuo; Warren, Lee; Dellovade, Tammy; Wu, Zhenhua; Marcus, Jacob; Walker, Deborah; Su, Hua-Poo; Edavettal, Suzanne C; Munshi, Sanjeev; Hutton, Michael; Nuthall, Hugh; Stanton, Matthew G

    2016-09-01

    Inhibition of microtubule affinity regulating kinase (MARK) represents a potentially attractive means of arresting neurofibrillary tangle pathology in Alzheimer's disease. This manuscript outlines efforts to optimize a pyrazolopyrimidine series of MARK inhibitors by focusing on improvements in potency, physical properties and attributes amenable to CNS penetration. A unique cylcyclohexyldiamine scaffold was identified that led to remarkable improvements in potency, opening up opportunities to reduce MW, Pgp efflux and improve pharmacokinetic properties while also conferring improved solubility. PMID:27491711

  6. Tyrosine kinase inhibitor-associated syndrome of inappropriate secretion of anti-diuretic hormone.

    PubMed

    Hill, Jordan; Shields, Jenna; Passero, Vida

    2016-10-01

    Hyponatremia is a common complication among cancer patients. Certain antineoplastic agents have been associated with syndrome of inappropriate secretion of anti-diuretic hormone-induced hyponatremia. The most common agents associated with secretion of anti-diuretic hormone are vinca alkaloids, platinum compounds, and alkylating agents. We report a case of secretion of anti-diuretic hormone associated with tyrosine kinase inhibitors. PMID:26089312

  7. In Vitro High Throughput Screening, What Next? Lessons from the Screening for Aurora Kinase Inhibitors

    PubMed Central

    Hoang, Thi-My-Nhung; Vu, Hong-Lien; Le, Ly-Thuy-Tram; Nguyen, Chi-Hung; Molla, Annie

    2014-01-01

    Based on in vitro assays, we performed a High Throughput Screening (HTS) to identify kinase inhibitors among 10,000 small chemical compounds. In this didactic paper, we describe step-by-step the approach to validate the hits as well as the major pitfalls encountered in the development of active molecules. We propose a decision tree that could be adapted to most in vitro HTS. PMID:24833340

  8. In Vitro Interactions between Target of Rapamycin Kinase Inhibitor and Antifungal Agents against Aspergillus Species.

    PubMed

    Gao, Lujuan; Ding, Xiaozhen; Liu, Zhun; Wu, Qingzhi; Zeng, Tongxiang; Sun, Yi

    2016-06-01

    In vitro interactions of INK128, a target of rapamycin (TOR) kinase inhibitor, and antifungals, including itraconazole, voriconazole, posaconazole, amphotericin B, and caspofungin, against Aspergillus spp. were assessed with the broth microdilution checkerboard technique. Our results suggested synergistic effects between INK128 and all azoles tested, against multiple Aspergillus fumigatus and Aspergillus flavus isolates. However, no synergistic effects were observed when INK128 was combined with amphotericin B or caspofungin. No antagonism was observed for any combination. PMID:26976874

  9. Fragment-based discovery of type I inhibitors of maternal embryonic leucine zipper kinase.

    PubMed

    Johnson, Christopher N; Berdini, Valerio; Beke, Lijs; Bonnet, Pascal; Brehmer, Dirk; Coyle, Joseph E; Day, Phillip J; Frederickson, Martyn; Freyne, Eddy J E; Gilissen, Ron A H J; Hamlett, Christopher C F; Howard, Steven; Meerpoel, Lieven; McMenamin, Rachel; Patel, Sahil; Rees, David C; Sharff, Andrew; Sommen, François; Wu, Tongfei; Linders, Joannes T M

    2015-01-01

    Fragment-based drug design was successfully applied to maternal embryonic leucine zipper kinase (MELK). A low affinity (160 μM) fragment hit was identified, which bound to the hinge region with an atypical binding mode, and this was optimized using structure-based design into a low-nanomolar and cell-penetrant inhibitor, with a good selectivity profile, suitable for use as a chemical probe for elucidation of MELK biology. PMID:25589925

  10. Fragment-Based Discovery of Type I Inhibitors of Maternal Embryonic Leucine Zipper Kinase

    PubMed Central

    2014-01-01

    Fragment-based drug design was successfully applied to maternal embryonic leucine zipper kinase (MELK). A low affinity (160 μM) fragment hit was identified, which bound to the hinge region with an atypical binding mode, and this was optimized using structure-based design into a low-nanomolar and cell-penetrant inhibitor, with a good selectivity profile, suitable for use as a chemical probe for elucidation of MELK biology. PMID:25589925

  11. The discovery of novel vascular endothelial growth factor receptor tyrosine kinases inhibitors: pharmacophore modeling, virtual screening and docking studies.

    PubMed

    Yu, Hui; Wang, Zhanli; Zhang, Liangren; Zhang, Jufeng; Huang, Qian

    2007-03-01

    We have applied pharmacophore generation, database searching and docking methodologies to discover new structures for the design of vascular endothelial growth factor receptors, the tyrosine kinase insert domain-containing receptor kinase inhibitors. The chemical function based pharmacophore models were built for kinase insert domain-containing receptor kinase inhibitors from a set of 10 known inhibitors using the algorithm HipHop, which is implemented in the CATALYST software. The highest scoring HipHop model consists of four features: one hydrophobic, one hydrogen bond acceptor, one hydrogen bond donor and one ring aromatic function. Using the algorithm CatShape within CATALYST, the bound conformation of 4-amino-furo [2, 3-d] pyrimidine binding to kinase insert domain-containing receptor kinase was used to generate a shape query. A merged shape and hypothesis query that is in an appropriate alignment was then built. The combined shape and hypothesis model was used as a query to search Maybridge database for other potential lead compounds. A total of 39 compounds were retrieved as hits. The hits obtained were docked into kinase insert domain-containing receptor kinase active site. One novel potential lead was proposed based on CATALYST fit value, LigandFit docking scores, and examination of how the hit retain key interactions known to be required for kinase binding. This compound inhibited vascular endothelial growth factor stimulated kinase insert domain-containing receptor phosphorylation in human umbilical vein endothelial cells. PMID:17441906

  12. Linking phenotype to kinase: identification of a novel benzoxaborole hinge-binding motif for kinase inhibition and development of high-potency rho kinase inhibitors.

    PubMed

    Akama, Tsutomu; Dong, Chen; Virtucio, Charlotte; Sullivan, David; Zhou, Yasheen; Zhang, Yong-Kang; Rock, Fernando; Freund, Yvonne; Liu, Liang; Bu, Wei; Wu, Anne; Fan, Xiao-Qing; Jarnagin, Kurt

    2013-12-01

    Benzoxaboroles are a novel class of drug-like compounds that have been rich sources of novel inhibitors for various enzymes and of new drugs. While examining benzoxaborole activity in phenotypic screens, our attention was attracted by the (aminomethylphenoxy)benzoxaborole family, which potently inhibited Toll-like receptor-stimulated cytokine secretion from leukocytes. After considering their structure-activity relationships and the central role of kinases in leukocyte biology, we performed a kinome-wide screen to investigate the members of the (aminomethylphenoxy)benzoxaborole family. This technique identified Rho-activated kinase (ROCK) as a target. We showed competitive behavior, with respect to ATP, and then determined the ROCK2-drug cocrystal structure. The drug occupies the ATP site in which the oxaborole moiety provides hydrogen bond donors and acceptors to the hinge, and the aminomethyl group interacts with the magnesium/ATP-interacting aspartic acid common to protein kinases. The series exhibits excellent selectivity against most of the kinome, with greater than 15-fold selectivity against the next best member of the AGC protein kinase subfamily. Medicinal chemistry efforts with structure-based design resulted in a compound with a Ki of 170 nM. Cellular studies revealed strong enzyme inhibition rank correlation with suppression of intracellular phosphorylation of a ROCK substrate. The biochemical potencies of these compounds also translated to functional activity, causing smooth muscle relaxation in rat aorta and guinea pig trachea. The series exhibited oral availability and one member reduced rat blood pressure, consistent with ROCK's role in smooth muscle contraction. Thus, the benzoxaborole moiety represents a novel hinge-binding kinase scaffold that may have potential for therapeutic use. PMID:24049062

  13. Optimization of a Novel Series of Ataxia-Telangiectasia Mutated Kinase Inhibitors as Potential Radiosensitizing Agents.

    PubMed

    Min, Jaeki; Guo, Kexiao; Suryadevara, Praveen K; Zhu, Fangyi; Holbrook, Gloria; Chen, Yizhe; Feau, Clementine; Young, Brandon M; Lemoff, Andrew; Connelly, Michele C; Kastan, Michael B; Guy, R Kiplin

    2016-01-28

    We previously reported a novel inhibitor of the ataxia-telangiectasia mutated (ATM) kinase, which is a target for novel radiosensitizing drugs. While our initial lead, compound 4, was relatively potent and nontoxic, it exhibited poor stability to oxidative metabolism and relatively poor selectivity against other kinases. The current study focused on balancing potency and selectivity with metabolic stability through structural modification to the metabolized site on the quinazoline core. We performed extensive structure-activity and structure-property relationship studies on this quinazoline ATM kinase inhibitor in order to identify structural variants with enhanced selectivity and metabolic stability. We show that, while the C-7-methoxy group is essential for potency, replacing the C-6-methoxy group considerably improves metabolic stability without affecting potency. Promising analogues 20, 27g, and 27n were selected based on in vitro pharmacology and evaluated in murine pharmacokinetic and tolerability studies. Compound 27g possessed significantly improve pharmacokinetics relative to that of 4. Compound 27g was also significantly more selective against other kinases than 4. Therefore, 27g is a good candidate for further development as a potential radiosensitizer. PMID:26632965

  14. Discovery of Novel Fibroblast Growth Factor Receptor 1 Kinase Inhibitors by Structure-Based Virtual Screening

    SciTech Connect

    Ravindranathan, K.; Mandiyan, V; Ekkati, A; Bae, J; Schlessinger, J; Jorgensen, W

    2010-01-01

    Fibroblast growth factors (FGFs) play important roles in embryonic development, angiogenesis, wound healing, and cell proliferation and differentiation. In search of inhibitors of FGFR1 kinase, 2.2 million compounds were docked into the ATP binding site of the protein. A co-crystal structure, which shows two alternative conformations for the nucleotide binding loop, is reported. Docking was performed on both conformations and, ultimately, 23 diverse compounds were purchased and assayed. Following hit validation, two compounds 10 and 16, a benzylidene derivative of pseudothiohydantoin and a thienopyrimidinone derivative, respectively, were discovered that inhibit FGFR1 kinase with IC{sub 50} values of 23 and 50 {micro}M. Initial optimization of 16 led to the more unsaturated 40, which has significantly enhanced potency, 1.9 {micro}M. The core structures represent new structural motifs for FGFR1 kinase inhibitors. The study also illustrates complexities associated with the choice of protein structures for docking, possible use of multiple kinase structures to seek selectivity, and hit identification.

