Science.gov

Sample records for ablation enhances age-dependent

  1. Ion acceleration enhanced by target ablation

    SciTech Connect

    Zhao, S.; State Key Laboratory of Nuclear Physics and Technology, and Key Lab of HEDPS, CAPT, Peking University, Beijing 100871; Institute of Radiation, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden

    2015-07-15

    Laser proton acceleration can be enhanced by using target ablation, due to the energetic electrons generated in the ablation preplasma. When the ablation pulse matches main pulse, the enhancement gets optimized because the electrons' energy density is highest. A scaling law between the ablation pulse and main pulse is confirmed by the simulation, showing that for given CPA pulse and target, proton energy improvement can be achieved several times by adjusting the target ablation.

  2. Ablation enhancement of silicon by ultrashort double-pulse laser ablation

    SciTech Connect

    Zhao, Xin; Shin, Yung C.

    In this study, the ultrashort double-pulse ablation of silicon is investigated. An atomistic simulation model is developed to analyze the underlying physics. It is revealed that the double-pulse ablation could significantly increase the ablation rate of silicon, compared with the single pulse ablation with the same total pulse energy, which is totally different from the case of metals. In the long pulse delay range (over 1 ps), the enhancement is caused by the metallic transition of melted silicon with the corresponding absorption efficiency. At ultrashort pulse delay (below 1 ps), the enhancement is due to the electron excitation by the first pulse.more » The enhancement only occurs at low and moderate laser fluence. The ablation is suppressed at high fluence due to the strong plasma shielding effect.« less

  3. Contrast-enhanced harmonic ultrasound imaging in ablation therapy for primary hepatocellular carcinoma.

    PubMed

    Minami, Yasunori; Kudo, Masatoshi

    2009-12-31

    The success rate of percutaneous radiofrequency (RF) ablation for hepatocellular carcinoma (HCC) depends on correct targeting via an imaging technique. However, RF electrode insertion is not completely accurate for residual HCC nodules because B-mode ultrasound (US), color Doppler, and power Doppler US findings cannot adequately differentiate between treated and viable residual tumor tissue. Electrode insertion is also difficult when we must identify the true HCC nodule among many large regenerated nodules in cirrhotic liver. Two breakthroughs in the field of US technology, harmonic imaging and the development of second-generation contrast agents, have recently been described and have demonstrated the potential to dramatically broaden the scope of US diagnosis of hepatic lesions. Contrast-enhanced harmonic US imaging with an intravenous contrast agent can evaluate small hypervascular HCC even when B-mode US cannot adequately characterize tumor. Therefore, contrast-enhanced harmonic US can facilitate RF ablation electrode placement in hypervascular HCC, which is poorly depicted by B-mode US. The use of contrast-enhanced harmonic US in ablation therapy for liver cancer is an efficient approach.

  4. Computed Tomography Assessment of Ablation Zone Enhancement in Patients With Early-Stage Lung Cancer After Stereotactic Ablative Radiotherapy.

    PubMed

    Moore, William; Chaya, Yair; Chaudhry, Ammar; Depasquale, Britney; Glass, Samantha; Lee, Susan; Shin, James; Mikhail, George; Bhattacharji, Priya; Kim, Bong; Bilfinger, Thomas

    2015-01-01

    Stereotactic ablative radiotherapy (SABR) offers a curative treatment for lung cancer in patients who are marginal surgical candidates. However, unlike traditional surgery the lung cancer remains in place after treatment. Thus, imaging follow-up for evaluation of recurrence is of paramount importance. In this retrospective designed Institutional Review Board-approved study, follow-up contrast-enhanced computed tomography (CT) exams were performed on sixty one patients to evaluate enhancement pattern in the ablation zone at 1, 3, 6, and 12 months after SABR. Eleven patients had recurrence within the ablation zone after SABR. The postcontrast enhancement in the recurrence group showed a washin and washout phenomenon, whereas the radiation-induced lung injury group showed continuous enhancement suggesting an inflammatory process. The textural feature of the ablation zone of enhancement and perfusion as demonstrated in computed tomography nodule enhancement may allow early differentiation of recurrence from radiation-induced lung injury in patients' status after SABR or primary lung cancer.

  5. Photoactive dye enhanced tissue ablation for endoscopic laser prostatectomy

    NASA Astrophysics Data System (ADS)

    Ahn, Minwoo; Nguyen, Trung Hau; Nguyen, Van Phuc; Oh, Junghwan; Kang, Hyun Wook

    2015-02-01

    Laser light has been widely used as a surgical tool to treat benign prostate hyperplasia with high laser power. The purpose of this study was to validate the feasibility of photoactive dye injection to enhance light absorption and eventually to facilitate tissue ablation with low laser power. The experiment was implemented on chicken breast due to minimal optical absorption Amaranth (AR), black dye (BD), hemoglobin powder (HP), and endoscopic marker (EM), were selected and tested in vitro with a customized 532-nm laser system with radiant exposure ranging from 0.9 to 3.9 J/cm2. Light absorbance and ablation threshold were measured with UV-VIS spectrometer and Probit analysis, respectively, and compared to feature the function of the injected dyes. Ablation performance with dye-injection was evaluated in light of radiant exposure, dye concentration, and number of injection. Higher light absorption by injected dyes led to lower ablation threshold as well as more efficient tissue removal in the order of AR, BD, HP, and EM. Regardless of the injected dyes, ablation efficiency principally increased with input parameter. Among the dyes, AR created the highest ablation rate of 44.2+/-0.2 μm/pulse due to higher absorbance and lower ablation threshold. Preliminary tests on canine prostate with a hydraulic injection system demonstrated that 80 W with dye injection yielded comparable ablation efficiency to 120 W with no injection, indicating 33 % reduced laser power with almost equivalent performance. In-depth comprehension on photoactive dye-enhanced tissue ablation can help accomplish efficient and safe laser treatment for BPH with low power application.

  6. Six-month follow-up of isthmus-dependent right atrial flutter ablation using a remote magnetic catheter navigation system: a case-control study.

    PubMed

    Huo, Yan; Hindricks, Gerhard; Piorkowski, Christopher; Bollmann, Andreas; Wetzel, Ulrike; Sommer, Phillip; Gaspar, Thomas; Kottkamp, Hans; Arya, Arash

    2010-06-01

    The objective of this study was to compare results between the magnetic navigation system (MNS) and conventional catheter ablation of cavo-tricuspid isthmus (CTI)-dependent right atrial flutter (AFL) in a case control study. A remote MNS has been used for ablation of various arrhythmias including CTI-dependent AFL but comparative results between MNS and conventional ablation are not available. Between May and September 2007, a total of 51 consecutive patients (45 men, mean age 65.4 +/- 9.4 years) had undergone catheter ablation for CTI-dependent AFL. The catheter ablation (70 degrees C, 70 W, 90 s) was performed with either an 8-mm-tip magnetic catheter using MNS (case group, n = 26, 23 men, mean age 64.6 +/- 9.6 y) or a conventional 8-mm catheter (case group, n = 25, 22 men, mean age 65.4 +/- 9.1 y). Acute procedural success was defined as complete bidirectional isthmus block and success at six months was defined as absence of AFL during the six months follow-up. With respect to baseline characteristics there were no differences between the two groups. The procedure time in MNS and conventional group was [median (range)] 53 (30-130) min and 45 (30-100) min, respectively (P = 0.12). Acute success was achieved by MNS and conventional ablation in 25/26 (96.2%) and 25/25 (100%) of patients, respectively (P = 0.53). During the six months of follow-up 4 patients, 2 in each group, experienced recurrence (P = 0.90). No major complication occurred during the procedure. Charring on the catheter tip occurred in 5 patients (19.2%) in MNS and none of the patients in the control group (P <0.05). This case-control study demonstrated the acute and mid-term efficacy and safety of catheter ablation by MNS for CTI-dependent AFL, similar to rates achieved by conventional radiofrequency catheter ablation.

  7. Ultrasound ablation enhances drug accumulation and survival in mammary carcinoma models.

    PubMed

    Wong, Andrew W; Fite, Brett Z; Liu, Yu; Kheirolomoom, Azadeh; Seo, Jai W; Watson, Katherine D; Mahakian, Lisa M; Tam, Sarah M; Zhang, Hua; Foiret, Josquin; Borowsky, Alexander D; Ferrara, Katherine W

    2016-01-01

    Magnetic resonance-guided focused ultrasound (MRgFUS) facilitates noninvasive image-guided conformal thermal therapy of cancer. Yet in many scenarios, the sensitive tissues surrounding the tumor constrain the margins of ablation; therefore, augmentation of MRgFUS with chemotherapy may be required to destroy remaining tumor. Here, we used 64Cu-PET-CT, MRI, autoradiography, and fluorescence imaging to track the kinetics of long-circulating liposomes in immunocompetent mammary carcinoma-bearing FVB/n and BALB/c mice. We observed a 5-fold and 50-fold enhancement of liposome and drug concentration, respectively, within MRgFUS thermal ablation-treated tumors along with dense accumulation within the surrounding tissue rim. Ultrasound-enhanced drug accumulation was rapid and durable and greatly increased total tumor drug exposure over time. In addition, we found that the small molecule gadoteridol accumulates around and within ablated tissue. We further demonstrated that dilated vasculature, loss of vascular integrity resulting in extravasation of blood cells, stromal inflammation, and loss of cell-cell adhesion and tissue architecture all contribute to the enhanced accumulation of the liposomes and small molecule probe. The locally enhanced liposome accumulation was preserved even after a multiweek protocol of doxorubicin-loaded liposomes and partial ablation. Finally, by supplementing ablation with concurrent liposomal drug therapy, a complete and durable response was obtained using protocols for which a sub-mm rim of tumor remained after ablation.

  8. Likelihood of Incomplete Kidney Tumor Ablation with Radio Frequency Energy: Degree of Enhancement Matters.

    PubMed

    Lay, Aaron H; Stewart, Jeremy; Canvasser, Noah E; Cadeddu, Jeffrey A; Gahan, Jeffrey C

    2016-07-01

    Larger size and clear cell histopathology are associated with worse outcomes for malignant renal tumors treated with radio frequency ablation. We hypothesize that greater tumor enhancement may be a risk factor for radio frequency ablation failure due to increased vascularity. A retrospective review of patients who underwent radio frequency ablation for renal tumors with contrast enhanced imaging available was performed. The change in Hounsfield units (HU) of the tumor from the noncontrast phase to the contrast enhanced arterial phase was calculated. Radio frequency ablation failure rates for biopsy confirmed malignant tumors were compared using the chi-squared test. Multivariate logistic analysis was performed to assess predictive variables for radio frequency ablation failure. Disease-free survival was calculated using Kaplan-Meier analysis. A total of 99 patients with biopsy confirmed malignant renal tumors and contrast enhanced imaging were identified. The incomplete ablation rate was significantly lower for tumors with enhancement less than 60 vs 60 HU or greater (0.0% vs 14.6%, p=0.005). On multivariate logistic regression analysis tumor enhancement 60 HU or greater (OR 1.14, p=0.008) remained a significant predictor of incomplete initial ablation. The 5-year disease-free survival for size less than 3 cm was 100% vs 69.2% for size 3 cm or greater (p <0.01), while 5-year disease-free survival for HU change less than 60 was 100% vs 92.4% for HU change 60 or greater (p=0.24). Biopsy confirmed malignant renal tumors, which exhibit a change in enhancement of 60 HU or greater, experience a higher rate of incomplete initial tumor ablation than tumors with enhancement less than 60 HU. Size 3 cm or greater portends worse 5-year disease-free survival after radio frequency ablation. The degree of enhancement should be considered when counseling patients before radio frequency ablation. Copyright © 2016 American Urological Association Education and Research, Inc

  9. A study of angular dependence in the ablation rate of polymers by nanosecond pulses

    NASA Astrophysics Data System (ADS)

    Pedder, James E. A.; Holmes, Andrew S.

    2006-02-01

    Measurements of ablation rate have traditionally been carried out only at normal incidence. However, in real-world applications ablation is often carried out at oblique angles, and it is useful to have prior knowledge of the ablation rate in this case. Detailed information about the angular dependence is also important for the development of ablation simulation tools, and can provide additional insight into the ablation mechanism. Previously we have reported on the angular dependence of direct-write ablation at 266 nm wavelength in solgel and polymer materials. In this paper we present a systematic study of angular dependence for excimer laser ablation of two polymer materials of interest for microfabrication: polycarbonate and SU8 photoresist. The results are used to improve simulation models to aid in mask design.

  10. Ultrasound ablation enhances drug accumulation and survival in mammary carcinoma models

    PubMed Central

    Wong, Andrew W.; Fite, Brett Z.; Liu, Yu; Kheirolomoom, Azadeh; Seo, Jai W.; Watson, Katherine D.; Mahakian, Lisa M.; Tam, Sarah M.; Zhang, Hua; Foiret, Josquin; Borowsky, Alexander D.; Ferrara, Katherine W.

    2015-01-01

    Magnetic resonance–guided focused ultrasound (MRgFUS) facilitates noninvasive image-guided conformal thermal therapy of cancer. Yet in many scenarios, the sensitive tissues surrounding the tumor constrain the margins of ablation; therefore, augmentation of MRgFUS with chemotherapy may be required to destroy remaining tumor. Here, we used 64Cu-PET-CT, MRI, autoradiography, and fluorescence imaging to track the kinetics of long-circulating liposomes in immunocompetent mammary carcinoma–bearing FVB/n and BALB/c mice. We observed a 5-fold and 50-fold enhancement of liposome and drug concentration, respectively, within MRgFUS thermal ablation–treated tumors along with dense accumulation within the surrounding tissue rim. Ultrasound-enhanced drug accumulation was rapid and durable and greatly increased total tumor drug exposure over time. In addition, we found that the small molecule gadoteridol accumulates around and within ablated tissue. We further demonstrated that dilated vasculature, loss of vascular integrity resulting in extravasation of blood cells, stromal inflammation, and loss of cell-cell adhesion and tissue architecture all contribute to the enhanced accumulation of the liposomes and small molecule probe. The locally enhanced liposome accumulation was preserved even after a multiweek protocol of doxorubicin-loaded liposomes and partial ablation. Finally, by supplementing ablation with concurrent liposomal drug therapy, a complete and durable response was obtained using protocols for which a sub-mm rim of tumor remained after ablation. PMID:26595815

  11. Sphere-enhanced microwave ablation (sMWA) versus bland microwave ablation (bMWA): technical parameters, specific CT 3D rendering and histopathology.

    PubMed

    Gockner, T L; Zelzer, S; Mokry, T; Gnutzmann, D; Bellemann, N; Mogler, C; Beierfuß, A; Köllensperger, E; Germann, G; Radeleff, B A; Stampfl, U; Kauczor, H U; Pereira, P L; Sommer, C M

    2015-04-01

    This study was designed to compare technical parameters during ablation as well as CT 3D rendering and histopathology of the ablation zone between sphere-enhanced microwave ablation (sMWA) and bland microwave ablation (bMWA). In six sheep-livers, 18 microwave ablations were performed with identical system presets (power output: 80 W, ablation time: 120 s). In three sheep, transarterial embolisation (TAE) was performed immediately before microwave ablation using spheres (diameter: 40 ± 10 μm) (sMWA). In the other three sheep, microwave ablation was performed without spheres embolisation (bMWA). Contrast-enhanced CT, sacrifice, and liver harvest followed immediately after microwave ablation. Study goals included technical parameters during ablation (resulting power output, ablation time), geometry of the ablation zone applying specific CT 3D rendering with a software prototype (short axis of the ablation zone, volume of the largest aligned ablation sphere within the ablation zone), and histopathology (hematoxylin-eosin, Masson Goldner and TUNEL). Resulting power output/ablation times were 78.7 ± 1.0 W/120 ± 0.0 s for bMWA and 78.4 ± 1.0 W/120 ± 0.0 s for sMWA (n.s., respectively). Short axis/volume were 23.7 ± 3.7 mm/7.0 ± 2.4 cm(3) for bMWA and 29.1 ± 3.4 mm/11.5 ± 3.9 cm(3) for sMWA (P < 0.01, respectively). Histopathology confirmed the signs of coagulation necrosis as well as early and irreversible cell death for bMWA and sMWA. For sMWA, spheres were detected within, at the rim, and outside of the ablation zone without conspicuous features. Specific CT 3D rendering identifies a larger ablation zone for sMWA compared with bMWA. The histopathological signs and the detectable amount of cell death are comparable for both groups. When comparing sMWA with bMWA, TAE has no effect on the technical parameters during ablation.

  12. Photoactive dye-enhanced tissue ablation for endoscopic laser prostatectomy.

    PubMed

    Ahn, Minwoo; Hau, Nguyen Trung; Van Phuc, Nguyen; Oh, Junghwan; Kang, Hyun Wook

    2014-11-01

    Laser light has been widely used as a surgical tool to treat benign prostate hyperplasia (BPH) over 20 years. Recently, application of high laser power up to 200 W was often reported to swiftly remove a large amount of prostatic tissue. The purpose of this study was to validate the feasibility of photoactive dye injection to enhance light absorption and eventually to facilitate tissue vaporization with low laser power. Chicken breast tissue was selected as a target tissue due to minimal optical absorption at the visible wavelength. Four biocompatible photoactive dyes, including amaranth (AR), black dye (BD), hemoglobin powder (HP), and endoscopic marker (EM), were selected and tested in vitro with a customized 532 nm laser system with radiant exposure ranging from 0.9 to 3.9 J/cm(2) . Light absorbance and ablation threshold were measured with UV-Vis spectrometer and Probit analysis, respectively, and compared to feature the function of the injected dyes. Ablation performance with dye-injection was evaluated in light of radiant exposure, dye concentration, and number of injection. Higher light absorption by injected dyes led to lower ablation threshold as well as more efficient tissue removal in the order of AR, BD, HP, and EM. Regardless of the injected dyes, ablation efficiency principally increased with radiant exposure, dye concentration, and number of injection. Among the dyes, AR created the highest ablation rate of 44.2 ± 0.2 µm/pulse due to higher absorbance and lower ablation threshold. High aspect ratios up to 7.1 ± 0.4 entailed saturation behavior in the tissue ablation injected with AR and BD, possibly resulting from plume shielding and increased scattering due to coagulation. Preliminary tests on canine prostate with a hydraulic injection system demonstrated that 80 W with dye injection yielded comparable ablation efficiency to 120 W with no injection, indicating 33% reduced laser power with almost equivalent performance. Due to

  13. Gd-EOB-DTPA-Enhanced MR Guidance in Thermal Ablation of Liver Malignancies

    PubMed Central

    Rosenberg, Christian; Jahn, Andrea; Pickartz, Tilman; Wahnschaffe, Ulrich; Patrzyk, Maciej; Hosten, Norbert

    2014-01-01

    Objective To evaluate the potency of Gd-EOB-DTPA to support hepatic catheter placement in laser ablation procedures by quantifying time-dependent delineation effects for instrumentation and target tumor within liver parenchyma. Monitoring potential influence on online MR thermometry during the ablation procedure is a secondary aim. Materials and Methods 30 cases of MR-guided laser ablation were performed after i.v. bolus injection of gadoxetic acid (0.025 mmol/Kg Gd-EOB-DTPA; Bayer Healthcare, Berlin, Germany). T1-weighted GRE sequences were used for applicator guidance (FLASH 3D) in the catheter placement phase and for therapy monitoring (FLASH 2D) in the therapy phase. SNR and consecutive CNR values were measured for elements of interest plotted over time both for catheter placement and therapy phase and compared with a non-contrast control group of 19 earlier cases. Statistical analysis was realized using the paired Wilcoxon test. Results Sustainable signal elevation of liver parenchyma in the contrast-enhanced group was sufficient to silhouette both target tumor and applicator against the liver. Differences in time dependent CNR alteration were highly significant between contrast-enhanced and non-contrast interventions for parenchyma and target on the one hand (p = 0.020) and parenchyma and instrument on the other hand (p = 0.002). Effects lasted for the whole procedure (monitoring up to 60 min) and were specific for the contrast-enhanced group. Contrasting maxima were seen after median 30 (applicator) and 38 (tumor) minutes, in the potential core time of a multineedle procedure. Contrast influence on T1 thermometry for real-time monitoring of thermal impact was not significant (p = 0.068–0.715). Conclusion Results strongly support anticipated promotive effects of Gd-EOB-DTPA for MR-guided percutaneous liver interventions by proving and quantifying the delineating effects for therapy-relevant elements in the procedure. Time benefit, cost

  14. Gd-EOB-DTPA-enhanced MR guidance in thermal ablation of liver malignancies.

    PubMed

    Rosenberg, Christian; Jahn, Andrea; Pickartz, Tilman; Wahnschaffe, Ulrich; Patrzyk, Maciej; Hosten, Norbert

    2014-01-01

    To evaluate the potency of Gd-EOB-DTPA to support hepatic catheter placement in laser ablation procedures by quantifying time-dependent delineation effects for instrumentation and target tumor within liver parenchyma. Monitoring potential influence on online MR thermometry during the ablation procedure is a secondary aim. 30 cases of MR-guided laser ablation were performed after i.v. bolus injection of gadoxetic acid (0.025 mmol/Kg Gd-EOB-DTPA; Bayer Healthcare, Berlin, Germany). T1-weighted GRE sequences were used for applicator guidance (FLASH 3D) in the catheter placement phase and for therapy monitoring (FLASH 2D) in the therapy phase. SNR and consecutive CNR values were measured for elements of interest plotted over time both for catheter placement and therapy phase and compared with a non-contrast control group of 19 earlier cases. Statistical analysis was realized using the paired Wilcoxon test. Sustainable signal elevation of liver parenchyma in the contrast-enhanced group was sufficient to silhouette both target tumor and applicator against the liver. Differences in time dependent CNR alteration were highly significant between contrast-enhanced and non-contrast interventions for parenchyma and target on the one hand (p = 0.020) and parenchyma and instrument on the other hand (p = 0.002). Effects lasted for the whole procedure (monitoring up to 60 min) and were specific for the contrast-enhanced group. Contrasting maxima were seen after median 30 (applicator) and 38 (tumor) minutes, in the potential core time of a multineedle procedure. Contrast influence on T1 thermometry for real-time monitoring of thermal impact was not significant (p = 0.068-0.715). Results strongly support anticipated promotive effects of Gd-EOB-DTPA for MR-guided percutaneous liver interventions by proving and quantifying the delineating effects for therapy-relevant elements in the procedure. Time benefit, cost effectiveness and oncologic outcome of the described beneficiary effects

  15. Enhancement of Intermittent Androgen Ablation Therapy by Finasteride Administration in Animal Models

    DTIC Science & Technology

    2006-02-01

    1-0113 TITLE: Enhancement of Intermittent Androgen Ablation Therapy by Finasteride Administration in Animal Models...To) 14 JAN 2002 - 13 JAN 2006 4. TITLE AND SUBTITLE Enhancement of Intermittent Androgen Ablation Therapy by Finasteride 5a. CONTRACT NUMBER... finasteride , an inhibitor of T to DHT conversion. We have tested our hypothesis using LNCaP xenograft tumors in nude mice. Our experiments showed

  16. Specific ablation of Nampt in adult neural stem cells recapitulates their functional defects during aging

    PubMed Central

    Stein, Liana R; Imai, Shin-ichiro

    2014-01-01

    Neural stem/progenitor cell (NSPC) proliferation and self-renewal, as well as insult-induced differentiation, decrease markedly with age. The molecular mechanisms responsible for these declines remain unclear. Here, we show that levels of NAD+ and nicotinamide phosphoribosyltransferase (Nampt), the rate-limiting enzyme in mammalian NAD+ biosynthesis, decrease with age in the hippocampus. Ablation of Nampt in adult NSPCs reduced their pool and proliferation in vivo. The decrease in the NSPC pool during aging can be rescued by enhancing hippocampal NAD+ levels. Nampt is the main source of NSPC NAD+ levels and required for G1/S progression of the NSPC cell cycle. Nampt is also critical in oligodendrocytic lineage fate decisions through a mechanism mediated redundantly by Sirt1 and Sirt2. Ablation of Nampt in the adult NSPCs in vivo reduced NSPC-mediated oligodendrogenesis upon insult. These phenotypes recapitulate defects in NSPCs during aging, giving rise to the possibility that Nampt-mediated NAD+ biosynthesis is a mediator of age-associated functional declines in NSPCs. PMID:24811750

  17. Sphere-Enhanced Microwave Ablation (sMWA) Versus Bland Microwave Ablation (bMWA): Technical Parameters, Specific CT 3D Rendering and Histopathology

    SciTech Connect

    Gockner, T. L., E-mail: theresa.gockner@med.uni-heidelberg.de; Zelzer, S., E-mail: s.zelzer@dkfz-heidelberg.de; Mokry, T., E-mail: theresa.mokry@med.uni-heidelberg.de

    PurposeThis study was designed to compare technical parameters during ablation as well as CT 3D rendering and histopathology of the ablation zone between sphere-enhanced microwave ablation (sMWA) and bland microwave ablation (bMWA).MethodsIn six sheep-livers, 18 microwave ablations were performed with identical system presets (power output: 80 W, ablation time: 120 s). In three sheep, transarterial embolisation (TAE) was performed immediately before microwave ablation using spheres (diameter: 40 ± 10 μm) (sMWA). In the other three sheep, microwave ablation was performed without spheres embolisation (bMWA). Contrast-enhanced CT, sacrifice, and liver harvest followed immediately after microwave ablation. Study goals included technical parameters during ablation (resulting power output,more » ablation time), geometry of the ablation zone applying specific CT 3D rendering with a software prototype (short axis of the ablation zone, volume of the largest aligned ablation sphere within the ablation zone), and histopathology (hematoxylin-eosin, Masson Goldner and TUNEL).ResultsResulting power output/ablation times were 78.7 ± 1.0 W/120 ± 0.0 s for bMWA and 78.4 ± 1.0 W/120 ± 0.0 s for sMWA (n.s., respectively). Short axis/volume were 23.7 ± 3.7 mm/7.0 ± 2.4 cm{sup 3} for bMWA and 29.1 ± 3.4 mm/11.5 ± 3.9 cm{sup 3} for sMWA (P < 0.01, respectively). Histopathology confirmed the signs of coagulation necrosis as well as early and irreversible cell death for bMWA and sMWA. For sMWA, spheres were detected within, at the rim, and outside of the ablation zone without conspicuous features.ConclusionsSpecific CT 3D rendering identifies a larger ablation zone for sMWA compared with bMWA. The histopathological signs and the detectable amount of cell death are comparable for both groups. When comparing sMWA with bMWA, TAE has no effect on the technical parameters during ablation.« less

  18. Enhanced laser proton acceleration by target ablation on a femtosecond laser system

    NASA Astrophysics Data System (ADS)

    Liao, Q.; Wu, M. J.; Gong, Z.; Geng, Y. X.; Xu, X. H.; Li, D. Y.; Shou, Y. R.; Zhu, J. G.; Li, C. C.; Yang, M.; Li, T. S.; Lu, H. Y.; Ma, W. J.; Zhao, Y. Y.; Lin, C.; Yan, X. Q.

    2018-06-01

    Proton acceleration during the interaction of an ultraintense (6 × 1019 W/cm2) femtosecond (fs) laser pulse with a thin (2.5 μm) foil target pre-ablated by a picosecond (ps) pulse is experimentally and numerically investigated. Enhancements in both proton cut-off energy and charge are observed with the target ablation due to a large number of energetic electrons generated from the preformed preplasma in front of the target. The enhanced proton beams are successfully collected at 4-9 MeV with ±4% energy spread and then transported to the irradiating platform. The results show that for the interaction between fs laser pulse and μm-thickness target, proton energy and charge can be enhanced by target ablation using a ps laser pulse, which is valuable for application like cancer radiotherapy.

  19. Local ablation therapy with contrast-enhanced ultrasonography for hepatocellular carcinoma: a practical review

    PubMed Central

    Kim, Tae Kyoung; Khalili, Korosh; Jang, Hyun-Jung

    2015-01-01

    A successful program for local ablation therapy for hepatocellular carcinoma (HCC) requires extensive imaging support for diagnosis and localization of HCC, imaging guidance for the ablation procedures, and post-treatment monitoring. Contrast-enhanced ultrasonography (CEUS) has several advantages over computed tomography/magnetic resonance imaging (CT/MRI), including real-time imaging capability, sensitive detection of arterial-phase hypervascularity and washout, no renal excretion, no ionizing radiation, repeatability, excellent patient compliance, and relatively low cost. CEUS is useful for image guidance for isoechoic lesions. While contrast-enhanced CT/MRI is the standard method for the diagnosis of HCC and post-ablation monitoring, CEUS is useful when CT/MRI findings are indeterminate or CT/MRI is contraindicated. This article provides a practical review of the role of CEUS in imaging algorithms for pre- and post-ablation therapy for HCC. PMID:26169081

  20. Continuous Cavitation Designed for Enhancing Radiofrequency Ablation via a Special Radiofrequency Solidoid Vaporization Process.

    PubMed

    Zhang, Kun; Li, Pei; Chen, Hangrong; Bo, Xiaowan; Li, Xiaolong; Xu, Huixiong

    2016-02-23

    Lowering power output and radiation time during radiofrequency (RF) ablation is still a challenge. Although it is documented that metal-based magnetothermal conversion and microbubbles-based inertial cavitation have been tried to overcome above issues, disputed toxicity and poor magnetothermal conversion efficiency for metal-based nanoparticles and violent but transient cavitation for microbubbles are inappropriate for enhancing RF ablation. In this report, a strategy, i.e., continuous cavitation, has been proposed, and solid menthol-encapsulated poly lactide-glycolide acid (PLGA) nanocapsules have been constructed, as a proof of concept, to validate the role of such a continuous cavitation principle in continuously enhancing RF ablation. The synthesized PLGA-based nanocapsules can respond to RF to generate menthol bubbles via distinctive radiofrequency solidoid vaporization (RSV) process, meanwhile significantly enhance ultrasound imaging for HeLa solid tumor, and further facilitate RF ablation via the continuous cavitation, as systematically demonstrated both in vitro and in vivo. Importantly, this RSV strategy can overcome drawbacks and limitations of acoustic droplet vaporization (ADV) and optical droplet vaporization (ODV), and will probably find broad applications in further cancer theranostics.

  1. Irreversible electroporation ablation area enhanced by synergistic high- and low-voltage pulses.

    PubMed

    Yao, Chenguo; Lv, Yanpeng; Dong, Shoulong; Zhao, Yajun; Liu, Hongmei

    2017-01-01

    Irreversible electroporation (IRE) produced by a pulsed electric field can ablate tissue. In this study, we achieved an enhancement in ablation area by using a combination of short high-voltage pulses (HVPs) to create a large electroporated area and long low-voltage pulses (LVPs) to ablate the electroporated area. The experiments were conducted in potato tuber slices. Slices were ablated with an array of four pairs of parallel steel electrodes using one of the following four electric pulse protocols: HVP, LVP, synergistic HVP+LVP (SHLVP) or LVP+HVP. Our results showed that the SHLVPs more effectively necrotized tissue than either the HVPs or LVPs, even when the SHLVP dose was the same as or lower than the HVP or LVP doses. The HVP and LVP order mattered and only HVPs+LVPs (SHLVPs) treatments increased the size of the ablation zone because the HVPs created a large electroporated area that was more susceptible to the subsequent LVPs. Real-time temperature change monitoring confirmed that the tissue was non-thermally ablated by the electric pulses. Theoretical calculations of the synergistic effects of the SHLVPs on tissue ablation were performed. Our proposed SHLVP protocol provides options for tissue ablation and may be applied to optimize the current clinical IRE protocols.

  2. Irreversible electroporation ablation area enhanced by synergistic high- and low-voltage pulses

    PubMed Central

    2017-01-01

    Irreversible electroporation (IRE) produced by a pulsed electric field can ablate tissue. In this study, we achieved an enhancement in ablation area by using a combination of short high-voltage pulses (HVPs) to create a large electroporated area and long low-voltage pulses (LVPs) to ablate the electroporated area. The experiments were conducted in potato tuber slices. Slices were ablated with an array of four pairs of parallel steel electrodes using one of the following four electric pulse protocols: HVP, LVP, synergistic HVP+LVP (SHLVP) or LVP+HVP. Our results showed that the SHLVPs more effectively necrotized tissue than either the HVPs or LVPs, even when the SHLVP dose was the same as or lower than the HVP or LVP doses. The HVP and LVP order mattered and only HVPs+LVPs (SHLVPs) treatments increased the size of the ablation zone because the HVPs created a large electroporated area that was more susceptible to the subsequent LVPs. Real-time temperature change monitoring confirmed that the tissue was non-thermally ablated by the electric pulses. Theoretical calculations of the synergistic effects of the SHLVPs on tissue ablation were performed. Our proposed SHLVP protocol provides options for tissue ablation and may be applied to optimize the current clinical IRE protocols. PMID:28253331

  3. Fiber Bragg grating based temperature profiling in ferromagnetic nanoparticles-enhanced radiofrequency ablation

    NASA Astrophysics Data System (ADS)

    Jelbuldina, Madina; Korobeinyk, Alina V.; Korganbayev, Sanzhar; Inglezakis, Vassilis J.; Tosi, Daniele

    2018-07-01

    In this work, we report the real-time temperature profiling performed with a fiber Bragg grating (FBG) sensing system, applied to a ferromagnetic nanoparticles (NP)-enhanced radiofrequency ablation (RFA) for interventional cancer care. A minimally invasive RFA setup has been prepared and applied ex vivo on a liver phantom; NPs (with concentrations of 5 and 10 mg/mL) have been synthesized and injected within the tissue prior to ablation, in order to facilitate the heat distribution to the peripheral sides of the treated tissue. A network of 15 FBG sensors has been deployed in situ in order to detect the parenchymal temperature distribution and estimate the thermal profiles in real time during the ablation, highlighting the impact of the NPs on the RFA mechanism. The results confirm that NP-enhanced ablation with 5 mg/mL density shows a better heat penetration that a standard RFA achieving an almost double-sized lesion, while a higher density (10 mg/mL) does not improve the heat distribution. Thermal data are reported highlighting both spatial and temporal gradients, evaluating the capability of NPs to deliver sufficient heating to the peripheral sides of the tumor borders.

  4. Improved model for the angular dependence of excimer laser ablation rates in polymer materials

    NASA Astrophysics Data System (ADS)

    Pedder, J. E. A.; Holmes, A. S.; Dyer, P. E.

    2009-10-01

    Measurements of the angle-dependent ablation rates of polymers that have applications in microdevice fabrication are reported. A simple model based on Beer's law, including plume absorption, is shown to give good agreement with the experimental findings for polycarbonate and SU8, ablated using the 193 and 248 nm excimer lasers, respectively. The modeling forms a useful tool for designing masks needed to fabricate complex surface relief by ablation.

  5. Heat Stress-Induced PI3K/mTORC2-Dependent AKT Signaling Is a Central Mediator of Hepatocellular Carcinoma Survival to Thermal Ablation Induced Heat Stress

    PubMed Central

    Thompson, Scott M.; Callstrom, Matthew R.; Jondal, Danielle E.; Butters, Kim A.; Knudsen, Bruce E.; Anderson, Jill L.; Lien, Karen R.; Sutor, Shari L.; Lee, Ju-Seog; Thorgeirsson, Snorri S.; Grande, Joseph P.; Roberts, Lewis R.; Woodrum, David A.

    2016-01-01

    Thermal ablative therapies are important treatment options in the multidisciplinary care of patients with hepatocellular carcinoma (HCC), but lesions larger than 2–3 cm are plagued with high local recurrence rates and overall survival of these patients remains poor. Currently no adjuvant therapies exist to prevent local HCC recurrence in patients undergoing thermal ablation. The molecular mechanisms mediating HCC resistance to thermal ablation induced heat stress and local recurrence remain unclear. Here we demonstrate that the HCC cells with a poor prognostic hepatic stem cell subtype (Subtype HS) are more resistant to heat stress than HCC cells with a better prognostic hepatocyte subtype (Subtype HC). Moreover, sublethal heat stress rapidly induces phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) dependent-protein kinase B (AKT) survival signaling in HCC cells in vitro and at the tumor ablation margin in vivo. Conversely, inhibition of PI3K/mTOR complex 2 (mTORC2)-dependent AKT phosphorylation or direct inhibition of AKT function both enhance HCC cell killing and decrease HCC cell survival to sublethal heat stress in both poor and better prognostic HCC subtypes while mTOR complex 1 (mTORC1)-inhibition has no impact. Finally, we showed that AKT isoforms 1, 2 and 3 are differentially upregulated in primary human HCCs and that overexpression of AKT correlates with worse tumor biology and pathologic features (AKT3) and prognosis (AKT1). Together these findings define a novel molecular mechanism whereby heat stress induces PI3K/mTORC2-dependent AKT survival signaling in HCC cells and provide a mechanistic rationale for adjuvant AKT inhibition in combination with thermal ablation as a strategy to enhance HCC cell killing and prevent local recurrence, particularly at the ablation margin. PMID:27611696

  6. Structuring by field enhancement of glass, Ag, Au, and Co thin films using short pulse laser ablation

    NASA Astrophysics Data System (ADS)

    Ulmeanu, M.; Zamfirescu, M.; Rusen, L.; Luculescu, C.; Moldovan, A.; Stratan, A.; Dabu, R.

    2009-12-01

    Single pulse laser ablation of glass, Ag, Au, and Co thin films was experimentally investigated with a laser pulse width of 400 ps at a wavelength of 532 nm both in the far and near fields. In the far-field regime, the electromagnetic field results from a focused laser beam, while the near-field regime is realized by a combination of the focused laser beam incident on a spherical colloidal particle. For the near-field experiments we have used polystyrene colloidal particles of 700 nm diameter self-assembled or spin coated on top of the surfaces. Laser fluences applied are in the range of 0.01-10 J/cm2. The diameter and the morphologies of the ablated holes were investigated by optical microscopy, profilometry, scanning electron microscopy, and atomic force microscopy. The dependence of the shape of the holes reflects the fluence regime and the thermophysical properties, i.e., melting temperature and thermal diffusivity of the surfaces involved in the experiments. We give quantitative data about the fluence threshold, diameter, and depth ablation dependence for the far and near fields and discuss their values with respect to the enhancement factor of the intensity of the electromagnetic field due to the use of the colloidal particles. Theoretical estimations of the intensity enhancement were done using the finite-difference time-domain method by using the RSOFT software. The application of near fields allows structuring of the surfaces with structure dimension in the order of 100 nm and even below.

  7. Microjet-assisted dye-enhanced diode laser ablation of cartilaginous tissue

    NASA Astrophysics Data System (ADS)

    Pohl, John; Bell, Brent A.; Motamedi, Massoud; Frederickson, Chris J.; Wallace, David B.; Hayes, Donald J.; Cowan, Daniel

    1994-08-01

    Recent studies have established clinical application of laser ablation of cartilaginous tissue. The goal of this study was to investigate removal of cartilaginous tissue using diode laser. To enhance the interaction of laser light with tissue, improve the ablation efficiency and localize the extent of laser-induced thermal damage in surrounding tissue, we studied the use of a novel delivery system developed by MicroFab Technologies to dispense a known amount of Indocyanine Green (ICG) with a high spatial resolution to alter the optical properties of the tissue in a controlled fashion. Canine intervertebral disks were harvested and used within eight hours after collection. One hundred forty nL of ICG was topically applied to both annulus and nucleus at the desired location with the MicroJet prior to each irradiation. Fiber catheters (600 micrometers ) were used and positioned to irradiate the tissue with a 0.8 mm spot size. Laser powers of 3 - 10 W (Diomed, 810 nm) were used to irradiate the tissue with ten pulses (200 - 500 msec). Discs not stained with ICG were irradiated as control samples. Efficient tissue ablation (80 - 300 micrometers /pulse) was observed using ICG to enhance light absorption and confine thermal damage while there was no observable ablation in control studied. The extent of tissue damage observed microscopically was limited to 50 - 100 micrometers . The diode laser/Microjet combination showed promise for applications involving removal of cartilaginous tissue. This procedure can be performed using a low power compact diode laser, is efficient, and potentially more economical compared to procedures using conventional lasers.

  8. Differentiation of pre-ablation and post-ablation late gadolinium-enhanced cardiac MRI scans of longstanding persistent atrial fibrillation patients

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Zhuang, Xiahai; Khan, Habib; Haldar, Shouvik; Nyktari, Eva; Li, Lei; Ye, Xujiong; Slabaugh, Greg; Wong, Tom; Mohiaddin, Raad; Keegan, Jennifer; Firmin, David

    2017-03-01

    Late Gadolinium-Enhanced Cardiac MRI (LGE CMRI) is an emerging non-invasive technique to image and quantify preablation native and post-ablation atrial scarring. Previous studies have reported that enhanced image intensities of the atrial scarring in the LGE CMRI inversely correlate with the left atrial endocardial voltage invasively obtained by electro-anatomical mapping. However, the reported reproducibility of using LGE CMRI to identify and quantify atrial scarring is variable. This may be due to two reasons: first, delineation of the left atrium (LA) and pulmonary veins (PVs) anatomy generally relies on manual operation that is highly subjective, and this could substantially affect the subsequent atrial scarring segmentation; second, simple intensity based image features may not be good enough to detect subtle changes in atrial scarring. In this study, we hypothesized that texture analysis can provide reliable image features for the LGE CMRI images subject to accurate and objective delineation of the heart anatomy based on a fully-automated whole heart segmentation (WHS) method. We tested the extracted texture features to differentiate between pre-ablation and post-ablation LGE CMRI studies in longstanding persistent atrial fibrillation patients. These patients often have extensive native scarring and differentiation from post-ablation scarring can be difficult. Quantification results showed that our method is capable of solving this classification task, and we can envisage further deployment of this texture analysis based method for other clinical problems using LGE CMRI.

  9. Carbon Nanotube-Enhanced Carbon-Phenenolic Ablator Material

    NASA Technical Reports Server (NTRS)

    Kikolaev, P.; Stackpoole, M.; Fan, W.; Cruden, B. A.; Waid, M.; Moloney, P.; Arepalli, S.; Arnold, J.; Partridge, H.; Yowell, L.

    2006-01-01

    This viewgraph presentation reviews the use of PICA (phenolic impregnated carbon ablator) as the selected material for heat shielding for future earth return vehicles. It briefly reviews the manufacturing of PICA and the advantages for the use of heat shielding, and then explains the reason for using Carbon Nanotubes to improve strength of phenolic resin that binds carbon fibers together. It reviews the work being done to create a carbon nanotube enhanced PICA. Also shown are various micrographic images of the various PICA materials.

  10. Real-time monitoring of radiofrequency ablation and postablation assessment: accuracy of contrast-enhanced US in experimental rat liver model.

    PubMed

    Wu, Hanping; Wilkins, Luke R; Ziats, Nicholas P; Haaga, John R; Exner, Agata A

    2014-01-01

    To examine the accuracy of the unenhanced zone at contrast material-enhanced ultrasonography (US) in predicting coagulative necrosis during and 21 days after radiofrequency (RF) ablation by using radiologic-pathologic comparison. Animal studies were approved by the Institutional Animal Care and Use Committee. The livers of 28 rats underwent US-guided RF ablation. In four animals, contrast-enhanced US was performed during ablation and 2 hours and 2, 7, 14, and 21 days after ablation. The unenhanced zone area on US images was measured. DiI-labeled microbubbles were administered during ablation at 2, 4, and 6 minutes or at 2 hours and 2, 7, 14, and 21 days after ablation in the remaining 24 animals (n = 3 at each time point). One minute later, the animal was euthanized, and the ablated liver was harvested. Tissue samples were imaged to quantify total fluorescence, and NADH staining was performed on the same slice. Hematoxylin-eosin staining was also performed. The findings on fluorescence images, NADH-stained images, and hematoxylin-eosin-stained images were compared. The areas of DiI bubble-negative zones, NADH-negative zones, and lightly NADH-staining zones were measured. Data were analyzed by using one-way analysis of variance. The area of the unenhanced zone on contrast-enhanced US images increased during RF ablation and reached a maximum within 2 days after ablation. At histopathologic examination, a transition zone manifested adjacent to the coagulation zone until 2 days after ablation. The DiI-bubble negative zone on fluorescence images and the damaged zone (transition zone plus coagulation zone) on NADH-stained images increased rapidly within 2 hours after ablation, then slowly reached the maximum on day 2. The ratios of the mean areas of these two zones at hour 2 to those at day 2 were 94.6% and 95.6%, respectively. High uniformity between the damaged zone on NADH-stained images and the DiI bubble-negative zone on fluorescence images was noted at all time

  11. Preservation of the endometrial enhancement after magnetic resonance imaging-guided high-intensity focused ultrasound ablation of submucosal uterine fibroids.

    PubMed

    Kim, Young-Sun; Kim, Tae-Joong; Lim, Hyo Keun; Rhim, Hyunchul; Jung, Sin-Ho; Ahn, Joong Hyun; Lee, Jeong-Won; Kim, Byoung-Gie

    2017-09-01

    To evaluate the integrity of endometrial enhancement after magnetic resonance imaging-guided high-intensity focused ultrasound (MR-HIFU) ablation of submucosal uterine fibroids based on contrast-enhanced MRI findings, and to identify the risk factors for endometrial impairment. In total, 117 submucosal fibroids (diameter: 5.9 ± 3.0 cm) in 101 women (age: 43.6 ± 4.4 years) treated with MR-HIFU ablation were retrospectively analysed. Endometrial integrity was assessed with contrast-enhanced T1-weighted images at immediate (n = 101), 3-month (n = 62) and 12-month (n = 15) follow-ups. Endometrial impairment was classified into grades 0 (continuous endometrium), 1 (pin-point, full-thickness discontinuity), 2 (between grade 1 and 3), or 3 (full-thickness discontinuity >1 cm). Risk factors were assessed with generalized estimating equation (GEE) analysis. Among 117 fibroids, grades 0, 1, 2 and 3 endometrial impairments were observed at initial examination in 56.4%, 24.8%, 13.7% and 4.3%, respectively. Among 37 fibroid cases of endometrial impairment for which follow-ups were conducted, 30 showed improvements at 3- and/or 12-month follow-up. GEE analysis revealed the degree of endometrial protrusion was significantly associated with severity of endometrial injury (P < 0.0001). After MR-HIFU ablation of submucosal fibroids, endometrial enhancement was preserved intact or minimally impaired in most cases. Impaired endometrium, which is more common after treating endometrially-protruded fibroids, may recover spontaneously. • After MR-HIFU ablation for submucosal fibroid, endometrium is mostly preserved/minimally impaired. • Endometrial-protruded submucosal fibroid is susceptible to more severe endometrial impairment. • The impaired endometrium may recover spontaneously at follow-up MR exams.

  12. Percutaneous Microwave Ablation of Renal Angiomyolipomas.

    PubMed

    Cristescu, Mircea; Abel, E Jason; Wells, Shane; Ziemlewicz, Timothy J; Hedican, Sean P; Lubner, Megan G; Hinshaw, J Louis; Brace, Christopher L; Lee, Fred T

    2016-03-01

    To evaluate the safety and efficacy of US-guided percutaneous microwave (MW) ablation in the treatment of renal angiomyolipoma (AML). From January 2011 to April 2014, seven patients (5 females and 2 males; mean age 51.4) with 11 renal AMLs (9 sporadic type and 2 tuberous sclerosis associated) with a mean size of 3.4 ± 0.7 cm (range 2.4-4.9 cm) were treated with high-powered, gas-cooled percutaneous MW ablation under US guidance. Tumoral diameter, volume, and CT/MR enhancement were measured on pre-treatment, immediate post-ablation, and delayed post-ablation imaging. Clinical symptoms and creatinine were assessed on follow-up visits. All ablations were technically successful and no major complications were encountered. Mean ablation parameters were ablation power of 65 W (range 60-70 W), using 456 mL of hydrodissection fluid per patient, over 4.7 min (range 3-8 min). Immediate post-ablation imaging demonstrated mean tumor diameter and volume decreases of 1.8% (3.4-3.3 cm) and 1.7% (27.5-26.3 cm(3)), respectively. Delayed imaging follow-up obtained at a mean interval of 23.1 months (median 17.6; range 9-47) demonstrated mean tumor diameter and volume decreases of 29% (3.4-2.4 cm) and 47% (27.5-12.1 cm(3)), respectively. Tumoral enhancement decreased on immediate post-procedure and delayed imaging by CT/MR parameters, indicating decreased tumor vascularity. No patients required additional intervention and no patients experienced spontaneous bleeding post-ablation. Our early experience with high-powered, gas-cooled percutaneous MW ablation demonstrates it to be a safe and effective modality to devascularize and decrease the size of renal AMLs.

  13. Polycrystalline Si nanoparticles and their strong aging enhancement of blue photoluminescence

    NASA Astrophysics Data System (ADS)

    Yang, Shikuan; Cai, Weiping; Zeng, Haibo; Li, Zhigang

    2008-07-01

    Nearly spherical polycrystalline Si nanoparticles with 20 nm diameter were fabricated based on laser ablation of silicon wafer immersed in sodium dodecyl sulfate aqueous solution. Such Si nanoparticles consist of disordered areas and ultrafine grains of 3 nm in mean size and exhibit significant photoluminescence in blue region. Importantly, aging at ambient air leads to continuing enhancement of the emission (more than 130 times higher in 16 weeks) showing stable and strong blue emission. This aging enhancement is attributed to progressive passivation of nonradiative Pb centers corresponding to silicon dangling bonds on the particles' surface. This study could be helpful in pushing Si into optoelectronic field and Si-based full color display, biomedical tagging, and flash memories.

  14. Real-time Monitoring of Radiofrequency Ablation and Postablation Assessment: Accuracy of Contrast-enhanced US in Experimental Rat Liver Model

    PubMed Central

    Wu, Hanping; Wilkins, Luke R.; Ziats, Nicholas P.; Haaga, John R.

    2014-01-01

    Purpose To examine the accuracy of the unenhanced zone at contrast material–enhanced ultrasonography (US) in predicting coagulative necrosis during and 21 days after radiofrequency (RF) ablation by using radiologic-pathologic comparison. Materials and methods Animal studies were approved by the Institutional Animal Care and Use Committee. The livers of 28 rats underwent US-guided RF ablation. In four animals, contrast-enhanced US was performed during ablation and 2 hours and 2, 7, 14, and 21 days after ablation. The unenhanced zone area on US images was measured. DiI-labeled microbubbles were administered during ablation at 2, 4, and 6 minutes or at 2 hours and 2, 7, 14, and 21 days after ablation in the remaining 24 animals (n = 3 at each time point). One minute later, the animal was euthanized, and the ablated liver was harvested. Tissue samples were imaged to quantify total fluorescence, and NADH staining was performed on the same slice. Hematoxylin-eosin staining was also performed. The findings on fluorescence images, NADH-stained images, and hematoxylin-eosin–stained images were compared. The areas of DiI bubble–negative zones, NADH-negative zones, and lightly NADH-staining zones were measured. Data were analyzed by using one-way analysis of variance. Results The area of the unenhanced zone on contrast-enhanced US images increased during RF ablation and reached a maximum within 2 days after ablation. At histopathologic examination, a transition zone manifested adjacent to the coagulation zone until 2 days after ablation. The DiI-bubble negative zone on fluorescence images and the damaged zone (transition zone plus coagulation zone) on NADH-stained images increased rapidly within 2 hours after ablation, then slowly reached the maximum on day 2. The ratios of the mean areas of these two zones at hour 2 to those at day 2 were 94.6% and 95.6%, respectively. High uniformity between the damaged zone on NADH-stained images and the DiI bubble–negative zone on

  15. Enhancement After Myopic Small Incision Lenticule Extraction (SMILE) Using Surface Ablation.

    PubMed

    Siedlecki, Jakob; Luft, Nikolaus; Kook, Daniel; Wertheimer, Christian; Mayer, Wolfgang J; Bechmann, Martin; Wiltfang, Rainer; Priglinger, Siegfried G; Sekundo, Walter; Dirisamer, Martin

    2017-08-01

    To report the feasibility and outcomes of surface ablation after small incision lenticule extraction (SMILE). In this retrospective evaluation of 1,963 SMILE procedures, 43 eyes (2.2%) were re-treated at three separate clinics. Of these, 40 eyes of 28 patients with a follow-up of at least 3 months were included in the analysis. During surface ablation, mitomycin C was applied for haze prevention. Spherical equivalent was -6.35 ± 1.31 diopters (D) before SMILE and -0.86 ± 0.43 D before surface ablation. Surface ablation was performed after a mean of 9.82 ± 5.27 months and resulted in a spherical equivalent of 0.03 ± 0.57 D at 3 months (P < .0001). The number of patients within ±0.50 and ±1.00 D of target refraction increased from 22.5% to 80% and from 72.5% to 92.5%, respectively. Mean uncorrected distance visual acuity (UDVA) improved from 0.23 ± 0.20 to 0.08 ± 0.15 logMAR (P < .0001); 65% of patients gained at least one line. Corrected distance visual acuity (CDVA) remained unchanged with 0.01 ± 0.07 logMAR before versus -0.01 ± 0.05 logMAR after re-treatment (P = .99). Six eyes (15.0%) lost one line of CDVA, but final CDVA was 0.00 logMAR in four and 0.10 logMAR in two of these cases. The safety and efficacy indices were 1.06 and 0.90 at 3 months, respectively. Three of the four surface ablation profiles (Triple-A, tissue-saving algorithm, and topography-guided) resulted in equally good results, whereas enhancement with the aspherically optimized profile (ASA), used in two eyes, resulted in overcorrection (+1.38 and +1.75 D). Combined with the intraoperative application of mitomycin C, surface ablation seems to be a safe and effective method of secondary enhancement after SMILE. Due to the usually low residual myopia, the ASA profile is not recommended in these cases. [J Refract Surg. 2017;33(8):513-518.]. Copyright 2017, SLACK Incorporated.

  16. Enhanced Radiofrequency Ablation With Magnetically Directed Metallic Nanoparticles.

    PubMed

    Nguyen, Duy T; Tzou, Wendy S; Zheng, Lijun; Barham, Waseem; Schuller, Joseph L; Shillinglaw, Benjamin; Quaife, Robert A; Sauer, William H

    2016-05-01

    Remote heating of metal located near a radiofrequency ablation source has been previously demonstrated. Therefore, ablation of cardiac tissue treated with metallic nanoparticles may improve local radiofrequency heating and lead to larger ablation lesions. We sought to evaluate the effect of magnetic nanoparticles on tissue sensitivity to radiofrequency energy. Ablation was performed using an ablation catheter positioned with 10 g of force over prepared ex vivo specimens. Tissue temperatures were measured and lesion volumes were acquired. An in vivo porcine thigh model was used to study systemically delivered magnetically guided iron oxide (FeO) nanoparticles during radiofrequency application. Magnetic resonance imaging and histological staining of ablated tissue were subsequently performed as a part of ablation lesion analysis. Ablation of ex vivo myocardial tissue treated with metallic nanoparticles resulted in significantly larger lesions with greater impedance changes and evidence of increased thermal conductivity within the tissue. Magnet-guided localization of FeO nanoparticles within porcine thigh preps was demonstrated by magnetic resonance imaging and iron staining. Irrigated ablation in the regions with greater FeO, after FeO infusion and magnetic guidance, created larger lesions without a greater incidence of steam pops. Metal nanoparticle infiltration resulted in significantly larger ablation lesions with altered electric and thermal conductivity. In vivo magnetic guidance of FeO nanoparticles allowed for facilitated radiofrequency ablation without direct infiltration into the targeted tissue. Further research is needed to assess the clinical applicability of this ablation strategy using metallic nanoparticles for the treatment of cardiac arrhythmias. © 2016 American Heart Association, Inc.

  17. Radiofrequency Ablation for Tumor-Related Massive Hematuria

    PubMed Central

    Neeman, Ziv; Sarin, Shawn; Coleman, Jonathan; Fojo, Tito; Wood, Bradford J.

    2008-01-01

    To determine whether radiofrequency (RF) ablation targeting the tumor-collecting system interface has a durable effect in patients with transfusion-dependent kidney tumor-related hematuria, four patients aged 61-71 years were successfully treated with RF ablation, with a mean follow up of 12 months. Baseline creatinine levels varied from 2.0 mg/dL to 3.7 mg/dL. All patients had received red blood cell transfusions in the days and hours before RF ablation. No subsequent surgical or interventional procedures were required for management of hematuria. Gross hematuria resolved in 24-48 hours in all four patients. Two of the patients are alive with stable renal function and two died of causes unrelated to treatment. RF ablation may be an effective therapeutic option for transfusion-dependent cancer-related hematuria in patients with renal insufficiency, solitary kidney, or comorbidities, or after failed conventional therapies in patients who are not candidates for surgery. PMID:15758142

  18. Radiofrequency ablation for tumor-related massive hematuria.

    PubMed

    Neeman, Ziv; Sarin, Shawn; Coleman, Jonathan; Fojo, Tito; Wood, Bradford J

    2005-03-01

    To determine whether radiofrequency (RF) ablation targeting the tumor-collecting system interface has a durable effect in patients with transfusion-dependent kidney tumor-related hematuria, four patients aged 61-71 years were successfully treated with RF ablation, with a mean follow up of 12 months. Baseline creatinine levels varied from 2.0 mg/dL to 3.7 mg/dL. All patients had received red blood cell transfusions in the days and hours before RF ablation. No subsequent surgical or interventional procedures were required for management of hematuria. Gross hematuria resolved in 24-48 hours in all four patients. Two of the patients are alive with stable renal function and two died of causes unrelated to treatment. RF ablation may be an effective therapeutic option for transfusion-dependent cancer-related hematuria in patients with renal insufficiency, solitary kidney, or comorbidities, or after failed conventional therapies in patients who are not candidates for surgery.

  19. Initial clinical experience with a remote magnetic catheter navigation system for ablation of cavotricuspid isthmus-dependent right atrial flutter.

    PubMed

    Arya, Arash; Kottkamp, Hans; Piorkowski, Christopher; Bollmann, Andreas; Gerdes-Li, Jin-Hong; Riahi, Sam; Esato, Masahiro; Hindricks, Gerhard

    2008-05-01

    A remote magnetic navigation system (MNS) is available and has been used with a 4-mm-tip magnetic catheter for radiofrequency (RF) ablation of some supraventricular and ventricular arrhythmias; however, it has not been evaluated for the ablation of cavotricuspid isthmus-dependent right atrial flutter (AFL). The present study evaluates the feasibility and efficiency of this system and the newly available 8-mm-tip magnetic catheter to perform RF ablation in patients with AFL. Twenty-six consecutive patients (23 men, mean age 64.6 +/- 9.6 years) underwent RF ablation using a remote MNS. RF ablation was performed with an 8-mm-tip magnetic catheter (70 degrees C, maximum power 70 W, 90 seconds). The endpoint of ablation was complete bidirectional isthmus block. To assess a possible learning curve, procedural data were compared between the first 14 (group 1) and the rest (group 2) of the patients. The initial rhythm during ablation was AFL in 20 (19 counterclockwise and 1 clockwise) and sinus rhythm in six patients. Due to technical issues, the ablation in the 18th patient could not be done with the MNS, and so we switched to conventional ablation. The remote magnetic navigation and ablation procedure was successful in 24 of the 25 (96%) remaining patients with AFL. In one patient (patient 2), conventional catheter was used to complete the isthmus block after termination of AFL. The procedure, preparation, ablation, and fluoroscopy times (median [range]) were 53 (30-130) minutes, 28 (10-65) minutes, 25 (12-78) minutes, and 7.5 (3.2-20.8) minutes, respectively. Patients in group 2 had shorter procedure (45 [30-70] min vs 80 [57-130] min, P = 0.0001), preparation (25 [10-30] min vs 42 [30-65] min, P = 0.0001), ablation (20 [12-40] min vs 31 [20-78] min, P = 0.002), and fluoroscopy (7.2 [3.2-12.2] min vs 11.0 [5.4-20.8] min, P = 0.014) times. No complication occurred during the procedure. Using a remote MNS and an 8-mm-tip magnetic catheter, ablation of AFL is feasible

  20. Additive Effects of Mechanical Marrow Ablation and PTH Treatment on de Novo Bone Formation in Mature Adult Rats

    PubMed Central

    Zhang, Qing; Miller, Christopher; Bible, Jesse; Li, Jiliang; Xu, Xiaoqing; Mehta, Nozer; Gilligan, James; Vignery, Agnès; Scholz, Jodi A Carlson

    2012-01-01

    Mechanical ablation of bone marrow in young rats induces rapid but transient bone growth, which can be enhanced and maintained for three weeks by the administration of parathyroid hormone (PTH). Additionally, marrow ablation, followed by PTH treatment for three months leads to increased cortical thickness. In this study, we sought to determine whether PTH enhances bone formation after marrow ablation in aged rats. Aged rats underwent unilateral femoral marrow ablation and treatment with PTH or vehicle for four weeks. Both femurs from each rat were analyzed by X-ray and pQCT, then analyzed either by microCT, histology or biomechanical testing. Marrow ablation alone induced transient bone formation of low abundance that persisted over four weeks, while marrow ablation followed by PTH induced bone formation of high abundance that also persisted over four weeks. Our data confirms that the osteo-inducive effect of marrow ablation and the additive effect of marrow ablation, followed by PTH, occurs in aged rats. Our observations open new avenues of investigations in the field of tissue regeneration. Local marrow ablation, in conjunction with an anabolic agent, might provide a new platform for rapid site-directed bone growth in areas of high bone loss, such as in the hip and wrist, which are subject to fracture. PMID:24710549

  1. Modeling of ablation threshold dependence on pulse duration for dielectrics with ultrashort pulsed laser

    NASA Astrophysics Data System (ADS)

    Sun, Mingying; Zhu, Jianqiang; Lin, Zunqi

    2017-01-01

    We present a numerical model of plasma formation in ultrafast laser ablation on the dielectrics surface. Ablation threshold dependence on pulse duration is predicted with the model and the numerical results for water agrees well with the experimental data for pulse duration from 140 fs to 10 ps. Influences of parameters and approximations of photo- and avalanche-ionization on the ablation threshold prediction are analyzed in detail for various pulse lengths. The calculated ablation threshold is strongly dependent on electron collision time for all the pulse durations. The complete photoionization model is preferred for pulses shorter than 1 ps rather than the multiphoton ionization approximations. The transition time of inverse bremsstrahlung absorption needs to be considered when pulses are shorter than 5 ps and it can also ensure the avalanche ionization (AI) coefficient consistent with that in multiple rate equations (MREs) for pulses shorter than 300 fs. The threshold electron density for AI is only crucial for longer pulses. It is reasonable to ignore the recombination loss for pulses shorter than 100 fs. In addition to thermal transport and hydrodynamics, neglecting the threshold density for AI and recombination could also contribute to the disagreements between the numerical and the experimental results for longer pulses.

  2. Femtosecond laser-induced size reduction and emission quantum yield enhancement of colloidal silicon nanocrystals: Effect of laser ablation time.

    PubMed

    Zhang, Yingxiong; Wu, Wenshun; Hao, Huilian; Shen, Wenzhong

    2018-06-19

    Colloidal silicon (Si) nanocrystals (NCs) with different sizes were successfully prepared by femtosecond laser ablation under different laser ablation time (LAT). The mean size decreases from 4.23 to 1.42 nm with increasing LAT from 30 to 120 min. In combination with structural characterization, temperature-dependent photoluminescence (PL), time-resolved PL, and PL excitation spectra, we attribute room temperature blue emissions peaked at 405 and 430 nm to the radiative recombination of electron-hole pairs via the oxygen deficient centers related to Si-C-H2 and Si-O-Si bonds of colloidal Si NCs prepared in 1-octene, respectively. In particular, the measured PL quantum yield of colloidal Si NCs has been enhanced significantly from 23.6% to 55.8% with prolonging LAT from 30 to 120 min. © 2018 IOP Publishing Ltd.

  3. Attention enhancing effects of methylphenidate are age-dependent

    PubMed Central

    Bhattacharya, Shevon E.; Shumsky, Jed S.; Waterhouse, Barry D.

    2014-01-01

    The psychostimulant methylphenidate (MPH, Ritalin®) is used to treat a variety of cognitive disorders. MPH is also popular among healthy individuals, including the elderly, for its ability to focus attention and improve concentration, but these effects have not been shown to be comparable between aged and adult subjects. Thus, we tested whether MPH would improve performance in sustained attention in both adult and aged rats. In addition, we tested the impact of visual distraction on performance in this task and the ability of MPH to mitigate the effects of distraction. Adult (6–12 months) and aged (18–22 months) male Sprague-Dawley rats were given oral MPH, and their cognitive and motor abilities were tested. Results suggest that while MPH improves task performance in adults; there is no improvement in the aged animals. These outcomes suggest that use of MPH for cognitive enhancement in elderly individuals may be ineffective. PMID:25449855

  4. Linear enhancement after radio-frequency ablation for hepatocellular carcinoma: is it a sign of recurrence?

    PubMed

    Takahashi, Masanori; Maruyama, Hitoshi; Shimada, Taro; Kamezaki, Hidehiro; Okabe, Shinichiro; Kanai, Fumihiko; Yoshikawa, Masaharu; Yokosuka, Osamu

    2012-11-01

    This prospective study was performed in 179 hepatocellular carcinoma (HCC) lesions treated by radio-frequency ablation (RFA) to explore the clinical outcome of "linear enhancement" on contrast-enhanced sonogram. Thirty-three lesions (18.4%) showed linear enhancement, a linear-shaped positive enhancement in the RFA-treated area. Seventeen of them were followed up with no treatment (remaining 16; dropout in eight, additional RFA in six and ineffective treatment in two) and three lesions (3/17, 17.6%) showed local tumor progression corresponding to linear enhancement at 7, 14, 19 months after RFA. Although there was no significant difference in local recurrence rate between the lesions with (3/17) and without linear enhancement (10/35), local tumor progression inside the ablation zone occurred only in the lesions with linear enhancement. In conclusion, linear enhancement inside the RFA-treated area should be followed up within 7 months because it has a risk of local tumor progression. Histology of linear enhancement and its influence on distant recurrence remain to be solved. Copyright © 2012 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  5. Ablation of the presynaptic organizer Bassoon in excitatory neurons retards dentate gyrus maturation and enhances learning performance.

    PubMed

    Annamneedi, Anil; Caliskan, Gürsel; Müller, Sabrina; Montag, Dirk; Budinger, Eike; Angenstein, Frank; Fejtova, Anna; Tischmeyer, Wolfgang; Gundelfinger, Eckart D; Stork, Oliver

    2018-06-18

    Bassoon is a large scaffolding protein of the presynaptic active zone involved in the development of presynaptic terminals and in the regulation of neurotransmitter release at both excitatory and inhibitory brain synapses. Mice with constitutive ablation of the Bassoon (Bsn) gene display impaired presynaptic function, show sensory deficits and develop severe seizures. To specifically study the role of Bassoon at excitatory forebrain synapses and its relevance for control of behavior, we generated conditional knockout (Bsn cKO) mice by gene ablation through an Emx1 promoter-driven Cre recombinase. In these animals, we confirm selective loss of Bassoon from glutamatergic neurons of the forebrain. Behavioral assessment revealed that, in comparison to wild-type littermates, Bsn cKO mice display selectively enhanced contextual fear memory and increased novelty preference in a spatial discrimination/pattern separation task. These changes are accompanied by an augmentation of baseline synaptic transmission at medial perforant path to dentate gyrus (DG) synapses, as indicated by increased ratios of field excitatory postsynaptic potential slope to fiber volley amplitude. At the structural level, an increased complexity of apical dendrites of DG granule cells can be detected in Bsn cKO mice. In addition, alterations in the expression of cellular maturation markers and a lack of age-dependent decrease in excitability between juvenile and adult Bsn cKO mice are observed. Our data suggest that expression of Bassoon in excitatory forebrain neurons is required for the normal maturation of the DG and important for spatial and contextual memory.

  6. Repeated restraint stress enhances cue-elicited conditioned freezing and impairs acquisition of extinction in an age-dependent manner

    PubMed Central

    Zhang, Wei; Rosenkranz, J. Amiel

    2013-01-01

    Affective disorders are believed to involve dysfunction within the amygdala, a key structure for processing emotional information. Chronic stress may contribute to affective disorders such as depression and anxiety via its effects on the amygdala. Previous research has shown that chronic stress increases amygdala neuronal activity in an age-dependent manner. However, whether these distinct changes in amgydala neuronal activity are accompanied by age-dependent changes in amygdala-dependent affective behavior is unclear. In this study, we investigated how chronic stress impacts amgydala-dependent auditory fear conditioning in adolescent and adult rats in a repeated restraint model. We found that repeated restraint enhanced conditioned freezing in both adolescent and adult rats. But repeated restraint led to impaired acquisition of fear extinction only in adolescent rats. Along with previous findings, these results suggest that chronic stress may precipitate affective disorders via differential mechanisms, with different outcomes at different ages. PMID:23538069

  7. Efficacy comparison between cryoablation and radiofrequency ablation for patients with cavotricuspid valve isthmus dependent atrial flutter: a meta-analysis

    NASA Astrophysics Data System (ADS)

    Chen, Yi-He; Lin, Hui; Xie, Cheng-Long; Zhang, Xiao-Ting; Li, Yi-Gang

    2015-06-01

    We perform this meta-analysis to compare the efficacy and safety of cryoablation versus radiofrequency ablation for patients with cavotricuspid valve isthmus dependent atrial flutter. By searching EMBASE, MEDLINE, PubMed and Cochrane electronic databases from March 1986 to September 2014, 7 randomized clinical trials were included. Acute (risk ratio[RR]: 0.93; P = 0.14) and long-term (RR: 0.94; P = 0.08) success rate were slightly lower in cryoablation group than in radiofrequency ablation group, but the difference was not statistically significant. Additionally, the fluoroscopy time was nonsignificantly reduced (weighted mean difference[WMD]: -2.83 P = 0.29), whereas procedure time was significantly longer (WMD: 25.95; P = 0.01) in cryoablation group compared with radiofrequency ablation group. Furthermore, Pain perception during the catheter ablation was substantially less in cryoabaltion group than in radiofrequency ablation group (standardized mean difference[SMD]: -2.36 P < 0.00001). Thus, our meta-analysis demonstrated that cryoablation and radiofrequency ablation produce comparable acute and long-term success rate for patients with cavotricuspid valve isthmus dependent atrial flutter. Meanwhile, cryoablation ablation tends to reduce the fluoroscopy time and significantly reduce pain perception in cost of significantly prolonged procedure time.

  8. Efficacy comparison between cryoablation and radiofrequency ablation for patients with cavotricuspid valve isthmus dependent atrial flutter: a meta-analysis

    PubMed Central

    Chen, Yi-He; Lin, Hui; Xie, Cheng-Long; Zhang, Xiao-Ting; Li, Yi-Gang

    2015-01-01

    We perform this meta-analysis to compare the efficacy and safety of cryoablation versus radiofrequency ablation for patients with cavotricuspid valve isthmus dependent atrial flutter. By searching EMBASE, MEDLINE, PubMed and Cochrane electronic databases from March 1986 to September 2014, 7 randomized clinical trials were included. Acute (risk ratio[RR]: 0.93; P = 0.14) and long-term (RR: 0.94; P = 0.08) success rate were slightly lower in cryoablation group than in radiofrequency ablation group, but the difference was not statistically significant. Additionally, the fluoroscopy time was nonsignificantly reduced (weighted mean difference[WMD]: −2.83; P = 0.29), whereas procedure time was significantly longer (WMD: 25.95; P = 0.01) in cryoablation group compared with radiofrequency ablation group. Furthermore, Pain perception during the catheter ablation was substantially less in cryoabaltion group than in radiofrequency ablation group (standardized mean difference[SMD]: −2.36; P < 0.00001). Thus, our meta-analysis demonstrated that cryoablation and radiofrequency ablation produce comparable acute and long-term success rate for patients with cavotricuspid valve isthmus dependent atrial flutter. Meanwhile, cryoablation ablation tends to reduce the fluoroscopy time and significantly reduce pain perception in cost of significantly prolonged procedure time. PMID:26039980

  9. Evaluation of left ventricular scar identification from contrast enhanced magnetic resonance imaging for guidance of ventricular catheter ablation therapy

    NASA Astrophysics Data System (ADS)

    Rettmann, M. E.; Lehmann, H. I.; Johnson, S. B.; Packer, D. L.

    2016-03-01

    Patients with ventricular arrhythmias typically exhibit myocardial scarring, which is believed to be an important anatomic substrate for reentrant circuits, thereby making these regions a key target in catheter ablation therapy. In ablation therapy, a catheter is guided into the left ventricle and radiofrequency energy is delivered into the tissue to interrupt arrhythmic electrical pathways. Low bipolar voltage regions are typically localized during the procedure through point-by-point construction of an electroanatomic map by sampling the endocardial surface with the ablation catheter and are used as a surrogate for myocardial scar. This process is time consuming, requires significant skill, and has the potential to miss low voltage sites. This has led to efforts to quantify myocardial scar preoperatively using delayed, contrast-enhanced MRI. In this paper, we evaluate the utility of left ventricular scar identification from delayed contrast enhanced magnetic resonance imaging for guidance of catheter ablation of ventricular arrhythmias. Myocardial infarcts were created in three canines followed by a delayed, contrast enhanced MRI scan and electroanatomic mapping. The left ventricle and myocardial scar is segmented from preoperative MRI images and sampled points from the procedural electroanatomical map are registered to the segmented endocardial surface. Sampled points with low bipolar voltage points visually align with the segmented scar regions. This work demonstrates the potential utility of using preoperative delayed, enhanced MRI to identify myocardial scarring for guidance of ventricular catheter ablation therapy.

  10. Flow-dependent vascular heat transfer during microwave thermal ablation.

    PubMed

    Chiang, Jason; Hynes, Kieran; Brace, Christopher L

    2012-01-01

    Microwave tumor ablation is an attractive option for thermal ablation because of its inherent benefits over radiofrequency ablation (RFA) in the treatment of solid tumors such as hepatocellular carcinoma (HCC). Microwave energy heats tissue to higher temperatures and at a faster rate than RFA, creating larger, more homogenous ablation zones. In this study, we investigate microwave heating near large vasculature using coupled fluid-flow and thermal analysis. Low-flow conditions are predicted to be more likely to cause cytotoxic heating and, therefore, vessel thrombosis and endothelial damage of downstream tissues. Such conditions may be more prevalent in patient with severe cirrhosis or compromised blood flow. High-flow conditions create the more familiar heat-sink effect that can protect perivascular tissues from the intended thermal damage. These results may help guide placement and use of microwave ablation technologies in future studies.

  11. Role of contrast-enhanced ultrasound in follow-up assessment after ablation for hepatocellular carcinoma

    PubMed Central

    Zheng, Shu-Guang; Xu, Hui-Xiong; Lu, Ming-De; Xie, Xiao-Yan; Xu, Zuo-Feng; Liu, Guang-Jian; Liu, Lin-Na

    2013-01-01

    AIM: To assess the usefulness of contrast-enhanced ultrasound (CEUS) during follow-up after percutaneous ablation therapy for hepatocellular carcinoma (HCC). METHODS: A total of 141 patients with HCCs who received percutaneous ablation therapy were assessed by paired follow-up CEUS and contrast-enhanced computed tomography (CECT). The follow-up scheme was designed prospectively and the intervals between CEUS and CECT examinations were less than 14 d. Both images of follow-up CEUS and CECT were reviewed by radiologists. The ablated lesions were evaluated and classified as local tumor progression (LTP) and LTP-free. LTP was defined as regrowth of tumor inside or adjacent to the successfully treated nodule. The detected new intrahepatic recurrences were also evaluated and defined as presence of intrahepatic new foci. On CEUS and CECT, LTP and new intrahepatic recurrence both were displayed as typical enhancement pattern of HCC (i.e., hyper-enhancing during the arterial phase and washout in the late phase). With CECT as the reference standard, the ability of CEUS in detecting LTP or new intrahepatic recurrence during follow-up was evaluated. RESULTS: During a follow-up period of 1-31 mo (median, 4 mo), 169 paired CEUS and CECT examinations were carried out for the 141 patients. For a total of 221 ablated lesions, 266 comparisons between CEUS and CECT findings were performed. Thirty-three LTPs were detected on CEUS whereas 40 LTPs were detected on CECT, there was significant difference (P < 0.001). In comparison with CECT, the numbers of false positive and false negative LTPs detected on CEUS were 6 and 13, respectively; the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and overall accuracy of CEUS in detecting LTPs were 67.5%, 97.4%, 81.8%, 94.4% and 92.3%, respectively. Meanwhile, 131 new intrahepatic recurrent foci were detected on CEUS whereas 183 were detected on CECT, there was also significant difference (P < 0.05). In

  12. Assessment of liver ablation using cone beam computed tomography.

    PubMed

    Abdel-Rehim, Mohamed; Ronot, Maxime; Sibert, Annie; Vilgrain, Valérie

    2015-01-14

    To investigate the feasibility and accuracy of cone beam computed tomography (CBCT) in assessing the ablation zone after liver tumor ablation. Twenty-three patients (17 men and 6 women, range: 45-85 years old, mean age 65 years) with malignant liver tumors underwent ultrasound-guided percutaneous tumor ablation [radiofrequency (n = 14), microwave (n = 9)] followed by intravenous contrast-enhanced CBCT. Baseline multidetector computed tomography (MDCT) and peri-procedural CBCT images were compared. CBCT image quality was assessed as poor, good, or excellent. Image fusion was performed to assess tumor coverage, and quality of fusion was rated as bad, good, or excellent. Ablation zone volumes on peri-procedural CBCT and post-procedural MDCT were compared using the non-parametric paired Wilcoxon t-test. Rate of primary ablation effectiveness was 100%. There were no complications related to ablation. Local tumor recurrence and new liver tumors were found 3 mo after initial treatment in one patient (4%). The ablation zone was identified in 21/23 (91.3%) patients on CBCT. The fusion of baseline MDCT and peri-procedural CBCT images was feasible in all patients and showed satisfactory tumor coverage (at least 5-mm margin). CBCT image quality was poor, good, and excellent in 2 (9%), 8 (35%), and 13 (56%), patients respectively. Registration quality between peri-procedural CBCT and post-procedural MDCT images was good to excellent in 17/23 (74%) patients. The median ablation volume on peri-procedural CBCT and post-procedural MDCT was 30 cm(3) (range: 4-95 cm(3)) and 30 cm(3) (range: 4-124 cm(3)), respectively (P-value > 0.2). There was a good correlation (r = 0.79) between the volumes of the two techniques. Contrast-enhanced CBCT after tumor ablation of the liver allows early assessment of the ablation zone.