  15. Phosphoinositide 3-kinase gamma (PI3Kgamma) inhibitors for the treatment of inflammation and autoimmune disease.

    PubMed

    Venable, Jennifer D; Ameriks, Michael K; Blevitt, Jonathan M; Thurmond, Robin L; Fung-Leung, Wai-Ping

    2010-01-01

    Phosphoinositide 3-kinase gamma (PI3Kgamma) is a lipid kinase in leukocytes that generates phosphatidylinositol 3,4,5-trisphosphate to recruit and activate downstream signaling molecules. Distinct from other members in the PI3K family, PI3Kgamma is activated by G-protein coupled-receptors responding to chemotactic ligands. PI3Kgamma plays an important role in migration of both myeloid and lymphoid cells. It is also required for other leukocyte functions such as neutrophil oxidative burst, T cell proliferation and mast degranulation. Mice with PI3Kgamma inactivated by genetic or pharmacological approaches are protected from disease development in a number of inflammation and autoimmune disease models. The function of PI3Kgamma depends on its kinase activity and therefore it has been suggested by many reports that small molecules inhibiting its kinase activity could be promising for the treatment of inflammation and autoimmune diseases. Over the last five years, a number of pharmaceutical companies have reported a wide variety of PI3Kgamma inhibitors, of which several x-ray crystal structures with PI3Kgamma have been elucidated. The structural characteristics and selectivity profiles of these inhibitors, in particular thiazolidinones and 2-aminoheterocycles, and those disclosed in related patent applications are summarized in this review. PMID:20017720

  16. Role of Tyrosine Kinase Inhibitors in Indolent and Other Mature B-Cell Neoplasms

    PubMed Central

    Kutsch, Nadine; Marks, Reinhard; Ratei, Richard; Held, Thomas K; Schmidt-Hieber, Martin

    2015-01-01

    Targeting tyrosine kinases represents a highly specific treatment approach for different malignancies. This also includes non-Hodgkin lymphoma since it is well known that these enzymes are frequently involved in the lymphomagenesis. Hereby, tyrosine kinases might either be dysregulated intrinsically or be activated within signal transduction pathways leading to tumor survival and growth. Among others, Bruton’s tyrosine kinase (Btk) is of particular interest as a potential therapeutic target. Btk is stimulated by B-cell receptor signaling and activates different transcription factors such as nuclear factor κB. The Btk inhibitor ibrutinib has been approved for the treatment of chronic lymphocytic leukemia and mantle-cell lymphoma recently. Numerous clinical trials evaluating this agent in different combinations (eg, with rituximab or classical chemotherapeutic agents) as a treatment option for aggressive and indolent lymphoma are under way. Here, we summarize the role of tyrosine kinase inhibitors in the treatment of indolent and other non-Hodgkin lymphomas (eg, mantle-cell lymphoma). PMID:26327780

  17. Radiosensitization of Human Leukemic HL-60 Cells by ATR Kinase Inhibitor (VE-821): Phosphoproteomic Analysis

    PubMed Central

    Šalovská, Barbora; Fabrik, Ivo; Ďurišová, Kamila; Link, Marek; Vávrová, Jiřina; Řezáčová, Martina; Tichý, Aleš

    2014-01-01

    DNA damaging agents such as ionizing radiation or chemotherapy are frequently used in oncology. DNA damage response (DDR)—triggered by radiation-induced double strand breaks—is orchestrated mainly by three Phosphatidylinositol 3-kinase-related kinases (PIKKs): Ataxia teleangiectasia mutated (ATM), DNA-dependent protein kinase (DNA-PK) and ATM and Rad3-related kinase (ATR). Their activation promotes cell-cycle arrest and facilitates DNA damage repair, resulting in radioresistance. Recently developed specific ATR inhibitor, VE-821 (3-amino-6-(4-(methylsulfonyl)phenyl)-N-phenylpyrazine-2-carboxamide), has been reported to have a significant radio- and chemo-sensitizing effect delimited to cancer cells (largely p53-deficient) without affecting normal cells. In this study, we employed SILAC-based quantitative phosphoproteomics to describe the mechanism of the radiosensitizing effect of VE-821 in human promyelocytic leukemic cells HL-60 (p53-negative). Hydrophilic interaction liquid chromatography (HILIC)-prefractionation with TiO2-enrichment and nano-liquid chromatography—tandem mass spectrometry (LC-MS/MS) analysis revealed 9834 phosphorylation sites. Proteins with differentially up-/down-regulated phosphorylation were mostly localized in the nucleus and were involved in cellular processes such as DDR, all phases of the cell cycle, and cell division. Moreover, sequence motif analysis revealed significant changes in the activities of kinases involved in these processes. Taken together, our data indicates that ATR kinase has multiple roles in response to DNA damage throughout the cell cycle and that its inhibitor VE-821 is a potent radiosensitizing agent for p53-negative HL-60 cells. PMID:25003641

  18. Aurora kinase inhibitor nanoparticles target tumors with favorable therapeutic index in vivo.

    PubMed

    Ashton, Susan; Song, Young Ho; Nolan, Jim; Cadogan, Elaine; Murray, Jim; Odedra, Rajesh; Foster, John; Hall, Peter A; Low, Susan; Taylor, Paula; Ellston, Rebecca; Polanska, Urszula M; Wilson, Joanne; Howes, Colin; Smith, Aaron; Goodwin, Richard J A; Swales, John G; Strittmatter, Nicole; Takáts, Zoltán; Nilsson, Anna; Andren, Per; Trueman, Dawn; Walker, Mike; Reimer, Corinne L; Troiano, Greg; Parsons, Donald; De Witt, David; Ashford, Marianne; Hrkach, Jeff; Zale, Stephen; Jewsbury, Philip J; Barry, Simon T

    2016-02-10

    Efforts to apply nanotechnology in cancer have focused almost exclusively on the delivery of cytotoxic drugs to improve therapeutic index. There has been little consideration of molecularly targeted agents, in particular kinase inhibitors, which can also present considerable therapeutic index limitations. We describe the development of Accurin polymeric nanoparticles that encapsulate the clinical candidate AZD2811, an Aurora B kinase inhibitor, using an ion pairing approach. Accurins increase biodistribution to tumor sites and provide extended release of encapsulated drug payloads. AZD2811 nanoparticles containing pharmaceutically acceptable organic acids as ion pairing agents displayed continuous drug release for more than 1 week in vitro and a corresponding extended pharmacodynamic reduction of tumor phosphorylated histone H3 levels in vivo for up to 96 hours after a single administration. A specific AZD2811 nanoparticle formulation profile showed accumulation and retention in tumors with minimal impact on bone marrow pathology, and resulted in lower toxicity and increased efficacy in multiple tumor models at half the dose intensity of AZD1152, a water-soluble prodrug of AZD2811. These studies demonstrate that AZD2811 can be formulated in nanoparticles using ion pairing agents to give improved efficacy and tolerability in preclinical models with less frequent dosing. Accurins specifically, and nanotechnology in general, can increase the therapeutic index of molecularly targeted agents, including kinase inhibitors targeting cell cycle and oncogenic signal transduction pathways, which have to date proved toxic in humans. PMID:26865565

  19. Epidermal growth factor receptor variant III mutations in lung tumorigenesis and sensitivity to tyrosine kinase inhibitors.

    PubMed

    Ji, Hongbin; Zhao, Xiaojun; Yuza, Yuki; Shimamura, Takeshi; Li, Danan; Protopopov, Alexei; Jung, Boonim L; McNamara, Kate; Xia, Huili; Glatt, Karen A; Thomas, Roman K; Sasaki, Hidefumi; Horner, James W; Eck, Michael; Mitchell, Albert; Sun, Yangping; Al-Hashem, Ruqayyah; Bronson, Roderick T; Rabindran, Sridhar K; Discafani, Carolyn M; Maher, Elizabeth; Shapiro, Geoffrey I; Meyerson, Matthew; Wong, Kwok-Kin

    2006-05-16

    The tyrosine kinase inhibitors gefitinib (Iressa) and erlotinib (Tarceva) have shown anti-tumor activity in the treatment of non-small cell lung cancer (NSCLC). Dramatic and durable responses have occurred in NSCLC tumors with mutations in the tyrosine kinase domain of the epidermal growth factor receptor (EGFR). In contrast, these inhibitors have shown limited efficacy in glioblastoma, where a distinct EGFR mutation, the variant III (vIII) in-frame deletion of exons 2-7, is commonly found. In this study, we determined that EGFRvIII mutation was present in 5% (3/56) of analyzed human lung squamous cell carcinoma (SCC) but was not present in human lung adenocarcinoma (0/123). We analyzed the role of the EGFRvIII mutation in lung tumorigenesis and its response to tyrosine kinase inhibition. Tissue-specific expression of EGFRvIII in the murine lung led to the development of NSCLC. Most importantly, these lung tumors depend on EGFRvIII expression for maintenance. Treatment with an irreversible EGFR inhibitor, HKI-272, dramatically reduced the size of these EGFRvIII-driven murine tumors in 1 week. Similarly, Ba/F3 cells transformed with the EGFRvIII mutant were relatively resistant to gefitinib and erlotinib in vitro but proved sensitive to HKI-272. These findings suggest a therapeutic strategy for cancers harboring the EGFRvIII mutation. PMID:16672372

  20. Activation of HER3 Interferes with Antitumor Effects of Axl Receptor Tyrosine Kinase Inhibitors: Suggestion of Combination Therapy1

    PubMed Central

    Torka, Robert; Pénzes, Kinga; Gusenbauer, Simone; Baumann, Christine; Szabadkai, István; Őrfi, Lászlȯ; Kéri, György; Ullrich, Axel

    2014-01-01

    The Axl receptor tyrosine kinase (RTK) has been established as a strong candidate for targeted therapy of cancer. However, the benefits of targeted therapies are limited due to acquired resistance and activation of alternative RTKs. Therefore, we asked if cancer cells are able to overcome targeted Axl therapies. Here, we demonstrate that inhibition of Axl by short interfering RNA or the tyrosine kinase inhibitor (TKI) BMS777607 induces the expression of human epidermal growth factor receptor 3 (HER3) and the neuregulin 1(NRG1)–dependent phosphorylation of HER3 in MDA-MB231 and Ovcar8 cells. Moreover, analysis of 20 Axl-expressing cancer cell lines of different tissue origin indicates a low basal phosphorylation of RAC-α serine/threonine-protein kinase (AKT) as a general requirement for HER3 activation on Axl inhibition. Consequently, phosphorylation of AKT arises as an independent biomarker for Axl treatment. Additionally, we introduce phosphorylation of HER3 as an independent pharmacodynamic biomarker for monitoring of anti-Axl therapy response. Inhibition of cell viability by BMS777607 could be rescued by NRG1-dependent activation of HER3, suggesting an escape mechanism by tumor microenvironment. The Axl-TKI MPCD84111 simultaneously blocked Axl and HER2/3 signaling and thereby prohibited HER3 feedback activation. Furthermore, dual inhibition of Axl and HER2/3 using BMS777607 and lapatinib led to a significant inhibition of cell viability in Axl-expressing MDA-MB231 and Ovcar8 cells. Therefore, we conclude that, in patient cohorts with expression of Axl and low basal activity of AKT, a combined inhibition of Axl and HER2/3 kinase would be beneficial to overcome acquired resistance to Axl-targeted therapies. PMID:24862757

  1. Novel Kinase Inhibitors Targeting the PH Domain of AKT for Preventing and Treating Cancer | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute's Medical Oncology Branch is seeking statements of capability or interest from parties interested in licensing and co-development collaborative research to further develop, evaluate, or commercialize novel kinase inhibitors targeting the PH domain of AKT.