  13. Localization of gaps during redo ablations of paroxysmal atrial fibrillation: Preferential patterns depending on the choice of cryoballoon ablation or radiofrequency ablation for the initial procedure.

    PubMed

    Galand, Vincent; Pavin, Dominique; Behar, Nathalie; Auffret, Vincent; Fénéon, Damien; Behaghel, Albin; Daubert, Jean-Claude; Mabo, Philippe; Martins, Raphaël P

    2016-11-01

    Pulmonary vein (PV) isolation, using cryoballoon or radiofrequency ablation, is the cornerstone therapy for symptomatic paroxysmal atrial fibrillation (AF) refractory to antiarrhythmic drugs. One-third of the patients have recurrences, mainly due to PV reconnections. To describe the different locations of reconnection sites in patients who had previously undergone radiofrequency or cryoballoon ablation, and to compare the characteristics of the redo procedures in both instances. Demographic data and characteristics of the initial ablation (cryoballoon or radiofrequency) were collected. Number and localization of reconduction gaps, and redo characteristics were reviewed. Seventy-four patients scheduled for a redo ablation of paroxysmal AF were included; 38 had been treated by radiofrequency ablation and 36 by cryoballoon ablation during the first procedure. For the initial ablation, procedural and fluoroscopy times were significantly shorter for cryoballoon ablation (147.8±52.6min vs. 226.6±64.3min [P<0.001] and 37.0±17.7min vs. 50.8±22.7min [P=0.005], respectively). Overall, an identical number of gaps was found during redo procedures of cryoballoon and radiofrequency ablations. However, a significantly higher number of gaps were located in the right superior PV for patients first ablated with radiofrequency (0.9±1.0 vs. 0.5±0.9; P=0.009). Gap localization displayed different patterns. Although not significant, redo procedures of cryoballoon ablation were slightly shorter and needed shorter durations of radiofrequency to achieve PV isolation. During redo procedures, gap localization pattern is different for patients first ablated with cryoballoon or radiofrequency ablation, and right superior PV reconnections occur more frequently after radiofrequency ablation. Redo ablation of a previous cryoballoon ablation appears to be easier. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Laser ablation surface-enhanced Raman microspectroscopy.

    PubMed

    Londero, Pablo S; Lombardi, John R; Leona, Marco

    2013-06-04

    Improved identification of trace organic compounds in complex matrixes is critical for a variety of fields such as material science, heritage science, and forensics. Surface-enhanced Raman scattering (SERS) is a vibrational spectroscopy technique that can attain single-molecule sensitivity and has been shown to complement mass spectrometry, but lacks widespread application without a robust method that utilizes the effect. We demonstrate a new, highly sensitive, and widely applicable approach to SERS analysis based on laser ablation in the presence of a tailored plasmonic substrate. We analyze several challenging compounds, including non-water-soluble pigments and dyed leather from an ancient Egyptian chariot, achieving sensitivity as high as 120 amol for a 1:1 signal-to-noise ratio and 5 μm spatial resolution. This represents orders of magnitude improvement in spatial resolution and sensitivity compared to those of other SERS approaches intended for widespread application, greatly increasing the applicability of SERS.

  15. Improved multimodality data fusion of late gadolinium enhancement MRI to left ventricular voltage maps in ventricular tachycardia ablation.

    PubMed

    Roujol, Sebastien; Basha, Tamer A; Tan, Alex; Khanna, Varun; Chan, Raymond H; Moghari, Mehdi H; Rayatzadeh, Hussein; Shaw, Jaime L; Josephson, Mark E; Nezafat, Reza

    2013-05-01

    Electroanatomical voltage mapping (EAVM) is commonly performed prior to catheter ablation of scar-related ventricular tachycardia (VT) to locate the arrhythmic substrate and to guide the ablation procedure. EAVM is used to locate the position of the ablation catheter and to provide a 3-D reconstruction of left-ventricular anatomy and scar. However, EAVM measurements only represent the endocardial scar with no transmural or epicardial information. Furthermore, EAVM is a time-consuming procedure, with a high operator dependence and has low sampling density, i.e., spatial resolution. Late gadolinium enhancement (LGE) magnetic resonance imaging (MRI) allows noninvasive assessment of scar morphology that can depict 3-D scar architecture. Despite the potential use of LGE as a roadmap for VT ablation for identification of arrhythmogenic substrate, its utility has been very limited. To allow for identification of VT substrate, a correlation is needed between the substrates identified by EAVM as the gold standard and LGE-MRI scar characteristics. To do so, a system must be developed to fuse the datasets from these modalities. In this study, a registration pipeline for the fusion of LGE-MRI and EAVM data is presented. A novel surface registration algorithm is proposed, integrating the matching of global scar areas as an additional constraint in the registration process. A preparatory landmark registration is initially performed to expedite the convergence of the algorithm. Numerical simulations were performed to evaluate the accuracy of the registration in the presence of errors in identifying landmarks in EAVM or LGE-MRI datasets as well as additional errors due to respiratory or cardiac motion. Subsequently, the accuracy of the proposed fusion system was evaluated in a cohort of ten patients undergoing VT ablation where both EAVM and LGE-MRI data were available. Compared to landmark registration and surface registration, the presented method achieved significant

  16. Enhancement of Intermittent Androgen Ablation Therapy by Finasteride Administration in Animal Models

    DTIC Science & Technology

    2003-02-01

    that intermittent androgen ablation therapy can be enhanced by finasteride , an inhibitor of T to DHT conversion, To test our hypothesis in animal...models, it is necessary to deliver exogenous T at physiologic levels and finasteride over a long period of time, We have worked out conditions to deliver T and finasteride in nude mice, which will allow us to test our hypothesis.

  17. CK1α ablation in keratinocytes induces p53-dependent, sunburn-protective skin hyperpigmentation.

    PubMed

    Chang, Chung-Hsing; Kuo, Che-Jung; Ito, Takamichi; Su, Yu-Ya; Jiang, Si-Tse; Chiu, Min-Hsi; Lin, Yi-Hsiung; Nist, Andrea; Mernberger, Marco; Stiewe, Thorsten; Ito, Shosuke; Wakamatsu, Kazumasa; Hsueh, Yi-An; Shieh, Sheau-Yann; Snir-Alkalay, Irit; Ben-Neriah, Yinon

    2017-09-19

    Casein kinase 1α (CK1α), a component of the β-catenin destruction complex, is a critical regulator of Wnt signaling; its ablation induces both Wnt and p53 activation. To characterize the role of CK1α (encoded by Csnk1a1 ) in skin physiology, we crossed mice harboring floxed Csnk1a1 with mice expressing K14-Cre-ER T2 to generate mice in which tamoxifen induces the deletion of Csnk1a1 exclusively in keratinocytes [single-knockout (SKO) mice]. As expected, CK1α loss was accompanied by β-catenin and p53 stabilization, with the preferential induction of p53 target genes, but phenotypically most striking was hyperpigmentation of the skin, importantly without tumorigenesis, for at least 9 mo after Csnk1a1 ablation. The number of epidermal melanocytes and eumelanin levels were dramatically increased in SKO mice. To clarify the putative role of p53 in epidermal hyperpigmentation, we established K14-Cre-ER T2 CK1α/p53 double-knockout (DKO) mice and found that coablation failed to induce epidermal hyperpigmentation, demonstrating that it was p53-dependent. Transcriptome analysis of the epidermis revealed p53-dependent up-regulation of Kit ligand (KitL). SKO mice treated with ACK2 (a Kit-neutralizing antibody) or imatinib (a Kit inhibitor) abrogated the CK1α ablation-induced hyperpigmentation, demonstrating that it requires the KitL/Kit pathway. Pro-opiomelanocortin (POMC), a precursor of α-melanocyte-stimulating hormone (α-MSH), was not activated in the CK1α ablation-induced hyperpigmentation, which is in contrast to the mechanism of p53-dependent UV tanning. Nevertheless, acute sunburn effects were successfully prevented in the hyperpigmented skin of SKO mice. CK1α inhibition induces skin-protective eumelanin but no carcinogenic pheomelanin and may therefore constitute an effective strategy for safely increasing eumelanin via UV-independent pathways, protecting against acute sunburn.

  18. CK1α ablation in keratinocytes induces p53-dependent, sunburn-protective skin hyperpigmentation

    PubMed Central

    Chang, Chung-Hsing; Kuo, Che-Jung; Ito, Takamichi; Su, Yu-Ya; Jiang, Si-Tse; Chiu, Min-Hsi; Lin, Yi-Hsiung; Nist, Andrea; Mernberger, Marco; Stiewe, Thorsten; Ito, Shosuke; Wakamatsu, Kazumasa; Hsueh, Yi-An; Shieh, Sheau-Yann; Snir-Alkalay, Irit; Ben-Neriah, Yinon

    2017-01-01

    Casein kinase 1α (CK1α), a component of the β-catenin destruction complex, is a critical regulator of Wnt signaling; its ablation induces both Wnt and p53 activation. To characterize the role of CK1α (encoded by Csnk1a1) in skin physiology, we crossed mice harboring floxed Csnk1a1 with mice expressing K14–Cre–ERT2 to generate mice in which tamoxifen induces the deletion of Csnk1a1 exclusively in keratinocytes [single-knockout (SKO) mice]. As expected, CK1α loss was accompanied by β-catenin and p53 stabilization, with the preferential induction of p53 target genes, but phenotypically most striking was hyperpigmentation of the skin, importantly without tumorigenesis, for at least 9 mo after Csnk1a1 ablation. The number of epidermal melanocytes and eumelanin levels were dramatically increased in SKO mice. To clarify the putative role of p53 in epidermal hyperpigmentation, we established K14–Cre–ERT2 CK1α/p53 double-knockout (DKO) mice and found that coablation failed to induce epidermal hyperpigmentation, demonstrating that it was p53-dependent. Transcriptome analysis of the epidermis revealed p53-dependent up-regulation of Kit ligand (KitL). SKO mice treated with ACK2 (a Kit-neutralizing antibody) or imatinib (a Kit inhibitor) abrogated the CK1α ablation-induced hyperpigmentation, demonstrating that it requires the KitL/Kit pathway. Pro-opiomelanocortin (POMC), a precursor of α-melanocyte–stimulating hormone (α-MSH), was not activated in the CK1α ablation-induced hyperpigmentation, which is in contrast to the mechanism of p53-dependent UV tanning. Nevertheless, acute sunburn effects were successfully prevented in the hyperpigmented skin of SKO mice. CK1α inhibition induces skin-protective eumelanin but no carcinogenic pheomelanin and may therefore constitute an effective strategy for safely increasing eumelanin via UV-independent pathways, protecting against acute sunburn. PMID:28878021

  19. Core/shell structured Zn/ZnO nanoparticles synthesized by gaseous laser ablation with enhanced photocatalysis efficiency

    NASA Astrophysics Data System (ADS)

    Song, Lu; Wang, Yafei; Ma, Jing; Zhang, Qinghua; Shen, Zhijian

    2018-06-01

    Zinc oxide (ZnO) is a competitive candidate in semiconductor photocatalysts, only if the efficiency could be fully optimized especially by tailored nanostructures. Here we report a kind of core/shell structured Zn/ZnO nanoparticles with enhanced photocatalysis efficiency, which were synthesized by a highly-productive gaseous laser ablation method. The nanodroplets generated by laser ablation would be reduced to zinc in the protective atmosphere, and further be oxidized at surface to form a specific core/shell structured Zn/ZnO nanoparticles within seconds. Thanks to the formation of this Zn-ZnO Schottky junction, the photocatalysis degradation efficiency of such core/shell Zn/ZnO nanostructure is significantly improved owing to the enhanced visible light absorption and inhibited carrier recombination by introducing the metallic zinc.

  20. [Effect of low-dose focused ultrasound pre-irradiation versus microbubbles for enhancing high-intensity focused ultrasound ablation of VX2 hepatic tumor in rabbits].

    PubMed

    Zhang, Yi; Yang, Chao; Zou, Jian-Zhong; Chen, Fei; Ou, Xia; Zou, Hai-Rong; Wang, Yan

    2016-10-20

    To compare the effect of low-dose focused ultrasound pre-irradiation and microbubbles for enhancing the ablation effect of high intensity focused ultrasound (HIFU) on VX 2 hepatic tumor in rabbits. Fifty-five rabbits bearing VX 2 hepatic tumor were randomly divided into low-dose pre-irradiation + HIFU ablation group, microbubbles+HIFU ablation group, and HIFU ablation group for corresponding treatments. The pathological changes in the tumors after low-dose irradiation, time for HIFU ablation, tumor volume with coagulative necrosis, energy efficiency factor (EEF), pathological changes in the ablated tumor, and sound channel of HIFU ablation were observed. Tumor cell edema, vacuolar changes in the cytoplasm and tumor interstitial vascular congestion were observed 24 h after low-dose pre-irradiation. The ablation time were significantly shorter, coagulative necrosis volume was larger, and EEF was lower in low-dose irradiation + HIFU ablation group and microbubbles+HIFU ablation group than in simple HIFU ablation group (P<0.05), but the differences between the former two groups were not significant. The effectiveness and stability of the synergistic effect of low-dose pre-irradiation were inferior to microbubbles, but the former ensured a better safety of the sound channel. Low-dose irradiation has comparable synergistic effect in HIFU with microbubbles with such advantages as non-invasiveness, high concentration and good safety, and can be a potentially new method to enhance the efficiency of HIFU.

  1. Ablation of toll-like receptor 4 attenuates aging-induced myocardial remodeling and contractile dysfunction through NCoRI-HDAC1-mediated regulation of autophagy.

    PubMed

    Wang, Shuyi; Ge, Wei; Harns, Carrie; Meng, Xianzhong; Zhang, Yingmei; Ren, Jun

    2018-04-13

    Aging is usually accompanied with overt structural and functional changes as well as suppressed autophagy in the heart although the precise regulatory mechanisms are somewhat unknown. Here we evaluated the role of the innate proinflammatory mediator toll-like receptor 4 (TLR4) in cardiac aging and the underlying mechanism with a focus on autophagy. Cardiac geometry and function were monitored in young or old wild-type (WT) and TLR4 knockout (TLR4 -/- ) mice using echocardiography, IonOptix® edge-detection and fura-2 techniques. Levels of autophagy and mitophagy, nuclear receptor corepressor 1 (NCoR1) and histone deacetylase I (HDAC1) were examined using western blot. Transmission electronic microscopy (TEM) was employed to monitor myocardial ultrastructure. Our results revealed that TLR4 ablation alleviated advanced aging (24 months)-induced changes in myocardial remodeling (increased heart weight, chamber size, cardiomyocyte cross-sectional area), contractile function and intracellular Ca 2+ handling as well as autophagy and mitophagy [Beclin-1, Atg5, LC3B, PTEN-induced putative kinase 1 (PINK1), Parkin and p62]. Aging downregulated levels of NCoR1 and HDAC1 as well as their interaction, the effects were significantly attenuated or negated by TLR4 ablation. Advanced aging disturbed myocardial ultrastructure as evidenced by loss of myofilament alignment and swollen mitochondria, which was obliterated by TLR4 ablation. Moreover, aging suppressed autophagy (GFP-LC3B puncta) in neonatal mouse cardiomyocytes, the effect of which was negated by the TLR4 inhibitor CLI-095. Inhibition of HDCA1 using apicidin cancelled off CLI095-induced beneficial response of GFP-LC3B puncta against aging. Our data collectively indicate a role for TLR4-mediated autophagy in cardiac remodeling and contractile dysfunction in aging through a HDAC1-NCoR1-dependent mechanism. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Ethanol produces corticotropin releasing factor receptor-dependent enhancement of spontaneous glutamatergic transmission in the mouse central amygdala

    PubMed Central

    Silberman, Yuval; Fetterly, Tracy L.; Awad, Elias K.; Milano, Elana J.; Usdin, Ted B.; Winder, Danny G.

    2015-01-01

    Background Ethanol modulation of Central Amygdala (CeA) neurocircuitry plays a key role in the development of alcoholism via activation of the corticotropin releasing factor (CRF) receptor system. Previous work has predominantly focused on ethanol/CRF interactions on the CeA GABA circuitry; however our lab recently showed that CRF enhances CeA glutamatergic transmission. Therefore, this study sought to determine if ethanol modulates CeA glutamate transmission via activation of CRF signaling. Methods The effects of ethanol on spontaneous excitatory postsynaptic currents (sEPSCs) and basal resting membrane potentials were examined via standard electrophysiology methods in adult male C57BL/6J mice. Local ablation of CeA CRF neurons (CRFCeAhDTR) was achieved by targeting the human diphtheria toxin receptor (hDTR) to CeA CRF neurons with an adeno-associated virus. Ablation was quantified post-hoc with confocal microscopy. Genetic targeting of the diphtheria toxin active subunit to CRF neurons (CRFDTA mice) ablated CRF neurons throughout the CNS, as assessed by qRT-PCR quantification of CRF mRNA. Results Acute bath application of ethanol significantly increased sEPSC frequency in a concentration dependent manner in CeA neurons, and this effect was blocked by pretreatment of co-applied CRF receptor 1 and CRF receptor 2 antagonists. In experiments utilizing a CRF-tomato reporter mouse, ethanol did not significantly alter the basal membrane potential of CeA CRF neurons. The ability of ethanol to enhance CeA sEPSC frequency was not altered in CRFCeAhDTR mice despite a ~78% reduction in CeA CRF cell counts. The ability of ethanol to enhance CeA sEPSC frequency was also not altered in the CRFDTA mice despite a three-fold reduction in CRF mRNA levels. Conclusion These findings demonstrate that ethanol enhances spontaneous glutamatergic transmission in the CeA via a CRF receptor dependent mechanism. Surprisingly, our data suggest that this action may not require endogenous CRF

  3. Study of the Wavelength Dependence in Laser Ablation of Advanced Ceramics and Glass-Ceramic Materials in the Nanosecond Range

    PubMed Central

    Sola, Daniel; Peña, Jose I.

    2013-01-01

    In this work, geometrical dimensions and ablation yields as a function of the machining method and reference position were studied when advanced ceramics and glass-ceramic materials were machined with pulsed lasers in the nanosecond range. Two laser systems, emitting at 1064 and 532 nm, were used. It was shown that the features obtained depend on whether the substrate is processed by means of pulse bursts or by grooves. In particular, when the samples were processed by grooves, machined depth, removed volume and ablation yields reached their maximum, placing the sample out of focus. It was shown that these characteristics do not depend on the processing conditions, the wavelength or the optical configuration, and that this is intrinsic behavior of the processing method. Furthermore, the existence of a close relation between material hardness and ablation yields was demonstrated. PMID:28788391

  4. The Autophagy Enhancer Spermidine Reverses Arterial Aging

    PubMed Central

    LaRocca, Thomas J.; Gioscia-Ryan, Rachel A.; Hearon, Christopher M.; Seals, Douglas R.

    2013-01-01

    Arterial aging, characterized by stiffening of large elastic arteries and the development of arterial endothelial dysfunction, increases cardiovascular disease (CVD) risk. We tested the hypothesis that spermidine, a nutrient associated with the anti-aging process autophagy, would improve arterial aging. Aortic pulse wave velocity (aPWV), a measure of arterial stiffness, was ~20% greater in old (O, 28 months) compared with young C57BL6 mice (Y, 4 months, P < 0.05). Arterial endothelium-dependent dilation (EDD), a measure of endothelial function, was ~25% lower in O (P < 0.05 vs. Y) due to reduced nitric oxide (NO) bioavailability. These impairments were associated with greater arterial oxidative stress (nitrotyrosine), superoxide production, and protein cross-linking (advanced glycation end-products, AGEs) in O (all P < 0.05). Spermidine supplementation normalized aPWV, restored NO-mediated EDD and reduced nitrotyrosine, superoxide, AGEs and collagen in O. These effects of spermidine were associated with enhanced arterial expression of autophagy markers, and in vitro experiments demonstrated that vascular protection by spermidine was autophagy-dependent. Our results indicate that spermidine exerts a potent anti-aging influence on arteries by increasing NO bioavailability, reducing oxidative stress, modifying structural factors and enhancing autophagy. Spermidine may be a promising nutraceutical treatment for arterial aging and prevention of age-associated CVD. PMID:23612189

  5. Effectiveness of atrial fibrillation rotor ablation is dependent on conduction velocity: An in-silico 3-dimensional modeling study

    PubMed Central

    Lim, Byounghyun; Hwang, Minki; Song, Jun-Seop; Ryu, Ah-Jin; Joung, Boyoung; Shim, Eun Bo; Ryu, Hyungon

    2017-01-01

    Background We previously reported that stable rotors are observed in in-silico human atrial fibrillation (AF) models, and are well represented by a dominant frequency (DF). In the current study, we hypothesized that the outcome of DF ablation is affected by conduction velocity (CV) conditions and examined this hypothesis using in-silico 3D-AF modeling. Methods We integrated 3D CT images of left atrium obtained from 10 patients with persistent AF (80% male, 61.8±13.5 years old) into in-silico AF model. We compared AF maintenance durations (max 300s), spatiotemporal stabilities of DF, phase singularity (PS) number, life-span of PS, and AF termination or defragmentation rates after virtual DF ablation with 5 different CV conditions (0.2, 0.3, 0.4, 0.5, and 0.6m/s). Results 1. AF maintenance duration (p<0.001), spatiotemporal mean variance of DF (p<0.001), and the number of PS (p = 0.023) showed CV dependent bimodal patterns (highest at CV0.4m/s and lowest at CV0.6m/s) consistently. 2. After 10% highest DF ablation, AF defragmentation rates were the lowest at CV0.4m/s (37.8%), but highest at CV0.5 and 0.6m/s (all 100%, p<0.001). 3. In the episodes with AF termination or defragmentation followed by 10% highest DF ablation, baseline AF maintenance duration was shorter (p<0.001), spatiotemporal mean variance of DF was lower (p = 0.014), and the number of PS was lower (p = 0.004) than those with failed AF defragmentation after DF ablation. Conclusion Virtual ablation of DF, which may indicate AF driver, was more likely to terminate or defragment AF with spatiotemporally stable DF, but not likely to do so in long-lasting and sustained AF conditions, depending on CV. PMID:29287119

  6. Enhanced Cellular Ablation by Attenuating Hypoxia Status and Reprogramming Tumor-Associated Macrophages via NIR Light-Responsive Upconversion Nanocrystals.

    PubMed

    Ai, Xiangzhao; Hu, Ming; Wang, Zhimin; Lyu, Linna; Zhang, Wenmin; Li, Juan; Yang, Huanghao; Lin, Jun; Xing, Bengang

    2018-04-18

    Near-infrared (NIR) light-mediated photodynamic therapy (PDT), especially based on lanthanide-doped upconversion nanocrystals (UCNs), have been extensively investigated as a promising strategy for effective cellular ablation owing to their unique optical properties to convert NIR light excitation into multiple short-wavelength emissions. Despite the deep tissue penetration of NIR light in living systems, the therapeutic efficiency is greatly restricted by insufficient oxygen supply in hypoxic tumor microenvironment. Moreover, the coexistent tumor-associated macrophages (TAMs) play critical roles in tumor recurrence during the post-PDT period. Herein, we developed a unique photosensitizer-loaded UCNs nanoconjugate (PUN) by integrating manganese dioxide (MnO 2 ) nanosheets and hyaluronic acid (HA) biopolymer to improve NIR light-mediated PDT efficacy through attenuating hypoxia status and synergistically reprogramming TAMs populations. After the reaction with overproduced H 2 O 2 in acidic tumor microenvironment, the MnO 2 nanosheets were degraded for the production of massive oxygen to greatly enhance the oxygen-dependent PDT efficiency upon 808 nm NIR light irradiation. More importantly, the bioinspired polymer HA could effectively reprogram the polarization of pro-tumor M2-type TAMs to anti-tumor M1-type macrophages to prevent tumor relapse after PDT treatment. Such promising results provided the great opportunities to achieve enhanced cellular ablation upon NIR light-mediated PDT treatment by attenuating hypoxic tumor microenvironment, and thus facilitated the rational design of new generations of nanoplatforms toward immunotherapy to inhibit tumor recurrence during post-PDT period.

  7. [Radiofrequency ablation of hepatocellular carcinoma].

    PubMed

    Widmann, Gerlig; Schullian, Peter; Bale, Reto

    2013-03-01

    Percutaneous radiofrequency ablation (RFA) is well established in the treatment of hepatocellular carcinoma (HCC). Due to its curative potential, it is the method of choice for non resectable BCLC (Barcelona Liver Clinic) 0 and A. RFA challenges surgical resection for small HCC and is the method of choice in bridging for transplantation and recurrence after resection or transplantation. The technical feasibility of RFA depends on the size and location of the HCC and the availability of ablation techniques (one needle techniques, multi-needle techniques). More recently, stereotactic multi-needle techniques with 3D trajectory planning and guided needle placement substantially improve the spectrum of treatable lesions including large volume tumors. Treatment success depends on the realization of ablations with large intentional margins of tumor free tissue (A0 ablation in analogy to R0 resection), which has to be documented by fusion of post- with pre-ablation images, and confirmed during follow-up imaging.

  8. Mid-IR enhanced laser ablation molecular isotopic spectrometry

    NASA Astrophysics Data System (ADS)

    Brown, Staci; Ford, Alan; Akpovo, Codjo A.; Johnson, Lewis

    2016-08-01

    A double-pulsed laser-induced breakdown spectroscopy (DP-LIBS) technique utilizing wavelengths in the mid-infrared (MIR) for the second pulse, referred to as double-pulse LAMIS (DP-LAMIS), was examined for its effect on detection limits compared to single-pulse laser ablation molecular isotopic spectrometry (LAMIS). A MIR carbon dioxide (CO2) laser pulse at 10.6 μm was employed to enhance spectral emissions from nanosecond-laser-induced plasma via mid-IR reheating and in turn, improve the determination of the relative abundance of isotopes in a sample. This technique was demonstrated on a collection of 10BO and 11BO molecular spectra created from enriched boric acid (H3BO3) isotopologues in varying concentrations. Effects on the overall ability of both LAMIS and DP-LAMIS to detect the relative abundance of boron isotopes in a starting sample were considered. Least-squares fitting to theoretical models was used to deduce plasma parameters and understand reproducibility of results. Furthermore, some optimization for conditions of the enhanced emission was achieved, along with a comparison of the overall emission intensity, plasma density, and plasma temperature generated by the two techniques.

  9. A cost-utility analysis of ablative therapy for Barrett’s esophagus

    PubMed Central

    Inadomi, John M.; Somsouk, Ma; Madanick, Ryan D.; Thomas, Jennifer P.; Shaheen, Nicholas J.

    2009-01-01

    Background & Aims Recommendations for patients with Barrett’s esophagus (BE) include endoscopic surveillance with esophagectomy for early-stage cancer, although new technologies to ablate dysplasia and metaplasia are available. This study compares the cost-utility of ablation with that of endoscopic surveillance strategies. Methods A decision analysis model was created to examine a population of patients with BE (mean age 50), with separate analyses for patients with no dysplasia, low-grade dysplasia (LGD), or high-grade dysplasia (HGD). Strategies compared were: no endoscopic surveillance; endoscopic surveillance with ablation for incident dysplasia; immediate ablation followed by endoscopic surveillance in all patients or limited to patients in whom metaplasia persisted, and esophagectomy. Ablation modalities modeled included radiofrequency, argon plasma coagulation, multipolar electrocoagulation and photodynamic therapy. Results Endoscopic ablation for patients with HGD could increase life expectancy by 3 quality-adjusted years at an incremental cost of < $6,000, compared with no intervention. Patients with LGD or no dysplasia can also be optimally managed with ablation, but continued surveillance after eradication of metaplasia is expensive. If ablation permanently eradicates at least 28% of LGD or 40% of non-dysplastic metaplasias, ablation would be preferred to surveillance. Conclusions Endoscopic ablation could be the preferred strategy for managing patients with BE with HGD. Ablation might also be preferred in subjects with LGD or no dysplasia, but the cost-effectiveness depends on the long-term effectiveness of ablation and whether surveillance endoscopy can be discontinued following successful ablation. As further post-ablation data become available, the optimal management strategy will be clarified. PMID:19272389

  10. Magneto-absorption effects in magnetic-field assisted laser ablation of silicon by UV nanosecond pulses

    NASA Astrophysics Data System (ADS)

    Farrokhi, H.; Gruzdev, V.; Zheng, H. Y.; Rawat, R. S.; Zhou, W.

    2016-06-01

    A constant magnetic field can significantly improve the quality and speed of ablation by nanosecond laser pulses. These improvements are usually attributed to the confinement of laser-produced plasma by the magnetic field and specific propagation effects in the magnetized plasma. Here we report a strong influence of constant axial magnetic field on the ablation of silicon by 20-ns laser pulses at wavelength 355 nm, which results in an increase of ablation depth by a factor of 1.3 to 69 depending on laser parameters and magnitude of the magnetic field. The traditional plasma effects do not explain this result, and magneto-absorption of silicon is proposed as one of the major mechanisms of the significant enhancement of ablation.

  11. Mexametric and cutometric assessment of the signs of aging of the skin area around the eyes after the use of non-ablative fractional laser, non-ablative radiofrequency and intense pulsed light.

    PubMed

    Kołodziejczak, Anna Maria; Rotsztejn, Helena

    2017-03-01

    The assessment of the signs of aging within eyes area in cutometric (skin elasticity) and mexametric (discoloration and severity of erythema) examination after the treatment with: non-ablative fractional laser, non-ablative radiofrequency (RF) and intense light source (IPL). This study included 71 patients, aged 33-63 years (the average age was 45.81) with Fitzpatrick skin type II and III. 24 patients received 5 successive treatment sessions with a 1,410-nm non-ablative fractional laser in two-week intervals, 23 patients received 5 successive treatment sessions with a non-ablative RF in one-week intervals and 24 patients received 5 successive treatment sessions with an IPL in two-week intervals. The treatment was performed for the skin in the eye area. The Cutometer and Mexameter (Courage + Khazaka electronic) reference test was used as an objective method for the assessment of skin properties: elasticity, skin pigmentation and erythema. Measurements of skin elasticity were made in three or four sites within eye area. The results of cutometric measurements for R7 showed the improvement in skin elasticity in case of all treatment methods. The largest statistically significant improvement (p < .0001) was observed in case of laser and RF, during treatment sessions, at sites at upper and lower eyelid. The smallest change in skin elasticity for the laser, RF and IPL - p = .017, p = .003 and p = .001, respectively-was observed in a site within the outer corner of the eye. In all sites of measurements and for all methods, the greatest improvement in skin elasticity was demonstrated between the first and second measurement (after 3rd procedures). The majority of the results of mexametric measurements-MEX (melanin level) and ERYT (the severity of erythema) are statistically insignificant. Fractional, non-ablative laser, non-ablation RF and intense light source can be considered as methods significantly affecting elasticity and to a lesser extent erythema

  12. Comprehensive studies of ultrashort laser pulse ablation of tin target at terawatt power

    NASA Astrophysics Data System (ADS)

    Elsied, Ahmed M.; Diwakar, Prasoon K.; Hassanein, Ahmed

    2018-01-01

    The fundamental properties of ultrashort laser interactions with metals using up to terawatt power were comprehensively studied, i.e., specifically mass ablation, nanoparticle formation, and ion dynamics using multitude of diagnostic techniques. Results of this study can be useful in many fields of research including spectroscopy, micromachining, thin film fabrication, particle acceleration, physics of warm dense matter, and equation-of-state determination. A Ti:Sapphire femtosecond laser system (110 mJ maximum energy, 40 fs, 800 nm, P-polarized, single pulse mode) was used, which delivered up to 3 terawatt laser power to ablate 1 mm tin film in vacuum. The experimental analysis includes the effect of the incident laser fluence on the ablated mass, size of the ablated area, and depth of ablation using white light profilometer. Atomic force microscope was used to measure the emitted particles size distribution at different laser fluence. Faraday cup (FC) detector was used to analyze the emitted ions flux by measuring the velocity, and the total charge of the emitted ions. The study shows that the size of emitted particles follows log-normal distribution with peak shifts depending on incident laser fluence. The size of the ablated particles ranges from 20 to 80 nm. The nanoparticles deposited on the wafer tend to aggregate and to be denser as the incident laser fluence increases as shown by AFM images. Laser ablation depth was found to increase logarithmically with laser fluence then leveling off at laser fluence > 400 J/cm2. The total ablated mass tends to increase logarithmically with laser fluence up to 60 J/cm2 while, increases gradually at higher fluence due to the increase in the ablated area. The measured ion emitted flux shows a linear dependence on laser fluence with two distinct regimes. Strong dependence on laser fluence was observed at fluences < 350 J/cm2. Also, a slight enhancement in ion velocity was observed with increasing laser fluence up to 350 J

  13. Nanoparticle-enhanced synergistic HIFU ablation and transarterial chemoembolization for efficient cancer therapy

    NASA Astrophysics Data System (ADS)

    You, Yufeng; Wang, Zhigang; Ran, Haitao; Zheng, Yuanyi; Wang, Dong; Xu, Jinshun; Wang, Zhibiao; Chen, Yu; Li, Pan

    2016-02-01

    High-intensity focused ultrasound (HIFU) is being generally explored as a non-invasive therapeutic modality to treat solid tumors. However, the clinical use of HIFU for large and deep tumor-ablation applications such as hepatocellular carcinoma (HCC) is currently entangled with long treatment duration and high operating energy. This critical issue can be potentially resolved by the introduction of HIFU synergistic agents (SAs). Traditional SAs such as microbubbles and microparticles face the problem of large size, short cycle time, damage to mononuclear phagocytic system and unsatisfactory targeting efficiency. In this work, we have developed a facile and versatile nanoparticle-based HIFU synergistic cancer surgery enhanced by transarterial chemoembolization for high-efficiency HCC treatment based on elaborately designed Fe3O4-PFH/PLGA nanocapsules. Multifunctional Fe3O4-PFH/PLGA nanocapsules were administrated into tumor tissues via transarterial injection combined with Lipiodol to achieve high tumor accumulation because transarterial chemoembolization by Lipiodol could block the blood vessels. The high synergistic HIFU ablation effect was successfully achieved against HCC tumors based on the phase-transformation performance of the perfluorohexane (PFH) inner core in the composite nanocapsules, as systematically demonstrated in VX2 liver tumor xenograft in rabbits. Multifunctional Fe3O4-PFH/PLGA nanocapsules were also demonstrated as efficient contrast agents for ultrasound, magnetic resonance and photoacoustic tri-modality imagings, potentially applicable for imaging-guided HIFU synergistic surgery. Therefore, the elaborate integration of traditional transarterial chemoembolization with recently developed nanoparticle-enhanced HIFU cancer surgery could efficiently enhance the HCC cancer treatment outcome, initiating a new and efficient therapeutic protocol/modality for clinic cancer treatment.

  14. Carotid Body Ablation Abrogates Hypertension and Autonomic Alterations Induced by Intermittent Hypoxia in Rats.

    PubMed

    Del Rio, Rodrigo; Andrade, David C; Lucero, Claudia; Arias, Paulina; Iturriaga, Rodrigo

    2016-08-01

    Chronic intermittent hypoxia (CIH), the main feature of obstructive sleep apnea, enhances carotid body (CB) chemosensory responses to hypoxia and produces autonomic dysfunction, cardiac arrhythmias, and hypertension. We tested whether autonomic alterations, arrhythmogenesis, and the progression of hypertension induced by CIH depend on the enhanced CB chemosensory drive, by ablation of the CB chemoreceptors. Male Sprague-Dawley rats were exposed to control (Sham) conditions for 7 days and then to CIH (5% O2, 12/h 8 h/d) for a total of 28 days. At 21 days of CIH exposure, rats underwent bilateral CB ablation and then exposed to CIH for 7 additional days. Arterial blood pressure and ventilatory chemoreflex response to hypoxia were measured in conscious rats. In addition, cardiac autonomic imbalance, cardiac baroreflex gain, and arrhythmia score were assessed during the length of the experiments. In separate experimental series, we measured extracellular matrix remodeling content in cardiac atrial tissue and systemic oxidative stress. CIH induced hypertension, enhanced ventilatory response to hypoxia, induced autonomic imbalance toward sympathetic preponderance, reduced baroreflex gain, and increased arrhythmias and atrial fibrosis. CB ablation normalized blood pressure, reduced ventilatory response to hypoxia, and restored cardiac autonomic and baroreflex function. In addition, CB ablation reduced the number of arrhythmias, but not extracellular matrix remodeling or systemic oxidative stress, suggesting that reductions in arrhythmia incidence during CIH were related to normalization of cardiac autonomic balance. Present results show that autonomic alterations induced by CIH are critically dependent on the CB and support a main role for the CB in the CIH-induced hypertension. © 2016 American Heart Association, Inc.

  15. Microwave ablation of pulmonary malignancies using a novel high-energy antenna system.

    PubMed

    Little, Mark W; Chung, Daniel; Boardman, Philip; Gleeson, Fergus V; Anderson, Ewan M

    2013-04-01

    To evaluate the technical success, safety, and imaging follow-up of malignant pulmonary nodules treated with a novel high-energy percutaneous microwave ablation (MWA) system. Between July 2010 and September 2011, a total of 23 patients, 12 men, mean age 68 (range 30-87) years with 29 pulmonary malignancies of median diameter 19 (range 8-57) mm, underwent computed tomography (CT)-guided MWA with a 16G microwave needle antenna enabling power up to 180 W. Technical success was defined as needle placement in the intended lesion without death or serious injury. Adequacy of ablation was assessed at 24 h on contrast-enhanced CT. Circumferential solid or ground glass opacification >5 mm was used to define an ideal ablation. Local tumor recurrence was assessed at 1, 3, and 6 months after ablation on contrast-enhanced CT. MWA was technically successful in 93 % (n = 27). Mean ablation duration was 3.6 (range 1-9) min. Ten patients (43 %) developed a pneumothorax as a result of the MWA; only 3 (13 %) required placement of a chest drain. Thirty-day mortality rate was 0 %. The mean hospital stay was 1.5 (range 1-7) days. A total of 22 lesions (75 %) were surrounded by ≥5 mm ground glass or solid opacification after the procedure. At a median follow-up of 6 months, local recurrence was identified in 3 out of 26 lesions, giving a local control rate of 88 %. MWA using a high-power antenna of pulmonary malignancies is safe, technically achievable, and enables fast ablation times.

  16. Analysis of iodinated contrast delivered during thermal ablation: is material trapped in the ablation zone?

    PubMed

    Wu, Po-Hung; Brace, Chris L

    2016-08-21

    Intra-procedural contrast-enhanced CT (CECT) has been proposed to evaluate treatment efficacy of thermal ablation. We hypothesized that contrast material delivered concurrently with thermal ablation may become trapped in the ablation zone, and set out to determine whether such an effect would impact ablation visualization. CECT images were acquired during microwave ablation in normal porcine liver with: (A) normal blood perfusion and no iodinated contrast, (B) normal perfusion and iodinated contrast infusion or (C) no blood perfusion and residual iodinated contrast. Changes in CT attenuation were analyzed from before, during and after ablation to evaluate whether contrast was trapped inside of the ablation zone. Visualization was compared between groups using post-ablation contrast-to-noise ratio (CNR). Attenuation gradients were calculated at the ablation boundary and background to quantitate ablation conspicuity. In Group A, attenuation decreased during ablation due to thermal expansion of tissue water and water vaporization. The ablation zone was difficult to visualize (CNR  =  1.57  ±  0.73, boundary gradient  =  0.7  ±  0.4 HU mm(-1)), leading to ablation diameter underestimation compared to gross pathology. Group B ablations saw attenuation increase, suggesting that iodine was trapped inside the ablation zone. However, because the normally perfused liver increased even more, Group B ablations were more visible than Group A (CNR  =  2.04  ±  0.84, boundary gradient  =  6.3  ±  1.1 HU mm(-1)) and allowed accurate estimation of the ablation zone dimensions compared to gross pathology. Substantial water vaporization led to substantial attenuation changes in Group C, though the ablation zone boundary was not highly visible (boundary gradient  =  3.9  ±  1.1 HU mm(-1)). Our results demonstrate that despite iodinated contrast being trapped in the ablation zone, ablation visibility

  17. Radiofrequency ablation for hepatocellular carcinoma: assistant techniques for difficult cases.

    PubMed

    Inoue, Tatsuo; Minami, Yasunori; Chung, Hobyung; Hayaishi, Sousuke; Ueda, Taisuke; Tatsumi, Chie; Takita, Masahiro; Kitai, Satoshi; Hatanaka, Kinuyo; Ishikawa, Emi; Yada, Norihisa; Hagiwara, Satoru; Ueshima, Kazuomi; Kudo, Masatoshi

    2010-07-01

    To confirm the safety and effectiveness of techniques to assist radiofrequency ablation (RFA) for difficult cases, we retrospectively evaluated successful treatment rates, early complications and local tumor progressions. Between June 1999 and April 2009, a total of 341 patients with 535 nodules were treated as difficult cases. Artificial pleural effusion assisted ablation was performed on 64 patients with 82 nodules. Artificial ascites-assisted ablation was performed on 11 patients with 13 nodules. Cooling by endoscopic nasobiliary drainage (ENBD) tube-assisted ablation was performed on 6 patients with 8 nodules. When the tumors were not well visualized with conventional B-mode ultrasonography (US), contrast-enhanced US-assisted ablation with Levovist or Sonazoid or virtual CT sonography-assisted ablation was performed. Contrast-enhanced US-assisted ablation was performed on 139 patients with 224 nodules and virtual CT sonography-assisted ablation was performed on 121 patients with 209 nodules. In total, complete ablation was achieved in 514 of 535 (96%) nodules in difficult cases. For RFA with artificial pleural effusion, artificial ascites and ENBD, complete response was confirmed in all cases. For contrast-enhanced US- and CT sonography-assisted ablation, complete response was 95%. Early complications were recognized in 24 cases (4.5%). All cases recovered with no invasive treatment. Local tumor recurrence was investigated in 377 nodules of 245 patients, and 69 (18%) nodules were positive. Tumor recurrences in each assisted technique were 14.7% in artificial pleural effusion cases, 7% in artificial ascites, 12.5% in ENBD tube cases, 31% in virtual CT sonography, and 8.5% in contrast-enhanced US. Although local tumor progression needs to be carefully monitored, assisted techniques of RFA for difficult cases are well tolerated and expand the indications of RFA. Copyright (c) 2010 S. Karger AG, Basel.

  18. Co:MgF2 laser ablation of tissue: effect of wavelength on ablation threshold and thermal damage.

    PubMed

    Schomacker, K T; Domankevitz, Y; Flotte, T J; Deutsch, T F

    1991-01-01

    The wavelength dependence of the ablation threshold of a variety of tissues has been studied by using a tunable pulsed Co:MgF2 laser to determine how closely it tracks the optical absorption length of water. The Co:MgF2 laser was tuned between 1.81 and 2.14 microns, a wavelength region in which the absorption length varies by a decade. For soft tissues the ablation threshold tracks the optical absorption length; for bone there is little wavelength dependence, consistent with the low water content of bone. Thermal damage vs. wavelength was also studied for cornea and bone. Thermal damage to cornea has a weak wavelength dependence, while that to bone shows little wavelength dependence. Framing-camera pictures of the ablation of both cornea and liver show explosive removal of material, but differ as to the nature of the explosion.

  19. Ablation for Atrial Fibrillation

    PubMed Central

    2006-01-01

    Executive Summary Objective To review the effectiveness, safety, and costing of ablation methods to manage atrial fibrillation (AF). The ablation methods reviewed were catheter ablation and surgical ablation. Clinical Need Atrial fibrillation is characterized by an irregular, usually rapid, heart rate that limits the ability of the atria to pump blood effectively to the ventricles. Atrial fibrillation can be a primary diagnosis or it may be associated with other diseases, such as high blood pressure, abnormal heart muscle function, chronic lung diseases, and coronary heart disease. The most common symptom of AF is palpitations. Symptoms caused by decreased blood flow include dizziness, fatigue, and shortness of breath. Some patients with AF do not experience any symptoms. According to United States data, the incidence of AF increases with age, with a prevalence of 1 per 200 people aged between 50 and 60 years, and 1 per 10 people aged over 80 years. In 2004, the Institute for Clinical Evaluative Sciences (ICES) estimated that the rate of hospitalization for AF in Canada was 582.7 per 100,000 population. They also reported that of the patients discharged alive, 2.7% were readmitted within 1 year for stroke. One United States prevalence study of AF indicated that the overall prevalence of AF was 0.95%. When the results of this study were extrapolated to the population of Ontario, the prevalence of AF in Ontario is 98,758 for residents aged over 20 years. Currently, the first-line therapy for AF is medical therapy with antiarrhythmic drugs (AADs). There are several AADs available, because there is no one AAD that is effective for all patients. The AADs have critical adverse effects that can aggravate existing arrhythmias. The drug selection process frequently involves trial and error until the patient’s symptoms subside. The Technology Ablation has been frequently described as a “cure” for AF, compared with drug therapy, which controls AF but does not cure it

  20. Determinations of rare earth element abundance and U-Pb age of zircons using multispot laser ablation-inductively coupled plasma mass spectrometry.

    PubMed

    Yokoyama, Takaomi D; Suzuki, Toshihiro; Kon, Yoshiaki; Hirata, Takafumi

    2011-12-01

    We have developed a new calibration technique for multielement determination and U-Pb dating of zircon samples using laser ablation-inductively coupled plasma mass spectrometry (ICPMS) coupled with galvanometric optics. With the galvanometric optics, laser ablation of two or more sample materials could be achieved in very short time intervals (~10 ms). The resulting sample aerosols released from different ablation pits or different solid samples were mixed and homogenized within the sample cell and then transported into the ICP ion source. Multiple spot laser ablation enables spiking of analytes or internal standard elements directly into the solid samples, and therefore the standard addition calibration method can be applied for the determination of trace elements in solid samples. In this study, we have measured the rare earth element (REE) abundances of two zircon samples (Nancy 91500 and Prešovice) based on the standard addition technique, using a direct spiking of analytes through a multispot laser ablation of the glass standard material (NIST SRM612). The resulting REE abundance data show good agreement with previously reported values within analytical uncertainties achieved in this study (10% for most elements). Our experiments demonstrated that nonspectroscopic interferences on 14 REEs could be significantly reduced by the standard addition technique employed here. Another advantage of galvanometric devices is the accumulation of sample aerosol released from multiple spots. In this study we have measured the U-Pb age of a zircon sample (LMR) using an accumulation of sample aerosols released from 10 separate ablation pits of low diameters (~8 μm). The resulting (238)U-(206)Pb age data for the LMR zircons was 369 ± 64 Ma, which is in good agreement with previously reported age data (367.6 ± 1.5 Ma). (1) The data obtained here clearly demonstrate that the multiple spot laser ablation-ICPMS technique can become a powerful approach for elemental and isotopic

  1. Optimization of direct current-enhanced radiofrequency ablation: an ex vivo study.

    PubMed

    Tanaka, Toshihiro; Isfort, Peter; Bruners, Philipp; Penzkofer, Tobias; Kichikawa, Kimihiko; Schmitz-Rode, Thomas; Mahnken, Andreas H

    2010-10-01

    The purpose of this study was to investigate the optimal setting for radiofrequency (RF) ablation combined with direct electrical current (DC) ablation in ex vivo bovine liver. An electrical circuit combining a commercially available RF ablation system with DC was developed. The negative electrode of a rectifier that provides DC was connected to a 3-cm multitined expandable RF probe. A 100-mH inductor was used to prevent electrical leakage from the RF generator. DC was applied for 15 min and followed by RF ablation in freshly excised bovine livers. Electric current was measured by an ammeter. Coagulation volume, ablation duration, and mean amperage were assessed for various DC voltages (no DC, 2.2, 4.5, and 9.0 V) and different RF ablation protocols (stepwise increase from 40 to 80 W, 40 W fixed, and 80 W fixed). Results were compared using Kruskal-Wallis and Mann-Whitney U test. Applying DC with 4.5 or 9.0 V, in combination with 40 W fixed or a stepwise increase of RF energy, resulted in significantly increased zone of ablation size compared with 2.2 V or no DC (P = 0.009). At 4.5 V DC, the stepwise increase of RF energy resulted in the same necrosis size as a 40 W fixed protocol (26.6 +/- 3.9 vs. 26.5 +/- 4.0 ml), but ablation duration was significantly decreased (296 +/- 85 s vs. 423 +/- 104 s; P = 0.028). Mean amperage was significantly lower at 4.5 V compared with 9.0 V (P = 0.028). Combining a stepwise increase of RF energy with a DC voltage of 4.5 V is most appropriate to increase coagulation volume and to minimize procedure time.

  2. Optimization of Direct Current-Enhanced Radiofrequency Ablation: An Ex Vivo Study

    SciTech Connect

    Tanaka, Toshihiro, E-mail: toshihir@bf6.so-net.ne.jp; Isfort, Peter; Bruners, Philipp

    2010-10-15

    The purpose of this study was to investigate the optimal setting for radiofrequency (RF) ablation combined with direct electrical current (DC) ablation in ex vivo bovine liver. An electrical circuit combining a commercially available RF ablation system with DC was developed. The negative electrode of a rectifier that provides DC was connected to a 3-cm multitined expandable RF probe. A 100-mH inductor was used to prevent electrical leakage from the RF generator. DC was applied for 15 min and followed by RF ablation in freshly excised bovine livers. Electric current was measured by an ammeter. Coagulation volume, ablation duration, andmore » mean amperage were assessed for various DC voltages (no DC, 2.2, 4.5, and 9.0 V) and different RF ablation protocols (stepwise increase from 40 to 80 W, 40 W fixed, and 80 W fixed). Results were compared using Kruskal-Wallis and Mann-Whitney U test. Applying DC with 4.5 or 9.0 V, in combination with 40 W fixed or a stepwise increase of RF energy, resulted in significantly increased zone of ablation size compared with 2.2 V or no DC (P = 0.009). At 4.5 V DC, the stepwise increase of RF energy resulted in the same necrosis size as a 40 W fixed protocol (26.6 {+-} 3.9 vs. 26.5 {+-} 4.0 ml), but ablation duration was significantly decreased (296 {+-} 85 s vs. 423 {+-} 104 s; P = 0.028). Mean amperage was significantly lower at 4.5 V compared with 9.0 V (P = 0.028). Combining a stepwise increase of RF energy with a DC voltage of 4.5 V is most appropriate to increase coagulation volume and to minimize procedure time.« less

  3. Comparative study of conventional US, contrast enhanced US and enhanced MR for the follow-up of prostatic radiofrequency ablation.

    PubMed

    Feng, Chao; Hu, Bin; Hu, Bing; Chen, Lei; Li, Jia; Huang, Jin

    2017-06-01

    The aim of the present study was to evaluate and compare the effectiveness of different imaging methods during follow-up of prostatic radiofrequency ablation. Prostatic radiofrequency ablation (RFA) was performed in 20 healthy beagle dogs. Various imaging examinations were used to monitor the results of RFA, including conventional ultrasound (US), contrast enhanced ultrasound (CEUS) and enhanced magnetic resonance (MR). Imaging exams were performed at five phases: Immediately following RFA, one week later, one month later, three months later and six months later. The morphology for each imaging test and histological results were recorded and compared in each phase. Based on the actual results from autopsy, the accuracy of those imaging exams was evaluated. The canine prostate gland demonstrated typical coagulative necrosis immediately following RFA. The lesion would develop into stable cyst if no other complications occurred within the six-month follow-up. Regarding the RFA lesion volume measurement and the reflection of pathological changes, conventional US was not able to accurately measure the volume of RFA lesion and missed many more details concerning the RFA-treated area than CEUS and MR during the three months. The results from CEUS exhibited comparable accuracy to those from enhanced MR at each phase. However, there were no significant differences in the results from US, CEUS and MR at six months, which may contribute to the complete formation of lesion cyst. In the early phase, conventional US was not sufficient for evaluating the efficacy of RFA. Enhanced US and MR provided clear images and accurate information. However, CEUS has the advantage of being more economical, using more convenient equipment and faster scanning, thus identifying it as the more feasible choice. Furthermore, no notable advantages were observed among any image examinations in the long-term follow-up.

  4. A Reduction in Age-Enhanced Gluconeogenesis Extends Lifespan

    PubMed Central

    Hachinohe, Mayumi; Yamane, Midori; Akazawa, Daiki; Ohsawa, Kazuhiro; Ohno, Mayumi; Terashita, Yuzu; Masumoto, Hiroshi

    2013-01-01

    The regulation of energy metabolism, such as calorie restriction (CR), is a major determinant of cellular longevity. Although augmented gluconeogenesis is known to occur in aged yeast cells, the role of enhanced gluconeogenesis in aged cells remains undefined. Here, we show that age-enhanced gluconeogenesis is suppressed by the deletion of the tdh2 gene, which encodes glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a protein that is involved in both glycolysis and gluconeogenesis in yeast cells. The deletion of TDH2 restores the chronological lifespan of cells with deletions of both the HST3 and HST4 genes, which encode yeast sirtuins, and represses the activation of gluconeogenesis. Furthermore, the tdh2 gene deletion can extend the replicative lifespan in a CR pathway-dependent manner. These findings demonstrate that the repression of enhanced gluconeogenesis effectively extends the cellular lifespan. PMID:23342062

  5. A reduction in age-enhanced gluconeogenesis extends lifespan.

    PubMed

    Hachinohe, Mayumi; Yamane, Midori; Akazawa, Daiki; Ohsawa, Kazuhiro; Ohno, Mayumi; Terashita, Yuzu; Masumoto, Hiroshi

    2013-01-01

    The regulation of energy metabolism, such as calorie restriction (CR), is a major determinant of cellular longevity. Although augmented gluconeogenesis is known to occur in aged yeast cells, the role of enhanced gluconeogenesis in aged cells remains undefined. Here, we show that age-enhanced gluconeogenesis is suppressed by the deletion of the tdh2 gene, which encodes glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a protein that is involved in both glycolysis and gluconeogenesis in yeast cells. The deletion of TDH2 restores the chronological lifespan of cells with deletions of both the HST3 and HST4 genes, which encode yeast sirtuins, and represses the activation of gluconeogenesis. Furthermore, the tdh2 gene deletion can extend the replicative lifespan in a CR pathway-dependent manner. These findings demonstrate that the repression of enhanced gluconeogenesis effectively extends the cellular lifespan.

  6. Cavitation-enhanced MR-guided focused ultrasound ablation of rabbit tumors in vivo using phase shift nanoemulsions

    NASA Astrophysics Data System (ADS)

    Kopechek, Jonathan A.; Park, Eun-Joo; Zhang, Yong-Zhi; Vykhodtseva, Natalia I.; McDannold, Nathan J.; Porter, Tyrone M.

    2014-07-01

    Advanced tumors are often inoperable due to their size and proximity to critical vascular structures. High intensity focused ultrasound (HIFU) has been developed to non-invasively thermally ablate inoperable solid tumors. However, the clinical feasibility of HIFU ablation therapy has been limited by the long treatment times (on the order of hours) and high acoustic intensities required. Studies have shown that inertial cavitation can enhance HIFU-mediated heating by generating broadband acoustic emissions that increase tissue absorption and accelerate HIFU-induced heating. Unfortunately, initiating inertial cavitation in tumors requires high intensities and can be unpredictable. To address this need, phase-shift nanoemulsions (PSNE) have been developed. PSNE consist of lipid-coated liquid perfluorocarbon droplets that are less than 200 nm in diameter, thereby allowing passive accumulation in tumors through leaky tumor vasculature. PSNE can be vaporized into microbubbles in tumors in order to nucleate cavitation activity and enhance HIFU-mediated heating. In this study, MR-guided HIFU treatments were performed on intramuscular rabbit VX2 tumors in vivo to assess the effect of vaporized PSNE on acoustic cavitation and HIFU-mediated heating. HIFU pulses were delivered for 30 s using a 1.5 MHz, MR-compatible transducer, and cavitation emissions were recorded with a 650 kHz ring hydrophone while temperature was monitored using MR thermometry. Cavitation emissions were significantly higher (P < 0.05) after PSNE injection and this was well correlated with enhanced HIFU-mediated heating in tumors. The peak temperature rise induced by sonication was significantly higher (P < 0.05) after PSNE injection. For example, the mean per cent change in temperature achieved at 5.2 W of acoustic power was 46 ± 22% with PSNE injection. The results indicate that PSNE nucleates cavitation which correlates with enhanced HIFU-mediated heating in tumors. This suggests that PSNE could

  7. Cavitation-enhanced MR-guided focused ultrasound ablation of rabbit tumors in vivo using phase shift nanoemulsions.

    PubMed

    Kopechek, Jonathan A; Park, Eun-Joo; Zhang, Yong-Zhi; Vykhodtseva, Natalia I; McDannold, Nathan J; Porter, Tyrone M

    2014-07-07

    Advanced tumors are often inoperable due to their size and proximity to critical vascular structures. High intensity focused ultrasound (HIFU) has been developed to non-invasively thermally ablate inoperable solid tumors. However, the clinical feasibility of HIFU ablation therapy has been limited by the long treatment times (on the order of hours) and high acoustic intensities required. Studies have shown that inertial cavitation can enhance HIFU-mediated heating by generating broadband acoustic emissions that increase tissue absorption and accelerate HIFU-induced heating. Unfortunately, initiating inertial cavitation in tumors requires high intensities and can be unpredictable. To address this need, phase-shift nanoemulsions (PSNE) have been developed. PSNE consist of lipid-coated liquid perfluorocarbon droplets that are less than 200 nm in diameter, thereby allowing passive accumulation in tumors through leaky tumor vasculature. PSNE can be vaporized into microbubbles in tumors in order to nucleate cavitation activity and enhance HIFU-mediated heating. In this study, MR-guided HIFU treatments were performed on intramuscular rabbit VX2 tumors in vivo to assess the effect of vaporized PSNE on acoustic cavitation and HIFU-mediated heating. HIFU pulses were delivered for 30 s using a 1.5 MHz, MR-compatible transducer, and cavitation emissions were recorded with a 650 kHz ring hydrophone while temperature was monitored using MR thermometry. Cavitation emissions were significantly higher (P < 0.05) after PSNE injection and this was well correlated with enhanced HIFU-mediated heating in tumors. The peak temperature rise induced by sonication was significantly higher (P < 0.05) after PSNE injection. For example, the mean per cent change in temperature achieved at 5.2 W of acoustic power was 46 ± 22% with PSNE injection. The results indicate that PSNE nucleates cavitation which correlates with enhanced HIFU-mediated heating in tumors. This suggests that PSNE could

  8. Atrial Tachycardias Following Atrial Fibrillation Ablation

    PubMed Central

    Sághy, László; Tutuianu, Cristina; Szilágyi, Judith

    2015-01-01

    One of the most important proarrhythmic complications after left atrial (LA) ablation is regular atrial tachycardia (AT) or flutter. Those tachycardias that occur after atrial fibrillation (AF) ablation can cause even more severe symptoms than those from the original arrhythmia prior to the index ablation procedure since they are often incessant and associated with rapid ventricular response. Depending on the method and extent of LA ablation and on the electrophysiological properties of underlying LA substrate, the reported incidence of late ATs is variable. To establish the exact mechanism of these tachycardias can be difficult and controversial but correlates with the ablation technique and in the vast majority of cases the mechanism is reentry related to gaps in prior ablation lines. When tachycardias occur, conservative therapy usually is not effective, radiofrequency ablation procedure is mostly successful, but can be challenging, and requires a complex approach. PMID:25308808

  9. Tracking Perfluorocarbon Nanoemulsion Delivery by 19F MRI for Precise High Intensity Focused Ultrasound Tumor Ablation

    PubMed Central

    Shin, Soo Hyun; Park, Eun-Joo; Min, Changki; Choi, Sun Il; Jeon, Soyeon; Kim, Yun-Hee; Kim, Daehong

    2017-01-01

    Perfluorocarbon nanoemulsions (PFCNEs) have recently been undergoing rigorous study to investigate their ability to improve the therapeutic efficacy of tumor ablation by high intensity focused ultrasound (HIFU). For precise control of PFCNE delivery and thermal ablation, their accumulation and distribution in a tumor should be quantitatively analyzed. Here, we used fluorine-19 (19F) magnetic resonance imaging (MRI) to quantitatively track PFCNE accumulation in a tumor, and analyzed how intra-tumoral PFCNE quantities affect the therapeutic efficacy of HIFU treatment. Ablation outcomes were assessed by intra-voxel incoherent motion analysis and bioluminescent imaging up to 14 days after the procedure. Assessment of PFCNE delivery and treatment outcomes showed that 2-3 mg/mL of PFCNE in a tumor produces the largest ablation volume under the same HIFU insonation conditions. Histology showed varying degrees of necrosis depending on the amount of PFCNE delivered. 19F MRI promises to be a valuable platform for precisely guiding PFCNE-enhanced HIFU ablation of tumors. PMID:28255351

  10. Global microwave endometrial ablation for menorrhagia treatment

    NASA Astrophysics Data System (ADS)

    Fallahi, Hojjatollah; Å ebek, Jan; Frattura, Eric; Schenck, Jessica; Prakash, Punit

    2017-02-01

    Thermal ablation is a dominant therapeutic option for minimally invasive treatment of menorrhagia. Compared to other energy modalities for ablation, microwaves offer the advantages of conformal energy delivery to tissue within short times. The objective of endometrial ablation is to destroy the endometrial lining of the uterine cavity, with the clinical goal of achieving reduction in bleeding. Previous efforts have demonstrated clinical use of microwaves for endometrial ablation. A considerable shortcoming of most systems is that they achieve ablation of the target by translating the applicator in a point-to-point fashion. Consequently, treatment outcome may be highly dependent on physician skill. Global endometrial ablation (GEA) not only eliminates this operator dependence and simplifies the procedure but also facilitates shorter and more reliable treatments. The objective of our study was to investigate antenna structures and microwave energy delivery parameters to achieve GEA. Another objective was to investigate a method for automatic and reliable determination of treatment end-point. A 3D-coupled FEM electromagnetic and heat transfer model with temperature and frequency dependent material properties was implemented to characterize microwave GEA. The unique triangular geometry of the uterus where lateral narrow walls extend from the cervix to the fundus forming a wide base and access afforded through an endocervical approach limit the overall diameter of the final device. We investigated microwave antenna designs in a deployed state inside the uterus. The impact of ablation duration on treatment outcome was investigated. Prototype applicators were fabricated and experimentally evaluated in ex vivo tissue to verify the simulation results and demonstrate proof-of-concept.

  11. Renal Tumors: Technical Success and Early Clinical Experience with Radiofrequency Ablation of 18 Tumors

    SciTech Connect

    Sabharwal, Rohan, E-mail: rohan50000@yahoo.com; Vladica, Philip

    2006-04-15

    Purpose. To evaluate the feasibility, safety, and technical efficacy of image-guided radiofrequency ablation (RFA) for the treatment of small peripheral renal tumors and to report our early results with this treatment modality. Methods. Twenty-two RFA sessions for 18 tumors were performed in 11 patients with renal tumors. Indications included coexistent morbidity, high surgical or anesthetic risk, solitary kidney, and hereditary predisposition to renal cell carcinoma. Ten patients had CT-guided percutaneous RFA performed on an outpatient basis. One patient had open intraoperative ultrasound-guided RFA. Technical success was defined as elimination of areas that enhanced at imaging within the entire tumor. Withmore » the exception of one patient with renal insufficiency who required gadolinium-enhanced MRI, the remaining patients underwent contrast-enhanced CT for post-treatment follow-up assessment. Follow-up was performed after 2-4 weeks and then at 3, 6, 12 months, and every 12 months thereafter. Results. Fourteen (78%) of 18 tumors were successfully ablated with one session. Three of the remaining four tumors required two sessions for successful ablation. One tumor will require a third session for areas of persistent enhancement. Mean patient age was 72.82 {+-} 10.43 years. Mean tumor size was 1.95 {+-} 0.79 cm. Mean follow-up time was 10.91 months. All procedures were performed without any major complications. Conclusions. Our early experience with percutaneous image-guided radiofrequency ablation demonstrates it to be a feasible, safe, noninvasive, and effective treatment of small peripheral renal tumors.« less

  12. Enhanced ablation of small anodes in a carbon nanotube arc discharge

    NASA Astrophysics Data System (ADS)

    Raitses, Yevgeny; Fetterman, Abraham; Keidar, Michael

    2008-11-01

    An atmospheric pressure helium arc discharge is used for carbon nanotube synthesis. The arc discharge operates in an anodic mode with the ablating anode made from a graphite material. For such conditions, models predict the electron-repelling (negative) anode sheath. In the present experiments, the anode ablation rate is investigated as a function of the anode diameter. It is found that anomalously high ablation occurs for small anode diameters (< 0.4 cm). This result is explained by the formation of an electron-attracting (positive) anode sheath leading to increased power losses on small anodes as compared to larger anodes [1]. The suggested mechanism for the positive anode sheath formation is plasma convergence. The increased ablation rate due to this positive sheath could imply a greater yield of carbon nanotube production. [1] A. J. Fetterman, Y. Raitses and M. Keidar, Carbon (2008).

  13. Multipolar hepatic radiofrequency ablation using up to six applicators: preliminary results.

    PubMed

    Bruners, P; Schmitz-Rode, T; Günther, R W; Mahnken, A

    2008-03-01

    To evaluate the clinical feasibility and safety of hepatic radiofrequency (RF) ablation using a multipolar RF system permitting the simultaneous use of up to six electrodes. Ten patients (3 female, 7 male, mean age 61) suffering from 29 hepatic metastases (range: 1 - 5) of different tumors were treated with a modified multipolar RF system (CelonLab Power, Celon Medical Instruments, Teltow, Germany) operating four to six needle-shaped internally cooled RF applicators. The procedure duration, applied energy and generator output were recorded during the intervention. The treatment result and procedure-related complications were analyzed. The achieved coagulation volume was calculated on the basis of contrast-enhanced CT scans 24 hours after RF ablation. Complete tumor ablation was achieved in all cases as determined by the post-interventional lack of contrast enhancement in the target region using four applicators in five patients, five applicators in one patient and six applicators in four patients. A mean energy deposition of 353.9 +/- 176.2 kJ resulted in a mean coagulation volume of 115.9 +/- 79.5 cm (3). The mean procedure duration was 74.9 +/- 21.2 minutes. Four patients showed an intraabdominal hemorrhage which necessitated further interventional treatment (embolization; percutaneous histoacryl injection) in two patients. Multipolar RF ablation of hepatic metastasis with up to six applicators was clinically feasible. In our patient population it was associated with an increased risk of intraabdominal bleeding probably due to the multiple punctures associated with the use of multiple applicators.

  14. In Situ Geochemical Analysis and Age Dating of Rocks Using Laser Ablation-Miniature Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Sinha, Mahadeva P.; Hecht, Michael H.; Hurowitz, Joel A.

    2012-01-01

    A miniaturized instrument for performing chemical and isotopic analysis of rocks has been developed. The rock sample is ablated by a laser and the neutral species produced are analyzed using the JPL-invented miniature mass spectrometer. The direct sampling of neutral ablated material and the simultaneous measurement of all the elemental and isotopic species are the novelties of this method. In this laser ablation-miniature mass spectrometer (LA-MMS) method, the ablated neutral atoms are led into the electron impact ionization source of the MMS, where they are ionized by a 70-eV electron beam. This results in a secondary ion pulse typically 10-100 microsecond wide, compared to the original 5-10-nanosecond laser pulse duration. Ions of different masses are then spatially dispersed along the focal plane of the magnetic sector of the miniature mass spectrometer and measured in parallel by a modified CCD (charge-coupled device) array detector capable of detecting ions directly. Compared to conventional scanning techniques, simultaneous measurement of the ion pulse along the focal plane effectively offers a 100% duty cycle over a wide mass range. LAMMS offers a more quantitative assessment of elemental composition than techniques that detect laser-ionized species produced directly in the ablation process because the latter can be strongly influenced by matrix effects that vary with the structure and geometry of the surface, the laser beam, and the ionization energies of the elements. The measurement of high-precision isotopic ratios and elemental composition of different rock minerals by LAMMS method has been demonstrated. The LA-MMS can be applied for the absolute age determination of rocks. There is no such instrument available presently in a miniaturized version that can be used for NASA space missions. Work is in progress in the laboratory for geochronology of rocks using LA-MMS that is based on K-Ar radiogenic dating technique.

  15. Contrast-enhanced cardiac C-arm CT evaluation of radiofrequency ablation lesions in the left ventricle

    PubMed Central

    Girard, Erin E; Al-Ahmad, Amin A; Rosenberg, Jarrett; Luong, Richard; Moore, Teri; Lauritsch, Günter; Boese, Jan; Fahrig, Rebecca

    2011-01-01

    Objectives The purpose of this study was to evaluate use of cardiac C-arm computed tomography (CT) in the assessment of the dimensions and temporal characteristics of radiofrequency ablation (RFA) lesions. This imaging modality uses a standard C-arm fluoroscopy system rotating around the patient, providing CT-like images during the RFA procedure. Background Both magnetic resonance imaging (MRI) and CT can be used to assess myocardial necrotic tissue. Several studies have reported visualizing cardiac RF ablation lesions with MRI, however obtaining MR images during interventional procedures is not common practice. Direct visualization of RFA lesions using C-arm CT during the procedure may improve outcomes and circumvent complications associated with cardiac ablation procedures. Methods RFA lesions were created on the endocardial surface of the left ventricle of 9 swine using a 7-F RF ablation catheter. An ECG-gated C-arm CT imaging protocol was used to acquire projection images during iodine contrast injection and following the injection every 5 min for up to 30 min, with no additional contrast. Reconstructed images were analyzed offline. The mean and standard deviation of the signal intensity of the lesion and normal myocardium were measured in all images in each time series. Lesion dimensions and area were measured and compared in pathologic specimens and C-arm CT images. Results All ablation lesions (n=29) were visualized and lesion dimensions, as measured on C-arm CT, correlated well with postmortem tissue measurements (1D dimensions : concordance correlation = 0.87; area : concordance correlation = 0.90). Lesions were visualized as a perfusion defect on first-pass C-arm CT images with a signal intensity 95 HU lower than normal myocardium (95% confidence interval: -111 to -79 HU). Images acquired at 1 and 5 minutes exhibited an enhancing ring surrounding the perfusion defect in 24 (83%) lesions. Conclusions RFA lesion size, including transmurality, can be

  16. Efficacy and Safety of Radiofrequency Ablation for Focal Hepatic Lesions Adjacent to Gallbladder: Reconfiguration of the Ablation Zone through Probe Relocation and Ablation Time Reduction.

    PubMed

    Choi, In Young; Kim, Pyo Nyun; Lee, Sung Gu; Won, Hyung Jin; Shin, Yong Moon

    2017-10-01

    To evaluate the safety and efficacy of radiofrequency (RF) ablation for treatment of focal hepatic lesions adjacent to the gallbladder with electrode relocation and ablation time reduction. Thirty-nine patients who underwent RF ablation for focal hepatic lesions adjacent to the gallbladder (≤ 10 mm) were evaluated retrospectively from January 2011 to December 2014 (30 men and 9 women; age range, 51-85 y; mean age, 65 y). Of 36 patients with hepatocellular carcinoma, 3 had a second treatment for recurrence (mean tumor size, 15 mm ± 6). Patients were divided into 2 subgroups based on lesion distance from the gallbladder: nonabutting (> 5 mm; n = 19) and abutting (≤ 5 mm; n = 20). Electrodes were inserted parallel to the gallbladder through the center of a tumor in the nonabutting group and through the center of the expected ablation zone between a 5-mm safety zone on the liver side and the gallbladder in the abutting group. Ablation time was decreased in proportion to the transverse diameter of the expected ablation zone. Technical success and technical effectiveness rates were 89.7% and 97.4%, respectively, with no significant differences between groups (P = 1.00). Local tumor progression was observed in 3 patients (1 in the nonabutting group and 2 in the abutting group; P = 1.00). There were no major complications. The gallbladder was thickened in 10 patients, with no significant difference between groups (P = .72). Biloma occurred in 1 patient in the nonabutting group. RF ablation with electrode relocation and reduction of ablation time can be a safe and effective treatment for focal hepatic lesions adjacent to the gallbladder. Copyright © 2017 SIR. Published by Elsevier Inc. All rights reserved.

  17. Non-ablative fractionated laser skin resurfacing for the treatment of aged neck skin.

    PubMed

    Bencini, Pier Luca; Tourlaki, Athanasia; Galimberti, Michela; Pellacani, Giovanni

    2015-06-01

    Aging of the neck skin includes poikiloderma of Civatte, skin laxity and wrinkles. While the vascular alterations of poikiloderma of Civatte can be effectively treated with lasers or intense pulsed light, a successful treatment of dyschromia, skin laxity and wrinkles is still difficult to achieve. To evaluate the safety and efficacy of non-ablative fractional 1540 erbium glass laser for the treatment of aged neck skin, also by means of in vivo reflectance confocal microscopy (RCM). A prospective study for neck resurfacing in 18 women with aged neck skin. Six laser treatments were performed in 4-week intervals with a 1540-nm erbium-glass fiber laser. By using a 6-point grading scale, the mean score (±SD; range) at baseline was 3.6 (±1.5; 1-6) for skin dyschromia, 2.9 (±1.4; 1-6) for laxity and 3.3 (±1.3; 1-5) for wrinkles. Three months after the last laser session, we found a significant clinical improvement of dyschromia (p = 0.0002; Wilcoxon test), and wrinkles (p = 0.0004; Wilcoxon test), with a mean (±SD) reduction of 2.5 (±1.0) and 1.9 (±1.1) points in the 6-point grading scale, respectively. No change was observed in laxity. These results were also supported by structural changes documented by RCM. Non-ablative fractional 1540 erbium glass laser was both safe and effective for the treatment of dyschromia and wrinkles, but not effective for the laxity of the neck skin.

  18. Ablation of the transcriptional regulator Id1 enhances energy expenditure, increases insulin sensitivity, and protects against age and diet induced insulin resistance, and hepatosteatosis

    PubMed Central

    Satyanarayana, Ande; Klarmann, Kimberly D.; Gavrilova, Oksana; Keller, Jonathan R.

    2012-01-01

    , J. R. Ablation of the transcriptional regulator Id1 enhances energy expenditure, increases insulin sensitivity, and protects against age and diet-induced insulin resistance and hepatosteatosis. PMID:21990377

  19. Experimental febrile seizures induce age-dependent structural plasticity and improve memory in mice.

    PubMed

    Tao, K; Ichikawa, J; Matsuki, N; Ikegaya, Y; Koyama, R

    2016-03-24

    Population-based studies have demonstrated that children with a history of febrile seizure (FS) perform better than age-matched controls at hippocampus-dependent memory tasks. Here, we report that FSs induce two distinct structural reorganizations in the hippocampus and bidirectionally modify future learning abilities in an age-dependent manner. Compared with age-matched controls, adult mice that had experienced experimental FSs induced by hyperthermia (HT) on postnatal day 14 (P14-HT) performed better in a cognitive task that requires dentate granule cells (DGCs). The enhanced memory performance correlated with an FS-induced persistent increase in the density of large mossy fiber terminals (LMTs) of the DGCs. The memory enhancement was not observed in mice that had experienced HT-induced seizures at P11 which exhibited abnormally located DGCs in addition to the increased LMT density. The ectopic DGCs of the P11-HT mice were abolished by the diuretic bumetanide, and this pharmacological treatment unveiled the masked memory enhancement. Thus, this work provides a novel basis for age-dependent structural plasticity in which FSs influence future brain function. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Combination of bubble liposomes and high-intensity focused ultrasound (HIFU) enhanced antitumor effect by tumor ablation.

    PubMed

    Hamano, Nobuhito; Negishi, Yoichi; Takatori, Kyohei; Endo-Takahashi, Yoko; Suzuki, Ryo; Maruyama, Kazuo; Niidome, Takuro; Aramaki, Yukihiko

    2014-01-01

    Ultrasound (US) is used in the clinical setting not only for diagnosis but also for therapy. As a therapeutic US technique, high-intensity focused ultrasound (HIFU) can be applied to treat cancer in a clinical setting. Microbubbles increased temperature and improved the low therapeutic efficiency under HIFU; however, microbubbles have room for improvement in size, stability, and targeting ability. To solve these issues, we reported that "Bubble liposomes" (BLs) containing the US imaging gas (perfluoropropane gas) liposomes were suitable for ultrasound imaging and gene delivery. In this study, we examined whether BLs and HIFU could enhance the ablation area of the tumor and the antitumor effect. First, we histologically analyzed the tumor after BLs and HIFU. The ablation area of the treatment of BLs and HIFU was broader than that of HIFU alone. Next, we monitored the temperature of the tumor, and examined the antitumor effect. The temperature increase with BLs and HIFU treatment was faster and higher than that with HIFU alone. Moreover, treatment with BLs and HIFU enhanced the antitumor effect, which was better than with HIFU alone. Thus, the combination of BLs and HIFU could be efficacious for cancer therapy.

  1. Evolution of the ablation region after magnetic resonance-guided high-intensity focused ultrasound ablation in a Vx2 tumor model.

    PubMed

    Wijlemans, Joost W; Deckers, Roel; van den Bosch, Maurice A A J; Seinstra, Beatrijs A; van Stralen, Marijn; van Diest, Paul J; Moonen, Chrit T W; Bartels, Lambertus W

    2013-06-01

    Volumetric magnetic resonance (MR)-guided high-intensity focused ultrasound (HIFU) is a completely noninvasive image-guided thermal ablation technique. Recently, there has been growing interest in the use of MR-HIFU for noninvasive ablation of malignant tumors. Of particular interest for noninvasive ablation of malignant tumors is reliable treatment monitoring and evaluation of response. At this point, there is limited evidence on the evolution of the ablation region after MR-HIFU treatment. The purpose of the present study was to comprehensively characterize the evolution of the ablation region after volumetric MR-HIFU ablation in a Vx2 tumor model using MR imaging, MR temperature data, and histological data. Vx2 tumors in the hind limb muscle of New Zealand White rabbits (n = 30) were ablated using a clinical MR-HIFU system. Twenty-four animals were available for analyses. Magnetic resonance imaging was performed before and immediately after ablation; MR temperature mapping was performed during the ablation. The animals were distributed over 7 groups with different follow-up lengths. Depending on the group, animals were reimaged and then killed on day 0, 1, 3, 7, 14, 21, or 28 after ablation. For all time points, the size of nonperfused areas (NPAs) on contrast-enhanced T1-weighted (CE-T1-w) images was compared with lethal thermal dose areas (ie, the tissue area that received a thermal dose of 240 equivalent minutes or greater [EM] at 43°C) and with the necrotic tissue areas on histology sections. The NPA on CE-T1-w imaging showed an increase in median size from 266 ± 148 to 392 ± 178 mm(2) during the first day and to 343 ± 170 mm(2) on day 3, followed by a gradual decrease to 113 ± 103 mm(2) on day 28. Immediately after ablation, the NPA was 1.6 ± 1.4 times larger than the area that received a thermal dose of 240 EM or greater in all animals. The median size of the necrotic area on histology was 1.7 ± 0.4 times larger than the NPA immediately after

  2. Cartilage ablation studies using mid-IR free electron laser

    NASA Astrophysics Data System (ADS)

    Youn, Jong-In; Peavy, George M.; Venugopalan, Vasan

    2005-04-01

    The ablation rate of articular cartilage and fibrocartilage (meniscus), were quantified to examine wavelength and tissue-composition dependence of ablation efficiency for selected mid-infrared wavelengths. The wavelengths tested were 2.9 um (water dominant absorption), 6.1 (protein and water absorption) and 6.45 um (protein dominant absorption) generated by the Free Electron Laser (FEL) at Vanderbilt University. The measurement of tissue mass removal using a microbalance during laser ablation was conducted to determine the ablation rates of cartilage. The technique can be accurate over methods such as profilometer and histology sectioning where tissue surface and the crater morphology may be affected by tissue processing. The ablation efficiency was found to be dependent upon the wavelength. Both articular cartilage and meniscus (fibrocartilage) ablations at 6.1 um were more efficient than those at the other wavelengths evaluated. We observed the lowest ablation efficiency of both types of cartilage with the 6.45 um wavelength, possibly due to the reduction in water absorption at this wavelength in comparison to the other wavelengths that were evaluated.