  2. Kinase inhibitor screening identifies CDK4 as a potential therapeutic target for melanoma

    PubMed Central

    MAHGOUB, T.; EUSTACE, A.J.; COLLINS, D.M.; WALSH, N.; O'DONOVAN, N.; CROWN, J.

    2015-01-01

    Despite recent advances in targeted therapies and immunotherapies metastatic melanoma remains only rarely curable. The objective of the present study was to identify novel therapeutic targets for metastatic melanoma. A library of 160 well-characterised and potent protein kinase inhibitors was screened in the BRAF mutant cell line Sk-Mel-28, and the NRAS mutant Sk-Mel-2, using proliferation assays. Of the 160 inhibitors tested, 20 achieved >50% growth inhibition in both cell lines. Six of the 20 were cyclin dependent kinase (CDK) inhibitors, including two CDK4 inhibitors. Fascaplysin, a synthetic CDK4 inhibitor, was further tested in 8 melanoma cell lines. The concentration of fascaplysin required to inhibit growth by 50% (IC50 value) ranged from 0.03 to 0.22 μM. Fascaplysin also inhibited clonogenic growth and induced apoptosis. Sensitivity to PD0332991, a therapeutic CDK4/6 inhibitor was also evaluated in the melanoma cell lines. PD0332991 IC50 values ranged from 0.13 to 2.29 μM. Similar to fascaplysin, PD0332991 inhibited clonogenic growth of melanoma cells and induced apoptosis. Higher levels of CDK4 protein correlated with lower sensitivity to PD0332991 in the cell lines. Combined treatment with PD0332991 and the BRAF inhibitor PLX4032, showed additive anti-proliferative effects in the BRAF mutant cell line Malme-3M. In summary, targeting CDK4 inhibits growth and induces apoptosis in melanoma cells in vitro, suggesting that CDK4 may be a rational therapeutic target for metastatic melanoma. PMID:26201960

  3. Effect of Narrow Spectrum Versus Selective Kinase Inhibitors on the Intestinal Proinflammatory Immune Response in Ulcerative Colitis

    PubMed Central

    Biancheri, Paolo; Foster, Martyn R.; Fyfe, Matthew C. T.; MacDonald, Thomas T.; Sirohi, Sameer; Solanke, Yemisi; Wood, Eleanor; Rowley, Adele; Webber, Steve

    2016-01-01

    Background: Kinases are key mediators of inflammation, highlighting the potential of kinase inhibitors as treatments for inflammatory disorders. Selective kinase inhibitors, however, have proved disappointing, particularly in the treatment of rheumatoid arthritis and inflammatory bowel disease. Consequently, to improve efficacy, attention has turned to multikinase inhibition. Methods: The activity of a narrow spectrum kinase inhibitor, TOP1210, has been compared with selective kinase inhibitors (BIRB-796, dasatinib and BAY-61-3606) in a range of kinase assays, inflammatory cell assays, and in inflamed biopsies from patients with ulcerative colitis (UC). Effects on recombinant P38α, Src, and Syk kinase activities were assessed using Z-lyte assays (Invitrogen, Paisley, United Kingdom). Anti-inflammatory effects were assessed by measurement of proinflammatory cytokine release from peripheral blood mononuclear cells, primary macrophages, HT29 cells, inflamed colonic UC biopsies, and myofibroblasts isolated from inflamed colonic UC mucosa. Results: TOP1210 potently inhibits P38α, Src, and Syk kinase activities. Similarly, TOP1210 demonstrates potent inhibitory activity against proinflammatory cytokine release in each of the cellular assays and the inflamed colonic UC biopsies and myofibroblasts isolated from inflamed colonic UC mucosa. Generally, the selective kinase inhibitors showed limited and weaker activity in the cellular assays compared with the broad inhibitory profile of TOP1210. However, combination of the selective inhibitors led to improved efficacy and potency in both cellular and UC biopsy assays. Conclusions: Targeted, multikinase inhibition with TOP1210 leads to a broad efficacy profile in both the innate and adaptive immune responses, with significant advantages over existing selective kinase approaches, and potentially offers a much improved therapeutic benefit in inflammatory bowel disease. PMID:27104822

  4. Identification of ellagic acid as potent inhibitor of protein kinase CK2: a successful example of a virtual screening application.

    PubMed

    Cozza, Giorgio; Bonvini, Paolo; Zorzi, Elisa; Poletto, Giorgia; Pagano, Mario A; Sarno, Stefania; Donella-Deana, Arianna; Zagotto, Giuseppe; Rosolen, Angelo; Pinna, Lorenzo A; Meggio, Flavio; Moro, Stefano

    2006-04-20

    Casein kinase 2 (CK2) is a ubiquitous, essential, and highly pleiotropic protein kinase whose abnormally high constitutive activity is suspected to underlie its pathogenic potential in neoplasia and other diseases. Using a virtual screening approach, we have identified the ellagic acid, a naturally occurring tannic acid derivative, as a novel potent CK2 inhibitor. At present, ellagic acid represents the most potent known CK2 inhibitor (K(i) = 20 nM). PMID:16610779

  5. Modulation of human basophil histamine release by protein kinase C inhibitors differs with secretagogue and with inhibitor.

    PubMed

    Bergstrand, H; Lundquist, B; Karabelas, K; Michelsen, P

    1992-03-01

    To assess possible involvement of protein kinase C (PKC) in human basophil degranulation, the present work compared effects of various purported PKC inhibitors on leukocyte histamine release triggered by different stimuli. The effects recorded varied with the inhibitor and the secretagogue used; moreover, with a given secretagogue, different inhibitors often displayed different activities. Thus, histamine release triggered by the PKC activator 4 beta-phorbol 12-myristate 13-acetate was blocked by K252a, staurosporine and the purported specific PKC inhibitor Ro 31-7549, and reduced by calphostin C, H-7, TMB-8 and W-7 but not affected by polymyxin B; it was augmented by 2.1 microM palmitoyl carnitine. The leukocyte response induced by another putative activator of PKC, 1,2-isopropylidene-3-decanoyl-sn-glycerol, was also enhanced by 2.1 microM palmitoyl carnitine, slightly increased by staurosporine, TMB-8 and W-7 but not affected by calphostin C, H-7, K252a or Ro 31-7549, whereas the hyperosmolar mannitol-induced response was reduced by H-7, calphostin C, TMB-8 and W-7 and slightly augmented by staurosporine. Anti-IgE-induced histamine release was blocked by staurosporine and K252a and reduced by calphostin C, sphingosine, TMB-8 and W-7 but not affected by H-7, polymyxin B or retinal. It was enhanced by Ro 31-7549. In contrast, leukocyte histamine release induced by calcium ionophore A23187 or by ionomycin was blocked by retinal, TMB-8 and W-7 and reduced by calphostin C and palmitoyl carnitine but enhanced by H-7, staurosporine and polymyxin B; K252a and Ro 31-7549 did not affect such responses. Formyl-methionyl-leucyl-phenylalanine-triggered histamine release was barely affected by any agent used. Thus, the specific PKC inhibitor Ro 31-7549 selectively blocked 4 beta-phorbol 12-myristate 13-acetate-triggered leukocyte histamine release. These results imply that examined secretagogues trigger human leukocyte histamine release through partly separate pathways

  6. Inhibition of dihydroceramide desaturase activity by the sphingosine kinase inhibitor SKI II[S

    PubMed Central

    Cingolani, Francesca; Casasampere, Mireia; Sanllehí, Pol; Casas, Josefina; Bujons, Jordi; Fabrias, Gemma

    2014-01-01

    Sphingosine kinase inhibitor (SKI) II has been reported as a dual inhibitor of sphingosine kinases (SKs) 1 and 2 and has been extensively used to prove the involvement of SKs and sphingosine-1-phosphate (S1P) in cellular processes. Dihydroceramide desaturase (Des1), the last enzyme in the de novo synthesis of ceramide (Cer), regulates the balance between dihydroceramides (dhCers) and Cers. Both SKs and Des1 have interest as therapeutic targets. Here we show that SKI II is a noncompetitive inhibitor (Ki = 0.3 μM) of Des1 activity with effect also in intact cells without modifying Des1 protein levels. Molecular modeling studies support that the SKI II-induced decrease in Des1 activity could result from inhibition of NADH-cytochrome b5 reductase. SKI II, but not the SK1-specific inhibitor PF-543, provoked a remarkable accumulation of dhCers and their metabolites, while both SKI II and PF-543 reduced S1P to almost undetectable levels. SKI II, but not PF543, reduced cell proliferation with accumulation of cells in the G0/G1 phase. SKI II, but not PF543, induced autophagy. These overall findings should be taken into account when using SKI II as a pharmacological tool, as some of the effects attributed to decreased S1P may actually be caused by augmented dhCers and/or their metabolites. PMID:24875537

  7. A Novel Glycogen Synthase Kinase-3 Inhibitor Optimized for Acute Myeloid Leukemia Differentiation Activity.

    PubMed

    Hu, Sophia; Ueda, Masumi; Stetson, Lindsay; Ignatz-Hoover, James; Moreton, Stephen; Chakrabarti, Amit; Xia, Zhiqiang; Karan, Goutam; de Lima, Marcos; Agrawal, Mukesh K; Wald, David N

    2016-07-01

    Standard therapies used for the treatment of acute myeloid leukemia (AML) are cytotoxic agents that target rapidly proliferating cells. Unfortunately, this therapeutic approach has limited efficacy and significant toxicity and the majority of AML patients still die of their disease. In contrast to the poor prognosis of most AML patients, most individuals with a rare subtype of AML, acute promyelocytic leukemia, can be cured by differentiation therapy using regimens containing all-trans retinoic acid. GSK3 has been previously identified as a therapeutic target in AML where its inhibition can lead to the differentiation and growth arrest of leukemic cells. Unfortunately, existing GSK3 inhibitors lead to suboptimal differentiation activity making them less useful as clinical AML differentiation agents. Here, we describe the discovery of a novel GSK3 inhibitor, GS87. GS87 was discovered in efforts to optimize GSK3 inhibition for AML differentiation activity. Despite GS87's dramatic ability to induce AML differentiation, kinase profiling reveals its high specificity in targeting GSK3 as compared with other kinases. GS87 demonstrates high efficacy in a mouse AML model system and unlike current AML therapeutics, exhibits little effect on normal bone marrow cells. GS87 induces potent differentiation by more effectively activating GSK3-dependent signaling components including MAPK signaling as compared with other GSK3 inhibitors. GS87 is a novel GSK3 inhibitor with therapeutic potential as a differentiation agent for non-promyelocytic AML. Mol Cancer Ther; 15(7); 1485-94. ©2016 AACR. PMID:27196775

  8. JAK2 inhibition sensitizes resistant EGFR-mutant lung adenocarcinoma to tyrosine kinase inhibitors

    PubMed Central

    Gao, Sizhi P.; Chang, Qing; Mao, Ninghui; Daly, Laura A.; Vogel, Robert; Chan, Tyler; Liu, Shu Hui; Bournazou, Eirini; Schori, Erez; Zhang, Haiying; Brewer, Monica Red; Pao, William; Morris, Luc; Ladanyi, Marc; Arcila, Maria; Manova-Todorova, Katia; de Stanchina, Elisa; Norton, Larry; Levine, Ross L.; Altan-Bonnet, Gregoire; Solit, David; Zinda, Michael; Huszar, Dennis; Lyden, David; Bromberg, Jacqueline F.

    2016-01-01

    Lung adenocarcinomas with mutant epidermal growth factor receptor (EGFR) respond to EGFR-targeted tyrosine kinase inhibitors (TKIs), but resistance invariably occurs. We found that the Janus kinase (JAK)/signal transduction and activator of transcription 3 (STAT3) signaling pathway was aberrantly increased in TKI-resistant EGFR-mutant non–small cell lung cancer (NSCLC) cells. JAK2 inhibition restored sensitivity to the EGFR inhibitor erlotinib in TKI-resistant cell lines and xenograft models of EGFR-mutant TKI-resistant lung cancer. JAK2 inhibition uncoupled EGFR from its negative regulator, suppressor of cytokine signaling 5 (SOCS5), consequently increasing EGFR abundance and restoring the tumor cells’ dependence on EGFR signaling. Furthermore, JAK2 inhibition led to heterodimerization of mutant and wild-type EGFR subunits, the activity of which was then blocked by TKIs. Our results reveal a mechanism whereby JAK2 inhibition overcomes acquired resistance to EGFR inhibitors and support the use of combination therapy with JAK and EGFR inhibitors for the treatment of EGFR-dependent NSCLC. PMID:27025877

  9. Synthesis and Biological Evaluation of Analogues of AKT (Protein Kinase B) Inhibitor-IV

    PubMed Central

    Sun, Qi; Wu, Runzhi; Cai, Sutang; Lin, Yuan; Sellers, Llewlyn; Sakamoto, Kaori; He, Biao; Peterson, Blake R.

    2011-01-01

    Inhibitors of the PI3-kinase/AKT (protein kinase B) pathway are under investigation as anticancer and antiviral agents. The benzimidazole derivative AKT inhibitor-IV (ChemBridge 5233705) affects this pathway and exhibits potent anticancer and antiviral activity. To probe its biological activity, we synthesized AKT inhibitor-IV and 21 analogues using a novel six-step route based on ZrCl4-catalyzed cyclization of 1,2-arylenediamines with α,β-unsaturated aldehydes. We examined effects on viability of HeLa carcinoma cells, viability of normal human cells (NHBE), replication of recombinant parainfluenza virus 5 (PIV5) in HeLa cells, and replication of the intracellular bacterium Mycobacterium fortuitum in HeLa cells. Replacement of the benzimidazole N-ethyl substitutent of AKT inhibitor-IV with N-hexyl and N-dodecyl groups enhanced antiviral activity and cytotoxicity against the cancer cell line, but these compounds showed substantially lower toxicity (from 6-fold to >20-fold) against NHBE cells, and no effect on M. fortuitum, suggesting inhibition of one or more host protein(s) required for proliferation of cancer cells and PIV5. The key structural elements identified here may facilitate identification of targets of this highly biologically active scaffold. PMID:21319800

  10. Small-Molecule Inhibitors of the Receptor Tyrosine Kinases: Promising Tools for Targeted Cancer Therapies

    PubMed Central

    Hojjat-Farsangi, Mohammad

    2014-01-01

    Chemotherapeutic and cytotoxic drugs are widely used in the treatment of cancer. In spite of the improvements in the life quality of patients, their effectiveness is compromised by several disadvantages. This represents a demand for developing new effective strategies with focusing on tumor cells and minimum side effects. Targeted cancer therapies and personalized medicine have been defined as a new type of emerging treatments. Small molecule inhibitors (SMIs) are among the most effective drugs for targeted cancer therapy. The growing number of approved SMIs of receptor tyrosine kinases (RTKs) i.e., tyrosine kinase inhibitors (TKIs) in the clinical oncology imply the increasing attention and application of these therapeutic tools. Most of the current approved RTK–TKIs in preclinical and clinical settings are multi-targeted inhibitors with several side effects. Only a few specific/selective RTK–TKIs have been developed for the treatment of cancer patients. Specific/selective RTK–TKIs have shown less deleterious effects compared to multi-targeted inhibitors. This review intends to highlight the importance of specific/selective TKIs for future development with less side effects and more manageable agents. This article provides an overview of: (1) the characteristics and function of RTKs and TKIs; (2) the recent advances in the improvement of specific/selective RTK–TKIs in preclinical or clinical settings; and (3) emerging RTKs for targeted cancer therapies by TKIs. PMID:25110867

  11. JAK2 inhibition sensitizes resistant EGFR-mutant lung adenocarcinoma to tyrosine kinase inhibitors.

    PubMed

    Gao, Sizhi P; Chang, Qing; Mao, Ninghui; Daly, Laura A; Vogel, Robert; Chan, Tyler; Liu, Shu Hui; Bournazou, Eirini; Schori, Erez; Zhang, Haiying; Red Brewer, Monica; Pao, William; Morris, Luc; Ladanyi, Marc; Arcila, Maria; Manova-Todorova, Katia; de Stanchina, Elisa; Norton, Larry; Levine, Ross L; Altan-Bonnet, Gregoire; Solit, David; Zinda, Michael; Huszar, Dennis; Lyden, David; Bromberg, Jacqueline F

    2016-01-01

    Lung adenocarcinomas with mutant epidermal growth factor receptor (EGFR) respond to EGFR-targeted tyrosine kinase inhibitors (TKIs), but resistance invariably occurs. We found that the Janus kinase (JAK)/signal transduction and activator of transcription 3 (STAT3) signaling pathway was aberrantly increased in TKI-resistant EGFR-mutant non-small cell lung cancer (NSCLC) cells. JAK2 inhibition restored sensitivity to the EGFR inhibitor erlotinib in TKI-resistant cell lines and xenograft models of EGFR-mutant TKI-resistant lung cancer. JAK2 inhibition uncoupled EGFR from its negative regulator, suppressor of cytokine signaling 5 (SOCS5), consequently increasing EGFR abundance and restoring the tumor cells' dependence on EGFR signaling. Furthermore, JAK2 inhibition led to heterodimerization of mutant and wild-type EGFR subunits, the activity of which was then blocked by TKIs. Our results reveal a mechanism whereby JAK2 inhibition overcomes acquired resistance to EGFR inhibitors and support the use of combination therapy with JAK and EGFR inhibitors for the treatment of EGFR-dependent NSCLC. PMID:27025877

  12. Large-Scale Computational Screening Identifies First in Class Multitarget Inhibitor of EGFR Kinase and BRD4

    PubMed Central

    Allen, Bryce K.; Mehta, Saurabh; Ember, Stewart W. J.; Schonbrunn, Ernst; Ayad, Nagi; Schürer, Stephan C.

    2015-01-01

    Inhibition of cancer-promoting kinases is an established therapeutic strategy for the treatment of many cancers, although resistance to kinase inhibitors is common. One way to overcome resistance is to target orthogonal cancer-promoting pathways. Bromo and Extra-Terminal (BET) domain proteins, which belong to the family of epigenetic readers, have recently emerged as promising therapeutic targets in multiple cancers. The development of multitarget drugs that inhibit kinase and BET proteins therefore may be a promising strategy to overcome tumor resistance and prolong therapeutic efficacy in the clinic. We developed a general computational screening approach to identify novel dual kinase/bromodomain inhibitors from millions of commercially available small molecules. Our method integrated machine learning using big datasets of kinase inhibitors and structure-based drug design. Here we describe the computational methodology, including validation and characterization of our models and their application and integration into a scalable virtual screening pipeline. We screened over 6 million commercially available compounds and selected 24 for testing in BRD4 and EGFR biochemical assays. We identified several novel BRD4 inhibitors, among them a first in class dual EGFR-BRD4 inhibitor. Our studies suggest that this computational screening approach may be broadly applicable for identifying dual kinase/BET inhibitors with potential for treating various cancers. PMID:26596901

  13. Analysis of pulmonary vasodilator responses to the Rho-kinase inhibitor fasudil in the anesthetized rat.

    PubMed

    Badejo, Adeleke M; Dhaliwal, Jasdeep S; Casey, David B; Gallen, Thomas B; Greco, Anthony J; Kadowitz, Philip J

    2008-11-01

    The small GTP-binding protein Rho and its downstream effector, Rho-kinase, are important regulators of vasoconstrictor tone. Rho-kinase is upregulated in experimental models of pulmonary hypertension, and Rho-kinase inhibitors decrease pulmonary arterial pressure in rodents with monocrotaline and chronic hypoxia-induced pulmonary hypertension. However, less is known about responses to fasudil when pulmonary vascular resistance is elevated on an acute basis by vasoconstrictor agents and ventilatory hypoxia. In the present study, intravenous injections of fasudil reversed pulmonary hypertensive responses to intravenous infusion of the thromboxane receptor agonist, U-46619 and ventilation with a 10% O(2) gas mixture and inhibited pulmonary vasoconstrictor responses to intravenous injections of angiotensin II, BAY K 8644, and U-46619 without prior exposure to agonists, which can upregulate Rho-kinase activity. The calcium channel blocker isradipine and fasudil had similar effects and in small doses had additive effects in blunting vasoconstrictor responses, suggesting parallel and series mechanisms in the lung. When pulmonary vascular resistance was increased with U-46619, fasudil produced similar decreases in pulmonary and systemic arterial pressure, whereas isradipine produced greater decreases in systemic arterial pressure. The hypoxic pressor response was enhanced by 5-10 mg/kg iv nitro-L-arginine methyl ester (L-NAME), and fasudil or isradipine reversed the pulmonary hypertensive response to hypoxia in control and in L-NAME-treated animals, suggesting that the response is mediated by Rho-kinase and L-type Ca(2+) channels. These results suggest that Rho-kinase is constitutively active in regulating baseline tone and vasoconstrictor responses in the lung under physiological conditions and that Rho-kinase inhibition attenuates pulmonary vasoconstrictor responses to agents that act by different mechanisms without prior exposure to the agonist. PMID:18689606

  14. Upstream mitogen-activated protein kinase (MAPK) pathway inhibition: MEK inhibitor followed by a BRAF inhibitor in advanced melanoma patients.