  3. Multi-Dimensional, Non-Pyrolyzing Ablation Test Problems

    NASA Technical Reports Server (NTRS)

    Risch, Tim; Kostyk, Chris

    2016-01-01

    Non-pyrolyzingcarbonaceous materials represent a class of candidate material for hypersonic vehicle components providing both structural and thermal protection system capabilities. Two problems relevant to this technology are presented. The first considers the one-dimensional ablation of a carbon material subject to convective heating. The second considers two-dimensional conduction in a rectangular block subject to radiative heating. Surface thermochemistry for both problems includes finite-rate surface kinetics at low temperatures, diffusion limited ablation at intermediate temperatures, and vaporization at high temperatures. The first problem requires the solution of both the steady-state thermal profile with respect to the ablating surface and the transient thermal history for a one-dimensional ablating planar slab with temperature-dependent material properties. The slab front face is convectively heated and also reradiates to a room temperature environment. The back face is adiabatic. The steady-state temperature profile and steady-state mass loss rate should be predicted. Time-dependent front and back face temperature, surface recession and recession rate along with the final temperature profile should be predicted for the time-dependent solution. The second problem requires the solution for the transient temperature history for an ablating, two-dimensional rectangular solid with anisotropic, temperature-dependent thermal properties. The front face is radiatively heated, convectively cooled, and also reradiates to a room temperature environment. The back face and sidewalls are adiabatic. The solution should include the following 9 items: final surface recession profile, time-dependent temperature history of both the front face and back face at both the centerline and sidewall, as well as the time-dependent surface recession and recession rate on the front face at both the centerline and sidewall. The results of the problems from all submitters will be

  4. Atrial fibrillation ablation using a closed irrigation radiofrequency ablation catheter.

    PubMed

    Golden, Keith; Mounsey, John Paul; Chung, Eugene; Roomiani, Pahresah; Morse, Michael Andew; Patel, Ankit; Gehi, Anil

    2012-05-01

    Catheter ablation is an effective therapy for symptomatic, medically refractory atrial fibrillation (AF). Open-irrigated radiofrequency (RF) ablation catheters produce transmural lesions at the cost of increased fluid delivery. In vivo models suggest closed-irrigated RF catheters create equivalent lesions, but clinical outcomes are limited. A cohort of 195 sequential patients with symptomatic AF underwent stepwise AF ablation (AFA) using a closed-irrigation ablation catheter. Recurrence of AF was monitored and outcomes were evaluated using Kaplan-Meier survival analysis and Cox proportional hazards models. Mean age was 59.0 years, 74.9% were male, 56.4% of patients were paroxysmal and mean duration of AF was 5.4 years. Patients had multiple comorbidities including hypertension (76.4%), tobacco abuse (42.1%), diabetes (17.4%), and obesity (mean body mass index 30.8). The median follow-up was 55.8 weeks. Overall event-free survival was 73.6% with one ablation and 77.4% after reablation (reablation rate was 8.7%). Median time to recurrence was 26.9 weeks. AF was more likely to recur in patients being treated with antiarrhythmic therapy at the time of last follow-up (recurrence rate 30.3% with antiarrhythmic drugs, 13.2% without antiarrhythmic drugs; hazard ratio [HR] 2.2, 95% confidence interval [CI] 1.1-4.4, P = 0.024) and in those with a history of AF greater than 2 years duration (HR 2.7, 95% CI 1.1-6.9, P = 0.038). Our study represents the largest cohort of patients receiving AFA with closed-irrigation ablation catheters. We demonstrate comparable outcomes to those previously reported in studies of open-irrigation ablation catheters. Given the theoretical benefits of a closed-irrigation system, a large head-to-head comparison using this catheter is warranted. ©2012, The Authors. Journal compilation ©2012 Wiley Periodicals, Inc.

  5. Ablation of PGC1 beta prevents mTOR dependent endoplasmic reticulum stress response

    PubMed Central

    Camacho, Alberto; Rodriguez-Cuenca, Sergio; Blount, Margaret; Prieur, Xavier; Barbarroja, Nuria; Fuller, Maria; Hardingham, Giles E.; Vidal-Puig, Antonio

    2012-01-01

    Mitochondria dysfunction contributes to the pathophysiology of obesity, diabetes, neurodegeneration and ageing. The peroxisome proliferator-activated receptor-gamma coactivator-1β (PGC-1β) coordinates mitochondrial biogenesis and function as well as fatty acid metabolism. It has been suggested that endoplasmic reticulum (ER) stress may be one of the mechanisms linking mitochondrial dysfunction and these pathologies. Here we investigate whether PGC-1β ablation affects the ER stress response induced by specific nutritional and pharmacological challenges in the CNS. By using flow cytometry, western blot, real time PCR and several pharmacological and nutritional interventions in PGC-1β knock out and WT mice, we confirmed that PGC-1β coordinates mitochondria function in brain and reported for the first time that a) ablation of PGC-1β is associated with constitutive activation of mTORC1 pathway associated with increased basal GRP78 protein levels in hypothalamus and cortex of animals fed chow diet; and b) in animals fed chronically with high fat diet (HFD) or high protein diet (HPD), we observed a failure to appropriately induce ER stress response in the absence of PGC-1β, associated with an increase in mTOR pathway phosphorylation. This contrasted with the appropriate upregulation of ER stress response observed in wild type littermates. Additionally, inefficient in vitro induction of ER stress by thapsigargin seems result in apoptotic neuronal cell death in PGC-1β KO. Our data indicate that PGC-1β is required for a neuronal ER response to nutritional stress imposed by HFD and HPD diets and that genetic ablation of PGC-1β might increase the susceptibility to neuronal damage and cell death. PMID:22771762

  6. Epicardial Radiofrequency Ablation Failure During Ablation Procedures for Ventricular Arrhythmias: Reasons and Implications for Outcomes.

    PubMed

    Baldinger, Samuel H; Kumar, Saurabh; Barbhaiya, Chirag R; Mahida, Saagar; Epstein, Laurence M; Michaud, Gregory F; John, Roy; Tedrow, Usha B; Stevenson, William G

    2015-12-01

    Radiofrequency ablation (RFA) from the epicardial space for ventricular arrhythmias is limited or impossible in some cases. Reasons for epicardial ablation failure and the effect on outcome have not been systematically analyzed. We assessed reasons for epicardial RFA failure relative to the anatomic target area and the type of heart disease and assessed the effect of failed epicardial RFA on outcome after ablation procedures for ventricular arrhythmias in a large single-center cohort. Epicardial access was attempted during 309 ablation procedures in 277 patients and was achieved in 291 procedures (94%). Unlimited ablation in an identified target region could be performed in 181 cases (59%), limited ablation was possible in 22 cases (7%), and epicardial ablation was deemed not feasible in 88 cases (28%). Reasons for failed or limited ablation were unsuccessful epicardial access (6%), failure to identify an epicardial target (15%), proximity to a coronary artery (13%), proximity to the phrenic nerve (6%), and complications (<1%). Epicardial RFA was impeded in the majority of cases targeting the left ventricular summit region. Acute complications occurred in 9%. The risk for acute ablation failure was 8.3× higher (4.5-15.0; P<0.001) after no or limited epicardial RFA compared with unlimited RFA, and patients with unlimited epicardial RFA had better recurrence-free survival rates (P<0.001). Epicardial RFA for ventricular arrhythmias is often limited even when pericardial access is successful. Variability of success is dependent on the target area, and the presence of factors limiting ablation is associated with worse outcomes. © 2015 American Heart Association, Inc.

  7. Resonant-Plasmon-Assisted Subwavelength Ablation by a Femtosecond Oscillator

    DOE PAGES

    Shi, Liping; Iwan, Bianca; Ripault, Quentin; ...

    2018-02-02

    Here, we experimentally demonstrate the use of subwavelength optical nanoantennas to assist a direct nanoscale ablation using the ultralow fluence of a Ti:sapphire oscillator through the excitation of surface plasmon waves. The mechanism is attributed to nonthermal transient unbonding and electrostatic ablation, which is triggered by the surface plasmon-enhanced field electron emission and acceleration in vacuum. We show that the electron-driven ablation appears for both nanoscale metallic as well as dielectric materials. While the observed surface plasmon-enhanced local ablation may limit the applications of nanostructured surfaces in extreme nonlinear nanophotonics, it, nevertheless, also provides a method for nanomachining, manipulation, andmore » modification of nanoscale materials. Lastly, collateral thermal damage to the antenna structure can be suitably avoided, and nonlinear conversion processes can be stabilized by a dielectric overcoating of the antenna.« less

  8. Optimal approach for complete liver tumor ablation using radiofrequency ablation: a simulation study.

    PubMed

    Givehchi, Sogol; Wong, Yin How; Yeong, Chai Hong; Abdullah, Basri Johan Jeet

    2018-04-01

    To investigate the effect of radiofrequency ablation (RFA) electrode trajectory on complete tumor ablation using computational simulation. The RFA of a spherical tumor of 2.0 cm diameter along with 0.5 cm clinical safety margin was simulated using Finite Element Analysis software. A total of 86 points inside one-eighth of the tumor volume along the axial, sagittal and coronal planes were selected as the target sites for electrode-tip placement. The angle of the electrode insertion in both craniocaudal and orbital planes ranged from -90° to +90° with 30° increment. The RFA electrode was simulated to pass through the target site at different angles in combination of both craniocaudal and orbital planes before being advanced to the edge of the tumor. Complete tumor ablation was observed whenever the electrode-tip penetrated through the epicenter of the tumor regardless of the angles of electrode insertion in both craniocaudal and orbital planes. Complete tumor ablation can also be achieved by placing the electrode-tip at several optimal sites and angles. Identification of the tumor epicenter on the central slice of the axial images is essential to enhance the success rate of complete tumor ablation during RFA procedures.

  9. Role of near-field enhancement in plasmonic laser nanoablation using gold nanorods on a silicon substrate.

    PubMed

    Harrison, R K; Ben-Yakar, Adela

    2010-10-11

    We present experimental results for the plasmonic laser ablation of silicon with nanoscale features as small as 22 x 66 nm using single near-infrared, femtosecond laser pulses incident on gold nanorods. Near the ablation threshold, these features are photo-imprints of gold nanorod particles positioned on the surface of the silicon and have feature sizes similar to the nanorods. The single rod-shaped ablation pattern matches the enhancement patterns of the Poynting vector magnitude on the surface of silicon, implying that the ablation is a result of the plasmonic enhancement of the incident electromagnetic waves in the near-field of the particles. Interestingly, the ablation pattern is different from the two separated holes at the ends of the nanorod, as would be expected from the electric field--|E|(2) enhancement pattern. We measured the plasmonic ablation threshold fluence to be almost two orders of magnitude less than the femtosecond laser ablation threshold of silica, present in the thin native oxide layer on the surface of silicon. This value also agrees with the enhancement of the Poynting vector of a nanorod on silicon as calculated with electromagnetic simulations. We thus conclude that plasmonic ablation with plasmonic nanoparticles depends directly on the polarization and the value of the near-field enhancement of the Poynting vector and not the square of the electric field as previously suggested.

  10. Cavitation-enhanced nonthermal ablation in deep brain targets: feasibility in a large animal model.

    PubMed

    Arvanitis, Costas D; Vykhodtseva, Natalia; Jolesz, Ferenc; Livingstone, Margaret; McDannold, Nathan

    2016-05-01

    OBJECT Transcranial MRI-guided focused ultrasound (TcMRgFUS) is an emerging noninvasive alternative to surgery and radiosurgery that is undergoing testing for tumor ablation and functional neurosurgery. The method is currently limited to central brain targets due to skull heating and other factors. An alternative ablative approach combines very low intensity ultrasound bursts and an intravenously administered microbubble agent to locally destroy the vasculature. The objective of this work was to investigate whether it is feasible to use this approach at deep brain targets near the skull base in nonhuman primates. METHODS In 4 rhesus macaques, targets near the skull base were ablated using a clinical TcMRgFUS system operating at 220 kHz. Low-duty-cycle ultrasound exposures (sonications) were applied for 5 minutes in conjunction with the ultrasound contrast agent Definity, which was administered as a bolus injection or continuous infusion. The acoustic power level was set to be near the inertial cavitation threshold, which was measured using passive monitoring of the acoustic emissions. The resulting tissue effects were investigated with MRI and with histological analysis performed 3 hours to 1 week after sonication. RESULTS Thirteen targets were sonicated in regions next to the optic tract in the 4 animals. Inertial cavitation, indicated by broadband acoustic emissions, occurred at acoustic pressure amplitudes ranging from 340 to 540 kPa. MRI analysis suggested that the lesions had a central region containing red blood cell extravasations that was surrounded by edema. Blood-brain barrier disruption was observed on contrast-enhanced MRI in the lesions and in a surrounding region corresponding to the prefocal area of the FUS system. In histology, lesions consisting of tissue undergoing ischemic necrosis were found in all regions that were sonicated above the inertial cavitation threshold. Tissue damage in prefocal areas was found in several cases, suggesting that in

  11. Postnatal ablation of osteoblast Smad4 enhances proliferative responses to canonical Wnt signaling through interactions with β-catenin

    PubMed Central

    Salazar, Valerie S.; Zarkadis, Nicholas; Huang, Lisa; Watkins, Marcus; Kading, Jacqueline; Bonar, Sheri; Norris, Jin; Mbalaviele, Gabriel; Civitelli, Roberto

    2013-01-01

    Summary Canonical Wnt (cWnt) signaling through β-catenin regulates osteoblast proliferation and differentiation to enhance bone formation. We previously reported that osteogenic action of β-catenin is dependent on BMP signaling. Here, we further examined interactions between cWnt and BMP in bone. In osteoprogenitors stimulated with BMP2, β-catenin localizes to the nucleus, physically interacts with Smad4, and is recruited to DNA-binding transcription complexes containing Smad4, R-Smad1/5 and TCF4. Furthermore, Tcf/Lef-dependent transcription, Ccnd1 expression and proliferation all increase when Smad4, 1 or 5 levels are low, whereas TCF/Lef activities decrease when Smad4 expression is high. The ability of Smad4 to antagonize transcription of Ccnd1 is dependent on DNA-binding activity but Smad4-dependent transcription is not required. In mice, conditional deletion of Smad4 in osterix+ cells increases mitosis of cells on trabecular bone surfaces as well as in primary osteoblast cultures from adult bone marrow and neonatal calvaria. By contrast, ablation of Smad4 delays differentiation and matrix mineralization by primary osteoblasts in response to Wnt3a, indicating that loss of Smad4 perturbs the balance between proliferation and differentiation in osteoprogenitors. We propose that Smad4 and Tcf/Lef transcription complexes compete for β-catenin, thus restraining cWnt-dependent proliferative signals while favoring the matrix synthesizing activity of osteoblasts. PMID:24101723

  12. Effects of Non-Equilibrium Chemistry and Darcy-Forchheimer Flow of Pyrolysis Gas for a Charring Ablator

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq; Milos, Frank S.

    2011-01-01

    The Fully Implicit Ablation and Thermal Response code, FIAT, simulates pyrolysis and ablation of thermal protection materials and systems. The governing equations, which include energy conservation, a three-component decomposition model, and a surface energy balance, are solved with a moving grid. This work describes new modeling capabilities that are added to a special version of FIAT. These capabilities include a time-dependent pyrolysis gas flow momentum equation with Darcy-Forchheimer terms and pyrolysis gas species conservation equations with finite-rate homogeneous chemical reactions. The total energy conservation equation is also enhanced for consistency with these new additions. Parametric studies are performed using this enhanced version of FIAT. Two groups of analyses of Phenolic Impregnated Carbon Ablator (PICA) are presented. In the first group, an Orion flight environment for a proposed Lunar-return trajectory is considered. In the second group, various test conditions for arcjet models are examined. The central focus of these parametric studies is to understand the effect of pyrolysis gas momentum transfer on PICA material in-depth thermal responses with finite-rate, equilibrium, or frozen homogeneous gas chemistry. Results are presented, discussed, and compared with those predicted by the baseline PICA/FIAT ablation and thermal response model developed by the Orion Thermal Protection System Advanced Development Project.

  13. Visual Outcomes After LASIK Using Topography-Guided vs Wavefront-Guided Customized Ablation Systems.

    PubMed

    Toda, Ikuko; Ide, Takeshi; Fukumoto, Teruki; Tsubota, Kazuo

    2016-11-01

    To evaluate the visual performance of two customized ablation systems (wavefront-guided ablation and topography-guided ablation) in LASIK. In this prospective, randomized clinical study, 68 eyes of 35 patients undergoing LASIK were enrolled. Patients were randomly assigned to wavefront-guided ablation using the iDesign aberrometer and STAR S4 IR Excimer Laser system (Abbott Medical Optics, Inc., Santa Ana, CA) (wavefront-guided group; 32 eyes of 16 patients; age: 29.0 ± 7.3 years) or topography-guided ablation using the OPD-Scan aberrometer and EC-5000 CXII excimer laser system (NIDEK, Tokyo, Japan) (topography-guided group; 36 eyes of 19 patients; age: 36.1 ± 9.6 years). Preoperative manifest refraction was -4.92 ± 1.95 diopters (D) in the wavefront-guided group and -4.44 ± 1.98 D in the topography-guided group. Visual function and subjective symptoms were compared between groups before and 1 and 3 months after LASIK. Of seven subjective symptoms evaluated, four were significantly milder in the wavefront-guided group at 3 months. Contrast sensitivity with glare off at low spatial frequencies (6.3° and 4°) was significantly higher in the wavefront-guided group. Uncorrected and corrected distance visual acuity, manifest refraction, and higher order aberrations measured by OPD-Scan and iDesign were not significantly different between the two groups at 1 and 3 months after LASIK. Both customized ablation systems used in LASIK achieved excellent results in predictability and visual function. The wavefront-guided ablation system may have some advantages in the quality of vision. It may be important to select the appropriate system depending on eye conditions such as the pattern of total and corneal higher order aberrations. [J Refract Surg. 2016;32(11):727-732.]. Copyright 2016, SLACK Incorporated.

  14. Involvement of small carbon clusters in the enhancement of high-order harmonic generation of ultrashort pulses in the plasmas produced during ablation of carbon-contained nanoparticles

    NASA Astrophysics Data System (ADS)

    Ganeev, R. A.

    2017-09-01

    Various carbon-based nanoparticles ablated at the conditions suitable for efficient harmonic generation during propagation of ultrashort pulses through the laser-produced plasmas were studied. The transmission electron microscopy of ablated debris and the time-of-flight mass-spectroscopy studies of plasmas are presented. The conditions of laser ablation of the carbon-contained nanoparticles (fullerenes, graphene, carbon nanotubes, carbon nanofibers, and diamond nanoparticles) were varied to define the impeding processes restricting the harmonic yield from such laser-produced plasmas. These studies show that the enhancement of harmonics during ablation of nanoparticle targets was related with the appearance of small carbon clusters at the moment of propagation of the ultrashort laser pulses though such plasmas.

  15. Tip-enhanced ablation and ionization mass spectrometry for nanoscale chemical analysis

    PubMed Central

    Liang, Zhisen; Zhang, Shudi; Li, Xiaoping; Wang, Tongtong; Huang, Yaping; Hang, Wei; Yang, Zhilin; Li, Jianfeng; Tian, Zhongqun

    2017-01-01

    Spectroscopic methods with nanoscale lateral resolution are becoming essential in the fields of physics, chemistry, geology, biology, and materials science. However, the lateral resolution of laser-based mass spectrometry imaging (MSI) techniques has so far been limited to the microscale. This report presents the development of tip-enhanced ablation and ionization time-of-flight mass spectrometry (TEAI-TOFMS), using a shell-isolated apertureless silver tip. The TEAI-TOFMS results indicate the capability and reproducibility of the system for generating nanosized craters and for acquiring the corresponding mass spectral signals. Multi-elemental analysis of nine inorganic salt residues and MSI of a potassium salt residue pattern at a 50-nm lateral resolution were achieved. These results demonstrate the opportunity for the distribution of chemical compositions at the nanoscale to be visualized. PMID:29226250

  16. High-frequency microwave ablation method for enhanced cancer treatment with minimized collateral damage.

    PubMed

    Yoon, Jeonghoon; Cho, Jeiwon; Kim, Namgon; Kim, Dae-Duk; Lee, Eunsook; Cheon, Changyul; Kwon, Youngwoo

    2011-10-15

    To overcome the limits of conventional microwave ablation, a new frequency spectrum above 6 GHz has been explored for low-power and low collateral damage ablation procedure. A planar coaxial probe-based applicator, suitable for easy insertion into the human body, was developed for our study to cover a wideband frequency up to 30 GHz. Thermal ablations with small input power (1-3 W) at various microwave frequencies were performed on nude mice xenografted with human breast cancer. Comparative study of ablation efficiencies revealed that 18-GHz microwave results in the largest difference in the temperature rise between cancer and normal tissues as well as the highest ablation efficiency, reaching 20 times that of 2 GHz. Thermal profile study on the composite region of cancer and fat also showed significantly reduced collateral damage using 18 GHz. Application of low-power (1 W) 18-GHz microwave on the nude mice xenografted with human breast cancer cells resulted in recurrence-free treatment. The proposed microwave ablation method can be a very effective process to treat small-sized tumor with minimized invasiveness and collateral damages. Copyright © 2010 UICC.

  17. Superselective Particle Embolization Enhances Efficacy of Radiofrequency Ablation: Effects of Particle Size and Sequence of Action

    SciTech Connect

    Tanaka, Toshihiro, E-mail: toshihir@bf6.so-net.ne.jp; Isfort, Peter, E-mail: isfort@hia.rwth-aachen.de; Braunschweig, Till, E-mail: tbraunschweig@ukaachen.de

    2013-06-15

    Purpose. To evaluate the effects of particle size and course of action of superselective bland transcatheter arterial embolization (TAE) on the efficacy of radiofrequency ablation (RFA). Methods. Twenty pigs were divided into five groups: group 1a, 40-{mu}m bland TAE before RFA; group 1b, 40-{mu}m bland TAE after RFA; group 2a, 250-{mu}m bland TAE before RFA; group 2b, 250-{mu}m bland TAE after RFA and group 3, RFA alone. A total of 40 treatments were performed with a combined CT and angiography system. The sizes of the treated zones were measured from contrast-enhanced CTs on days 1 and 28. Animals were humanelymore » killed, and the treated zones were examined pathologically. Results. There were no complications during procedures and follow-up. The short-axis diameter of the ablation zone in group 1a (mean {+-} standard deviation, 3.19 {+-} 0.39 cm) was significantly larger than in group 1b (2.44 {+-} 0.52 cm; P = 0.021), group 2a (2.51 {+-} 0.32 cm; P = 0.048), group 2b (2.19 {+-} 0.44 cm; P = 0.02), and group 3 (1.91 {+-} 0.55 cm; P < 0.001). The greatest volume of ablation was achieved by performing embolization with 40-{mu}m particles before RFA (group 1a; 20.97 {+-} 9.65 cm{sup 3}). At histology, 40-{mu}m microspheres were observed to occlude smaller and more distal arteries than 250-{mu}m microspheres. Conclusion. Bland TAE is more effective before RFA than postablation embolization. The use of very small 40-{mu}m microspheres enhances the efficacy of RFA more than the use of larger particles.« less

  18. Thermal Ablation Modeling for Silicate Materials

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq

    2016-01-01

    A general thermal ablation model for silicates is proposed. The model includes the mass losses through the balance between evaporation and condensation, and through the moving molten layer driven by surface shear force and pressure gradient. This model can be applied in the ablation simulation of the meteoroid and the glassy ablator for spacecraft Thermal Protection Systems. Time-dependent axisymmetric computations are performed by coupling the fluid dynamics code, Data-Parallel Line Relaxation program, with the material response code, Two-dimensional Implicit Thermal Ablation simulation program, to predict the mass lost rates and shape change. The predicted mass loss rates will be compared with available data for model validation, and parametric studies will also be performed for meteoroid earth entry conditions.

  19. [Catheter ablation for paroxysmal atrial fibrillation: new generation cryoballoon or contact force sensing radiofrequency ablation?].

    PubMed

    Nagy, Zsófia; Kis, Zsuzsanna; Som, Zoltán; Földesi, Csaba; Kardos, Attila

    2016-05-29

    Contact force sensing radiofrequency ablation and the new generation cryoballoon ablation are prevalent techniques for the treatment of paroxysmal atrial fibrillation. The authors aimed to compare the procedural and 1-year outcome of patients after radiofrequency and cryoballoon ablation. 96 patients with paroxysmal atrial fibrillation (radiofrequency ablation: 58, cryoballoon: 38 patients; 65 men and 31 women aged 28-70 years) were enrolled. At postprocedural 1, 3, 6 and 12 months ECG, Holter monitoring and telephone interviews were performed. Procedure and fluorosocopy time were: radiofrequency ablation, 118.5 ± 15 min and 15.8 ± 6 min; cryoballoon, 73.5 ± 16 min (p<0.05) and 13.8 ± 4.,1 min (p = 0.09), respectively. One year later freedom from atrial fibrillation was achieved in 76.5% of patients who underwent radiofrequency ablation and in 81% of patients treated with cryoballoon. Temporary phrenic nerve palsy occurred in two patients and pericardial tamponade developed in one patient. In this single center study freedom from paroxysmal atrial fibrillation was similar in the two groups with significant shorter procedure time in the cryoballoon group.

  20. Skeletal adaptation to intramedullary pressure-induced interstitial fluid flow is enhanced in mice subjected to targeted osteocyte ablation.

    PubMed

    Kwon, Ronald Y; Meays, Diana R; Meilan, Alexander S; Jones, Jeremiah; Miramontes, Rosa; Kardos, Natalie; Yeh, Jiunn-Chern; Frangos, John A

    2012-01-01

    Interstitial fluid flow (IFF) is a potent regulatory signal in bone. During mechanical loading, IFF is generated through two distinct mechanisms that result in spatially distinct flow profiles: poroelastic interactions within the lacunar-canalicular system, and intramedullary pressurization. While the former generates IFF primarily within the lacunar-canalicular network, the latter generates significant flow at the endosteal surface as well as within the tissue. This gives rise to the intriguing possibility that loading-induced IFF may differentially activate osteocytes or surface-residing cells depending on the generating mechanism, and that sensation of IFF generated via intramedullary pressurization may be mediated by a non-osteocytic bone cell population. To begin to explore this possibility, we used the Dmp1-HBEGF inducible osteocyte ablation mouse model and a microfluidic system for modulating intramedullary pressure (ImP) to assess whether structural adaptation to ImP-driven IFF is altered by partial osteocyte depletion. Canalicular convective velocities during pressurization were estimated through the use of fluorescence recovery after photobleaching and computational modeling. Following osteocyte ablation, transgenic mice exhibited severe losses in bone structure and altered responses to hindlimb suspension in a compartment-specific manner. In pressure-loaded limbs, transgenic mice displayed similar or significantly enhanced structural adaptation to Imp-driven IFF, particularly in the trabecular compartment, despite up to ∼50% of trabecular lacunae being uninhabited following ablation. Interestingly, regression analysis revealed relative gains in bone structure in pressure-loaded limbs were correlated with reductions in bone structure in unpressurized control limbs, suggesting that adaptation to ImP-driven IFF was potentiated by increases in osteoclastic activity and/or reductions in osteoblastic activity incurred independently of pressure loading

  1. Skeletal Adaptation to Intramedullary Pressure-Induced Interstitial Fluid Flow Is Enhanced in Mice Subjected to Targeted Osteocyte Ablation

    PubMed Central

    Kwon, Ronald Y.; Meays, Diana R.; Meilan, Alexander S.; Jones, Jeremiah; Miramontes, Rosa; Kardos, Natalie; Yeh, Jiunn-Chern; Frangos, John A.

    2012-01-01

    Interstitial fluid flow (IFF) is a potent regulatory signal in bone. During mechanical loading, IFF is generated through two distinct mechanisms that result in spatially distinct flow profiles: poroelastic interactions within the lacunar-canalicular system, and intramedullary pressurization. While the former generates IFF primarily within the lacunar-canalicular network, the latter generates significant flow at the endosteal surface as well as within the tissue. This gives rise to the intriguing possibility that loading-induced IFF may differentially activate osteocytes or surface-residing cells depending on the generating mechanism, and that sensation of IFF generated via intramedullary pressurization may be mediated by a non-osteocytic bone cell population. To begin to explore this possibility, we used the Dmp1-HBEGF inducible osteocyte ablation mouse model and a microfluidic system for modulating intramedullary pressure (ImP) to assess whether structural adaptation to ImP-driven IFF is altered by partial osteocyte depletion. Canalicular convective velocities during pressurization were estimated through the use of fluorescence recovery after photobleaching and computational modeling. Following osteocyte ablation, transgenic mice exhibited severe losses in bone structure and altered responses to hindlimb suspension in a compartment-specific manner. In pressure-loaded limbs, transgenic mice displayed similar or significantly enhanced structural adaptation to Imp-driven IFF, particularly in the trabecular compartment, despite up to ∼50% of trabecular lacunae being uninhabited following ablation. Interestingly, regression analysis revealed relative gains in bone structure in pressure-loaded limbs were correlated with reductions in bone structure in unpressurized control limbs, suggesting that adaptation to ImP-driven IFF was potentiated by increases in osteoclastic activity and/or reductions in osteoblastic activity incurred independently of pressure loading

  2. Carbon Nanotube-enhanced Carbon-phenolic Ablator Material

    NASA Technical Reports Server (NTRS)

    Nikolaev, P.; Stackpoole, M.; Fan, W.; Cruden, B.; Waid, M.; Maloney, P.; Arepalli, S.; Arnold, J.; Partridge, H.; Yowell, L.

    2006-01-01

    Phenolic impregnated carbon ablator (PICA) is a thermal protection system (TPS) material developed at NASA Ames Research Center in the mid-90 s for Discovery missions. It was used on the Stardust return capsule heat shield which successfully executed the highest speed Earth entry to date on January 15, 2006. PICA is a porous fibrous carbon insulation infiltrated with phenolic resin, and is an excellent ablator that is effective for heating rates up to 1000 W/sq cm. It is one of several candidate TPS materials for the next generation of crewed spacecraft for Lunar and Mars missions. We will describe an ongoing research effort at NASA to improve mechanical properties of the phenolic matrix with carbon nanotubes. The aim is two-fold: to increase overall TPS strength during reentry and to improve Micrometeoroid/Orbital Debris (MMOD) protection in space. The former requires at least a good dispersion of nanotubes in phenolic, while the latter also requires covalent bonding between them to couple and transfer impact energy effectively from matrix to nanotubes. We will discuss the required chemical functionalization of nanotubes, processing issues and test results.

  3. Ultrafast properties of femtosecond-laser-ablated GaAs and its application to terahertz optoelectronics.

    PubMed

    Madéo, Julien; Margiolakis, Athanasios; Zhao, Zhen-Yu; Hale, Peter J; Man, Michael K L; Zhao, Quan-Zhong; Peng, Wei; Shi, Wang-Zhou; Dani, Keshav M

    2015-07-15

    We report on the first terahertz (THz) emitter based on femtosecond-laser-ablated gallium arsenide (GaAs), demonstrating a 65% enhancement in THz emission at high optical power compared to the nonablated device. Counter-intuitively, the ablated device shows significantly lower photocurrent and carrier mobility. We understand this behavior in terms of n-doping, shorter carrier lifetime, and enhanced photoabsorption arising from the ablation process. Our results show that laser ablation allows for efficient and cost-effective optoelectronic THz devices via the manipulation of fundamental properties of materials.

  4. Modulation of Pancreatic Islets' Function and Survival During Aging Involves the Differential Regulation of Endoplasmic Reticulum Stress by p21 and CHOP.

    PubMed

    Mihailidou, Chrysovalantou; Chatzistamou, Ioulia; Papavassiliou, Athanasios G; Kiaris, Hippokratis

    2017-08-01

    Although endoplasmic reticulum (ER) stress is recognized as a major mechanism causing pancreatic dysfunction in diabetes, little is known on how aging modulates the process. Here, we compared the response with ER stress, viability, and insulin release from pancreatic islets of young (6 weeks) or aged (14 months) mice. Islets from aged mice were more sensitive to ER stress than their younger counterparts; they exhibited more pronounced unfolded protein response (UPR) and caspase activation and displayed compromised insulin release after high-glucose stimulation. Genetic ablation of p21 sensitized the islets to ER stress, especially in the aged group, whereas CHOP ablation was protective for islets from both aged and younger animals. Ciclopirox (CPX), an iron chelator that stimulates p21 expression, protected islets from glucotoxicity and mice from diet-induced diabetes, especially in the aged group in a manner that was both p21 and CHOP dependent. For the first time, the study shows that age-dependent susceptibility to diet-induced diabetes is associated with the activity of p21 and CHOP in pancreatic islets and that CPX protects islets from glucotoxicity and mice from diabetes in an age-dependent manner. Our results identify ER stress as an age-dependent modifier of islet survival and function by mechanisms implicating enhancement of CHOP activity and inhibition of the protective activity of p21. These findings suggest that interventions restoring the homeostatic activity of ER stress, by agents such as CPX, may be particularly beneficial for the management of diabetes in the elderly. Antioxid. Redox Signal. 27, 185-200.

  5. TECHNIQUES AND OUTCOMES OF MINIMALLY-INVASIVE TRABECULAR ABLATION AND BYPASS SURGERY

    PubMed Central

    Kaplowitz, Kevin; Schuman, Joel S.; Loewen, Nils A.

    2014-01-01

    Minimally invasive glaucoma surgeries (MIGS) can improve the conventional, pressure dependent outflow by bypassing or ablating the trabecular meshwork or create alternative drainage routes into the suprachoroidal or subconjunctival space. They have a highly favorable risk profile compared to penetrating surgeries and lower intraocular pressure with variable efficacy that may depend on the extent of outflow segments accessed. Since they are highly standardized procedures that use clear corneal incisions, they can elegantly be combined with cataract and refractive procedures to improve vision in the same session. There is a growing need for surgeons to become proficient in MIGS to address the increasing prevalence of glaucoma and cataracts in a well-informed, aging population. Techniques of visualization and instrumentation in an anatomically highly confined space with semi-transparent tissues are fundamentally different from other anterior segment surgeries and present even experienced surgeons with a substantial learning curve. Here, we provide practical tips and review techniques and outcomes of TM bypass and ablation MIGS. PMID:24338085

  6. Pneumothorax as a complication of percutaneous radiofrequency ablation for lung neoplasms.

    PubMed

    Yamagami, Takuji; Kato, Takeharu; Hirota, Tatsuya; Yoshimatsu, Rika; Matsumoto, Tomohiro; Nishimura, Tsunehiko

    2006-10-01

    The present study was performed to determine the frequency of the complication of pneumothorax after radiofrequency (RF) ablation for lung neoplasms and risk factors affecting such pneumothoraces. The study was based on 129 consecutive sessions of percutaneous RF ablation of lung neoplasms under real-time computed tomographic fluoroscopic guidance performed in a single institution between May 2003 and November 2005 in 41 patients (17 women, 24 men; mean age, 63 years; age range, 29-82 y). Correlation was determined between the incidence of pneumothorax after RF ablation and multiple factors: sex, age, presence of emphysema, lesion size, lesion depth, contact of tumor with pleura, number of punctures, maximum power of RF generator, period of ablation, tissue temperature at the end of the RF ablation session, and patient position during the procedure. Management of each case of iatrogenic pneumothorax was reviewed. Pneumothorax after RF ablation occurred in 38 of 129 RF ablation sessions (29.5%). Fourteen of the 38 cases were treated by manual aspiration, and 24 were simply observed. In five cases (3.9%), chest tube placement was required as therapy for pneumothorax. The risk of pneumothorax was significantly increased in patients with pulmonary emphysema. The frequency of pneumothorax after RF ablation in our experience is similar to the frequency of pneumothorax after lung biopsy reported in the literature. Various conditions for RF ablation did not influence the incidence of pneumothorax. Emphysema was the only individual factor that correlated significantly with the development of iatrogenic pneumothorax.

  7. Hard tissue ablation with a spray-assisted mid-IR laser

    NASA Astrophysics Data System (ADS)

    Kang, H. W.; Rizoiu, I.; Welch, A. J.

    2007-12-01

    The objective of this study was to understand the dominant mechanism(s) for dental enamel ablation with the application of water spray. A free-running Er,Cr:YSGG (yttrium, scandium, gallium, garnet) laser was used to ablate human enamel tissue at various radiant exposures. During dental ablation, distilled water was sprayed on the sample surface, and these results were compared to ablation without a spray (dry ablation). In order to identify dominant ablation mechanisms, transient acoustic waves were compared to ablation thresholds and the volume of material removed. The ablation profile and depth were measured using optical coherence tomography (OCT). Irregular surface modification, charring and peripheral cracks were associated with dry ablation, whereas craters for spray samples were relatively clean without thermal damage. In spite of a 60% higher ablation threshold for spray associated irradiations owing to water absorption, acoustic peak pressures were six times higher and ablation volume was up to a factor of 2 larger compared to dry ablation. The enhanced pressure and ablation performance of the spray-assisted process was the result of rapid water vaporization, material ejection with recoil stress, interstitial water explosion and possibly liquid-jet formation. With water cooling and abrasive/disruptive mechanical effects, the spray ablation can be a safe and efficient modality for dental treatment.

  8. CT-guided bipolar and multipolar radiofrequency ablation (RF ablation) of renal cell carcinoma: specific technical aspects and clinical results.

    PubMed

    Sommer, C M; Lemm, G; Hohenstein, E; Bellemann, N; Stampfl, U; Goezen, A S; Rassweiler, J; Kauczor, H U; Radeleff, B A; Pereira, P L

    2013-06-01

    This study was designed to evaluate the clinical efficacy of CT-guided bipolar and multipolar radiofrequency ablation (RF ablation) of renal cell carcinoma (RCC) and to analyze specific technical aspects between both technologies. We included 22 consecutive patients (3 women; age 74.2 ± 8.6 years) after 28 CT-guided bipolar or multipolar RF ablations of 28 RCCs (diameter 2.5 ± 0.8 cm). Procedures were performed with a commercially available RF system (Celon AG Olympus, Berlin, Germany). Technical aspects of RF ablation procedures (ablation mode [bipolar or multipolar], number of applicators and ablation cycles, overall ablation time and deployed energy, and technical success rate) were analyzed. Clinical results (local recurrence-free survival and local tumor control rate, renal function [glomerular filtration rate (GFR)]) and complication rates were evaluated. Bipolar RF ablation was performed in 12 procedures and multipolar RF ablation in 16 procedures (2 applicators in 14 procedures and 3 applicators in 2 procedures). One ablation cycle was performed in 15 procedures and two ablation cycles in 13 procedures. Overall ablation time and deployed energy were 35.0 ± 13.6 min and 43.7 ± 17.9 kJ. Technical success rate was 100 %. Major and minor complication rates were 4 and 14 %. At an imaging follow-up of 15.2 ± 8.8 months, local recurrence-free survival was 14.4 ± 8.8 months and local tumor control rate was 93 %. GFR did not deteriorate after RF ablation (50.8 ± 16.6 ml/min/1.73 m(2) before RF ablation vs. 47.2 ± 11.9 ml/min/1.73 m(2) after RF ablation; not significant). CT-guided bipolar and multipolar RF ablation of RCC has a high rate of clinical success and low complication rates. At short-term follow-up, clinical efficacy is high without deterioration of the renal function.

  9. Acoustic Radiation Force Impulse Elastography for Efficacy Evaluation after Hepatocellular Carcinoma Radiofrequency Ablation: A Comparative Study with Contrast-Enhanced Ultrasound

    PubMed Central

    Xu, Xiaohong; Luo, Liangping; Chen, Jiexin; Wang, Jiexin; Zhou, Honglian; Li, Mingyi; Jin, Zhanqiang; Chen, Nianping; Miao, Huilai; Lin, Manzhou; Dai, Wei; Ahuja, Anil T.; Wang, Yi-Xiang J.

    2014-01-01

    Aim. To explore acoustic radiation force impulse (ARFI) elastography in assessing residual tumors of hepatocellular carcinoma (HCC) after radiofrequency ablation (RFA). Materials and Methods. There were 83 HCC lesions among 72 patients. All patients were examined with ARFI, contrast enhanced ultrasound (CEUS), and CT or MRI. Tumor brightness on virtual touch tissue imaging (VTI) and shear wave velocity (SWV) were assessed before and approximately one month after RFA. Results. There were 14 residual tumors after RFA. VTI showed that all the tumors were darker after RFA. VTI was not able to distinguish the ablated lesions and the residual tumors. 13 residual tumor lesions were detected by CEUS. All completely ablated nodules had SWV demonstration of x.xx., while with those residual nodules, 6 tumors had x.xx measurement and 8 tumors had measurable SWV. nine lesions with residual tumors occurred in cirrhosis subjects and 5 lesions with residual tumors occurred in fibrosis subjects; there was no residual tumor in the normal liver subjects. Conclusion. VTI technique cannot demonstrate residual tumor post RFA. While SWV measurement of less than x.xx is likely associated with residual tumors, measurement of less than x.xx cannot exclude residual tumors. Liver cirrhosis is associated with decreased chance of a complete ablation. PMID:24895624

  10. Laser Ablation of Poly(methylmethacrylate) Doped with Aromatic Compounds: Laser Intensity Dependence of Absorption Coefficient

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Niino, Hiroyuki; Yabe, Akira

    1999-02-01

    We developed a novel method of obtaining an absorption coefficient which depends on the laser intensity, since a single-photon absorption coefficient of a polymer could not be applied to laser ablation. The relationship between the nonlinear absorption coefficient and the laser intensity was derived from experimental data of transmission and incident laser intensities. Using the nonlinear absorption coefficient of poly(methylmethacrylate) doped with benzil and pyrene, we succeeded in fitting the relationship of etch depth and laser intensity, obtained experimentally, and discussed the energy absorbed by the polymer at the threshold fluence.

  11. Renal ablation using magnetic resonance-guided high intensity focused ultrasound: Magnetic resonance imaging and histopathology assessment.

    PubMed

    Saeed, Maythem; Krug, Roland; Do, Loi; Hetts, Steven W; Wilson, Mark W

    2016-03-28

    To use magnetic resonance-guided high intensity focused ultrasound (MRg-HIFU), magnetic resonance imaging (MRI) and histopathology for noninvasively ablating, quantifying and characterizing ablated renal tissue. Six anesthetized/mechanically-ventilated pigs underwent single/double renal sonication (n = 24) using a 3T-MRg-HIFU (1.1 MHz frequency and 3000J-4400J energies). T2-weighted fast spin echo (T2-W), perfusion saturation recovery gradient echo and contrast enhanced (CE) T1-weighted (T1-W) sequences were used for treatment planning, temperature monitoring, lesion visualization, characterization and quantification, respectively. Histopathology was conducted in excised kidneys to quantify and characterize cellular and vascular changes. Paired Student's t-test was used and a P-value < 0.05 was considered statistically significant. Ablated renal parenchyma could not be differentiated from normal parenchyma on T2-W or non-CE T1-W sequences. Ablated renal lesions were visible as hypoenhanced regions on perfusion and CE T1-W MRI sequences, suggesting perfusion deficits and necrosis. Volumes of ablated parenchyma on CE T1-W images in vivo (0.12-0.36 cm(3) for single sonication 3000J, 0.50-0.84 cm(3), for double 3000J, 0.75-0.78 cm(3) for single 4400J and 0.12-2.65 cm(3) for double 4400J) and at postmortem (0.23-0.52 cm(3), 0.25-0.82 cm(3), 0.45-0.68 cm(3) and 0.29-1.80 cm(3), respectively) were comparable. The ablated volumes on 3000J and 4400J double sonication were significantly larger than single (P < 0.01), thus, the volume and depth of ablated tissue depends on the applied energy and number of sonication. Macroscopic and microscopic examinations confirmed the locations and presence of coagulation necrosis, vascular damage and interstitial hemorrhage, respectively. Contrast enhanced MRI provides assessment of MRg-HIFU renal ablation. Histopathology demonstrated coagulation necrosis, vascular damage and confirmed the volume of damage seen on MRI.

  12. Thermal Ablation of T1c Renal Cell Carcinoma: A Comparative Assessment of Technical Performance, Procedural Outcome, and Safety of Microwave Ablation, Radiofrequency Ablation, and Cryoablation.

    PubMed

    Zhou, Wenhui; Arellano, Ronald S

    2018-04-06

    To evaluate perioperative outcomes of thermal ablation with microwave (MW), radiofrequency (RF), and cryoablation for stage T1c renal cell carcinoma (RCC). A retrospective analysis of 384 patients (mean age, 71 y; range, 22-88 y) was performed between October 2006 and October 2016. Mean radius, exophytic/endophytic, nearness to collecting system or sinus, anterior/posterior, and location relative to polar lines; preoperative aspects and dimensions used for anatomic classification; and centrality index scores were 6.3, 7.9, and 2.7, respectively. Assessment of pre- and postablation serum blood urea nitrogen, creatinine, and estimated glomerular filtration rate was performed to assess functional outcomes. Linear regression analyses were performed to compare sedation medication dosages among the three treatment cohorts. Univariable and multivariable logistic regression analyses were performed to compare rates of residual disease and complications among treatment modalities. A total of 437 clinical stage T1N0M0 biopsy-proven RCCs measuring 1.2-6.9 cm were treated with computed tomography (CT)-guided MW ablation (n = 44; 10%), RF ablation (n = 347; 79%), or cryoablation (n = 46; 11%). There were no significant differences in patient demographic or tumor characteristics among cohorts. Complication rates and immediate renal function changes were similar among the three ablation modalities (P = .46 and P = .08, respectively). MW ablation was associated with significantly decreased ablation time (P < .05), procedural time (P < .05), and dosage of sedative medication (P < .05) compared with RF ablation and cryoablation. CT-guided percutaneous MW ablation is comparable to RF ablation or cryoablation for the treatment of stage T1N0M0 RCC with regard to treatment response and is associated with shorter treatment times and less sedation than RF ablation or cryoablation. In addition, the safety profile of CT-guided MW ablation is noninferior to those of RF ablation or

  13. Partial ablation of stratum corneum by UV (193-nm) or IR (2.94-μm) pulsed lasers to enhance transdermal drug delivery rate

    NASA Astrophysics Data System (ADS)

    Fujiwara, Ai; Hinokitani, Toshihiro; Goto, Kenichi; Arai, Tsunenori

    2004-07-01

    To develop the noninvasive transdermal drug delivery system, pulsed lasers (argon-fluoride excimer laser (ArF laser) and erbium:yittrium aluminum garnet laser (Er:YAG laser)) were used to partially ablate the stratum corneum (SC), the upper layer of the skin. Because of the barrier function of the SC to drug permeation, the number of drugs especially macromolecules used in transdermal drug delivery system without skin irritation has been limited. Ultrastructural changes on the SC surface of ablated Yucatan micropig skin in vitro were observed with Environmental Scanning Electron Microscope. The result indicated that the structural changes varied according to each laser sources and irradiation conditions (laser fluences and numbers of pulses). Many granular structures of about 2 μm in diameter were observed in the ablated sites on ArF laser with lower fluence exposure (30 mJ/cm2, 200 pulses), and plane structures in the sites with higher fluence exposure (80 mJ/cm2, 80 pulses). In contrast, the ablation of Er:YAG laser created some pores of about 20 μm across on the surface of the SC. Under the irradiation condition of partial ablation, the skin permeability of macromolecule compound was enhanced. This partial SC ablation by pulsed laser could be possible candidate of the noninvasive transdermal drug delivery system with good physiological conditions of skin.

  14. Direct measurements of sample heating by a laser-induced air plasma in pre-ablation spark dual-pulse laser-induced breakdown spectroscopy (LIBS).

    PubMed

    Register, Janna; Scaffidi, Jonathan; Angel, S Michael

    2012-08-01

    Direct measurements of temperature changes were made using small thermocouples (TC), placed near a laser-induced air plasma. Temperature changes up to ~500 °C were observed. From the measured temperature changes, estimates were made of the amount of heat absorbed per unit area. This allowed calculations to be made of the surface temperature, as a function of time, of a sample heated by the air plasma that is generated during orthogonal pre-ablation spark dual-pulse (DP) LIBS measurements. In separate experiments, single-pulse (SP) LIBS emission and sample ablation rate measurements were performed on nickel at sample temperatures ranging from room temperature to the maximum surface temperature that was calculated using the TC measurement results (500 °C). A small, but real sample temperature-dependent increase in both SP LIBS emission and the rate of sample ablation was found for nickel samples heated up to 500 °C. Comparison of DP LIBS emission enhancement values for bulk nickel samples at room temperature versus the enhanced SP LIBS emission and sample ablation rates observed as a function of increasing sample temperature suggests that sample heating by the laser-induced air plasma plays only a minor role in DP LIBS emission enhancement.

  15. Intraprocedure contrast enhanced ultrasound: the value in assessing the effect of ultrasound-guided high intensity focused ultrasound ablation for uterine fibroids.

    PubMed

    Peng, Song; Hu, Liang; Chen, Wenzhi; Chen, Jinyun; Yang, Caiyong; Wang, Xi; Zhang, Rong; Wang, Zhibiao; Zhang, Lian

    2015-04-01

    To investigate the value of microbubble contrast-enhanced ultrasound (CEUS) in evaluating the treatment response of uterine fibroids to HIFU ablation. Sixty-eight patients with a solitary uterine fibroid from the First Affiliated Hospital of Chongqing Medical University were included and analyzed. All patients underwent pre- and post-treatment magnetic resonance imaging (MRI) with a standardized protocol, as well as pre-evaluation, intraprocedure, and immediate post-treatment CEUS. CEUS and MRI were compared by different radiologists. In comparison with MRI, CEUS showed that the size of fibroids, volume of fibroids, size of non-perfused regions, non-perfused volume (NPV) or fractional ablation (NPV ratio) was similar to that of MRI. In terms of CEUS examination results, the median volume of fibroids was 75.2 (interquartile range, 34.2-127.3) cm(3), the median non-perfused volume was 54.9 (interquartile range, 28.0-98.1) cm(3), the mean fractional ablation was 83.7±13.6 (range, 30.0-100.0)%. In terms of MRI examination results, the median volume of fibroids was 74.1 (interquartile range, 33.4-116.2) cm(3). On the basis of contrast-enhanced T1-weighted images immediately after HIFU treatment, the median non-perfused volume was 58.5 (interquartile range, 27.7-100.0) cm(3), the average fractional ablation was 84.2±14.2 (range, 40.0-100.0)%. CEUS clearly showed the size of fibroids and the non-perfused areas of the fibroid. Results from CEUS correlated well with results obtained from MRI. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Dengvaxia sensitizes seronegatives to vaccine enhanced disease regardless of age.

    PubMed

    Halstead, Scott B

    2017-11-07

    During a large scale clinical efficacy trial of the Sanofipasteur live-attenuated tetravalent dengue vaccine (Dengvaxia), features of hospitalized disease accompanying dengue infections in placebo recipients were closely similar to those in vaccinated children. However, the age specific hospitalization curves for these two populations differed. The curve for children vaccinated at ages 2-16 years closely resembled the 1981 age specific hospitalization rate curve for Cuban children infected with DENV 2 who were sensitized by a prior DENV 1 infection. The corresponding age specific hospitalization curve for placebos experiencing heterotypic secondary dengue infections peaked at age, 9-11 years. These differing epidemiological features support the conclusion that antibody dependent enhanced (ADE) dengue disease occurred in seronegatives who were sensitized by vaccine. As hospitalizations continue to occur in all age groups Dengvaxia consumers should be warned that sensitized vaccinated seronegatives will experience enhanced dengue disease into the forseeable future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Magnetic Resonance Mediated Radiofrequency Ablation.

    PubMed

    Hue, Yik-Kiong; Guimaraes, Alexander R; Cohen, Ouri; Nevo, Erez; Roth, Abraham; Ackerman, Jerome L

    2018-02-01

    To introduce magnetic resonance mediated radiofrequency ablation (MR-RFA), in which the MRI scanner uniquely serves both diagnostic and therapeutic roles. In MR-RFA scanner-induced RF heating is channeled to the ablation site via a Larmor frequency RF pickup device and needle system, and controlled via the pulse sequence. MR-RFA was evaluated with simulation of electric and magnetic fields to predict the increase in local specific-absorption-rate (SAR). Temperature-time profiles were measured for different configurations of the device in agar phantoms and ex vivo bovine liver in a 1.5 T scanner. Temperature rise in MR-RFA was imaged using the proton resonance frequency method validated with fiber-optic thermometry. MR-RFA was performed on the livers of two healthy live pigs. Simulations indicated a near tenfold increase in SAR at the RFA needle tip. Temperature-time profiles depended significantly on the physical parameters of the device although both configurations tested yielded temperature increases sufficient for ablation. Resected livers from live ablations exhibited clear thermal lesions. MR-RFA holds potential for integrating RF ablation tumor therapy with MRI scanning. MR-RFA may add value to MRI with the addition of a potentially disposable ablation device, while retaining MRI's ability to provide real time procedure guidance and measurement of tissue temperature, perfusion, and coagulation.

  18. Percutaneous ablation of pancreatic cancer

    PubMed Central

    D’Onofrio, Mirko; Ciaravino, Valentina; De Robertis, Riccardo; Barbi, Emilio; Salvia, Roberto; Girelli, Roberto; Paiella, Salvatore; Gasparini, Camilla; Cardobi, Nicolò; Bassi, Claudio

    2016-01-01

    Pancreatic ductal adenocarcinoma is a highly aggressive tumor with an overall 5-year survival rate of less than 5%. Prognosis and treatment depend on whether the tumor is resectable or not, which mostly depends on how quickly the diagnosis is made. Chemotherapy and radiotherapy can be both used in cases of non-resectable pancreatic cancer. In cases of pancreatic neoplasm that is locally advanced, non-resectable, but non-metastatic, it is possible to apply percutaneous treatments that are able to induce tumor cytoreduction. The aim of this article will be to describe the multiple currently available treatment techniques (radiofrequency ablation, microwave ablation, cryoablation, and irreversible electroporation), their results, and their possible complications, with the aid of a literature review. PMID:27956791

  19. Fractional Ablative Laser Followed by Transdermal Acoustic Pressure Wave Device to Enhance the Drug Delivery of Aminolevulinic Acid: In Vivo Fluorescence Microscopy Study.

    PubMed

    Waibel, Jill S; Rudnick, Ashley; Nousari, Carlos; Bhanusali, Dhaval G

    2016-01-01

    Topical drug delivery is the foundation of all dermatological therapy. Laser-assisted drug delivery (LAD) using fractional ablative laser is an evolving modality that may allow for a greater precise depth of penetration by existing topical medications, as well as more efficient transcutaneous delivery of large drug molecules. Additional studies need to be performed using energy-driven methods that may enhance drug delivery in a synergistic manner. Processes such as iontophoresis, electroporation, sonophoresis, and the use of photomechanical waves aid in penetration. This study evaluated in vivo if there is increased efficacy of fractional CO2 ablative laser with immediate acoustic pressure wave device. Five patients were treated and biopsied at 4 treatment sites: 1) topically applied aminolevulinic acid (ALA) alone; 2) fractional ablative CO2 laser and topical ALA alone; 3) fractional ablative CO2 laser and transdermal acoustic pressure wave device delivery system; and 4) topical ALA with transdermal delivery system. The comparison of the difference in the magnitude of diffusion with both lateral spread of ALA and depth diffusion of ALA was measured by fluorescence microscopy. For fractional ablative CO2 laser, ALA, and transdermal acoustic pressure wave device, the protoporphyrin IX lateral fluorescence was 0.024 mm on average vs 0.0084 mm for fractional ablative CO2 laser and ALA alone. The diffusion for the acoustic pressure wave device was an order of magnitude greater. We found that our combined approach of fractional ablative CO2 laser paired with the transdermal acoustic pressure wave device increased the depth of penetration of ALA.

  20. Epidemiological profile of Wolff-Parkinson-White syndrome in a general population younger than 50 years of age in an era of radiofrequency catheter ablation.

    PubMed

    Lu, Chun-Wei; Wu, Mei-Hwan; Chen, Hui-Chi; Kao, Feng-Yu; Huang, San-Kuei

    2014-07-01

    The prevalence of Wolff-Parkinson-White (WPW) syndrome varies between 0.68 and 1.7/1000. The epidemiological profile may be modified after the introduction of transcatheter interventions. The aim of this study is to investigate the epidemiological trends of the WPW syndrome in a general population during a period with available and reimbursed transcatheter ablation. Data of WPW patients <50 years old were retrieved from our national database (2000-2010). We identified 6086 (61% male) patients, accounting for an overall prevalence of 0.36/1000 with a peak of 0.61/1000 in ages 20-24 years. The risk of death and sudden death was 0.071% and 0.02% per patient-year, respectively. The 42 deaths occurred at a median age of 29 years. Associated congenial heart disease was noted in 158 (2.6%) patients, including 42 with Ebstein's anomaly that increased the mortality risk (P=0.001, OR=8.5). In those without congenital heart disease, myocardial dysfunction occurred in 115 (1.9%) patients and increased the risk of death (P<0.001, OR=10.6) and sudden death. Radiofrequency catheter ablation was performed in 2527 patients at a median age of 25.7 years (4.54% per patient-year, discharge mortality 0.16%); 11 (0.4%) before the age of 5, and 2231 (88%) after the age of 15. Whereas repeated ablation procedures accounted for 6.0% of the procedures, those in Ebstein's patients were 25%. Radiofrequency catheter ablation is already a common treatment for WPW patients, particularly during young adulthood, which accounts for a lower prevalence. Myocardial dysfunction and associated congenital heart disease remain as risks of mortality. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. A sestrin-dependent Erk/Jnk/p38 MAPK activation complex inhibits immunity during ageing

    PubMed Central

    Lanna, Alessio; Gomes, Daniel C O; Muller-Durovic, Bojana; McDonnell, Thomas; Escors, David; Gilroy, Derek W; Lee, Jun Hee; Karin, Michael; Akbar, Arne N

    2016-01-01

    Mitogen activated protein kinases (MAPKs) including Erk, Jnk and p38 regulate diverse cellular functions, and are thought to be controlled by independent upstream activation cascades. Here we show that the sestrins bind to and co-ordinate simultaneous Erk, Jnk and p38 MAPK activation in T lymphocytes within a new immune-inhibitory complex (sestrin-MAPK Activation Complex; sMAC). Whereas sestrin ablation resulted in broad reconstitution of immune function in stressed T cells, inhibition of individual MAPKs only allowed partial functional recovery. T cells from old humans and mice were more likely to form the sMAC, and disruption of this complex restored antigen-specific functional responses in these cells. Correspondingly, sestrin deficiency or simultaneous inhibition of all three MAPKs enhanced vaccine responsiveness in old mice. Thus, disruption of sMAC provides a foundation for rejuvenating immunity during ageing. PMID:28114291

  2. Laser Ablated Carbon Nanodots for Light Emission.

    PubMed

    Reyes, Delfino; Camacho, Marco; Camacho, Miguel; Mayorga, Miguel; Weathers, Duncan; Salamo, Greg; Wang, Zhiming; Neogi, Arup

    2016-12-01

    The synthesis of fluorescent carbon dots-like nanostructures (CNDs) obtained through the laser ablation of a carbon solid target in liquid environment is reported. The ablation process was induced in acetone with laser pulses of 1064, 532, and 355 nm under different irradiation times. Close-spherical amorphous CNDs with sizes between 5 and 20 nm, whose abundance strongly depends on the ablation parameters were investigated using electron microscopy and was confirmed using absorption and emission spectroscopies. The π- π* electronic transition at 3.76 eV dominates the absorption for all the CNDs species synthesized under different irradiation conditions. The light emission is most efficient due to excitation at 3.54 eV with the photoluminescence intensity centered at 3.23 eV. The light emission from the CNDs is most efficient due to ablation at 355 nm. The emission wavelength of the CNDs can be tuned from the near-UV to the green wavelength region by controlling the ablation time and modifying the ablation and excitation laser wavelength.

  3. Design calculations for NIF convergent ablator experiments.

    SciTech Connect

    Callahan, Debra; Leeper, Ramon Joe; Spears, B. K.

    2010-11-01

    Design calculations for NIF convergent ablator experiments will be described. The convergent ablator experiments measure the implosion trajectory, velocity, and ablation rate of an x-ray driven capsule and are a important component of the U. S. National Ignition Campaign at NIF. The design calculations are post-processed to provide simulations of the key diagnostics: (1) Dante measurements of hohlraum x-ray flux and spectrum, (2) streaked radiographs of the imploding ablator shell, (3) wedge range filter measurements of D-He3 proton output spectra, and (4) GXD measurements of the imploded core. The simulated diagnostics will be compared to the experimental measurements to providemore » an assessment of the accuracy of the design code predictions of hohlraum radiation temperature, capsule ablation rate, implosion velocity, shock flash areal density, and x-ray bang time. Post-shot versions of the design calculations are used to enhance the understanding of the experimental measurements and will assist in choosing parameters for subsequent shots and the path towards optimal ignition capsule tuning.« less

  4. Comparison of remote magnetic navigation ablation and manual ablation of idiopathic ventricular arrhythmia after failed manual ablation.

    PubMed

    Kawamura, Mitsuharu; Scheinman, Melvin M; Tseng, Zian H; Lee, Byron K; Marcus, Gregory M; Badhwar, Nitish

    2017-01-01

    Catheter ablation for idiopathic ventricular arrhythmia (VA) is effective and safe, but efficacy is frequently limited due to an epicardial origin and difficult anatomy. The remote magnetic navigation (RMN) catheter has a flexible catheter design allowing access to difficult anatomy. We describe the efficacy of the RMN for ablation of idiopathic VA after failed manual ablation. Among 235 patients with idiopathic VA referred for catheter ablation, we identified 51 patients who were referred for repeat ablation after a failed manual ablation. We analyzed the clinical characteristics, including the successful ablation site and findings at electrophysiology study, in repeat procedures conducted using RMN as compared with manual ablation. Among these patients, 22 (43 %) underwent repeat ablation with the RMN and 29 (57 %) underwent repeat ablation with a manual ablation. Overall, successful ablation rate was significantly higher using RMN as compared with manual ablation (91 vs. 69 %, P = 0.02). Fluoroscopy time in the RMN was 17 ± 12 min as compared with 43 ± 18 min in the manual ablation (P = 0.009). Successful ablation rate in the posterior right ventricular outflow tract (RVOT) plus posterior-tricuspid annulus was higher with RMN as compared with manual ablation (92 vs. 50 %, P = 0.03). Neither groups exhibited any major complications. The RMN is more effective in selected patients with recurrent idiopathic VA after failed manual ablation and is associated with less fluoroscopy time. The RMN catheters have a flexible design enabling them to access otherwise difficult anatomy including the posterior tricuspid annulus and posterior RVOT.

  5. Burn, freeze, or photo-ablate?: comparative symptom profile in Barrett's dysplasia patients undergoing endoscopic ablation

    NASA Astrophysics Data System (ADS)

    Gill, Kanwar Rupinder S.; Gross, Seth A.; Greenwald, Bruce D.; Hemminger, Lois L.; Wolfsen, Herbert C.

    2009-06-01

    Background: There are few data available comparing endoscopic ablation methods for Barrett's esophagus with high-grade dysplasia (BE-HGD). Objective: To determine differences in symptoms and complications associated with endoscopic ablation. Design: Prospective observational study. Setting: Two tertiary care centers in USA. Patients: Consecutive patients with BE-HGD Interventions: In this pilot study, symptoms profile data were collected for BE-HGD patients among 3 endoscopic ablation methods: porfimer sodium photodynamic therapy, radiofrequency ablation and low-pressure liquid nitrogen spray cryotherapy. Main Outcome Measurements: Symptom profiles and complications from the procedures were assessed 1-8 weeks after treatment. Results: Ten BE-HGD patients were treated with each ablation modality (30 patients total; 25 men, median age: 69 years (range 53-81). All procedures were performed in the clinic setting and none required subsequent hospitalization. The most common symptoms among all therapies were chest pain, dysphagia and odynophagia. More patients (n=8) in the porfimer sodium photodynamic therapy group reported weight loss compared to radio-frequency ablactation (n=2) and cryotherapy (n=0). Four patients in the porfimer sodium photodynamic therapy group developed phototoxicity requiring medical treatment. Strictures, each requiring a single dilation, were found in radiofrequency ablactation (n=1) and porfimer sodium photodynamic therapy (n=2) patients. Limitations: Small sample size, non-randomized study. Conclusions: These three endoscopic therapies are associated with different types and severity of post-ablation symptoms and complications.

  6. Modulation of Pancreatic Islets' Function and Survival During Aging Involves the Differential Regulation of Endoplasmic Reticulum Stress by p21 and CHOP

    PubMed Central

    Mihailidou, Chrysovalantou; Chatzistamou, Ioulia; Papavassiliou, Athanasios G.

    2017-01-01

    Abstract Aims: Although endoplasmic reticulum (ER) stress is recognized as a major mechanism causing pancreatic dysfunction in diabetes, little is known on how aging modulates the process. Here, we compared the response with ER stress, viability, and insulin release from pancreatic islets of young (6 weeks) or aged (14 months) mice. Results: Islets from aged mice were more sensitive to ER stress than their younger counterparts; they exhibited more pronounced unfolded protein response (UPR) and caspase activation and displayed compromised insulin release after high-glucose stimulation. Genetic ablation of p21 sensitized the islets to ER stress, especially in the aged group, whereas CHOP ablation was protective for islets from both aged and younger animals. Ciclopirox (CPX), an iron chelator that stimulates p21 expression, protected islets from glucotoxicity and mice from diet-induced diabetes, especially in the aged group in a manner that was both p21 and CHOP dependent. Innovation: For the first time, the study shows that age-dependent susceptibility to diet-induced diabetes is associated with the activity of p21 and CHOP in pancreatic islets and that CPX protects islets from glucotoxicity and mice from diabetes in an age-dependent manner. Conclusions: Our results identify ER stress as an age-dependent modifier of islet survival and function by mechanisms implicating enhancement of CHOP activity and inhibition of the protective activity of p21. These findings suggest that interventions restoring the homeostatic activity of ER stress, by agents such as CPX, may be particularly beneficial for the management of diabetes in the elderly. Antioxid. Redox Signal. 27, 185–200. PMID:27931122

  7. Partial ablation of uropygial gland effect on carcass characteristics of Akar Putra chicken.

    PubMed

    Jawad, Hasan S A; Idris, L H; Bakar, Z B; Kassim, A B

    2016-08-01

    This study evaluated the effect of partial uropygialectomy (PU) on carcass traits of male and female Akar Putra chickens. Sixty chicks of each sex were evenly distributed into 5 treatment groups with 3 replicates per group containing 4 males and 4 females each, and reared for 12 wk. Homogeneity of the groups was satisfied with regard to the parity. Experimental treatments consisted of a control treatment (T1), and partial ablation of the uropygial gland was applied on the second, third, fourth, and fifth treatments at 3, 4, 5, and 6 wk of age, respectively. The chickens were fed ad libitum the same diets (1 to 13 d: starter; 14 d to slaughter: finisher). On the last d of the experiment, 12 birds were randomly selected from each treatment group (2 males and 2 females per replicate) and slaughtered to determine carcass characteristics, which included carcass weight, dressing percentage with or without eating giblets, and the relative weights of heart, liver, gizzard, thighs, wings, breast, back, and neck. From the results of the study, it was shown that the partial ablation of the uropygial gland at all ages had certain dependent effects concerning some carcass parameters, as shown by higher breast and back relative weights in males and breast relative weight in females. As a consequence, a positive effect also was noticed regarding the carcass morphology in terms of the increase in dressing percentage with or without eating giblets thus leading to an increase in the body weight and carcass weight. Furthermore, the best result was obtained in the second treatment when PU was applied at 3 wk of age compared with other experimental groups. Moreover, the current study provides a novel and economic alternative to enhance the body performance of poultry in general and Akar Putra chicken particularly. © 2016 Poultry Science Association Inc.

  8. Enhanced Cell-Specific Ablation in Zebrafish Using a Triple Mutant of Escherichia Coli Nitroreductase

    PubMed Central

    Mathias, Jonathan R.; Zhang, Zhanying; Saxena, Meera T.

    2014-01-01

    Abstract Transgenic expression of bacterial nitroreductase (NTR) facilitates chemically-inducible targeted cell ablation. In zebrafish, the NTR system enables studies of cell function and cellular regeneration. Metronidazole (MTZ) has become the most commonly used prodrug substrate for eliciting cell loss in NTR-expressing transgenic zebrafish due to the cell-specific nature of its cytotoxic derivatives. Unfortunately, MTZ treatments required for effective cell ablation border toxic effects, and, thus, likely incur undesirable nonspecific effects. Here, we tested whether a triple mutant variant of NTR, previously shown to display improved activity in bacterial assays, can solve this issue by promoting cell ablation in zebrafish using reduced prodrug treatment regimens. We generated several complementary transgenic zebrafish lines expressing either wild-type or mutant NTR (mutNTR) in specific neural cell types, and assayed prodrug-induced cell ablation kinetics using confocal time series imaging and plate reader-based quantification of fluorescent reporters expressed in targeted cell types. The results show that cell ablation can be achieved in mutNTR expressing transgenic lines with markedly shortened prodrug exposure times and/or at lower prodrug concentrations. The mutNTR variant characterized here can circumvent problematic nonspecific/toxic effects arising from low prodrug conversion efficiency, thus increasing the effectiveness and versatility of this selective cell ablation methodology. PMID:24428354

  9. Enhanced cell-specific ablation in zebrafish using a triple mutant of Escherichia coli nitroreductase.

    PubMed

    Mathias, Jonathan R; Zhang, Zhanying; Saxena, Meera T; Mumm, Jeff S

    2014-04-01

    Transgenic expression of bacterial nitroreductase (NTR) facilitates chemically-inducible targeted cell ablation. In zebrafish, the NTR system enables studies of cell function and cellular regeneration. Metronidazole (MTZ) has become the most commonly used prodrug substrate for eliciting cell loss in NTR-expressing transgenic zebrafish due to the cell-specific nature of its cytotoxic derivatives. Unfortunately, MTZ treatments required for effective cell ablation border toxic effects, and, thus, likely incur undesirable nonspecific effects. Here, we tested whether a triple mutant variant of NTR, previously shown to display improved activity in bacterial assays, can solve this issue by promoting cell ablation in zebrafish using reduced prodrug treatment regimens. We generated several complementary transgenic zebrafish lines expressing either wild-type or mutant NTR (mutNTR) in specific neural cell types, and assayed prodrug-induced cell ablation kinetics using confocal time series imaging and plate reader-based quantification of fluorescent reporters expressed in targeted cell types. The results show that cell ablation can be achieved in mutNTR expressing transgenic lines with markedly shortened prodrug exposure times and/or at lower prodrug concentrations. The mutNTR variant characterized here can circumvent problematic nonspecific/toxic effects arising from low prodrug conversion efficiency, thus increasing the effectiveness and versatility of this selective cell ablation methodology.

  10. Brain Emboli After Left Ventricular Endocardial Ablation.

    PubMed

    Whitman, Isaac R; Gladstone, Rachel A; Badhwar, Nitish; Hsia, Henry H; Lee, Byron K; Josephson, S Andrew; Meisel, Karl M; Dillon, William P; Hess, Christopher P; Gerstenfeld, Edward P; Marcus, Gregory M

    2017-02-28

    Catheter ablation for ventricular tachycardia and premature ventricular complexes (PVCs) is common. Catheter ablation of atrial fibrillation is associated with a risk of cerebral emboli attributed to cardioversions and numerous ablation lesions in the low-flow left atrium, but cerebral embolic risk in ventricular ablation has not been evaluated. We enrolled 18 consecutive patients meeting study criteria scheduled for ventricular tachycardia or PVC ablation over a 9-month period. Patients undergoing left ventricular (LV) ablation were compared with a control group of those undergoing right ventricular ablation only. Patients were excluded if they had implantable cardioverter defibrillators or permanent pacemakers. Radiofrequency energy was used for ablation in all cases and heparin was administered with goal-activated clotting times of 300 to 400 seconds for all LV procedures. Pre- and postprocedural brain MRI was performed on each patient within a week of the ablation procedure. Embolic infarcts were defined as new foci of reduced diffusion and high signal intensity on fluid-attenuated inversion recovery brain MRI within a vascular distribution. The mean age was 58 years, half of the patients were men, half had a history of hypertension, and the majority had no known vascular disease or heart failure. LV ablation was performed in 12 patients (ventricular tachycardia, n=2; PVC, n=10) and right ventricular ablation was performed exclusively in 6 patients (ventricular tachycardia, n=1; PVC, n=5). Seven patients (58%) undergoing LV ablation experienced a total of 16 cerebral emboli, in comparison with zero patients undergoing right ventricular ablation ( P =0.04). Seven of 11 patients (63%) undergoing a retrograde approach to the LV developed at least 1 new brain lesion. More than half of patients undergoing routine LV ablation procedures (predominately PVC ablations) experienced new brain emboli after the procedure. Future research is critical to understanding the

  11. Slow pathway radiofrequency ablation in patients with AVNRT: junctional rhythm is less frequent during magnetic navigation ablation than with the conventional technique.

    PubMed

    Ricard, Philippe; Latcu, Decebal Gabriel; Yaïci, Khelil; Zarqane, Naima; Saoudi, Nadir

    2010-01-01

    The occurrence of accelerated junctional rhythm (JR) during radiofrequency ablation of the slow pathway in patients with atrioventricular nodal reentrant tachycardia (AVNRT) is frequent. The aim of the present study was to compare the occurrence of JR during magnetic remote catheter ablation to the conventional manual ablation. Twenty six patients (males: seven; age: 51 + or - 15 years) underwent slow pathway ablation with magnetic navigation (MN) system (Niobe, Stereotaxis Inc., St. Louis, MO, USA) and were compared to a control group of 11 patients (males: three; age: 53 + or - 16 years) treated with conventional manual ablation. A 4-mm nonirrigated tip catheter was used in both groups with a maximum of 30 W and 60 degrees C. Acute success was obtained in all patients. In the MN group, three patients out of 24 had no junctional beat (JB) at all and seven patients had 10 or less JB. In contrast, in the conventional group no patient had less than 10 JB. The mean number of JB in the MN group was 66 + or - 94.9 (0-410) and 200 + or - 243.1 (43-914) in the control group (P = 0.019). In the MN group one patient had a first-degree atrioventricular block. No other complication occurred. Magnetic remote catheter ablation of AVNRT is effective and is associated with less JB than the manual conventional technique. Therefore, JB may not be considered as a mandatory indicator for successful AVNRT ablation with MN system.

  12. Postnatal Ablation of POMC Neurons Induces an Obese Phenotype Characterized by Decreased Food Intake and Enhanced Anxiety-Like Behavior

    PubMed Central

    Greenman, Yona; Drori, Yonat; Asa, Sylvia L.; Navon, Inbal; Forkosh, Oren; Gil, Shosh; Stern, Naftali

    2013-01-01

    Proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus are central components of systems regulating appetite and energy homeostasis. Here we report on the establishment of a mouse model in which the ribonuclease III ribonuclease Dicer-1 has been specifically deleted from POMC-expressing neurons (POMCΔDCR), leading to postnatal cell death. Mice are born phenotypically normal, at the expected genetic ratio and with normal hypothalamic POMC-mRNA levels. At 6 weeks of age, no POMC neurons/cells could be detected either in the arcuate nucleus or in the pituitary of POMCΔDCR mice. POMCΔDCR develop progressive obesity secondary to decreased energy expenditure but unrelated to food intake, which was surprisingly lower than in control mice. Reduced expression of AgRP and ghrelin receptor in the hypothalamus and reduced uncoupling protein 1 expression in brown adipose tissue can potentially explain the decreased food intake and decreased heat production, respectively, in these mice. Fasting glucose levels were dramatically elevated in POMCΔDCR mice and the glucose tolerance test revealed marked glucose intolerance in these mice. Secondary to corticotrope ablation, basal and stress-induced corticosterone levels were undetectable in POMCΔDCR mice. Despite this lack of activation of the neuroendocrine stress response, POMCΔDCR mice exhibited an anxiogenic phenotype, which was accompanied with elevated levels of hypothalamic corticotropin-releasing factor and arginine-vasopressin transcripts. In conclusion, postnatal ablation of POMC neurons leads to enhanced anxiety and the development of obesity despite decreased food intake and glucocorticoid deficiency. PMID:23676213

  13. Lightning Strike Ablation Damage Influence Factors Analysis of Carbon Fiber/Epoxy Composite Based on Coupled Electrical-Thermal Simulation

    NASA Astrophysics Data System (ADS)

    Yin, J. J.; Chang, F.; Li, S. L.; Yao, X. L.; Sun, J. R.; Xiao, Y.

    2017-10-01

    According to the mathematical analysis model constructed on the basis of energy-balance relationship in lightning strike, and accompany with the simplified calculation strategy of composite resin pyrolysis degree dependent electrical conductivity, an effective three dimensional thermal-electrical coupling analysis finite element model of composite laminate suffered from lightning current was established based on ABAQUS, to elucidate the effects of lighting current waveform parameters and thermal/electrical properties of composite laminate on the extent of ablation damage. Simulated predictions agree well with the composite lightning strike directed effect experimental data, illustrating the potential accuracy of the constructed model. The analytical results revealed that extent of composite lightning strike ablation damage can be characterized by action integral validly, there exist remarkable power function relationships between action integral and visual damage area, projected damage area, maximum damage depth and damage volume of ablation damage, and enhancing the electrical conductivity and specific heat of composite, ablation damage will be descended obviously, power function relationships also exist between electrical conductivity, specific heat and ablation damage, however, the impact of thermal conductivity on the extent of ablation damage is not notable. The conclusions obtained provide some guidance for composite anti-lightning strike structure-function integration design.

  14. Development of a fine thermocouple-needle system for real-time feedback of thermal tumour ablation margin

    PubMed Central

    Ishizaka, H; Shiraishi, A; Awata, S; Shimizu, A; Hirasawa, S

    2011-01-01

    Thermal tumour ablation techniques such as radiofrequency (RF) ablation are applied for radical removal of local tumours as an easier, less invasive alternative to surgical resection. A serious drawback of thermal ablation, however, is that the ablation area cannot be accurately assessed during the procedure. To achieve real-time feedback and exact and safe ablation, a superfine thermocouple-needle system (TNS) comprising a 0.25-mm diameter thermocouple embedded in a 22-G, 15-cm-long needle was devised and efficacy was tested in vitro using porcine livers (n = 15) and in vivo using rabbit back muscles (n = 2) and livers (n = 3). A 17-gauge RF electrode with a 2 cm active tip was used for ablation. The TNS was inserted 1 cm from the active tip of the RF electrode and liver temperature around the electrode was measured concurrently. The RF current was cut off when the temperature reached 60°C or after 5 min at ≥50°C. Porcine livers and rabbit back muscles were then cut along a plane passing through the axes of the electrode and the TNS. In rabbit livers, contrast-enhanced CT was performed to evaluate ablation areas. Ablation areas in cut surfaces of porcine livers exhibited well-defined discoloured regions and the TNS tip precisely pinpointed the margin of the ablation area. Contrast-enhanced CT of rabbit livers showed the TNS tip accurately located at the margin of areas without contrast enhancement. These results indicate that the TNS can accurately show ablation margins and that placing the TNS tip at the intended ablation margin permits exact thermal ablation. PMID:21937618

  15. Pulsed Tm:YAG laser ablation of knee joint tissues

    NASA Astrophysics Data System (ADS)

    Shi, Wei-Qiang; Vari, Sandor G.; Duffy, J. T.; Miller, J. M.; Weiss, Andrew B.; Fishbein, Michael C.; Grundfest, Warren S.

    1992-06-01

    We investigated the effect of a free-running 2.01 micron pulsed Tm:YAG laser on bovine knee joint tissues. Ablation rates of fresh fibrocartilage, hyaline cartilage, and bone were measured in saline as a function of laser fluence (160 - 640 J/cm2) and fiber core size (400 and 600 microns). All tissues could be effectively ablated and the ablation rate increased linearly with the increasing fluence. Use of fibers of different core sizes, while maintaining constant energy fluence, did not result in significant difference in ablation rate. Histology analyses of the ablated tissue samples reveal average Tm:YAG radiation induced thermal damage (denatunalization) zones ranging between 130 and 540 microns, depending on the laser parameters and the tissue type.

  16. Is extinction age dependent?

    USGS Publications Warehouse

    Doran, N.A.; Arnold, A.J.; Parker, W.C.; Huffer, F.W.

    2006-01-01

    Age-dependent extinction is an observation with important biological implications. Van Valen's Red Queen hypothesis triggered three decades of research testing its primary implication: that age is independent of extinction. In contrast to this, later studies with species-level data have indicated the possible presence of age dependence. Since the formulation of the Red Queen hypothesis, more powerful tests of survivorship models have been developed. This is the first report of the application of the Cox Proportional Hazards model to paleontological data. Planktonic foraminiferal morphospecies allow the taxonomic and precise stratigraphic resolution necessary for the Cox model. As a whole, planktonic foraminiferal morphospecies clearly show age-dependent extinction. In particular, the effect is attributable to the presence of shorter-ranged species (range < 4 myr) following extinction events. These shorter-ranged species also possess tests with unique morphological architecture. The morphological differences are probably epiphenomena of underlying developmental and heterochronic processes of shorter-ranged species that survived various extinction events. Extinction survivors carry developmental and morphological characteristics into postextinction recovery times, and this sets them apart from species populations established independently of extinction events. Copyright ?? 2006, SEPM (Society for Sedimentary Geology).

  17. Intraoperative microwave ablation of pulmonary malignancies with tumor permittivity feedback control: ablation and resection study in 10 consecutive patients.

    PubMed

    Wolf, Farrah J; Aswad, Bassam; Ng, Thomas; Dupuy, Damian E

    2012-01-01

    To determine histologic changes induced by microwave ablation (MWA) in patients with pulmonary malignancy by using an ablation system with tumor permittivity feedback control, enabling real-time modulation of energy power and frequency. Institutional review board approval and patient informed consent were obtained for this prospective HIPAA-complaint ablation and resection study. Between March 2009 and January 2010, 10 patients (four women, six men; mean age, 71 years; age range, 52-82 years) underwent intraoperative MWA of pulmonary malignancies. Power (10-32 W) and frequency (908-928 MHz) were continuously adjusted by the generator to maintain a temperature of 110°-120°C at the 14-gauge antenna tip for one 10-minute application. After testing for an air leak, tumors were resected surgically. Gross inspection, slicing, and hematoxylin-eosin (10 specimens) and nicotinamide adenine dinucleotide (six specimens) staining were performed. Tumors included adenocarcinomas (n = 5), squamous cell carcinomas (n = 3), and metastases from endometrial (n = 1) and colorectal (n = 1) primary carcinomas. Mean maximum tumor diameter was 2.4 cm (range, 0.9-5.0 cm), and mean maximum volume was 8.6 cm(3) (range, 0.5-52.7 cm(3)). One air leak was detected. Five of 10 specimens were grossly measurable, revealing a mean maximum ablation zone diameter of 4.8 cm (range, 3.0-6.5 cm) and a mean maximum ablation zone volume of 15.1 cm(3) (range, 7.3-25.1 cm(3)). At hematoxylin-eosin staining, coagulation necrosis was observed in all ablation zones, extended into the normal lung in nine of 10 specimens, and up to blood vessel walls without evidence of vessel (>4 mm) thrombosis. Nicotinamide adenine dinucleotide staining enabled confirmation of no viability within ablation zones extending into normal lung in five of six specimens. MWA with tumor permittivity feedback control results in cytotoxic intratumoral temperatures and extension of ablation zones into aerated peritumoral pulmonary

  18. Nd:YAG laser ablation and acid resistance of enamel.

    PubMed

    Kwon, Yong Hoon; Kwon, Oh-Won; Kim, Hyung-Il; Kim, Kyo-Han

    2003-09-01

    The acid resistance of Nd:YAG laser-ablated enamel surfaces was studied by evaluating crystal structure, mineral distribution, and fluorescence radiance and image in the present study. For comparison, 37% phosphoric acid etching was performed. The formation of beta-tricalcium phosphate (beta-TCP) was confirmed in the laser-ablated surface. The Ca/P ratio increased after ablation due to mineral re-distribution. In contrast, the Ca/P ratio decreased after acid etching due to mineral loss. The laser-ablated enamels showed a smaller increase of fluorescence radiances and less clear laser confocal scanning microscope images than those observed in the acid-etched enamels. The former suggests a minimized mineral loss. The Nd:YAG laser irradiation will enhance the acid resistance and retard the carious progression in enamel.

  19. Laser ablated hard coating for microtools

    DOEpatents

    McLean, II, William; Balooch, Mehdi; Siekhaus, Wigbert J.

    1998-05-05

    Wear-resistant coatings composed of laser ablated hard carbon films, are deposited by pulsed laser ablation using visible light, on instruments such as microscope tips and micro-surgical tools. Hard carbon, known as diamond-like carbon (DLC), films produced by pulsed laser ablation using visible light enhances the abrasion resistance, wear characteristics, and lifetimes of small tools or instruments, such as small, sharp silicon tips used in atomic probe microscopy without significantly affecting the sharpness or size of these devices. For example, a 10-20 nm layer of diamond-like carbon on a standard silicon atomic force microscope (AFM) tip, enables the useful operating life of the tip to be increased by at least twofold. Moreover, the low inherent friction coefficient of the DLC coating leads to higher resolution for AFM tips operating in the contact mode.

  20. Laser ablated hard coating for microtools

    DOEpatents

    McLean, W. II; Balooch, M.; Siekhaus, W.J.

    1998-05-05

    Wear-resistant coatings composed of laser ablated hard carbon films, are deposited by pulsed laser ablation using visible light, on instruments such as microscope tips and micro-surgical tools. Hard carbon, known as diamond-like carbon (DLC), films produced by pulsed laser ablation using visible light enhances the abrasion resistance, wear characteristics, and lifetimes of small tools or instruments, such as small, sharp silicon tips used in atomic probe microscopy without significantly affecting the sharpness or size of these devices. For example, a 10--20 nm layer of diamond-like carbon on a standard silicon atomic force microscope (AFM) tip, enables the useful operating life of the tip to be increased by at least twofold. Moreover, the low inherent friction coefficient of the DLC coating leads to higher resolution for AFM tips operating in the contact mode. 12 figs.

  1. Effects of Nonequilibrium Chemistry and Darcy-Forchheimer Pyrolysis Flow for Charring Ablator

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq; Milos, Frank S.

    2013-01-01

    The fully implicit ablation and thermal response code simulates pyrolysis and ablation of thermal protection materials and systems. The governing equations, which include energy conservation, a three-component decomposition model, and a surface energy balance, are solved with a moving grid.This work describes new modeling capabilities that are added to a special version of code. These capabilities include a time-dependent pyrolysis gas flow momentum equation with Darcy-Forchheimer terms and pyrolysis gas species conservation equations with finite rate homogeneous chemical reactions. The total energy conservation equation is also enhanced for consistency with these new additions. Two groups of parametric studies of the phenolic impregnated carbon ablator are performed. In the first group, an Orion flight environment for a proposed lunar-return trajectory is considered. In the second group, various test conditions for arcjet models are examined. The central focus of these parametric studies is to understand the effect of pyrolysis gas momentum transfer on material in-depth thermal responses with finite-rate, equilibrium, or frozen homogeneous gas chemistry. Results indicate that the presence of chemical nonequilibrium pyrolysis gas flow does not significantly alter the in-depth thermal response performance predicted using the chemical equilibrium gas model.

  2. Benign thyroid nodules treatment using percutaneous laser ablation (PLA) and radiofrequency ablation (RFA).

    PubMed

    Mauri, Giovanni; Cova, Luca; Monaco, Cristian Giuseppe; Sconfienza, Luca Maria; Corbetta, Sabrina; Benedini, Stefano; Ambrogi, Federico; Milani, Valentina; Baroli, Alberto; Ierace, Tiziana; Solbiati, Luigi

    2016-11-15

    To evaluate the reduction over time of benign thyroid nodules treated using percutaneous laser ablation (PLA) and radiofrequency ablation (RFA) by the same equipe. Ninety patients (age 55.6 ± 14.1 years) underwent ablation for benign thyroid nodule causing compression/aesthetic dissatisfaction from 2011. Fifty-nine (age 55.8 ± 14.1 years) underwent RFA and 31 (age 55.2 ± 14.2 years) PLA, ultrasound guided. Technical success, complications, duration of ablation and treatment, energy deployed, volumetric percentage reduction at 1, 6 and 12 months were derived. A regression model for longitudinal measurements was used with random intercept and random slope. Values are expressed as mean ± standard deviation or N (%). Technical success was always obtained. No major complications occurred. Mean ablation time was 30.1 ± 13.8 vs. 13.9 ± 5.9 min (p < .0001) and mean energy deployment was 5422.3 ± 2484.5 J vs. 34 662.7 ± 15 812.3 J in PLA vs. RFA group. Mean volume reduced from 20.3 ± 16.4 ml to 13.17 ± 10.74 ml (42% ± 17% reduction) at 1st month, 8.7 ± 7.4 ml (60% ± 15% reduction) at 6th month and 7.1 ± 7.7 ml (70%% ± 16% reduction) at 12th month, in PLA group, and from 32.7 ± 19.5 ml to 17.2 ± 12.9 ml (51%±15% reduction) at 1st month, 12.8 ± 9.6 ml (64 ± 14% reduction) at 6th month and 9.9 ± 9.2 ml (74% ± 14% reduction) at 12th month in RFA group. No difference in time course of the relative volume reduction between the two techniques was found. RFA and PLA are similarly feasible, safe and effective in treating benign thyroid nodules when performed by the same equipe. RFA is faster than PLA but require significantly higher energy.

  3. Microwave Ablation With a Triaxial Antenna: Results in ex vivo Bovine Liver

    PubMed Central

    Brace, Christopher L.; Laeseke, Paul F.; van der Weide, Daniel W.; Lee, Fred T.

    2007-01-01

    We apply a new triaxial antenna for microwave ablation procedures to an ex vivo bovine liver. The antenna consists of a coaxial monopole inserted through a biopsy needle positioned one quarter-wavelength from the antenna base. The insertion needle creates a triaxial structure, which enhances return loss more than 10 dB, maximizing energy transfer to the tissue while minimizing feed cable heating and invasiveness. Numerical electromagnetic and thermal simulations are used to optimize the antenna design and predict heating patterns. Numerical and ex vivo experimental results show that the lesion size depends strongly on ablation time and average input power, but not on peak power. Pulsing algorithms are also explored. We were able to measure a 3.8-cm lesion using 50 W for 7 min, which we believe to be the largest lesion reported thus far using a 17-gauge insertion needle. PMID:18079981

  4. SERS detection and targeted ablation of lymphoma cells using functionalized Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Yao, Qian; Cao, Fei; Feng, Chao; Zhao, Yan; Wang, Xiuhong

    2016-03-01

    Lymphoma is a heterogeneous group of malignancies of the lymphoid tissue, and is prevalent worldwide affecting both children and adults with a high mortality rate. There is in dire need of accurate and noninvasive approaches for early detection of the disease. Herein, we report a facile way to fabricate silver nanoparticle based nanoprobe by incorporating the corner-stone immunotherapeutic drug Rituxan for simultaneous detection and ablation of lymphoma cells in vitro. The fabricated nanoprobe can detect CD20 positive single lymphoma cell by surface enhanced Raman scattering technique with high specificity. The engineered nanoprobe retains the same antibody property as intact drug via Antibody-Dependent Cell-mediated Cytotoxicity (ADCC) analysis. The nanoprobe efficiently eradicates lymphoma cells in vitro. By integrating the advantages of sensitive SERS detection with targeted ablation capabilities of immunotherapeutic drug through site specificity, this nanoprobe can be applied as outstanding tools in living imaging, cancer diagnosis and treatment.

  5. Assessment of Ablative Therapies in Swine: Response of Respiratory Diaphragm to Varying Doses.

    PubMed

    Singal, Ashish; Mattison, Lars M; Soule, Charles L; Ballard, John R; Rudie, Eric N; Cressman, Erik N K; Iaizzo, Paul A

    2018-03-28

    Ablation is a common procedure for treating patients with cancer, cardiac arrhythmia, and other conditions, yet it can cause collateral injury to the respiratory diaphragm. Collateral injury can alter the diaphragm's properties and/or lead to respiratory dysfunction. Thus, it is important to understand the diaphragm's physiologic and biomechanical properties in response to ablation therapies, in order to better understand ablative modalities, minimize complications, and maximize the safety and efficacy of ablative procedures. In this study, we analyzed physiologic and biomechanical properties of swine respiratory diaphragm muscle bundles when exposed to 5 ablative modalities. To assess physiologic properties, we performed in vitro tissue bath studies and measured changes in peak force and baseline force. To assess biomechanical properties, we performed uniaxial stress tests, measuring force-displacement responses, stress-strain characteristics, and avulsion forces. After treating the muscle bundles with all 5 ablative modalities, we observed dose-dependent sustained reductions in peak force and transient increases in baseline force-but no consistent dose-dependent biomechanical responses. These data provide novel insights into the effects of various ablative modalities on the respiratory diaphragm, insights that could enable improvements in ablative techniques and therapies.

  6. Comparative evaluation of three-dimensional Gd-EOB-DTPA-enhanced MR fusion imaging with CT fusion imaging in the assessment of treatment effect of radiofrequency ablation of hepatocellular carcinoma.

    PubMed

    Makino, Yuki; Imai, Yasuharu; Igura, Takumi; Hori, Masatoshi; Fukuda, Kazuto; Sawai, Yoshiyuki; Kogita, Sachiyo; Fujita, Norihiko; Takehara, Tetsuo; Murakami, Takamichi

    2015-01-01

    To assess the feasibility of fusion of pre- and post-ablation gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging (Gd-EOB-DTPA-MRI) to evaluate the effects of radiofrequency ablation (RFA) of hepatocellular carcinoma (HCC), compared with similarly fused CT images This retrospective study included 67 patients with 92 HCCs treated with RFA. Fusion images of pre- and post-RFA dynamic CT, and pre- and post-RFA Gd-EOB-DTPA-MRI were created, using a rigid registration method. The minimal ablative margin measured on fusion imaging was categorized into three groups: (1) tumor protruding outside the ablation zone boundary, (2) ablative margin 0-<5.0 mm beyond the tumor boundary, and (3) ablative margin ≥5.0 mm beyond the tumor boundary. The categorization of minimal ablative margins was compared between CT and MR fusion images. In 57 (62.0%) HCCs, treatment evaluation was possible both on CT and MR fusion images, and the overall agreement between them for the categorization of minimal ablative margin was good (κ coefficient = 0.676, P < 0.01). MR fusion imaging enabled treatment evaluation in a significantly larger number of HCCs than CT fusion imaging (86/92 [93.5%] vs. 62/92 [67.4%], P < 0.05). Fusion of pre- and post-ablation Gd-EOB-DTPA-MRI is feasible for treatment evaluation after RFA. It may enable accurate treatment evaluation in cases where CT fusion imaging is not helpful.

  7. Ablation of Lgr4 enhances energy adaptation in skeletal muscle via activation of Ampk/Sirt1/Pgc1α pathway.

    PubMed

    Sun, Yingkai; Hong, Jie; Chen, Maopei; Ke, Yingying; Zhao, Shaoqian; Liu, Wen; Ma, Qinyun; Shi, Juan; Zou, Yaoyu; Ning, Tinglu; Zhang, Zhiguo; Liu, Ruixin; Wang, Jiqiu; Ning, Guang

    2015-08-21

    Leucine-rich repeat-containing G protein-coupled receptor 4 (Lgr4) is a newfound obese-associated gene. Previous study reveals that heterozygous mutation of Lgr4 correlates with decreased body weight in human. In our recent study, we demonstrate that Lgr4 ablation promotes browning of white adipose tissue and improves whole-body metabolic status. However little is known about its role in other metabolic tissues. Herein, we show that Lgr4 homozygous mutant (Lgr4(m/m)) mice show increased respiratory exchange ratio (RER, closer to 1.0) than wild-type mice at 12:00 AM (food-intake time for mice) while decreased RER (closer to 0.75) at 12:00 PM (fasting for mice), indicating a glucose-prone versus fatty acid-prone metabolic pattern, respectively. Furthermore, Lgr4 ablation increases lipid oxidation-related gene expression while suppresses glucose transporter type 4 (Glut4) levels in skeletal muscle under fasting condition. These data suggest that Lgr4 ablation enhances the flexibility of skeletal muscle to switch energy provider from glucose to fatty acid in response to glucose depletion. We further reveal the activation of Ampk/Sirt1/Pgc1α pathway during this adaptive fuel shift due to Lgr4 ablation. This study suggests that Lgr4 might serve as an adaptive regulator between glucose and lipid metabolism in skeletal muscle and reveals a potentially new regulator for a well-established adaptive network. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Laser ablation U-Th-Sm/He dating of detrital apatite

    NASA Astrophysics Data System (ADS)

    Guest, B.; Pickering, J. E.; Matthews, W.; Hamilton, B.; Sykes, C.

    2016-12-01

    Detrital apatite U-Th-Sm/He thermochronology has the potential to be a powerful tool for conducting basin thermal history analyses as well as complementing the well-established detrital zircon U-Pb approach in source to sink studies. A critical roadblock that prevents the routine application of detrital apatite U-Th-Sm/He thermochronology to solving geological problems is the costly and difficult whole grain approach that is generally used to obtain apatite U-Th-Sm/He data. We present a new analytical method for laser ablation thermochronology on apatite. Samples are ablated using a Resonetics™ 193 nm excimer laser and liberated 4He is measured using an ASI (Australian Scientific Instruments) Alphachron™ quadrupole mass spectrometer system; collectively known as the Resochron™. The ablated sites are imaged using a Zygo ZescopeTM optical profilometer and ablated pit volume measured using PitVol, a custom MatLabTM algorithm. The accuracy and precision of the method presented here was confirmed using well-characterized Durango apatite and Fish Canyon Tuff (FCT) apatite reference materials, with Durango apatite used as a primary reference and FCT apatite used as a secondary reference. The weighted average of our laser ablation Durango ages (30.5±0.35 Ma) compare well with ages obtained using conventional whole grain degassing and dissolution U-Th-Sm/He methods (32.56±0.43 Ma) (Jonckheere et.al., 1 993; Farley, 2000; McDowell et.al., 2005) for chips of the same Durango crystal. These Durango ages were used to produce a K-value to correct the secondary references and unknown samples. After correction, FCT apatite has a weighted average age of 28.37 ± 0.96 Ma, which agrees well with published ages. As a further test of this new method we have conducted a case study on a set of samples from the British Mountains of the Yukon Territory in NW Canada. Sandstone samples collected across the British Mountains were analyzed using conventional U-Th-Sm/He whole grain

  9. Renal Cell Carcinoma Perfusion before and after Radiofrequency Ablation Measured with Dynamic Contrast Enhanced MRI: A Pilot Study.

    PubMed

    Wah, Tze Min; Sourbron, Steven; Wilson, Daniel Jonathan; Magee, Derek; Gregory, Walter Martin; Selby, Peter John; Buckley, David L

    2018-01-08

    To investigate if the early treatment effects of radiofrequency ablation (RFA) on renal cell carcinoma (RCC) can be detected with dynamic contrast enhanced (DCE)-MRI and to correlate RCC perfusion with RFA treatment time. 20 patients undergoing RFA of their 21 RCCs were evaluated with DCE-MRI before and at one month after RFA treatment. Perfusion was estimated using the maximum slope technique at two independent sittings. Total RCC blood flow was correlated with total RFA treatment time, tumour location, size and histology. DCE-MRI examinations were successfully evaluated for 21 RCCs (size from 1.3 to 4 cm). Perfusion of the RCCs decreased significantly ( p < 0.0001) from a mean of 203 (±80) mL/min/100 mL before RFA to 8.1 (±3.1) mL/min/100 mL after RFA with low intra-observer variability ( r ≥ 0.99, p < 0.0001). There was an excellent correlation ( r = 0.95) between time to complete ablation and pre-treatment total RCC blood flow. Tumours with an exophytic location exhibit the lowest mean RFA treatment time. DCE-MRI can detect early treatment effects by measuring RCC perfusion before and after RFA. Perfusion significantly decreases in the zone of ablation, suggesting that it may be useful for the assessment of treatment efficacy. Pre-RFA RCC blood flow may be used to predict RFA treatment time.

  10. Doping He droplets by laser ablation with a pulsed supersonic jet source

    SciTech Connect

    Katzy, R.; Singer, M.; Izadnia, S.

    Laser ablation offers the possibility to study a rich number of atoms, molecules, and clusters in the gas phase. By attaching laser ablated materials to helium nanodroplets, one can gain highly resolved spectra of isolated species in a cold, weakly perturbed system. Here, we present a new setup for doping pulsed helium nanodroplet beams by means of laser ablation. In comparison to more well-established techniques using a continuous nozzle, pulsed nozzles show significant differences in the doping efficiency depending on certain experimental parameters (e.g., position of the ablation plume with respect to the droplet formation, nozzle design, and expansion conditions).more » In particular, we demonstrate that when the ablation region overlaps with the droplet formation region, one also creates a supersonic beam of helium atoms seeded with the sample material. The processes are characterized using a surface ionization detector. The overall doping signal is compared to that of conventional oven cell doping showing very similar dependence on helium stagnation conditions, indicating a comparable doping process. Finally, the ablated material was spectroscopically studied via laser induced fluorescence.« less

  11. Ablation article and method

    NASA Technical Reports Server (NTRS)

    Erickson, W. D.; Sullivan, E. M. (Inventor)

    1973-01-01

    An ablation article, such as a conical heat shield, having an ablating surface is provided with at least one discrete area of at least one seed material, such as aluminum. When subjected to ablation conditions, the seed material is ablated. Radiation emanating from the ablated seed material is detected to analyze ablation effects without disturbing the ablation surface. By providing different seed materials having different radiation characteristics, the ablating effects on various areas of the ablating surface can be analyzed under any prevailing ablation conditions. The ablating article can be provided with means for detecting the radiation characteristics of the ablated seed material to provide a self-contained analysis unit.

  12. Uterine fibroids: semiquantitative perfusion MR imaging parameters associated with the intraprocedural and immediate postprocedural treatment efficiencies of MR imaging-guided high-intensity focused ultrasound ablation.

    PubMed

    Kim, Young-sun; Kim, Byoung-Gie; Rhim, Hyunchul; Bae, Duk-Soo; Lee, Jeong-Won; Kim, Tae-Joong; Choi, Chel Hun; Lee, Yoo-Young; Lim, Hyo Keun

    2014-11-01

    To determine whether semiquantitative perfusion magnetic resonance (MR) imaging parameters are associated with therapeutic effectiveness of MR imaging-guided high-intensity focused ultrasound ( HIFU high-intensity focused ultrasound ) ablation of uterine fibroids and which semiquantitative perfusion parameters are significant with regard to treatment efficiency. This study was approved by the institutional review board, and informed consent was obtained from all subjects. Seventy-seven women (mean age, 43.3 years) with 119 fibroids (mean diameter, 7.5 cm) treated with MR imaging-guided HIFU high-intensity focused ultrasound ablation were analyzed. The correlation between semiquantitative perfusion MR parameters (peak enhancement, relative peak enhancement, time to peak, wash-in rate, washout rate) and heating and ablation efficiencies (lethal thermal dose volume based on MR thermometry and nonperfused volume based on immediate contrast-enhanced image divided by intended treatment volume) were evaluated by using a linear mixed model on a per-fibroid basis. The specific value of the significant parameter that had a substantial effect on treatment efficiency was determined. The mean peak enhancement, relative peak enhancement, time to peak, wash-in rate, and washout rate of the fibroids were 1293.1 ± 472.8 (range, 570.2-2477.8), 171.4% ± 57.2 (range, 0.6%-370.2%), 137.2 seconds ± 119.8 (range, 20.0-300.0 seconds), 79.5 per second ± 48.2 (range, 12.5-236.7 per second), and 11.4 per second ± 10.1 (range, 0-39.3 per second), respectively. Relative peak enhancement was found to be independently significant for both heating and ablation efficiencies (B = -0.002, P < .001 and B = -0.003, P = .050, respectively). The washout rate was significantly associated with ablation efficiency (B = -0.018, P = .043). Both efficiencies showed the most abrupt transitions at 220% of relative peak enhancement. Relative peak enhancement at semiquantitative perfusion MR imaging was

  13. THE USE OF THE LIGASURE™ DEVICE FOR SCROTAL ABLATION IN MARSUPIALS.

    PubMed

    Cusack, Lara; Cutler, Daniel; Mayer, Joerg

    2017-03-01

    Five sugar gliders ( Petaurus breviceps ), ranging in age from 3 mo to 3.5 yr of age, and one opossum ( Didelphis virginianus ), age 4.5 mo, presented for elective orchiectomy and scrotal ablation. The LigaSure™ device was safely used for orchiectomy and scrotal ablation in both species. Surgical time with the LigaSure was approximately 4 sec. No grooming of the incision site or self-mutilation was seen in the first 72 hr postoperatively. One sugar glider required postoperative wound care approximately 10 days postoperatively following incision-site grooming by a conspecific. The LigaSure provides a rapid, technologically simple and safe surgical technique for scrotal ablation and orchiectomy in the marsupial patient that minimizes surgical, anesthetic, and recovery times.

  14. Nanosecond laser-metal ablation at different ambient conditions

    NASA Astrophysics Data System (ADS)

    Elsied, Ahmed M.; Dieffenbach, Payson C.; Diwakar, Prasoon K.; Hassanein, Ahmed

    2018-05-01

    Ablation of metals under different ambient conditions and laser fluences, was investigated through series of experiments. A 1064 nm, 6 ns Nd:YAG laser was used to ablate 1 mm thick metal targets with laser energy ranging from 2 mJ to 300 mJ. The experiments were designed to study the effect of material properties, laser fluence, ambient gas, and ambient pressure on laser-metal ablation. The first experiment was conducted under vacuum to study the effect of laser fluence and material properties on metal ablation, using a wide range of laser fluences (2 J/cm2 up to 300 J/cm2) and two different targets, Al and W. The second experiment was conducted at atmospheric pressure using two different ambient gases air and argon, to understand the effect of ambient gas on laser-metal ablation process. The third experiment was conducted at two different pressures (10 Torr and 760 Torr) using the same ambient gas to investigate the effect of ambient pressure on laser-metal ablation. To compare the different ablation processes, the amount of mass ablated, ablation depth, crater profile and melt formation were measured using White Light Profilometer (WLP). The experimental results show that at low laser fluence: the ablated mass, ablation depth, and height of molten layer follow a logarithmic function of the incident laser fluence. While, at high laser fluence they follow a linear function. This dependence on laser fluence was found to be independent on ambient conditions and irradiated material. The effect of ambient pressure was more pronounced than the effect of ambient gas type. Plasma shielding effect was found to be very pronounced in the presence of ambient gas and led to significant reduction in the total mass ablation.

  15. Does Age Impact Text-Message Dependence?

    PubMed

    Ferraro, F Richard

    2018-01-01

    Little research has examined how age impacts texting dependence, despite the increased usage of texting and other social media applications in older adults. In the present study, three age groups (18-29 years of age, n = 135; 30-49 years of age, n = 58; 50-69 years of age, n = 19) were given the Self-Perceptions of Text Messaging Dependency Scale (SPTMDS). This self-report measure examines Emotion Reaction, Excessive Use, Disruption of Relationships with text Messages and Psychological/Behavioral Symptoms Concerning Heavy Usage). Results revealed that (a) texting dependence decreased across the three age groups and (b) that this decrease occurred for all four sub-scales of the SPTMDS (all p's < .01). These results have implications for how one aspect of social media (namely texting) is used and ultimately accepted by older adults.

  16. Highly efficient nonthermal ablation of bone under bulk water with a frequency-doubled Nd:YVO4 picosecond laser

    NASA Astrophysics Data System (ADS)

    Tulea, C.; Caron, J.; Wahab, H.; Gehlich, N.; Hoefer, M.; Esser, D.; Jungbluth, B.; Lenenbach, A.; Noll, R.

    2013-03-01

    Several laser systems in the infrared wavelength range, such as Nd:YAG, Er:YAG or CO2 lasers are used for efficient ablation of bone tissue. Here the application of short pulses in coaction with a thin water film results in reduced thermal side effects. Nonetheless up to now there is no laser-process for bone cutting in a clinical environment due to lack of ablation efficiency. Investigations of laser ablation rates of bone tissue using a rinsing system and concerning bleedings have not been reported yet. In our study we investigated the ablation rates of bovine cortical bone tissue, placed 1.5 cm deep in water under laminar flow conditions, using a short pulsed (25 ps), frequency doubled (532 nm) Nd:YVO4 laser with pulse energies of 1 mJ at 20 kHz repetition rate. The enhancement of the ablation rate due to debris removal by an additional water flow from a well-directed blast pipe as well as the negative effect of the admixture of bovine serum albumin to the water were examined. Optical Coherence Tomography (OCT) was used to measure the ablated volume. An experimental study of the depth dependence of the ablation rate confirms a simplified theoretical prediction regarding Beer-Lambert law, Fresnel reflection and a Gaussian beam profile. Conducting precise incisions with widths less than 1.5 mm the maximum ablation rate was found to be 0.2 mm3/s. At depths lower than 100 μm, while the maximum depth was 3.5 mm.

  17. Randomized, Split-Face/Décolleté Comparative Trial of Procedure Enhancement System for Fractional non-Ablative Laser Resurfacing Treatment.

    PubMed

    Robinson, Deanne Mraz; Frulla, Ashton P

    2017-07-01

    INTRODUCTION: A topical proprietary procedural enhancement system (PES) containing a combination of active ingredients including a tripeptide and hexapeptide (TriHex Technology™, Alastin Procedure Enhancement Invasive System, ALASTIN Skincare™, Inc., Carlsbad, CA) has been used successfully to aid in healing and improve symptomatology following resurfacing procedures.

    METHODS: PES (Gentle Cleanser, Regenerating Skin Nectar with TriHex Technology™, Ultra Nourishing Moisturizer with TriHex Technology™, Soothe + Protect Recovery Balm, Broad Spectrum 30+ Sunscreen) was compared to a basic regimen (Aquaphor™, Cerave™ cleanser, Vanicream™, Alastin Broad Spectrum 30+ Sunscreen) in a split face/ décolleté trial following fractional non-ablative thulium-doped resurfacing treatment to the face or décolleté. The skin was pre-conditioned and treated during and after the procedure using the two regimens.

    RESULTS: A blinded investigator rated the PES statistically superior to the basic regimen on healing post-laser treatment on day 4 based on lentigines, texture, and Global Skin Quality. Subjects also reported 'better looking and feeling' skin on the PES side.

    CONCLUSION: PES appears to improve healing post-non ablative thulium-doped resurfacing treatment to the face/décolleté in comparison with standard of care.

    J Drugs Dermatol. 2017;16(7):707-710.

    .

  18. Automated planning of ablation targets in atrial fibrillation treatment

    NASA Astrophysics Data System (ADS)

    Keustermans, Johannes; De Buck, Stijn; Heidbüchel, Hein; Suetens, Paul

    2011-03-01

    Catheter based radio-frequency ablation is used as an invasive treatment of atrial fibrillation. This procedure is often guided by the use of 3D anatomical models obtained from CT, MRI or rotational angiography. During the intervention the operator accurately guides the catheter to prespecified target ablation lines. The planning stage, however, can be time consuming and operator dependent which is suboptimal both from a cost and health perspective. Therefore, we present a novel statistical model-based algorithm for locating ablation targets from 3D rotational angiography images. Based on a training data set of 20 patients, consisting of 3D rotational angiography images with 30 manually indicated ablation points, a statistical local appearance and shape model is built. The local appearance model is based on local image descriptors to capture the intensity patterns around each ablation point. The local shape model is constructed by embedding the ablation points in an undirected graph and imposing that each ablation point only interacts with its neighbors. Identifying the ablation points on a new 3D rotational angiography image is performed by proposing a set of possible candidate locations for each ablation point, as such, converting the problem into a labeling problem. The algorithm is validated using a leave-one-out-approach on the training data set, by computing the distance between the ablation lines obtained by the algorithm and the manually identified ablation points. The distance error is equal to 3.8+/-2.9 mm. As ablation lesion size is around 5-7 mm, automated planning of ablation targets by the presented approach is sufficiently accurate.

  19. Radiofrequency Ablation for the Treatment of Hepatocellular Carcinoma in Patients with Transjugular Intrahepatic Portosystemic Shunts

    SciTech Connect

    Park, Jonathan K., E-mail: jonathan.park09@gmail.com; Al-Tariq, Quazi Z., E-mail: qat200@gmail.com; Zaw, Taryar M., E-mail: taryar.zaw@gmail.com

    PurposeTo assess radiofrequency (RF) ablation efficacy, as well as the patency of transjugular intrahepatic portosystemic shunts (TIPSs), in patients with hepatocellular carcinoma (HCC).Materials and MethodsRetrospective database review of patients with pre-existing TIPS undergoing RF ablation of HCC was conducted over a 159-month period ending in November 2013. TIPS patency pre- and post-RF ablation was assessed by ultrasound, angiography, and/or contrast-enhanced CT or MRI. Patient demographics and immediate post-RF ablation outcomes and complications were also reviewed.Results19 patients with 21 lesions undergoing 25 RF ablation sessions were included. Child-Pugh class A, B, and C scores were seen in 1, 13, and 5more » patients, respectively. Eleven patients (58 %) ultimately underwent liver transplantation. Immediate technical success was seen in all ablation sessions without residual tumor enhancement (100 %). No patients (0 %) suffered liver failure within 1 month of ablation. Pre-ablation TIPS patency was demonstrated in 22/25 sessions (88 %). Of 22 cases with patent TIPS prior to ablation, post-ablation patency was demonstrated in 22/22 (100 %) at immediate post-ablation imaging and in 21/22 (95 %) at last follow-up (1 patient was incidentally noted to have occlusion 31 months later). No immediate complications were observed.ConclusionAblation efficacy was similar to the cited literature values for patients without TIPS. Furthermore, TIPS patency was preserved in the majority of cases. Patients with both portal hypertension and HCC are not uncommonly encountered, and a pre-existing TIPS does not appear to be a definite contraindication for RF ablation.« less

  20. Short communication. Development of a fine thermocouple-needle system for real-time feedback of thermal tumour ablation margin.

    PubMed

    Ishizaka, H; Shiraishi, A; Awata, S; Shimizu, A; Hirasawa, S

    2011-12-01

    Thermal tumour ablation techniques such as radiofrequency (RF) ablation are applied for radical removal of local tumours as an easier, less invasive alternative to surgical resection. A serious drawback of thermal ablation, however, is that the ablation area cannot be accurately assessed during the procedure. To achieve real-time feedback and exact and safe ablation, a superfine thermocouple-needle system (TNS) comprising a 0.25-mm diameter thermocouple embedded in a 22-G, 15-cm-long needle was devised and efficacy was tested in vitro using porcine livers (n = 15) and in vivo using rabbit back muscles (n = 2) and livers (n = 3). A 17-gauge RF electrode with a 2 cm active tip was used for ablation. The TNS was inserted 1 cm from the active tip of the RF electrode and liver temperature around the electrode was measured concurrently. The RF current was cut off when the temperature reached 60°C or after 5 min at ≥50°C. Porcine livers and rabbit back muscles were then cut along a plane passing through the axes of the electrode and the TNS. In rabbit livers, contrast-enhanced CT was performed to evaluate ablation areas. Ablation areas in cut surfaces of porcine livers exhibited well-defined discoloured regions and the TNS tip precisely pinpointed the margin of the ablation area. Contrast-enhanced CT of rabbit livers showed the TNS tip accurately located at the margin of areas without contrast enhancement. These results indicate that the TNS can accurately show ablation margins and that placing the TNS tip at the intended ablation margin permits exact thermal ablation.

  1. On the angular dependence of focused laser ablation by nanosecond pulses in solgel and polymer materials

    NASA Astrophysics Data System (ADS)

    George, D. S.; Onischenko, A.; Holmes, A. S.

    2004-03-01

    Focused laser ablation by single laser pulses at varying angles of incidence is studied in two materials of interest: a solgel (Ormocer 4) and a polymer (SU8). For a range of angles (up to 70° from normal), and for low-energy (<20 μJ), 40 ns pulses at 266 nm wavelength, the ablation depth along the direction of the incident laser beam is found to be independent of the angle of incidence. This allows the crater profiles at oblique incidence to be generated directly from the crater profiles at normal incidence by a simple coordinate transformation. This result is of use in the development of simulation tools for direct-write laser ablation. A simple model based on the moving ablation front approach is shown to be consistent with the observed behavior.

  2. Influence of the Liquid on Femtosecond Laser Ablation of Iron

    NASA Astrophysics Data System (ADS)

    Kanitz, A.; Hoppius, J. S.; Gurevich, E. L.; Ostendorf, A.

    Ultrashort pulse laser ablation has become a very important industrial method for highly precise material removal ranging from sensitive thin film processing to drilling and cutting of metals. Over the last decade, a new method to produce pure nanoparticles emerged from this technique: Pulsed Laser Ablation in Liquids (PLAL). By this method, the ablation of material by a laser beam is used to generate a metal vapor within the liquid in order to obtain nanoparticles from its recondensation process. It is well known that the liquid significantly alters the ablation properties of the substrate, in our case iron. For example, the ablation rate and crater morphology differ depending on the used liquid. We present our studies on the efficiency and quality of ablated grooves in water, methanol, acetone, ethanol and toluene. The produced grooves are investigated by means of white-light interferometry, EDX and SEM.

  3. General Model for Multicomponent Ablation Thermochemistry

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Marschall, Jochen; Rasky, Daniel J. (Technical Monitor)

    1994-01-01

    A previous paper (AIAA 94-2042) presented equations and numerical procedures for modeling the thermochemical ablation and pyrolysis of thermal protection materials which contain multiple surface species. This work describes modifications and enhancements to the Multicomponent Ablation Thermochemistry (MAT) theory and code for application to the general case which includes surface area constraints, rate limited surface reactions, and non-thermochemical mass loss (failure). Detailed results and comparisons with data are presented for the Shuttle Orbiter reinforced carbon-carbon oxidation protection system which contains a mixture of sodium silicate (Na2SiO3), silica (SiO2), silicon carbide (SiC), and carbon (C).

  4. Radio frequency ablation of small renal tumors:: intermediate results.

    PubMed

    Hwang, J J; Walther, M M; Pautler, S E; Coleman, J A; Hvizda, J; Peterson, James; Linehan, W M; Wood, B J

    2004-05-01

    With evolving radio frequency technology, the clinical application of radio frequency ablation (RFA) has been actively investigated in the treatment for small renal tumors. We present our intermediate patient outcomes after RFA. Since January 2001, 17 patients with a total of 24 hereditary renal tumors ranging from 1.2 to 2.85 cm were treated with RFA using the 200 W Cool-tip RF System (Radionics, Burlington, Massachusetts) under laparoscopic (9) or percutaneous (8) guidance and had a minimum 1-year followup. A percutaneous approach was considered unsuitable if kidney tumors were contiguous to bowel, ureter or large vessels. Treatment eligibility criteria included an average tumor diameter of less than 3.0 cm, tumor growth during 1 year and solid appearance with contrast enhancement (HU change greater than 20) on computerized tomography (CT). Postoperative followup consisted of CT with and without intravenous contrast, and renal function assessment at regular intervals. Median patient age was 38 years (range 20 to 51). At a median followup of 385 days (range 342 to 691), median tumor or thermal lesion diameter decreased from 2.26 to 1.62 cm (p = 0.0013), and only 1 lesion (4%), which was located centrally near the hilum, exhibited contrast enhancement (HU change greater than 10) on CT at 12 months. Of the 15 renal tumors ablated laparoscopically, 13 were in direct contact with the bowel and 2 were abutting the ureter, necessitating mobilization before RFA. Laparoscopic ultrasound was used to guide radio frequency electrode placement and monitor the ablation process in these cases. Operative time and intraoperative blood loss (mean +/- standard mean of error) were 243 +/- 29 minutes and 67 +/- 9 cc, respectively. In 1 patient whose ureter was adherent to the tumor a ureteropelvic junction obstruction developed after laparoscopic RFA, requiring open repair. At the minimum 1-year followup 23 of 24 ablated tumors lacked contrast uptake on CT, meeting our radiographic

  5. Enhanced Thermal Ablation by Combining Ultrasound Contrast Agents with a Miniature Flat Transducer

    NASA Astrophysics Data System (ADS)

    Murillo, A.; Goldendstedt, C.; Lafon, C.; Cathignol, D.; Chapelon, J.-Y.

    2007-05-01

    Miniature transducers can be used for performing interstitial thermal ablation. Increasing the frequency of non-focused transducers enhances energy deposition but limits the therapeutic range. In order to treat extended tumors, new therapeutic strategies must be explored. This work aimed to combine ultrasound contrast agents (UCA) with flat transducers for increasing the treatment depth. The idea consists in increasing attenuation away from the transducer to favor remote heat deposition. Thermal ablation is induced in three steps. 1- Attenuation raises by injecting UCA; 2- Destruction of bubbles next to the transducer by pulsed high intensity bursts, results in a gradient of attenuation; 3- Continuous ultrasound are applied for generating a localized thermal lesion. In vitro tests were performed on temperature-sensitive tissue phantoms in which the UCA BR14 (Bracco) was injected during the liquid phase. The feasibility of the idea was demonstrated in three stages. 1- The coefficient of attenuation was measured with the force balance as a function of the concentration of BR14. For 0.8 and 4.8% attenuation at 10MHz was found to be 0.35 and 1.33 Np/cm respectively. 2- Pulsed ultrasound was applied on phantoms to destroy UCA. Based on the echogenicity decay evidenced on ultrasound images, a 1MPa-pressure was required at 10MHz. 3- Heating beams were applied on phantoms presenting a gradient in attenuation. Lesions were 1.5 times larger than in phantoms with constant attenuation. This study demonstrates that UCA can be selectively destroyed in order to generate a gradient of attenuation and extended thermal lesions.

  6. 32 CFR 48.302 - Substantiating evidence regarding dependency and age of dependents.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 1 2012-07-01 2012-07-01 false Substantiating evidence regarding dependency and age of dependents. 48.302 Section 48.302 National Defense Department of Defense OFFICE OF THE... Designation of Beneficiaries § 48.302 Substantiating evidence regarding dependency and age of dependents. At...

  7. 32 CFR 48.302 - Substantiating evidence regarding dependency and age of dependents.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 1 2011-07-01 2011-07-01 false Substantiating evidence regarding dependency and age of dependents. 48.302 Section 48.302 National Defense Department of Defense OFFICE OF THE... Designation of Beneficiaries § 48.302 Substantiating evidence regarding dependency and age of dependents. At...

  8. 32 CFR 48.302 - Substantiating evidence regarding dependency and age of dependents.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 1 2014-07-01 2014-07-01 false Substantiating evidence regarding dependency and age of dependents. 48.302 Section 48.302 National Defense Department of Defense OFFICE OF THE... Designation of Beneficiaries § 48.302 Substantiating evidence regarding dependency and age of dependents. At...

  9. 32 CFR 48.302 - Substantiating evidence regarding dependency and age of dependents.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 1 2013-07-01 2013-07-01 false Substantiating evidence regarding dependency and age of dependents. 48.302 Section 48.302 National Defense Department of Defense OFFICE OF THE... Designation of Beneficiaries § 48.302 Substantiating evidence regarding dependency and age of dependents. At...

  10. 32 CFR 48.302 - Substantiating evidence regarding dependency and age of dependents.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Substantiating evidence regarding dependency and age of dependents. 48.302 Section 48.302 National Defense Department of Defense OFFICE OF THE... Designation of Beneficiaries § 48.302 Substantiating evidence regarding dependency and age of dependents. At...

  11. Enhanced attention-dependent activity in the auditory cortex of older musicians.

    PubMed

    Zendel, Benjamin Rich; Alain, Claude

    2014-01-01

    Musical training improves auditory processing abilities, which correlates with neuro-plastic changes in exogenous (input-driven) and endogenous (attention-dependent) components of auditory event-related potentials (ERPs). Evidence suggests that musicians, compared to non-musicians, experience less age-related decline in auditory processing abilities. Here, we investigated whether lifelong musicianship mitigates exogenous or endogenous processing by measuring auditory ERPs in younger and older musicians and non-musicians while they either attended to auditory stimuli or watched a muted subtitled movie of their choice. Both age and musical training-related differences were observed in the exogenous components; however, the differences between musicians and non-musicians were similar across the lifespan. These results suggest that exogenous auditory ERPs are enhanced in musicians, but decline with age at the same rate. On the other hand, attention-related activity, modeled in the right auditory cortex using a discrete spatiotemporal source analysis, was selectively enhanced in older musicians. This suggests that older musicians use a compensatory strategy to overcome age-related decline in peripheral and exogenous processing of acoustic information. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Radiofrequency ablation for treatment of sporadic angiomyolipoma.

    PubMed

    Prevoo, Warner; van den Bosch, Maurice A A J; Horenblas, Simon

    2008-07-01

    Symptomatic angiomyolipoma (AML) and asymptomatic AML larger than 4 cm in size are usually treated with nephron-sparing surgery or arterial embolization. We used another technique, that is, radiofrequency ablation (RFA), for treatment of a sporadic AML in a patient with a solitary kidney, in whom maximal sparing of normal renal tissue was required. Contrast-enhanced computed tomography (CT) showed an enhancing well-defined mainly lipomatous tumor, with a maximum diameter of 4.5 cm in the upper pole of the left kidney. Diagnosis of AML was confirmed with fine-needle aspiration biopsy. RFA was performed with a RF 3000 system, consisting of a generator that supplied up to 200W of power, connected to a 15-gauge LeVeen multipolar array electrode that was placed under CT-guidance centrally in the AML. Initial power was set at low power and increased with increments of 10W, according to the algorithm provided by the manufacturer, resulting in a final tumor end temperature above 65 degrees C. No complications occurred and the patient was discharged home the day after. During follow-up (12 months) function of the solitary kidney of the patient was preserved and patient did not have any AML-related symptoms develop. Contrast-enhanced CT scan showed complete (100%) tumor ablation with absence of enhancement in the tumor and decreased tumor size from 4.5 cm to 2.9 cm at 12 months. CT-guided RFA is a minimally invasive ablation procedure that allowed successful treatment of a sporadic AML in a patient with a solitary kidney. No complications occurred and no AML recurrence was observed during the 12-month follow-up.

  13. Monitoring radiofrequency ablation with ultrasound Nakagami imaging.

    PubMed

    Wang, Chiao-Yin; Geng, Xiaonan; Yeh, Ta-Sen; Liu, Hao-Li; Tsui, Po-Hsiang

    2013-07-01

    Radiofrequency ablation (RFA) is a widely used alternative modality in the treatment of liver tumors. Ultrasound B-mode imaging is an important tool to guide the insertion of the RFA electrode into the tissue. However, it is difficult to visualize the ablation zone because RFA induces the shadow effect in a B-scan. Based on the randomness of ultrasonic backscattering, this study proposes ultrasound Nakagami imaging, which is a well-established method for backscattered statistics analysis, as an approach to complement the conventional B-scan for evaluating the ablation region. Porcine liver samples (n = 6) were ablated using a RFA system and monitored by employing an ultrasound scanner equipped with a 7.5 MHz linear array transducer. During the stages of ablation (0-12 min) and postablation (12-24 min), the raw backscattered data were acquired at a sampling rate of 30 MHz for B-mode, Nakagami imaging, and polynomial approximation of Nakagami imaging. The contrast-to-noise ratio (CNR) was also calculated to compare the image contrasts of the B-mode and Nakagami images. The results demonstrated that the Nakagami image has the ability to visualize changes in the backscattered statistics in the ablation zone, including the shadow region during RFA. The average Nakagami parameter increased from 0.2 to 0.6 in the ablation stage, and then decreased to approximately 0.3 at the end of the postablation stage. Moreover, the CNR of the Nakagami image was threefold that of the B-mode image, showing that the Nakagami image has a better image contrast for monitoring RFA. Specifically, the use of the polynomial approximation equips the Nakagami image with an enhanced ability to estimate the range of the ablation region. This study demonstrated that ultrasound Nakagami imaging based on the analysis of backscattered statistics has the ability to visualize the RFA-induced ablation zone, even if the shadow effect exists in the B-scan.

  14. Mucosal ablation in Barrett's esophagus.

    PubMed

    Walker, S J; Selvasekar, C R; Birbeck, N

    2002-01-01

    Barrett's esophagus is a prevalent, premalignant condition affecting the gastroesophageal junction and distal esophagus. Ablation plus antireflux therapy has recently been advocated to prevent the development of adenocarcinoma or to treat those unfit or unwilling to undergo esophagectomy. The present article, based on a search of Medline/ISI databases and cross-referencing of relevant articles, reviews the literature on this subject. A number of techniques have been used to remove the affected mucosa, including laser, electrocoagulation, argon plasma coagulation and photodynamic therapy but, as yet, none has been shown to be superior. Depending on the method used, ablation results in complete removal of Barrett's esophagus in approximately one third of patients and a partial response in nearly two-thirds. The resultant squamous mucosa is apparently 'normal' but may regress. To promote and maintain regeneration, antireflux therapy must be sufficient to reduce repetitive injury to the esophageal mucosa. Whether ablation reduces the cancer risk or delays its occurrence is unknown, though recent data suggests benefit. Complications are infrequent and usually mild. Regular follow-up endoscopy and deep biopsies continue to be necessary. Careful data from much larger populations with long-term follow-up is required before ablation reaches the stage of broad clinical application.

  15. Numerical study of double-pulse laser ablation of Al

    NASA Astrophysics Data System (ADS)

    Förster, G. D.; Lewis, Laurent J.

    2018-06-01

    The effect of double laser pulses (DPs) on the ablation process in solids is studied using a hybrid two-temperature model combining a continuum description of the conduction band electrons with a classical molecular dynamics (MD) approach for the ions. The study is concerned with double pulses with delays in the range of 0-50 ps and absorbed laser fluences of 0.5, 1.0, and 1.5 J/m 2 [i.e., 1-3 times the ablation threshold for single-pulse ablation (SP)], taking Al as a generic example of simple metals. A detailed analysis, including the assessment of thermodynamic pathways and cavitation rates, leads to a comprehensive picture of the mechanisms active during the different stages of the ablation process initiated by DPs. This study provides an explanation for several phenomena observed in DP ablation experiments. In particular, with respect to SP ablation, crater depths are reduced, which can be explained by the compensation of the rarefaction wave from the first laser pulse with the compression wave from the second pulse, or, at higher fluences and larger delays, by the fact that the target surface is shielded with matter ablated by the first laser pulse. Also, we discuss how smoother surface structures obtained using DPs may be related to features found in the simulations—viz., reduced mechanical strain and peak lattice temperatures. Finally, vaporization appears to be enhanced in DP ablation, which may improve the resolution of emission spectra.

  16. Nonequilibrium Ablation of Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Chen, Yih K.; Gokcen, Tahir

    2012-01-01

    In previous work, an equilibrium ablation and thermal response model for Phenolic Impregnated Carbon Ablator was developed. In general, over a wide range of test conditions, model predictions compared well with arcjet data for surface recession, surface temperature, in-depth temperature at multiple thermocouples, and char depth. In this work, additional arcjet tests were conducted at stagnation conditions down to 40 W/sq cm and 1.6 kPa. The new data suggest that nonequilibrium effects become important for ablation predictions at heat flux or pressure below about 80 W/sq cm or 10 kPa, respectively. Modifications to the ablation model to account for nonequilibrium effects are investigated. Predictions of the equilibrium and nonequilibrium models are compared with the arcjet data.

  17. Pulsed laser ablation of dental calculus in the near ultraviolet.

    PubMed

    Schoenly, Joshua E; Seka, Wolf; Rechmann, Peter

    2014-02-01

    Pulsed lasers emitting wavelengths near 400 nm can selectively ablate dental calculus without damaging underlying and surrounding sound dental hard tissue. Our results indicate that calculus ablation at this wavelength relies on the absorption of porphyrins endogenous to oral bacteria commonly found in calculus. Sub- and supragingival calculus on extracted human teeth, irradiated with 400-nm, 60-ns laser pulses at ≤8  J/cm2, exhibits a photobleached surface layer. Blue-light microscopy indicates this layer highly scatters 400-nm photons, whereas fluorescence spectroscopy indicates that bacterial porphyrins are permanently photobleached. A modified blow-off model for ablation is proposed that is based upon these observations and also reproduces our calculus ablation rates measured from laser profilometry. Tissue scattering and a stratified layering of absorbers within the calculus medium explain the gradual decrease in ablation rate from successive pulses. Depending on the calculus thickness, ablation stalling may occur at <5  J/cm2 but has not been observed above this fluence.

  18. Thermal Ablation Modeling for Silicate Materials

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq

    2016-01-01

    A thermal ablation model for silicates is proposed. The model includes the mass losses through the balance between evaporation and condensation, and through the moving molten layer driven by surface shear force and pressure gradient. This model can be applied in ablation simulations of the meteoroid or glassy Thermal Protection Systems for spacecraft. Time-dependent axi-symmetric computations are performed by coupling the fluid dynamics code, Data-Parallel Line Relaxation program, with the material response code, Two-dimensional Implicit Thermal Ablation simulation program, to predict the mass lost rates and shape change. For model validation, the surface recession of fused amorphous quartz rod is computed, and the recession predictions reasonably agree with available data. The present parametric studies for two groups of meteoroid earth entry conditions indicate that the mass loss through moving molten layer is negligibly small for heat-flux conditions at around 1 MW/cm(exp. 2).

  19. Attitudes toward Catheter Ablation for Atrial Fibrillation: A Nationwide Survey among Danish Cardiologists.

    PubMed

    Vadmann, Henrik; Pedersen, Susanne S; Nielsen, Jens Cosedis; Rodrigo-Domingo, Maria; Pehrson, Steen; Johannessen, Arne; Hansen, Peter Steen; Johansen, Jens Brock; Riahi, Sam

    2015-10-01

    Catheter ablation for atrial fibrillation (AF) is an important but expensive procedure that is the subject of some debate. Physicians' attitudes toward catheter ablation may influence promotion and patient acceptance. This is the first study to examine the attitudes of Danish cardiologists toward catheter ablation for AF, using a nationwide survey. We developed a purpose-designed questionnaire to evaluate attitudes toward catheter ablation for AF that was sent to all Danish cardiologists (n = 401; response n = 272 (67.8%)). There was no association between attitudes toward ablation and the experience or age of the cardiologist with respect to patients with recurrent AF episodes with a duration of <48 hours or >7 days and/or need for cardioversion. The majority (69%) expected a recurrence of AF after catheter ablation in more than 30% of the cases. For patients with persistent longstanding AF with a duration of >1 year, the attitude toward ablation for longstanding AF was more likely to be positive with increasing age (P < 0.01) and years of experience of the cardiologist (P = 0.002). Danish cardiologists generally have a positive attitude toward catheter ablation for AF, maintain up-to-date knowledge of the procedure, and are aware what information on ablation treatment should be given to patients with AF. The cardiologists had a positive attitude toward ablation for AF in patients with AF episodes <48 hours and patients with episodes >7 days, or those who needed medical/electrical conversion, but a more negative attitude toward treating longstanding AF patients. © 2015 Wiley Periodicals, Inc.

  20. Acoustic Droplet Vaporization for Enhancement of Thermal Ablation by High Intensity Focused Ultrasound

    PubMed Central

    Zhang, Man; Fabiilli, Mario L.; Haworth, Kevin J.; Padilla, Frederic; Swanson, Scott D.; Kripfgans, Oliver D.; Carson, Paul L.; Fowlkes, J. Brian

    2011-01-01

    Rationale and Objectives Acoustic droplet vaporization (ADV) shows promise for spatial control and acceleration of thermal lesion production. Our hypothesis was that microbubbles generated by ADV could enhance high intensity focused ultrasound (HIFU) thermal ablation by controlling and increasing local energy absorption. Materials and Methods Thermal lesions were produced in tissue-mimicking phantoms using focused ultrasound (1.44 MHz) with a focal intensity of 4000 W·cm-2 in degassed water at 37°C. The average lesion volume was measured by visible change in optical opacity and by T2-weighted MRI. In addition, in vivo HIFU lesions were generated in a canine liver before and after an intravenous injection of droplets with a similar acoustic setup. Results Thermal lesions were seven-fold larger in phantoms containing droplets (3×105 droplets/mL) compared to phantoms without droplets. The mean lesion volume with a 2 s HIFU exposure in droplet-containing phantoms was comparable to that made by a 5 s exposure in phantoms without droplets. In the in vivo study, the average lesion volumes without and with droplets were 0.017 ± 0.006 cm3 (n = 4, 5 s exposure) and 0.265 ± 0.005 cm3 (n = 3, 5 s exposure), respectively – a factor of 15 difference. The shape of ADV bubbles imaged with B-mode ultrasound was very similar to the actual lesion shape as measured optically and by MRI. Conclusion ADV bubbles may facilitate clinical HIFU ablation by reducing treatment time or requisite in situ total acoustic power, and provide ultrasonic imaging feedback of the thermal therapy. PMID:21703883

  1. Synergistic retention strategy of RGD active targeting and radiofrequency-enhanced permeability for intensified RF & chemotherapy synergistic tumor treatment.

    PubMed

    Zhang, Kun; Li, Pei; He, Yaping; Bo, Xiaowan; Li, Xiaolong; Li, Dandan; Chen, Hangrong; Xu, Huixiong

    2016-08-01

    Despite gaining increasing attention, chelation of multiple active targeting ligands greatly increase the formation probability of protein corona, disabling active targeting. To overcome it, a synergistic retention strategy of RGD-mediated active targeting and radiofrequency (RF) electromagnetic field-enhanced permeability has been proposed here. It is validated that such a special synergistic retention strategy can promote more poly lactic-co-glycolic acid (PLGA)-based capsules encapsulating camptothecin (CPT) and solid DL-menthol (DLM) to enter and retain in tumor in vitro and in vivo upon exposure to RF irradiation, receiving an above 8 fold enhancement in HeLa retention. Moreover, the PLGA-based capsules can respond RF field to trigger the entrapped DLM to generate solid-liquid-gas (SLG) tri-phase transformation for enhancing RF ablation and CPT release. Therefore, depending on the enhanced RF ablation and released CPT and the validated synergistic retention effect, the inhibitory outcome for tumor growth has gained an over 10-fold improvement, realizing RF ablation & chemotherapy synergistic treatment against HeLa solid tumor, which indicates a significant promise in clinical RF ablation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Review of temperature dependence of thermal properties, dielectric properties, and perfusion of biological tissues at hyperthermic and ablation temperatures.

    PubMed

    Rossmanna, Christian; Haemmerich, Dieter

    2014-01-01

    The application of supraphysiological temperatures (>40°C) to biological tissues causes changes at the molecular, cellular, and structural level, with corresponding changes in tissue function and in thermal, mechanical and dielectric tissue properties. This is particularly relevant for image-guided thermal treatments (e.g. hyperthermia and thermal ablation) delivering heat via focused ultrasound (FUS), radiofrequency (RF), microwave (MW), or laser energy; temperature induced changes in tissue properties are of relevance in relation to predicting tissue temperature profile, monitoring during treatment, and evaluation of treatment results. This paper presents a literature survey of temperature dependence of electrical (electrical conductivity, resistivity, permittivity) and thermal tissue properties (thermal conductivity, specific heat, diffusivity). Data of soft tissues (liver, prostate, muscle, kidney, uterus, collagen, myocardium and spleen) for temperatures between 5 to 90°C, and dielectric properties in the frequency range between 460 kHz and 3 GHz are reported. Furthermore, perfusion changes in tumors including carcinomas, sarcomas, rhabdomyosarcoma, adenocarcinoma and ependymoblastoma in response to hyperthmic temperatures up to 46°C are presented. Where appropriate, mathematical models to describe temperature dependence of properties are presented. The presented data is valuable for mathematical models that predict tissue temperature during thermal therapies (e.g. hyperthermia or thermal ablation), as well as for applications related to prediction and monitoring of temperature induced tissue changes.

  3. Review of temperature dependence of thermal properties, dielectric properties, and perfusion of biological tissues at hyperthermic and ablation temperatures

    PubMed Central

    Rossmann, Christian; Haemmerich, Dieter

    2016-01-01

    The application of supraphysiological temperatures (>40°C) to biological tissues causes changes at the molecular, cellular, and structural level, with corresponding changes in tissue function and in thermal, mechanical and dielectric tissue properties. This is particularly relevant for image-guided thermal treatments (e.g. hyperthermia and thermal ablation) delivering heat via focused ultrasound (FUS), radiofrequency (RF), microwave (MW), or laser energy; temperature induced changes in tissue properties are of relevance in relation to predicting tissue temperature profile, monitoring during treatment, and evaluation of treatment results. This paper presents a literature survey of temperature dependence of electrical (electrical conductivity, resistivity, permittivity) and thermal tissue properties (thermal conductivity, specific heat, diffusivity). Data of soft tissues (liver, prostate, muscle, kidney, uterus, collagen, myocardium and spleen) for temperatures between 5 to 90°C, and dielectric properties in the frequency range between 460 kHz and 3 GHz are reported. Furthermore, perfusion changes in tumors including carcinomas, sarcomas, rhabdomyosarcoma, adenocarcinoma and ependymoblastoma in response to hyperthmic temperatures up to 46°C are presented. Where appropriate, mathematical models to describe temperature dependence of properties are presented. The presented data is valuable for mathematical models that predict tissue temperature during thermal therapies (e.g. hyperthermia or thermal ablation), as well as for applications related to prediction and monitoring of temperature induced tissue changes. PMID:25955712

  4. Endothelium-dependent control of cerebrovascular functions through age: exercise for healthy cerebrovascular aging.

    PubMed

    Bolduc, Virginie; Thorin-Trescases, Nathalie; Thorin, Eric

    2013-09-01

    Cognitive performances are tightly associated with the maximal aerobic exercise capacity, both of which decline with age. The benefits on mental health of regular exercise, which slows the age-dependent decline in maximal aerobic exercise capacity, have been established for centuries. In addition, the maintenance of an optimal cerebrovascular endothelial function through regular exercise, part of a healthy lifestyle, emerges as one of the key and primary elements of successful brain aging. Physical exercise requires the activation of specific brain areas that trigger a local increase in cerebral blood flow to match neuronal metabolic needs. In this review, we propose three ways by which exercise could maintain the cerebrovascular endothelial function, a premise to a healthy cerebrovascular function and an optimal regulation of cerebral blood flow. First, exercise increases blood flow locally and increases shear stress temporarily, a known stimulus for endothelial cell maintenance of Akt-dependent expression of endothelial nitric oxide synthase, nitric oxide generation, and the expression of antioxidant defenses. Second, the rise in circulating catecholamines during exercise not only facilitates adequate blood and nutrient delivery by stimulating heart function and mobilizing energy supplies but also enhances endothelial repair mechanisms and angiogenesis. Third, in the long term, regular exercise sustains a low resting heart rate that reduces the mechanical stress imposed to the endothelium of cerebral arteries by the cardiac cycle. Any chronic variation from a healthy environment will perturb metabolism and thus hasten endothelial damage, favoring hypoperfusion and neuronal stress.

  5. Effect of Radiofrequency Endometrial Ablation on Dysmenorrhea.

    PubMed

    Wyatt, Sabrina N; Banahan, Taylor; Tang, Ying; Nadendla, Kavita; Szychowski, Jeff M; Jenkins, Todd R

    To examine rates of dysmenorrhea after radiofrequency endometrial ablation in patients with and without known dysmenorrhea symptoms prior to the procedure in a diverse population. Retrospective cohort study (Canadian Task Force classification II-2). Academic gynecology practice. A total of 307 women underwent endometrial ablation between 2007 and 2013 at our institution. Patients who had preoperative and postoperative pain symptom assessments as well as a description of pain timing recorded were included in our analysis. Exclusion criteria were age <19 years and operative biopsy findings consistent with complex atypical hyperplasia. The difference in preoperative and postoperative rates of dysmenorrhea was evaluated. Demographic information and other outcome variables were used to evaluate factors associated with resolution of dysmenorrhea. A total of 307 patients who underwent radiofrequency endometrial ablation were identified. After exclusions, 296 charts were examined, and 144 patients met our enrollment criteria. The mean age of the study cohort was 45.4 ± 6.2 years; 57 patients (40%) were African American, 16 (11%) had a body mass index (BMI) > 40, and 41 (29%) were of normal weight. Preoperative dysmenorrhea was reported by 100 patients (69%); 48 of these patients (48%) experienced resolution of symptoms postoperatively. Only 3 of the 44 patients (7%) without preoperative dysmenorrhea reported new-onset dysmenorrhea postoperatively. Significantly fewer patients had dysmenorrhea after compared to before radiofrequency ablation (55 of 144 [38%] vs 100 of 144 [69%]; p < .001). Resolution of dysmenorrhea after ablation was associated with reduction in bleeding volume (p = .048) but not with a reduction in frequency of bleeding (p = .12). Approximately one-half of women who undergo radiofrequency endometrial ablation to treat heavy menstrual bleeding who also have preoperative dysmenorrhea exhibit documented pain resolution after the procedure

  6. Towards an Analytical Age-Dependent Model of Contrast Sensitivity Functions for an Ageing Society

    PubMed Central

    Joulan, Karine; Brémond, Roland

    2015-01-01

    The Contrast Sensitivity Function (CSF) describes how the visibility of a grating depends on the stimulus spatial frequency. Many published CSF data have demonstrated that contrast sensitivity declines with age. However, an age-dependent analytical model of the CSF is not available to date. In this paper, we propose such an analytical CSF model based on visual mechanisms, taking into account the age factor. To this end, we have extended an existing model from Barten (1999), taking into account the dependencies of this model's optical and physiological parameters on age. Age-dependent models of the cones and ganglion cells densities, the optical and neural MTF, and optical and neural noise are proposed, based on published data. The proposed age-dependent CSF is finally tested against available experimental data, with fair results. Such an age-dependent model may be beneficial when designing real-time age-dependent image coding and display applications. PMID:26078994

  7. Spatiotemporal Variability of Great Lakes Basin Snow Cover Ablation Events

    NASA Astrophysics Data System (ADS)

    Suriano, Z. J.; Leathers, D. J.

    2017-12-01

    In the Great Lakes basin of North America, annual runoff is dominated by snowmelt. This snowmelt-induced runoff plays an important role within the hydrologic cycle of the basin, influencing soil moisture availability and driving the seasonal cycle of spring and summer Lake levels. Despite this, relatively little is understood about the patterns and trends of snow ablation event frequency and magnitude within the Great Lakes basin. This study uses a gridded dataset of Canadian and United States surface snow depth observations to develop a regional climatology of snow ablation events from 1960-2009. An ablation event is defined as an inter-diurnal snow depth decrease within an individual grid cell. A clear seasonal cycle in ablation event frequency exists within the basin and peak ablation event frequency is latitudinally dependent. Most of the basin experiences peak ablation frequency in March, while the northern and southern regions of the basin experience respective peaks in April and February. An investigation into the inter-annual frequency of ablation events reveals ablation events significantly decrease within the northeastern and northwestern Lake Superior drainage basins and significantly increase within the eastern Lake Huron and Georgian Bay drainage basins. In the eastern Lake Huron and Georgian Bay drainage basins, larger ablation events are occurring more frequently, and a larger impact to the hydrology can be expected. Trends in ablation events are attributed primarily to changes in snowfall and snow depth across the region.

  8. Organized Atrial Tachycardias after Atrial Fibrillation Ablation

    PubMed Central

    Castrejón-Castrejón, Sergio; Ortega, Marta; Pérez-Silva, Armando; Doiny, David; Estrada, Alejandro; Filgueiras, David; López-Sendón, José L.; Merino, José L.

    2011-01-01

    The efficacy of catheter-based ablation techniques to treat atrial fibrillation is limited not only by recurrences of this arrhythmia but also, and not less importantly, by new-onset organized atrial tachycardias. The incidence of such tachycardias depends on the type and duration of the baseline atrial fibrillation and specially on the ablation technique which was used during the index procedure. It has been repeatedly reported that the more extensive the left atrial surface ablated, the higher the incidence of organized atrial tachycardias. The exact origin of the pathologic substrate of these trachycardias is not fully understood and may result from the interaction between preexistent regions with abnormal electrical properties and the new ones resultant from radiofrequency delivery. From a clinical point of view these atrial tachycardias tend to remit after a variable time but in some cases are responsible for significant symptoms. A precise knowledge of the most frequent types of these arrhythmias, of their mechanisms and components is necessary for a thorough electrophysiologic characterization if a new ablation procedure is required. PMID:21941669

  9. Integration of myocardial scar identified by preoperative delayed contrast-enhanced MRI into a high-resolution mapping system for planning and guidance of VT ablation procedures

    NASA Astrophysics Data System (ADS)

    Rettmann, M. E.; Suzuki, A.; Wang, S.; Pottinger, N.; Arter, J.; Netzer, A.; Parker, K.; Viker, K.; Packer, D. L.

    2017-03-01

    Myocardial scarring creates a substrate for reentrant circuits which can lead to ventricular tachycardia. In ventricular catheter ablation therapy, regions of myocardial scarring are targeted to interrupt arrhythmic electrical pathways. Low voltage regions are a surrogate for myocardial scar and are identified by generating an electro anatomic map at the start of the procedure. Recent efforts have focussed on integration of preoperative scar information generated from delayed contrast-enhanced MR imaging to augment intraprocedural information. In this work, we describe an initial feasibility study of integration of a preoperative MRI derived scar maps into a high-resolution mapping system to improve planning and guidance of VT ablation procedures.

  10. Randomized ablation strategies for the treatment of persistent atrial fibrillation: RASTA study.

    PubMed

    Dixit, Sanjay; Marchlinski, Francis E; Lin, David; Callans, David J; Bala, Rupa; Riley, Michael P; Garcia, Fermin C; Hutchinson, Mathew D; Ratcliffe, Sarah J; Cooper, Joshua M; Verdino, Ralph J; Patel, Vickas V; Zado, Erica S; Cash, Nancy R; Killian, Tony; Tomson, Todd T; Gerstenfeld, Edward P

    2012-04-01

    The single-procedure efficacy of pulmonary vein isolation (PVI) is less than optimal in patients with persistent atrial fibrillation (AF). Adjunctive techniques have been developed to enhance single-procedure efficacy in these patients. We conducted a study to compare 3 ablation strategies in patients with persistent AF. Subjects were randomized as follows: arm 1, PVI + ablation of non-PV triggers identified using a stimulation protocol (standard approach); arm 2, standard approach + empirical ablation at common non-PV AF trigger sites (mitral annulus, fossa ovalis, eustachian ridge, crista terminalis, and superior vena cava); or arm 3, standard approach + ablation of left atrial complex fractionated electrogram sites. Patients were seen at 6 weeks, 6 months, and 1 year; transtelephonic monitoring was performed at each visit. Antiarrhythmic drugs were discontinued at 3 to 6 months. The primary study end point was freedom from atrial arrhythmias off antiarrhythmic drugs at 1 year after a single-ablation procedure. A total of 156 patients (aged 59±9 years; 136 males; AF duration, 47±50 months) participated (arm 1, 55 patients; arm 2, 50 patients; arm 3, 51 patients). Procedural outcomes (procedure, fluoroscopy, and PVI times) were comparable between the 3 arms. More lesions were required to target non-PV trigger sites than a complex fractionated electrogram (33±9 versus 22±9; P<0.001). The primary end point was achieved in 71 patients and was worse in arm 3 (29%) compared with arm 1 (49%; P=0.04) and arm 2 (58%; P=0.004). These data suggest that additional substrate modification beyond PVI does not improve single-procedure efficacy in patients with persistent AF. URL: http://www.clinicaltrials.gov. Unique identifier: NCT00379301.

  11. Pacemaker implantation after catheter ablation for atrial fibrillation.

    PubMed

    Deshmukh, Abhishek J; Yao, Xiaoxi; Schilz, Stephanie; Van Houten, Holly; Sangaralingham, Lindsey R; Asirvatham, Samuel J; Friedman, Paul A; Packer, Douglas L; Noseworthy, Peter A

    2016-01-01

    Sinus node dysfunction requiring pacemaker implantation is commonly associated with atrial fibrillation (AF), but may not be clinically apparent until restoration of sinus rhythm with ablation or cardioversion. We sought to determine frequency, time course, and predictors for pacemaker implantation after catheter ablation, and to compare the overall rates to a matched cardioversion cohort. We conducted a retrospective analysis using a large US commercial insurance database and identified 12,158 AF patients who underwent catheter ablation between January 1, 2005 and December 31, 2012. Over an average of 2.4 years of follow-up, 5.6 % of the patients underwent pacemaker implantation. Using the Cox proportional hazards models, we found that risk of risks of pacemaker implantation was associated with older age (50-64 and ≥65 versus <50 years), female gender, higher CHADS2 score (≥2 and 1 versus 0), higher Charlson index (≥2 versus 0-1), certain baseline comorbidities (conduction disorder, coronary atherosclerosis, and congestive heart failure), and the year of ablation. There was no significant difference in the risk of pacemaker implantation between ablation patients and propensity score (PS)-matched cardioversion groups (3.5 versus. 4.1 % at 1 year and 8.8 versus 8.3 % at 5 years). Overall, pacemaker implantation occurs in about 1/28 patients within 1 year of catheter ablation. The overall implantation rate decreased between 2005 and 2012. Furthermore, the risk after ablation is similar to cardioversion, suggesting that patients require pacing due to a common underlying electrophysiologic substrate, rather than the ablation itself.

  12. Loading of mass spectrometry ion trap with Th ions by laser ablation for nuclear frequency standard application.

    PubMed

    Borisyuk, Petr V; Derevyashkin, Sergey P; Khabarova, Ksenia Y; Kolachevsky, Nikolay N; Lebedinsky, Yury Y; Poteshin, Sergey S; Sysoev, Alexey A; Tkalya, Evgeny V; Tregubov, Dmitry O; Troyan, Viktor I; Vasiliev, Oleg S; Yakovlev, Valery P; Yudin, Valery I

    2017-08-01

    We describe an original multisectional quadrupole ion trap aimed to realize nuclear frequency standard based on the unique isomer transition in thorium nucleus. It is shown that the system effectively operates on Th + , Th 2+ and Th 3+ ions produced by laser ablation of metallic thorium-232 target. Laser intensity used for ablation is about 6 GW/cm 2 . Via applying a bias potential to every control voltage including the RF one, we are able not only to manipulate ions within the energy range as wide as 1-500 eV but to specially adjust trap potentials in order to work mainly with ions that belong to energy distribution maximum and therefore to effectively enhance the number of trapped ions. Measurement of energy distributions of 232 Th + , 232 Th 2+ , 232 Th 3+ ions obtained by laser ablation allows us to define optimal potential values for trapping process. Observed number of ions inside trap in dependence on trapping time is found to obey an unusually slow - logarithmic decay law that needs more careful study.