    PubMed

    Goldinger, Simone M; Zimmer, Lisa; Schulz, Carsten; Ugurel, Selma; Hoeller, Christoph; Kaehler, Katharina C; Schadendorf, Dirk; Hassel, Jessica C; Becker, Juergen; Hauschild, Axel; Dummer, Reinhard

    2014-01-01

    BRAF-mutant melanoma can be successfully treated by BRAF kinase inhibitors (BRAFi) and MEK kinase inhibitors (MEKi). However, the administration of BRAFi followed by MEKi did not generate promising response rate (RR). The purpose of this investigation was to evaluate the time to progression (TTP) with a mitogen-activated protein kinase (MAPK) pathway upstream inhibition strategy in BRAF mutated melanoma patients. BRAF mutation positive metastatic melanoma patients were identified within the Dermatology Cooperative Oncology Group (DeCOG) network and were treated first with a MEKi and upon progression with a selective BRAFi. A total of 23 melanoma patients (six females, 17 males, aged 47-80 years) were retrospectively analysed for TTP. The total median TTP was 8.9 months. The median TTP for MEKi was 4.8 (1.2-23.2) and subsequent for BRAFi 4.5 (1.2-15.7) months, respectively. A higher RR for MEKi (39%, nine partial responses and 0 complete responses) than previously reported was observed. Our analysis suggests that the reversed inhibition of the MAPK pathway is feasible in BRAF mutated melanoma. The median TTP (8.9 months) is close to the promising BRAF- and MEKi combination therapy (median progression-free survival (PFS) 9.4 months). The total treatment duration of the MAPK inhibition when a MEKi is administered first is similar compared to the reversed sequence, but TTP shifts in favour to the MEKi. This approach is feasible with reasonable tolerability. This clinical investigation encourages further studies in prospective clinical trials to define the optimal treatment schedule for the MAPK pathway inhibition and should be accompanied by molecular monitoring using repeated biopsies. PMID:24183461

  15. Discovery of pyrrolo[1,2-b]pyridazine-3-carboxamides as Janus kinase (JAK) inhibitors.

    PubMed

    Duan, James J-W; Lu, Zhonghui; Jiang, Bin; Yang, Bingwei V; Doweyko, Lidia M; Nirschl, David S; Haque, Lauren E; Lin, Shuqun; Brown, Gregory; Hynes, John; Tokarski, John S; Sack, John S; Khan, Javed; Lippy, Jonathan S; Zhang, Rosemary F; Pitt, Sidney; Shen, Guoxiang; Pitts, William J; Carter, Percy H; Barrish, Joel C; Nadler, Steven G; Salter-Cid, Luisa M; McKinnon, Murray; Fura, Aberra; Schieven, Gary L; Wrobleski, Stephen T

    2014-12-15

    A new class of Janus kinase (JAK) inhibitors was discovered using a rationally designed pyrrolo[1,2-b]pyridazine-3-carboxamide scaffold. Preliminary studies identified (R)-(2,2-dimethylcyclopentyl)amine as a preferred C4 substituent on the pyrrolopyridazine core (3b). Incorporation of amino group to 3-position of the cyclopentane ring resulted in a series of JAK3 inhibitors (4g-4j) that potently inhibited IFNγ production in an IL2-induced whole blood assay and displayed high functional selectivity for JAK3-JAK1 pathway relative to JAK2. Further modifications led to the discovery of an orally bioavailable (2-fluoro-2-methylcyclopentyl)amino analogue 5g which is a nanomolar inhibitor of both JAK3 and TYK2, functionally selective for the JAK3-JAK1 pathway versus JAK2, and active in a human whole blood assay. PMID:25453808

  16. Discovery of selective phosphatidylinositol 3-kinase inhibitors to treat hematological malignancies.

    PubMed

    Zhu, Jingyu; Hou, Tingjun; Mao, Xinliang

    2015-08-01

    The phosphatidylinositol 3-kinase (PI3K) signaling pathway is associated with chemoresistance and poor prognosis of many cancers, including hematological malignancies (HM), such as leukemia, lymphomas, and multiple myeloma (MM). Targeting PI3K is emerging as a promising strategy in the treatment of these blood cancers. Recent approval of idelalisib, a specific inhibitor of PI3Kδ, for the treatment of several types of HM, is likely to attract more interest in search for novel PI3K inhibitors. Here, we discuss classic and cutting-edge techniques and strategies to identify PI3K inhibitors for the treatment of HM. Each technique has its own strengths and limitations, and their combined application will accelerate the drug discovery process with fewer associated costs. PMID:25857437

  17. Design of inhibitors of thymidylate kinase from Variola virus as new selective drugs against smallpox.

    PubMed

    Guimarães, Ana P; de Souza, Felipe R; Oliveira, Aline A; Gonçalves, Arlan S; de Alencastro, Ricardo B; Ramalho, Teodorico C; França, Tanos C C

    2015-02-16

    Recently we constructed a homology model of the enzyme thymidylate kinase from Variola virus (VarTMPK) and proposed it as a new target to the drug design against smallpox. In the present work, we used the antivirals cidofovir and acyclovir as reference compounds to choose eleven compounds as leads to the drug design of inhibitors for VarTMPK. Docking and molecular dynamics (MD) studies of the interactions of these compounds inside VarTMPK and human TMPK (HssTMPK) suggest that they compete for the binding region of the substrate and were used to propose the structures of ten new inhibitors for VarTMPK. Further docking and MD simulations of these compounds, inside VarTMPK and HssTMPK, suggest that nine among ten are potential selective inhibitors of VarTMPK. PMID:25458183

  18. Evaluation of Improved Glycogen Synthase Kinase-3α Inhibitors in Models of Acute Myeloid Leukemia

    PubMed Central

    Neumann, Theresa; Benajiba, Lina; Göring, Stefan; Stegmaier, Kimberly; Schmidt, Boris

    2016-01-01

    The challenge for Glycogen Synthase Kinase-3 (GSK-3) inhibitor design lies in achieving high selectivity for one isoform over the other. The therapy of certain diseases, such as acute myeloid leukemia (AML) may require α-isoform specific targeting. The scorpion shaped GSK-3 inhibitors developed by our group achieved the highest GSK-3α selectivity reported so far, but suffered from insufficient aqueous solubility. This work presents the solubility-driven optimization of our isoform-selective inhibitors using a scorpion shaped lead. Among 15 novel compounds, compound 27 showed high activity against GSK-3α/β with the highest GSK-3α selectivity reported to date. Compound 27 was profiled for bioavailability and toxicity in a zebrafish embryo phenotype assay. Selective GSK-3α targeting in AML cell lines was achieved with compound 27, resulting in a strong differentiation phenotype and colony formation impairment, confirming the potential of GSK-3α inhibition in AML therapy. PMID:26496242

  19. Structural Requirements and Docking Analysis of Amidine-Based Sphingosine Kinase 1 Inhibitors Containing Oxadiazoles.

    PubMed

    Houck, Joseph D; Dawson, Thomas K; Kennedy, Andrew J; Kharel, Yugesh; Naimon, Niels D; Field, Saundra D; Lynch, Kevin R; Macdonald, Timothy L

    2016-05-12

    Sphingosine 1-phosphate (S1P) is a potent growth-signaling lipid that has been implicated in cancer progression, inflammation, sickle cell disease, and fibrosis. Two sphingosine kinases (SphK1 and 2) are the source of S1P; thus, inhibitors of the SphKs have potential as targeted cancer therapies and will help to clarify the roles of S1P and the SphKs in other hyperproliferative diseases. Recently, we reported a series of amidine-based inhibitors with high selectivity for SphK1 and potency in the nanomolar range. However, these inhibitors display a short half-life. With the goal of increasing metabolic stability and maintaining efficacy, we designed an analogous series of molecules containing oxadiazole moieties. Generation of a library of molecules resulted in the identification of the most selective inhibitor of SphK1 reported to date (705-fold selectivity over SphK2), and we found that potency and selectivity vary significantly depending on the particular oxadiazole isomer employed. The best inhibitors were subjected to in silico molecular dynamics docking analysis, which revealed key insights into the binding of amidine-based inhibitors by SphK1. Herein, the design, synthesis, biological evaluation, and docking analysis of these molecules are described. PMID:27190598

  20. South (S)- and North (N)-Methanocarba-7-Deazaadenosine Analogues as Inhibitors of Human Adenosine Kinase.

    PubMed

    Toti, Kiran S; Osborne, Danielle; Ciancetta, Antonella; Boison, Detlev; Jacobson, Kenneth A

    2016-07-28

    Adenosine kinase (AdK) inhibitors raise endogenous adenosine levels, particularly in disease states, and have potential for treatment of seizures, neurodegeneration, and inflammation. On the basis of the South (S) ribose conformation and molecular dynamics (MD) analysis of nucleoside inhibitors bound in AdK X-ray crystallographic structures, (S)- and North (N)-methanocarba (bicyclo[3.1.0]hexane) derivatives of known inhibitors were prepared and compared as human (h) AdK inhibitors. 5'-Hydroxy (34, MRS4202 (S); 55, MRS4380 (N)) and 5'-deoxy 38a (MRS4203 (S)) analogues, containing 7- and N(6)-NH phenyl groups in 7-deazaadenine, robustly inhibited AdK activity (IC50 ∼ 100 nM), while the 5'-hydroxy derivative 30 lacking the phenyl substituents was weak. Docking in the hAdK X-ray structure and MD simulation suggested a mode of binding similar to 5'-deoxy-5-iodotubercidin and other known inhibitors. Thus, a structure-based design approach for further potency enhancement is possible. The potent AdK inhibitors in this study are ready to be further tested in animal models of epilepsy. PMID:27410258