  13. Real-Time MRI-Guided Cardiac Cryo-Ablation: A Feasibility Study.

    PubMed

    Kholmovski, Eugene G; Coulombe, Nicolas; Silvernagel, Joshua; Angel, Nathan; Parker, Dennis; Macleod, Rob; Marrouche, Nassir; Ranjan, Ravi

    2016-05-01

    MRI-based ablation provides an attractive capability of seeing ablation-related tissue changes in real time. Here we describe a real-time MRI-based cardiac cryo-ablation system. Studies were performed in canine model (n = 4) using MR-compatible cryo-ablation devices built for animal use: focal cryo-catheter with 8 mm tip and 28 mm diameter cryo-balloon. The main steps of MRI-guided cardiac cryo-ablation procedure (real-time navigation, confirmation of tip-tissue contact, confirmation of vessel occlusion, real-time monitoring of a freeze zone formation, and intra-procedural assessment of lesions) were validated in a 3 Tesla clinical MRI scanner. The MRI compatible cryo-devices were advanced to the right atrium (RA) and right ventricle (RV) and their position was confirmed by real-time MRI. Specifically, contact between catheter tip and myocardium and occlusion of superior vena cava (SVC) by the balloon was visually validated. Focal cryo-lesions were created in the RV septum. Circumferential ablation of SVC-RA junction with no gaps was achieved using the cryo-balloon. Real-time visualization of freeze zone formation was achieved in all studies when lesions were successfully created. The ablations and presence of collateral damage were confirmed by T1-weighted and late gadolinium enhancement MRI and gross pathological examination. This study confirms the feasibility of a MRI-based cryo-ablation system in performing cardiac ablation procedures. The system allows real-time catheter navigation, confirmation of catheter tip-tissue contact, validation of vessel occlusion by cryo-balloon, real-time monitoring of a freeze zone formation, and intra-procedural assessment of ablations including collateral damage. © 2016 Wiley Periodicals, Inc.

  14. Enhanced hot-electron production and strong-shock generation in hydrogen-rich ablators for shock ignition

    NASA Astrophysics Data System (ADS)

    Theobald, W.; Bose, A.; Yan, R.; Betti, R.; Lafon, M.; Mangino, D.; Christopherson, A. R.; Stoeckl, C.; Seka, W.; Shang, W.; Michel, D. T.; Ren, C.; Nora, R. C.; Casner, A.; Peebles, J.; Beg, F. N.; Ribeyre, X.; Llor Aisa, E.; Colaïtis, A.; Tikhonchuk, V.; Wei, M. S.

    2017-12-01

    Experiments were performed with CH, Be, C, and SiO2 ablators interacting with high-intensity UV laser radiation (5 × 1015 W/cm2, λ = 351 nm) to determine the optimum material for hot-electron production and strong-shock generation. Significantly more hot electrons are produced in CH (up to ˜13% instantaneous conversion efficiency), while the amount is a factor of ˜2 to 3 lower in the other ablators. A larger hot-electron fraction is correlated with a higher effective ablation pressure. The higher conversion efficiency in CH is attributed to stronger damping of ion-acoustic waves because of the presence of light H ions.

  15. Microwave ablation versus radiofrequency ablation in the kidney: high-power triaxial antennas create larger ablation zones than similarly sized internally cooled electrodes.

    PubMed

    Laeseke, Paul F; Lee, Fred T; Sampson, Lisa A; van der Weide, Daniel W; Brace, Christopher L

    2009-09-01

    To determine whether microwave ablation with high-power triaxial antennas creates significantly larger ablation zones than radiofrequency (RF) ablation with similarly sized internally cooled electrodes. Twenty-eight 12-minute ablations were performed in an in vivo porcine kidney model. RF ablations were performed with a 200-W pulsed generator and either a single 17-gauge cooled electrode (n = 9) or three switched electrodes spaced 1.5 cm apart (n = 7). Microwave ablations were performed with one (n = 7), two (n = 3), or three (n = 2) 17-gauge triaxial antennas to deliver 90 W continuous power per antenna. Multiple antennas were powered simultaneously. Temperatures 1 cm from the applicator were measured during two RF and microwave ablations each. Animals were euthanized after ablation and ablation zone diameter, cross-sectional area, and circularity were measured. Comparisons between groups were performed with use of a mixed-effects model with P values less than .05 indicating statistical significance. No adverse events occurred during the procedures. Three-electrode RF (mean area, 14.7 cm(2)) and single-antenna microwave (mean area, 10.9 cm(2)) ablation zones were significantly larger than single-electrode RF zones (mean area, 5.6 cm(2); P = .001 and P = .0355, respectively). No significant differences were detected between single-antenna microwave and multiple-electrode RF. Ablation zone circularity was similar across groups (P > .05). Tissue temperatures were higher during microwave ablation (maximum temperature of 123 degrees C vs 100 degrees C for RF). Microwave ablation with high-power triaxial antennas created larger ablation zones in normal porcine kidneys than RF ablation with similarly sized applicators.

  16. A new apatinib microcrystal formulation enhances the effect of radiofrequency ablation treatment on hepatocellular carcinoma.

    PubMed

    Xie, Hui; Tian, Shengtao; Yu, Haipeng; Yang, Xueling; Liu, Jia; Wang, Huaming; Feng, Fan; Guo, Zhi

    2018-01-01

    Radiofrequency ablation (RFA) is the foremost treatment option for advanced hepatocellular carcinoma (HCC), however, rapid and aggressive recurrence of HCC often occurs after RFA due to epithelial-mesenchymal transition process. Although combination of RFA with sorafenib, a molecular targeted agent, could attenuate the recurrence of HCC, application of this molecular targeted agent poses a heavy medical burden and oral administration of sorafenib also brings severe side effects. In this study, we prepared an apatinib microcrystal formulation (Apa-MS) that sustainably releases apatinib, a novel molecular targeted agent, for advanced HCC treatment. We injected apatinib solution or Apa-MS into subcutaneous HCC tumors. It was found that Apa-MS exhibited slow apatinib release in vivo and in turn inhibited the epithelial-mesenchymal transition of HCC cells for extended time. Moreover, in rodent HCC model, Apa-MS enhanced the antitumor effect of RFA treatment. Based on these results, we conclude that Apa-MS, a slow releasing system of apatinib, allows apatinib to remain effective in tumor tissues for a long time and could enhance the antitumor effect of RFA on HCC.

  17. Performance of Conformable Ablators in Aerothermal Environments

    NASA Technical Reports Server (NTRS)

    Thornton, J.; Fan, W.; Skokova, K.; Stackpoole, M.; Beck, R.; Chavez-Garcia, J.

    2012-01-01

    Conformable Phenolic Impregnated Carbon Ablator, a cousin of Phenolic Impregnated Carbon Ablator (PICA), was developed at NASA Ames Research Center as a lightweight thermal protection system under the Fundamental Aeronautics Program. PICA is made using a brittle carbon substrate, which has a very low strain to failure. Conformable PICA is made using a flexible carbon substrate, a felt in this case. The flexible felt significantly increases the strain to failure of the ablator. PICA is limited by its thermal mechanical properties. Future NASA missions will require heatshields that are more fracture resistant than PICA and, as a result, NASA Ames is working to improve PICAs performance by developing conformable PICA to meet these needs. Research efforts include tailoring the chemistry of conformable PICA with varying amounts of additives to enhance mechanical properties and testing them in aerothermal environments. This poster shows the performance of conformable PICA variants in arc jets tests. Some mechanical and thermal properties will also be presented.

  18. In vitro parameter optimization for spatial control of focused ultrasound ablation when using low boiling point phase-change nanoemulsions.

    PubMed

    Puett, Connor; Phillips, Linsey C; Sheeran, Paul S; Dayton, Paul A

    2013-01-01

    Phase-shift nanoemulsions (PSNEs) provide cavitation sites when the perfluorocarbon (PFC) nanodroplets (ND) are vaporized to microbubbles by acoustic energy. Their presence lowers the power required to ablate tissue by high-intensity focused ultrasound (HIFU), potentially making it a safer option for a broader range of treatment sites. However, spatial control over the ablation region can be problematic when cavitation is used to enhance heating. This study explored relationships between vaporization, ablation, and the PSNE concentration in vitro to optimize the acoustic intensity and insonation time required for spatially controlled ablation enhancement using a PSNE that included a volatile PFC component. HIFU (continuous wave at 1 MHz; insonation times of 5, 10, 15, and 20 s; cool-down times of 2, 4, and 6 s; peak negative pressures of 2, 3, and 4 MPa) was applied to albumin-acrylamide gels containing PFC agents (1:1 mix of volatile decafluorobutane and more stable dodecafluoropentane at 10(5) to 10(8) PFC ND per milliliter) or agent-free controls. Vaporization fields (microbubble clouds) were imaged by conventional ultrasound, and ablation lesions were measured directly by calipers. Controlled ablation was defined as the production of 'cigar'-shaped lesions corresponding with the acoustic focal zone. This control was considered to be lost when ablation occurred in prefocal vaporization fields having a predominantly 'tadpole' or oblong shape. Changes in the vaporization field shape and location occurred on a continuum with increasing PSNE concentration and acoustic intensity. Working with the maximum concentration-intensity combinations resulting in controlled ablation demonstrated a dose-responsive relationship between insonation time and volumes of both the vaporization fields (approximately 20 to 240 mm(3)) and the ablation lesions (1 to 135 mm(3)) within them. HIFU ablation was enhanced by this PSNE and could be achieved using intensities ≤650 W/cm(2

  19. In-Situ Apatite Laser Ablation U-Th-Sm/He Dating, Methods and Challenges

    NASA Astrophysics Data System (ADS)

    Pickering, J. E.; Matthews, W.; Guest, B.; Hamilton, B.; Sykes, C.

    2015-12-01

    In-situ, laser ablation U-Th-Sm/He dating is an emerging technique in thermochronology that has been proven as a means to date zircon and monzonite1-5. In-situ U-Th-Sm/He thermochronology eliminates many of the problems and inconveniences associated with traditional, whole grain methods, including; reducing bias in grain selection based on size, shape and clarity; allowing for the use of broken grains and grains with inclusions; avoiding bad neighbour effects; and eliminating safety hazards associated with dissolution. In-situ apatite laser ablation is challenging due to low concentrations of U and Th and thus a low abundance of radiogenic He. For apatite laser ablation to be effective the ultra-high-vacuum (UHV) line must have very low and consistent background levels of He. To reduce He background, samples are mounted in a UHV stable medium. Our mounting process uses a MicroHePP (Microscope Mounted Heated Platen Press) to press samples into FEP (fluorinated ethylene propylene) bonded to an aluminum backing plate. Samples are ablated using a Resonetics 193 nm excimer laser and liberated He is measured using a quadrupole mass spectrometer on the ASI Alphachron noble gas line; collectively this system is known as the Resochron. The ablated sites are imaged using a Zygo Zescope optical profilometer and ablated pit volume measured using PitVol, a custom MatLab algorithm developed to enable precise and unbiased measurement of the ablated pit geometry. We use the well-characterized Durango apatite to demonstrate the accuracy and precision of the method. He liberated from forty-two pits, having volumes between 1700 and 9000 um3, were measured using the Resochron. The ablated sites were imaged using a Zygo Zescope optical profilometer and ablated pit volume measured using PitVol. U, Th and Sm concentrations were measured by laser ablation and the U-Th-Sm/He age calculated by standard age equation. An age of 33.8±0.31 Ma was determined and compares well with conventional

  20. Ablation mass features in multi-pulses femtosecond laser ablate molybdenum target

    NASA Astrophysics Data System (ADS)

    Zhao, Dongye; Gierse, Niels; Wegner, Julian; Pretzler, Georg; Oelmann, Jannis; Brezinsek, Sebastijan; Liang, Yunfeng; Neubauer, Olaf; Rasinski, Marcin; Linsmeier, Christian; Ding, Hongbin

    2018-03-01

    In this study, the ablation mass features related to reflectivity of bulk Molybdenum (Mo) were investigated by a Ti: Sa 6 fs laser pulse at central wavelength 790 nm. The ablated mass removal was determined using Confocal Microscopy (CM) technique. The surface reflectivity was calibrated and measured by a Lambda 950 spectrophotometer as well as a CCD camera during laser ablation. The ablation mass loss per pulse increase with the increasing of laser shots, meanwhile the surface reflectivity decrease. The multi-pulses (100 shots) ablation threshold of Mo was determined to be 0.15 J/cm2. The incubation coefficient was estimated as 0.835. The reflectivity change of the Mo target surface following multi-pulses laser ablation were studied as a function of laser ablation shots at various laser fluences from 1.07 J/cm2 to 36.23 J/cm2. The results of measured reflectivity indicate that surface reflectivity of Mo target has a significant decline in the first 3-laser pulses at the various fluences. These results are important for developing a quantitative analysis model for laser induced ablation and laser induced breakdown spectroscopy for the first wall diagnosis of EAST tokamak.

  1. Enhanced laser thermal ablation for the in vitro treatment of liver cancer by specific delivery of multiwalled carbon nanotubes functionalized with human serum albumin.

    PubMed

    Iancu, Cornel; Mocan, Lucian; Bele, Constantin; Orza, Anamaria Ioana; Tabaran, Flaviu A; Catoi, Cornel; Stiufiuc, Rares; Stir, Ariana; Matea, Cristian; Iancu, Dana; Agoston-Coldea, Lucia; Zaharie, Florin; Mocan, Teodora

    2011-01-17

    The main goal of this investigation was to develop and test a new method of treatment for human hepatocellular carcinoma (HCC). We present a method of carbon nanotube-enhanced laser thermal ablation of HepG2 cells (human hepatocellular liver carcinoma cell line) based on a simple multiwalled carbon nanotube (MWCNT) carrier system, such as human serum albumin (HSA), and demonstrate its selective therapeutic efficacy compared with normal hepatocyte cells. Both HepG2 cells and hepatocytes were treated with HSA-MWCNTs at various concentrations and at various incubation times and further irradiated using a 2 W, 808 nm laser beam. Transmission electron, phase contrast, and confocal microscopy combined with immunochemical staining were used to demonstrate the selective internalization of HSA-MWCNTs via Gp60 receptors and the caveolin-mediated endocytosis inside HepG2 cells. The postirradiation apoptotic rate of HepG2 cells treated with HSA-MWCNTs ranged from 88.24% (for 50 mg/L) at 60 sec to 92.34% (for 50 mg/L) at 30 min. Significantly lower necrotic rates were obtained when human hepatocytes were treated with HSA-MWCNTs in a similar manner. Our results clearly show that HSA-MWCNTs selectively attach on the albondin (aka Gp60) receptor located on the HepG2 membrane, followed by an uptake through a caveolin-dependent endocytosis process. These unique results may represent a major step in liver cancer treatment using nanolocalized thermal ablation by laser heating.

  2. Enhanced laser thermal ablation for the in vitro treatment of liver cancer by specific delivery of multiwalled carbon nanotubes functionalized with human serum albumin

    PubMed Central

    Iancu, Cornel; Mocan, Lucian; Bele, Constantin; Orza, Anamaria Ioana; Tabaran, Flaviu A; Catoi, Cornel; Stiufiuc, Rares; Stir, Ariana; Matea, Cristian; Iancu, Dana; Agoston-Coldea, Lucia; Zaharie, Florin; Mocan, Teodora

    2011-01-01

    The main goal of this investigation was to develop and test a new method of treatment for human hepatocellular carcinoma (HCC). We present a method of carbon nanotube-enhanced laser thermal ablation of HepG2 cells (human hepatocellular liver carcinoma cell line) based on a simple multiwalled carbon nanotube (MWCNT) carrier system, such as human serum albumin (HSA), and demonstrate its selective therapeutic efficacy compared with normal hepatocyte cells. Both HepG2 cells and hepatocytes were treated with HSA–MWCNTs at various concentrations and at various incubation times and further irradiated using a 2 W, 808 nm laser beam. Transmission electron, phase contrast, and confocal microscopy combined with immunochemical staining were used to demonstrate the selective internalization of HSA–MWCNTs via Gp60 receptors and the caveolin-mediated endocytosis inside HepG2 cells. The postirradiation apoptotic rate of HepG2 cells treated with HSA–MWCNTs ranged from 88.24% (for 50 mg/L) at 60 sec to 92.34% (for 50 mg/L) at 30 min. Significantly lower necrotic rates were obtained when human hepatocytes were treated with HSA–MWCNTs in a similar manner. Our results clearly show that HSA–MWCNTs selectively attach on the albondin (aka Gp60) receptor located on the HepG2 membrane, followed by an uptake through a caveolin-dependent endocytosis process. These unique results may represent a major step in liver cancer treatment using nanolocalized thermal ablation by laser heating. PMID:21289990

  3. Mapping age and trace elements using laser ablation split-stream (LASS) ICPMS

    NASA Astrophysics Data System (ADS)

    Kylander-Clark, A. R.; Hacker, B. R.; Cottle, J. M.

    2012-12-01

    One of the biggest challenges in the determination of the timing and rates of metamorphic processes is tying the age of a particular mineral to the conditions (i.e., pressure, temperature, fluid composition) at which that phase grew. Conventional microbeam techniques increase our understanding of crustal evolution by enabling this linkage; e.g., x-ray maps of monazite allow us to pinpoint grain segments that grew under a different set of conditions, cathodoluminescence images of zircon reveal zoning patterns and hence targets for dating different metamorphic and/or igneous events, and rare-earth element (REE) transects across garnet reveal the budget of a variety of trace elements during a metamorphic episode, to name but a few. More recent advances in LA-ICPMS and SIMS have allowed the ability to produce age maps or trace element maps—thus further our understanding of crystallization processes—but not both. Here we employ laser ablation split-stream (LASS) to quantitatively image the age, and trace element signature of datable phases such as zircon, monazite, titanite, and rutile in metamorphic rocks on the micron scale. By mapping the age and TE signature of a metamorphic phase, we can better interpret the metamorphic stage at which all portions of that phase grew, and relate it to other phases/portions of phases within that rock, such as garnet. For example, zircons and monazites from from eclogites reveal complex zoning in REEs indicating growth prior to, during, and post eclogite-facies metamorphism; those zones correspond to distinct age domains. Metamorphosed titanite reveals differences in diffusivities of TEs in inherited portions of the grain; e.g., Pb-loss is more prominent than diffusion of REEs, which in turn diffuse faster than higher charged ions, such as Th.

  4. State-of-the-art and emerging technologies for atrial fibrillation ablation.

    PubMed

    Dewire, Jane; Calkins, Hugh

    2010-03-01

    Catheter ablation is an important treatment modality for patients with atrial fibrillation (AF). Although the superiority of catheter ablation over antiarrhythmic drug therapy has been demonstrated in middle-aged patients with paroxysmal AF, the role the procedure in other patient subgroups-particularly those with long-standing persistent AF-has not been well defined. Furthermore, although AF ablation can be performed with reasonable efficacy and safety by experienced operators, long-term success rates for single procedures are suboptimal. Fortunately, extensive ongoing research will improve our understanding of the mechanisms of AF, and considerable funds are being invested in developing new ablation technologies to improve patient outcomes. These technologies include ablation catheters designed to electrically isolate the pulmonary veins with improved safety, efficacy, and speed, catheters designed to deliver radiofrequency energy with improved precision, robotic systems to address the technological demands of the procedure, improved imaging and electrical mapping systems, and MRI-guided ablation strategies. The tools, technologies, and techniques that will ultimately stand the test of time and become the standard approach to AF ablation in the future remain unclear. However, technological advances are sure to result in the necessary improvements in the safety and efficacy of AF ablation procedures.

  5. Global ablation techniques.

    PubMed

    Woods, Sarah; Taylor, Betsy

    2013-12-01

    Global endometrial ablation techniques are a relatively new surgical technology for the treatment of heavy menstrual bleeding that can now be used even in an outpatient clinic setting. A comparison of global ablation versus earlier ablation technologies notes no significant differences in success rates and some improvement in patient satisfaction. The advantages of the newer global endometrial ablation systems include less operative time, improved recovery time, and decreased anesthetic risk. Ablation procedures performed in an outpatient surgical or clinic setting provide advantages both of potential cost savings for patients and the health care system and improved patient convenience. Copyright © 2013. Published by Elsevier Inc.

  6. Uterine fibroids: Influence of "T2-Rim sign" on immediate therapeutic responses to magnetic resonance imaging-guided high-intensity focused ultrasound ablation.

    PubMed

    Yeo, Sin Yuin; Kim, Young-Sun; Lim, Hyo Keun; Rhim, Hyunchul; Jung, Sin-Ho; Hwang, Na Young

    2017-12-01

    To investigate the influence of a high-signal-intensity peripheral rim on T2-weighted MR images (i.e., T2-rim sign) on the immediate therapeutic responses of MR-guided high intensity focused ultrasound (MR-HIFU) ablation of uterine fibroids. This retrospective study was approved by the institutional review board, and patient informed consent was obtained for MR-HIFU ablation. In total, 196 fibroids (diameter 6.2±2.6cm) in 123 women (age 43.4±5.0 years) who underwent MR-HIFU ablation from January 2013 to April 2016 were included. The effects of a T2-rim sign on the immediate therapeutic responses (non-perfused volume [NPV] ratio, ablation efficiency [NPV/treatment cell volume], ablation quality [grade 1-5, poor to excellent]) were investigated with univariable and multivariable analyses using generalized estimating equation (GEE) analysis. In multivariable analysis, T2 signal intensity ratio of fibroids-to-skeletal muscle, relative peak enhancement of fibroids, and subcutaneous fat thickness were also considered. The presence of a T2-rim sign significantly lowered the NPV ratio (54.0±28.0% vs. 83.7±17.7%), ablation efficiency (0.6±0.5 vs. 1.3±0.6), ablation quality (3.1±1.2 vs. 4.2±0.8), (P<0.0001). GEE analysis showed that the presence of a T2-rim sign was independently significant for ablation efficiency and ablation quality (P<0.05). Uterine fibroids with a T2-rim sign showed significantly poorer immediate therapeutic responses to MR-HIFU ablation. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Atrial fibrillation ablation using cryoballoon technology: Recent advances and practical techniques.

    PubMed

    Chen, Shaojie; Schmidt, Boris; Bordignon, Stefano; Bologna, Fabrizio; Perrotta, Laura; Nagase, Takahiko; Chun, K R Julian

    2018-04-16

    Atrial fibrillation (AF) affects 1-2% of the population, and its prevalence is estimated to double in the next 50 years as the population ages. AF results in impaired patients' life quality, deteriorated cardiac function, and even increased mortality. Antiarrhythmic drugs frequently fail to restore sinus rhythm. Catheter ablation is a valuable treatment approach for AF, even as a first-line therapy strategy in selected patients. Effective electrical pulmonary vein isolation (PVI) is the cornerstone of all AF ablation strategies. Use of radiofrequency (RF) catheter in combination of a three-dimensional electroanatomical mapping system is the most established ablation approach. However, catheter ablation of AF is challenging even sometimes for experienced operators. To facilitate catheter ablation of AF without compromising the durability of the pulmonary vein isolation, "single shot" ablation devices have been developed; of them, cryoballoon ablation, is by far the most widely investigated. In this report, we review the current knowledge of AF and discuss the recent evidence in catheter ablation of AF, particularly cryoballoon ablation. Moreover, we review relevant data from the literature as well as our own experience and summarize the key procedural practical techniques in PVI using cryoballoon technology, aiming to shorten the learning curve of the ablation technique and to contribute further to reduction of the disease burden. © 2018 Wiley Periodicals, Inc.

  8. The Old-Age Healthy Dependency Ratio in Europe.

    PubMed

    Muszyńska, Magdalena M; Rau, Roland

    2012-09-01

    The aim of this study is to answer the question of whether improvements in the health of the elderly in European countries could compensate for population ageing on the supply side of the labour market. We propose a state-of-health-specific (additive) decomposition of the old-age dependency ratio into an old-age healthy dependency ratio and an old-age unhealthy dependency ratio in order to participate in a discussion of the significance of changes in population health to compensate for the ageing of the labour force. Applying the proposed indicators to the Eurostat's population projection for the years 2010-2050, and assuming there will be equal improvements in life expectancy and healthy life expectancy at birth, we discuss various scenarios concerning future of the European labour force. While improvements in population health are anticipated during the years 2010-2050, the growth in the number of elderly people in Europe may be expected to lead to a rise in both healthy and unhealthy dependency ratios. The healthy dependency ratio is, however, projected to make up the greater part of the old-age dependency ratio. In the European countries in 2006, the value of the old-age dependency ratio was 25. But in the year 2050, with a positive migration balance over the years 2010-2050, there would be 18 elderly people in poor health plus 34 in good health per 100 people in the current working age range of 15-64. In the scenarios developed in this study, we demonstrate that improvements in health and progress in preventing disability will not, by themselves, compensate for the ageing of the workforce. However, coupled with a positive migration balance, at the level and with the age structure assumed in the Eurostat's population projections, these developments could ease the effect of population ageing on the supply side of the European labour market.

  9. In-vitro ablation of fibrocartilage by XeCl excimer laser

    NASA Astrophysics Data System (ADS)

    Buchelt, Martin; Papaioannou, Thanassis; Fishbein, Michael C.; Peters, Werner; Beeder, Clain; Grundfest, Warren S.

    1991-07-01

    A 308 nm excimer laser was employed for ablation of human fibrocartilage. Experiments were conducted in vitro. The tissue response was investigated with respect to dosimetry (ablation rate versus radiant exposure) and thermal effect (thermographic analysis). Irradiation was performed via a 600 um fiber, with radiant exposures ranging between 20mj/mm2 and 80mj/mm2, at 20Hz. The ablation rates were found to range from 3um/pulse to 80um/pulse depending on the radiant exposure and/or the applied pressure on the delivery system. Thermographic analysis, during ablation, revealed maximum average temperatures of about 65 degree(s)C. Similar measurements performed, for the purpose of comparison, with a CW Nd:YAG and a CW CO2 laser showed higher values, of the order of 200 degree(s)C.

  10. Enhanced hot-electron production and strong-shock generation in hydrogen-rich ablators for shock ignition

    DOE PAGES

    Theobald, W.; Bose, A.; Yan, R.; ...

    2017-12-08

    Experiments were performed with CH, Be, C, and SiO 2 ablators interacting with high-intensity UV laser radiation (5 × 10 15 W/cm 2, λ = 351 nm) to determine the optimum material for hot-electron production and strong-shock generation. Significantly more hot electrons are produced in CH (up to ~13% instantaneous conversion efficiency), while the amount is a factor of ~2 to 3 lower in the other ablators. A larger hot-electron fraction is correlated with a higher effective ablation pressure. As a result, the higher conversion efficiency in CH is attributed to stronger damping of ion-acoustic waves because of the presencemore » of light H ions.« less

  11. Enhanced hot-electron production and strong-shock generation in hydrogen-rich ablators for shock ignition

    SciTech Connect

    Theobald, W.; Bose, A.; Yan, R.

    Experiments were performed with CH, Be, C, and SiO 2 ablators interacting with high-intensity UV laser radiation (5 × 10 15 W/cm 2, λ = 351 nm) to determine the optimum material for hot-electron production and strong-shock generation. Significantly more hot electrons are produced in CH (up to ~13% instantaneous conversion efficiency), while the amount is a factor of ~2 to 3 lower in the other ablators. A larger hot-electron fraction is correlated with a higher effective ablation pressure. As a result, the higher conversion efficiency in CH is attributed to stronger damping of ion-acoustic waves because of the presencemore » of light H ions.« less

  12. Laser Ablation Surface Preparation of Ti-6A1-4V for Adhesive Bonding

    NASA Technical Reports Server (NTRS)

    Palmieri, Frank L.; Watson, Kent A.; Morales, Guillermo; Williams, Thomas; Hicks, Robert; Wohl, Christopher J.; Hopkins, John W.; Connell, John W.

    2012-01-01

    Adhesive bonding offers many advantages over mechanical fastening, but requires certification before it can be incorporated in primary structures for commercial aviation without disbond-arrestment features or redundant load paths. Surface preparation is widely recognized as the key step to producing robust and predictable bonds. Laser ablation imparts both topographical and chemical changes to a surface which can lead to increased bond durability. A laser based process provides an alternative to chemical-dip, manual abrasion and grit blast treatments which are expensive, hazardous, polluting, and less precise. This report documents preliminary testing of a surface preparation technique using laser ablation as a replacement for the chemical etch and abrasive processes currently applied to Ti-6Al-4V alloy adherends. Failure mode, surface roughness, and chemical makeup were analyzed using fluorescence enhanced visualization, microscopy, and X-ray photoelectron spectroscopy, respectively. Single lap shear tests were conducted on bonded and aged specimens to observe bond strength retention and failure mode. Some promising results showed increasing strength and durability of lap shear specimens as laser ablation coverage area and beam intensity increased. Chemical analyses showed trends for surface chemical species which correlated with improved bond strength and durability. Combined, these results suggest that laser ablation is a viable process for inclusion with or/and replacement of one or more currently used titanium surface treatments. On-going work will focus on additional mechanical tests to further demonstrate improved bond durability.

  13. Percutaneous microwave ablation of renal cell carcinoma using a high power microwave system: focus upon safety and efficacy.

    PubMed

    Filippiadis, D K; Gkizas, C; Chrysofos, M; Siatelis, A; Velonakis, G; Alexopoulou, E; Kelekis, A; Brountzos, E; Kelekis, N

    2017-12-04

    Percutaneous ablation is an expanding, minimally invasive approach for small- to medium-sized renal masses. The purpose of this study is to review safety, and mid-term efficacy of percutaneous microwave ablation (MWA) for Renal Cell Carcinoma (RCC) treatment using a high power microwave system. Institutional database research identified 50 consecutive patients with a single lesion resembling renal cell carcinoma in CT and MRI who underwent percutaneous microwave ablation using a high power microwave system. All patients underwent biopsy on the same session with ablation using an 18G semi-automatic soft tissue biopsy needle. Contrast-enhanced computed tomography or magnetic resonance imaging was used for post-ablation follow-up. Patient and tumour characteristics, microwave technique, complications and pattern of recurrence were evaluated. Mean patient age was 74 years (male-female: 31-19). Average lesion size was 3.1 cm (range 2.0-4.3 cm). Biopsy results report RCC (n = 48), inflammatory myofibroblastic tumour (n = 1), and non-diagnostic sample (n = 1). The 3-year overall survival was 95.8% (46/48). Two patients died during the 3-year follow-up period due to causes unrelated to the MW ablation and to the RCC. Minor complications including haematomas requiring nothing but observation occurred at 4% (2/50) of the cases. Local recurrence of 6.25% (3/48) was observed with 2/3 cases being re-treated achieving a total clinical success of 97.9% (47/48 lesions). Percutaneous microwave ablation of RCC using a high power microwave system is a safe and efficacious technique for the treatment of small- to medium-sized renal masses.

  14. Diagnosis and ablation of multiform fascicular tachycardia.

    PubMed

    Sung, Raphael K; Kim, Albert M; Tseng, Zian H; Han, Frederick; Inada, Keiichi; Tedrow, Usha B; Viswanathan, Mohan N; Badhwar, Nitish; Varosy, Paul D; Tanel, Ronn; Olgin, Jeffrey E; Stephenson, William G; Scheinman, Melvin

    2013-03-01

    Fascicular tachycardia (FT) is an uncommon cause of monomorphic sustained ventricular tachycardia (VT). We describe 6 cases of FT with multiform QRS morphologies. Six of 823 consecutive VT cases were retrospectively analyzed and found attributable to FT with multiform QRS patterns, with 3 cases exhibiting narrow QRS VT as well. All underwent electrophysiology study including fascicular potential mapping, entrainment pacing, and electroanatomic mapping. The first 3 cases describe similar multiform VT patterns with successful ablation in the upper mid septum. Initially, a right bundle branch block (RBBB) VT with superior axis was induced. Radiofrequency catheter ablation (RFCA) targeting the left posterior fascicle (LPF) resulted in a second VT with RBBB inferior axis. RFCA in the upper septum just apical to the LBB potential abolished VT in all cases. Cases 4 and 5 showed RBBB VT with alternating fascicular block compatible with upper septal dependent VT, resulting in bundle branch reentrant VT (BBRT) after ablation of LPF and left anterior fascicle (LAF). Finally, Cases 5 and 6 demonstrated spontaneous shift in QRS morphology during VT, implicating participation of a third fascicle. In Case 6, successful ablation was achieved over the proximal LAF, likely representing insertion of the auxiliary fascicle near the proximal LAF. Multiform FTs show a reentrant mechanism using multiple fascicular branches. We hypothesize that retrograde conduction over the septal fascicle produces alternate fascicular patterns as well as narrow VT forms. Ablation of the respective fascicle was successful in abolishing FT but does not preclude development of BBRT unless septal fascicle is targeted and ablated. © 2012 Wiley Periodicals, Inc.

  15. Effects of Laser Wavelength on Ablator Testing

    NASA Technical Reports Server (NTRS)

    White, Susan M.

    2014-01-01

    Wavelength-dependent or spectral radiation effects are potentially significant for thermal protection materials. NASA atmospheric entry simulations include trajectories with significant levels of shock layer radiation which is concentrated in narrow spectral lines. Tests using two different high powered lasers, the 10.6 micron LHMEL I CO2 laser and the near-infrared 1.07 micron fiber laser, on low density ablative thermal protection materials offer a unique opportunity to evaluate spectral effects. Test results indicated that the laser wavelength can impact the thermal response of an ablative material, in terms of bond-line temperatures, penetration times, mass losses, and char layer thicknesses.

  16. Intraocular tissue ablation using an optical fibre to deliver the 5th harmonic of a Nd:YAG

    NASA Astrophysics Data System (ADS)

    Miller, Joseph; Yu, Xiaobo; Yu, Paula K.; Cringle, Stephen J.; Yu, Dao-Yi

    2009-02-01

    We report the evaluation of a system which delivers the 5th harmonic of an Nd:YAG (213nm) via optical fibre to ocular tissue sites. The 213nm beam is concentrated, using a hollow glass taper, prior to launch into 200 μm or 600 μm core diameter silica/silica optical fibre. The fibre tip was tapered to enhance the fluence delivered. An operating window of fluence values that could be delivered via 330 - 1100mm lengths of optical fibre was determined. The lower value of 0.2J/cm2 determined by the ablation threshold of the tissue and the upper value of 1.3J/cm2 by the launch, transmission and tip characteristics of the optical fibre. The fluence output decreased as a function of both transmitted pulse energy and number of pulses transmitted. Fresh retinal tissue was cleanly ablated with minimal damage to the surrounding tissue. Lesions were generated using 1, 3 and 10 pulses with fluences from 0.2 to 1.0J/cm2. The lesion depth demonstrated clear dose dependence. Lesions generated in ex vivo preparations of human trabecular meshwork in a fluid environment also demonstrated dose dependence, 50 pulses being sufficient to create a hole within the trabecular meshwork extending to Schlemm's canal. The dose dependence of the ablation depth combined with the ability of this technique to create a conduit through to Schlemm's canal demonstrates the potential of this technique for ophthalmological applications requiring precise and controlled intraocular tissue removal and has potential applications in the treatment and management of glaucoma.

  17. Robotically assisted ablation produces more rapid and greater signal attenuation than manual ablation.

    PubMed

    Koa-Wing, Michael; Kojodjojo, Pipin; Malcolme-Lawes, Louisa C; Salukhe, Tushar V; Linton, Nick W F; Grogan, Aaron P; Bergman, Dale; Lim, Phang Boon; Whinnett, Zachary I; McCarthy, Karen; Ho, Siew Yen; O'Neill, Mark D; Peters, Nicholas S; Davies, D Wyn; Kanagaratnam, Prapa

    2009-12-01

    Robotic remote catheter ablation potentially provides improved catheter-tip stability, which should improve the efficiency of radiofrequency energy delivery. Percentage reduction in electrogram peak-to-peak voltage has been used as a measure of effectiveness of ablation. We tested the hypothesis that improved catheter-tip stability of robotic ablation can diminish signals to a greater degree than manual ablation. In vivo NavX maps of 7 pig atria were constructed. Separate lines of ablation were performed robotically and manually, recording pre- and postablation peak-to-peak voltages at 10, 20, 30, and 60 seconds and calculating signal amplitude reduction. Catheter ablation settings were constant (25W, 50 degrees , 17 mL/min, 20-30 g catheter tip pressure). The pigs were sacrificed and ablation lesions correlated with NavX maps. Robotic ablation reduced signal amplitude to a greater degree than manual ablation (49 +/- 2.6% vs 29 +/- 4.5% signal reduction after 1 minute [P = 0.0002]). The mean energy delivered (223 +/- 184 J vs 231 +/- 190 J, P = 0.42), power (19 +/- 3.5 W vs 19 +/- 4 W, P = 0.84), and duration of ablation (15 +/- 9 seconds vs 15 +/- 9 seconds, P = 0.89) was the same for manual and robotic. The mean peak catheter-tip temperature was higher for robotic (45 +/- 5 degrees C vs 42 +/- 3 degrees C [P < 0.0001]). The incidence of >50% signal reduction was greater for robotic (37%) than manual (21%) ablation (P = 0.0001). Robotically assisted ablation appears to be more effective than manual ablation at signal amplitude reduction, therefore may be expected to produce improved clinical outcomes.

  18. Rapid fibrin plug formation within cutaneous ablative fractional CO2 laser lesions.

    PubMed

    Kositratna, Garuna; Evers, Michael; Sajjadi, Amir; Manstein, Dieter

    2016-02-01

    Ablative fractional laser procedures have been shown to facilitate topical drug delivery into the skin. Past studies have mainly used ex vivo models to demonstrate enhanced drug delivery and in vivo studies have investigated laser created channels over a time course of days and weeks rather than within the first few minutes and hours after exposures. We have noticed rapid in vivo fibrin plug formation within ablative fractional laser lesions impairing passage through the laser created channels. In vivo laser exposures were performed in a porcine model. A fractional CO2 laser (AcuPulse™ system, AcuScan 120™ handpiece, Lumenis, Inc., Yokneam, Israel) was programmed in quasi-continuous wave (QCW) mode, at 40W, 50 mJ per pulse, 5% coverage, nominal 120 µm spot size, 8 × 8 mm square pattern, 169 MTZs per scan. Six millimeters punch biopsies were procured at 0, 2, 5, 10, 15, 30, 60, 90 minutes after completion of each scan, then fixed in 10% formalin. 12 repeats were performed of each time point. Skin samples were processed for serial vertically cut paraffin sections (5 μm collected every 25 μm) then H&E and special immunohistochemistry staining for fibrin and platelet. Dimensions of Microscopic Treatment Zones (MTZs) and extent of fibrin plug were assessed and quantified histologically. Ex vivo laser exposures of the identical laser parameter were performed on porcine and human skin at different storage conditions. Histology procured at various predetermined time intervals after in vivo fractional CO2 laser exposures revealed a rapidly forming fibrin plug initiating at the bottom of the MTZ lesions. At longer time intervals, the fibrin plug was extending towards the superficial sections. Within the first 5 minutes, more than 25% length of the entire laser-ablated channel was filled with a fibrin plug. With increased time intervals, the cavity was progressively filled with a fibrin plug. At 90 minutes, more than 90% length of the entire laser-ablated channel was

  19. Age-dependent cognitive impairment in a Drosophila fragile X model and its pharmacological rescue.

    PubMed

    Choi, Catherine H; McBride, Sean M J; Schoenfeld, Brian P; Liebelt, David A; Ferreiro, David; Ferrick, Neal J; Hinchey, Paul; Kollaros, Maria; Rudominer, Rebecca L; Terlizzi, Allison M; Koenigsberg, Eric; Wang, Yan; Sumida, Ai; Nguyen, Hanh T; Bell, Aaron J; McDonald, Thomas V; Jongens, Thomas A

    2010-06-01

    Fragile X syndrome afflicts 1 in 2,500 individuals and is the leading heritable cause of mental retardation worldwide. The overriding clinical manifestation of this disease is mild to severe cognitive impairment. Age-dependent cognitive decline has been identified in Fragile X patients, although it has not been fully characterized nor examined in animal models. A Drosophila model of this disease has been shown to display phenotypes bearing similarity to Fragile X symptoms. Most notably, we previously identified naive courtship and memory deficits in young adults with this model that appear to be due to enhanced metabotropic glutamate receptor (mGluR) signaling. Herein we have examined age-related cognitive decline in the Drosophila Fragile X model and found an age-dependent loss of learning during training. We demonstrate that treatment with mGluR antagonists or lithium can prevent this age-dependent cognitive impairment. We also show that treatment with mGluR antagonists or lithium during development alone displays differential efficacy in its ability to rescue naive courtship, learning during training and memory in aged flies. Furthermore, we show that continuous treatment during aging effectively rescues all of these phenotypes. These results indicate that the Drosophila model recapitulates the age-dependent cognitive decline observed in humans. This places Fragile X in a category with several other diseases that result in age-dependent cognitive decline. This demonstrates a role for the Drosophila Fragile X Mental Retardation Protein (dFMR1) in neuronal physiology with regard to cognition during the aging process. Our results indicate that misregulation of mGluR activity may be causative of this age onset decline and strengthens the possibility that mGluR antagonists and lithium may be potential pharmacologic compounds for counteracting several Fragile X symptoms.

  20. Thermal ablation of an aluminium film upon absorption of a femtosecond laser pulse

    SciTech Connect

    Bezhanov, S G; Kanavin, A P; Uryupin, S A

    We have found the time dependence of the ablation depth of aluminium irradiated by a femtosecond laser pulse. It is shown to what extent an increase in the radiation energy flux density leads to an increase in the quasi-stationary value of the ablation depth. By reducing the aluminium film thickness down to one hundred nanometres and less, the ablation depth significantly increases. At the same time, the quasi-stationary value of the ablation depth of a thin film is obtained due to the removal of heat from the focal spot region. (interaction of laser radiation with matter. laser plasma)

  1. Ablation and Thermal Response Property Model Validation for Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Milos, F. S.; Chen, Y.-K.

    2009-01-01

    Phenolic Impregnated Carbon Ablator was the heatshield material for the Stardust probe and is also a candidate heatshield material for the Orion Crew Module. As part of the heatshield qualification for Orion, physical and thermal properties were measured for newly manufactured material, included emissivity, heat capacity, thermal conductivity, elemental composition, and thermal decomposition rates. Based on these properties, an ablation and thermal-response model was developed for temperatures up to 3500 K and pressures up to 100 kPa. The model includes orthotropic and pressure-dependent thermal conductivity. In this work, model validation is accomplished by comparison of predictions with data from many arcjet tests conducted over a range of stagnation heat flux and pressure from 107 Watts per square centimeter at 2.3 kPa to 1100 Watts per square centimeter at 84 kPa. Over the entire range of test conditions, model predictions compare well with measured recession, maximum surface temperatures, and in depth temperatures.

  2. Experimental investigation of the laser ablation process on wood surfaces

    NASA Astrophysics Data System (ADS)

    Panzner, M.; Wiedemann, G.; Henneberg, K.; Fischer, R.; Wittke, Th.; Dietsch, R.

    1998-05-01

    Processing of wood by conventional mechanical tools like saws or planes leaves behind a layer of squeezed wood only slightly adhering to the solid wood surface. Laser ablation of this layer could improve the durability of coatings and glued joints. For technical applications, thorough knowledge about the laser ablation process is necessary. Results of ablation experiments by excimer lasers, Nd:YAG lasers, and TEA-CO 2 lasers on surfaces of different wood types and cut orientations are shown. The process of ablation was observed by a high-speed camera system and optical spectroscopy. The influence of the experimental parameters are demonstrated by SEM images and measurement of the ablation rate depending on energy density. Thermal effects like melting and also carbonizing of cellulose were found for IR- and also UV-laser wavelengths. Damage of the wood surface after laser ablation was weaker for excimer lasers and CO 2-TEA lasers. This can be explained by the high absorption of wood in the ultraviolet and middle infrared spectral range. As an additional result, this technique provides an easy way for preparing wood surfaces with excellently conserved cellular structure.

  3. Ablative fractional laser enhances MAL-induced PpIX accumulation: Impact of laser channel density, incubation time and drug concentration.

    PubMed

    Haak, C S; Christiansen, K; Erlendsson, A M; Taudorf, E H; Thaysen-Petersen, D; Wulf, H C; Haedersdal, M

    2016-06-01

    Pretreatment of skin with ablative fractional laser enhances accumulation of topical provided photosensitizer, but essential information is lacking on the interaction between laser channel densities and pharmacokinetics. Hence our objectives were to investigate how protoporphyrin accumulation was affected by laser densities, incubation time and drug concentration. We conducted the study on the back of healthy male volunteers (n=11). Test areas were pretreated with 2940nm ablative fractional Er:YAG laser, 11.2mJ per laser channel using densities of 1, 2, 5, 10 and 15% (AFL 1-15%). Control areas received pretreatment with curettage or no pretreatment. Methyl aminolevulinate (MAL) was applied under occlusion in concentrations of 0, 80 and 160mg/g. MAL-induced protoporphyrin fluorescence was quantified with a handheld photometer after 0, 30, 60, 120 and 180min incubation. The individual fluorescence intensity reached from the highest density (15%) and longest MAL 160mg/g incubation time (180min) was selected as reference (100%) for other interventional measurements. A low laser density of 1% markedly enhanced fluorescence intensities from 34% to 75% (no pretreatment vs. AFL 1%, MAL 160mg/g, 180min; p<0.001). Furthermore, fluorescence intensities increased substantially by enhancing densities up to 5% (p≤0.0195). Accumulation of protoporphyrins was accelerated by laser exposure. Thus, laser exposure of 5% density and a median incubation time of 80min MAL (range 46-133min) induced fluorescence levels similar to curettage and 180min incubation. Furthermore, MAL 80 and 160mg/g induced similar fluorescence intensities in skin exposed to laser densities of 1, 2 and 5% (p>0.0537, 30-180min). MAL-induced protoporphyrin accumulation is augmented by enhancing AFL densities up to 5%. Further, this model indicates that incubation time as well as drug concentration of MAL may be reduced with laser pretreatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A dual switch controls bacterial enhancer-dependent transcription

    PubMed Central

    Wiesler, Simone C.; Burrows, Patricia C.; Buck, Martin

    2012-01-01

    Bacterial RNA polymerases (RNAPs) are targets for antibiotics. Myxopyronin binds to the RNAP switch regions to block structural rearrangements needed for formation of open promoter complexes. Bacterial RNAPs containing the major variant σ54 factor are activated by enhancer-binding proteins (bEBPs) and transcribe genes whose products are needed in pathogenicity and stress responses. We show that (i) enhancer-dependent RNAPs help Escherichia coli to survive in the presence of myxopyronin, (ii) enhancer-dependent RNAPs partially resist inhibition by myxopyronin and (iii) ATP hydrolysis catalysed by bEBPs is obligatory for functional interaction of the RNAP switch regions with the transcription start site. We demonstrate that enhancer-dependent promoters contain two barriers to full DNA opening, allowing tight regulation of transcription initiation. bEBPs engage in a dual switch to (i) allow propagation of nucleated DNA melting from an upstream DNA fork junction and (ii) complete the formation of the transcription bubble and downstream DNA fork junction at the RNA synthesis start site, resulting in switch region-dependent RNAP clamp closure and open promoter complex formation. PMID:22965125

  5. Update of Ablative Fractionated Lasers to Enhance Cutaneous Topical Drug Delivery.

    PubMed

    Waibel, Jill S; Rudnick, Ashley; Shagalov, Deborah R; Nicolazzo, Danielle M

    2017-08-01

    Ablative fractional lasers (AFXL) enhance uptake of therapeutics and this newly emerging field is called laser-assisted drug delivery (LAD). This new science has emerged over the past decade and is finding its way into clinical practice. LAD is poised to change how medicine delivers drugs. Topical and systemic application of pharmaceutical agents for therapeutic effect is an integral part of medicine. With topical therapy, the stratum corneum barrier of the skin impairs the ability of drugs to enter the body. The purpose of LAD is to alter the stratum corneum, epidermis, and dermis to facilitate increased penetration of a drug, device, or cell to its respected target. AFXL represents an innovative, non-invasive strategy to overcome the epidermal barrier. LAD employs three steps: (1) breakdown of the skin barrier with a laser, (2) optional use a laser for a therapeutic effect, (3) delivery of the medicine through laser channels to further enhance the therapeutic effect. The advantages of using lasers for drug delivery include the ease of accessibility, the non-invasive aspect, and its effectiveness. By changing the laser settings, one may use LAD to have a drug remain locally within the skin or to have systemic delivery. Many drugs are not intended for use in the dermis and so it has yet to be determined which drugs are appropriate for this technique. It appears this developing technology has the ability to be a new delivery system for both localized and systemic delivery of drugs, cells, and other molecules. With responsible development AFXL-assisted drug delivery may become a new important part of medicine.

  6. Limited left atrial surgical ablation effectively treats atrial fibrillation but decreases left atrial function.

    PubMed

    Compier, Marieke G; Tops, Laurens F; Braun, Jerry; Zeppenfeld, Katja; Klautz, Robert J; Schalij, Martin J; Trines, Serge A

    2017-04-01

    Limited left atrial (LA) surgical ablation with bipolar radiofrequency is considered to be an effective procedure for treatment of atrial fibrillation (AF). We studied whether limited LA surgical ablation concomitant to cardiac surgery is able to maintain LA function. Thirty-six consecutive patients (age 66 ± 12 years, 53% male, 78% persistent AF) scheduled for valve surgery and/or coronary revascularization and concomitant LA surgical ablation were included. Epicardial pulmonary vein isolation (PVI) and additional endo-epicardial lines were performed using bipolar radiofrequency. An age- and gender-matched control group (n = 36, age 66 ± 9 years, 69% male, 81% paroxysmal AF) was selected from patients undergoing concomitant epicardial PVI only. Left atrial dimensions and function were assessed on two-dimensional echocardiography preoperatively and at 3- and 12-month follow-up. Sinus rhythm (SR) maintenance was 67% for limited LA ablation and 81% for PVI at 1-year follow-up (P = 0.18). Left atrial volume decreased from 72 ± 21 to 50 ± 14 mL (31%, P < 0.01) after limited LA ablation and from 65 ± 23 to 56 ± 20 mL (14%, P < 0.01) after PVI. Atrial transport function was restored in 54% of patients in SR after limited LA ablation compared with 100% of patients in SR after PVI. Atrial strain and contraction parameters (LA ejection fraction, A-wave velocity, reservoir function, and strain rate) significantly decreased after limited LA ablation. After PVI, strain and contraction parameters remained unchanged. Even limited LA ablation decreased LA volume, contraction, transport function, and compliance, indicating both reverse remodelling combined with significant functional deterioration. In contrast, surgical PVI decreased LA volume while function remained unchanged. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  7. Ablative Hypofractionated Radiation Therapy Enhances Non-Small Cell Lung Cancer Cell Killing via Preferential Stimulation of Necroptosis In Vitro and In Vivo.

    PubMed

    Wang, Huan-Huan; Wu, Zhi-Qiang; Qian, Dong; Zaorsky, Nicholas G; Qiu, Ming-Han; Cheng, Jing-Jing; Jiang, Chao; Wang, Juan; Zeng, Xian-Liang; Liu, Chun-Lei; Tian, Li-Jun; Ying, Guo-Guang; Meng, Mao-Bin; Hao, Xi-Shan; Yuan, Zhi-Yong

    2018-05-01

    To investigate how necroptosis (ie, programmed necrosis) is involved in killing of non-small cell lung cancer (NSCLC) after ablative hypofractionated radiation therapy (HFRT). Deoxyribonucleic acid damage, DNA repair, and the death form of NSCLC cells were assessed after radiation therapy. The overexpression and silencing of receptor-interacting protein kinases 3 (RIP3, a key protein involved activation of necroptosis)-stable NSCLC cell lines were successfully constructed. The form of cell death, the number and area of colonies, and the regulatory proteins of necroptosis were characterized after radiation therapy in vitro. Finally, NSCLC xenografts and patient specimens were used to examine involvement of necroptosis after ablative HFRT in vivo. Radiation therapy induced expected DNA damage and repair of NSCLC cell lines, but ablative HFRT at ≥10 Gy per fraction preferentially stimulated necroptosis in NSCLC cells and xenografts with high RIP3 expression, as characterized by induction and activation of RIP3 and mixed-lineage kinase domain-like protein and release of immune-activating chemokine high-mobility group box 1. In contrast, RNA interference of RIP3 attenuated ablative HFRT-induced necroptosis and activation of its regulatory proteins. Among central early-stage NSCLC patients receiving stereotactic body radiation therapy, high expression of RIP3 was associated with improved local control and progression-free survival (all P < .05). Ablative HFRT at ≥10 Gy per fraction enhances killing of NSCLC with high RIP3 expression via preferential stimulation of necroptosis. RIP3 may serve as a useful biomarker to predict favorable response to stereotactic body radiation therapy. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Dentate gyrus neurogenesis ablation via cranial irradiation enhances morphine self-administration and locomotor sensitization.

    PubMed

    Bulin, Sarah E; Mendoza, Matthew L; Richardson, Devon R; Song, Kwang H; Solberg, Timothy D; Yun, Sanghee; Eisch, Amelia J

    2018-03-01

    Adult dentate gyrus (DG) neurogenesis is important for hippocampal-dependent learning and memory, but the role of new neurons in addiction-relevant learning and memory is unclear. To test the hypothesis that neurogenesis is involved in the vulnerability to morphine addiction, we ablated adult DG neurogenesis and examined morphine self-administration (MSA) and locomotor sensitization. Male Sprague-Dawley rats underwent hippocampal-focused, image-guided X-ray irradiation (IRR) to eliminate new DG neurons or sham treatment (Sham). Six weeks later, rats underwent either MSA (Sham = 16, IRR = 15) or locomotor sensitization (Sham = 12, IRR = 12). Over 21 days of MSA, IRR rats self-administered ~70 percent more morphine than Sham rats. After 28 days of withdrawal, IRR rats pressed the active lever 40 percent more than Sham during extinction. This was not a general enhancement of learning or locomotion, as IRR and Sham groups had similar operant learning and inactive lever presses. For locomotor sensitization, both IRR and Sham rats sensitized, but IRR rats sensitized faster and to a greater extent. Furthermore, dose-response revealed that IRR rats were more sensitive at a lower dose. Importantly, these increases in locomotor activity were not apparent after acute morphine administration and were not a byproduct of irradiation or post-irradiation recovery time. Therefore, these data, along with other previously published data, indicate that reduced hippocampal neurogenesis confers vulnerability for multiple classes of drugs. Thus, therapeutics to specifically increase or stabilize hippocampal neurogenesis could aid in preventing initial addiction as well as future relapse. © 2017 Society for the Study of Addiction.

  9. Age-Dependent and Age-Independent Measures of Locus of Control.

    ERIC Educational Resources Information Center

    Sherman, Lawrence W.; Hofmann, Richard

    Using a longitudinal data set obtained from 169 pre-adolescent children between the ages of 8 and 13 years, this study statistically divided locus of control into two independent components. The first component was noted as "age-dependent" (AD) and was determined by predicted values generated by regressing children's ages onto their…

  10. Assessment of the effect of left atrial cryoablation enhanced by ganglionated plexi ablation in the treatment of atrial fibrillation in patients undergoing open heart surgery.

    PubMed

    Bárta, Jiří; Brát, Radim

    2017-08-17

    The aim of our study was to investigate, whether enhancement of left atrial cryoablation by ablation of the autonomic nervous system of left atrium leads to influencing the outcomes of surgical treatment of atrial fibrillation in patients with structural heart disease undergoing open-heart surgery. The observed patient file consisted of 100 patients, who have undergone a combined open-heart surgery at our department between July 2012 and December 2014. The patients were indicated for the surgical procedure due to structural heart disease, and suffered from paroxysmal, persistent, or long-standing persistent atrial fibrillation. In all cases, left atrial cryoablation was performed in the extent of isolation of pulmonary veins, box lesion, connecting lesion with mitral annulus, amputation of the left atrial appendage and connecting lesion of the appendage base with left pulmonary veins. Furthermore, 35 of the patients underwent mapping and radiofrequency ablation of ganglionated plexi, together with discision and ablation of the ligament of Marshall (Group GP). A control group was consisted of 65 patients without ganglionated plexi intervention (Group LA). The main primary outcome was establishment and duration of sinus rhythm in the course of one-year follow-up. Evaluation of the number of patients with a normal sinus rhythm in per cent has shown comparable values in both groups (Group GP - 93.75%, Group LA - 86.67%, p = 0.485); comparable results were also observed in patients with normal sinus rhythm without anti-arrhythmic treatment in the 12th month (Group GP - 50%, Group LA - 47%, p = 0.306). We have not observed any relation between the recurrence of atrial fibrillation and the presence of a mitral valve surgery, or between the presence of a mitral and tricuspid valves surgery and between the left atrial diameter > 50 mm. Enhancement of left atrial cryoablation by gangionated plexi ablation did not influence the outcomes of surgical ablation due to

  11. Endometrial Ablation

    MedlinePlus

    ... or lighter levels. If ablation does not control heavy bleeding, further treatment or surgery may be needed. ... ablation is used to treat many causes of heavy bleeding. In most cases, women with heavy bleeding ...

  12. Factors influencing the dosimetry for high-intensity focused ultrasound ablation of uterine fibroids: a retrospective study.

    PubMed

    Peng, Song; Zhang, Lian; Hu, Liang; Chen, Jinyun; Ju, Jin; Wang, Xi; Zhang, Rong; Wang, Zhibiao; Chen, Wenzhi

    2015-04-01

    The aim of this article is to analyze factors affecting sonication dose and build a dosimetry model of high-intensity focused ultrasound (HIFU) ablation for uterine fibroids. Four hundred and three patients with symptomatic uterine fibroids who underwent HIFU were retrospectively analyzed. The energy efficiency factor (EEF) was set as dependent variable, and the factors possibly affecting sonication dose included age, body mass index, size of uterine fibroid, abdominal wall thickness, the distance from uterine fibroid dorsal side to sacrum, the distance from uterine fibroid ventral side to skin, location of uterus, location of uterine fibroids, type of uterine fibroids, abdominal wall scar, signal intensity on T2-weighted imaging (T2WI), and enhancement type on T1-weighted imaging (T1WI) were set as predictors to build a multiple regression model. The size of uterine fibroid, distance from fibroid ventral side to skin, location of uterus, location of uterine fibroids, type of uterine fibroids, signal intensity on T2WI, and enhancement type on T1WI had a linear correlation with EEF. The distance from fibroid ventral side to skin, enhancement type on T1WI, size of uterine fibroid, and signal intensity on T2WI were eventually incorporated into the dosimetry model. The distance from fibroid ventral side to skin, enhancement type on T1WI, size of uterine fibroid, and signal intensity on T2WI can be used as dosimetric predictors for HIFU for uterine fibroids.

  13. Role of dual-laser ablation in controlling the Pb depletion in epitaxial growth of Pb(Zr0.52Ti0.48)O3 thin films with enhanced surface quality and ferroelectric properties

    NASA Astrophysics Data System (ADS)

    Mukherjee, Devajyoti; Hyde, Robert; Mukherjee, Pritish; Srikanth, Hariharan; Witanachchi, Sarath

    2012-03-01

    Pb depletion in Pb(Zr0.52Ti0.48)O3 (PZT) thin films has remained as a major setback in the growth of defect-free PZT thin films by pulsed laser ablation techniques. At low excimer (KrF) laser fluences, the high volatility of Pb in PZT leads to non-congruent target ablation and, consequently, non-stoichiometric films, whereas, at high laser fluences, the inherent ejection of molten droplets from the target leads to particulate laden films, which is undesirable in heterostructure growth. To overcome these issues, a dual-laser ablation (PLDDL) process that combines an excimer (KrF) laser and CO2 laser pulses was used to grow epitaxial PZT films on SrTiO3 (100) and MgO (100) substrates. Intensified-charge-coupled-detector (ICCD) images and optical emission spectroscopy of the laser-ablated plumes in PLDDL revealed a broader angular expansion and enhanced excitation of the ablated species as compared to those for single-laser ablation (PLDSL). This led to the growth of particulate-free PZT films with higher Pb content, better crystallinity, and lower surface roughness as compared to those deposited using PLDSL. For FE measurements, PZT capacitors were fabricated in situ using the latticed-matched metallic oxide, La0.7Sr0.3MnO3, as the top and bottom electrodes. PZT films deposited using PLDDL exhibited enhanced polarization for all driving voltages as compared to those deposited using PLDSL. A highest remanent polarization (Pr) of ˜91 μC/cm2 and low coercive field of ˜40 kV/cm was recorded at 9 V driving voltage. Fatigue characterization revealed that PZT films deposited using PLDDL showed unchanging polarization, even after 109 switching cycles.

  14. Mecanismes d'ablation du silicium par laser ultrarapide amplifie par des nanostructures plasmoniques

    NASA Astrophysics Data System (ADS)

    Robitaille, Alexandre

    Ultrafast laser interaction with gold nanostructures deposited onto a silicon surface produces considerable field amplification that can result in the ablation of features with dimensions smaller than the diffraction limit. This field amplification in the near field of the nanostructures has been thoroughly investigated in the literature. However, while this is the main phenomenon that permits this nanoablation, energy deposition and diffusion processes cannot be neglected to interpret experimental results. In this work, we study plasmon-enhanced femtosecond laser ablation of silicon using gold nanorods and gold nanospheres to produce sub-diffraction limit holes. Atomic force microscopy and scanning electron microscopy of such features are done and hole depth as a function of fluence is measured. Especially for gold nanorods, hole shape is inconsistent with calculated field distribution. Field distribution alone would let us believe that each nanorod would produce two holes at its both ends. We show that using a model based on a differential equations system describing carriers excitation and diffusion, both shape and depth of the nanoholes can be predicted. Importance of the diffusion process is shown to arise from the extreme localization of the deposited energy around the nanostructure, compared to what is usually the case for conventional ablation of a surface. The characteristic shape of holes is revealed as a striking signature of the energy distribution through the electron-phonon carrier density dependant interaction.

  15. Synthesis by picosecond laser ablation of ligand-free Ag and Au nanoparticles for SERS applications

    NASA Astrophysics Data System (ADS)

    Fazio, Enza; Spadaro, Salvatore; Santoro, Marco; Trusso, Sebastiano; Lucotti, Andrea.; Tommasini, Matteo.; Neri, Fortunato; Maria Ossi, Paolo

    2018-01-01

    The morphological and optical properties of noble metal nanoparticles prepared by picosecond laser generated plasmas in water were investigated. First, the ablation efficiency was maximized searching the optimal focusing conditions. The nanoparticle size, measured by Scanning Transmission Electron Microscopy, strongly depends on the laser fluence, keeping fixed the other deposition parameters such as the target to scanner objective distance and laser repetition frequency. STEM images indicate narrow gradients of NP sizes. Hence the optimization of ablation parameters favours a fine tuning of nanoparticles. UV-Visible spectroscopy helped to determine the appropriate laser wavelength to resonantly excite the localized surface plasmon to carry out Surface Enhanced Raman Scattering (SERS) measurements. The SERS activity of Ag and Au substrates, obtained spraying the colloids synthesized in water, was tested using crystal violet as a probe molecule. The good SERS performance, observed at excitation wavelength 785 nm, is attributed to aggregation phenomena of nanoparticles sprayed on the support.

  16. Gas-filled phospholipid nanoparticles conjugated with gadolinium play a role as a potential theragnostics for MR-guided HIFU ablation.

    PubMed

    Choi, Se-Young; Kim, Young-Sun; Seo, Yeong-Ju; Yang, Jehoon; Choi, Kyu-Sil

    2012-01-01

    To develop a long-circulating theragnostics, meaning therapeutics and diagnostics for MR-guided HIFU ablation, we designed and prepared Gd-C(5)F(12)-phospholipid nanobubbles (PLNs) 30-100 nm in diameter. The biochemical and physical characterization of Gd-C(5)F(12)-PLNs were performed. Since Gd-C(5)F(12)-PLN-50 (Φ = 50 nm) and Gd-C(5)F(12)-PLN-100 (Φ = 100 nm) enhanced the hyperthermal effect of HIFU size- and concentration-dependently in a tissue-mimicking phantom, its circulation, distribution, tumor accumulation and tumor ablation were examined in tumor-bearing mice. The plasma-half life of Gd-C(5)F(12)-PLNs was longer than 1.5 hrs. Gd-C(5)F(12)-PLNs mainly accumulated in the liver and the spleen, suggesting that they are slowly secreted through the hepatobiliary pathway. Monitored by the T1 signal intensity of MR, Gd-C(5)F(12)-PLNs accumulated in tumor tissues for 8 hours in mice. HIFU with Gd-C(5)F(12)-PLN-100 showed the increased tumor ablation area as compared with HIFU alone. The results suggest that Gd-C(5)F(12)-PLNs exhibit a potential theragnostics for MR-guided HIFU ablation.

  17. Maximum voltage gradient technique for optimization of ablation for typical atrial flutter with zero-fluoroscopy approach.

    PubMed

    Deutsch, Karol; Śledź, Janusz; Mazij, Mariusz; Ludwik, Bartosz; Labus, Michał; Karbarz, Dariusz; Pasicka, Bernadetta; Chrabąszcz, Michał; Śledź, Arkadiusz; Klank-Szafran, Monika; Vitali-Sendoz, Laura; Kameczura, Tomasz; Śpikowski, Jerzy; Stec, Piotr; Ujda, Marek; Stec, Sebastian

    2017-06-01

    Radiofrequency catheter ablation (RFCA) is an established effective method for the treatment of typical cavo-tricuspid isthmus (CTI)-dependent atrial flutter (AFL). The introduction of 3-dimensional electro-anatomic systems enables RFCA without fluoroscopy (No-X-Ray [NXR]). The aim of this study was to evaluate the feasibility and effectiveness of CTI RFCA during implementation of the NXR approach and the maximum voltage-guided (MVG) technique for ablation of AFL.Data were obtained from prospective standardized multicenter ablation registry. Consecutive patients with the first RFCA for CTI-dependent AFL were recruited. Two navigation approaches (NXR and fluoroscopy based as low as reasonable achievable [ALARA]) and 2 mapping and ablation techniques (MVG and pull-back technique [PBT]) were assessed. NXR + MVG (n  =  164; age: 63.7 ± 9.5; 30% women), NXR + PBT (n  =  55; age: 63.9 ± 10.7; 39% women); ALARA + MVG (n  =  36; age: 64.2 ± 9.6; 39% women); and ALARA + PBT (n  =  205; age: 64.7 ± 9.1; 30% women) were compared, respectively. All groups were simplified with a 2-catheter femoral approach using 8-mm gold tip catheters (Osypka AG, Germany or Biotronik, Germany) with 15 min of observation. The MVG technique was performed using step-by-step application by mapping the largest atrial signals within the CTI.Bidirectional block in CTI was achieved in 99% of all patients (P  =  NS, between groups). In NXR + MVG and NXR + PBT groups, the procedure time decreased (45.4 ± 17.6 and 47.2 ± 15.7 min vs. 52.6 ± 23.7 and 59.8 ± 24.0 min, P < .01) as compared to ALARA + MVG and ALARA + PBT subgroups. In NXR + MVG and NXR + PBT groups, 91% and 98% of the procedures were performed with complete elimination of fluoroscopy. The NXR approach was associated with a significant reduction in fluoroscopy exposure (from 0.2 ± 1.1 [NXR + PBT] and 0.3 ± 1.6 [NXR + MVG] to 7.7 ± 6.0 min [ALARA + MVG] and 9

  18. Maximum voltage gradient technique for optimization of ablation for typical atrial flutter with zero-fluoroscopy approach

    PubMed Central

    Deutsch, Karol; Śledź, Janusz; Mazij, Mariusz; Ludwik, Bartosz; Labus, Michał; Karbarz, Dariusz; Pasicka, Bernadetta; Chrabąszcz, Michał; Śledź, Arkadiusz; Klank-Szafran, Monika; Vitali-Sendoz, Laura; Kameczura, Tomasz; Śpikowski, Jerzy; Stec, Piotr; Ujda, Marek; Stec, Sebastian

    2017-01-01

    Abstract Radiofrequency catheter ablation (RFCA) is an established effective method for the treatment of typical cavo-tricuspid isthmus (CTI)-dependent atrial flutter (AFL). The introduction of 3-dimensional electro-anatomic systems enables RFCA without fluoroscopy (No-X-Ray [NXR]). The aim of this study was to evaluate the feasibility and effectiveness of CTI RFCA during implementation of the NXR approach and the maximum voltage-guided (MVG) technique for ablation of AFL. Data were obtained from prospective standardized multicenter ablation registry. Consecutive patients with the first RFCA for CTI-dependent AFL were recruited. Two navigation approaches (NXR and fluoroscopy based as low as reasonable achievable [ALARA]) and 2 mapping and ablation techniques (MVG and pull-back technique [PBT]) were assessed. NXR + MVG (n  =  164; age: 63.7 ± 9.5; 30% women), NXR + PBT (n  =  55; age: 63.9 ± 10.7; 39% women); ALARA + MVG (n  =  36; age: 64.2 ± 9.6; 39% women); and ALARA + PBT (n  =  205; age: 64.7 ± 9.1; 30% women) were compared, respectively. All groups were simplified with a 2-catheter femoral approach using 8-mm gold tip catheters (Osypka AG, Germany or Biotronik, Germany) with 15 min of observation. The MVG technique was performed using step-by-step application by mapping the largest atrial signals within the CTI. Bidirectional block in CTI was achieved in 99% of all patients (P  =  NS, between groups). In NXR + MVG and NXR + PBT groups, the procedure time decreased (45.4 ± 17.6 and 47.2 ± 15.7 min vs. 52.6 ± 23.7 and 59.8 ± 24.0 min, P < .01) as compared to ALARA + MVG and ALARA + PBT subgroups. In NXR + MVG and NXR + PBT groups, 91% and 98% of the procedures were performed with complete elimination of fluoroscopy. The NXR approach was associated with a significant reduction in fluoroscopy exposure (from 0.2 ± 1.1 [NXR + PBT] and 0.3 ± 1.6 [NXR + MVG] to 7.7 ± 6.0 min [ALARA

  19. Tracing the plasma interactions for pulsed reactive crossed-beam laser ablation

    NASA Astrophysics Data System (ADS)

    Chen, Jikun; Stender, Dieter; Pichler, Markus; Döbeli, Max; Pergolesi, Daniele; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas

    2015-10-01

    Pulsed reactive crossed-beam laser ablation is an effective technique to govern the chemical activity of plasma species and background molecules during pulsed laser deposition. Instead of using a constant background pressure, a gas pulse with a reactive gas, synchronized with the laser beam, is injected into vacuum or a low background pressure near the ablated area of the target. It intercepts the initially generated plasma plume, thereby enhancing the physicochemical interactions between the gaseous environment and the plasma species. For this study, kinetic energy resolved mass-spectrometry and time-resolved plasma imaging were used to study the physicochemical processes occurring during the reactive crossed beam laser ablation of a partially 18O substituted La0.6Sr0.4MnO3 target using oxygen as gas pulse. The characteristics of the ablated plasma are compared with those observed during pulsed laser deposition in different oxygen background pressures.

  20. Ablation of atrial fibrillation with concomitant cardiac surgery.

    PubMed

    Gillinov, A Marc; Saltman, Adam E

    2007-01-01

    Atrial fibrillation is present in approximately 35% of patients presenting for mitral valve surgery and in 1 to 6% of adult patients undergoing other forms of cardiac surgery. If left untreated, atrial fibrillation is associated with increased morbidity, and, in some subgroups, increased mortality. Therefore, concomitant management of the arrhythmia is indicated in most cardiac surgery patients with preexisting atrial fibrillation. Although the cut-and-sew Cox-maze III procedure is extremely effective, it has been supplanted by newer operations that rely on alternate energy sources to create lines of conduction block. Early and mid-term results are good with a variety of technologies. Choice of lesion set remains a matter of debate, but results of ablation appear to be enhanced by a biatrial lesion set. Targeted areas for improvement in concomitant ablation include acceptance of uniform standards for reporting results, development of improved technology for ablation and intraoperative assessment, and creation of instrumentation that facilitates minimally invasive approaches.

  1. Relationship between LIBS Ablation and Pit Volume for Geologic Samples: Applications for in situ Absolute Geochronology

    NASA Technical Reports Server (NTRS)

    Devismes, D.; Cohen, Barbara A.

    2014-01-01

    In planetary sciences, in situ absolute geochronology is a scientific and engineering challenge. Currently, the age of the Martian surface can only be determined by crater density counting. However this method has significant uncertainties and needs to be calibrated with absolute ages. We are developing an instrument to acquire in situ absolute geochronology based on the K-Ar method. The protocol is based on the laser ablation of a rock by hundreds of laser pulses. Laser Induced Breakdown Spectroscopy (LIBS) gives the potassium content of the ablated material and a mass spectrometer (quadrupole or ion trap) measures the quantity of 40Ar released. In order to accurately measure the quantity of released 40Ar in cases where Ar is an atmospheric constituent (e.g., Mars), the sample is first put into a chamber under high vacuum. The 40Arquantity, the concentration of K and the estimation of the ablated mass are the parameters needed to give the age of the rocks. The main uncertainties with this method are directly linked to the measures of the mass (typically some µg) and of the concentration of K by LIBS (up to 10%). Because the ablated mass is small compared to the mass of the sample, and because material is redeposited onto the sample after ablation, it is not possible to directly measure the ablated mass. Our current protocol measures the ablated volume and estimates the sample density to calculate ablated mass. The precision and accuracy of this method may be improved by using knowledge of the sample's geologic properties to predict its response to laser ablation, i.e., understanding whether natural samples have a predictable relationship between laser energy deposited and resultant ablation volume. In contrast to most previous studies of laser ablation, theoretical equations are not highly applicable. The reasons are numerous, but the most important are: a) geologic rocks are complex, polymineralic materials; b) the conditions of ablation are unusual (for example

  2. Specific Impulse Definition for Ablative Laser Propulsion

    NASA Technical Reports Server (NTRS)

    Herren, Kenneth A.; Gregory, Don A.

    2004-01-01

    The term "specific impulse" is so ingrained in the field of rocket propulsion that it is unlikely that any fundamental argument would be taken seriously for its removal. It is not an ideal measure but it does give an indication of the amount of mass flow (mass loss/time), as in fuel rate, required to produce a measured thrust over some time period This investigation explores the implications of being able to accurately measure the ablation rate and how the language used to describe the specific impulse results may have to change slightly, and recasts the specific impulse as something that is not a time average. It is not currently possible to measure the ablation rate accurately in real time so it is generally just assumed that a constant amount of material will be removed for each laser pulse delivered The specific impulse dependence on the ablation rate is determined here as a correction to the classical textbook definition.

  3. Ultrasound elastographic imaging of thermal lesions and temperature profiles during radiofrequency ablation

    NASA Astrophysics Data System (ADS)

    Techavipoo, Udomchai

    Manual palpation to sense variations in tissue stiffness for disease diagnosis has been regularly performed by clinicians for centuries. However, it is generally limited to large and superficial structures and the ability of the physician performing the palpation. Imaging of tissue stiffness or elastic properties via the aid of modern imaging such as ultrasound and magnetic resonance imaging, referred to as elastography, enhances the capability for disease diagnosis. In addition, elastography could be used for monitoring tissue response to minimally invasive ablative therapies, which are performed percutaneously to destruct tumors with minimum damage to surrounding tissue. Monitoring tissue temperature during ablation is another approach to estimate tissue damage. The ultimate goal of this dissertation is to improve the image quality of elastograms and temperature profiles for visualizing thermal lesions during and after ablative therapies. Elastographic imaging of thermal lesions is evaluated by comparison of sizes, shapes, and volumes with the results obtained using gross pathology. Semiautomated segmentation of lesion boundaries on elastograms is also developed. It provides comparable results to those with manual segmentation. Elastograms imaged during radiofrequency ablation in vitro show that the impact of gas bubbles during ablation on the ability to delineate the thermal lesion is small. Two novel methods to reduce noise artifacts in elastograms, and an accurate estimation of displacement vectors are proposed. The first method applies wavelet-denoising algorithms to the displacement estimates. The second method utilizes angular compounding of the elastograms generated using ultrasound signal frames acquired from different insonification angles. These angular frames are also utilized to estimate all tissue displacement vector components in response to a deformation. These enable the generation of normal and shear strain elastograms and Poisson's ratio

  4. Primary malignant tumours of the bony pelvis: US-guided high intensity focused ultrasound ablation.

    PubMed

    Wang, Yang; Wang, Wei; Tang, Jie

    2013-11-01

    The aim of this review is to evaluate the value of ultrasound (US)-guided high intensity focused ultrasound (HIFU) ablation in the treatment of primary malignant tumours of the bony pelvis. Eleven patients with primary malignant tumours of the bony pelvis received US-guided HIFU ablation. The maximum tumour size ranged from 5.6 to 25.0 cm (median 10.5 cm). Treatment was curative in four patients and palliative in seven patients. During follow-up, the effectiveness of HIFU ablation was assessed by contrast-enhanced magnetic resonance (MR). Significant coagulative necrosis was obtained in all patients after scheduled HIFU ablations; the volume ablation ratio was 86.7% ± 12.5% (range 65-100%). Complete tumour necrosis was achieved in all patients receiving curative HIFU ablation. No major complications were encountered. No patients died of local tumour progression during follow-up. US-guided HIFU ablation may be a safe and effective minimally invasive technique for the local treatment of primary malignant tumours of the bony pelvis.

  5. Validation of a novel CARTOSEG™ segmentation module software for contrast-enhanced computed tomography-guided radiofrequency ablation in patients with atrial fibrillation.

    PubMed

    Imanli, Hasan; Bhatty, Shaun; Jeudy, Jean; Ghzally, Yousra; Ume, Kiddy; Vunnam, Rama; Itah, Refael; Amit, Mati; Duell, John; See, Vincent; Shorofsky, Stephen; Dickfeld, Timm M

    2017-11-01

    Visualization of left atrial (LA) anatomy using image integration modules has been associated with decreased radiation exposure and improved procedural outcome when used for guidance of pulmonary vein isolation (PVI) in atrial fibrillation (AF) ablation. We evaluated the CARTOSEG™ CT Segmentation Module (Biosense Webster, Inc.) that offers a new CT-specific semiautomatic reconstruction of the atrial endocardium. The CARTOSEG™ CT Segmentation Module software was assessed prospectively in 80 patients undergoing AF ablation. Using preprocedural contrast-enhanced computed tomography (CE-CT), cardiac chambers, coronary sinus (CS), and esophagus were semiautomatically segmented. Segmentation quality was assessed from 1 (poor) to 4 (excellent). The reconstructed structures were registered with the electroanatomic map (EAM). PVI was performed using the registered 3D images. Semiautomatic reconstruction of the heart chambers was successfully performed in all 80 patients with AF. CE-CT DICOM file import, semiautomatic segmentation of cardiac chambers, esophagus, and CS was performed in 185 ± 105, 18 ± 5, 119 ± 47, and 69 ± 19 seconds, respectively. Average segmentation quality was 3.9 ± 0.2, 3.8 ± 0.3, and 3.8 ± 0.2 for LA, esophagus, and CS, respectively. Registration accuracy between the EAM and CE-CT-derived segmentation was 4.2 ± 0.9 mm. Complications consisted of one perforation (1%) which required pericardiocentesis, one increased pericardial effusion treated conservatively (1%), and one early termination of ablation due to thrombus formation on the ablation sheath without TIA/stroke (1%). All targeted PVs (n  =  309) were successfully isolated. The novel CT- CARTOSEG™ CT Segmentation Module enables a rapid and reliable semiautomatic 3D reconstruction of cardiac chambers and adjacent anatomy, which facilitates successful and safe PVI. © 2017 Wiley Periodicals, Inc.

  6. Comparison between the treatment area of electrode used for radiofrequency ablation of liver cancer focusing on 15G cooled-tip and CWT electrode.

    PubMed

    Kim, Hyun-Jin; Lee, Hae-Kag; Cho, Jae-Hwan

    2016-01-01

    To analyze the comparison between the treatment area of 15Gage internally cooled electrodes and 17 Gage Cool Wet-tip(CWT) electrodes. They are manufactured to broaden treatment area of the tumor in the radiofrequency ablation of hepatocellular carcinoma(HCC). The study was designed for 62 patients with a mean age of 61, ranging from 44 to 87 years. The sample comprised of patients who used 15 G internally cooled electrodes and 17 G CWT electrodes respectively. Computed tomography (CT) images obtained after the procedure were observed, however, for the ablation lesion, the volume was determined by measuring complete necrotic tissue that did not contrast enhancement in the image. The treatment area of the tumor after radiofrequency ablation was 17.26±6.02 in the CWT, which was bigger than 15G. The treatment area ratio of the treatment before or after was significant at 581.85±339.56 in the CWT. After radiofrequency ablation, the treatment area got bigger, as 15G electrodes went toward CWT electrodes. Treatment area per electrode was 1.34 times higher in CWT than in 15G while the treatment area ratio of the treatment before or after was 1.001 times higher in the CWT than 15G. Ablation is more common for the safety margin in stable tumor and CWT type electrodes that can make larger ablation to reduce the number of times ablation is required for residual tumor and it decreases recurrence, ablation time and reoperation. Therefore it is considered t useful to reduce patients' pain.

  7. Comparison between the treatment area of electrode used for radiofrequency ablation of liver cancer focusing on 15G cooled-tip and CWT electrode

    PubMed Central

    Kim, Hyun-Jin; Lee, Hae-Kag; Cho, Jae-Hwan

    2016-01-01

    Objectives: To analyze the comparison between the treatment area of 15Gage internally cooled electrodes and 17 Gage Cool Wet-tip(CWT) electrodes. They are manufactured to broaden treatment area of the tumor in the radiofrequency ablation of hepatocellular carcinoma(HCC). Methods: The study was designed for 62 patients with a mean age of 61, ranging from 44 to 87 years. The sample comprised of patients who used 15 G internally cooled electrodes and 17 G CWT electrodes respectively. Computed tomography (CT) images obtained after the procedure were observed, however, for the ablation lesion, the volume was determined by measuring complete necrotic tissue that did not contrast enhancement in the image. Results: The treatment area of the tumor after radiofrequency ablation was 17.26±6.02 in the CWT, which was bigger than 15G. The treatment area ratio of the treatment before or after was significant at 581.85±339.56 in the CWT. After radiofrequency ablation, the treatment area got bigger, as 15G electrodes went toward CWT electrodes. Treatment area per electrode was 1.34 times higher in CWT than in 15G while the treatment area ratio of the treatment before or after was 1.001 times higher in the CWT than 15G. Conclusions: Ablation is more common for the safety margin in stable tumor and CWT type electrodes that can make larger ablation to reduce the number of times ablation is required for residual tumor and it decreases recurrence, ablation time and reoperation. Therefore it is considered t useful to reduce patients’ pain. PMID:27375688

  8. Experimental Evaluation of the Heat Sink Effect in Hepatic Microwave Ablation.

    PubMed

    Ringe, Kristina I; Lutat, Carolin; Rieder, Christian; Schenk, Andrea; Wacker, Frank; Raatschen, Hans-Juergen

    2015-01-01

    To demonstrate and quantify the heat sink effect in hepatic microwave ablation (MWA) in a standardized ex vivo model, and to analyze the influence of vessel distance and blood flow on lesion volume and shape. 108 ex vivo MWA procedures were performed in freshly harvested pig livers. Antennas were inserted parallel to non-perfused and perfused (700,1400 ml/min) glass tubes (diameter 5mm) at different distances (10, 15, 20mm). Ablation zones (radius, area) were analyzed and compared (Kruskal-Wallis Test, Dunn's multiple comparison Test). Temperature changes adjacent to the tubes were measured throughout the ablation cycle. Maximum temperature decreased significantly with increasing flow and distance (p<0.05). Compared to non-perfused tubes, ablation zones were significantly deformed by perfused tubes within 15 mm distance to the antenna (p<0.05). At a flow rate of 700 ml/min ablation zone radius was reduced to 37.2% and 80.1% at 10 and 15 mm tube distance, respectively; ablation zone area was reduced to 50.5% and 89.7%, respectively. Significant changes of ablation zones were demonstrated in a pig liver model. Considerable heat sink effect was observed within a diameter of 15 mm around simulated vessels, dependent on flow rate. This has to be taken into account when ablating liver lesions close to vessels.

  9. Experimental Evaluation of the Heat Sink Effect in Hepatic Microwave Ablation

    PubMed Central

    Ringe, Kristina I.; Lutat, Carolin; Rieder, Christian; Schenk, Andrea; Wacker, Frank; Raatschen, Hans-Juergen

    2015-01-01

    Purpose To demonstrate and quantify the heat sink effect in hepatic microwave ablation (MWA) in a standardized ex vivo model, and to analyze the influence of vessel distance and blood flow on lesion volume and shape. Materials and Methods 108 ex vivo MWA procedures were performed in freshly harvested pig livers. Antennas were inserted parallel to non-perfused and perfused (700,1400 ml/min) glass tubes (diameter 5mm) at different distances (10, 15, 20mm). Ablation zones (radius, area) were analyzed and compared (Kruskal-Wallis Test, Dunn’s multiple comparison Test). Temperature changes adjacent to the tubes were measured throughout the ablation cycle. Results Maximum temperature decreased significantly with increasing flow and distance (p<0.05). Compared to non-perfused tubes, ablation zones were significantly deformed by perfused tubes within 15mm distance to the antenna (p<0.05). At a flow rate of 700ml/min ablation zone radius was reduced to 37.2% and 80.1% at 10 and 15mm tube distance, respectively; ablation zone area was reduced to 50.5% and 89.7%, respectively. Conclusion Significant changes of ablation zones were demonstrated in a pig liver model. Considerable heat sink effect was observed within a diameter of 15mm around simulated vessels, dependent on flow rate. This has to be taken into account when ablating liver lesions close to vessels. PMID:26222431

  10. Enhanced intensity dependence and aggression history indicate previous regular ecstasy use in abstinent polydrug users.

    PubMed

    Wan, Li; Baldridge, Robyn M; Colby, Amanda M; Stanford, Matthew S

    2009-11-13

    Intensity dependence is an electrophysiological measure of intra-individual stability of the augmenting/reducing characteristic of N1/ P2 event-related potential amplitudes in response to stimuli of varying intensities. Abstinent ecstasy users typically show enhanced intensity dependence and higher levels of impulsivity and aggression. Enhanced intensity dependence and high impulsivity and aggression levels may be due to damage in the brain's serotonergic neurons as a result of ecstasy use. The present study investigated whether intensity dependence, impulsivity and aggression history can be used as indicators of previous chronic ecstasy usage. Forty-four abstinent polydrug users (8 women; age 19 to 61 years old) were recruited. All participants were currently residents at a local substance abuse facility receiving treatment and had been free of all drugs for a minimum of 21 days. The study found significantly enhanced intensity dependence of tangential dipole source activity and a history of more aggressive behavior in those who had previously been involved in chronic ecstasy use. Intensity dependence of the tangential dipole source and aggressive behavior history correctly identified 73.3% of those who had been regular ecstasy users and 78.3% of those who had not. Overall, 76.3% of the participants were correctly classified.

  11. Benefits of Moderate-Z Ablators for Direct-Drive Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Lafon, M.; Betti, R.; Anderson, K. S.; Collins, T. J. B.; Skupsky, S.; McKenty, P. W.

    2014-10-01

    Control of hydrodynamic instabilities and DT-fuel preheating by hot electrons produced by laser-plasma interaction is crucial in inertial confinement fusion. Moderate- Z ablators have been shown to reduce the laser imprinting on target and suppress the generation of hot electrons from the two-plasmon-decay instability. These results have motivated the use of ablators of higher- Z than pure plastic in direct-drive-ignition target designs for the National Ignition Facility (NIF). Two-dimensional radiation-hydrodynamic simulations assess the robustness of these ignition designs to laser imprint and capsule nonuniformities. The complex behavior of the hydrodynamic stability of mid- Z ablators is investigated through single and multimode simulations. A polar-drive configuration is developed within the NIF Laser System specifications for each ablator material. The use of multilayer ablators is also investigated to enhance the hydrodynamic stability. Results indicate that ignition target designs using mid- Z ablators exhibit good hydrodynamic properties, leading to high target gain for direct-drive implosions on the NIF. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and the Office of Fusion Energy Sciences Number DE-FG02-04ER54786.

  12. Microwave Ablation Compared with Radiofrequency Ablation for Breast Tissue in an Ex Vivo Bovine Udder Model

    SciTech Connect

    Tanaka, Toshihiro, E-mail: toshihir@bf6.so-net.ne.jp; Westphal, Saskia, E-mail: swestphal@ukaachen.de; Isfort, Peter, E-mail: isfort@hia.rwth-aachen.de

    2012-08-15

    Purpose: To compare the effectiveness of microwave (MW) ablation with radiofrequency (RF) ablation for treating breast tissue in a nonperfused ex vivo model of healthy bovine udder tissue. Materials and Methods: MW ablations were performed at power outputs of 25W, 35W, and 45W using a 915-MHz frequency generator and a 2-cm active tip antenna. RF ablations were performed with a bipolar RF system with 2- and 3-cm active tip electrodes. Tissue temperatures were continuously monitored during ablation. Results: The mean short-axis diameters of the coagulation zones were 1.34 {+-} 0.14, 1.45 {+-} 0.13, and 1.74 {+-} 0.11 cm for MWmore » ablation at outputs of 25W, 35W, and 45W. For RF ablation, the corresponding values were 1.16 {+-} 0.09 and 1.26 {+-} 0.14 cm with electrodes having 2- and 3-cm active tips, respectively. The mean coagulation volumes were 2.27 {+-} 0.65, 2.85 {+-} 0.72, and 4.45 {+-} 0.47 cm{sup 3} for MW ablation at outputs of 25W, 35W, and 45W and 1.18 {+-} 0.30 and 2.29 {+-} 0.55 cm{sup 3} got RF ablation with 2- and 3-cm electrodes, respectively. MW ablations at 35W and 45W achieved significantly longer short-axis diameters than RF ablations (P < 0.05). The highest tissue temperature was achieved with MW ablation at 45W (P < 0.05). On histological examination, the extent of the ablation zone in MW ablations was less affected by tissue heterogeneity than that in RF ablations. Conclusion: MW ablation appears to be advantageous with respect to the volume of ablation and the shape of the margin of necrosis compared with RF ablation in an ex vivo bovine udder.« less

  13. Verification of a Finite Element Model for Pyrolyzing Ablative Materials

    NASA Technical Reports Server (NTRS)

    Risch, Timothy K.

    2017-01-01

    Ablating thermal protection system (TPS) materials have been used in many reentering spacecraft and in other applications such as rocket nozzle linings, fire protection materials, and as countermeasures for directed energy weapons. The introduction of the finite element model to the analysis of ablation has arguably resulted in improved computational capabilities due the flexibility and extended applicability of the method, especially to complex geometries. Commercial finite element codes often provide enhanced capability compared to custom, specially written programs based on versatility, usability, pre- and post-processing, grid generation, total life-cycle costs, and speed.

  14. Benign thyroid nodule unresponsive to radiofrequency ablation treated with laser ablation: a case report.

    PubMed

    Oddo, Silvia; Balestra, Margherita; Vera, Lara; Giusti, Massimo

    2018-05-11

    Radiofrequency ablation and laser ablation are safe and effective techniques for reducing thyroid nodule volume, neck symptoms, and cosmetic complaints. Therapeutic success is defined as a nodule reduction > 50% between 6 and 12 months after the procedure, but a percentage of nodules inexplicably do not respond to thermal ablation. We describe the case of a young Caucasian woman with a solid benign thyroid nodule who refused surgery and who had undergone radiofrequency ablation in 2013. The nodule did not respond in terms of either volume reduction or improvement in neck symptoms. After 2 years, given the patient's continued refusal of thyroidectomy, we proposed laser ablation. The nodule displayed a significant volume reduction (- 50% from radiofrequency ablation baseline volume, - 57% from laser ablation baseline), and the patient reported a significant improvement in neck symptoms (from 6/10 to 1/10 on a visual analogue scale). We conjecture that some benign thyroid nodules may be intrinsically resistant to necrosis when one specific ablation technique is used, but may respond to another technique. To the best of our knowledge, this is the first description of the effect of performing a different percutaneous ablation technique in a nodule that does not respond to radiofrequency ablation.

  15. The magnetic navigation system allows safety and high efficacy for ablation of arrhythmias

    PubMed Central

    Bauernfeind, Tamas; Akca, Ferdi; Schwagten, Bruno; de Groot, Natasja; Van Belle, Yves; Valk, Suzanne; Ujvari, Barbara; Jordaens, Luc; Szili-Torok, Tamas

    2011-01-01

    Aims We aimed to evaluate the safety and long-term efficacy of the magnetic navigation system (MNS) in a large number of patients. The MNS has the potential for improving safety and efficacy based on atraumatic catheter design and superior navigation capabilities. Methods and results In this study, 610 consecutive patients underwent ablation. Patients were divided into two age- and sex-matched groups. Ablations were performed either using MNS (group MNS, 292) or conventional manual ablation [group manual navigation (MAN), 318]. The following parameters were analysed: acute success rate, fluoroscopy time, procedure time, complications [major: pericardial tamponade, permanent atrioventricular (AV) block, major bleeding, and death; minor: minor bleeding and temporary AV block]. Recurrence rate was assessed during follow-up (15 ± 9.5 months). Subgroup analysis was performed for the following groups: atrial fibrillation, isthmus dependent and atypical atrial flutter, atrial tachycardia, AV nodal re-entrant tachycardia, circus movement tachycardia, and ventricular tachycardia (VT). Magnetic navigation system was associated with less major complications (0.34 vs. 3.2%, P = 0.01). The total numbers of complications were lower in group MNS (4.5 vs. 10%, P = 0.005). Magnetic navigation system was equally effective as MAN in acute success rate for overall groups (92 vs. 94%, P = ns). Magnetic navigation system was more successful for VTs (93 vs. 72%, P < 0.05). Less fluoroscopy was used in group MNS (30 ± 20 vs. 35 ± 25 min, P < 0.01). There were no differences in procedure times and recurrence rates for the overall groups (168 ± 67 vs. 159 ± 75 min, P = ns; 14 vs. 11%, P = ns; respectively). Conclusions Our data suggest that the use of MNS improves safety without compromising efficiency of ablations. Magnetic navigation system is more effective than manual ablation for VTs. PMID:21508006

  16. The magnetic navigation system allows safety and high efficacy for ablation of arrhythmias.

    PubMed

    Bauernfeind, Tamas; Akca, Ferdi; Schwagten, Bruno; de Groot, Natasja; Van Belle, Yves; Valk, Suzanne; Ujvari, Barbara; Jordaens, Luc; Szili-Torok, Tamas

    2011-07-01

    We aimed to evaluate the safety and long-term efficacy of the magnetic navigation system (MNS) in a large number of patients. The MNS has the potential for improving safety and efficacy based on atraumatic catheter design and superior navigation capabilities. In this study, 610 consecutive patients underwent ablation. Patients were divided into two age- and sex-matched groups. Ablations were performed either using MNS (group MNS, 292) or conventional manual ablation [group manual navigation (MAN), 318]. The following parameters were analysed: acute success rate, fluoroscopy time, procedure time, complications [major: pericardial tamponade, permanent atrioventricular (AV) block, major bleeding, and death; minor: minor bleeding and temporary AV block]. Recurrence rate was assessed during follow-up (15±9.5 months). Subgroup analysis was performed for the following groups: atrial fibrillation, isthmus dependent and atypical atrial flutter, atrial tachycardia, AV nodal re-entrant tachycardia, circus movement tachycardia, and ventricular tachycardia (VT). Magnetic navigation system was associated with less major complications (0.34 vs. 3.2%, P=0.01). The total numbers of complications were lower in group MNS (4.5 vs. 10%, P=0.005). Magnetic navigation system was equally effective as MAN in acute success rate for overall groups (92 vs. 94%, P=ns). Magnetic navigation system was more successful for VTs (93 vs. 72%, P<0.05). Less fluoroscopy was used in group MNS (30±20 vs. 35±25 min, P<0.01). There were no differences in procedure times and recurrence rates for the overall groups (168±67 vs. 159±75 min, P=ns; 14 vs. 11%, P=ns; respectively). Our data suggest that the use of MNS improves safety without compromising efficiency of ablations. Magnetic navigation system is more effective than manual ablation for VTs.

  17. Radiofrequency ablation of neuroendocrine liver metastases: the Middlesex experience.

    PubMed

    Gillams, A; Cassoni, A; Conway, G; Lees, W

    2005-01-01

    Current treatment options for neuroendocrine liver metastases are not widely applicable or not that effective. Image-guided thermal ablation offers the possibility of a minimally invasive, albeit palliative, treatment that decreases tumor volume, preserves most of the normal liver, and can be repeated several times. We report our experience with image-guided thermal ablation in 25 patients with unresectable liver metastases. Since 1990 we have treated 189 tumors at 66 treatment sessions in 25 patients (12 female, 13 male; median age, 56 years; age range, 26--78 years). Thirty treatments were performed with a solid-state laser, and 36 treatments were performed with radiofrequency ablation. All but one treatment was performed percutaneously under image guidance. Sixteen patients had metastases from carcinoid primaries, three from gastrinoma, two from insulinoma, and four from miscellaneous causes. Fourteen of 25 had symptoms from hormone secretion. Imaging follow-up was available in 19 patients at a median of 21 months (range, 4--75 months). There was a complete response in six patients, a partial response in seven, and stable disease in one; hence, tumor load was controlled in 14 of 19 patients (74%). Relief of hormone-related symptoms was achieved in nine of 14 patients (69%). The median survival period from the diagnosis of liver metastases was 53 months. One patient with end-stage cardiac disease died after a carcinoid crisis. There were eight (12%) complications: five local and three distant, four major and four minor. As a minimally invasive, readily repeatable procedure that can be used to ablate small tumors, preferably before patients become severely symptomatic, radiofrequency ablation can provide effective control of liver tumor volume in most patients over many years.

  18. Effects of material composition on the ablation performance of low density elastomeric ablators

    NASA Technical Reports Server (NTRS)

    Tompkins, S. S.; Kabana, W. P.

    1973-01-01

    The ablation performance of materials composed of various concentrations of nylon, hollow silica spheres, hollow phenolic spheres, and four elastomeric resins was determined. Both blunt-body and flat-panel specimens were used, the cold-wall heating-rate ranges being 0.11 to 0.8 MW/sq m, respectively. The corresponding surface pressure ranges for these tests were 0.017 to 0.037 atmosphere and 0.004 to 0.005 atmosphere. Some of the results show that (1) the addition of nylon significantly improved the ablation performance, but the nylon was not compatible with one resin system; (2) panel and blunt-body specimen data do not show the same effect of phenolic sphere content on ablation effectiveness; and (3) there appears to be an optimum concentration of hollow silica spheres for good ablation performance. The composition of an efficient, nonproprietary ablator for lifting body application is identified and the ablation performance of this ablator is compared with the performance of three commercially available materials.

  19. Nd Isotope and U-Th-Pb Age Mapping of Single Monazite Grains by Laser Ablation Split Stream Analysis

    NASA Astrophysics Data System (ADS)

    Fisher, C. M.; Hanchar, J. M.; Miller, C. F.; Phillips, S.; Vervoort, J. D.; Martin, W.

    2015-12-01

    Monazite is a common accessory mineral that occurs in medium to high grade metamorphic and Ca-poor felsic igneous rocks, and often controls the LREE budget (including Sm and Nd) of the host rock in which it crystallizes. Moreover, it contains appreciable U and Th, making it an ideal mineral for determining U-Th-Pb ages and Sm-Nd isotopic compositions, both of which are readily determined using in situ techniques with very high spatial resolution like LA-MC-ICPMS. Here, we present the results of laser ablation split stream analyses (LASS), which allows for simultaneous determination of the age and initial Nd isotopic composition in a single analysis. Analyses were done using a 20mm laser spot that allowed for detailed Nd isotope mapping of monazite grains (~30 analyses per ~250mm sized grain). Combined with LREE ratios (e.g., Sm/Nd, Ce/Gd, and Eu anomalies) these results yield important petrogenetic constraints on the evolution of peraluminous granites from the Old Woman-Piute batholith in southeastern California. Our findings also allow an improved understanding of the causes of isotope heterogeneity in granitic rocks. U-Th-Pb age mapping across the crystals reveals a single Cretaceous age for all grains with precision and accuracy typical of laser ablation analyses (~2%). In contrast, the concurrent Nd isotope mapping yields homogeneous initial Nd isotope compositions for some grains and large initial intra-grain variations of up to 8 epsilon units in others. The grains that yield homogeneous Nd isotope compositions have REE ratios suggesting that they crystallized in a fractionally crystallizing magma. Conversely, other grains, which also record fractional crystallization of both feldspar and LREE rich minerals, demonstrate a change in the Nd isotope composition of the magma during crystallization of monazite. Comparison of inter- and intra-grain Nd isotope compositions reveals further details on the potential mechanisms responsible for isotope heterogeneity

  20. Atmospheric pressure arc discharge with ablating graphite anode

    NASA Astrophysics Data System (ADS)

    Nemchinsky, V. A.; Raitses, Y.

    2015-06-01

    The anodic carbon arc discharge is used to produce carbon nanoparticles. Recent experiments with the carbon arc at atmospheric pressure helium demonstrated the enhanced ablation rate for narrow graphite anodes resulting in high deposition rates of carbonaceous products on the copper cathode (Fetterman et al 2008 Carbon 46 1322-6). The proposed model explains these results with interconnected steady-state models of the cathode and the anode processes. When considering cathode functioning, the model predicts circulation of the particles in the near-cathode region: evaporation of the cathode material, ionization of evaporated atoms and molecules in the near-cathode plasma, return of the resulting ions to the cathode, surface recombination of ions and electrons followed again by cathode evaporation etc. In the case of the low anode ablation rate, the ion acceleration in the cathode sheath provides the major cathode heating mechanism. In the case of an intensive anode ablation, an additional cathode heating is due to latent fusion heat of the atomic species evaporated from the anode and depositing at the cathode. Using the experimental arc voltage as the only input discharge parameter, the model allows us to calculate the anode ablation rate. A comparison of the results of calculations with the available experimental data shows reasonable agreement.

  1. Femtosecond laser ablation of dentin and enamel: relationship between laser fluence and ablation efficiency.

    PubMed

    Chen, Hu; Liu, Jing; Li, Hong; Ge, Wenqi; Sun, Yuchun; Wang, Yong; Lü, Peijun

    2015-02-01

    The objective was to study the relationship between laser fluence and ablation efficiency of a femtosecond laser with a Gaussian-shaped pulse used to ablate dentin and enamel for prosthodontic tooth preparation. A diode-pumped thin-disk femtosecond laser with wavelength of 1025 nm and pulse width of 400 fs was used for the ablation of dentin and enamel. The laser spot was guided in a line on the dentin and enamel surfaces to form a groove-shaped ablation zone under a series of laser pulse energies. The width and volume of the ablated line were measured under a three-dimensional confocal microscope to calculate the ablation efficiency. Ablation efficiency for dentin reached a maximum value of 0.020 mm3∕J when the laser fluence was set at 6.51 J∕cm2. For enamel, the maximum ablation efficiency was 0.009 mm3∕J at a fluence of 7.59 J∕cm2.Ablation efficiency of the femtosecond laser on dentin and enamel is closely related to the laser fluence and may reach a maximum when the laser fluence is set to an appropriate value. © 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)

  2. [Electrophysiological findings and ablation strategies in patients with atrial tachyarrhythmias after left atrial circumferential ablation in the treatment of atrial fibrillation].

    PubMed

    Chen, Ming-long; Yang, Bing; Xu, Dong-jie; Zou, Jian-gang; Shan, Qi-jun; Chen, Chun; Chen, Hong-wu; Li, Wen-qi; Cao, Ke-jiang

    2007-02-01

    To report the electrophysiological findings and the ablation strategies in patients with atrial tachyarrhythmias (ATAs) or atrial fibrillation (AF) recurrence after left atrial circumferential ablation (LACA) in the treatment of AF. 91 patients with AF had LACA procedure from April 2004 to May 2006, 19 of which accepted the second ablation procedure due to ATAs or AF recurrence. In all the 19 patients [17 male, 2 female, age 25 - 65 (53 +/- 12) years], 11 presented with paroxysmal AF before the first ablation procedure, 2 with persistent AF and 6 with permanent AF. Pulmonary vein potentials (PVP) were investigated in both sides in all the patients. Delayed PVP was identified inside the left circular line in 5 patients, in the right in 1 and both in 2 during sinus rhythm. "Gap" conduction was found and successfully closed guided by circular mapping catheter. In 3 cases, irregular left atrial tachycardia was caused by fibrillation rhythm inside the left ring via decremental "gap" conduction. Reisolation was done successfully again guided by 3-D mapping and made the left atrium in sinus rhythm but the fibrillation rhythm was still inside the left ring. Pulmonary vein tachycardia with 1:1 conduction to the left atrium presented in one case and reisolation stopped the tachycardia. No PVP was discovered in both sides in 4 patients but other tachycardias could be induced, including two right atrial scar related tachycardias, two supraventricular tachycardias mediated by concealed accessory pathway, one cavo-tricuspid isthmus dependent atrial flutter and one focal atrial tachycardia near the coronary sinus ostium. All the tachycardias in these 4 patients were successfully ablated with the help of routine and 3-D mapping techniques. In the rest 3, which were in AF rhythm, LACA was successfully done again. After a mean follow-up of 4 - 26 (11.5 +/- 8.5) months, 16 patients were symptom free without anti-arrhythmic drug therapy; 1 of them had frequent palpitation attack with

  3. Surface ablation of aluminum and silicon by ultrashort laser pulses of variable width

    NASA Astrophysics Data System (ADS)

    Zayarny, D. A.; Ionin, A. A.; Kudryashov, S. I.; Makarov, S. V.; Kuchmizhak, A. A.; Vitrik, O. B.; Kulchin, Yu. N.

    2016-06-01

    Single-shot thresholds of surface ablation of aluminum and silicon via spallative ablation by infrared (IR) and visible ultrashort laser pulses of variable width τlas (0.2-12 ps) have been measured by optical microscopy. For increasing laser pulse width τlas < 3 ps, a drastic (threefold) drop of the ablation threshold of aluminum has been observed for visible pulses compared to an almost negligible threshold variation for IR pulses. In contrast, the ablation threshold in silicon increases threefold with increasing τlas for IR pulses, while the corresponding thresholds for visible pulses remained almost constant. In aluminum, such a width-dependent decrease in ablation thresholds has been related to strongly diminished temperature gradients for pulse widths exceeding the characteristic electron-phonon thermalization time. In silicon, the observed increase in ablation thresholds has been ascribed to two-photon IR excitation, while in the visible range linear absorption of the material results in almost constant thresholds.

  4. Radiofrequency thermal ablation in canine femur: evaluation of coagulation necrosis reproducibility and MRI-histopathologic correlation.

    PubMed

    Lee, Jeong Min; Choi, Seong Hong; Park, Hee Seon; Lee, Min Woo; Han, Chang Jin; Choi, Joon-il; Choi, Ja-Young; Hong, Sung Hwan; Han, Joon Koo; Choi, Byung Ihn

    2005-09-01

    Our purposes were to determine whether a single application of radiofrequency energy to normal bone can create coagulation necrosis reproducibly and to assess the accuracy of MRI at revealing the extent of radiofrequency-induced thermal bone injury. Using a 200-W generator and a 17-gauge cooled-tip electrode, a total of 11 radiofrequency ablations were performed under fluoroscopic guidance in the distal femurs of seven dogs. Radiofrequency was applied in standard monopolar mode at 100 W for 10 min. During radiofrequency ablation, the changes in impedance and currents were recorded. MRI, including unenhanced T1- and T2-weighted images and contrast-enhanced fat-suppressed T1-weighted images, was performed to evaluate ablation regions. Six dogs were killed on day 4 after MRI and one dog on day 7. In all animals, radiofrequency ablation created a well-defined coagulation necrosis and no significant complications were noted. The mean long-axis diameter and the mean short-axis diameter of the coagulation zones produced were 45.9 +/- 5.5 mm and 17.7 +/- 2.7 mm, respectively. At gross examination, thermal ablation regions appeared as a central, light-brown area with a dark-brown peripheral hemorrhagic zone, which was surrounded by a pale-yellow rim. On MRI, the ablated areas showed multilayered zones with signal intensities that differed from normal marrow on unenhanced images and a perfusion defect on contrast-enhanced T1-weighted images. The maximum difference between lesion sizes on MR images, established by measuring macroscopic coagulation necrosis, was 3 mm. The correlation between the diameter of coagulation necrosis and lesion size at MRI was strong, with correlation coefficients ranging from 0.89 for unenhanced T1-weighted images and 0.97 for unenhanced T2-weighted images to 0.98 for contrast-enhanced T1-weighted images (p < 0.05). Radiofrequency ablation created well-defined coagulation necrosis in a reproducible manner, and MRI accurately determined the extent

  5. Complications associated with radiofrequency ablation of pulmonary veins.

    PubMed

    Madrid Pérez, J M; García Barquín, P M; Villanueva Marcos, A J; García Bolao, J I; Bastarrika Alemañ, G

    Radiofrequency ablation is an efficacious alternative in patients with symptomatic atrial fibrillation who do not respond to or are intolerant to at least one class I or class III antiarrhythmic drug. Although radiofrequency ablation is a safe procedure, complications can occur. Depending on the location, these complications can be classified into those that affect the pulmonary veins themselves, cardiac complications, extracardiac intrathoracic complications, remote complications, and those that result from vascular access. The most common complications are hematomas, arteriovenous fistulas, and pseudoaneurysms at the puncture site. Some complications are benign and transient, such as gastroparesis or diaphragmatic elevation, whereas others are potentially fatal, such as cardiac tamponade. Radiologists must be familiar with the complications that can occur secondary to pulmonary vein ablation to ensure early diagnosis and treatment. Copyright © 2016 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Efficient and controllable thermal ablation induced by short-pulsed HIFU sequence assisted with perfluorohexane nanodroplets.

    PubMed

    Chang, Nan; Lu, Shukuan; Qin, Dui; Xu, Tianqi; Han, Meng; Wang, Supin; Wan, Mingxi

    2018-07-01

    A HIFU sequence with extremely short pulse duration and high pulse repetition frequency can achieve thermal ablation at a low acoustic power using inertial cavitation. Because of its cavitation-dependent property, the therapeutic outcome is unreliable when the treatment zone lacks cavitation nuclei. To overcome this intrinsic limitation, we introduced perfluorocarbon nanodroplets as extra cavitation nuclei into short-pulsed HIFU-mediated thermal ablation. Two types of nanodroplets were used with perfluorohexane (PFH) as the core material coated with bovine serum albumin (BSA) or an anionic fluorosurfactant (FS) to demonstrate the feasibility of this study. The thermal ablation process was recorded by high-speed photography. The inertial cavitation activity during the ablation was revealed by sonoluminescence (SL). The high-speed photography results show that the thermal ablation volume increased by ∼643% and 596% with BSA-PFH and FS-PFH, respectively, than the short-pulsed HIFU alone at an acoustic power of 19.5 W. Using nanodroplets, much larger ablation volumes were created even at a much lower acoustic power. Meanwhile, the treatment time for ablating a desired volume significantly reduced in the presence of nanodroplets. Moreover, by adjusting the treatment time, lesion migration towards the HIFU transducer could also be avoided. The SL results show that the thermal lesion shape was significantly dependent on the inertial cavitation in this short-pulsed HIFU-mediated thermal ablation. The inertial cavitation activity became more predictable by using nanodroplets. Therefore, the introduction of PFH nanodroplets as extra cavitation nuclei made the short-pulsed HIFU thermal ablation more efficient by increasing the ablation volume and speed, and more controllable by reducing the acoustic power and preventing lesion migration. Copyright © 2018. Published by Elsevier B.V.

  7. Factors influencing the ablative efficiency of high intensity focused ultrasound (HIFU) treatment for adenomyosis: A retrospective study.

    PubMed

    Gong, Chunmei; Yang, Bin; Shi, Yarong; Liu, Zhongqiong; Wan, Lili; Zhang, Hong; Jiang, Denghua; Zhang, Lian

    2016-08-01

    Objectives The aim of this study was to investigate factors affecting ablative efficiency of high intensity focused ultrasound (HIFU) for adenomyosis. Materials and methods In all, 245 patients with adenomyosis who underwent ultrasound guided HIFU (USgHIFU) were retrospectively reviewed. All patients underwent dynamic contrast-enhanced magnetic resonance imaging (MRI) before and after HIFU treatment. The non-perfused volume (NPV) ratio, energy efficiency factor (EEF) and greyscale change were set as dependent variables, while the factors possibly affecting ablation efficiency were set as independent variables. These variables were used to build multiple regression models. Results A total of 245 patients with adenomyosis successfully completed HIFU treatment. Enhancement type on T1 weighted image (WI), abdominal wall thickness, volume of adenomyotic lesion, the number of hyperintense points, location of the uterus, and location of adenomyosis all had a linear relationship with the NPV ratio. Distance from skin to the adenomyotic lesion's ventral side, enhancement type on T1WI, volume of adenomyotic lesion, abdominal wall thickness, and signal intensity on T2WI all had a linear relationship with EEF. Location of the uterus and abdominal wall thickness also both had a linear relationship with greyscale change. Conclusion The enhancement type on T1WI, signal intensity on T2WI, volume of adenomyosis, location of the uterus and adenomyosis, number of hyperintense points, abdominal wall thickness, and distance from the skin to the adenomyotic lesion's ventral side can all be used as predictors of HIFU for adenomyosis.

  8. Laser-Ablation (U-Th)/He Geochronology

    NASA Astrophysics Data System (ADS)

    Hodges, K.; Boyce, J.

    2003-12-01

    ablation experiments results in considerably worse spatial resolution than that typically possible for 40Ar/39Ar laser microprobe dating, it is possible to site the LA-ICPMS ablation pit within a few microns of the pit used for He extraction, or to simply re-occupy and enlarge the original ablation pit. The potential effective spatial resolution of the technique is thus on the order of a few tens to roughly 100 microns. As a proof-of-concept exercise, we have applied this technique to fluorapatite from Cerro de Mercado, Durango, Mexico, which has a generally accepted (U-Th)/He age of 32.1 +/- 3.4 Ma (2 sigma) based on single-crystal fusion analyses reported by House et al. (2000, EPSL). Using the approach described above, we made 48 separate age measurements on a 12 mm polished section cut through a single crystal of Durango fluorapatite perpendicular to its c axis. The measured dates yield a mean of 34.9 +/- 5.1 Ma (2 sigma), with a total dispersion of dates comparable to that reported by House et al. Much of the apparent age variation observed in both studies is due to documented U+Th heterogeneities in single crystals of the Durango fluorapatite. Nevertheless, the consistency of the laser ablation and conventional results for this material is striking. Compared to conventional laser and furnace methods of (U-Th)/He geochronology, the laser microprobe approach offers substantially improved spatial resolution, and the ability to avoid (or at least minimize) alpha-ejection corrections. In addition, the method affords improved sample throughput, such that age estimates for homogeneous materials can be made with considerably higher precision based on a larger number of analyses.

  9. Bipolar radiofrequency ablation of liver metastases during laparotomy. First clinical experiences with a new multipolar ablation concept.

    PubMed

    Ritz, Joerg-Peter; Lehmann, Kai S; Reissfelder, Christoph; Albrecht, Thomas; Frericks, Bernd; Zurbuchen, Urte; Buhr, Heinz J

    2006-01-01

    Radiofrequency ablation (RFA) is a promising method for local treatment of liver malignancies. Currently available systems for radiofrequency ablation use monopolar current, which carries the risk of uncontrolled electrical current paths, collateral damages and limited effectiveness. To overcome this problem, we used a newly developed internally cooled bipolar application system in patients with irresectable liver metastases undergoing laparotomy. The aim of this study was to clinically evaluate the safety, feasibility and effectiveness of this new system with a novel multipolar application concept. Patients with a maximum of five liver metastases having a maximum diameter of 5 cm underwent laparotomy and abdominal exploration to control resectability. In cases of irresectability, RFA with the newly developed bipolar application system was performed. Treatment was carried out under ultrasound guidance. Depending on tumour size, shape and location, up to three applicators were simultaneously inserted in or closely around the tumour, never exceeding a maximum probe distance of 3 cm. In the multipolar ablation concept, the current runs alternating between all possible pairs of consecutively activated electrodes with up to 15 possible electrode combinations. Post-operative follow-up was evaluated by CT or MRI controls 24-48 h after RFA and every 3 months. In a total of six patients (four male, two female; 61-68 years), ten metastases (1.0-5.5 cm) were treated with a total of 14 RF applications. In four metastases three probes were used, and in another four and two metastases, two and one probes were used, respectively. During a mean ablation time of 18.8 min (10-31), a mean energy of 48.8 kJ (12-116) for each metastases was applied. No procedure-related complications occurred. The patients were released from the hospital between 7 and 12 days post-intervention (median 9 days). The post-interventional control showed complete tumour ablation in all cases. Bipolar

  10. Supplementation with zinc in rats enhances memory and reverses an age-dependent increase in plasma copper.

    PubMed

    Sandusky-Beltran, Leslie A; Manchester, Bryce L; McNay, Ewan C

    2017-08-30

    Zinc and copper are essential trace elements. Dyshomeostasis in these two metals has been observed in Alzheimer's disease, which causes profound cognitive impairment. Insulin therapy has been shown to enhance cognitive performance; however, recent data suggest that this effect may be at least in part due to the inclusion of zinc in the insulin formulation used. Zinc plays a key role in regulation of neuronal glutamate signaling, suggesting a possible link between zinc and memory processes. Consistent with this, zinc deficiency causes cognitive impairments in children. The effect of zinc supplementation on short- and long-term recognition memory, and on spatial working memory, was explored in young and adult male Sprague Dawley rats. After behavioral testing, hippocampal and plasma zinc and copper were measured. Age increased hippocampal zinc and copper, as well as plasma copper, and decreased plasma zinc. An interaction between age and treatment affecting plasma copper was also found, with zinc supplementation reversing elevated plasma copper concentration in adult rats. Zinc supplementation enhanced cognitive performance across tasks. These data support zinc as a plausible therapeutic intervention to ameliorate cognitive impairment in disorders characterized by alterations in zinc and copper, such as Alzheimer's disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Voltage and pace-capture mapping of linear ablation lesions overestimates chronic ablation gap size.

    PubMed

    O'Neill, Louisa; Harrison, James; Chubb, Henry; Whitaker, John; Mukherjee, Rahul K; Bloch, Lars Ølgaard; Andersen, Niels Peter; Dam, Høgni; Jensen, Henrik K; Niederer, Steven; Wright, Matthew; O'Neill, Mark; Williams, Steven E

    2018-04-26

    Conducting gaps in lesion sets are a major reason for failure of ablation procedures. Voltage mapping and pace-capture have been proposed for intra-procedural identification of gaps. We aimed to compare gap size measured acutely and chronically post-ablation to macroscopic gap size in a porcine model. Intercaval linear ablation was performed in eight Göttingen minipigs with a deliberate gap of ∼5 mm left in the ablation line. Gap size was measured by interpolating ablation contact force values between ablation tags and thresholding at a low force cut-off of 5 g. Bipolar voltage mapping and pace-capture mapping along the length of the line were performed immediately, and at 2 months, post-ablation. Animals were euthanized and gap sizes were measured macroscopically. Voltage thresholds to define scar were determined by receiver operating characteristic analysis as <0.56 mV (acutely) and <0.62 mV (chronically). Taking the macroscopic gap size as gold standard, error in gap measurements were determined for voltage, pace-capture, and ablation contact force maps. All modalities overestimated chronic gap size, by 1.4 ± 2.0 mm (ablation contact force map), 5.1 ± 3.4 mm (pace-capture), and 9.5 ± 3.8 mm (voltage mapping). Error on ablation contact force map gap measurements were significantly less than for voltage mapping (P = 0.003, Tukey's multiple comparisons test). Chronically, voltage mapping and pace-capture mapping overestimated macroscopic gap size by 11.9 ± 3.7 and 9.8 ± 3.5 mm, respectively. Bipolar voltage and pace-capture mapping overestimate the size of chronic gap formation in linear ablation lesions. The most accurate estimation of chronic gap size was achieved by analysis of catheter-myocardium contact force during ablation.

  12. Age-Dependent Netrin-1 Signaling Regulates NG2+ Glial Cell Spatial Homeostasis in Normal Adult Gray Matter

    PubMed Central

    Birey, Fikri

    2015-01-01

    Neuron–glial antigen 2-positive (NG2+) glial cells are the most proliferative glia type in the adult CNS, and their tile-like arrangement in adult gray matter is under tight regulation. However, little is known about the cues that govern this unique distribution. To this end, using a NG2+ glial cell ablation model in mice, we examined the repopulation dynamics of NG2+ glial cells in the mature and aged mice gray matter. We found that some resident NG2+ glial cells that escaped depletion rapidly enter the cell cycle to repopulate the cortex with altered spatial distribution. We reveal that netrin-1 signaling is involved in the NG2+ glial cell early proliferative, late repopulation, and distribution response after ablation in the gray matter. However, ablation of NG2+ glial cell in older animals failed to stimulate a similar repopulation response, possibly because of a decrease in the sensitivity to netrin-1. Our findings indicate that endogenous netrin-1 plays a role in NG2+ glial cell homeostasis that is distinct from its role in myelination. PMID:25926469

  13. Nanobubble Ultrasound Contrast Agents for Enhanced Delivery of Thermal Sensitizer to Tumors Undergoing Radiofrequency Ablation

    PubMed Central

    Perera, Reshani H.; Solorio, Luis; Wu, Hanping; Gangolli, Mihika; Silverman, Eric; Hernandez, Christopher; Peiris, Pubudu M.; Broome, Ann-Marie

    2013-01-01

    Purpose Pluronic has been shown to sensitize various tumor cell lines to chemotherapy and hyperthermia by altering the membrane fluidity, depleting ATP, and modulating the heat shock protein 70 expression. In our prior work, Pluronic was also used to formulate nanosized ultrasound contrast agents. In the current study we evaluate the use of these contrast agents as vehicles for image-guided delivery of Pluronic to improve outcomes of tumor radiofrequency (RF) ablation. Methods Lipid-shelled Pluronic nanobubbles were prepared and examined for size distribution, zeta potential, stability, biodistribution, accumulation of nanobubbles in the tumor, and treatment efficacy. LS174-T xenograft tumor-bearing mice were used to evaluate tumor growth suppression and measure treatment efficacy after RF ablation. Results The average diameter of Pluronic bubbles was 230 nm, and initial bubble echogenicity was 16 dB. In vitro, cells exposed to Pluronic nanobubbles exhibited low cytotoxicity in the absence of ultrasound, even if heat (43°C) was applied. When the cells were exposed to Pluronic nanobubbles, heat, and ultrasound; viability was significantly reduced. In vivo, tumors treated with ultrasound-modulated nanobubbles prior to RF ablation showed a significant reduction in growth compared to the RF alone (P<0.05). Conclusion Lipid and Pluronic-shelled, echogenic nanobubbles combined with ultrasound modulation can serve as an effective theranostic method for sensitization of tumors to RF ablation. PMID:23943542

  14. Nanobubble ultrasound contrast agents for enhanced delivery of thermal sensitizer to tumors undergoing radiofrequency ablation.

    PubMed

    Perera, Reshani H; Solorio, Luis; Wu, Hanping; Gangolli, Mihika; Silverman, Eric; Hernandez, Christopher; Peiris, Pubudu M; Broome, Ann-Marie; Exner, Agata A

    2014-06-01

    Pluronic has been shown to sensitize various tumor cell lines to chemotherapy and hyperthermia by altering the membrane fluidity, depleting ATP, and modulating the heat shock protein 70 expression. In our prior work, Pluronic was also used to formulate nanosized ultrasound contrast agents. In the current study we evaluate the use of these contrast agents as vehicles for image-guided delivery of Pluronic to improve outcomes of tumor radiofrequency (RF) ablation. Lipid-shelled Pluronic nanobubbles were prepared and examined for size distribution, zeta potential, stability, biodistribution, accumulation of nanobubbles in the tumor, and treatment efficacy. LS174-T xenograft tumor-bearing mice were used to evaluate tumor growth suppression and measure treatment efficacy after RF ablation. The average diameter of Pluronic bubbles was 230 nm, and initial bubble echogenicity was 16 dB. In vitro, cells exposed to Pluronic nanobubbles exhibited low cytotoxicity in the absence of ultrasound, even if heat (43 ºC) was applied. When the cells were exposed to Pluronic nanobubbles, heat, and ultrasound; viability was significantly reduced. In vivo, tumors treated with ultrasound-modulated nanobubbles prior to RF ablation showed a significant reduction in growth compared to the RF alone (P<0.05). Lipid and Pluronic-shelled, echogenic nanobubbles combined with ultrasound modulation can serve as an effective theranostic method for sensitization of tumors to RF ablation.

  15. Unsteady motion of laser ablation plume by vortex induced by the expansion of curved shock wave

    NASA Astrophysics Data System (ADS)

    Tran, D. T.; Mori, K.

    2017-02-01

    There are a number of industrial applications of laser ablation in a gas atmosphere. When an intense pulsed laser beam is irradiated on a solid surface in the gas atmosphere, the surface material is ablated and expands into the atmosphere. At the same time, a spherical shock wave is launched by the ablation jet to induce the unsteady flow around the target surface. The ablated materials, luminously working as tracer, exhibit strange unsteady motions depending on the experimental conditions. By using a high-speed video camera (HPV-X2), unsteady motion ablated materials are visualized at the frame rate more than 106 fps, and qualitatively characterized.

  16. Investigation of the wavelength dependence of laser stratigraphy on Cu and Ni coatings using LIBS compared to a pure thermal ablation model

    NASA Astrophysics Data System (ADS)

    Paulis, Evgeniya; Pacher, Ulrich; Weimerskirch, Morris J. J.; Nagy, Tristan O.; Kautek, Wolfgang

    2017-12-01

    In this study, galvanic coatings of Cu and Ni, typically applied in industrial standard routines, were investigated. Ablation experiments were carried out using the first two harmonic wavelengths of a pulsed Nd:YAG laser and the resulting plasma spectra were analysed using a linear Pearson correlation method. For both wavelengths the absorption/ablation behaviour as well as laser-induced breakdown spectroscopy (LIBS) depth profiles were studied varying laser fluences between 4.3-17.2 J/cm^2 at 532 nm and 2.9-11.7 J/cm^2 at 1064 nm. The LIBS-stratigrams were compared with energy-dispersive X-ray spectroscopy of cross-sections. The ablation rates were calculated and compared to theoretical values originating from a thermal ablation model. Generally, higher ablation rates were obtained with 532 nm light for both materials. The light-plasma interaction is suggested as possible cause of the lower ablation rates in the infrared regime. Neither clear evidence of the pure thermal ablation, nor correlation with optical properties of investigated materials was obtained.

  17. Low pressure laser ablation coupled to inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Fliegel, Daniel; Günther, Detlef

    2006-07-01

    The particle size distribution in laser ablation inductively coupled plasma mass spectrometry is known to be a critical parameter for complete vaporization of particles. Any strategy to reduce the particle size distribution of laser generated aerosols has the potential to increase the ion signal intensity and to reduce fractionation effects. Due to the fact that vapor generation, nucleation, condensation, and agglomeration take place within an extremely short period of time, ablation under atmospheric pressure might not allow influencing these processes while under reduced pressure condition the cooling of the aerosol and therefore the condensation is expected to be slower. In this study, a low pressure laser ablation cell for the generation of laser aerosols was coupled to an ICP-MS. In contrast to the previously developed trapped ablation mode, the newly designed cell allows the adjustment of the pressure in the ablation cell between 20 and 1400 mbar prior to the ablation. Ablation experiments carried out using this configuration showed a dependence of the aerosol properties (size distribution and particle structure) on the ablation cell pressure. The intensity ratio U/Th measured as a figure of merit for complete vaporization within the ICP indicated a change in the aerosol structure at approximately 500 mbar toward smaller particle size. A significant difference between low pressure and at ambient pressure ablated aerosol was observed. The intensity ratios (U/Th) of the ablated sample moves closer to the bulk composition at lower pressures at the expense of sensitivity. Therefore the decrease in the ICP-MS signal intensity in the low pressure cell can be attributed to vapor deposition within the ablation cell walls. Moreover, scanning electron microscope images of aerosols collected on filters after the low pressure ablation cell suggest the possibility of a slower cooling velocity of the aerosol, which was observed in the condensed material on the surface of

  18. Depth-profile investigations of triterpenoid varnishes by KrF excimer laser ablation and laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Theodorakopoulos, C.; Zafiropulos, V.

    2009-07-01

    The ablation properties of aged triterpenoid dammar and mastic films were investigated using a Krypton Fluoride excimer laser (248 nm, 25 ns). Ablation rate variations between surface and bulk layers indicated changes of the ablation mechanisms across the depth profiles of the films. In particular, after removal of the uppermost surface varnish layers there was a reduction of the ablation step in the bulk that was in line with a significant reduction of carbon dimer emission beneath the surface layers as detected by laser-induced breakdown spectroscopy. The results are explicable by the generation of condensation, cross-linking and oxidative gradients across the depth profile of triterpenoid varnish films during the aging degradation process, which were recently quantified and established on the molecular level.

  19. Nonthermal ablation with microbubble-enhanced focused ultrasound close to the optic tract without affecting nerve function.

    PubMed

    McDannold, Nathan; Zhang, Yong-Zhi; Power, Chanikarn; Jolesz, Ferenc; Vykhodtseva, Natalia

    2013-11-01

    Tumors at the skull base are challenging for both resection and radiosurgery given the presence of critical adjacent structures, such as cranial nerves, blood vessels, and brainstem. Magnetic resonance imaging-guided thermal ablation via laser or other methods has been evaluated as a minimally invasive alternative to these techniques in the brain. Focused ultrasound (FUS) offers a noninvasive method of thermal ablation; however, skull heating limits currently available technology to ablation at regions distant from the skull bone. Here, the authors evaluated a method that circumvents this problem by combining the FUS exposures with injected microbubble-based ultrasound contrast agent. These microbubbles concentrate the ultrasound-induced effects on the vasculature, enabling an ablation method that does not cause significant heating of the brain or skull. In 29 rats, a 525-kHz FUS transducer was used to ablate tissue structures at the skull base that were centered on or adjacent to the optic tract or chiasm. Low-intensity, low-duty-cycle ultrasound exposures (sonications) were applied for 5 minutes after intravenous injection of an ultrasound contrast agent (Definity, Lantheus Medical Imaging Inc.). Using histological analysis and visual evoked potential (VEP) measurements, the authors determined whether structural or functional damage was induced in the optic tract or chiasm. Overall, while the sonications produced a well-defined lesion in the gray matter targets, the adjacent tract and chiasm had comparatively little or no damage. No significant changes (p > 0.05) were found in the magnitude or latency of the VEP recordings, either immediately after sonication or at later times up to 4 weeks after sonication, and no delayed effects were evident in the histological features of the optic nerve and retina. This technique, which selectively targets the intravascular microbubbles, appears to be a promising method of noninvasively producing sharply demarcated lesions in

  20. Nonthermal ablation with microbubble-enhanced focused ultrasound close to the optic tract without affecting nerve function

    PubMed Central

    McDannold, Nathan; Zhang, Yong-Zhi; Power, Chanikarn; Jolesz, Ferenc; Vykhodtseva, Natalia

    2014-01-01

    Object Tumors at the skull base are challenging for both resection and radiosurgery given the presence of critical adjacent structures, such as cranial nerves, blood vessels, and brainstem. Magnetic resonance imaging–guided thermal ablation via laser or other methods has been evaluated as a minimally invasive alternative to these techniques in the brain. Focused ultrasound (FUS) offers a noninvasive method of thermal ablation; however, skull heating limits currently available technology to ablation at regions distant from the skull bone. Here, the authors evaluated a method that circumvents this problem by combining the FUS exposures with injected microbubble-based ultrasound contrast agent. These microbubbles concentrate the ultrasound-induced effects on the vasculature, enabling an ablation method that does not cause significant heating of the brain or skull. Methods In 29 rats, a 525-kHz FUS transducer was used to ablate tissue structures at the skull base that were centered on or adjacent to the optic tract or chiasm. Low-intensity, low-duty-cycle ultrasound exposures (sonications) were applied for 5 minutes after intravenous injection of an ultrasound contrast agent (Definity, Lantheus Medical Imaging Inc.). Using histological analysis and visual evoked potential (VEP) measurements, the authors determined whether structural or functional damage was induced in the optic tract or chiasm. Results Overall, while the sonications produced a well-defined lesion in the gray matter targets, the adjacent tract and chiasm had comparatively little or no damage. No significant changes (p > 0.05) were found in the magnitude or latency of the VEP recordings, either immediately after sonication or at later times up to 4 weeks after sonication, and no delayed effects were evident in the histological features of the optic nerve and retina. Conclusions This technique, which selectively targets the intravascular microbubbles, appears to be a promising method of noninvasively

  1. Ablation spot area and impulse characteristics of polymers induced by burst irradiation of 1 μm laser pulses

    NASA Astrophysics Data System (ADS)

    Tsuruta, Hisashi; Dondelewski, Oskar; Katagiri, Yusuke; Wang, Bin; Sasoh, Akihiro

    2017-07-01

    The ablation spot area and impulse characteristics of various polymers were experimentally investigated against burst irradiation of Nd: YLF laser pulses with a pulse repetition frequency of 1 kHz, wavelength of 1047 nm, temporal pulse width of 10 ns, and single-pulse fluence of 6.1 J/cm2 to 17.1 J/cm2. The dependences of ablation area on the pulse energy from 0.72 to 7.48 mJ and the number of pulses from 10 pulses to 1000 pulses were investigated. In order to characterize their impulse performance as a function of fluence, which should not depend on ablation material, an effective ablation spot area was defined as that obtained against aluminum, 1050 A, as the reference material. An impulse that resulted from a single burst of 200 pulses was measured with a torsion-type impulse stand. Various impulse dependences on the fluence, which were not readily predicted from the optical properties of the material without ablation, were obtained. By fitting the experimentally measured impulse performance to Phipps and Sinko's model in the vapor regime, the effective absorption coefficient with laser ablation was evaluated, thereby resulting in three to six orders of magnitude larger than that without ablation. Among the polymers examined using polytetrafluoroethylene (PTFE) as the best volume absorbers, the highest momentum coupling coefficient of 66 μNs/J was obtained with an effective absorption coefficient more than six times smaller than that of the other polymers.

  2. Thermal and mechanical high-intensity focused ultrasound: perspectives on tumor ablation, immune effects and combination strategies.

    PubMed

    van den Bijgaart, Renske J E; Eikelenboom, Dylan C; Hoogenboom, Martijn; Fütterer, Jurgen J; den Brok, Martijn H; Adema, Gosse J

    2017-02-01

    Tumor ablation technologies, such as radiofrequency-, cryo- or high-intensity focused ultrasound (HIFU) ablation will destroy tumor tissue in a minimally invasive manner. Ablation generates large volumes of tumor debris in situ, releasing multiple bio-molecules like tumor antigens and damage-associated molecular patterns. To initiate an adaptive antitumor immune response, antigen-presenting cells need to take up tumor antigens and, following activation, present them to immune effector cells. The impact of the type of tumor ablation on the precise nature, availability and suitability of the tumor debris for immune response induction, however, is poorly understood. In this review, we focus on immune effects after HIFU-mediated ablation and compare these to findings using other ablation technologies. HIFU can be used both for thermal and mechanical destruction of tissue, inducing coagulative necrosis or subcellular fragmentation, respectively. Preclinical and clinical results of HIFU tumor ablation show increased infiltration and activation of CD4 + and CD8 + T cells. As previously observed for other types of tumor ablation technologies, however, this ablation-induced enhanced infiltration alone appears insufficient to generate consistent protective antitumor immunity. Therapies combining ablation with immune stimulation are therefore expected to be key to boost HIFU-induced immune effects and to achieve systemic, long-lasting, antitumor immunity.

  3. Radiofrequency ablation versus nephron-sparing surgery for small unilateral renal cell carcinoma: cost-effectiveness analysis.

    PubMed

    Pandharipande, Pari V; Gervais, Debra A; Mueller, Peter R; Hur, Chin; Gazelle, G Scott

    2008-07-01

    To evaluate the relative cost-effectiveness of percutaneous radiofrequency (RF) ablation versus nephron-sparing surgery (NSS) in patients with small (ablation or NSS. The model incorporated RCC presence, treatment effectiveness and costs, and short- and long-term outcomes. An incremental cost-effectiveness analysis was performed to identify treatment preference under an assumed $75,000 per quality-adjusted life-year (QALY) societal willingness-to-pay threshold level, within proposed ranges for guiding implementation of new health care interventions. The effect of changes in key parameters on strategy preference was addressed in sensitivity analysis. By using base-case assumptions, NSS yielded a minimally greater average quality-adjusted life expectancy than did RF ablation (2.5 days) but was more expensive. NSS had an incremental cost-effectiveness ratio of $1,152,529 per QALY relative to RF ablation, greatly exceeding $75,000 per QALY. Therefore, RF ablation was considered preferred and remained so if the annual probability of post-RF ablation local recurrence was up to 48% higher relative to that post-NSS. NSS preference required an estimated NSS cost reduction of $7500 or RF ablation cost increase of $6229. Results were robust to changes in most model parameters, but treatment preference was dependent on the relative probabilities of local recurrence after RF ablation and NSS, the short-term costs of both, and quality of life after NSS. RF ablation was preferred over NSS for small RCC treatment at a societal willingness-to-pay threshold level of $75,000 per QALY. This result was robust to changes in most model parameters, but somewhat dependent on the relative probabilities of post-RF ablation and post-NSS local

  4. Possible role for cryoballoon ablation of right atrial appendage tachycardia when conventional ablation fails.

    PubMed

    Amasyali, Basri; Kilic, Ayhan

    2015-06-01

    Focal atrial tachycardia arising from the right atrial appendage usually responds well to radiofrequency ablation; however, successful ablation in this anatomic region can be challenging. Surgical excision of the right atrial appendage has sometimes been necessary to eliminate the tachycardia and prevent or reverse the resultant cardiomyopathy. We report the case of a 48-year-old man who had right atrial appendage tachycardia resistant to multiple attempts at ablation with use of conventional radiofrequency energy guided by means of a 3-dimensional mapping system. The condition led to cardiomyopathy in 3 months. The arrhythmia was successfully ablated with use of a 28-mm cryoballoon catheter that had originally been developed for catheter ablation of paroxysmal atrial fibrillation. To our knowledge, this is the first report of cryoballoon ablation without isolation of the right atrial appendage. It might also be an alternative to epicardial ablation or surgery when refractory atrial tachycardia originates from the right atrial appendage.

  5. Influence of water layer thickness on hard tissue ablation with pulsed CO2 laser

    NASA Astrophysics Data System (ADS)

    Zhang, Xianzeng; Zhan, Zhenlin; Liu, Haishan; Zhao, Haibin; Xie, Shusen; Ye, Qing

    2012-03-01

    The theory of hard tissue ablation reported for IR lasers is based on a process of thermomechanical interaction, which is explained by the absorption of the radiation in the water component of the tissue. The microexplosion of the water is the cause of tissue fragments being blasted from hard tissue. The aim of this study is to evaluate the influence of the interdependence of water layer thickness and incident radiant exposure on ablation performance. A total of 282 specimens of bovine shank bone were irradiated with a pulse CO2 laser. Irradiation was carried out in groups: without a water layer and with a static water layer of thickness ranging from 0.2 to 1.2 mm. Each group was subdivided into five subgroups for different radiant exposures ranging from 18 to 84 J/cm2, respectively. The incision geometry, surface morphology, and microstructure of the cut walls as well as thermal injury were examined as a function of the water layer thickness at different radiant exposures. Our results demonstrate that the additional water layer is actually a mediator of laser-tissue interaction. There exists a critical thickness of water layer for a given radiant exposure, at which the additional water layer plays multiple roles, not only acting as a cleaner to produce a clean cut but also as a coolant to prevent bone heating and reduce thermal injury, but also helping to improve the regularity of the cut shape, smooth the cut surface, and enhance ablation rate and efficiency. The results suggest that desired ablation results depend on optimal selection of both water layer thickness and radiant exposure.

  6. The Influence of Ablation on Radiative Heating for Earth Entry

    NASA Technical Reports Server (NTRS)

    Johnston, Christopher O.; Gnoffo, Peter A.; Sutton, Kenneth

    2008-01-01

    Using the coupled ablation and radiation capability recently included in the LAURA flowfield solver, this paper investigates the influence of ablation on the shock-layer radiative heating for Earth entry. The extension of the HARA radiation model, which provides the radiation predictions in LAURA, to treat a gas consisting of the elements C, H, O, and N is discussed. It is shown that the absorption coefficient of air is increased with the introduction of the C and H elements. A simplified shock layer model is studied to show the impact of temperature, as well as the abundance of C and H, on the net absorption or emission from an ablation contaminated boundary layer. It is found that the ablation species reduce the radiative flux in the vacuum ultraviolet, through increased absorption, for all temperatures. However, in the infrared region of the spectrum, the ablation species increase the radiative flux, through strong emission, for temperatures above 3,000 K. Thus, depending on the temperature and abundance of ablation species, the contaminated boundary layer may either provide a net increase or decrease in the radiative flux reaching the wall. To assess the validity of the coupled ablation and radiation LAURA analysis, a previously analyzed Mars-return case (15.24 km/s), which contains significant ablation and radiation coupling, is studied. Exceptional agreement with previous viscous shock-layer results is obtained. A 40% decrease in the radiative flux is predicted for ablation rates equal to 20% of the free-stream mass flux. The Apollo 4 peak-heating case (10.24 km/s) is also studied. For ablation rates up to 3.4% of the free-stream mass flux, the radiative heating is reduced by up to 19%, while the convective heating is reduced by up to 87%. Good agreement with the Apollo 4 radiometer data is obtained by considering absorption in the radiometer cavity. For both the Mars return and the Apollo 4 cases, coupled radiation alone is found to reduce the radiative

  7. Repair after nephron ablation reveals limitations of neonatal neonephrogenesis

    PubMed Central

    Tögel, Florian; Freedman, Benjamin S.; Iatrino, Rossella; Grinstein, Mor; Bonventre, Joseph V.

    2017-01-01

    The neonatal mouse kidney retains nephron progenitor cells in a nephrogenic zone for 3 days after birth. We evaluated whether de novo nephrogenesis can be induced postnatally beyond 3 days. Given the long-term implications of nephron number for kidney health, it would be useful to enhance nephrogenesis in the neonate. We induced nephron reduction by cryoinjury with or without contralateral nephrectomy during the neonatal period or after 1 week of age. There was no detectable compensatory de novo nephrogenesis, as determined by glomerular counting and lineage tracing. Contralateral nephrectomy resulted in additional adaptive healing, with little or no fibrosis, but did not also stimulate de novo nephrogenesis. In contrast, injury initiated at 1 week of age led to healing with fibrosis. Thus, despite the presence of progenitor cells and ongoing nephron maturation in the newborn mouse kidney, de novo nephrogenesis is not inducible by acute nephron reduction. This indicates that additional nephron progenitors cannot be recruited after birth despite partial renal ablation providing a reparative stimulus and suggests that nephron number in the mouse is predetermined at birth. PMID:28138555

  8. Pain control requirements for percutaneous ablation of renal tumors: cryoablation versus radiofrequency ablation--initial observations.

    PubMed

    Allaf, Mohamad E; Varkarakis, Ioannis M; Bhayani, Sam B; Inagaki, Takeshi; Kavoussi, Louis R; Solomon, Stephen B

    2005-10-01

    To retrospectively compare the pain control requirements of patients undergoing computed tomography (CT)-guided percutaneous radiofrequency (RF) ablation with those of patients undergoing CT-guided percutaneous cryoablation of small (< or = 4-cm) renal tumors. The study was HIPAA compliant and received institutional review board exemption; informed consent was not required. Medical and procedure records of patients who underwent RF ablation and cryoablation of renal tumors from June 19, 2003, to February 28, 2004, were retrospectively reviewed for clinical data, tumor characteristics, and anesthesia information. During the study period, 10 men (mean age, 66.5 years) underwent cryoablation of 11 renal lesions, and 14 patients (11 men, four women; mean age, 68.1 years) underwent RF ablation of 15 renal tumors. Analgesic and sedative requirements during the procedure were compared. Standard anesthesia consisted of 5 mL of 1% lidocaine injected locally, and conscious sedation consisted of 50 microg of fentanyl and 1 mg of midazolam administered intravenously. The Fisher exact test and Student t test were used to compare clinical factors and drug requirements between the two groups. There was no difference in terms of patient demographics, tumor diameter, or distribution of central versus noncentral lesions between the two groups. Cryoablation was associated with a significantly lower dose of fentanyl (165.0 microg [RF group] vs 75.0 microg [cryoablation group]; P < .001) and midazolam (2.9 mg [RF group] vs 1.6 mg [cryoablation group]; P = .026). In the RF group, one patient required general anesthesia, one patient required supplemental narcotics (5 mg of oxycodone) and sedatives (1 mg lorezapam), and one patient became apneic for a brief interval after receiving additional narcotics for pain during the procedure. An additional RF session was terminated early in one patient because of pain, and further medication could not be administered owing to bradycardia. No

  9. Percutaneous Irreversible Electroporation Lung Ablation: Preliminary Results in a Porcine Model

    SciTech Connect

    Deodhar, Ajita; Monette, Sebastien; Single, Gordon W.

    2011-12-15

    Objective: Irreversible electroporation (IRE) uses direct electrical pulses to create permanent 'pores' in cell membranes to cause cell death. In contrast to conventional modalities, IRE has a nonthermal mechanism of action. Our objective was to study the histopathological and imaging features of IRE in normal swine lung. Materials and Methods: Eleven female swine were studied for hyperacute (8 h), acute (24 h), subacute (96 h), and chronic (3 week) effects of IRE ablation in lung. Paired unipolar IRE applicators were placed under computed tomography (CT) guidance. Some applicators were deliberately positioned near bronchovascular structures. IRE pulse delivery was synchronized withmore » the cardiac rhythm only when ablation was performed within 2 cm of the heart. Contrast-enhanced CT scan was performed immediately before and after IRE and at 1 and 3 weeks after IRE ablation. Representative tissue was stained with hematoxylin and eosin for histopathology. Results: Twenty-five ablations were created: ten hyperacute, four acute, and three subacute ablations showed alveolar edema and necrosis with necrosis of bronchial, bronchiolar, and vascular epithelium. Bronchovascular architecture was maintained. Chronic ablations showed bronchiolitis obliterans and alveolar interstitial fibrosis. Immediate post-procedure CT images showed linear or patchy density along the applicator tract. At 1 week, there was consolidation that resolved partially or completely by 3 weeks. Pneumothorax requiring chest tube developed in two animals; no significant cardiac arrhythmias were noted. Conclusion: Our preliminary porcine study demonstrates the nonthermal and extracellular matrix sparing mechanism of action of IRE. IRE is a potential alternative to thermal ablative modalities.« less

  10. Signal intensity enhancement of laser ablated volume holograms

    NASA Astrophysics Data System (ADS)

    Versnel, J. M.; Williams, C.; Davidson, C. A. B.; Wilkinson, T. D.; Lowe, C. R.

    2017-11-01

    Conventional volume holographic gratings (VHGs) fabricated in photosensitive emulsions such as gelatin containing silver salts enable the facile visualization of the holographic image in ambient lighting. However, for the fabrication of holographic sensors, which require more defined and chemically-functionalised polymer matrices, laser ablation has been introduced to create the VHGs and thereby broaden their applications, although the replay signal can be challenging to detect in ambient lighting. When traditional photochemical bleaching solutions used to reduce light scattering and modulate refractive index within the VHG are applied to laser ablated volume holographic gratings, these procedures decrease the holographic peak intensity. This is postulated to occur because both light and dark fringes contain a proportion of metal particles, which upon solubilisation are converted immediately to silver iodide, yielding no net refractive index modulation. This research advances a hypothesis that the reduced intensity of holographic replay signals is linked to a gradient of different sized metal particles within the emulsion, which reduces the holographic signal and may explain why traditional bleaching processes result in a reduction in intensity. In this report, a novel experimental protocol is provided, along with simulations based on an effective medium periodic 1D stack, that offers a solution to increase peak signal intensity of holographic sensors by greater than 200%. Nitric acid is used to etch the silver nanoparticles within the polymer matrix and is thought to remove the smaller particles to generate more defined metal fringes containing a soluble metal salt. Once the grating efficiency has been increased, this salt can be converted to a silver halide, to modulate the refractive index and increase the intensity of the holographic signal. This new protocol has been tested in a range of polymer chemistries; those containing functional groups that help to

  11. Age-Related Enhancement of a Protein Synthesis-Dependent Late Phase of LTP Induced by Low Frequency Paired-Pulse Stimulation in Hippocampus

    ERIC Educational Resources Information Center

    Huang, Yan-You; Kandel, Eric R.

    2006-01-01

    Protein synthesis-dependent late phase of LTP (L-LTP) is typically induced by repeated high-frequency stimulation (HFS). This form of L-LTP is reduced in the aged animal and is positively correlated with age-related memory loss. Here we report a novel form of protein synthesis-dependent late phase of LTP in the CA1 region of hippocampus induced by…

  12. AGED DOMINANT NEGATIVE p38α MAPK MICE ARE RESISTANT TO AGE-DEPENDENT DECLINE IN ADULT-NEUROGENESIS AND CONTEXT DISCRIMINATION FEAR CONDITIONING

    PubMed Central

    Cortez, IbDanelo; Bulavin, Dmitry V.; Wu, Ping; McGrath, Erica L; Cunningham, Kathryn A; Wakamiya, Maki; Papaconstantinou, John; Dineley, Kelly T

    2018-01-01

    A major aspect of mammalian aging is the decline in functional competence of many self-renewing cell types, including adult-born neuronal precursors. Since age-related senescence of self-renewal occurs simultaneously with chronic up-regulation of the p38MAPKalpha (p38α) signaling pathway, we used the dominant negative mouse model for attenuated p38α activity (DN-p38αAF/+ ) in which Thr180 and Tyr182 are mutated (T→A/Y→F) to prevent phosphorylation activation (DN-p38αAF/+) and kinase activity. As a result, aged DN-p38αAF/+ mice are resistant to age-dependent decline in proliferation and regeneration of several peripheral tissue progenitors when compared to wild-type littermates. Aging is the major risk factor for non-inherited forms of Alzheimer’s disease (AD); environmental and genetic risk factors that accelerate the senescence phenotype are thought to contribute to an individual’s relative risk. In the present study, we evaluated aged DN-p38αAF/+ and wildtype littermates in a series of behavioral paradigms to test if p38α mutant mice exhibit altered baseline abnormalities in neurological reflexes, locomotion, anxiety-like behavior, and age-dependent cognitive decline. While aged DN-p38αAF/+ and wildtype littermates appear equal in all tested baseline neurological and behavioral parameters, DN-p38αAF/+ exhibit superior context discrimination fear conditioning. Context discrimination is a cognitive task that is supported by proliferation and differentiation of adult-born neurons in the dentate gyrus of the hippocampus. Consistent with enhanced context discrimination in aged DN-p38αAF/+, we discovered enhanced production of adult-born neurons in the dentate gyrus of DN-p38αAF/+ mice compared to wildtype littermates. Our findings support the notion that p38α inhibition has therapeutic utility in aging diseases that affect cognition, such as AD. PMID:27765672

  13. Aged dominant negative p38α MAPK mice are resistant to age-dependent decline in adult-neurogenesis and context discrimination fear conditioning.

    PubMed

    Cortez, IbDanelo; Bulavin, Dmitry V; Wu, Ping; McGrath, Erica L; Cunningham, Kathryn A; Wakamiya, Maki; Papaconstantinou, John; Dineley, Kelly T

    2017-03-30

    A major aspect of mammalian aging is the decline in functional competence of many self-renewing cell types, including adult-born neuronal precursors. Since age-related senescence of self-renewal occurs simultaneously with chronic up-regulation of the p38MAPKalpha (p38α) signaling pathway, we used the dominant negative mouse model for attenuated p38α activity (DN-p38α AF/+ ) in which Thr180 and Tyr182 are mutated (T→A/Y→F) to prevent phosphorylation activation (DN-p38α AF/+ ) and kinase activity. As a result, aged DN-p38α AF/+ mice are resistant to age-dependent decline in proliferation and regeneration of several peripheral tissue progenitors when compared to wild-type littermates. Aging is the major risk factor for non-inherited forms of Alzheimer's disease (AD); environmental and genetic risk factors that accelerate the senescence phenotype are thought to contribute to an individual's relative risk. In the present study, we evaluated aged DN-p38α AF/+ and wildtype littermates in a series of behavioral paradigms to test if p38α mutant mice exhibit altered baseline abnormalities in neurological reflexes, locomotion, anxiety-like behavior, and age-dependent cognitive decline. While aged DN-p38α AF/+ and wildtype littermates appear equal in all tested baseline neurological and behavioral parameters, DN-p38α AF/+ exhibit superior context discrimination fear conditioning. Context discrimination is a cognitive task that is supported by proliferation and differentiation of adult-born neurons in the dentate gyrus of the hippocampus. Consistent with enhanced context discrimination in aged DN-p38α AF/+ , we discovered enhanced production of adult-born neurons in the dentate gyrus of DN-p38α AF/+ mice compared to wildtype littermates. Our findings support the notion that p38α inhibition has therapeutic utility in aging diseases that affect cognition, such as AD. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Image guided radiofrequency thermo-ablation therapy of chondroblastomas: should it replace surgery?

    PubMed

    Lalam, Radhesh K; Cribb, Gillian L; Tins, Bernard J; Cool, Wim P; Singh, Jaspreet; Tyrrell, Prudencia N M; Cassar-Pullicino, Victor N

    2014-04-01

    To assess the safety and effectiveness of image-guided radiofrequency ablation (RF ablation) in the treatment of chondroblastomas as an alternative to surgery. Twelve patients with histologically proven chondroblastoma at our institution from 2003 to date. We reviewed the indications, recurrences and complications in patients who underwent RF ablation. Twelve patients were diagnosed with chondroblastoma. Out of these, 8 patients (6 male, 2 female, mean age 17 years) with chondroblastoma (mean size 2.7 cm) underwent RF ablation. Multitine expandable electrodes were used in all patients. The number of probe positions needed varied from 1 to 4 and lesions were ablated at 90 °C for 5 min at each probe position. The tumours were successfully treated and all patients became asymptomatic. There were no recurrences. There were 2 patients with knee complications, 1 with minor asymptomatic infraction of the subchondral bone and a second patient with osteonecrosis/chondrolysis. Radiofrequency ablation appears to be a safe and effective alternative to surgical treatment with a low risk of recurrence and complications for most chondroblastomas. RF ablation is probably superior to surgery when chondroblastomas are small (less than 2.5 cm) with an intact bony margin with subchondral bone and in areas of difficult surgical access.

  15. [Septal alcohol ablation in patients with hypertrophic cardiomyopathy].

    PubMed

    López-Aburto, Gustavo; Palacios-Rodríguez, Juan Manuel; Cantú-Ramírez, Samuel; Galván-García, Eduardo; Tolosa-Dzul, Gonzalo; Morán-Benavente, Armando; Ontiveros-Martínez, Raúl

    2013-01-01

    to know the clinical and hemodynamic course in septal obstructive hypertrophic cardiomyopathy (SOHC) after alcohol ablation. this was an observational, longitudinal study, including 21 patients with SOHC with functional class of the New York Heart Association (CF-NYHA) refractory to treatment and/or = 30 mm Hg gradient at rest or = 60 mm Hg provoked, or have systolic anterior motion or mitral incompetence (MI) > grade II by echocardiography. average age was 50 ± 16 years, males 38.1 %, females 61.9 %; symptoms: angina 42.9 %, dyspnea 85.7 %, syncope 23.8 %. Pre-ablation CF-NYHA was III and IV in 61.9 %; after a year follow-up all of them were class I-II. Pre-ablation, after and one year later, interventricle septum measures were 22.7 ± 4.9 and 20.7 ± 3.1 mm; left ventricular ejection fraction was 65.5 ± 7 %, 62.2 % ± 6.5 % and 68.7 ± 6.2 %; the output gradient of the left ventricle were 106.9 ± 29.9, 44.6 ± 24.3 and 22.0 ± 5.7 mm Hg. Pre-ablation MI grade-III and IV were 33.3 % and 47.6 %; after a year it was grade-0, 52.4 %, grade-I 28.6 %, grade-II, 19 %. There were no hospital mortality. the alcohol septal ablation in SOHC patients had a high success treatment with a low complication rate.