  1. Identifying GSK-3β kinase inhibitors of Alzheimer's disease: Virtual screening, enzyme, and cell assays.

    PubMed

    Lin, Chih-Hsin; Hsieh, Yu-Shao; Wu, Yih-Ru; Hsu, Chia-Jen; Chen, Hsuan-Chiang; Huang, Wun-Han; Chang, Kuo-Hsuan; Hsieh-Li, Hsiu Mei; Su, Ming-Tsan; Sun, Ying-Chieh; Lee, Guan-Chiun; Lee-Chen, Guey-Jen

    2016-06-30

    Glycogen synthase kinase 3β (GSK-3β) is widely known as a critical target protein for treating Alzheimer's disease (AD). We utilized virtual screening to search databases for compounds with the potential to be used in drugs targeting GSK-3β kinase, and kinase as well as cell assays to investigate top-scored, selected compounds. Virtual screening of >1.1 million compounds in the ZINC and in-house databases was conducted using an optimized computational protocol in the docking program GOLD. Of the top-ranked compounds, 16 underwent a luminescent kinase assay and a cell assay using HEK293 cells expressing DsRed-tagged ΔK280 in the repeat domain of tau (tauRD). The compounds VB-003 (a potent GSK-3β inhibitor) and VB-008 (AM404, an anandamide transport inhibitor), with determined IC50 values of 0.25 and 5.4μM, respectively, were identified as reducing tau aggregation. Both compounds increased expression of phospho-GSK-3β (Ser9) and reduced endogenous tau phosphorylation at the sites of Ser202, Thr231, and Ser396. In the ∆K280 tauRD-DsRed SH-SY5Y cells, VB-008, but not VB-003, enhanced HSPB1 and GRP78 expression, increased ∆K280 tauRD-DsRed solubility, and promoted neurite outgrowth. Thus VB-008 performed best to the end of the present study. The identified compound VB-008 may guide the identification and synthesis of potential inhibitors analogous to this compound. PMID:27094783

  2. Antitumor effects of immunotoxins are enhanced by lowering HCK or treatment with SRC kinase inhibitors.

    PubMed

    Liu, Xiu-Fen; Xiang, Laiman; FitzGerald, David J; Pastan, Ira

    2014-01-01

    Recombinant immunotoxins (RIT) are agents being developed for cancer treatment. They are composed of an Fv that binds to a cancer cell, fused to a 38-kDa fragment of Pseudomonas exotoxin A. SS1P is a RIT that targets mesothelin, a protein expressed on mesothelioma as well as pancreatic, ovarian, lung, and other cancers. Because the protein tyrosine kinase family regulates a variety of cellular processes and pathways, we hypothesized that tyrosine kinases might regulate susceptibility to immunotoxin killing. To investigate their role, we used siRNAs to lower the level of expression of the 88 known tyrosine kinases. We identified five tyrosine kinases, INSR, HCK, SRC, PDGFRβ, and BMX that enhance the activity of SS1P when their level of expression is lowered by siRNAs. We further investigated the Src family member HCK in this study. Knocking down of SRC slightly increased SS1P killing in A431/H9 cells, but knocking down HCK substantially enhanced killing by SS1P. We investigated the mechanism of enhancement and found that HCK knockdown enhanced SS1P cleavage by furin and lowered levels of Mcl-1 and raised Bax. We then found that Src inhibitors mimic the stimulatory effect of HCK knockdown; both SU6656 and SKI-606 (bosutinib) enhanced immunotoxin killing of mesothelin-expressing cells by SS1P and CD22-expressing cells by HA22 (moxetumomab pasudotox). SU6656 also enhanced the antitumor effects of SS1P and HA22 in mouse xenograft tumor models. Our data suggest that the combination of immunotoxin with tyrosine kinase inhibitors may be an effective way to treat some cancers. PMID:24145282

  3. Resistance to the tyrosine kinase inhibitor axitinib is associated with increased glucose metabolism in pancreatic adenocarcinoma.

    PubMed

    Hudson, C D; Hagemann, T; Mather, S J; Avril, N

    2014-01-01

    Alterations in energy (glucose) metabolism are key events in the development and progression of cancer. In pancreatic adenocarcinoma (PDAC) cells, we investigated changes in glucose metabolism induced by resistance to the receptor tyrosine kinase inhibitor (RTKI) axitinib. Here, we show that human cell lines and mouse PDAC cell lines obtained from the spontaneous pancreatic cancer mouse model (Kras(G12D)Pdx1-cre) were sensitive to axitinib. The anti-proliferative effect was due to a G2/M block resulting in loss of 70-75% cell viability in the most sensitive PDAC cell line. However, a surviving sub-population showed a 2- to 3-fold increase in [C-14]deoxyglucose ([C-14]DG) uptake. This was sustained in axitinib-resistant cell lines, which were derived from parental PDAC. In addition to the axitinib-induced increase in [C-14]DG uptake, we observed a translocation of glucose transporter-1 (Glut-1) transporters from cytosolic pools to the cell surface membrane and a 2-fold increase in glycolysis rates measured by the extracellular acidification rate (ECAR). We demonstrated an axitinib-induced increase in phosphorylated Protein Kinase B (pAkt) and by blocking pAkt with a phosphatidylinositol-3 kinase (PI3K) inhibitor we reversed the Glut-1 translocation and restored sensitivity to axitinib treatment. Combination treatment with both axitinib and Akt inhibitor in parental pancreatic cell line resulted in a decrease in cell viability beyond that conferred by single therapy alone. Our study shows that PDAC resistance to axitinib results in increased glucose metabolism mediated by activated Akt. Combining axitinib and an Akt inhibitor may improve treatment in PDAC. PMID:24722285

  4. A Cell Biologist’s Field Guide to Aurora Kinase Inhibitors

    PubMed Central

    de Groot, Christian O.; Hsia, Judy E.; Anzola, John V.; Motamedi, Amir; Yoon, Michelle; Wong, Yao Liang; Jenkins, David; Lee, Hyun J.; Martinez, Mallory B.; Davis, Robert L.; Gahman, Timothy C.; Desai, Arshad; Shiau, Andrew K.

    2015-01-01

    Aurora kinases are essential for cell division and are frequently misregulated in human cancers. Based on their potential as cancer therapeutics, a plethora of small molecule Aurora kinase inhibitors have been developed, with a subset having been adopted as tools in cell biology. Here, we fill a gap in the characterization of Aurora kinase inhibitors by using biochemical and cell-based assays to systematically profile a panel of 10 commercially available compounds with reported selectivity for Aurora A (MLN8054, MLN8237, MK-5108, MK-8745, Genentech Aurora Inhibitor 1), Aurora B (Hesperadin, ZM447439, AZD1152-HQPA, GSK1070916), or Aurora A/B (VX-680). We quantify the in vitro effect of each inhibitor on the activity of Aurora A alone, as well as Aurora A and Aurora B bound to fragments of their activators, TPX2 and INCENP, respectively. We also report kinome profiling results for a subset of these compounds to highlight potential off-target effects. In a cellular context, we demonstrate that immunofluorescence-based detection of LATS2 and histone H3 phospho-epitopes provides a facile and reliable means to assess potency and specificity of Aurora A versus Aurora B inhibition, and that G2 duration measured in a live imaging assay is a specific readout of Aurora A activity. Our analysis also highlights variation between HeLa, U2OS, and hTERT-RPE1 cells that impacts selective Aurora A inhibition. For Aurora B, all four tested compounds exhibit excellent selectivity and do not significantly inhibit Aurora A at effective doses. For Aurora A, MK-5108 and MK-8745 are significantly more selective than the commonly used inhibitors MLN8054 and MLN8237. A crystal structure of an Aurora A/MK-5108 complex that we determined suggests the chemical basis for this higher specificity. Taken together, our quantitative biochemical and cell-based analyses indicate that AZD1152-HQPA and MK-8745 are the best current tools for selectively inhibiting Aurora B and Aurora A, respectively

  5. Serum albumin and α-1 acid glycoprotein impede the killing of Schistosoma mansoni by the tyrosine kinase inhibitor Imatinib.

    PubMed

    Beckmann, Svenja; Long, Thavy; Scheld, Christina; Geyer, Rudolf; Caffrey, Conor R; Grevelding, Christoph G

    2014-12-01

    In the search for new drugs and drug targets to treat the flatworm disease schistosomiasis, protein kinases (PKs) have come under particular scrutiny because of their essential roles in developmental and physiological processes in schistosome parasites. In this context the application of the anti-cancer Abl tyrosine kinase (TK) inhibitor Imatinib (Gleevec/Glivec; STI-571) to adult Schistosoma mansoni in vitro has indicated negative effects on diverse physiological processes including survival. Motivated by these in vitro findings, we performed in vivo experiments in rodent models of S. mansoni infection. Unexpectedly, Imatinib had no effect on worm burden or egg-production. We found that the blood components serum albumin (SA) and alpha-1 acid glycoprotein (AGP or orosomucoid) negated Imatinib's deleterious effects on adult S. mansoni and schistosomula (post-infective larvae) in vitro. This negative effect was partially reversed by erythromycin. AGP synthesis can increase as a consequence of inflammatory processes or infection; in addition upon infection AGP levels are 6-8 times higher in mice compared to humans. Therefore, mice and probably other rodents are poor infection models for measuring the effects of Imatinib in vivo. Accordingly, we suggest the routine evaluation of the ability of AGP and SA to block in vitro anti-schistosomal effects of small molecules like Imatinib prior to laborious and expensive animal experiments. PMID:25516839

  6. Serum albumin and α-1 acid glycoprotein impede the killing of Schistosoma mansoni by the tyrosine kinase inhibitor Imatinib

    PubMed Central

    Beckmann, Svenja; Long, Thavy; Scheld, Christina; Geyer, Rudolf; Caffrey, Conor R.; Grevelding, Christoph G.

    2014-01-01

    In the search for new drugs and drug targets to treat the flatworm disease schistosomiasis, protein kinases (PKs) have come under particular scrutiny because of their essential roles in developmental and physiological processes in schistosome parasites. In this context the application of the anti-cancer Abl tyrosine kinase (TK) inhibitor Imatinib (Gleevec/Glivec; STI-571) to adult Schistosoma mansoni in vitro has indicated negative effects on diverse physiological processes including survival. Motivated by these in vitro findings, we performed in vivo experiments in rodent models of S. mansoni infection. Unexpectedly, Imatinib had no effect on worm burden or egg-production. We found that the blood components serum albumin (SA) and alpha-1 acid glycoprotein (AGP or orosomucoid) negated Imatinib’s deleterious effects on adult S. mansoni and schistosomula (post-infective larvae) in vitro. This negative effect was partially reversed by erythromycin. AGP synthesis can increase as a consequence of inflammatory processes or infection; in addition upon infection AGP levels are 6–8 times higher in mice compared to humans. Therefore, mice and probably other rodents are poor infection models for measuring the effects of Imatinib in vivo. Accordingly, we suggest the routine evaluation of the ability of AGP and SA to block in vitro anti-schistosomal effects of small molecules like Imatinib prior to laborious and expensive animal experiments. PMID:25516839

  7. The cyclin-dependent kinase inhibitor butyrolactone is a potent inhibitor of p21 (WAF1/CIP1 expression).

    PubMed

    Sax, Joanna K; Dash, Bipin C; Hong, Rui; Dicker, David T; El-Deiry, Wafik S

    2002-01-01

    Butyrolactone I (BL) is a competitive inhibitor of ATP for binding and activation of cyclin-dependent kinases and is a potent inhibitor of cell cycle progression. Treatment of H460 human lung and SW480 human colon cancer cells with doses of BL that exceed the Ki for CDK inhibition but which are much lower than doses required to inhibit MAPK, PKA, PKC, or EGFR lead to a rapid significant reduction of endogenous p21 protein expression. BL-dependent inhibition of p21 expression appears to be p53-independent. BL-dependent p21 degradation was blocked by lactacystin, consistent with the hypothesis that there is accelerated p21 proteasomal degradation in the presence of BL. BL also inhibited the p53-dependent increase of p21 protein expression in cells exposed to the DNA damag-ing agent etoposide, and favored a greater G2/M arrest as compared to the non-BL exposed cells. BL accelerated the degradation of exogenously expressed p21 that was not observed with a C-terminal truncated form of p21. Degradation of exogenous p21 led to a shift to G2 accumulation in the cells exposed to BL. We conclude that BL has effects on the cell cycle beyond its role as a CDK inhibitor and can be used as a novel tool to study the mechanism of p21 degradation and the consequences towards p21- dependent checkpoints. PMID:12429914

  8. Discovery, Synthesis and Characterization of an Orally Bioavailable, Brain Penetrant Inhibitor of Mixed Lineage Kinase 3

    PubMed Central

    Goodfellow, Val S.; Loweth, Colin J.; Ravula, Satheesh B.; Wiemann, Torsten; Nguyen, Thong; Xu, Yang; Todd, Daniel E.; Sheppard, David; Pollack, Scott; Polesskaya, Oksana; Marker, Daniel F.; Dewhurst, Stephen; Gelbard, Harris A.

    2014-01-01

    Inhibition of mixed lineage kinase 3 (MLK3) is a potential strategy for treatment of Parkinson’s Disease and HIV-1 Associated Neurocognitive Disorders (HAND), requiring an inhibitor that can achieve significant brain concentration levels. We report here URMC-099 (1) an orally bioavailable (F = 41%), potent (IC50 = 14 nM) MLK3 inhibitor with excellent brain exposure in mouse PK models and minimal interference with key human CYP450 enzymes or hERG channels. The compound inhibits LPS-induced TNFα release in microglial cells, HIV-1 Tat-induced release of cytokines in human monocytes, and up-regulation of phospho-JNK in Tat-injected brains of mice. Compound 1 likely functions in HAND preclinical models by inhibiting multiple kinase pathways, including MLK3 and LRRK2 (IC50 = 11 nM). We compare the kinase specificity and BBB penetration of 1 with CEP-1347 (2). Compound 1 is well tolerated, with excellent in vivo activity in HAND models, and is under investigation for further development. PMID:24044867

  9. Development of highly potent and selective diaminothiazole inhibitors of cyclin-dependent kinases

    PubMed Central

    Schonbrunn, Ernst; Betzi, Stephane; Alam, Riazul; Martin, Mathew P.; Becker, Andreas; Han, Huijong; Francis, Rawle; Chakrasali, Ramappa; Jakkaraj, Sudhakar; Kazi, Aslamuzzaman; Sebti, Said M.; Cubitt, Christopher L.; Gebhard, Anthony W.; Hazlehurst, Lori A.; Tash, Joseph S.; Georg, Gunda I.

    2013-01-01

    Cyclin-dependent kinases (CDKs) are serine/threonine protein kinases that act as key regulatory elements in cell cycle progression. We describe the development of highly potent diaminothiazole inhibitors of CDK2 (IC50 = 0.0009 – 0.0015 µM) from a single hit compound with weak inhibitory activity (IC50 = 15 µM), discovered by high-throughput screening. Structure-based design was performed using 35 co-crystal structures of CDK2 liganded with distinct analogues of the parent compound. The profiling of compound 51 against a panel of 339 kinases revealed high selectivity for CDKs, with preference for CDK2 and CDK5 over CDK9, CDK1, CDK4 and CDK6. Compound 51 inhibited the proliferation of 13 out of 15 cancer cell lines with IC50 values between 0.27 and 6.9 µM, which correlated with the complete suppression of retinoblastoma phosphorylation and the onset of apoptosis. Combined, the results demonstrate the potential of this new inhibitors series for further development into CDK-specific chemical probes or therapeutics. PMID:23600925

  10. Identification of p38α MAP kinase inhibitors by pharmacophore based virtual screening.

    PubMed

    Gangwal, Rahul P; Das, Nihar R; Thanki, Kaushik; Damre, Mangesh V; Dhoke, Gaurao V; Sharma, Shyam S; Jain, Sanyog; Sangamwar, Abhay T

    2014-04-01

    The p38α mitogen-activated protein (MAP) kinase plays a vital role in treating many inflammatory diseases. In the present study, a combined ligand and structure based pharmacophore model was developed to identify potential DFG-in selective p38 MAP kinase inhibitors. Conformations of co-crystallised inhibitors were used in the development and validation of ligand and structure based pharmacophore modeling approached. The validated pharmacophore was utilized in database screening to identify potential hits. After Lipinski's rule of five filter and molecular docking analysis, nineteen hits were purchased and selected for in vitro analysis. The virtual hits exhibited promising activity against tumor necrosis factor-α (TNF-α) with 23-98% inhibition at 10μM concentration. Out of these seven compounds has shown potent inhibitory activity against p38 MAP kinase with IC50 values ranging from 12.97 to 223.5nM. In addition, the toxicity study against HepG2 cells was also carried out to confirm the safety profile of identified virtual hits. PMID:24473068

  11. The Relative Expression of Mig6 and EGFR Is Associated with Resistance to EGFR Kinase Inhibitors

    PubMed Central

    Chang, Xiaofei; Izumchenko, Eugene; Solis, Luisa M.; Kim, Myoung Sook; Chatterjee, Aditi; Ling, Shizhang; Monitto, Constance L.; Harari, Paul M.; Hidalgo, Manuel; Goodman, Steve N.; Wistuba, Ignacio I.; Bedi, Atul; Sidransky, David

    2013-01-01

    The sensitivity of only a few tumors to anti-epidermal growth factor receptor EGFR tyrosine kinase inhibitors (TKIs) can be explained by the presence of EGFR tyrosine kinase (TK) domain mutations. In addition, such mutations were rarely found in tumor types other than lung, such as pancreatic and head and neck cancer. In this study we sought to elucidate mechanisms of resistance to EGFR-targeted therapies in tumors that do not harbor TK sensitizing mutations in order to identify markers capable of guiding the decision to incorporate these drugs into chemotherapeutic regimens. Here we show that EGFR activity was markedly decreased during the evolution of resistance to the EGFR tyrosine kinase inhibitor (TKI) erlotinib, with a concomitant increase of mitogen-inducible gene 6 (Mig6), a negative regulator of EGFR through the upregulation of the PI3K-AKT pathway. EGFR activity, which was more accurately predicted by the ratio of Mig6/EGFR, highly correlated with erlotinib sensitivity in panels of cancer cell lines of different tissue origins. Blinded testing and analysis in a prospectively followed cohort of lung cancer patients treated with gefitinib alone demonstrated higher response rates and a marked increased in progression free survival for patients with a low Mig6/EGFR ratio (approximately 100 days, P = 0.01). PMID:23935914

  12. 1,4,5,6-tetrahydropyrrolo[3,4-c]pyrazoles: identification of a potent Aurora kinase inhibitor with a favorable antitumor kinase inhibition profile.

    PubMed

    Fancelli, Daniele; Moll, Jürgen; Varasi, Mario; Bravo, Rodrigo; Artico, Roberta; Berta, Daniela; Bindi, Simona; Cameron, Alexander; Candiani, Ilaria; Cappella, Paolo; Carpinelli, Patrizia; Croci, Walter; Forte, Barbara; Giorgini, Maria Laura; Klapwijk, Jan; Marsiglio, Aurelio; Pesenti, Enrico; Rocchetti, Maurizio; Roletto, Fulvia; Severino, Dino; Soncini, Chiara; Storici, Paola; Tonani, Roberto; Zugnoni, Paola; Vianello, Paola

    2006-11-30

    The optimization of a series of 5-phenylacetyl 1,4,5,6-tetrahydropyrrolo[3,4-c]pyrazole derivatives toward the inhibition of Aurora kinases led to the identification of compound 9d. This is a potent inhibitor of Aurora kinases that also shows low nanomolar potency against additional anticancer kinase targets. Based on its high antiproliferative activity on different cancer cell lines, favorable chemico-physical and pharmacokinetic properties, and high efficacy in in vivo tumor models, compound 9d was ultimately selected for further development. PMID:17125279

  13. Determination of human serum alpha1-acid glycoprotein and albumin binding of various marketed and preclinical kinase inhibitors.

    PubMed

    Zsila, Ferenc; Fitos, Ilona; Bencze, Gyula; Kéri, György; Orfi, László

    2009-01-01

    There are about 380 protein kinase inhibitors in drug development as of today and 15 drugs have been marketed already for the treatment of cancer. This time 139 validated kinase targets are in the focus of drug research of pharmaceutical companies and big efforts are made for the development of new, druglike kinase inhibitors. Plasma protein binding is an important factor of the ADME profiling of a drug compound. Human serum albumin (HSA) and alpha(1)-acid glycoprotein (AAG) are the most relevant drug carriers in blood plasma. Since previous literature data indicated that AAG is the principal plasma binding component of some kinase inhibitors the present work focuses on the comprehensive evaluation of AAG binding of a series of marketed and experimental kinase inhibitors by using circular dichroism (CD) spectroscopy approach. HSA binding was also evaluated by affinity chromatography. Protein binding interactions of twenty-six kinase inhibitors are characterized. The contribution of AAG and HSA binding data to the pharmacokinetic profiles of the investigated therapeutic agents is discussed. Structural, biological and drug binding properties of AAG as well as the applicability of the CD method in studying drug-protein binding interactions are also briefly reviewed. PMID:19519376

  14. Erkitinib, a novel EGFR tyrosine kinase inhibitor screened using a ProteoChip system from a phytochemical library

    SciTech Connect

    Kim, Eung-Yoon; Choi, Young-Jin; Park, Chan-Won; Kang, In-Cheol

    2009-11-20

    Receptor tyrosine kinases (PTKs) play key roles in the pathogenesis of numerous human diseases, including cancer. Therefore PTK inhibitors are currently under intensive investigation as potential drug candidates. Herein, we report on a ProteoChip-based screening of an epidermal growth factor receptor (EGFR) tyrosine kinase (TK) inhibitor, Erkitinibs, from phytochemical libraries. PLC-{gamma}-1 was used as a substrate immobilized on a ProteoChip and incubated with an EGFR kinase to phosphorylate tyrosine residues of the substrate, followed by a fluorescence detection of the substrate recognized by a phospho-specific monoclonal antibody. Erkitinibs inhibited HeLa cell proliferation in a dose-dependent manner. In conclusion, these data suggest that Erkitinibs can be a specific inhibitor of an EGFR kinase and can be further developed as a potent anti-tumor agent.