  16. Ablative skin resurfacing.

    PubMed

    Agrawal, Nidhi; Smith, Greg; Heffelfinger, Ryan

    2014-02-01

    Ablative laser resurfacing has evolved as a safe and effective treatment for skin rejuvenation. Although traditional lasers were associated with significant thermal damage and lengthy recovery, advances in laser technology have improved safety profiles and reduced social downtime. CO2 lasers remain the gold standard of treatment, and fractional ablative devices capable of achieving remarkable clinical improvement with fewer side effects and shorter recovery times have made it a more practical option for patients. Although ablative resurfacing has become safer, careful patient selection and choice of suitable laser parameters are essential to minimize complications and optimize outcomes. This article describes the current modalities used in ablative laser skin resurfacing and examines their efficacy, indications, and possible side effects. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  17. Image-Guided Ablation of Adrenal Lesions

    PubMed Central

    Yamakado, Koichiro

    2014-01-01

    Although laparoscopic adrenalectomy has remained the standard of care for the treatment for adrenal tumors, percutaneous image-guided ablation therapy, such as chemical ablation, radiofrequency ablation, cryoablation, and microwave ablation, has been shown to be clinically useful in many nonsurgical candidates. Ablation therapy has been used to treat both functioning adenomas and malignant tumors, including primary adrenal carcinoma and metastasis. For patients with functioning adenomas, biochemical and symptomatic improvement is achieved in 96 to 100% after ablation; for patients with malignant adrenal neoplasms, however, the survival benefit from ablation therapy remains unclear, though good initial results have been reported. This article outlines the current role of ablation therapy for adrenal lesions, as well as identifying some of the technical considerations for this procedure. PMID:25049444

  18. Protein structural failure in mid-IR laser ablation of cornea

    NASA Astrophysics Data System (ADS)

    Hutson, M. Shane; Xiao, Yaowu; Guo, Mingsheng

    2006-05-01

    Researchers have previously observed that tissue ablation with a free electron laser tuned to wavelengths between 6-7 μm is accompanied by remarkably little collateral damage. Attempts to explain these observations have invoked a wavelength-dependent loss of protein structural integrity; however, the molecular nature of this structural failure has been heretofore ill-defined. In this report, we evaluate several candidates for the relevant transition by analyzing the non-volatile debris ejected during ablation. Porcine corneas were ablated with a free electron laser tuned to either 2.77 or 6.45 μm - wavelengths that are equally well absorbed by hydrated corneas, but that respectively target water or protein as the primary chromophore. The ejected debris was characterized via gel electrophoresis, as well as FTIR, micro-Raman and 13C-NMR spectroscopy. We find that high-fluence (240 J/cm2) ablation at 6.45 μm, but not at 2.77 μm, leads to protein fragmentation. This fragmentation is accompanied by the accumulation of nitrile and alkyne species. Although these initial experiments did not detect significant protein unfolding, the loss of collagen triple-helix structure was evident using UV and vibrational circular dichroism. The candidate transition most consistent with all these observations is scission of the collagen protein backbone at N-alkylamide bonds. Identifying this transition is a key step towards understanding the observed wavelength-dependence of collateral damage.

  19. OCDR guided laser ablation device

    DOEpatents

    Dasilva, Luiz B.; Colston, Jr., Bill W.; James, Dale L.

    2002-01-01

    A guided laser ablation device. The device includes a mulitmode laser ablation fiber that is surrounded by one or more single mode optical fibers that are used to image in the vicinity of the laser ablation area to prevent tissue damage. The laser ablation device is combined with an optical coherence domain reflectometry (OCDR) unit and with a control unit which initializes the OCDR unit and a high power laser of the ablation device. Data from the OCDR unit is analyzed by the control unit and used to control the high power laser. The OCDR images up to about 3 mm ahead of the ablation surface to enable a user to see sensitive tissue such as a nerve or artery before damaging it by the laser.

  20. Local ablative treatments for hepatocellular carcinoma: An updated review

    PubMed Central

    Facciorusso, Antonio; Serviddio, Gaetano; Muscatiello, Nicola

    2016-01-01

    Ablative treatments currently represent the first-line option for the treatment of early stage unresectable hepatocellular carcinoma (HCC). Furthermore, they are effective as bridging/downstaging therapies before orthotopic liver transplantation. Contraindications based on size, number, and location of nodules are quite variable in literature and strictly dependent on local expertise. Among ablative therapies, radiofrequency ablation (RFA) has gained a pivotal role due to its efficacy, with a reported 5-year survival rate of 40%-70%, and safety. Although survival outcomes are similar to percutaneous ethanol injection, the lower local recurrence rate stands for a wider application of RFA in hepato-oncology. Moreover, RFA seems to be even more cost-effective than liver resection for very early HCC (single nodule ≤ 2 cm) and in the presence of two or three nodules ≤ 3 cm. There is increasing evidence that combining RFA to transarterial chemoembolization may increase the therapeutic benefit in larger HCCs without increasing the major complication rate, but more robust prospective data is still needed to validate these pivotal findings. Among other thermal treatments, microwave ablation (MWA) uses high frequency electromagnetic energy to induce tissue death via coagulation necrosis. In comparison to RFA, MWA has several theoretical advantages such as a broader zone of active heating, higher temperatures within the targeted area in a shorter treatment time and the lack of heat-sink effect. The safety concerns raised on the risks of this procedure, due to the broader and less predictable necrosis areas, have been recently overcome. However, whether MWA ability to generate a larger ablation zone will translate into a survival gain remains unknown. Other treatments, such as high-intensity focused ultrasound ablation, laser ablation, and cryoablation, are less investigated but showed promising results in early HCC patients and could be a valuable therapeutic option in

  1. Mass Spectrometric Imaging Using Laser Ablation and Solvent Capture by Aspiration (LASCA)

    NASA Astrophysics Data System (ADS)

    Brauer, Jonathan I.; Beech, Iwona B.; Sunner, Jan

    2015-09-01

    A novel interface for ambient, laser ablation-based mass spectrometric imaging (MSI) referred to as laser ablation and solvent capture by aspiration (LASCA) is presented and its performance demonstrated using selected, unaltered biological materials. LASCA employs a pulsed 2.94 μm laser beam for specimen ablation. Ablated materials in the laser plumes are collected on a hanging solvent droplet with electric field-enhanced trapping, followed by aspiration of droplets and remaining plume material in the form of a coarse aerosol into a collection capillary. The gas and liquid phases are subsequently separated in a 10 μL-volume separatory funnel, and the solution is analyzed with electrospray ionization in a high mass resolution Q-ToF mass spectrometer. The LASCA system separates the sampling and ionization steps in MSI and combines high efficiencies of laser plume sampling and of electrospray ionization (ESI) with high mass resolution MS. Up to 2000 different compounds are detected from a single ablation spot (pixel). Using the LASCA platform, rapid (6 s per pixel), high sensitivity, high mass-resolution ambient imaging of "as-received" biological material is achieved routinely and reproducibly.

  2. Local delivery of a selective androgen receptor modulator failed as an anabolic agent in a rat bone marrow ablation model

    PubMed Central

    Aro, Hannu T; Kulkova, Julia; Moritz, Niko; Kähkönen, Esa; Mattila, Riina H

    2015-01-01

    Background and purpose — Selective androgen receptor modulators (SARMs) have been developed to have systemic anabolic effects on bones and muscles without the adverse effects of steroidal androgens. One unexplored therapeutic option is the targeted application of SARMs for the enhancement of local new bone formation. We evaluated the osteogenic efficacy of a locally released SARM (ORM-11984). Methods — ORM-11984 was mixed with a copolymer of L-lactide and ɛ-caprolactone (PLCL). An in vitro dissolution test confirmed the sustainable release of ORM-11984 from the matrix. A bone marrow ablation model was used in female Sprague-Dawley rats. Implants containing 10%, 30%, or 50% ORM-11984 by weight or pure PLCL were inserted into the medullary canal of the ablated tibia. At 6 and 12 weeks, the volume of intramedullary new bone and the perimeter of bone-implant contact were measured by micro-computed tomography and histomorphometry. Results — Contrary to our hypothesis, there was a negative correlation between the amount of new bone around the implant and the dose of ORM-11984. There was only a mild (and not statistically significant) enhancement of bone formation in ablated bones subjected to the lowest dose of the SARM (10%). Interpretation — This study suggests that intramedullary/endosteal osteogenesis had a negative, dose-dependent response to locally released SARM. This result highlights the complexity of androgenic effects on bones and also suggests that there are biological limits to the targeted local application of SARMs. PMID:26198725

  3. Nociceptor Sensitization Depends on Age and Pain Chronicity123

    PubMed Central

    Dodge, Amanda K.

    2016-01-01

    Abstract Peripheral inflammation causes mechanical pain behavior and increased action potential firing. However, most studies examine inflammatory pain at acute, rather than chronic time points, despite the greater burden of chronic pain on patient populations, especially aged individuals. Furthermore, there is disagreement in the field about whether primary afferents contribute to chronic pain. Therefore, we sought to evaluate the contribution of nociceptor activity to the generation of pain behaviors during the acute and chronic phases of inflammation in both young and aged mice. We found that both young (2 months old) and aged (>18 months old) mice exhibited prominent pain behaviors during both acute (2 day) and chronic (8 week) inflammation. However, young mice exhibited greater behavioral sensitization to mechanical stimuli than their aged counterparts. Teased fiber recordings in young animals revealed a twofold mechanical sensitization in C fibers during acute inflammation, but an unexpected twofold reduction in firing during chronic inflammation. Responsiveness to capsaicin and mechanical responsiveness of A-mechanonociceptor (AM) fibers were also reduced chronically. Importantly, this lack of sensitization in afferent firing during chronic inflammation occurred even as these inflamed mice exhibited continued behavioral sensitization. Interestingly, C fibers from inflamed aged animals showed no change in mechanical firing compared with controls during either the acute or chronic inflammatory phases, despite strong behavioral sensitization to mechanical stimuli at these time points. These results reveal the following two important findings: (1) nociceptor sensitization to mechanical stimulation depends on age and the chronicity of injury; and (2) maintenance of chronic inflammatory pain does not rely on enhanced peripheral drive. PMID:26866058

  4. Is AF Ablation Cost Effective?

    PubMed Central

    Martin-Doyle, William; Reynolds, Matthew R.

    2010-01-01

    The use of catheter ablation to treat AF is increasing rapidly, but there is presently an incomplete understanding of its cost-effectiveness. AF ablation procedures involve significant up-front expenditures, but multiple randomized trials have demonstrated that ablation is more effective than antiarrhythmic drugs at maintaining sinus rhythm in a second-line and possibly first-line rhythm control setting. Although truly long-term data are limited, ablation, as compared with antiarrrhythmic drugs, also appears associated with improved symptoms and quality of life and a reduction in downstream hospitalization and other health care resource utilization. Several groups have developed cost effectiveness models comparing AF ablation primarily to antiarrhythmic drugs and the model results suggest that ablation likely falls within the range generally accepted as cost-effective in developed nations. This paper will review available information on the cost-effectiveness of catheter ablation for the treatment of atrial fibrillation, and discuss continued areas of uncertainty where further research is required. PMID:20936083

  5. The suppression of ghrelin signaling mitigates age-associated thermogenic impairment

    PubMed Central

    Bongmba, Odelia Y. N.; Ma, Xiaojun; Zhu, Xiongwei; Sheikh-Hamad, David; Sun, Yuxiang

    2014-01-01

    Aging is associated with severe thermogenic impairment, which contributes to obesity and diabetes in aging. We previously reported that ablation of the ghrelin receptor, growth hormone secretagogue receptor (GHS-R), attenuates age-associated obesity and insulin resistance. Ghrelin and obestatin are derived from the same preproghrelin gene. Here we showed that in brown adipocytes, ghrelin decreases the expression of thermogenic regulator but obestatin increases it, thus showing the opposite effects. We also found that during aging, plasma ghrelin and GHS-R expression in brown adipose tissue (BAT) are increased, but plasma obestatin is unchanged. Increased plasma ghrelin and unchanged obestatin during aging may lead to an imbalance of thermogenic regulation, which may in turn exacerbate thermogenic impairment in aging. Moreover, we found that GHS-R ablation activates thermogenic signaling, enhances insulin activation, increases mitochondrial biogenesis, and improves mitochondrial dynamics of BAT. In addition, we detected increased norepinephrine in the circulation, and observed that GHS-R knockdown in brown adipocytes directly stimulates thermogenic activity, suggesting that GHS-R regulates thermogenesis via both central and peripheral mechanisms. Collectively, our studies demonstrate that ghrelin signaling is an important thermogenic regulator in aging. Antagonists of GHS-R may serve as unique anti-obesity agents, combating obesity by activating thermogenesis. PMID:25543537

  6. Clinical risk factors to predict deep venous thrombosis post-endovenous laser ablation of saphenous veins.

    PubMed

    Chi, Y-W; Woods, T C

    2014-04-01

    Endovenous laser ablation of saphenous veins is an alternative in treating symptomatic varicose veins. Deep venous thrombosis (DVT) has been reported in up to 7.7% of patients undergoing such procedure. We sought to establish clinical risk factors that predict DVT post-endovenous laser ablation. Patients who underwent endovenous laser ablation were prospectively followed. Clinical data and post-interventional duplex ultrasound were analysed. A P value <0.05 was accepted as representing a significant difference. From 2007 to 2008, 360 consecutive patients were followed. Nineteen DVTs were found on follow-up ultrasound. Eighteen cases involved either the saphenofemoral or saphenopopliteal junctions; only one case involved the deep venous system. Age >66 (P = 0.007), female gender (P = 0.048) and prior history of superficial thrombophlebitis (SVT) (P = 0.002) were associated with increased risk of DVT postprocedure. Age >66, female gender and history of SVT were significant predictors of DVT post-endovenous laser ablation of saphenous veins.

  7. Liquid-assisted laser ablation of advanced ceramics and glass-ceramic materials

    NASA Astrophysics Data System (ADS)

    Garcia-Giron, A.; Sola, D.; Peña, J. I.

    2016-02-01

    In this work, results obtained by laser ablation of advanced ceramics and glass-ceramic materials assisted by liquids are reported. A Q-switched Nd:YAG laser at its fundamental wavelength of 1064 nm with pulse-width in the nanosecond range was used to machine the materials, which were immersed in water and ethylene glycol. Variation in geometrical parameters, morphology, and ablation yields were studied by using the same laser working conditions. It was observed that machined depth and removed volume depended on the thermal, optical, and mechanical features of the processed materials as well as on the properties of the surrounding medium in which the laser processing was carried out. Variation in ablation yields was studied in function of the liquid used to assist the laser process and related to refractive index and viscosity. Material features and working conditions were also related to the obtained results in order to correlate ablation parameters with respect to the hardness of the processed materials.

  8. Experimental investigation of the dynamics of pellet ablation on the Texas Experimental Tokamak

    SciTech Connect

    Durst, R.D.

    1988-01-01

    Rapid fluctuations in the ablation of hydrogen pellets in the Texas Experimental Tokamak were studied using fast photographic techniques. It is proposed that the fluctuations are a type of relaxation oscillation driven by the motion of the particle across the magnetic field. This is shown to be consistent with a time-dependent model of plasma shielding due to Kaufmann et al. A technique to include this effect in calculations of pellet ablation is discussed. Spatially resolved measurements of the temperature and density in the pellet-ablation cloud were obtained by line-to-continuum ratios and Stark broadening, respectively. Typical parameters in the pellet-ablation cloudmore » are 5-6 eV and 1.0-1.5 {times} 10{sup 17} cm{sup {minus}3}. The flow along the magnetic field is found to be isobaric. The heating of the expanding ablatant is strongly asymmetric, being stronger on the side facing the electron-drift direction. This may be due to suprathermal electrons.« less

  9. Initial experience of EUS-guided radiofrequency ablation of unresectable pancreatic cancer.

    PubMed

    Song, Tae Jun; Seo, Dong Wan; Lakhtakia, Sundeep; Reddy, Nageshwar; Oh, Dong Wook; Park, Do Hyun; Lee, Sang Soo; Lee, Sung Koo; Kim, Myung-Hwan

    2016-02-01

    Radiofrequency ablation (RFA) has been used as a valuable treatment modality for various unresectable malignancies. EUS-guided radiofrequency ablation (EUS-RFA) of the porcine pancreas was reported to be feasible and safe in our previous study, suggesting that EUS-RFA may be applicable as an adjunct and effective alternative treatment method for unresectable pancreatic cancer. This study aimed to assess the technical feasibility and safety of EUS-RFA for unresectable pancreatic cancer. An 18-gauge endoscopic RFA electrode and a radiofrequency generator were used for the procedure. The length of the exposed tip of the RFA electrode was 10 mm. After insertion of the RFA electrode into the mass, the radiofrequency generator was activated to deliver 20 to 50 W ablation power for 10 seconds. Depending on tumor size, the procedure was repeated to sufficiently cover the tumor. EUS-RFA was performed successfully in all 6 patients (median age 62 years, range 43-73 years). Pancreatic cancer was located in the head (n = 4) or body (n = 2) of the pancreas. The median diameter of masses was 3.8 cm (range 3cm-9cm). Four patients had stage 3 disease, and 2 patients had stage 4 disease. After the procedure, 2 patients experienced mild abdominal pain, but there were no other adverse events such as pancreatitis or bleeding. EUS-RFA could be a technically feasible and safe option for patients with unresectable pancreatic cancer. Copyright © 2016 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  10. Age-Dependent Netrin-1 Signaling Regulates NG2+ Glial Cell Spatial Homeostasis in Normal Adult Gray Matter.

    PubMed

    Birey, Fikri; Aguirre, Adan

    2015-04-29

    Neuron-glial antigen 2-positive (NG2(+)) glial cells are the most proliferative glia type in the adult CNS, and their tile-like arrangement in adult gray matter is under tight regulation. However, little is known about the cues that govern this unique distribution. To this end, using a NG2(+) glial cell ablation model in mice, we examined the repopulation dynamics of NG2(+) glial cells in the mature and aged mice gray matter. We found that some resident NG2(+) glial cells that escaped depletion rapidly enter the cell cycle to repopulate the cortex with altered spatial distribution. We reveal that netrin-1 signaling is involved in the NG2(+) glial cell early proliferative, late repopulation, and distribution response after ablation in the gray matter. However, ablation of NG2(+) glial cell in older animals failed to stimulate a similar repopulation response, possibly because of a decrease in the sensitivity to netrin-1. Our findings indicate that endogenous netrin-1 plays a role in NG2(+) glial cell homeostasis that is distinct from its role in myelination. Copyright © 2015 the authors 0270-6474/15/356946-06$15.00/0.

  11. Robotic navigation and ablation.

    PubMed

    Malcolme-Lawes, L; Kanagaratnam, P

    2010-12-01

    Robotic technologies have been developed to allow optimal catheter stability and reproducible catheter movements with the aim of achieving contiguous and transmural lesion delivery. Two systems for remote navigation of catheters within the heart have been developed; the first is based on a magnetic navigation system (MNS) Niobe, Stereotaxis, Saint-Louis, Missouri, USA, the second is based on a steerable sheath system (Sensei, Hansen Medical, Mountain View, CA, USA). Both robotic and magnetic navigation systems have proven to be feasible for performing ablation of both simple and complex arrhythmias, particularly atrial fibrillation. Studies to date have shown similar success rates for AF ablation compared to that of manual ablation, with many groups finding a reduction in fluoroscopy times. However, the early learning curve of cases demonstrated longer procedure times, mainly due to additional setup times. With centres performing increasing numbers of robotic ablations and the introduction of a pressure monitoring system, lower power settings and instinctive driving software, complication rates are reducing, and fluoroscopy times have been lower than manual ablation in many studies. As the demand for catheter ablation for arrhythmias such as atrial fibrillation increases and the number of centres performing these ablations increases, the demand for systems which reduce the hand skill requirement and improve the comfort of the operator will also increase.

  12. Computational Analysis of Arc-Jet Wedge Tests Including Ablation and Shape Change

    NASA Technical Reports Server (NTRS)

    Goekcen, Tahir; Chen, Yih-Kanq; Skokova, Kristina A.; Milos, Frank S.

    2010-01-01

    Coupled fluid-material response analyses of arc-jet wedge ablation tests conducted in a NASA Ames arc-jet facility are considered. These tests were conducted using blunt wedge models placed in a free jet downstream of the 6-inch diameter conical nozzle in the Ames 60-MW Interaction Heating Facility. The fluid analysis includes computational Navier-Stokes simulations of the nonequilibrium flowfield in the facility nozzle and test box as well as the flowfield over the models. The material response analysis includes simulation of two-dimensional surface ablation and internal heat conduction, thermal decomposition, and pyrolysis gas flow. For ablating test articles undergoing shape change, the material response and fluid analyses are coupled in order to calculate the time dependent surface heating and pressure distributions that result from shape change. The ablating material used in these arc-jet tests was Phenolic Impregnated Carbon Ablator. Effects of the test article shape change on fluid and material response simulations are demonstrated, and computational predictions of surface recession, shape change, and in-depth temperatures are compared with the experimental measurements.

  13. Water content contribution in calculus phantom ablation during Q-switched Tm:YAG laser lithotripsy.

    PubMed

    Zhang, Jian J; Rajabhandharaks, Danop; Xuan, Jason Rongwei; Wang, Hui; Chia, Ray W J; Hasenberg, Tom; Kang, Hyun Wook

    2015-01-01

    Q-switched (QS) Tm:YAG laser ablation mechanisms on urinary calculi are still unclear to researchers. Here, dependence of water content in calculus phantom on calculus ablation performance was investigated. White gypsum cement was used as a calculus phantom model. The calculus phantoms were ablated by a total 3-J laser pulse exposure (20 mJ, 100 Hz, 1.5 s) and contact mode with N=15 sample size. Ablation volume was obtained on average 0.079, 0.122, and 0.391  mm3 in dry calculus in air, wet calculus in air, and wet calculus in-water groups, respectively. There were three proposed ablation mechanisms that could explain the effect of water content in calculus phantom on calculus ablation performance, including shock wave due to laser pulse injection and bubble collapse, spallation, and microexplosion. Increased absorption coefficient of wet calculus can cause stronger spallation process compared with that caused by dry calculus; as a result, higher calculus ablation was observed in both wet calculus in air and wet calculus in water. The test result also indicates that the shock waves generated by short laser pulse under the in-water condition have great impact on the ablation volume by Tm:YAG QS laser.

  14. Towards computer-assisted TTTS: Laser ablation detection for workflow segmentation from fetoscopic video.

    PubMed

    Vasconcelos, Francisco; Brandão, Patrick; Vercauteren, Tom; Ourselin, Sebastien; Deprest, Jan; Peebles, Donald; Stoyanov, Danail

    2018-06-27

    Intrauterine foetal surgery is the treatment option for several congenital malformations. For twin-to-twin transfusion syndrome (TTTS), interventions involve the use of laser fibre to ablate vessels in a shared placenta. The procedure presents a number of challenges for the surgeon, and computer-assisted technologies can potentially be a significant support. Vision-based sensing is the primary source of information from the intrauterine environment, and hence, vision approaches present an appealing approach for extracting higher level information from the surgical site. In this paper, we propose a framework to detect one of the key steps during TTTS interventions-ablation. We adopt a deep learning approach, specifically the ResNet101 architecture, for classification of different surgical actions performed during laser ablation therapy. We perform a two-fold cross-validation using almost 50 k frames from five different TTTS ablation procedures. Our results show that deep learning methods are a promising approach for ablation detection. To our knowledge, this is the first attempt at automating photocoagulation detection using video and our technique can be an important component of a larger assistive framework for enhanced foetal therapies. The current implementation does not include semantic segmentation or localisation of the ablation site, and this would be a natural extension in future work.

  15. Outcomes of repeat catheter ablation using magnetic navigation or conventional ablation.

    PubMed

    Akca, Ferdi; Theuns, Dominic A M J; Abkenari, Lara Dabiri; de Groot, Natasja M S; Jordaens, Luc; Szili-Torok, Tamas

    2013-10-01

    After initial catheter ablation, repeat procedures could be necessary. This study evaluates the efficacy of the magnetic navigation system (MNS) in repeat catheter ablation as compared with manual conventional techniques (MANs). The results of 163 repeat ablation procedures were analysed. Ablations were performed either using MNS (n = 84) or conventional manual ablation (n = 79). Procedures were divided into four groups based on the technique used during the initial and repeat ablation procedure: MAN-MAN (n = 66), MAN-MNS (n = 31), MNS-MNS (n = 53), and MNS-MAN (n = 13). Three subgroups were analysed: supraventricular tachycardias (SVTs, n = 68), atrial fibrillation (AF, n = 67), and ventricular tachycardias (VT, n = 28). Recurrences were assessed during 19 ± 11 months follow-up. Overall, repeat procedures using MNS were successful in 89.0% as compared with 96.2% in the MAN group (P = ns). The overall recurrence rate was significantly lower using MNS (25.0 vs. 41.4%, P = 0.045). Acute success and recurrence rates for the MAN-MAN, MAN-MNS, MNS-MNS, and MNS-MAN groups were comparable. For the SVT subgroup a higher acute success rate was achieved using MAN (87.9 vs. 100.0%, P = 0.049). The use of MNS for SVT is associated with longer procedure times (205 ± 82 vs. 172 ± 69 min, P = 0.040). For AF procedure and fluoroscopy times were longer (257 ± 72 vs. 185 ± 64, P = 0.001; 59.5 ± 19.3 vs. 41.1 ± 18.3 min, P < 0.001). Less fluoroscopy was used for MNS-guided VT procedures (22.8 ± 14.7 vs. 41.2 ± 10.9, P = 0.011). Our data suggest that overall MNS is comparable with MAN in acute success after repeat catheter ablation. However, MNS is related to fewer recurrences as compared with MAN.

  16. Screening Magnetic Resonance Imaging-Based Prediction Model for Assessing Immediate Therapeutic Response to Magnetic Resonance Imaging-Guided High-Intensity Focused Ultrasound Ablation of Uterine Fibroids.

    PubMed

    Kim, Young-sun; Lim, Hyo Keun; Park, Min Jung; Rhim, Hyunchul; Jung, Sin-Ho; Sohn, Insuk; Kim, Tae-Joong; Keserci, Bilgin

    2016-01-01

    The aim of this study was to fit and validate screening magnetic resonance imaging (MRI)-based prediction models for assessing immediate therapeutic responses of uterine fibroids to MRI-guided high-intensity focused ultrasound (MR-HIFU) ablation. Informed consent from all subjects was obtained for our institutional review board-approved study. A total of 240 symptomatic uterine fibroids (mean diameter, 6.9 cm) in 152 women (mean age, 43.3 years) treated with MR-HIFU ablation were retrospectively analyzed (160 fibroids for training, 80 fibroids for validation). Screening MRI parameters (subcutaneous fat thickness [mm], x1; relative peak enhancement [%] in semiquantitative perfusion MRI, x2; T2 signal intensity ratio of fibroid to skeletal muscle, x3) were used to fit prediction models with regard to ablation efficiency (nonperfused volume/treatment cell volume, y1) and ablation quality (grade 1-5, poor to excellent, y2), respectively, using the generalized estimating equation method. Cutoff values for achievement of treatment intent (efficiency >1.0; quality grade 4/5) were determined based on receiver operating characteristic curve analysis. Prediction performances were validated by calculating positive and negative predictive values. Generalized estimating equation analyses yielded models of y1 = 2.2637 - 0.0415x1 - 0.0011x2 - 0.0772x3 and y2 = 6.8148 - 0.1070x1 - 0.0050x2 - 0.2163x3. Cutoff values were 1.312 for ablation efficiency (area under the curve, 0.7236; sensitivity, 0.6882; specificity, 0.6866) and 4.019 for ablation quality (0.8794; 0.7156; 0.9020). Positive and negative predictive values were 0.917 and 0.500 for ablation efficiency and 0.978 and 0.600 for ablation quality, respectively. Screening MRI-based prediction models for assessing immediate therapeutic responses of uterine fibroids to MR-HIFU ablation were fitted and validated, which may reduce the risk of unsuccessful treatment.

  17. Conformal needle-based ultrasound ablation using EM-tracked conebeam CT image guidance

    NASA Astrophysics Data System (ADS)

    Burdette, E. Clif; Banovac, Filip; Diederich, Chris J.; Cheng, Patrick; Wilson, Emmanuel; Cleary, Kevin R.

    2011-03-01

    Numerous studies have demonstrated the efficacy of interstitial ablative approaches for the treatment of renal and hepatic tumors. Despite these promising results, current systems remain highly dependent on operator skill, and cannot treat many tumors because there is little control of the size and shape of the zone of necrosis, and no control over ablator trajectory within tissue once insertion has taken place. Additionally, tissue deformation and target motion make it extremely difficult to accurately place the ablator device into the target. Irregularly shaped target volumes typically require multiple insertions and several sequential thermal ablation procedures. This study demonstrated feasibility of spatially tracked image-guided conformal ultrasound (US) ablation for percutaneous directional ablation of diseased tissue. Tissue was prepared by suturing the liver within a pig belly and 1mm BBs placed to serve as needle targets. The image guided system used integrated electromagnetic tracking and cone-beam CT (CBCT) with conformable needlebased high-intensity US ablation in the interventional suite. Tomographic images from cone beam CT were transferred electronically to the image-guided tracking system (IGSTK). Paired-point registration was used to register the target specimen to CT images and enable navigation. Path planning is done by selecting the target BB on the GUI of the realtime tracking system and determining skin entry location until an optimal path is selected. Power was applied to create the desired ablation extent within 7-10 minutes at a thermal dose (>300eqm43). The system was successfully used to place the US ablator in planned target locations within ex-vivo kidney and liver through percutaneous access. Targeting accuracy was 3-4 mm. Sectioned specimens demonstrated uniform ablation within the planned target zone. Subsequent experiments were conducted for multiple ablator positions based upon treatment planning simulations. Ablation zones in

  18. Atrio-ventricular junction ablation and pacemaker treatment: a comparison between men and women.

    PubMed

    Carnlöf, Carina; Insulander, Per; Jensen-Urstad, Mats; Iwarzon, Marie; Gadler, Fredrik

    2018-06-01

    To explore sex differences regarding indication for atrio-ventricular junction ablation (AVJ), choice of pacing system, complications to pacemaker treatment, long-term outcome, and cause of death after AVJ ablation. 700 patients who had undergone AVJ ablation between January 1990 and December 2010 were included. Data were retrieved from the patients´ medical records and the Swedish Pacemaker and Implantable Cardioverter-Defibrillator Registry. Information about admission to hospital and cause of death was retrieved from the National Board of Health and Welfare. Mean follow-up was 90 ± 64 months. Indication for AVJ ablation, choice of pacing system, and outcome after AVJ ablation differed between the sexes. The men had more often permanent atrial fibrillation, p = .0001, and a VVIR pacemaker or cardiac resynchronization therapy (CRT) implanted prior to ablation, p = .0001. Heart failure was present in 44% of the men vs. 28% of the women, p = .0001. LVEF decreased slightly in the whole cohort after the AVJ ablation. There were no sex differences in complication rates due to the pacemaker/ICD treatment, p = .3 or mortality due to AVJ ablation. In this long-term follow-up in patients with atrial fibrillation treated with AVJ ablation and pacing, indication, choice of pacing system, and morbidity differed but there were no sex differences regarding survival or primary cause of death found. The main factor influencing survival was age at the time of ablation. Women less often received treatment with ICD and/or CRT when indication was present compared with men.

  19. A study of the effect of selected material properties on the ablation performance of artificial graphite

    NASA Technical Reports Server (NTRS)

    Maahs, H. G.

    1972-01-01

    Eighteen material properties were measured on 45 different, commercially available, artificial graphites. Ablation performance of these same graphites were also measured in a Mach 2 airstream at a stagnation pressure of 5.6 atm. Correlations were developed, where possible, between pairs of the material properties. Multiple regression equations were then formulated relating ablation performance to the various material properties, thus identifying those material properties having the strongest effect on ablation performance. These regression equations reveal that ablation performance in the present test environment depends primarily on maximum grain size, density, ash content, thermal conductivity, and mean pore radius. For optimization of ablation performance, grain size should be small, ash content low, density and thermal conductivity high, and mean pore radius large.

  20. Daily muscle stretching enhances blood flow, endothelial function, capillarity, vascular volume and connectivity in aged skeletal muscle.

    PubMed

    Hotta, Kazuki; Behnke, Bradley J; Arjmandi, Bahram; Ghosh, Payal; Chen, Bei; Brooks, Rachael; Maraj, Joshua J; Elam, Marcus L; Maher, Patrick; Kurien, Daniel; Churchill, Alexandra; Sepulveda, Jaime L; Kabolowsky, Max B; Christou, Demetra D; Muller-Delp, Judy M

    2018-05-15

    In aged rats, daily muscle stretching increases blood flow to skeletal muscle during exercise. Daily muscle stretching enhanced endothelium-dependent vasodilatation of skeletal muscle resistance arterioles of aged rats. Angiogenic markers and capillarity increased in response to daily stretching in muscles of aged rats. Muscle stretching performed with a splint could provide a feasible means of improving muscle blood flow and function in elderly patients who cannot perform regular aerobic exercise. Mechanical stretch stimuli alter the morphology and function of cultured endothelial cells; however, little is known about the effects of daily muscle stretching on adaptations of endothelial function and muscle blood flow. The present study aimed to determine the effects of daily muscle stretching on endothelium-dependent vasodilatation and muscle blood flow in aged rats. The lower hindlimb muscles of aged Fischer rats were passively stretched by placing an ankle dorsiflexion splint for 30 min day -1 , 5 days week -1 , for 4 weeks. Blood flow to the stretched limb and the non-stretched contralateral limb was determined at rest and during treadmill exercise. Endothelium-dependent/independent vasodilatation was evaluated in soleus muscle arterioles. Levels of hypoxia-induced factor-1α, vascular endothelial growth factor A and neuronal nitric oxide synthase were determined in soleus muscle fibres. Levels of endothelial nitric oxide synthase and superoxide dismutase were determined in soleus muscle arterioles, and microvascular volume and capillarity were evaluated by microcomputed tomography and lectin staining, respectively. During exercise, blood flow to plantar flexor muscles was significantly higher in the stretched limb. Endothelium-dependent vasodilatation was enhanced in arterioles from the soleus muscle from the stretched limb. Microvascular volume, number of capillaries per muscle fibre, and levels of hypoxia-induced factor-1α, vascular endothelial growth

  1. The Gene Regulatory Network of Lens Induction Is Wired through Meis-Dependent Shadow Enhancers of Pax6

    PubMed Central

    Antosova, Barbora; Smolikova, Jana; Klimova, Lucie; Lachova, Jitka; Bendova, Michaela; Kozmikova, Iryna; Machon, Ondrej; Kozmik, Zbynek

    2016-01-01

    Lens induction is a classical developmental model allowing investigation of cell specification, spatiotemporal control of gene expression, as well as how transcription factors are integrated into highly complex gene regulatory networks (GRNs). Pax6 represents a key node in the gene regulatory network governing mammalian lens induction. Meis1 and Meis2 homeoproteins are considered as essential upstream regulators of Pax6 during lens morphogenesis based on their interaction with the ectoderm enhancer (EE) located upstream of Pax6 transcription start site. Despite this generally accepted regulatory pathway, Meis1-, Meis2- and EE-deficient mice have surprisingly mild eye phenotypes at placodal stage of lens development. Here, we show that simultaneous deletion of Meis1 and Meis2 in presumptive lens ectoderm results in arrested lens development in the pre-placodal stage, and neither lens placode nor lens is formed. We found that in the presumptive lens ectoderm of Meis1/Meis2 deficient embryos Pax6 expression is absent. We demonstrate using chromatin immunoprecipitation (ChIP) that in addition to EE, Meis homeoproteins bind to a remote, ultraconserved SIMO enhancer of Pax6. We further show, using in vivo gene reporter analyses, that the lens-specific activity of SIMO enhancer is dependent on the presence of three Meis binding sites, phylogenetically conserved from man to zebrafish. Genetic ablation of EE and SIMO enhancers demostrates their requirement for lens induction and uncovers an apparent redundancy at early stages of lens development. These findings identify a genetic requirement for Meis1 and Meis2 during the early steps of mammalian eye development. Moreover, they reveal an apparent robustness in the gene regulatory mechanism whereby two independent "shadow enhancers" maintain critical levels of a dosage-sensitive gene, Pax6, during lens induction. PMID:27918583

  2. Ablative Thermal Protection System Fundamentals

    NASA Technical Reports Server (NTRS)

    Beck, Robin A. S.

    2013-01-01

    This is the presentation for a short course on the fundamentals of ablative thermal protection systems. It covers the definition of ablation, description of ablative materials, how they work, how to analyze them and how to model them.

  3. A rotational ablation tool for calcified atherosclerotic plaque removal.

    PubMed

    Kim, Min-Hyeng; Kim, Hyung-Jung; Kim, Nicholas N; Yoon, Hae-Sung; Ahn, Sung-Hoon

    2011-12-01

    Atherosclerosis is a major cardiovascular disease involving accumulations of lipids, white blood cells, and other materials on the inside of artery walls. Since the calcification found in the advanced stage of atherosclerosis dramatically enhances the mechanical properties of the plaque, restoring the original lumen of the artery remains a challenge. High-speed rotational atherectomy, when performed with an ablating grinder to remove the plaque, produces much better results in the treatment of calcified plaque compared to other methods. However, the high-speed rotation of the Rotablator commercial rotational atherectomy device produces microcavitation, which should be avoided because of the serious complications it can cause. This research involves the development of a high-speed rotational ablation tool that does not generate microcavitation. It relies on surface modification to achieve the required surface roughness. The surface roughness of the tool for differential cutting was designed based on lubrication theory, and the surface of the tool was modified using Nd:YAG laser beam engraving. Electron microscope images and profiles indicated that the engraved surface of the tool had approximately 1 μm of root mean square surface roughness. The ablation experiment was performed on hydroxyapatite/polylactide composite with an elastic modulus similar to that of calcified plaque. In addition, differential cutting was verified on silicone rubber with an elastic modulus similar to that of a normal artery. The tool performance and reliability were evaluated by measuring the ablation force exerted, the size of the debris generated during ablation, and through visual inspection of the silicone rubber surface.

  4. Performance of Conformable Phenolic Impregnated Carbon Ablator in Aerothermal Environments

    NASA Technical Reports Server (NTRS)

    Thornton, Jeremy; Fan, Wendy; Stackpoole, Mairead; Kao, David; Skokova, Kristina; Chavez-Garcia, Jose

    2012-01-01

    Conformable Phenolic Impregnated Carbon Ablator, a cousin of Phenolic Impregnated Carbon Ablator (PICA), was developed at NASA Ames Research Center as a lightweight thermal protection system under the Fundamental Aeronautics Program. PICA is made using a brittle carbon substrate, which has a very low strain to failure. Conformable PICA is made using a flexible carbon substrate, a felt in this case. The flexible felt significantly increases the strain to failure of the ablator. PICA is limited by its thermal mechanical properties. Future NASA missions will require heatshields that are more fracture resistant than PICA and, as a result, NASA Ames is working to improve PICA's performance by developing conformable PICA to meet these needs. Research efforts include tailoring the chemistry of conformable PICA with varying amounts of additives to enhance mechanical properties and testing them in aerothermal environments. This poster shows the performance of conformable PICA variants in arc jets tests. Some mechanical and thermal properties will also be presented.

  5. TPS Ablator Technologies for Interplanetary Spacecraft

    NASA Technical Reports Server (NTRS)

    Curry, Donald M.

    2004-01-01

    This slide presentation reviews the status of Thermal Protection System (TPS) Ablator technologies and the preparation for use in interplanetary spacecraft. NASA does not have adequate TPS ablatives and sufficient selection for planned missions. It includes a comparison of shuttle and interplanetary TPS requirements, the status of mainline TPS charring ablator materials, a summary of JSC SBIR accomplishments in developing advanced charring ablators and the benefits of SBIR Ablator/fabrication technology.

  6. [Catheter ablation in patients with refractory cardiac arrhythmias with radiofrequency techniques].

    PubMed

    de Paola, A A; Balbão, C E; Silva Netto, O; Mendonça, A; Villacorta, H; Vattimo, A C; Souza, I A; Guiguer Júnior, N; Portugal, O P; Martinez Filho, E E

    1993-02-01

    evaluate the efficacy of radiofrequency catheter ablation in patients with refractory cardiac arrhythmias. twenty patients with refractory cardiac arrhythmias were undertaken to electrophysiologic studies for diagnosis and radiofrequency catheter ablation of their reentrant arrhythmias. Ten patients were men and 10 women with ages varying from 13 to 76 years (mean = 42.4 years). Nineteen patients had supraventricular tachyarrhythmias: One patient had atrial tachycardia and 1 atrial fibrillation with rapid ventricular rate, 5 patients had reentrant nodal tachycardia, 12 patients had reentrant atrioventricular tachycardia and 1 patient had right ventricular outflow tract tachycardia. the mean time of the procedure was 4.1 hours. The radiofrequency current energy applied was 40-50 V for 30-40 seconds. Ablation was successful in 18/20 (90%) patients; in 15/18 (83%) of successfully treated patients the same study was done for diagnosis and radiofrequency ablation. One patient had femoral arterial occlusion and was treated with no significant sequelae. During a mean follow-up of 4 months no preexcitation or reentrant tachycardia occurred. the results of our experience with radiofrequency catheter ablation of cardiac arrhythmias suggest that this technique can benefit an important number of patients with cardiac arrhythmias.

  7. [Ablation on the undersurface of a LASIK flap. Instrument and method for continuous eye tracking].

    PubMed

    Taneri, S; Azar, D T

    2007-02-01

    The risk of iatrogenic keratectasia after laser in situ keratomileusis (LASIK) increases with thinner posterior stromal beds. Ablations on the undersurface of a LASIK flap could only be performed without the guidance of an eye tracker, which may lead to decentration. A new method for laser ablation with flying spot lasers on the undersurface of a LASIK flap was developed that enables the use of an active eye tracker by utilizing a novel instrument. The first clinical results are reported. Patients wishing an enhancement procedure were eligible for a modified repeat LASIK procedure if the flaps cut in the initial procedure were thick enough to perform the intended additional ablation on the undersurface leaving at least 90 microm of flap thickness behind. (1) The horizontal axis and the center of the entrance pupil were marked on the epithelial side of the flap using gentian violet dye. (2) The flap was reflected on a newly designed flap holder which had a donut-shaped black marking. (3) The eye tracker was centered on the mark visible in transparency on the flap. (4) Ablation with a flying spot Bausch & Lomb Technolas 217z laser was performed on the undersurface of the flap with a superior hinge taking into account that in astigmatic ablations the cylinder axis had to be mirrored according to the formula: axis on the undersurface=180 degrees -axis on the stromal bed. (5) The flap was repositioned. Detection of the marking on the modified flap holder and continuous tracking instead of the real pupil was possible in all of the 12 eyes treated with this technique. It may be necessary to cover the real pupil during ablation in order not to confuse the eye tracker. Ablation could be performed without decentration or loss of best spectacle-corrected visual acuity. Refractive results in minor corrections were good without nomogram adjustment. Using this novel flap holder with a marking that is tracked instead of the real pupil, centered ablations with a flying spot laser

  8. Pulmonary vein region ablation in experimental vagal atrial fibrillation: role of pulmonary veins versus autonomic ganglia.

    PubMed

    Lemola, Kristina; Chartier, Denis; Yeh, Yung-Hsin; Dubuc, Marc; Cartier, Raymond; Armour, Andrew; Ting, Michael; Sakabe, Masao; Shiroshita-Takeshita, Akiko; Comtois, Philippe; Nattel, Stanley

    2008-01-29

    Pulmonary vein (PV) -encircling radiofrequency ablation frequently is effective in vagal atrial fibrillation (AF), and there is evidence that PVs may be particularly prone to cholinergically induced arrhythmia mechanisms. However, PV ablation procedures also can affect intracardiac autonomic ganglia. The present study examined the relative role of PVs versus peri-PV autonomic ganglia in an experimental vagal AF model. Cholinergic AF was studied under carbachol infusion in coronary perfused canine left atrial PV preparations in vitro and with cervical vagal stimulation in vivo. Carbachol caused dose-dependent AF promotion in vitro, which was not affected by excision of all PVs. Sustained AF could be induced easily in all dogs during vagal nerve stimulation in vivo both before and after isolation of all PVs with encircling lesions created by a bipolar radiofrequency ablation clamp device. PV elimination had no effect on atrial effective refractory period or its responses to cholinergic stimulation. Autonomic ganglia were identified by bradycardic and/or tachycardic responses to high-frequency subthreshold local stimulation. Ablation of the autonomic ganglia overlying all PV ostia suppressed the effective refractory period-abbreviating and AF-promoting effects of cervical vagal stimulation, whereas ablation of only left- or right-sided PV ostial ganglia failed to suppress AF. Dominant-frequency analysis suggested that the success of ablation in suppressing vagal AF depended on the elimination of high-frequency driver regions. Intact PVs are not needed for maintenance of experimental cholinergic AF. Ablation of the autonomic ganglia at the base of the PVs suppresses vagal responses and may contribute to the effectiveness of PV-directed ablation procedures in vagal AF.

  9. Onset and evolution of laser induced periodic surface structures on indium tin oxide thin films for clean ablation using a repetitively pulsed picosecond laser at low fluence

    NASA Astrophysics Data System (ADS)

    Farid, N.; Dasgupta, P.; O’Connor, G. M.

    2018-04-01

    The onset and evolution of laser induced periodic surface structures (LIPSS) is of key importance to obtain clean ablated features on indium tin oxide (ITO) thin films at low fluences. The evolution of subwavelength periodic nanostructures on a 175 nm thick ITO film, using 10 ps laser pulses at a wavelength of 1032 nm, operating at 400 kHz, is investigated. Initially nanoblisters are observed when a single pulse is applied below the damage threshold fluence (0.45 J cm‑2) the size and distribution of nanoblisters are found to depend on fluence. Finite difference time domain (FDTD) simulations support the hypothesis that conductive nanoblisters can enhance the local intensity of the applied electromagnetic field. The LIPSS are observed to evolve from regions where the electric field enhancement has occurred; LIPSS has a perpendicular orientation relative to the laser polarization for a small number (<5) of applied pulses. The LIPSS periodicity depends on nanoblister size and distribution; a periodicity down to 100 nm is observed at the lower fluence periphery of the Gaussian irradiated area where nanoblisters are smallest and more closely arranged. Upon irradiation with successive (>5) pulses, the orientation of the periodic structures appears to rotate and evolve to become aligned in parallel with the laser polarization at approximately the same periodicity. These orientation effects are not observed at higher fluence—due to the absence of the nanoblister-like structures; this apparent rotation is interpreted to be due to stress-induced fragmentation of the LIPSS structure. The application of subsequent pulses leads to clean ablation. LIPSS are further modified into features of a shorter period when laser scanning is used. Results provide evidence that the formation of conductive nanoblisters leads to the enhancement of the applied electromagnetic field and thereby can be used to precisely control laser ablation on ITO thin films.

  10. Impact of Radiofrequency Ablation on Malignant Biliary Strictures: Results of a Collaborative Registry.

    PubMed

    Sharaiha, Reem Z; Sethi, Amrita; Weaver, Kristen R; Gonda, Tamas A; Shah, Raj J; Fukami, Norio; Kedia, Prashant; Kumta, Nikhil A; Clavo, Carlos M Rondon; Saunders, Michael D; Cerecedo-Rodriguez, Jorge; Barojas, Paola Figueroa; Widmer, Jessica L; Gaidhane, Monica; Brugge, William R; Kahaleh, Michel

    2015-07-01

    Radiofrequency ablation of malignant biliary strictures has been offered for the last 3 years, but only limited data have been published. To assess the safety, efficacy, and survival outcomes of patients receiving endoscopic radiofrequency ablation. Between April 2010 and December 2013, 69 patients with unresectable neoplastic lesions and malignant biliary obstruction underwent 98 radiofrequency ablation sessions with stenting. A total of 69 patients (22 male, aged 66.1 ± 13.3) were included in the registry. The etiology of malignant biliary stricture included unresectable cholangiocarcinoma (n = 45), pancreatic cancer (n = 19), gallbladder cancer (n = 2), gastric cancer (n = 1), and liver metastasis from colon cancer (n = 3). Seventy-eight percentage of patients had prior chemotherapy. All strictures were stented post-radiofrequency ablation with either plastic stents or metal stents. The mean stricture length treated was 14.3 mm. There was a statistically significant improvement in stricture diameter post-ablation (p < 0.0001). The likelihood of stricture improvement was significantly greater in pancreatic cancer-associated strictures [RR 1.8 (95 % 1.03-5.38)]. Seven patients (10 %) had adverse events, not linked directly to radiofrequency ablation. Median survival was 11.46 months (6.2-25 months). Radiofrequency ablation is effective and safe in malignant biliary obstruction and seems to be associated with improved survival.

  11. Efficacy and predictability of soft tissue ablation using a prototype Raman-shifted alexandrite laser

    NASA Astrophysics Data System (ADS)

    Kozub, John A.; Shen, Jin-H.; Joos, Karen M.; Prasad, Ratna; Shane Hutson, M.

    2015-10-01

    Previous research showed that mid-infrared free-electron lasers could reproducibly ablate soft tissue with little collateral damage. The potential for surgical applications motivated searches for alternative tabletop lasers providing thermally confined pulses in the 6- to-7-μm wavelength range with sufficient pulse energy, stability, and reliability. Here, we evaluate a prototype Raman-shifted alexandrite laser. We measure ablation thresholds, etch rates, and collateral damage in gelatin and cornea as a function of laser wavelength (6.09, 6.27, or 6.43 μm), pulse energy (up to 3 mJ/pulse), and spot diameter (100 to 600 μm). We find modest wavelength dependence for ablation thresholds and collateral damage, with the lowest thresholds and least damage for 6.09 μm. We find a strong spot-size dependence for all metrics. When the beam is tightly focused (˜100-μm diameter), ablation requires more energy, is highly variable and less efficient, and can yield large zones of mechanical damage (for pulse energies >1 mJ). When the beam is softly focused (˜300-μm diameter), ablation proceeded at surgically relevant etch rates, with reasonable reproducibility (5% to 12% within a single sample), and little collateral damage. With improvements in pulse-energy stability, this prototype laser may have significant potential for soft-tissue surgical applications.

  12. Experimental application of thermosensitive paramagnetic liposomes for monitoring magnetic resonance imaging guided thermal ablation.

    PubMed

    Frich, Lars; Bjørnerud, Atle; Fossheim, Sigrid; Tillung, Terje; Gladhaug, Ivar

    2004-12-01

    The use of a liposomal paramagnetic agent with a T(1)-relaxivity that increases markedly at temperatures above the phase transition temperature (T(m)) of the liposomal membrane was evaluated during magnetic resonance imaging (MRI) guided hyperthermia ablation. A neodymium-yttrium aluminum garnet (Nd-YAG) laser unit and a radiofrequency ablation system were used for tissue ablation in eight rabbit livers in vivo. One ablation was made in each animal prior to administration of the liposomal agent. Liposomes with a T(m) of 57 degrees C containing gadodiamide (GdDTPA-BMA) were injected iv, and two additional ablations were performed. T(1)-weighted scans were performed in heated tissue, after tissue temperature had normalized, and 15-20 min after normalization of tissue temperature. Increase in signal intensity (DeltaSI) for ablations prior to injection of the agent was 13.0% (SD = 5.7) for the laser group and 9.1% (SD = 7.9) for the radiofrequency group. Signal intensity after administration of the agent unrelated to heating was not statistically significant (DeltaSI = 1.4%, P = 0.35). For ablations made after injection of the agent, a significant increase was found in the laser (DeltaSI = 34.5%, SD = 11.9) and radiofrequency group (DeltaSI = 21.6%, SD = 22.7). The persistent signal enhancement found in areas exposed to a temperature above the threshold temperature above T(m) allows thermal monitoring of MRI guided thermal ablation. (c) 2004 Wiley-Liss, Inc.

  13. Ablation of silicon with bursts of femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Gaudiuso, Caterina; Kämmer, Helena; Dreisow, Felix; Ancona, Antonio; Tünnermann, Andreas; Nolte, Stefan

    2016-03-01

    We report on an experimental investigation of ultrafast laser ablation of silicon with bursts of pulses. The pristine 1030nm-wavelength 200-fs pulses were split into bursts of up to 16 sub-pulses with time separation ranging from 0.5ps to 4080ps. The total ablation threshold fluence was measured depending on the burst features, finding that it strongly increases with the number of sub-pulses for longer sub-pulse delays, while a slowly increasing trend is observed for shorter separation time. The ablation depth per burst follows two different trends according to the time separation between the sub-pulses, as well as the total threshold fluence. For delays shorter than 4ps it decreases with the number of pulses, while for time separations longer than 510ps, deeper craters were achieved by increasing the number of subpulses in the burst, probably due to a change of the effective penetration depth.

  14. Microscopic Scale Simulation of the Ablation of Fibrous Materials

    NASA Technical Reports Server (NTRS)

    Lachaud, Jean Romain; Mansour, Nagi N.

    2010-01-01

    Ablation by oxidation of carbon-fiber preforms impregnated in carbonized phenolic matrix is modeled at microscopic scale. Direct numerical simulations show that the carbonized phenolic matrix ablates in volume leaving the carbon fibers exposed. This is due to the fact that the reactivity of carbonized phenolic is higher than the reactivity of carbon fibers. After the matrix is depleted, the fibers ablate showing progressive reduction of their diameter. The overall material recession occurs when the fibers are consumed. Two materials with the same carbon-fiber preform, density and chemical composition, but with different matrix distributions are studied. These studies show that at moderate temperatures (< 1000 K) the microstructure of the material influences its recession rate; a fact that is not captured by current models that are based on chemical composition only. Surprisingly, the response of these impregnated-fiber materials is weakly dependent on the microstructure at very high temperatures (e.g., Stardust peak heating conditions: 3360K).

  15. Age-Dependent Ocular Dominance Plasticity in Adult Mice

    PubMed Central

    Lehmann, Konrad; Löwel, Siegrid

    2008-01-01

    Background Short monocular deprivation (4 days) induces a shift in the ocular dominance of binocular neurons in the juvenile mouse visual cortex but is ineffective in adults. Recently, it has been shown that an ocular dominance shift can still be elicited in young adults (around 90 days of age) by longer periods of deprivation (7 days). Whether the same is true also for fully mature animals is not yet known. Methodology/Principal Findings We therefore studied the effects of different periods of monocular deprivation (4, 7, 14 days) on ocular dominance in C57Bl/6 mice of different ages (25 days, 90–100 days, 109–158 days, 208–230 days) using optical imaging of intrinsic signals. In addition, we used a virtual optomotor system to monitor visual acuity of the open eye in the same animals during deprivation. We observed that ocular dominance plasticity after 7 days of monocular deprivation was pronounced in young adult mice (90–100 days) but significantly weaker already in the next age group (109–158 days). In animals older than 208 days, ocular dominance plasticity was absent even after 14 days of monocular deprivation. Visual acuity of the open eye increased in all age groups, but this interocular plasticity also declined with age, although to a much lesser degree than the optically detected ocular dominance shift. Conclusions/Significance These data indicate that there is an age-dependence of both ocular dominance plasticity and the enhancement of vision after monocular deprivation in mice: ocular dominance plasticity in binocular visual cortex is most pronounced in young animals, reduced but present in adolescence and absent in fully mature animals older than 110 days of age. Mice are thus not basically different in ocular dominance plasticity from cats and monkeys which is an absolutely essential prerequisite for their use as valid model systems of human visual disorders. PMID:18769674

  16. Laboratory Simulations of Micrometeoroid Ablation

    NASA Astrophysics Data System (ADS)

    Thomas, Evan Williamson

    Each day, several tons of meteoric material enters Earth's atmosphere, the majority of which consist of small dust particles (micrometeoroids) that completely ablate at high altitudes. The dust input has been suggested to play a role in a variety of phenomena including: layers of metal atoms and ions, nucleation of noctilucent clouds, effects on stratospheric aerosols and ozone chemistry, and the fertilization of the ocean with bio-available iron. Furthermore, a correct understanding of the dust input to the Earth provides constraints on inner solar system dust models. Various methods are used to measure the dust input to the Earth including satellite detectors, radar, lidar, rocket-borne detectors, ice core and deep-sea sediment analysis. However, the best way to interpret each of these measurements is uncertain, which leads to large uncertainties in the total dust input. To better understand the ablation process, and thereby reduce uncertainties in micrometeoroid ablation measurements, a facility has been developed to simulate the ablation of micrometeoroids in laboratory conditions. An electrostatic dust accelerator is used to accelerate iron particles to relevant meteoric velocities (10-70 km/s). The particles are then introduced into a chamber pressurized with a target gas, and they partially or completely ablate over a short distance. An array of diagnostics then measure, with timing and spatial resolution, the charge and light that is generated in the ablation process. In this thesis, we present results from the newly developed ablation facility. The ionization coefficient, an important parameter for interpreting meteor radar measurements, is measured for various target gases. Furthermore, experimental ablation measurements are compared to predictions from commonly used ablation models. In light of these measurements, implications to the broader context of meteor ablation are discussed.

  17. Wolff-Parkinson-White syndrome in the era of catheter ablation: insights from a registry study of 2169 patients.

    PubMed

    Pappone, Carlo; Vicedomini, Gabriele; Manguso, Francesco; Saviano, Massimo; Baldi, Mario; Pappone, Alessia; Ciaccio, Cristiano; Giannelli, Luigi; Ionescu, Bogdan; Petretta, Andrea; Vitale, Raffaele; Cuko, Amarild; Calovic, Zarko; Fundaliotis, Angelica; Moscatiello, Mario; Tavazzi, Luigi; Santinelli, Vincenzo

    2014-09-02

    The management of Wolff-Parkinson-White is based on the distinction between asymptomatic and symptomatic presentations, but evidence is limited in the asymptomatic population. The Wolff-Parkinson-White registry was an 8-year prospective study of either symptomatic or asymptomatic Wolff-Parkinson-White patients referred to our Arrhythmology Department for evaluation or ablation. Inclusion criteria were a baseline electrophysiological testing with or without radiofrequency catheter ablation (RFA). Primary end points were the percentage of patients who experienced ventricular fibrillation (VF) or potentially malignant arrhythmias and risk factors. Among 2169 enrolled patients, 1001 (550 asymptomatic) did not undergo RFA (no-RFA group) and 1168 (206 asymptomatic) underwent ablation (RFA group). There were no differences in clinical and electrophysiological characteristics between the 2 groups except for symptoms. In the no-RFA group, VF occurred in 1.5% of patients, virtually exclusively (13 of 15) in children (median age, 11 years), and was associated with a short accessory pathway antegrade refractory period (P<0.001) and atrioventricular reentrant tachycardia initiating atrial fibrillation (P<0.001) but not symptoms. In the RFA group, ablation was successful in 98.5%, and after RFA, no patients developed malignant arrhythmias or VF over the 8-year follow-up. Untreated patients were more likely to experience malignant arrhythmias and VF (log-rank P<0.001). Time-dependent receiver-operating characteristic curves for predicting VF identified an optimal anterograde effective refractory period of the accessory pathway cutoff of 240 milliseconds. The prognosis of the Wolff-Parkinson-White syndrome essentially depends on intrinsic electrophysiological properties of AP rather than on symptoms. RFA performed during the same procedure after electrophysiological testing is of benefit in improving the long-term outcomes. © 2014 American Heart Association, Inc.

  18. [Ultrasound-guided microwave ablation with artificial pleural effusion for liver tumor adjacent to 
diaphragmatic dome].

    PubMed

    Tang, Tian; Gu, Shanzhi; Li, Guowen; Huang, Manping; Huang, Bin; Xiong, Zhengping

    2017-02-28

    To explore the value of ultrasound-guided microwave ablation with artificial pleural effusion for liver tumor adjacent to diaphragmatic dome.
 Methods: A total of 34 patients with liver tumors located at diaphragmatic dome in Hunan Provincial Tumor Hospital were recruited from January 2014 to October 2015. The number of lesions ≤3 or lesion diameter ≤5 cm was in line with the microwave ablation indications. B ultrasound-guided microwave ablation for the liver tumors was undertaken after the artificial pleural effusion being established. 3-4 weeks later after the microwave ablation, all patients were imaged with enhance CT or MRI. The effect of ablation and the complications were evaluated.
 Results: There were 49 lesions in 34 patients, including 30 cases (88.2%) of complete ablation (CA), 3 cases (8.8%) of partial ablation (PA) and one case with new lesions after ablation (2.9%). Thirty-four patients had (1 580±230.7) mL of pleural effusion volume, while one case had bloody pleural effusion. One case had a diaphragmatic thermal injury, and one case had a biliary tumor infection. All of them showed remission after symptomatic treatment. 
 Conclusion: Combination of ultrasound-guided microwave ablation with artificial pleural effusion is a safe and effective therapy for liver tumor adjacent to diaphragmatic dome.

  19. Ca2+ and calpain mediate capsaicin-induced ablation of axonal terminals expressing transient receptor potential vanilloid 1.

    PubMed

    Wang, Sheng; Wang, Sen; Asgar, Jamila; Joseph, John; Ro, Jin Y; Wei, Feng; Campbell, James N; Chung, Man-Kyo

    2017-05-19

    Capsaicin is an ingredient in spicy peppers that produces burning pain by activating transient receptor potential vanilloid 1 (TRPV1), a Ca 2+ -permeable ion channel in nociceptors. Capsaicin has also been used as an analgesic, and its topical administration is approved for the treatment of certain pain conditions. The mechanisms underlying capsaicin-induced analgesia likely involve reversible ablation of nociceptor terminals. However, the mechanisms underlying these effects are not well understood. To visualize TRPV1-lineage axons, a genetically engineered mouse model was used in which a fluorophore is expressed under the TRPV1 promoter. Using a combination of these TRPV1-lineage reporter mice and primary afferent cultures, we monitored capsaicin-induced effects on afferent terminals in real time. We found that Ca 2+ influx through TRPV1 is necessary for capsaicin-induced ablation of nociceptive terminals. Although capsaicin-induced mitochondrial Ca 2+ uptake was TRPV1-dependent, dissipation of the mitochondrial membrane potential, inhibition of the mitochondrial transition permeability pore, and scavengers of reactive oxygen species did not attenuate capsaicin-induced ablation. In contrast, MDL28170, an inhibitor of the Ca 2+ -dependent protease calpain, diminished ablation. Furthermore, overexpression of calpastatin, an endogenous inhibitor of calpain, or knockdown of calpain 2 also decreased ablation. Quantitative assessment of TRPV1-lineage afferents in the epidermis of the hind paws of the reporter mice showed that EGTA and MDL28170 diminished capsaicin-induced ablation. Moreover, MDL28170 prevented capsaicin-induced thermal hypoalgesia. These results suggest that TRPV1/Ca 2+ /calpain-dependent signaling plays a dominant role in capsaicin-induced ablation of nociceptive terminals and further our understanding of the molecular mechanisms underlying the effects of capsaicin on nociceptors. © 2017 by The American Society for Biochemistry and Molecular Biology

  20. Selenoprotein-deficient transgenic mice exhibit enhanced exercise-induced muscle growth.

    PubMed

    Hornberger, Troy A; McLoughlin, Thomas J; Leszczynski, Jori K; Armstrong, Dustin D; Jameson, Ruth R; Bowen, Phyllis E; Hwang, Eun-Sun; Hou, Honglin; Moustafa, Mohamed E; Carlson, Bradley A; Hatfield, Dolph L; Diamond, Alan M; Esser, Karyn A

    2003-10-01

    Dietary intake of selenium has been implicated in a wide range of health issues, including aging, heart disease and cancer. Selenium deficiency, which can reduce selenoprotein levels, has been associated with several striated muscle pathologies. To investigate the role of selenoproteins in skeletal muscle biology, we used a transgenic mouse (referred to as i6A-) that has reduced levels of selenoproteins due to the introduction and expression of a dominantly acting mutant form of selenocysteine transfer RNA (tRNA[Ser]Sec). As a consequence, each organ contains reduced levels of most selenoproteins, yet these mice are normal with regard to fertility, overall health, behavior and blood chemistries. In the present study, although skeletal muscles from i6A- mice were phenotypically indistinguishable from those of wild-type mice, plantaris muscles were approximately 50% heavier after synergist ablation, a model of exercise overload. Like muscle in wild-type mice, the enhanced growth in the i6A- mice was completely blocked by inhibition of the mammalian target of rapamycin (mTOR) pathway. Muscles of transgenic mice exhibited increased site-specific phosphorylation on both Akt and p70 ribosomal S6 kinase (p70S6k) (P < 0.05) before ablation, perhaps accounting for the enhanced response to synergist ablation. Thus, a single genetic alteration resulted in enhanced skeletal muscle adaptation after exercise, and this is likely through subtle changes in the resting phosphorylation state of growth-related kinases.

  1. CT-based investigation of the contraction of ex vivo tissue undergoing microwave thermal ablation

    NASA Astrophysics Data System (ADS)

    Lopresto, Vanni; Strigari, Lidia; Farina, Laura; Minosse, Silvia; Pinto, Rosanna; D'Alessio, Daniela; Cassano, Bartolomeo; Cavagnaro, Marta

    2018-03-01

    Treatment planning in microwave thermal ablation (MTA) requires the capability to predict and estimate the shape and dimension of the thermally coagulated zone obtainable following a clinical protocol. The ultimate result relies on the knowledge of the performance of the ablation device, as well as of the temperature-dependent structural modifications that the tissue undergoes during the treatment, because of the very high temperatures reached (up to 100 °C or higher). In this respect, tissue shrinkage plays an important role, since the dimension of the ablated tissue evaluated at the end of the MTA procedure (e.g. by way of CT imaging) could underestimate the actual treated tissue, leading to inaccurate assessment of the treatment outcome. In this study, CT imaging was used for real-time monitoring of tissue contraction during MTA experiments carried out in ex vivo bovine liver. Fiducial lead markers were positioned into the tissue in a 3D spatial grid around the MTA applicator. The spatial and temporal evolution of tissue contraction was imaged during the experiments, and analysed in terms of displacements of clusters of fiducial markers. The results obtained indicated that contraction is highly heterogeneous in the zone of ablation, depending both on the heating and on interactions with nearby tissue. In particular, tissue shrinkage appeared asymmetric with respect to the direction of insertion of the microwave applicator in the central area of carbonised tissue (about 30% and 19% along the radial and longitudinal directions, respectively), and isotropic in the region of coagulated (but not carbonised) tissue (about 11%). The total ablated volume was reduced by approximately 43% with respect to its pre-ablation value. Finally, temperature measurements displayed a correlation between temperature increment and temporal evolution of tissue contraction in the zone of ablation.

  2. Automatic classification of scar tissue in late gadolinium enhancement cardiac MRI for the assessment of left-atrial wall injury after radiofrequency ablation

    PubMed Central

    Morris, Alan; Burgon, Nathan; McGann, Christopher; MacLeod, Robert; Cates, Joshua

    2013-01-01

    Radiofrequency ablation is a promising procedure for treating atrial fibrillation (AF) that relies on accurate lesion delivery in the left atrial (LA) wall for success. Late Gadolinium Enhancement MRI (LGE MRI) at three months post-ablation has proven effective for noninvasive assessment of the location and extent of scar formation, which are important factors for predicting patient outcome and planning of redo ablation procedures. We have developed an algorithm for automatic classification in LGE MRI of scar tissue in the LA wall and have evaluated accuracy and consistency compared to manual scar classifications by expert observers. Our approach clusters voxels based on normalized intensity and was chosen through a systematic comparison of the performance of multivariate clustering on many combinations of image texture. Algorithm performance was determined by overlap with ground truth, using multiple overlap measures, and the accuracy of the estimation of the total amount of scar in the LA. Ground truth was determined using the STAPLE algorithm, which produces a probabilistic estimate of the true scar classification from multiple expert manual segmentations. Evaluation of the ground truth data set was based on both inter- and intra-observer agreement, with variation among expert classifiers indicating the difficulty of scar classification for a given a dataset. Our proposed automatic scar classification algorithm performs well for both scar localization and estimation of scar volume: for ground truth datasets considered easy, variability from the ground truth was low; for those considered difficult, variability from ground truth was on par with the variability across experts. PMID:24236224

  3. Automatic classification of scar tissue in late gadolinium enhancement cardiac MRI for the assessment of left-atrial wall injury after radiofrequency ablation

    NASA Astrophysics Data System (ADS)

    Perry, Daniel; Morris, Alan; Burgon, Nathan; McGann, Christopher; MacLeod, Robert; Cates, Joshua

    2012-03-01

    Radiofrequency ablation is a promising procedure for treating atrial fibrillation (AF) that relies on accurate lesion delivery in the left atrial (LA) wall for success. Late Gadolinium Enhancement MRI (LGE MRI) at three months post-ablation has proven effective for noninvasive assessment of the location and extent of scar formation, which are important factors for predicting patient outcome and planning of redo ablation procedures. We have developed an algorithm for automatic classification in LGE MRI of scar tissue in the LA wall and have evaluated accuracy and consistency compared to manual scar classifications by expert observers. Our approach clusters voxels based on normalized intensity and was chosen through a systematic comparison of the performance of multivariate clustering on many combinations of image texture. Algorithm performance was determined by overlap with ground truth, using multiple overlap measures, and the accuracy of the estimation of the total amount of scar in the LA. Ground truth was determined using the STAPLE algorithm, which produces a probabilistic estimate of the true scar classification from multiple expert manual segmentations. Evaluation of the ground truth data set was based on both inter- and intra-observer agreement, with variation among expert classifiers indicating the difficulty of scar classification for a given a dataset. Our proposed automatic scar classification algorithm performs well for both scar localization and estimation of scar volume: for ground truth datasets considered easy, variability from the ground truth was low; for those considered difficult, variability from ground truth was on par with the variability across experts.

  4. Deviation from threshold model in ultrafast laser ablation of graphene at sub-micron scale

    SciTech Connect

    Gil-Villalba, A.; Xie, C.; Salut, R.

    We investigate a method to measure ultrafast laser ablation threshold with respect to spot size. We use structured complex beams to generate a pattern of craters in CVD graphene with a single laser pulse. A direct comparison between beam profile and SEM characterization allows us to determine the dependence of ablation probability on spot-size, for crater diameters ranging between 700 nm and 2.5 μm. We report a drastic decrease of ablation probability when the crater diameter is below 1 μm which we interpret in terms of free-carrier diffusion.

  5. Non-Ablative Fractional Laser to Facilitate Transdermal Delivery.

    PubMed

    Ganti, Sindhu S; Banga, Ajay K

    2016-11-01

    The advances in laser technology have led to its rapidly expanding applications in dermatology. This study aims at the novel use of a non-ablative fractional laser to enhance transdermal permeation of diclofenac sodium and sumatriptan succinate. The effects of the laser on skin were characterized visually with dye binding, scanning electron microscopy, pore permeability index, and histology. In vitro transdermal permeation of drugs through laser treated and untreated human dermatomed skin was analyzed over 24 h and quantified by HPLC. Drug transport through untreated skin resulted in transdermal delivery of 72.61 μg/cm 2 ± 50.35 and 22.80 ± 0.64 μg/cm 2 of diclofenac sodium and sumatriptan succinate, respectively. Laser treatment of skin significantly increased (p < 0.005) delivery of diclofenac sodium to 575.66 ± 207.18 μg/cm 2 and sumatriptan succinate to 498.32 ± 97.54 μg/cm 2 . This is a first of its kind study that demonstrates the use of 1410 nm non-ablative fractional laser to enhance transdermal permeation of 2 small molecular weight drugs. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  6. IL-6 Production by TLR-Activated APC Broadly Enhances Aged Cognate CD4 Helper and B Cell Antibody Responses In Vivo.

    PubMed

    Brahmakshatriya, Vinayak; Kuang, Yi; Devarajan, Priyadharshini; Xia, Jingya; Zhang, Wenliang; Vong, Allen Minh; Swain, Susan L

    2017-04-01

    Naive CD4 T cell responses, especially their ability to help B cell responses, become compromised with aging. We find that using APC pretreated ex vivo with TLR agonists, polyinosinic-polycytidylic acid and CpG, to prime naive CD4 T cells in vivo, restores their ability to expand and become germinal center T follicular helpers and enhances B cell IgG Ab production. Enhanced helper responses are dependent on IL-6 production by the activated APC. Aged naive CD4 T cells respond suboptimally to IL-6 compared with young cells, such that higher doses are required to induce comparable signaling. Preactivating APC overcomes this deficiency. Responses of young CD4 T cells are also enhanced by preactivating APC with similar effects but with only partial IL-6 dependency. Strikingly, introducing just the activated APC into aged mice significantly enhances otherwise compromised Ab production to inactivated influenza vaccine. These findings reveal a central role for the production of IL-6 by APC during initial cognate interactions in the generation of effective CD4 T cell help, which becomes greater with age. Without APC activation, aging CD4 T cell responses shift toward IL-6-independent Th1 and CD4 cytotoxic Th cell responses. Thus, strategies that specifically activate and provide Ag to APC could potentially enhance Ab-mediated protection in vaccine responses. Copyright © 2017 by The American Association of Immunologists, Inc.

  7. Deposition of functional nanoparticle thin films by resonant infrared laser ablation.

    NASA Astrophysics Data System (ADS)

    Haglund, Richard; Johnson, Stephen; Park, Hee K.; Appavoo, Kannatessen

    2008-03-01

    We have deposited thin films containing functional nanoparticles, using tunable infrared light from a picosecond free-electron laser (FEL). Thin films of the green light-emitting molecule Alq3 were first deposited by resonant infrared laser ablation at 6.68 μm, targeting the C=C ring mode of the Alq3. TiO2 nanoparticles 50-100 nm diameter were then suspended in a water matrix, frozen, and transferred by resonant infrared laser ablation at 2.94 μm through a shadow mask onto the Alq3 film. Photoluminescence was substantially enhanced in the regions of the film covered by the TiO2 nanoparticles. In a second experiment, gold nanoparticles with diameters in the range of 50-100 nm were suspended in the conducting polymer and anti-static coating material PEDOT:PSS, which was diluted by mixing with N-methyl pyrrolidinone (NMP). The gold nanoparticle concentration was 8-10% by weight. The mixture was frozen and then ablated by tuning the FEL to 3.47 μm, the C-H stretch mode of NMP. Optical spectroscopy of the thin film deposited by resonant infrared laser ablation exhibited the surface-plasmon resonance characteristic of the Au nanoparticles. These experiments illustrate the versatility of matrix-assisted resonant infrared laser ablation as a technique for depositing thin films containing functionalized nanoparticles.

  8. NG2 Proteoglycan Ablation Reduces Foam Cell Formation and Atherogenesis via Decreased Low-Density Lipoprotein Retention by Synthetic Smooth Muscle Cells.

    PubMed

    She, Zhi-Gang; Chang, Yunchao; Pang, Hong-Bo; Han, Wenlong; Chen, Hou-Zao; Smith, Jeffrey W; Stallcup, William B

    2016-01-01

    Obesity and hyperlipidemia are critical risk factors for atherosclerosis. Because ablation of NG2 proteoglycan in mice leads to hyperlipidemia and obesity, we investigated the impact of NG2 ablation on atherosclerosis in apoE null mice. Immunostaining indicates that NG2 expression in plaque, primarily by synthetic smooth muscle cells, increases during atherogenesis. NG2 ablation unexpectedly results in decreased (30%) plaque development, despite aggravated obesity and hyperlipidemia. Mechanistic studies reveal that NG2-positive plaque synthetic smooth muscle cells in culture can sequester low-density lipoprotein to enhance foam-cell formation, processes in which NG2 itself plays direct roles. In agreement with these observations, low-density lipoprotein retention and lipid accumulation in the NG2/ApoE knockout aorta is 30% less than that seen in the control aorta. These results indicate that synthetic smooth muscle cell-dependent low-density lipoprotein retention and foam cell formation outweigh obesity and hyperlipidemia in promoting mouse atherogenesis. Our study sheds new light on the role of synthetic smooth muscle cells during atherogenesis. Blocking plaque NG2 or altering synthetic smooth muscle cells function may be promising therapeutic strategies for atherosclerosis. © 2015 American Heart Association, Inc.

  9. Ventricular fibrillation occurring after atrioventricular node ablation despite minimal difference between pre- and post-ablation heart rates.

    PubMed

    Squara, F; Theodore, G; Scarlatti, D; Ferrari, E

    2017-02-01

    We report the case of an 82-year-old man presenting with ventricular fibrillation (VF) occurring acutely after atrioventricular node (AVN) ablation. This patient had severe valvular cardiomyopathy, chronic atrial fibrillation (AF), and underwent prior to the AVN ablation a biventricular implantable cardiac defibrillator positioning. The VF was successfully cardioverted with one external electrical shock. What makes this presentation original is that the pre-ablation spontaneous heart rate in AF was slow (84 bpm), and that VF occurred after ablation despite a minimal heart rate drop of only 14 bpm. VF is the most feared complication of AVN ablation, but it had previously only been described in case of acute heart rate drop after ablation of at least 30 bpm (and more frequently>50 bpm). This case report highlights the fact that VF may occur after AVN ablation regardless of the heart rate drop, rendering temporary fast ventricular pacing mandatory whatever the pre-ablation heart rate. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Use of asymmetric bidirectional catheters with different curvature radius for catheter ablation of cardiac arrhythmias.

    PubMed

    Mantziari, Lilian; Suman-Horduna, Irina; Gujic, Marko; Jones, David G; Wong, Tom; Markides, Vias; Foran, John P; Ernst, Sabine

    2013-06-01

    The impact of recently introduced asymmetric bidirectional ablation catheters on procedural parameters and acute success rates of ablation procedures is unknown. We retrospectively analyzed data regarding ablations using a novel bidirectional catheter in a tertiary cardiac center and compared these in 1:5 ratio with a control group of procedures matched for age, gender, operator, and ablation type. A total of 50 cases and 250 controls of median age 60 (50-68) years were studied. Structural heart disease was equally prevalent in both groups (39%) while history of previous ablations was more common in the study arm (54% vs 30%, P = 0.001). Most of the ablation cases were for atrial fibrillation (46%), followed by atrial tachycardia (28%), supraventricular tachycardia (12%), and ventricular tachycardia (14%). Median procedure duration was 128 (52-147) minutes with the bidirectional, versus 143 (105-200) minutes with the conventional catheter (P = 0.232), and median fluoroscopy time was 17 (10-34) minutes versus 23 (12-39) minutes, respectively (P = 0.988). There was a trend toward a lower procedure duration for the atrial tachycardia ablations, 89 (52-147) minutes versus 130 (100-210) minutes, P = 0.064. The procedure was successfully completed in 96% of the bidirectional versus 84% of the control cases (P = 0.151). A negative correlation was observed between the relative fluoroscopy duration and the case number (r = -0.312, P = 0.028), reflecting the learning curve for the bidirectional catheter. The introduction of the bidirectional catheter resulted in no prolongation of procedure parameters and similar success rates, while there was a trend toward a lower procedure duration for atrial tachycardia ablations. ©2013, The Authors. Journal compilation ©2013 Wiley Periodicals, Inc.