  15. Small molecule kinase inhibitor LRRK2-IN-1 demonstrates potent activity against colorectal and pancreatic cancer through inhibition of doublecortin-like kinase 1

    PubMed Central

    2014-01-01

    Background Doublecortin-like kinase 1 (DCLK1) is emerging as a tumor specific stem cell marker in colorectal and pancreatic cancer. Previous in vitro and in vivo studies have demonstrated the therapeutic effects of inhibiting DCLK1 with small interfering RNA (siRNA) as well as genetically targeting the DCLK1+ cell for deletion. However, the effects of inhibiting DCLK1 kinase activity have not been studied directly. Therefore, we assessed the effects of inhibiting DCLK1 kinase activity using the novel small molecule kinase inhibitor, LRRK2-IN-1, which demonstrates significant affinity for DCLK1. Results Here we report that LRRK2-IN-1 demonstrates potent anti-cancer activity including inhibition of cancer cell proliferation, migration, and invasion as well as induction of apoptosis and cell cycle arrest. Additionally we found that it regulates stemness, epithelial-mesenchymal transition, and oncogenic targets on the molecular level. Moreover, we show that LRRK2-IN-1 suppresses DCLK1 kinase activity and downstream DCLK1 effector c-MYC, and demonstrate that DCLK1 kinase activity is a significant factor in resistance to LRRK2-IN-1. Conclusions Given DCLK1’s tumor stem cell marker status, a strong understanding of its biological role and interactions in gastrointestinal tumors may lead to discoveries that improve patient outcomes. The results of this study suggest that small molecule inhibitors of DCLK1 kinase should be further investigated as they may hold promise as anti-tumor stem cell drugs. PMID:24885928

  16. Characterizing of Four Common BCR-ABL Kinase Domain Mutations (T315I, Y253H, M351T and E255K) in Iranian Chronic Myelogenous Leukemia Patients With Imatinib Resistance

    PubMed Central

    Rejali, Leili; Poopak, Behzad; Hasanzad, Mandana; Sheikhsofla, Fatemeh; Varnoosfaderani, Ameneh Saadat; Safari, Nazila; Rabieipoor, Saghar

    2015-01-01

    Background: Chronic myelogenous leukemia (CML) is a kind of hematopoietic stem-cell cancer. A significant number of CML patients who do not achieve an acceptable response to therapy, show acquired resistance against Imatinib. One of the most considerable causes of resistance against Imatinib as the first line of therapy, are BCR-ABL kinase domain mutations. Objectives: One of the most considerable causes of resistance against Imatinib as the first line of therapy, are BCR-ABL kinase domain mutations. Patients and Methods: The study was performed on 39 CML patients with Imatinib resistance. Basic hematologic parameters in blood samples were checked to identify hematologic response. To identify molecular response, BCR-ABL/ABL ratio was assessed by Real-time PCR. The ABL kinase domain amplification was performed by PCR. Restriction fragment length polymorphism (RFLP) was performed to detect four common mutations (T315I, Y253H, E255K and M351T). Finally the results were approved by direct sequencing. Results: In this study, the Y253H mutation, detected by RFLP method and confirmed by direct sequencing, was the prevalent ABL kinase domain mutation in these 39 CML patients. The G250E, V379I and L384M mutations were found in three different cases with failure molecular response. CML patients with these four ABL kinase domain mutations cannot achieve major molecular response (MMR). In addition, complete hematologic response (CHR) was observed only in the V379I mutated case and not in other mutated patients. Conclusions: Identification of ABL kinase domain mutations may be used as a proper and useful method for improving therapeutic strategies, avoiding delay in treatment and excessive expenditure in CML patients with Imatinib resistance. PMID:26413254

  17. QSAR based docking studies of marine algal anticancer compounds as inhibitors of protein kinase B (PKBβ).

    PubMed

    Davis, G Dicky John; Vasanthi, A Hannah Rachel

    2015-08-30

    Marine algae are prolific source of bioactive secondary metabolites and are found to be active against different cancer cell lines. QSAR studies will explicate the significance of a particular class of descriptor in eliciting anticancer activity against a cancer type. Marine algal compounds showing anticancer activity against six different cancer cell lines namely MCF-7, A431, HeLa, HT-29, P388 and A549 taken from Seaweed metabolite database were subjected to comprehensive QSAR modeling studies. A hybrid-GA (genetic algorithm) optimization technique for descriptor space reduction and multiple linear regression analysis (MLR) approach was used as fitness functions. Cell lines HeLa and MCF-7 showed good statistical quality (R(2)∼0.75, Q(2)∼0.65) followed by A431, HT29 and P388 cell lines with reasonable statistical values (R(2)∼0.70, Q(2)∼0.60). The models developed were interpretable, with good statistical and predictive significance. Molecular descriptor analyses revealed that Baumann's alignment-independent topological descriptors had a major role in variation of activity along with other descriptors. Incidentally, earlier QSAR analysis on a variety of chemically diverse PKBα inhibitors revealed Baumann's alignment-independent topological descriptors that differentiated the molecules binding to Protein kinase B (PKBα) kinase or PH domain, hence a docking study of two crystal structures of PKBβ was performed for identification of novel ATP-competitive inhibitors of PKBβ. Five compounds had a good docking score and Callophycin A showed better ligand efficiency than other PKBβ inhibitors. Furthermore in silico pharmacokinetic and toxicity studies also showed that Callophycin A had a high drug score (0.85) compared to the other inhibitors. These results encourages discovering novel inhibitors for cancer therapeutic targets by screening metabolites from marine algae. PMID:25936945

  18. De Novo Design of Protein Kinase Inhibitors by in Silico Identification of Hinge Region-Binding Fragments

    PubMed Central

    2013-01-01

    Protein kinases constitute an attractive family of enzyme targets with high relevance to cell and disease biology. Small molecule inhibitors are powerful tools to dissect and elucidate the function of kinases in chemical biology research and to serve as potential starting points for drug discovery. However, the discovery and development of novel inhibitors remains challenging. Here, we describe a structure-based de novo design approach that generates novel, hinge-binding fragments that are synthetically feasible and can be elaborated to small molecule libraries. Starting from commercially available compounds, core fragments were extracted, filtered for pharmacophoric properties compatible with hinge-region binding, and docked into a panel of protein kinases. Fragments with a high consensus score were subsequently short-listed for synthesis. Application of this strategy led to a number of core fragments with no previously reported activity against kinases. Small libraries around the core fragments were synthesized, and representative compounds were tested against a large panel of protein kinases and subjected to co-crystallization experiments. Each of the tested compounds was active against at least one kinase, but not all kinases in the panel were inhibited. A number of compounds showed high ligand efficiencies for therapeutically relevant kinases; among them were MAPKAP-K3, SRPK1, SGK1, TAK1, and GCK for which only few inhibitors are reported in the literature. PMID:23534475

  19. High Throughput Screening of a Library Based on Kinase Inhibitor Scaffolds Against Mycobacterium Tuberculosis H37Rv

    PubMed Central

    Reynolds, Robert C.; Ananthan, Subramaniam; Faaleolea, Ellen; Hobrath, Judith V.; Kwong, Cecil D.; Maddox, Clinton; Rasmussen, Lynn; Sosa, Melinda I.; Thammasuvimol, Elizabeth; White, E. Lucile; Zhang, Wei; Secrist, John A.

    2011-01-01

    Summary Kinase targets are being pursued in a variety of diseases beyond cancer, including immune and metabolic as well as viral, parasitic, fungal and bacterial. In particular, there is a relatively recent interest in kinase and ATP-binding targets in Mycobacterium tuberculosis in order to identify inhibitors and potential drugs for essential proteins that are not targeted by current drug regimens. Herein, we report the high throughput screening results for a targeted library of approximately 26,000 compounds that was designed based on current kinase inhibitor scaffolds and known kinase binding sites. The phenotypic data presented herein may form the basis for selecting scaffolds/compounds for further enzymatic screens against specific kinase or other ATP-binding targets in Mycobacterium tuberculosis based on the apparent activity against the whole bacteria in vitro. PMID:21708485

  20. Molecular docking and NMR binding studies to identify novel inhibitors of human phosphomevalonate kinase

    SciTech Connect

    Boonsri, Pornthip; Neumann, Terrence S.; Olson, Andrew L.; Cai, Sheng; Herdendorf, Timothy J.; Miziorko, Henry M.; Hannongbua, Supa; Sem, Daniel S.

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Natural and synthetic inhibitors of human phosphomevalonate kinase identified. Black-Right-Pointing-Pointer Virtual screening yielded a hit rate of 15%, with inhibitor K{sub d}'s of 10-60 {mu}M. Black-Right-Pointing-Pointer NMR studies indicate significant protein conformational changes upon binding. -- Abstract: Phosphomevalonate kinase (PMK) phosphorylates mevalonate-5-phosphate (M5P) in the mevalonate pathway, which is the sole source of isoprenoids and steroids in humans. We have identified new PMK inhibitors with virtual screening, using autodock. Promising hits were verified and their affinity measured using NMR-based {sup 1}H-{sup 15}N heteronuclear single quantum coherence (HSQC) chemical shift perturbation and fluorescence titrations. Chemical shift changes were monitored, plotted, and fitted to obtain dissociation constants (K{sub d}). Tight binding compounds with K{sub d}'s ranging from 6-60 {mu}M were identified. These compounds tended to have significant polarity and negative charge, similar to the natural substrates (M5P and ATP). HSQC cross peak changes suggest that binding induces a global conformational change, such as domain closure. Compounds identified in this study serve as chemical genetic probes of human PMK, to explore pharmacology of the mevalonate pathway, as well as starting points for further drug development.