  11. Perioral Rejuvenation With Ablative Erbium Resurfacing.

    PubMed

    Cohen, Joel L

    2015-11-01

    Since the introduction of the scanning full-field erbium laser, misconceptions regarding ablative erbium resurfacing have resulted in its being largely overshadowed by ablative fractional resurfacing. This case report illustrates the appropriateness of full-field erbium ablation for perioral resurfacing. A patient with profoundly severe perioral photodamage etched-in lines underwent full-field ablative perioral resurfacing with an erbium laser (Contour TRL, Sciton Inc., Palo Alto, CA) that allows separate control of ablation and coagulation. The pre-procedure consultations included evaluation of the severity of etched-in lines, and discussion of patient goals, expectations, and appropriate treatment options, as well as a review of patient photos and post-treatment care required. The author generally avoids full-field erbium ablation in patients with Fitzpatrick type IV and above. For each of 2 treatment sessions (separated by approximately 4 months), the patient received (12 cc plain 2% lidodaine) sulcus blocks before undergoing 4 passes with the erbium laser at 150 μ ablation, no coagulation, and then some very focal 30 μ ablation to areas of residual lines still visualized through the pinpoint bleeding. Similarly, full-field ablative resurfacing can be very reliable for significant wrinkles and creping in the lower eyelid skin--where often a single treatment of 80 μ ablation, 50 μ coagulation can lead to a nice improvement. Standardized digital imaging revealed significant improvement in deeply etched rhytides without significant adverse events. For appropriately selected patients requiring perioral (or periorbital) rejuvenation, full-field ablative erbium resurfacing is safe, efficacious and merits consideration.

  12. Microwave Ablation of Lung Tumors Near the Heart: A Retrospective Review of Short-Term Procedural Safety in Ten Patients.

    PubMed

    Maxwell, Aaron W P; Healey, Terrance T; Dupuy, Damian E

    2017-09-01

    To evaluate the rate of short-term complications associated with microwave ablation of lung tumors located near the heart. This HIPAA-compliant study was performed with a waiver for informed consent. Patients who underwent microwave ablation of lung tumors located 10 mm or less from the heart were identified by retrospective chart review. Both primary and metastatic tumors were included. Only tumors directly adjacent to one of the four cardiac chambers were included. All patients were treated in a single session using CT guidance with continuous electrocardiographic monitoring. Rates of new-onset arrhythmia and myocardial infarction (MI) within 90 days of the procedure were quantified, and evidence of cardiac or pericardiac injury was assessed for using post-ablation contrast-enhanced chest CT, electrocardiography (EKG), and-when available-echocardiography. Complications were graded using the Common Terminology Criteria for Adverse Events (CTCAE) system. Ten patients (four males, six females; mean age 73.1 ± 9.5 years) met all inclusion criteria. Mean tumor distance from the heart was 3 mm (range, 0-6 mm). New-onset arrhythmia was not observed during or following any of the microwave ablation treatments, and there were no documented 90-day MI events. CTCAE Grade 1 complications were observed by CT in eight patients, most commonly mild focal pericardial thickening. EKG and echocardiography were normal in all patients. No major complications (CTCAE Grade 3 or greater) were observed. Microwave ablation of lung tumors located 10 mm or less from the heart appears to have low associated short-term morbidity and may be appropriate in selected patients.

  13. A Theory of Age-Dependent Mutation and Senescence

    PubMed Central

    Moorad, Jacob A.; Promislow, Daniel E. L.

    2008-01-01

    Laboratory experiments show us that the deleterious character of accumulated novel age-specific mutations is reduced and made less variable with increased age. While theories of aging predict that the frequency of deleterious mutations at mutation–selection equilibrium will increase with the mutation's age of effect, they do not account for these age-related changes in the distribution of de novo mutational effects. Furthermore, no model predicts why this dependence of mutational effects upon age exists. Because the nature of mutational distributions plays a critical role in shaping patterns of senescence, we need to develop aging theory that explains and incorporates these effects. Here we propose a model that explains the age dependency of mutational effects by extending Fisher's geometrical model of adaptation to include a temporal dimension. Using a combination of simple analytical arguments and simulations, we show that our model predicts age-specific mutational distributions that are consistent with observations from mutation-accumulation experiments. Simulations show us that these age-specific mutational effects may generate patterns of senescence at mutation–selection equilibrium that are consistent with observed demographic patterns that are otherwise difficult to explain. PMID:18660535

  14. Feasibility of Real-Time Intraprocedural Temperature Control during Bone Metastasis Thermal Microwave Ablation: A Bicentric Retrospective Study.

    PubMed

    Kastler, Adrian; Krainik, Alexandre; Sakhri, Linda; Mousseau, Mireille; Kastler, Bruno

    2017-03-01

    To evaluate feasibility of using a thermocouple for temperature monitoring during microwave (MW) ablation of metastatic bone disease. This retrospective study comprised 16 patients (8 men with mean age 63 y and 8 women with mean age 59 y) with 18 bone metastases treated with MW ablation using a thermocouple between March 2012 and October 2015. The mean maximum tumor size was 29.5 mm. MW ablation power was set between 15 W and 40 W and applied for 1-6 minutes. Thermocouple placements were as follows: epidural space (n = 7 cases), nerve roots (n = 9 cases), pleura (n = 1), and pericardium (n = 1). The procedure was considered technically successful when the MW and the thermocouple probes were accurately placed and thermoablation was initiated. Clinical success was defined as a 50% visual analog scale score decrease at 1 month as assessed by the operators. Mean MW ablation time was 4.3 minutes with a mean energy of 30 W. Procedural success was 100%. In 16 cases with neural structure monitoring, temperature did not increase > 43°C. In 8 cases, MW ablation had to be discontinued because of temperature reaching 42°C. Efficacy of the procedure in regard to pain was achieved in 17 of 18 ablation sessions at 1 month. Use of a thermocouple during bone MW ablation is a feasible technique and may be a potentially useful tool to help avoid nontarget ablation surrounding tumors. Copyright © 2016 SIR. Published by Elsevier Inc. All rights reserved.

  15. Laser ablation of PMMA doped with benzyl

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Niino, Hiroyuki; Yabe, Akira

    1998-08-01

    KrF-laser ablation of poly(methylmethacrylate) (PMMA) doped with benzil was studied from the viewpoint of nonlinear absorption of the PMMA film during the laser irradiation. After measuring the relationship between the transmission and incident laser intensity, we developed a novel method to obtain absorption coefficient depending on laser intensity. Using the nonlinear absorption coefficient of PMMA doped with benzil, we succeeded in fitting the relationship of etch depth and laser intensity. The dependence of concentration of benzil in PMMA film and the difference between benzil and pyrene were also discussed.

  16. Ablative heat shield design for space shuttle

    NASA Technical Reports Server (NTRS)

    Seiferth, R. W.

    1973-01-01

    Ablator heat shield configuration optimization studies were conducted for the orbiter. Ablator and reusable surface insulation (RSI) trajectories for design studies were shaped to take advantage of the low conductance of ceramic RSI and high temperature capability of ablators. Comparative weights were established for the RSI system and for direct bond and mechanically attached ablator systems. Ablator system costs were determined for fabrication, installation and refurbishment. Cost penalties were assigned for payload weight penalties, if any. The direct bond ablator is lowest in weight and cost. A mechanically attached ablator using a magnesium subpanel is highly competitive for both weight and cost.

  17. Picosecond laser ablation of poly-L-lactide: Effect of crystallinity on the material response

    NASA Astrophysics Data System (ADS)

    Ortiz, Rocío; Quintana, Iban; Etxarri, Jon; Lejardi, Ainhoa; Sarasua, Jose-Ramon

    2011-11-01

    The picosecond laser ablation of poly-L-lactide (PLLA) as a function of laser fluence and degree of crystallinity was examined. The ablation parameters and the surface modifications were analyzed under various irradiation conditions using laser wavelengths ranging from the ultraviolet through the visible. When processing the amorphous PLLA, both energy threshold and topography varied considerably depending on laser wavelength. Laser irradiation showed a reduction in the energy ablation threshold as the degree of crystallinity increased, probably related to photomechanical effects involved in laser ablation with ultra-short pulses and the lower stress accommodation behavior of semicrystalline polymers. In particular, cooperative chain motions are impeded by the higher degree of crystallinity, showing fragile mechanical behavior and lower energy dissipation. The experimental results on ablation rate versus laser energy showed that UV laser ablation on semicrystalline PLLA was more efficient than the visible ablation, i.e., it exhibits higher etch rates over a wide range of pulse energy conditions. These results were interpreted in terms of photo-thermal and photo-chemical response of polymers as a function of material micro-structure and incident laser wavelength. High quality micro-grooves were produced in amorphous PLLA, reveling the potential of ultra-fast laser processing technique in the field of micro-structuring biocompatible and biodegradable polymers for biomedical applications.

  18. Stellar Ablation of Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Moore, Thomas E.; Horwitz, J. L.

    2007-01-01

    We review observations and theories of the solar ablation of planetary atmospheres, focusing on the terrestrial case where a large magnetosphere holds off the solar wind, so that there is little direct atmospheric impact, but also couples the solar wind electromagnetically to the auroral zones. We consider the photothermal escape flows known as the polar wind or refilling flows, the enhanced mass flux escape flows that result from localized solar wind energy dissipation in the auroral zones, and the resultant enhanced neutral atom escape flows. We term these latter two escape flows the "auroral wind." We review observations and theories of the heating and acceleration of auroral winds, including energy inputs from precipitating particles, electromagnetic energy flux at magnetohydrodynamic and plasma wave frequencies, and acceleration by parallel electric fields and by convection pickup processes also known as "centrifugal acceleration." We consider also the global circulation of ionospheric plasmas within the magnetosphere, their participation in magnetospheric disturbances as absorbers of momentum and energy, and their ultimate loss from the magnetosphere into the downstream solar wind, loading reconnection processes that occur at high altitudes near the magnetospheric boundaries. We consider the role of planetary magnetization and the accumulating evidence of stellar ablation of extrasolar planetary atmospheres. Finally, we suggest and discuss future needs for both the theory and observation of the planetary ionospheres and their role in solar wind interactions, to achieve the generality required for a predictive science of the coupling of stellar and planetary atmospheres over the full range of possible conditions.

  19. Transgenic Reproductive Cell Ablation.

    PubMed

    Lawit, Shai J; Chamberlin, Mark A

    2017-01-01

    Numerous cell ablation technologies are available and have been used in reproductive tissues, particularly for male tissues and cells. The importance of ablation of reproductive tissues is toward a fundamental understanding reproductive tissue development and fertilization, as well as, in developing sterility lines important to breeding strategies. Here, we describe techniques for developing ablation lines for both male and female reproductive cells. Also discussed are techniques for analysis, quality control, maintenance, and the lessening of pleiotropism in such lines.

  20. CT imaging during microwave ablation: Analysis of spatial and temporal tissue contraction

    SciTech Connect

    Liu, Dong; Brace, Christopher L., E-mail: clbrace@wisc.edu

    Purpose: To analyze the spatial distribution and temporal development of liver tissue contraction during high-temperature ablation by using intraprocedural computed tomography (CT) imaging. Methods: A total of 46 aluminum fiducial markers were positioned in a 60 × 45 mm grid, in a single plane, around a microwave ablation antenna in each of six ex vivo bovine liver samples. Ablations were performed for 10 min at 100 W. CT data of the liver sample were acquired every 30 s during ablation. Fiducial motion between acquisitions was tracked in postprocessing and used to calculate measures of tissue contraction and contraction rates. Themore » spatial distribution and temporal evolution of contraction were analyzed. Results: Fiducial displacement indicated that the zone measured postablation was 8.2 ± 1.8 mm (∼20%) smaller in the radial direction and 7.1 ± 1.0 mm (∼10%) shorter in the longitudinal direction than the preablation tissue dimension. Therefore, the total ablation volume was reduced from its preablation value by approximately 45%. Very little longitudinal contraction was noted in the distal portion of the ablation zone. Central tissues contracted more than 60%, which was near an estimated limit of ∼70% based on initial water content. More peripheral tissues contracted only 15% in any direction. Contraction rates peaked during the first 60 s of heating with a roughly exponential decay over time. Conclusions: Ablation zones measured posttreatment are significantly smaller than the pretreatment tissue dimensions. Tissue contraction is spatially dependent, with the greatest effect occurring in the central ablation zone. Contraction rate peaks early and decays over time.« less

  1. Survival after Radiofrequency Ablation in 122 Patients with Inoperable Colorectal Lung Metastases

    SciTech Connect

    Gillams, Alice, E-mail: alliesorting@gmail.com; Khan, Zahid; Osborn, Peter

    2013-06-15

    Purpose. To analyze the factors associated with favorable survival in patients with inoperable colorectal lung metastases treated with percutaneous image-guided radiofrequency ablation. Methods. Between 2002 and 2011, a total of 398 metastases were ablated in 122 patients (87 male, median age 68 years, range 29-90 years) at 256 procedures. Percutaneous CT-guided cool-tip radiofrequency ablation was performed under sedation/general anesthesia. Maximum tumor size, number of tumors ablated, number of procedures, concurrent/prior liver ablation, previous liver or lung resection, systemic chemotherapy, disease-free interval from primary resection to lung metastasis, and survival from first ablation were recorded prospectively. Kaplan-Meier analysis was performed, andmore » factors were compared by log rank test. Results. The initial number of metastases ablated was 2.3 (range 1-8); the total number was 3.3 (range 1-15). The maximum tumor diameter was 1.7 (range 0.5-4) cm, and the number of procedures was 2 (range 1-10). The major complication rate was 3.9 %. Overall median and 3-year survival rate were 41 months and 57 %. Survival was better in patients with smaller tumors-a median of 51 months, with 3-year survival of 64 % for tumors 2 cm or smaller versus 31 months and 44 % for tumors 2.1-4 cm (p = 0.08). The number of metastases ablated and whether the tumors were unilateral or bilateral did not affect survival. The presence of treated liver metastases, systemic chemotherapy, or prior lung resection did not affect survival. Conclusion. Three-year survival of 57 % in patients with inoperable colorectal lung metastases is better than would be expected with chemotherapy alone. Patients with inoperable but small-volume colorectal lung metastases should be referred for ablation.« less

  2. Radiofrequency catheter ablation of ventricular tachycardia in patients without structural heart disease.

    PubMed

    Klein, L S; Shih, H T; Hackett, F K; Zipes, D P; Miles, W M

    1992-05-01

    Radiofrequency energy has been used safely and successfully to eliminate accessory pathways in patients with the Wolff-Parkinson-White syndrome and the substrate for atrioventricular nodal reentrant tachycardia. However, this form of ablation has had only limited success in eliminating ventricular tachycardia in patients with structural heart disease. In contrast, direct-current catheter ablation has been used successfully to eliminate ventricular tachycardia in patients with and without structural heart disease. The purpose of this study was to test whether radiofrequency energy can safely and effectively ablate ventricular tachycardia in patients without structural heart disease. Sixteen patients (nine women and seven men; mean age, 38 years; range, 18-55 years) without structural heart disease who had ventricular tachycardia underwent radiofrequency catheter ablation to eliminate the ventricular tachycardia. Two patients presented with syncope, nine with presyncope, and five with palpitations only. Mean duration of symptoms was 6.7 years (range, 0.5-20 years). Radiofrequency catheter ablation successfully eliminated ventricular tachycardia in 15 of 16 patients (94%). Sites of ventricular tachycardia origin included the high right ventricular outflow tract (12 patients), the right ventricular septum near the tricuspid valve (three patients), and the left ventricular septum (one patient). The only ablation failure was in a patient whose ventricular tachycardia arose from a region near the His bundle. An accurate pace map, early local endocardial activation, and firm catheter contact with endocardium were associated with successful ablation. Radiofrequency ablation did not cause arrhythmias, produced minimal cardiac enzyme rise, and resulted in no detectable change in cardiac function by Doppler echocardiography. Radiofrequency catheter ablation of ventricular tachycardia in patients without structural heart disease is effective and safe and may be considered as

  3. Artificial pneumothorax: a safe and simple method to relieve pain during microwave ablation of subpleural lung malignancy.

    PubMed

    Hou, Xiaowei; Zhuang, Xingjun; Zhang, Haiwen; Wang, Kai; Zhang, Yuanxin

    2017-08-01

    Microwave ablation has been extensively used for eliminating pulmonary tumors; however, it is usually associated with severe pain under local anesthesia. Decreasing the power and shortening the ablation time can help to relieve the pain; however, this leads to incomplete ablation and an increasing recurrence rate. This research aims to employ an artificial pneumothorax to increase both the curative effect and pain relief during the ablation procedure. From July 2013 to January 2015, nine patients presenting with 10 subpleural lung tumors (age: 44-78 years) with a high possibility of severe pain underwent the artificial pneumothorax during microwave ablation. The pain assessment scores and complications induced by the artificial pneumothorax were recorded and analyzed by a CT scan follow-up. The tumors of the nine patients were eliminated successfully using microwave ablation with artificial pneumothorax under local anesthesia. The pain caused by the ablation was relieved to a great extent with an average rate of 94.66% (range: 63.3%-100%) and all tumors were ablated completely. No severe complications occurred after the operation. The artificial pneumothorax is a reliable therapy to improve the curative effect of microwave ablation under local anesthesia by relieving the pain of the patients.

  4. Non-coaxial-based microwave ablation antennas for creating symmetric and asymmetric coagulation zones

    NASA Astrophysics Data System (ADS)

    Mohtashami, Yahya; Luyen, Hung; Hagness, Susan C.; Behdad, Nader

    2018-06-01

    We present an investigation of a new class of microwave ablation (MWA) antennas capable of producing axially symmetric or asymmetric heating patterns. The antenna design is based on a dipole fed by a balanced parallel-wire transmission line. The angle and direction of the deployed dipole arms are used to control the heating pattern. We analyzed the specific absorption rate and temperature profiles using electromagnetic and thermal simulations. Two prototypes were fabricated and tested in ex vivo ablation experiments: one was designed to produce symmetric heating patterns and the other was designed to generate asymmetric heating patterns. Both fabricated prototypes exhibited good impedance matching and produced localized coagulation zones as predicted by the simulations. The prototype operating in porcine muscle created an ˜10 cm3 symmetric ablation zone after 10 min of ablation with a power level of 18 W. The prototype operating in egg white created an ˜4 cm3 asymmetric ablation zone with a directionality ratio of 40% after 5 min of ablation with a power level of 25 W. The proposed MWA antenna design shows promise for minimally invasive treatment of tumors in various clinical scenarios where, depending on the situation, a symmetric or an asymmetric heating pattern may be needed.

  5. Efficacy and predictability of soft tissue ablation using a prototype Raman-shifted alexandrite laser

    PubMed Central

    Kozub, John A.; Shen, Jin-H.; Joos, Karen M.; Prasad, Ratna; Shane Hutson, M.

    2015-01-01

    Abstract. Previous research showed that mid-infrared free-electron lasers could reproducibly ablate soft tissue with little collateral damage. The potential for surgical applications motivated searches for alternative tabletop lasers providing thermally confined pulses in the 6- to-7-μm wavelength range with sufficient pulse energy, stability, and reliability. Here, we evaluate a prototype Raman-shifted alexandrite laser. We measure ablation thresholds, etch rates, and collateral damage in gelatin and cornea as a function of laser wavelength (6.09, 6.27, or 6.43  μm), pulse energy (up to 3  mJ/pulse), and spot diameter (100 to 600  μm). We find modest wavelength dependence for ablation thresholds and collateral damage, with the lowest thresholds and least damage for 6.09  μm. We find a strong spot-size dependence for all metrics. When the beam is tightly focused (∼100-μm diameter), ablation requires more energy, is highly variable and less efficient, and can yield large zones of mechanical damage (for pulse energies >1  mJ). When the beam is softly focused (∼300-μm diameter), ablation proceeded at surgically relevant etch rates, with reasonable reproducibility (5% to 12% within a single sample), and little collateral damage. With improvements in pulse-energy stability, this prototype laser may have significant potential for soft-tissue surgical applications. PMID:26456553

  6. Advanced Ablative TPS

    NASA Technical Reports Server (NTRS)

    Gasch, Matthew J.

    2011-01-01

    Early NASA missions (Gemini, Apollo, Mars Viking) employed new ablative TPS that were tailored for the entry environment. After 40 years, heritage ablative TPS materials using Viking or Pathfinder era materials are at or near their performance limits and will be inadequate for future exploration missions. Significant advances in TPS materials technology are needed in order to enable any subsequent human exploration missions beyond Low Earth Orbit. This poster summarizes some recent progress at NASA in developing families of advanced rigid/conformable and flexible ablators that could potentially be used for thermal protection in planetary entry missions. In particular the effort focuses technologies required to land heavy (approx.40 metric ton) masses on Mars to facilitate future exploration plans.

  7. Is Cryoballoon Ablation Preferable to Radiofrequency Ablation for Treatment of Atrial Fibrillation by Pulmonary Vein Isolation? A Meta-Analysis

    PubMed Central

    Xu, Junxia; Huang, Yingqun; Cai, Hongbin; Qi, Yue; Jia, Nan; Shen, Weifeng; Lin, Jinxiu; Peng, Feng; Niu, Wenquan

    2014-01-01

    Objective Currently radiofrequency and cryoballoon ablations are the two standard ablation systems used for catheter ablation of atrial fibrillation; however, there is no universal consensus on which ablation is the optimal choice. We therefore sought to undertake a meta-analysis with special emphases on comparing the efficacy and safety between cryoballoon and radiofrequency ablations by synthesizing published clinical trials. Methods and Results Articles were identified by searching the MEDLINE and EMBASE databases before September 2013, by reviewing the bibliographies of eligible reports, and by consulting with experts in this field. Data were extracted independently and in duplicate. There were respectively 469 and 635 patients referred for cryoballoon and radiofrequency ablations from 14 qualified clinical trials. Overall analyses indicated that cryoballoon ablation significantly reduced fluoroscopic time and total procedure time by a weighted mean of 14.13 (95% confidence interval [95% CI]: 2.82 to 25.45; P = 0.014) minutes and 29.65 (95% CI: 8.54 to 50.77; P = 0.006) minutes compared with radiofrequency ablation, respectively, whereas ablation time in cryoballoon ablation was nonsignificantly elongated by a weighted mean of 11.66 (95% CI: −10.71 to 34.04; P = 0.307) minutes. Patients referred for cryoballoon ablation had a high yet nonsignificant success rate of catheter ablation compared with cryoballoon ablation (odds ratio; 95% CI; P: 1.34; 0.53 to 3.36; 0.538), and cryoballoon ablation was also found to be associated with the relatively low risk of having recurrent atrial fibrillation (0.75; 0.3 to 1.88; 0.538) and major complications (0.46; 0.11 to 1.83; 0.269). There was strong evidence of heterogeneity and low probability of publication bias. Conclusion Our findings demonstrate greater improvement in fluoroscopic time and total procedure duration for atrial fibrillation patients referred for cryoballoon ablation than those for

  8. Radiofrequency ablation during continuous saline infusion can extend ablation margins

    PubMed Central

    Ishikawa, Toru; Kubota, Tomoyuki; Horigome, Ryoko; Kimura, Naruhiro; Honda, Hiroki; Iwanaga, Akito; Seki, Keiichi; Honma, Terasu; Yoshida, Toshiaki

    2013-01-01

    AIM: To determine whether fluid injection during radiofrequency ablation (RFA) can increase the coagulation area. METHODS: Bovine liver (1-2 kg) was placed on an aluminum tray with a return electrode affixed to the base, and the liver was punctured by an expandable electrode. During RFA, 5% glucose; 50% glucose; or saline fluid was infused continuously at a rate of 1.0 mL/min through the infusion line connected to the infusion port. The area and volume of the thermocoagulated region of bovine liver were determined after RFA. The Joule heat generated was determined from the temporal change in output during the RFA experiment. RESULTS: No liquid infusion was 17.3 ± 1.6 mL, similar to the volume of a 3-cm diameter sphere (14.1 mL). Mean thermocoagulated volume was significantly larger with continuous infusion of saline (29.3 ± 3.3 mL) than with 5% glucose (21.4 ± 2.2 mL), 50% glucose (16.5 ± 0.9 mL) or no liquid infusion (17.3 ± 1.6 mL). The ablated volume for RFA with saline was approximately 1.7-times greater than for RFA with no liquid infusion, representing a significant difference between these two conditions. Total Joule heat generated during RFA was highest with saline, and lowest with 50% glucose. CONCLUSION: RFA with continuous saline infusion achieves a large ablation zone, and may help inhibit local recurrence by obtaining sufficient ablation margins. RFA during continuous saline infusion can extend ablation margins, and may be prevent local recurrence. PMID:23483097

  9. Real time ablation rate measurement during high aspect-ratio hole drilling with a 120-ps fiber laser.

    PubMed

    Mezzapesa, Francesco P; Sibillano, Teresa; Di Niso, Francesca; Ancona, Antonio; Lugarà, Pietro M; Dabbicco, Maurizio; Scamarcio, Gaetano

    2012-01-02

    We report on the instantaneous detection of the ablation rate as a function of depth during ultrafast microdrilling of metal targets. The displacement of the ablation front has been measured with a sub-wavelength resolution using an all-optical sensor based on the laser diode self-mixing interferometry. The time dependence of the laser ablation process within the depth of aluminum and stainless steel targets has been investigated to study the evolution of the material removal rate in high aspect-ratio micromachined holes.

  10. Ablation experiment and threshold calculation of titanium alloy irradiated by ultra-fast pulse laser

    SciTech Connect

    Zheng, Buxiang; Jiang, Gedong; Wang, Wenjun, E-mail: wenjunwang@mail.xjtu.edu.cn

    The interaction between an ultra-fast pulse laser and a material's surface has become a research hotspot in recent years. Micromachining of titanium alloy with an ultra-fast pulse laser is a very important research direction, and it has very important theoretical significance and application value in investigating the ablation threshold of titanium alloy irradiated by ultra-fast pulse lasers. Irradiated by a picosecond pulse laser with wavelengths of 1064 nm and 532 nm, the surface morphology and feature sizes, including ablation crater width (i.e. diameter), ablation depth, ablation area, ablation volume, single pulse ablation rate, and so forth, of the titanium alloymore » were studied, and their ablation distributions were obtained. The experimental results show that titanium alloy irradiated by a picosecond pulse infrared laser with a 1064 nm wavelength has better ablation morphology than that of the green picosecond pulse laser with a 532 nm wavelength. The feature sizes are approximately linearly dependent on the laser pulse energy density at low energy density and the monotonic increase in laser pulse energy density. With the increase in energy density, the ablation feature sizes are increased. The rate of increase in the feature sizes slows down gradually once the energy density reaches a certain value, and gradually saturated trends occur at a relatively high energy density. Based on the linear relation between the laser pulse energy density and the crater area of the titanium alloy surface, and the Gaussian distribution of the laser intensity on the cross section, the ablation threshold of titanium alloy irradiated by an ultra-fast pulse laser was calculated to be about 0.109 J/cm{sup 2}.« less

  11. Infrared thermography and thermocouple mapping of radiofrequency renal ablation to assess treatment adequacy and ablation margins.

    PubMed

    Ogan, Kenneth; Roberts, William W; Wilhelm, David M; Bonnell, Leonard; Leiner, Dennis; Lindberg, Guy; Kavoussi, Louis R; Cadeddu, Jeffrey A

    2003-07-01

    The primary disadvantage of renal tumor RF ablation is the inability to monitor the intraoperative propagation of the RF lesion with real-time imaging. We sought to assess whether adequately lethal temperatures are obtained at the margins of the intended ablation zone using laparoscopic thermography to monitor radiofrequency (RF) lesions in real time, thermocouple measurements, and histopathologic evaluation. Renal RF lesions were created under direct laparoscopic vision in the upper (1 cm diameter) and lower (2 cm) poles of the right kidney in 5 female pigs. The RF lesions were produced with the RITA generator and probe, set at 105 degrees C for 5-minute ablations. During RF treatment, a laparoscopic infrared (IR) camera measured the surface parenchymal temperatures, as did multiple thermocouples. The pigs were then either immediately killed (n = 3) or allowed to live for 2 weeks (n = 2). The kidneys were removed to correlate the temperature measurements with histologic analysis of the ablated lesion. Using a threshold temperature of greater than 70 degrees C for visual "temperature" color change, the IR camera identified the region of pathologic necrosis of the renal parenchyma during RF ablation. Thermocouple measurements demonstrated that the temperatures at the intended ablation radius reached 77.5 degrees C at the renal surface and 83.7 degrees C centrally, and temperatures 5 mm beyond the set radius reached 52.6 degrees C at the surface and 47.7 degrees C centrally. The average diameter of the gross lesion on the surface of the kidney measured 17.1 mm and 22.4 mm for 1-cm and 2-cm ablations, respectively. These surface measurements correlated with an average diameter of 16.1 mm and 15.9 mm (1-cm and 2-cm ablations, respectively) as measured with the IR camera. All cells within these ablation zones were nonviable by nicotinamide adenine dinucleotide diaphorase analysis. The average depth of the lesions measured 19 mm (1-cm ablation) and 25 mm (2-cm ablation

  12. Remodeling of sinus node function after catheter ablation of right atrial flutter.

    PubMed

    Daoud, Emile G; Weiss, Raul; Augostini, Ralph S; Kalbfleisch, Steven J; Schroeder, Jason; Polsinelli, Georgia; Hummel, John D

    2002-01-01

    The purpose of this study was to investigate the effect of ablation of right atrial flutter upon sinus node function in humans. This study enrolled 35 patients. Twenty-four patients (16 men and 8 women; age 68 +/- 11 years) were referred for ablation of persistent atrial flutter (duration 8 +/- 11 months). After ablation, there was abnormal sinus node function defined as a corrected sinus node recovery time (CSNRT) > or = 550 msec. The control group consisted of 11 patients who were undergoing pacemaker implantation for sinus node disease but did not have a history of atrial dysrhythmias or ablation. Within 24 hours of ablation or pacemaker implantation, baseline maximal CSNRT was measured through a permanent pacemaker by AAI pacing at six cycle lengths: 600, 550, 500, 450, 400, and 350 msec. CSNRT then was measured in the same manner at 48 hours, 14 days, and 3 months after ablation/pacemaker implantation. P wave amplitude and duration, and percent atrial sensing also were assessed at the same intervals. For patients undergoing atrial flutter ablation, there was progressive temporal recovery of CSNRT (1,204 +/- 671 msec at baseline vs 834 +/- 380 msec at 3 months; P < 0.001) and a significant increase in the percent atrial sensing and P wave amplitude at 3 months compared with baseline (P < 0.001). In control subjects, there was no change in the CSNRT, percent atrial pacing, or P wave amplitude. After ablation of persistent atrial flutter, there is temporal recovery of CSNRT and increase in spontaneous atrial activity. These findings suggest that atrial flutter induces reversible changes in sinus node function.

  13. Expanded modeling of temperature-dependent dielectric properties for microwave thermal ablation

    PubMed Central

    Ji, Zhen; Brace, Christopher L

    2011-01-01

    Microwaves are a promising source for thermal tumor ablation due to their ability to rapidly heat dispersive biological tissues, often to temperatures in excess of 100 °C. At these high temperatures, tissue dielectric properties change rapidly and, thus, so do the characteristics of energy delivery. Precise knowledge of how tissue dielectric properties change during microwave heating promises to facilitate more accurate simulation of device performance and helps optimize device geometry and energy delivery parameters. In this study, we measured the dielectric properties of liver tissue during high-temperature microwave heating. The resulting data were compiled into either a sigmoidal function of temperature or an integration of the time–temperature curve for both relative permittivity and effective conductivity. Coupled electromagnetic–thermal simulations of heating produced by a single monopole antenna using the new models were then compared to simulations with existing linear and static models, and experimental temperatures in liver tissue. The new sigmoidal temperature-dependent model more accurately predicted experimental temperatures when compared to temperature–time integrated or existing models. The mean percent differences between simulated and experimental temperatures over all times were 4.2% for sigmoidal, 10.1% for temperature–time integration, 27.0% for linear and 32.8% for static models at the antenna input power of 50 W. Correcting for tissue contraction improved agreement for powers up to 75 W. The sigmoidal model also predicted substantial changes in heating pattern due to dehydration. We can conclude from these studies that a sigmoidal model of tissue dielectric properties improves prediction of experimental results. More work is needed to refine and generalize this model. PMID:21791728

  14. Influence of ablation wavelength and time on optical properties of laser ablated carbon dots

    NASA Astrophysics Data System (ADS)

    Isnaeni, Hanna, M. Yusrul; Pambudi, A. A.; Murdaka, F. H.

    2017-01-01

    Carbon dots, which are unique and applicable materials, have been produced using many techniques. In this work, we have fabricated carbon dots made of coconut fiber using laser ablation technique. The purpose of this work is to evaluate two ablation parameters, which are ablation wavelength and ablation time. We used pulsed laser from Nd:YAG laser with emit wavelength at 355 nm, 532 nm and 1064 nm. We varied ablation time one hour and two hours. Photoluminescence and time-resolved photoluminescence setup were used to study the optical properties of fabricated carbon dots. In general, fabricated carbon dots emit bluish green color emission upon excitation by blue laser. We found that carbon dots fabricated using 1064 nm laser produced the highest carbon dots emission among other samples. The peak wavelength of carbon dots emission is between 495 nm until 505 nm, which gives bluish green color emission. Two hours fabricated carbon dots gave four times higher emission than one hour fabricated carbon dot. More emission intensity of carbon dots means more carbon dots nanoparticles were fabricated during laser ablation process. In addition, we also measured electron dynamics of carbon dots using time-resolved photoluminescence. We found that sample with higher emission has longer electron decay time. Our finding gives optimum condition of carbon dots fabrication from coconut fiber using laser ablation technique. Moreover, fabricated carbon dots are non-toxic nanoparticles that can be applied for health, bio-tagging and medical applications.

  15. Mechanisms for the Termination of Atrial Fibrillation by Localized Ablation: Computational and Clinical Studies.

    PubMed

    Rappel, Wouter-Jan; Zaman, Junaid A B; Narayan, Sanjiv M

    2015-12-01

    Human atrial fibrillation (AF) can terminate after ablating localized regions, which supports the existence of localized rotors (spiral waves) or focal drivers. However, it is unclear why ablation near a spiral wave tip would terminate AF and not anchor reentry. We addressed this question by analyzing competing mechanisms for AF termination in numeric simulations, referenced to clinical observations. Spiral wave reentry was simulated in monodomain 2-dimensional myocyte sheets using clinically realistic rate-dependent values for repolarization and conduction. Heterogeneous models were created by introduction of parameterized variations in tissue excitability. Ablation lesions were applied as nonconducting circular regions. Models confirmed that localized ablation may anchor spiral wave reentry, producing organized tachycardias. Several mechanisms referenced to clinical observations explained termination of AF to sinus rhythm. First, lesions may create an excitable gap vulnerable to invasion by fibrillatory waves. Second, ablation of rotors in regions of low-excitability (from remodeling) produced re-entry in more excitable tissue allowing collision of wavefront and back. Conversely, ablation of rotors in high-excitability regions migrated spiral waves to less excitable tissue, where they detached to collide with nonconducting boundaries. Third, ablation may connect rotors to nonconducting anatomic orifices. Fourth, reentry through slow-conducting channels may terminate if ablation closes these channels. Limited ablation can terminate AF by several mechanisms. These data shed light on how clinical AF may be sustained in patients' atria, emphasizing heterogeneities in tissue excitability, slow-conducting channels, and obstacles that are increasingly detectable in patients and should be the focus of future translational studies. © 2015 American Heart Association, Inc.

  16. Percutaneous Radiofrequency Ablation with Multiple Electrodes for Medium-Sized Hepatocellular Carcinomas

    PubMed Central

    Lee, Jung; Yoon, Jung-Hwan; Lee, Jae Young; Kim, Se Hyung; Lee, Jeong Eun; Han, Joon Koo; Choi, Byung Ihn

    2012-01-01

    Objective To prospectively evaluate the safety and short-term therapeutic efficacy of switching monopolar radiofrequency ablation (RFA) with multiple electrodes to treat medium-sized (3.1-5.0 cm), hepatocellular carcinomas (HCC). Materials and Methods In this prospective study, 30 patients with single medium-sized HCCs (mean, 3.5 cm; range, 3.1-4.4 cm) were enrolled. The patients were treated under ultrasonographic guidance by percutaneous switching monopolar RFA with a multichannel RF generator and two or three internally cooled electrodes. Contrast-enhanced CT scans were obtained immediately after RFA, and the diameters and volume of the ablation zones were then measured. Follow-up CT scans were performed at the first month after ablation and every three months thereafter. Technical effectiveness, local progression and remote recurrence of HCCs were determined. Results There were no major immediate or periprocedural complications. However, there was one bile duct stricture during the follow-up period. Technical effectiveness was achieved in 29 of 30 patients (97%). The total ablation time of the procedures was 25.4 ± 8.9 minutes. The mean ablation volume was 73.8 ± 56.4 cm3 and the minimum diameter was 4.1 ± 7.3 cm. During the follow-up period (mean, 12.5 months), local tumor progression occurred in three of 29 patients (10%) with technical effectiveness, while new HCCs were detected in six of 29 patients (21%). Conclusion Switching monopolar RFA with multiple electrodes in order to achieve a sufficient ablation volume is safe and efficient. This method also showed relatively successful therapeutic effectiveness on short-term follow up for the treatment of medium-sized HCCs. PMID:22247634

  17. OCT analysis of microneedle and Er:YAG surface ablation for enhanced transdermal delivery of hyperosmotic agents for optical skin clearing

    NASA Astrophysics Data System (ADS)

    Stumpp, Oliver F.; Welch, A. J.; Gill, Harvinder S.; Prausnitz, Mark R.

    2004-07-01

    indicate enhanced skin clearing rates due to the induced holes in the stratum corneum in both cases by a factor of 5 to 8. Due to the larger area of laser ablation in comparison to the holes caused by microneedles, overall skin clearing rates are higher with the laser. However, localized data analysis near holes produced by either technique yields comparable results which show an increase in the clearing rate of up to 10 to 13 times over intact skin without any holes.

  18. Age dependence of Olympic weightlifting ability.

    PubMed

    Meltzer, D E

    1994-08-01

    There is increasing interest among Masters athletes in standards for comparing performances of competitors of different ages. The goal of this study was to develop one such age-comparison method by examining the age dependence of ability in Olympic-style weightlifting. Previous research on the deterioration of muscular strength and power with increasing age offers only limited guidance toward this goal; therefore, analysis of performance data was required. The variation of weightlifting ability as a function of age was examined by two different methods. First, cross-sectional data corresponding to two separate populations of Masters weightlifters were analyzed in detail. Then, a longitudinal study of 64 U.S. male Masters weightlifters was carried out, with performance versus age curves resulting from the two methods were very similar, reflecting approximately 1.0-1.5% x yr-1 deterioration rates. These curves were characterized by common features regarding the rate of decline of muscular power with increasing age, in apparent agreement with published data regarding Masters sprinters and jumpers. We tentatively conclude that Olympic weightlifting ability in trained subjects undergoes a nonlinear decline with age, in which the second derivative of the performance versus age curve repeatedly changes sign.

  19. Plume dynamics from UV pulsed ablation of Al and Ti

    NASA Astrophysics Data System (ADS)

    Bauer, William; Perram, Glen; Haugan, Timothy

    2016-12-01

    Pulsed laser ablation of Al and Ti with a < 3.3 J/cm2 KrF laser and Ar background pressure of up to 1 Torr was performed to study the ablated plume. Mass loss experiments revealed the number of ablated atoms per pulse increases by 30% for Ti and 20% for Al as pressure decreases from 1 Torr to vacuum. Optical emission imaging performed using a gated ICCD revealed a strong dependence of shock front parameters, defined by the Sedov-Taylor blast and classical drag models, on background pressure. Spatially resolved optical emission spectroscopy from Al I, Al II, Ti I, and Ti II revealed ion temperatures of 104 K that decreased away from the target surface along the surface normal and neutral temperatures of 103 K independent of target distance. Comparison between kinetic energy in the shock and internal excitation energy reveals that nearly 100% of the energy is partitioned into shock front kinetic energy and 1% into internal excitation.

  20. Uterine Fibroids: Correlation of T2 Signal Intensity with Semiquantitative Perfusion MR Parameters in Patients Screened for MR-guided High-Intensity Focused Ultrasound Ablation.

    PubMed

    Kim, Young-Sun; Lee, Jeong-Won; Choi, Chel Hun; Kim, Byoung-Gie; Bae, Duk-Soo; Rhim, Hyunchul; Lim, Hyo Keun

    2016-03-01

    To evaluate the relationships between T2 signal intensity and semiquantitative perfusion magnetic resonance (MR) parameters of uterine fibroids in patients who were screened for MR-guided high-intensity focused ultrasound (HIFU) ablation. Institutional review board approval was granted, and informed consents were waived. One hundred seventy most symptom-relevant, nondegenerated uterine fibroids (mean diameter, 7.3 cm; range, 3.0-17.2 cm) in 170 women (mean age, 43.5 years; range, 24-56 years) undergoing screening MR examinations for MR-guided HIFU ablation from October 2009 to April 2014 were retrospectively analyzed. Fibroid signal intensity was assessed as the ratio of the fibroid T2 signal intensity to that of skeletal muscle. Parameters of semiquantitative perfusion MR imaging obtained during screening MR examination (peak enhancement, percentage of relative peak enhancement, time to peak [in seconds], wash-in rate [per seconds], and washout rate [per seconds]) were investigated to assess their relationships with T2 signal ratio by using multiple linear regression analysis. Correlations between T2 signal intensity and independently significant perfusion parameters were then evaluated according to fibroid type by using Spearman correlation test. Multiple linear regression analysis revealed that relative peak enhancement showed an independently significant correlation with T2 signal ratio (Β = 0.004, P < .001). Submucosal intracavitary (n = 20, ρ = 0.275, P = .240) and type III (n = 18, ρ = 0.082, P = .748) fibroids failed to show significant correlations between perfusion and T2 signal intensity, while significant correlations were found for all other fibroid types (ρ = 0.411-0.629, P < .05). In possible candidates for MR-guided HIFU ablation, the T2 signal intensity of nondegenerated uterine fibroids showed an independently significant positive correlation with relative peak enhancement in most cases, except those of submucosal intracavitary or type III

  1. Modeling of beam-target interaction during pulsed electron beam ablation of graphite: Case of melting

    NASA Astrophysics Data System (ADS)

    Ali, Muddassir; Henda, Redhouane

    2017-02-01

    A one-dimensional thermal model based on a two-stage heat conduction equation is employed to investigate the ablation of graphite target during nanosecond pulsed electron beam ablation. This comprehensive model accounts for the complex physical phenomena comprised of target heating, melting and vaporization upon irradiation with a polyenergetic electron beam. Melting and vaporization effects induced during ablation are taken into account by introducing moving phase boundaries. Phase transition induced during ablation is considered through the temperature dependent thermodynamic properties of graphite. The effect of electron beam efficiency, power density, and accelerating voltage on ablation is analyzed. For an electron beam operating at an accelerating voltage of 15 kV and efficiency of 0.6, the model findings show that the target surface temperature can reach up to 7500 K at the end of the pulse. The surface begins to melt within 25 ns from the pulse start. For the same process conditions, the estimated ablation depth and ablated mass per unit area are about 0.60 μm and 1.05 μg/mm2, respectively. Model results indicate that ablation takes place primarily in the regime of normal vaporization from the surface. The results obtained at an accelerating voltage of 15 kV and efficiency factor of 0.6 are satisfactorily in good accordance with available experimental data in the literature.

  2. Glutamate co-transmission from developing medial nucleus of the trapezoid body - Lateral superior olive synapses is cochlear dependent in kanamycin-treated rats

    SciTech Connect

    Lee, Jae Ho; Pradhan, Jonu; Maskey, Dhiraj

    Research highlights: {yields} Glutamate co-transmission is enhanced in kanamycin-treated rats. {yields} VGLUT3 expression is increased in kanamycin-treated rats. {yields} GlyR expression is decreased in kanamycin-treated rats. {yields} GlyR, VGLUT3 expression patterns are asymmetric in unilaterally cochlear ablated rat. -- Abstract: Cochlear dependency of glutamate co-transmission at the medial nucleus of the trapezoid body (MNTB) - the lateral superior olive (LSO) synapses was investigated using developing rats treated with high dose kanamycin. Rats were treated with kanamycin from postnatal day (P) 3 to P8. A scanning electron microscopic study on P9 demonstrated partial cochlear hair cell damage. A whole cell voltagemore » clamp experiment demonstrated the increased glutamatergic portion of postsynaptic currents (PSCs) elicited by MNTB stimulation in P9-P11 kanamycin-treated rats. The enhanced VGLUT3 immunoreactivities (IRs) in kanamycin-treated rats and asymmetric VGLUT3 IRs in the LSO of unilaterally cochlear ablated rats supported the electrophysiologic data. Taken together, it is concluded that glutamate co-transmission is cochlear-dependent and enhanced glutamate co-transmission in kanamycin-treated rats is induced by partial cochlear damage.« less

  3. Asymptomatic Ventricular Pre-excitation: Between Sudden Cardiac Death and Catheter Ablation.

    PubMed

    Brugada, Josep; Keegan, Roberto

    2018-03-01

    Debate about the best clinical approach to the management of asymptomatic patients with ventricular pre-excitation and advice on whether or not to invasively stratify and ablate is on-going. Weak evidence about the real risk of sudden cardiac death and the potential benefit of catheter ablation has probably prevented the clarification of action in this not infrequent and sometimes conflicting clinical situation. After analysing all available data, real evidence-based medicine could be the alternative strategy for managing this group of patients. According to recent surveys, most electrophysiologists invasively stratify. Based on all accepted risk factors - younger age, male, associated structural heart disease, posteroseptal localisation, ability of the accessory pathway to conduct anterogradely at short intervals of ≤250 milliseconds and inducibility of sustained atrioventricular re-entrant tachycardia and/or atrial fibrillation - a shared decisionmaking process on catheter ablation is proposed.

  4. Age at onset typology in opioid dependent men: an exploratory study.

    PubMed

    De, Biswajit; Mattoo, Surendra K; Basu, Debasish

    2002-04-01

    This study attempted to apply age at onset typology in ICD-10 diagnosed opioid dependence. The sample comprised 80 men seeking treatment at an addiction clinic. The measures included socio-demographic and clinical profile, Severity of Opioid Dependence Questionnaire, Modified Sensation Seeking Scale, Multiphasic Personality Questionnaire (MPQ) and Family History Assessment Module. A cut-off age of 20/21 years for an early-onset late-onset typology of opioid dependence was obtained using two methods - the modal age at onset method and one-third sample by age at onset method. The early onset group showed significant differences in terms of it being more often younger, urban, unmarried, wage earning or students, using oral opioids (not heroin or injectables), showing higher lifetime use and dependence of sedatives, earlier onset of use and dependence of sedatives and tobacco, and higher global psychopathology in terms of MPQ. The early onset group also showed statistically insignificant trends for lesser use and dependence of alcohol, higher severity of opioid dependence, more legal and less social complications, higher sensation seeking (except boredom susceptibility), and more frequent substance dependence in first degree relatives. The age at onset typology in opioid dependence appears to be feasible and having some similarities to similar typology in alcoholism.

  5. Risk of pacemaker implantation after uneventful successful cavotricuspid isthmus radiofrequency ablation in patients with common atrial flutter.

    PubMed

    Rodríguez-Mañero, Moisés; González-Melchor, Layla; Ballesteros, Gabriel; Raposeiras-Roubín, Sergio; García-Seara, Javier; López, Xesús Alberte Fernández; Cambeiro, Cristina González; Alcalde, Oscar; García-Bolao, Ignacio; Martínez-Sande, Luis; González-Juanatey, José Ramón

    2016-01-01

    Little is known about the risk of pacemaker implantation after common atrial flutter ablation in the long-term. We retrospectively reviewed the electrophysiology laboratory database at two Spanish University Hospitals from 1998 to 2012 to identify patients who had undergone successful ablation for cavotricuspid dependent atrial flutter. Cox regression analysis was used to examine the risk of pacemaker implantation. A total of 298 patients were considered eligible for inclusion. The mean age of the enrolled patients was 65.7±11. During 57.7±42.8 months, 30 patients (10.1%) underwent pacemaker implantation. In the stepwise multivariate models only heart rate at the time of the ablation (OR: 0.96; 95% CI: 0.93-0.98; p<0.0001) and intraventricular conduction disturbances in the baseline ECG (OR: 3.87; 95% CI: 1.54-9.70; p=0.004) were independents predictors of the need of pacemaker implantation. A heart rate of ≤65 bpm was identified as the optimal cut-off value to predict the need of pacemaker implantation in the follow-up (sensitivity: 79%, specificity: 74%) by ROC curve analyses. This is the first study of an association between the slow conducting common atrial flutter and subsequent risk of pacemaker implantation. In light of these findings, assessing it prior to ablation can be helpful for the risk stratification of sinus node disease or atrioventricular conduction disease requiring a pacemaker implantation in patients with persistent atrial flutter. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Comparative study of excimer and erbium:YAG lasers for ablation of structural components of the knee

    NASA Astrophysics Data System (ADS)

    Vari, Sandor G.; Shi, Wei-Qiang; van der Veen, Maurits J.; Fishbein, Michael C.; Miller, J. M.; Papaioannou, Thanassis; Grundfest, Warren S.

    1991-05-01

    This study was designed to compare the efficiency and thermal effect of a 135 ns pulsed-stretched XeCl excimer laser (308 nm) and a free-running Erbium:YAG laser (2940 nm) with 200 microsecond(s) pulse duration for ablation of knee joint structures (hyaline and fibrous cartilage, tendon and bone). The radiant exposure used for tissue ablation ranged from 2 to 15 J/cm2 for the XeCl excimer and from 33 to 120 J/cm2 for Er:YAG. The excimer and Er:YAG lasers were operated at 4 and 5 Hz respectively. The ablative laser energy was delivered to tissue through fibers. Ablation rates of soft tissues (hyaline and fibrous cartilage, tendon) varied from 8.5 to 203 micrometers /pulse for excimer and from 8.2 to 273 micrometers /pulse for Er:YAG lasers. Ablation rates of soft tissues are linearly dependent on the radiant exposure. Within the range of parameters tested all the tissues except the bone could be rapidly ablated by both lasers. Bone ablation was much less efficient, requiring 15 J/cm2 and 110 J/cm2 radiant exposure for excimer and Er:YAG lasers to ablate 9.5 and 8.2 micrometers tissue per pulse. However, excimer laser ablation produced less thermal damage in the tissues studied compared to Er:YAG at the same laser parameters. The authors conclude that both lasers are capable of efficient knee joint tissue ablation. XeCl excimer laser requires an order of magnitude less energy than Er:YAG laser for comparable tissue ablation.

  7. Laparoscopic Ultrasound-Guided Radiofrequency Ablation of Uterine Fibroids

    SciTech Connect

    Milic, Andrea; Asch, Murray R.; Hawrylyshyn, Peter A.

    Four patients with symptomatic uterine fibroids measuring less than 6 cm underwent laparoscopic ultrasound-guided radiofrequency ablation (RFA) using multiprobe-array electrodes. Follow-up of the treated fibroids was performed with gadolinium-enhanced magnetic resonance imaging (MRI) and patients' symptoms were assessed by telephone interviews. The procedure was initially technically successful in 3 of the 4 patients and MRI studies at 1 month demonstrated complete fibroid ablation. Symptom improvement, including a decrease in menstrual bleeding and pain, was achieved in 2 patients at 3 months. At 7 months, 1 of these 2 patients experienced symptom worsening which correlated with recurrent fibroid on MRI. Themore » third, initially technically successfully treated patient did not experience any symptom relief after the procedure and was ultimately diagnosed with adenomyosis. Our preliminary results suggest that RFA is a technically feasible treatment for symptomatic uterine fibroids in appropriately selected patients.« less

  8. Ablation of synovial pannus using microbubble-mediated ultrasonic cavitation in antigen-induced arthritis in rabbits.

    PubMed

    Qiu, Li; Jiang, Yong; Zhang, Lingyan; Wang, Lei; Luo, Yan

    2012-12-01

    To investigate the ablative effectiveness of microbubble-mediated ultrasonic cavitation for treating synovial pannus and to determine a potential mechanism using the antigen-induced arthritis model (AIA). Ultrasonic ablation was performed on the knee joints of AIA rabbits using optimal ultrasonic ablative parameters. Rabbits with antigen-induced arthritis were randomly assigned to 4 groups: (1) the ultrasound (US) + microbubble group; (2) the US only group; (3) the microbubble only group, and (4) the control group. At 1 h and 14 days after the first ablation, contrast-enhanced ultrasonography (CEUS) monitoring and pathology synovitis score were used to evaluate the therapeutic effects. Synovial necrosis and microvascular changes were also measured. After the ablation treatment, the thickness of synovium and parameters of time intensity curve including derived peak intensity and area under curve were measured using CEUS, and the pathology synovitis score in the ultrasound + microbubble group was significantly lower than that found in the remaining groups. No damage was observed in the surrounding normal tissues. The mechanism underlying the ultrasonic ablation was related to microthrombosis and microvascular rupture that resulted in synovial necrosis. The results suggest that microbubble-mediated ultrasonic cavitation should be applied as a non-invasive strategy for the treatment of synovial pannus in arthritis under optimal conditions.

  9. Image-based modeling and characterization of RF ablation lesions in cardiac arrhythmia therapy

    NASA Astrophysics Data System (ADS)

    Linte, Cristian A.; Camp, Jon J.; Rettmann, Maryam E.; Holmes, David R.; Robb, Richard A.

    2013-03-01

    In spite of significant efforts to enhance guidance for catheter navigation, limited research has been conducted to consider the changes that occur in the tissue during ablation as means to provide useful feedback on the progression of therapy delivery. We propose a technique to visualize lesion progression and monitor the effects of the RF energy delivery using a surrogate thermal ablation model. The model incorporates both physical and physiological tissue parameters, and uses heat transfer principles to estimate temperature distribution in the tissue and geometry of the generated lesion in near real time. The ablation model has been calibrated and evaluated using ex vivo beef muscle tissue in a clinically relevant ablation protocol. To validate the model, the predicted temperature distribution was assessed against that measured directly using fiberoptic temperature probes inserted in the tissue. Moreover, the model-predicted lesions were compared to the lesions observed in the post-ablation digital images. Results showed an agreement within 5°C between the model-predicted and experimentally measured tissue temperatures, as well as comparable predicted and observed lesion characteristics and geometry. These results suggest that the proposed technique is capable of providing reasonably accurate and sufficiently fast representations of the created RF ablation lesions, to generate lesion maps in near real time. These maps can be used to guide the placement of successive lesions to ensure continuous and enduring suppression of the arrhythmic pathway.

  10. Real time determination of the laser ablated mass by means of electric field-perturbation measurement

    NASA Astrophysics Data System (ADS)

    Pacheco, P.; Álvarez, J.; Sarmiento, R.; Bredice, F.; Sánchez-Aké, C.; Villagrán-Muniz, M.; Palleschi, V.

    2018-04-01

    A Nd:YAG ns-pulsed laser was used to ablate Al, Cd and Zn targets, which were placed between the plates of a planar charged capacitor. The plasma generates a transient redistribution of the electrical charges on the plates that can be measured as a voltage drop across a resistor connected to the ground plate. This signal is proportional to the capacitor applied voltage, the distance between the plates and the total number of ions produced in the ablation process which in turn is related to the laser energy and the ablated mass. After a series of pulses, the targets were weighed on a thermogravimetric balance to measure the ablated mass. Our results show that the electrical signal measured on the resistor is univocally related to the ablated mass from the target. Therefore, after a proper calibration depending on the material and the experimental geometry, the electrical signal can be used for real time quantitative measurement of the ablated mass in pulsed laser generated plasma experiments. The experiments were repeated on an aluminum target, with and without the presence of the external electric field in order to determine the possible influence of the applied electric field on the ablated mass.

  11. Mechanism of age-dependent involution in embryonic chick notochords.

    PubMed

    Ghanem, E; Cornelissen, M; Thierens, H; De Ridder, L

    1996-07-15

    To study the possible mechanism of the age-dependent involution of the notochord, isolated mesenchyme-free notochords of chick embryos were cultured in vitro and compared with their counterparts in vivo. Two different aspects were evaluated: (1) DNA synthesis measured by [3H]thymidine incorporation and visualized by autoradiography and (2) cell death quantified by counting the number of pyknotic nuclei. The results demonstrate that [3H]thymidine uptake by notochords shows an age-dependent decrease in vitro as well as in vivo. The number of [3H]thymidine-labelled notochord cells, however, is higher in vitro than in vivo. At the same time, there is an age-dependent increase in pyknosis in the notochord in vivo and in vitro. So, during the aging process, the number of both pyknotic nuclei and of [3H]thymidine-labelled nuclei suggest a high turnover of notochord cells in vitro. From these results, we can conclude that the process of involution in aging notochord seems to be controlled by a programmed intrinsic process, which might be influenced partially by the microenvironment in vivo.

  12. Theoretical and experimental analysis of the impact on ablation depth of microchannel milling using femtosecond laser

    NASA Astrophysics Data System (ADS)

    Lei, Chen; Pan, Zhang; Jianxiong, Chen; Tu, Yiliu

    2018-04-01

    The plasma brightness cannot be used as a direct indicator of ablation depth detection by femtosecond laser was experimentally demonstrated, which led to the difficulty of depth measurement in the maching process. The tests of microchannel milling on the silicon wafer were carried out in the micromachining center in order to obtain the influences of parameters on the ablation depth. The test results showed that the defocusing distance had no significant impact on ablation depth in LAV effective range. Meanwhile, the reason of this was explained in this paper based on the theoretical analysis and simulation calculation. Then it was proven that the ablation depth mainly depends on laser fluence, step distance and scanning velocity. Finally, a research was further carried out to study the laser parameters which relate with the microchannel ablation depth inside the quartz glass for more efficiency and less cost in processing by femtosecond laser.

  13. Ablation of Rotor and Focal Sources Reduces Late Recurrence of Atrial Fibrillation Compared to Trigger Ablation Alone

    PubMed Central

    Narayan, Sanjiv M.; Baykaner, Tina; Clopton, Paul; Schricker, Amir; Lalani, Gautam; Krummen, David E.; Shivkumar, Kalyanam; Miller, John M.

    2014-01-01

    Objectives To determine if ablation that targets patient-specific AF-sustaining substrates (rotors or focal sources) is more durable than trigger ablation alone at preventing late AF recurrences. Background Late recurrence substantially limits the efficacy of pulmonary vein (PV) isolation for AF, and is associated with PV reconnection and the emergence of new triggers. Methods We performed 3 year follow-up of the CONFIRM trial, in which 92 consecutive AF patients (70.7% persistent) underwent novel computational mapping to reveal a median of 2 (IQR 1–2) rotors or focal sources in 97.7% of patients during AF. Ablation comprised source (Focal Impulse and Rotor Modulation, FIRM) then conventional ablation in n=27 (FIRM-guided), and conventional ablation alone in n=65 (FIRM-blinded). Patients were followed with implanted ECG monitors when possible (85.2% FIRM guided, 23.1% FIRM-blinded). Results On 890 days follow-up (median; IQR 224–1563) compared FIRM-blinded therapy, patients receiving FIRM-guided ablation maintained higher freedom from AF after 1.2±0.4 procedures (median 1, IQR 1–1) (77.8% vs 38.5%; p=0.001) and a single procedure (p>0.001), and higher freedom from all atrial arrhythmias (p=0.003). Freedom from AF was higher when ablation directly or coincidentally passed through sources than when it missed sources (p>0.001). CONCLUSIONS FIRM-guided ablation is more durable than conventional trigger-based ablation at preventing 3 year AF recurrence. Future studies should investigate how ablation of patient-specific AF-sustaining rotors and focal sources alters the natural history of arrhythmia recurrence. PMID:24632280

  14. Cone beam computed tomography images fusion in predicting lung ablation volumes: a feasibility study.

    PubMed

    Ierardi, Anna Maria; Petrillo, Mario; Xhepa, Genti; Laganà, Domenico; Piacentino, Filippo; Floridi, Chiara; Duka, Ejona; Fugazzola, Carlo; Carrafiello, Gianpaolo

    2016-02-01

    Recently different software with the ability to plan ablation volumes have been developed in order to minimize the number of attempts of positioning electrodes and to improve a safe overall tumor coverage. To assess the feasibility of three-dimensional cone beam computed tomography (3D CBCT) fusion imaging with "virtual probe" positioning, to predict ablation volume in lung tumors treated percutaneously. Pre-procedural computed tomography contrast-enhanced scans (CECT) were merged with a CBCT volume obtained to plan the ablation. An offline tumor segmentation was performed to determine the number of antennae and their positioning within the tumor. The volume of ablation obtained, evaluated on CECT performed after 1 month, was compared with the pre-procedural predicted one. Feasibility was assessed on the basis of accuracy evaluation (visual evaluation [VE] and quantitative evaluation [QE]), technical success (TS), and technical effectiveness (TE). Seven of the patients with lung tumor treated by percutaneous thermal ablation were selected and treated on the basis of the 3D CBCT fusion imaging. In all cases the volume of ablation predicted was in accordance with that obtained. The difference in volume between predicted ablation volumes and obtained ones on CECT at 1 month was 1.8 cm(3) (SD ± 2, min. 0.4, max. 0.9) for MW and 0.9 cm(3) (SD ± 1.1, min. 0.1, max. 0.7) for RF. Use of pre-procedural 3D CBCT fusion imaging could be useful to define expected ablation volumes. However, more patients are needed to ensure stronger evidence. © The Foundation Acta Radiologica 2015.

  15. Improving the ablation efficiency of excimer laser systems with higher repetition rates through enhanced debris removal and optimized spot pattern.

    PubMed

    Arba-Mosquera, Samuel; Klinner, Thomas

    2014-03-01

    To evaluate the reasons for the required increased radiant exposure for higher-repetition-rate excimer lasers and determine experimentally possible compensations to achieve equivalent ablation profiles maintaining the same single-pulse energies and radiant exposures for laser repetition rates ranging from 430 to 1000 Hz. Schwind eye-tech-solutions GmbH and Co. KG, Kleinostheim, Germany. Experimental study. Poly(methyl methacrylate) (PMMA) plates were photoablated. The pulse laser energy was maintained during all experiments; the effects of the flow of the debris removal, the shot pattern for the correction, and precooling the PMMA plates were evaluated in terms of achieved ablation versus repetition rate. The mean ablation performance ranged from 88% to 100%; the variability between the profile measurements ranged from 1.4% to 6.2%. Increasing the laser repetition rate from 430 Hz to 1000 Hz reduced the mean ablation performance from 98% to 91% and worsened the variability from 1.9% to 4.3%. Increasing the flow of the debris removal, precooling the PMMA plates to -18°C, and adapting the shot pattern for the thermal response of PMMA to excimer ablation helped stabilize the variability. Only adapting the shot pattern for the thermal response of PMMA to excimer ablation helped stabilize the mean ablation performance. The ablation performance of higher-repetition-rate excimer lasers on PMMA improved with improvements in the debris removal systems and shot pattern. More powerful debris removal systems and smart shot patterns in terms of thermal response improved the performance of these excimer lasers. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  16. Microwave Ablation of Porcine Kidneys in vivo: Effect of two Different Ablation Modes ('Temperature Control' and 'Power Control') on Procedural Outcome

    SciTech Connect

    Sommer, C. M., E-mail: christof.sommer@med.uni-heidelberg.de; Arnegger, F.; Koch, V.

    2012-06-15

    Purpose: This study was designed to analyze the effect of two different ablation modes ('temperature control' and 'power control') of a microwave system on procedural outcome in porcine kidneys in vivo. Methods: A commercially available microwave system (Avecure Microwave Generator; MedWaves, San Diego, CA) was used. The system offers the possibility to ablate with two different ablation modes: temperature control and power control. Thirty-two microwave ablations were performed in 16 kidneys of 8 pigs. In each animal, one kidney was ablated twice by applying temperature control (ablation duration set point at 60 s, ablation temperature set point at 96 Degree-Signmore » C, automatic power set point; group I). The other kidney was ablated twice by applying power control (ablation duration set point at 60 s, ablation temperature set point at 96 Degree-Sign C, ablation power set point at 24 W; group II). Procedural outcome was analyzed: (1) technical success (e.g., system failures, duration of the ablation cycle), and (2) ablation geometry (e.g., long axis diameter, short axis diameter, and circularity). Results: System failures occurred in 0% in group I and 13% in group II. Duration of the ablation cycle was 60 {+-} 0 s in group I and 102 {+-} 21 s in group II. Long axis diameter was 20.3 {+-} 4.6 mm in group I and 19.8 {+-} 3.5 mm in group II (not significant (NS)). Short axis diameter was 10.3 {+-} 2 mm in group I and 10.5 {+-} 2.4 mm in group II (NS). Circularity was 0.5 {+-} 0.1 in group I and 0.5 {+-} 0.1 in group II (NS). Conclusions: Microwave ablations performed with temperature control showed fewer system failures and were finished faster. Both ablation modes demonstrated no significant differences with respect to ablation geometry.« less

  17. Systematic review of high-intensity focused ultrasound ablation in the treatment of breast cancer.

    PubMed

    Peek, M C L; Ahmed, M; Napoli, A; ten Haken, B; McWilliams, S; Usiskin, S I; Pinder, S E; van Hemelrijck, M; Douek, M

    2015-07-01

    A systematic review was undertaken to assess the clinical efficacy of non-invasive high-intensity focused ultrasound (HIFU) ablation in the treatment of breast cancer. MEDLINE/PubMed library databases were used to identify all studies published up to December 2013 that evaluated the role of HIFU ablation in the treatment of breast cancer. Studies were eligible if they were performed on patients with breast cancer and objectively recorded at least one clinical outcome measure of response (imaging, histopathological or cosmetic) to HIFU treatment. Nine studies fulfilled the inclusion criteria. The absence of tumour or residual tumour after treatment was reported for 95·8 per cent of patients (160 of 167). No residual tumour was found in 46·2 per cent (55 of 119; range 17-100 per cent), less than 10 per cent residual tumour in 29·4 per cent (35 of 119; range 0-53 per cent), and between 10 and 90 per cent residual tumour in 22·7 per cent (27 of 119; range 0-60 per cent). The most common complication associated with HIFU ablation was pain (40·1 per cent) and less frequently oedema (16·8 per cent), skin burn (4·2 per cent) and pectoralis major injury (3·6 per cent). MRI showed an absence of contrast enhancement after treatment in 82 per cent of patients (31 of 38; range 50-100 per cent), indicative of coagulative necrosis. Correlation of contrast enhancement on pretreatment and post-treatment MRI successfully predicted the presence of residual disease. HIFU treatment can induce coagulative necrosis in breast cancers. Complete ablation has not been reported consistently on histopathology and no imaging modality has been able confidently to predict the percentage of complete ablation. Consistent tumour and margin necrosis with reliable follow-up imaging are required before HIFU ablation can be evaluated within large, prospective clinical trials. © 2015 BJS Society Ltd Published by John Wiley & Sons Ltd.

  18. Modeling of plasma distortions by laser-induced ablation spectroscopy (LIAS) and implications for the interpretation of LIAS measurements

    NASA Astrophysics Data System (ADS)

    Tokar, M. Z.; Gierse, N.; Philipps, V.; Samm, U.

    2015-09-01

    For the interpretation of the line radiation observed from laser induced ablation spectroscopy (LIAS) such parameters as the density and temperature of electrons within very compact clouds of atoms and singly charged ions of ablated material have to be known. Compared to the local plasma conditions prior to the laser pulse, these can be strongly changed during LIAS since new electrons are generated by the ionisation of particles ejected from the irradiated target. Because of their transience and spatial inhomogeneity it is technically difficult to measure disturbances induced in the plasma by LIAS. To overcome this uncertainty a numerical model has been elaborated, providing a self-consistent description for the spreading of ablated particles and accompanying modifications in the plasma. The results of calculations for LIAS performed on carbon-containing targets in Ohmic and additionally heated discharges in the tokamak TEXTOR are presented. Due to the increase in the electron density the ‘ionisation per photon’ ratio, S/XB factor, is significantly enhanced compared to unperturbed plasma conditions. The impact of the amount of material ablated and of the plasma conditions before LIAS on the level of the S/XB-enhancement is investigated.

  19. Wall ablation of heated compound-materials into non-equilibrium discharge plasmas

    NASA Astrophysics Data System (ADS)

    Wang, Weizong; Kong, Linghan; Geng, Jinyue; Wei, Fuzhi; Xia, Guangqing

    2017-02-01

    The discharge properties of the plasma bulk flow near the surface of heated compound-materials strongly affects the kinetic layer parameters modeled and manifested in the Knudsen layer. This paper extends the widely used two-layer kinetic ablation model to the ablation controlled non-equilibrium discharge due to the fact that the local thermodynamic equilibrium (LTE) approximation is often violated as a result of the interaction between the plasma and solid walls. Modifications to the governing set of equations, to account for this effect, are derived and presented by assuming that the temperature of the electrons deviates from that of the heavy particles. The ablation characteristics of one typical material, polytetrafluoroethylene (PTFE) are calculated with this improved model. The internal degrees of freedom as well as the average particle mass and specific heat ratio of the polyatomic vapor, which strongly depends on the temperature, pressure and plasma non-equilibrium degree and plays a crucial role in the accurate determination of the ablation behavior by this model, are also taken into account. Our assessment showed the significance of including such modifications related to the non-equilibrium effect in the study of vaporization of heated compound materials in ablation controlled arcs. Additionally, a two-temperature magneto-hydrodynamic (MHD) model accounting for the thermal non-equilibrium occurring near the wall surface is developed and applied into an ablation-dominated discharge for an electro-thermal chemical launch device. Special attention is paid to the interaction between the non-equilibrium plasma and the solid propellant surface. Both the mass exchange process caused by the wall ablation and plasma species deposition as well as the associated momentum and energy exchange processes are taken into account. A detailed comparison of the results of the non-equilibrium model with those of an equilibrium model is presented. The non-equilibrium results

  20. Predictors of Long-term Success After Concomitant Surgical Ablation for Atrial Fibrillation.

    PubMed

    Pecha, Simon; Ghandili, Susanne; Hakmi, Samer; Willems, Stephan; Reichenspurner, Hermann; Wagner, Florian Mathias

    2017-01-01

    According to guidelines, atrial fibrillation (AF) ablation success should be measured by 24-hour Holter electrocardiogram (ECG). However, information on long-term success, especially obtained by 24-hour Holter ECG, is rare. We therefore analyzed rhythm course and long-term outcomes of our patients undergoing concomitant surgical AF ablation. Between January 2003 and April 2011, 486 patients underwent concomitant surgical AF ablation in our institution. Patients with 24-hour Holter ECG rhythm status available between 5 and 10 years postoperatively were included in this retrospective data analysis (n = 155). Ablation lesions were limited to either a pulmonary vein isolation (n = 31, 20%), a more complex left atrial lesion set (n = 89, 57%), or biatrial lesions (n = 35, 23%). Primary end point of the study was freedom from AF during long-term follow-up. Mean patient age was 68.1 ± 8.4 years; 57.4% were male. Mean follow-up time was 5.9 years. Surgical AF ablation provided freedom from AF rate of 56.6% during long-term follow-up, with significantly better results in patients with paroxysmal than in those with persistent AF (67.2% vs 51.8% P = 0.03). A stable rhythm course was observed during follow-up, without statistically significant differences between 12 months and latest follow-up (63.2% vs 56.6%; P = 0.25). In multivariate analysis, preoperative paroxysmal AF, duration of AF, and left atrial diameter were predictors of long-term ablation success. Surgical AF ablation provided freedom from AF rate of 56.6% during long-term follow-up. Statistically significant predictors of ablation success at latest follow-up were preoperative paroxysmal AF, duration of AF, and a preoperative smaller left atrial diameter. Copyright © 2017. Published by Elsevier Inc.

  1. MR-guided microwave ablation in hepatic tumours: initial results in clinical routine.

    PubMed

    Hoffmann, Rüdiger; Rempp, Hansjörg; Keßler, David-Emanuel; Weiß, Jakob; Pereira, Philippe L; Nikolaou, Konstantin; Clasen, Stephan

    2017-04-01

    Evaluation of the technical success, patient safety and technical effectiveness of magnetic resonance (MR)-guided microwave ablation of hepatic malignancies. Institutional review board approval and informed patient consent were obtained. Fifteen patients (59.8 years ± 9.5) with 18 hepatic malignancies (7 hepatocellular carcinomas, 11 metastases) underwent MR-guided microwave ablation using a 1.5-T MR system. Mean tumour size was 15.4 mm ± 7.7 (7-37 mm). Technical success and ablation zone diameters were assessed by post-ablative MR imaging. Technique effectiveness was assessed after 1 month. Complications were classified according to the Common Terminology Criteria for Adverse Events (CTCAE). Mean follow-up was 5.8 months ± 2.6 (1-10 months). Technical success and technique effectiveness were achieved in all lesions. Lesions were treated using 2.5 ± 1.2 applicator positions. Mean energy and ablation duration per tumour were 37.6 kJ ± 21.7 (9-87 kJ) and 24.7 min ± 11.1 (7-49 min), respectively. Coagulation zone short- and long-axis diameters were 31.5 mm ± 10.5 (16-65 mm) and 52.7 mm ± 15.4 (27-94 mm), respectively. Two CTCAE-2-complications occurred (pneumothorax, pleural effusion). Seven patients developed new tumour manifestations in the untreated liver. Local tumour progression was not observed. Microwave ablation is feasible under near real-time MR guidance and provides effective treatment of hepatic malignancies in one session. • Planning, applicator placement and therapy monitoring are possible without using contrast enhancement • Energy transmission from the generator to the scanner room is safely possible • MR-guided microwave ablation provides effective treatment of hepatic malignancies in one session • Therapy monitoring is possible without applicator retraction from the ablation site.

  2. Live imaging of targeted cell ablation in Xenopus: a new model to study demyelination and repair

    PubMed Central

    Kaya, F.; Mannioui, A.; Chesneau, A.; Sekizar, S.; Maillard, E.; Ballagny, C.; Houel-Renault, L.; Du Pasquier, D.; Bronchain, O.; Holtzmann, I.; Desmazieres, A.; Thomas, J.-L.; Demeneix, B. A.; Brophy, P. J.; Zalc, B.; Mazabraud, A.

    2012-01-01

    Live imaging studies of the processes of demyelination and remyelination have so far been technically limited in mammals. We have thus generated a Xenopus laevis transgenic line allowing live imaging and conditional ablation of myelinating oligodendrocytes throughout the central nervous system (CNS). In these transgenic pMBP-eGFP-NTR tadpoles the myelin basic protein (MBP) regulatory sequences, specific to mature oligodendrocytes, are used to drive expression of an eGFP (enhanced green fluorescent protein) reporter fused to the E. coli nitroreductase (NTR) selection enzyme. This enzyme converts the innocuous pro-drug metronidazole (MTZ) to a cytotoxin. Using two-photon imaging in vivo, we show that pMBP-eGFP-NTR tadpoles display a graded oligodendrocyte ablation in response to MTZ, which depends on the exposure time to MTZ. MTZ-induced cell death was restricted to oligodendrocytes, without detectable axonal damage. After cessation of MTZ treatment, remyelination proceeded spontaneously, but was strongly accelerated by retinoic acid. Altogether, these features establish the Xenopus pMBP-eGFP-NTR line as a novel in vivo model for the study of demyelination/remyelination processes and for large-scale screens of therapeutic agents promoting myelin repair. PMID:22973012

  3. Relationship Between LIBS Ablation and Pit Volume for Geologic Samples: Applications for the In Situ Absolute Geochronology

    NASA Technical Reports Server (NTRS)

    Devismes, Damien; Cohen, Barbara; Miller, J.-S.; Gillot, P.-Y.; Lefevre, J.-C.; Boukari, C.

    2014-01-01

    These first results demonstrate that LIBS spectra can be an interesting tool to estimate the ablated volume. When the ablated volume is bigger than 9.10(exp 6) cubic micrometers, this method has less than 10% of uncertainties. Far enough to be directly implemented in the KArLE experiment protocol. Nevertheless, depending on the samples and their mean grain size, the difficulty to have homogeneous spectra will increase with the ablated volume. Several K-Ar dating studies based on this approach will be implemented. After that, the results will be shown and discussed.

  4. Sprayable lightweight ablative coating

    NASA Technical Reports Server (NTRS)

    Simpson, William G. (Inventor); Sharpe, Max H. (Inventor); Hill, William E. (Inventor)

    1991-01-01

    An improved lightweight, ablative coating is disclosed that may be spray applied and cured without the development of appreciable shrinkage cracks. The ablative mixture consists essentially of phenolic microballoons, hollow glass spheres, glass fibers, ground cork, a flexibilized resin binder, and an activated colloidal clay.

  5. Emerging needle ablation technology in urology.

    PubMed

    Leveillee, Raymond J; Pease, Karli; Salas, Nelson

    2014-01-01

    Thermal ablation of urologic tumors in the form of freezing (cryoablation) and heating (radiofrequency ablation) have been utilized successfully to treat and ablate soft tissue tumors for over 15 years. Multiple studies have demonstrated efficacy nearing that of extirpative surgery for certain urologic conditions. There are technical limitations to their speed and safety profile because of the physical limits of thermal diffusion. Recently, there has been a desire to investigate other forms of energy in an effort to circumvent the limitations of cryoblation and radiofrequency ablation. This review will focus on three relatively new energy applications as they pertain to tissue ablation: microwave, irreversible electroporation, and water vapor. High-intensity-focused ultrasound nor interstitial lasers are discussed, as there have been no recently published updates. Needle and probe-based ablative treatments will continue to play an important role. As three-dimensional imaging workstations move from the advanced radiologic interventional suite to the operating room, surgeons will likely still play a pivotal role in the +-application of these probe ablative devices. It is essential that the surgeon understands the fundamentals of these devices in order to optimize their application.

  6. Clinical Predictors of Long-term Success in Ultrasound-guided High-intensity Focused Ultrasound Ablation Treatment for Adenomyosis

    PubMed Central

    Liu, Xin; Wang, Wei; Wang, Yang; Wang, Yuexiang; Li, Qiuyang; Tang, Jie

    2016-01-01

    Abstract The long-term outcomes of ultrasound-guided high-intensity focused ultrasound (USgHIFU) ablation treatment for adenomyosis and the relevant factors affecting the durability of symptom relief were assessed in this study. A total of 230 women with adenomyosis who were treated with USgHIFU ablation between January 2007 and December 2013 were retrospectively analyzed. The contrast-enhanced ultrasonography (CEUS) was performed immediately after the treatment to evaluate the ablation effect, and the nonperfused volume (NPV) ratio was then calculated. Regular follow-up was conducted and the vis